
mdpi.com/journal/electronics

Special Issue Reprint

Advances in Intelligent Data 
Analysis and Its Applications

Edited by 

Chao Zhang, Wentao Li, Huiyan Zhang and Tao Zhan



Advances in Intelligent Data Analysis
and Its Applications





Advances in Intelligent Data Analysis
and Its Applications

Editors

Chao Zhang

Wentao Li

Huiyan Zhang

Tao Zhan

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

Chao Zhang

Shanxi University,

Taiyuan, China

Wentao Li

Southwest University,

Chongqing, China

Huiyan Zhang

Chongqing Technology and

Business University,

Chongqing, China

Tao Zhan

Southwest University,

Chongqing, China

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Electronics (ISSN 2079-9292) (available at: https://www.mdpi.com/journal/electronics/special

issues/771L15O65G).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-03928-615-7 (Hbk)

ISBN 978-3-03928-616-4 (PDF)

doi.org/10.3390/books978-3-03928-616-4

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

Chao Zhang, Wentao Li, Huiyan Zhang and Tao Zhan

Recent Advances in Intelligent Data Analysis and Its Applications
Reprinted from: Electronics 2024, 13, 226, doi:10.3390/electronics13010226 . . . . . . . . . . . . . 1

Changsik Park, Euntack Han, Ikjae Kim and Dongkyoo Shin

A Study on the High Reliability Audio Target Frequency Generator for Electronics Industry
Reprinted from: Electronics 2023, 12, 4918, doi:10.3390/electronics12244918 . . . . . . . . . . . . . 9

Colin Wilcox, Vasileios Giagos and Soufiene Djahel

A Neighborhood-Similarity-Based Imputation Algorithm for Healthcare Data Sets: A
Comparative Study
Reprinted from: Electronics 2023, 12, 4809, doi:10.3390/electronics12234809 . . . . . . . . . . . . . 37

Jiachen Du, Shenghui Zhao, Cuijuan Shang and Yinong Chen

Applying Image Analysis to Build a Lightweight System for Blind Obstacles Detecting of
Intelligent Wheelchairs
Reprinted from: Electronics 2023, 12, 4472, doi:10.3390/electronics12214472 . . . . . . . . . . . . . 55

Jeyabharathy Sadaiyandi, Padmapriya Arumugam, Arun Kumar Sangaiah and Chao Zhang

Stratified Sampling-Based Deep Learning Approach to Increase Prediction Accuracy of
Unbalanced Dataset
Reprinted from: Electronics 2023, 12, 4423, doi:10.3390/electronics12214423 . . . . . . . . . . . . . 71
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1. Introduction

In the current rapidly evolving technological landscape, marked by transformative
advancements such as cloud computing, the Internet of Things (IoT), and industrial in-
ternet, the complexity of data analysis tasks is escalating across the socio-economic spec-
trum. Within this dynamic environment, the challenges faced by current problem-solving
programs when handling big data primarily revolve around the effective management,
modeling, and processing of extensive datasets.

This surge in data intricacy necessitates a proactive approach towards researching and
developing intelligent models and methods for efficient data analysis and its application. It
is crucial to explore innovative solutions that can navigate the intricacies of large datasets
while ensuring not only the accuracy of analyses but also the timely extraction of valuable
insights. Such research endeavors have become indispensable in addressing the growing
demand for robust data processing capabilities in diverse sectors.

Moreover, as the technological landscape continues to evolve, the importance of
staying at the forefront of data analysis methodologies becomes evident. This involves not
only adapting to existing challenges but also anticipating future complexities. By delving
into research on intelligent data models and methods, we pave the way for advancements
that are not only responsive to current demands but also resilient in the face of emerging
technologies and data-related challenges in our ever-changing socio-economic landscape.

Presently, the domain of intelligent data analysis [1] has experienced a rise in the
number of scholars and professionals working within it. Innovative methods have been
proposed from diverse perspectives, including data mining, machine learning (ML), natural
language processing, granularity computation, social networks, machine vision, cognitive
computing, and more. These approaches are intricately woven into the fabric of intelligent
data analysis, presenting expansive and profound application scenarios for the field of
data mining.

Data mining technology [2] plays a crucial role in dealing with large-scale data by
extracting valuable information from massive datasets. It provides essential training data
for ML algorithms, enabling the construction of more accurate models. Simultaneously,
the development of natural language processing [3] allows machines to better understand
and parse human language, imparting more practical meaning to the results of data
analysis. Advancements in granularity computing [4] have improved the effectiveness
of data analysis by simplifying information into fundamental concepts, facilitating swift
and in-depth analysis. Social network analysis [5] uncovers patterns in interpersonal
relationships and group behavior, offering substantial groundwork for the development
of marketing strategies and policy formulation. The progression of machine vision [6]
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broadens the horizons of data analysis to encompass image and video processing, providing
strong support for applications such as intelligent surveillance and autonomous driving.
Concurrently, the integration of cognitive computing [7] emulates the functions of the
human brain, enhancing the innovation and intelligence of data analysis.

These intelligent data analysis methods have broadened the comprehension of intricate
data processing at the theoretical research level, concurrently yielding positive effects on
socio-economic development. Especially within the era of big data [8], these methods have
shown considerable importance in tackling practical challenges across diverse domains,
presenting fresh perspectives and innovative solutions for the complexities posed by
intricate data. They not only make data analysis more intelligent and efficient but also drive
the development of socio-economics, providing more comprehensive and viable strategies
for solving practical issues. The research on these intelligent data analysis methods is
becoming a crucial engine for advancing the integration of technology and society.

By conducting in-depth research and widely applying these methods, one can better
address the challenges posed by the increasingly vast and diverse data streams, further pro-
pelling technological innovation. Not only is this innovation exhilarating, it is also playing
an increasingly crucial role in solving practical problems. Further in-depth research and
widespread application of newly emerging models and methods in the field of intelligent
data analysis are anticipated to drive continuous progress in societal digital transformation
and innovation.

To advance research in the field of computer science and engineering, new methods for
intelligent data analysis and their applications must be persistently explored. Throughout
this explorative process, the focus will be on the practicality, reliability, and effectiveness
of innovative technologies and methods, ensuring their maximum impact in real-world
applications. By closely integrating theoretical research with practical applications, there
is the potential to advance the forefront of the intelligent data analysis field, contributing
more beneficial insights to the development of a data-driven society in the future.

Overall, research on intelligent data analysis [9] and its applications holds significant
value in the era of big data [10]. Through interdisciplinary approaches and technological
innovations, it is possible to better address the challenges posed by complex data in the real
world, further advancing the field of computer science and engineering. In the ongoing
exploration in this field, attention is directed towards enhancing the practical applicability
of intelligent data analysis methods to address real-world challenges. This endeavor
aims to provide more reliable and innovative solutions for technological progress and
societal development by resolving issues in practical scenarios. Through these efforts,
there will be a continual contribution of greater depth and breadth of knowledge to propel
the development of the field of data science, continuously pushing the boundaries of
technological innovation.

One of the core tasks of intelligent data analysis is to effectively handle vast amounts
of data and extract insightful information that informs decision making [11]. The essence
of this article is to delve into the latest developments in the field of intelligent data analysis
and explore how these technological innovations can be applied to address real-world
challenges in the realms of society, economy, and science. By comprehensively understand-
ing the latest developments in this field, one can better grasp the trends in technological
advancement. This knowledge enables a more flexible application of these innovative
technologies in practical scenarios.

Proactively exploring and implementing forward-looking approaches is pivotal for
advancing intelligent and efficient data processing methods across diverse fields. This
adaptability is indispensable for navigating the ever-evolving landscape of emerging
complex challenges. Immersing oneself in the dynamic realm of intelligent data analy-
sis facilitates not only better adaptation but also leadership in the unfolding trends of
data science.

This proactive stance plays a crucial role in fostering innovation and formulating
practical solutions that make significant contributions to the sustainable development of
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society, the economy, and the scientific domain. Delving deeper into the intricacies of
intelligent data analysis not only enhances our capacity to address current issues but also
positions us at the forefront of anticipating and responding to future challenges.

In this context, keeping abreast of emerging technologies and methodologies is
paramount, allowing us to harness the full potential of data-driven insights. Embrac-
ing a forward-thinking mindset empowers us to not only meet present demands but also
to shape and propel the future of data science. This proactive engagement acts as a catalyst
for developing and implementing innovative solutions with far-reaching implications for
the betterment of our global community.

Within this Special Issue, twenty-eight papers are published, encompassing diverse
aspects of decision making, recommendation systems, intrusion detection, question an-
swering, as well as topics in ML and deep learning (DL).

2. Overview of Contributions

For diverse domain requirements, numerous intelligent granular computing models
have been established. The utilization of knowledge distance serves to quantify distinctions
between granular spaces, representing an uncertainty metric with robust discriminative
capabilities in rough set theory. However, the existing knowledge distance metric falls short
when considering the relative disparities between granular spaces within the context of
uncertain concepts. To address this gap, Yang et al. (Contribution 1) explored the concept
of relative knowledge distance for intuitionistic fuzzy concepts.

Air pollution poses a significant environmental threat that could have potential con-
sequences for human health. The emergence of IoT devices enables instantaneous and
ongoing surveillance of atmospheric contaminants in metropolitan regions. However, the
presence of uncertainty and inaccuracy in IoT sensor data present challenges in the effective
utilization and fusion of these data. Additionally, divergent opinions among decision-
makers regarding air quality evaluation (AQE) can impact final decisions. Addressing
these issues, Li et al. (Contribution 2) systematically investigated a method utilizing
hesitant trapezoidal fuzzy information, examining its application in AQE.

The multigranulation rough set (MGRS) model, extending the Pawlak rough set, de-
scribes uncertain concepts using optimistic and pessimistic upper/lower approximate
boundaries. However, existing information granules in MGRS lacked sufficient approx-
imate descriptions of uncertain concepts. In response, Yang et al. (Contribution 3) in-
troduced the cost-sensitive multigranulation approximation of rough sets, encompassing
optimistic and pessimistic approximations, grounded in approximation set theory. The
associated properties of these approximations are scrutinized. Additionally, a cost-sensitive
selection algorithm is proposed for optimizing the multigranulation approximation.

A myriad of research endeavors have extensively explored diverse facets within the
field. In this context, Liu and his colleagues (Contribution 4) investigated the utilization
of contextual information and users’ interest preferences within location-based social
networks to propose the subsequent point-of-interest for users in the IoT environment.
Their study demonstrated that their model, named CGTS-HAN, could more accurately
capture the contextual features of users’ POI compared to alternative models.

Addressing the tendency of recommender systems to overlook diverse neighbor views
in collaborative filtering, Zheng et al. (Contribution 5) proposed a multiscale neighbor-
aware attention network. This approach integrates overarching semantics from various
neighbor types with significant local embeddings of multiscale neighbors. The collabo-
rative signals for predicting user ratings of items are derived from a range of neighbors,
encompassing both attribute views and interaction views.

Modeling users’ dynamic preferences is a challenging yet crucial task in recommen-
dation systems. Hu et al. (Contribution 6) systematically addressed this challenge by
considering both local fluctuations in user interests and the need for global stability.

Coping with vast amounts of data requires sophisticated methodologies. Variations in
procedures and protocols across healthcare services and facilities has resulted in the incom-
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plete and erroneous documentation of medical backgrounds. Rectifying these discrepancies
is imperative to establish a singular, accurate record moving forward. A widespread strat-
egy for tackling this concern includes utilizing imputation methods to anticipate absent
data values by relying on established information within the dataset. A widespread strategy
for tackling this concern is utilizing imputation techniques to forecast missing data values
by leveraging known values within the dataset. In this regard, Wilcox et al. (Contribution
7) introduced a neighborhood similarity measure-based imputation technique.

Network clustering held significance in the fields of data mining and bioinformatics.
Wang et al. (Contribution 8) introduced a specialized algorithm in this domain, targeting
the detection of protein complexes by integrating features of power-law distributions.

A frequency synthesizer serves the fundamental function of generating a desired
frequency through the manipulation of a reference frequency signal. Across diverse sectors,
including communication, control, surveillance, medical, and commercial applications,
the demand for stable and precise frequency generation is critical to ensuring the depend-
able performance of mechanical equipment. In response to this imperative, Park et al.
(Contribution 9) undertook the design and implementation of a highly reliable frequency
synthesizer specifically tailored for use in railway track circuit systems. This synthesizer
exclusively utilized audio frequency (AF) and was integrated into the logic circuit of a
field-programmable gate array, eliminating the need for a microprocessor. The deploy-
ment of this exceptionally precise AF-class frequency synthesizer significantly elevated the
safety and efficiency of braking and signaling systems in transportation equipment, such
as railways and subways.

Data analysis has greatly benefited from the pivotal role played by ML and DL models.
For example, mining machinery heavily relies on picks for the automated extraction of
coal, and the condition of these picks significantly influences the effectiveness of mining
equipment. Facing the task of accurately assessing the overall wear status of cutting tools
during coal mining operations, Song and colleagues (Contribution 10) introduced a data-
centric model for recognizing the wear condition of these tools. The model employed
sophisticated optimization techniques for long short-term memory networks, integrating
Bayesian algorithms.

Various devices within the smart home environment experience different levels of
susceptibility to attacks. Devices characterized by lower attack frequencies encounter
challenges in amassing sufficient attack data, thereby limiting the capacity to train effective
intrusion detection models. In response, Chen et al. (Contribution 11) presented an innova-
tive approach termed the improvement technique, which leverages feature enhancement
and data augmentation to generate ample training data, particularly for broadening few-
shot datasets. The utilization of an expanded dataset in training intrusion detection models
significantly enhanced detection performance.

Yet, determining whether the augmented dataset truly enhanced model performance
poses a challenge. Relying on the training model for each assessment instance to confirm
the data augmentation and dataset quality incurs considerable time and resource costs. To
tackle this issue, Cui et al. (Contribution 12) proposed a straightforward and pragmatic
method to assess the effectiveness of data augmentation in image classification tasks,
making a valuable contribution to the theoretical research on assessing data augmentation
quality. Bieliński et al. (Contribution 13) delved into the exploration of how specific ML
algorithms tackle the challenge of establishing a virtual mental health index.

Exploring the issue of flight delays, traditional DL algorithms encounter difficulties
marked by low accuracy and heightened computational complexity. This poses a practical
challenge in directly deploying deep flight delay prediction algorithms to mobile terminals.
In response, Qu et al. (Contribution 14) studied the lightweight neural network Mo-
bileNetV3 algorithm and the improved ECA-MobileNetV3 algorithm. Their methodology
included preprocessing real flight information and weather data.

Zhang et al. (Contribution 15) tackled the underutilization of relationships among
words in a question through the introduction of a question-answering methodology for a
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knowledge base. This approach employed graph convolutional networks, facilitating the
effective pooling of information across diverse dependency structures. The result was a
heightened efficacy in the representation of sequence vectors.

Amidst efforts to control healthcare expenses and adapt to changing regulations,
pharmaceutical laboratories aim to prolong the longevity of crucial equipment, particularly
fluid bed dryers crucial for drug manufacturing. Barriga et al. (Contribution 16) proposed a
pioneering solution that incorporates exploration data analysis and a Catboost ML model to
tackle challenges associated with older dryers lacking real-time temperature optimization
sensors. The integration of the Catboost algorithm resulted in a noteworthy decrease in
initial heating time, leading to substantial energy conservation. The ongoing surveillance
of essential parameters signified a departure from traditional fixed-time models, indicating
a paradigm shift in the industry.

Recognizing orphan genes (OGs) can be a labor-intensive process. To address this
challenge, Gao et al. (Contribution 17) introduced XGBoost-A2OGs, an automated predictor
specifically designed for the identification of OGs in seven angiosperm species. The
methodology involves the utilization of hybrid features and XGBoost.

Accurately classifying imbalanced data classes poses a formidable challenge due to
the inherent uneven distribution in datasets. To tackle this obstacle, the incorporation of
sampling procedures into ML and DL algorithms has underscored its indispensability. In
this context, Sadaiyandi et al. (Contribution18) conducted a study that employed sampling-
based ML and DL approaches to automate the identification of deteriorating trees within a
forest dataset.

In the process of feature learning, conventional models for abnormal state detection
frequently neglect the variation in position and orientation system data within the frequency
domain. This neglect results in the forfeiture of vital feature details, hindering the possibility
for additional improvements in detection capability. To overcome this limitation and with
the goal of improving UAV flight safety, Yang et al. (Contribution 19) introduced a technique
for detecting abnormal UAV states.

Autonomous underwater vehicles (AUVs) encounter challenges in underwater naviga-
tion due to the considerable costs associated with inertial navigation devices and Doppler
velocity logs, which impede the acquisition of essential navigation data. In addressing
this issue, methodologies such as underwater simultaneous localization and mapping are
employed. These approaches, coupled with navigation methods reliant on perceptual
sensors like vision and sonar, aim to enhance self-positioning precision. In the field of
machine learning (ML), extensive datasets play a crucial role in improving algorithmic
performance. Wang et al. (Contribution20) introduced an underwater navigation dataset
derived from controllable AUVs.

A network intrusion detection (NID) tool grapples with network data characterized
by high feature dimensionality and an imbalanced distribution across categories. Presently,
certain detection models exhibit suboptimal accuracy in practical detection scenarios. In
response to these challenges, Zhang et al. (Contribution 21) introduced an NID model
leveraging multi-head attention and bidirectional long short-term memory.

To address the accuracy limitations of the traditional interacting multiple-model (IMM)
algorithm in target tracking, Wang (Contribution 22) proposed an innovative algorithm
named VSIMM-CS. This algorithm adopts a variable structure interacting multiple-model
approach. The real-time construction of its model ensemble is based on the initial set,
considering both the error characteristics of a linear system and the inherent symmetry in
the structure of the model set.

Semi-supervised classification stands as a fundamental approach for addressing incom-
plete tag information without manual intervention. Nevertheless, prevailing algorithms
necessitate the storage of all unlabeled instances, leading to iterative processes with po-
tential drawbacks, such as slow execution speed and substantial memory requirements,
particularly for large datasets. While previous solutions have primarily concentrated
on supervised classification, Song et al. (Contribution 23) presented a novel approach

5



Electronics 2024, 13, 226

aimed at reducing the size of the unlabeled instance set in the context of semi-supervised
classification algorithms.

To enhance scatter quality without a notable reduction in the lateral resolution of the
delay multiply and sum (DMAS) beamforming coherence factor, Guo (Contribution 24) in-
troduced an adaptive, spatio-temporally smoothed coherence factor combined with DMAS.
In this research, the generalized coherence factor was applied to identify local coherence
and dynamically ascertain the subarray length for spatial smoothing. Incorporating this
parameter to assess the results improved scatter quality without a substantial compromise
in lateral precision, making it particularly advantageous in intricate clinical environments.

In the field of intelligent manufacturing, the proficient use of industrial robots faces a
hurdle due to the issue of low absolute positioning accuracy. Tao et al. (Contribution 25)
presented an algorithm for precise compensation in the absolute positioning of industrial
robots, leveraging deep belief networks through an offline compensation approach. They
employed deep belief networks through an offline compensation approach, optimizing
these networks using a differential evolution algorithm. Additionally, they introduced a
position error mapping model incorporating evidence theory. The aim is to streamline
the process of precision compensation, specifically targeting the enhancement of absolute
positioning accuracy in industrial robots.

The detection of blind spot obstacles in intelligent wheelchairs holds significance,
particularly within semi-enclosed environments of elderly communities. Current solutions
relying on LiDAR and 3D point clouds are costly, difficult to implement, and demand
substantial computing resources and time. Du et al. (Contribution 26) introduced an
optimized lightweight obstacle detection model called GC-YOLO, based on YOLOv5
architecture.

While sentiment analysis has been extensively researched, the majority of studies have
concentrated on analyzing individual corpora. Yang et al. (Contribution 27) introduced a
pioneering framework, CNEC, tailored for conducting sentiment analysis on bilingual text
that includes emojis, commonly found on social media platforms.

Knowledge graph question answering supported users without mandating data struc-
ture comprehension, addressing challenges such as semantic understanding, retrieval
errors, word abbreviation, object complement, and entity ambiguity. To tackle these issues,
Zuo (Contribution 28) presented the innovative Chunked Learning Network method. The
model incorporated vector representations of entities and predicates into the question, fully
leveraging embeddings derived from the knowledge graph. Adapted for diverse scenarios,
the model utilizes a variety of approaches to acquire vector representations for the subject
entities and relationships within the question.

Author Contributions: C.Z., W.L., H.Z. and T.Z. worked together in the whole editorial process
of the Special Issue, “Advances in Intelligent Data Analysis and Its Applications”, published by
the journal Electronics. H.Z. and T.Z. drafted this editorial introduction. C.Z. and W.L. reviewed,
edited, and finalized the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This editorial was supported in part by the Natural Science Foundation of Chongqing
(No. CSTB2023NSCQ-MSX0152), the Special Fund for Science and Technology Innovation Teams of
Shanxi (202204051001015), the Science and Technology Research Program of Chongqing Education
Commission (Nos. KJZD-K202300807, KJQN202300202, KJQN202100206), the Training Program
for Young Scientific Researchers of Higher Education Institutions in Shanxi, the Cultivate Scientific
Research Excellence Programs of Higher Education Institutions in Shanxi (CSREP) (2019SK036), and
the China Postdoctoral Science Foundation (No. 2023T160401).

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Yang, J.; Qin, X.; Wang, G.; Zhang, X.; Wang, B. Relative Knowledge Distance Measure
of Intuitionistic Fuzzy Concept. Electronics 2022, 11, 3373.

6



Electronics 2024, 13, 226

2. Li, W.; Zhang, C.; Cui, Y.; Shi, J. A Collaborative Multi-Granularity Architecture for
Multi-Source IoT Sensor Data in Air Quality Evaluations. Electronics 2023, 12, 2380.

3. Yang, J.; Kuang, J.; Liu, Q.; Liu, Y. Cost-Sensitive Multigranulation Approximation in
Decision-Making Applications. Electronics 2022, 11, 3801.

4. Liu, X.; Guo, J.; Qiao, P. A Context Awareness Hierarchical Attention Network for
Next POI Recommendation in IoT Environment. Electronics 2022, 11, 3977.

5. Zheng, J.; Jing, T.; Cao, F.; Kang, Y.; Chen, Q.; Li, Y. A Multiscale Neighbor-Aware
Attention Network for Collaborative Filtering. Electronics 2023, 12, 4372.

6. Hu, J.; Liu, Q.; Zhao, F. Local-Aware Hierarchical Attention for Sequential Recommen-
dation. Electronics 2023, 12, 3742.

7. Wilcox, C.; Giagos, V.; Djahel, S. A Neighborhood-Similarity-Based Imputation Algo-
rithm for Healthcare Data Sets: A Comparative Study. Electronics 2023, 12, 4809.

8. Wang, J.; Jia, Y.; Sangaiah, A.K.; Song, Y. A Network Clustering Algorithm for Protein
Complex Detection Fused with Power-Law Distribution Characteristic. Electronics
2023, 12, 3007.

9. Park, C.; Han, E.; Kim, I.; Shin, D. A Study on the High Reliability Audio Target
Frequency Generator for Electronics Industry. Electronics 2023, 12, 4918.

10. Song, D.; Zhao, Y. A Data-Driven Approach Using Enhanced Bayesian-LSTM Deep
Neural Networks for Picks Wear State Recognition. Electronics 2023, 12, 3593.

11. Chen, Y.; Wang, J.; Yang, T.; Li, Q.; Nijhum, N.A. An Enhancement Method in Few-
Shot Scenarios for Intrusion Detection in Smart Home Environments. Electronics 2023,
12, 3304

12. Cui, X.; Li, Y.; Xie, Z.; Liu, H.; Yang, S.; Mou, C. ADQE: Obtain Better Deep Learning
Models by Evaluating the Augmented Data Quality Using Information Entropy.
Electronics 2023, 12, 4077.
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Abstract: The frequency synthesizer performs a simple function of generating a desired frequency by
manipulating a reference frequency signal, but stable and precise frequency generation is essential for
reliable operation in mechanical equipment such as communication, control, surveillance, medical,
and commercial fields. Frequency synthesis, which is commonly used in various contexts, has been
used in analog and digital methods or hybrid methods. Especially in the field of communication,
a precise frequency synthesizer is required for each frequency band, from very low-frequency
AF (audio frequency) to high-frequency microwaves. The purpose of this paper is to design and
implement a highly reliable frequency synthesizer for application to a railway track circuit systems
using AF frequency only with the logic circuit of an FPGA (field programmable gate array) without
using a microprocessor. Therefore, the development trend of analog, digital, and hybrid frequency
synthesizers is examined, and a method for precise frequency synthesizer generation on the basis
of the digital method is suggested. In this paper, the generated frequency generated by applying
the digital frequency synthesizer using the ultra-precision algorithm completed by many trials and
errors shows the performance of generating the target frequency with an accuracy of more than
99.999% and a resolution of mHz, which is much higher than the resolution of 5 Hz in the previous
study. This highly precise AF-class frequency synthesizer contributes greatly to the safe operation
and operation of braking and signaling systems when used in transportation equipment such as
railways and subways.

Keywords: frequency synthesizer; direct frequency synthesizer; indirect frequency synthesizer;
railway track circuit

1. Introduction

Today, most devices, such as electronics, telecommunications, medical, transportation,
and industrial devices, require an RF (reference frequency) inside for their original opera-
tion. This is essential for modulation and demodulation if it is a communication device, and
for transmission, reception, or monitoring control processing of signals if it is a motoring
control device [1]. This RF is usually generated by oscillation using the vibration of the de-
vice itself or by using the LC circuit, but the concept of a FS (frequency synthesizer) has been
introduced to generate a specific frequency quickly and efficiently. There is a traditional
analog method called PLL (phase-locked loop), a digital method, and a hybrid method
that combines the two [2–8]. In this way, various technologies have been developed, from
low-frequency to microwave, depending on the frequency range of frequency synthesis that
produces the specific frequency desired. The output of the frequency synthesizer is very
important in terms of the performance index and the accuracy of the generated frequency,
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which maintains stable output without shaking the generated frequency, like phase noise.
For the frequency synthesizer, DDFS (direct digital frequency synthesizer), which is faster
than PLL, is used to synthesize the desired frequency quickly [2]. However, the digital
frequency synthesizer can synthesize the desired frequency quickly, but due to the nature
of the microprocessor operated by the program mainly used here, it has a fatal flaw, such as
malfunction or inoperability due to some external factors and environmental variables. For
that reason, it is intentionally stuck to analog methods in industrial or highly stable special
applications, not for general commercial or personal use. However, due to the various
convenient characteristics of frequency synthesis, digital frequency synthesizers that can
operate stably in disturbance environments such as Surge are sometimes implemented and
used only by pure logic circuits without a microprocessor. Therefore, in this paper, to gener-
ate the target frequency used in the railway track circuit, the target frequency is generated
using the pure logic of the FPGA to ensure the convenience, excellent performance, and
safety of the digital frequency synthesizer. FPGA-based frequency synthesizers have been
studied as shown in [8], but most of them deal with relatively high frequencies, and it is rare
to use very low frequencies such as audio frequency bands as used in railway track circuits.
In this paper, we investigate the technical development stage of frequency synthesis and
its theoretical structure and design, fabricate, and simulate a frequency synthesizer with
mHz deviation without a processor using only FPGA logic on the traditional structure of
the digital frequency synthesizer DDFS.

2. Research and Technology Trends

DFS (direct frequency synthesis) and indirect frequency synthesis can be used to make
frequency synthesizers that are essential for electronic communication devices. Direct
frequency synthesis methods include direct analog synthesizers such as DAS (direct analog
synthesizer) and DDFS (direct digital frequency synthesizer). Indirect frequency synthesis
methods include PLL (phase-locked loop) and DLL (delay-locked loop) [6]. In addition,
a hybrid FS in which two methods are mixed is used. Among the frequency generation
methods, the analog method has high accuracy but difficult control, while the digital
method has a simple control but low accuracy. In this section, the major frequency synthesis
methods that have been studied so far, their advantages and disadvantages are examined,
and the theoretical basis for implementing the improved AF frequency synthesizer is
provided through the conceptual basis of DDFS using FPGA to be studied in this paper.

2.1. Analog Frequency Synthesizers

Analog frequency synthesizers can be divided into direct and indirect methods ac-
cording to frequency generation methods.

The direct method is a method of generating a frequency directly from a frequency
source, and the indirect method is a method of generating a necessary frequency by
modulating a separately generated frequency. A direct analog frequency synthesizer is a
method of generating a desired frequency by combining a reference frequency generator,
a mixer, a frequency up/down converter, and a frequency doubler/multiplier, and it is
a method of applying a frequency circle itself. The indirect analog frequency synthesizer
generates a desired frequency using a simple technique such as inversion and frequency
division and does not go through a process such as increasing another frequency source.

Andrzej Rokita [9] presented a PLL design that reduces the phase noise generated
when new frequencies are generated by operations such as multiplication, mixing, filtering,
and segmentation performed in direct analog synthesis. It states that very fast switching is
an advantage of direct analog.

Figure 1 shows a conceptual diagram of the analog direct frequency synthesizer of [9].
In Figure 1, (a) is a method of selecting one of four oscillation frequencies as a SP4T (Single
Pole 4 Transfer) switch and then multiplying it by four to obtain the desired frequency.
Meanwhile, (b) is an improved method in which phase noise is reduced by (b) compared
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to (a) by first passing four oscillation frequencies through each of the four generators and
then selecting them as switches.

 

Figure 1. Block diagram of analog direct frequency synthesizer.

In contrast, indirect frequency synthesizers are widely known and widely used PLL.
PLL is a technique that compares the output signal of a VCO (voltage-controlled oscillator)
with respect to an input signal and adjusts the frequency of the VCO to maintain a constant
phase difference of the output signal of the VCO with respect to the input signal. In an
indirect frequency synthesizer, a PLL is used to generate the desired frequency. At this
time, the components of the PLL determine the performance of the frequency synthesizer.

The PLL system proposed in [1] by Yoon Kwang-sup and others includes the com-
ponents of the integer-N PLL. The reference clock generated in the reference divider is
compared with the VCO output signal in a PFD (phase-frequency detector) to generate an
up/down signal, and a CP (charge pump) converts the up/down signal into a current and
transmits it to a LF (loop filter). The LF is used to convert current to voltage and control the
frequency of the VCO; the 1/N Divider in Figure 2 divides the output signal of the VCO
by N to finally produce the desired frequency. Fractional-N (N) dividers are also used to
combine integers and fractions to enable finer frequency control.

Figure 2. Basic structure of PLL frequency synthesizer.

The advantage of this PLL system is that the spurious signal level is reduced due to
the LF operation, and it is simpler than the direct analog frequency synthesizer. However,
it is a disadvantage that the frequency switching time is increased and the phase noise is
higher than in the direct analog method.

However, it is a disadvantage that the frequency switching time is increased and the
phase noise is higher than in the direct analog method. The phase noise performance of the
frequency synthesizer in the LF bandwidth can be represented by λ = λPFD + 10logN and
λPFD is the accumulated phase noise of the reference frequency, phase detector, LF, and
feedback 1/N divider inputted to the phase detector.

Yuchen Wang, Xuguang Bao, and Wei Hua have applied PLL to accurately determine
the rotor position of a PMSM using a permanent magnet using the excellent phase lock
capability of [10] PLL. Phase analysis of a three-phase signal is generally based on a
synchronous reference system. PLL (SRF-PLL), a synchronous reference system, is the
most widely used technique for extracting phase, frequency, and amplitude in a three-
phase system. In this thesis, a phase shift PLL is used to map an asymmetric phase shift
signal to a two-phase fixed coordinate system. In the study [11] of Kim Sang-woo and
others applied to the design of a low-power frequency synthesizer for a GPS receiver using
PLL, a frequency synthesizer was studied by applying a traditional fractional-N divider.
Figure 3 shows the block diagram of the frequency synthesizer studied in [11]: PFD as a
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phase detector, CP as a charge pump, active low-pass filter, VCO, fractional-N divider, and
sigma-delta modulator.

 
Figure 3. Application structure of PLL frequency synthesizer.

Figure 4 is a DLL-based FS block diagram, which is very similar to PLL, except that
it has a VCDL (Voltage-Controlled Delay Line) instead of the VCO of PLL, and some
researchers define it as a class of PLL. The idea of DLL is basically designed to solve
errors related to delays that inevitably occur as the clock signal of the system goes through
several stages. Despite the advantages of low noise and no phase accumulation, DLL
systems are generally not recommended for FS applications due to unprogrammable,
limited multiplicative factors, and high power consumption during operation [6].

 
Figure 4. Frequency synthesizer block diagram based on DLL.

2.2. Digital Frequency Synthesizers

DDFS, which takes advantage of the development of digital technology, is commonly
referred to as a DDS (direct digital frequency synthesizer) and shows a simple basic
configuration diagram in Figure 5 [8].

Figure 5. Direct digital frequency synthesizer basic diagram.

The DDS consists of a reference clock, a phase accumulator, a phase-to-amplitude LUT
(look-up table), a DAC (digital-to-analog converter), a LPF (low-pass filter), and a FCW
(frequency control word) that controls the output frequency.

The DDS finally produces an output signal (fout) at the reference clock frequency (fclk).
This process, which mainly consists of digital control, is very fast and provides a high
switching speed compared to the direct analog frequency synthesis method. DDS exhibits
low-phase noise characteristics, even though the phase noise of the clock source itself
is included.

12



Electronics 2023, 12, 4918

In Figure 5, the frequency control word is added to the sum of the accumulator input
from the phase accumulator and calculated, and the value is implemented in the bit adder
and the result is supplied to the accumulator register.

On the one hand, the waveform data, in which the value sent as the sample address
corresponds to the phase-amplitude conversion circuit, is outputted according to the ad-
dress value. It is transformed through the D/A converter and LPF to the analog waveform
and waveform data is outputted

The biggest advantage of this DDS is that the output frequency of the Heltz (Hz)
level is generated by the fine frequency resolution due to the phase accumulator, but the
limitation of available bandwidth and spurious performance are disadvantages. At this
time, the highest possible frequency is limited to less than half of the clock frequency by the
Nyquist theorem, and spurious noise is higher than the analog frequency synthesis method
due to quantization and DAC conversion errors.

A.A. Alsharef et al. implemented the typical DDS of Figure 6 in FPGA (field pro-
grammable gate array) in [12]. FPGA is a device that is composed of unit blocks called CLB
(Configurable Logic Block) rather than individual logic devices. It can be used as a desired
input and output by the user, thereby reducing the complexity of hardware circuits and
increasing reliability. The DDS using FPGA is designed as a LUT consisting of a Verilog
code, which is also composed of PA, LUT, and D/A and simulated by the RTL (register
transfer language) model.

Figure 6. Conceptual diagram of DAFS with DDS added.

Matt Bergeron and Alan N. Willson, Jr. studied 1 GHz DDS on FPGA in [13]. The
fast orthogonal DDS implemented with the FPGA is based on a new multiplier-based
angle rotation algorithm that does not distort the magnitude of the sine and cosine outputs.
The algorithm is designed to be well mapped to the DSP slices present in the FPGA. The
device is implemented in the Xilinx Virtex-7 device and consumes 54.9 mW at 1 GHz, a
performance previously only achieved in the ASIC design.

Another study using FPGA proposed a frequency synthesizer with a frequency reso-
lution of 1.5 kHz, with a power consumption of 3.96 mW and a spurious performance of
59 dBc in the quadrature DDS of [14] studied by M. Saber Saber, M. Elmasry, and M. Eldin
Abo-Elsoud.

In this study, ROM is not used for low-power implementation during operation on
the FPGA. A simple approach that compensates for the shortcomings of the converter from
phase to amplitude in the structure of a typical DDS, as shown in Figure 6, is to use a ROM
with a function called LUT; however, as shown in the following formula:

fout =
W
2L

Fclk (1)

L: bit number of accumulator
W: bit value of input frequency word

In general, to achieve fine frequency tuning, several techniques have been devised
to limit the ROM size while maintaining adequate performance to require large values,
one of which is to reduce the number of angles required for the sine amplitude to four
using a quarter-wave symmetry of the sine function. Cutting out the output of the phase
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accumulator leads to spurious noise, but this approach is commonly used because it
achieves a fine frequency resolution that requires a very large value for L.

To reduce the memory size in LUT-based FS, various angular decomposition methods
have been proposed, which typically consist of dividing the ROM into several small units,
each of which is processed as part of the truncated phase accumulator output. Data
searched in each low-rank ROM is added, and the sine curve approximation value is
produced. Therefore, the proposed structure in [14] states that the sine function is divided
into linear segments, each segment has a linear equation, and the value of this equation is
obtained through additional hardware.

Wenjun Chen et al. [15] studied how to implement DDS performance improvement
with the CORDIC (coordinated rotation digital computer) algorithm. They used XILINX’s
FPGA to reduce the output delay by repeatedly merging into a small amount of ROM,
which can be seen to realize a sinusoidal wave with an SFDR of 86.76 dB at a high frequency
of 350 MHz. Yixiong Yang et al. propose the LUT-ROT (rotation) architecture of traditional
DDS in [16]. In order to optimize the speed and area of 2 GHz DDS, a performance of
11.7 mW/GHz is implemented in an area of 0.016 mm2 by pipelined LUT.

2.3. Hybrid Frequency Synthesizers

A mixture of analog and digital frequency synthesizer structures has been studied in
both direct and indirect methods, first using DDS in the direct analog frequency synthesis
mentioned above, as shown in Figure 6.

In the analog method, DDS can be added to the input unit to reduce the complexity
of the design and the overall components, and then DDS can be inserted instead of the
fractional-N divider in the PLL system. It is a kind of mixed system of PLL and DDS. In
the study [3] analyzing the phase noise of the digital hybrid PLL frequency synthesizer,
the input noise to obtain the minimum phase noise, the D/A conversion noise due to the
quantization error, and the mathematical model of the VCO noise source were derived
and analyzed.

In order to improve the performance of the high-resolution beam-forming receiver
based on DDS and PLL, Ref. [4] implements high-phase resolution by applying 14 bits
of DDS.

In [4], the implementation of beamforming using only the existing DDS was imple-
mented using DDS-PLL, as shown in Figure 7.

Figure 7. DDS-PLL block diagram.

In the high-performance PLL FS (Frequency Synthesizer) [17] applied to the radar
system studied by Kim Song-sik and others, the D/A of the DDS was applied for the
PLL modeling design to realize excellent phase noise and high-speed frequency synthesis
time in the broadband characteristics. In order to compensate for the disadvantages of
general PLL FS, we provide a coarse tune through D/A of DDS. Akila Gothandaraman and
Syed K. [18] proposed an all-digital frequency locked loop (ADFLL) that eliminates analog
shortcomings by implementing all PLL digitally.

In this study, an algorithm to frequency synthesize ADFLL capable of high-speed
frequency acquisition is proposed to reduce hardware cost and architecture, enable full
digitization, and become a pulse-output DDFS that is easy to design and implement. In
addition, an adaptive phase estimator is proposed to show that the DDFS has a 16-bit
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binary weighting control, and the simulation results show that the ADFL can operate in
the frequency range between 50 MHz and 500 MHz.

3. Design of DDFS for Low Frequency Using FPGA

3.1. Necessity

As we have seen so far in related studies, various methods of frequency synthesizers
are used for their advantages and disadvantages. As discussed in Section 2, the application
range of FPGA-based DDS to be studied in this paper is gradually increasing due to relia-
bility and convenience of development. Railways and subways use AF (audio frequency)
track circuit devices that accurately detect the track driving of a train and perform train
control and monitoring in a specific section.

Currently, the AF track circuit device used in railways is a modulation-demodulation
transmission system that modulates and transmits a specific audible frequency of 30 Hz or
less. It has been 20 to 30 years since it was used as an analog method using LC oscillation.
It is time to change to a more precise digital method. In this paper, we study the frequency
synthesizer for the design and fabrication of audio frequency generation equipment that
generates the desired audible frequency in order to produce a frequency synthesizer that
generates the audible frequency accurately and stably. In this paper, we propose and
implement DDS using an FPGA and a pure logic circuit without a microprocessor in order
to implement a stable device free from external noise. The accuracy of frequency synthesis
is confirmed by simulation.

As shown in Figure 8, the reference clock A and the frequency control word (FCW)
input to the PA (phase accumulator) are determined by the input of the frequency control
word. The output of the PA is converted into a sinusoidal amplitude value in a look-up
table (LUT) stored in the ROM, and a pure sinusoidal frequency is generated using a
digital–analog converter (DAC) and an LPF. The frequency at this time is defined by the
following equation [13].

Fout =
FCW

2L
FCLK (2)

FCW: Frequency control word
L: The number of bits of PA

 
Figure 8. Basic structure of the proposed system.

In this case, the resolution of the frequency tends to increase as the reference clock
frequency is small and the number of PA bits is large, as shown in the following equation.
The frequency resolution of DDS can be defined as the reference clock frequency divided
by the bit of the accumulator, which can be expressed by the following equation:

ΔF =
FCLK

2L (3)

Therefore, it is necessary to properly limit the size of the ROM with a large L value for
fine tuning and precise frequency generation.
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3.2. Target Frequency

In the proposed system in Figure 9, the stability of the reference clock is very important,
so a high-frequency X-tal must be used to generate the reference clock. This crystal oscillator,
which is supplied for industrial use, is very stable due to its low temperature coefficient
in the range of −40–120 ◦C. The reference frequency composed of the crystal oscillator
generates the frequency of 1 kHz∼6 kHz required for the track circuit and changes it to a
TWS (thumb-wheel switch) attached to the side of the simulation device. The oscillation
frequency is generated within 0.05% of the target accuracy, and the desired frequency can
be obtained by changing the TWS value.

 
Figure 9. Track circuit frequency composition used in railways.

The frequency generated in this way can be applied to various fields, but in this
study, the frequency used for the railway AF track circuit is generated. The AF track
circuit frequency modulates and transmits FSK (frequency shift keying), and the reception
demodulates it to detect and analyze the transmitted frequency to determine whether
there is a train in the corresponding track circuit section. That is, when the frequency is
detected, it is judged that there is no train in the corresponding track circuit section, and if
the detection is not performed, it is judged that there is a train. FSK is a frequency shift
modulation method in which data selects different frequencies between 0 and 1 according
to a frequency having a constant amplitude.

If the frequency shift is A, the following equation becomes the FSK modulated signal.

S(t) = Acos2π(fC − Δf )t:0 ≤ t ≤ T:1 (4)

S(t) = Acos2π(fC − Δf )t:0 ≤ t ≤ T:0 (5)

where A is the amplitude of the FSK, fC is the center frequency of the carrier frequency, and
Δf is the deviation frequency.

The receiver recognizes two sinusoidal frequencies, which are carriers, in advance,
extracts the corresponding frequencies, and restores the modulation frequency, which is
called demodulation. This method is less defective than ASK (amplitude shift keying),
and the circuit is relatively simple, so it is widely used in transmission equipment such as
the AF track circuit device used in railways. In the track circuit device of the railway, the
modulation frequency is fixed at 4.8 Hz, and the carrier frequency has eight center frequen-
cies in consideration of the subway line and the upper and lower lines and modulates two
frequencies of 17 Hz for the upper shift frequency and 17 Hz for the lower shift frequency
of the center frequency. The track circuit frequency combination of the railway is shown in
Figure 9.

These track circuit frequencies are used in Europe and Asia, and the Bombardier
specification [19] specifies the transmission and receiver frequency arrangement, as shown
in Table 1 below.
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Table 1. Bombardier track circuit frequency array.

Frequency
Name

Center
Frequency (Hz)

Frequency
Separation

Frequency (Hz) ±5% Note

A 1699
Lower Freq.(FL) 1682 1699 − 17

Upper Freq.(FH) 1716 1699 + 17

B 2296
Lower Freq.(FL) 2279 2296 − 17

Upper Freq.(FH) 2313 2296 + 17

C 1996
Lower Freq.(FL) 1979 1996 − 17

Upper Freq.(FH) 2013 1996 + 17

D 2593
Lower Freq.(FL) 2576 2593 − 17

Upper Freq.(FH) 2610 2593 + 17

E 1549
Lower Freq.(FL) 1532 1549 − 17

Upper Freq.(FH) 1566 1549 + 17

F 2146
Lower Freq.(FL) 2129 2146 − 17

Upper Freq.(FH) 2163 2146 + 17

G 1848
Lower Freq.(FL) 1831 1848 − 17

Upper Freq.(FH) 1865 1848 + 17

H 2445
Lower Freq.(FL) 2428 2445 − 17

Upper Freq.(FH) 2462 2445 + 17

(1) Algorithm design

In this paper, we find and implement the optimal frequency generation algorithm
after several trials and errors. This algorithm first generates the target frequency of Hz
unit resolution by passing through D-FF 13 times, which has the function of delaying the
desired generation frequency 8192 times by the time interval of the clock pulse. Specific
methods and configurations, such as circuits and FPGA blocks, for simulating this method
are described below. The circuit required for the algorithm generating the AF track circuit
frequency is shown in Figure 10.

The M2S010 of the upper left part consists of an FPGA, and the right equivalent part
uses an X-tal of 67.108864 Mhz as a reference clock generator. The lower left part represents
a digital analog converter and an LPF. In the middle of the right side is a TWS that selects
the frequency as the rotary switch.

The 8-bit FPGA output is converted to an analog signal using AD7541 from analog
devices, a D/A converter.

The FPGA output is converted to 8 bits by a D/A converter called AD7541 from an
analog device company.

According to the selection of the TWS, one frequency corresponding to the orbital
frequency (upper and lower sides of A–H) according to the Bombardier standard is gener-
ated, and the upper frequency and the lower frequency can be composed of two frequency
outputs generating the same method.

A logic block called ADC_A_OUT with a built-in look-up table (LUT) value is imple-
mented as an FPGA, and a digital output of 256 steps is generated by this logic block. This
result is applied to the AD7541 input, which is a digital-to-analog conversion IC, and is
output as an analog signal.

In order to obtain the analog sine wave output signal, the D-FF (Flip Flop) is performed
13 times in the logic block called DCOUNT13 in the FRGEN block inside the FPGA to have
a duty ratio of 50:50. This output is the SW2 of Figure 11, and 16 frequencies can be selected
from 0 to F, and the frequency output according to the switch position is designed as shown
in Table 1.
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Figure 10. Circuit diagram required to implement the algorithm.

(2) FPGA logic blocks

A. Configuring I/O ports
The input/output port has an oscillator clock, a reset, and a frequency selection

switch input as input units, and an output unit has an 8-bit digital frequency and three
test terminals.

B. Component configuration
The components of the internal logic consist of PCSFR, Value_filter, ADC_A and clock

buffer, and the components except for the clock buffer are configured as follows:
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The connection process of the component is as follows:

C. Configuration logic compilation
Compiled blocks of the entire FPGA internal use are captured and shown in the

figure below.

Figure 11. Block diagram of compilation.

In the entire compile block of Figure 11, terminals for input and output are connected
to the PCSFRGEN block. The inside of the PCSFRGEN block is configured as shown in
Figure 12 below.
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Figure 12. PCSFRGEN compilation block diagram.

Figure 13 is composed of the value filter logic block created for chattering, protecting
the switch input of the input unit, and the frequency generator, Figures 14 and 15 show the
FRGEN logic block and the ADC A OUT logic block having an 8-bit look-up table for the
sine wave output. Each of the configured compile blocks is shown below.

Figure 13. Value_filter compilation block diagram.

Figure 14. FRGEN compilation block diagram.

Figure 15 is a detailed compiled block of this block, and the details are divided into
Figures 16 and 17.
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Figure 15. ADC_A_OUT (look-up table) compilation block diagram.

The FRGEN block may be referred to as a set of initial logic for frequency generation
(Figure 14). The logic configuration and the compiled capture circuit of each part thereof
are as follows:

 

The split block diagram of Figure 16 is shown in Figures 17 and 18.
The detailed composition of Figure 16 FRGEN consists DCOUNT26 in Figure 19,

DEC_Y in Figure 20, MuX26x8 in Figure 21, COUNT13 in Figure 22, OR2 in Figure 23 and
R3 in Figure 24, logic blocks and each picture and compilation source is shown below.
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Figure 16. FRGEN compilation detail block diagram.

 
Figure 17. FRGEN compilation partial block Diagram 1.

Figure 18. FRGEN compilation partial block Diagram 2.

The composition of the internal components is as follows:
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Figure 19. DCOUNT26 compilation block.
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Figure 20. DEC_Y compilation block diagram.

Figure 21. MUX26x8 compilation block diagram.
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Figure 22. COUNT13 compilation block diagram.

(3) Track circuit use frequency generation

The 13 bits used to generate the target frequency are generated more accurately toward
the MSB (Most Significant Bit) of the up counter treated with the FPGA of Figure 23, so
the upper 8 bits are used and the duty ratio is designed to be 50:50 using the LSB (Least
Significant Bit) 5 bits. Thus, the generated frequency follows the following equation:

LC Frequency(FLCF) = k/25 (6)

LC: Track circuit as a line circuit
k: Bits extracted with the target frequency
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Figure 23. OR26 compilation block diagram.
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Figure 24. R3 compiles internal block diagram.

The output upper 8 bits are input to a DAC circuit (AD7541) and converted into an
analog sine wave output, and the converted signal is generated as an audio frequency
output to output a complete sinusoidal frequency.

The FPGA chip of the proposed system uses the Smart -Fusion2 SoC M2S010 [19] of
Microchip Co., Ltd. The maximum usable logic device of this chip is composed of 12,084
highly integrated system chip ICs.

The M2S010 is designed for low power consumption and is a chip device that pro-
vides excellent reliability and security for multipurpose applications such as video image
processing, I/O expansion and conversion, and Gigabit Ethernet. The ARM series MPU is
also built-in, but this proposed system is not used because of its high reliability. Figure 25.
Shows the internal block diagram of the M2S010.

 
Figure 25. Internal block diagram of M2S010.

It shows a product composed of circuits designed in Figure 26.
Refer to the description of the main part in the right clockwise direction of the used

substrate, FPGA chip, test terminal, JTAG interface terminal, and X-tal oscillator. From the
upper left, the description is the power input terminal, the frequency change SW, the reset
SW, the output terminal, and the analog waveform output IC. The 10-pin JTAG Interface
Terminal on the lower right is used to input the program to the FPGA.

In implementing the frequency accuracy, we show that the circuit used in this sim-
ulation works very well, as shown in the results of the following Section 4. The circuit
configuration is very simple, but the result shows that the method of verifying the envi-
sioned algorithm is suitable. Therefore, it can be seen from the related picture that the
desired precise frequency is output by this configuration. The results of the experiment
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were measured and recorded by selecting the frequency with the octal frequency change
switch, and the output frequency was described in detail in the experimental results.

Figure 26. Circuit board used for testing.

4. Experimental Results

After repeated trials and errors in the method of optimally generating the target
frequency processed by the FPGA logic block, the results of the following equations
were verified.

Y =
1

CLOCK
× 213 × 226 × Frequency (7)

By implementing the practical structure and algorithm that precisely creates the AF
band DDFS used in railway track circuits with FPGA, we show that 16 frequencies currently
used in Europe and Korea are implemented with a precision of 99.9980%~99.9996%, and
this is shown as a simulation result.

As a result of the simulation, it was confirmed that a stable and accurate frequency
output with a frequency deviation superior to the target error range was made. Compared
to the results of previous studies using FPGAs with a deviation of 5 Hz in the range of [8]
0–160 kHz, it shows that it is much better than the deviation of 1~2 Hz, which is [20] of the
Bombardia product specification. The results can be seen in Tables 2 and 3.

Table 2. Simulation result.

Item
Target Design

Frequency (Hz) (±0.05%)
Test Result

Frequency (Hz)
Accuracy (%) Note

0 1682 1682.0007 99.99995838
A

1 1716 1716.0009 99.99994755

2 2279 2279.0043 99.99981132
B

3 2313 2313.0069 99.99970169

4 1979 1979.0036 99.99981809
C

5 2013 2013.0009 99.99995529

6 2576 2576.0030 99.99986025
D

7 2610 2610.0052 99.99980077

8 1532 1532.0026 99.99983029
E

9 1566 1566.0047 99.99969987

A 2129 2129.0021 99.99990136
F

B 2163 2163.0037 99.99982894

C 1831 1831.0037 99.99979792
G

D 1865 1865.0038 99.99979625

E 2328 2428.0057 99.99976904
H

F 2462 2462.0056 99.99977254
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Table 3. Simulation result comparison.

Comparison With Existing
Research and Products

Frequency
Deviation

Accuracy Note

A Study on the High Reliability
Audio Target Frequency

Generator
0.001~0.006 Hz 0.001% This Research Paper

Design and Implementation of
a FPGA-based Direct Digital

Synthesizer
+5 Hz~−5 Hz 0.30% Reference [11]

Bombardier TI21 Track Circuit
Test and Investigation

Guideline
1 Hz~2 Hz 0.06~0.12% Reference [21]

Simulation

As shown in Figure 27, the board was connected and operated.
The output results observed while turning the TWS for frequency change on the right

side of the test board are shown in Figures 28 and 29:

(1) Track frequency A test results and waveforms

The signal waveform of the ADC7541 A/D converter output is 100− (100× (1682.0007
− 1682)/1682) = 99.9999%, and the upper frequency accuracy is shown in Table 2.

The simulation results and waveforms from the track circuit generation frequency B
to H can be confirmed in the attached Appendix A.

 

Figure 27. Simulation.

 

Figure 28. Lower frequency 1682 Hz generated waveform.
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Figure 29. Upper frequency 1716 Hz generated waveform.

5. Conclusions

In this paper, we propose a method to implement AF for railway track circuits in
DDS using a microchip FPGA. This frequency generator is composed of pure logic circuits
without using a general CPU, minimizing the factors of malfunction and suggesting the
possibility of increasing safety in key industries. By proposing a practical structure and
algorithm that precisely creates DDFS in the AF band, 16 frequencies currently used in
railway track circuits are implemented with a precision of 99.9980–99.9996%, and these
are shown as simulation results. This proves that the performance is superior to the 5 Hz
deviation of the previous study [8].

It was able to generate very stable and accurate frequency output, and it is judged that
it will be possible to make a precise frequency generator with high reliability in the field
of key industries such as railways. These results are expected to enhance the safety and
user convenience of the control system in key industries such as railways. In the future, it
is expected that the research on multiple AF DDFS that generate multiple frequencies at
the same time by developing this study will be practically useful in various industries.
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Appendix A

In this section, measurement results from Group B to Group H among the simulation
results in Table 2 are described.

(1) Track frequency B test results and waveforms
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Figure A1. Lower frequency 2279 Hz generated waveform.

 
Figure A2. Upper frequency 2313 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − (100 × (2279.0043 − 2279)/2279) = 99.9998% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.

(2) Track frequency C test results and waveforms

 

Figure A3. Lower frequency 1979 Hz generated waveform.
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Figure A4. Upper frequency 2013 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (1979.0036 − 1979)/1979} = 99.9998% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.

(3) Track frequency D test results and waveforms

 
Figure A5. Lower frequency 2576 Hz generated waveform.

 

Figure A6. Upper frequency 2610 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (2576.0030 − 2576)/2576} = 99.9998% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.
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(4) Track frequency E test results and waveforms

 
Figure A7. Lower frequency 1532 Hz generated waveform.

 
Figure A8. Upper frequency 1566 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (1532.0026 − 1532)/1532} = 99.9998% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.

(5) Track frequency F test results and waveform

 

Figure A9. Lower frequency 2129 Hz generated waveform.
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Figure A10. Upper frequency 2163 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (2129.0021 − 2129)/2129} = 99.9999% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.

(6) Track frequency G test results and waveforms

 
Figure A11. Lower frequency 1831 Hz generated waveform.

 
Figure A12. Upper frequency 1865 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (1831.0037 − 1831)/1831} = 99.9998% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.

34



Electronics 2023, 12, 4918

(7) Track frequency H test results and waveforms

 
Figure A13. Lower frequency 2428 Hz generated waveform.

 

Figure A14. Upper frequency 2462 Hz generated waveform.

The signal waveform shown in the ADC7541 A/D conversion circuit output is
100 − {100 × (2428.0057 − 2428)/2428} = 99.9997% compared with the lower frequency
value designed with the frequency of 2279 Hz when the TWS (thumb-wheel switch) is
located at 1, and the upper frequency accuracy is shown in Table 2.
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Abstract: The increasing computerisation of medical services has highlighted inconsistencies in the
way in which patients’ historic medical data were recorded. Differences in process and practice
between medical services and facilities have led to many incomplete and inaccurate medical histories
being recorded. To create a single point of truth going forward, it is necessary to correct these
inconsistencies. A common way to do this has been to use imputation techniques to predict missing
data values based on the known values in the data set. In this paper, we propose a neighborhood
similarity measure-based imputation technique and analyze its achieved prediction accuracy in
comparison with a number of traditional imputation methods using both an incomplete anonymized
diabetes medical data set and a number of simulated data sets as the sources of our data. The aim
is to determine whether any improvement could be made in the accuracy of predicting a diabetes
diagnosis using the known outcomes of the diabetes patients’ data set. The obtained results have
proven the effectiveness of our proposed approach compared to other state-of-the-art single-pass
imputation techniques.

Keywords: healthcare; imputation algorithms; incomplete data; neighborhood similarity

1. Introduction

Due to widespread computerization, medical services have embarked on moving their
historic paper-based medical data onto computer systems [1]. This has raised a number
of technical and societal issues. Generations of paper-based medical records need to be
digitally encoded in a way that is not only capable of handling the large information backlog,
but must also be accurate, sensitive, and, most importantly for many financially stretched
services, cost effective [2,3]. Historic medical data has highlighted the inconsistencies of
the previous recording and transcription practices and processes used by both medical
practitioners and regional authorities such that, in many cases, data may be incomplete,
incorrectly encoded, or just erroneous. This is not just a legacy issue, as modern recording
techniques also suffer from similar issues of data incompleteness that emphasize the need
to find a robust solution to this wider problem [4,5].

In the future, legacy data will form the basis of a much wider medical profile describing
an individual and will include more granular and real-time information. This data may
include a person’s movements, access to medical facilities, data from personal fitness
trackers, and other biometric devices. Data from all such sources need to be recorded in a
consistent manner. By ensuring high quality and the accuracy of such data, these medical
data sources become points of truth when identifying the individual to which they relate
and can thereby be used as a means of individual identification.

Imputation is the overarching term used for describing the range of techniques used
to replace missing data in a data set. The techniques can range from very simple numerical
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replacement to more complex statistical approaches. They can be broadly split into several
types of approaches [6]:

• Normal imputation: When the data is numerical, we can use simple techniques, such
as mean or modal values for a feature, to fill in the missing data. For data that is more
categorical (i.e., they have a defined and limited range of possible values), then the
most frequently occurring modal value for this feature can be used.

• Class-based imputation: Instead of replacing missing data with a calculated value
based on existing feature values above, the replacement is done based on some internal
classification. This approach determines the replacement value based on the values of
a restricted subclass of known feature values.

• Model-based imputation: A hybrid approach where the missing value is consid-
ered as the class, and all the remaining features are used to train the model for
predicting values.

The problem we aim to address concerns the rapidly growing amount of incomplete
personal medical data that exists. The rapid increase in volume and complexity of this
data has highlighted potential problems and issues caused by our current reliance on this
incomplete or inaccurate information. Such unqualified use may lead to a loss or misinter-
pretation of critical medical information. This problem is not limited to a medical domain
and equally applies to any problem domain that uses incomplete personal information
in a technology-driven environment. The focus of this paper is on a medical context, but
the solution should be readily generalizable to other problem domains. The existence and
use of incomplete medical data may lead to a loss or misrepresentation of critical medical
information [6]. The increasing amount and variety of stored data about individuals in the
smart healthcare era only emphasizes the urgency in finding solutions to this problem [7].
Our approach will select imputed data values in a more localized manner, thus applying a
more intelligent selection of candidate values rather than one of the more simplistic, and
widely used, imputation methods.

In this paper, we propose a neighborhood-based imputation algorithm that uses the
idea of feature value similarity in similar data records to predict missing feature values
in incomplete records. This subset of candidate records is specific to a single incomplete
record and so is recreated for each incomplete record found in a data set. This differs from
other imputation techniques, which may consider all records in the data set and give a
more general and less localized result, or other approaches, which determine neighborhood
values based on other criteria such as using weighted average or variance estimation
techniques [7].

Our algorithm aims to improve on some of the limitations of existing imputation
algorithms, especially kNNs, by providing a fast, yet accurate imputation process suitable
for use on, initially, medical data, but also on more generic incomplete data sets from
other similar problem domains. The main contributions of this work can be summarized
as follows:

• Reducing the speed degradation of the algorithm as the size of the data set increases.
• The way imputed values are selected is more localized rather than potentially using

all similar values in the data set.
• Reducing the negative impact of outlying values by making imputed values selection

more localized.
• Providing a solution that can be extended for use with textual and categorical data, as

well as numeric data.

The remainder of this paper is organized as follows. In Section 2, we present the
background to understanding the problem being studied in this paper. Section 3 presents
our proposed algorithm to improve prediction accuracy, and Section 4 evaluates the perfor-
mance of our proposed technique in comparison with other imputation methods. Section 5
discusses our conclusions and findings during this work, and, finally, Section 6 indicates
some directions for future work.
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2. Background and Related Work

In this section, we present the background of incomplete medical data and the reasons
why data integrity and completeness are important.

Imputation is the name given to the range of techniques that attempt to restore missing
information in a data set with values based on the feature values of complete data records.
The complexity of this process can range from merely replacing missing values with fixed
absolute values, thus applying some mathematical function to known feature values for
a given missing feature, or, in the simplest scenario, incomplete data records may be
completely removed from consideration [6,8]. The choice of the technique used depends
on a number of factors, including the nature of the source data, the amount of missing or
erroneous data in the data set, and the time needed to create a suitably complete set of
data. More complex approaches, such as time-series-based methods, attempt to rebuild
potential structures within the data set by considering wider factors such as patterns in the
data and relationships between the values of related features rather than just individual
value replacement. Examples of such approaches include linear interpolation techniques,
which take two known feature values and use a weighted distance between these endpoints
to calculate intermediate values [9], and the use of adjacent known feature values as
candidates for replacing missing feature values [10]. Such techniques tend to be more
time consuming, and their effectiveness is reliant upon the intended use and ability to
identify suitable structures to recreate within the source data [11]. Many of these restoration
techniques have analogies in the non-digital world, which may be considered as possible
approaches for imputing sets of data. In the following section, we briefly discuss three
common approaches to single-pass imputation [12].

2.1. Imputation by Mean/Mode/Median and Others

If the missing values in a data set’s feature column are numeric, they can be imputed
by using the mean value of the existing values for that feature variable. The mean imputed
value could be replaced by the median feature value if the feature is suspected to have
outlying values. For a categorical feature, the missing values could be replaced by the
mode of the existing values for that feature. The major drawback of this method is that it
reduces the variance of the imputed variables. This method also reduces the correlation
between the imputed variables and other variables, because the imputed values are just
estimates and will not be related to other values inherently [13].

Another algorithm worthy of note is the k-nearest neighbors (kNNs) algorithm [14].
In a similar manner to our proposed algorithm, kNNs attempts to impute missing feature
values by using the mean value of the corresponding known feature values for the k-closest
records. The kNNs algorithm has a number of limitations, which our algorithm attempts to
resolve. The kNNs is a robust algorithm belonging to a family of nearest neighbor algorithms
used to predict unknown classifications based on a data set of known classifications. It
is commonly used because it is intuitive and easy to implement and is nonparametric,
meaning that it makes no prior assumptions about the nature of the data set. It may be
used for both classification and regression problems, thus making it a widely used and
popular choice of algorithm.

The kNNs algorithm has a number of disadvantages, which our solution attempts to
improve upon and include the following:

• The kNNs is a relatively slow algorithm, with its performance decreasing as the size
of the data set increases.

• The kNNs suffers from the curse of dimensionality [15]. As the number of feature
values (dimensions) per record increases, the amount of data required to predict a
new data point increases exponentially.

• The manner in which kNNs measures the closeness of a pair of records is quite simple,
by using Euclidean or Manhattan distances for example.

• The kNNs algorithm needs homogeneity such that all the features must be measured
using the same scale, since the distance is taken as an absolute measure.
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• The kNNs does not work well with imbalanced data. Given two potential choices of
classification, the algorithm will naturally tend to be biased towards a result taken
from the largest data subsets, thus leading to potentially more misclassifications.

• The kNNs is sensitive to outlying values, as the choice of closest neighbors is based
on an absolute measure of the distance.

Our algorithm aims to improve on these drawbacks, especially in the areas of outlier
sensitivity, thereby reducing the likelihood of misclassification and the choice of imputed
feature values. Since the kNNs uses the mean of the k-nearest feature values, this could lead
to a value being calculated that does not appear in any of the actual complete records; our
algorithm removes this scenario by only choosing imputed feature values from a pool of
candidate values taken from the actual feature values of the most similar complete records.

The class of nearest neighbour predictive algorithms can make accurate predictions,
which do not require a human-readable model [16]. The quality of these predictions
depends on the measure of the distance between the data values [17]. There are several
advantages to this class of algorithms, including a robustness for noisy data and the ability
to be tuned quite easily. However, the kNNs has some drawbacks, such as the need for
all the feature values for any missing value to be considered. This was a motivation and
opportunity to use a more localized approach for determining missing data values [16].

2.2. Simple Statistical Imputation Techniques

Statistical techniques are usually applied because they tend to be fast, have low
memory overhead, and are applicable in isolation to any surrounding data. These simpler
approaches involve determining the value of a missing feature by applying a simple
functional calculation on the set of known feature values [15]. In our comparison, these are
represented by the mean (MAV) and modal (MDAV) value algorithms. Calculations tend
to be linear in nature and applied independently from other data fields in the same data
set. Calculations may range from setting missing data values to a known fixed value to
finding an average of those values that exist in other records in the data sets, or some trivial
manipulation of existing data values from other records [18]. More involved algorithms
have been developed, which try to use wider information about the nature of the data
values and any relationships that may exist between features as a way of more accurately
determining missing feature values. In our discussion, we highlight two such algorithms,
kNNs imputation and empirical Bayes inference; however, there are many more that could
be considered. This approach can be extended to use multiple imputation techniques, which
involves repeatedly applying simple mathematical techniques to improve the missing
feature value prediction, as defined by the pseudo flow below:

1. Identify missing values in the source data set.
2. Iterate through the data set. For each record with missing values, replace each missing

value with a statistical measure based on values for the same field found in other
records where this field is not missing.

3. Once all the records have been completed, if the nature of the data set meets the
criteria for its intended use, then stop; otherwise, repeat Step 2.

2.3. Multistage Techniques

Multiple imputation is a general approach to the problem of missing data that is
available in several commonly used statistical packages such as R [19,20]. Single-pass
imputation is the process of “filling in” gaps representing missing values in data sets. An
imputation method is a function that takes a number of known feature values as inputs and
uses them to calculate a potential value for a missing feature value. Single-pass imputations
apply such a mapping only once to the original set of known feature values. Multiple
imputation, however, is a technique for reducing the uncertainty of missing values in a
data set by creating several different viable imputed data sets and appropriately combining
the results obtained from each of them to determine a suitable replacement value. We will
compare the performance of our N-Similarity (NSIM) algorithm against that of three simple
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single-pass imputation algorithms, which either replace the missing feature value with the
mean (MAV) and modal (MDAV) values of the known feature values or just remove all
incomplete records from the processed data set.

Using single values carries with it a level of uncertainty about which values to impute.
Multiple imputation reduces this uncertainty by calculating several different possible
values (“imputations”). Several versions of the incomplete data sets are created, which
are then combined to make the “best” value selections. Such an approach has several
advantages such as reducing bias and minimizing the likelihood of errors being introduced
to the rebuilt data sets, thus improving the validity of the data and increasing the precision
or closeness between two or more imputed values, which makes the data set more resistant
to outlying values [21,22].

The second stage is to use common statistical methods to fit the model of interest to
each of the imputed data sets. Estimated associations in each of the imputed data set will
differ because of the variation introduced in the imputation of the missing values, and
they are only useful when averaged together to give overall estimated associations. Valid
inferences are obtained because we are averaging over the distribution of the missing data
given the observed data [23,24].

Other data-focused approaches using machine learning and deep data analysis tech-
niques are being used as a means of predicting medical events from incomplete medical
data sets. The use of such automated tools in the identification and prediction of medi-
cal conditions is becoming increasingly important due to the shortage of skilled medical
professionals, as well as their ability to increase the prediction accuracy, thus reducing the
burden on medical staff [25,26].

3. Proposed Algorithm

In this section, we outline our approach to improving the effectiveness of predict-
ing binary outcomes based on a series of numerical feature values. We used a suitably
anonymized diabetes diagnosis data set, which identified whether a patient with diabetes
has been positively diagnosed (true positive) or whether one who does not have diabetes
has been negatively diagnosed (false positive).

3.1. Proposal Main Steps

Our algorithm aims to improve on a number of traditional single-pass imputation tech-
niques to achieve a higher percentage of correct predictions when applied to an incomplete
diabetes data set, D. The approach will consist of the following steps.

• Apply our imputation technique to fill in each missing attribute fi in turn, where i
corresponds to the ith feature in each patient record, for the current record r to create a
complete record in D. This will become the basis of the later comparisons. Incomplete
records r are given by

∀r ∈ D, r = ( f0, f1, f2, . . . fi − 1, fi + 1, . . .) (1)

• Use the k-fold (with k = 10) [27,28] technique to partition D into non-intersecting
subsets. In turn, each subset (fold) will be considered to be the test fold, and the
remaining folds will be used as training folds. For each record in the test fold, we
apply a comparison function F(), which is in our case the cosine similarity, to obtain
a numerical measure of how similar the test record is to the current record in the
training folds. An ordered similarity table, S, is maintained and stores details of each
training record and how similar it is to the current test record. This is repeated until
the test record has been compared against all the records in all the training folds. After
each change to the contents of S, it will be sorted in such a way that the most similar
training record will appear as the first item in the list. This could be more complicated
depending on the comparison function used, but in our case, the sort order is merely
used to maintain the n-closest items (defining the neighborhood) in S in an increasing
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cosine similarity order. The contents of S must be cleared once all the training set
records have been compared and are ready for subsequent cycles.

Folds containing a large number of records can increase the time needed to compare all
the combinations of these records against a given test record. This could result in a relatively
large similarity table. To address this issue of similarity table size, our proposed algorithm
introduces the concept of a neighborhood containing the most similar n records in the training
set. The size of this neighborhood limits the maximum size of the similarity table and is
used as a means of calculating the new replacement value for a missing attribute.

Considering St to be the set of test records and Str to be the set of training records for
a given cycle, such that t ∈ St and tr ∈ Str, we can say that

∀t ∈ St, ∀tr ∈ Str; St ∩ Str = 0, St ∪ Str = D (2)

If there are less than n records in the similarity table, then add the current training
record, tr, into the next freely available position p. If the similarity table already contains n
records and the current test record, t is more similar than the last record in the similarity
table (at position n− 1 for zero-based arrays); then, we replace the last entry in the similarity
table with the current training record tr. This can be shown with the pseudocode below.

clear SimilarityTable , S

FOR EACH t IN testFold DO

p <- 0

FOR EACH tr IN trainingFolds DO

size = count(S)

IF size < n THEN

S[p] <- F (t, tr)

ELSE

IF F(t, tr) > S[n-1] THEN

S[n-1] <- F(t,tr)

Each time the contents of the similarity table are changed, they should be immediately
sorted based on decreasing similarity value to maintain a list of the most similar training
records for the current test record. In order to build a complete data set D, we need to
calculate each of the missing data values across all the records in D. This is achieved by
comparing each row that contains missing values against all the complete rows that exist
in D. By doing this, we build up a similarity table containing the most similar complete
records from which the candidate values for the missing data values may be selected. Once
all the complete records in the data set have been compared against the current incomplete
record, we are in a position to impute the missing values for the current record in order
to make it complete. This record can then be used as a candidate record for matching the
other incomplete records in later cycles of the process. The end result will be a completely
imputed data set, which can then be used for comparison purposes with the different
imputation techniques.

3.2. Similarity Model Behavior

Our proposed model is built around the idea that patients with the same sets of
symptoms (features) will result in the same diagnosis. A patient with an unknown diagnosis
will have a number of recorded symptoms, which may or may not be complete. Our
algorithm takes those features that are known and uses them to find those diagnosed
patients (neighborhood) that are the closest match in terms of the most similar features.
This neighborhood is then used to determine what the likely diagnosis of the target patient
may be. This has the advantage over other techniques in the fact that only similar patient
records are used to build the picture of the diagnosis rather than a much wider spread of
patients who may have less correlation with the patient in question.

This similarity model is based on the splitting of the source data set as previously
described. The idea is to take the source data set and split it into two disjoint subsets—the
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training data set and the test data set. The splitting of the source data ensures that the
number of records in the test data set is a fixed proportion of the total number of records
according to the supplied parameters.

Each record in the test data subset is compared in turn with each record in the training
data subset. A comparison of each pair of records is made using the concept of cosine
similarity to obtain a measure of how similar the corresponding pairs of field attributes are
with each other, thus yielding a numeric measure of their similarity. During this process, a
similarity table is built giving a similarity measure of each training record in the training
set against a single test record. This table is maintained such that the record with the most
similar value (i.e., the most similar) is the first record in the table. The rationalization is
that the training set records that are considered to be a similar match to the test record,
and therefore the initial best-matching training record, will have very similar values for
their input arguments, and, as such, they are the best candidates to determine whether the
outcome given by the closest-matching test record was in fact valid.

Finally, a replacement value for the missing attribute, fi, is determined by applying a
prioritized set of rules to choose the most appropriate value from the candidate value set
C. This approach may be extended to include ‘categorical variables’, which describe those
features that take a value from a limited set of possible values. Since the feature value set C,
used as the pool of possible replacement values, is constructed from known feature values
of the most similar records, then the selection rules are equally applicable and will select a
suitable replacement value from C.

Considering the process diagram shown in Figure 1, the similarity modeling process
is split into two main subflows. The colors used are unimportant and just used for high-
lighting purposes. The blue flow describes the processing steps of loading external data
and standardizing it into a form that can be used by the second (green) flow through the
application of the k-fold technique to split the source data set into folds. The green flow
indicates the application of the N-Similarity algorithm. The key points of the algorithm
flow are to take each fold as a test record in turn and apply cross correlation against each of
the remaining training folds to generate the similarity table of the most similar training
records for each record in the test fold. This is repeated for each training record until all
comparison combinations have been performed. For each incomplete record, the missing
feature value is determined by considering the properties of the closest records in the
similarity table, and a candidate is selected based on a number of rules and criteria. The
results of these comparisons are shown in Table 1.

Figure 1. Main steps of the similarity modeling process.
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Table 1. Relative prediction accuracy of our N-Similarity algorithm compared to the average predic-
tion accuracy across all selected single imputation techniques for different neighbourhood sizes N.

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

Accuracy 55.64% 73.37% 58.01% 69.84% 58.84% 70.82% 60.13% 66.81% 60.74% 67.41%
Correlation 76.97% 88.91% 89.65% 89.55% 89.57% 89.06% 89.30% 89.63% 89.33% 88.99%
Precision 31.12% 58.41% 30.79% 55.59% 32.28% 59.07% 32.30% 46.98% 33.53% 48.58%
Recall 33.01% 55.13% 28.71% 39.62% 25.50% 29.73% 23.53% 32.57% 24.23% 28.60%
Specificity 66.18% 81.47% 71.34% 83.76% 74.22% 89.57% 77.04% 82.43% 77.49% 85.12%
TPR 23.03% 38.12% 20.34% 28.12% 18.19% 20.44% 16.48% 23.07% 17.10% 19.80%
FPR 33.82% 18.53% 28.66% 16.24% 25.78% 10.43% 22.96% 17.57% 22.51% 14.88%

Average MCC −0.0495 0.4582 0.0792 0.3419 0.0842 0.3069 0.0383 0.2326 0.0123 0.1771

The colour coding scheme used in Table 1 reflects how, for different neighbourhood
sizes, the prediction accuracy of our N-Similarity algorithm compares to the average
prediction accuracy of the other imputation algorithms under consideration. The green
values indicate those measures where our algorithm performs better than the average of
the other imputation algorithms, red values indicate those measures where our algorithm
performs worse, and the blue values indicate those measures where there is marginal
difference between the algorithms.

3.3. Empirical Bayes Correction

Dealing with missing data and its mechanism is of paramount importance in statis-
tics [29], and in this section, we propose a correction for imputing numerical variables
motivated by a normal-normal hierarchical model (see [30], Section 3.3.1). Let D = {Y, X}
be our observations, where Y is the part that contains missing values, and X (a NObs × NX
matrix) is fully observed. We consider the following correction term for the imputed
candidate value θ̂m given the (observable) sample mean Ȳ and the most similar value Y∗m:

θ̂m = αȲ + (1− α)Y∗m, α =
s2

y

s2
y + (τ̂2

Y|X)
+

, (3)

where s2
y is the sample variance of y = (y1, . . . , yl) for the l-most-similar observations

(comparing Xm to Xobs), and (τ̂2
Y|X)

+ is an approximation of the Empirical Bayes estimate
of [30]:

(τ̂2
Y|X)

+ = max
[
0, λ× s2

Y − s2
y

]
, (4)

where λ is a fixed hyperparameter, and s2
Y the sample variance of the observable Y.

Since 0 ≤ α ≤ 1, and (3) is a weighted average between Y∗m and Ȳ, which essentially
shrinks the proposal towards the mean Ȳ, the amount of shrinking is determined by
α. When α = 0, (3) suggests a direct imputation with Y∗m, whereas α = 1 suggests an
imputation using Ȳ. Generally, our candidate imputed value shrinks towards Ȳ when the
variance associated with Y∗m exceeds the sample variance of Y.

Motivation

We motivate (3) by considering an empirical Bayes approach to our hierarchical model.
We introduce two types of random variables: one expressing the missing values Ym and
one θm|X expressing the neighboorhood-similarity-based guesses (can also be thought of as
model-based guesses) that rely on a relation between Y and X. For each missing value Ym,
we assume that it is a normal random variable with mean θm|X and a variance σ2

m|X . This
allows us to express the “true” missing value in relation to our similarity-based guesses:
for ms with small variances (σ2

m|X), the similarity-based guesses are informative, and for
large variances, they are not.
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For each θm|x, we again assume a normal distribution with a common mean and
variance (μY|X , τ2

Y|X):

Ym

∣∣∣X, θm|X , σ2
m|X ∼ N

(
θm|X , σ2

m|X
)

(5)

θm|X
∣∣∣X, μY|X , τ2

Y|X ∼ N
(

μY|X , τ2
Y|X

)
, (6)

which expresses the overall relation of Y given X as a normal distribution with its mean and
variance varying according to X. In other words, instead of considering the similarity-based
guess of the missing value as a single point, we introduce a normal-distributed kernel
centered around it, which depends on the fully observed X. Our two-level hierarchical
model uses (5) locally to express the distribution of Ym and (6) to express the associated
mean θm|X using a global model between X and Y. Given a candidate value Y∗m, we can
impute Ym with the posterior empirical Bayes mean θ̂m|X [30], which is a point estimate
of θm|X :

θ̂m = αμY|X + (1− α)Y∗m,

where α = σ2
m|X/(σ2

m|X + τ2
Y|X). Linear and nonlinear regression models have been used

for the conditional mean μY|X in a Bayesian setting [31], whereas [32] used a nonparametric
kernel regression, but in our performance evaluations, we also considered the weighted
sample mean and sample variance, e.g., s2

y = ∑i wi(yi − ȳ)2, with weights approximated
by a Gaussian kernel with a minimal RMSE improvement. The empirical Bayes estimate
of [30] for τ2

Y|X is based on sample estimates for σ2
m|X and τ2

Y|X :

(τ2
Y|X)

+ = max(0, λτ̂2
Y|X − σ̂2

Y|X).

If we consider the case that Y and X are independent, any similarity between Xobs and
Xm provides no information about the missing Ym. This also implies that μY|X and σ2

Y|X
become the marginal μY and σ2

Y, respectively. Furthermore, the y sample becomes a random
sample of Y, with ȳ and s2

y being unbiased estimates of μ2
Y and σ2

Y, respectively. Therefore,
we can use Ȳ, s2

Y, and s2
y as approximations for μY|X, τ̂2

Y|X, and σ̂2
Y|X, respectively, which,

under independence, set α towards one and can serve as a warning for noninformative
imputation. Finally, if Y and X are not independent, y will be a conditional sample from
Y|Xm, and we expect var(Y) ≥ E[var(y)] to lead to to smaller shrinkage (α < 1) towards Ȳ.

4. Performance Evaluation

In this section, we evaluate the performance of our similarity-based approach, using
the sample diabetes data set, in comparison with a number of other imputation techniques.

4.1. Implementation Overview

The algorithm is made up of three steps: the first step is to partition the raw data set,
D, into two disjoint subsets: one containing all the complete records, Sc, and the other
containing records that are missing one or more feature values, Si. The incomplete records
are then checked in order. Whenever an incomplete record Si(k) contains a missing feature
value fk,i, the nearest N-Similarity algorithm (second step) is applied to create a similarity
table of the closest n records from Sc. The missing feature value, fk,i, is then determined by
applying a series of rules below during the third and final step.

Sc ∪ Si = D, Sc ∩ Si = ∅

Considering the corresponding feature values of the n-most-similar complete records
in the similarity table created by the stage above, the algorithm creates a set of candidate
values, C, that will be used to replace the current missing feature value. The algorithm uses
a number of simple rules, applied in strict order, to determine which of these candidate
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values is the most likely to be used as the replacement value for the missing feature in the
current incomplete record.

∀k ∈ Si, fk,i = Sc(j), 0 ≤ jn

where j is the index of the best candidate value in C.

The set of rules applied to C in determining a predicted value are derived from both
an evaluation of the corresponding feature values in the most similar diabetes records
together with the nature of the values in the candidate set C. The rules are applied in order,
with the most specific selection criteria applied first and moving down to the most general
selection criteria applied last. For the candidate value set, C, apply the following rules in
order of decreasing priority:

1. If there is a unique modal value in C, then use this value as the imputed feature value.
2. For those modal values which occur in C with equal highest frequency, if one of these

modal values has the same feature value as the actual feature value of the most similar
complete record in Sc, then select this modal value as the new imputed feature value
for the current incomplete record.

3. Determine whether one of the values in C lies closer to the median value of the
candidate set than the others. If such a value is found, select this as the imputed
feature value.

4. If none of the previous rules have been satisfied, then select the mean value of C.

By comparing the prediction accuracy of the algorithm on the training data set (training
folds), we can determine that the results are not noticeably different than the results
obtained by applying the algorithm on the test data set (test fold), and therefore, we can
ascertain that the algorithm does not overfit the diabetes data set.

This is repeated for each missing feature in the current partial record Si(k), after which
the now complete record is moved from Si to Sc to become a potential candidate for the
completion of the next incomplete record in Si.

4.2. Evaluation of RMSE

The evaluation was performed using a simulation-based approach that consists of
repeatedly using a random selection of M records from the complete data records subset
Sc. Since they were complete, each of these records had a known actual value for each
feature, which could be used later for comparison purposes. The selected M values of each
feature, fi, were ignored and imputed using our N-Similarity algorithm in order to provide
a more reliable estimate for the RMSE. These predicted values were then compared against
the actual values to provide an estimate for the root mean squared error measure (RMSE) to
determine the predictive performance of our algorithm [33]. In Sections 4.3 and 4.4.3, we
used the three methods, i.e., similarity (NSIM), similarity with empirical Bayes correction
(NSIM-EB), and k-nearest neighbors (kNNs) to repeatedly impute each feature and report
the corresponding RMSEs.

4.3. Simulated Dataset

We proceeded to simulate 1000 datasets (of 1000 observations each) based on x1, . . . , x6
(7) random variables. The x1, x2, and x3 are independent Poisson, uniform, and exponential-
distributed random variables, respectively, whereas the z1, z2, and z3 are independent
standard normal variables. The remaining (x4, x5, and x6) are functions of the previous ones,
with their relations outlined in (7). Overall, the simulated data sets contain an independent
random variable (x1), as well as noisy nonlinear relationships (e.g., x6 with x2).
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z1, z2, z3 ∼ Normal(0, 1)

x1 ∼ Poisson(1)

x2 ∼ Uniform(18, 83)

x3 ∼ Exponential(1/30) (7)

x4 = z1 × x3 + 3

x5 = x4 × 3 + z2 ∗
√

10

x6 = exp(−x2 × 0.2 + z3)

Table 2 shows the imputation RMSE of the three methods assuming 1.50 and 100 miss-
ing observations (M) per each simulated data set. Overall, the RMSE for the NSIM-EB was
consistently lower than the rest. For x1, as the number of M increased, the RMSE increased
too for all the methods, which is expected, as x1 is independent from the rest. Generally,
the RMSE of the NSIM was similar, if not slightly reduced, compared to the RMSE of the
kNNs. Both similarity-based methods were faster (NSIM performed in 126 s and NSIM-EB
performed in 167 s; both were implemented in R) compared to the kNNs (215 s) using the
implementation (with Mahalanobis distance) of the yaImpute package [34].

Table 2. Imputation of RMSE for simulated data using similarity (NSIM), similarity with empirical
Bayes correction (NSIM-EB), and k-nearest neighbors (kNNs) methods.

M Method x1 x2 x3 x4 x5 x6

NSIM 1.382 1.402 1.414 1.378 1.345 1.333
1 NSIM-EB 0.996 1.054 1.068 1.052 1.052 1.035

kNNs 1.399 1.422 1.508 1.453 1.456 1.386

NSIM 1.421 1.401 1.398 1.402 1.401 1.380
50 NSIM-EB 1.047 1.035 1.041 1.042 1.042 1.027

kNNs 1.417 1.413 1.407 1.409 1.405 1.399

NSIM 1.420 1.396 1.385 1.386 1.385 1.373
100 NSIM-EB 1.046 1.031 1.034 1.038 1.038 1.014

kNNs 1.413 1.418 1.411 1.415 1.410 1.417

4.4. Pima Indians Diabetes Data Set

Another data set that was used extensively in this paper is the Pima Indians Diabetes
data set [35], which is originally from the National Institute of Diabetes and Digestive
and Kidney Diseases. The complete data set contains information of 768 women from a
population located around Phoenix, Arizona, USA. The outcome tested was for diabetes,
with 258 testing positive and 510 testing negative. The data was structured as follows:
there was one target (dependent) variable and eight (feature) attributes: the number of
pregnancies, oral glucose tolerance test, blood pressure, skin thickness, insulin, body mass
index, age, and pedigree diabetes function. More technical details of the file used can be
seen in Table 3. The Pima population has been under study by the National Institute of
Diabetes and Digestive and Kidney Diseases at intervals of 2 years since 1965. As epi-
demiological evidence indicates that type 2 diabetes results from the interaction of genetic
and environmental factors, the Pima Indians Diabetes data set includes information about
attributes that could be related to the onset of diabetes and associated future complications.

The original data used zero as the marker for a missing feature value, because it was
deemed that this could never be a valid value based on the nature of the features being
represented. The obvious exception to this is the final binary outcome field, which may have
a value of zero (for a negative diagnosis). The diagnosis outcome was a binary integer value
indicated by a one for a positive diagnosis and a zero for a negative diagnosis, although in
actuality, any nonzero integer would equally be interpreted as a positive diagnosis. Where
it was possible, we converted this encoding convention to the programming language’s
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standard missing value mechanism (e.g., Section 4.4.3), or we adapted our implementation
(e.g., in Section 4.4.2, the similarity calculations are based only on valid feature values).

Out of the total number of records, 336 were complete (no missing feature values)
(43.75%), and there were 763 missing feature values spread across the data set out of the
total number of 6144 feature values (12.42%).

Table 3. Structure of PIMA diabetes data file.

Feature Data Type
Value Range

(Zero Indicates Missing Value)

Number of Times Pregnant Positive Integer 0. . . 17

Plasma Glucose Concentration Real 0. . . 199

Diastolic Blood Pressure Real 0. . . 122

Triceps Skinfold Thickness Real 0. . . 99

Serum Insulin Levels Real 0. . . 846

Body Mass Index Real 0. . . 67.1

Diabetes Pedigree Function Real 0.078. . . 2.42

Age Positive Integer 21. . . 81

Classification Binary 1 = positive diagnosis,
0 = negative diagnosis

4.4.1. Comparison with Popular Imputation Methods

Three popular imputation techniques were used to provide a comparative baseline
for the results obtained from applying our N-Similarity algorithm [36]. Listwise deletion is
the process of removing all incomplete records from a data set prior to imputation [37].
If the original data is incomplete, then its application will naturally result in a smaller
data set being produced for analysis. Depending on the sparsity of the original data, this
may impact any ongoing analysis, thereby making it an unviable option for comparison
against other imputation techniques that attempt to restore missing feature values without
removing data. The statistical power [38] relies in part on a high sample size, and this is
helped by having a relatively complete data set with few incomplete records. The other
possible drawback to using listwise deletion is when the missing feature values may not
be randomly distributed. For example, this occurs if a certain feature has missing values
based on the nature in which the values for that feature were collected (questions aiming
to extract sensitive information that the individual just skipped). As a result, and again
depending on the level of sparsity of such missing data, the results may introduce bias
into later analysis. One possible way to address these limitations and reduce the bias is
to use multiple imputation techniques [39,40]. An extension of this approach, which was
considered as a technique for comparison, was pairwise deletion [41]. This approach allows
for the use of incomplete data but only allows for analysis on those features that have
complete data. This introduces bias and makes like-for-like analysis more difficult, so it
was was rejected as an option.

Some analysis has been undertaken [42] to determine the most popular imputation
methods since 2000 (Figure 2). Popularity has been measured based on the number of times
each imputation algorithm is mentioned in Google Scholar articles and papers. The results
are somewhat surprising, since simpler, older techniques seem to be more popular than
more recent approaches:

• Remove Incomplete Records (Listwise Deletion): Any records in D that have one
or more missing feature values are removed from the data set prior to processing.
The removal of any incomplete records will lead to a smaller but complete data set
D. It is not recommended that this technique is used arbitrarily as a means of direct
comparison with other techniques used in the paper, since factors, such as the initial
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completeness of D, need to be assessed. It has been included due to its general
popularity only (Figure 2).

• Replace Missing Data With Mean Attribute Value: Any missing feature values are
replaced with the average value calculated from the corresponding feature values in all
the complete records in the data set.

• Replace Missing Data With Modal Attribute Value: Any missing feature values are
replaced with the most common value gathered from the corresponding feature values
from all the complete records in the data set.

• Replace Missing Data Using Empirical Bayes Algorithm: This method is for statisti-
cally inferring missing feature values using a prior distribution of known values in a
data set.

• Replace Missing Data With N-Similarity Algorithm: Any missing feature values are
replaced with the best candidate value calculated from the corresponding feature values
in the N-most-similar complete records in the data set.

Figure 2. Google Scholar search results (Statistics Globe 2019).

Cross validation is a sampling procedure used to evaluate models that use a limited
data sample. The procedure has a single parameter called k that refers to the number of
equal sized groups (or folds) over which the data sample will be equally divided. The
procedure is often called k-fold cross validation and is used to estimate the ability of a machine
learning model to make predictions based on unseen data; it uses a limited sample in order
to estimate how the model is expected to perform in general when used to make predictions
on data not used during the training of the model.

The average cross validation over n folds is given by

1
n

k=n

∑
k=1

Similarityk

where Similarityk is the measure of similarity between the current test and the training

folds for the session run k.
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4.4.2. Results, Limitations, and Discussion

Table 1 shows the improvement in predicting true positive cases when using our pro-
posed N-Similarity algorithm compared against several other single-pass imputation algo-
rithms. Entries highlighted in green show the improvement achieved by our algorithm over
other popular techniques. Those highlighted in red show a worsened prediction accuracy.
Those entries highlighted in blue indicate no or negligible change in the prediction accuracy.

The testing process splits the data sets into ten approximately equally sized folds. The
arbitrary partitioning of records in each fold, in any given run, meant that each fold could
contain a combination of complete and incomplete records. The proportion of incomplete
records was allowed to vary so as to not impose any potentially restrictive classification on
the fold contents. Should we have wanted to impose a limiting proportion of incomplete
records in a fold, for some reason, then a stratified k-fold approach or similar would have
been used. When applying cross correlation techniques, some of the ratio calculations
shown in Table 1 had no correctly predicted positive outcomes (TP = 0), thus leading to
incomplete runs being produced. Similarly, in some folds, it may also be possible that the
number of true positive (TP) and true negative (TN) training records are not predictable for
a given fold, thus meaning that the precision metric was indeterminate for specific pairings
of test and training data folds, since TP + TN = 0. The likelihood of these eventualities could
be reduced somewhat by reducing the number of folds for the given data sets, thereby
increasing the number of records in each fold. However, the missingness of the data sets
(proportion of incomplete to complete records) will be the ultimate determinate of how
likely such scenarios were to occur. By introducing an error tolerance, indicated in blue
for those results that varied by less than ±5.0%, we can see that the only metric where the
other techniques produced better results than our algorithm was Correlation; the results
for TPR and Recall changed marginally, and the other metrics showed good improvements
achieved by our algorithm. Applying the MAV and MDAV imputation techniques shows
very similar results, which may have been caused by the relatively sparse data sets, the size
of the data sets, or the nature of the data itself.

As shown in Table 4, the results differed depending on which imputation method
was used. When incomplete records were removed as part of the imputation process prior
to the application of our N-Similarity algorithm, all of the metrics, apart from accuracy,
were worsened, albeit on a restricted data set. The results of using either the mean or
modal replacement approaches were very similar and could be due to the relatively small
data sets used in our tests. What can be taken from this is the importance of fine tuning
expectations based on which metrics are the most important to the end user. Considering
our neighborhood-similarity-based approach (Table 4), we obtained better results for
accuracy (+9.33%), precision (+9.67%), specificity (+13.84%), and FPR (13.86%), but this has
to be tempered against worse results for correlation (−6.07%). The recall and TPR were
roughly unchanged and remained within a 5% tolerance. What has become apparent is
that the metrics used are very susceptible to the neighborhood size (N) and nature of the
data to which they are being applied. The best results may be achieved by balancing the
size of the neighborhood considered against the imputation algorithm that will be used to
identify the most suitable compromise between true positive and true negative outcomes.
In our testing, we ran our algorithm using different-sized neighborhoods and found that
a neighborhood of size four (N = 4) gave the most balanced results. For comparison, the
results obtained using other neighborhood sizes can be seen in Table 1.
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Table 4. Performance of our proposed N-Similarity algorithm compared against other single imputa-
tion techniques.

Remove Incomplete
Records

(Listwise Deletion)

Replace Missing Data
with MAV

Replace Missing Data
with MDAV

Average N-Similarity
Algorithm

(N = 1. . . 10)

Number Of Perfect Tests 10 10 10 10

Accuracy 54.76% 54.85% 54.88% 64.16% (+9.33%)
Correlation 92.48% 94.92% 95.00% 88.06% (−6.07%)
Precision 36.94% 31.31% 31.32% 42.86% (+9.67%)
Recall 31.26% 36.65% 37.35% 32.06% (−3.03%)
Specificity 68.96% 63.28% 62.82% 78.86% (+13.84%)
True Positive Rate (TPR) 22.23% 25.17% 25.21% 22.47% (−1.73%)
False Positive Rate (FPR) 31.04% 36.72% 37.18% 21.12% (−13.86%)

Average MCC 0.0891 0.0160 −0.0413

4.4.3. Benchmarking with kNN

Using the PIMA dataset (Table 3), we also compared our similarity-based imputation
(NSIM), its enhanced version NSIM-EB (with the empirical Bayes (EB) correction, λ = 1),
and the Mahalanobis distance based k-nearest neighbors (kNNs) [34] (See Table 5 for the
obtained RMSEs). Both the kNNs imputation and NSIM are nonparametric and rely on the
k-nearest and N-similar observations, respectively. Apart from the use of neighborhood
observations, the Mahalanobis distance uses the covariance matrix, while our EB correction
(3) uses two estimates of sample variance as the weight of the imputed proposal. We used
the three schemes (i.e., NSIM, NSIM-EB, and kNNs) for 1000 imputations per variable—for
a total of M combinations (Table 5). As seen in Table 5, the RMSE performance of the NSIM
was comparable to the kNN imputation, whereas the NSIM-EB outperformed both in all
scenarios with minimal computational time overhead (the NSIM, NSIM-EB, and kNNs
took approximately 68, 103, and 477 s, respectively, in our R implementation).

Table 5. Imputation RMSEs for simulated data using our similarity method (NSIM), our similarity
method with empirical Bayes correction (NSIM-EB), and the k-nearest neighbors (kNNs) method.

M Method Pregnancy Glucose BP Triceps Insulin BMI DPf Age

NSIM 0.875 0.963 1.051 0.937 0.942 0.892 1.103 0.848
1 NSIM-EB 0.737 0.770 0.777 0.816 0.726 0.782 0.791 0.752

kNNs 0.872 0.948 1.101 1.043 0.896 0.968 1.013 0.884

NSIM 1.134 1.114 1.275 1.128 1.148 1.065 1.288 1.089
5 NSIM-EB 0.900 0.899 0.962 0.948 0.882 0.899 0.937 0.894

kNNs 1.343 1.328 1.265 1.315 1.230 1.322 1.272 1.289

NSIM 1.172 1.149 1.335 1.167 1.235 1.096 1.372 1.125
10 NSIM-EB 0.942 0.928 0.992 0.958 0.956 0.927 0.984 0.891

kNNs 1.382 1.356 1.331 1.406 1.293 1.360 1.349 1.263

NSIM 1.177 11.54 1.350 1.181 1.249 1.109 1.388 1.140
15 NSIM-EB 0.944 0.940 1.004 0.971 0.961 0.936 1.030 0.917

kNNs 1.419 1.370 1.376 1.418 1.333 1.359 1.404 1.379

NSIM 1.187 1.167 1.356 1.185 1.269 1.121 1.393 1.160
20 NSIM-EB 0.959 0.942 1.006 0.969 0.995 0.950 1.014 0.928

kNNs 1.399 1.359 1.378 1.397 1.336 1.367 1.345 1.372

Our algorithm performed better when the source data set had a small percentage of
missing data values, due to our blind random selection of data values across all the folds.
The larger the number of missing data values, the higher the likelihood would be that
some of the folds would be more sparsely populated. The choice of the number of data
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partitions in the k-fold step needs to be carefully selected; otherwise, we risk the possibility
of introducing bias into the selection of data values put in any given fold. We settled on
k = 10, as much of the academic literature indicated that this was a commonly used value.
One way of limiting the impact of this problem is to use a stratified approach as mentioned
above. We left this direction as a line of potential future work. The choice of the size of the
neighborhood, N, and, as a direct result, the number of candidates in the set of values for
selecting imputed values, was also sensitive. We spent considerable trial-and-error effort
looking for the best selection for this parameter against the PIMA data set; we tried a much
wider range of potential values for N than are shown. The results for these higher values
were negligibly different in our case.

Table 1 shows that N = 4 was the best choice in our case, although this could vary for
different data sets. Further research is required to determine whether the choice of value
for N could be automated by looking at all the possible potential values for N and whether
this approach would even be practical for large data sets in terms of processing time and
improvements in the results.

5. Conclusions

Our neighborhood-based algorithm was able to provide noticeably improved results
when compared against other techniques, but the degree of this improvement was sensitive
to the size of the neighborhood, with some features being more readily improved than
others for smaller neighborhood sizes and other metrics being noticeably less well predicted
as the size of the neighborhood increased. This paper proposes a technique to provide a
more accurate prognosis of possible patient diabetes based on a number of key patient
characteristics. Our approach creates a similarity neighborhood using the most similar
diagnosed patient records and uses the feature set values of these patients to help with
the diagnosis of undiagnosed patients. By comparing our N-Similarity algorithm against
several widely used single-pass imputation techniques using the same collection of data
sets, both real-world and simulated, we found that it produces better results against
several of our performance metrics (Table 4). However, we observed that the size of the
neighborhood had an impact on the performance of our algorithm. We also noticed that
the limited data set sizes and degrees of missingness of the initial source data could impact
the results, and more extensive work would be necessary using a wider range of different
data sets in order to see how these measures are related. The empirical Bayes correction
of the neighborhood-based algorithm offered consistently smaller RMSEs over the simple
algorithm and the k-nearest neighbors imputation, with minimal computational overhead.
In addition to the performance advantages, we recommended it as a general method, since
the shrinking parameter α indicated a degree of certainty between our inputted value and
the sample mean (with zero indicating certainty of the similarity of the inputted value and
one indicating most uncertain).

6. Future Work

The main limitation of our current work is that the PIMA data set contains only
numeric feature values. Future work could include support for both categorical and textual
data. Both types of information are widely found in medical data sets and would help to
support the usefulness of our algorithm in this domain, as well as in other similar domains.
The implementation of our algorithm has been deliberately developed to be loosely coupled
to the source data to allow for different file formats and structures in the source data to be
supported with minimal effort, thus allowing for generalization of the code for different
future uses.

To aid with future development of this algorithm, we have provided the full source
code to the software we used to generate the presented results. The source code, written in
the Go programming language, can be freely used and modified, and it has been designed
to be modular and loosely coupled to any data set, thereby making it easier to extend
as required.
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Abbreviations

The following abbreviations are used in this manuscript:

RMSE Root Mean Squared Error
NSIM Our Neighbourhood SIMilarity algorithm
NSIM-EB Our Neighbourhood SIMilarity algorithm with Empirical Bayes Correction
kNN Classification of Nearest Neighbour algorithms
TP True Positive
FP False Positive
TN True Negative
FN False Negative
TPR True Positive Rate
FPR False Positive Rate
MAV Mean Average Value
MDAV Modal Average Value
MCC Matthews Correlation
BMI Body Mass Index
BP Blood Pressure
DPf Diabetes Pedigree Function
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Abstract: Intelligent wheelchair blind spot obstacle detection is an important issue for semi-enclosed
special environments in elderly communities. However, the LiDAR- and 3D-point-cloud-based
solutions are expensive, complex to deploy, and require significant computing resources and time.
This paper proposed an improved YOLOV5 lightweight obstacle detection model, named GC-YOLO,
and built an obstacle dataset that consists of incomplete target images captured in the blind spot
view of the smart wheelchair. The feature extraction operations are simplified in the backbone and
neck sections of GC-YOLO. The backbone network uses GhostConv in the GhostNet network to
replace the ordinary convolution in the original feature extraction network, reducing the model size.
Meanwhile, the CoordAttention is applied, aiming to reduce the loss of location information caused
by GhostConv. Further, the neck stem section uses a combination module of the lighter SE Attention
module and the GhostConv module to enhance the feature extraction capability. The experimental
results show that the proposed GC-YOLO outperforms the YOLO5 in terms of model parameters,
GFLOPS and F1. Compared with the YOLO5, the number of model parameters and GFLOPS are
reduced by 38% and 49.7%, respectively. Additionally, the F1 of the proposed GC-YOLO is improved
by 10% on the PASCAL VOC dataset. Moreover, the proposed GC-YOLO achieved mAP of 90% on
the custom dataset.

Keywords: target detection; YOLOV5s; attention mechanism; lightweighting

1. Introduction

With the aging of the population, senior care communities have become an important
place to meet the needs of the elderly in their daily lives. The use of wheelchairs among the
elderly and individuals with physical disabilities is increasing. The cited paper [1] provides
a statistical test of wheelchair usage. However, due to the deterioration of the elderly’s
physical functions and diminished perceptual abilities, the barriers on both sides of the
wheelchair can pose a number of safety risks when using a wheelchair. Smart wheelchairs
offer significant assistance to individuals in such situations. To improve performance,
they distinguish the gaze of electric wheelchair passengers by introducing the distance
between objects in the visual field as a new feature vector. This addition helps to reduce
errors caused by unintentional gaze [2]. When image recognition is combined with the
wheelchair control system, facial visual recognition is primarily employed to govern the
movement direction of intelligent wheelchairs [3]. In terms of smart care, remote intelligent
systems are designed to provide care [4,5]. They have achieved significant progress, and
this paper focuses primarily on the impact of the blind spots on both sides of the wheelchair,
emphasizing the areas not easily perceived by vision. To ensure the safety and comfortable
use of smart wheelchairs for the elderly in senior care communities, the detection of
dangerous obstacles in the blind zones on both sides of the smart wheelchair has become
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an important task. In target detection algorithms across various fields, diverse sensor-
based methods, including lidar, millimeter-wave radar, and ultrasonic radar sensors, are
employed to address different scenarios. Employing the 3D point cloud encoding of lidar
for the purpose of detection [6], which is characterized by high computational complexity
and data sparsity, and has limitations on small mobile devices; 3D target detection from
LiDAR data for autonomous driving has shown good performance in 3D vision detection
such as autonomous driving [7], but has the limiting issues of high cost and complexity
of deployment on lightweight mobile devices, which can be a challenge for real-time
applications or resource-limited devices. In regard to model lightweight design [8], the
guide dog robot realizes traffic light and motion target detection based on the actual scene
requirements using the MobileNet algorithm. The algorithm’s lightweight advantage is
effectively utilized to address the problem, highlighting the importance of lightness on
mobile devices. The deep learning target detection algorithm used in this paper has made
significant contributions to the field of computer vision, providing an effective method for
solving the problem of detecting safety hazards in a wheelchair’s blind field of view. This
algorithm, which is based on deep learning and designed to detect targets, analyzes real-
time visual information around wheelchair users, helping the elderly avoid accidentally
hitting dangerous obstacles in the blind zones on either side of the wheelchair, such as
dogs, cats, potholes, and human bodies that are incompletely represented at low angles,
such as feet, legs, and wheels. These targets were gathered to construct a custom dataset.
Collaborative annotation and video data management tools can be utilized for curation
purposes [9]. In this paper, the approach to handling video data involves processing it
frame by frame, resulting in an image dataset. When used in these areas, the following
issues must be addressed.

• Target Specificity. The targets displayed on both sides of the wheelchair are incomplete.
In the case of oversized targets, only part of the target’s feature map is captured, such
as feet, legs, and wheels.

• Model lightweighting issues. Adapting to resource-constrained environments and
meeting the needs of resource-constrained devices.

• The issue of heavy performance loss caused by lightweighting. Losing model perfor-
mance while lightweighting is difficult to balance.

Aiming at the above problems, this paper mainly starts from three parts, the first is
to collect the target information under the low view angle to form the unique dataset, the
second in the model is to go through the Ghost [10] module to obtain the sparse feature
maps, and at the same time, utilize the CoordAtt [11] attention to obtain the channel
information and the position information, and finally, the two parts of the features will
be integrated, then, through the residual block adjustment in the neck part, the channel
information of the feature map is enhanced by the SE [12] attention, and more features
are captured to compensate for the feature loss problem caused by the convolution in the
GhostNet idea, and a richer feature output is obtained through the residual connection,
finally, trained on the PASCAL VOC dataset, the number of model parameters is nearly
3/5 of the original, and the GFLOPS are equivalent to 1/2 of the original, with almost the
same detection time, but the overall accuracy and F1 value are significantly improved.

2. Related Work

Target detection models generally have a complex network structure and a large
number of parameters, resulting in slow operation, large memory occupancy, and power
consumption on low-end devices when the model is deployed on the mobile side. To solve
these problems, in recent years, researchers have proposed that the study of lightweight
target detection models focuses on two aspects: one is a lightweight model based on the
network structure, and the other is based on some special tricks to reduce the computational
and parametric quantities of the model, so that it can be efficiently operated on low-
end devices.
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Network-based lightweight modeling is a common technique used to compress
lightweight models. Among these, the most seminal lightweight model designs involve a
deep learning approach for MMR utilizing the SqueezeNet V1.1 architecture [13], while
SqueezeNet mainly uses the Fire module to reduce the computation and parameter size of
the network, MobileNets (V1 [14], V2 [15], V3 [16]) proposed by the Google team, which
uses DSConv [17] (Depthwise Separable Convolution depth-separable convolution) and
lightweight bottleneck structure to reduce the computation and number of parameters,
ShuffleNet [18], proposed by the Megvii Inc (Face++) team, introduces a channel rear-
rangement mechanism to accelerate the convolutional computation, and EfficientNet [19],
published by Google, uses a composite scaling factor to balance the depth, width, and
resolution of the network, and GhostNet [10], proposed by Noah is Ark Lab, Huawei
Technologies, introduces a Ghost module to enhance the feature representation capability,
etc. These networks are usually designed as lightweight networks that focus on reducing
the number of parameters and computational complexity to achieve efficient inference,
but they all suffer from common limitations in terms of reduced detection performance,
inability to adequately capture complex features in the image, especially in complex scenes
or with small targets, lower performance in terms of accuracy, and possible limitations in
terms of multiscale detection that does not fully exploit multiscale information.

Based on some special techniques to reduce the computational and parametric sizes
of the model, which include model pruning, quantization, distillation, and so on. Among
them, model pruning can reduce the computation and parameter count of the model by
deleting unimportant connections, for example, the indoor target detection task, Zhang et al.
used a specific channel pruning strategy in the YOLOv3 model to achieve up to 40%
computational compression [20], but it also relies on the training model, which is not very
suitable for the scenarios that require retraining. The authors of the [21] used a block
perforation pruning method to achieve a 14 × compression rate with 49.0 mAP for YOLOv
4. However, the implementation needs to be adapted to different hardware architectures
and device characteristics, and may face limitations in terms of computational resources,
memory, and power consumption on older or low-end mobile devices. Quantization
can reduce the storage and computational overhead of the model by reducing the bit
width of the weights and activation values, for example, for the target detection task, Liu
et al. [22] used 8-bit quantization in Faster R-CNN, which reduced both the storage and
computation to one-fourth of the original, but it requires more complex training processes
and optimization techniques, and may be more complicated to implement and debug.
Moreover, knowledge distillation can effectively enhance the performance of compact
models, the Adaptive Reinforcement Supervised Distillation (ARSD) framework to improve
the recognition of lightweight models [23], but it requires a large model to be used as a
baseline, which may require more computational resources and training time.

Different lightweight models have their own advantages and disadvantages. Network-
based models usually have better speed, but may require more storage space. Model
reduction based on some special tricks can greatly reduce the storage space and computa-
tion of the model, but it may have an impact on the accuracy of the model, the model of
distillation technique can obtain a smaller model without decreasing the accuracy, but it re-
quires larger computational resources to train the large model. Hence, it is crucial to achieve
a balance between model lightweighting and model performance, and flight delays can be
predicted using the ECA-MobileNetV3 algorithm [24], which balances model performance
and weight by improving the feature extraction capability of the lightweight algorithm
through the attention module. This module has been reported as performing well in the
paper. This paper addresses the aforementioned issues by focusing on wheelchair blind
obstacle detection in the elderly community environment. It combines both the advantages
and disadvantages of the model to prioritize performance, reduce model complexity, and
enhance the feature extraction through a better attention mechanism. The aim is to strike a
balance between model compression, detection accuracy, and speed to comprehensively
improve the model’s performance.
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3. Questions and Methods

3.1. Problem Description

In the semi-enclosed environment of an elderly community, real-time obstacle detec-
tion for the blind spots of mobile intelligent wheelchairs is achieved. Traditional algorithms
often require substantial computational resources, which makes them unsuitable for mobile
devices with limited resources, secondly, in much of the current lightweight research, the
reduction in model size often comes at the cost of decreased model performance. This
trade-off makes it challenging to achieve a balance between detection accuracy and model
lightweightness. Therefore, there is a need to design a lightweight target detection algo-
rithm that can perform the target detection task quickly and accurately on mobile devices.

The goal of this thesis is to design a lightweight target detection algorithm with
high detection performance for smart wheelchair devices. In this paper, we will explore
deep-learning-based target detection algorithms and reduce the complexity and computa-
tional overhead of the algorithms by optimizing the network structure, reducing model
parameters, and using quantization techniques. Meanwhile, in this paper, the detection
accuracy and speed of the algorithm will be evaluated in experiments and compared with
existing lightweight target detection algorithms. Specifically, our research will cover the
following issues:

• Reduce model parameters and computational complexity by controlling network
depth and width. Design a lightweight target detection network structure suitable for
mobile devices.

• While lightweighting the model, the performance of the model feature extraction is
improved to compensate for the feature loss problem caused by lightweighting.

• Experimental evaluations were performed on the publicly available PASCAL VOC
dataset. Targets at low viewing angles were collected to construct a custom dataset
and to test the experimental effectiveness of the custom dataset.

Through the above research, an efficient, accurate and lightweight target detection
algorithm for mobile devices can be proposed.

Model Quantification

To reduce the model parameters and computation for network depth and width,
the model is mathematically modeled using two metrics, GFLOPS (the model’s floating
point operations, which denotes the amount of computation in billions of floating point
operations required by the model to perform inference) and Parameters (the model’s
parameter count, which denotes the total number of parameters to be trained in the model).
Backbone partially improves the efficiency of residual feature extraction in the C3 module,
reducing computational complexity and the number of parameters. Assuming that the
GFLOPS of the original Backbone with C3 module is Fbackbone and the number of parameters
is Pbackbone, α(0 < α < 1) is a scaling factor for reducing the computational complexity
and the number of parameters, the GFLOPS and Parameters of the improved Backbone
module are α× Fbackbone and α× Pbackbone, respectively. The original GFLOPS of the Neck
part is Fneck and the number of parameters is Pneck, and the computational overhead is
reduced by a scaling factor β(0 < β < 1), so that the quantized GFLOPS and Parameters
are β× Fneck and β× Pneck, respectively. In summary, the parameters and computational
quantities of the model before and after definition are

F = α× Fbackbone + β× Fneck (1)

P = α× Pbackbone + β× Pneck (2)

3.2. Model Method Description

This paper is inspired by Ghost convolutions in Ghostnet, one of the lightweight state-
of-the-art models designed for efficient inference on mobile devices. Its main component is
the Ghost module, which uses low-cost operations to generate more feature maps instead

58



Electronics 2023, 12, 4472

of the original convolution. Given an input feature X ∈ RH×W×C with height H, width W,
and number of channels C, a typical Ghost module can replace the standard convolution in
two steps. First, a 1× 1 convolution is used to generate the original features, i.e.,

Y′ = X× F1×1 (3)

F1×1 is a point-by-point convolution, and Y′ ∈ RH×W×C′out are intrinsic features whose
size is usually smaller than the original output features. Then, the cheap operation (Fdp
for depth-separated convolution) is used to generate more features based on the intrinsic
features. The two parts of the feature are linked along the channel dimension, so that

Y = Concat
([

Y′, Y′ × Fdp

])
(4)

In the Ghost module, only half of the features, the essential features, are smaller than
the original output features, which will lose the captured spatial and position information,
and to consider this loss, this paper will use the attention module to enhance its spatial and
position features.

4. Model Structure

4.1. Yolov5 Algorithm Principle

The YOLOv5 network structure consists of four main parts: Input, Backbone, Neck
and Head. The four parts, respectively, perform data input processing, feature learning,
feature enhancement processing, and target detection and classification.

Input performs Mosic operations on the input data, mainly cutting, splicing, resizing,
and optimizing the input image data to compute the anchor frames. Mosic data augmen-
tation is used to increase the diversity of the dataset, thus increasing the robustness and
generalizability of the model.

Backbone is mainly used for feature learning, and the main constituent modules are
C3 and SPPF (Spatial Pyramid Pooling—Fast).

The C3 module is similar to the original CSP (Cross-Stage Partial Network) structure,
which is mainly used to simplify the network structure, reduce the number of convolutional
layers and channels, and maintain the performance, and the SPPF module is the fusion of
deep and shallow information to improve the feature extraction ability of the network.

The Neck structure uses a PANet structure to achieve feature enhancement through
multi-layer feature fusion of top-down and bottom-up deep and shallow features, thereby
increasing the robustness of the model and improving the accuracy of the target detection.

The Head structure obtains the position of the prediction frame target in the input
image as well as the category information by designing three detection heads for detecting
targets of different scales, each of which acquires feature information of different scale sizes
from different layers of the Neck.

4.2. Improve the Structure of the Model

The most time-consuming part of the model is the C3 module, which is used to
extract features and enhance the receptive field by reducing the number of channels of the
input feature map with a 1× 1 convolutional layer, then using a set of 3× 3 sequential
convolutions to extract the features, and finally using 1× 1 convolutions with residual
linking to sum the output of the previous step with the output of that layer. In this
paper, the C3 modules of the Backbone and Neck sections are quantified. The Backbone
part reduces the computational complexity and the number of parameters to the model
through the Ghost Module idea and uses Coordinate Attention (CoordAtt) to focus on the
global information. Coordinate attention has some unique advantages over other attention
mechanisms such as SE (Squeeze-and-Excitation), CBAM [25], SAM [26], ECANet [27], and
others. Spatially adaptive: it is able to focus on different locations of the input feature map
to capture important contextual information in the image.
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Parameter-efficient: it is more advantageous in terms of parameter efficiency compared
to SE Attention, which is realized by simple linear transformations and softmax operations,
making it more feasible in the case of limited computational resources. The design of
Coordinate Attention makes it more flexible and can be used in combination with other
attention mechanisms. Combining the various features mentioned above, Coordinate
Attention has good assistance in improving the capture of spatial and positional information
of features, improving the ability of module feature extraction, and reducing the number of
parameters of modules. In the Neck part of the input feature map, X ∈ RH×W×C already
contains a large amount of feature information, in the original Neck, the SE attention and
Ghost module are used to improve the C3 module, reduce the number of parameters of the
module and the extraction of channel features, and the overall structure of the model is
shown in Figure 1.

Figure 1. Improved GC-YOLO model diagram. Compared to the native YOLOv5 model, the enhanced
GC-YOLO model replaces the original C3 module in the backbone section with the CAGhost and
replaces the original C3 module in the Neck section with the GhostSE module.

4.3. CA-Ghostbotelneck

CA-GhostBotelneck (shown in Figure 2), as a key network module in the backbone
network, adopts ideas from GhostnetV2 [28]. The CA-GhostBotelneck in this paper takes
into account the fact that the Ghost module is only half functional and the nature features
are smaller than the original output features, and when extracting the features for the input
feature map X ∈ RH×W×C , the output Y ∈ RH×W×Cout is obtained, and the features of Y
are lost in both the channel information and the position information. In this paper, the
input X is processed in two stages. First, the sparse feature map Y is obtained by the Ghost
module, and second, the channel information and position information are obtained by the
CoordAttention module, and finally, the two parts of the features are integrated to obtain a
new output. The benefits of using CA-GhostBotelneck are as follows:
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• Reduce the number of parameters: the Ghost module can use sparse convolution to
obtain the nature features, improving the lightness of the effect.

• Improve model expressiveness: CoordAttention captures channel and position infor-
mation, allowing more flexible access to global feature information and improving
model expressiveness.

(a) Step size of 1 (b) Step size of 2

Figure 2. CA-GhostBotelneck with step size 1 on the left, CA-GhostBotelneck with step size 2 on
the right.

Given an input feature X ∈ RH×W×C with height H, width W, and number of channels
C, the CA-GhostBotelneck module can replace the normal convolution in two steps. First, a
1× 1 convolution is used to generate the intrinsic features, i.e.,

Y′ = X× F1×1 (5)

Y′ ∈ RH×W×C′out are intrinsic features whose sizes are usually smaller than the original
output features, which compensate for the lack of original channel and position information
by having stronger feature information from CoordAttention than Deep-WiseConv, i.e.,

FcoordAtt > Fdp (6)

Y = Concat
([

Y′, Y′ × FcoordAtt
])

(7)

4.4. GhostSE

In this paper, the GhostSE structure is used in the Neck part (as shown in Figure 3), and
the intrinsic features obtained by 1× 1 convolution have fewer output features than those
obtained by ordinary convolution. Improved access to channel information of feature maps
using SE attention to capture more features to compensate for the feature loss problem
caused by convolution in the Ghost idea, second, residual joining is used to obtain richer
feature output, and finally residual joining is performed using the GhostConvSE module
and GhostBottelneck, reducing the number of parameters and float calculations while
keeping as much feature-rich information as possible.

Given an input feature X ∈ RH×W×C with height H, width W, and number of channels
C, output Y′ via 1× 1 Conv,Y′ via SE Attention to output Y′′, input Y′′ in GhostSE, and
output Z′ after Add, and finally output the feature map Z, i.e.,

Y′ = X× F1×1 (8)

Y′′ = Concat
([

Y′, Y′ × FSE
])

(9)
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Z′ = Concat
([

Y′′, Y′′ × FGhostBottelneck
])

(10)

Z = Z′ × FGhostConv (11)

(a) GhostConvSE (b) GhostSE

Figure 3. The left image shows GhostConvSE, which uses SE attention to obtain more feature
information; the right image shows GhostSE.

5. Experiment

5.1. Experimental Environment

The experiment selects the PASCAL VOC dataset commonly used for target detection
for training, which is mainly used for detecting the four major classes of vehicle, household,
animal and person in the environment, and the detection target samples are relatively
abundant. The computer configuration for the experiment is GPU: RTX 3060, CPU: I5-
10400, 16G RAM; the training network environment is Python: 3.9, CUDA12.1.

5.2. Model Evaluation

In target detection tasks, it is often necessary to compare the predicted results with the
true labels, and three metrics are used to evaluate model performance in this process.

1. TP: Means labeled as a positive sample and predicted as a positive sample.
2. FP: Means that the label is a negative sample and the prediction is a positive sample.
3. FN: Refers to samples labeled as positive samples but predicted to be negative.
4. TN: Means that the label is a negative sample and the prediction is a negative sample.
5. Precision: Indicates the percentage of samples that were correctly predicted out of

those predicted as positive examples.

P = TP/(TP + FP) (12)

6. Recall: indicates the proportion of positive samples that are true positive samples.

R = TP/(TP + FN) (13)

7. mAP: Used to evaluate overall model detection performance in multiple categories.
Where n is the number of categories, APi is the average precision of the i-th category,
and r is the recall.

AP =
∫ 1

0
P(r)dr, r ∈ (0, 1) (14)

mAP =
1
n

n

∑
i=1

APi (15)

8. F1 score: Combines Precision and Recall to evaluate the performance of the model and
is defined as the harmonic mean of Precision and Recall.

F1 = 2× P× R/(P + R) (16)
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By balancing the lightness, detection accuracy and detection speed of the model, this
paper improves the model. By calculating the Efficient value, the model M that balances
the detection efficiency and speed is finally obtained.

Efficient = E(F, P, mAP, R, F1) (17)

M = max
M∈M

EfficientMi (18)

5.3. Experiment

In order to verify the overall improvement of GC-YOLO of the design model, this
paper designs several comparative experiments with typical lightweight networks. The
PASCAL VOC dataset is selected, and the experimental dataset is divided into the training
set and the validation set with a ratio of 9:1, the image size is 640× 640, the training batch
is set to 32, and all reference models are trained for 300 epochs according to this parameter.
The experiments compared the number of model parameters, GFLOPS, mean accuracy
mAP: 0.5, and harmonic mean F1.

As shown in Table 1, the original Yolov5s had 7.28 M parameters and 17.16 G GFLOPS.
With CA-GhostBotelneck and GhostSE’s GC-YOLO, the number of parameters is 2.8 M less
and GFLOPS are 8.53 G less with a slight increase in mAP and F1. The results show that the
model’s feature extraction capability is significantly improved and at the same time the
model’s parameter number is reduced.

Table 1. Comparative testing of models.

Model Parameter (M) GFLOPS (G) mAP (%) F1 FPS

YOLOV5s 7.28 17.16 84.06 0.62 25
Yolov4-MobileNetv3 11.73 18.22 69.13 0.68 28

Yolov4-tiny 6.1 6.96 64 0.54 30
Yoloxs 8.95 26.73 83.8 0.74 18

Yolov7-tiny 6.23 13.86 80.83 0.76 26
GC-Yolo(our) 4.48 8.63 84.19 0.72 24

The partial detection results of the GC-YOLO model are shown in figures. Figure 4
shows the harmonic mean F1 after training the model on the VOC dataset with the threshold
set to 0.5. The F1 value combines the accuracy and completeness of the model, and is
particularly useful for dealing with category imbalance or focusing on improving both
accuracy and recall. Higher F1 values are an indication of better model performance in
positive sample detection and negative sample exclusion, from the twenty categories in the
figure, it is evident that the F1 values of 12 categories are higher than the average value of
0.72, and there are only a few major fluctuations, which proves that the model achieves a
relatively balanced performance in different categories, has a better generalization ability
in each category, can adapt to different categories, and has an advantage in dealing with
multicategory problems; Figure 5 shows the average accuracy of the model mAP on each
category, combining the prediction accuracy and recall of the model on different target
categories, which is used to measure the overall performance of the model on multiple target
categories, as shown in the figure, the data are more tightly clustered, with 13 categories
exceeding 84.19%, five categories surpassing 90%, and two categories falling below 70%.
This suggests that the model is successful in accurately localizing and identifying the target
object across multiple categories, without excessively focusing on certain categories and
disregarding others, and with exceptional overall performance. Figure 6 shows the "loss
rate" of the model, especially in the security and surveillance area. It reflects the proportion
of targets missed by the model during target detection, and a lower leakage rate indicates
that the model performs better in target detection and is able to capture targets more
comprehensively, from the figure, it is evident that the leakage rate is mainly below 0.3,
with five categories exceeding this threshold. However, the highest leakage rate is only 0.56,
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indicating that the model has a high recall rate and can detect most of the target objects.
It is also robust to the size and location of different targets, ensuring a consistently low
leakage rate.

In addition to testing GC-YOLO detection on images outside the VOC dataset, in this
paper, an image downloaded from the Internet was used for detection, and the comparative
detection experiment is shown in Figure 7, and it is evident that (a) enhances target
recognition accuracy by approximately 0.05 in unobstructed and approximately 0.1 in
obstructed targets compared to (b). The model’s overall accuracy for recognizing categories
is enhanced, including the recognition of yellow cars.

Figure 4. Harmonic mean F1 values of the GC-YOLO model for the VOC dataset.

Figure 5. Average accuracy of the GC-YOLO model on the VOC dataset (mAP = 84.19%).
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Figure 6. GC-YOLO model miss rate in VOC dataset.

(a) (b)

Figure 7. (a) GC-YOLO model detection results; (b) original model detection results. In this context,
blue boxes indicate people, while green boxes represent cars. Compared to Figure (b), Figure (a)
displays superior accuracy in identifying individuals, successfully detecting the concealed yellow
car, and demonstrating an increased confidence in identifying the black car. Furthermore, there is a
decreased likelihood of misidentifying a person as a vehicle.

Comparison experiments were also performed between the GC-YOLO model and the
FPS of Yolov5’s real-time detection, as shown in Figure 8. The model introduces attention
to improve the extraction of features, while ensuring the real-time performance of the
lightweight model, and the model’s FPS is relatively smooth.

5.4. Scenario Experiments with Custom Datasets

This GC-YOLO lightweight model is used in the realization of intelligent wheelchair
devices on the blind spot obstacle detection to help the user to avoid the blind spot on both
sides of the obstacles caused by safety issues.

It was found that the visual angle of wheelchair blindness is different from the unusual
visual angle, and is more a differentiator caused by the low viewing angle, which is reflected
in the overhead angle and the incompleteness of the display target. In this paper, dangerous
obstacles for wheelchair blindness in the community are defined as cats, dogs, potholes,
water bottles, and feet, legs, and wheels at the top view, and the seven categories are
designed to avoid physical injury from animal attacks, falls, and wheel accidents. For
this purpose, field targets were collected for dataset production, mainly through mobile
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phone simulation of wheelchair heights and perspectives in different scenarios, based on
different age groups, scenarios, and time periods, to build diverse sample data. In this
paper, the captured video data are processed, and the video file is sliced by frames, and
one image is selected every ten frames to obtain the foot and leg photos under different
angles and different poses. To ensure the diversity of the dataset and the amount of data,
some of the categories of the dataset were obtained from publicly available datasets and
web crawling, respectively, totaling 7916 image data. To solve the problem of unbalanced
data volume in the target dataset, this paper sets the data enhancement rate of mosaic to
fifty percent, which expands the data diversity and improves the generalization ability of
the training model. The experiment is shown in Figure 9, and the precision for various
categories exceeds 0.85, some even surpassing 0.95. The model demonstrates excellent
robustness in its capacity to generalize across targets of differing sizes such as feet, legs,
and wheels. which shows that the performance of the overall model on the custom dataset
is relatively stable, with a mAP of 90.34%, and Figure 10 shows that the average accuracy
of the F1 values is 0.84 at score threshold = 0.5, on the custom dataset, the F1 score is no
worse than the average of the model trained on the VOC dataset (0.72), and the model can
adapt to different categories, demonstrating its ability to generalize.

(a) (b)

Figure 8. (a) Shows the FPS detection effect of the GC-YOLO model; (b) shows the FPS detection
effect of the original model. The detection rates of the two graph algorithms have been compared,
and the modified algorithm consistently maintains high performance without any reduction in
detection rates.

The trained model is tested in real scenarios, and the results of the test scenarios are
shown in Figure 11. For intelligent wheelchair obstacle detection in the blind zones on both
sides of the wheelchair in a senior living community environment, side safety is judged
mainly based on the display of incomplete targets. The four images reflect wheels, legs,
feet, and potholes in low vision, and the first three images judge obstacle targets based on
human targets with incomplete displays in low vision.

Figure 9. Average accuracy of the GC-YOLO model on the custom set (mAP = 90.34%).
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Figure 10. F1 of the GC-YOLO model on the homebrew set (score threshold = 0.5).

(a) Identify the target through spe-
cific regions, including the wheels.

(b) Indoor experimental trials.

(c) Data within the elderly commu-
nity, illustrating the algorithm’s de-
tection efficacy.

(d) From a low angle, the algo-
rithm’s efficacy in detecting pot-
holes.

Figure 11. The four panels show the real scene model detection effect. Distinctive colors serve to
discern and display diverse categories: green boxes denote legs, purple boxes symbolize wheels,
yellow boxes indicate feet, and red boxes represent potholes.

The above experimental results show that compared with YOLOv5s, YOLOv4-
mobilenetv3 and other lightweight model algorithms, the real-time performance of the
GC-YOLO model is as stable as that of the native YOLOv5s, but it has been improved in
the number of parameters, GFLOPS, mAP, and the evaluation of the F1 value, and it also
has a very good performance in the custom dataset to perform the safety supervision of the
blind zones of intelligent wheelchair detection.

6. Conclusions

In this paper, we propose a lightweight target detection algorithm GC-YOLO based
on YOLOv5. By improving the network, the model is able to achieve good detection
performance while being lightweight, balancing the relationship between lightweight and
detection performance. In intelligent wheelchairs for the elderly community that have
a good lightweight performance, the research found that the model has good detection
performance in blind spot obstacle detection to avoid potential safety threats. In future
work, the algorithm will deploy on Nvidia Jetson Nano, and cameras will install on both
sides of the wheelchair to detect each side independently. Subsequent experiments will
aim to further improve and optimize the system. However, limitations may arise during
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the experimental process, as well as during the maintenance and retraining of the model
after deployment on the mobile terminal. When major environmental changes occur, the
model’s performance may diminish. In our future studies, we will explore the integration of
multi-modal or unsupervised learning approaches to improve the model’s responsiveness
to environmental fluctuations and continue our research in this area.
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Abstract: Due to the imbalanced nature of datasets, classifying unbalanced data classes and drawing
accurate predictions is still a challenging task. Sampling procedures, along with machine learning
and deep learning algorithms, are a boon for solving this kind of challenging task. This study’s
objective is to use sampling-based machine learning and deep learning approaches to automate
the recognition of rotting trees from a forest dataset. Method/Approach: The proposed approach
successfully predicted the dead tree in the forest. Seven of the twenty-one features are computed
using the wrapper approach. This research work presents a novel method for determining the state
of decay of the tree. The process of classifying the tree’s state of decay is connected to the issue
of unequal class distribution. When classes to be predicted are uneven, this frequently hides poor
performance in minority classes. Using stratified sampling procedures, the required samples for
precise categorization are prepared. Stratified sampling approaches are employed to generate the
necessary samples for accurate prediction, and the precise samples with computed features are input
into a deep learning neural network. Finding: The multi-layer feed-forward classifier produces the
greatest results in terms of classification accuracy (91%). Novelty/Improvement: Correct samples are
necessary for correct classification in machine learning approaches. In the present study, stratified
samples were considered while deciding which samples to use as deep neural network input. It
suggests that the proposed algorithm could accurately determine whether the tree has decayed or not.

Keywords: machine learning; deep learning; imbalanced datasets; stratified sampling; prediction;
classification; accuracy; wrapper classes

1. Introduction

In data mining and machine learning, classification analysis is a well-researched
method. Because of its ability to forecast future outcomes, it is used in a wide range of real-
world scenarios. However, classification accuracy is directly proportional to the training
data quality utilized. Real-world data frequently has an imbalanced class distribution, with
the dominating majority class and ignoring the least ones.

When dealing with an imbalanced class distribution problem, selecting appropriate
training data becomes crucial for improving classification accuracy. When all the available
data are used for training, the resulting classifier tends to predict most of the incoming
data as belonging to the majority class. This leads to the misclassification of minority class
instances. Hence, careful selection of training data is essential to address the challenges
posed by imbalanced class distributions in classification problems. In the context of forest
ecosystems, the need for accurate classification algorithms cannot be overstated. Forests are
a critical component of the planet’s ecological balance, sequestering and storing massive
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amounts of carbon from the atmosphere. The carbon stored in forest biomass is a crucial
element of healthy forest ecosystems and the global carbon cycle.

Forests store carbon in various forms that can be challenging to accurately quantify.
The estimation of carbon storage in forests depends on several factors, including the
density of tree wood, decay class, and density reduction factors. Accurate estimations of
carbon storage in forests are essential for effective carbon flux monitoring. Moreover, the
classification of forest data is critical in determining the health and productivity of forest
ecosystems. Forest classification algorithms can help identify various features of forests,
such as tree species, forest density, and biomass, which are essential in monitoring changes
in forest structure and function.

Forest-based accurate classification can also help to predict the occurrence and spread
of forest disturbances like wildfires, insect infestations, and diseases. Such disturbances can
cause significant losses of carbon from forests, negatively impacting the planet’s ecological
balance. Therefore, the development of accurate and robust classification algorithms for
forest datasets is critical for maintaining healthy forest ecosystems and mitigating the
impact of natural disasters on the environment. In the realm of predicting tree decay rates
in forests, past research has mainly focused on using regression techniques. However, these
methods may not be suitable for distinguishing individual dead trees within a forest.

Deep neural network (DNN) architecture is aimed at detecting individual dead trees
within the forest more accurately in this study. For that, this research work proposed a novel
approach to deal with imbalanced datasets using sampling techniques. The imbalanced
nature of forest datasets can make predictions less accurate, particularly when most data
points belong to a single class (e.g., living trees). Therefore, by employing sampling
techniques, we balanced the dataset, which improved the accuracy of predictions for both
dead and living trees. This ultimately improves the accuracy of predictions made with
unbalanced forest datasets. The organization of this research work is as follows. The dataset
used for this research work is described first. Then, we employ a DNN with sampling
techniques to forecast both dead and living trees. This method was then compared to other
techniques for its efficacy. Finally, we present our findings and future directions.

Overall, the development of DNN architecture for predicting individual dead trees
in forests, coupled with sampling techniques to handle imbalanced datasets, can raise
prediction accuracy and contribute to better forest management. It enables forest managers
to conserve and protect the forest ecosystem by making informed decisions.

2. Literature Review

In general, the process of classifying unbalanced datasets consists of three steps:
selecting features, fitting the data distribution, and training a model. The review of the
literature is presented below in Table 1.

Table 1. Background study.

Reference Methodology Used Observations

[1] CNN

Outlines the open research problems like enhancing the accuracy of
tree species classification, applying the approach to various forest

types, exploring its potential for estimating forest characteristics, and
creating an easy-to-use tool for forest managers and conservationists.

[2] SMOTE

The approach neglects to consider the computational cost and
resource requirements of various algorithms.

These resource requirements could be critical in real-world
deployment scenarios.

[3] Stratified with SVM Limit its scalability to large datasets.

[4] Classification using SVM and DNN DNN shows low accuracy.
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Table 1. Cont.

Reference Methodology Used Observations

[5] Undersampling Undersampling may lead to the loss of some useful information by
removing significant patterns.

[6] Oversampling

The performance of this approach may be influenced by the
hyperparameters selected for the DCGAN and CNN models.

The hyperparameters used in this model were not extensively
optimized in this study.

[7] Synthesizing data using Variational Auto
Encoders (VAE) on raw training samples.

Detailed analysis of the computational cost of the proposed method
was provided, which may be a concern for large datasets.

[8] SMOTE This approach did not consider the impact of SMOTE
on real-world data.

[9] Snag persistence Forest inventory model This research work did not address the impact of tree species or
decay stage on volume estimation accuracy.

The goal of feature selection is to identify subsets of features that are most suited
for classifying the unbalanced data while considering the feature class imbalance. This
contributes to the development of a more efficient classifier [10–13]. To limit the impact
of class imbalances on the classifier, most data preparation procedures, such as various
resampling techniques, are used to adjust the data distribution [14–17]. These techniques
significantly balance the datasets.

Model training to accommodate unequal data distribution requires primarily adding
an enforcement algorithm to an existing classification approach or applying ensemble
learning. Standard cost-sensitive learning is an example of the latter [18–20]; it improves
minority class classification accuracy by increasing the weights of the class samples. Clas-
sification accuracy can be achieved via ensemble learning techniques like boosting and
bagging [21–23].

Distribution-level data resampling will resolve the class imbalance. The most signifi-
cant advantage of this methodology is that the sampling method and the classifier training
procedure are independent of one another. Typically, the sample distribution of the training
set is changed at the data preprocessing stage to decrease or eliminate class imbalance. The
representative methods consist of a few resampling strategies, with the two main categories
being oversampling and undersampling.

Oversampling entails adding appropriately created new points to increase the sample
points in a minority class to attain sample balance. The synthetic minority oversampling
method (SMOTE) and several of its variants, as well as ROS, are examples of prevalent
algorithms [24]. SMOTE generates synthetic samples and inserts them between a given
sample and its neighbors, whereas datasets are balanced by ROS by adding minority
sample points at random.

Xnew = Xj + rand(0, 1)·
(
Xi − Xj

)
In Equation (1), Xjj (j = 1, 2, 3, 4, 5) represents a minority class point, Xnew represents

the generated virtual samples based on the nearest neighbors Xi, and rand (0, 1) is a random
number between 0 and 1 [4].

The earlier study relied heavily on local data to increase sample sizes. Although the
number of samples is equalized, since the information on the overall distribution of the
data is not taken into consideration, the data distribution of the new dataset following
oversampling cannot be guaranteed. Furthermore, utilizing an oversampling approach
may result in a big amount of redundant information, increasing the classifier’s calculation
and training time.

Undersampling decreases the sample size in a majority class by eliminating some of
them, and therefore has the apparent benefit of shortening training time. The most basic
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undersampling approach is RUS [24], which discards majority class samples at random.
To balance the magnitude of primary class samples with the least class samples, another
undersampling strategy uses appropriate majority class samples. The training set will be
more evenly distributed because of this method, which will also improve the classification
accuracy of minority class samples. The disadvantage is that a sizable portion of the
majority class sample characteristics could be lost, and the model might not fully acquire
the majority class sample properties. As a result, it is crucial to make sure that the learning
process is set up so that the bulk of the information covered in class is retained.

3. Materials and Methods

This research work is aimed at predicting the decay information of forest trees. Healthy
trees absorb the harmful carbon dioxide and emit oxygen. Trees are the carbon sink of our
planet. At the same time, decayed and fallen trees emit carbon dioxide. So, the identification
of the decay level of a tree is essential to preserve the ecological condition of our planet.
In this research work, details about trees in a forest are examined. Several attributes are
associated with forest trees. The age of a tree is usually determined by its wood density.
During the initial years, the wood density is increasing, and after attaining normal growth,
the wood density starts decreasing. Based on the wood density, the trees are classified into
five different decay classes ranging from “freshly killed” to “extremely decayed”. The dead
trees fall, may cause forest fires, and it may take several years to decompose. Here, the
dataset is preprocessed first to compute wood density and identification of decay class
(either Not yet decayed or Decayed) using the wrapper method. Due to the imbalance in
the dataset after decay class identification, stratified sampling is used to overcome this issue
without losing any inputs [25]. The stratified sampled input is fed to the DNN network for
drawing predictions about the decay class of a tree.

This section contains a description of the proposed methodology, a description of the
forest tree dataset, and the preparation process. The architecture of the proposed stratified
sampling-based deep neural networks approach for increasing the prediction accuracy of
the unbalanced dataset is shown in Figure 1.

The proposed methodology can be categorized into three phases.

• Data preprocessing phase;
• Training phase;
• Test phase.

The neural network is chosen for classification in this research work over the SVM,
Random Forest, and Naïve Bayes because of its ability to handle imbalanced data, feature
learning capabilities, model nonlinear relationships, and the ability to fine-tune hyperpa-
rameters for optimal performance.

3.1. Description of the Dataset

The dataset was obtained from the USDA repository [26]. Data collection began in
1985 and is expected to last until 2050. The Douglas fir, red cedar, Pacific silver fir, and
Western hemlock tree are the four species used for investigation. The data gathered for this
study compare the breakdown of tiny logs (20–30 cm in diameter and 2 m in length) in
a stream channel at the H.J. Andrews Experimental Forest to that of logs on an adjacent
upland site. Above the intersection of Mack Creek and Lookout Creek, the stream is of
the third order. A portion of the logs are periodically resampled to assess changes in
volume, bark cover, density, and nutrient reserves. Dry mass and volume, as determined
by dimensional measures, are used to calculate wood density. Table 2 shows the attributes
in the dataset.

For training and testing, different proportions of the dataset were employed. The
decay class and wood density of the relevant species are in the training dataset. Also, the
wood density threshold value is present in the training dataset. The test data includes
information on four species, including circumference, tree’s age, volume, dry weight, and
moisture. A total of 54,000 instances with 21 attributes are available in the test dataset.
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Figure 1. Stratified sampling-based deep neural network (SSDNN) approach for predicting decay
class of forest trees.

3.2. Preprocessing the Dataset

The dataset is preprocessed before the technique is applied. In this forest dataset, the
data distribution is uneven among the live and decayed trees. A tree may belong to a
not-yet-rotted or a decayed tree group. Out of the 11,387 trees in the dataset,
9132 belong to the not-yet-rotted group, whereas only 2255 trees belong to the decayed trees
group. The data can be either overfit or underfit. This kind of uneven data distribution will
have a critical impact on the problem of prediction and categorization, so the data need to
be preprocessed.

The preprocessing stage consists of feature selection and checking the skewness of the
data. This process will help to reduce the time consumption in handling the unbalanced
forest dataset.

3.2.1. Feature Selection Method

The dataset is preprocessed with the feature selection approach back elimination for
identifying the optimal subset attributes for forecasting the tree’s wood density
(Kusy and Zajdel, 2021). Six of the twenty-one features that are essential for prediction
were chosen via the wrapper method–back elimination.
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Table 2. Dataset specifications.

Attributes Description

Log num Log number

Species Four categories of trees in this region

Time The tree’s age in years

Year Year of the tree

Subtype Hard, soft, and other tree types

Rad pos The location of the measurement

D1 Tree circumference

D2 Tree’s circumference in various positions

D3 Tree’s circumference in various positions

D4 Tree’s circumference in various positions

VOL1 Tree’s volume

VOL2 Tree’s volume

Wet Wt Weight of the water content in the tree

DRYWT The dried weight of the tree

MOIST Wood’s moisture content

Decay The tree’s level of decay

WDENSITY The tree’s wood density with respect to vol1

Den2 The tree’s wood density with respect to Vol2

Knot Vol The wood’s volume at a knot

Sample Date Sample collected date

Comments Other features of the tree

The model is iteratively trained on several subsets of features using the wrapping
technique, and the best subset of features is chosen. The choice of the feature subset
selection is based on the inferences from the model. A feature selection strategy called
backward elimination starts with a model that incorporates all the available features and
gradually eliminates the least significant ones until a stopping requirement is met. This
strategy, also known as a wrapper, is typically combined with statistical models to choose a
subset of important features. By repeatedly removing elements that are the least significant
based on the selected significance level, backward elimination assists in identifying the
most pertinent characteristics. Table 3 shows the extracted features using feature selection
methods for further processing. Before assessing the feature subsets, these strategies train
and test the model using a variety of feature combinations. The strategy reduces overfitting
and eliminates pointless or unnecessary features to enhance the model’s performance
and interpretability.

Table 3. Reduced attributes after preprocessing the dataset.

Attributes Description

Species Four categories of trees in this region

Year Tree’s age

D1 Tree’s circumference

VOL1 Tree’s volume

DRYWT The dried weight of the tree

WDENSITY Tree’s wood density based on vol1
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In the experimental dataset, the explanatory variables Species, Diameter, Volume, Wet
Weight, Dry Weight, and Decay are considered for multiple linear regression, and the target
variable is Wood density Wi of the tree.

The prediction equation is given below.

Wi = β0 + β1Species + β2Diameter + β3Volume + β4Wetwt + β5Drywt + β6Decay + ∈

where, for n observations
Wi is the dependent variable, and Species, Diameter, Volume, Wetwt, DryWt, and

Decay are the explanatory variables,
β0 is the y-intercept (constant term)
β j are the slope coefficients for each explanatory variable (j indicates attribute index)
∈ is the model’s error term (also known as the residuals)

3.2.2. Checking the Skewness of the Data

Classifiers are built up in machine learning to eliminate misclassification errors and,
as a result, optimize predictive accuracy. The class imbalance problem, which refers to an
uneven distribution of response variable values, is one of the most prevalent issues that
influence raw data.

An unbalanced dataset is one in which the number of samples in different classes is
highly uneven, making classification difficult. With uneven data, modern machine learning
techniques struggle because they focus on reducing error rates serving the dominant class
while disregarding the underrepresented group. Classification becomes extremely difficult
because the results may be skewed by dominant class values.

As per the experimental dataset, a tree may belong to any one of the five different
decay levels ranging from 1 to 5. If a tree belongs to class 1, it means it is not yet decayed;
otherwise, it has a decaying component. Since our aim is to classify trees, we considered
only two classes, namely “Not yet Decayed” trees and “Decayed” trees. The dataset is
considered for the experimental study of the class imbalance problem. As mentioned earlier,
there are possibilities of overfit or underfit.

The class details are given below.
Class 0: 9132 (Not yet Decayed)
Class 1: 2255 (Decayed Trees)
The class imbalance problem in the experimental dataset is depicted in Figure 2.

Figure 2. Depiction of class imbalance problem in the experimental dataset.
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3.3. Stratified Sampling-Based Deep Neural Network (SSDNN) Approach

The process of classifying unbalanced datasets involves three main steps: feature
selection, fitting the data distribution, and model training. Feature selection helps to identify
the most suitable subsets of features for classifying unbalanced data while considering the
class imbalance among the features. Various resampling approaches that minimize the
impact of class inequality on the classifier can be used to fit the data distribution.

The most common resampling strategies are oversampling and undersampling. These
strategies aim to balance the datasets by increasing or decreasing the sample points in
the minority and majority classes, respectively. However, oversampling algorithms may
generate duplicate information and increase the training time of the classifier, while under-
sampling may result in the loss of the majority of class information.

Both random oversampling (ROS) and random undersampling (RUS) violate the law
governing data distribution. The generated samples might not be helpful in illustrating
the distribution. SMOTE has drawbacks like supersampling the noisy samples and unin-
formative data. It is highly challenging to determine the closest neighbors of anonymous
synthesized samples. Also, the SMOTE samples are always contained within the samples,
and pruning them will lead to an increase in misclassification rate.

We proposed stratified random sampling method to resolve said issue, which will
perform the task of test input selection for DNNs. According to the sampling theory,
stratified random sampling involves dividing a population into smaller groups without
any duplication and avoiding records. The proposed method increases the computation
efficiency in the reliability evaluation of the model.

The stratified sampling approach divides the data into blocks based on specified
values to extract the structural facts of the data and then draws samples at random from
these distinct data blocks. Stratification makes it simple to find representative samples. In
the case of forest datasets, stratified sampling can be applied to guarantee that the number
of samples for each class is balanced and that the variance of the data within each class is
considered when choosing the optimum number of samples. This helps to preserve the
original data structure feature information while also ensuring a balance in the number of
samples for the majority and minority classes. The specific procedure is to randomly select
some examples from both positive and negative occurrences and then combine the training
samples for classification. Stratified sampling is best suited for the uneven distribution of
data, and it is applied to different domains [25,27–29].

The diversified dataset N is split into similar groups, S0, S1, and so forth. For data
selection, Sn, also known as strata, utilizes uniform random or systematic sampling in each
stratum. The reduction in estimation error is the primary advantage of stratified sampling
over other sampling techniques. Within strata, a sample for data analysis is taken via
random sampling after relative homogenous data objects are grouped together based on
the necessary parameters.

The Stratified sampling-based deep neural networks approach is shown below in
Figure 3.

Deep learning is a feed-forward neural network with one or more hidden layers. Deep
learning is a subfield of machine learning that emphasizes the use of numerous linked
layers to transform input into features and predict associated outputs. Artificial neural
networks are the core of it. Input, output, and numerous hidden layers are all present in
deep neural networks (DNNs). The hidden layer is in the middle, after the input layer and
preceding the output layer. In the training of a deep neural network, the following steps
are taken: first, initialization is performed according to requirements, and the structure
of the DNN is set; second, the layer is then communicated between layers to obtain an
error using forward; and finally, the layer is transferred between layers to obtain an error
using forward.
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Figure 3. SSDNN model.

DNNs can handle both linear and nonlinear issues by monitoring the probability of
each output layer by layer with an appropriate activation function. In essence, DNNs are
fully linked neural networks. A deep neural network is sometimes known as a multi-layer
perceptron (MLP). The hidden layer alters the input feature vectors, which eventually
arrive at the output layer, where the binary classification result is obtained.

Environments have been interested in determining functional links between carbon
storage and plant uncertainty of wood density; an appropriate technique is required.
Developing empirical models to forecast the DECAY CLASS of the tree is the focus of
this research. A deep neural network, a subset of expert systems, predicts the DECAY
CLASS of the tree more accurately than standard models. Because there was no constraint
for constructing models in DNN, the outcomes are more accurate predictions than the
ensemble model. The data loss was achieved using the training data, as shown in the
topology of the model, implying that there was no overfitting.

The suggested work’s learning model has four layers: one input layer, two hidden
layers, and one output layer is shown in Figure 4. At the last three layers, the ReLu
activation function was utilized, and the sigmoid function was used at the output layer. The
binary cross-entropy loss between the input was used to establish the objective function,
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which should be minimized in the NN. Adam’s optimization was chosen above other
existing optimization techniques because it was more efficient. To create a model, each
dataset was first randomly divided into two parts: a 75% training set and a 25% test set.

Figure 4. Prediction of tree decay class using DNN model.

The training set is examined for skewness and, if necessary, balanced using a stratified
sampling procedure. The balanced training set is then used to develop DNN models and
train them, while the test sets are utilized to evaluate the performance of the predictive
models. We used the following easy method to choose the best threshold. The curve of
balanced accuracy as a function of prediction is first plotted. The best threshold was finally
determined to be where the DNN achieved the most balanced accuracy. The unbalanced
learn library from Python was then used to apply each data-balancing technique to each
training batch. The model has been tried with different numbers of mini-batches as 10, 50,
25, and 100 and determined 100 as the best choice with epoch sizes as 10, 25, and 50.

3.3.1. Algorithm for SSDNN Model

The algorithm for the proposed SSDNN model is given in Algorithm 1. This proposed
SSDNN model will first extract the features required for the job and verify whether the ratio
of the dataset is unbalanced or not. Next, it will choose the right samples for prediction.
Below is a representation of the suggested model algorithm.

Algorithm 1. Proposed Algorithm for SSDNN Model

1. Import the dataset
2. Perform the Wrapper method (Back Elimination Method)
3. Check the Skewness of the dataset
4. Apply Stratified
5. Update the imbalanced dataset
6. Load the training dataset
7. Train the DNN
8. Shuffle and Split as 75% and 25%
9. Use SVM-Kernel for classification
10. Tune the Parameters
11. Apply to the test dataset
12. End
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3.3.2. DNN with Hyperparameter Tuning

Deep neural network hyperparameter tuning employs a random search to identify
the ideal hyperparameter combination from a set of hyper parameter values. Random
search resulted in a set of 20 hyperparameter combinations. The following are the best
hyperparameters found via random search.

Finally, the model is hyper-tuned using a random search approach, where the optimum
parameters are 2 hidden layers, 400 neurons, ReLu, 50 epochs, and a batch size of 100 as
listed in Table 4.

Table 4. DNN hyperparameters.

Hyperparameter Value/Type

Hidden Layers 2

Neurons 400

Optimizer Adam

Hidden Layer ReLu

Output Layer Softmax

Epochs 10, 25, 50

Batch size 100

When the number of epochs increases, the accuracy of the proposed method also
increases, and we obtain maximum accuracy when the epoch is closer to 100. The built
model is compared with the existing models, and the performance is analyzed in the results
and discussion section.

4. Experiment Results and Discussion

To recognize dead and live trees, we used the forest tree dataset to perform our
classification. The dataset was preprocessed to determine the relevance of the variables
for categorization. The dataset was split into two parts: training and testing. We used
a training dataset to train the DNN and a test set to evaluate classifier performance. We
conducted a huge number of trials to discover the ideal DNN design and parameters, using
various combinations of batch sizes, number of hidden units, and learning rate.

Because of the imbalanced dataset, DNN accuracy is good, but other performance
metrics like F1Score, Precision, and Recall value are low. As a result, the dataset is balanced
via stratified sampling, and the resulting strata are supplied to DNN as a training set. The
result of the proposed model is compared with the previous model SVM, Naïve Bayes, and
Random Forest. Earlier, we tried to perform the classification using these three models
with different datasets. Each model has its own credits and pitfalls. For the smaller
datasets, SVM produces better results but is not promising for larger ones. At the same
time, Random Forest is one of the best choices for larger datasets but is time consuming.
Naïve Bayes is simple, and it is not preferred for large datasets. It assumes that the variables
are independent.

It is evident from the results that the proposed model gives high accuracy in addition
to performing well in the case of large datasets. The proposed approach is written in Python
using Jupyter Notebook and uses the Keras package on a 64-bit OS with an X64 CPU, and
the model worked well on the Google Lab platform. Thus, by combining DNN with a
stratified sampling-based deep learning model, the prediction and classification of dead
trees in the forest are successfully completed. Forest managers will be able to predict the
early stages of decaying trees with this information. The proposed method can also be
applied to similar datasets belonging to different domains.
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4.1. Performance Metrics

The efficiency of the proposed method is analyzed using classification accuracy, Pre-
cision, Recall, and F1 Score. The performance of the three approaches, namely SVM,
Random Forest, and Naïve Bayes, with different sampling techniques, are depicted in the
following figure.

4.2. Results and Discussion

Table 5 shows the comparison of test accuracy among the proposed DNN models with
sampling methods. The performance in terms of accuracy of the existing and proposed
algorithms along with different sampling techniques are shown in Figure 5.

Table 5. Comparison between proposed and existing methods.

Methods Accuracy Precision Recall F1 Score

DNN 80 0.7 0.75 0.72

DNN+OVERSAMPLING 76 0.75 0.75 0.75

DNN+UNDERSAMPLING 69 0.74 0.69 0.71

DNN+SMOTE 78 0.76 0.78 0.77

DNN+STRATIFIED 91 0.88 0.87 0.87

Figure 5. Performance of the existing approaches with different sampling methods.

The performance of the proposed SSDNN method with different existing sampling
techniques is shown in Figure 6.

The DNN, DNN+ oversampling, DNN+ undersampling, DNN+ SMOTE, and
DNN+ stratified sampling yields test accuracy of 80%, 76%, 69%, 78%, and 91%, respec-
tively. First, the DNN model was created and tested on the prepared dataset, yielding low
accuracy. The DNN model was analyzed for the reason of yielding low accuracy, and it was
found that the dataset was unbalanced. The imbalanced dataset was subsequently handled
using a stratified sampling technique, which divided the training dataset into groups of
distinct strata for each class. The data from each stratum was distributed uniformly to the
deep neural network, resulting in good accuracy, precision, recall, and F1 score. Several
tests using the tree dataset were carried out to determine the optimal deep neural network.
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Figure 6. Comparison between existing methods with proposed SSDNN.

The training, as well as testing accuracy and loss of the proposed SSDNN, is visualized
in Figure 6. From the figure, during the initial epochs, accuracy is not appreciable, and at
the same time, the loss is highly noticeable. But in the subsequent epochs, the results are
more promising. Similarly, the same parameters are analyzed for the testing phase. The
testing phase also has the same impact on model accuracy and model loss. To observe the
variations more clearly, the chart is prepared up to 25 epochs.

Also, the training/testing accuracy and loss of the proposed method is shown in
Figure 7. The proposed DNN + stratified sampling results in an accuracy of 91% with higher
efficiency. The proposed model was compared to the ensemble SVM kernel algorithm
used in prior work, and the results show that the proposed DNN + stratified model is
more efficient. The proposed method is robust compared to the traditional methods due to
hyper-tuning, low false positive, and high recall.
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Figure 7. Performance in terms of training/testing accuracy, as well as loss of the proposed SSDNN.
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5. Conclusions

In this research, we experimented to find the best model to classify the forest tree
as a dead or live tree. For predicting the decay class of a tree, the classification models
DNN, DNN+ oversampling, DNN+ undersampling, DNN+ SMOTE, and DNN+ stratified
sampling were applied to the dataset. The results show that DNN+ stratified sampling
offers better performance with high accuracy.

The proposed method correctly classifies a tree as either dead or alive compared to
other models. The proposed model will be suitable to handle any imbalanced dataset for
classification. In deep learning, classification accuracy often increases when the amount
of data used for training increases; thus, using a larger dataset for training can be a
good research direction to continue improving our classification accuracy of forest tree
classification. This paper suggests that identifying decaying trees earlier will help forest
managers in removing them before they begin to emit carbon back into the atmosphere.

This research promotes reforestation by planting a new tree after removing a dead
tree to reduce pollution and forest fires. In the case of stratified sampling, the research gap
discovered is that the number of records in both classes is not equal; hence, deficit records
occur when training the model. To address this issue, the deficit class is oversampled,
strata are shuffled, and the model is trained to increase model efficiency. In future work,
the proposed method can be applied to smart forest management. Since there may be
uneven data or irrelevant data during data collection, we can use IOT-based RFID for
each tree to automate data collection for the tree and also to indicate its level of decay and
carbon absorption.
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Abstract: Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy
and care. Aim: the main aim of the study was to investigate how the selected machine learning
algorithms deal with the problem of determining a virtual mental health index. Material and Methods:
a number of machine learning models based on Stochastic Dual Coordinate Ascent, limited-memory
Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built based on a clinical
dataset and compared based on criteria in the form of learning time, running time during use and
regression accuracy. Results: the algorithm with the highest accuracy was Stochastic Dual Coordinate
Ascent, but although its performance was high, it had significantly longer training and prediction
times. The fastest algorithm looking at learning and prediction time, but slightly less accurate, was
the limited-memory Broyden–Fletcher–Goldfarb–Shanno. The same data set was also analyzed
automatically using ML.NET. Findings from the study can be used to build larger systems that
automate early mental health diagnosis and help differentiate the use of individual algorithms
depending on the purpose of the system.

Keywords: computer science; artificial intelligence; machine learning; burnout; clinical reasoning

1. Introduction

The development of machine learning (ML) is driven by the vast amount of data
available (so-called big data), which are used to train algorithms to adapt them to solve
scientific, clinical and industrial problems quickly and efficiently [1,2]. ML is a data-driven
approach in which rules are extracted automatically based on associations between input
and output data sets, and their relevance is tested against validation data. Models learned
in this way (mainly traditional and deep artificial neural networks) can then be trained to
better fit new data. Machine learning is increasingly being used to solve clinical problems
in diagnosis, therapy and care [3–5]. The number of publications on clinical applications
of machine learning increased rapidly after 2010, with the main areas of research being in
diagnostics and prediction, and less often in classical clinical problem solving (Figure 1a–d).

In recent years, there has been a growing interest in the application of ML in the
diagnosis (less frequently: therapy) of mental health (Figure 1e) [6,7]. This is due to a
number of factors, but above all to the fact that this group of conditions is becoming
common as a new group of diseases of civilization in adults, children and adolescents,
while at the same time representing very complex and stigmatizing disease entities that
are difficult to combat with limited resources and numbers of specialists. Automation of
certain procedures is therefore possible and desirable for both patients and medical staff.

The main aim of the study was to see how the selected ML algorithms deal with the
problem of determining a virtual mental health index.
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Figure 1. Number of scientific publications: (a) concerning clinical applications of machine learning
(total number of publications: 103,017), (b)with keywords “machine learning” and “clinical problem
solving” (total number of publications: 113), (c) with keywords “machine learning” and “diagnosis”
(total number of publications: 37,242), (d) with keywords “machine learning” and “prediction”
(total number of publications: 50,619), and (e) with keywords “machine learning” and “mental
health” (2332).
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Related Publications

There are many articles in the literature on the virtual mental health index. Each of
them stands out from the others, approaching the topic from a different point of view.
One article addresses the topic of e-health and modern technologies used in mental health
care [8,9]. It is indicated that the aim of the article is to present issues related to e-health,
and its elements used in the diagnosis and treatment of patients with mental disorders.
The article points out that there is a lot of enthusiasm for e-health issues around the world,
which may be related to the transformation potential of the healthcare system [8,9]. The
article points out that e-health solutions have been shown to be effective in preventing,
diagnosing and treating patients with a variety of illnesses, both physical and mental [9],
including substance abuse, depression, bipolar disorder, anxiety, stress and/or suicidal
thoughts. This article adopts the World Health Organisation’s (WHO) definition of e-health.
In addition, differences between the original and the newer definition are pointed out, as
the newer definition describes it as the use of electronic means of communicating health-
related information, resources and services, whereas the original definition presented the
concept as the use of information technology, locally and remotely, in support of health and
related fields. The newer definition according to the WHO also includes electronic health
records, mobile health and health analytics. An important change was also indicated in the
context of the patient–professional relationship, i.e., the patient participates as a partner
in the diagnosis and treatment process, rather than being merely a passive figure. An
increase in patients’ responsibility for their own treatment, an increase in their involvement
in treatment decisions or a tendency to use strengthening and improvement exercises
were also noted. It was also mentioned that inviting the patient into the e-health system
does not imply patient involvement. The studies mentioned in this article identified three
different types of involvement: active, partner and submissive [8,9]. Mobile apps used
in practice were also identified, including for practicing stress management skills, in the
diagnosis and treatment of depression, and as an aid to screening. The cited authors
indicated that apps could be used to monitor mental status and mood, as well as bipolar
affective disorder [8,9]. This article presents modern technology as an opportunity for the
development of medicine, including in the context of mental health. The article draws
on a number of sources, indicating that these are not isolated, exceptional situations. It
is noteworthy that it was written before the onset of the problems associated with the
COVID-19 pandemic. This article provides an interesting insight into the applications of
technology not only in treatment but also in prevention. In contrast, another article [10]
deals with the use of ML techniques to predict stress in active workers. As an introduction,
the prevalence of mental disorders among the working class was highlighted, with a clear
upward trend when looking at the percentage of employees who experience depressive and
anxious states. It was concluded that the greatest emphasis must be placed on maintaining a
stress-free atmosphere in order to achieve better productivity and well-being of employees.
The authors [10] used the results of a survey of technology employees in 2017, with which
they trained various models for their analyses. The original data consisted of 750 responses
from people from different technical departments in the form of 68 attributes related to
private life and work. A data cleaning exercise was carried out, which left 14 parameters, in
addition to which a one-hot encoding (1 of n) was used to represent some fields as numeric.
In addition, the text responses ‘Yes’ were given a value of 1, ‘No’ a value of 0, and ‘Maybe’ a
value of 0.5. NaN values were replaced by 0, and nominal data were converted to numeric
using a label encoder. The authors chose models for training that had already been tested
in classification problems, implementing them in Python using the Scikit-learn library:

• Logistic regression;
• K-nearest-neighbormethod;
• Decision trees;
• Random forest;
• Boosting (increasing the effectiveness of existing models);
• Bagging.
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The following were used as metrics of model performance:

• Classification accuracy;
• False Positive Rate, which indicates how many negative cases were classified as positive;
• Precision, i.e., the fraction of cases predicted to be positive that were actually positive;
• Area Under the Curve (AUC) score;
• Cross-validation AUC score [10].

Each model assessed whether a person required treatment. These tests resulted in
model accuracies ranging from 69.43% to 75.13%, with the bagging algorithm achieving
the lowest level and the boosting algorithm the highest. The greatest influence on stress
and mental health was the gender of the individual, as well as family history and the
services provided by the employing entity for mental health care. As further research
opportunities, the authors [10] suggested using deep learning (DL) techniques, seeking
a broader and more detailed dataset. They also consider the possibility of modifying
the questionnaire to make the responses in a suitable format, to increase the number of
attributes used, and they suggest the inclusion of questionnaires from organizations such
as the WHO (World Health Organization) related to stress and mental health. They also
suggest formulating a homogeneous scale to assess stress levels. The article [11] mentions
that people with common mental illnesses usually do not seek medical help, which makes
attempts to monitor them to create opportunities for early intervention extremely difficult.
The documented use of continuous digital monitoring to reach people with common mental
illnesses among communities was noted as a strategy with some potential. At the same
time, the limitations of monitoring systems based on assessments of mental health at
specific points in time, on the basis of self-assessment and control by an expert, have been
highlighted. These concern [11]:

• Impact of memory problems;
• Possibility to perform only in limited time windows;
• Possibility to perform only under controlled conditions;
• Frequent requirement for the patient to move to a medical setting in order to receive

a diagnosis.

This raises further issues:

• Inability to assess the impact of interaction with the environment in the context of the
mental state in real time;

• This undermines progress towards understanding and classifying mental illness and
its treatment.

The authors also compare the use of mobile phones, in the context of dedicated
solutions and solutions based on already available applications and devices. They point
out that the second method has greater potential, as it significantly reduces costs and the
risk of behavioral deformities associated with traditional forms of behavioral research [11].
In particular, they highlighted activity-tracking apps and wearable devices, which have
received little attention in the context of research [11]. The study involved 53 of 120
recruited Australian volunteers aged between 18 and 25 years. They provided data in the
form of a detailed health and lifestyle questionnaire and access to recorded information on
activity-tracking apps. The Depression and Anxiety Scale-21 (DASS-21), which examines
depression, anxiety and stress, was used to assess mental health. In addition, data on the
duration of daily activities were included as a key point of interest. These were determined
using data from miniature motion sensors, including location-based accelerometers, which
were collected by various connected applications and fed into a cloud-based API, from
where they were then stored in a database [11]. Based on the DASS-21, it was found that
those monitored had symptoms of depression, anxiety and stress at intermediate levels. In
contrast, the apps or devices that were linked to the API for the study were several:

• Fitbit;
• Garmin;
• Healthkit;
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• Misfit;
• Moves;
• Myfitnesspal;
• Strava [11].

Based on the data collected, it was discovered that:

• Examined daily activity time received from wearable devices was greater than that
derived from the mobile phone app;

• Of the 43 participants from whom at least three daily activity observations were ob-
tained, 11 of them had at least 20% missing data between the first and last observation,
but this did not show a relationship with DASS-21 scores;

• For the remaining 32 participants, entropy techniques were used, which initially
showed no significant relationship between data and DASS-21 scale scores. It was not
until splitting into two equal groups in relation to the amount of data that a significant,
positive correlation was detected between the DASS-21 anxiety subscale and entropy
in those with more data [11].

The authors [11] point to the lack of standardized systems for continuous mental
health monitoring, which, together with continued monitoring in specific time windows,
has contributed to the escalation of the problem. They note that people with mental health
conditions are generally willing to share information from their mobile phones to help
with research into these conditions, including serious illnesses. The authors present their
work as a proof of concept for continuous mental health monitoring of mental health,
but note the challenges of privacy, assessment and clinical integration and inclusion that
would need to be addressed before it is more widely accepted. Another article [12], which
deals with the determination of a voice-based mental health indicator using a mind-state
observation system, explores the validity of such an approach. It draws attention to the huge
cost of mental illness in developed countries and the need for early detection technology
for depression and stress. Light is also shed on the current state of screening methods
in the context of mental illness, including general health questionnaires (questionnaires
including the General Health Questionnaire (GHQ) or the Beck Depression Index (BDI)).
The effectiveness of such approaches in assessing disease conditions in the early stages
was highlighted, and the problems of reporting bias, i.e., the effect of consciously or
unconsciously under- or overestimating a patient’s self-report, as well as the problem of
reduced detection rates of mental illness in organizations with established hierarchies, were
also noted. The authors of [12] report on their active research and work on voice-based
mental health estimation. They list additional advantages of this approach:

• Ease of application;
• Possibility to monitor day by day, which conventional methods do not allow.

They have developed a software development toolkit (SDK) called MIMOSYS (https:
//medical-pst.com/en/products/mimosys/ accessed on 11 September 2023), whose
features include:

• Recording a voice from a microphone;
• Analyzing this voice;
• Determining a health indicator based on this.

To enable daily monitoring, the authors developed a mobile app using MI-MOSYS.
The aim of the study was to compare the indicator defined in the app with the BDI indicator.
The study was carried out with the support of the local authority, which provided mobile
phones with the mobile app installed for 50 company employees. The test participants had
to record their voices by reading out ready-made phrases and talking using the device they
were given. In addition, a BDI test was conducted at the beginning of the experiment. The
voice analysis was based on the fact that people with mental illness show changes in the
expression of emotions and changes in the proportions of the components of the voice. The
four components hidden in the voice—anger, sadness, joy and calmness—were calculated
from the characteristics of the recorded voice. In addition, the degree of excitement of the

91



Electronics 2023, 12, 4407

respondent was determined. Taking these values into account, a short-term and a medium-
term index of psychological well-being was determined, the latter based on short-term
indices collected over a two-week period. As a result of the experiment, the correlation
value was determined to be negative, with a value of 0.208 for the short-term value and
0.285 for the medium-term value. A lower correlation coefficient value was obtained for
telephone calls, below 0.2 [12]. For the optimal cut-off, the following values of sensitivity,
specificity and accuracy were obtained when analyzing the ROC curve:

• 0.795; 0.643; 0.660 for the short-term indicator;
• 1.000; 0.605; 0.646 for the medium-term indicator [12].

In the context of this research, the weak negative correlation between the indices from
the app and the BDI was understandable, as a lower mental health index was associated
with a higher rate of depression. Finally, the performance of the method in distinguishing
between individuals with a high BDI was shown to confirm the appropriateness of the
method. The efficiency of data accumulation was also noted, and furthermore, the results
indicated that such a system could complement routine screening. However, the authors
have set their sights on the commercialization of the product, as they do not disclose details
in the form of the algorithms used or the scheme of operation of the system. Furthermore,
it is not possible to download this toolkit without first contacting them via a form, which
presumably means that it is made available for a fee. In addition, the library (Sensibility
Technology) underpinning this software is also unavailable.

In [13], mental health before and during the COVID-19 pandemic was compared using
a large probability sample from the UK population. The coronavirus and the methods
used to slow its spread had a serious impact on people’s livelihoods, incomes and debts,
and was associated with serious concerns about an uncertain future. The authors of
this publication [13] drew attention to the limited research on mental health during the
pandemic, due to problems such as:

• Use of incomplete samples;
• Use of unverified or modified assessment tools;
• Lack of comparable pre-pandemic data to measure change.

Their study [13] was based on a large-scale survey conducted since 2009, including
people aged 16 years and older. In addition, invitations to participate in the COVID-19
online survey were sent to participants in the last two series of surveys via emails, text
messages and even letters. The pre-pandemic health assessment was based on data collected
since 2014, and the data included results from the GHQ-12 questionnaire (a valid tool for
assessing general mental health problems in the past two weeks, particularly effective in
large-scale surveys). This scale was scored in two ways, the first based on a mean value
and the second based on a binary threshold above which individuals were judged to have
a significant level of mental health problems. The rating scale of this questionnaire for each
question ranged from 0 to 3 (from no deviation to significant deviation). The authors [13]
also carried out analyses by gender, age ranges, geographical location, or looking at the
data from an ethnic perspective. Estimates of total annual income, employment status,
living with a partner, age of the youngest child in the family were also analyzed, and a
group of people at risk and those involved in COVID-19 was identified. Years with a small
number of observations were excluded from the study, which may have led to less accurate
estimates. Changes in mental health were also assessed using regression [13]. These models
only included people for whom data from both the COVID-19 survey and at least one
pre-pandemic data set were available, therefore 16- and 17-year-olds were excluded from
this section. The value of the GHQ-12 index was constructed during the pandemic and
placed in a time-variable model where average scores were used as the baseline, instead
of using a binary index, as this would affect the statistical power of the results and their
generalization. The final model included the following factors:

• Age;
• Sex;
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• Family income;
• Employment status;
• Living with a partner;
• Presence of risk factors [13].

Various patterns related to variables have been detected, including [13]:

• Higher GHQ-12 scores in women;
• Higher scores in younger age groups;
• Slight differences in ethnicity (apart from the difference between Asians and white

British—Asians scored higher);
• Slightly lower results were recorded outside cities;
• Higher scores in low-income families;
• Unemployed and professionally inactive people scored higher than employed and

retired people;
• People without a partner and with young children had higher scores, as did the

risk groups;
• Significant increase in average scores was noticed comparing the state before and

during the pandemic [13].

The authors present their publication as one of the first in their country to measure
the impact of the pandemic on the mental health of the population. The increase in mental
health problems was not even among the designated groups. However, towards the end,
they conclude that the increase was not significant, but point out the need for further
studies spread over time, even postponed by half a year. They note that although GHQ-12
is a screening tool, it is not a clinical diagnosis. In the publication [14], it was mentioned that
in the coming years, a radical change will be needed, consisting of attaching the patient’s
mental health profile to provide him with better treatment and help him recover faster.
It was also noted that there has already been discussion about how medical predictive
analytics could revolutionize healthcare globally. Factors affecting mental health include:

• Globalization;
• Pressures in the workplace;
• Competition [14].

The authors of [14] claim that the K-nearest neighbor’s method, the naive Bayes
classifier, or regression can be used to build the model. In their approach to identifying
mental health, they used classification and clustering algorithms. They note the need for
early diagnosis of deviations in mental health. The WHO report urged the nations of the
world to harness the power of knowledge and technology to tackle mental health. They list
some of the mental health assessment tools:

• Questionnaires;
• Sensors of wearable devices;
• Biological signals [14].

They also mention work on statistical relationships between mental health and other
parameters, including:

• Educational achievements;
• Socioeconomic achievements;
• Satisfaction with life;
• Quality of interpersonal relations;

They also list various assessment methods [14] appearing in other works:

• Regression analysis;
• K-nearest neighbors method;
• Decision trees;
• Support vector method;
• Fuzzy logic;
• K-means method [14].
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In their work [14], they started the analysis with clustering in order to better under-
stand the data—obtaining certain groups, however, without any interpretation. They list
and describe commonly used clustering methods:

• K-means;
• Hierarchical;
• Based on density;
• And their variants [14].

In addition, they presented frequently used indicators for validating clustering and
applied the concept of the Mean Opinion Score (MOS) scale, used for subjective quality
assessment. Their questionnaire consisted of 20 questions, posed to two populations: the
first included 300 people aged 18 to 21, and the second 356 people aged 22 to 26. The rating
scale for each question was five-point, from 1 (almost never) to 5 (almost always). The
division into a set of training and test data was in the ratio of 80:20. In terms of validity, the
best of all models were: bagging and random forest (0.90), slightly worse support vectors
and K-nearest neighbors (0.89), and even worse logistic regression (0.84) and decision tree
(0.81). The worst result was achieved by the naive Bayes classifier (0.73). It should be noted
that the bagging algorithm uses multiple decision trees, trained on the basis of subsets of
data selected by sampling with return. The remaining, undrawn data becomes the testing
set. For already-built tree models, voting is used to get the final answer. The authors [14]
pointed out that the quality of the features affects the reliability of the produced models,
and they also propose the use of a feature subset selection strategy to shorten the learning
time, or fuzzy logic when the number of classes is increased. In addition, they propose
recursive neural networks as a possible option for larger data sets, also ensuring high
accuracy. The authors of the publication [15], on the other hand, note the lack of a global
definition for positive mental health, presenting various approaches to this issue. They
mention the observation that definitions of good mental health are, and should be, to
some extent context-dependent. The Public Health Agency of Canada, mentioned by the
authors of [15], refers to positive mental health as the ability to feel, think and act in a way
that strengthens the ability to enjoy life and cope with the problems encountered. Keyes
describes it in a slightly different way, suggesting a definition of the syndrome of signs of
positive feelings and positive functioning in life. The authors [15] note that a positive state
of mental health is not synonymous with the absence of mental illness. This is the short
version of the Mental Health Continuum (MHC), based on the concept of two related but
distinguishable dimensions. The authors cite successful tests of this scale in countries such
as Poland, Italy, Brazil and the United States. Many indicators of positive mental health
have been identified in populations, including aspects such as general health, physical
activity, sleep, substance use, violence or discrimination. For young people, factors such
as relationships with peers or support from teachers are particularly important. Similarly,
income, employment and place of residence were positively associated with good mental
health. In their study, the authors [15] examined 5399 students from grades 8 and 10.
All of them were willing to answer questions, and 92% of students answered all of them.
The questionnaire used in the study was based on the Swedish version of the Survey of
Adolescent Life in Vestmanland, which also included a short version of the MHC and
other questions related to general health, substance abuse, exposure to technology, school
life and socioeconomic background. Changed the wording of several questions to better
fit the Chinese context. The data obtained were analyzed using SPSS 22 software, using
multivariate logistic regression, likelihood ratios and 95% confidence intervals for the
analysis of variables related to positive mental health as a dependent variable. In the
beginning, the collinearity of the variables was checked by Spearman’s correlation analysis.
Further, insignificant indicators were dropped until the model was statistically significant.
Nagelkerke’s Pseudo-R2 statistic and model fit were also calculated. Their research [15]
extends knowledge about the prevalence of positive mental health among Chinese minors,
as well as about the indicators of positive mental health. As a result, information was
obtained that the surveyed group of Chinese people was significantly healthier in terms
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of mental health than in similar studies in other countries. The authors acknowledge that
their study covered only one city in China, so further research in different regions will be
needed. On the other hand, the authors of the publication [16] on economic difficulties
and reported mental health problems during the COVID-19 epidemic point to the problem
of isolation increasing the risk of loneliness, or the need to assess the links between the
labor market and mental health, also in order to understand the impact of the pandemic on
existing the socioeconomic inequalities. Their considerations [16] include factors related to
changes in workload, income decline and job loss, as well as three mental health issues:

• Depression;
• Loneliness;
• Fear for your health [16].

The data came from employee surveys in Italy, Spain, the Czech Republic, Slovakia,
the Netherlands and Germany from March and April 2020. The research also took into
account the International Socio-Economic Index (ISEI). It expresses the relative position of
the profession in the labor market, on a scale of 10 to 89 points. During the analyses [16], it
was noted that occupations with an ISEI index below 30 points were characterized by a
much higher risk of economic difficulties—about twice as high as medium and high-rated
occupations (ISEI up to about 80 points). In addition, freelance and self-employment
increased the likelihood of a reduction in workload by more than 32 percentage points, a
decrease in income by 42 percentage points, and a loss of a job by just under 20 percentage
points, compared to typical workers. Similarly, in the comparison between employees and
employers, reductions in workload and income were more pronounced in the first group.
In the final part of the work [16], they point out that the indicators used by them are not
clinically confirmed, which makes it impossible to compare them on an equal basis, but
they are an assessment of feelings about mental health. In addition, they consist of single
questions, which makes them a non-detailed assessment of mental health. The authors
explain that this is due to the data in the questionnaires not being designed to capture
mental health, so researchers have had to rely on crude indicators. On the other hand, in
the paper [17] attention was drawn to incomplete or partial evidence of the connection
between mental illnesses and work. Therefore, the authors assumed that the mental health
of an individual depends on characteristics such as:

• Personality;
• Sex;
• Own results at work;
• Loss of a job by a family member [17].

They developed [17] two models, one for the issue of the impact of job loss by a
partner on the spouse, and the other describing the effects of parental job loss on underage
children. They also sought to limit biasing effects in their study, based on data from around
7700 Australian households. The data consisted of responses to the Household, Income
and Labor Dynamics in Australia (HILDA) survey. In order to develop two models, two
separate data samples were created [17]—one for married couples, the other for parent–
child pairs. Part of the data included answers to the Self-Completion Questionnaire (SCQ),
which the researchers used in both the first data sample and the second. The MHI-5
(MHI—Mental Health Inventory) was used as the output variable [17], consisting of five
questions on a 6-point scale. These questions were as follows:

• Were you a nervous person?
• Have you felt so down that nothing could cheer you up?
• Did you feel calm and composed?
• Have you felt depressed?
• Were you a happy person? [17].

The scores on this scale ranged from 0 to 100, where the lower the value, the worse
the mental health. As a result of these studies [17], it turned out that the impact of losing a
wife’s job had no greater effect on husbands, while wives whose spouses lost their jobs had
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between 2 and 2.7 lower scores than women whose husbands still had jobs. However, the
authors, taking into account other factors, indicate that this is not a statistically significant
result. It was only when differentiating between groups with persistent unemployment,
financial stress and dissatisfaction with relationships that a significant effect of losing a job
by husbands was found. They found that continued unemployment caused a significant
decline in mental health between studies and that the financial stress situation did not
significantly contribute to worse mental health, while both women and men experienced
worse mental health as dissatisfaction with their partner increased compared to previous
answers. However, looking at the results [17] regarding the mental health of children after
the loss of a job by one of the parents, it did not have a significant impact on its deterioration.
A drop of 6.6 points was recorded when the mother was unemployed between examinations,
which has a much higher impact than was observed for other variables. Comparing the
mental state of boys and girls, it was shown that the deterioration of mental health was
greater in girls, especially when the mother was unemployed. However, in the work [18],
the impact of natural disasters on the mental health of minors is compared with their
peers who have not experienced such events. Their study uses data on students from two
Canadian cities located in the same province (Fort McMurray and Red Deer). In the surveys
conducted in these cities, six questionnaires common to both studies were used, including:

• Patient Health Questionnaire, Adolescent version (PHQ-A);
• Hospital Anxiety and Depression Scale (HADS);
• CRAFFT questionnaire;
• Tobacco Use Questionnaire;
• Rosenberg’s self-esteem scale;
• Kidscreen questionnaire [18].

The authors [18] performed a statistical analysis based on these questionnaires, and
also compared the percentage odds of:

• Depression;
• Thoughts of suicide;
• Medicines;
• Using alcohol/stimulants;
• Tobacco use;
• Any of the options: about depression, about fears or use of alcohol/stimulants.

An additional limitation was the use of only complete answers for each measure, i.e.,
without omitted questions. A comparison [18] of indicators between the two regions found
significant differences in 8 out of 12 measures of mental health status. The rates of possible
depression were significantly higher in the city that experienced a natural disaster, as were
those for suicidal thoughts and tobacco use. On the other hand, the self-esteem and quality
of life scales (Rosenberg and Kidscreen, respectively) were much lower, but this is related to
the nature of their questions. The conclusions [18] include the observation that this research
reinforces the need for policies and programs to care for mental health among minors,
especially after natural disasters, in order to reduce their vulnerability and build a positive
state of mental health. They also note that it would be useful to compare these studies
with data for post-traumatic stress symptoms from both cities, as the authors did not have
such data from the city of Red Deer. They also indicate that minors are very vulnerable
to the adverse impact of natural disasters. Summing up the studied literature, it can be
noted that these are extremely diverse studies, they address many aspects related to mental
health indicators, both from the side of positive and negative mental health. In addition, a
variety of approaches were used, including voice data analysis, conducting surveys using
many different questionnaires, random forests, bagging algorithm, support vector method,
K-nearest neighbor’s method, and statistical analysis. However, it should be borne in mind
the need to expand research in the search for more effective algorithms that can be used in
this area.
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The proposed solution can be used in a prototype preventive mental health medicine
system (Figure 2) for healthy people to monitor and detect the first symptoms of chronic
stress and burnout as early as possiblebased on a combination of a generic standard and a
dynamic standard generated directly from the data set. Given the second opinion offered
by the ML system, it will support the activities of primary care physicians and psychology
and psychiatry specialists in their daily efforts to provide early diagnosis and treatment of
this group of conditions and will allow the selection and application of prevention and, if
necessary, minimize the duration of potential therapy and reduce its cost [19].

Figure 2. Prototype of preventive mental health medicine system [19].

Novelty and contribution lie in the application and matching of ML methods to the
form and characteristics of test data describing chronic stress and job burnout. Pre-selection
of methods and their initial facilitated matching to presumed criteria is key, which will
support the development of preventive mental health medicine systems.

The research aims to determine a virtual indicator of mental health using selected ML
algorithms, as well as to determine their effectiveness in this task by checking the learning
time, operation and accuracy. In addition, research hypotheses will be verified, i.e.,:

• Choice of the ML method affects the regression accuracy, learning time and running time;
• Differences in accuracy are relatively small—up to about 10 percentage points differ-

ence between methods.

2. Materials and Methods

2.1. Material

The results of 99 patients (36 women and 63 men, mean age 27.93, SD = 4.64, mean
seniority 3.78, SD = 2.94) with suspected chronic stress and burnout were analyzed using
ML (Table 1).
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Table 1. Data set distribution.

Parameter Mean SD Min Q1 Median Q3 Max

PSS item 1 2.96 0.79 1 2 3 4 4
PSS item 2 3.14 0.74 2 3 3 4 4
PSS item 3 2.87 0.92 1 2 3 4 4
PSS item 4 2.66 1.05 0 2 3 3 4
PSS item 5 3.06 0.65 1 3 3 3 4
PSS item 6 2.90 0.85 1 2 3 3 4
PSS item 7 3.08 0.97 1 3 3 4 4
PSS item 8 2.67 0.90 0 2 3 3 4
PSS item 9 2.94 0.71 1 3 3 3 4

PSS item 10 2.49 0.93 1 2 2 3 4
MBI item 1 3.27 1.96 0 2 3 5 6
MBI item 2 2.73 1.73 0 2 3 4 6
MBI item 3 2.49 1.70 0 1 3 3 5
MBI item 4 2.24 2.32 0 0 1 5 6
MBI item 5 1.50 1.68 0 0 1 3 6
MBI item 6 1.53 1.48 0 0 1 3 6
MBI item 7 3.37 1.78 0 2 3 5 6
MBI item 8 1.69 1.68 0 0 1 3 6
MBI item 9 2.86 2.57 0 0 3 6 6

MBI item 10 1.56 1.35 0 1 1 3 6
MBI item 11 2.09 1.55 0 0 3 3 6
MBI item 12 2.55 1.66 0 1 3 3 6
MBI item 13 2.09 1.52 0 1 2 3 6
MBI item 14 2.17 1.86 0 1 1 3 6
MBI item 15 2.36 2.03 0 0 2 4 6
MBI item 16 1.68 1.77 0 0 1 2.5 6
MBI item 17 2.76 2.04 0 1 3 3 6
MBI item 18 1.64 1.45 0 0 1 3 5
MBI item 19 2.56 1.95 0 1 3 3 6
MBI item 20 1.87 2.23 0 0 1 3 6
MBI item 21 1.21 1.48 0 0 0 3 4
MBI item 22 2.43 1.45 0 2 3 4 6
SWLS item 1 4.08 0.93 2 4 4 5 5
SWLS item 2 3.24 1.53 1 2 3 4 6
SWLS item 3 3.30 1.66 1 1 4 5 6
SWLS item 4 3.20 1.66 1 2 2 4 6
SWLS item 5 2.51 1.59 1 1 2 4 5

Mental well-being data were used, including people’s gender, age, length of service
and their responses to the three questionnaires: Perceived Stress Scale (PSS), Maslach
Burnout Inventory (MBI) and Satisfaction with Life Scale (SWLS).

The subject of the study was data from a set of 99 people, information about which
was divided into 4 subgroups, each in a separate MS Excel sheet: “Patient data”, “PSS10”,
“MBI”, and “SWLS”. The first of the above sheets includes the patient’s gender, age and
work experience. The second sheet contains answers to 10 questions from the PSS set, on
a scale of 0 to 4, where 0 corresponds to “never”, 1—“almost never”, 2—“sometimes”,
3—“quite often”, and 4—“very often”. The third sheet contains answers to 22 questions
from the MBI set, on a scale of 0 to 6, where 0 corresponds to “never”, 1—“several times a
year”, 2—“once a month”, 3—“severaltimes a month”, 4—“once a week”, 5—“several times
a week”, and 6—“every day”. The fourth sheet contains answers to 5 questions from the
SWLS set, on a scale of 1 to 7, where 1 corresponds to “strongly disagree”, 2—“disagree”,
3—“slightly disagree”, 4—“neither agree nor disagree”, 5—“agree slightly”, 6—“agree”,
and 7—“strongly agree”. Based on these four sheets, a CSV (Comma Separated Values) file
was created, which was used in the application due to the inability to directly load an Excel
file with the .xls extension, also taking into account the available NuGet packages—they
are satisfactorily documented for use in the project. This CSV file uses a semicolon (;) as the
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delimiter, which has been included in the app as the default delimiter value. The total is
based on all answers from PSS, MBI and SWLS sets. All but the first column of the CSV file
contain numeric values, while the first column can only contain two options: M (Male) or
F (Female).

The study was approved by the Bioethics Committee No. KB 391/2018 at the Ludwik
Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń.
Each participant in the study gave informed consent.

2.2. Methods

Two languages were used to develop the application: C# in .NET and Extensible
Application Markup Language (XAML), whereby:

• C# language was used to describe the actions performed by the program;
• XAML was used to develop the layout of the user interface in a Universal Windows

Platform (UWP) application, along with the naming of elements (which allows them
to be used in C# as variables), or the binding of events to specific functions in the code
behind the interface (code behind).

A number of ML models based on Stochastic Dual Coordinate Ascent (SDCA), limited-
memory Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built
based on a clinical dataset (PSS, MBI and SWLS) and compared based on criteria in the
form of learning time, running time during use and regression accuracy. The rationale
for choosing these particular algorithms lies in their popularity and the authors’ previous
experience and previous research on measuring long-term stress and burnout using the
aforementioned group of tests and AI [19–22]. Knowledge in the area of matching AI/ML
tools for the analysis, inference and prediction of stress and burnout measurements is still
nascent and no computational or theoretical basis can be cited as yet.

The predicted value was a virtual mental health index.
The data set has been divided into a training set (70% of samples) and a test set (30%

of samples).
SDCA algorithm is a linear algorithm, meaning that it generates a model that calculates

results based on a linear combination of the input data and a set of weights. The model
weights are those parameters that are determined during training. In the general case, linear
algorithms are scalable, fast and have a low cost during training and during prediction.
This class of algorithms goes through the training dataset many times [23]. It is devoid of
parameters for manual tuning and has a clearly defined stopping criterion. This algorithm
has good implicit performance. It combines some of the best features, such as:

• Possibility of streaming learning, i.e., operating on data without having to put it all in
memory at once;

• Achieving satisfactory results with a small number of circuits through the entire
data set;

• Not wasting computing power on zeros in sparse datasets [24].

It should be borne in mind that the results obtained with this algorithm are dependent
on the order of the training data, but the solutions obtained can be treated as equally good
between different executions of the algorithm [25]. This algorithm is a stochastic version of
DCA. The basic version of the algorithm (DCA) performs optimization on a single variable
in each iteration without affecting the others. The SDCA version of the algorithm performs
a pseudo-random selection of a double coordinate for optimization based on a uniform
probability distribution [26].

LBFGS is an abbreviation for limited-memory Broyden–Fletcher–Goldfarb–Shanno,
an optimization algorithm based on BFGS, but using limited Random Access Memory
(RAM) [27,28], as it does not store a matrix approximating the inverse of the Hessian ∇2
f(x), instead using an intermediate approximation [28,29]. The calculation is based on an
initial approximation and an update rule that models local curvature information [27,28].
The original Broyden–Fletcher–Goldfarb–Shanno method, called full BFGS (BFGS), pro-
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posed by these four authors in 1970, keeps the aforementioned matrix in memory, whose
computational cost of updating is high, of the order of O(n2) [28,29]. As for the convergence
of the BFGS method, if the function has a continuous second derivative and the function is
strongly convex, the sequence of successive values of xk tends towards the global minimizer,
and furthermore, when it is assumed that the Hessian satisfies the Lipschitz condition, the
rate of convergence is super linear [28,29]—i.e., faster than linear. The convergence of the
LBFGS algorithm depends on the quality of the Hessian approximation, which is difficult
to achieve, and it has been observed in numerical observations that an appropriate guess of
the initial Hessian has a significant impact on the search direction and convergence [27,28].

The Online Gradient Descent (OGD) algorithm is a variation of the Stochastic Gra-
dient Descent (SGD) method used for online training—i.e., training by learning concepts
incrementally by processing examples from the training set one at a time, one after the
other, with the algorithm not storing the last occurrence after each update, but based on the
next sample [29,30]. SGD uses an iterative technique based on error gradients, in addition
to providing the ability to update the weight vector using the average of the observed data
vectors as the algorithm progresses [31]. SGD is popular for its simplicity, computational
efficiency, or convergence independent of the training dataset, and the performance of
DL methods depends heavily on this algorithm. However, it is susceptible to the effects
of noisy data, especially noticeable in robotics, where robots do not have the capacity to
collect enough data to negate these effects [32].

Three questionnaires were used to determine a virtual mental health index: PSS, MBI
and SWLS. Data from these questionnaires were used in the application to train the models
and determine metrics and statistics.

PSS is a scale developed by Cohen, Kamarck and Mermelstein in 1983, which aimed
at respondents’ self-assessment of the unpredictability of their life, their lack of control
over it and the overload they feel. The original version has fourteen general questions
on a four-point scale, and the final score is obtained by reversing the scale for positively
valenced questions and then adding up the scores for all questions. In addition, two shorter
versions of the scale have been developed, the ten-question scale used in this work, as
well as a four-question scale [33]. Research on this instrument is massively carried out all
over the world, including China, Ethiopia, Iran and Greece, and the results indicate that
this scale can be relied upon to be used in these countries. To validate the scale, Cohen
studied the responses of people of different ages, both genders and a variety of racial
backgrounds [34]. Similar information is presented by the authors of a Czech study, where
they briefly describe that all versions of the scale had previously been compared in a variety
of cultural and linguistic contexts and that these researchers agreed that the ten-question
scale was at least comparable to or better than the original version in terms of internal
consistency while noting a significant decrease in reliability of the four-question version,
which was attributed to it simply being too short [33].

The MBI (Maslach Burnout Inventory) was developed by Christina Maslach and
her team. In her article, she explains the concept of professional burnout (burnout)—a
syndrome of emotional exhaustion and cynicism often found in people who work with
people, with a key component being the increased sense of emotional exhaustion mentioned
earlier. It indicates that with the depletion of their emotional resources, employees begin
to feel that they are not able to give their best; furthermore, they develop negative, even
cynical attitudes and feelings about their clients. The two aspects seem to be linked, and a
tendency to evaluate oneself negatively, especially in relation to one’s work, not feeling
satisfied with one’s achievements, is mentioned as a third effect related to professional
burnout [34]. Occupational burnout is characterized by high levels of emotional exhaustion,
dehumanization and low feelings of personal fulfillment. In addition, they point out that
occupational burnout and depressive states are related, but they are not the same concepts,
i.e., their characteristics do not overlap and thus cannot be used interchangeably [35]. The
version used in this thesis consists of three groups of questions regarding these issues:
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emotional exhaustion (nine questions), sense of personal accomplishment (eight questions)
and dehumanization (five questions).

In terms of SWLS acceptability, reliability, validity as well as gender independence
have been demonstrated, as indicated by the authors of the article [36]. The scale was
first presented in 1985 and was summarized as narrowly focused on the issue of overall
satisfaction with life, without addressing issues such as loneliness or positive affect [37]—
which is described as the feeling experienced when a certain goal is achieved, or a source
of danger is averted, or the person is satisfied with the current state of affairs [30]. It was
developed as a response to a number of scales that contained only one question, and to
scales that went beyond life satisfaction. The process of shaping the questions in this set
began with a list of 48 questions, and, after eliminating questions about affect and questions
with a Factor Loading of less than 0.60 and omitting those with a high degree of similarity,
yielded five questions [36], scored on a scale of 1 to 7, which in effect generated a score
range of 5 to 35.

Test results and calculations were recorded in an MS Excel spreadsheet.
Statistical analysis was performed using Statistica 13 (StatSoft, Tulsa, OK, USA). The

Shapiro–Wilk test was used to check the normality of the distribution of the studied data.
The p-value was set at 0.05. Where possible, analyzed values with distributions close
to normal were presented as mean values and standard deviation (SD). The analyzed
values with distributions different from the normal distribution were presented using the
minimum value, the lower quartile (Q1), the median, the upper quartile (Q3) and the
maximum value.

Selected ML algorithms were compared on the basis of:

• Metrics: mean absolute error, mean squared error, mean squared error, coefficient
of determination;

• Learning time, expressed in milliseconds: minimum, average, maximum;
• Prediction time, expressed in milliseconds: minimum, average, maximum.

For each of the compared values, the best algorithm was determined, choosing the
one with:

• Minimum value for learning times, prediction, mean absolute error, mean squared error;
• Maximum value for the coefficient of determination.

In a similar way, the worst algorithm in terms of a given criterion was determined,
this time by:

• Maximum value for learning times, prediction, mean absolute error, mean squared
error, mean squared error,

• Minimum value for the coefficient of determination.

In order to make more accurate use of the software’s capabilities, each learning was
performed four times in order to make the resulting parameters more meaningful and, in
addition, each time the steps were carried out on a new occurrence of the application. To
compare the algorithms, we selected the best hyperparameters for each optimizer and for
each data set using a validation procedure with a learning set and a validation set. On
each data set, for each hyperparameter, we calculated the accuracy after a certain number
of epochs for a range of values and a certain validation set. The study considered the
following hyperparameters of each of the algorithms tested:

• SDCA: c (regularization strength) and stopping time;
• LBFGS: solver, penalty, max_iter, c, tol, fit_intercept, intercept_scaling, class_weight,

random_state, multi_class, verbose, warm_start, and l1_ratio;
• OGD: learning rate and diameter of the decision set.

The same data set was also analyzed automatically using ML.NET (Visual Studio 2022,
Microsoft, Redmond, WA, USA).
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3. Results

The algorithm with the highest accuracy was Stochastic Dual Coordinate Ascent, but
although its performance was high, it had significantly longer training and prediction times
(Figure 3a).

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) General comparison of metrics, training times and predictions, (b) comparison of
selected metrics and (c) assesment of models (three columns on right side).
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The fastest algorithm looking at learning and prediction time, but slightly less accurate,
was the limited-memory Broyden–Fletcher–Goldfarb–Shanno (Figure 3b).

The first criterion considered was the model learning time, expressed in milliseconds.
The average, minimum and maximum values were taken into account. Both the average,
minimum and maximum times were the longest for the SDCA model and the shortest for
the LBFGS model. This means that the SDCA model performed the worst in this ranking,
and the LBFGS model performed best. It should be noted that while for the LBFGS and
OGD models, the difference between their maximum and minimum values was relatively
small (about 4% of the average, both for LBFGS and OGD), for the SDCA model it was
about 64% of the average. Another criterion was the prediction time for the entire data set,
expressed in milliseconds. The average, minimum and maximum values were taken into
account. This time was the lowest for the OGD model, but it differed only slightly from
the LBFGS model, both models reached a time slightly above 1 ms. On the other hand, the
average time for the SDCA model was about 44 times longer than for the OGD model, and
again there were larger differences between the maximum and minimum values for the
SDCA model (approximately 18% of the mean value). The average absolute error was the
lowest for the SDCA model and amounted to about 0.216, while it was the highest for the
OGD model, amounting to about 0.481 (more than twice as much). On the other hand, for
the LBGFS model, it was around 0.320, which corresponds to an increase of 48%. For this
criterion, as well as for the mean squared error and the mean squared error, the best results
were achieved by the SDCA model, and the worst by the OGD model. The ranking for the
coefficient of determination looks similar, the value of which is closer to 1, the better for
the model. The last lines of the comparison show the number of occurrences for which
the absolute value of the difference between the rounded prediction and the value from
the dataset was 0, 1 or 2, respectively. Looking at the difference equal to 0, the best result
was obtained by the SDCA model, and the worst by the OGD model. For a difference of
1, the best result was obtained by the SDCA model (6 occurrences), and the worst by the
OGD model (41 occurrences). However, for the difference equal to 2, there was one such
occurrence for the LBFGS model (Figure 3c).

In this particular problem of determining a virtual mental health index, all three
models considered achieved comparable final results. Based on the criterion of model
learning time, and considering other factors (e.g., prediction time), the LBFGS model
would be the best choice. On the other hand, looking at metrics in the form of, among
other things, mean absolute error or coefficient of determination, the SDCA model, whose
biggest drawbacks are learning time and prediction time, would prove to be the best choice.
Although the OGD model achieved the best prediction time, it achieved the worst of the
results when looking at the metrics.

Looking at the results obtained, the differences between the ML methods used are
clearly visible, especially for learning time and metrics. Furthermore, bearing in mind
that the accuracy of the model increases as the value of the coefficient of determination
approaches one, the differences between the methods amounted to a maximum of around
1.4 percentage points, looking at the difference between the maximum and minimum value
in relation to the maximum possible value, i.e., 1 (which can be understood as 100%).

We have compared the aforementioned results with automated analysis using ML.NET
results (249 models checked, Tables 2 and 3).

Table 2. Results of ML-based classification.

Parameter Micro Accuracy (%) Macro Accuracy (%) Best Trainer

Gender 75.16 69.32 FastTreeOva
Age 71.24 62.82 FastTreeOva

Seniority 78.73 72.23 FastForestOva
Total pts. 17.29 14.79 LightGbmMulti
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Table 3. Results of ML-based prediction.

Parameter Accuracy (%) Best Trainer

Gender Not possible
Age 93.32 LbfgsPoissonRegressionRegression

Seniority 97.57 FastTreeRegression
Total pts. 97.42 LbfgsPoissonRegressionRegression

Despite the fact that the data lends itself to both prediction and classification, it has not
been possible to find one algorithm that is good at everything—a thoughtful combination
of different algorithms must be used in automated analysis.

4. Discussion

A comparison of the three ML algorithms showed small differences in regression
accuracy (about 1.4 percentage points, or, according to the thesis, less than 10 percentage
points), which, in relation to the work [10], which nevertheless dealt with the classification
problem, but revealed differences in accuracy between six different methods of about
5.5 percentage points, probably means a small impact of the method used on regression
accuracy or classification accuracy.

The results of the paper [14] are similar, where all the algorithms used, except for
the naive Bayes classifier—which is the simplest one used and probably for this problem
did not have a strong connection to reality—obtained accuracy differences of at most
9 percentage points. Looking at the proposal in that paper, continuing research would
need to use a feature subset selection strategy so that the solution is based on the highest
quality features. Applying such an approach successfully would mean a reduction in
learning time and potentially an increase in model reliability. In addition, the inclusion of
the patient’s mental profile mentioned can be considered to have been done, as the data
contains answers to a set of questions to assess the patient’s mental health status.

When comparing with studies [13,16–18], it is important to note the lack of analysis of
the impact of individual factors on the virtual mental health index, considering particular
attributes such as age, gender, or length of service. This implies an opportunity for further
research to be able to establish some trends, for example among different age groups, as in
the article [6]. In addition, further data would have to be collected, not only more numerous
but possibly also including the ISEI index, which expresses the relative position of the
occupation in the labor market, as in the study [16]. Regarding the study [17], the dataset
could be extended to include information on the dynamics of employment, or also the
household of the person surveyed. Looking at the study [18], it would be valuable to assess
the risk of problems such as depression, anxiety or the use of stimulants, which could be
baseline variables for the trained models.

Referring to the work [11], which addresses the problems of assessing health status
in discrete moments in time, mainly in terms of not being able to assess the impact of
the environment on the patient in real time, one could use data from apps and activity
monitoring devices of potential volunteers to derive models based on measured data. On
the one hand, this would make it possible to assess mental health on a continuous basis,
and on the other hand, it would make it independent of the patient’s self-assessment.

As described in the paper [12], voice-based mental health determination, while it
appears to be a promising solution, the authors did not present the ML methods used,
which, combined with the commercialization of the developed library and system, does not
allow for the extension of these analyses. On the other hand, the idea is intriguing, but in
order to be realized, it would require an appropriate selection of libraries and ML methods,
as well as the disposal of voice data, together with the determination of the patient’s mental
health status for these data.

On the other hand, the observation in the article [15] that a positive mental health
status does not imply the absence of mental illness, which was taken into account in the
Mental Health Continuum scale, whose tests in various countries have been successful.
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This is something to bear in mind, as it happens that mental illnesses are able to be hidden,
both consciously and unconsciously. It is also important to consider factors that are often
indicative of a patient’s mental state, such as their physical activity, sleep, use of stimulants,
and relationships with peers in the case of adolescents or relationships with co-workers
among adults.

In the study, learning time or prediction time is an evaluation criterion. The performers’
tasks do not require real time, but with large databases and a large number of simultaneous
system users, the value of this parameter can be very important.

It is noteworthy that a variety of tools have been used in these papers, whether in the
form of questionnaires, such as the Depression Anxiety Stress Scale-21, Beck Depression
Inventory or algorithms (logistic regression, K-nearest-neighbor method, decision trees,
bagging, support vector method) and technology, including the Python language, Scikit-
learn library, physical activity tracking mobile apps and wearable devices. In addition,
many of these papers did not present the programming language used, making it impossible
to make a technology choice based on them.

Key findings in the area of ML-supported human mental health analysis have shown
that, despite the variety of tools that have been used in these papers, one leading approach
is lacking, both in the selection of tests and in the selection of ML-based aggregation
and analysis methods. This makes it difficult both to compare different approaches and
to extract the best ones (based on common criteria) for further development and use in
both simple predictive systems within preventive medicine and complex diagnostic and
monitoring systems within more complex specialized studies. This results in the unique
contribution of the current study compared to the existing literature, which includes how
to aggregate test results into a virtual mental health index and how to select optimal ML
methods for its further use providing a basis for further research, including for other
groups of clinicians and researchers. Our experience to date shows that this element
of technological support is lacking in clinical practice, hence interdisciplinary teams are
needed for further research.

4.1. Limitations of Studies

Research on determining a virtual index of mental health using ML algorithms may
encounter a number of limitations and challenges that should be considered:

• Lack of unequivocal measures of mental health (patients and healthy people)—mental
health is a subjective concept and difficult to define unambiguously, which complicates
the process of creating ML models;

• Population diversity—individual healthy individuals differ from each other in terms
of mental health as well as in different life contexts, which makes general modeling
difficult and it will be necessary to adapt models to different population groups;

• Lack of qualitative data—most of the available data is quantitative, which can hinder
a fuller understanding of mental health;

• Lack of historical data—it is often important to consider the historical context of the
patient’s illness;

• Data privacy—mental health data are very sensitive, so it is necessary to maintain
appropriate standards of data privacy and security;

• Cultural differences—Mental health can be understood and experienced differently in
different cultures.

• Interpretability of models—understanding why a model made certain decisions can
be a problem for mental health diagnosis and treatment;

• Importance of experts—ML models will not replace human expertise, but will only
support it [38–42].

4.2. Directions for Further Research

Research on the determination of a virtual index of mental health using ML algorithms
is an area that can bring many benefits in the field of health care and mental well-being,
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as well as their objective, partially automated assessment and monitoring of changes. A
summary of research directions that can be explored in this context is presented in Table 4.

Table 4. Directions of research on the virtual index of mental health with the use of ML algorithms [43–45].

Area Description and Detailed Tasks

Data collection and
analysis

The use of many different data sources, including multi-modal ones,
such as behavioral data (e.g., online activity, phone calls), biometric
data (e.g., heart rate, sleep monitoring), survey data, photos and
videos, as well as test results collected automatically, etc.

Collaboration with field
experts

Collaboration with physicians and mental health professionals can
help understand the mechanisms and create and evaluate the
effectiveness of models.

Ethics and privacy The manner in which data are collected, stored, used and destroyed
should comply with relevant regulations and ethical standards.

Data preparation
Data preparation may include data normalization, removal of
erroneous, uncertain, incomplete and outlier data, coding of
categorical variables, etc.

Selection of ML
algorithms and

hyperparameters

Selection and adaptation of algorithms and hyperparameters of
models to a specific problem from among possible solutions, such as
decision trees, neural networks, support vector machines (SVM) or
clustering algorithms.

Evaluation/cross-
validation
of models

Define model performance metrics (accuracy, sensitivity, specificity,
F1-score, Receiver Operating Characteristic (ROC) curves, etc.) and
analyze model performance using them.

Interpretability of
models

Understanding how the model makes its predictions (why the model
made certain decisions).

Checking the learning
time

Model training time can be a critical factor in clinical practice—it
needs to be investigated how long it takes to train different models
and whether this can be optimized.

The model should be adapted to real-time operation (including
learning on new patients) in order to be used in clinical practice.

Validation on a large
sample of patients

The effectiveness of the models should be tested on a large sample of
patients to ensure that the model generalizes well to different cases.

This research can be a long and complicated process, but it can have significant benefits
in diagnosing, monitoring and managing patients’ mental health [46,47].

5. Conclusions

The ability of ML to identify burnout using passively collected electronic health record
(EHR) data and predict future health status with an accuracy of more than 70% (for some
traits: more than 90%) accounts for the usefulness of this group of methods in daily clinical
practice, which is worth developing.

The algorithms did not differ significantly from each other in terms of accuracy (about
1.4 percentage points) but differed more strongly in other parameters. The algorithm with
the highest accuracy was Stochastic Dual Coordinate Ascent, but although its performance
was high, it had a significantly longer training and prediction time. In contrast, the fastest
algorithm looking at learning and prediction time, but slightly less accurate, was the
limited-memory Broyden–Fletcher–Goldfarb–Shanno.

Findings from the study can be used to build larger systems that automate early
mental health diagnosis and help differentiate the use of individual algorithms depending
on the purpose of the system.
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Abstract: Most recommender systems rely on user and item attributes or their interaction records to
find similar neighbors for collaborative filtering. Existing methods focus on developing collaborative
signals from only one type of neighbors and ignore the unique contributions of different types of
neighbor views. This paper proposes a multiscale neighbor-aware attention network for collaborative
filtering (MSNAN). First, attribute-view neighbor embedding is modeled to extract the features of
different types of neighbors with co-occurrence attributes, and interaction-view neighbor embedding
is leveraged to describe the fine-grained neighborhood behaviors of ratings. Then, a matched attention
network is used to identify different contributions of multiscale neighbors and capture multiple
types of collaborative signals for overcoming sparse recommendations. Finally, we make the rating
prediction by a joint learning of multi-task loss and verify the positive effect of the proposed MSNAN
on three datasets. Compared with traditional methods, the experimental results of the proposed
MSNAN not only improve the accuracy in MAE and RMSE indexes, but also solve the problem of
poor performance for recommendation in sparse data scenarios.

Keywords: multiscale neighbors; attentional mechanism; collaborative embedding; recommendation

1. Introduction

Collaborative filtering has become a fundamental technology in e-commerce platforms,
which has made remarkable achievements. Collaborative filtering assumes that similar
users have similar interests, and makes recommendation services for the target user based
on similar users’ interests. In most e-commerce scenarios, the interaction between users
and items reflects users’ interest preferences, which is often used to find similar neighbors
to model collaborative representations for users and items [1,2].

However, the e-commerce platform generates a large number of new users and prod-
uct items every day. Some users have not rated or purchased new products, which leads to
fewer interactive records. Thus, it is difficult to learn high-quality embedding represen-
tations for users and items. As a result, collaborative filtering still faces the problem of
interaction data sparsity in recommender systems [3]. Aiming to solve the sparse recom-
mendation problem, most recommender systems leverage auxiliary attribute information of
users and items to establish users’ preferences and mine similar neighbors for collaborative
filtering [4]. However, similar neighbors mainly come from an attribute preference of
uniform scale. In fact, different users have various social attributes, and different items
have multiple product descriptions. Different combinations of attributes are conducive
to generating various types of neighbors to describe semantic characteristics of different
granularity for nodes. That is, when some users have multiple attributes and the other
users have a few attributes, we can make collaborative recommendations according to their
multiscale attribute neighbors. In addition, the interaction rating of users reflects their
differentiated preference for items. We can leverage differentiated rating preference via
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different rating neighbors to explore the fine-grained preference motivation. Thus, how to
deal with collaborative filtering by combining multiscale attribute neighbors with rating
neighbors is an important task. Multiscale node embedding describes the fine-grained
semantic representations from multiple perspectives, and can effectively solve the prob-
lem of poor performance of sparse recommendation, which is of great significance for
industrial applications.

In the e-commerce recommender systems, multiscale attribute combinations can
produce single-attribute-view neighbors and multi-attribute-view neighbors. For example,
in movie recommender systems, users with the same gender and age have more similar
interest behaviors than users of the same gender. As a result, different types of attribute-
view neighbors can be constructed in various attribute combination spaces. In addition,
different interaction-view neighbors can be obtained according to the types of interaction
ratings, such as 1–5. We model the interaction-view neighbor embedding of nodes on
various interactive views. The attention mechanism [5] is used to focus on specific input
features, analyze the importance of all aspects of input features, and improve the expression
ability of the model, which has been widely applied in the fields of natural language
processing and image processing. Inspired by [6], this paper captures a different type
of attribute neighbor embedding and interactive neighbor embedding and mine their
collaborative signals with the attention mechanism to model multiscale node embedding.
The multiscale node embedding can effectively capture diverse semantics of nodes from
different types of neighbors to enhance sparse recommendation.

To summarize, the main contributions of this paper are as follows.

• Various neighbor graphs of attribute tag and rating tag are designed to learn attribute
neighbor embedding and interaction neighbor embedding, which capture embedding
signals of various neighbors at different levels.

• An attention network is developed to refine the collaborative semantics of multi-
scale neighbors, which is utilized to filter the irrelevance signals of various types
of neighbors.

• A joint learning of multiscale neighbor embedding is proposed for rating prediction,
which solves the problem of poor accuracy in the context of sparse recommendation.

The rest of this paper is structured as follows. Section 2 outlines related work, including
the state-of-the-art of neighbor-based recommendation and attention mechanism. In Section 3,
we present the framework of the proposed multiscale neighbor-aware attention network.
Section 4 provides the methodology of the MSNAN recommendation. Section 5 describes
the experimental setup and evaluation. Section 6 gives the experimental results and analysis.
Finally, Section 7 concludes this work.

2. Related Work

In this section, the related work on neighbor-based recommendations of collaborative
filtering and attention mechanisms are briefly reviewed.

2.1. Traditional Collaborative Filtering

Traditional collaborative filtering utilizes the nearest neighbors of a user or an item
to generate recommendation results. Most popular methods leverage matrix factoriza-
tion to learn the latent factors of users and items in terms of their historical information,
such as BiasedMF [7], PMF [8], SVD++ [9], and LLORMA [10]. The decomposed low-
dimensional factor vectors can be used to predict the user’s rating preference for items.
These methods mainly depend on the rating interactions between the user and item and
have low performance in the case of sparse data. Thus, some side information is merged
into matrix factorization to alleviate the sparsity of interaction records [11,12]. SSLIM [13]
develops a sparse aggregation coefficient matrix by considering the user–item profiles and
side information of items. The auto-encoder and -decoder techniques are used to learn
the latent factors of nodes for collaborative filtering [14]. Park et al. [15] developed a
group recommender system to select the suited recommendation items for store product
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placement. In recent years, some matrix decomposition models of deep learning have
been studied [16,17]. DeepFM learns low-order and high-order interaction features of
compressed interaction neighbors through a neural network [18]. Cai et al. [19] leveraged
various multi-grained sentiment features and latent factors of matrix factorization to obtain
sufficient representations of users and items to make rating predictions. Although these
models have the ability to handle the sparsity recommendation problem, they leverage raw
neighbors to learn their high-order interaction features and have limitations on processing
different contributions of fine-grained neighbors.

2.2. Deep Learning-Based Collaborative Filtering

Deep learning-based methods can utilize the interaction neighbors between users and
items to extract their latent vectors, which achieves excellent performance. Deep neural
networks take advantage of both side information and feedback information to model linear
and nonlinear features. For example, NFM [20] encodes interaction neighbor IDs of users,
items, and their features into different vectors. Wide and Deep learning [21] combines the
linear model and the deep neural network to implement efficient recommendations for
scenarios with sparse data. Some works transfer diverse interactions of neighbors to learn
rich features of nodes [1]. MCCF decomposes and recombines the latent components of user–
item interaction graph to capture fine-grained user preference [22]. Aiming to solve the
cold-start problem, Magron et al. [23] considered content information of acoustic features
to learn the interaction between users and songs and proposed a neural content-aware
collaborative filtering framework for music recommendation. Graph neural networks can
learn the interaction characteristics of multi-order neighbors. MBGCN leverages multiple
types of user-to-item interactions and the similarity item-to-item to propagate neighbor
semantics [24]. Multiple neighbors on the path are used to capture the diversity of user
interests and improve the accuracy of personalized recommendations [25]. User–item
neighbor interaction and item–item neighbor relevance were leveraged to model a two-hop
paths-based deep network to improve user engagement [26]. Tai et al. [27] designed a
user-centric two-level path network in terms of entities of knowledge graph to generate
user portfolio information. Duan et al. [28] learned the features of nodes from different
dimensions of time and position and investigated the consistency of two representations for
sequential recommendation. Most of neighbor embedding algorithms exploit interactive
neighbors and do not distinguish the representations of different types of neighbors.

2.3. Attention Network for Collaborative Filtering

An attention mechanism is applied in collaborative filtering recommendations by
identifying different importances of neighbors [5,29]. DGCF identifies the importance
of diverse user–item interaction neighbors and models fine-grained intent-aware graph
collaborative filtering [30]. By integrating content-based with collaborative filtering, ACCM
considers the importance of end-to-end features and traditional attributes adaptively via
an attention mechanism to handle the cold-start problem [3]. Chen et al. designed both
item-level and component-level attention networks for multimedia recommendation [31].
Different auxiliary information can be learned to enhance important signals for neural net-
works. By leveraging intra-entity interaction and inter-entity interaction, AKUPM explores
the relationships between users and other entity neighbors for alleviating the sparsity
recommendation problem [32]. The attentional mechanism can provide different functions
of multi-type entities on the knowledge graph and help obtain important neighbor infor-
mation on different paths. KGAT learns the importance of higher-order neighbors of nodes
in knowledge graphs by considering various features of entities [33]. A knowledge-aware
attention mechanism is adopted to discriminate the contributions of different collaborative
neighbors for recommender systems [34]. There are considerable advantages to applying
the attention model in graph-based neural networks. A neural co-attention model utilizes
auxiliary information of meta-based neighbors for top-n recommendation of heterogeneous
information networks [35]. By leveraging the higher-order friends in the social network,
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Xiao et al. [36] designed a social explorative attention network to make personal interest
recommendations. Ye et al. [37] utilized both influence graph and the preference graph
to fuse different user and item embeddings to make rating predictions. However, most
attentional models deal with the role of the same type of neighbors, which limits the
discriminative contributions of various neighbors to the user’s overall decision making.

3. Framework of Multiscale Neighbor-Aware Attention Network

Figure 1 shows the framework of the proposed multiscale neighbor-aware attention
network. The framework comprises four components: (1) attribute-view neighbor node em-
bedding, (2) interaction-view neighbor node embedding, (3) attentional multiscale neighbor
node embedding, and (4) rating prediction. In the framework, attribute-view neighbor
node embedding is used to learn the different roles that similar neighbors with different
attribute sets play in collaborative filtering. The interaction-view neighbor node embedding
learns the role of similar neighbors with the same rating behavior in collaborative filtering.
Neighbors with different attribute sets can form multiscale similar neighbors. Considering
that users with different attributes have different rating behavior habits, we model the pref-
erences of attribute sets for rating behavior through a multiscale neighbor-aware attention
network. The attention network measures the collaborative contribution of coarse-scale
attribute neighbors and fine-scale attribute neighbors to the rating decisions of target users.

Figure 1. The framework of the multiscale neighbor-aware attention network.

In a nutshell, the framework works as follows. For the attribute-view neighbor node
embedding, we first construct an attribute-view neighbor graph according to the association
of a node on an attribute set such as {a} or {a,b}. Attribute sets of different scales induce
multiple types of attribute neighbors. Based on various attribute-view neighbors, graph
neural networks are used to obtain attribute-view neighbor node embedding.

For the interaction-view neighbor node embedding, we divide different rating tag
spaces according to different rating grades. Under different rating tag spaces, we form
similar neighbors with different rating behaviors. Then, graph neural networks are lever-
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aged on different user–item interaction neighbor graphs to obtain various interaction-view
neighbor node embedding.

Then, an attention mechanism is utilized to estimate the interactive contributions
between various attribute neighbors and interaction neighbors. For the attribute-view and
interaction-view neighbors, we calculate the global attribute neighbor collaborative signal
and interactive neighbor collaborative signal, respectively. Meanwhile, we match the local
collaborative signals between different-scale attribute neighbors and interactive neighbors.
Considering the global and local semantic information provided by different neighbors,
multiscale neighbor node embedding is computed to capture rich collaborative signals.

Finally, based on multiscale user embedding and item embedding, the inner product
can be used to predict the rating score of the user to the item.

4. Methodology

4.1. Attribute-View Neighbor Embedding

In e-commerce networks, some attribute descriptions describe characteristics of users
or products, which are helpful to discover various types of similar users or similar items.
In this subsection, we utilize various types of attribute sets to calculate similar neighbors of
different scales. Then, we learn the nodes’ attribute-view neighbor embedding in terms of
different-scale neighbor graphs.

Usually, users have various kinds of attributes, such as gender, age, occupation, and so
on, which reflects users’ interest preference to a certain extent. For example, users with the
same gender can form a neighbor graph with a coarse-grained perspective, while users
with the same gender and age can build a neighbor graph with a fine-grained attribute
space. A coarse-grained neighbor can provide robust interest preferences for cold-start
recommendation. A fine-grained neighbor helps discover refined similar preferences and
model accurate collaborative recommendation. Based on this assumption, we can construct
different views of attribute neighbor graphs to incorporate signals of various neighbors for
modeling the embedding of nodes.

Given an attribute a, we can define a neighbor set Na
u of user u on an attribute a

as follows:
Na

u = {u′|fa(u) = fa(u
′
)} (1)

where fa(u) is the attribute value of the user u on attribute a. Na
u describes the collaborative

neighbors with the same attributes as user u. Considering all attribute value types in
the set A, we can construct the user-attribute relation matrix as MU×A. Then, based on
the user distribution of the set A, we can establish the neighbor relationship matrix of
users by MMT , labeled as MU×U . Here, various attribute-view neighbors reflect multiscale
collaborative preference, which can affect the decision-making tendency of the target user.

Based on the idea in [33,38], we can define the collaborative signal of a first-order
neighbor u

′
for user u on the attribute a as follows.

ma
u←u′

=
u + (u� u′)
|Na

u||Na
u′ |

(2)

Here, ma
u←u′

represents the influence of similar neighbors in terms of attribute a
on the target user u. u is the initialized embedding vector. Thus, considering all the
first-order neighbors, attribute a-view collaborative signal for user u can be defined as
e

a(1)
u = ∑

u′∈Na
u

m
a(1)
u←u′

. As is known, neighbors with the same attributes tend to spread

their preferences in the social network. Considering the spread contributions of k − 1 hop
neighbors, the recursive collaborative signal of neighbor u

′
for user u on the attribute a can

be formulated as follows [33,38].

m
a(k)
u←u′

=
u(k−1) + (u(k−1) � u

′(k−1))

|Na
u||Na

u′ |
(3)
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Further, attribute a-view recursive collaborative signal for user u can be defined as
e

a(k)
u = ∑

u′∈Na
u

m
a(k)
u←u′

. We adopt the average pooling to obtain the attribute a-view neighbor-

aware node embedding for user u as eAtt_a
u = agg(ea(1)

u , · · · , e
a(k)
u ). Here, some aggregation

strategies can be used to fuse different orders of neighbor embedding.
Different types of attributes can induce different similar neighbors. Considering

various types of neighbors in other attribute views, we can obtain attribute A-view neighbor-
aware user embedding as eAtt_A

u = avg(eA(1)
u , · · · , e

A(k)
u ). Similarly, given an item v,

we adopt different types of item neighbors to obtain the attribute-view neighbor-aware
item embedding.

Different users have special behavioral perceptions of rating labels, which can be
used to explore users’ behavioral preferences in fine granularity. Thus, according to the
types of rating labels, we also divide different interaction view spaces with rating labels
and construct various rating interaction graphs for learning user and item embeddings.
For example, we can think of item groups with the same rating as neighbors of a user
with the same scale preference. Based on different rating labels, we model interaction-
view neighbor-aware embedding with different rating neighbors, which can be defined as
{eInt1

u , · · · , eIntr
u }. Then, interaction-view neighbor-aware item embedding of an item v can

be defined as {eInt1
v , · · · , eIntr

v }.

4.2. Cross Attention-Based Multiscale Neighbor Embedding

In the homogeneous attribute view, the multiscale neighbor-aware embedding signals
with different granularity can provide diversified collaborative signals for node representa-
tion. In addition, various neighbor-aware embeddings of attribute view and interactive
view can be used to model the heterogeneous collaborative signals, which can enrich and
enhance the representation ability of node embedding.

According to neighbor-aware node embedding on different attribute-view spaces, we
can model global attribute neighbor-aware node embedding for user u as follows.

qi = hie
Att_i
u (4)

Equation (4) describes the influence of user embedding in the attribute i space on the
global attribute neighbor-aware user embedding. hi is the parameter vector. Considering
different user embeddings of m spatial types, the normalized weights are defined in
Equation (5).

αi =
eqi

∑
s∈{1,...,m}

eqs
(5)

Then, the global attribute neighbor-aware node embedding for user u is defined
as follows.

e
Att_g
u = ∑

i∈{1,...,m}
αie

Att_i
u (6)

In Equation (5), different neighbor-aware user embedding representations depict
discriminative semantic information from various attribute-induced neighbors, which
provides collaborative signals of neighbors comprehensively for target user’s decisions.
The global collaborative embedding e

Att_g
u of various neighbors can improve the seman-

tic ability for recommender systems. Similarly, we can obtain the global collaborative
embedding of interaction view spaces as e

Int_g
u .

Given the item v, we can also obtain global attribute-neighbor-aware item embedding
and interaction-neighbor-aware item embedding as e

Att_g
v and e

Int_g
v .

Further, taking into account the collaborative signals matched by different neighbor
embedding from the attribute and interactive views, we utilize cross-attention to model
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matched neighbor embedding. Based on the global collaborative embedding of interaction
view, we can compute matched neighbor embedding of attribute view for user u as follows.

βi = e
Int_g
u eAtt_i

u (7)

Here, Equation (7) defines the preferential influence of user embedding in attribute i’s
view on the user’s rating decision. Then, we normalize this influence using Equation (8).

γi =
eβi

∑
s∈{1,...,m}

eβs
(8)

The normalized weight γi reflects the influence of multiscale attribute neighbor em-
bedding for the user’s interaction rating. Furthermore, the attribute embedding by incorpo-
rating user rating behavior preference can be updated as in Equation (9).

eAtt
u = ∑

i∈{1,...,m}
γie

Att_i
u (9)

The multi-type matched signals based on attribute neighbors and interactive neighbors
can enhance the embedding representation of nodes. Similarly, we can calculate the
matched neighbor embedding of the interactive view as below.

wj = e
Att_g
u e

Int_j
u (10)

Here, wj is the dependency influence of user embedding in rating tag j’s view on user’s
attributes. In terms of different rating levels, this dependence effect can be normalized
using Equation (11).

gj =
ewj

∑
p∈{1,...,t}

ewp
(11)

eInt
u = ∑

p∈{1,...,t}
gje

Int_j
u (12)

In Equation (12), eInt
u represents the user’s interaction embedding incorporating the

dependency of user attributes. Considering the matched neighbor embedding in the
attribute view and neighbor embedding in the interactive view, we can model fused
multiscale neighbor embedding with the concatenation operator as follows.

eu = eAtt
u ||eInt

u (13)

4.3. Rating Prediction

Based on the fused multiscale neighbor embedding of users and items, the dot product
is used to predict the rating of the user u on an item v, which is shown as follows:

ŷ = eu · ev + bg + bu + bv (14)

Here, the parameters bg, bu, and bv are global bias, user bias, and item bias. To pre-
serve the preference information of user attributes over item attributes, we define rating
prediction of user u for the item v with their attribute-view neighbor embeddings as follows:

ŷAtt = eAtt
u · eAtt

v + bg + bu + bv (15)

Similarly, we can compute the rating with the interaction-view neighbor embeddings
in interactive space, which is shown as below.

ŷInt = eInt
u · eInt

v + bg + bu + bv (16)
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In the process of model optimization, to observe the influence of attribute neighbors
and interaction neighbors on rating prediction, we define the joint root mean squared error
(RMSE) loss function as follows.

L = λRMSE(ŷ, y) + λAttRMSE(ŷAtt, y)+λIntRMSE(ŷInt, y) (17)

The joint loss function considers the global and local important neighbors to predict
the user’s rating of the item, which not only captures the user’s attribute preference for the
item from various attribute-view neighbors, but also retains the behavioral preference of
collaborative fine-grained interaction neighbors.

5. Experiments

In this section, we verify the performance of the proposed model with the aim of
answering the following three questions:

• RQ1: How does MSNAN perform compared with state-of-the-art neighbor-based
collaborative filtering methods?

• RQ2: How does the multiscale neighbor node embedding perform for sparsity
recommendation?

• RQ3: How do different types of neighbor embedding affect the performance of
the model?

5.1. Dataset

We ran the proposed MSNAN model and baselines on three public datasets: Movielens-
100kr (ML-100kr) (https://grouplens.org/datasets/movielens/ (accessed on 24 September
2023)), Book-Crossing-10croe (BK-10C) (http://bookcrossing.com (accessed on 24 Septem-
ber 2023)), and Douban (https://movie.douban.com/ (accessed on 24 September 2023))
datasets to verify their effectiveness. The ML-100kr contains the interaction ratings of
943 users on 1682 movies. Users have 5 attributes, and movies have 19 attributes. The rat-
ing score is on the scale 1–5. For the BK-10C dataset, we selected users who had rated
at least 10 books and books that have been rated by at least 10 users, which involved
1820 users and 2030 books. The rating score uses the range of 1–10. The Douban dataset
contains ratings of 6971 movies from 3022 users with rating values of 1–5 [39]. On all
datasets, the higher the rating is, the more the user likes the movie/book. Statistical infor-
mation of experimental datasets is shown in Table 1. During the experiment, we use the
MAE and RMSE indexes for performance evaluation. The smaller MAE and RMSE values
indicate better performance. All the datasets were divided into training set, validation set,
and testing set with a proportion of 8:1:1. The rating prediction performance of the model
is evaluated on the testing set.

Table 1. Statistical information of experimental datasets.

Datasets Users Items Interactions Rating Sparsity

ML-100kr 943 1682 100,000 1–5 94.12%
BK-10C 1820 2030 41,456 1–10 98.87%
Douban 3022 6971 195,493 1–5 99.07%

5.2. Baseline Models

To test the contribution of MSNAN method, we employ traditional methods, deep
learning-based recommendations, and GCN-based models to compare the performance.
Several baselines are as follows.

(1) NCF [17]. A neural network method is used to learn the interaction information
between users and items for collaborative filtering.

(2) Wide and Deep [20]. A method combining a generalized linear model and deep neural
network is designed to improve the performance of recommender systems.
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(3) NGCF [33]. A collaborative filtering method based on a graph neural network learns
the embedding representations of users and items with a user–item interaction graph.

(4) GCN [40]. A graph convolutional neural network leverages the information of multi-
order neighbors by superimposing several convolutional layers for recommendation.

(5) LightGCN [38]. The embedding representations of user and item are learned by
aggregating linear neighbor information of nodes.

(6) GAT [41]. A graph convolutional neural network method together with attention
mechanism learns weighted node embedding representation for recommendation.

(7) ACCM [3]. The attention mechanism is used to integrate a content-based method
with collaborative filtering for rating prediction.

(8) AFM [5]. An attentional network factorization method learns the interactive impor-
tance of different features for prediction.

(9) TANP [42] A task-adaptive neural network is constructed to learn the relevance of
different tasks for user cold-start recommendations.

5.3. Parameter Settings

In the experiment, we adopt a grid search to obtain the parameters for optimizing the
performance of model. For the attention mechanism, we tune its dimension with the values
{32, 64, 128, 256}. To prevent the model overfitting, we adjust the dropout values {0.1, 0.2,
0.3, 0.4, 0.5}. We utilize stochastic gradient descent to optimize the model with a learning
rate of 0.01. In order to obtain a better comparison, we use inner product in the prediction
layer for NGCF, GCN, LightGCN, and GAT methods to make rating predictions.

5.4. Experiment Settings

For the proposed multiscale neighbor method, the NGCF graph convolution model is
used in Equations (2) and (3) to capture the cooperative signal propagation between nodes.
We can also use other signal propagation methods to model the initial representation of
nodes in a certain view, and then observe the effect of multiscale neighbors. During the
experiment, for the multiscale neighbor graph, we adopted different graph neural network
models, such as NGCF, GCN, LightGCN, and GAT, to learn various neighbor embedding
and observe the robust effect of multiscale neighbor signals. In the experiment, the hyper-
parameters λ, λAtt, and λInt are set to 0.01.

6. Experimental Results

In this subsection, we compare the proposed MSNAN model with the benchmark mod-
els in terms of MAE and RMSE metrics on three datasets. The experimental results are shown
in Table 2. In Table 2, we have the following observations from the experimental results.

Table 2. MAE and RMSE results of different methods on three datasets.

Method
ML-100kr BK-10C Douban

MAE RMSE MAE RMSE MAE RMSE

NCF 0.7457 0.9342 1.1611 1.5288 0.5781 0.7304
NGCF 0.7298 0.9195 1.1241 1.4776 0.5768 0.7271
GCN 0.7253 0.9178 1.1333 1.4772 0.5766 0.7259
LightGCN 0.7260 0.9182 1.1166 1.4794 0.5709 0.7213
GAT 0.7257 0.9186 1.1250 1.4813 0.5770 0.7238
AFM 0.7319 0.9238 1.1170 1.4786 0.5643 0.7136
Wide&Deep 0.7204 0.9152 1.1151 1.4807 0.5654 0.7141
ACCM 0.7145 0.9027 1.1983 1.5373 0.5789 0.7301
TANP 0.7881 0.9757 1.2081 1.5336 0.5767 0.7274

MSNAN + NGCF 0.6910 0.8842 1.1029 1.4586 0.5536 0.7069
MSNAN + GCN 0.7008 0.8890 1.1038 1.4598 0.5643 0.7091
MSNAN + LightGCN 0.6949 0.8815 1.1003 1.4563 0.5517 0.7003
MSNAN + GAT 0.6973 0.8901 1.1047 1.4607 0.5617 0.7034
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Through the comparison results, the performance of MSNAN shows excellent improve-
ments on three datasets. For example, compared with the ACCM method of collaborative
filtering, the MAE and RMSE values of the MSNAN + LightGCN method increase by 2.74%,
2.35%, 8.18%, 5.27%, 4.70%, and 4.08% on three datasets, respectively. In addition, the MAE
and RMSE of the MSNAN + NGCF model have achievements of 3.29%, 2.05%, 1.09%,
1.26%, 1.90%, and 0.94% over the best baseline on three datasets, respectively. Meanwhile,
the improvements of the MSNAN + LightGCN model to the best baseline are 2.74% and
2.35% for MAE and RMSE on the ML-100kr dataset, 1.33% and 1.41% on the BK-10C dataset,
and 2.23% and 1.86% on the Douban dataset, respectively. This shows that the proposed
MSNAN model can better learn the embedding representation of users and items and
effectively improve the accuracy of rating prediction, which verifies the significance of
collaborative semantics of multiscale neighbors.

Compared with these graph neural network baselines, the proposed MSNAN based
on multiscale neighbors achieves competitive improvements on all datasets. For example,
on the ML-100kr dataset, the MSNAN + NGCF, MSNAN + GCN, MSNAN + LightGCN,
and MSNAN + GAT methods improve by 5.32%, 3.83%; 3.38%, 3.14%; 4.28%, 4.00%; and
3.91%, 3.10% over the NGCF, GCN, LightGCN, and GAT baselines on MAE and RMSE
metrics. In addition, on the BK-10C dataset, the MSNAN + NGCF, MSNAN + GCN,
MSNAN + LightGCN, and MSNAN + GAT methods also improve MAE and RMSE values
by 1.89%, 1.29%; 2.60%, 1.18%; 1.46%, 1.56%; and 1.80%, 1.39% over the corresponding
graph model baselines, respectively. This is because the node embedding of MSNAN
combines collaborative semantics of multiscale neighbors, which purifies the important
information of similar neighbors in rating prediction. However, for different graph neural
network models, the representation quality of nodes is different, and the superposition
effect of MSNAN is also different. As is known, LightGCN simplifies the transformation
matrix and activation function, which obtains the highest embedding quality of node
representation, and can also improve the performance of this method. The performance
of the general GCN method is relatively backward. In addition, compared with ACCM
and AFM methods, the MSNAN approach can achieve a smaller error in the rating pre-
diction scenario, which indicates that the proposed model can better learn the embedding
representation of users and items with the collaborative signal of multiscale neighbors.

7. Discussion and Analysis

7.1. Sparsity Analysis

Sparse recommendation is a challenging problem in recommender systems. The spar-
sity problem of the user–item interaction matrix makes it difficult to learn the semantic
representation of users and items, and reduces the accuracy of rating prediction results.
In order to observe the robust advantage of multiscale neighbor signals for sparse recom-
mendation, we conduct the comparative experiments by randomly shielding the rating
labels and setting different sparsity proportions for three datasets. In the experiment, we
compare the performance of proposed MSNAN model with several graph neural network
methods on MAE and RMSE metrics. The experimental results are shown in Figures 2–7.

In the above figures, with the increase in data sparsity, the MAE and RMSE values of
all methods show an increasing trend, which indicates that the error of rating prediction is
gradually increasing. This demonstrates that high data sparsity can affect the quality of
embedding representation of users and items and reduces the accuracy of recommendation
results. In addition, with the improvement in data sparsity, the MAE and RMSE values
of the graph neural network methods fluctuate. This is because the benchmark models
of graph neural networks only consider one type of neighbor information of the user–
item interaction matrix. Insufficient interaction records lead to the difficulties of higher-
order information propagation of single-type neighbors, which limits the stability of node
embedding representation.
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Figure 2. MAE results of different methods on the ML-100kr dataset with different sparsity proportions.

Figure 3. RMSE results of different methods on the ML-100kr dataset with different sparsity proportions.

Compared with graph neural network methods, the proposed MSNAN model con-
sistently yields the best performance for MAE and RMSE on three datasets to adapt the
sparsity ratio of different scales. For different graph neural network models, the result
of blending the MSNAN model is more generalized than the original model. As shown
in Figures 4–7, when there is a low drop ratio, LightGCN can obtain better performance
compared with other graph neural network methods due to its better node representation
quality. This is because LightGCN itself effectively learns the embedding representation
of nodes by simplifying the nonlinear structure and reducing complexity. In large-scale
e-commerce platforms, the sparsity of user–item interactions can be high. It is difficult to
find collaborative neighbors based on the similarity of interaction behaviors. Although the
user–item matrix loses a part of interaction records, the proposed model fuses various
neighbor information from attribute views and rating views, which fully learns the rep-
resentations of users and items. According to the attributes of users or items, we can
find neighbors of different scales and conduct collaborative filtering recommendation.
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Moreover, the model takes advantage of high-quality collaborative signals from multiscale
neighbors for improving the quality of embedding representation, which is suitable for the
practice of large-scale e-commerce and alleviates the performance impact of data sparsity
to some extent.

Figure 4. MAE results of different methods on the BK-10C dataset with different sparsity proportions.

Figure 5. RMSE results of different methods on the BK-10C dataset with different sparsity proportions.
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Figure 6. MAE results of different methods on the Douban dataset with different sparsity proportions.

Figure 7. RMSE results of different methods on the Douban dataset with different sparsity proportions.

7.2. Impact of Neighbor Embedding

For the multiscale neighbor embedding, the neighbor embedding of different views
contributes differently, which affects the result of rating prediction. To observe the roles
of different types of neighbor embedding, Figures 8–10 give the performance of methods
by removing different attribute-view neighbor embedding. In Figure 8, for the ML-100kr
dataset, the users have three types of neighbor embedding. We can see that the MAE and
RMSE of three att-view neighbor embedding change greatly compared with the other two
types, which states that three att-view neighbor embedding plays an important role in
predicting the interest rating of the target user. That is, through the neighbor interaction
graphs with multiple similar attributes, the multiscale neighbor embedding achieves a
stronger ability to express the preference of target user, which also demonstrates that
neighbors with fine-grained interests play a greater role in collaborative recommendation.
Similarly, for the BK-10C dataset, after removing the four att-view neighbor embedding,
the MAE and RMSE values change the most, which indicates that four att-view neighbor
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embedding makes the greatest contribution on modeling the preference of the user. For
the Douban dataset, two att-view neighbor embedding is important. These results indicate
that multiscale neighbors on different views have a collaborative effect on the user’s
preference decisions.

(a) MAE (b) RMSE

Figure 8. Ablation study of multiscale neighbor embedding on the ML-100kr dataset.

(a) MAE (b) RMSE

Figure 9. Ablation study of multiscale neighbor embedding on the BK-10C dataset.

(a) MAE (b) RMSE

Figure 10. Ablation study of multiscale neighbor embedding on the Douban dataset.
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7.3. Visual Explanation Study

In order to further observe the influence of multiscale neighbor embedding on user
decision-making, Figures 11–13 report the attention weight of attribute-view neighbor
embedding and interaction-view neighbor embedding of 10 users for three datasets.
In Figure 11a, the weight of three att-view is the largest, which indicates that similar
neighbors with multiple attributes can have a major contribution on capturing collabora-
tive signals. One att-view neighbor embedding can also capture coarse-grained semantic
interests for collaborative filtering. This important insight allows us to select neighbors for
users and items with different numbers of attributes, and capture rich signals for collabora-
tive filtering recommendation tasks. In addition, in Figure 11, the user’s final embedding
representation is most affected by the four att-view embedding and eight sco-view em-
bedding. By observing the dataset of BK-10Core, we find that most users are used to
evaluating the items with high score values, which leads to a large contribution of the
high-score-view embedding. Meanwhile, the rating neighbor matrix is relatively sparse,
which makes the difference between the weight values of various types of high-score-view
embeddings small.

(a) Attribute-view (b) Interaction-view

Figure 11. Attention weight of multiscale neighbor embedding for 10 users on the ML-100kr dataset.

(a) Attribute-view (b) Interaction-view

Figure 12. Attention weight of multiscale neighbor embedding for 10 users on the BK-10C dataset.
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(a) Attribute-view (b) Interaction-view

Figure 13. Attention weight of multiscale neighbor embedding for 10 users on the Douban dataset.

8. Conclusions

In this paper, we propose a multiscale neighbor-aware attention network for collab-
orative filtering recommendation. The proposed strategy fuses the global semantics of
various types of neighbors and important local embedding of multiscale neighbors. Multi-
ple attribute-view neighbors and interaction-view neighbors provide collaborative signals
to predict the user’s rating of items. Experiments verify the effectiveness of collaborative
contributions of multiscale neighbors for learning user and item representation. The key
finding is that the combination of multiscale attribute neighbors and interactive neigh-
bors can improve the accuracy of recommendation, and alleviate the poor performance of
recommendation in the case of sparse data. The disadvantage is that the computation of
multiscale neighbors requires different graph structures to learn the representation of nodes.
The platform can construct the graph structure offline and calculate multiscale neighbors,
which can reduce the online resource requirements. However, in the e-commerce scenario,
the proposed method can realize targeted personalized recommendation according to
different attribute neighbors of users. In particular, for some cold-start users who do not
have interactive behaviors, the method can select neighbors with similar attributes for the
target user according to one’s social attribute set, and then conduct collaborative filtering
recommendation. Some products and services can be recommended based on similar
attribute preferences of neighbors for target users. In addition, by combining with the
behavioral preferences of group users, we can make rating predictions and recommend
popular products for target users.

In future work, by investigating the semantic difference of various attribute and in-
teractive behavior views, we can focus on a consistency study of node representations on
different behavior views and improve the accuracy and interpretability of the recommen-
dation system. In addition, heterogeneous types of semantic information from different
types of user behaviors such as evaluation, clicking, and buying can describe the ordered
semantic interests of the user. We will distinguish the types of multiple interaction behav-
iors to learn heterogeneous semantic representations and model the sequential relations
between different behaviors.
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Abstract: The pharmaceutical industry is facing significant economic challenges due to measures
aimed at containing healthcare costs and evolving healthcare regulations. In this context, pharmaceu-
tical laboratories seek to extend the lifespan of their machinery, particularly fluid bed dryers, which
play a crucial role in the drug production process. Older fluid bed dryers, lacking advanced sensors
for real-time temperature optimization, rely on fixed-time deterministic approaches controlled by
operators. To address these limitations, a groundbreaking approach taking into account Exploration
Data Analysis (EDA) and a Catboost machine-learning model is presented. This research aims to
analyze and enhance a drug production process on a large scale, showcasing how AI algorithms
can revolutionize the manufacturing industry. The Catboost model effectively reduces preheating
phase time, resulting in significant energy savings. By continuously monitoring critical parameters,
a paradigm shift from the conventional fixed-time models is achieved. It has been shown that the
model is able to predict on average a reduction of 50.45% of the preheating process duration and up
to 59.68% in some cases. Likewise, the energy consumption of the fluid bed dryer for the preheating
process could be reduced on average by 50.48% and up to 59.76%, which would result on average in
around 3.120 kWh energy consumption savings per year.

Keywords: energy consumption; IoT-based power control systems; machine learning; optimization
using sensor data; predictive control; pharmaceutical technology; process modeling; exploratory
data analysis

1. Introduction

The entire pharmaceutical manufacturing process comprises multiple stages, including
dispensing, granulation, drying, compression, and coating [1], as depicted in the diagram
below in Figure 1.

Fluid bed drying technology is widely employed in pharmaceutical manufacturing
due to its high efficiency in drying granules obtained through wet granulation [2]. However,
the primary challenge associated with using a fluid bed dryer lies in the time and energy it
consumes to complete the process. The drying process entails three phases: (i) preheating
the machine without introducing any product, (ii) drying the product, and (iii) cooling the
machine for product cooling. Costs are incurred in all three phases, encompassing the time
taken by the machines and the energy required for heating and air circulation. Additionally,
the budget is impacted by the number of operators involved in handling the machine [3].
The fluid bed drying of wet granules obtained through high shear granulation involves
a combination of moisture diffusion from the solid material, facilitated by hot air, and the
entrainment of this moisture through forced convection. The success of this process relies
on the uniform fluidization of the granules by hot air, ensuring efficient mass and energy
transfer. The drying time can be reduced by increasing the temperature and intake airflow.
However, each parameter must be carefully tailored for the specific granule type. The inlet
air temperature is adjusted based on the temperature signal recorded by the air sensor in
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contact with the fluidized product, ensuring it does not exceed the critical temperature for
pharmaceutical stability. Inlet air humidity is kept within a narrow dew-point range to
achieve batch-to-batch reproducibility. Thus, under optimized conditions of temperature,
humidity, and airflow entering the machine, drying takes less time and generates a high-
quality product. Temperature, pressure, and flow sensors monitor the changes throughout
the process [4,5].

Figure 1. Pharmaceutical manufacturing process.

The financial landscape, ongoing measures implemented by authorities to control
healthcare expenses, and recent changes in healthcare regulations significantly impact
pharmaceutical laboratories and manufacturers of medical products. Due to the consid-
erable cost of fluid bed dryers and other machinery used in medicine production, there
is a concerted effort to maximize the lifespan of these machines [6]. In particular, older
fluid bed dryers lack sensors that can indicate when the machine has reached the optimal
temperature for any of the three phases (preheating, drying, and cooling). Deterministic
methods are usually employed, meaning fixed times are used for each process phase, and
the machine’s operator is responsible for managing these times. Moreover, during the
drying process, the operator halts the machine after a specific duration to obtain a product
sample and measure humidity levels, thereby checking whether any critical machine param-
eters need adjustments (such as inlet air temperature or airflow). The primary aim of this
study is to propose a Catboost machine-learning model that can reduce the time needed for
the preheating phase, therefore reducing overall energy consumption, and to demonstrate
a methodology for utilizing exploratory data analysis in the analysis and optimization of
a drug production process on a large scale. The experiments were performed on a fluid bed
dyer located in a pharmaceutical manufacturing plant in Spain. The methodology used to
develop the model can be implemented in a wide range of equipment that does not possess
state-of-the-art sensor technology. Our study embraces a groundbreaking approach that in-
volves real-time monitoring of crucial manufacturing equipment parameters, representing
a paradigm shift from the conventional model. The paper is organized as follows: Section 2
presents the related work on applying artificial intelligence algorithms to improve methods
and processes in the manufacturing industry; Section 3 details the proposed methodology;
Section 4 presents the experiment set up, including a description of the fluid bed dryer and
the data collection; Section 5 presents the results in terms of energy savings for the fluid
bed dryer preheating process after applying EDA and Catboost machine learning model;
finally, Section 6 gives the main conclusions.

2. Related Work

The most significant hurdle in employing a fluid bed dryer lies in mitigating the
substantial time and energy consumption associated with completing the process. Follow-
ing the electric energy crises of the 1970s [7], electricity consumption became a topic of
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discussion. Furthermore, it has been established that global electric energy use is quickly
expanding [8], specifically in the pharmaceutical industry, which is a growing field nowa-
days. As a result, every pharmaceutical company seeks to utilize as little electric energy
as possible in many sectors, such as manufacturing fields, packing industrial processes,
and transportation to different hospitals or medical stores [9]. Utilizing advanced analytics
techniques, such as machine learning, enables us to anticipate the electricity consumption
in diverse pharmaceutical manufacturing processes, allowing us to tailor strategies to
specific domains [10]. The accurate prediction of electricity usage holds paramount impor-
tance for decision makers and policymakers within the pharmaceutical industry, given the
energy-intensive nature of its machinery. In the context of increasingly dynamic electricity
markets, where prices are subject to fluctuation, understanding and forecasting electricity
usage becomes even more critical. The ability to predict electricity costs can significantly
impact the bottom line for pharmaceutical manufacturers. Comprehending the expected
electric energy consumption empowers us to envision enhancements in pharmaceutical
manufacturing processes, aiming to reduce electricity usage. This predictive capability,
whether in the short or long term, equips us with insights into energy-saving opportunities
and strategies for optimizing current energy consumption, thus mitigating the potential
impacts of rising electricity prices. With many variables, estimating energy usage is a
problematic manufacturing task [11]. Machine learning models are currently employed in
various fields, since they are beneficial. Machine learning operates similarly to a function
that nicely maps the input data to the output. Machine-learning models can give high-
accuracy predictions for energy usage in the pharmaceutical process or the heating process
in the manufacturing process. As a result, pharmaceutical companies can use them to
enact energy-saving initiatives in different manufacturing domains. For example, machine
learning algorithms can forecast how much electric energy is utilized in a dryer machine in
manufacturing [12]. They can also be used to forecast the future-energy consumption, such
as power or organic gas [13]. Numerous studies have showcased the wide applicability
of machine learning techniques in the pharmaceutical industry [14–18]. For instance, [19]
conducted a comprehensive investigation into the implementation of Artificial Neural
Networks (ANNs) for the development and formulation of pharmaceutical products us-
ing a Quality by Design approach for tablet formulations. By leveraging historical data,
the researchers were able to gain valuable insights into the intricate interactions between
formulation variables and drug specifications. The study’s conclusions emphasized the
efficiency of neural networks and genetic algorithms in optimizing formulations, ultimately
leading to reduced energy consumption.

3. Proposed Methodology

Figure 2, from left to right, shows the overall approach for data modeling and simulat-
ing. First, a business need and objective have to be clearly agreed—in the present work, the
modeling and optimization of the drying process—due to the high energetic cost and the
evaluation that significant savings can be obtained. Next, the right data have to be captured
in order to satisfy the business objective. This is followed by data exploration/processing,
modeling and finally evaluation of the results [20]. Note that this can, in practice, become
a cyclic processing iterating back from the result evaluation phase to the data collection
phase, or even back to re-evaluate the business need.

• Define business problem: The initial phase of the machine learning workflow in-
volves defining the business problem. The duration of this step varies, ranging from
several days to a few weeks, depending on the complexity of the problem and its
specific application. During this stage, data scientists collaborate with subject matter
experts (SMEs) to gain a comprehensive understanding of the problem. This involves
conducting interviews with key stakeholders, gathering pertinent information, and
establishing overall project goals. In the case at hand, our objective is to minimize the
energy consumption in the fluid bed dryer.
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• Obtain the data: Once the understanding of the problem is achieved, it is about
obtaining the information identified and available for solving the business problem.
In our case, the data obtained from the fluid bed dryer will be used directly.

• Explore the data: The next step in the process is exploration data analysis (EDA),
which involves analyzing the raw data. The primary objective of EDA is to delve into
the data, evaluate its quality, identify any missing values, examine feature distributions,
assess correlations, and so on.

• Create the model: Model creation encompasses various tasks, including dividing
the data into training and testing sets, handling missing values, training multiple
models, fine-tuning hyperparameters, consolidating models, evaluating performance
metrics, and ultimately selecting the optimal model for deployment to forecast our
target variable. In our specific scenario, we aimed to predict the duration required
for the preheating process in order to minimize energy consumption. In this paper,
Catboost machine learning model for optimizing fluid bed dryer energy consumption
is used.

Figure 2. Overall procedure for data analysis and modeling.

Catboost Algorithm Application

Catboost Regression represents a relatively recent and purportedly potent machine
learning algorithm, offering several advantages [21]. In essence, machine learning al-
gorithms are commonly utilized to discern intricate patterns within extensive datasets,
enabling predictions of future behaviors. Catboost specifically leverages gradient boosting
for decision trees. In both regression and classification scenarios, gradient boosting serves
as a machine learning technique that constructs a prediction model by combining multiple
“weak prediction models”, typically decision trees [22]. The fundamental concept revolves
around applying steepest descent steps to a minimization problem, known as functional
gradient descent. The gradient boosting process progressively generates a series of approxi-
mations Ft: Rm→R, with t = 0, 1, . . ., in a step-by-step manner. Each Ft is derived additively
from the previous approximation Ft−1, following the formula: Ft = Ft−1 + αht, where α

represents a step size and function ht: Rm→R, referred to as a base predictor, is selected
from a family of functions H to minimize the expected loss ht. Catboost, in particular,
implements gradient boosting using binary decision trees as the function h(x), defined as

h(x) =
J

∑
j=1

bjl{x∈Rj}
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In Catboost’s implementation, the regions Rj represent the disjoint leaves of the
decision tree, and bjl{x∈Rj} denotes the jth binary variable corresponding to attribute x. One
notable advancement of Catboost is its ability to process mixed data types simultaneously
for model construction. It can handle both categorical inputs (converted to numbers) and
numerical inputs effectively. Additionally, two of its strong features are (i) the default hyper-
parameters, which require minimal tuning and perform well across various data scenarios,
and (ii) its built-in mechanism for auto-correction, which helps prevent overfitting. When
applying Catboost to the data, certain measures were taken to address concerns about
model size and memory consumption by setting specific meta-parameters:

• RAM limit—a limit value was set to restrict memory usage.
• Max_ctr_complexity—it was assigned a value of 1 or 2 to control the complexity of

interactions. The default value is 4.
• Model_size_reg—a larger value was assigned to penalize heavy combinations.

It is worth noting that memory usage currently remains a significant limitation of
Catboost. Catboost demands that all data be immediately accessible in memory for quick
random sampling, unlike stochastic gradient and neural network models. An additional
critical concern is the sensitivity of Catboost to hyper-parameters and the significance of
conducting hyper-parameter tuning. These factors can be influenced by the Big Data envi-
ronment, such as the Apache Spark distributed framework [23]. Further details regarding
hyper-parameter tuning will be provided later in the study. When dealing with extremely
large datasets, an approach to address this challenge involves fitting the Catboost model
to a representative sample using the Catboost Python API. Subsequently, the model can
be applied to the larger dataset using Apache Spark or Hadoop with the aid of Catboost’s
Java API. This methodology enables the efficient processing of massive datasets within the
distributed computing environment.

4. Methodology Applied to Fluid Bed Dryer

4.1. Fluid Bed Dryer

The fluid bed drying machine utilized in this study is the Fielder Aeromatic MP,
located within a pharmaceutical manufacturing plant in Spain, as depicted in Figure 3.
This machine is equipped with 56 sensors controlled by Programmable Logic Controller
(PLC), and the SCADA (Supervisory Control And Data Acquisition) system, which enables
operators to monitor and adjust essential parameters, such as the inlet air temperature
and air flow. Three critical parameters significantly impact the efficiency of the drying
process and, consequently, can influence the final product’s quality. These parameters are
temperature, humidity, and air flow. In theory, a higher inlet air temperature and flow
rate lead to a shorter drying time. However, it is essential to configure each of these three
parameters correctly, depending on the specific product type, to prevent quality issues
and degradation of the final product post-drying. Notably, it is crucial to ensure that the
inlet air temperature does not exceed the critical temperature of the product to be dried,
as surpassing this threshold could jeopardize its quality and pharmaceutical properties.
Careful monitoring and regulation of these parameters are vital to maintaining product
integrity and achieving desired outcomes during the drying process.

In this process, the operator utilizes SCADA to monitor the increase in outlet air
temperature during the product drying phase. It is essential to note that when the product
is completely dried, the outlet air temperature aligns closely with the inlet air temperature.
At this critical point, the operation must be halted promptly to avoid jeopardizing the
product’s quality and prevent the unnecessary consumption of time and energy, leading
to increased process costs. As the fluid bed drying machine lacks sensors to indicate the
optimal temperatures for different drying phases (preheating, drying, and cooling), human
operators typically rely on fixed time durations for these phases. However, the preheating
phase may vary in time depending on the operator’s experience with the machine. During
the preheating phase, the fluid bed dryer contains no drug product; instead, it receives
hot air for machine preheating. Once preheating is complete, operators introduce the drug
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product to initiate the drying phase. During drying, operators take samples to analyze
various chemical parameters. After drying, the cooling process commences. Once all
three phases are finished, the fluid bed dryer undergoes cleaning before a new batch is
processed. Overall, continuous monitoring of the outlet air temperature through SCADA is
crucial to ensure the preheating process is controlled effectively and prevent unnecessary
energy consumption.

Figure 3. Fluid bed dryer Fielder Aeromatic.

4.2. Data Collection

For this study, a fluid bed dryer machine was used, which is presently operational in
a real pharmaceutical plant belonging to a multinational company in Spain. This machine
typically handles one to two batches of pharmaceutical drug granules each day, with each
batch comprising approximately 150 kg of drug mixed with 25 kg of alcohol and 10 kg
of another excipient before entering the fluid bed dryer. The fluid bed dryer is equipped
with 56 sensors that measure several parameters, including inlet/outlet air temperature,
air flow (m3/h), motor rotation speed (rpm), air pressure (Pa), and others. Each sensor
records data at a minute-by-minute interval. A dataset covering a year and a half of data
has been accumulated, comprising more than 700,000 readings for each of the 56 signals.
Data collection was accomplished through a Programmable Logic Controller (PLC) and
stored in a SCADA system. These datasets served as the foundation for our subsequent
analysis and optimization of the fluid bed drying process. Table 1 shows a sample from
the fluid bed dryer sensors, including a description for each signal, the minimum and
maximum value and their units of measure.

Some of these sensors are involved in different processes, such as granulation (column
PMA), drying (column TSG) or cleaning (column CIP). For the exploration phase, be the
sensors involved just in the drying process were selected (column TSG), but, as it will be
explained in next section, for the data modeling, all of these were selected, to simulate
a real situation where it would not able to differentiate which sensor belongs to which
phase. Figure 4 illustrates the SCADA interface utilized by operators to interact with the
machine, providing functionalities such as starting/stopping the controller and displaying
indicators for the inlet air temperature, inlet air flow, and more. To conduct our analysis, the
data from SCADA was exported into a tabular format comprising over 700,000 rows and
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56 columns, containing the recorded information from the various sensors and parameters
of the fluid bed dryer. This comprehensive dataset was the basis for our further exploration
and optimization of the fluid bed drying process.

Table 1. Fluid Bed Dryer sensors.

Item TagName (Symbol) Description Min Max Units PMA TSG CIP

1 FS3_GEA_EIS1200_ME Impeller power [Kw] 0 300 Kw X

2 FS3_GEA_EOP_GP Current EOP in GP 0 1000 None X

3 FS3_GEA_EOP_MP Current EOP in MP 0 1000 None X

4 FS3_GEA_FIC1217_ME Liquid flow rate in GP [cl/min] 0 833 cl/min X

5 FS3_GEA_FIC1217_XS Liquid flow setpoint in GP [cl/min] 0 833 cl/min X

6 FS3_GEA_FIC200_ME Air flow [m3/h] 0 4500 m3/h X

7 FS3_GEA_FIC200_XS Air flow setpoint [m3/h] 0 4500 m3/h X

8 FS3_GEA_FIC701_ME Spray liquid flow in MP [cl/min] 0 667 cl/min X

9 FS3_GEA_FIC701_XS Spray liquid flow rate setpoint in MP [cl/min] 0 667 cl/min X

10 FS3_GEA_LI940_ME Cleaning water tank level [L] 0 500 L X

11 FS3_GEA_MIS213_ME Inlet air humidity [g/Kg] 0 250 g/Kg X

12 FS3_GEA_NFGP No. Current phase in execution in GP 0 1000 None X

13 FS3_GEA_NFMP No. Current phase in execution in MP 0 1000 None X

14 FS3_GEA_NFW No. Current cleaning phase in execution 0 1000 None X

15 FS3_GEA_NW No. Current cleaning in execution 0 1000 None X

Figure 4. Fluid bed dryer SCADA.
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On the SCADA screen, the status of the station in detail can be seen, including the
values of the sensors and valves, for example the temperature or pressure, and in the upper
right, it shows the state of the fluid bed dryer, what process it is carrying out and what state
each of them is in (granulating, drying or cleaning). For example, when steam is added
to the fluid bed dryer to control the humidity of the air that is introduced into the dryer,
if the humidity is very low, more steam is added to increase it. The air that is introduced
into the dryer allows us to control both the temperature and its humidity. The pressure
of the dryer is indicative of the clogging of the filters: if there is a big difference between
the internal pressure and the output pressure, it means that it has dirty filters, and you
need to clean them. The SCADA records and monitors the operating status of the fluid
bed dryer in its operating modes and states and the duration of these and the registers of
the analog parameters involved. Taking into account the drying process and how the fluid
bed machine works, four sensors were selected for the exploration analysis. The signals
recorded by the different sensors in the fluid bed dryer were as follows:

• Fan motor: this signal indicates whether the fluid bed dryer is currently running (ON)
or turned off (OFF).

• Air flow: This signal represents the quantity of air flowing into the fluid bed dryer,
measured in cubic meters per hour (m3/h). The machine operator configures this
parameter. Monitoring the air flow helps distinguish between the preheating and
drying phases, as both processes require air to be completed.

• Inlet air temperature: this signal indicates the initial temperature of the air entering
the fluid bed dryer, and it is set by the machine operator at the start of the process.

• Outlet air temperature: this signal indicates the temperature of the air leaving the fluid
bed dryer.

During the operation of the fluid bed dryer and the commencement of the hot air inlet
process, it is essential to consider the heat absorbed by the machine to reach the preheating
temperature. The temperature difference between the outlet air temperature and the inlet
air temperature helps determine the amount of heat absorbed by the fluid bed dryer. When
the machine reaches a point where it cannot absorb more heat, the inlet air temperature
will become similar to the outlet air temperature. To better understand the behavior of the
process, the temperature difference of the air inlet and outlet of the machine was utilized,
denoted as TAD, which is defined in Equation (1):

TAD = TAs − TAe. (1)

where TAs represents the outlet air temperature, TAe represents the inlet air temperature,
and TAD represents the temperature difference.

5. Experimental Results

5.1. Exploratory Data Analysis

The dataset used for machine learning analyses is the same that was used for the
exploratory data analysis. It includes various parameters related to the fluid bed dryer’s
operation, such as the inlet and outlet air temperatures, airflow rate, and the phase number
the machine is in (preheating, drying, or cooling). Information from over 200 batches of
dried drug product, covering a span of 18 months of production, was also accessible for
analysis. The variables used in the current study were the following:

• The phase indicator takes values 1, 2, or 3, representing the current phase of the fluid
bed dryer. Phase 1 indicates preheating, Phase 2 is the drying phase, and Phase 3
indicates cooling after the drying process.

• The inlet air temperature sensor represents the temperature at which the air enters the
machine during any of the three phases (preheating, drying, or cooling).

• The outlet air temperature signal corresponds to the temperature at which the air
leaves the machine.

• The inlet airflow sensor indicates the volume of air supplied by the machine’s fan.
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• The fan motor signal is useful for determining when the machine is active during any
of the three phases, indicating the fan motor’s movement.

In the next step of the analysis, random days will be selected to observe the behavior
of the machine signals during the preheating, drying, and cooling processes for each batch
of pharmaceutical product processed. The primary goal of this exploration is to identify
trends and gain a better understanding of fluid bed dryer processes, with the objective
of identifying opportunities for improvement. Figure 5 visually depicts the behavior of
the signals on different days, representing a full day of fluid bed dryer operation. The
x-axis represents the elapsed time for one day of fluid bed dryer operation (1440 min,
corresponding to 24 h), while the y-axis indicates the difference in temperature between
the machine’s inlet and outlet air. The blue dots indicate the preheating process, the orange
dots represent the drying process, and the green dots represent the cooling process.

Figure 5. Plot of the drying steps.

Figure 6 shows a sample of 4 different days taken randomly, where it can be observed
that some days, the fluid bed dryer processed one batch, and other days two batches, with
an average of around 350 min per batch. In the figure dated 2 December 2019, there are
two batches that were processed, and if looking at the blue dots, it can be seen that the
preheating process lasted much longer in the two batches, compared to the duration of the
preheating process; for example, on 7 October 2018, the blue dots were much smaller and
the temperature difference, the y-axis, did not exceed 10 degrees. It can also be observed
that the duration of the drying process, the orange dots, was more or less homogeneous,
and lasted approximately the same for all the days and all the batches (x-axis); as well as
this, the temperature differences were approximately similar (y-axis). As a conclusion, it is
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evident from the data that the duration of the preheating process exhibits variability. To
preheat the fluid bed dryer, some batches take a longer time preheating the machine than
others, with the consequent unnecessary consumption of energy.

Figure 6. Example of 4 different days of batch drying. Above each figure is plotted the date of the
batch (1.0 Preheating, 2.0 Drying, 3.0 Cooling).

5.1.1. EDA Timing Savings Analysis

In Figure 7, it can be observed for the 200 batches analyzed how many minutes on
average the fluid bed dryer was used to perform the preheating process. Each blue line
indicates, for each individual batch, the time taken to complete the preheating process in
the fluid bed dryer. The variability in the preheating duration is attributed to the manual
operation of the process, as it relies on the operator’s discretion to start and finish the
preheating phase; considering the age of the machine, the machine is kept for preheating
less than 50.1 min, whereas other times, the machine is kept preheating for up to 180.3 min.
The fluid bed dryer is initially set up with hot air inlet at 45 degrees and airflow 2000 m3/h.
However, the fluid bed dryer does not have any sensor notifying when the machine is
warm enough to introduce the drug product and start the drying process. The brown line
in the graph indicates the average that was 99.7 min to complete the preheating process.
To summarize, this indicates again the opportunity to harmonize the preheating process
by establishing an optimum preheating time, and potentially, to be able to reduce the
preheating process time, and consequently reduce the fluid bed dryer energy consumption.

5.1.2. EDA Energy Savings Analysis

Figure 8 shows the variability of analyzing the energy consumption used to complete
the preheating process for each batch in the fluid bed dryer. The energy consumption ECb
was calculated using Equation (2):

ECb = Batcht∗ Cpm (2)

where Batcht is the time consumed by the fluid bed dryer for preheating the batch, and
Cpm corresponds to the fluid bed dryer energy consumption per minute. The fluid bed
dryer currently consumes 18.5 kWh during the preheating process; this means that for each
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minute it consumes 0.31 kWh (18.5 kWh/60 min = 0.31 kWh). If the preheating process
may take between 50.1 and 180.3 min, the fluid bed dryer consumes between 15.5 kWh and
55.8 kWh for preheating the machine to dry one batch of drug product.

Figure 7. Fluid bed dryer preheating duration in minutes. Brown line indicates average duration.

Figure 8. Fluid bed dryer preheating energy consumption (kWh). Brown line indicates average duration.
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It can be observed that some batches needed 55.8 kWh; however, other batches needed
less than 15.5 kWh, which means in some cases around 72.2% less energy consumption
for some batches. The brown line indicates the average consumption for the 200 batches,
around 30.9 kWh. This indicates important potential energy savings if the preheating
process in the fluid bed dryer is optimized. To calculate the potential energy savings of the
fluid bed dryer during the preheating process for each batch, a machine learning model
was implemented, as discussed in the next chapter, to predict when the right time was to
stop the process, and therefore, consume just the energy needed for preheating the fluid
bed dryer.

5.2. Catboost Machine Learning Model Analysis

As described in this section, a Catboost model was selected and executed using the
historical data obtained from the activity of the fluid bed dryer process in the production
plant. Due to the fluid bed dryer’s age, one of the primary problems is that it does not
have sensors that can detect whether the air within is at the right temperature to conclude
the preheating process. From the perspective of data modeling, the issue has a number of
intriguing characteristics:

• Due to the inclusion of 56 sensors, there are a large number of possible inputs (700.000 rows
and 3 GB data).

• There are a lot of manufacturing batches, more than 200, but the machine does not keep
track of when the preheating operation starts or ends. As a result, the deduction is
carried out using the machine’s air inlet and output as well as temperature differences.

• The goal is to interpret the estimated model in a way that can reveal the factors that
influence the air inlet- and outlet-temperature differential curves. Using this method,
it is possible to estimate how long the preheating process will take.

To estimate the preheating time conceptually, a function model f (i) was constructed
using the data of a matrix X, which contained the data taken from the fluid bed dryer. In
order for the operators to know when it is best to cease the machine’s preheating operation
and so save energy, the information present in the machine learning model was used to
anticipate the estimated preheating time for each batch. The time remaining for the fluid
bed dryer to finish preheating (based on the inlet–outlet temperature disparities) was the
predicted output from our model. Data preprocessing techniques were used on the input
dataset to remove unnecessary information, such as missing values, in preparation for
future analysis. The first step to select the most suitable model was to split the dataset
into training and testing data. This technique is used for evaluating the performance of a
machine learning algorithm. It can be used for classification or regression problems and
can be used for any supervised learning algorithm. The process consists of taking a dataset
and dividing it into two subsets. The first subset is used to fit the model and is referred
to as the training dataset. The second subset is not used to train the model; instead, the
input element of the dataset is provided to the model, then predictions are made and
compared to the expected values. This second dataset is referred to as the test dataset.
The objective of splitting the dataset into train and test is to estimate the performance of
the machine learning model based on new data that will be captured directly from the
fluid bed dryer, namely, to fit it on available data with known inputs and outputs, then
make predictions on new examples in the future where there are not the expected output
or target values. The train–test procedure is appropriate when there is a sufficiently large
dataset available, which means that there are enough data to split the dataset into train
and test datasets and each of the train and test datasets are suitable representations of the
problem domain. To perform the evaluation and selection of the best-fit algorithm for the
fluid bed dryer process, the Python libraries were used. The same dataset was injected in
the different algorithms. The dataset contained 18 months data coming from the 56 sensors
of the fluid bed dryer, and the values represented the average of 10-fold cross validation
(partitioning of the dataset into 10 parts, 9 for train and one for test, then rotating 10 times
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to obtain different combinations of partitions). The results of the most relevant algorithm’s
evaluation are shown in Table 2.

Table 2. Benchmarking outcomes of various machine learning algorithms on the dataset.

Model MAE MSE RMSE R2

CatBoost Regressor 8.3507 144.1894 11.8781 0.6806
Light Gradient Boosting Machine 9.3655 168.9438 12.8561 0.6285
Extreme Gradient Boosting 9.3243 188.3094 13.3581 0.5845
Random Forest Regressor 10.6074 195.4555 13.8601 0.5616
Gradient Boosting Regressor 10.6236 211.7174 14.3607 0.5365
K Neighbors Regressor 13.3827 301.5125 17.1741 0.3466
AdaBoost Regressor 14.2045 297.2756 17.1463 0.3375
Orthogonal Matching Pursuit 16.1283 402.0394 19.9813 0.1090
Lasso Regression 16.3557 407.1744 20.0864 0.1020
Elastic Net 16.6512 412.9383 20.2066 0.0947
Bayesian Ridge 16.6316 420.1060 20.3491 0.0779
Decision Tree Regressor 14.0376 411.2750 19.9699 0.0285
Ridge Regression 16.4399 450.6532 21.0216 0.0156

Based on Table 2, the Catboost Regressor has the lowest MAE of 83.507 and the lowest
RMSE of 118.781, indicating that it has the best predictive accuracy compared to the other
models. It also has the highest R2 value of 0.6806, indicating that it can explain about
68.06% of the variance in the target variable. The Light Gradient Boosting Machine has the
second-best performance, with slightly higher MAE and RMSE values than the Catboost
model, and an R2 value of 0.67. The Extreme Gradient Boosting, Random Forest Regressor,
and Gradient Boosting Regressor models have higher MAE, MSE, and RMSE values and
lower R2 values than the Catboost and Light Gradient Boosting models, indicating that they
may not perform as well on this specific dataset, the same as the rest of the models. To select
the best metric for the Catboost algorithm, the nature of the problem and the evaluation
criteria was considered. To measure the proportion of variance in the target variable that
can be explained by the model, R2 was the most suitable metric. MAE was discarded
because it focuses on minimizing the average absolute difference between predicted and
actual values, and MSE or RMSE penalize larger errors more than smaller errors.

5.2.1. Time Duration Analysis

In Figure 9, the real duration of the preheating process per month from the historical
dataset can be seen in blue. This duration is measured in minutes and represents the average
of the time spent by the process for the whole month. This measure was performed for
the 200 batches evaluated during 18 months. The results show that the preheating process
duration varied from one month to another and fell between 88.5 and 110.6 min, depending
on when the optimal temperature difference in–out was reached. The average duration of
the 200 batches during the 18 months was around 99.7 min. This key information allowed
us to calculate the real consumption of the preheating process. Figure 9 also shows the
Catboost prediction duration of the preheating process. It can be observed how for the
200 batches, during 18 months of evaluation, the predicted time was always lower than
the real time. The reduction in the predicted time was significant, ranging from 34.7 min
(39.2% time reduction) in the month of December 2018 to 66.0 min (59.68.2% reduction) in
the month of October 2018. The optimal time predicted by the algorithm corresponded
to an average per month between 42.5 and 59.5 min, with an average of 49.4 min. The
average predicted time reduction was 50.3 min. Therefore, the duration of the process can
be reduced on average by 50.45%.
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Figure 9. Time duration for preheating process comparing real duration with Catboost prediction.

5.2.2. Energy Saving Analysis

In Figure 10, the real energy consumption of the preheating process per month from
the historical dataset can be seen in blue. This energy consumption is measured in kWh
and represents the average of the energy spent by the process for the whole month per
batch. This measure was performed for the 200 batches, evaluated over 18 months. The
results show that the real preheating-process energy consumption varied from one month
to another and fell between 27.1 kWh and 34.3 kWh per batch every month, depending
on when the optimal temperature difference in–out was reached. The average energy
consumption of the 200 batches as 30.9 kWh per batch.

Figure 10 shows also the Catboost prediction energy consumption of the preheating
process. It can be observed how for the 200 batches, during the 18 months of evaluation,
the predicted energy consumption was always lower than the real energy consumption.
The reduction in the predicted energy consumption was significant, ranging from 10.8 kWh
(39.8% energy reduction) in the month of December 2018 to 20.5 kWh (59.76% energy
reduction) in the month of October 2018.

The optimal energy consumption predicted by the algorithm per batch corresponded
to on average between 13.2 kWh and 18.4 kWh. The average predicted energy reduction was
15.6 kWh. Consequently, the reduction in energy consumption predicted by the algorithm,
to complete the prehearing process, represented 50.48% less energy. The total energy saving
was calculated using Equation (3), with Nbatches being the number of batches and ESb the
energy saved per batch.

ESt = Nbatches∗ ESb (3)

Based on Figure 9, there is a potential saving of 50.3 min per batch each time the fluid
bed dryer is preheated. This means a saving of around 15.6 kWh per batch (50.3 min ×
0.31 kWh). If the fluid bed dryer processes approximately 200 batches per year, based on
the current estimation, then the annual potential energy savings could be approximately
3.120 kWh when applying Equation (3).
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Figure 10. Energy consumption for preheating process comparing real energy with Catboost prediction.

6. Conclusions

This paper introduced an exploration data analysis methodology tailored for the anal-
ysis and optimization of a large-scale drug production process, and a Catboost machine
learning model implementation, specifically focusing on the preheating stage of pharma-
ceutical granules using a fluid bed dryer. As a conclusion drawn from the exploratory data
analysis of the signals, it can be stated that the preheating phase lasts longer than necessary.
Some batches need less than 50.1 min to complete the preheating process; however, there
are batches that take up to 180.3 min. In terms of energy consumption, this means that for
some batches, the fluid bed dryer consumes 15.5 kWh, and for others it consumes 55.8 kWh,
which could represent savings, in some cases, of 72.2% of energy. In addition, the most
suitable model for the fluid bed dryer prediction process was selected based on the current
dataset obtained from the activity of the fluid bed dryer process in the production plant.
First, several models, including Catboost, Elastic net, Random Forest or Linear Regression,
were compared. Catboost was selected because it provided the lowest error and, at the
same time, the highest R2, as it has been described in previous sections. Once the model
was selected, the analysis of the historical dataset, with 200 batches from 18 months of
production, was performed. It has been shown that the model is able to predict on average
a reduction of 50.45% of the preheating process duration and up to 59.68% in some cases.
Likewise, the energy consumption of the fluid bed dryer for the preheating process could
be reduced on average by 50.48% and up to 59.76%, which results on average in around
3.120 kWh of energy consumption savings per year.
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Abstract: A network intrusion detection tool can identify and detect potential malicious activities
or attacks by monitoring network traffic and system logs. The data within intrusion detection
networks possesses characteristics that include a high degree of feature dimension and an unbalanced
distribution across categories. Currently, the actual detection accuracy of some detection models is
relatively low. To solve these problems, we propose a network intrusion detection model based on
multi-head attention and BiLSTM (Bidirectional Long Short-Term Memory), which can introduce
different attention weights for each vector in the feature vector that strengthen the relationship
between some vectors and the detection attack type. The model also utilizes the advantage that
BiLSTM can capture long-distance dependency relationships to obtain a higher detection accuracy.
This model combined the advantages of the two models, adding a dropout layer between the
two models to improve the detection accuracy while preventing training overfitting. Through
experimental analysis, the network intrusion detection model that utilizes multi-head attention and
BilSTM achieved an accuracy of 98.29%, 95.19%, and 99.08% on the KDDCUP99, NSLKDD, and
CICIDS2017 datasets, respectively.

Keywords: intrusion detection; deep learning; multi-head attention; BiLSTM

1. Introduction

In recent years, network intrusion has gradually expanded, resulting in the theft of
personal privacy and becoming the main attack platform [1]. Intrusion detection, as one of
the most important network security protection tools after firewalls, plays a more important
role in network security defense systems [2]. It can be defined as “network security devices
that monitor network traffic to find unexpected patterns” [3]. Intrusion detection is the
process of monitoring network traffic or system activity for unauthorized access, policy
violations, and other malicious activities. The intrusion detection aims to identify potential
security breaches and alert security personnel so they can take appropriate action to prevent
further damage. There are various IDS (intrusion detection systems) to be used, including
host-based IDS and network-based IDS. Host-based IDS monitor activity on a single device
or server, while network-based IDS monitor all traffic on a network segment. Intrusion
detection is a significant component of a comprehensive cybersecurity strategy. It can
detect intrusions effectively by monitoring the status and activities of the protection system.
Therefore, it has the ability to discover unauthorized or abnormal network behaviors.

As mentioned above, intrusion detection has three types, which are host-based detec-
tion, network-based detection, and collaborative detection [4]. HIDS (Host-based intrusion
detection) is located in the software component of the monitored system, which mainly
monitors activities within the host, such as system or shell program logs. Based on the de-
tection techniques, there are two types of intrusion detection, including misuse detection [5]
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and anomaly detection [6]. Misuse detection, also known as signature-based detection, is
an application of signature matching to identify intrusions. It can effectively detect known
attacks and has a low rate of false alarms.

However, some machine learning techniques have some shortcomings, such as training
time being too long in large training sets, too sensitive to irrelevant attributes, and so on [7],
researchers try hard to adopt deep learning technology to solve these problems. Currently,
artificial intelligence technology is constantly developing, and multitudinous methods of
machine learning or deep learning have been applied to intrusion detection systems [8].
The methods that use machine learning have better performance than classical intrusion
detection methods. These methods have the ability to learn from a quantity of intrusion
data to build an intrusion detection model for distinguishing whether there is an intrusion
or not. But it still has some problems, such as the need for plentiful training samples, taking
a long time, and relying on feature selection.

Deep learning is usually a modification of artificial neural networks for feature ex-
traction, perception, and learning. Its applications are now used in scores of fields, such
as speech recognition, unmanned vehicles, image recognition and classification, natural
language processing, bioinformatics, etc. There are various neural network models using
deep learning technology. In this paper, we propose an intrusion detection model based on
multi-head attention with BiLSTM. The model completes the selection and extraction of
features based on the multi-head attention mechanism, and captures the dependencies of
vectors over longer distances through the BiLSTM model, thus improving the accuracy and
efficiency of identifying network intrusions.

2. Related Research

The first part of the related literature that uses BiLSTM for intrusion detection:
S.Siviamohan et al. [9] proposed a local university intrusion detection method based on
RNN-BiLSTM (Bidirectional Long Short-Term Memory Recurrent Neural Network), which
uses a two-step mechanism to solve the network problem. The experimental results show
that BiLSTM is better than all other RNN (Recurrent Neural Network) architectures in terms
of classification accuracy, and the prediction accuracy on the CICIDS2017 dataset reaches
98.48%, but it does not specify whether it is dual classification or multi-classification.

Nelly Elsayed et al. [10] produced an intrusion detection model by using BiLSTM and
CNN (Convolutional Neural Network). The BiLSTM recursive behavior is used to save
the information used for intrusion detection, while the CNN perfectly extracts the data
features. It can be implemented and applied to lots of smart home network gateways.

Huang Chi et al. [11] created a network intrusion detection method, which uses CNN
and BiLSTM. The former extracts local parallel features, solving the problem of incomplete
local feature extraction. The latter is used to extract long-distance related features, taking
into account the influence of attributes before and after each data point in the sequence
data, which can improve accuracy.

Liangkang Zhang et al. [12] produced a new model based on mean control, CNN and
BiLSTM. During data preprocessing, the data standardization of mean control is used to
standardize the original data, and then the CNN-BiLSTM algorithm is combined to predict.

The following are the related literature of the works that use an attention mechanism
for intrusion detection: Jingyi Wang et al. [13] proposed an intrusion detection model that
uses an attention mechanism. A SSAE (Stacked Sparse Autoencoder) was constructed
to extract the high-level feature representation of related information. Furthermore, the
double-layer BiGRU (Bidirectional Gated Recurrent Unit) network with an attention mech-
anism was used to classify data.

Haixia Hou et al. [14] proposed a method that uses HLSTM (Hierarchical LSTM) and
an attention mechanism. First of all, in order to extract sequence features across multiple
hierarchical structures on network record sequences, researchers used HLSTM. Then, the
attention layer’s function is to capture the correlation between features, redistribute the
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weight of features, and adaptively map the importance of each feature to different network
attack categories.

Yalong Song et al. [15] proposed a mechanism using BiGRU and a multi-head attention
mechanism. It can manage the data and capture the correlation between data and features.

The above articles all use artificial intelligence to predict intrusion detection but do
not make a detailed classification prediction of the type of intrusion. Some articles [13]
use binary classification, some articles [11,12,14] divide the main categories of network
intrusion, and some articles [9,10,15] do not explain the classification clearly. The above-
mentioned articles do not make a detailed prediction of intrusion detection. In order to
resolve this situation and improve our classification and precision, we propose an intrusion
detection model based on BiLSTM and a multi-head attention mechanism.

3. Model Methodology

In order to be suitable for the current NIDS (Network Intrusion Detection Systems)
methods and their characteristics, we propose a new detection method to complete intrusion
detection, which uses multi-head Attention and BiLSTM. The whole model consists of
two phases, including the training phase and the prediction phase. In the first phase, the
model’s goal is mainly to learn the original vector features of the network intrusion data,
training the network to adjust the weight parameters. Then, it can realize the training of
the proposed model through true value comparison and loss function calculation. In the
prediction phase, the predicted data was put into our model to obtain the final prediction
results, this model can also calculate the relevant performance metrics. The overall training
and evaluation structure is shown in Figure 1. A more detailed network model structure is
shown in Figure 2.

Figure 1. Overall structure of the model based on multi-head attention and BiLSTM.
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Figure 2. Intrusion detection model network structure.

3.1. Embedding

In Figure 2, we detail the model structure. First of all, we take the processed data and
use the embedding layer to transform each feature of intrusion detection into the form of
a vector.

The embedding layer is aimed to raise the dimension, and the input data is used to
represent each feature value in the original vector (i ranges from 1 to 41 for KDDCUP99
and NSLKDD datasets, i ranges from 1 to 15 for CICIDS2017 datasets). Furthermore,
ai = Embedding(xi), where ai is the one-dimensional vector corresponding to each feature
with a length of 32. At this time, the original vector is transformed into a two-dimensional
vector (taking the NSLKDD dataset as an example, the data is transformed from one-
dimensional data with a length of 41 to two-dimensional data with a length of [41, 32],
where 41 is the number of features, 32 represents the embedding dimension). We hope that
the features can be enlarged so that the model is capable of learning more characteristics
of network intrusion activities with embedding. After the embedding layer is a dropout
layer, which is used to improve the generalization ability of our proposed model. Without
the dropout layer, the model we designed is prone to overfitting which leads to the low
prediction accuracy of the test set. Therefore, the addition of the dropout layer can prevent
overfitting to a certain extent, and that is, ai = Dropout(ai).

3.2. Multi-Head Attention

Then, the processed data is passed to the multi-head attention [16] mechanism model.
The reason why we use the mechanism is that it can pay attention to the important features
in the vector, which is designed by imitating human vision [17]. It can give higher weights
to important features and lower weights to other features. The data entering the multi-head
attention mechanism model part is represented as S = (a1, a2, · · · , ai), S will be multiplied
with the weight data of the attention mechanism to obtain Q, K and V, that is, qi = SWqj,
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ki = SWkj, and vi = SWvj, the range of j is from 1 to 3. The weight matrices Wq, Wk, and Wv
can be continuously trained through learning, so the model’s fitting ability can be further
improved. The similarity matrix of different features is obtained by multiplying Q and
KT , and the similarity relationship between different features is obtained. After that, the
similarity is normalized by the Softmax function, which reduces the amount of calculation
to a certain extent. Finally, the obtained result is multiplied by V to obtain the data with
the same dimension as the input according to the Equations (1) and (2). In Equation (2), dK
represents the dimension of the K matrix. Finally, we can obtain the final result according
to Equation (3). Its structure is shown in Figure 3 schematically.

headj(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (1)

So f tmax(zi) =
exp(zi)

∑j exp(zj)
(2)

T = Concat(head1, head2, head3) (3)

Figure 3. Schematic diagram of the multi-headed attention mechanism.

3.3. BiLSTM

After that, the data weighted by the attention mechanism is fed into the BiLSTM model.
LSTM is a kind of RNN, that can learn and remember long-term dependencies, capture
the relationship between different features in the feature vector, and will not encounter the
problem of gradient disappearance or gradient explosion [18]. Graves et al. [19] reported
an important improvement in classification accuracy when using LSTM in a bidirectional
architecture. The feature vector of intrusion detection is not a time series data, but it can
analyze the relationship between distant features, associate different features, and then
make predictions. In this case, the output is a one-dimensional vector of length 128.

In the previous section, we were given the data T generated by the multi-head attention
mechanism. Data T is a two-dimensional vector composed of multiple one-dimensional
vectors, which we denote as T = (m1, m2, . . . , mi).
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We believe that for the detection of a certain relationship in the data, LSTM has the
ability to capture this longer distance dependence while being able to avoid gradient
disappearance, gradient explosion, and other problems. However, only using LSTM cannot
encode back-to-back information. Therefore, we use BiLSTM to improve the ability to
capture bidirectional features.

BiLSTM is composed of several small structures, with one basic unit consisting of four
layers, which are the input layer, forward propagation layer, backward propagation layer,
and output layer. The forward propagation layer is in charge of extracting the forward
features of the vector from front to back, while the backward transmission layer is in charge
of extracting the reverse features of the input sequence from back to front. The output
layer integrates the data output from the forward propagation layer and the backward
propagation layer. We want to extract the forward-backward correlation of the vectors, so
the output formula of BiLSTM is shown in Equation (4).

hi = [
−→
hi ⊕

←−
hi ] (4)

where ⊕ denotes the summation calculation of the corresponding elements.
−→
hi denotes

the forward output,
←−
hi denotes the backward output. Finally, hi denotes the result of the

summation of the corresponding elements.
Among them, the BiLSTM network structure has lots of single LSTM structures, and

the individual LSTM structure is shown in Figure 4.

Figure 4. LSTM network structure.

LSTM adds three gating structures in the hidden layer, namely the forget gate, input
gate, and output gate, and it also adds a new hidden cell state. In Figure 4, f (t), i(t), and
o(t) represent the forget gate, input gate, and output gate at time t, and a(t) represents
the initial feature extraction of h(t − 1) and c(t) at time t. All formulas are shown in
Equations (5)–(8).

f (t) = σ(Wf ht−1 + Uf mt + b f ) (5)

i(t) = σ(Wiht−1 + Uimt + bi) (6)

a(t) = tanh(Waht−1 + Uamt + ba) (7)

o(t) = σ(WOht−1 + UOmt + bO) (8)

where xt represents the input at time t. ht−1 represents the hidden layer status value at time
t− 1. Wf , Wi, Wo represent the weight parameter of ht−1 in the feature extraction process
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of the forget gate, input gate, and output gate. Uf , Ui, Uo represent the weight parameter
of xt in the feature extraction process of forget gate, input gate, and output gate. b f , bi,
and bo represent the forget gate, input gate, output gate, and offset value in the process of
feature extraction, respectively. The related functions are shown in Equation (9) [20] and
Equation (10) [21]:

tanh(x) =
1− e−2x

1 + e−2x (9)

σ(x) =
1

1 + e−x (10)

The results of the forget gate and output gate calculations act on c(t − 1), which
constitutes the cell state c(t) at moment t, denoted as Equation (11). The final hidden state
h(t) at moment t is derived from the output gate o(t) as well as the cell state c(t), denoted
as Equation (12). where � represents Hadamard product.

c(t) = c(t− 1)� f (t) + i(t)� a(t) (11)

h(t) = o(t)� tanh(c(t)) (12)

3.4. Dense Layer

Dense layers are a type of layer that helps the neural network to better understand the
data and improve the accuracy of the model’s predictions. We add two dense layers after
BiLSTM, but each uses different activation functions. The first dense layer includes the
ReLU activation function [22] (shown in Equation (13)). It aims to learn the features in the
data and distinguish different features that improve the accuracy of the model prediction.
The ReLU function is very simple and fast to calculate, which is very suitable for large-scale
deep neural networks. Meanwhile, the ReLU function can effectively prevent the case of
gradient disappearance, and the gradient is constant to 1 when the input is bigger than 0.

ReLU(x) = max(0, x) (13)

The second dense layer uses the Softmax activation function (shown in Equation (2)),
which is often used in multi-class classification problems, so it is very suitable for our
network detection model. Then, the output of the dense layer also corresponds to the
number of attack types. In the end, our model predicts all the mentioned attack types in
the dataset, so it is of great importance to use the Softmax activation function.

Combining multi-head attention with BiLSTM has several advantages, including:

• Improved sequence modeling: BiLSTM is a type of RNN that can effectively model
sequential data in both forward and backward directions. However, when combined
with multi-head attention, they can further enhance the model’s ability to capture
long-range dependencies and improve the quality of sequence modeling.

• Increased interpretability: Multi-head attention mechanism allows the model to attend
to distinct parts of the input sequence selectively, providing more transparency and
interpretability to the model’s decision-making process. This is particularly useful in
detection tasks such as network intrusion detection.

• Robustness to noise and variations: By attending to multiple parts of the input se-
quence, the model becomes more robust to variations and noise in the data.

• Scalability: The combination of multi-head attention with BiLSTM allows the model
to scale well to larger datasets and more complex tasks without compromising per-
formance or accuracy. This makes it an effective approach for handling large-scale
network intrusion detection tasks.

149



Electronics 2023, 12, 4170

4. Implementation Details

In our experiments, the hardware environment is as follows: the CPU model is Intel
Core i7-10750H, the GPU model is NVIDIA GeForce RTX2060 with Max-Q Design, the
memory on the GPU card is 6 GB and the RAM on the computer is 32 GB.

The language and platform (software) environment are as follows: the operating
system used in the experiment is Windows 11, and the programming environment is
Python 3.9. The Keras deep learning framework and Scikit-learn framework are used to
help us build the model and process the data.

We divided the data set into three parts, each part has a different function. The training
set accounted for 64%, the validation set accounted for 16%, and the test set accounted
for 20%. A total of 60 rounds of model training were performed, the batch size was 512,
the random number seed was 0, and the number of heads of the multi-head attention
mechanism was 3. The Adam algorithm [23] is used as the optimizer of the model, and
the value of the learning rate is 0.0003. Adam is able to adaptively adjust the learning rate
based on the gradient information and adjust the momentum to avoid falling into a local
minimum too early. We add two dense layers after BiLSTM and in the output part, but
they have distinct activation functions, one is the ReLU activation function, and the other is
the Softmax activation function. Meanwhile, a dropout layer is added after the embedding
layer and between the two dense layers with parameters of 0.8 and 0.3, respectively. The
whole training time of the model is 55 min on the KDDCUP99 dataset, 4 min 45 s on the
NSLKDD dataset, and 33 min on the CICIDS2017 dataset.

The core code of the model we designed is shown in Figure 5. The code is written in
Python and built under the Keras deep learning framework.

Figure 5. The core code of the model.

5. Experiment and Results

In the model experiment, in order to ensure the accuracy of the experiment, we use
three data sets, namely the KDDCUP99 data set, the NSLKDD data set, and the CICIDS2017
data set, which can carry out a more comprehensive evaluation of our model.

5.1. Introduction to the Data Set

The KDDCUP99 dataset [24] is a widely used benchmark dataset in the field of network
intrusion detection. It was created for not only the KDD Cup 1999 Data Mining but also the
Knowledge Discovery competition. It aims to develop efficient algorithms for detecting
network intrusions from TCP/IP network traffic data. This dataset consists of a large
collection of network traffic data captured from a simulated environment. It also contains a
variety of features extracted from network packets, such as protocol types, service types,
and so on.

The NSLKDD dataset [25] is an improved version of the KDD Cup 1999 dataset. This
dataset is widely used for network intrusion detection research. NSLKDD stands for
“NSL-KDD Intrusion Detection Dataset”. It was developed to address some limitations and
drawbacks of the original KDD Cup dataset. The types of attacks are shown in Table 1.
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Table 1. KDDCUP99 and NSLKDD dataset attack types.

Category Attack Interpretation

Normal Normal Normal network activity

DOS back, land, neptune, pod,
smurf, teardrop

Denial-of-Service (DoS) attack is a type of cyber attack
where a perpetrator attempts to make a website or
network resource unavailable to its intended users by
overwhelming it with traffic or other types of data.

Probing ipsweep, nmap, portsweep,
satan

Surveillance and other detection activities.

R2L ftp_write, guess_passwd,
imap, multihop, phf, spy,
warezclient, warezmaster

Remote-to-Local (R2L) attack is a type of cyber attack
where an attacker tries to gain unauthorized access to
a target system by exploiting vulnerabilities in remote
services or applications.

U2R buffer overflow, loadmod-
ule, perl, rootkit

User-to-Root (U2R) attackis a type of cyber attack
where an attacker with limited privileges on a sys-
tem attempts to gain root-level access.

The CICIDS2017 dataset [26], also known as the Canadian Institute for Cybersecurity
Intrusion Detection System (CIC-IDS2017), is a comprehensive dataset designed for eval-
uating NIDS. Its authors are researchers at the University of New Brunswick in Canada.
This dataset consists of various network traffic features extracted from different types of
network traffic, including normal traffic and several types of attacks. It also simulates a
real-world network environment to provide a realistic representation of network traffic. A
short description of its files is shown in Table 2. Descriptions of all the datasets are shown
in Table 3 (Table 3 is the data set size that has been balanced by using the algorithm SMOTE.
The relevant content is presented in Section 5.2.4).

Table 2. Description of files containing CICIDS2017 dataset.

Name of Files Day Activity Attacks Found Advantage Goal

Monday
WorkingHours.pcap_ISCX.csv

Monday Benign (Normal human activities)

This is a dataset that
can further meet

real-world standards,
covering attack

standards from 11
countries, making it

more reliable and
available [26].

Using this dataset can
help improve our model’s
generalization ability and

improve its accuracy in
modern intrusion

detection predictions,
rather than just being
applicable to the past.

Tuesday
WorkingHours.pcap_ISCX.csv

Tuesday Benign, FTP-Patator, SSH-Patator

Wednesday
workingHours.pcap_ISCX.csv

Wednesday
Benign, DoS GoldenEye, DoS
Hulk, DoS Slowhttptest, DoS
slowloris, Heartbleed

Thursday-WorkingHours
Morning-WebAttacks.pcap_ISCX.csv

Thursday
Benign, Web Attack-Brute Force,
Web Attack-Sql Injection, Web
Attack-XSS

Thursday-WorkingHours-Afternoon-
Infilteration.pcap_ISCX.csv Thursday Benign, Infiltration

Friday-WorkingHours
Morning.pcap_ISCX.csv

Friday Benign, Bot

Friday-WorkingHours-Afternoon
PortScan.pcap_ISCX.csv

Friday Benign, PortScan

Friday-WorkingHours-Afternoon
DDos.pcap_ISCX.csv Friday Benign, DDoS
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Table 3. Description of all datasets.

Dataset Training Set Validation Set Test Set Total
Input Vector

Features
Number of

Labels

KDDCUP99 3,108,950 777,237 971,547 4,857,734 41 40

NSLKDD 95,050 23,762 29,704 148,516 41 40

CICIDS2017 498,741 124,685 155,857 779283 78 15

5.2. Data Processing

We used numerical division, data normalization, one-hot encoding, and data balance
to process the data set. For KDDCUP99 and NSLKDD data sets, the dimension after data
processing is 41 × 1, and the data set has 40 classification tags, one of which is the normal
category, and the other 39 represent various attack types. After one-hot encoding, they are
converted into 40-dimensional vectors, so the dimension of the output layer is 40. For the
CICIDS2017 dataset, the dimension after data processing is 78 × 1, and the dataset has
15 classification labels in total, one of which is the normal category, and the other 14 labels
represent various attack types. After one-hot encoding, it is converted to a 15-dimensional
vector, so the output dimension is 15.

5.2.1. Data Conversion

For the KDDCUP99 dataset, we convert the text type data into numeric types to
facilitate our training and testing of the model, such as character type data protocal_type,
service, and state, where protocal_type has 3 protocol types, service has 70 network service
types, while flag haves 11 network connection types. For instance, the three protocol types
characterized by protocol type are TCP, UDP, and ICMP, which we convert to 0, 1, and 2.

5.2.2. Data Normalization

The variation in individual features of the numerically processed data is large, and
normalizing this data can avoid causing gradient dispersion when using the backpropaga-
tion algorithm. The problem with not normalizing the data is that the magnitude of the
gradient decreases with backpropagation, which slows down the growth of the update
weights of the intrusion detection model, resulting in a complex dataset of features that
are not well extracted by deep learning. We use the normalization method of z-score to
convert all the data of KDDCUP99 to [−1, 1], as shown in Equation (14).

m′ i =
mi −m

x
(14)

We use mi and m′ i to represent the value of the data sample before and after normal-
ization. Meanwhile, m is used to represent the average data value of the feature before
normalization.

5.2.3. One-Hot Encoding

In the feature vectors of the three datasets, we did not use one-hot encoding for
processing, because the original data has too many features; thus, using it may lead to
the curse of dimensionality and reduce the accuracy. We perform one-hot encoding for
the label values (predicted attack types) of the datasets. For the KDDCUP99 dataset and
NSLKDD dataset, we convert 40 different categories into one-dimensional vectors with
a length of 40 by one-hot encoding. For the CICIDS2017 dataset, we convert 15 different
categories into one-dimensional vectors with a length of 15 by one-hot encoding. This
encoding is more conducive to model training.
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5.2.4. Dataset Balanced

For the KDDCUP99 and CICIDS2017 datasets, there is an imbalance between normal
samples and attack samples. To make the dataset more balanced, we use the SMOTE
(Synthetic Minority Over-sampling Technique) [27] algorithm to over-sample a small
number of samples. To ensure the balance of the dataset and the generalization of our
model, we randomly under-sample the samples with a large number of samples.

SMOTE works by creating synthetic examples of the minority class that are strategically
placed between existing instances of the minority class. The algorithm randomly selects a
minority instance and looks for its k nearest neighbors. It then selects one of these neighbors
and calculates the difference between the feature values of the two instances. It multiplies
this difference by a random value between 0 and 1 and adds it to the feature values of the
selected minority instance. This generates a synthetic instance that is similar to the original
minority instance but slightly different.

By repeating this process for multiple instances of the minority samples, SMOTE
increases the number of these samples in the dataset. This operation helps to balance the
class distribution and provides more training examples for the minority class, and it also
improves the performance of machine learning algorithms. The size of the dataset after
processing is shown in Table 3.

5.3. Evaluation Criteria

We use Accuracy, Precision, Recall, and F1-Score as the metrics for model evaluation,
and the formulas for all metrics are shown in Table 4. Where TN indicates the number
of correctly predicted negative samples, TP indicates the number of correctly predicted
positive samples, FN indicates the number of incorrectly predicted negative samples, and
FP indicates the number of incorrectly predicted positive samples.

Table 4. Model evaluation metrics.

Metric Mathematical Formulae

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

Precision Precison = TP
TP+FP

Recall Recall = TP
TP+FN

F1-Score F1− Score = 2× Precision×Recall
Precision×Recall

5.4. Model Review

We have tested and evaluated our model using metrics in Table 4. The result is shown
in Table 5. Through the test data, we obtain the information that the accuracy of our model
on the KDDCUP99 dataset is 98.29%, the Precision against normal samples (unattacked
samples) is 0.97, Recall is 1, and F1 is 0.98. The accuracy of our model on the NSLKDD
dataset is 95.19%, the Precision against normal samples (unattacked samples) is 0.95, Recall
is 0.98, and F1 is 0.97. For the CICIDS2017 dataset, the accuracy is 99.08%, the Precision
against normal samples (unattacked samples) is 1, Recall is 0.99, and F1 is 0.99. It was
found that changing the ratio of the training set and test set size did not have an impact on
the detection results of the samples. The data results are shown in Figure 6.

Table 5. Performance of different network structures on the dataset.

Dataset Structure Accuracy(%) Precision Recall F1-Score

KDDCUP99

Transformer 85.71 0.88 0.82 0.85
BiLSTM 98.25 0.97 1 0.98
Attention 71.65 0.63 0.99 0.77
Multi-Head Attention 71.54 0.63 0.98 0.77
Attention + BiLSTM 97.96 0.97 1 0.98
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Table 5. Cont.

Dataset Structure Accuracy(%) Precision Recall F1-Score

Multi-Head Attention + BiLSTM 98.29 0.97 1 0.98

NSLKDD

Transformer 73.26 0.75 0.81 0.78
BiLSTM 95.13 0.96 0.97 0.97
Attention 65.01 0.76 0.62 0.68
Multi-Head Attention 65.01 0.76 0.62 0.68
Attention + BiLSTM 94.7 0.95 0.98 0.96
Multi-Head Attention + BiLSTM 95.19 0.95 0.98 0.97

CICID17

Transformer 97.94 0.98 0.97 0.97
BiLSTM 98.51 0.99 0.98 0.99
Attention 97.75 0.98 0.97 0.98
Multi-Head Attention 97.88 0.99 0.97 0.98
Attention + BiLSTM 97.24 0.97 0.97 0.97
Multi-Head Attention + BiLSTM 99.08 1 0.99 0.99

Figure 6. Performance evaluation of three datasets.

5.5. Model Accuracy and Loss Variation

Next, Figures 7–9 show the loss and accuracy during the training of the KDDCUP99
dataset, NSLKDD dataset, and CICIDS2017 dataset, respectively. The experiment carried
out 60 rounds of training. For the KDDCUP99 dataset, the curve became smoother after
10 rounds of training, and finally, the value of loss dropped to 0.0049. For the NSLKDD
dataset, the curve became smoother after 30 rounds of training, and the value of loss
dropped to 0.1481. For the CICIDS2017 dataset, the curve became smoother after 20 rounds
of training, and the value of loss dropped to 0.0209. It can be seen from the training process
that the model proposed by us has better learning ability and fitting speed. The normalized
confusion matrix of the CICIDS2017 dataset is shown in Figure 10.

Figure 7. Accuracy and loss variation of model training on the KDDCUP99 dataset.
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Figure 8. Accuracy and loss variation of model training on the NSLKDD dataset.

Figure 9. Accuracy and loss variation of model training on the CICIDS2017 dataset.

Figure 10. The normalized confusion matrix of CICIDS2017 dataset.

5.6. Ablation Experiments

We believe that the reasons for the high accuracy as well as the better performance of
the proposed model are:

• We use BiLSTM to build our model. On the one hand, it can capture the bidirec-
tional features better, on the other hand, it has the ability to avoid situations such as
gradient disappearance and gradient explosion, which are very suitable for network
intrusion detection.
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• The addition of the multi-headed attention mechanism allows different attention
weights for each vector in the feature vector to strengthen the relationship between
certain vectors and the type of detected attacks, which improves the accuracy of
detection. It also avoids the problem of over-focusing attention on its position.

We have verified the performance and accuracy of the Transformer, BiLSTM, Attention,
Multi-Head Attention, Attention + BiLSTM, and Multi-Head attention + BiLSTM structures
on three data sets. For Multi-Head Attention, we obtain the best head parameter of 3
according to pre-training. In Table 5, we show the performance indicators of different
structures on three datasets by using four metrics shown in Table 4 for normal samples
(samples that are not under attack). It can be seen from the results that the Multi-Head
Attention + BiLSTM structure has higher accuracy and higher F1-Score.

From the data in Table 5, we can obtain the information that the classification effect of
the single attention mechanism model or the multi-head attention mechanism model is not
good. Furthermore, the performance on the KDDCUP99 dataset and NSLKDD dataset is
even worse. The Transformer model alone is not fully competent for the task of intrusion
detection, and the accuracy is relatively low. However, when the multi-head attention
mechanism is combined with the BiLSTM model, the accuracy of intrusion detection
recognition can be increased, and its detection accuracy is also better than that of the
BiLSTM model alone, indicating that the combination of the two can show the advantages
of both, it also can adapt well to the task of intrusion detection.

5.7. Comparison with Other Models

The experiments of the model were trained and predicted on the KDDCUP99, NSLKDD,
and CICIDS2017 datasets, and we compared our model with other models, comparing
metrics including accuracy as well as F1-score. the final results are shown in Table 6. The
accuracy is shown in Figure 11.

In Table 6 and Figure 11, the information we have obtained indicates that our proposed
model has better predictive performance, which means that more refined intrusion detection
can be performed. At the same time, we also achieve the most refined classification and
inform the relevant people with more specific information.

Table 6. Comparison with other models on the dataset.

Dataset Algorithm Accuracy (%) F1-Score (%)

KDDCUP99

CLAIRE [28] 93.58 95.9
MCLDM [29] 93.94 96.06

Improved LSTM [30] 97.79 96.95
Our Method 98.29 98

NSLKDD

BAT [31] 84.25 -
ICVAE-DNN [32] 85.97 86.27

Deep AE [33] 87 81.21
Our Method 95.19 97

CICIDS2017

KELM [34] 97.15 -
CLAIRE [28] 98 -

CNN [35] 98 98
Our Method 99.08 99
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Figure 11. Comparison of different models on three datasets.

6. Conclusions

In this paper, we propose an intrusion detection model based on a multi-head attention
mechanism and BiLSTM. The embedding layers can convert sparse high-dimensional
feature vectors into low-dimensional feature vectors. This operation can fuse a large
amount of valuable information. Then, we try to use the attention mechanism to introduce
different attention weights for each vector in the feature vector, not only strengthening the
relationship between certain vectors and the type of detected attacks but also improving
the accuracy of detection. We also improve the use of a multi-head attention mechanism
to avoid focusing too much attention on certain elements in the vector. Finally, we apply
the BiLSTM network to detect some kind of relationship that exists in the data, while
LSTM aims to capture long-distance dependencies and also can avoid lots of situations
like gradient disappearance and gradient explosion. The experimental comparison shows
that our proposed model has better accuracy and F1-score on the KDDCUP99, NSLKDD,
and CICIDS2017 datasets than other models, and it is more accurate for multiple types of
intrusion detection than other binary intrusion detection models.

Of course, our model still has some shortcomings. For example, our model is a multi-
classification model, hoping to make more detailed and accurate predictions for different
network intrusions. If the intrusion is a new type, our model can not give its definition
or report what kind of specific intrusion method it is, but it can still be classified as an
intrusion type rather than a normal network activity for professionals to study. In addition,
the normal samples of the KDDCUP99 dataset and the normal samples of the CICIDS2017
dataset are too large. To ensure the availability of the detection model, we use oversampling
and undersampling to ensure the balance of the data, but the sampling process has great
randomness, which may delete some important information in the majority sample. In
future improvements, we will try to solve these problems.
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Abstract: Data augmentation, as a common technique in deep learning training, is primarily used
to mitigate overfitting problems, especially with small-scale datasets. However, it is difficult for
us to evaluate whether the augmented dataset truly benefits the performance of the model. If the
training model is relied upon in each case to validate the quality of the data augmentation and
the dataset, it will take a lot of time and resources. This article proposes a simple and practical
approach to evaluate the quality of data augmentation for image classification tasks, enriching the
theoretical research on data augmentation quality evaluation. Based on the information entropy,
multiple dimensional metrics for data quality augmentation are established, including diversity, class
balance, and task relevance. Additionally, a comprehensive data augmentation quality fusion metric
is proposed. Experimental results on the CIFAR-10 and CUB-200 datasets show that our method
maintains optimal performance in a variety of scenarios. The cosine similarity between the score of
our method and the precision of model is up to 99.9%. A rigorous evaluation of data augmentation
quality is necessary to guide the improvement of DL model performance. The quality standards and
evaluation defined in this article can be utilized by researchers to train high-performance DL models
in situations where data are limited.

Keywords: data augmentation; deep learning; data quality; big data; data mining

1. Introduction

Data-driven deep learning (DL) has achieved many significant achievements in the
past few years [1–3], and data augmentation has played an important role in it [4–6]. In
practical applications, often the scale of the available data is insufficient for model training,
which is the problem that data augmentation aims to solve [7]. Data augmentation is a
regularization technique that increases the size and diversity of datasets by transforming
and augmenting the original data [8]. Typically, data augmentation has a positive effect on
the training and performance of DL models, but in practice, phenomena such as decreased
precision or overfitting can occur after data augmentation [9]. Therefore, we need an
evaluation criterion for the quality of data augmentation to assess the effectiveness of the
employed data augmentation methods and their ability to improve model performance
and generalization. Most of the research on data augmentation focuses on enhancing the
generalization characteristics of the models, such as precision and F1 score [10,11]. Only
a few papers have proposed a general framework for explaining data augmentation by
studying its regularization effects [12–14], its influence on feature selection [15–17], rough
set [18–20], and invariance perspectives [21,22]. However, the evaluation methods based
on model performance cannot explain in which aspect data augmentation improves data
quality. Neither can it guide researchers to choose a more optimal data enhancement
strategy, even if a lot of time is spent on training the model. In order to determine to what
extent data augmentation can improve data quality, evaluation standards need to be more
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theoretical and comprehensive. By visualizing and analyzing the augmented data, we can
evaluate the effectiveness of data augmentation, observe whether the changes in data are
reasonable, and cover different categories and tasks. This intuitive and simple method
can efficiently evaluate the effects of data augmentation and quickly find suitable data
augmentation methods, which can help obtain the most suitable dataset for model training
in advance.

Studies [23,24] have shown that data quality is a multidimensional concept. Data
quality has different meanings in different contexts. For example, data quality can be about
measuring defective or outlier data in a general context [25–27], or describing whether the
data meet the expected purpose in a specific context [28]. In this paper, we define data
quality as a measure of data suitability for constructing a DL training set. Existing data
quality assessments consider both intrinsic data quality and contextual quality [29], but
the definitions of contextual quality vary. The most common idea is to divide contextual
quality into two parts based on the process of DL: diversity within the training set and
similarity between the training and testing sets. The main idea is to make the training
set complex enough to encompass all the features and be similar to the real distribution
represented by the testing set so that the DL model can learn adequately from this dataset.
However, they overlook the fact that the performance of deep learning models is not only
influenced by the problem space covered by the data. For instance, imbalanced classes
in the dataset may lead to model bias [30,31], and these imbalances can occur in terms of
quantity, features, or colors. Creating more dimensions based on the task and data features
can better describe the quality of the data and its value for deep learning models. We
hope to construct a universal, robust, and highly generalizable multidimensional quality
evaluation method by refining and differentiating the definition of quality metrics, which
can provide strong support for the quality evaluation of data augmentation.

In addition, due to the curse of dimensionality, such as in the case of image and text
data, there arise computational and statistical challenges, with computational complexity
growing exponentially. Hence, many works have used average similarity and minmax
similarity between samples to calculate these two dimensions [29,32]. Although average or
minmax similarity between samples can quickly assess the quality of a dataset, they cannot
accurately approximate the precision of models trained on that dataset. Information en-
tropy [33] can provide a comprehensive evaluation of data distribution, considering global
characteristics such as sample diversity, rather than just focusing on average differences
in the data [34]. Its feature as a non-linear measure based on probability distribution can
better capture non-linear relationships in data distribution, with less sensitivity to noise
and stronger interpretability [35]. Because of the low noise sensitivity, it is suitable to im-
prove the computational efficiency with dimension reduction technology. The computation
problem caused by a dimension disaster can be avoided. In summary, information entropy,
as a metric for evaluating the quality of data augmentation, possesses more comprehensive,
robust, and interpretable characteristics, making it more suitable for approximating the
precision of models.

Therefore, this paper proposes an information entropy-based method for evaluating
the quality of data augmentation. By attempting to deconstruct the dimensions of the data,
we assess the quality of the dataset and data augmentation. In our approach, the augmented
dataset is initially broken down into three dimensions, including diversity, class balance,
and task relevance. Furthermore, taking image data as an example, for each dimension,
numerous sub-dimensions are derived based on the task and data characteristics. Finally,
by considering the correlations between the metrics, we calculate the ultimate composite
metric score, providing insights into the impact of the current augmentation strategy on
model performance.

• In this paper, we design and implement a data enhancement quality evaluation
method, which can optimize and generate large-scale, high-quality data sets by disas-
sembling and balancing the quality dimensions of data sets.
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• This paper discusses the choice of mathematical tools for statistical analysis of data
dimensions, and determines that information entropy is more suitable than other
methods for evaluating the information content of data.

• This paper extensively evaluates the proposed method on various data augmentation
techniques, datasets, and models. There is a strong correlation between the experi-
mental results of the deep learning model and the evaluation results of the method,
which shows that the method can improve the performance of the model on related
tasks by evaluating the data enhancement quality.

2. Methods

In this work, we aim to explore the effectiveness of data augmentation in enhancing
datasets, with the hope of replacing expensive model training with more comprehensive
statistical metrics to evaluate the quality of augmented datasets. The primary goal of
data augmentation is to generate a diverse and balanced dataset that is highly relevant to
the task.

2.1. Preliminaries

Before presenting the details of our method, we give a brief overview of deep learning
and data augmentation, which provides the theoretical basis of our algorithm design. For
better illustration, some notations are summarized in Table 1.

Table 1. Some important mathematical notation.

Mathematical
Notation

Description

X, Y
The data and labels of the dataset, as well as the input and output space of the
model. X and Y represent the original training dataset. X′ and Y′ represent the

augmented training dataset. Xt and Yt represent the test dataset.

x, y
The x denotes an input data and the y denotes a label for the data. The x and y
represent the original training dataset. The x′ and y′ represent the augmented

training dataset. The xt and yt represent the test dataset.

P, p Both represent a probability function that describes the distribution of the
sample space.

R It represents the risk function. Its subscripts represent the computational ideas
used, empirical and expectation, respectively.

Q It represents a collection of data augmentation quality metrics. Each Qi ∈ Q
counts the different dimensions of the data.

pixel It represents the pixel of the image data.

D D denotes the dataset. D represents the original training dataset. D′ represents
the augmented training dataset. Dt represents the test dataset.

C, ci
C represents the number of classes in the dataset and ci represents the number

of samples in the ith classes of the training dataset.

N
It represents the number of samples in the dataset. N represents the original
training dataset. N′ represents the augmented training dataset. Nt represents

the test dataset.

2.1.1. Deep Learning

In machine learning, we formally refer to the sets of all possible values for the input
and output of models as the input space X and the output space Y, respectively. Each
specific input is an instance x, usually represented by a feature vector. In this case, the space
where all feature vectors exist is called the feature space. The specific output is denoted
as y, typically representing the label of the input X. At this point, the input and output
variables X and Y follow a joint probability distribution P(X, Y). The input space X and the
output space Y together form a sample space. For a sample (x, y) ∈ (X, Y) in the sample
space, it is assumed that there exists an unknown true mapping function f : X −→ Y, such
that y = f (x, θ), where θ ∈ Rm represents the parameters in the function space and m is
the number of parameters. In this case, we can measure the distance between the model

163



Electronics 2023, 12, 4077

and the data distribution P(X, Y) to train the model. Therefore, the expected loss of the
model f (x, θ) with respect to the joint distribution P(X, Y) is expressed as

Rexp(θ) = EP[L(y, f (x, θ))] =
∫

X×Y
L(y, f (x, θ))P(x, y) dx dy, (1)

since the L(y, f (x, θ)) represents the loss function, which quantifies the difference between
individual input and output instances. However, in reality, the data distribution P(X, Y) is
often unknown, and we only have knowledge of the distribution of samples in the training
set. Therefore, to deal with this situation, in DL, the approach is to minimize the expected
loss on the training set. As shown in Equation (2), the empirical distribution P̂(X, Y)
based on the training set is used instead of the true distribution P(X, Y) to calculate the
empirical loss Remp. This way, during the training process, the model performs parameter
optimization based on the sample distribution in the training set, aiming to approximate
the performance of the true distribution as closely as possible.

Remp(θ) =
1
N

N

∑
n=1

L(y, f (x, θ)). (2)

2.1.2. Data Augmentation

Data augmentation refers to any method that uses artificial transformations of data
and labels to expand the original training set. It can be represented as a mapping of the set.
This function is defined as

P(X
′
, Y
′
) = f ((X, Y)|β)

⋃
P(X, Y), (3)

where β represents the data augmentation strategy, f ((X, Y)|β) represents the augmented
part, and P(X

′
, Y
′
) represents the final augmented training dataset.

2.1.3. Benefits of Data Augmentation

To address the issue of unreliable empirical risk in situations with limited data, we
need to introduce prior knowledge. Prior knowledge is used to augment the dataset, even
in cases where data are scarce.

Lemma 1 (Chebyshev’s inequality). Let t be a random variable with finite expected value μ. And
there are n variables in total. Then, for any small positive number ε,

lim
n→∞

P(|∑ ti
n
− μ < ε|) = 1. (4)

According to the law of large numbers, Equations (2) and (4), as the sample size N
becomes sufficiently large, the empirical risk Remp tends to the expected risk Rexp. However,
when it comes to DL datasets, considering only the distribution of samples and labels is
insufficient. For instance, simply resampling data can lead to more severe overfitting of
the model. We also need to ensure that the features in the data align closely with the true
distribution, which is a key problem addressed by data augmentation. In general, data
augmentation is achieved by modifying the original data based on prior knowledge to
expand the dataset. The generated data may have the same labels as the original data,
but the features extracted by the model are different. This enables the model to more
easily recognize the critical features relevant to the task at hand. The parameters for data
enhancement need to satisfy the following expression:

arg min
β

distance(arg max
P()

quality(P(X
′
, Y
′
)), P(Xt, Yt)), (5)

where the distance is defined as a function of measuring distribution distance, such as
similarity, and quality is defined as a function that measures the distribution of data sets.
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The ideal scenario is that the dataset remains consistent with the true distribution for
all features P(Xt, Yt). However, this is an ideal situation and the true distribution is still
unknown. Therefore, we use the test set instead of the true distribution for the estimation.

Theorem 1. The expectation and variance of the original dataset are μ and σ, the expectation and
variance of the augmented dataset are μ

′
and σ

′
. Assuming that the expectation and variance of

true distribution are μt and σt. Equation (5) can be expressed as

f usion(distance(μ
′
, μt), distance(σ

′
, σ)). (6)

However, due to the randomness of data augmentation, the generated data may
not necessarily be more in line with the true distribution compared to the original data.
Therefore, we need to perform quality estimation on it.

Lemma 2. Expectation and variance are not mutually independent, only when the distribution
does not follow a normal distribution.

Therefore, the quality evaluation metric for data augmentation is defined as

QAugmentation = Qσ ×Qμ = Qσ ×QTaskRelevance, (7)

which is the product of the statistical values of expectation Qσ and variance Qμ . The
expectation of the dataset is primarily influenced by the target task, and the value obtained
from expectation is also referred to as task relevance.

Unlike expectation values, data can have different distributions based on different
feature selections, leading to varying variances. These variances can be mainly divided
into two categories. One is the distribution of semantic features that approximate a normal
distribution, and the other is the distribution of categories, which is mostly a uniform
distribution. The variances of these two distributions are independent of each other, so
statistical values of variances can be obtained using addition.

Theorem 2. Output space Y = (y1, y2, · · · , yn) ∼ U(λ), input space X is abstracted into
f eature = ( f eature1, f eature2, · · · . f eaturek1) ∼ N(μ1, σ1). So P(x, y) can be represented
by P( f eature, label). By delineating the distribution of label-independent features, we have the
semantici = (semantic1, semantic2, · · · , semantick2) ∼ N(μ2, σ2), semantick2 ∈ C, then

P(label, semantic) =
C

∑
i

P(label)× P(semantici) =
C

∑
i

P(semantici). (8)

Features are classified according to whether they have a relationship with the category,
and the same is true for data quality. So we have

Qσ = (Qlabel + Q(label, f eature)) + Qsemantic = QClassBalance + QDiversity. (9)

Finally, the augmented datasets quality evaluation formula is defined as

QAugmentation = (QDiversity + QClassBalance)×QTaskRelevance. (10)

2.2. The Overall Framework

The overall framework of the method proposed in this paper is shown in Figure 1
and Algorithm 1. The methodology of this paper will consist of the following components:
(1) Feature Extraction: The dataset will be processed using different data augmentation
strategies. And each sample in the datasets will be mapped to a high-dimensional feature
space. (2) Metric Scores Calculating: The quality metrics of the dataset will be divided
into three dimensions: diversity, class balance, and task relevance. Information entropy is
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primarily used to evaluate the diversity and class balance metric. (3) Result Statistics: The
scores of each augmented dataset will be ranked, and the datasets with higher quality will
be selected for model training and validation. The implementation code is available at:
https://github.com/ForestryIIP/ADQE (accessed on 20 August 2023).

Figure 1. The framework of the proposed method.

Algorithm 1: Calculation of all augmented datasets evaluations.

Data: The collection of augmented datasets D
′
= {D′0, D

′
1, · · · , D

′
s}, A test dataset

Dt, DL model NN
Result: the quality metric of the augmented dataset Q

1 Q← ∅;
2 cnt← 0;
3 for each dataset D

′
i ∈ D

′
do

4 Update Q4 based on Algorithm 4;
5 Update Q2 and Q3 based on Algorithm 3;
6 Extracting the feature vector V from D

′
i with help of NN;

7 Clustering feature vector V into k classes of V
′
;

8 Update Q5 based on Algorithm 5;
9 Update Q1 based on Algorithm 2;

10 Update Q6 based on Algorithm 6;
11 if cnt != 0 then

12 Q← result o f Equation (21)
13 end

14 end
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2.3. Feature Extraction
2.3.1. Feature Selection

The selection of features is crucial for evaluating the quality of data augmentation,
as it impacts the effectiveness and comprehensiveness of metric calculations. In order
to obtain more effective image representations, this paper utilizes the pre-trained model
ResNet101 [36] to map images into high-dimensional feature vectors. Additionally, to
achieve more comprehensive metrics, we supplement the quality indicators by incorpo-
rating features such as pixel brightness, texture, and class sample counts based on the
characteristics of the images and the dataset itself.

2.3.2. Clustering

After data augmentation, we can proceed with the calculation of various metrics.
For diversity computation, calculating low-dimensional feature diversity simply requires
measuring the individual feature values of each image, which can be performed in O(n) time
complexity. However, in the case of high-dimensional features, the complexity increases
as we need to calculate the similarity between each pair of samples and compute the
eigenvalues of the nn similarity matrix, resulting in a time complexity of O(n3). Similarly,
for task relevance, we need to compute the similarity between sample pairs from the
training set and the test set, resulting in a high time complexity of O(n×m). To address
these challenges, this study adopts the FINCH clustering algorithm [37], which employs
pooling and sampling techniques to reduce the dimensionality and scale of the dataset,
thereby mitigating the computational cost and time overhead. In the calculation of class
balance, the clustering algorithm can directly compute the desired metrics.

2.4. Metric Scores Calculating
2.4.1. Diversity

The main benefit of data augmentation comes from increasing diversity. However, only
comparing the average similarity of data in the augmented dataset in high-dimensional
space has limitations. It just only indicates the pairwise distances between data points and
does not reflect the overall distribution of data in the high-dimensional feature space. The
Vendi score [38] introduces an ecological concept by using the entropy index of species dis-
tribution. This effectively measures the diversity of feature distributions in the training set
samples. The Vendi score is defined as the exponential Shannon entropy of the eigenvalues
of a similarity matrix K, such as

K(x, y) = {similarity(x, y)|x, y ∈ D
′ }. (11)

This matrix is derived from a user-defined similarity function applied to the samples
under evaluation for diversity:

Q1 =
1
C

C

∑
i=1

exp(−
ci

∑
j=1

λjlogλj), (12)

where the λj represents the eigenvalues of the similarity matrix K. The K is a positive-
definite matrix obtained from a set of samples x and the similarity function. For all x,
similarity(x, x) = 1. This method , as shown in Algorithm 2, primarily quantifies the
effective number of distinct elements in the data. For example, after extracting features
from an image using a neural network, you typically obtain a 2048-dimensional vector. This
vector stores features across different dimensions of the image. Assuming the similarity
function is a cosine similarity, this metric measures whether the directions of two vectors
align. If the feature dimensions forming these directions are more similar, the metric value
is higher. Consequently, a similarity matrix K can be computed. Eigenvalues generally
represent inherent structural properties and patterns within the data [39]. Each eigenvalue
corresponds to a mode of variation or structure in the data. In the context of image similarity,
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they can indicate different similarity patterns or clusters among images. The magnitude of
eigenvalues also reflects the proportion of corresponding patterns in the data. Therefore,
computing the entropy of eigenvalues is equivalent to quantifying the richness of patterns
in the data. If a single pattern dominates the data, the style and content of the images
are highly certain, resulting in low information uncertainty. Conversely, when multiple
similar patterns share similar proportions, the style and content of the images become
less certain, leading to higher information uncertainty. In summary, the eigenvalues of
similarity matrix K and the entropy of these eigenvalues provide valuable insights into the
data’s structure and diversity. High entropy indicates complexity and diversity, whereas
low entropy suggests simplicity or uniformity in similarity patterns within the data. They
can guide overall data analysis in the context of diversity metrics.

Algorithm 2: Rapid calculation of diversity by clustering.

Data: A training dataset D
′
= {X1, X2, · · · , XN′ }, dataset size N

′
, DL model NN

Result: Diversity Metric Scores Q1
1 K ← 0[N′×N′ ];

2 Q1 ← 0;
3 Extracting the feature vector V from D

′
with help of NN;

4 Clustering feature vector V into k classes of V
′
;

5 D
′
clustered ← ∅;

6 for i← 0 to k do

7 D
′
clustered ← randomly select C data from different categories in V

′

8 end

9 for class index← 0 to C do

10 for each vector vi and vj ∈ collection of class index in V
′

do

11 K[i][j]← similarity(vi, vj);
12 end

13 λ← eigenvalue o f K;
14 Q1 ← Q1 + exp(−∑Si

j=1 λjlogλj);

15 end

16 Q1 ← Q1 ÷ C;

Ignoring the time of feature extraction and clustering part, the computation of Q1 is
mainly divided into two steps. They are the computation of similarity adjacency matrix
and its eigenvalues, respectively. For each pair of vectors, similarity computation, such
as cosine similarity, requires O(K) time complexity. Where K is the dimension size of the
image vector output by the model. Every element in the dataset needs to be computed,
then computing the adjacency matrix requires O(KN2) time complexity. The next step is
to solve for the eigenvalues, which are also usually O(N3). Generally, K � N, so the time
complexity is O(N3). Although the time complexity is high, the data size is reduced by
clustering in advance. The actual computation time is still within acceptable limits.

Furthermore, analyzing the diversity of data solely based on high-dimensional fea-
tures provides an abstract understanding of diversity, but it may not provide an intuitive
and clear understanding. Therefore, it is still necessary to define the diversity of data in
low-dimensional features. For example, in image data, models often learn texture fea-
tures extensively from the dataset [40]. To address this, we can calculate the occurrence
probabilities of different textures in all the data:

Q2 = exp(
NTexture

∑
i=1

pTexturei,j logpTexturei,j), (13)
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where NTexture is the number of different Texture and pTexturei,j represents the probability
that the value of Texturei,j will occur. The Texture is defined as a combination of pixeli,j
and adjacent pixels:

Texturei,j =

⎛⎝pixeli−1,j+1 pixeli,j+1 pixeli+1,j+1
pixeli−1,j pixeli,j pixeli+1,j

pixeli−1,j−1 pixeli,j−1 pixeli+1,j−1

⎞⎠. (14)

Due to computational complexity and memory limitations, this paper calculates the
information entropy of the average pixel values within a 3 × 3 window instead of the
information entropy of pixel combinations. Lastly, considering that brightness can have an
impact on the model [41], this paper also calculates the probability of brightness for each
pixel in the entire dataset and computes its entropy value:

Q3 =
1
3

3

∑
RGB=1

exp(
256

∑
level=1

plevel logplevel), (15)

where RGB represents the three color channels of an image and level represents the com-
ponent of the channel, up to a maximum of 256. Texture and brightness are counting the
pixels of the image, so the time complexity is O(PN) and P is the average number of pixel
points in the image. As shown in Algorithm 3, the variables for the Q2 and Q3 are similar
and can be run together in the feature extraction phase.

Algorithm 3: The calculation of image datasets’ color and brightness space.

Data: A training dataset D
′

Result: Diversity Metric Scores Q2 and Q3
1 P1 ← 0[3×256];
2 P2 ← 0[3×256];

3 for each image x ∈ D
′

do

4 for channelRGB ← 0 to 2 do

5 for each pixel ∈ x do

6 t← Average o f adjacent pixels;
7 P1[channelRGB][pixel]← P1[channelRGB][pixel] + 1;
8 P2[channelRGB][t]← P2[channelRGB][t] + 1;
9 end

10 end

11 end

12 Q2 ← 0;
13 Q3 ← 0;
14 for channelRGB ← 0 to 2 do

15 P1[channelRGB]← sum(P1[channelRGB]);
16 Q2 ← Q2 + exp(−∑255

j=0 P1[channelRGB][j]log(P1[channelRGB][j]));
17 P2[channelRGB]← sum(P2[channelRGB]);
18 Q3 ← Q3 + exp(−∑255

j=0 P2[channelRGB][j]log(P2[channelRGB][j]));
19 end

20 Calculate entropy;

2.4.2. Class Balance

From the perspective of data categories, real-world datasets often suffer from the
long-tail problems [42]. Models tend to overlook minority classes due to the majority of
samples being concentrated in a few categories, resulting in poorer predictive performance.
To measure class balance, the first aspect to consider is whether the number of samples
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in each class is equal, which is the most fundamental metric. The formula for balance of
number in class is as follows:

Q4 = 1− 1
C

C

∑
i=1

(ci − c̄), (16)

where the c̄ represents the average count of samples across classes. The variance of
the classes is computed with a time complexity of O(C).The algorithm is illustrated in
Algorithm 4.

Algorithm 4: The calculation of quantity balance between classes.

Data: A training dataset D
′
, The number of classes C

Result: Class Balance Metric Scores Q4
1 K ← 0[C×1];
2 for i← 0 to C do

3 K[i]← ci
4 end

5 Q4 ← 1− 1
C (∑

C
i=1(K[i]− average(K)));

Additionally, we need to assess the distribution differences between classes. When
performing a classification task, it is generally easier to distinguish between animals and
humans compared to distinguishing between males and females. If both labels are present
in the same dataset, the labels for males and females can easily be confused. This results in
poor data quality because the model cannot learn precise features to differentiate between
males and females accurately [43]. Unsupervised clustering can group similar samples
into the same class. In a dataset with balanced difficulty and granularity of classification,
the clustering results should align with the original labels. By calculating the mutual
information between the clustering results and the original labels, we can obtain the
classification difficulty of the samples, which serves as an indicator for the class feature
balance of the dataset. The basic definition of information entropy is

H(X) = −∑
X

p(x)logp(x), (17)

where H(X) represents the entropy of the classes. The basic definition of mutual informa-
tion is

I(X; Y) = ∑
X

∑
Y

p(x, y)log
p(x, y)

p(x)p(y)
, (18)

where I(X; Y) represents the mutual information and p(x, y) is the joint distribution be-
tween the clustering results and the ground truth. The p(x) and p(y) are the marginal
distributions of the ground truth labels and clustering results, respectively. Although mu-
tual information can also measure the degree of similarity between two clustering results,
its value is strongly influenced by the sample size. Normalized mutual information (NMI),
on the other hand, can better measure the degree of similarity between two clustering
results by normalizing the mutual information values to the same range of values. The
NMI is defined as

Q5 = 2
I(X; Y)

H(x) + H(y)
. (19)

The details are presented in Algorithm 5. Ignoring the time of feature extraction and
clustering part, the computational time complexity of the mutual information of the label
distributions before and after clustering is only O(N).

170



Electronics 2023, 12, 4077

Algorithm 5: The calculation of features balance between classes.

Data: A training dataset D
′

Result: Class Balance Metric Scores Q5
1 Extracting the feature vector V from D

′
with help of NN;

2 Clustering feature vector V into k classes of V
′
;

3 PD′ ← distribution o f V;
4 PD′clustered

← distribution o f V
′
;

5 PD′ ,D′clustered
← jointdistribution between Vand V

′
;

6 Update Q5 based on Equations (18) and (19);

2.4.3. Task Relevance

The most common issue that can occur after image augmentation is the loss of semantic
information, where important features, such as the pixels representing a dog in a dog image,
are completely erased. In such cases, even humans would struggle to determine the correct
label for the modified image. Therefore, assessing the relevance between the augmented
training set and the task at hand can provide insights into the quality of the dataset.
Considering that models are typically evaluated on a separate test set for various tasks, this
study compares the average similarity between the test set and the augmented training set
in the high-dimensional feature space:

Q6 =
1

Nt ∗ N′
Nt

∑
i=1

N
′

∑
j=1

similarity(i, j), (20)

where similarity(i, j) denotes the similarity function used to measure the similarity between
samples. Based on the Equation (20), we can get the Algorithm 6.

Algorithm 6: Rapid calculation of task relevance by clustering.

Data: A training dataset D
′
= {x1, x2, · · · , xN′ }, dataset size N

′
, The number of

classes C, A test dataset Dt, test dataset size Nt, DL model NN
Result: Task Relevance Metric Scores Q6

1 Q6 ← 0;
2 Extracting the feature vector V from D

′
and Vt from Dt with help of NN;

3 Clustering feature vector V into k classes of V
′
;

4 D
′
clustered ← ∅;

5 for i← 0 to k do

6 D
′
clustered ← randomly select C data from different categories in V

′

7 end

8 for class index← 0 to C do

9 for each vector vi and vj ∈ collection of class index in V
′

and Vt do

10 Q6 ← Q6 + similarity(vi, vj);
11 end

12 end

13 Q6 ← average(Q6);

Ignoring the time of feature extraction and clustering part, the computation of Q6 is
mainly divided into two steps. They are the computation of the similarity matrix and its
average, respectively. The similarity of all unordered pairs of the dataset and test set needs
to be computed, assuming that the dataset size is N and the test set size is M, then the
total number is N×M. The similarity matrix time complexity is O(KMN). Where K is the
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dimension size of the image vector output by the model. And calculating the mean only
requires O(NM). So the total time complexity is O(KMN).

2.5. Result Statistics

To combine various metrics, existing approaches often employ weighted fusion [44]
or rank fusion [45] to directly rank the augmented datasets. However, these methods are
not suitable in this case because the metrics from different dimensions cannot be directly
compared, and a comparison between the augmented training set and the original training
set is required. In this paper, a fusion approach is proposed that calculates the quality of
data augmentation by considering the ratio of quality before and after augmentation. All
metrics are shown in Table 2 and the fusion equation is defined as

Q =
Q
′
6

Q6
×

5

∑
i=1

wi
Q
′
i

Qi
/

5

∑
i=1

wi, (21)

where the Q
′
i represents the quality metric of the augmented dataset, Qi represents the

quality metric of the original dataset and wi represents the weight of each metric to the final
fusion metric Q. By assigning appropriate weight coefficients to the metrics of different
parts, the balance of influence of different factors in the metrics can be ensured. For example,
when you encounter high precision requirements of the task, task relevance metrics are
more critical and need to be assigned a higher weight.

Table 2. Data augmentation quality metrics.

Quality Metrics Full Name Category

Q1 diversity of features diversity
Q2 diversity of textures
Q3 diversity of brightness
Q4 balance of number between class class balance
Q5 balance of features between class
Q6 task relevance task relevance

3. Experimental

3.1. Datasets and Data Augmentation

In order to validate the effective evaluation of data augmentation quality, this study
selected different augmentation strategies, datasets at different granularities, and several
specific tasks as the objects of method evaluation. The CIFAR-10 and CUB-200 [46] datasets
were chosen as the experimental datasets for image classification tasks. The CIFAR-10 and
CUB-200 represent different areas of computer vision problems. CIFAR-10 is an image
classification dataset containing 10 different categories of common objects such as aircraft,
dogs, cars, and so on. The CUB-200, which focuses on bird identification, contains images of
200 different species of birds. The multi-domain coverage of these two datasets allowed us
to explore the impact of diversity and task relevance in different application contexts. They
also exhibit varying levels of image diversity and class balance. CIFAR-10 includes diverse
scenes, lighting conditions, angles, and variations. In contrast, CUB-200 exhibits limited
image diversity, with predominantly consistent backgrounds. Furthermore, both datasets
represent numerous practical application scenarios, such as image classification, object
detection, and object recognition. By conducting experiments on CIFAR-10 and CUB-200,
we gain a better understanding of the performance and applicability of our methods.

In the context of image data applications, data augmentation methods add noise to
the original data to simulate other real-world scenarios, thus creating augmented images
for model training. To evaluate the improvement in data quality brought by different
data augmentation methods, this study employs RandAugment’s data augmentation
search strategy [47]. Unlike RandAugment, which applies random transformations to
images during training, this study scales up the dataset by employing the RandAugment
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strategy prior to training. To generate data diversity, this study selects n transformations
from a set of k = 16 data augmentation transformations with uniform probability, where
the augmentation magnitude for each transformation is set to m. By varying these two
parameters, the strategy can express a total of m × 2n potential augmentation policies,
where n represents the strategy for selecting data enhancement and m represents the
intensity of data augmentation. Each parameter of the transformations is scaled using
the same linear scale, ranging from 0 to 30, where 30 represents the maximum scale for a
given transformation, and then mapped to the parameter range of each transformation.
Subsequently, during the expansion and generation of the augmented dataset, we uniformly
sample dataset samples with probability c for transformation. All generated images are
then merged with the original dataset to create the augmented dataset. However, image
data alone is insufficient for calculating quality metrics. Therefore, the image data needs
to be abstracted into 2048-dimensional feature vectors. In this study, a pre-trained model,
ResNet101, is utilized to extract features from the generated augmented dataset.

3.2. Baseline

In this paper, we will present the results of our proposed method on CIFAR-10 and
CUB-200 datasets to demonstrate how our approach captures the intuitive notion of data
augmentation and can be applied to assess the quality of data augmentation in DL. The
existing data augmentation evaluation work can be divided into two categories: model vali-
dation for assessing effectiveness and statistical analysis for improving data quality. Model
validation aims for the highest level of accuracy, as seen in approaches like AutoAugment.
However, due to the immense computational demands, it may not be practically feasible
in real-world applications. On the other hand, work in the field of statistical analysis for
enhancing data quality tends to focus on calculating dataset quality at a finer granularity
within a specific dimension [38,48]. Quality is multidimensional, and solely relying on a
single dimension for analysis can provide a limited perspective. These two articles are both
based on the intrinsic attributes of the data and the contextual tasks for analysis [29,32].
However, the mathematical tools chosen in statistical analysis cannot achieve the goal of
correctly assessing data quality. This paper divides data quality into multiple dimensions,
allowing researchers to comprehensively assess the quality of data and identify areas in
need of improvement. Since it focuses on enhancing data to improve model performance,
it is essential to clearly define their definitions and relationships, while having effective
methods for utilizing these dimensions to evaluate the effectiveness of data augmentation.
So, we will compare our method with two baseline approaches: diversity and task inde-
pendence calculated using the mean and min-max criteria. Since the criteria for quality
fusion differ among these methods, we will employ our proposed quality fusion method to
calculate the final scores for all the approaches. Baseline’s formula is shown in Table 3.

Table 3. The formula of baseline.

Baseline Metrics Formula

mean criteria mean_Q1 1− 1
N′

2 ∑N′
i ∑N′

j similarity(i, j)

mean_Q6
1

N′ ∗Nt
∑N′

i ∑Nt
j similarity(i, j)

mean_Q mean_Q1 ∗mean_Q6

minmax criteria minmax_Q1 1− 1
N′ ∑N′

i minj∈D′ similarity(i, j)

minmax_Q6
1

N′ ∑N′
i maxj∈Dt similarity(i, j)

minmax_Q minmax_Q1 ∗minmax_Q6

In this section, this study conducted two sets of experiments to validate the effective-
ness of the proposed method. The first set of experiments evaluated the correlation between
the model precision on the test set and the quality evaluation results of the generated aug-
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mented dataset using different parameters for data augmentation. Due to the enormous
search space of data augmentation strategies, it was challenging to define it precisely.
Therefore, this study randomly selected 7 sets of parameters as the comparative parameters
for the experiment. The second set of experiments involved generating augmented datasets
of different sizes using the same set of parameters for data augmentation. The performance
of the model on these datasets was observed to see if it aligns with the algorithm results.

3.3. Evaluation Index

For the purpose of achieving higher model precision, this study adopts model evalu-
ation metrics as the evaluation criteria for algorithm performance. After training on the
augmented dataset, the model’s precision is tested on the original test set. The model
training parameter settings are shown in Table 4.

Table 4. The hyperparameters of DL model.

Dataset Model Hyperparameters

CIFAR10 densenet161 Epochs = 90, Init lr = 0.1 divide by 5 at 40th, 60th, 80th, Batchsize = 256, Weight decay = 5 × 10−4,
momentum = 0.9

CUB200 NtsNet Epochs = 50, Lr = 0.001, Batchsize = 16, Weight decay = 1 × 10−4, Momentum = 0.9

Due to the different dimensions between the scores of the method and the baseline and
the accuracy of the model, we first divide all the model accuracies by the accuracy of the
model on the original training set, similar to how the scores are calculated. We refer to this
as the actual score of the augmented training set. Then, we consider using Cosine Similarity
(CS) to calculate the similarity between the estimated scores and the actual scores. We sort
the scores into a vector according to certain rules, such as enhancement magnitude or scale,
and then calculate the cosine value of the angle between them. This cosine value reflects
the similarity of the changing trends between the estimated scores and the actual scores.
However, we still need to know the absolute distance between the two scores. Therefore,
we also select Mean Squared Error (MSE) as our second metric. By combining these two
metrics, we can comprehensively analyze the strengths and weaknesses of the algorithm.
A larger CS and a smaller MSE indicate better results.

3.4. Ablation Study

This paper introduces an evaluation method for assessing the quality of data augmen-
tation in an image dataset, aiming to better select augmentation techniques. In order to
demonstrate the effectiveness of our proposed method in evaluating data augmentation
based on local independence and global correlation information, as well as to validate our
pipeline design, we conducted two ablation experiments. In Experiment 1, we focused
on metric adjustment to confirm the observed differences between method results and
estimation results from a statistical perspective. The Spearman’s rank correlation coefficient
contains a p-value to show the level of significance. The technique was statistically different
when and only when the P value was below 0.05. In Experiment 2, we replaced the compo-
nents in the framework to evaluate their impact on the results. Both ablation experiments
were conducted on the CIFAR-10 dataset, and the experimental setup described earlier was
used to train the network from scratch.

3.5. Case Study

In general, because different data types and different tasks require the machine learn-
ing model to learn different content, there is no absolute universal method for evaluating
data augmentation quality. This article sets up experimental datasets from the perspectives
of data types and downstream tasks. We will apply the methods described in this paper to
two different datasets selected from various domains and tasks: EuroSAT and IMDB.
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We have chosen datasets from significantly different domains—images and text, which
represent two major data types. We also ensure that the datasets are large enough to
facilitate meaningful augmentation and analysis. By calculating the score differences after
augmentation using ADQE, we evaluate and visualize the differences between the two
datasets with the largest score differences. EuroSAT, being an image dataset, undergoes
the same augmentation and evaluation methods as described in this paper. For the text
dataset IMDB, we apply data augmentation methods such as Optical Character Recognition
(OCR), semantic augmentation, and summarization. Since the data type is different, we
cannot directly use ADQE to calculate evaluation scores, and adjustments need to be
made to the methods. The text dataset also involves extracting feature vectors to calculate
diversity and task relevance, but text is composed of words rather than pixels. Q2 and Q3
need to be recalculated using words and characters. We combine these two metrics and
redefine them as the information entropy calculated from frequency of the top 10,000 most
frequent words.

4. Results and Discussion

4.1. Results of Comparative Experiments

The experimental results of the first group are presented in Figure 2. Figure 2 primarily
illustrates the performance of our method compared to state-of-the-art methods on two
different datasets, including the visual comparison and statistical analysis between the
evaluation scores and model accuracy, as well as the variation trend of scores under different
data augmentations. Figure 2a,b show the experimental results based on the CIFAR-10
dataset, while Figure 2c,d display the experimental results based on the CUB-200 dataset.
From the experimental results, it can be observed that the entropy-based method provides
the most similar quality results for all augmented datasets, which is further validated by
the model’s accuracy.

In Figure 2a,b, the entropy-based method shows the best fit to the model accuracy
curve. Meanwhile, in Figure 2e,f, our results are validated using statistical analysis. We
achieved excellent scores in both indicators, with CS approximately equal to 1 and MSE
close to 0, indicating that entropy effectively captures the data characteristics and estimates
corresponding evaluation scores. On the other hand, the evaluation results of methods
like the minmax criteria continuously increase with the magnitude of data augmentation,
deviating significantly from the trend of model accuracy. This is likely due to the noise
introduced by data augmentation, leading to an overestimation of the quality of augmented
datasets using the minmax criteria. This principle overlooks the overall distribution of the
dataset and approximates its quality by statistical extreme values, resulting in a significant
decrease in evaluation accuracy. Among all the figures, the minmax criteria consistently
performs the worst. This observation is also reflected in the evaluation results based on
the mean criteria in Figure 2b. The evaluation under overly strong data augmentation also
overestimates the quality of the augmented dataset. In CUB-200, where the original data
are scarce and very similar, with backgrounds mostly consisting of single skies, oceans,
and forests, and birds differing slightly in feather color and shape, data augmentation
significantly increases the diversity of the dataset. Changing a large portion of data
distribution without perfectly matching the actual data distribution amplifies the diversity
evaluation scores. The CS drops by one percentage point, and the MSE increases from
below 0.1 to 1.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Under the same scale and different data augmentation scenarios, our method achieves the
best quality evaluation results. (a) Evaluation of three algorithms and the model on the augmented
dataset using the CIFAR-10 dataset. (b) Evaluation of three algorithms and the model on the
augmented dataset using the CUB-200 dataset. (c) Partial indicator scores of the augmented dataset
by three algorithms on the CIFAR-10 dataset. (d) Performance evaluation of the three algorithms
using CS. (e) Performance evaluation of the three algorithms using MSE. (f) Partial indicator scores
of the augmented dataset by three algorithms on the CUB-200 dataset. In (a–c,f), the x-axis represents
the data augmentation strategies, including the selection probability of data augmentation and the
magnitude of data augmentation. The selection of these strategies is randomly chosen within the
given range. The word “mine” represents the methodology of this paper.
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In our data augmentation quality evaluation metric calculation, we partition the over-
all evaluation metric based on the mean and variance of the data augmentation quality.
The mean measures the distance between the augmented data and the target data distribu-
tion. The variance measures the distribution uniformity and diversity of the augmented
data. From the q6 curves in Figure 2c,d, for all methods, their mean calculation results
are relatively consistent. They accurately calculate the distance between all augmented
training data and the test set distributions. However, only the entropy method meets the
criteria for variance estimation. Since semantic information has multiple dimensions and is
not entirely related to labels, it is divided into class balance and diversity. Even through
augmentation, class-related semantics will not be changed or lost. By using clustering
dimensionality reduction, we can clearly understand the spatial distribution of the data,
which remains relatively unchanged before and after augmentation. However, within the
class, due to color changes, deformations, inversions, and other operations, these noises are
substantially supplemented. We need to assess the distribution balance of data label-related
features, and so on. The minmax criteria emphasizes the farthest distance of the data
distribution. Although the mean criteria is more balanced, it is also affected by extreme
values. Moreover, data augmentation methods are likely to inject many extreme values
due to their randomness, thus affecting the evaluation. Entropy can smooth these extreme
values, categorizing them together, and calculate the overall diversity evaluation value
by statistically counting the effective number of categories under different dimensions.
Experimental results demonstrate that our framework can effectively evaluate data aug-
mentation quality by incorporating entropy, visually and comprehensively showcasing the
improvements brought by data augmentation to the dataset.

From another perspective, Figure 2a–d illustrate that the model accuracy is signifi-
cantly enhanced primarily through the increased diversity of the data. However, as the
diversity increases, there is a bottleneck, and the task relevance decreases, resulting in
poorer performance than the initial state. This is primarily related to the data augmen-
tation techniques chosen in this paper. Most of the changes involve alterations in color
space, shape, and orientation, which enhance data diversity and model robustness. Fewer
enhancements focus on image quality or denoising, reducing the degree of association
between samples in the dataset and the task objectives, which increases the dimensions of
the data that need to be analyzed. The target variables become less understandable and
predictable. Therefore, the experimental results inevitably show a decrease in task relevance
and an increase in diversity. The intensity of data enhancement up to a certain point reduces
the benefits and loses more data quality. By clearly defining dimensions, researchers can
better guide the selection and implementation of data augmentation strategies. Using
data quality dimensions to evaluate the effectiveness of data augmentation in experiments
helps provide empirical evidence. This allows researchers to quantify improvements and
demonstrate that the measures taken have indeed enhanced model performance.

The results of the second group of experiments are shown in Figure 3. The evaluation
trends of the three methods are mostly consistent, showing an improvement in the quality
fusion score as the scale increases, although the rate of improvement decreases. The
minmax principle still exaggerates the quality of data augmentation. The model precision
also increases as the scale expands, but gradually starts to decline after reaching a four-fold
scale. This indicates that the repetition of data augmentation-generated images can have a
negative impact on model performance, leading to overfitting. It demonstrates that more
data are not always better. According to Figure 3b, our algorithm and the averaging method
have similar performance, which is superior to the minmax values.
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(a) (b)

Figure 3. Under the same data augmentation with different scales, our algorithm and the averaging
method exhibit similar performance. (a) Evaluation of the three algorithms and the model on the
augmented dataset of CUB-200 dataset. (b) Performance evaluation of the three algorithms using CS
and MSE. The word “mine” represents the methodology of this paper.

4.2. Results of Ablation Experiments

Table 5 presents four methods for metrics fusion. In the case of calculating metrics
using multiplication, if we continue to use multiplication for index weights, it would
lose the balancing effect of importance. Therefore, we chose to use power operations to
further enhance the balancing role of parameters. For each fusion method, we evaluate the
accuracy of the evaluation results using CS and MSE. The fusion method used in this study
achieved the best scores in all four indicators. The results in the second and third rows are
one order of magnitude higher than those in the first and fourth rows, with MSE increasing
from 0.1357 and 0.5363 to 5.6027 and 9.7748. This also confirms that in the estimation of
variance, the labels and semantic cannot be simply regarded as two sets of linearly related
variables. The semantic information needs further decomposition, and the final scores
need to be fused using addition for the unrelated parts. The first and fourth rows achieved
approximately the same excellent scores, with CS differing by less than 1 percentage point.
However, in the CUB dataset, the MSE differed by three times. The reason is the neglect of
the correlation between variance and mean. In large and relatively balanced datasets like
CIFAR-10, this effect is not evident. But for small datasets, data augmentation can easily
disrupt data semantics and introduce irrelevant noise, affecting model training. This is
reflected in the increase in variance evaluation results while the mean evaluation results
decrease. Therefore, using addition to fuse variance and mean cannot well reflect the
relationship between the two indicators.

In Tables 6 and 7, we can visually observe the correlations between indicators. One
notable observation is that the correlation between Q1 and Q6 is approximately −1. This
confirms that there is indeed a strong negative correlation between them, consistent with
the previous discussions. Surprisingly, we also found high correlations between Q1 and
Q4, as well as between Q2, Q3, and Q5. The high correlation between Q1 and Q4 may be
due to the random generation of augmented datasets. It results in different numbers of
samples for each class, causing Q4 and Q1 to increase synchronously and be considered
highly correlated. If the size of tests is larger and more diverse, this correlation will
gradually decrease. The high correlation between Q2, Q3, and Q5 may be due to manual
rule intervention, which leads to a more uniform color space distribution in the dataset
and reduces the use of color as a criterion for unsupervised clustering. This improves the
accuracy of clustering results. This also indirectly demonstrates that data augmentation
indeed helps the model learn from data.
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Table 5. Results of ablation experiments.

Fusion of Quality Metrics Formula CScub MSEcub CSci f ar MSEci f ar

(QDiversity + QClassBalance)×QTaskRelevance
Q′6
Q6
×∑5

i=1 wi
Q′i
Qi

/ ∑5
i=1 wi 0.9999 * 0.1357 0.9997 1.4841

QDiversity ×QClassBalance ×QTaskRelevance ∏6
i=1(

Q′i
Qi
)ri 0.9805 5.6027 0.9721 16.5365

QDiversity × (QClassBalance + QTaskRelevance) ∏3
i=1(

Q′i
Qi
)ri ×∑6

i=4 wi
Q′i
Qi

/ ∑6
i=4 wi 0.9727 9.7748 0.9916 98.9535

QDiversity + QClassBalance) + QTaskRelevance ∑6
i=1 wi

Q′i
Qi

/ ∑6
i=1 wi 0.9977 0.5363 0.9995 1.8736

* The bold values are the best.

Table 6. The correlation coefficient of each metric in CIFAR-10.

Metrics Q1 Q2 Q3 Q4 Q5 Q6

Q1 1
Q2 −0.05 1
Q3 −0.29 0.76 * 1
Q4 0.81 * 0.10 −0.10 1
Q5 −0.19 0.62 * 0.81 * −0.14 1
Q6 −0.92 ** 0.02 0.24 −0.57 0.07 1

* p < 0.05, ** p < 0.01.

Table 7. The correlation coefficient of each metric in CUB-200.

Metrics Q1 Q2 Q3 Q4 Q5 Q6

Q1 1
Q2 −0.23 1
Q3 −0.71 * 0.73 * 1
Q4 0.76 * 0.11 −0.24 1
Q5 −0.71 * 0.79 * 0.95 ** −0.19 1
Q6 −0.97 ** 0.36 0.79 * −0.66 0.8 * 1

* p < 0.05, ** p < 0.01.

However, there are slight differences in the experimental results between the two
datasets. For example, in CIFAR-10, Q6 is strongly correlated only with Q1. But in CUB-
200, Q6 is strongly correlated with not only Q1 but also Q3 and Q5. In particular, the
correlation with Q5 increased from 0.07 to 0.8, showing two extremes. From the perspective
of dataset properties, CIFAR-10 is a large-scale dataset with data from various scenarios
and weather conditions, and data augmentation has a limited impact on its basic image
feature distribution, and the distribution of each class changes little. Data augmentation
mainly affects semantic information in this dataset, such as object inversion not affecting
recognition. Therefore, only Q1 and Q6 show correlation. However, in the small dataset
CUB-200, most images have a single color and similar backgrounds. Image features have
a greater impact on the final results, which is also reflected in the correlation of indicator
results. Therefore, when using our framework to evaluate data augmentation quality,
analyzing the correlations of various indicators can help understand the strengths and
weaknesses of the dataset.

Figure 4 illustrates the impact of clustering algorithms on the framework results,
where only Q1 and Q6 are accelerated by clustering in the framework. Figure 4a,b show the
accuracy of the results before and after clustering. The original algorithm uses brute force
to compute the distance between pairwise image vectors to obtain evaluation results. In
Figure 4a, the clustered results show some differences compared to the original results, with
a similar trend but a decrease in evaluation scores after clustering. However, as Figure 4b
indicates, both indicators improve after clustering, proving that clustering actually helps
improve the accuracy of the evaluation results. Figure 4c displays the saved running time
through clustering. The x-axis represents the product of the number of classes and the
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number of samples in each class in the dataset. It is evident that when the number of classes
is large and the number of samples per class is small, clustering only saves about half of the
time. However, when the number of samples per class is much larger than the number of
classes, clustering can save over 90% of the time. This is because Q1 separates the dataset
based on classes, and the time complexity within each class is O(n2). After fast clustering,
since the number of classes is roughly the same, it can be considered a constant factor.
Therefore, the fewer the number of classes and the more samples per class, the more time
can be saved. In Figure 5, it can be observed that replacing different pre-trained models
does not significantly affect the evaluation results of this method. The more sufficient
the pre-training, the more accurate the grasp of image features, and the generated image
feature vectors also have certain discriminative power. The two pre-trained models selected
in this study, both trained on ImageNet, did not show significant differences.

(a) (b)

(c)

Figure 4. The clustering results have not only optimized the computation of the algorithm but also
improved its performance. (a) The running times of the unoptimized and optimized algorithms are
shown for different numbers of categories and samples within each category. The x-axis represents
the product of the number of categories and the number of samples within each category in the
dataset. (b) Partial scores of the original algorithm and the optimized algorithm are presented
for the CUB-200 dataset. The x-axis represents the total number of samples in the augmented
training set. (c) Performance evaluation of the original algorithm and the optimized algorithm in the
CUB-200 dataset.
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(a) (b)

Figure 5. Under the same data augmentation with different scales, our algorithm and the averaging
method exhibit similar performance. (a) Evaluation of the three algorithms and the model on the
augmented dataset of CUB-200 dataset. (b) Performance evaluation of the three algorithms using CS
and MSE.

4.3. Applicability and Potential Applications

In Figures 6 and 7, we assessed the quality of each dataset and visualized the scores
for the original dataset and the highest dataset. It can be seen that from a visual perspective,
there are significant differences between the two. Figure 6 presents a comparison of the
EuroSAT dataset. On the left, the original images within the same category mostly share a
similar color and content. On the right, due to the effects of data augmentation, there is
increased diversity in color and brightness. However, in some images, it becomes difficult
to discern their content with the naked eye. Figure 7 illustrates the dimensionality reduction
visualization of the IMDB dataset using the t-SNE algorithm. It is evident that the dataset on
the right, which has higher scores, exhibits better data separation. Most of the positive data
points are concentrated on the right. This indicates that the classes have good separability,
which can effectively enhance the model’s performance.

(a) (b)

Figure 6. This is a display of the EuroSAT dataset, each row is a different class. (a) Origin dataset.
(b) The augmented dataset with the highest score.
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(a) (b)

Figure 7. The t-SNE algorithm reduces dimensionality of all features in the IMDB dataset and
visualizes them. (a) Origin dataset. (b) The augmented dataset with the highest score.

The context of intrinsic data attributes and the intended use of the data in the evalua-
tion method cannot be balanced well, which limits its applicability. For example, remote
sensing images inherently have issues like low contrast, noise, and blurriness. Additionally,
remote sensing images often contain imprecisely shaped objects, unlike medical imaging,
which require precise target recognition. Therefore, remote sensing images are not highly
sensitive to task relevance, and optimizing intrinsic data attributes for quality improvement
results in more significant quality loss compared to the decrease in task relevance. In
contrast, medical imaging has sufficiently high image quality. In an attempt to enhance
diversity, it leads to a loss in data quality and task relevance, ultimately resulting in an
overall decline in quality. Different tasks have varying quality requirements for datasets,
and during the calculation, parameter variations in three areas—diversity, class balance,
and task relevance—need to be considered. This is also a direction we need to focus on
in the future. When our method is not tuned to the correct parameter resulting in poor
performance, a more well-performing parameter can be fitted by combining the evaluation
results of multiple augmented datasets with a small number of training results. Then try
evaluating a new augmented dataset again until the parameter is similar to most of the
training results.

Different downstream tasks have different priorities. The evaluation method may
succeed for the assumed task but fail for the target task. For example, in the case of object
recognition tasks, the optimal augmented dataset obtained using the method described
in this paper may be suboptimal for this task. This is because image similarity metrics
are better suited for classification tasks rather than object recognition, where the goal is
to detect similarity between small regions. Task relevance metrics, on the other hand, can
replace this by calculating the similarity between annotated regions and other regions.

Data can exhibit significant differences in terms of structure, format, complexity, size,
noise levels, and more. Evaluation methods tailored to one data type may fail when
applied to another data type. For image datasets, we calculate statistics on pixels and
textures. However, text datasets are composed of characters, words, and sentences, so the
intrinsic data quality of different data types needs rules established by domain experts
for measurement. In addition to this, this paper’s method reflects high applicability and
robustness in data diversity. The main reason is that no matter what type of deep learning
data can use neural networks to extract multi-dimensional feature vectors, which constitutes
most of the indicators of this paper’s method based on the calculation of feature vectors, so
to a certain extent this paper has the ability to adapt to most of the fields.
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In most real-world datasets, a certain degree of anomalies, noise, errors, and outliers
can be expected. Truly clean and pristine data are a rare find. This is particularly true for
sensor data, remote sensing data, and internet-derived data, which often exhibit higher
variability and a higher incidence of anomalies. The process of data augmentation can
introduce new error patterns. In this paper, we split the dataset into three attributes and
utilize techniques such as information entropy to effectively quantify the number of patterns
and task relevance. Excessive errors can lead to a decrease in task relevance, which can
manifest in the final results. However, because this paper employs unsupervised algorithms,
it is challenging to distinguish and optimize true anomalies from acceptable variations.

The diversity and complexity of real-world data make the development of universally
applicable data quality assessment methods inherently challenging. Thoughtful method
design, extensive evaluation, avoiding overfitting, and relaxing assumptions can enhance
applicability. In practical scenarios, the methods outlined in this paper can guide the con-
struction of datasets. If the collected sample dataset is insufficient for training deep learning
models, you can evaluate the effectiveness of data augmentation using quantitative metrics
defined based on the three dataset attributes and the ultimate goal, such as improving
classification accuracy, reducing error rates, or enhancing signal-to-noise ratios. Utilizing
data augmentation and assessment methods can address the long-tail problem in data,
improve data consistency, and reduce the labeling workload. As more real-world data
become available, it is essential to continuously reassess and enhance data augmentation.
The demand for augmentation may evolve over time. In summary, the methods described
in this paper contribute to the development of well-generalized models from limited and
imperfect real-world data.

Furthermore, the methods outlined in this paper are easy to implement and can be
seamlessly integrated into the deep learning workflow using popular frameworks like
TensorFlow or PyTorch. Leveraging the data pipelines within these frameworks and the
data monitoring integrated into them, it becomes straightforward to quickly compute
intrinsic data attribute metrics and feature vectors generated by pre-trained models after
generating multiple augmented datasets from the input data. Once the optimal dataset for
evaluation is obtained, you can proceed directly to training your model.

5. Conclusions

This study aims to enhance model performance through the improvement of data
quality. By categorizing data quality into three key dimensions, diversity, class balance,
and task relevance, and evaluating the effectiveness of data augmentation within these
dimensions, we have achieved the following key outcomes and conclusions.

Firstly, we have successfully deconstructed the complexity of data quality into three
essential dimensions. This aids in providing a more comprehensive understanding of data
quality. Diversity ensures the inclusion of various sample types in the dataset, class balance
helps address imbalances in class distribution, and task relevance ensures the alignment of
data with the actual task at hand.

Secondly, by assessing the impact of data augmentation methods across these three
dimensions, we can quantitatively measure the influence of different enhancement strate-
gies on data quality. Our experimental results demonstrate that, with reasonable selection
and adjustment of augmentation strategies, significant improvements can be made in data
diversity and class balance while maintaining a high degree of relevance to the task.

Most importantly, our work holds significant practical implications. In the modern
fields of machine learning and artificial intelligence, data serves as the foundation of
successful models. By elevating data quality, we can enhance model generalization, mitigate
overfitting risks, improve model robustness in real-world scenarios, and provide more
accurate predictive and decision-making support across various application domains.
This impact extends to critical areas such as medical diagnostics, financial risk analysis,
autonomous driving, and beyond.
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In the future, we aim to further explore the relationships among data quality dimen-
sions and strive towards the automatic selection of parameters tailored to specific domains
and tasks. The most notable improvement will be in terms of efficiency, as manual pa-
rameter selection and adjustment will no longer be necessary. Additionally, this approach
will reduce subjectivity and bias, ensuring the replicability and comparability of experi-
mental results. Most importantly, it will simplify experimentation, making this method
accessible to a broader range of researchers interested in understanding the principles of
data construction.

In summary, our research provides a systematic approach to enhancing data quality,
enabling researchers to better comprehend, evaluate, and enhance data for improved
machine learning model performance. This work offers robust guidance for future research
and applications, with the potential to make a positive impact in data-driven fields.
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Abstract: Delay multiply and sum beamforming (DMAS) is a non-linear method used in ultrasound
imaging which offers superior performance to conventional delay and sum beamforming (DAS).
While the combination of DMAS and coherence factor (CF) can further improve single plane-wave
imaging lateral resolution, by using CF to weight the DMAS output, the main lobe width and
aberration effects can be suppressed, which will improve the disadvantage of low lateral resolution
when imaging with a single plane-wave. However, in low signal-to-noise ratio (SNR) environments,
the speckle variance of the image increases, and there are black area artifacts around high echo objects.
To improve the quality of the scatter without significantly reducing the lateral resolution of the
DMAS-CF, this paper proposes an adaptive spatio-temporally smoothed coherence factor (GSTS-CF)
combined with delay multiply and sum beamformer (DMAS + GSTS-CF), which uses the generalized
coherence factor (GCF) as a local coherence detection tool to adaptively determine the subarray length
to obtain an improved adaptive spatio-temporally smoothed factor, and uses this factor to weight the
output of DMAS. The simulation and experimental data show that the proposed method improves
lateral resolution (20 mm depth) by 86.87% compared to DAS, 52.13% compared to DMAS, 15.84%
compared to DMAS + STS-CF, and has a full width at half maxima (FWHM) similar to DMAS-CF.
The proposed method improves the speckle signal-to-noise ratio (sSNR) by 87.85% (simulation) and
77.84% (in carotid) compared to DMAS-CF, 20.37% (simulation) and 40.74% (in carotid) compared to
DMAS, 15.03% (simulation) and 13.46% (in carotid) compared to DMAS + STS-CF, and has sSNR and
scatter variance similar to DAS. This indicates that the method improves scatter quality (lower scatter
variance and higher sSNR) without significantly reducing lateral resolution.

Keywords: ultrasound imaging; plane-wave; beamforming; coherence factor; adaptive; spatio-
temporally smoothed; delay multiply and sum beamforming

1. Introduction

In ultrasound imaging, we generally use a fixed focus at emission and a dynamic focus at
reception, which allows imaging at frame rates in the tens of Hertz to be obtained [1]; however,
this is not suitable for high frame rate imaging such as echocardiography, 3D imaging, and
elastography [2,3]. The plane-wave scanning approach achieves high frame rates, but the lack
of emission focus severely degrades the imaging quality. Although some traditional coherence
factor methods can suppress clutter and improve image contrast with low computational
complexity, the ability to reduce scattering variance and remove black-area artefacts is still
insufficient, which makes the image background inhomogeneous. Therefore, simultaneously
improving the lateral resolution and background scattering quality has become the focus
of this research. Based on the spatio-temporally smoothed coherence factor (STS-CF) [4],
we propose a new coherence factor method that can adaptively change the length of the
smoothing subarray according to the detection target. It provides better side and/or grating
lobe suppression, clutter reduction, and aberration correction. To achieve a trade-off between
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lateral resolution and scattering retention performance, we combined the new coherence factor
with the DMAS method to further improve lateral resolution.

One of the most common beamformers is the delay and sum beamforming (DAS),
but its ability to improve image resolution and suppress clutter interference is limited.
Giulia Matrone et al. introduced DMAS based on receive aperture autocorrelation, which,
unlike DAS, is a non-linear algorithm in which signals are combined and coupled and
then multiplied before summing [5]. This means that a correlation operation is conducted
on the echoes. Since DMAS multiplies echoes of almost the same frequency, DC and
second harmonic components appear in the output spectrum. Therefore, a band-pass
filter is added after the DMAS output to filter out DC components and higher harmonic
components, while the signal centered at 2 f0 remains unchanged ( f0 is the central frequency
of the echo), and finally the output of the filtered delayed multiplication sum (F-DMAS)
is obtained [6]. Compared to DAS, DMAS better suppresses spurious and noise via a
correlation operation, brings the measure of backward scattering signal coherence into
the beamforming process, and increases the number of new “artificial apertures” (because
the coefficient of the autocorrelation function is 2N − 1 and N is the number of received
apertures), thus reducing f # and resulting in an improvement in lateral resolution [7].
However, this imaging method requires further suppression of the side lobes to improve
the imaging quality.

A number of scholars have proposed correcting the output of DMAS with a CF-like
method, which can develop for side lobe suppression, clutter reduction, and aberration
correction. By adaptively weighting the beamsum, they can enhance image contrast
without sacrificing spatial resolution. In addition, they have low computational complexity
and are easy to implement. The most representative CF-like method is the coherence
factor (CF) [8,9], which is defined as the ratio between the coherent energy of the aperture
received signal and the total energy (non-coherent). By using CF to weigh the output of
beamforming, the side lobes and aberration effects can be suppressed, but this darkens
the image and even reconstructs the image with errors. p.-C. Li and M.-L. Li proposed
the generalized coherence factor (GCF), a spatial frequency domain version of CF, which
adds a low frequency signal that is not very different from the axial fundamental frequency
signal to the molecule of CF and improves the preservation of scatter [10]. Camacho
et al. [11] designed the phase coherence factor (PCF) and the sign coherence factor (SCF).
The principle is to replace the amplitude information with the phase information, and a
linear or exponential relationship curve was added to regulate the suppression of off-axis
signals and the retention of background scatter. This suppresses the side lobe and improves
the lateral resolution. The implementation of this technique is simple and practical.

Although the CF-like method combined with the DMAS beamformer has advantages,
the images may suffer some undesirable effects in a low-SNR environment. They include
overall image brightness reduction, increased speckle variance, underestimation of the
size of the point target, black area artifacts in the region around the high echo reflector,
and even removal of the speckle pattern. To solve the above problems, we introduced
and improved the spatio-temporally smoothed coherence factor (STS-CF) proposed by
MengLing Xu et al. [12], the essence of which is to measure the coherence between the split
subarrays. It uses spatial smoothing (i.e., sub-aperture averaging) to create overlapping
subarrays and temporal smoothing across multiple time samples to calculate the energy
of the coherence sum [13]. This method introduces a tunable factor, achieving a balance
between image quality and algorithmic robustness. However, the value of the subarray
length L is determined empirically, and the most appropriate L is different in different
environments, so the method performs generally in clinical applications.

To solve the above problem, we propose the GSTS-CF. In this study, we use GCF to
detect local coherence and adaptively determine the subarray length for spatial smooth-
ing [14]. Using this factor to weigh the DMAS output can improve the scatter quality
without significantly reducing the lateral resolution. This is more applicable in complex
clinical settings. Section 2 briefly introduces the framework background of GCF, STS-CF,
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and DMAS, and then we describe the proposed method. Section 3 describes the simulation
setup and experimental steps and provides some metrics for evaluating a different beam-
former. Section 4 shows the obtained images and discusses the results. The performance of
these methods and the possibilities for further improvements are discussed in Section 5.
Section 6 provides a conclusion of the proposed method of this paper.

2. Materials and Methods

2.1. Spatio-Temporally Smoothed Coherence Factor

In CF, coherence is measured by a single element at a single time metric [15]; the
formula of the CF is:

CF(p) =

∣∣∣∑N
m=0 xm(p)

∣∣∣2
N ∑N

m=0|xm(p)|2
(1)

where N is the number of elements, and xm(p) is the delayed signal received by the m-th
element at point p. These signals are susceptible to noise and side lobes interference. To
make the background region scatter more uniform, the STS-CF is introduced [11]. It divides
the array into N − L + 1 mutually overlapping subarrays and measures the coherence of
the array signal at 2K + 1 sampling points. It uses the beamsum of the subarrays instead of
the single element signal [16]. The mathematical expression is defined as:

STS-CF(p) =
∑K

k=−K

∣∣∣∑N−L+1
l=1 ∑L+l−1

m=l xm(p + k)
∣∣∣2

(N− L + 1)∑K
k=−K ∑N−L+1

l=1

∣∣∣∑L+l−1
m=l xm(p + k)

∣∣∣2 (2)

where L is the length of the subarrays, and xm(p + k) is the delayed signal received by the
m-th element at time index p + k. The temporal smoothed technique divides the received
array into N − L + 1 overlapping subarrays containing L elements and uses the subarray
instead of a single element to measure the coherence of the signal. L as an adjustable
parameter is able to balance between performance and algorithmic robustness, when K = 0
and L = 0, STS-CF is CF; when K = 0 and L = M, STS − CF ≡ 1, which means no
correction to the beamformer output.

2.2. Generalized Coherence Factor

CF not only suppresses off-axis interference but also filters out useful off-axis signals,
which is unstable in a low signal-to-noise ratio environment [14]. The GCF method is
based on an improved form of CF. To enhance the robustness, GCF considers the energy
of non-coherent scattering signals. It adds low-frequency signals that do not differ much
from the axial orientation to the numerator of Equation (1) [15]. It is defined as the ratio
of the spectral energy of a particular low-frequency region to the total energy, and its
mathematical expression is:

GCF(p) =
∑ f∈LFR |h( f , p)|2

∑N−1
f=0 |h( f , p)|2

(3)

where h( f , p) is the discrete Fourier transform of the delay-compensated aperture data for
imaging point p, and the low-frequency region (LFR) is determined by the cutoff frequency
M0, which determines the performance of the GCF. When M0 = 0, GCF becomes CF.

2.3. Delay Multiply and Sum Beamforming

In DMAS, the signal is delayed, coupled, and multiplied, and then the absolute value
of the multiplied couple is square-rooted while preserving the sign, and the resulting signal
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is summed and band-pass filtered (BP). If the receiving aperture is N transducers, then
there will be N(N − 1)/2 combinations. The expression of DMAS is:

yDMAS(t) =
N−1

∑
i=1

N

∑
j=i+1

ŝij[t] =
N−1

∑
i=1

N

∑
j=i+1

sign
(
si(t)sj(t)

)
·
√∣∣si(t)sj(t)

∣∣ (4)

where si(t) and sj(t) are the delayed RF signals received by the i-th and j-th transducer
elements, and sign(x) is the sign function. Due to the multiplication of signals with similar
frequencies, a DC and a second harmonic component appear in the spectrum of the DMAS.
Therefore, band-pass filtering is further introduced to filter the DC and higher frequency
components, and the filtered DMAS is called F-DMAS.

2.4. Proposed Method

We proposed an adaptive spatio-temporally smoothed coherence factor based on
GCF, called GSTS-CF, which uses GCF as a local coherence detection tool to determine the
subarray length adaptively [13]. To further improve the image sharpness of GSTS-CF, it is
combined with the DMAS, which is DMAS + GSTS-CF. The algorithm flowchart is shown
in Figure 1.

Figure 1. Flow chart of the proposed methods.

The flow of the algorithm is to weigh the output of the DMAS with the GSTS-CF
factor. The key point is to calculate the GSTS-CF factor. The calculation process of GSTS-CF
is divided into two steps. The first step is to improve the CF using a spatio-temporal
smoothing method to obtain the STS-CF factor. The second step is to detect local coherence
with the GCF and map the GCF onto the subarray length L so that its value varies adaptively.
So first, we divide the array into N − L + 1 subarrays, each containing L elements. This is
called the spatial smoothed method, and the diagram is shown in Figure 2.

Figure 2. Diagram of the spatial smoothing method.

Figure 2 shows the ultrasonic probe consisting of N array elements. The spatial
smoothing method is used to process the data by dividing the N array elements into
N− L + 1 subarrays, the first subarray contains the 1st to the Lth array element, the second
subarray contains the 2nd to the L + 1th array element, and so on, and the N − L + 1th
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subarray contains the N − L + 1th to the Nth array element. The spatial smoothed method
computes the coherence of the subarray beamsums instead of computing the coherence
with a single element. Equation (1) calculates coherence using a single subarray, while
Equation (2) is a spatial smoothed method based on Equation (1), which uses a subarray
of L array elements instead of a single array element to calculate the coherence between
the arrays. Further, we measure the coherence of the subarrays at 2k + 1 neighbouring
time samples instead of a single time sample, which have improved array gain on SNR and
lowered side lobe levels. This is called the spatio-temporally smoothed method. L, as an
adjustable parameter, can only be determined empirically. In order to make L adaptively
changeable, we use the GCF to detect local coherence and map the GCF to the subarray
length L.

In general, as the subarray length increases, the STS-CF approaches 1, thus enhancing
robustness at the expense of lateral resolution. Therefore, to maintain the scatter pattern,
the L value should be larger, while for echo-free cysts and highly echogenic reflectors, the
L value should be smaller to obtain satisfactory image resolution and contrast [16].

Considering the performance of the GCF, the GCF values are small in non-coherent
scattering targets (i.e., in echo-free capsules), large in strongly coherent scattering targets
(i.e., high-echo reflectors), and tend to be moderate in low-coherent scattering targets (i.e.,
scattering spots).

According to the analysis above, when the value of GCF is large or small, we want the
corresponding L to be small, while when the value of GCF tends to be medium, we want
the value of L to be large.

In order to further determine the mapping relationship between GCF and L, we select
some points in the incoherent region, strongly coherent region, and low-coherent region,
respectively, to calculate the GCF value, and determine the appropriate L value at that point.
The evaluation criterion of L-optimal solutions is that in the low coherence region, the
scattering variance is the smallest, and in the strongly coherent region and the incoherent
region, the lateral resolution is the best. Different echo targets correspond to different GCF
values, and we selected 50 different targets whose GCF values were uniformly distributed
between 0 and 1. We also calculated the optimal L values corresponding to these 50 targets
and plotted a scatter plot, as shown in Figure 3a, using the GCF value of the point as the
horizontal coordinate and the L value as the vertical coordinate. The scatter plot is plotted
in matlab and then the geom_smooth() function is used to fit the scatter points; the optimal
model is selected as the Gaussian function model by calculating the AIC value. Thus, the
mapping of GCF to L is shown in Equation (5), and the fitting curve is shown in Figure 3b.

L(p) = f ix
[

N × e−(
GCF(p)−0.5

α )
2]

(5)

(a) (b)
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Figure 3. (a) The scatter plot of appropriate L for GCF. (b) Fitting curves for scattered points.
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The f ix is an integer operation, and GCF(p) is derived from Equation (3), which
takes values from 0 to 1, and the range of L(p) is 0 to N. The value of parameter α ranges
from 0 to 2. The smaller α is, the faster L(p) changes, and the more sensitive the algorithm
is to the detection of the target but the less robust [17]. In this paper, α = 0.2. The cutoff
frequency M0 of the low-frequency region in GCF is selected empirically, and different
selection will affect the results. In this paper, M0 = 10.

Then, bring L(p) into Equation (2) and replace fixed L with adaptive L(p) to obtain
the expression of GSTS-CF at point p:

GSTS-CF(p) =
∑K

k=−K

∣∣∣∑M−L(p)+1
l=1 ∑

L(p)+l−1
m=l xm(p + k)

∣∣∣2
(M− L(p) + 1)∑K

k=−K ∑
M−L(p)+1
l=1

∣∣∣∑L(p)+l−1
m=l xm(p + k)

∣∣∣2 (6)

The method adaptively changes the subarray length, which gives it a stronger scatter
retention capability compared with the conventional CF, but the noise reduction capability
is not sufficient, thus combining it with DMAS. Weighting the output of DMAS with
GSTS-CF to obtain the output expression of DMAS + GSTS-CF as:

yDMAS+GSTS−CF = yDMAS × GSTS− CF(p) (7)

yDMAS is derived from Equation (4).

3. Simulation and Experimental Datasets

3.1. Simulated Data Set

A linear array probe with 128 elements (element width = 0.25 mm, spacing = 0.28 mm,
gap = 0.03 mm) was simulated using field ii for the generation of single plane-waves. The
excitation was a two-period Hanning-weighted sinusoidal excitation pulse with the central
frequency set at 3 MHz. The sampling frequency was 40 MHz. Two experiments were set
up in the sound field: the first was scattering points simulation and the second d was a cyst
simulation. All are images displayed at a 60 dB dynamic range. The details are as follows.

In the point imaging simulation, four-point pairs are placed evenly at depths of 20 mm
to 50 mm. The two points in a point pair are spaced 2 mm apart laterally. This experiment
analyzes the lateral resolution of the algorithm by whether the two points in the point pair
are clearly visible.

In the cyst simulation, the test model consists of 10,000 points, randomly distributed
in a 40 × 10 × 5 mm3 box. Within this volume, the reflectivity has a Gaussian distribu-
tion. Embedded in this area is a cylindrical cyst of 3 mm diameter, centrally located at
(x, y, z) = (0, 0, 45) mm. It is assumed that the cyst is echo-free and that the reflection
coefficient of its internal scattering points is zero.

3.2. Experimental Data Set

Vivo carotid scanning experiments were carried out using a Heskell 256-channel
ultrasound signal collector and RF data before beamforming was acquired using an L-15
(40 MHz) line array probe. The probe emits a single plane-wave during the experiment.
The dynamic range of the images was 60 dB [17]. All subjects gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance
with the Declaration of Helsinki.

3.3. Image Quality Metrics

In order to quantitatively assess the performance of different beamforming methods,
the following metrics are quoted in Section 4: the lateral resolution, contrast ratio (CR),
contrast-to-noise ratio (CNR), and speckle SNR (sSNR) [18]. The lateral resolution is
measured by calculating the full width at half maximum (FWHM, −6 dB beam width) [19]
of the main lobe in a lateral direction. The CNR is used to evaluate whether the image detail
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is sufficiently sharp, and sSNR is used to evaluate the quality of background scatter [20].
The CR, CNR, and sSNR are defined as follows:

CR = 20log10

(
μi
μb

)
(8)

CNR =
|μi − μb|√

σ2
b − σ2

i

(9)

sSNR =
μb
σi

(10)

where μi and μb are the average image intensities (before logarithmic compression) of the
cyst and background within a region, while σ2

i and σ2
b are the corresponding variances.

4. Results

4.1. Simulated Point Target Results

From Figure 3a,b, we can see that the artifacts of DMAS are much smaller than
those of DAS, which is due to the fact that the correlation operation brings the metric of
backscattered signal coherence into the beamforming process, achieving better spurious
and noise rejection, but the image intensity decays as the depth increases [21–23]. The
weighted image has a better contrast and resolution, which can be seen in Figure 4c–f.
In the four images above, it can be found that the CF-weighted image has the sharpest
resolution of point pairs and fewer surrounding artefacts. The method proposed in this
paper (GSTS-CF) is the next best, and finally STS-CF is evaluated [14,24].

Figure 4. Simulated single plane-wave imaging with a dynamic range of 60 dB. (a) DAS image,
(b) DMAS image, (c) DMAS weighted by the CF, (d) DAS weighted by the CF, (e) DMAS weighted
by the STS-CF, (f) DMAS weighted by the GSTS-CF. All images are shown in a 60 dB dynamic range.

To further compare the lateral resolution of the different beamformer, we draw the
lateral projections of Figure 4 in Figure 5, while calculating the FWHM of the different
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beamformer based on the lateral projections [25]. From Figure 5, it can be found that the
combination of CF and DMAS has the narrowest main lobe width. Weighting DMAS with
STS-CF also improves the lateral resolution, but compared to DMAS-CF, there is still a gap.
In point imaging, the combination of DMAS and CF gives the best resolution because of
less clutter interference and a high echo SNR, but in complex environments with a low
SNR, the method will produce a large number of artifacts. The proposed method, which
combines the improved GSTS-CF with DMAS, has a slightly worse main lobe width and
side lobe amplitude than DMAS-CF, which weakens the suppression effect of CF and
makes a compromise between imaging clarity and algorithmic robustness [26]. It can also
be seen from Figure 5 that the GSTS-CF has a much-improved lateral resolution compared
to the STS-CF, and its FWHM converges to that of the CF-weighted beamformer. Although
CF-weighted beamformers have the best lateral resolution, they produce artefacts and
uneven background scatter in complex environments, as will be seen in the following
experiments.

Figure 5. Lateral projections of the single plane-wave images in Figure 4. The point pairs were located
at (a) 20 mm and (b) 40 mm. The corresponding zoomed-in figures are shown in (c,d).

From Table 1, we can see the variation in the lateral resolution of different beamformers.
The CF-weighted beamformer has a narrower main lobe and higher lateral resolution due
to the fact that CF works well in a simple scattering environment with a high signal-to-noise
ratio [27]. The combination of GSTS-CF and DMAS achieves a lateral resolution similar to
that of the CF-weighted beamformer, which is significantly better than DMAS as well as
DMAS + STS-CF.
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Table 1. The FWHM for different methods at 20 mm and 40 mm depth.

Method
FWHM (mm)

20 mm 40 mm

DAS 3.762 3.831
DMAS 1.032 1.157

DAS-CF 0.525 0.543
DMAS-CF 0.463 0.584

DMAS + STS-CF 0.587 1.034
DMAS + GSTS-CF 0.494 0.612

4.2. Simulated Cyst Target Result

A cyst is synthesized to compare the imaging quality of different algorithms [18].
Figure 6 shows that compared to DAS, DMAS has a clearer cyst demarcation line and lower
overall gray value. This is because DMAS has a narrower main lobe and noise floor. Thus,
we know that the performance of multiplying and summing is higher than summing, and
using adaptive weighting for DMAS can further improve the imaging quality. In Figure 6c,d,
the CF over-suppresses the signal. Although the clutter in the cyst was effectively removed,
the background region was also over-suppressed, resulting in a lower average level of
background intensity (see Table 1) and an increase in background scatter variance, along
with a large number of artefacts [19]. It is also seen that the imaging reconstruction in
Figure 6c is biased. Because the off-axis signal amplitude is much larger than the true signal
amplitude when imaging in the region near the highlighted scatterer, using CF directly
would only result in incorrect imaging reconstruction [28]. By making a comparison, we
can see that DMAS + STS-CF and DMAS + GSTS-CF have clear cyst demarcation lines,
effectively eliminating background region artifacts and suppressing clutter in the cyst
region. The method proposed in this paper adaptively evaluates the subarray length with
GCF, and it has a more uniform background and lower scatter variance than DMAS +
STS-CF [29].

Figure 6. Single plane-wave images of the computer-generated cyst phantom reconstructed using
(a) DAS, (b) DMAS, (c) DAS+CF, (d) DMAS + CF, (e) DMAS + STS-CF, (f) DMAS + GSTS-CF. All
images are shown in a 60 dB dynamic range.

Lateral cross-sections through the cyst target in the simulated images are shown in
Figure 7. It can be seen that DMAS-CF and DMAS + GSTS-CF have the lowest average
grey values, indicating that the internal clutter of the cyst is effectively removed [30]. The
greatest variation is seen at the cyst demarcation line, indicating that the two methods have
the clearest boundaries. Table 2 presents the results of the evaluation of the parameters
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σ2
b , CR, CNR, and sSNR, and the areas used to calculate these indicators are shown in

the rectangle in Figure 6 [31]. It can be seen that DMAS-CF has the highest CR and the
lowest CNR and sSNR, while DAS has the lowest CR and the highest CNR and sSNR.
This indicates that the normal DAS has the best ability to preserve scatter quality despite
its low CR; however, neither method has the best CR, CNR, and sSNR at the same time.
The DMAS + GSTS-CF is a compromise between the CR and CNR and sSNR. Its CR is
comparable to the DMAS-CF, and CNR and sSNR are comparable to the DAS, while it can
be seen that the GSTS-CF outperforms the STS-CF. For σ2

b , DMAS + GCTS-CF is also low,
just above DAS. This indicates a more uniform background scatter.

Figure 7. Lateral cross-sections through the cyst target in the simulated images.

Table 2. The cyst average intensity, background average intensity, CR, CNR, and sSNR of cysts for
different methods.

Method μi μb CR (dB) CNR sSNR σ2
b

DAS 2.3838 × 10−4 3.60 × 10−3 −12.7348 1.7998 1.9323 0.0173
DMAS 1.7782 × 10−4 7.09 × 10−4 −16.6694 1.2375 1.4648 0.0698

DAS-CF 3.2876 × 10−5 6.03 × 10−4 −20.2362 0.9213 1.1923 0.0876
DMAS-CF 4.2484 × 10−7 3.03 × 10−5 −32.9846 0.7694 0.9386 0.0945

DMAS + STS-CF 5.9576 × 10−5 3.09 × 10−4 −21.6455 1.3393 1.5328 0.0583
DMAS + GSTS-CF 1.1661 × 10−6 5.03 × 10−4 −29.3099 1.5420 1.7632 0.0352

4.3. Carotid Artery Experiment

Experiments were performed on human carotid artery scans, and the scanning site and
ultrasound signal acquisition device are shown in Figure 8. The RF data were processed
using a series of beamforming methods and represented on a 60 dB dynamic range. The
model diagram of the imaging site and the final imaging results are shown in Figure 9.

(a) (b)

Figure 8. (a) Location of the collected carotid artery data. (b) Ultrasound signal acquisition device.
1© RF receiver and transmitter circuits, 2© line array probe, 3© signal generator.
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Figure 9. Carotid artery model maps and plane-wave imaging results. The green and red boxes
indicate the areas where data μi and μb were collected (a) Carotid artery model maps, (b) DAS,
(c) DMAS, (d) DMAS + CF, (e) DMAS + STS-CF, (f) DMAS + GSTS-CF.

Compared with the simulation, this experimental object has a more complex structure
and more noise disturbances. In addition to the coherent noise of the echoes considered in
the simulation, there are a series of conditions affecting the signal quality, such as phase
distortion caused by the different transmission media and signal distortion caused by the
limited performance of the acquisition device. Therefore, to improve the imaging quality
of the experiment, we need a more precise signal acquisition device with the assistance
of interpolation processing and ultrasonic image denoising technology [32]. Although all
of this experimental imaging has some speckle noise, the analysis of the performance of
different algorithms is not affected.

It can be seen from Figure 9 that DMAS brings about a higher contrast ratio, but
at the same time it results in artifacts in the background, and the overall quality of the
image becomes darker. DMAS-CF suppresses the signal excessively, leading to image
reconstruction errors, while DMAS + GSTS-CF has a more uniform background area, and
the demarcation line between the vessel wall and the lumen can be seen more clearly. At
the same time, there are fewer artifacts in the echoless region inside the lumen. Compared
to the over-suppression of DMAS + CF, DMAS + GSTS-CF provides higher algorithmic
robustness, suppresses artifacts within the vessel lumen, and results in more uniform tissue
in the perivascular region. In contrast, although DMAS + STS-CF had similar effects, its
performance was lower than that of DMAS + GSTS-CF.

The μlumen CR, CNR, and sSNR obtained by the different methods are given in Table 3,
and the regions used to estimate these metrics are marked with rectangular boxes in
Figure 9 (μlumen is the average value of the vascular lumen region, which reflects the ability
of clutter suppression in the vascular lumen). In a complex scattering environment, the
CF-weighted beamformer has a very low CNR and sSNR, while the DAS has the lowest
CR. The GSTS-CF well balances the CR, CNR, and sSNR, suggesting that the GSTS-CF can
preserve scatter patterns well and achieve a high contrast.

197



Electronics 2023, 12, 3902

Table 3. Average intensity of the carotid lumen and sSNR of the scattered area.

Method μlumen CR CNR sSNR σ2
b

DAS 7.8059 × 104 −11.324 2.0238 2.9260 1.58
DMAS 4.6285 × 104 −19.736 1.2876 2.0006 2.87

DMAS-CF 3.2523 × 103 −33.254 0.2375 1.5832 5.47
DMAS + STS-CF 3.3379 × 104 −25.232 1.3236 2.4815 2.53

DMAS + GSTS-CF 1.7438 × 104 −28.765 1.6342 2.8156 1.96

5. Discussion

In this paper, we use a coherence factor to improve the performance of DMAS, and
our motivation is to achieve a trade-off between lateral resolution and scattering retention
performance. Compared with DMAS + CF, the proposed method better preserves the
scatter pattern without significantly reducing the lateral resolution. Compared with DAS,
the proposed method greatly improves the lateral resolution and contrast while having an
approximate background pattern. GSTS-CF is essentially an improved STS-CF who uses
GCF as a local coherence detection tool and adaptively selects the appropriate subarray
length to conduct spatial smoothing. The combination of GSTS-CF and DMAS further
improves the image quality.

Tables 1–3 show that the proposed method improves lateral resolution (20 mm depth)
by 86.87% compared to DAS, 52.13% compared to DMAS, 15.84% compared to DMAS +
STS-CF, and has a full width at half maxima (FWHM), similar to DMAS-CF. The proposed
method improves the speckle signal-to-noise ratio (sSNR) by 87.85% (simulation) and
77.84% (in carotid) compared to DMAS-CF, 20.37% (simulation) and 40.74% (in carotid)
compared to DMAS, 15.03% (simulation) and 13.46% (in carotid) compared to DMAS +
STS-CF, and has sSNR and scatter variance similar to DAS.

Because the subarray length L for GSTS-CF is estimated by GCF, the performance of
the proposed method is influenced by the M0 (cutoff frequency in the molecule of GCF).
As can be seen from Equation (1), the GCF increases with the increase in M0, leading to the
change in L(p) in Equation (4). From Figure 3, it can be seen that in incoherent target, L(p)
increases with the increase in GCF, which leads to a slight decrease in lateral resolution
but a more uniform scattering area. In strongly coherent target, L(p) decreases with the
increase in GCF, leading to an improvement in the lateral resolution but a decrease in the
scattering quality. In low-coherent targets, the change in GCF has little effect on the results
because the curve of GCF values mapping to the length of subarray L(p) changes slowly in
this region. In clinical applications, we can change the value of M0 according to different
environments, and the default of M0 in this paper is 10.

During carotid data acquisition, the SNR of the signal is much lower than during
cyst simulation, especially when receiving echoes from deeper regions with greater signal
attenuation. In Figure 9, the images generated by DMAS + CF may not be suitable for
clinical applications because of the significantly lower amplitude levels in the background
and the loss of texture information. This is due to the fact that each channel signal has
different amounts of correlated noise and interference, and they have different SNRs.
Therefore, the weighting factor varies widely, and these artifacts may appear.

DMAS + STS-CF uses the spatio-temporally smoothed method, which enhances the
robustness to noise interference and side lobe interference in coherent measurements. As
a result, there is a lower scattering variance and higher sSNR, but the lateral resolution
is reduced. However, the artifacts of DMAS + STS-CF are more severe in the carotid
experiment (Figure 9) than in the cyst simulation (Figure 6). Because the choice of L is fixed,
it is necessary to choose a different L for different scenarios in clinical applications, which
affects the performance of the algorithm.

In Figure 9f, DMAS + GSTS-CF has higher robustness in complex environments.
Compared to DMAS + STS-CF, the method estimates a value of L(p) with GCF at each
imaging point, which significantly removes these artifacts by improving the scatter pattern

198



Electronics 2023, 12, 3902

(lower scatter variance and higher sSNR) while maintaining the clutter rejection capability
(lower mean value (μlumen) in the vessel lumen).

Since the adaptive subarray length is estimated by the GCF, the performance of
the proposed method is affected by the cut-off frequency M0, and therefore in clinical
applications there may be drawbacks, such as noise, clutter, or other types of artefacts, if the
parameters are not set correctly. Nevertheless, the proposed method also has potential in
clinical applications. This is because the proposed method allows for a flexible selection of
the subarray length L according to the echo target and thus improves the lateral resolution
along with speckle protection. Thus, it may have potential for applications in the heart,
carotid artery, thyroid, tumors, etc. [33–36]. Using the GCF to estimate the subarray length
L(p) leads to a significant increase in computational effort because of the large number of
Fourier transforms in the GCF. However, graphics processing unit calculations have been
used to accelerate these beamformers for real-time imaging and thus can be used in the
method proposed in this paper to improve computational efficiency.

6. Conclusions

To improve the speckle quality (lower scatter variance and higher sSNR) without
significantly reducing the lateral resolution, we propose an adaptive spatio-temporally
smoothed coherence factor called GSTS-CF and combine it with DMAS. The simulation
and experimental results show that the method can obtain better background scattering
without affecting the lateral resolution. The algorithm is more robust and more suitable for
clinical applications.
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Abstract: Autonomous underwater vehicles (AUVs) are extensively utilized in various autonomous
underwater missions, encompassing ocean environment monitoring, underwater searching, and
geological exploration. Owing to their profound underwater capabilities and robust autonomy, AUVs
have emerged as indispensable instruments. Nevertheless, AUVs encounter several constraints in
the domain of underwater navigation, primarily stemming from the cost-intensive nature of inertial
navigation devices and Doppler velocity logs, which impede the acquisition of navigation data.
Underwater simultaneous localization and mapping (SLAM) techniques, along with other navigation
approaches reliant on perceptual sensors like vision and sonar, are employed to augment the precision
of self-positioning. Particularly within the realm of machine learning, the utilization of extensive
datasets for training purposes plays a pivotal role in enhancing algorithmic performance. However,
it is common for data obtained exclusively from inertial sensors, a Doppler Velocity Log (DVL),
and depth sensors in underwater environments to not be publicly accessible. This research paper
introduces an underwater navigation dataset derived from a controllable AUV that is equipped with
high-precision fiber-optic inertial sensors, a DVL, and depth sensors. The dataset underwent rigorous
testing through numerical calculations and optimization-based algorithms, with the evaluation of
various algorithms being based on both the actual surfacing position and the calculated position.

Keywords: AUV; underwater navigation; dataset; inertial navigation; DVL

1. Introduction

In recent years, AUVs have garnered increasing attention in underwater exploration
and military missions [1]. Due to the attenuation of underwater electromagnetic signals,
AUVs rely on inertial sensors and acoustic devices for navigation instead of GPS [2,3].
Specifically, for stand-alone strapdown inertial navigation systems (SINS), the estimation
of relative velocity and position involves the integration of accelerometer and gyroscope
sensor data, which introduces errors and leads to significant drift in the estimated position
and velocity [4]. The introduction of a DVL assists navigation by measuring bottom-to-
water relative velocity to improve positioning accuracy, but prolonged error accumulation
remains a challenge [5]. Navigation methods based on other perceptual sensors, such as
vision and sonar, have been applied in specific scenarios but mostly remain in the laboratory
stage [6,7]. Limitations in sensing conditions, such as vision being unsuitable in turbid
environments and limited acoustic sensing resolution, make perception-based navigation
non-universal for underwater applications. In contrast, inertial navigation combined with
DVLs and depth sounders has become a mature technology widely used in underwater
navigation solutions.

In contrast to indoor settings, the navigation of underwater environments poses sig-
nificant challenges on a large scale. Consequently, the integration of inertial and Doppler
Velocity Log (DVL) navigation techniques can be effectively employed in various scenarios.
However, the utilization of optical devices and navigation applications based on struc-
tured environments is restricted due to the turbidity and intricacy inherent in natural
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underwater environments [8]. Concurrently, the high cost of high-precision inertial sensors
and sound velocity measurement devices restricts the application and data collection of
small AUVs [9]. In particular, the cost of common fiber-optic inertial navigation systems
can reach tens of thousands of dollars, making them impractical for small teams. In such
cases, the availability of underwater high-precision navigation data allows researchers
to analyze the generation and propagation of AUV navigation errors more profoundly
and devise strategies to mitigate any potential errors or limitations. This will provide a
research foundation for various fields, including marine biology, geology, environmental
monitoring, and defense operations [10].

Currently, the collection of AUV navigation data in natural underwater environments
is concentrated in authoritative experimental institutions, such as the Naval Surface Warfare
Center (NSWC) [11], the Naval Undersea Warfare Center (NUWC) [12], the European
Research Agency [13], and the Australian military, etc. [14]. The collection of pertinent
data necessitates the utilization of shore-based platforms or motherships, and in intricate
environments, human divers are also employed to facilitate navigation, thereby resulting
in substantial costs. The range of underwater sensors is limited by the environment,
especially in visible light, where active light sources are subject to forward and backward
scattering [15]. Acoustic-based forward-looking sonar and side-scan sonar (SSS) are widely
used for underwater environment sensing and terrain-matching navigation [16]. Therefore,
the collection and organization of underwater datasets will be a high-cost, complex task,
and the number of existing publicly available datasets is very small, which reflects this
paper’s significance in this work.

In this paper, we present a novel dataset to expand research in underwater navigation.
The uniqueness lies in the data sourced from multiple sensors, including high-quality
inertial navigation systems (INS) and Differential Global Positioning Systems (DGPS),
as well as synchronized DVLs and depth sounder data. In particular, all data are collected in
the natural environment, including lakes, reservoirs, and offshore areas. Moreover, the data
are generated during the autonomous navigation of the AUV, meaning that the navigation
data conform to the kinematics of the vehicle. To the best of our knowledge, this is the
first publicly released AUV lake/ocean navigation dataset based on high-precision sensors.
The dataset is accessible via the following link: https://github.com/nature1949/AUV_
navigation_dataset (accessed on 8 June 2023).

In summary, the main contributions of this article are as follows:

• Presentation of a substantial amount of underwater high-precision navigation data,
covering approximately 147 km;

• Collection of data from real scenarios in three different regions, encompassing diverse
trajectories and time spans;

• Introduction of navigation challenges in underwater environments and the proposed
methods based on dead reckoning and collaborative localization, evaluated against
our benchmark.

The paper is structured as follows: Section 2 describes the research foundation and
current status of underwater navigation, as well as the characteristics and limitations of
publicly available datasets for underwater navigation. Section 3 describes the platforms
and sensors used for data acquisition, as well as the acquisition process. Section 4 describes
the dataset structure and typical trajectories and tests the dataset by common methods.
A discussion of the results and data is carried out in Section 5 and finally summarized
in Section 6.

2. Related Work

2.1. Underwater Navigation Methods

Typically, AUVs employ inertial navigation combined with acoustics for collabora-
tive navigation, while ROVs, due to their limited mobility, additionally use visually and
acoustically aided navigation. Positioning algorithms often apply filtering or optimization
methods, including traditional EKF, UKF, and the latest SLAM techniques, among others.
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For instance, Harris et al. developed an AUV position estimation algorithm using the
ensemble Kalman filter (EnKF) and fuzzy Kalman filter (FKF), which avoids linearization of
the AUV’s dynamics model [5]. Jin et al. proposed a single-source assisted passive localiza-
tion method that combines acoustic positioning with inertial navigation and concluded that
time difference of arrival (TDOA) + AOA yields better results [17]. This method utilizes
fixed sound sources to periodically emit sound pulses underwater and locate the source
using a TDOA positioning technique.

Jorgensen et al. based their approach on the XKF principle and constructed an ob-
server for estimating position, velocity, attitude, underwater wave speed, rate sensor,
and accelerometer biases, which demonstrated stability and achieved near-noise optimal
performance [18]. Wang et al. integrated depth information into two-dimensional visual
images and proposed an online fusion method based on tightly coupled nonlinear opti-
mization to achieve continuous and robust localization in rapidly changing underwater
environments [19]. Manderson et al. presented an efficient end-to-end learning approach for
training navigation strategies using visual data and demonstrated autonomous visual navi-
gation over a distance of more than one kilometer [20]. Machine learning-based approaches
require massive amounts of training data, which highlights the importance of collecting
underwater navigation data to enhance the performance of navigation algorithms.

2.2. Underwater Natural Scene Datasets

Publicly available underwater natural scene datasets are continuously released and
used for underwater navigation, 3D reconstruction, underwater target recognition, and
scene perception. Singh et al. released a marine debris dataset for forward-looking sonar
semantic segmentation, which contains typical marine debris segmentation grayscale
maps [21]. Zhou et al. constructed a common target detection dataset for sonar image
detection and classification, which contained targets such as underwater shipwrecks,
wrecks of crashed airplanes, victims, etc. [22]. Zhang et al. disclosed a homemade sonar
common target detection dataset and evaluated the performance of a self-trained AutoDL
detector [23]. Hou et al. published real side-scan sonar image datasets containing images of
different classes of undersea targets and proposed a semi-synthetic data generation method
that combines image segmentation with simulation of intensity distributions in different
regions using optical images as input [24].

Given the difficulty of acquiring underwater datasets, there are also many researchers in-
vestigating deep neural network-based enhancement methods for underwater data. Chang et al.
proposed a real-world underwater image dataset (UIDEF) containing multiple degradation
types and different shooting perspectives and a color-contrast-complementary image en-
hancement framework consisting of adaptive chromatic balancing and multiscale weighted
fusion [25]. Yin et al. proposed an underwater image restoration (UIR) method based on a
convolutional neural network (CNN) architecture and a synthetic underwater dataset that
can realize the direct restoration of degraded underwater images [26]. Chen et al. created
class-balanced underwater datasets capable of generating underwater datasets with various
color distortions and haze effects, and generated class-balanced underwater datasets from
the open competition underwater dataset URPC18 via the class-based style enhancement
(CWSA) algorithm [27]. Polymenis et al. used object images taken in a controlled laboratory
environment to generate underwater images by generative adversarial networks (GANs)
in combination with images featuring the underwater environment [28]. Boittiaux et al.
provided image datasets from multiple visits to the same hydrothermal vent edifice and
estimated camera poses and scenes from navigation data and motion structures [29]. Ex-
tending underwater data through data augmentation methods is a future research direction,
but original underwater datasets of natural scenes are still indispensable.

2.3. Underwater Navigation Datasets

The collection of underwater data presents challenges due to costs, technical require-
ments, and limitations imposed by the underwater environment. Nevertheless, an in-
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creasing number of research teams have released datasets related to AUV autonomous
navigation, with a focus on easily obtainable visual information. The establishment of these
datasets has facilitated the development of AUV technologies, particularly in underwater
target recognition and underwater SLAM techniques. For instance, Cheng et al. provided
data collected in inland waterways using a stereo camera, LiDAR system, global positioning
system antenna, and inertial measurement unit [30]. Song et al. obtained a millimeter-
precision underwater visual-inertial dataset through a motion capture system, but the data
were acquired in a laboratory setting [31]. Tomasz et al. introduced an underwater visual
navigation SLAM dataset that includes ground truth tracking of vehicle positions obtained
through underwater motion capture [32].

Martin et al. offered canoe attitude and stereo camera data collected in natural river
environments [33]. Panetta et al. presented the Underwater Object Tracking (UOT100)
benchmark dataset, which comprises 104 underwater video sequences and over 74,000 an-
notated frames from natural and artificial underwater videos with various distortions [34].
Angelos et al. provided data collected by AUVs in complex underwater cave systems,
particularly equipped with two mechanically scanned imaging sonars [35]. Notably, Kristo-
pher et al. simulated AUV data with advanced sensors by equipping a ground vehicle with
two multibeam sonars and a set of navigation sensors [36]. More recently, Maxime et al. col-
lected ROS data for underwater SLAM using a monocular camera, an inertial measurement
unit (IMU), and other sensors in harbors and archaeological sites [37]. Li et al. presented an
adaptive AUV-assisted ocean current data collection strategy, formulating an optimization
problem to maximize the VoI energy ratio, thereby reducing AUV energy consumption and
ensuring timely data acquisition [38].

However, the existing datasets primarily concentrate on underwater vision and are
obtained from natural environments or created through data augmentation. These datasets
are primarily utilized for various applications, including underwater image recognition, un-
derwater 3D reconstruction, and visual/visual-inertial SLAM. However, the availability of
independent datasets specifically focused on underwater inertial/DVL navigation remains
limited. Therefore, this paper aims to address this gap by compiling AUV navigation data
gathered from diverse natural scenarios and presenting it in an enhanced KITTI format,
facilitating the extraction of algorithmic data for general purposes.

3. Data Acquisition

3.1. Platform

We used a 325 mm diameter AUV as the acquisition platform and collected data
through different trajectories at different times and locations to achieve a diversified data
type and a more representative sample set. The platform was equipped with high-precision
inertial navigation, differential RTK, DVL, depth finder, and other sensors. The computing
platform used a customized motherboard, which allowed different devices access and
provided high-speed computing power. The platform structure and sensor layout are
shown in Figure 1. The perception and navigation sensors were fixed on the vehicle and
could be associated with rigid body transformations, but the provided data were obtained
through rotational transformations based on their own sensors.

Figure 1. Schematic diagram of AUV structure and sensor layout.
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3.2. Sensor

This section introduces the hardware and software used for data collection, including
navigation sensors, DVL, depth sensors, and other payloads. These components work in
harmony to capture comprehensive and accurate underwater navigation data. The high-
precision fiber-optic inertial navigation system performs inertial measurements, provides
six-axis angular velocity and linear acceleration, and has the internal potential for satellite
and Doppler fusion. The DVL features a four-phase beam array, allowing it to calculate the
vehicle’s velocity relative to the water independently. This additional velocity information
contributes to a more comprehensive understanding of the AUV’s motion and aids in
precise positioning during underwater navigation. Table 1 lists the complete hardware.

Table 1. Overview of platform and sensor specifications and performance.

System Parameter Performance Coordinate System

AUV

Rated depth 100 m

Forward, up, rightWeight 200 kg
Size 10.5 × 1.06 ft

Maximum speed 8 Kn

Inertial sensor
Heading alignment accuracy 0.05◦(1σ)

Forward, left, upGyro zero deviation stability ≤0.01◦/h
Accelerometer zero offset stability ≤30 μg (1σ)

DVL
Frequency 300 kHz

Forward, left, upVelocity accuracy 0.5% ± 0.3 cm/s
Altitude 3–200 m

Depth sensor

Pressure range 0–5 Pa

N.A.Output range 4 V ± 1%
Output zero point 1 V ± 1% of span

Repeatability ±0.25 range percent

Through the utilization of this sophisticated hardware configuration, we guarantee the
attainment of sensor data of exceptional quality, thereby enabling a precise and comprehen-
sive examination of underwater navigation efficacy. The amalgamation of this dataset with
the robust and accurate hardware employed presents researchers with a significant resource
for the purpose of benchmarking algorithms and assessing navigation performance.

3.3. Data Collection

This dataset was collected from April 2021 to August 2022, spanning 12.63° of longi-
tude and 11.22° of latitude. The data mainly include underwater tracking tasks, surface
tracking tasks, and surface manual remote control tasks. Among them, underwater tasks
were generally performed at a depth of 10 m to ensure the safety of the equipment. The
trajectory estimated from the navigational position does not precisely align with the actual
point of departure from the water, indicating a navigation error. Conversely, in surface
missions, the presence of GPS signals results in the trajectory error being solely attributed
to control error. It should be noted that underwater tasks may be affected by water flow,
which limits the accuracy of navigation. However, such data are not allowed to be disclosed
at this time. When the surface is moored, drift is generated due to interference from surface
factors such as water flow and wind.

3.4. Synchronization

Various sensors first record the timestamp of the captured frames. Through the
central processing platform, they are fused with the GPS time and computer time to record
events with a time accuracy of 100 ms. For asynchronous inertial and DVL measurements,
the lower frequency is mainly recorded. The period is not fixed due to the inconsistent
frequencies and times of different sensors.

207



Electronics 2023, 12, 3788

4. Dataset

4.1. Data Structures

Existing public underwater datasets adopt non-standard data structures based on
different types of sensors, which also causes difficulties for researchers to interpret. To unify,
this dataset is based on the data structure of the commonly used KITTI car dataset [39] and
adds additional data including DVL velocity and depth information. It is finally provided
in CSV format, together with Python tools that can be directly transferred to ROS. The file
directory structure is shown in Figure 2.

Several typical vehicle trajectories are shown in Figure 3. Note that the dataset contains
structured underwater and surface maneuvering trajectories and that switching between
surface and underwater sailing also occurs in one segment of the trajectory. We labeled
the surface and underwater navigation sections to differentiate between them, while the
most significant feature of underwater navigation is the absence of GPS signals, resulting
in constant latitude and longitude received from GPS.

Compared with other underwater datasets, most of this dataset is driven autonomously
according to the AUV’s own driving method rather than with manual assistance. This
is conducive to analyzing the kinematic rules of the AUV. At the same time, underwater
navigation based on inertial units inevitably leads to error accumulation, which is fatal to
the task. In the dataset, precise global positioning results measured by differential RTK
are provided, with RTK base stations deployed on land. During underwater cruising, GPS
measurements are unavailable until the AUV surfaces. This helps to determine the accuracy
of underwater navigation. The latitude and longitude derived based on waypoints are the
initial results of onboard calculations and do not indicate navigation error performance.

Figure 2. Directory structure of the file set.

(a) (b) (c)

Figure 3. Cont.
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(d) (e) (f)

Figure 3. Various types of AUV tracks in different regions. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.
(d) Scenario 4. (e) Scenario 5. (f) Scenario 6.

4.2. Testing

The mathematical model and engineering implementation of the fiber-optic iner-
tial navigation system are mature cases. In this paper, the performance of the data is
initially evaluated by solving the inertial navigation part underwater and comparing it
with the initial navigation estimation results. The evaluation uses data acquired from
gyroscopes, accelerometers, depth sensors, magnetometers, etc., and performs position
estimation after calibration, filtering, and time synchronization. Methods for compensating
errors due to underwater welfare, flow, etc., are not the focus of this paper and are to be
further investigated.

To begin the evaluation process, we utilize the position and attitude of the AUV at
the entry point as the initial state. The initial longitude, latitude, and height values are
recorded as λ0, L0, and h0, respectively. The initial velocity is obtained from either the
DVL’s effective state or the inertial navigation system. Additionally, the initial strapdown
attitude matrix is expressed in (1), providing a reference for the AUV’s initial orientation.

By comparing the results of the inertial navigation solution with those of the initial
navigation estimate, we can assess the accuracy and reliability of the fiber-optic inertial
navigation system in the underwater environment and verify its ability to provide accurate
navigation information to the AUV throughout the underwater mission. Accumulated
errors will occur during the solving process, and can be resolved through periodic error
correction and position calibration using known landmarks or reference points for accurate
navigation [40].

Tn
b (0) =

⎡⎣T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎦
=

⎡⎣cos γ0 cos ψg0 − sin γ0 sin θ0 sin ψg0 − cos θ0 sin ψg0 sin γ0 cos ψg0 + cos γ0 sin θ0 sin ψg0

cos γ0 sin ψg0 + sin γ0 sin θ0 cos ψg0 cos θ0 cos ψg0 sin γ0 sin ψg0 − cos γ0 sin θ0 cos ψg0

− sin γ0 cos θ0 sin θ0 cos γ0 cos θ0

⎤⎦
, (1)

The initial position matrix is expressed as:

Cn
e (0) =

⎡⎣C11 C12 C13
C21 C22 C23
C31 C32 C33

⎤⎦
=

⎡⎣ − sin λ0 cos λ0 0
− sin L0 cos λ0 − sin L0 sin λ0 cos L0
cos L0 cos λ0 cos L0 sin λ0 sin L0

⎤⎦
, (2)
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The initial angular velocity of the Earth’s rotation is expressed as:

ωn
ie(0) = Cn

e (0)ω
e
ie, (3)

The angular velocity of the AUV, ωb
nb, is calculated based on the output value ωb

ib
of the gyroscope. The calculation process is as follows. Compared with the original text,
the following optimizations are made:

ωb
nb = ωb

ib − Tb
nωn

in = ωb
ib − Tb

n(ω
n
ie + ωn

en), (4)

The quaternion is instantaneously updated using the fourth-order Runge–Kutta
method and finally normalized. Over three consecutive sampling periods, Δt, the up-
date equation is expressed as:

K1 =
1
2

Q(k)ωb
nb(k)

K2 =
1
2
(Q(k) +

Δt
2

K1)ω
b
nb(k +

Δt
2
)

K3 =
1
2
(Q(k) +

Δt
2

K2)ω
b
nb(k +

Δt
2
)

K4 =
1
2
(Q(k) +

Δt
2

K3)ω
b
nb(k +

Δt
2
)

Qk+1 = Q(k) +
Δt
6
(K1 + 2K2 + 2K3 + K4)

, (5)

At this point, the updated strapdown matrix is shown in (6).

Tn
b =

⎡⎣q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤⎦, (6)

The acceleration output of the accelerometer needs to be transformed from the carrier
coordinate system to the navigation coordinate system, that is, f n = Tn

b f b. At this point,
the acceleration with respect to the ground is shown in (7).

V̇n = f n −

⎡⎢⎣ 0 −(2ωn
iez + ωn

enz) 2ωn
iey + ωn

eny

2ωn
iez + ωn

enz 0 −(2ωn
iex + ωn

enx)
−(2ωn

iey + ωn
eny) 2ωn

iex + ωn
enx 0

⎤⎥⎦Vn + g, (7)

The velocity update is expressed as:

Vn(k) = Vn(k− 1) +
Δt
2
(V̇n(k− 1) + V̇n(k)), (8)

The position angular velocity update equation is:

ωn
ie =

⎡⎢⎢⎣ −
Vn

y
RM

Vn
x

RN
Vn

x
RN

tan L

⎤⎥⎥⎦, (9)

Due to the slow changes in position during the navigation process, the update of the
position matrix can be represented as follows:

Cn
e (k) = Cn

e (k− 1) + ΔtĊn
e (k), (10)

210



Electronics 2023, 12, 3788

At this moment, the position of the AUV is calculated using the following formula:

λ = arctan
C32

C31

L = arctan
C33√

C2
31 + C2

32

. (11)

Here, we assess three representative sequences from the dataset, encompassing distinct
movement attributes and geographic regions, as illustrated in Figures 4–6. Observing the
results, it is evident that the computed velocities and attitude angles align well with the
initial data. While the altitude direction remains linked to the resolved velocity, depth gauge
measurements offer increased reliability. The deviation between the updated trajectory
from the odometer and the measured trajectory, which does not accurately represent the
true values, results from the accumulation of measurement errors.

For independent strapdown inertial navigation systems (SINS), the estimation of
relative velocity and position involves the integration of accelerometer and gyro sensor
data, which can introduce errors and result in significant drift in the estimated position and
velocity [4]. Integrating the DVL and depth gauge measurements would notably enhance
underwater navigation precision, even though the challenge of mitigating errors persists.

(a) (b) (c)

Figure 4. A comparison between the solved and measured values for Case 1 is presented. The
subscript “s” denotes the solved result, while the subscript “m” indicates the measured result.
(a) entails a comparison between the initial heading projection position and the solved position.
(b) involves a comparison between the measured attitude and the solved attitude. Lastly, (c) examines
the contrast between the measured and solved velocity values in the northeast sky direction.

(a) (b) (c)

Figure 5. A comparison between the solved and measured values for Case 2 is presented. The
subscript “s” denotes the solved result, while the subscript “m” indicates the measured result.
(a) entails a comparison between the initial heading projection position and the solved position.
(b) involves a comparison between the measured attitude and the solved attitude. Lastly, (c) examines
the contrast between the measured and solved velocity values in the northeast sky direction.
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(a) (b) (c)

Figure 6. A comparison between the calculated and measured values for Case 3 is presented. The sub-
script “s” denotes the solved result, while the subscript “m” indicates the measured result. (a) entails
a comparison between the initial heading projection position and the calculated position. (b) involves
a comparison between the measured attitude and the calculated attitude. Lastly, (c) examines the
contrast between the measured and calculated velocity values in the northeast sky direction.

5. Discussion

Navigation data on lakes and oceans were gathered by employing autonomous under-
water vehicles (AUVs) equipped with rudimentary sensors. The trajectories and perfor-
mance of the navigation data were acquired via dead-reckoning. By considering diving
points and upper floating points, the underwater state of the vehicle can be ascertained
and examined for diverse trajectories. In particular, the kinematic model of the AUV
enables a meticulous analysis of its navigation trajectory attributes, thereby facilitating the
augmentation of precision in underwater navigation. Extensive scholarly investigations
have been conducted on fusion navigation algorithms for IMU/DVL. However, it is of
utmost importance to conduct an integrated evaluation that incorporates openly accessible
datasets. The profusion of underwater navigation data presents a valuable resource for
comprehensively analyzing the interdependent connection between navigation strategies
and devices, thereby revealing possibilities for attaining high-precision navigation through
cost-effective sensor solutions. Additionally, future endeavors will explore applications of
the navigation dataset.

Until new and efficient means of underwater navigation are developed, the capacity
of AUVs to achieve high-precision navigation remains constrained by cost and techno-
logical limitations. The predominant approach to AUV navigation is centered on aided
navigation techniques based on inertial navigation principles and amalgamating diverse
measurements [41]. However, the complex interaction of practical environmental limita-
tions, hydroacoustic channel multipath effects, and submerged ambient noise interference
often leads to significant irregularities [42]. Consequently, addressing these challenges, such
as mitigating cumulative errors arising from inertial navigation and rectifying measurement
inaccuracies from various sensors, becomes a crucial focus for future research efforts.

In future work, we plan to expand our dataset further by incorporating additional
sensing modalities, such as perception and acoustic data, to extend its usability. Specifically,
we are interested in exploring underwater SLAM techniques based on forward-looking and
side-scan sonar data, which will open up new avenues in underwater navigation. Moreover,
data-driven pedestrian dead reckoning (PDR) research has already shown promising results
with extensive datasets, inspiring us to further improve underwater navigation accuracy
through large-scale learning approaches.

6. Conclusions

We have compiled a navigation dataset of AUVs operating in various regions, collected
using high-precision inertial navigation, DVL, and depth sensors. The dataset encapsulates
a myriad of natural scenarios involving AUVs navigating in both underwater and surface
environments and spanning diverse latitudes, longitudes, and timelines. This dataset
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represents a pioneering collection of underwater navigation data obtained through the com-
bination of high-cost fiber-optic gyroscopes. Drawing upon our dataset, we offer significant
data support for the enhancement of underwater navigation algorithms. The assessment
of typical algorithms has substantiated the practicality and effectiveness of our dataset.
We hope that this dataset will be beneficial to other researchers in the field of autonomous
exploration in constrained underwater environments.
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AUV Autonomous underwater vehicle
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IMU Inertial measurement unit
TDOA Time difference of arrival
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Abstract: Modeling the dynamic preferences of users is a challenging and essential task in a rec-
ommendation system. Taking inspiration from the successful use of self-attention mechanisms in
tasks within natural language processing, several approaches have initially explored integrating
self-attention into sequential recommendation, demonstrating promising results. However, existing
methods have overlooked the intrinsic structure of sequences, failed to simultaneously consider the
local fluctuation and global stability of users’ interests, and lacked user information. To address these
limitations, we propose LHASRec (Local-Aware Hierarchical Attention for Sequential Recommenda-
tion), a model that divides a user’s historical interaction sequences into multiple sessions based on a
certain time interval and computes the weight values for each session. Subsequently, the calculated
weight values are combined with the user’s historical interaction sequences to obtain a weighted
user interaction sequence. This approach can effectively reflect the local fluctuation of the user’s
interest, capture the user’s particular preference, and at the same time, consider the user’s general
preference to achieve global stability. Additionally, we employ Stochastic Shared Embeddings (SSE)
as a regularization technique to mitigate the overfitting issue resulting from the incorporation of
user information. We conduct extensive experiments, showing that our method outperforms other
competitive baselines on sparse and dense datasets and different evaluation metrics.

Keywords: sequential recommendation; local fluctuation; global stability; Stochastic Shared Embeddings

1. Introduction

In recent years, personalized recommendation tasks have become increasingly impor-
tant. As the volume of information grows on the Internet, providing accurate recommen-
dations based on changes in the user’s interests has become a challenge. To address this
challenge, researchers have regarded the user’s historical interaction behaviors as ordered
sequences, aiming to capture the dynamic changes in the user’s interests from these se-
quences and predict the next interactive item they may be interested in. This prediction is
crucial for providing personalized recommendations, which helps the platform better meet
user needs and improve user experience.

To model the user’s dynamic interests, researchers have explored various modeling
strategies and algorithms [1–3] for the sequential features of the user’s historical interaction
behavior. In the early stages, Markov chain models [1,4] were commonly used to capture
the transition of the user’s preferences from their interaction history with items. FPMC [5]
integrated the idea of matrix factorization with Markov chains, storing information about
user transition matrices in a three-dimensional matrix. With the popularity of deep learning,
Recurrent Neural Networks (RNNs) [6] and Convolutional Neural Networks (CNNs) [2]
have gradually been applied to the sequential recommendation. Compared to Markov
chains, RNNs can more effectively capture temporal relationships in the user’s behavior
sequences due to their inherent structural characteristics. CNNs can capture the user’s
interests from sequences with complex relationships. Additionally, some methods based
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on self-attention mechanisms [3,7,8] introduced weight adaptive adjustment mechanisms
to model the importance of different elements in the sequence dynamically. These methods
can more accurately capture changes and associations in the user’s interests, thereby
improving the accuracy and personalization of recommendation results.

In sequential recommendation, the user’s preferences are typically influenced by
a combination of long-term and short-term factors. Long-term preferences reflect the
user’s general interests, which are relatively stable and less prone to change within the
sequence. On the contrary, short-term preferences reflect the user’s transient “special”
interests that may deviate from their general interests and exhibit the relative fluctuation
within the sequence. For example, a user may prefer comedy movies as his/her favorite
genre. However, due to the influence of his/her friends, he/she may develop a temporary
fondness for art films for a certain period. However, traditional sequential recommendation
models often treat the user’s historical interaction sequence as a homogeneous entity,
lacking simultaneous consideration of the local fluctuation and global stability of the user’s
interests. This can potentially impact the model’s ability to learn the user’s preferences and
subsequently affect the effectiveness of recommendations.

Regarding the above issues, in this paper, we propose a Local-Aware Hierarchical
Attention recommendation system that combines the local fluctuation and global stability
of the user’s interests. This model enhances the model’s ability to model the user’s behavior
preferences, enabling the model to more accurately reflect the user’s personalized interests
and preferences. Consequently, it can more comprehensively understand the user’s behav-
ior patterns and provides users with more targeted recommendation results. Furthermore,
we also consider the user information from SSE-PT [7] and employ the Stochastic Shared
Embedding regularization technique to handle user and item embeddings in the input and
prediction parts, alleviating overfitting issues. In summary, our main contributions are
as follows:

• We comprehensively consider the local fluctuation and global stability of the user’s
interests to better capture users’ long-term and short-term preferences.

• We employ the Stochastic Shared Embedding regularization technique to handle user
embeddings and item embeddings in the input and prediction parts to alleviate the
overfitting problem.

• We conducted extensive experiments on the MovieLens, Steam, and Beauty datasets,
and the experimental results demonstrate that our model outperforms other competi-
tive baselines.

2. Related Work

The user’s behavior is a time-ordered behavior sequence, and their interests also
dynamically change over time. Therefore, extracting temporal information from sequen-
tial data can provide valuable information. Early sequential recommendation models
utilized Markov chains (MCs) [9] to capture the correlations within the sequential data.
Shani et al. used the Markov chain [1] to mine the correlation between users’ short-term
behaviors, thus achieving a good recommendation effect. Rendle et al. combined the
idea of Matrix Factorization (MF) with Markov chains [5,10] by storing user transition
matrices in a three-dimensional matrix and explored the temporal information in the user’s
short-term behavior sequences by predicting the user’s interests in other items. How-
ever, due to the scalability issue of Markov chains, the time and space complexity of the
models significantly increase when dealing with longer sequences, leading to suboptimal
recommendation performance.

Compared to Markov chains, Recurrent Neural Networks (RNNs) [11,12], bene-
fiting from their distinctive structure, are more effective in handling sequential data.
B. Hidasi et al. first applied RNNs to sequential recommendation [6] and proposed the
session-based sequential recommendation model. It divided the user’s behavior into mul-
tiple sessions based on a certain time interval, modeled each session’s behavior using an
RNN, and predicted the next item the user interacted with. To further improve sequential
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recommendation performance, Hidasi et al. introduced the parallel RNN session-based
recommendation model [13], which used RNN to find the dependencies between items
in the session and parallel RNN to model other attribute characteristics of items in the
session, which improved the effect of sequential recommendation. Zhang et al. proposed
an RNN-based sequential search click prediction model [14] that not only modeled the
user’s click events but also incorporated features of users and items and the information of
the user’s dwell time after clicking an item, resulting in the improved predictive capability
of the model.

However, RNN models assume that any adjacent interactions in a sequence are mutu-
ally dependent, while in reality, there exist intricate and complex relationships among the
user’s consecutive actions. Linearly modeling the user’s historical behavior makes it diffi-
cult to capture their true interests within a sequence with complex relationships. As a result,
researchers have begun exploring the domains of CNN and self-attention mechanisms.
Tang et al. proposed Caser [2], a sequential recommendation model based on convolu-
tional embeddings, which applies CNN concepts to sequential recommendation. Caser
employed multiple convolutional filters with different weights to extract various sequential
pattern information from the sequence, thereby improving the accuracy of personalized
recommendations. Similarly, Yuan et al. extended the Caser model with a future-oriented
recommendation framework called NextItNet [15], utilizing dilated convolutions to cap-
ture more complex dependencies in the user’s behavior sequence. Kang et al. introduced
SASRec [3], a sequential recommendation model based on self-attention mechanisms, to
address the dependency issue of RNNs. Additionally, Li et al. proposed MIND [16], which
reflected a user’s multidimensional interests by using multiple vectors to represent each
user and predicted the match between the candidate items and the user’s interests in
each dimension.

Nevertheless, some existing models ignore the internal structure of the sequence, do
not consider the local fluctuation and global stability of the user’s interest simultaneously,
and lack user information. In our study, we first divide the user’s historical interaction
sequence into multiple sessions based on a certain time interval. By comprehensively
considering the weak correlation between sessions and the strong correlation among items
within each session, we accurately reflect the local fluctuation of the user’s interests. Next,
we combine the calculated weights of each session with the user’s historical interaction
sequence to achieve the influence of the local fluctuation on the global stability of the user’s
interests. Additionally, we introduce user information into the model and employ the
Stochastic Shared Embedding regularization technique to mitigate the overfitting problem
that may arise from incorporating user information.

3. Method

We propose a hierarchical attention-based sequential recommendation model, LHAS-
Rec. The model consists of an embedding layer, a local-aware layer, a global attention
layer, and a prediction layer. This section will describe how to construct this sequential
recommendation model. The architecture of LHASRec is illustrated in Figure 1.
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Figure 1. The overall framework of LHASRec. The model primarily consists of an embedding
layer, a local-aware layer, a global attention layer, and a prediction layer, and the input and output
of the global attention layer are handled using SSE regularization. (a) The target user’s historical
behavior sequence is combined with user information and divided into multiple sessions based on
time intervals. (b) Each session is individually processed by the local-aware layer to generate local
attention weights, which are then combined with the sequences containing item information and user
information to serve as the input for the global attention layer. (c) The SSE regularization technique is
applied to the input matrix. (d) The global attention layer captures the representation of the user’s
local and global preferences. (e) The output matrix is regularized using SSE. (f) Recommendations
are made based on the target user’s local and global preferences.

3.1. Sequential Recommendation Target

In the sequential recommendation task of this section, we define the user’s historical
behavior sequence as Hu = (Hu

1 , Hu
2 , · · · , Hu

|Hu |) , where u ∈ U, Hu
i ∈ I. During the model

training process, at time step t, the model predicts the next item the target user will likely
interact with based on the preceding t items. In other words, we use the user’s historical
behavior sequence (Hu

1 , Hu
2 , · · · , Hu

|Hu |−1) and the user’s information as inputs to the model,
with the expected output denoted as (Hu

2 , Hu
3 , · · · , Hu

|Hu |). The symbols used in our study
are summarized in Table 1.
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Table 1. Notation.

Notation Description

U, I user and item set
Hu historical interaction sequence for the user u

td ∈ N division time interval
n ∈ N maximum sequence length
ns ∈ N length of each session
k ∈ N number of sessions
b ∈ N number of stacked temporal attention blocks
d ∈ N latent vector dimension of the model

di, du ∈ N latent dimension of item and user
MI ∈ R|I|×di item embedding matrix

MU ∈ R|U|×du user embedding matrix
Ŝ1, Ŝ2, · · · , Ŝk ∈ Rns×d input embedding matrix of local-aware layer

Ê ∈ Rn×d input embedding matrix of global attention layer
c1, c2, · · · , ck ∈ R fluctuation coefficient of each session

A ∈ Rn×d output of the self-attention layer
F ∈ Rn×d output of the point-wise feed-forward network

3.2. Embedding Layer

For the historical behavior sequence of the target user, denoted as (Hu
1 , Hu

2 , · · · , Hu
|Hu|−1),

we fix its length to a specific value n ∈ N to obtain the sequence, denoted as (h1, h2, · · · , hn),
where n represents the maximum sequence length. The rule for fixing the length sequence
is as follows: ⎧⎪⎪⎨⎪⎪⎩

padding Hu
|Hu |−1 < n

unchange Hu
|Hu |−1 = n

cutting Hu
|Hu |−1 > n

(1)

It is worth noting that when the length of the original sequence is smaller than n, we
pad the left side of the sequence with zeros. When the length of the original sequence
is greater than n, we only consider the most recent n interactions. We construct the item
embedding matrix MI ∈ R|I|×di and the user embedding matrix MU ∈ R|U|×du , where
di, du ∈ N represent the latent embedding dimensions for items and users, respectively.
From these two embedding matrices, we retrieve the user information embedding for
the target user and the embeddings of each item in the user’s input sequence. These
embeddings are combined to obtain the input embedding E ∈ Rn×d, where d = di + du:

E =

⎡⎢⎢⎢⎢⎢⎣

[
MI

h1
; MU

u

]
[

MI
h2

; MU
u

]
· · ·[

MI
hn

; MU
u

]

⎤⎥⎥⎥⎥⎥⎦ (2)

where
[

MI
hi

; MU
u

]
is the concatenation of the embedding vectors for item hi and user u. We

believe that when the time intervals between several user interactions are close, it indicates
that the user is selecting items of the same kind of interest, indicating a strong correlation
between these items. On the other hand, when the time interval between two adjacent items
is large, it may suggest a change in the user’s interest, resulting in a change in the selected
items’ category and indicating a weak correlation between these two items. In the user’s
historical behavior, the local fluctuation is generated with the change of the user’s interest.
To capture these fluctuations, we introduce a time interval threshold, denoted as td ∈ N,
and examine the time intervals between every two adjacent items. If the interval exceeds
td, we split the input sequence accordingly. Following this approach, we divide the input
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sequence E into k sessions, i.e., local interaction sequences. Within each session, the items
exhibit strong correlations, while there are weak correlations between items from different
sessions. As the divided sessions have different lengths, we apply the same fixed-length
rule for each session Si ∈ Rns×d to adjust its length to a specific value, denoted as ns ∈ N:

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
MI

h
S1
1

; MU
u

]
[

MI
h

S1
2

; MU
u

]
· · ·[

MI
h

S1
ns

; MU
u

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, · · · , Sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
MI

h
Sk
1

; MU
u

]
[

MI
h

Sk
2

; MU
u

]
· · ·[

MI
h

Sk
ns

; MU
u

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

where MI
h

Si
j

∈ Rd represents the embedding of item hj in the i-th session. Since the self-

attention mechanism is unaware of the positional relationship of items in the sequence, we
introduced learnable position embeddings for each session:
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where pSi
j ∈ Rd represents the embedding of the j-th position in the i-th session.

3.3. Local-Aware Layer

We employ hierarchical attention to capture the strong correlations among items
within each session, where each layer utilizes the self-attention mechanism [17] defined
as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

d

)
V (5)

where Q represents the query matrix, and K and V denote the key and value matrices,
respectively.

√
d is a scaling factor used to mitigate the problem of large inner products

when the dimension is high.
We feed each session of the user separately into different attention layers to avoid

mutual interference between items with weak correlations, ultimately obtaining the fluc-
tuation coefficient corresponding to each session, thereby capturing the local fluctuations
of the user’s interests. Specifically, for the i-th session, it is linearly projected into three
matrices, which are then fed into the i-th attention layer:

AS
i = HA(Ŝi) = Attention(ŜiW

Q
Si

, ŜiWK
Si

, ŜiWV
Si
) (6)

where WQ
Si

, WK
Si

, WV
Si
∈ Rd×d represent the projection matrices of Q, K, and V, respec-

tively, for the matrix Si. Due to the strong correlations among items within each session,
we consider that their sequential order can be ambiguous, allowing subsequent keys to
be connected to the current query to fully capture the representation power of the self-
attention mechanism.

After the self-attention layer, we employ two MLP layers to model the non-linear
relationships among items within the session to obtain the fluctuation coefficient ci corre-
sponding to the i-th session:

Li = AS
i WM

i + bM
i (7)
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ci = GELU
(
(Li)

TWc
i + bc

i

)
(8)

where WM
i ∈ Rd×1, Wc

i ∈ Rns×1, bM
i ∈ Rns×1, bc

i ∈ R are learnable parameters. Instead of
the ReLU function, we utilize the smoother GELU [18] function for activation.

3.4. Global Attention Layer

For each session, we utilize its fluctuation coefficient to reflect the local interest fluctu-
ation of the user, where there is a strong correlation among items within the same session.
However, no single session can fully represent the user’s global preferences, and there
may also exist connections between different local interests. Therefore, we combine the
local fluctuation coefficients with the overall input sequence to achieve global stability.
Specifically, for the input sequence E, we extract the fluctuation coefficients of each item
according to the fluctuation coefficient corresponding to the session in which the item
belongs, resulting in a local fluctuation sequence C = (ch1 , ch2 , · · · , chn), where chi is the
fluctuation coefficient corresponding to the session where item hi belongs. We introduce
the fluctuation coefficients as weights to combine the input sequence that incorporates item
and user information, along with learnable position embeddings, yielding a new input
embedding Ê ∈ Rn×d:

Ê =

⎡⎢⎢⎢⎢⎢⎣
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[
MI
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; MU

u

]
+ P1
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[
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]
+ P2

· · ·
chn

[
MI
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; MU

u

]
+ Pn

⎤⎥⎥⎥⎥⎥⎦ (9)

where Pi ∈ Rd represents the embedding for the i-th position.
Attention layer: We perform linear projections on the input embedding Ê to obtain

three matrices, then feed into the attention layer:

A = HA(Ê) = Attention(ÊWQ, ÊWK, ÊWV) (10)

where WQ, WK, WV ∈ Rd×d is the projection matrix. Similar to [3], we introduce a mask
to prevent any connection between Qi and Kj (j > i) to prevent subsequent items from
affecting the current item to be predicted.

Point-Wise Feed-Forward Network: To introduce non-linearity and consider inter-
actions among different latent dimensions, similar to [3,8], we apply the same two-layer
Point-Wise Feed-Forward Network (with shared weights) to A and use the ReLU activa-
tion function:

F = FFN(A) = ReLU(AW(1) + b(1))W(2) + b(2) (11)

where W(1), W(2) ∈ Rd×d, b(1), b(2) ∈ Rd represents the learnable parameters. As the num-
ber of parameters in the network increases, several issues may arise, including overfitting,
unstable training process (such as gradient vanishing), and longer training time. Similar
to [3,8], we employ layer normalization, residual connections, and dropout regularization
techniques after the attention layer and Point-Wise Feed-Forward Network to alleviate
these issues:

f (x) = x + Dropout( f (LayerNorm(x))) (12)

where f (x) represents the self-attention layer or Point-Wise Feed-Forward Network. The
definition of layer normalization is as follows:

LayerNorm(x) = α� x− μ√
σ2 + ε

+ β (13)
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where x is a vector containing all the features of the samples, μ and σ denote the mean and
variance, α is a learnable scale factor, and β is a bias term.

We merge one layer of the self-attention and one layer of the Feed-Forward Network
into one attention module. To capture the user’s preferences more accurately, we stack b
attention modules to learn more complex item transformations, ultimately obtaining the
representation of the user’s preferences.

3.5. Prediction Layer

After b attention modules, the model obtains the global representation of the target
user’s preferences. Using this representation, at time step t, we predict the next item that
the user may interact with:

rti = Ft

[
MI

hi
; MU

u

]
(14)

where rti represents the score of item hi given the previous t items, i.e., the possibility that
the next item is hi.

[
MI

hi
; MU

u

]
represents the combined feature embedding that incorporates

both item information and user information. At time step t, for each positive sample item
i = ht+1, we randomly sample a negative sample m /∈ Hu. Due to the faster weight update
rate of the binary cross-entropy loss function compared to the mean squared error loss
function, we use binary cross-entropy as the loss function:

− ∑
Hu∈H

∑
t∈[1,2,··· ,n]

[
log(σ(rti)) + ∑

m/∈Hu
log(1− σ(rtm))

]
(15)

where σ(·) is the sigmoid function. Because ADAM demonstrates greater robustness in
handling noise and outliers compared to the stochastic gradient descent algorithm (SGD),
we optimize the model using the ADAM optimizer [19]. The top-K recommendations for
the target user at time step t can be obtained by sorting the scores of all items, and the top
K items in the sorted list are the recommended items.

4. Experiments

In this section, we will present our experimental setup and show the results of our
experiments. The experiments conducted aim to answer the following research questions:

RQ1: Can our proposed method outperform the state-of-the-art baselines?
RQ2: Does the choice of different time interval values for sequence dividing affect the

model’s ability to capture the local fluctuation of the user’s interests?
RQ3: How do parameters such as maximum sequence length and the number of

attention blocks impact the model’s performance?

4.1. Datasets

We evaluated LHASRec on four datasets. These datasets cover different domains,
sizes, and sparsity levels, and all of them are publicly available:

Movielens: https://grouplens.org/datasets/movielens/ (accessed on 25 August
2023) This dataset is sourced from the GroupLens Research project at the University of
Minnesota. It is a widely used benchmark dataset. We utilized the Movielens-1M version,
which consists of 1 million ratings from 6040 users on 3900 movies.

Amazon: http://jmcauley.ucsd.edu/data/amazon/ (accessed on 25 August 2023) We
utilized the users’ purchase and rating dataset from the e-commerce platform Amazon,
which was collected by McAuley et al. [20]. To enhance the usability of the dataset, the
researchers divided it based on high-ranking categories on Amazon. Specifically, we
selected the “Beauty” and “Video Games” categories for our study.

Steam: https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data (accessed on
25 August 2023) It originates from the popular digital game distribution platform, Steam.
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The dataset captures users’ behaviors, such as game purchases, game ratings, and game
social interactions on the Steam platform.

These four datasets all include timestamps of users’ interactions. We followed the
methods described in [3,7] to preprocess the data. Firstly, we sorted the user–item inter-
actions in ascending order based on the timestamps. To ensure the validity of the data,
we excluded those cold-start users and those with less than three user–item interactions.
Similar to the approach in [3], we used the last item in the interaction sequence (i.e., the
most recent item interacted with by the user) as the test set, the second-to-last item as the
validation set, and the remaining items as the training set. Through these preprocessing
steps, we reduced redundant information while preserving the data’s original meaning, fa-
cilitating further research and algorithm evaluation in the recommendation system domain.
Table 2 provides an overview of these datasets, highlighting their characteristics. Among
them, Movielens-1M is the densest dataset, with fewer users and items. On the other hand,
the Steam dataset is the sparsest, containing relatively fewer interactions.

Table 2. Dataset statistics.

Dataset Users Items Avg. Sequence Length Sparsity

MovieLens-1M 6040 3706 163.6 95.58%
Beauty 22,363 12,101 6.88 99.94%
Games 24,303 10,672 7.54 99.92%
Steam 144,051 11,153 3.49 99.97%

4.2. Compared Methods

We compared LHASRec with various methods, including the classic recommendation
approach (BPR) and recommendation models based on different techniques. Among
them, we considered methods based on first-order Markov chains (such as FMC, FPMC,
TransRec), transformer-based methods (such as SASRec, SSE-PT, TiSASRec), convolutional
neural network-based methods (Caser, TARN), fusion model-based methods (BAR), and
multilayer perceptron-based methods (FMLP-Rec).

BPR [21]: Bayesian personalized ranking model (BPR) is a traditional recommendation
method that employs matrix factorization for the recommendation.

FPMC [5]: Factorizing personalized Markov chains model (FPMC) amalgamates
matrix factorization with the initial-order Markov chain technique, enabling the model to
encompass both users’ long-term preferences and the dynamic transitions of items.

TransRec [22]: Translation-based recommendation model (TransRec) represents a first-
order sequential recommendation approach, where items undergo embedding within a
transformational domain, while users are depicted as translation vectors that encapsulate
shifts from the present item to the subsequent one.

SASRec [3]: Self-attentive sequential recommendation model (SASRec) is the first
transformer-based model that extracts context from all past interactions like recurrent
neural networks while making predictions based on a limited number of interactions,
similar to Markov chains.

SSE-PT [7]: Sequential recommendation via personalized transformer model (SSE-
PT) integrates the embedding vector of the user ID and employs a novel regularization
approach.

TiSASRec [8]: Time interval aware self-attention for sequential recommendation
model (TiSASRec) leverages the advantage of attention mechanisms to handle items at
different ranges in different datasets adaptively and adjusts the weights based on different
items, absolute positions, and time intervals.

TARN [23]: Neural time-aware recommendation network (TARN) simultaneously
captures users’ static and dynamic preferences by fusing a feature interaction network with
a convolutional neural network.
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BAR [24]: Behavior-aware recommendation model (BAR) integrates behavioral infor-
mation into the representation module and employs the innovative module across diverse
backbone models.

FMLP-Rec [25]: Filter-enhanced MLP model (FMLP-Rec) is a pure MLP architecture
model that encodes user sequences using learnable filters.

4.3. Implementation Details

We implemented the LHASRec using PyTorch, with the same number of transformer
encoding blocks as SASRec and SSE-PT (i.e., b = 2). To optimize the model, we chose
ADAM as the optimizer with a learning rate of 0.001 and a momentum decay rate of
β1 = 0.9, β2 = 0.98. The batch size was set to 128. For the Movielens-1M dataset, we set
the dropout rate to 0.2, while for the other three datasets, it was set to 0.5. Regarding the
maximum length of the sequences, we set it to 190 for the Movielens-1M dataset and 50 for
the other three datasets. Additionally, to further enhance the effectiveness of personalized
recommendations, we fine-tuned two parameters of the SSE to improve its performance.

4.4. Evaluation Metrics

To assess the effectiveness of all the models, we employed HR@N and NDCG@N as
evaluation metrics [26], defined as follows:

HR@N =
1
M

M

∑
i=1

hits(i) (16)

NDCG@N =
1
M

M

∑
i=1

1
log2(pi + 1)

(17)

where M is the number of users, hits(i) indicates whether the item interacted with by the
i-th user is present in the recommendation list of length N, and pi represents the position
of the item interacted with by the i-th user in the recommendation list. In our experiments,
we set the length N of the recommendation list to 10. To evaluate the performance of the
recommendation algorithms, we employed HR@10 and NDCG@10 as the two metrics.
Specifically, we appended 100 negative samples [27] randomly after each user’s actual
items and calculated the metric values based on the rankings of these 101 items. It is worth
noting that higher values of HR@10 and NDCG@10 indicate better model performance.

4.5. Recommendation Performance (RQ1)

Table 3 presents the recommendation performance of various methods on the four
datasets (RQ1). For the dense dataset, TiSASRec outperforms other baseline methods. Its
advantage lies in the effective utilization of attention mechanisms, and it can dynamically
adjust the weights according to different items, absolute positions, and time intervals to
adapt to variations in dataset ranges. For the sparse dataset, FMLP-Rec demonstrates
superior recommendation performance compared to other baseline methods. Replacing the
complex Transformer architecture with MLP layers in the frequency domain effectively ad-
dresses the overfitting issue caused by insufficient available information in sparse datasets.
Neural network-based methods (Caser) excel at capturing long-term sequential patterns,
thus performing well on dense datasets. In contrast, methods based on Markov chains
(such as FMC, FPMC, and TransRec) focus more on item transitions, resulting in better
performance on sparse datasets. Furthermore, the TARN approach, which concurrently cap-
tures both users’ dynamic and static preferences, achieves superior performance compared
to the SASRec technique, which focuses solely on a single type of preference, across all the
datasets. Moreover, the BAR technique demonstrates superior performance compared to its
underlying model, SASRec, across all datasets, highlighting the effectiveness of segregating
the user’s historical interaction sequence into item sequence and behavior sequence as a
productive modeling strategy.
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Table 3. Recommended performance. We have bolded the best-recommended method in each row
and underlined the second-best-performing approach in each row.

Methods
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BPR 0.3775 0.2183 0.4853 0.2875 0.5781 0.3287 0.7061 0.4436
FMC 0.3771 0.2477 0.6358 0.4456 0.6983 0.4676 0.7731 0.5193

FPMC 0.4310 0.2891 0.6082 0.4680 0.7599 0.5176 0.7710 0.5011
TransRec 0.4607 0.3020 0.6838 0.4557 0.6413 0.3969 0.7624 0.4852

Caser 0.4264 0.2547 0.5282 0.3214 0.7886 0.5538 0.7874 0.5381
SASRec 0.4663 0.3080 0.6843 0.4602 0.8285 0.5982 0.7867 0.5108
SSE-PT 0.4963 0.3159 0.6955 0.4677 0.8346 0.6163 0.7885 0.5369

TiSASRec 0.4981 0.3329 0.7080 0.467 0.8359 0.6156 0.8053 0.5523
TARN 0.4979 0.3324 0.6996 0.4698 0.8325 0.6139 0.7985 0.5476
BAR 0.4995 0.3336 0.7073 0.4704 0.8351 0.6192 0.8039 0.5492

FMLP-Rec 0.5029 0.3351 0.7091 0.4773 0.8291 0.5333 0.8031 0.5470
LHASRec 0.5150 0.3402 0.7359 0.5072 0.8396 0.6197 0.8218 0.5611

LHASRec outperforms the leading benchmark techniques in recommendation perfor-
mance across all the datasets. This achievement can be attributed to two key factors. Firstly,
in the case of sparse data, the introduction of user information embedding enhances the
correlation between users and items, thereby improving data representation. This enables
LHASRec to capture the user’s preferences better and achieve more accurate personalized
recommendations. Secondly, the model considers both the local fluctuation and global
stability of the user’s interests, demonstrating the ability to model the user’s behavior
accurately. This comprehensive modeling approach helps capture users’ long-term and
short-term preferences more accurately.

4.6. Local-Aware Ability (RQ2)

When utilizing sequential models for handling the user’s historical interaction se-
quences, it is often prone to overlooking the impact of the local fluctuation of the user’s
interests on global stability. To delve deeper into this issue, we conducted a series of
experiments. We divided the user’s historical interaction sequences into multiple sessions
based on different division time interval values (td) between adjacent items and compared
the performance across four datasets. As shown in Table 4, selecting excessively small td
(resulting in numerous sessions) or tremendous td (resulting in too few sessions) led to a
certain degree of decline in the model’s recommendation capability. Specifically, when td is
too small, the model’s local-aware ability becomes excessively strong, focusing excessively
on the user’s short-term interests and disregarding the strong correlations among items
in the sequence, thus affecting the accuracy of recommendations. Conversely, when td is
too large, the model’s local-aware ability becomes weak, making it challenging to capture
the user’s short-term specific interests and failing to promptly reflect changes in the user’s
interests. We found that the model performed best on the Movielens-1M dataset when the
value of td was 30 min. For the Games, Beauty, and Steam datasets, the model achieved the
best recommendation results when the value of td was 15 min. In order to gain a deeper
insight into the factors influencing the model’s performance, we explored the possibility
that it might be due to the additional information used by the model. Consequently, we
modified the LHASRec by removing specific user attributes and compared the resulting
model with the baseline model. As shown in Table 5, it is evident that even after removing
specific user attributes, LHASRec maintains superior performance on the Beauty, Games,
and Steam datasets. While its performance on the MovieLens-1M dataset is slightly below
that of the optimal model, it still remains significant. This indicates that dividing the
user’s historical interaction sequence into a reasonable number of sessions is meaningful. It
allows for a comprehensive consideration of the user’s short-term special interests and the
strong correlations among items within sessions, thus better reflecting the local fluctuation
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of the user’s interests and laying a solid foundation for achieving global stability of the
user’s interests.

Table 4. Impact of different division time interval values on the recommendation performance of the
models across four datasets. We have bolded the best-recommended method in each row.

td (min)
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

1 0.5052 0.3239 0.7214 0.4868 0.8214 0.5881 0.8141 0.5575
15 0.5150 0.3402 0.7359 0.5072 0.8242 0.5964 0.8218 0.5611
30 0.5137 0.3367 0.7310 0.5005 0.8396 0.6198 0.8116 0.5601
45 0.5086 0.3297 0.7258 0.4916 0.8235 0.5909 0.8075 0.5522
60 0.5059 0.3266 0.7218 0.4877 0.8225 0.5892 0.8001 0.5450

Table 5. Recommended performance. We removed specific user attributes from LHASRec and
compared the resulting model with the baseline model for analysis. We have bolded the best-
recommended method in each row and underlined the second-best-performing approach in each row.

Methods
Beauty Games ML-1M Steam

Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

BPR 0.3775 0.2183 0.4853 0.2875 0.5781 0.3287 0.7061 0.4436
FMC 0.3771 0.2477 0.6358 0.4456 0.6983 0.4676 0.7731 0.5193

FPMC 0.4310 0.2891 0.6082 0.4680 0.7599 0.5176 0.7710 0.5011
TransRec 0.4607 0.3020 0.6838 0.4557 0.6413 0.3969 0.7624 0.4852

Caser 0.4264 0.2547 0.5282 0.3214 0.7886 0.5538 0.7874 0.5381
SASRec 0.4663 0.3080 0.6843 0.4602 0.8285 0.5982 0.7867 0.5108
SSE-PT 0.4963 0.3159 0.6955 0.4677 0.8346 0.6163 0.7885 0.5369

TiSASRec 0.4981 0.3329 0.7080 0.467 0.8359 0.6156 0.8053 0.5523
TARN 0.4979 0.3324 0.6996 0.4698 0.8325 0.6139 0.7985 0.5476
BAR 0.4995 0.3336 0.7073 0.4704 0.8351 0.6192 0.8039 0.5492

FMLP-Rec 0.5029 0.3351 0.7091 0.4773 0.8291 0.5333 0.8031 0.5470
LHASRec 0.5092 0.3387 0.7280 0.4996 0.8354 0.6167 0.8166 0.5556

4.7. Stochastic Shared Embeddings

In the process of stacking self-attention modules and incorporating user informa-
tion, the model is prone to overfitting. To alleviate this issue, we conducted a series of
experiments with various regularization methods and compared their performance on the
MovieLens-1M dataset (Table 6). Through the analysis of Table 6, we found that Stochastic
Shared Embeddings (SSE) is a more effective regularization method compared to existing
techniques such as Dropout and weight decay. Specifically, we investigated the recommen-
dation performance when using Dropout and L2 regularization alone and their combination.
The results showed that in the LHASRec, the overfitting problem was mitigated to some
extent by adopting the SSE regularization method, which randomly replaces embedding
matrices. Compared to Dropout or L2 regularization alone, the recommendation perfor-
mance of the LHASRec on the MovieLens-1M dataset improved by approximately 3% and
8%, respectively. Overall, considering the results of our experiments, the combination
of SSE, Dropout, and weight decay is the optimal choice for regularization. This com-
prehensive approach effectively reduces the risk of overfitting and improves the model’s
performance in recommendation tasks. Therefore, we recommend adopting this combined
regularization strategy in practical applications for better recommendation results.
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Table 6. Impact of different regularization methods on the recommendation effect on the MovieLens-1M.
We have bolded the best-recommended method in each row and underlined the second-best-performing
approach in each row.

Methods Value NDCG@10 Hit@10

L2 0.0005 0.5049 0.7447
0.001 0.5083 0.7550

Dropout 0.4 0.5457 0.7990
0.6 0.5192 0.7770

SSE-SE - 0.5616 0.8035

L2+ Dropout

0.001 + 0.4 0.5523 0.8089
0.001 + 0.6 0.5418 0.7952

0.0005 + 0.4 0.5427 0.7980
0.0005 + 0.6 0.5382 0.7892

L2 + SSE-SE 0.0005 + SSE-SE 0.5600 0.7982
0.001 + SSE-SE 0.5641 0.8096

Dropout + SSE-SE 0.4 + SSE-SE 0.5512 0.8002
0.6 + SSE-SSE 0.5649 0.8103

L2 + Dropout + SSE-SE 0.001 + 0.4 + SSE-SE 0.5877 0.8243

4.8. Ablation Study (RQ3)

The influence of the maximum sequence length on the model: Considering the dif-
ferent average sequence lengths of the datasets, we set different maximum sequence lengths
based on the principle that each dataset’s average sequence length is roughly proportional
to the model’s maximum sequence length. Through experimental observations, we found
that the model’s recommendation results are notably influenced by the maximum sequence
length. Generally, a longer maximum sequence length leads to better recommendation
performance. However, when the maximum sequence length exceeds a certain thresh-
old, the recommendation performance of the model starts to decline. In the experimental
data shown in Figure 2, we illustrate the variation in recommendation performance of
the LHASRec under different maximum sequence lengths. The results indicate that the
recommendation performance of the LHASRec improves as the maximum sequence length
increases and reaches its optimum at a certain length (e.g., 190 for MovieLens-1M, 50 for
Beauty and Games datasets, and 30 for the Steam dataset). However, the recommendation
performance starts to deteriorate when the maximum sequence length surpasses this criti-
cal value. This is because an excessively long maximum sequence length may introduce
irrelevant noise to the recommendation task, affecting the model’s ability to utilize limited
information for recommendations effectively. In conclusion, the model’s recommendation
performance is notably affected by the maximum sequence length.

The influence of the number of attention blocks on the model: The number of atten-
tion blocks in the model has a significant impact on the recommendation results. Generally,
more self-attention blocks can improve the model’s ability to fit the data. However, when
the number of blocks is too low, the model tends to underfit, while an excessive number
of blocks increases the model’s complexity, resulting in a long time for fitting the data,
and may lead to overfitting, thereby reducing the recommendation performance. In our
experiments, we investigated the impact of using different numbers of self-attention blocks
in the LHASRec on the recommendation results across four datasets. Based on the experi-
mental data shown in Figure 3, we found that when b = 1, the model fails to fit the data
well, resulting in poor recommendation performance. When b = 2, the model achieves
the best performance and optimal recommendations. However, as the number of blocks
exceeds 2, the model gradually starts to overfit, and the performance declines. Based on
these experimental results, we select two self-attention blocks as the optimal setting across
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all datasets to balance the model’s fitting ability and complexity, thereby obtaining better
recommendation performance.

Figure 2. Influence of maximum sequence length on ranking performance (NDCG@10).

Figure 3. Influence of the number of attention blocks on ranking performance (NDCG@10).

5. Conclusions

In this work, we propose a sequential model with local-aware ability (LHASRec). The
model comprehensively considers the local fluctuation and global stability of the user’s
interests to capture the long-term and short-term preferences more accurately. Meanwhile,
we enhance the user’s historical interaction sequences by embedding user information.
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Additionally, we employ the Stochastic Shared Embeddings regularization technique to
alleviate overfitting caused by embedding a large amount of user information in the
model. Through experiments conducted on sparse and dense datasets, we demonstrate
the superiority of LHASRec over various state-of-the-art baseline models. These results
highlight the effectiveness and superiority of our proposed approach.
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Abstract: Industrial robots have been increasingly used in the field of intelligent manufacturing. The
low absolute positioning accuracy of industrial robots is one of the difficulties in their application.
In this paper, an accuracy compensation algorithm for the absolute positioning of industrial robots
is proposed based on deep belief networks using an off-line compensation method. A differential
evolution algorithm is presented to optimize the networks. Combined with the evidence theory, a
position error mapping model is proposed to realize the absolute positioning accuracy compensation
of industrial robots. Experiments were conducted using a laser tracker AT901-B on an industrial robot
KR6_R700 sixx_CR. The absolute position error of the end of the robot was reduced from 0.469 mm
to 0.084 mm, improving the accuracy by 82.14% after the compensation. Experimental results
demonstrated that the proposed compensation algorithm could improve the absolute positioning
accuracy of industrial robots, as well as its potential uses for precise operational tasks.

Keywords: absolute positioning accuracy; deep belief network; differential evolution algorithm;
industrial robot; off-line error compensation

1. Introduction

Industry 4.0 technologies are critical and indispensable tools to propel social and
technological innovation advancements. Previous research [1,2] noted that the use of In-
dustry 4.0 technologies can better sustain current resources, reduce labor costs, be better
sources of energy, and potentially produce higher-quality sustainable products. Examples
of Industry 4.0 technologies include, but are not limited to, machine learning, virtual and
augmented reality, IoT, artificial intelligence, big data, and robotics [3]. Ref. [4] found
Industry 4.0 technologies assist manufacturing companies’ sustainability and increase their
economic potential. Scholars have examined Industry 4.0 technologies in diverse industries
besides manufacturing. Ref. [5] implemented a systematic review to understand the use of
Industry 4.0 technologies in managing pandemics. The use of Industry 4.0 technologies to
meet the increasing demands of society is ubiquitous; applications include robotics [6], arti-
ficial intelligence [7], IoT [8], augmented reality [9], big data [10], and machine learning [11]
in food and agricultural sciences, to assist in more efficient and enhanced production,
which is needed to feed a growing world population. Ref. [12] investigated the use of
Industry 4.0 technologies in the manufacturing sector, as examined in 380 papers prior to
2020. Ref. [13] sought to understand the manufacturing patterns implemented based on
Industry 4.0 technologies.

Modern advanced manufacturing technology and key technologies demonstrate the
fundamental competitiveness of a nation’s manufacturing industry. Robotics is a sig-
nificant Industry 4.0 innovation that offers immeasurable possibilities in manufacturing
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disciplines [14]. An industrial robot is a complex system that succeeds in situations in-
volving cross-work environments, high repetition, and high-precision processing. The
current manual-based processing methods cannot meet all the requirements of a short
development cycle and high assembly precision [15], and the use of industrial robots for
processing is an excellent solution to this problem. The repeat positioning accuracy of
industrial robots during the actual work process is usually quite satisfactory [16], and is
typically 0.1 mm. However, the absolute positioning accuracy is poor, with an accuracy
range of only approximately 2–3 mm. The absolute positioning accuracy severely limits the
promotion and application of industrial robots in the manufacturing industry.

To address the problem of poor absolute positioning accuracy at the end of industrial
robots, scholars at home and abroad have proposed various solutions [17]. Kinematic
model-based control of robot joints makes it possible to compensate for absolute positioning
errors in industrial robots. However, the positioning accuracy of the robot is affected by
the size of the error of each kinematic parameter. The kinematic parameter errors can be
addressed using kinematic parameter identification. The resulting parameter errors can be
applied to the kinematic model to realize the adjustment of the model. This increases the
positioning accuracy of the robot in the actual working environment, and the generated
kinematic errors can be used to upgrade the kinematic model. This improves the positioning
accuracy requirements of robots in actual workplaces.

In addition to positioning errors caused by geometric factors, nongeometric factors,
such as gear gap, joint deformation, and temperature change, also affect the end positioning
accuracy of robots [18]. The error mechanisms affecting robot positioning accuracy are
complex and interconnected [19]. It is difficult to establish an accurate kinematic model that
can account for all sources of error. Researchers have begun to investigate the establishment
of a mapping relationship between the theoretical and actual position values.

A co-kriging-based error compensation method [20] was suggested to improve the
positioning accuracy of the aerial drilling robot. A compensation method based on error
similarity and error correlation was proposed to increase the robot’s positioning accu-
racy [21]. First, the maximum working stiffness of the robotic drilling system in a specific
machining task was obtained. This was achieved by optimizing the mounting angle be-
tween the motor spindle and the robot end flange. This optimization laid the groundwork
for achieving high hole-processing accuracy. Second, the method for calculating the cor-
responding compensation value was introduced. This was undertaken according to the
position to be drilled. The method took into account the force deformation at the robot
end and the absolute positioning error of the robot [22]. Combining error similarity and a
radial basis function (RBF) neural network, Wang [23] developed a position error compen-
sation approach. The robot joint angle and position error were used to fit the experimental
semi-variance function. The bandwidth of the RBF neural network was modified using the
parameters of the semi-variance function. The position error of the target position was also
estimated using the RBF neural network. The estimated position error was used to modify
the target position to achieve the compensation effect. In precision manufacturing, Li [24]
introduced a synchronization estimation approach for the total inertia and load torque of
spindle-tool systems. The synchronization method was based on a novel double extended
sliding mode observer (DESMO), which synchronously tracked the total inertia and load
torque. The robustness of DESMO was enhanced by inserting a robust activator to reduce
the effect of coupling errors between the two expansion terms. This was critical to the
precision control of the spindle tool and directly influenced the control performance.

Long-term research has been carried out by Tian Wei’s team at the Nanjing University
of Aeronautics and Astronautics to increase the absolute positioning accuracy of indus-
trial robots. A robot positioning error compensation method based on a deep neural
network [25] was proposed to perform Latin hypercube sampling in Cartesian space. A
positioning error prediction model based on genetic particle swarm optimization and a
deep neural network (GPSO-DNN) was developed to predict and compensate for position-
ing error. Then, a practical positioning error compensation scheme for mobile industrial
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robots was proposed [16]. A binocular vision measurement method for robot positioning
was developed. A mapping model between theoretical and actual robot pose errors was
proposed based on deep belief networks (DBN), and the pose error estimation was realized.

A method for optimizing neural networks using the genetic particle swarm algorithm
was proposed. This was done to improve the positioning accuracy of robots [26]. The
aim was to model and predict the positioning error of industrial robots and achieve the
compensation of target points within the robot workspace. Tian [27] proposed an absolute
positioning error compensation scheme based on the DBN and error similarity. Relevant
scholars have conducted in-depth research. The accuracy and versatility of error prediction
can be further studied to improve the absolute positioning accuracy of the robot [28]. In
addition, there are many mathematical methods [29–32] that can also be used to study the
positioning accuracy of robots. Analytic methods such as fractional order have gained
more and more attention [33,34].

The DBN is simple in structure and is suitable for data training in industrial robots.
The training time of the DBN is short, thereby helping to improve the efficiency of the robot.
Meanwhile, the differential evolution (DE) algorithm is an optimization algorithm based
on the theory of swarm intelligence. It has been widely used in many fields because of its
simple principle, small number of controlled parameters, and strong robustness. Finally,
evidence theory can make experimental results more reliable.

Min [35] proposed a stable and high-accuracy model-free calibration method for un-
opened robotic systems, which can significantly improve the robot positional accuracy.
Ref. [36] proposed an adaptive hierarchical compensation method based on fixed-length
memory window incremental learning and incremental model reconstruction. Real-time tra-
jectory position error compensation technology that considers non-kinematic errors [37,38]
has also been proposed.

An absolute positioning accuracy compensation algorithm is proposed for industrial
robots based on the DBN. The DE algorithm is used to optimize the DBN. The number
of layer nodes, learning rate, momentum factor, restricted Boltzmann machine (RBM)
iterations, and DBN fine-tuning iterations improve the optimization effect based on six
dimensions and nine parameters. Combined with the evidence theory, the position error
mapping model of industrial robots is established to realize its absolute positioning accuracy
compensation. The technical process is shown in Figure 1.

 

Figure 1. Accuracy compensation algorithm based on DE and DBN.

Combined with the off-line feed-forward compensation method, the prediction error
of the theoretical pose coordinates of the robot target is superimposed on the robot control
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instructions. The validity and superiority of the scheme are verified using a AT901-B laser
tracker on KUKA KR6_R700 sixx_CR. The absolute positioning error at the end of the robot
was reduced by 82.14%, from 0.469 mm to 0.084 mm. Future work can further consider
industrial robot load, motion speed, acceleration, ambient temperature, or other factors
that affect the absolute positioning accuracy of the robot.

The chapter arrangement of this paper is as follows: Section 1 serves as the intro-
duction, providing an overview of the absolute positioning accuracy of industrial robots
and the method proposed in this paper. Section 2 focuses on the robot positioning error
prediction algorithm based on DE and DBN. Section 3 presents supervised predictive opti-
mization based on evidence theory. Section 4 includes experimental setup, data collection,
model training, and result analysis. Finally, Section 5 presents the conclusion.

2. Robot Positioning Error Prediction Algorithm Based on DE and DBN

2.1. Principle of the DBN

The DBN is a probabilistic generative model proposed by Geoffrey Hinton [39] in
2006. It is composed of multiple RBM connections and a regression layer, and created by
fine-tuning the resulting deep network through gradient descent and back propagation
(BP) to form the best model.

RBM, as the basic component of the DBN [40], is a generative random artificial neural
network, which can learn probability distribution from the inputs. The structure of RBM
is shown in Figure 2. RBM consists of two layers: the visible layer v and the hidden layer
h. The visible layer is used to receive training data. In this study, the visible layer is used
to accept the desired position of the end in the robot coordinate system and the current
robot joint angle. The input of the hidden layer is the output of the visible layer, which
is used to extract features. The neurons of the two layers have intra-layer no-connection
and inter-layer full-connection relationships. Between the visible and hidden layers is the
weight matrix wp. v and h represent the visible-layer and hidden-layer vectors, respectively,
and bv and bh represent the biases of the visible and hidden layers, respectively.

Figure 2. Architecture of RBM.

The multilayer RBM and the BP layer are stacked to form a DBN, as shown in Figure 3.
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Figure 3. Architecture of DBN.

The first layer of RBM consists of a visible layer v1 and a hidden layer h1. The visible
layer v2 of the second layer of RBM is the hidden layer h1 of the first layer of RBM, that is,
v1 = h1, etc. The DBN realizes its layer-by-layer learning by stacking multiple RBMs, so as
to extract the features of the data. The last layer of the DBN sets the BP network.

Unsupervised pretraining and fine-tuning are two processes of DBN training [41]. In
the pretraining process, the greedy algorithm is used. The result obtained by the previous
RBM training is used as the input of the next RBM until all RBMs are trained. The initial
parameters of each RBM are obtained at the same time. The energy function of RBM is
defined as follows:

E(v, h; θ) = −
m

∑
i=1

bivi −
n

∑
j=1

cjhj −
m,n

∑
i,j=1

wijvihj (1)

θ =
{

wij, bi, cj
}

(2)

where m and n are the number of nodes in the visible and hidden layers, respectively. vi,bi
are the biases between neurons in the visible layer. cj, hj are the biases between neurons in
the hidden layer. wij is the connection weight value between the i-th neuron in the visible
layer and the j-th neuron in the hidden layer. Based on the energy function, the probability
distribution can be obtained as:

P(v, h; θ) =
1

Z(θ)
exp(−E(v, h; θ)) (3)

where Z(θ) is the normalization factor expressed as:

Z(θ) = ∑
v,h

exp(−E(v, h; θ)) (4)

The state probabilities of the hidden and visible layers are:

P
(
hj = 1|v; θ

)
= ϕ

(
bj +

n

∑
i=1

wijvi

)
(5)

P
(
vj = 1|h; θ

)
= ϕ

(
bj +

m

∑
j=1

wijhi

)
(6)
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ϕ is the activation function, ϕ = 1
1+exp(−x) .

Fine-tuning refers to using the BP algorithm to train the entire network after pretrain-
ing [42], so that the entire DBN is in the best state, avoiding the disadvantages of critical
points and long training time. Supposing y and ŷ are the actual output and desired output
of the DBN, respectively, the loss function of the output layer is:

F(τ) =
1
2

N

∑
1
(ŷ− y)2 (7)

where τ is the number of iterations and N is the number of training samples.
The weights between the hidden and output layers of the last layer of the network are

iterated through an update function, and η is iteration rate of the DE algorithm:

wout(τ + 1)−wout(τ) = −η
∂F(τ)

∂wout(τ)
(8)

The DBN has strong robustness and fault tolerance because the information is dis-
tributed in the neurons in the network, and it can approximate any complex nonlinear
system. Therefore, it is suitable for dealing with the nonlinear problem of error compensa-
tion.

2.2. DBN Optimization Based on DE Algorithm

The parameters such as number of hidden layers, number of nodes in the hidden
layer, learning rate, momentum factor, number of RBM iterations, and the number of DBN
fine-tuning iterations of DBN determine the complexity of the network. These parameters
are important factors influencing the accuracy of the results of the prediction model. Other
parameters such as speed of training and performance can also influence the accuracy of
the results.

To achieve the best training effect, it is necessary to optimize the training parameters
to obtain the optimal parameters. The DE algorithm is an optimization algorithm based
on the theory of swarm intelligence. This algorithm was proposed by Rainer Storn and
Kenneth Price [43] in 1995. It has been widely used in many fields because of its simple
principle, small number of controlled parameters, and strong robustness.

The DE algorithm mainly includes four operations: initialization, mutation, crossover,
and selection [44]. The population of DE is generated by random steps. The population size
is N. The dimension of the search space is D. The dimension is the number of parameters to
be optimized in this paper. The population initialization can be expressed as:

xi,j(0) = xj,min + rand[0, 1] ·
(
xj,max − xj,min

)
(9)

where i ∈ [1, 2, · · · , N], j ∈ [1, 2, · · · , D], x(0) represents the 0th generation individual.
rand[0, 1] denotes uniformly distributed random numbers in [0, 1]. xj,max and xj,min indicate
the upper and lower bounds of the j-th chromosome, respectively.

After initialization, three different individuals are randomly selected from the popula-
tion for mutation:

vchild
i = xra + F · (xrb − xrc) (10)

where F is the zoom factor, which can be set according to the actual situation.
A crossover operation is required to increase the diversity of the population. The new

individual is generated by dimensionally crossing for each individual in the contemporary
population and the new individual obtained from its mutation. The specific cross-operation
process is defined as follows:

uj
i,G =

{
vj

i,G, rand[0, 1] ≤ CR or j = jrand

xj
i,G, otherwise

(11)
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where CR is a crossover factor with a value range of [0, 1]. uj
i,G is a new individual generated

by the crossover strategy.
After the crossover is completed, the DE algorithm selects each individual of the

current population and the crossover individual. It keeps the best individual among the
two as the next-generation population individual:

xj
i,G+1 =

{
uj

i,G, i f f
(
ui,j

)
≤ f(xi,G)

xj
i,G, otherwise

(12)

The mean square error (MSE) between the expected output of the DBN and the actual
output of the data is used as the fitness function of the DE algorithm:

F f itness =

n
∑

i=1

m
∑

j=1

(
ŷij − yij

)2

N
(13)

where N is the number of training sample data sets. m is the dimension of the network
output. ŷij refers to the expected output of the sample. yij refers to the actual output of the
network.

The DE algorithm is known as an efficient global optimizer with the advantages of
convergence speed and high precision. The fitness function of the DE algorithm is related
to the DBN, and the smaller the fitness function value, the better the optimization result.

The principle of the DE algorithm is shown in Figure 4.

 

Figure 4. Flow chart of the DE algorithm.

The DE algorithm starts searching from a group, that is, multiple points instead of
the same point [45]. This is the main reason why it can find the overall optimal solution
with a greater probability. The evolution criterion of the DE algorithm is based on fitness
information [46] with the help of other auxiliary information. It has inherent parallelism,
which is suitable for large-scale parallel distributed processing [47]. The DE parameter
settings are shown in Table 1.
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Table 1. Parameters optimized by the DE algorithm.

Parameter Symbol Value

Dimensions of the objective function n_dim 9
Maximum number of iterations max_iter 200

Population size size_pop 30
Mutation probability prob_mut 0.8
Crossover probability Crossp 0.7

The DBN input layer has nine channels. They are the theoretical position coordinates
of the robot and the angles of the corresponding six joints (x, y, z, θ1, θ2, θ3, θ4, θ5, θ6). The
output layer of DBN is three channels, which are the position error

(
ex, ey, ez

)
of the robot.

The maximum number of hidden layers of DBN nodes is set to four layers. The range
of nodes in the hidden layer is (10, 101). The initial learning rate is 0.01. The momentum
factor is 0.8. The activation function is Sigmoid, and the MSE is used as the loss function.
The hyperparameters that need to be optimized are the number of hidden layers of the
DBN, number of hidden-layer nodes, learning rate, momentum factor, RBM iterations, and
DBN fine-tuning iterations. The hyperparameters are shown in Table 2.

Table 2. Parameters and optimization range of the DBN.

Parameter Symbol Range

Number of hidden layers of DBN nlayer (1, 4)
Number of nodes in DBN hidden layer 1 hidden_units [1] (10, 101)
Number of nodes in DBN hidden layer 2 hidden_units [2] (10, 101)
Number of nodes in DBN hidden layer 3 hidden_units [3] (10, 101)
Number of nodes in DBN hidden layer 4 hidden_units [4] (10, 101)

Learning rate of DBN learning_rate (0.01, 1)
Momentum factor of DBN momentum (0.8, 1)

Iterations of RBM epoch_pretrain (1, 100)
Fine-tuning iterations of DBN epoch_finetune (1, 200)

3. Supervised Predictive Optimization Based on Evidence Theory

The evidence theory is used as a supervised approach for assessing the uncertainty of
DBN predictions. In order to assess the credibility of the DBN prediction, the uncertainty
of the DBN prediction is evaluated [48]. This approach is taken to prevent the model from
making mistakes due to overconfident performance and to improve the reliability of the
prediction system. Evidence theory is a mathematical reasoning method with the charac-
teristic of clearly expressing uncertainty. At present, in most cases, the basic probability
assignment function is obtained by referring to expert experience and knowledge [49,50].

3.1. Evidence Theory

Evidence theory, also known as the Dempster–Shafer (DS) theory [51], is an uncertain
reasoning theory widely used in the fields of information fusion and uncertain reasoning.
The evidence theory can fuse evidence with comprehensible composite rules without
prior probability. It can effectively deal with cognitive uncertainty in various engineering
fields [52]. It can describe the corresponding fluctuation range of the system output through
two boundary values: the belief function and the likelihood function. The fusion framework
of the evidence theory usually consists of three parts: representation of evidence, fusion of
evidence, and decision making of evidence [53].

The evidence theory is built on a framework of identification (FD) [54], usually repre-
sented by a nonempty set Θ, Θ = {θ1, θ2, · · · , θn}. θ represents independent elements of a
collection. The identification framework has 2n subsets in total. Each subset A corresponds
to a possible outcome of a proposition, that is, the proposition

{
θi, θj

}
indicates that at

least one of the two basic events is true. The confidence interval is usually used to describe
events due to the lack of subjective knowledge.
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The confidence interval is a closed interval composed of a belief function (Bel) and a
likelihood function (Pl), which is used to indicate the degree of support for event θ [55].
Bel(A) is the sum of the basic probability distributions of all subsets of A, which indicates
the degree of trust in A. It is expressed as:{

Bel(A) = ∑
B⊆A

m(B)

A ⊆ Θ
(14)

Pl(A) is the sum of the basic probability assignments of all subsets intersecting with
A. It indicates the degree of non-denial to A. It is expressed as:{

Pl(A) = ∑
B∩A �=∅

m(B)

A ⊆ Θ
(15)

Let the finite nonempty set Θ = {θ1, θ2, · · · , θn} be the identification framework, and
the function m:2n → [0, 1] be the basic probability assignment function on the identification
framework Θ. In this study, Bel and Pl represent the upper and lower bounds of the
reliability of the positioning accuracy of industrial robots. For the hypothetical conclusion
A in the identification framework, Bel(A) and Pl(A) form a confidence interval denoted
Bel(A), Pl(A).

This represents a propositional uncertainty, where the probability of the occurrence of
proposition A lies somewhere between Bel and Pl bounds. It is shown in Figure 5.

Figure 5. Propositional uncertainty representation.

3.2. Optimization of Position Error Based on Evidence Theory

This study evaluates the uncertainty of DBN prediction using the evidence theory. It
combines the evidence theory with the DBN model and achieves the fusion of evidence
through the basic probability assignment function and the Dempster combination rule. The
evidence theory does not rely on prior information [56] and is relatively more suitable for
situations where it is inconvenient to obtain prior probability and conditional probabil-
ity [57]. In the DBN prediction task, n feature vectors of the input sample are represented
as ϕ(x) = (ϕ1(x),ϕ2(x), · · · ,ϕn(x)). The identification frame Θ = {θ1, θ2, · · · , θk} can
be regarded as evidence corresponding to a subset in the identification frame. For each
category θk, evidence ϕj(x) can be considered to support either {θk} or {θk}, and the
specific support depends on the weight coefficient of the evidence ϕj(x):

ω=βϕj(x)+α (16)

where β and α are two weight parameters.
Assume that the evidence weights of {θk} and {θk} are the positive and negative parts

of ω, respectively. For each ϕj(x) and each category θk, two basic probability assignment
functions exist:

m+={θk}ω+

(17)

m−={θk}ω− (18)

where m+ represents ϕj(x) support for {θk}, and m− represents ϕj(x) support for {θk}.
The process of quantitative evaluation method for the uncertainty of DBN prediction

is mainly divided into two stages. The first stage is the construction stage of the evidence
classifier. The appropriate DBN model is built according to the needs, and the training
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samples are used to train the model to ensure that the model can meet the requirements of
high classification accuracy. The model is saved. The model parameters are loaded. The
parameters of the last hidden layer of the model are extracted. The extracted parameters
are converted into the basic probability assignment function. The Dempster synthesis rule
is used to combine and output the final basic probability assignment function.

The second stage is the uncertainty modeling of DBN prediction. The basic probability
assignment function is used as the decision index to predict the classification results. At
the same time, the basic probability assignment function is further calculated to obtain
the conflict value and uncertainty. The uncertainty of DBN prediction is quantitatively
evaluated using the uncertainty evaluation module. The uncertainty evaluation method
for DBN prediction is shown in Figure 6.

 
Figure 6. Uncertainty evaluation method for DBN prediction.

The evaluation method proposed earlier is based on the evidence classifier. The
evidence classifier is modeled by extracting the parameters of the hidden layer of the
trained DBN model. During the modeling process, the modification of the training loss
function and the retraining of the DBN model are not required. Such characteristics mean
that the evaluation method can be applied to any pre-trained DBN model and has strong
scalability in the application of the DBN model.

4. Experiments

4.1. Experimental Setup and Data Collection

The experimental platform for compensating absolute positioning accuracy compen-
sation of industrial robots is shown in Figure 7. The industrial robot used for precision
compensation is KUKA’s KR6_R700 sixx_CR. It has a load capacity of 6 kg and a working
range of 700 mm radius. The volume of the working space is 1.36 m3, the position repeata-
bility is ±0.03 mm, and the absolute positioning accuracy is ±0.6 mm. A Leica AT901-B
laser tracker is used to measure the position error and the error is ±15 μm + 6 μm/m. The
error of the laser tracker increases with the increase in distance.

AT901-B uses an angle encoder to measure the angle and an absolute interferometer to
measure the distance. The absolute interferometer in the AT901 integrates a helium-neon
laser interferometer and an absolute range finder. The two lasers can work independently.
The laser beam emitted by the laser is directed to the target through the universal mirror.
The interferometer laser beam also serves as the collimation axis for the tracker. The
reflected laser light is measured using the tracker’s built-in dual-axis position detector. The
pulse generated by the position detector is processed by the processor of the tracker. The
output is then fed back to the servo motor, which drives the motor to track the target mirror
of the tracker in real time. Finally, the tracking distance measurement is realized, which is
used to measure the actual pose of the end effector of the industrial robot.
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Figure 7. Error compensation platform for laser trackers and industrial robots.

The control and communication diagram of the error compensation platform is shown
in Figure 8. The computer is used as the TwinCAT master, that is, the primary controller of
the control system. The TwinCAT master uses industrial Ethernet EtherCAT to communi-
cate with industrial robots. The laser tracker communicates with the TwinCAT master via
Ethernet (TCP/IP protocol).

Figure 8. Communication of the experimental setup.

In this study, an off-line compensation method [58] is adopted, which uses a laser
tracker to obtain the actual position of the manipulator. The DBN based on the DE algorithm
is employed to perform the error compensation function.

Assuming that the measurement requirements of the laser tracker are met, the target ball
of the fixed tooling of the industrial robot is installed in the 240 mm × 240 mm × 200 mm
working space, and about 8000 sets of data are measured. For the universality and random-
ness of the experimental data, the random number module drand is used in TwinCAT3 to
randomly generate specific sampling data within a predetermined sampling space. In order
to obtain the real position of the robot and the laser tracker in steady state, each sampling
is divided into three steps. First, the robot arrives at the sampling point and remains there
for 2000 ms. Then, the laser tracker records the data for 1000 ms. Finally, the devices are
delayed for another 1000 ms in order to reset them. The theoretical position coordinates and
joint angles of the robot are the input of the model. The absolute position error of the robot
end constitutes the output of the model.

The data set is divided into the training set and the test set in a ratio of 0.3. The
8000 sets of collected data are divided into 5600 sets of training data and 2400 sets of
test data. As shown in Figure 9, the blue dots represent the training set and the red dots
represent the test set.
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Figure 9. Sample data set.

4.2. Model Training and Result Analysis

According to the setting in Section 2.2, the input layer of DBN has nine channels, which
are the theoretical position coordinates and joint angles of the robot (x, y, z, θ1, θ2, θ3, θ4, θ5, θ6).
The output layer of DBN has three channels, which are the position error

(
ex, ey, ez

)
of the

robot. Figure 10 shows the loss function decline curve when the DBN is trained alone.

Figure 10. Loss curves.

The DE algorithm is utilized to determine the number of hidden layers of the DBN,
number of nodes in the hidden layer, learning rate, momentum factor, number of iterations
of RBM, and number of iterations of DBN fine-tuning. Figure 11 shows the fitness decline
curve of the DE-optimized DBN, which is reduced by 60.7% from 0.387 to 0.152. After
150 iterations of training, the optimal fitness iteration number can be found at the end of
the 92nd iteration, and the optimal parameters of the DBN can be output.
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Figure 11. Fitness curve.

The DE algorithm is utilized to determine the number of hidden layers of the DBN,
number of hidden-layer nodes, learning rate, momentum factor, number of iterations
of RBM, and number of iterations of DBN fine-tuning. The fitness of each particle is
calculated according to the fitness calculation conditions. When the training error reaches
the allowable value or the number of iterations reaches the maximum value, the DE
algorithm iteration terminates.

Finally, the DBN hyperparameters determined according to the DE algorithm are
shown in Table 3.

Table 3. Optimal parameters of DBN.

Parameter Symbol Optimal Value

Number of hidden layers of DBN nlayer 4
Number of nodes in DBN hidden layer 1 hidden_units [1] 7
Number of nodes in DBN hidden layer 2 hidden_units [2] 56
Number of nodes in DBN hidden layer 3 hidden_units [3] 62
Number of nodes in DBN hidden layer 4 hidden_units [4] 56

Learning rate of DBN learning_rate 0.9360
Momentum factor of DBN momentum 0.9618

Iterations of RBM epoch_pretrain 100
Fine-tuning iterations of DBN epoch_finetune 70

Supervised learning in machine learning essentially yields a series of training samples
and establishes a mapping relationship so that the fitting result is as close as possible to
the real output. The loss function is an important indicator for analyzing the quality of the
training results. In this paper, the DBN is analyzed using five indicators: MSE, root mean
square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE),
and R2. These five indicators are expressed as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (19)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 =
√

MSE (20)

245



Electronics 2023, 12, 3718

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(21)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (22)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − yi)

2
= 1− RMSE

Var
(23)

where yi represents the true value of the data set. ŷi represents the predicted value of the
data set. yi represents the average value of the predicted value of the data set. n represents
the number of data sets. Var represents the data variance.

MSE is the mean of the sum of squares of the corresponding point errors between the
predicted data and the original data. RMSE is the square root of MSE, also known as the
fitting standard deviation of the regression system. MAPE is often used to measure the
accuracy of predictions. However, when the real data are equal to zero, the denominator
becomes zero and the formula is not available. The situation where the true value is zero
does not appear in this study. The MAE refers to the average value of the absolute value of
the deviation of each measurement value, which accurately reflects the size of the actual
prediction error. The closer the four indicators approach 0, the closer the predicted value
will be to the real value, indicating a better prediction effect.

R2 represents the coefficient of determination of the model. The best score is 1, indicat-
ing that the model perfectly predicts the real value. It may also be negative because the
model can be arbitrarily worse, that is, no mapping-fitting relationship exists between the
predicted data and the real data.

Table 4 shows the calculated MSE, RMSE, MAPE, MAR, and R2 from the DBN model.

Table 4. MSE, RMSE, MAPE, MAE, and R2 values.

x y z

MSE 0.0104 0.0017 0.0003
RMSE 0.1021 0.0412 0.0194
MAPE 0.1021 0.0412 0.0193
MAE 0.0824 0.0284 0.0900

R2 0.8701 0.9038 0.9582

The MSE, RMSE, MAPE, and MAE of the position error prediction value of the robot
end effector are all found to be close to 0 using the proposed position error prediction
model for industrial robots. The coefficient of determination (R2) of the predicted value
of the position error is shown in Figures 12–14. The figures show that the predicted value
(blue dot) is closely distributed around the real value (red line). In addition, R2 is close to 1,
indicating the correlation between the predicted value and the actual value. The higher the
value, the higher the fitting accuracy. Therefore, the proposed machine learning model has
good adaptability and robustness in the prediction of industrial robot position errors.

The R2 of the robot end precision compensation error is around 0.87–0.95, and the
overall effect is good. As the DBN is trained and iterated in three dimensions, the charac-
teristics of the three dimensions interact and couple with each other. It is also disturbed by
nonlinear factors such as the accuracy of data acquisition and environmental conditions,
which makes some differences in the effect of robot end accuracy error compensation.
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Figure 12. R2 diagram of x.

Figure 13. R2 diagram of y.

A total of 50 random verification points were selected in the robot motion space
with a measurement space of 240 × 240 × 200 mm3. These are presented to verify the
effectiveness and improvement effect of the DBN optimization based on the DE algorithm.
The distribution of position errors before and after compensation in the x, y, and z directions
are shown in Figures 15–17, respectively. The compensation results revealed the following.
Before compensation, the errors in the x direction are basically evenly distributed above and
below 0. The errors in the y direction are also distributed around 0, but are more negative.
The errors in the z direction are basically negative. The error compensation technology
proposed in this study is used to optimize the DBN with the DE algorithm. The errors
in the three directions are basically distributed around 0 and fluctuate around ±0.2 mm,
±0.1 mm, and ±0.5 mm. The range of fluctuations is extremely small, indicating that the
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accuracy after compensation has high stability and that the accuracy of robot operation can
be improved.

Figure 14. R2 diagram of z.

Figure 15. Position error on x before and after compensation of the robot.

Figure 16. Position error on y before and after compensation of the robot.
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Figure 17. Position error on z before and after compensation of the robot.

Table 5 shows the static statistical analysis results before and after the robot end
position error compensation. The x, y, and z directions are improved by 65.56%, 55.22%,
and 49.12%, respectively.

Table 5. Statistical results of the positional errors.

Error Range Confidence
Percent

Improvement

x error (mm)
Before [−0.674, 0.773] [−0.500, 0.345]

65.56%After [−0.130, 0.368] [−0.017, 0.017]

y error (mm) Before [0.133, −0.559] [−0.225, 0.063]
55.22%After [0.108, −0.201] [−0.047, 0.031]

z error (mm)
Before [0.003, −0.162] [−0.115, −0.026]

49.12%After [0.029, −0.054] [−0.021, 0.009]

The experimental platform for data acquisition and verification of the robot is the light
industrial robot KR6_R700 sixx_CR. The error range is much smaller compared with that of
the traditional heavy industrial robot. Hence, using the DBN for feature extraction, model
training, and optimization is difficult. The network is optimized and combined with the
evidence theory, and the position error mapping model of industrial robots is established.
The comprehensive analysis of the compensation effect of the robot end accuracy in three
directions is shown in Figure 18.

The method used in this study is compared with previous methods to verify the test
results [25,27]. The results are shown in Table 6. After off-line compensation, the minimum
value is reduced from 0.097 mm to 0.006 mm. The average value is reduced from 0.110 mm
to 0.083 mm. Therefore, the proposed DE-DBN method was successful in improving the
minimum and average values after the end error compensation of the robot.

Table 6. Comparison of data compensation on the results of previous models.

Error (mm) Max Min Average

Uncompensated 1.529 0.124 0.754
GA-DNN 0.965 0.017 0.284
PSO-DNN 0.519 0.172 0.333

GPSO-DNN 0.364 0.097 0.249
PSO-DBN 0.244 Null 0.110

Uncompensated 0.701 0.139 0.469
DE-DBN 0.255 0.006 0.083
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Figure 18. Absolute position errors of the robot end effector.

5. Conclusions

Based on deep belief networks using an off-line compensation method, a compensation
algorithm for the absolute positioning accuracy of industrial robots is proposed. It predicts
and compensates for the absolute positioning error of industrial robots based on the
DBN and DE algorithm. The number of hidden layers, hidden-layer nodes, learning
rate, momentum factors, RBM iterations, and DBN fine-tuning iterations are optimized.
The position error model of industrial robots is established. Combined with the off-line
feedback compensation method, the proposed method is verified experimentally using the
KR6_R700 sixx_CR industrial robot and the AT901-B laser tracker.

After compensation, the absolute positioning error of the robot end is reduced by
82.14%, from 0.469 mm to 0.084 mm. The absolute positioning accuracy of the industrial
robot is improved. This indicates the proposed approach is advantageous for performing
more precise operation tasks. The results of this paper can be used to improve the absolute
positioning accuracy of industrial robots, which is of great help in improving the motion
accuracy and force control performance of robots.

Considerations of the off-line compensation method include an experimental environ-
ment free of vibration, the allowable operating temperature of the robot, and the higher
accuracy of the laser tracker. Future work can further consider industrial robot load, motion
speed, acceleration, ambient temperature, or other factors that affect the absolute posi-
tioning accuracy of the robot. Deep learning can be integrated into the robot’s motion
control system. The training model can be deployed in the control algorithm. Realizing
the intelligent prediction and real-time compensation of robot errors is a direction of great
research value.
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Abstract: Picks are key components for the mechanized excavation of coal by mining machinery,
with their wear state directly influencing the efficiency of the mining equipment. In response to the
difficulty of determining the overall wear state of picks during coal-mining production, a data-driven
wear state identification model for picks has been constructed through the enhanced optimization
of Long Short-Term Memory (LSTM) networks via Bayesian algorithms. Initially, a mechanical
model of pick and coal-rock interaction is established through theoretical analysis, where the stress
characteristic of the pick is analyzed, and the wear mechanism of the pick is preliminarily revealed.
A method is proposed that categorizes the overall wear state of picks into three types based on
the statistical relation of the actual wear amount and the limited wear amount. Subsequently, the
vibration signals of the cutting drum from a bolter miner that contain the wear information of picks
are decomposed and denoised using wavelet packet decomposition, with the standard deviation
of wavelet packet coefficients from decomposed signal nodes selected as the feature signals. These
feature signals are normalized and then used to construct a feature matrix representing the vibration
signals. Finally, this constructed feature matrix and classification labels are fed into the Bayesian-
LSTM network for training, thus resulting in the picks wear state identification model. To validate
the effectiveness of the Bayesian-LSTM deep learning algorithm in identifying the overall picks wear
state of mining machinery, vibration signals from the X, Y, and Z axes of the cutting drum from
a bolter miner at the C coal mine in Shaanxi, China, are collected, effectively processed, and then
input into deep LSTM and Back-Propagation (BP) neural networks respectively for comparison. The
results showed that the Bayesian-LSTM network achieved a recognition accuracy of 98.33% for picks
wear state, showing a clear advantage over LSTM, BP network models, thus providing important
references for the identification of picks wear state based on deep learning algorithms. This method
only requires the processing and analysis of the equipment parameters automatically collected from
bolter miners or other mining equipment, offering the advantages of simplicity, low cost, and high
accuracy, and providing a basis for a proper picks replacement strategy.

Keywords: data-driven approach; picks wear state recognition; wavelet packet decomposition;
Bayesian-LSTM

1. Introduction

The advancement of technologies such as the Internet of Things (IoT), 5G, Big Data,
Cloud Computing, and Artificial Intelligence (AI) has promoted the integration and innova-
tion of a new generation of information technology and coal-mining machinery technology,
providing specific technical approaches for the digital transformation and upgrade of
coal-mining equipment. The picks are a key component of coal-mining equipment for
mechanized coal extraction, and their wear state directly affects the efficiency of the mining
equipment. In the process of cutting coal-rock, the picks crush and cut coal-rock under the
action of strong thrust, suffering from severe impact and high stress, and experience intense
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friction with the coal wall. There is a strong non-linear coupling effect and friction wear
behavior between the picks and the coal-rock, which can easily lead to the wear failure
of the picks [1]. According to statistics, wear failure accounts for as much as 75–90% of
all failure modes of picks [2]. In actual coal-mining production, due to factors such as
coal-rock characteristics and different picks’ installation angles, the wear degree of the picks
at different positions of the mining equipment’s cutting drum will inevitably vary during
the cutting process. For picks that wear out quickly, if they are not replaced in time, this
will lead to increased wear on the other picks, seriously affecting the cutting efficiency of
mining equipment. Replacing picks immediately requires stopping the operation of mining
equipment, which also impacts work efficiency [3,4]. Coal-mining enterprises currently
rely mainly on manual experience to decide whether to replace picks, and to prevent
work efficiency from being affected by multiple pick replacements, they can only adopt
the strategy of replacing all picks of different wear levels at once, leading to significant
economic waste [5]. Therefore, if the wear state of the mining machinery picks can be
accurately identified, it will not only allow real-time understanding of the wear state of
the picks on the cutting drum, ensuring the efficient operation of mining equipment, but
could also help to propose a scientific picks replacement strategy, significantly reducing
production costs for enterprises.

Many scholars have conducted extensive research on the wear mechanism of picks
and the prediction of pick life. Dewangan [6] used an electron microscope and X-ray
energy dispersive spectroscopy to scan and analyze the images before and after the wear
of the pick, revealing the wear mechanism of the pick and the method of predicting wear
volume. Zhang et al. [7] used PFC 3D software 5.0 to simulate the cutting process of the
pick, conducted cutting experiments on different coated picks, calculated the mass loss
before and after cutting, and then predicted and analyzed the life of the pick. Qin et al. [8]
proposed a reliability model for the competitive failure of picks under random load impact
by considering the effects of sustained impact, variable rate acceleration degradation, and
hard failure threshold changes on pick wear. Tian et al. [9] proposed a degradation model
based on the Gamma process to describe the wear and tear of picks on the tunneling
machine, realizing the prediction of the remaining life of picks.

In recent years, with the development of sensor technology, some scholars have used
machine-learning methods to study the identification of the picks wear state. By studying
the features of vibration, acoustic emission, cutting force, power, and current signals during
the cutting process of picks, they have obtained indirect indicators reflecting the wear of
picks, thus achieving the identification of the picks wear state. Zhang et al. [10–12] built
experimental devices, extracted triaxial vibration signals, infrared temperature signals,
and current signals of picks with different wear degrees during the cutting process, con-
structed a multi-feature signal sample database for picks with different degrees of wear,
and established a pick wear degree identification model based on the BP neural network.
Jin et al. [13] used an acoustic emission signal acquisition device to collect signals from
cutting four different proportions of coal-rock specimens, applied three-layer wavelet
packet decomposition and reconstruction technology to process the signals, and used D-S
evidence theory to intelligently identify the degree of picks’ wear.

In summary, regarding the identification of the wear state of picks, existing research
focuses on one hand on using statistical methods to calculate the wear volume of picks and
predict their lifespan, and on the other hand on identifying the wear state of individual
picks based on multi-source information fusion. However, due to the constraints of the
underground application environment in coal mines, less attention is paid to the overall
wear state evaluation of the picks of mining equipment in coal-mine production. Moreover,
in the application of machine-learning methods, the commonly used methods in the exist-
ing research are shallow learning algorithms, including Support Vector Machines (SVM),
Hidden Markov Models (HMM), and BP neural networks. Compared with deep learning
models, traditional machine learning and shallow learning algorithms have obvious dis-
advantages in terms of data-processing capacity, non-linear processing capabilities, and
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convergence performance. In addition, the adaptive feature learning characteristic of deep
learning methods effectively avoids the limitations of manual feature extraction, gets rid
of the dependence on prior knowledge, and has a higher recognition accuracy and model
generalization capabilities [14].

To further enhance the efficiency and accuracy of identifying the wear state of picks,
this paper proposes a model for identifying the overall wear state of picks based on the
Bayesian-LSTM deep learning neural network. The main contributions are as follows:

(1) We employed a theoretical analysis method to establish a mechanical model of pick
and coal-rock interaction, analyzing the stress characteristics of the picks and revealing
the wear mechanism of the picks. In light of the overall wear characteristics of
the picks, we achieved the rapid classification of three types of picks wear state
through the statistical relationship between the pick wear amount and the limited pick
wear amount.

(2) We used the wavelet packet decomposition method to decompose and denoise the
vibration signals from the cutting drum of a bolter miner, which contain extensive
picks wear information. We then used the standard deviation of the decomposed
signal node wavelet packet coefficients as the feature signals. These feature sig-
nals, after normalization, were used to construct a feature matrix representing the
vibration signals.

(3) We utilized the Bayesian algorithm for its advantages in handling uncertain data,
integrating it into the LSTM network to construct a Bayesian-LSTM network. By
inputting the constructed feature matrix and classification labels into the Bayesian-
LSTM model for training, the recognition results demonstrated a higher accuracy
compared to both LSTM and BP neural networks.

The brief structure of this article is as follows: Section 1 introduces the background of
the research content and the importance of the research. Section 2 shows the related work
about this topic. Section 3 presents the interaction model of the pick and coal-rock during
the cutting process, the overall wear state evaluation index, and the feature signals selection
of picks wear based on wavelet packet decomposition. Section 4 introduces the Bayesian-
LSTM network model. Section 5 presents the analysis of validation and comparison of
results. Section 6 provides the conclusions of this article.

2. Related Work

Based on the above, in the research of picks wear state recognition, the current recog-
nition methods are only conducted within a small sample range. When the data volume
is too large, computational difficulties arise, which cannot meet the demand for handling
massive data in the recognition of the overall wear state of picks [15–17]. Therefore, the
utilization of deep learning for recognizing the overall wear state of picks presents a sig-
nificant advantage. Currently, deep learning algorithms have begun to be used in areas
like machine tool wear state recognition. For instance, Huang et al. [18] proposed a new
method for tool wear prediction based on a deep convolutional neural network and multi-
domain feature fusion, constructing a high-accuracy tool wear prediction model combining
adaptive feature fusion and automatic continuous prediction. Furthermore, Ma et al. [19]
used milling force signals to establish a tool wear prediction model based on convolutional
bidirectional LSTM networks, achieving highly accurate prediction results. On the basis of
deep learning models, some researchers have attempted to use optimization algorithms to
address the reliance of recognition models on large data samples. Wu et al. [20] optimized
LSTM networks using a particle swarm optimization (PSO) algorithm and applied an
improved polynomial threshold function to denoise tool acceleration vibration signals, thus
achieving tool wear quantity prediction and wear state classification. Due to the picks wear
state information typically being a time series signal, certain researchers have employed a
1D convolutional neural network (CNN) for the feature classification of temporal signals
in related fields. Abdeljaber et al. [21] presented a compact 1D CNN architecture that
integrates feature extraction and classification modules, enabling automatic extraction
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of optimal image-sensitive features directly from raw acceleration signals, utilized for
real-time vibration-induced damage monitoring and localization, with a demonstrated out-
standing performance and an exceptionally high computational efficiency. Yuan et al. [22]
introduced a 1D CNN model for rapid and accurate comprehensive damage assessment
post-earthquake. Their results revealed that the prediction accuracy of the 1D CNN model
is comparable to that of 2D CNN models, yet with an over 90% reduced computation time
and an over 69% resource usage reduction. Abdoli et al. [23] introduced a 1D CNN-based
approach for environmental sound classification that directly captures audio signal patterns
through convolutional layers, achieving an average accuracy of 89% with fewer data than
traditional feature-based methods.

Through comparative analysis of the use of deep learning methods for tool wear state
recognition, it can be observed that most of the recognition models still employ traditional
structures such as CNN and LSTM. Some choose to combine optimization algorithms
like PSO and Genetic Algorithms (GA) to address convergence problems during weight
training. When considering the selection of input parameters, the vast majority of studies
still rely on the research experience of their predecessors, without considering the impact of
different input parameter combinations on the output results [24–27]. Additionally, these
network models yield fixed weight matrices after training, and these weight matrices are
no longer updated. The model cannot allocate different weights based on the change in
inputs, so its generalization ability when faced with different tasks can be significantly
constrained [28]. The LSTM deep learning network, with its unique memory units and
gate mechanisms, is adept at capturing dependencies in time series, offering a distinct
advantage in processing temporal data [29–32]. However, the randomness introduced by
environmental factors and parameter choices might compromise the accuracy of the recog-
nition results [33]. In recent years, several researchers have incorporated Bayesian theory
into LSTM deep learning networks to estimate weights and biases. This approach shifts
the neural network parameter estimation from point estimation to probability distribution,
enabling the network to evaluate the certainty or uncertainty of results. Consequently, this
enriches the deep learning network’s formidable data-fitting capability, further enhancing
its learning precision. Li et al. [34] proposed a method that leverages Bayesian-LSTM
to perform Stochastic Variational Inference (SVI) on process-based hydrological models.
By constructing a residual model, they sought to refine the predictions of uncertainty
in hydrological models. The results demonstrated that this method provided a highly
reliable uncertainty interval. Compared to the Bayesian linear regression model, Bayesian-
LSTM offered superior uncertainty estimation. Yang et al. [35] introduced a HiBayes-LSTM
method containing an FIE component to capture past and future time dependencies. By
collecting large-scale HTRO datasets, they extended the weights of the LSTM network
to a probabilistic model, ensuring uncertainty in the HM direction of the head trajectory
predictions. Experimental outcomes revealed that HiBayes-LSTM notably outperformed
nine other methods in predicting ODIs’ significance.

3. Preliminaries

This section analyzes the wear mechanism of picks by establishing a mechanical model
of the pick and coal-rock mass, and proposes a classification method for the overall wear
state of the picks of mining machinery. At the same time, a method for selecting the
characteristic parameters of the picks wear state is provided.

3.1. Pick and Coal-Rock Interaction Model

Picks are the main tools for mining machinery to cut coal-rock. The tip of pick, that
is, the top of the alloy head cone, is mainly used to wedge into the coal-rock mass. After
the pick wedges into the coal-rock mass, it comes into contact with the coal-rock, and
a pick and coal-rock interaction model is shown in Figure 1. The uncut coal-rock mass
shows unevenness, some relatively hard and sharp coal-rock particles are pressed into
the tip surface under the action of the normal load, and they perform a cutting action
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on the pick tip during the drum movement process. The long-term reciprocating cutting
action causes the material on the pick surface to continuously peel off, thus intensifying
the wear of the pick. Therefore, the friction force on the alloy head is the main cause of the
wear of the pick tip.

 

Figure 1. Interaction model of rotary pick and coal-rock mass.

According to the classic plane-cutting model of pick [36], it is assumed that the friction
coefficient between the coal-rock mass and the pick is μ, and the relationship between the
surface pressure stress q of the coal-rock mass and its compressive strength u is:

q = u(cos θ − μ sin θ) (1)

where θ is the semi-cone angle of the pick tip.
The radius c of the circular hole of the pick tip in the coal-rock mass can be expressed

as follows:

c =
2tqH

u(cos θ − μ sin θ)
(2)

where H is the cutting thickness of the pick, and tq is the tensile stress of the coal-rock mass.
As can be seen from Figure 1, when the pick on the drum is in a rotating cutting

state, the cross-section AD perpendicular to the instantaneous cutting speed Vq direction
on the pick body is elliptical. Take the differential element AD on the contact surface
between the pick and the coal-rock mass for research, denoted as δA, according to the
differential principle:

δA = rδφδl (3)

where φ is the fracture angle, l is the length from the tip to a point on the pick body, and
r is the radius of the cross-sectional circle.
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According to the relative positional relationship, the semi-axes a and b of the ellipse
can be expressed as follows:

a =
c

cos Bj
, b = c

(
1− tan Bj tan θ

)
(4)

where Bj is the cutting angle of the cutting pick.
For ease of analysis, this ellipse is equivalently treated as a circle with a radius of

a0 to obtain:

a0 =
c
[
cos θ + cos

(
θ + Bj

)]
2 cos θ cos β j

(5)

From this, it can be determined that after considering the frictional force and cut-
ting angle, the cutting force element on its conical surface when the pick is rotating and
cutting is:

FY = dFN sin θ + dFf cos θ =
(sin θ + μ cos θ)

(cos θ − μ sin θ)
qδA = 2tq

H(sin θ + μ cos θ)

(cos θ − μ sin θ) sin θ
δϕδr (6)

where dFf , dFY, and dFN are the frictional force element, cutting force element, and normal
pressure element on the pick surface, respectively.

After integrating Equation (6), the total horizontal force on the conical surface in
interaction between the pick and the coal-rock mass is obtained:

FY =
∫

dFY = 2tq
H(sin θ+μ cos θ)

(cos θ−μ sin θ) sin θ

∫ 2π
0 dϕ

∫ a0
0 dr

= 2πtqc H(sin θ + μ cos θ)
(cos θ − μ sin θ) sin θ

[
cos θ + cos(θ + Bj)

cos θ cos Bj

] (7)

As can be seen from Equation (7), the cutting resistance of the pick in the rotating
cutting condition is a quadratic function of its cutting thickness, it is directly proportional
to the square of the tensile stress of the coal-rock mass and the ratio of the compressive
strength, and it has a complex trigonometric function relationship with the cutting angle.
The traction resistance of the pick is about (0.5–0.8) FY, and the lateral force is about
(0.1–0.2) FY.

3.2. Overall Wear State Evaluation Index

As analyzed in the previous section, the interaction between the pick and the coal-rock
mass is extremely complex, and its wear types mainly include abrasive wear, erosion wear,
and fatigue wear, among which abrasive wear accounts for about 70~75% of the total
wear volume. Abrasive wear refers to the phenomenon or process that causes surface
material loss during the interaction between abrasives or hard micro-protrusions and the
worn material surface. If the removed material is very small, it is usually referred to as
micro-cutting. In the abrasive wear process of the pick, the abrasive can remove the pick
material in one interaction. Therefore, the micro-cutting abrasive wear theoretical model
can be used to study the macroscopic coal-rock cutting process of the pick.

When only considering the wear of the pick tip, the wear trend of the alloy head is
shown in Figure 2. As can be seen, the wear of the alloy head is like a plane parallel to the
coal-rock surface layer cutting the alloy head. The coal-rock surface continuously laminates
the alloy head, while the height of the alloy head being cut gradually increases. When the
layer cutting height changes from 1 mm to 3 mm, a significant change in its wear volume
occurs, which can be represented by the cross-sectional area of the plane and the alloy head.
The larger the wear area, the more wear the alloy head has.
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(a) (b) (c) 

Figure 2. Trend of pick wear. (a) Slight wear, (b) Moderate wear, (c) Severe wear.

From the above analysis, it can be seen that for the wear of the pick tip, the contact
area between the pick and the coal-rock is the main influencing factor. The larger the
area of contact between the pick and the coal-rock, the more wear, that is, the more the
area of contact between the pick tip and the coal-rock can reflect the wear amount of the
pick. Therefore, without considering the self-rotation ability of the pick during the cutting
process, the wear coefficient η of a single pick can be represented by the following equation:

η =
S

Slim
≈ L

Llim
(8)

where S is the contact area with the coal-rock, Slim is the limited contact area with the
coal-rock, L is the layer cutting thickness, and Llim is the limited layer cutting thickness.
Based on this, this article proposes to establish an overall wear state coefficient H based on
the wear coefficient η of a single pick and use it to evaluate the overall wear situation of
picks, thereby achieving a method of quickly obtaining the overall wear degree of picks
during coal-mine production.

H =
N

∑
i=1

Siηi/
N

∑
i=1

Si (9)

where Si is the total number of each type of pick and ηi is the single pick wear rate.
According to the field pick replacement experience of engineering cases, before and after
pick replacement, the overall picks wear state can be divided into three levels: slight wear,
moderate wear, and severe wear. The range of the overall wear coefficient H corresponding
to the determined various wear states is shown in Table 1.

Table 1. Classification of overall picks wear state.

Wear State Overall Wear Coefficient H Replacement Strategy

Slight wear 0~0.3 No action
Moderate wear 0.3~0.5 Check

Severe wear 0.5~1 Replace

3.3. Selection of Picks Wear Feature Signal

During the cutting process of mining machinery, the tip of the pick bears a high
concentrated stress. Due to the small contact area of the pick tip, the picks violently rub
against the coal-rock mass during the cutting process and generate vibration, accompanied
by the propagation of vibration waves. Under certain cutting parameters, the vibration
signals generated by the cutting drum with different global wear levels must be different.
Therefore, this article chooses the vibration signal of the cutting drum to effectively identify
the overall wear state of picks.

Wavelet packet analysis is a refined signal analysis method that can decompose the
collected non-linear parameter signals into different scales, obtain the node features of the
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signals at each scale, and form a feature parameter group. The principle of extracting pick
wear features with wavelet packets is as follows:

The expression of the wavelet packet function is

μn
j+1,k(t) = 2

j+1
2 μn(2j+1t− k) (10)

where j is the scale parameter, n is the oscillation parameter, k is the translation parameter,
and t is the time variable.

The wavelet packet function satisfies the double scale equation:⎧⎪⎨⎪⎩
μ2n(t) =

√
2 ∑

k∈Z
h(k)μn(2t− k)

μ2n+1(t) =
√

2 ∑
k∈Z

g(k)μn(2t− k)
(11)

In the formula, h(k) is the coefficient of the low-pass filter, g(k) is the coefficient of the
high-pass filter, and {μn(t)}n∈Z is the orthogonal wavelet packet.

The projection of the original parameter x(t) signal on {μn(t)}n∈Z, that is, the wavelet
packet coefficient is

dk
j =

∫ +∞

−∞
x(t) · μn

j+1(t)dt (12)

The algorithm of wavelet packet decomposition is⎧⎨⎩
d2n

j (k) = ∑ h(l − 2k)dn
j+1(l)

d2n+1
j (k) = ∑ g(l − 2k)dn

j+1(l)
(13)

This article relies on engineering examples to process the cutting vibration signal,
compares the node wavelet packet coefficients of the signal with other signal feature pa-
rameters, and finally proposes to use the standard deviation of the vibration signal wavelet
packet coefficients as a recognition indicator to identify the overall wear state of picks.

The feature vector definition for the overall wear state identification of picks is:

T(x(t), j, r) =

√√√√ 1
n

n

∑
k=1

[dj,r(k)−
−

dj,r]
2

(14)

where T(x(t), j, r) is the standard deviation of the wavelet packet coefficients of signal
x(t) at the node (j, r), dj,r(k) is the k-th wavelet packet coefficient of the signal x(t) at the

node (j, r), and
−

dj,r is the average of the wavelet packet coefficients of the signal x(t) at the
node (j, r).

4. Methods

The section illustrates the structure and characteristics of the LSTM neural network,
proposes a Bayesian-LSTM neural network optimized by the Bayesian algorithm, and also
provides the process of an overall picks wear state recognition model based on wavelet
packet decomposition and Bayesian-LSTM.

4.1. LSTM Network

The LSTM deep learning network is a novel type of Recurrent Neural Network (RNN)
with its inherent recursive traits. The LSTM model introduces three gates (input gate, forget
gate, output gate) to control the historical information transmission between neural units,
thereby avoiding the gradient explosion and gradient vanishing problems that may occur
in the training process of traditional recursive neural networks [37]. It effectively handles
the long-term dependency relationships present in long sequences. The vibration signal
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data used in this paper are a kind of time series data, which reflect the change trend in
the wear condition of the picks over time. Therefore, this paper chooses to use the LSTM
network for the state recognition of time series.

Within the architecture of an LSTM model, every unit holds a cell, which essentially
acts as its memory store. The manner in which memory units in an LSTM are read and
modified is controlled by three critical components: the input gate, the forget gate, and the
output gate. Typically, sigmoid or tanh functions depict their operations. To illustrate, the
operational process of an LSTM unit proceeds as such: at each interval, it absorbs two forms
of external data-the current state and the preceding LSTM’s hidden state. Additionally, an
internal input, the state of the memory unit, is also fed to each gate. Following the receipt
of these input data, the gates compute the data from diverse sources, and the outcomes
determine their activation status. The input gate’s input is manipulated via a nonlinear
function, which then amalgamates with the memory unit state that the forget gate has
handled, creating a novel memory unit state. Ultimately, the memory unit state, after
being processed by a nonlinear function and dynamically managed by the output gate,
becomes the LSTM unit’s output. As a result, LSTM networks possess the capacity to retain
long-term dependencies as they can selectively eliminate certain data, maintain beneficial
information, and relay it to the subsequent step via the output gate. The basic structure of
LSTM is shown in Figure 3.

Figure 3. The basic structure of LSTM.

The data transfer within the LSTM neural unit follows these equations:

Input gate : it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (15)

Forget gate : ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf) (16)

Output gate : ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (17)

Cell memory state : ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (18)

Cell output : ht = ottanh(ct) (19)

In these equations, Wxc, Wxi, Wxf, Wxo are weight matrices connected to the input
signal xt; Whc, Whi, Whf, Who are weight matrices connected to the output signal ht of the
hidden layer; Wci, Wcf, Wco are diagonal matrices connecting the output vectors of the
neuron activation function and gate function; bi, bc, bf, bo are bias vectors; and σ is the
activation function, usually a tanh or sigmoid function.
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4.2. Parameter Optimization Based on Bayesian Theory

The core idea of parameter optimization based on Bayesian theory is to treat LSTM as
a Bayesian model, place prior distribution on the network weights and bias parameters
of LSTM, and then use variational inference to infer the posterior distribution of the
parameters given the data [38].

Bayesian theory considers θ as a random variable that can be described by a probability
distribution. According to Bayes’ formula,

p(θ|y0) =
p(y0|θ)p(θ)

p(y0)
∝ p(y0|θ)p(θ) (20)

where p(θ|y0) is the posterior distribution, p(θ) is the prior distribution, p(y0) is the
evidence or normalization constant, and its calculation formula is as follows:

p(y0) =
∫

p(y0|θ)p(θ)dθ (21)

Since the evidence is in integral form, it is mostly non-integrable except in some
ideal situations. Therefore, the method of variational inference is often used, that is, a set
of distributions are introduced to approximate the posterior distribution of parameters
p(θ|y0), denoted as q(θ|Λ), where Λ = [Λ1, · · ·ΛN ] is the variational parameter matrix
corresponding to the model parameters θ = [θ1, · · · , θN ].

The difference between the original distribution and the variational distribution is
generally measured by Kullback–Leibler (KL) divergence:

DKL[q(θ|Λ) ‖ p(θ|y0)] = −L(Λ) + lgp(y0) (22)

In this equation, L(Λ) is the Evidence Lower Bound (ELBO). It can be seen that
the smaller the divergence, the greater the variational lower bound, indicating that the
variational distribution is closer to the original distribution. The maximum value of the
evidence lower bound is obtained to obtain the optimal distribution.

The idea of variational inference is to follow the gradient of variational parameters,
express the gradient as an expected value, and use the Monte Carlo method to estimate this
expectation. An unbiased gradient estimation is obtained by sampling from the variational
distribution, which saves the analytical calculation of the variational lower bound. The
objective function of variational inference is:

L(Λ) = Eq[lgp(y0, θ)− lg(q(θ|Λ))] (23)

In this equation, Eq is the expectation about (q(θ|Λ), and p(y0, θ) is the joint distribu-
tion of y0 and θ.

If Λ is the free parameter of q(θ|Λ), the gradient of the lower bound of the distribution
can be expressed as:

∇(L(Λ)) = Eq(Λ)[∇ ln q(Λ) ln
p(y0,θ)

q(Λ)
] (24)

According to the Monte Carlo sampling method, the gradient of the variational lower
bound is

∇(L(Λ)) =
1
N ∑

i=1
N[∇ ln q(Λ) ln

p(y0,θ)

q(Λ)
] (25)

Therefore, for stochastic variational inference, the execution process of variational
inference is

Λt+1 = Λt + ρt
1
N ∑

i=1
N[∇ ln q(Λ) ln

p(y0,θ)

q(Λ)
] (26)

where ρt is the learning rate. When the change in the free parameters Λ is less than a
given tolerance, the calculation stops. Based on the inferred network weights and bias
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parameters from the posterior distribution, the network can continue to train according to
the LSTM algorithm.

In summary, the proposed picks wear state recognition model is shown in Figure 4,
and the process of the picks wear state recognition model based on wavelet packet decom-
position and Bayesian optimization of LSTM is as follows:

 

Figure 4. The framework of picks wear state recognition model.

(1) Use wavelet packet decomposition to decompose the original signal of cutting vibra-
tion, and choose the standard deviation of wavelet packet coefficients as the feature
signal of the neural network;

(2) Establish the parameter seeking model of the LSTM network, and use Bayesian
optimization theory to optimally seek parameters for the initial parameters of the
LSTM network;

(3) Build and initialize the LSTM and fully connected layer network based on the param-
eter seeking result, and set the hyperparameters of the network;

(4) Train the network on the sample training set, and use the trained network to perform
classification testing on the test samples.

5. Engineering Verification

To verify the effectiveness and efficiency of the proposed overall picks wear state recog-
nition model, extensive engineering experiments on real datasets have been implemented
against the classic methods under differently labeled rations.

5.1. Data Acquisition

In order to verify the effectiveness of the picks wear recognition method proposed
in this article, the real parameters of the bolter miner of Shaanxi C mine in China are
selected for verification. The roof of this mine is moderately stable, using a bolter miner for
tunneling, the coal seam thickness is about 5 m, and the average daily advance is about 50 m.
The properties of coal-rock mass in this mine are relatively stable, and the average daily
number of pick replacements is found to be roughly equivalent through statistics, proving
that the C mine is quite suitable for conducting picks wear state recognition experiments.

In the experiment, we continued to adopt the strategy of centrally changing the picks.
By statistically measuring the wear volume of the picks before each shift, and calculating
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the overall wear coefficient H of the picks on drum cutting according to Formula (9), it was
found that if the picks were not replaced for 2 days, the overall wear coefficient could reach
0.3. If extended to more than 3 days, the wear coefficient could reach 0.5. This preliminarily
proved that delaying the replacement of picks can accelerate their wear. Therefore, the
field collected the X, Y, and Z directional vibration acceleration of the cutting drum of the
bolter miner immediately after replacing the picks, and 2 and 3 days later, respectively
representing slight wear, moderate wear, and severe wear levels. The vibration sensor
location is shown in Figure 5.

Figure 5. The vibration sensor location on bolter miner.

During the field tests, 2 s of X, Y, and Z directional vibration data were recorded every
minute under each working condition, ensuring the data collection was in a stable state.
In total, 100 sets of data were recorded under each working condition, with a total of two
detection tests conducted, forming a total of 600 sets of characteristic data. The collected
Y-directional raw vibration data are shown in Figure 6.

Figure 6. Y-directional raw vibration data. (a) Slight wear, (b) Moderate wear, (c) Severe wear.

5.2. Data Processing

As can be seen from Figure 6, the amplitude of the drum vibration signal is larger
with an increased picks wear degree. In the process of collecting the vibration acceleration
curve of the cutting drum, errors may occur due to factors such as the environment and
noise, which cause inaccuracy in the signal. Merely utilizing time-domain analysis cannot
adequately analyze the vibration signal. To more accurately identify the degree of wear of
the cutting picks, this paper converts the acquired time-domain signal into a frequency-
domain signal for further analysis to obtain more fitting evaluation parameters.

Wavelet packet analysis divides the signal into detailed hierarchical divisions to
improve signal processing capabilities. This study chose to perform wavelet packet de-
composition on the time-domain signals of the vibration acceleration of the cutting drum
under three picks wear states, selecting DB wavelet basis. It was found that when n equals
8, the time-domain waveform of wavelet packet decomposition is the smoothest and the
frequency characteristics are ideal; thus, this paper selected DB8 as the wavelet basis. After
signal decomposition, each node is respectively recorded as (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),
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(3, 5), (3, 6), and (3, 7). Figure 7 shows the wavelet packet decomposition diagram of the
Y-directional vibration signals of picks with moderate wear.

  
(a) (e) 

  
(b) (f) 

  
(c) (g) 

 
(d) (h) 

Figure 7. Wavelet packet decomposition diagram of Y-directional vibration signals for picks with
moderate wear. (a) Coefficients of Packet (3, 0), (b) Coefficients of Packet (3, 1), (c) Coefficients of
Packet (3, 2), (d) Coefficients of Packet (3, 3), (e) Coefficients of Packet (3, 4), (f) Coefficients of Packet
(3, 5), (g) Coefficients of Packet (3, 6), (h) Coefficients of Packet (3, 7).

Based on the wavelet packet decomposition coefficients, the standard deviation of
the decomposition wavelet packet coefficients can be obtained according to Formula (14),
as shown in Table 2. The above data form a 25 × 600 feature matrix, where the first
24 columns are standard deviations of wavelet packet coefficients, and the last column is
the classification label. The process involved randomly selecting 480 groups of data as the
training set and 120 groups of data as the test set.
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Table 2. Standard deviations of wavelet packet coefficients for each picks wear state.

Wear State No.

Standard Deviations of
Wavelet Packet Coefficients

in X Direction

Standard Deviations of
Wavelet Packet Coefficients

in Y Direction

Standard Deviations of
Wavelet Packet Coefficients

in Z Direction
V1 . . . V8 V1 . . . V8 V1 . . . V8

Slight Wear
1 3.9498 . . . 2.3341 4.7793 . . . 2.3901 5.1094 . . . 2.5387

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 2.9066 . . . 2.2601 3.4995 . . . 2.4891 4.6941 . . . 1.6829

Moderate Wear
1 4.5183 . . . 1.8889 5.5397 . . . 2.9457 3.9481 . . . 2.2765

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 3.8656 . . . 2.1931 5.2076 . . . 2.9488 4.2075 . . . 2.0691

Severe Wear
1 4.1303 . . . 2.6881 8.1387 . . . 3.5480 4.5001 . . . 2.6433

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 3.3412 . . . 2.8546 7.7809 . . . 3.8907 4.7600 . . . 3.8120

5.3. Overall Picks Wear State Recognition Model

Before importing the data, it is necessary to normalize the standard deviation data of
the decomposed wavelet packet coefficients, as shown below:

x∗t =
xt − xmin

xmax − xmin
(27)

Bayesian-LSTM runs in a Python environment and is built based on the open-source
machine learning library PyTorch and the probabilistic model Pyro. The hyperparameter
settings are as shown in Table 3.

Table 3. Hyperparameter settings of the Bayesian-LSTM network.

Hyperparameter Settings

Hidden layer 6
Learn rate 0.001

Epoch 1000
Sample Num 10

To verify the recognition effect of the Bayesian-LSTM network, a deep LSTM network is
chosen for comparison analysis. In the deep LSTM network, the settings of hyperparameters
such as the learning rate and the number of hidden layers are consistent. The training
results of the two networks are shown in Figure 8.

As shown in Figure 8, with the increase in iterations, the Bayesian-LSTM network
decreases very quickly. Compared to the standard LSTM network, it achieves a higher
accuracy at a faster rate and the accuracy at each measurement point is higher than that of
the standard LSTM. To quantify the accuracy of the two prediction models, a comparison
of their accuracy rates is shown in Figure 9.

As can be seen from the above figures, given a certain set of hyperparameters, the
classification accuracy of the Bayesian-LSTM model is 98.33%, while the LSTM model’s
classification accuracy is 89.16%. In the aforementioned conclusions, the recognition
accuracy of the LSTM model is relatively low, which is because the weight parameters
of the LSTM model are fixed and have not yet been optimized. If we use the Adam
algorithm [39] to update and iterate the weights, and use Softmax as the classifier, the final
set of hyperparameters for the optimized LSTM recognition model would be as given in
Table 4 below.
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Figure 8. Comparison of the training results of the two networks.

Figure 9. Comparison of accuracy rates for two networks.

The final confusion matrix of the LSTM network optimized by Adam is shown
in Figure 10.

In order to further verify the accuracy and generalization ability of the Bayesian-LSTM
deep learning network in the recognition of the picks wear state, the obtained results are
compared with the classification results of the optimized LSTM and BP networks. The
comparison results are as shown in Table 5 below.

Table 4. Hyperparameter settings of the optimized LSTM network.

Hyperparameter Settings

Input size 24
Classification No. 3

Hidden layer 10
Learn rate 0.01

Epoch 500
Dropout 0.1

Optimizer Adam
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Figure 10. Confusion matrix with the optimized LSTM network.

Table 5. Comparison of the accuracy of overall picks wear recognition under different algorithms.

Network Recognition Accuracy

BP 84.16%
Optimized LSTM 94.16%
Bayesian-LSTM 98.33%

From the table, it can be seen that the recognition accuracy of optimized LSTM and
Bayesian-LSTM are higher than that of the BP network, proving that deep learning networks
have a better accuracy when dealing with nonlinear data. However, in the macro view,
the classification accuracy of the LSTM network on small-sample data is not ideal and has
certain limitations. When the Bayesian theory is introduced, the Bayesian-LSTM model
effectively reduces the model overfitting caused by sparse data and noise and provides an
uncertainty quantification for prediction, effectively improving its recognition accuracy.

6. Conclusions

Accurate identification of the overall picks wear state is a core task in achieving in-
telligent upgrades of mining equipment. This study utilized theoretical analysis methods
to research the mechanical model of the interaction between the pick and the coal-rock,
preliminarily revealing the wear mechanism of the cutting picks. Based on this, we pro-
posed a classification judgment method for three types of overall pick wear state. This
study proposed an overall picks wear state recognition method based on Bayesian-LSTM.
Using the vibration signals of the bolter miner’s cutting drum as the basis for recognition,
we used status labels and feature matrices to train the recognition model. The trained
Bayesian-LSTM recognition model can effectively recognize the overall picks wear state.
Compared to deep LSTM and BP, this method has a higher recognition accuracy.

In conclusion, this method only requires processing and analyzing equipment parame-
ters automatically collected by mining machinery such as a bolter miner during its working
process. It has the advantages of being easy to implement, low-cost, and highly accurate,
providing a basis for the correct pick replacement strategy. However, there are still several
challenging issues in theoretical and practical research, and recommended research works
in the future as follows:

(1) It is necessary to research more feature parameters that can reflect the wear state of picks,
such as current data on the cutting motor and pressure signals of the hydraulic cylinder.

(2) It is essential to study further efficient signal processing methods that can reduce the
data disturbance caused by coal-mine scenes and to further improve the accuracy of
picks wear state recognition.
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Abstract: The objective of knowledge graph question answering is to assist users in answering ques-
tions by utilizing the information stored within the graph. Users are not required to comprehend the
underlying data structure. This is a difficult task because, on the one hand, correctly understanding
the semantics of a problem is difficult for machines. On the other hand, the growing knowledge graph
will inevitably lead to information retrieval errors. Specifically, the question-answering task has three
difficulties: word abbreviation, object complement, and entity ambiguity. An object complement
means that different entities share the same predicate, and entity ambiguity means that words have
different meanings in different contexts. To solve these problems, we propose a novel method named
the Chunked Learning Network. It uses different models according to different scenarios to obtain a
vector representation of the topic entity and relation in the question. The answer entity representation
that yields the closest fact triplet, according to a joint distance metric, is returned as the answer. For
sentences with an object complement, we use dependency parsing to construct dependency relation-
ships between words to obtain more accurate vector representations. Experiments demonstrate the
effectiveness of our method.

Keywords: question answering; knowledge graph embedding; chunked learning network

1. Introduction

Large-scale knowledge graphs like Freebase [1], DBPedia [2], Yago [3], and NELL [4]
contain many facts from the real world, which makes question answering based on knowl-
edge graphs (referred to as KGQA) a vital task. A complex data structure and a large
number make it difficult for ordinary users to obtain a large amount of useful knowledge.
KBQA (Knowledge Base Question Answering) and KGQA are both related to question-
answering systems, but they focus on different types of knowledge repositories. In KBQA, a
question is posed in a structured query (such as SPARQL [5]), and the goal is to retrieve the
precise answer from the structured knowledge base. The system needs to understand the
question, map it to the appropriate entities and relationships in the knowledge base, and
retrieve the relevant information to provide an accurate answer. KGQA, on the other hand,
extends beyond traditional knowledge bases and deals with more flexible and dynamic
knowledge graphs. Knowledge graphs are also structured representations of information
but are more expressive and allow for richer relationships and contextual information. They
are often represented using semantic web technologies, such as the Resource Description
Framework (RDF) or property graphs. Knowledge graphs can incorporate data from vari-
ous sources and are more capable of representing complex and interconnected knowledge.
In KGQA, the question-answering system needs to understand the question, navigate
the knowledge graph, and perform more sophisticated reasoning to arrive at the correct
answer. KGQA systems often employ natural language processing techniques, graph-based
reasoning, and deep-learning methods to handle the complexities of the knowledge graph.
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For example, consider the question, “Which actors have won an Oscar and also starred in a
Christopher Nolan movie?” To answer, the KGQA system would need to reason through
the knowledge graph, identifying entities related to actors, Oscar awards, and Christopher
Nolan movies to find the correct answer.

The accurate understanding of question semantics and the effective filtering of inter-
fering information are essential for successfully answering questions in KGQA. Currently,
commonly used methods rely on semantic parsing [6–9] and information retrieval. The
core concept behind semantic parsing is the conversion of natural language into a sequence
of formal logical forms. Through the bottom-up analysis of logical forms, a logical form
that can express the semantics of the entire problem is obtained, and the corresponding
query sentence is used in the knowledge graph. This method is based on a relatively simple
statistical method and has a greater dependence on data. Most importantly, it cannot map
the relationship from natural language phrases to complex knowledge graphs. Secondly,
supervised learning is needed when obtaining answers. And we need to train a classifier
to score the generated logical form. To train such a powerful semantic parsing classifier,
a great deal of training data is necessary. Whether it is Freebase [1] or WebQuestion [6],
these two datasets have relatively few question and answer pairs. To address this issue,
Zhang et al. [10] proposed a structural information constraint, which applies the structural
information of the problem to path reasoning based on reinforcement. Zhen et al. [11]
adopted a complementary approach, integrating a broader information retrieval model
and a highly precise semantic parsing model, eliminating the need for manual template
intervention.

The information retrieval method [12–14] is used to extract entities from the question
and then search for the entities in the knowledge graph to obtain entity-centric subgraphs.
Any node or edge in the subgraph can be a candidate answer. By observing the question
and extracting information according to certain rules or templates, the feature vector of
the question is obtained and a classifier is established. Then, the candidate answers are
filtered by the feature vector of the input question to obtain the final answer [15]. However,
KGQA needs to perform a multi-hop search to obtain the target entity when faced with
missing inference chains. This makes the time and space complexity of the algorithm
grow exponentially.

In addition, the same word can have different meanings in different contexts. We call
this phenomenon entity ambiguity. For example, the meaning of an apple in Cook’s hand
and an apple in Newton’s head are completely different. In daily life, people are used to
using abbreviations instead of full names, such as Newton instead of Isaac Newton. This
causes the algorithm to obtain a narrower entity search space. The diversity of predicates
will produce a broader entity search space. When the same predicate connects different
entities, its representation will be different, which requires the algorithm to be more robust.

We solve the above difficulties in two ways: (1) By embedding entities and relation-
ships into the same vector space as the knowledge graph, we can naturally solve the
problems caused by abbreviations, because similar entities can learn the same vector repre-
sentation. And entities in different contexts will also obtain different vector representations.
(2) Through the application of dependency parsing, a connection is established between
entities and predicates. Following this, we incorporate the semantics of entities into the
predicates, resulting in distinct weights being assigned to the relationships between various
entities. We divide the question into two parts, the entity and the predicate, and then use
different neural network methods to deal with these two parts, so our method is called the
Chunked Learning Network (CLN).

This paper makes the following contributions:

• To address the distinctions in vector representation between entities and predicates, we
employ separate modules for learning entities and predicates when tackling a question;

• By utilizing dependency parsing, we establish connections between entities and
predicates, incorporating entity semantics into predicates to derive distinct weights
for their relationships;
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• The effectiveness of the CLN is demonstrated through experiments conducted on
datasets containing both simple and complex questions.

This paper focuses on addressing the challenges in knowledge graph question answer-
ing (KGQA) by proposing an innovative solution. The introduction provides an overview
of the current problems in KGQA and discusses existing methods, highlighting their lim-
itations and unresolved issues. The related technologies section offers a comprehensive
review of knowledge graphs, question-answering systems, and relevant methodologies.
The proposed method section presents a novel approach, emphasizing head entity learning,
relation learning, and their integration. The experimental evaluation section presents the
experimental setup, dataset description, and performance analysis, demonstrating the
superiority of the proposed method. This structured paper contributes to the advance-
ment of KGQA by addressing challenges, introducing relevant technologies, proposing an
innovative method, and validating its effectiveness through experiments.

2. Related Work

2.1. Question Answering over Knowledge Graphs

The Austrian linguist Edgar W. Schneider is credited with coining the term “knowl-
edge graph” as early as 1972. In 2012, Google introduced their knowledge graph, which
incorporates DBpedia, Freebase, and other sources. KGQA utilizes triples stored in the
knowledge graph to answer natural language questions. Knowledge graphs usually repre-
sent knowledge in the form of triples. The general format of triples is (head entity, relation,
tail entity), such as (Olympic Winter Games, Host city and the number of sessions, Beijing
24th), where “Olympic Winter Games” is the head entity, “Beijing 24th” is the tail entity,
and “Host city and the number of sessions” is the relationship between the two entities.
We use the lowercase letters h, r, and t to represent the head entity, relation, and tail entity,
respectively, and (h, r, t) represents a triple in the knowledge graph. In previous work [16],
transforming a multi-constraint question into a multi-constraint query graph was proposed.
Since these multi-constraint rules require manual design and the rules are not scalable, this
method does not perform well with large-scale knowledge graphs. Bordes A et al. [17]
proposed a system that learns to answer questions using fewer multi-constraint rules to
improve scalability. It uses a low-dimensional space to project the subgraph generated
by the head entity for question answering. Then, it calculates the relevance score and
determines the final answer by sorting. Likewise, so as not to be constrained by manual
design rules, Bordes A et al. [18] developed a model that maps the questions to vector
feature representations. A similarity function is learned during training to score questions
and corresponding triples. The question is scored using all candidate triples at test time,
and the highest-scoring entity is selected as the answer. But the vector representation of the
question adopts a method similar to the bag-of-words model, which ignores the language
order of the question (for example, the expressions of the two questions “who is George
W. Bush’s father?” and “Whose father is George W. Bush?” obtained by this method are
the same, but the meanings of the two questions are obviously different). To focus on the
order of words in the question, Dai Z et al. [19] use a Bidirectional Gate Recurrent Unit [20]
(hereinafter referred to as Bi-GRU) to model the feature representation vector of the sen-
tence and convert a simple single-fact QA question analysis into probabilistic questions.
However, when the knowledge graph is incomplete, it is difficult to find the appropriate
answer through probability. Based on the latest graph representation technology, Sun
H et al. [21] described a method that extracts answers from subgraphs related to questions
and linked texts, and they obtained good results. When the knowledge graph is incom-
plete, this method is effective, but external knowledge is not always obtainable. Recently,
some works [22,23] used knowledge graph embedding to deal with question answering.
With knowledge graph embedding, the potential semantic information can be retained,
and the incompleteness of the knowledge graph can be handled. But the above methods
model the problem and candidate relations separately without considering the word-level
interactions between them, which may lead to local optimal results. Xie et al. [24] used
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a convolution-based topic entity extraction model to eliminate the noise problem in the
process of extracting entities. Qiu et al. [25] proposed a global–local attention relationship
detection model, using a local module to learn the features of word-level interactions and a
global module to capture the nonlinear relationship between the question and the candidate
relationship in the knowledge graph. Zhou et al. [26] proposed a deep fusion model based
on knowledge graph embedding, which combines topic detection and predicate matching
in a unified framework, where the model shares multiple parameters for joint training at
the same time.

2.2. Knowledge Graph Embedding

TransE [26] is the most representative method of knowledge graph embedding that
represents entities and relations as low-dimensional vectors and learns to translate entities
through relations, aiming to capture semantic relationships between them. TransH [27] tries
to solve the limitations of TransE in handling complex relationships, such as one-to-many,
many-to-one, and many-to-many, by allowing an entity to have different representations
under different relationships. However, TransH still assumes that the entities and rela-
tionships are in the same semantic space, which restricts the representation capabilities of
TransH to some extent. TransR [28] treats an entity as a combination of multiple attributes,
and different relationships focus on different attributes of the entity. TransR assumes that
different relationships have different semantic spaces. For each triplet, the entity should be
projected into the corresponding relationship space first, and then the translation from the
head entity to the tail entity should be established. Previous research, like [23], has shown
that TransE performs better on Freebase [1].

Another algorithm commonly used for embedding knowledge graphs is ComplEx [29].
ComplEx is an extension of the TransE algorithm that models relationships as complex-
valued embeddings. It represents entities and relationships as complex-valued vectors,
where each component consists of a real part and an imaginary part. By using complex-
valued embeddings, ComplEx is able to capture rich semantic interactions and multi-
relational patterns in the knowledge graph. The scoring function of ComplEx is based
on the Hermitian dot product, which measures the plausibility of a triple (head entity,
relationship, tail entity). ComplEx has been shown to be effective in capturing both one-to-
one and many-to-many relationships. DistMult [30] is a simplified variant of ComplEx that
models relationships as diagonal matrices. In DistMult, each relationship is represented by
a diagonal matrix, where the diagonal elements capture the interaction between the head
and tail entities. DistMult assumes that relationships are symmetric and does not consider
complex interactions. The scoring function of DistMult is based on the dot product between
the head entity and relationship embeddings, followed by element-wise multiplication and
summing of the resulting vector. DistMult is computationally efficient and performs well
on knowledge graph completion tasks. RotatE is an algorithm designed specifically for
knowledge graphs with symmetric relationships, such as family relationships or sibling
relationships. It represents relationships as rotations in the complex plane. RotatE [31]
assumes that the head and tail entity embeddings can be rotated by a specific angle to
represent the relationship between them. The scoring function of RotatE calculates the
element-wise circular correlation between the embeddings, and the plausibility of a triple is
determined based on the resulting score. By explicitly modeling rotational patterns, RotatE
is effective in capturing symmetric relationships in the knowledge graph.

2.3. Syntactic Analysis

How can the machine be made to accurately understand the semantics of natural
language? Manning CD et al. [32] propose a convenient dependency analysis method. The
method can give the basic forms of words, mark the structures of sentences according
to phrases and grammatical dependencies, and discover relationships between entities.
Sun K et al. [33] combined the above method with Graph Convolutional Networks [34]
(hereinafter referred to as GCNs) and used them in aspect-level sentiment analysis. Ver-
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berne et al. [35] added a reordering step to existing paragraph retrieval methods. When
reordering, a ranking algorithm is used to calculate the question’s score, and syntactic
features are added to the question as weights. Arif et al. [36] used tree kernels (i.e., partial
tree kernels (PTKs), subtree kernels (STKs), and subset tree kernels (SSTKs)) to consider the
syntactic structure between them to solve the answer-reordering problem. Alberto et al. [37]
calculated the similarity between trees based on the number of substructures shared be-
tween two syntactic trees and used this similarity to identify problems related to a new
problem. To enhance downstream dependency analysis, a novel skeleton grammar has been
proposed [38], which effectively represents the high-level structure of intricate problems.
This lightweight formalization, along with a BERT-based parsing algorithm, contributes
to the improvement of the analysis. For question-answering tasks, we make an improved
dependency matrix better suited for concise and structured interrogatives by using it as the
input of the GCN.

3. Chunked Learning Network

In this section, we first give an overall description of our model, introducing what
the model contains and the role of each module. Section 3.2 introduces the architecture
of the head-entity-learning model in detail, including the role of each component and the
formulas involved. Section 3.3 introduces the architecture of the relation-learning model
and the difference between this module and the head-entity-learning model. Section 3.4
introduces the structure of the pruning operation and the role of this module. Section 3.5
introduces the implementation process of the answer selection module.

3.1. CLN Overview

The CLN, as a deployable component, consists of four parts and trains the model
through knowledge graph embedding. The main idea is shown in Figure 1. Consider the
input question, “Which Olympic Winter Games was held in Beijing?” The pruning module
identifies the entity “Olympics Winter Games” in the question, and the head-entity- and
relation-learning modules learn their vector representations separately. Then, the learned
vector representations are combined with the knowledge graph, and the answer selection
module selects the closest fact triplet to return as the answer. When analyzing a question,
our assumption is that it comprises a solitary entity. During data processing, for the
convenience of subsequent processing, we designate consecutive entities as a single entity.
The pruning operation marks the entity in the question to reduce the search space. Then, it
learns the vector representation of the entity and relation in the question in the embedding
space. Ultimately, a meticulously crafted joint distance metric is employed to locate the tail
entity based on the h + r ≈ t equation, subsequently returning it as the answer.

3.2. Head-Entity-Learning Module

Given a question with length L, our goal is to restore the entity representation in
the same space as the knowledge graph. The vector should represent the head entity
of the question as closely as possible. We first map its i tokens to the sequence of the
word-embedding vector X = [x1, · · · , xL]. To take into account the sequential importance
of words in the question, we use the Bidirectional Simple Recurrent Unit [39] (hereinafter
referred to as Bi-SRU) to retain the global information of the question. Taking the forward
direction as an example, Equations (1)–(4) show the details of calculating

−→
hi ∈ Rdh where

dh is the dimension of the hidden-state output of the Bi-SRU.

fi = σ

(
Wx f xi + W

h f
−→
h i−1

+ b f

)
(1)

ri = σ
(

Wxr xi + W
hr
−→
h i−1

+ br

)
(2)

si = fi � si−1 + (1− fi)�W
hs
−→
h i−1

(3)
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−→
hi = ri � g(si) + (1− ri)� xi (4)

where fi, ri, and si are the forget gate, reset gate, and internal state, respectively. σ and g()
represent activation functions, and � denotes the Hadamard product.

Figure 1. Overview of CLN. The right half shows the components of the model, and the left half is a
simple schematic diagram of the knowledge graph.

By combining the hidden states from both the forward and backward directions,
we obtain the concatenated representation, denoted by hi =

[−→
hi ;
←−
hi

]
. The Bi-SRU is

complemented by a convolutional neural network (hereinafter referred to as CNN) module,
which captures nearby contextual information that is in proximity to the entity. Equation
(5) shows the calculation process of the j-th feature map of the l-th layer.

cl
j = ReLU

(
L

∑
i=1

cl−1
i ∗ kl

ij + bl
j

)
(5)

where cl−1
i represents the i-th input of the (l − 1)-th layer (when l = 1, cl−1

i = hi), the
symbol ∗ represents the convolutional operation, kl

ij represents the weight of convolution

kernel j corresponding to the i-th input feature, and bl
j is the bias of the convolution kernel.

In the network described in this paper, we employ the rectified linear unit (ReLU) to
compute feature maps.

After the convolution operation, we replace the pooling layer with an attention layer
and apply its result to hi. Equations (6) and (7) illustrate this process. The weight and
bias of this layer are denoted by w and b, respectively. In this way, not only can the
information of the entity be extracted, but the contextual information can also be preserved
to a certain extent.

αi =
exp(ci)

∑L
i=1 exp(ci)

(6)

ei = tanh
(

wT
e αihi + be

)
(7)

The result ei is then used as the target vector of the i-th token, and Equation (8) repre-
sents using the average of the target vectors of all tokens as the predictive representation of
the entity.

êh =
1
L

L

∑
i=1

eT
i (8)
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êh represents the learned entity vector representation. We independently train this module
so that the vector representations of entities in sentences are as close as possible to the
representations of entities in triples. The head-entity-learning module of the CLN is
depicted in Figure 2.

Figure 2. Proposed head-entity-learning module.

3.3. Relation-Learning Module

For relation-modeling problems, semantic parsing is the foundation of traditional
methods of mapping relationships or for dictionary construction. Since the user’s questions
are not restricted, the predicates for the new questions may differ from the predicates in the
training data. We therefore use the global information preserved in the knowledge graph
embedding space to represent relational information in the question.

Similar to Equations (1)–(4), we obtain the vector representation hi ∈ Rd2h of the
sentence through the Bi-SRU. Because the context of entities often contains relation features,
and entities typically have similar features and attributes, the CNN extracts features
from local regions by using convolutional kernels with shared weights. Conversely, as
relationships between entities tend to be non-local and encompass the entire graph, the
GCN can aggregate information from neighboring nodes and propagate this information
to other nodes in the graph, thereby modeling complex relational patterns. To maximize
the effect of dependency analysis, we construct the result into a dependency matrix as the
adjacency matrix of the graph to spread node feature information.

The same predicate is associated with different entities, each making distinct contribu-
tions, so we capture the dependency between the predicate and the entity through syntactic
analysis to obtain the adjacency matrix A ∈ RL×L. The adjacency matrix of each word and
itself is set to self-loop; that is, the diagonal value of A is 1. These constraints between
words are aggregated through a graph convolutional layer into a vector representation of
predicates. With these constraints, different vector representations can be produced by the
same predicate when connecting different entities. The calculation process of feature fusion
is shown by Equations (9) and (10).

g̃l
i =

L

∑
j=1

AijWl gl−1
j (9)

g̃l
i = ReLU

(
g̃l

i
di + 1

+ bl

)
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where gl−1
j ∈ R2dh is the representation of the j-th token obtained from the previous

GCN layer (when l = 1, gl−1
j = xj), gl

i ∈ R2dh is the output of the current GCN layer,

di = ∑L
j=1 Aij is the degree of the i-th token in the dependency tree, and Wl and bl are the

weight and bias matrices in the GCN layers, respectively.
Similar to Equations (6)–(8), we fuse the output of the GCN layer to hi through

the attention mechanism as the representation of a single token, and the mean of all
representations is the vector representation of the relation. Equations (11)–(13) show the
details of the calculation process.
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pi = tanh
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)
(12)

p̂l =
1
L

L

∑
i=1

pT
i (13)

Through independent training, we ensure that the relation representation is as close
as possible to the representation of the relation in the triplet. Figure 3 shows the relation-
learning module of the CLN. As shown in Equation (14), both head-entity-learning and
relation-learning modules use MSEloss as the loss function during head entity training,
where p̂l = êh, and pl = eh.

loss( p̂l , pl) = ( p̂l − pl)
2 (14)

Figure 3. Proposed relation-learning module.

3.4. Pruning Module

In Section 3.1, we introduced the objective of this module, which is to recognize entities
by identifying one or more consecutive words in the question. This enables us to designate
the entire search space as a collection of multiple entities sharing similar or identical names.
To streamline the module, we employ “Bi-LSTM (Bidirectional Long Short-Term Memory) +
softmax” exclusively for named entity recognition. The question q, along with its associated
entities, serves as the training data for the pruning model. Given that the topic entity in
the question is contiguous, the model will identify the continuous words in the test set
as either entities or as components of the correct topic entity. Hence, all words that are
identical to the topic entity or contain the topic entity will be treated as candidate entities.
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The entity and non-entity tokens (HEDentity and HEDnon) obtained will be passed to the
answer selection module.

3.5. Answer Selection Module

This module receives the output of the first three modules as input and finds the
answer from the knowledge graph based on the principle of f (eh, pl) ≈ et. The above
process is achieved by using the joint distance metric proposed in [23]. A candidate fact is
a fact triple whose head entity belongs to the candidate head entity. Consider C as the set
comprising all candidate facts.

minimizeh,l,t∈C‖pl − p̂l‖2 + β1‖eh − êh‖2 + β2‖ f (eh, pl)− êt‖2 − β3sim
[
n(h), HEDentity

]
− β4sim[n(l), HEDnon] (15)

As shown in Equation (15), pl and eh are the relation and entity embeddings in the
knowledge graph, respectively. The sim[x, y] function measures the similarity between
two strings, and n(x) returns the name of an entity or predicate. β1, β2, β3, and β4 are
predefined weights used to balance the contribution of each item.

4. Experiments and Analysis

In this section, we first verify the effectiveness of our model on public datasets and
then analyze the reasons why our model can improve accuracy.

4.1. Datasets

The knowledge graphs and datasets used in the experiments can be downloaded
through public channels.

FB5M [1]: The data in Freebase contain a lot of topics and types of knowledge, includ-
ing information about humans, media, geographical locations, and so on. In our study, we
utilized FB5M, which is among the more expansive subsets of Freebase.

SimpleQuestions [7]: This dataset comprises over 10,000 Freebase-related questions,
with the issues within the dataset being summarized using facts and articles as references.

FB5M was employed as the knowledge graph in our study, and TransE was used for
knowledge graph embedding to learn entity and relation representations. The performance
of the model is measured by the accuracy of finding the ground truth.

4.2. Overall Results

Now, we will discuss the performance of the CLN. We take several representative
KGQA methods as baseline models and compare the results. These works include the Bi-
GRU rank model from Dai et al. [19], the Memory Network approach from Bordes et al. [7],
the character-level CNN from Yin et al. [40], the character-level encoder–decoder from
Golub et al. [41], the KG embedding method from Huang et al. [23], and the transformer-
based question encoder from Li et al. [42]. Table 1 presents quantitative disparities in the
performance of various methods on the dataset.

Table 1. Performance of different methods on SimpleQuestions.

Methods Accuracy

Cfo [19] 0.626
MemNNs [7] 0.639

AMPCNN [40] 0.672
Character-level [41] 0.703

KEQA [23] 0.749
Te-biltm [42] 0.751
CLN (ours) 0.753 (+11.4%)

Note: Since the Freebase API is no longer available, thanks to Huang et al. [23] for re-evaluating the Freebase-API-
based models of Cfo [19] and AMPCNN [40] for new results.
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Accuracy is calculated by comparing the predicted entity–relationship pair with the
ground truth, and the result is considered correct only when the entity–relationship pair
given by the model conforms to the ground truth. From the results in Table 1, we can
see that our model outperforms the previous methods. Compared with the accuracy
when SimpleQuestions was released [7], the accuracy of the CLN was improved by 11.4%.
This is due to a more complex neural network design and the use of different models for
different subtasks.

4.3. Comparison of Baselines

To represent the baseline models more clearly, according to the results in Table 1, we
introduce the differences between the CLN and the baseline models and then explain the
reasons for the improved accuracy.

Cfo [19]: A Bi-GRU is used to rank candidate predicates. When the knowledge graph
is incomplete, it is difficult to obtain the ranking through the established probability model.
Our model uses knowledge map embedding, which can have a similar vector representation
of words with similar meaning.

MemNNs [7]: This approach acquires entity and predicate representations from
training questions and compares the entities and predicates within the new question
with the previously acquired vectors. However, this method requires a large amount of
data to train the classifier, and we use different models to train entities and predicates,
which will improve the accuracy with the same amount of data.

AMPCNN [40]: This method uses a character-level CNN to match topic entities in
fact candidates with entity descriptions in questions. However, the description of the
relationship may not be limited to a part of the text, long-distance dependencies may exist,
and the length is inconvenient to estimate. So, we use the GCN to capture long-distance
dependencies for better accuracy.

Character-level [41]: The authors designed a character-level encoder–decoder frame,
where each character corresponds to a one-hot vector. This makes the parameters of the
model larger and uses more resources. We use word-level encoding to guaranteed accuracy
without using pre-trained language models.

KEQA [23]: Using KG embedding, the model learns how to express the entity and
predicate of the question. On this basis, we use different models to deal with entities and
relations, making the model targeted.

Te-biltm [42]: The authors changed the encoder part of the transformer to Bi-LSTM,
which can make the encoding of words obtain directional information for relation extraction
in question answering. We are not limited to a single subtask but use different models
to complete different subtasks, and the results from each module are fused to obtain the
answer to the question, which is also the theme of this paper.

4.3.1. Statistical t-Test

We performed a statistical significance test using SPSS software to validate the results
of our proposed method. Our objective was to assess the statistical significance of the
accuracy achieved through our approach. The t-test was employed to generate a p-value,
which measures the probability of the observed results being due to chance. A lower
p-value indicates a higher likelihood of statistical significance. To evaluate our method, we
compared the results obtained from the CLN-based model with those presented in Table 1.
Notably, the accuracy achieved yielded a p-value of 0.036. These findings substantiate the
statistical significance of the improvements attained by our proposed method.

4.3.2. Ablation Study

We removed different parts of our model and verified statistical significance, and
the results obtained are shown in Table 2. Due to the effect of the CNN and multi-head
attention, the accuracy of our head-entity-learning model is improved by 0.4%. In addition,
the use of the Bi-SRU shortens the training time. As mentioned in the previous paragraph,
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the use of more complex models increases the accuracy of relation learning by 0.4%. The
improvements of these two models have improved the final accuracy. We can see that there
is a statistically significant improvement over the baseline when both CLN modules exist
at the same time.

Table 2. Ablation experiment results.

Head-Entity-Learning
Module, Accuracy

Relation-Learning Module,
Accuracy

Total Accuracy

Bi-GRU + attention, 0.644 Bi-GRU + attention, 0.815 0.749
CLN_entity, 0.647 CLN_relation, 0.818 0.753

Bi-GRU + attention, 0.644 CLN_relation, 0.818 0.751
CLN_entity, 0.647 Bi-GRU + attention, 0.815 0.752

4.3.3. Qualitative Analysis

Different models obtain the embeddings of the same sentence at the same epoch, as
shown in Figure 4. The scatter plot indicates that the enhanced model effectively discerns
the distinctions between words, and points with similar values represent the predicate
fusion with the representation of the entity. It is not difficult to find that after the “Bi-GRU
+ attention” sentence representation, the model needs a lot of data to learn weights. The
improved model only needs a small number of samples to learn the vector representation
of sentences better and faster.

Figure 4. Result analysis of different modules. The horizontal axis refers to the words in the sentence,
the vertical axis refers to the vector representation of the word, and the right half of the sentence
represents the words that are padded to make the sentences the same length. The relationship-
learning module’s sentence representation with the CLN is represented by pink dots, while the “Bi
GRU+attention” sentence representation is depicted by blue dots.

We delve into the joint impact of semantic parsing and the GCN using accuracy as an
example. In Figure 5, we can see that in the initial stage of training, the accuracy of the
relation-learning module rises rapidly, thanks to the combined effect of semantic parsing
and the GCN. When the relationship between words in all sentences is constructed, the
change in accuracy is relatively smooth. This trend of the change can also be seen through
the change in the loss of the head-entity-learning module. But this method is only suitable
for relational construction, so we only use this feature in relation-learning models.
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Figure 5. Variation in accuracy of head-entity-learning module and relation-learning module.

From the loss curves of the two modules in Figure 6, we can see that the loss of the
head-entity-learning module decreases rapidly at the beginning of training and then tends
to be flat, which indicates that the module has achieved good performance. At the same
time, the relation-learning module loss drops rapidly and remains largely unchanged in the
following periods, indicating that when the relational construction of words in all sentences
is completed, other parts of the model can also support relational learning well.

Figure 6. Variation in loss of head-entity-learning module and relation-learning module. In order to
facilitate observation, we expanded the value of loss by 1000 times.

4.3.4. Error Analysis

In cases where the knowledge graph does not contain the required information to
answer the question, the model cannot implement question answering. Most of the time,
it is because the answer to the question is not unique. For example, consider the ques-
tion, “Which actor was born in Warsaw?” Experiments show that the model can correctly
learn the vector representation of “Warsaw” in the head-entity-learning module and “lo-
cation.location.people_born_here” in the relation-learning module. But only one item,
‖ f (eh, pl)− êt‖2, in the answer selection module involves tail entities, so it cannot represent
a large set of answers.

4.3.5. Component Introduction Experiment

The purpose of this experiment is to assess the viability of our proposed model,
which has a small parameter count and can be seamlessly integrated as a component
into other models. Our objective is to verify the applicability of our method on different
datasets. We conducted experiments using the WebQuestion dataset and introduced the
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proposed component into two existing models: EmbedKGQA [22] and TransferNet [43].
In EmbedKGQA, we incorporated the results of the relation-learning module into the
inference module. For TransferNet, we introduced the outputs of the head-entity-learning
module and the relation-learning module into step t using an attention mechanism. The
results obtained are shown in Table 3.

Table 3. Hits@1 results on WebQuestionsSP.

Methods WebQuestionsSP

EmbedKGQA 66.6
EmbedKGQA + CLN 67

TransferNet 71.4
TransferNet + CLN 71.6

The diverse architectures and parameter settings of different models can lead to varia-
tions in the performance of the introduced component within each model. A component
that exhibits promising performance in one model may not achieve its optimal effectiveness
when placed in another model. Furthermore, the design and functionality of other com-
ponents within the model can also impact the performance of the introduced component.
If there is a close interaction or dependency between the other components in the model
and the specific component being introduced, placing that component in different models
may yield different effects on its performance. It is worth noting that both our proposed
model and EmbedKGQA leverage knowledge graph embeddings. Thanks to the shared
utilization of knowledge graph embeddings, which enhances the models’ ability to capture
semantic relationships and facilitate reasoning capabilities, the introduced component
exhibits enhanced effectiveness when integrated into our model and EmbedKGQA.

5. Conclusions

We propose a Chunked Learning Network for KGQA in this paper. The objective is to
address the challenge of machines struggling to comprehend the semantic meaning of a
question. The model incorporates the vector representation of entities and predicates into
the question by utilizing the knowledge graph embedding. It employs distinct processing
methods for different word types within the question. Words with similar meanings,
such as word abbreviations, exhibit similar vector representations within the vector space.
Additionally, the graph convolutional neural network assigns varying weights to capture
the dependency relationship between words, thereby enhancing the contextual impact
on each word. The experimental results demonstrate that our method enhances KGQA
accuracy on datasets, and the proposed components indicate a promising direction for
future research. However, our method currently falls short in entity recognition accuracy
and faces challenges in coping with the expanding knowledge graph. To overcome this
challenge, we plan to take into account the dynamic properties of the knowledge graph, as
they are frequently updated in real-world scenarios.
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Abstract: Different devices in the smart home environment are subject to different levels of attack.
Devices with lower attack frequencies confront difficulties in collecting attack data, which restricts
the ability to train intrusion detection models. Therefore, this paper presents a novel method called
EM-FEDE (enhancement method based on feature enhancement and data enhancement) to generate
adequate training data for expanding few-shot datasets. Training intrusion detection models with
an expanded dataset can enhance detection performance. Firstly, the EM-FEDE method adaptively
extends the features by analyzing the historical intrusion detection records of smart homes, achieving
format alignment of device data. Secondly, the EM-FEDE method performs data cleaning operations
to reduce noise and redundancy and uses a random sampling mechanism to ensure the diversity of
the few-shot data obtained by sampling. Finally, the processed sampling data is used as the input to
the CWGAN, and the loss between the generated and real data is calculated using the Wasserstein
distance. Based on this loss, the CWGAN is adjusted. Finally, the generator outputs effectively
generated data. According to the experimental findings, the accuracy of J48, Random Forest, Bagging,
PART, KStar, KNN, MLP, and CNN has been enhanced by 21.9%, 6.2%, 19.4%, 9.2%, 6.3%, 7%, 3.4%,
and 5.9%, respectively, when compared to the original dataset, along with the optimal generation
sample ratio of each algorithm. The experimental findings demonstrate the effectiveness of the
EM-FEDE approach in completing sparse data.

Keywords: data enhancement; few-shot data; smart home; generative adversarial networks; intrusion
detection

1. Introduction

With the development of Internet of Things (IoT) technology, the application of smart
home scenarios is becoming increasingly widespread [1]. The number of smart home
devices connected to home networks rapidly increases, leading to a surge in network scale
and data traffic. These factors exacerbate security threats such as network attacks and
privacy breaches, presenting new security challenges [2]. Additionally, different types of
smart home devices differ in various aspects, posing unique security challenges for each
device. For example, smart locks may face security issues like password cracking and
fingerprint recognition attacks, while smart appliances may encounter concerns related to
electrical safety and control signal security.

There is currently a limited amount of research focusing on smart home security, with
most studies primarily concentrating on hardware design and passive defense measures.
For instance, the authors of [3] propose a method for privacy risk assessment and risk
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control measures to address privacy security concerns. The authors of [4] describe a prov-
able security authentication scheme to ensure the security of the smart home environment.
These studies, which are passive defense mechanisms, can improve the security of smart
homes to some extent, but they do not fully address all the security issues.

Intrusion detection, as a typical representative of active defense, is one of the critical
technologies for safeguarding the security of smart home systems [5]. It overcomes the
limitations of traditional network security techniques in terms of real-time responsiveness
and dynamic adaptability. Monitoring and identifying abnormal behavior in network
traffic enables timely detection and prevention of malicious attacks. Therefore, designing
an efficient intrusion detection model is of paramount importance in ensuring the security
of smart home systems. Traditional machine learning-based intrusion detection algorithms
are relatively straightforward to train, widely adopted, and demonstrate high efficiency and
reliability in practical applications [6,7]. On the other hand, intrusion detection algorithms
based on deep learning exhibit superior detection performance, but their exceptional
performance relies heavily on a significant amount of training data [8–10].

Currently, there is no comprehensive framework for research on smart home secu-
rity, and it still faces several challenges [11,12]. Due to the varying attack frequencies of
different devices in smart homes, there is an imbalance in collecting network traffic data,
with some devices having a deficient proportion of attack data compared to normal data.
The insufficient quantity of data makes it difficult to effectively train intrusion detection
models, resulting in a decline in their performance [13,14]. Therefore, this paper proposes
an enhancement method, EM-FEDE, applied to smart home intrusion detection in few-shot
scenarios. Firstly, the EM-FEDE method analyzes the historical intrusion detection records
of smart homes to determine whether there are features indicative of device types and data
types in the captured data and then adaptively extends the features to achieve format align-
ment of device data. Secondly, the EM-FEDE method performs data cleaning operations
to reduce noise and redundancy by removing duplicate entries and normalizing the data.
Furthermore, the method adjusts the random sampling mechanism to ensure the diversity
of the few-shot data obtained through sampling. Finally, the processed sampling data is
used as input for the CWGAN, a variant of GAN that improves data generation through
modifications in the loss function and optimization algorithms. The Wasserstein distance,
which measures the dissimilarity between two probability distributions, is employed by
CWGAN to calculate the loss between the generated data (fake data) and the real data.
Based on this loss, the CWGAN is adjusted, and the generator of the CWGAN outputs
effectively generates data. The main contributions of this paper are as follows:

• This paper proposes a feature enhancement module to improve the data quality in the
dataset by analyzing historical intrusion detection records of smart homes, adaptively
extending feature columns for the smart home devices dataset, and performing data
cleaning on the dataset;

• This paper proposes a data enhancement module to generate valid data to popu-
late the dataset using conditional Wasserstein GAN to realize the operation of data
enhancement for few-shot data;

• The effectiveness of the EM-FEDE method is evaluated using a typical smart home
device dataset, N-BaIoT. The performance of the original dataset and the expanded
dataset using the EM-FEDE method on each intrusion detection model is compared to
conclude that the classifier’s performance is higher for the expanded dataset than the
original dataset;

• The experiments demonstrate that expanding the dataset using the EM-FEDE method
is crucial and effective in improving the performance of attack detection. This work
successfully addresses the problem of few-shot data affecting the performance of
intrusion detection models.
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2. Related Works

2.1. Intrusion Detection Methods for Smart Homes

Intrusion detection methods for smart homes have gained significant attention in
recent years as a popular research direction in the field of smart homes, and many scholars
have conducted relevant research [15–17]. Many methods utilize sensors and network
communication functions within smart home devices to detect intrusions by monitoring
user behavior, device status, and other relevant data.

In 2021, the authors of [18] proposed an intrusion detection system that uses bidirec-
tional LSTM recursive behavior to save the learned information and uses CNN to perfectly
extract data features to detect anomalies in smart home networks. In 2021, the authors
of [19] proposed a two-layer feature processing method for massive data and a three-
layer hybrid architecture composed of binary classifiers in smart home environments to
detect malicious attack environments effectively. In 2022, the authors of [20] proposed
an intelligent two-tier intrusion detection system for the IoT. Using the feature selection
module combined with machine learning, both flow-based and packet-based, it can min-
imize the time cost without affecting the detection accuracy. In 2023, the authors of [21]
proposed an effective and time-saving intrusion detection system using an ML-based in-
tegrated algorithm design model. This model has high accuracy, better time efficiency,
and a lower false alarm rate. In 2023, the authors of [14] proposed a transformer-based
NIDS method for the Internet of Things. This method utilizes a self-attention mechanism
to learn the context embedding of input network features, reducing the negative impact of
heterogeneous features.

Even though numerous scholars have obtained commensurate outcomes pertaining to
the issue of smart home security, such research endeavors were executed with ample data
and did not consider the predicament of limited samples attributable to the shortage of
data emanating from various devices in smart homes. As a result, it is difficult for intrusion
detection models to assimilate the data feature, and the suggested models of the research
endeavors above are unsuitable for situations involving few-shot data.

2.2. GAN-Based Data Enhancement Methods

In machine learning and deep learning, the size of the dataset is a critical factor af-
fecting the performance of the model. However, obtaining large-scale labeled datasets
will require a large workforce and resources. Researchers have been exploring data en-
hancement techniques to expand the dataset and improve model performance. Among
these techniques, data enhancement methods using Generative Adversarial Networks
(GAN) [22] proposed by Ian J. Goodfellow et al. in 2014 have gained significant attention.
GAN-based data enhancement methods have shown promising results in enhancing the
performance of intrusion detection models by generating generated data that can be used
to supplement the limited labeled dataset.

GAN consists of a discriminator network and a generator network. The goal of the
discriminant network is to accurately determine whether a sample is from real or fake data.
The purpose of the generator network is to generate samples whose sources cannot be
distinguished by the discriminant network. In GAN, the Generator uses random noise Z as
input data, and its output is fake sample data G(z). The discriminator receives real sample
data x and fake sample data G(z) as inputs and obtains loss by determining whether the
data is real or fake by using the backpropagation algorithm to update the GAN parameters
based on the loss function.

In recent years, more and more research has applied GAN for data enhancement
to improve the performance and robustness of machine learning models. In 2021, the
authors of [23] proposed using the ACGAN model to solve the problem of the imbal-
anced distribution of 1D intrusion detection sample data, which improved the average
detection accuracy of some classification models. In 2021, the authors of [24] proposed
an improved DCGAN model with higher stability and sample balance to achieve higher
classification accuracy for a few samples. In 2022, the authors of [25] proposed a new gen-
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eration of methods that use a class of classification models to determine the authenticity of
facial images. This method improves cross-domain detection efficiency while maintaining
source-domain accuracy. In 2023, the authors of [26] proposed an attention-self-supervised
learning-aided classifier generative adversarial network algorithm to expand the samples
to improve the defect recognition ability of small sample data sets. In 2023, the authors
of [27] proposed a generative model for generating virtual marker samples by combining
supervised variational automatic encoders with Wasserstein GAN with a gradient penalty.
This model can significantly improve the prediction accuracy of soft sensor models for
small-sample problems.

Although scholars have made many achievements using GAN for data enhancement,
their applications are mainly carried out on images. In network security, there is still a lack
of research on data enhancement using GAN. In addition, the implementation of GANs
for data augmentation in the field of smart home intrusion detection has not been fully
explored, thereby limiting their potential to solve problems in this field.

3. EM-FEDE Method

3.1. Problem Analysis

Figure 1 shows a typical smart home environment. A diverse array of smart home
devices is linked to a gateway, which in turn is connected to the Internet via routers, and
the data collected by these devices is subsequently sent to terminals for user analysis.

Figure 1. Smart home topology diagram.

Smart home devices differ in functionality and operational characteristics, exhibiting
distinct working hours and data throughput. Attackers take various factors into account,
such as device usage frequency and attack complexity, when exploiting vulnerabilities in
different types of devices. This leads to the devices being subjected to varying frequencies
of network attacks. The N-BaIoT dataset [28] of typical IoT devices shows the variance
in data throughput and traffic collected among different devices. As depicted in Figure 2,
a smart doorbell device (device1) and a smart camera device (device2) exhibit different
data throughput, with device1 having a lower data throughput. Consequently, the amount
of data collected by device1 is significantly less than that collected by device2 (338,599 vs.
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1,075,936). Moreover, the number of data points generated by different attack behaviors
also varies based on the attack frequencies of the devices. For instance, Figure 3 shows that
attack1 (a UDP attack by the Gafgyt botnet) and attack2 (a UDP attack by the Mirai botnet)
both utilize vulnerabilities to carry out DDoS attacks. However, attack2 is more effective
and straightforward, resulting in a higher frequency of occurrence. Therefore, attack1 has
far fewer data samples (255,111 vs. 1,229,999).

Figure 2. Number of data points from different devices.

Figure 3. Number of different attack data.

Through the utilization of authentic datasets, information retrieval, and prior knowl-
edge, the present study presents an account of the operational and safety conditions of
various commonplace smart home devices in Table 1. The tabulation highlights that dis-
tinctive devices within the smart home setting exhibit assorted data throughput and attack
frequencies. Additionally, diverse categories of smart devices are susceptible to differing
attack behaviors, which results in a dissimilar amount of attack-related data. This situation
leads to marked discrepancies in the data collected between various devices and attack
types. For example, in the case of smart light bulbs, detecting and identifying attacks on
these devices effectively is challenging due to the limited amount of attack data available.
This scarcity of data is a result of the relatively low number of attacks that have been
observed on this particular type of device. On the other hand, for smart door lock devices
that experience a high frequency of attacks, more attack data is typically collected. How-
ever, there may still be instances of infrequent attack behaviors of a specific type (such as
DDoS attacks commonly observed on smart cameras). These infrequent attack behaviors
generate a small amount of attack data, which can be considered a sample size. As the
tally of interconnected smart home devices continues to increase, these disparities become
more prominent. Accordingly, during the process of flow data collection, specific devices
are often unable to generate sufficient attack data, which impairs the efficacy of intrusion
detection models. This limitation ultimately has a bearing on the overall security and
stability of the smart home environment. Therefore, addressing the challenge of few-shot
data resulting from a shortage of attack-related data is a critical research direction in the
field of smart home device network security.

315



Electronics 2023, 12, 3304

Table 1. Smart device working status table.

Devices Working Hours (h) Data Throughput Frequency of Attack

Router 24 Larger Higher
Gateway 20 Larger Higher

Light 14 Smaller Lower
TV 8 Larger Lower

Intelligent door lock 3 Smaller Lower
Floor sweeper 2 Smaller Lower

Washing machine 2 Smaller Lower
Smart camera 24 Larger Higher

We propose the EM-FEDE method, as depicted in Figure 4. The method consists
of three modules: the feature enhancement module, the data enhancement module, and
the intrusion detection module. The feature enhancement module is assigned the task of
processing the raw data by optimizing and filtering it. The data enhancement module
focuses on generating samples, thereby expanding the dataset by adding fake samples. The
intrusion detection module is responsible for identifying attacks and is trained using the
expanded dataset, resulting in an improved ability of the model to classify and recognize
various types of attacks. The EM-FEDE method employs symbols and their meanings, as
listed in Table 2.

Figure 4. EM-FEDE method.
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Table 2. Symbols used in the EM-FEDE method.

Symbols Description

R Historical intrusion detection records.

SearchF(x) Used to determine the existence of the device class and the data class
in x. It returns 1 if features are present and 0 otherwise.

Insert() Insert operation.
Class_Label(x) Obtain the corresponding class from the information in x.

ai The device class feature column.
bi The data class feature column.

LabelEncoding(x) The function is used for mapping during the process of
numericalization in x.

FE_Duplicate(x) The function is used for removing duplicate data in x.
FE_Normalization(x) The function is used for normalizing the data in x.

L 1-Lipschitz function.
Preal Real data distribution.
Pz Data distribution of input noise.

G(z) Fake sample data generated by the generator.

D(x) The probability that the discriminator determines that x belongs to
the real data.

Z Noise vector of the a priori noise distribution Pz.
∏
(

Preal , Pg
)

Joint probability distribution of real data and generated data.
Fake_data Generated data with label y_fake.

3.2. Feature Enhancement

This section focuses on the specific implementation of the EM-FEDE method in terms
of feature enhancement.

In Section 3.1, it was discussed that various smart home devices exhibit differing data
throughput and attack frequencies. Once the traffic data from these devices is captured, it is
typically stored in a pcap file format. The format of the pcap file is shown in Figure 5. While
the pcap file contains information such as timestamps, source addresses, and destination
addresses, it lacks the ability to indicate device and data classes, resulting in the inability
to label traffic. As a result, intrusion detection models that utilize supervised learning
methods cannot directly utilize this data for training purposes. This challenge is also
present in the N-BaIoT standard dataset, which includes eleven types of data collected
from nine types of IoT devices (including one type of normal data and ten types of attack
data). The dataset fails to provide feature columns that indicate the device class of each
sample and distinguish the data class. To address the challenge of being unable to use
raw data for training intrusion detection models and to improve data quality, this study
proposes the EM-FEDE method’s feature enhancement module. This module achieves
feature enhancement through R analysis, feature-adaptive expansion, and data cleaning,
thereby optimizing the data and indicating missing class features.

Figure 5. Common pcap file format.
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To address the inability to directly use the raw data for training intrusion detection
models and improve data quality, this study proposes the feature enhancement module
of the EM-FEDE method. It achieves feature enhancement through R analysis, feature-
adaptive expansion, and data cleaning. This process optimizes the data and enables the
identification of missing class features.

The following is the specific process of feature enhancement:
Step 1. The LF is used to indicate the device class, and the data class in R is determined

by Equation (1). If LF = 1, go to Step 3; if LF = 0, go to Step 2.

LF = SearchF(R); (1)

Step 2. If direct prior knowledge (E) is available regarding the class of device and
data, the device class feature (ai) and data class feature (bi) can be added to R through E.
In the absence of such knowledge, the captured traffic data is analyzed to gather relevant
information. As different attacks take place at different timestamps and distinct source IP
addresses represent unique device characteristics, the timestamp and source IP address are
treated as prior knowledge E. The device class feature (ai) and data class feature (bi) are
then added to R, utilizing E. The specific equations pertaining to this process are illustrated
in (2) and (3).

[ai, bi] = Class_Label(E), (2)

R = [R ∪ Insert(ai) ∪ Insert(bi)]; (3)

Step 3. Numerical, de-duplication, and normalization of R by Equations (4)–(6).

R = LabelEncoding(R), (4)

R = FE_Duplicate(R), (5)

R = FE_Normalization(R), (6)

In this step, we utilized Equation (4) to carry out numerical operations to convert
non-numerical data in R into numerical data for the purpose of training the model. To
tackle the problem of duplicate data, we applied Equation (5) to eliminate redundant data
and minimize its impact on the results during data analysis. Additionally, we normalized
the data using Equation (6) to ensure that all feature data was of the same magnitude and
reduce the influence of noise on the results;

Step 4. Divide the training set and the test set, and output.
Figure 6 illustrates the process of feature enhancement using the N-BaIoT dataset

as an example. The dataset contains data1 = {138.9020131, 72.11292822, . . ., 0}, where
138.9020131 represents the value of MI_dir_L5_weight, 72.11292822 represents the value
of MI_dir_L5_mean, 0 represents the value of HpHp_L0.01_pcc. There are 115 dimensional
features in data1, and the specific steps are as follows:

Step 1. There is no common feature used to indicate the device class and attack class
in N-BaIoT, LF = 0, so jump to Step 2;

Step 2. The N-BaIoT dataset contains prior knowledge E that enables us to determine
the device class and data class of the dataset. Based on Equations (2) and (3), we added
feature columns “device” and “Label”. Data1 corresponds to mirai_attacks syn attacks on
the Ecobee_Thermostat device. As a result, we obtain data1′ = {138.9020131, 72.11292822,
. . ., 0,”Ecobee_Thermostat”,”mirai_attacks syn”};

Step 3. The obtained data1′ contains non-numerical data, so it is numericalized by
Equation (3) to obtain data1’ = {138.9020131, 72.11292822, . . ., 0, 2, 8}, where 2 represents
the value of device, 8 represents the value of Label. Then the data1’ is de-duplicated and
normalized by Equations (4) and (5), and finally the data”’ = {0.3972691, 0.0116122, . . .,
0.380514, 2, 8} after feature enhancement is obtained;
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Step 4. Output the training set and test set.

Figure 6. Dataset N-BaIoT feature enhancement process.

Feature enhancement is beneficial for reducing the superfluous information present in
the data by processing and transforming the original features. This leads to the normaliza-
tion of data, enhances its quality and usability, and provides a more dependable foundation
for subsequent data enhancement and intrusion detection.

3.3. Data Enhancement

This section presents a detailed account of the practical implementation of data en-
hancement utilizing the EM-FEDE method. The data enhancement framework is shown in
Figure 7.

Figure 7 is composed of three primary components. The first component is the input
section, where the original data is enhanced by feature enhancement and utilized as
input for the subsequent model training. The second component constitutes the CWGAN
section. It contains two key components: the generator and the discriminator. The generator
generates a variety of fake samples, while the discriminator is responsible for distinguishing
between real and fake samples. The third component is the output section, where the
generator produces diverse and authentic fake samples following iterative training of the
CWGAN. These samples are then integrated into the original dataset, resulting in the
enhanced dataset as the final output.
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Figure 7. Data enhancement framework.

To quantify the disparity between the real data distribution and the fake data distri-
bution, the EM-FEDE method employs the Wasserstein distance, which is expressed as
Equation (7):

Wasserstein(Preal, Pz) = infγ∼∏ (Preal,Pz)
E(x,y)∼γ[||x− y||], (7)

That is, for any joint probability distribution γ there exist edge probability distributions
Preal and Pg. Two sample points, x and y, can be sampled from the edge distribution, and
the value of the Wasserstein distance is a lower boundary on the expectation of the x and
y distances.

The Wasserstein distance is a metric that quantifies the dissimilarity between two
probability distributions. It is smaller when the distributions are more similar. Even if the
two distributions have no overlap, the Wasserstein distance can still be computed, unlike
the Jensen–Shannon divergence, which cannot handle this case. This property has been
leveraged by the EM-FEDE method, which incorporates the Wasserstein distance into the
loss function of the CWGAN. As a result, the neural network structure is improved, and
the objective function is represented by an equation:

LCWGAN = Ex∼Preal [D(x|y)]− Ez∼Pz [D(G(z|y))], (8)

where D∈L, x is the sample from the real data distribution, Preal, and y is the conditional
variable, i.e., the class characteristics of the data.

The following are the main steps of the data enhancement process:
Step 1. The training set in R, after undergoing the feature enhancement process, is

utilized as the training data for the CWGAN. The generator and discriminator, both of
which employ multilayer perceptron models, are defined as two neural network models.
Equation (8) is employed to determine the objective function of the EM-FEDE method;

Step 2. Training the discriminator. The process of training the discriminator is illus-
trated in Figure 8. It involves inputting a set of randomly generated fake_data samples and
real_data samples of sizes n and m, respectively, into the discriminator. The loss values of
both sets of data are computed using Equation (9) and subsequently used to update the
discriminator’s parameters:
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LossDiscriminator = maxLCWGAN = min(−LCWGAN)
= Ez∼Pz [D(G(z|y))]− Ex∼Preal [D(x|y)] ; (9)

Figure 8. Discriminator process.

Step 3. Training the generator. The process of training the generator is illustrated
in Figure 9. The generator is trained by generating a d-dimensional noise vector Z with
label y as input, producing a set of fake_data samples of size n. These fake_data samples,
along with the real_data samples, are then input into the discriminator. The loss value for
this set of fake_data is computed using Equation (10), and the generator’s parameters are
updated accordingly.

LossGenerator = minCWGAN = −Ez∼Pz [D(G(z|y))]; (10)

Figure 9. Generator process.

Step 4. The training process iterates Steps 2 and 3 repeatedly until the predetermined
number of iterations or loss of convergence is reached. Conversely, by generating a new set
of fake_data and returning R = [R ∪ fake_data].

Following the process of data enhancement, the imbalanced original dataset is enriched
with fake data, effectively ensuring a more even distribution of data across all classes within
the dataset.

In the EM-FEDE method, the computational cost of feature enhancement is negligible,
so its computational complexity depends mainly on the CWGAN part of the data enhance-
ment module. For the EM-FEDE method, the gradients of the generator and discriminator
need to be computed and updated. In each epoch, O(|gω| + |gθ|) floating-point opera-
tions are required (where gω is the gradient of the generator and gθ is the gradient of the
discriminator), and thus its overall complexity is O(|R|·(|gω| + |gθ|)·Ne)(where |R| is
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the training dataset and Ne is the total number of training times). Algorithm 1 gives the
detailed algorithmic flow of the EM-FEDE method.

Algorithm 1: EM-FEDE

Input: α = 0.0005, the learning rate; n = 50, the batch size; c = 0.01, the clipping parameter; ω0,
initial discriminator parameters; θ0, initial generator parameters; Ne = 1000, the training cycles.
Output: Expanded R
Process:
1. Calculate LF by Equation (1)
2. If LF = 0
3. Add feature columns that are helpful for classification to R through Equations (2)–(4)
4. Numerization, de-duplication, and normalization by Equations (5)–(7)
5. Divide the processed R into training sets and test sets
6. End if
7. While θ has not converged or epoch < Ne do
8. epoch++
9. Sample of m noise samples{z1, . . ., zn} ~ PZ a batch of prior data
10. Sample of m examples{(x1,y1), . . ., (xn,yn)} ~ Preal a batch from the real data
11. Update the discriminator D by ascending its stochastic gradient (gω)

12. gω = ∇ω

[
1
m

m
∑

i=1
fω(xi|yi)− 1

m

m
∑

i=1
fω(gθ(z i|yi))

]
13. ω = ω + α ∗ RMSProp(ω, gω)
14. ω = clip(ω,−c, c)
15. Sample of m noise samples{z1, . . ., zm} ~ PZ a batch of prior data.
16. Update the generator G by ascending its stochastic gradient (gθ)

17. gθ = −∇θ 1
m

m
∑

i=1
fω(gθ(z i|yi))

18. θ = θ − α ∗ RMSProp(θ, gθ)
19. End while
20. Generate sample data for each class through the generator to populate R
21. Train the expanded R on different classifiers to obtain various evaluation indicators

4. Results

4.1. N-BaIoT Dataset Description

The N-BaIoT dataset, released in 2018, consists of network traffic samples extracted
from nine real IoT devices, featuring normal traffic from these devices and five varieties
of attack traffic from the gafgyt and mirai botnet families. Figures 10 and 11 illustrate the
differences in the data distribution across different traffic types and devices.

Figure 10. Distribution of the number of different devices.
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Figure 11. Distribution of the number of different traffic types.

The N-BaIoT dataset comprises extracted functions derived from raw IoT network
traffic information. Upon receipt of each packet, a synopsis of the protocol and the host’s
behavior is computed with respect to the transmission of each packet. The contextual
information of the data packet is then represented by a set of statistical features that are
generated whenever a data packet arrives. Specifically, the arrival of each data packet
leads to the extraction of 23 statistical features from five distinct time windows, namely,
100 ms, 500 ms, 1.5 s, 10 s, and 1 min. These five 23-dimensional vectors are subsequently
concatenated into a single 115-dimensional vector.

The N-BaIoT dataset has been obtained in a real-world IoT setting, thus ensuring a
high level of authenticity and representativeness. It serves as a standardized dataset that
can be used by researchers to evaluate and enhance the efficacy of intrusion detection
systems for IoT devices.

4.2. Data Preprocessing

The normalization method used in Equation (6) is Min–Max normalization. The
specific formula for normalization is shown below:

xi =
xi − xmin

xmax − xmin
, (11)

where xi is the current feature, xmin is the minimum eigenvalue in the same dimension, and
xmax is the maximum eigenvalue in the same dimension.

To replicate the scarcity of data in smart home devices in the real world and to
guarantee that the dataset gathered from sampling includes samples from all categories,
this research employs stratified sampling. This method ensures that each sample has
an equal opportunity to be selected while maintaining the randomness of the samples.
Ultimately, 2860 data samples were randomly chosen from the dataset as representative
examples. The training and test data were then divided in a 7:3 ratio, and the sample
distribution of the training and test sets can be found in Table 3.

Table 3. Sample distribution of training and test sets.

Traffic Type Name Number of Training Sets Number of Test Sets

benign_traffic 1054 325
gafgyt_attacks combo 136 60
gafgyt_attacks junk 122 75
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Table 3. Cont.

Traffic Type Name Number of Training Sets Number of Test Sets

gafgyt_attacks scan 124 78
gafgyt_attacks tcp 97 56
gafgyt_attacks udp 91 51
mirai_attacks ack 76 42
mirai_attacks scan 83 40
mirai_attacks syn 76 42
mirai_attacks udp 73 49

mirai_attacks udpplain 70 40

4.3. Experimental Environment

In order to verify the feasibility of the model in this paper, experiments were conducted
in the experimental environment shown in Table 4.

Table 4. Experimental environment configuration.

Category Parameters

CPU Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz
RAM 64 GB

Programming Tools Jupyter Notebook
Programming Languages Python3.8

Deep Learning Framework Pytorch1.8
Machine Learning Platform Weka3.9

Data Processing Library Numpy, pandas, etc.

4.4. Network Structure

The structural details of the CWGAN model designed in this article are presented in
Table 5. The structural details of the MLP and CNN classifiers are shown in Table 6.

Table 5. Model parameters of the generator and discriminator.

G/D Structure Size

Generator

Input layer 50
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 256
Hidden layer 3(Tanh()) 128
Output layer(Tanh()) 116

Discriminator

Input layer 116
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 128

Output layer 1

Table 6. Model parameters of the classifier.

Classifier Structure Size

MLP

Input layer 116
Hidden layer 1(Tanh()) 128
Hidden layer 2(Tanh()) 128

Output layer 11

CNN
Input layer 116

Conv1D(Relu()) 32
Pooling layer 32
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Table 6. Cont.

Classifier Structure Size

CNN

Conv1D(Relu()) 32
Pooling layer 32

Flatten 224
Dense 50
Dense 11

4.5. Results and Analysis

This study aimed to assess the effectiveness of the EM-FEDE method in enhancing
the intrusion detection classifier. To accomplish this, machine learning and deep learning
classification algorithms were employed to evaluate the dataset. The evaluation metrics
used in this study, namely Accuracy, Precision, Recall, and F1 Score, are widely accepted in
the field. The formulas for calculating each metric are provided below:

Accuracy =
TN + TP

TN + FP + FN + TP
, (12)

Precision =
TP

FP + TP
, (13)

Recall =
TP

FN + TP
, (14)

F1 Score = 2 ∗ Prescision ∗ Recall
Prescision + Recall

, (15)

where TP indicates the number of true positives; TN indicates the number of true negatives
in the sample; FN indicates the number of false negatives; and FP indicates the number of
false positives.

To test the effectiveness of the fake samples, the intrusion detection classifier was
trained on both the original training set and the training set enhanced by the EM-FEDE
method. Subsequently, the enhancement effect of the EM-FEDE method was evaluated by
assessing the comprehensive classification performance of the intrusion detection classifier
using the test set. Multiple sets of data were generated for experiments, each with different
ratios of fake samples, as documented in Table 7.

Table 7. Sample size at different generated sample ratios.

Dataset (Generated Sample Ratios) Number of Fake Samples Number of Samples after Expansion

x (Original sample size) 0 2002
2x 2004 4006 (2002 + 2004)
3x 4006 6008 (2002 + 4006)
4x 6118 8120 (2002 + 6118)
5x 8010 10,012 (2002 + 8010)
6x 10,012 12,014 (2002 + 10,012)
7x 12,014 14,016 (2002 + 12,014)
8x 14,016 16,018 (2002 + 14,016)
9x 16,018 18,020 (2002 + 16,018)

10x 18,009 20,011 (2002 + 18,009)

The distributions of the original data training set and the expanded training set are
shown in Figures 12 and 13, respectively, using a generated sample ratio of 5x as an example.
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Figure 12. Data sample distribution of the original training set.

Figure 13. Sample distribution of training set data with a generated sample ratio of 5x.

The study conducted a comparison of multi-classification results between the original
dataset and the generated sample ratio of 5x, as presented in Table 8. We evaluate the
EM-FEDE method using various machine learning algorithms, where J48 is a decision
tree algorithm, Random Forest is the Random Forest algorithm, Bagging is an integrated
learning algorithm, PART is an algorithm that extracts rules in a dataset using incomplete
decision trees, KStar is an instance-based classification algorithm, KNN is the K Nearest
Neighbors algorithm, MLP is a Multi-Layer Perceptron Machine, and CNN is a Convolu-
tional Neural Network. The results demonstrated that J48, Random Forest, Bagging, PART,
KStar, KNN, MLP, and CNN showed an accuracy improvement of 16.4%, 4.9%, 10.7%, 9.2%,
4.9%, 4.4%, 3.1%, and 5.7%, respectively.
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Table 8. Comparison of multi-classification results between the original dataset of size x and the
mixed dataset with a generated sample ratio of 5x (the precision and F1 Score of some algorithms
are unknown (?), which is due to the presence of Nan values in the calculation of precision, i.e., a
denominator of 0). This scenario can occur when the algorithm fails to classify any sample into a
particular class or when it wrongly classifies all samples in that class.

Dataset Algorithm Accuracy Precision Recall F1 Score

N-BaIoT

J48 0.624 ? 0.624 ?
Random

Forest 0.755 ? 0.756 ?

Bagging 0.655 ? 0.655 ?
PART 0.673 ? 0.673 ?
KStar 0.789 0.699 0.701 0.699
KNN 0.768 0.773 0.768 0.771
MLP 0.811 0.711 0.706 0.708
CNN 0.712 0.726 0.673 0.698

N-BaIoT after
EM-FEDE

method processing

J48 0.788 0.788 0.788 0.788
Random

Forest 0.804 ? 0.804 ?

Bagging 0.762 ? 0.762 ?
PART 0.765 0.795 0.765 0.779
KStar 0.838 0.831 0.838 0.834
KNN 0.812 0.796 0.812 0.803
MLP 0.842 0.731 0.678 0.703
CNN 0.769 0.828 0.736 0.779

The evaluation of the experiments was carried out using various classification algo-
rithms, including KNN, KStar, Bagging, PART, J48, Random Forest, MLP, and CNN. The
evaluated results for datasets enhanced with different generated sample ratios are shown
in Figure 14.

Figure 14. Experimental results.

As shown in Figure 14, the utilization of the EM-FEDE method has improved the
accuracy of various classification algorithms. This improvement was observed when
expanding the dataset compared to the original dataset. Additionally, the optimal sample
ratio for achieving the best performance varies across different classification algorithms.
With an increase in the number of generated samples, the accuracy of each classification
algorithm gradually increases. The accuracy of J48 has increased from 62.39% (x) to 80.43%
(10x), RF has increased from 75.55% (x) to 81.73% (6x), PART has increased from 67.28%
(x) to 76.49% (5x), MLP has increased from 81.09% (x) to 84.45% (10x), CNN has increased
from 71.18% (x) to 77.05% (10x), KNN has increased from 76.8% (x) to 83.31% (4x), KStar
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has increased from 78.9% (x) to 85.24% (4x), and Bagging has increased from 65.5% (x) to
84.86% (2x).

However, when the generated sample ratio becomes too large, the accuracy of some
classification algorithms slightly decreases compared to a smaller generated sample ratio.
The accuracy of RF decreases from 81.73% (6x) to 76.44% (10x), PART decreases from 76.49%
(5x) to 65.91% (10x), KNN decreases from 83.31% (4x) to 81.32% (10x), KStar decreases from
85.24% (4x) to 81.94% (10x), and Bagging decreases from 84.86% (2x) to 73.98% (10x).

The accuracy of several classification algorithms such as RF, PART, KNN, KStar, and
Bagging initially improves as the number of generated samples increases until they reach
their optimal generated sample ratio, after which the accuracy decreases. This trend occurs
due to the presence of fake data, which can negatively affect the quality of the data. The
generator model aims to approximate the distribution of real data as closely as possible, but
if the quantity of fake data becomes too large, the generator model can experience mode
collapse. This phenomenon indicates that the fake data becomes excessively similar, and
increasing the data further no longer improves the classifier’s performance. Instead, it can
lead to a decrease in classification accuracy due to noise in the fake data.

In contrast, J48, MLP, and CNN exhibit a gradual increase in accuracy. J48, a machine
learning classifier based on feature partitioning, is typically sensitive to diversity and
complexity. MLP and CNN, as deep learning classifiers, possess stronger representational
and generalization capabilities. An increase in fake data leads to an increase in the training
data for classifiers. This increase provides more opportunities for the classifiers to learn
from different data distributions and features, leading to more complex and deeper levels
of feature representation. Consequently, the classifiers’ accuracy improves.

The variability in the best generated sample ratios is evident across different algo-
rithms, as illustrated in Figure 14. Table 9 presents the accuracy of said ratios, in contrast to
the original dataset, for various algorithms. The accuracy of J48, Random Forest, Bagging,
PART, KStar, KNN, MLP, and CNN improved by 21.9%, 6.2%, 19.4%, 9.2%, 6.3%, 7%, 3.4%,
and 5.9%, respectively. It is worth noting that the extended dataset demonstrated an overall
higher accuracy in comparison to the original dataset when scaled to the best generated
sample ratio of each algorithm.

Table 9. The accuracy of multi-classification is compared between the original data set and the mixed
data set with the optimal generation sample ratio of each algorithm.

Algorithm
Optimal Generation

Sample Ratio nx
(1 ≤ n ≤ 10)

Accuracy of the
Original Dataset

Accuracy of the Mixed
Dataset with the Optimal
Generation Sample Ratio

The Percentage
of Growth

J48 10x 0.624 0.843 21.9%
Random Forest 6x 0.755 0.817 6.2%

Bagging 2x 0.655 0.849 19.4%
PART 5x 0.673 0.765 9.2%
KStar 4x 0.789 0.852 6.3%
KNN 4x 0.768 0.833 7%
MLP 10x 0.811 0.845 3.4%
CNN 10x 0.712 0.771 5.9%

SMOTE [29] is an oversampling method that generates new samples to expand the
dataset based on the relationship between samples, and CGAN [30] is an extension of
GAN for conditional sample generation. This part of the experiment examined the impact
of different generated sample ratios on accuracy in J48 and Bagging for mixed datasets
created using SMOTE, CGAN, and the proposed method. Additionally, we compared it
with the same number of datasets containing only real data to prove the effectiveness of the
proposed method in this paper. The experimental results are shown in Figures 15 and 16.
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Figure 15. Accuracy of J48 for real and expanded datasets.

Figure 16. Accuracy of Bagging for real and expanded datasets.

Based on the results presented in Figure 15, in our method, it is evident that the
accuracy of the enhanced dataset, which includes a combination of fake data and real data
at the generated sample ratios of nx (n = 2, 3, . . ., 10), is superior to that of an equivalent
number of instances from the original dataset. At lower generated sample ratios, the mixed
dataset exhibits significantly improved accuracy on J48 in comparison to an equivalent
number of instances from the real dataset. As the generated sample ratio increases, the
accuracy of the mixed dataset on J48 exhibits fluctuation, albeit within a small range, and
ultimately reaches a plateau. Although the mixed dataset continues to outperform the real
dataset in terms of accuracy on J48, its advantage diminishes as the generated sample ratio
becomes larger.

Regarding the CWGAN, at lower generated sample ratios nx (n = 2, 3, 4), the accuracy
of the mixed dataset in J48 slightly improves compared to the same number of instances of
the real dataset. However, for generated sample ratios of nx (n = 4, . . ., 10), the accuracy of
the mixed dataset at J48 is lower than that of the equivalent number of real datasets, and
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the performance of the real dataset is significantly better than that of the mixed dataset as
the generated sample ratio increases.

Regarding the SMOTE, at the generated sample ratio of nx (n = 2, . . ., 7), the accuracy
of the mixed dataset in J48 is significantly higher than that of the real dataset with the same
number of samples. At the generated sample ratio of nx (n = 8, 9, 10), the accuracy of the
hybrid dataset starts to decrease and is lower than the equivalent number of real datasets.

Based on the experimental results, we can conclude that the J48 algorithm has more
capacity for learning the supplementary feature information that is provided by the ex-
panded dataset. This attribute of the algorithm contributes to an improved understanding
of the dataset’s traits and patterns, thereby leading to an enhancement of the classifier’s
performance. In addition to this, the introduction of a small quantity of artificial data
has been observed to have a beneficial effect on the model’s ability to generalize, and it
can also serve to mitigate the effects of overfitting and noisy data. However, it should be
noted that there is a threshold beyond which the quantity of artificially generated data
becomes sufficient, and further increments of such data do not yield any improvement in
the accuracy of the intrusion detection model.

The results in Figure 16 show that the accuracy of the mixed dataset with generated
sample ratio nx (n = 2, . . ., 6) on the Bagging algorithm is better than that of the corre-
sponding number of real datasets in the method of this paper. However, for the generated
sample ratio nx (n = 7, . . ., 10), the accuracy of the mixed dataset is lower than that of
the corresponding number of real datasets. The experimental results reveal that the op-
timal generated sample rate for the Bagging algorithm using the method in this paper is
2x. Moreover, the accuracy of Bagging decreases and stabilizes as the generated sample
rate increases.

Regarding the CWGAN, the accuracy of the mixed dataset is higher than the same
number of instances of the real dataset for the generation sample rate nx (n = 2, 3, 5).
However, for the generating sample ratio of nx (n = 4, 6, . . ., 10), the accuracy of the mixed
dataset is lower than the accuracy of the same number of real datasets. The results indicate
that the best generated sample ratio for the Bagging algorithm using the CWGAN is 3x.

Regarding the SMOTE, the accuracy of the mixed dataset is higher for the generation
sample ratio nx (n = 2, . . ., 6) compared to the same number of instances of the real dataset.
For the generation sample ratio nx (n = 7, . . ., 10), the accuracy of the mixed dataset is
lower than the accuracy of the same number of instances of the real dataset. From the
experimental results, it can be concluded that the optimal generation sample ratio for
Bagging on SMOTE is 4x.

When the generated sample ratio nx (n = 7, . . ., 10) is too large, the accuracy of both
the methods in this paper, CWGAN and SMOTE on Bagging, is lower than the equivalent
number of real datasets. Despite the decrease in accuracy, the accuracy of this paper’s
method and SMOTE is still higher than that of the original dataset x. By comparing this
paper’s method, CWGAN, and SMOTE, it can be concluded that this paper’s method
exhibited better performance.

Based on our experimental results, we can conclude that utilizing fake data for data
enhancement can significantly enhance the accuracy of the classifier, particularly when
the expansion multiplier is small. However, the introduction of fake data may result in
noise, and its proportion increases with the expansion multiplier. This difference between
real and fake data can make it challenging to provide sufficient useful feature information,
which can, in turn, impede the ability of the model to learn the data features. Ultimately,
this can lead to a reduction in the accuracy of the classifier.

The SMOTE algorithm analyzes the minority class samples and manually synthesizes
new samples to add to the dataset based on the minority class samples. This technique
of generating new samples through oversampling helps prevent overfitting. However, it
may generate the same number of new samples for each minority class sample, resulting
in increased overlap between classes and the creation of samples that do not offer useful
information. The CGAN method improves the data generation process by incorporating
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additional information to guide the model. However, the training process of CGAN is
not very stable, and the quality of the generated data can vary. In contrast, the EM-
FEDE method proposed in this paper uses the CWGAN approach to generate data with
greater diversity. It also provides more informative samples and is more stable during
training, resulting in higher-quality generated data compared to CGAN. To summarize,
the effectiveness of the EM-FEDE method has been demonstrated, making it suitable for
training datasets for intrusion detection models. However, it is crucial to consider that the
optimal generated sample ratio may differ based on the particular algorithm and model in
use. To attain the highest level of accuracy and performance for a given intrusion detection
algorithm or model, it is essential to undertake a meticulous evaluation and selection of
the most fitting generated sample ratio. This selection and evaluation process is crucial to
guaranteeing optimal outcomes.

5. Discussion

The present article discusses the issue of few-shot data on smart home devices and
the challenges this poses for intrusion detection models. Specifically, the study highlights
how the security dataset collected from traffic information often lacks data, which limits
the performance of intrusion detection models. To address this issue, the article proposes a
method called EM-FEDE, which enhances the dataset and effectively mitigates the impact
of few-shot data on intrusion detection performance, improving security in smart home
environments. The study evaluates the performance of datasets enhanced with different
generated sample ratios and analyzes the effect of using enhanced datasets for intrusion
detection model training. Furthermore, the article examines the influence of different
generated sample ratios on classification performance for specific classification algorithms.
The results indicate that the optimal generated sample ratio may vary depending on the
algorithm and model used. Based on the obtained results, it can be concluded that the
proposed method shows promising performance in solving few-shot data. In addition to
intrusion detection, it can be applied to different domains, such as sentiment analysis tasks
where the samples of various sentiment categories are highly imbalanced and underwater
target recognition tasks where the samples are too small to train an effective model.

In this paper, the specific details regarding the optimal expansion multiplier and the
ratio of generated data to real data for various classification algorithms are not extensively
explored. Thus, future studies will focus on optimizing the intrusion detection model by
selecting more suitable classification algorithms to enhance detection accuracy. Addition-
ally, further research will be conducted to determine the appropriate enhancement factors
and ratios between generated and real data during the data enhancement process.

Author Contributions: Conceptualization, T.Y. and J.W.; methodology, Y.C. and J.W.; software, Y.C.,
T.Y. and J.W.; validation, J.W., T.Y. and Y.C.; formal analysis, J.W.; investigation, J.W.; resources, Y.C.;
data curation, J.W.; writing—original draft preparation, J.W. and T.Y.; writing—review and editing,
J.W., Q.L. and N.A.N.; supervision, T.Y. and J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Sichuan Science and Technology Program under Grant
No. 2022YFG0322, China Scholarship Council Program (Nos. 202001010001 and 202101010003),
the Innovation Team Funds of China West Normal University (No. KCXTD2022-3), the Nanchong
Federation of Social Science Associations Program under Grant No. NC22C280, and China West
Normal Universi-ty 2022 University-level College Student Innovation and Entrepreneurship Training
Program Project under Grant No. CXCY2022285.

Data Availability Statement: Data are unavailable due to privacy.

Acknowledgments: Thanks to everyone who contributed to this work.

Conflicts of Interest: The authors declare no conflict of interest.

331



Electronics 2023, 12, 3304

References
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Abstract: Network clustering for mining protein complexes from protein–protein interaction (PPI)
networks has emerged as a prominent research area in data mining and bioinformatics. Accurately
identifying complexes plays a crucial role in comprehending cellular organization and functionality.
Network characteristics are often useful in enhancing the performance of protein complex detection
methods. Many protein complex detection algorithms have been proposed, primarily focusing on
local micro-topological structure metrics while overlooking the potential power-law distribution
characteristic of community sizes at the macro global level. The effective use of this distribution
characteristic information may be beneficial for mining protein complexes. This paper proposes
a network clustering algorithm for protein complex detection fused with power-law distribution
characteristic. The clustering algorithm constructs a cluster generation model based on scale-free
power-law distribution to generate a cluster with a dense center and relatively sparse periphery.
Following the cluster generation model, a candidate cluster is obtained. From a global perspective,
the number distribution of clusters of varying sizes is taken into account. If the candidate cluster
aligns with the constraints defined by the power-law distribution function of community sizes, it
is designated as the final cluster; otherwise, it is discarded. To assess the prediction performance
of the proposed algorithm, the gold standard complex sets CYC2008 and MIPS are employed as
benchmarks. The algorithm is compared to DPClus, IPCA, SEGC, Core, SR-MCL, and ELF-DPC in
terms of F-measure and Accuracy on several widely used protein–protein interaction networks. The
experimental results show that the algorithm can effectively detect protein complexes and is superior
to other comparative algorithms. This study further enriches the connection between analyzing
complex network topology features and mining network function modules, thereby significantly
contributing to the improvement of protein complex detection performance.

Keywords: data mining; network clustering; protein complex detection; power-law distribution;
topological characteristics

1. Introduction

Cells rely on the interaction of multiple proteins for life activities. A protein complex,
formed through interactions, consists of molecules with similar functions. Detecting protein
complexes in protein–protein interaction (PPI) networks facilitates the exploration of the
relationships between network structures and function modules. Moreover, it plays a
crucial role in annotating the proteins with unknown functions and gaining insights into
the organization and functionality of cells [1].
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Researchers have proposed many experimental methods to identify the interactions
between proteins, including yeast two-hybrid (Y2H) [2,3] and tandem affinity purification
(TAP) [4]. These methods have generated a vast amount of protein–protein interaction
(PPI) data, which serve as valuable support for the application of data mining techniques
in protein complex detection.

A PPI dataset is usually abstracted as an undirected network, wherein proteins are
nodes and the interactions between proteins are edges. A PPI network contains different
protein function modules [5]. Generally, a protein complex is a biological functional
module [6] comprising two or more proteins that share the same function. Proteins in
the same protein complex exhibit strong connections, whereas the proteins belonging
to different complexes have weaker connections. Detecting protein complexes from PPI
networks aims to discover sets of proteins with dense connections. This process can be
viewed as a network clustering task, wherein clusters are determined based on topological
features, where the connection strength within a cluster is greater than that between
clusters [7,8]. This process yields disjoint or overlapping clusters as its outcome [9].

Various network clustering algorithms for identifying protein complexes have been
developed. In general, these algorithms include graph partition algorithms, density-based
local search algorithms, and algorithms based on graph embedding [10–12].

The clustering algorithm based on graph partition divides nodes into clusters ac-
cording to an objective function, aiming to identify an optimal partitioned network. It
maximizes the similarity between nodes within each cluster while minimizing the similar-
ity between different clusters. One well-known algorithm in this category is the Markov
algorithm (MCL) [13,14]. MCL begins by constructing the initial flow matrix based on
a PPI network and then simulates random flow through the network using the concept
of random walk to partition the entire network into sub-graphs with high connectivity
probability. The collection of nodes within each sub-graph represents a protein complex.
However, MCL does not handle overlapping clusters. To address this limitation, the soft
regularized MCL (SR-MCL) algorithm was developed, which enables the identification of
overlapping clusters.

The density-based local search clustering algorithm focuses on identifying dense
sub-graphs based on the characteristic of connection density. Among the various network
clustering methods, one approach aims to find k-closely connected sub-network modules,
such as the Closely Connected Percolation Method (CPM) [15]. CPM initially identifies
closely connected subnets within the network and subsequently identifies k-closely con-
nected subnet modules based on these initial subnets. A few approaches are also known
as the seed expansion method. They select a node as a seed and expand around the seed
to a cluster according to certain rules. One example of the seed expansion method is the
density peak clustering (DPClus) algorithm [16]. DPClus introduces the concept of “cluster
periphery” in protein interaction networks. It assigns edge weights based on common
neighbor counts between interacting proteins, while node weights are determined by the
sum of their adjacent edges’ weights. The peripheral value of a node within a cluster is
determined as the ratio of its adjacent nodes to the total number of nodes in the cluster.
The algorithm starts by selecting the highest-weighted node as the seed for the initial
cluster. Edge weights are influenced by common neighbor counts, and node weights reflect
the density of immediate neighbors. If nodes satisfy both the custom threshold for local
density and the threshold for cluster peripheral value, DPClus iteratively adds the nodes to
obtain the final cluster. To account for the minimum diameter and average node distance
characteristics of protein complexes, the improved DPClus algorithm (IPCA) [17] enhances
DPClus through the integration of sub-graph diameters and interaction probabilities, which
provide insights into the density of the network. Other methods in this category include
SEGC [18], Core [19], etc.

Network clustering algorithms based on graphs embed map network nodes onto a
lower-dimensional vector space by encoding their properties [20]. This mapping preserves
the topological characteristics of the nodes as much as possible. Subsequently, a network
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clustering was performed in this transformed vector space [21,22]. One example of such an
algorithm is the ensemble learning framework for density peak clustering (ELF-DPC) [23].
ELF-DPC first maps the PPI network to the vector space and constructs a weighted network
to identify core edges. By integrating structural modularity and trained voting regression
models, the algorithm creates an ensemble learning model. ELF-DPC then expands the
core edges into clusters based on this learning model.

The PPI network, as a type of complex network, exhibits intricate network topology
characteristics [24–26]. The fundamental features used to describe the network topol-
ogy are primarily derived into three levels. Firstly, micro-topological structure metrics
focus on individual nodes or edges, including measures such as node degree and central-
ity [27,28]. Secondly, meso-topological metrics analyze groups of nodes, such as community
structure [29], modules, and motifs. Lastly, macro-topological metrics consider the entire
network, encompassing aspects such as degree distribution and community size distribu-
tion. Developing a network clustering algorithm that incorporates these network features
can enhance the accuracy of community detection [30]. At present, seed expansion methods
can effectively utilize network features. However, existing algorithms mainly consider local
micro-topological structure features [31] and ignore the potential distribution characteristics
of community size at a macro-global level. The distribution of community sizes in the PPI
network exhibits a certain correlation with power-law distribution [32].

In this paper, we present a novel network clustering approach that incorporates the
characteristics of power-law distribution to identify protein complexes. Our proposed
algorithm, named GCAPL, encompasses two main stages: cluster generation and cluster
determination. During the cluster generation stage, the GCAPL algorithm incorporates
node degree and clustering coefficient to assign weights to nodes. The unclustered nodes
with the highest weight were selected as seeds. Following that, a cluster generation model
leveraging the scale-free power-law distribution was given to discovery clusters with
dense centers and sparse peripheries. Through an iterative process, candidate nodes were
added to the seeds to form candidate clusters using the cluster generation model. In the
cluster determination stage, we constructed a power-law distribution function about the
distribution of cluster sizes and the cluster total number. The function acts as a criterion to
regulate the presence of clusters of various sizes. By applying the power-law distribution
function, we can assess whether a candidate cluster qualifies as a final cluster.

This paper makes several significant contributions: (1) Integrating multiple available
basic micro-topological structural information into the k-order neighborhood of a node for
seed selection; (2) Constructing a cluster generation model considering scale-free power-law
distribution to obtain inherent organization information of functional modules; (3) Giving
a cluster determination model based on macro-topological structure characteristic of the
number distribution of clusters of different sizes to constrain final clusters; (4) Verifying
the proposed network clustering algorithm fused with topological structural information
could effectively mine functional modules by the experiment results on the real datasets.

The other sections of our paper are as follows. Section 2 introduces preliminary
concepts and symbols. Section 3 presents a network clustering algorithm fused with power-
law distribution characteristics. Section 4 reports the relevant experiments to verify the
effectiveness of the network clustering algorithm. Section 5 provides conclusions.

2. Preliminary

A PPI network is represented by an undirected network G = (V, E), with V as the set of
proteins (nodes) and E as the set of interactions (edges) between proteins. Dia(G) represents
the diameter of the network G, which corresponds to the maximum value in the shortest
path between any two nodes in the network G. The k-adjacent nodes set of a given node vi
is denoted as NEk(vi), and it is defined by

NEk(vi) =

{
NE(vi) i f k = 1
NEk−1(vi) ∪

{
vj ∈ V

∣∣distance
(
vi, vj

)
= k

}
i f k > 1

(1)
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where distance(vi, vj) represents the length of the distance between nodes vi and vj.
The clustering coefficient of vi [33] is

CCE(vi) =
2|ES(H(vi))|

|NE(vi)|(|NE(vi)| − 1)
(2)

where H(vi) represents sub-graph created by the directly adjacent node set NE(vi), and
ES(H(vi)) =

{(
vj, vl

)∣∣vj, vl ∈ NE(vi),
(
vj, vl

)
∈ E

}
. A network’s clustering coefficient

CCE(vi) is calculated as the average value of the clustering coefficients of all nodes in the
node set V, i.e., CCE(G) = ∑

|V|
i=1 CCE(vi). In order to facilitate readers’ reading of this

paper, some main symbols and their corresponding meanings are listed in Table 1.

Table 1. Main symbols and their corresponding meanings.

Symbols Meaning

G = (V, E) Network G is composed of a collection of nodes V and
set of edges E.

vi Node i in a certain node set.(
vi, vj

)
The edge between nodes i and j.

distance
(

vi, vj

)
The shortest path distance between nodes i and j.

NEk Set of k-neighbors.
ES(M) The set of edges within sub-graph M.
CCE The clustering coefficient for a node
ND The degree of a node in the network.
w(.) The weight for a node or an edge
Xsize Set of cluster sizes
Ynum Set of cluster numbers

CT(u, M)
The tightness measure of node u with respect to

sub-graph M.
CS(v) Node set generated by the selected seed v.
Dia(G) The diameter of a network G

PC Final cluster set
λ Rate of change

3. Methods

GCAPL algorithm consists of two stages: cluster generation and cluster determination.
In the first stage, the algorithm calculates the weights of nodes and edges by incorporating
micro-topological structure metrics. A seed is the node that has the highest weight among
the unclustered nodes. The seed is expanded by a cluster generation model considering a
scale-free power-law distribution to a candidate cluster. In the second stage, we established
the cluster determination model with a power-law distribution of the cluster numbers
with different cluster sizes. This cluster decision model was utilized to determine the final
clusters. Figure 1 shows the algorithm flow chat.

3.1. Cluster Generation

In the cluster generation stage, the GCAPL algorithm initially selects seeds based on
node weights and subsequently expands these seeds using the cluster generation model to
obtain candidate clusters.

To identify a suitable seed node, a node with a higher weighted degree may be a good
seed node in network community mining. A node with a higher weighted degree may
serve as a useful seed node in network community mining. The weighted degree of a node
vi is calculated based on its directly adjacent edges and the weights associated with these
edges, and was defined as:

w(vi) = ∑
vj∈NE(vi)

w
(
vi, vj

)
(3)
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Figure 1. Algorithm flow chart.

For an edge
(
vi, vj

)
, the endpoints of the edge and the common adjacent nodes be-

tween these endpoints are tightly surrounding this edge. We can obtain the edge weight of(
vi, vj

)
according to the importance of these nodes in topological characteristics. The micro-

topological structure metrics, such as clustering coefficient and node degree, are employed
to capture the topological characteristics and assign weights to nodes. For a dense submod-
ule in a network, nodes with high clustering coefficients and low node degrees may serve
as important central nodes. The topological characteristics of a node vi is expressed by the
ratio of its clustering coefficient CCE(vi) to its node degree ND(vi), i.e., CCE(vi)/ND(vi).
More comprehensively, the global information of a network is introduced. A network G’s
clustering coefficient FC(G) is defined as the average value of the clustering coefficients of
all nodes in the node set V, i.e., FG(G) = CCE(G). Similarly, the G’s node degree FD(G) is
the average of all node degrees in the network, i.e., FD(G) = ND(G). In the network G,

the connection strength of a node vi is related to CCE(vi)

CCE(G)
× ND(G)

ND(vi)
. Therefore, the weight of

the edge
(
vi, vj

)
can be defined as follows:

w
(
vi, vj

)
= CCE(vi)

CCE(G)
× ND(G)

ND(vi)
+

CCE(vj)
CCE(G)

× ND(G)

ND(vj)
+

∑
u∈NE(vi)∩NE(vj)

CCE(vu)

CCE(G)
× ND(G)

ND(vu)

(4)

Furthermore, Equation (4) from the previous section only considers the information of
the node’s direct neighbors. To highlight the importance of an edge within a large network
module, the edge weight in its t neighborhood can be defined as follows:

wt(vi, vj
)
= wt−1(vi)× CCE(vi)

CCE(G)
× ND(G)

ND(vi)
+

wt−1(vj
)
× CCE(vj)

CCE(G)
× ND(G)

ND(vj)
+

∑
u∈NE(vi)∩NE(vj)

wt−1(u)× CCE(vu)
CCE(G)

× ND(G)
ND(vu)

(5)
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Here, t is a predefined parameter that determines the extent of the neighborhood.
After the t-th iteration, the node weight can be defined as:

wt(vi) = ∑
vj∈NE(vi)

wt(vi, vj
)

(6)

Initially, the node weights are set to w0(vi) = 1 for all nodes, indicating that the initial
importance of all nodes is the same.

Once the node weight calculation is completed, the next step is to select a seed node v
from the node set V whose node weight is highest. Following that, the seed node is used to
establish the cluster generation model, which allows for the expansion of the seed into a
candidate cluster.

The cluster generation model aims to expand seed nodes into candidate clusters
based on connection strength. The obtained seed node v serves as the initial cluster
CS(v), and candidate nodes from the neighborhood NE(C(v)) are considered for addition
based on the compactness of CS(v) and the connection strength between CS(v) and a
candidate node u to expand the initial cluster CS(v). The compactness g of the cluster
CS(v) quantifies the connection density within the cluster and is defined as g(u, CS(v)) =
|NE(u) ∩V(CS(v))|/|V(CS(v))|, where V(CS(v)) represents a set of nodes that make up
C(v), and |NE(u)| denotes the node u’s direct neighbor nodes. The connection strength
h of a candidate node u reflects the peripheral edges of the cluster and is defined as
h(u, CS(v)) = |NE(u) ∩V(CS(v))|/|NE(u)|. The cluster generation model requires a
variable function to combine the compactness of the cluster and the peripheral edges of the
cluster, so that as the cluster size increases, the contribution of the cluster’s compactness to
the cluster generation gradually decreases while the contribution of the cluster’s peripheral
connections to the cluster generation gradually increases. A suitable choice for this function
is the scale-free power-law distribution function, which is a monotonic function. It serves
as a foundation for constructing the variable function that effectively fuses the above two
kinds of connection information. A power-law distribution function is y = cx−k and let
c = 1/λ, k = ND(v), x = V(CS(v))− 1, then we can define the variable function as:

β(CS(v)) =
1

λ× ND(v)
√

V(CS(v))− 1 + 1
(7)

where λ is a parameter to control the change of β(CS(v)). Then, define the cluster genera-
tion model as:

CT(u, CS(v)) = β(CS(v))g(u, CS(v))+
(1− β(CS(v)))h(u, CS(v))

(8)

When β(CS(v)) is set to 1, CT tends to prioritize the formation of dense clusters. On the
other hand, when β(CS(v)) is set to 0, nodes with lower degrees are more likely to be added
to CS(v). The β(CS(v)) enables the cluster generation model to find both dense clusters
and clusters with dense cores and sparse peripheries, providing flexibility in capturing
different types of cluster structures. For each candidate node u and threshold μ ∈ [0, 1],
if CT(u, CS(v)) > μ and Dia([CS(v) ∪ {u}]) ≤ δ (δ is a user-defined threshold), then the
node u is added to the cluster CS(v). This process is repeated for each node in NE(CS(v)),
resulting in the initial formation of a candidate cluster CS(v).

3.2. Cluster Determination

In complex networks, the distribution of community size exhibits heterogeneity.
Smaller communities tend to be more abundant in number, while larger communities
are relatively scarce. This inverse relationship between size and number also holds in PPI
networks, where the sizes and numbers of protein complexes are inversely proportional. It
is assumed that the number of complexes follows a power-law distribution that is defined
as follows:

y = cx−k (9)

340



Electronics 2023, 12, 3007

where x and y represent positive random variables.
Let the size of a protein complex be Xsize. The corresponding number of the complexes

under this size is given by a cluster determination model:

Ynum = cXsize
−k (10)

where c and k are positive parameters.
The cluster determination model aims to effectively regulate the number of clusters,

considering their varying sizes, from a global perspective. To accomplish this, we defined
two sequences: Xsize =

{
x1

size, x2
size, . . . , xn

size
}

is a predefined sequence with uniform values
representing the cluster sizes, and Ynum =

{
y1

num, y2
num, . . . , yn

num
}

is a sequence obtained
through the cluster generation model representing the corresponding cluster numbers.

Let the cluster CS(v)’s size be denoted as |V(CS(v))| and errorsize be a parameter that
refers to the allowable difference or deviation in the size of a cluster. Following that, we can
find a value xi

size with |V(CS(v))| ∈
[
xi

size − errorsize, xi
size + errorsize

]
in Xsize, assuming

that y
′
num clusters of size xi

size have been generated at the current stage. We calculated the
maximum number of clusters yi

num corresponding to a given cluster size xi
size according

to the power-law distribution function. If y
′
num ≤ yi

num, the candidate cluster CS(v) is
considered a final cluster. Otherwise, CS(v) is discarded.

The two stages of cluster generation and cluster determination are repeated alternately
until all nodes have been clustered.

3.3. Complexity Analysis

The GCAPL algorithm utilizes linked lists to construct a graph. First, it calculates
the weights of all nodes using Formula (6). Following that, it selects the node with the
highest weight as the seed and treats it as the initial cluster. Subsequently, following the
cluster generation model, neighbor nodes of the initial cluster are incrementally added
to create candidate clusters. Finally, the algorithm determines the final clusters by the
cluster determination model. The specific process of the GCAPL algorithm is shown in
Algorithm 1.

Algorithm 1: GCAPL Algorithm.

Input: Network G = (V, E), Parameters iter, λ, μ for cluster generation, Parameters c, k, errorsize
for Cluster determination
output: Set of final clusters PC
1: Initialize PC = ∅, and the unclustered nodes set, UV = V;
2: Compute edge and node weights by utilizing information within the t-neighborhood;
3: Determine the cluster size set Xsize =

{
x1

size, x2
size, . . . , xn

size
}

;
4: Calculate the upper limit of the number of clusters Ynum =

{
y1

num, y2
num, . . . , yn

num
}

,
corresponding to the cluster size Xsize using Equation (9);
5: while UV �= ∅, do
6: Select a node v with the largest weight in UV as a seed, and the initial cluster is CS(v);
7: Iteratively select the node set AN among the neighbor nodes of CS(v), such that each node u
in AN satisfies CT(u, H) > μ and Dia([CS(v) ∪ {ui}]) ≤ δ;
8: CS(v) = CS(v) ∪ AN;
9: Compute the cluster CS(v)’s size as |V(CS(v))|, and compute the number of generated
clusters with size |V(CS(v))| as y

′
num;

10: Find xi
size in Xsize, and |V(CS(v))| ∈

[
xi

size − errorsize, xi
size + errorsize

]
11: Compute the number of generated clusters of size |V(CS(v))| as y

′
num

12: if y
′
num ≤ yi

num then

13: PC = PC ∪ {CS(v)},UV = UV − CS(v)
14: return PC
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The time cost of the GCAPL algorithm lies in two parts: cluster generation and
cluster determination.

Assuming a network G has n nodes and m edges. In the cluster generation stage, the
node weighting process revealed a time cost of O(k × ND × n) = O(k × m). The time
cost of seed selection based on node weights is O(n× log n). The expansion of seeds into
clusters also has a time cost of O(n× log n). Therefore, O(|PC| × n× log n) is the total time
complexity of the cluster generation phase.

In the cluster determination phase, the worst-case scenario is when each candidate
cluster size needs to be compared with each element in the sequence Xsize. As a result,
this phase revealed a time cost of O(n× |Xsize|). Therefore, algorithm GCAPL’s overall
time complexity is O(|PC| × n× log n), considering both the cluster generation and cluster
determination phases.

4. Experiments and Results

4.1. Datasets

The protein interaction networks used in the experiments are presented in Table 2.
These datasets were processed to remove self-intersections and duplicate interactions.

Table 2. Datasets of protein interaction networks.

Gavin02 [34] Gavin06 [35] K-Extend [36] BioGRID [37]

Proteins 1352 1430 3672 4187
Interactions 3210 6531 14,317 20,454

The gold standard complex datasets CYC2008 [38] and MIPS [39] were utilized for
parameter analysis and evaluation of the clustering results.

4.2. Evaluation Metrics

The evaluation of the effectiveness of the GCAPL algorithm was performed using the
F-measure and Accuracy metrics as evaluation criteria.

The F-measure [40] provides a balanced measure of precision and recall. It serves as a
quantitative metric of the agreement between a predicted complex set and a benchmark
complex set, capturing the level of similarity between them. Precision measures the
agreement between the generated clusters and known complexes, while recall quantifies
the agreement between the known complexes and the generated clusters.

Given the generated cluster as PC =
{

PC1, PC2, . . . , PCp
}

and the gold standard complex
as TC = {TC1, TC2, . . . , TCl}, the affinity score within the neighborhood NA

(
PCi, TCj

)
is em-

ployed for quantifying the similarity between the generated cluster PCi and the standard com-
plex TCj, and NA

(
PCi, TCj

)
=

∣∣PCi ∩ TCj
∣∣2/

∣∣PCi|×|TCj
∣∣, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , l}.

A higher NA
(
PCi, TCj

)
value indicates a stronger resemblance between PCi and TCj. As-

suming a threshold of μ = 0.2 [40,41], if NA
(
PCi, TCj

)
≥ μ, PCi and TCj can be considered

as matched. Let MC represent the set of correct predictions, where each generated cluster
exhibits some correspondence with at least one known protein complex in the set TC, and
MC =

{
PCi

∣∣PCi ∈ PC ∧ ∃j
(
TCj ∈ TC ∧ NA

(
PCi, TCj

)
≥ μ

)}
. Additionally, let MCO be the

set of known complexes, where each complex matches at least one complex in the generated
cluster set PC, and MCO =

{
TCj

∣∣TCj ∈ TC ∧ ∃i
(
PCi ∈ PC ∧ NA

(
PCi, TCj

)
≥ μ

)}
.

Precision is quantitatively calculated as the ratio of the number of correctly predicted
instances to the total number of predicted instances, i.e., Precision = |MC|/|PC|. Recall is
defined as Recall = |MCO|/|TC|. F-measure is quantitatively calculated as

F−measure = 2× Precision× Recall/(Precision + Recall) (11)
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Accuracy, as another evaluation metric, is computed as the geometric mean of the
positive predictive value (PPV) and sensitivity (Sn). PPV represents the proportion of
correctly identified positive instances among the predicted instances, while Sn measures
the proportion of correctly identified positive instances among all actual positive instances.

Suppose T is a p× l matrix, in which the i-th row of T represents the i-th prediction
cluster PCi and the j-th column represents the j-th annotation complex TCj. Tij denotes the
count of shared proteins between the predicted complex PCi and the known complex TCj
and quantifies the degree of overlap or similarity between these two complexes. PPV is
characterized by

PPV =
∑

p
i=1 ∑l

j=1

(
Tij ×maxl

j=1

(
Tij

∑l
j=1 Tij

))
∑

p
i=1 ∑l

j=1 Tij
(12)

Sn is defined as

Sn =
∑l

j=1

(∣∣TCj
∣∣×maxp

i=1

(
Tij

|TCj|

))
∑l

j=1
∣∣TCj

∣∣ (13)

Accuracy [39] is then calculated as

Accuracy =
√

PPV × Sn (14)

4.3. Parametric Analysis

GCAPL encompasses several predefined parameters, including c, k ∈ [2, 3], errorsize,
iter, λ ∈ [0, 1], and μ ∈ [0, 1]. The coefficients c and k correspond to the coefficients and
exponents of the power-law distribution function, respectively. The errorsize is a cluster
size error. The iter refers to the count of repetitive steps. The λ stands for an adaptive
parameter. The μ is defined as the compactness threshold. The BioGrid dataset serves
as a standard protein interaction network dataset, wherein all interactions are derived
from reliable and precise low-throughput theoretical interactions. Consequently, on this
dataset, the parameter optimization aims to maximize the value of F−measure + Accuracy,
prompting a thorough parameter analysis to identify the optimal parameter value.

The analysis of parameters c, k, and errorsize was performed to investigate the impact
of these parameters on the algorithm. The coefficient c and the exponent k were utilized
to generate the sequences Xsize and Ynum based on the power-law distribution function.
Meanwhile, the parameter errorsize was employed to regulate the error tolerance in cluster
size. Initially, the analysis focuses on varying c and k while keeping the parameter errorsize
constant. Subsequently, the investigation shifts to studying the influence of the parameter
errorsize while maintaining c and k at constant values.

We first fixed errorsize = 6, and experiments were conducted on the BioGrid PPI
network to investigate the impact of the parameters c and k. The values of c ranged from
100 to 250, while k varied from 2.0 to 3.0. These experiments aimed to assess how the
changes in c and k influenced the results and outcomes of the study. When the values of
c = 200 and k = 2.2 are set, the F−measure + Accuracy metric attains a higher value. Next,
we first fixed c = 200, k = 2.2 and F−measure + Accuracy is maximized at errorsize = 6.
We set c = 200, k = 2.2, errorsize = 6. In Figure 2a, the impact of parameters c and k on
F − measure + Accuracy is illustrated, with errorsize = 6. The relationship between the
parameter errorsize and F − measure + Accuracy are depicted in Figure 2b, with c = 200
and k = 2.2.
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(a) (b) 

Figure 2. Performance impact analysis of parameters on BioGRID dataset: (a) analyze c and k; (b)
analyze errorsize.

Next, we kept the values of c = 200, k = 2.2, and errorsize = 6 fixed, and analyzed the
real-valued discrete parameters: the number of iterations iter, the adjustment parameter
λ ∈ [0, 1] of the change rate, and the tightness threshold μ ∈ [0, 1]. Considering the
interdependence among these parameters, an orthogonal matrix was employed to identify
the optimal parameter combination with a high likelihood. During the experimental
design phase, each parameter variable was treated as an independent factor. Feasible
values corresponding to these factors are assigned as distinct levels. The complete set
of parameter combinations represents the experimental space. An orthogonal array L36
(63 × 37) is employed, which comprises 36 parameter combinations. There are parameters,
iter ∈ {1, 2, 3, 4, 5, 6}, λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, and μ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, that
we exclusively consider the initial three columns of the orthogonal array to facilitate the
analysis. Among the 36 parameter combinations, the one with the highest F−measure +
Accuracy is selected as the optimal configuration. Through the experiments, the parameters
are set to iter = 2, λ = 0.1, and μ = 0.4.

4.4. Power-Law Distribution Analysis

This subsection examines the power-law distribution of network clustering results,
taking the BioGRID dataset as an example. The clustering result of this dataset was utilized
to explore the relationship between the cluster size and number.

Assume that the cluster size is represented by x and the corresponding number of
clusters is denoted by y. According to Equation (9), we have y = cx−k. By performing
logarithm operations on both sides of the equation, it represents that

ln y = ln c− k ln x (15)

It was observed that ln y and ln x exhibit a linear relationship. Thus, the analysis of
the power-law distribution of x and y was transformed into a linear relationship analysis of
ln x and ln y.

In the clustering result of the BioGRID dataset, we took the logarithm of the cluster
size x and the corresponding cluster number y, resulting in transformed variables x′ = ln x
and y′ = ln y. To explore whether there is a linear relationship between x′ and y′, a
linear fitting method was performed on x′ and y′. The results of the linear fitting analysis
conducted on x′ and y′ is shown in Figure 3, providing valuable insights into the nature of
their relationship.
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Figure 3. Fitting curve of x′ and y′.

Table 3 presents the calculated p-value and R2 for the linear fitting analysis conducted
on x′ and y′. A small p-value indicates a strong fit of the clustering result, demonstrating
good fitting effectiveness. Similarly, a large value of R2 suggests a favorable fit. In Table 3,
the obtained p-value is 9.9× 10−7, and the value of R2 is 0.5. Thus, the sizes of clusters
generated by the proposed algorithm in the PPI network follow a power-law distribution,
along with the corresponding numbers of these clusters.

Table 3. Fitting effect of x′ and y′.

Criteria Value

p-value 9.90771462 × 10−7

R2 0.5001443526421876

4.5. Comparative Experiment

To assess the algorithm’s performance, we compared the GCAPL algorithm with
several other algorithms, namely DPClus, IPCA, SEGC, Core, SR-MCL, and ELF-DPC.

Figure 4a–d present the experimental results on the Gavin02, Gavin06, K-extend, and Bi-
oGRID datasets, using CYC2008 as the standard set. The results demonstrate that, compared
to other algorithms, the GCAPL algorithm achieves comparable or higher F-measure and
Accuracy values. The GCAPL algorithm performs well in terms of F−measure + Accuracy.
Compared with other algorithms, the F-measure + Accuracy of GCAPL exhibits an average
improvement of 13.12%, 6.97%, 14.43%, and 14.39% on Gavin02, Gavin06, K-extend, and
BioGRID. In addition, the SEGC algorithm demonstrates lower F-measure and Accuracy
performance compared to GCAPL on the Gavin02, K-extend, and BioGRID datasets. On the
Gavin06 dataset, the DPClus algorithm performs better than other algorithms, except for the
GCAPL algorithm. The GCAPL algorithm has a similar framework to the two algorithms
mentioned above, and incorporating macro-topological information contributes to improv-
ing complex detection performance. By considering both the micro-topological structure of
a network and the macro-topological structure feature of the power-law distribution, the
GCAPL algorithm effectively detects protein complexes.

Figure 5a–d illustrate the evaluation results of the DPClus, IPCA, SEGC, Core, SR-MCL,
ELF-DPC, and GCAPL algorithms on the Gavin02, Gavin06, K-extend, and BioGRID datasets,
respectively, using MIPS as the standard set. The GCAPL algorithm consistently exhibits
superior values of F-measure and Accuracy across the four different PPI datasets compared to
compared algorithms. Compared with other algorithms, the F-measure + Accuracy of GCAPL
exhibits an average increase of 9.90%, 7.01%, 14.34%, and 13.63% on Gavin02, Gavin06,
K-extend, and BioGRID. This indicates that the GCAPL algorithm performs well in terms
of its ability to detect protein complexes.
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(a) (b) 

 
(c) (d) 

Figure 4. CYC2008 as benchmarks. Evaluation results by different algorithms on (a) Gavin02;
(b) Gavin06; (c) K-extend; (d) BioGRID.

 
(a) (b) 

 
(c) (d) 

Figure 5. MIPS as benchmarks: Evaluation results by different algorithms on (a) Gavin02; (b) Gavin06;
(c) K-extend; (d) BioGRID.
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In summary, the GCAPL algorithm has good performance in detecting protein com-
plexes. The GCAPL algorithm uses not only micro-topological structure metrics but also
the macro-topological structure characteristic of the power-law distribution about clus-
ters, and it can obtain better results in complex detection. The GCAPL algorithm further
explores the relationship between network topological characteristics and functional mod-
ules in PPI networks, which is of great significance for improving the accuracy of protein
complex detection.

4.6. Examples of Predicted Complexes

In this subsection, four predicted protein complexes with different sizes detected by
the GCAPL algorithm are exhibited, and their corresponding network topology structures
are shown in Figure 6. The predicted complex in Figure 6a is a fully interconnected network.
Figure 6b shows a cluster that has a dense sub-graph with a relatively sparse periphery.
Figure 6c,d show two clusters that are dense sub-graphs. Table 4 presents the Gene Ontology
annotations of these predicted protein complexes in three aspects of biological processes,
molecular functions, and cell components with corresponding significance p-values. The
obtained p-values are notably small, indicating that these clusters have significant biological
significance. The effectiveness of the GCAPL algorithm is demonstrated in its ability to
identify protein complexes with multiple network structures.

 
(a) (b) 

  
(c) (d) 

Figure 6. Examples of predicted protein complexes: (a) cluster a; (b) cluster b; (c) cluster c; (d)
cluster d.
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Table 4. Gene ontology annotations of the four predicted protein complexes.

ID

Processes Functions Components

Gene Ontology
Term

p-Value
Gene Ontology

Term
p-Value

Gene Ontology
Term

p-Value

a
endosome

organization
(GO:0007032)

4.04× 10−15
molecular
function

(GO:0003674)
0.00194 BLOC complex

(GO:0031082) 1.06× 10−19

b DNA repair
(GO:0006281) 1.37× 10−9 DNA binding

(GO:0003677) 9.64× 10−8 nucleus
(GO:0005634) 0.00506

c

protein
targeting to
peroxisome

(GO:0006625)

1.14× 10−35 Binding
(GO:0005488) 0.00206 microbody part

(GO:0044438) 3.31× 10−29

d

DNA-
templated

transcription
(GO:0006351)

2.39× 10−22 DNA binding
(GO:0003677) 6.11× 10−7

nuclear
chromosome

part
(GO:0044454)

1.59× 10−36

5. Conclusions

Detecting protein complexes is of great significance for understanding biological
mechanisms. This paper proposes a network clustering algorithm fused with power-law
distribution for protein complex detection. The algorithm begins by calculating node
weights, taking into account micro-topological structure metrics. Subsequently, the algo-
rithm selects the non-clustered nodes with the higher weights as seeds and forms initial
clusters around the seeds. Next, the algorithm greedily adds candidate nodes into the
initial clusters based on the characteristics of scale-free power-law distribution to generate
candidate clusters. A power-law distribution function, based on the macro-topological
structure feature of power-law distribution about cluster size and number, is established to
guide the cluster generation process. The power-law distribution function is employed to
determine whether a candidate cluster qualifies as a final cluster. Compared with other
algorithms, the F-measure + Accuracy of GCAPL improves by an average of 12.23% and
10.97% on the CYC2008 and MIPS benchmarks, respectively. The experimental analysis
reveals that the proposed algorithm exhibits distinct advantages over other approaches.

The GCAPL algorithm mainly considers the biological network whose community
size conforms to the power-law distribution characteristics. The algorithm does not take
into account other distribution characteristics of the community size and fully considers the
preferential attachment. The above information may further improve the performance of
our algorithm to detect protein complexes. In addition, in real PPI networks, the connections
between nodes are subject to constant changes, leading to variations in network topological
structures. To mine functional modules in dynamic PPI networks, our future work will
also focus on constructing dynamic networks and developing dynamic protein complex
identification methods.
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Abstract: Knowledge base question answering (KBQA) can be divided into two types according to
the type of complexity: questions with constraints and questions with multiple hops of relationships.
Previous work on knowledge base question answering have mostly focused on entities and relations.
In a multihop question, it is insufficient to focus solely on topic entities and their relations since the
relation between words also contains some important information. In addition, because the question
contains constraints or multiple relationships, the information is difficult to capture, or the constraints
are missed. In this paper, we applied a dependency structure to questions that capture relation
information (e.g., constraint) between the words in question through a graph convolution network.
The captured relation information is integrated into the question for re-encoding, and the information
is used to generate and rank query graphs. Compared with existing sequence models and query graph
generation models, our approach achieves a 0.8–3% improvement on two benchmark datasets.

Keywords: dependency structure; graph convolution network; question answering

1. Introduction

The rapid development of information technology has created a need to accurately
extract information from large-scale data, making question answering (QA) systems an
important area of research. In the 1960s, QA systems primarily relied on expert systems,
which involved numerous rules or templates. As technology advanced, QA systems
shifted towards information-retrieval-based approaches. Retrieval-based QA systems rely
on keyword matching and information extraction to analyze surface-level meaning and
to extract answers from relevant documents. However, these systems can only provide
answers to predefined questions.

To overcome this limitation, large-scale commercial engines have been developed.
Community-based QA systems, which are built upon keyword matching retrieval, utilize
historical questions from users and recommend answers to new questions. In recent years,
the growth of the World Wide Web has led to the accumulation of vast amounts of high-
quality data. This has paved the way for the emergence of extensive knowledge bases (KBs)
that contain structured data. Natural language questions can be mapped to structured
queries on these knowledge bases. KBQA (knowledge base question answering) aims to
correctly understand the semantics of user questions and to use fact retrieval, matching,
and reasoning techniques within the knowledge base to find answers.

In summary, as information technology continues to advance, QA systems have
evolved from rule-based expert systems to retrieval-based approaches. With the availability
of large-scale knowledge bases, KBQA systems have emerged to effectively understand
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user questions and to provide accurate answers through fact retrieval and reasoning within
the knowledge base. The main process of KBQA is shown in Figure 1.

Figure 1. Main process of KBQA.

A knowledge base (KB) stores many complex structured information sets commonly
represented by triples (entity, entity, and the relations between them). The task of knowl-
edge base question answering (KBQA) is to answer the users’ natural language questions
using a knowledge base. For example, as shown in Figure 2, the triple starring (Jackie Chan,
New Fist of Fury), release date (New Fist of Fury, 8 July 1976), and directed by (New Fist of
Fury, Lo wei) can be used to answer the question “Who was the director of Jackie Chan’s
first starring film?”.

Figure 2. Regarding the triples involved in the question “Who was the director of Jackie Chan’s first
starring film?” in the knowledge graph; bold letters represent entities, pink circles represent topic
entities, blue circles represent traversed entities, green circles represent irrelevant entities, and orange
letters represent critical paths.
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Previous work [1–3] on KBQA mainly focused on external resources, pattern matching,
or the construction of handcrafted features [4,5] to address simple questions. These methods
need labeled logical supervision. However, these methods have difficulty dealing with
complex questions containing constraints, e.g., “the first” in the question “Who is the first
president of the United States”.

To address constraints in natural language questions, staged query graph generation
methods [6–8] have been proposed. These methods first identify the single-hop relation path
and then add constraints to the relation path from a query graph. The reply is obtainable by
executing the query graph in the knowledge base. However, in reality, there are questions
of not only single relations but also multihop relations, such as “Who is the wife of the
founder of Facebook?” There are two hops between the answer and “Facebook”, namely,
“wife” and “founder”. To answer this type of question, the longer relation path has to be
considered, which will increase the search space exponentially. The beam search method
was introduced by References [9,10] to reduce the search space by considering the best
matching relation to reduce the number of multihop relation paths. Lan et al. [11] proposed
modifying the staged query graph generation method to deal with longer relation paths
and large search spaces. However, allowing a longer relationship path causes constraints
to be ignored or connected with the wrong entity, resulting in errors in the prediction of
the intermediate relationships. If the prediction of the intermediate relationship is wrong,
the subsequent prediction will also be wrong. In query graph generation’s operation, it is
therefore particularly significant to analyze the relation between words.

A dependency tree can help the model capture the long-distance relationship between
words. Models that use the dependency parses [12,13] have been demonstrated to be very
effective in relationship extraction, since they capture long-distance semantic relations.
Multihop questions generally contain constraints and multiple relations. For example, for
the query “What posts did John Adams hold before he was president?”, the constraint is
“before”, and the answer is related to “John Adams” via two hops, namely, “president” and
“job”. To solve this situation, the relations between words need to be focused on to reach the
correct answers. We use the dependency analysis of the input question to assist the model
in selecting relations. An efficient graph convolution operation [14] was used to encode the
input question’s dependency structure to extract the entity-centered representation.

In this paper, to focus on the relationship between words and the constraints in a
question due to a long relation path, we propose a dependency structure for a question
based on a graph convolution network (GCN), which encodes the dependency formation
above the input query with efficient graph convolution actions to improve the attention paid
to the constraints in a question and then guides the actions of the query graph generation
and final ranking. This study makes three research contributions:

• For underutilization of the relationships between words in the question, we propose a
question answering method on a knowledge base by applying GCNs, which permits it
to efficiently pool information above arbitrary dependency formations and to produce
a more effective sequence vector representation.

• For the problem of an incorrect relation selection in the process of query graph gener-
ation, we analyze the dependency structure to establish the relation between words
and use the structure to obtain a more effective representation to further affect the
ranking and action selection of the query graph.

• On the WebQuestionsSP (WQSP) and ComplexQuestions (CQ) datasets, our method
performs well, and it is more effective in ranking query graphs.

The remainder of this paper is organized as follows. Related work about KBQA is
introduced in Section 2. Section 3 describes the proposed methods in this paper. Section 4
introduces the experiments and shows the results in this paper. Section 5 concludes this
paper and provides suggestions about KBQA.
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2. Related Work

The current approaches that are proposed to deal with the KBQA task can be ap-
proximately classified into two categories: semantic parsing (SP) and embedding-based
approaches [15,16]. These systems [17,18] are effective and provide an in-depth explanation
of the query, but they need reinforcement learning or expensive data annotations. However,
most SP-based approaches rely on aspects or handcrafted rules that limit their scalability
and transferability.

Recently, embedding-based methods [19,20] for KBQA have become increasingly
popular. Unlike SP-based methods, embedding-based approaches first allocate competi-
tors from the KG, depicting these competitors as distributed representations, and then
choose and rank these representations. Some embedding-based models directly predict
solutions [21,22], while others concentrate on separating relation trails and require fur-
ther procedures to obtain an answer [7,23]. Our method follows the same procedure
as embedding-based models and regards query graph generation as a multistep rela-
tion path extraction process. References [9,10,24] proposed considering better relations.
Lan et al. (2020) [11] proposed modifying a query graph generation process from longer
relations. However, the current method is defective in its action accuracy for query graph
generation. Extending the relationship path and allowing for longer relationship paths
means increasing intermediate relationships, and the information in the question may be
omitted. Therefore, capturing the relationship between words is particularly important
in the process of forming query graphs because it affects whether the information in the
question is fully utilized.

Our work also uses a dependency structure to help model the captured relations
between words. A dependency tree can help the relation extraction model capture the long-
distance relations between words. One common approach [12,13] is exploiting structure
features on parsed tree below the lowest common ancestor (LCA).

Our method is based on the existing query graph generation process method. We
add a dependency structure to the query to obtain the relation between the words and
to further improve the attention paid to the constraints in a question. Compared with
previous methods, we introduce the dependency structure of the question and analyze
it through a graph convolution network to focus more attention on the constraints. In
summary, to obtain a more effective representation, a graph convolution network is used,
which allows for efficiently pooling information from an arbitrary dependency structure
to achieve an effective action and to increase the accuracy of the intermediary relation
selection in the query graph generation process.

3. Method

3.1. Query Graph Generation

Formally, our method followed Lan et al. (2020) [11], which is an extension of the
existing staged query graph generation method. We use beam search to iteratively generate
candidate query graphs. The grounded entity represents the existing entity in the knowl-
edge base. The existential variable and lambda variable are ungrounded entities, where the
lambda variable represents the answer. Finally, the aggregate function is used to perform
function operations on specific entities, which usually captures some numerical features.

We assume that a set of query graphs is generated after the k− th iteration, denoted as
Gk. At the k + 1 iteration, we apply, extend, connect, and aggregate (the details are shown
in Figure 3) actions to grow Gk by one more edge and nodes. The extended action is used
to extend the core relation path by finding the relation. The action of the connection is to
find other grounded entities in the question and to connect them to the existing nodes. We
denote G

′
k+1 as the resulting query graph. After each iteration, a large number of query

graphs with applied actions will be generated. We use graph convolutional networks
(explained in Section 3.2) to select query graphs that use the correct action, which will affect
their scores.
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Then, we describe how the query graph is generated. At every iteration, the actions
{extend, connect, aggregate} will apply to query graph candidates. As shown in Figure 3, we
show how the three actions act on the query graph (in fact, there is no sequence for the
three actions) for the question “Who was the director of Jackie Chan’s first starring film?”.
First, in query graph (a), starting from a grounding entity “Jackie Chan”, a core relation
path is found to connect entities and answers. If there are no redundant constraint words
and other relations, the answer is x. However, because the question contains other relations,
query graph (b) applied an extended action to extend the core relation path. The query
graph (c) applies a connection action to find other grounded entities in the question and
connects them to the existing nodes. The query graph (d) applies an aggregate action to
add constraint nodes to the grounded entity or existential variable.

Figure 3. A possible sequence of the graph generation for “Who was director of Jackie Chan’s first
starring film?” Note that (b–d) are the results of the extend, connect and aggregate actions, respectively.

In practice, the order of each action is not fixed, so several potential query graphs will
be generated. It is very important to select the correct action sequence and to determine
the correct query graph. This will affect the correctness of the final result query graph
because query graph candidates may contain intermediate relations and incorrect entities.
Following our intuition mentioned in the first subsection, to enhance the generation of the
query graph and to improve the accuracy of the intermediate relations, we employ the
dependency structure of the input question.

3.2. Dependency Structure of a Question Based on a GCN

The dependency structure helps models capture the relations between words. First, we
represent the input question as a dependency structure. An example is shown in Figure 4
(here, we set it as an undirected graph). We can see that the “film” is related to “starring”,
“first”, “Chan”, etc. The words of each neighboring node are related. The process is shown
in Figure 5. First, we convert query graph g into a sequence of tokens gt. We represent an
input question Q = {qi}{Q}i=1 as a sequence of word embeddings qi. Then, we use BERT
(language model) [25] to encode the concat of the question and query graph as hq, which is
the sequence of the hidden states.

GCN [26,27] is an adaptation of the convolutional neural network for encoding graphs.
Given a graph with n nodes. We employ the convolution action to obtain the dependency
trees. In a GCN with an l-layer, we represent the input vector of the i-th node of the l-th layer
as h(l−1)

i , and the output vector is expressed as hl
i . In addition, a normalization operation is

performed before the data are transferred into the nonlinear layer, and self-circulation is
added to each node in the graph. The convolution action can be formulated as follows:

h(l)i = pool(σ(
n

∑
j=1

ĀW(l)h(l−1)
j /di + b(l))) (1)

355



Electronics 2023, 12, 2675

This operation is superimposed onto Layer l to obtain a deep GCN network, where
we set h(0)1 , ..., h(0)n to be the input word vector obtained by BERT and h(L)

1 , ..., h(L)
n as the

output word representations. All operations can be efficiently applied through matrix
multiplication, making the method suitable for batch computing and running on a GPU.
Thus far, we have obtained the question representation containing the relation between
words, which is used to affect the selection of the relations in the ranking of the query
graph. In addition, the representation also captures the edge information needed by the
selection relation.

Figure 4. The dependency structure of the question “Who was the director of Jackie Chan’s first
starring film?” We treat the dependency graph as undirected.

Figure 5. Overview of the dependency structure of a question based on a GCN.
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3.3. Query Graph Ranking

After each query graph extension, we need to rank the candidate query graphs g ∈ G
′
t,

which follows the sequence of operations taken by the construction g. For example, the
query graph (a) in Figure 3 is expressed as (Jackie Chan, starred, starring). Before the
ranking, we integrate the information extracted from the graph convolution network into
the question vector:

vx = hq + h(l) (2)

vq = MLP(vx) (3)

where hq is the question vector, h(l) is the output vector from the GCN, and MLP(·) denotes
an MLP layer. Then, we derive a vector vg for each graph and put it into FFN. Finally, we
calculate the probability with softmax.

3.4. Learning

Without any correct query graph, we use question–answer pairs to train our model.
Inspried by Das et al. (2018) [28], we use a RL (reinforcement learning) algorithm to
obtain pθ(g‖vq) so that the query graph can fit the problem better. θ is the learnable
parameters. As our focus is not on the model’s optimization approach, but on a novel
graph’s application based method to KBQA, the procedure of model learning and RL
exploration is not described in detail.

4. Experiments

4.1. Datasets and Settings

WebQuestionsSP(WQSP) [8] WebQuestionsSP includes 5810 train samples. WQSP
annotates SPARQL query statements for each answer and removes some questions with
ambiguities, unclear intentions or no clear answer. WebQuestionsSP was created for the
task of question answering over structured data, specifically targeting Freebase, a large
knowledge base. Each sample in WebQuestionsSP is associated with a SPARQL query
statement that retrieves the answer from Freebase. To ensure the quality and clarity of
the dataset, certain questions that had ambiguities, unclear intentions, or no clear answer
were removed during the annotation process. This helps to maintain a reliable and focused
dataset for training and evaluating question answering models. The statistic of WQSP is
shown as Table 1.

Table 1. The QA pair distributions of WebQuestionsSP (WQSP) ComplexQuestions (CQ) dataset.

WQSP CQ

Total QA pairs 4737 2100

Training set QA pairs 3098 1300
Test set QA pairs 1639 800

ComplexQuestions(CQ) [6] is used to increase the complexity of the question. On
the basis of webquestions, complex questions introduce the constraint types, explicit or
implicit time constraints, multi-entity constraints, and aggregate class constraints (the sum
of the maximum value) and provide the logical form of a query.

We need to first discover the entities in the query and then link them to the corre-
sponding entities in the KB. We use the existing tools to learn the linking model by training
questions and their answers. For superlative linking and temporal expressions, we apply a
superlative word list and regular expressions simply. We use a pretrained BERT vector to
initialize the word embedding with a size of 768. We set the dropout ratio and the size of
the hidden layer to 0.1 and 768, respectively.

357



Electronics 2023, 12, 2675

4.2. Experimental Results and Comparison

Better results are achieved by our method on the two datasets, as shown in Table 2.
The performance of our method on WQSP achieves an F1 of 74.8. Our method outperforms
previous state-of-the-art methods significantly on the CQ by achieving an F1 of 44.2. It
is important to note that our method is more effective when handling complicated KBs
and questions. We compared our method with those of References [6–8], which have
staged query graph generation methods that cannot handle the complex questions. Refer-
ence [29] focused on multihop relations; however, without the limitation of the method,
the search space grows exponentially. Chen et al. (2019) [9] used a beam search to face
the multihop questions, but it did not effectively handle the issue of constraints. We
compared our method with that of Bhutani et al. (2019) [30], which constructs complex
query patterns using a set of simple queries. We also compared our method with that of
Ansari et al. (2019) [31], which generates query graphs token by token. The most important
thing is to compare our method with Lan et al. (2020) [11], which allows longer relation
paths to modify the graph generation method and uses the beam search to reduce the search
space; however, in query graph generation, Lan et al. (2020) [11] is not optimal in the selec-
tion of the relations in each iteration because a longer relation path means more relation
choices. Although effective for multihop questions, these methods sometimes ignore the
constraints for the questions with constraints. Consequently, we apply GCN to effectively
fuse the information on the dependency structure and to encode the dependency structure,
which is helpful for relation selection. Additionally, the constraints in the question are
easier to capture through an analysis of the dependency structure. Our method not only
focuses on reducing the search space but also increases the relation accuracy selection in
the query graph generation process, which affects the query graph ranking. Table 2 shows
that our method not only works well on complex questions but also works well on the
WQSP, which proves the robustness of our method.

Table 2. Results on different QA datasets.

Method Dataset

WQSP (F1) CQ (F1)

[8] 69.0 -
[6] - 40.9
[7] - 42.8
[29] 67.9 -
[9] 68.5 35.3
[30] 60.3 -
[31] 72.6 -
[11] 74.0 43.3
Our 74.8 44.2

4.3. Qualitative Analysis

The questions containing constraints are extracted from the CQ (approximately 25%)
and WQSP (approximately 10%) test datasets to verify the effectiveness of our method for
questions containing constraints. Table 3 shows the performance of the questions with
constraints on the test dataset of CQ and WQSP. In Lan’s [11] method, the relationship
between words is not captured, and the constraints in some problems are omitted, leading
to a lower accuracy on questions with constraints. Compared with Lan’s [11] method, our
method captures the relationship between words and has high sensitivity to the constraints
in the question, so the accuracy of a question with constraints is higher. We also discuss the
validity of the dependency structure of questions based on the GCN. By comparing the
generated query graph, our method is proved to be effective.
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Table 3. Performance of question with constraints on the test dataset of CQ and WQSP.

Method CQ WQSP

Lan et al. (2020) [11] 0.715 0.640
Our method 0.730 0.670

To summarize, our method not only affects the selection of relations in the graph gen-
eration process but also affects the ranking of the final query graph and even successfully
captures some constraints that are difficult to capture. Therefore, our method is proven to
be effective. Our method successfully affects the query graph generation process by con-
voluting the dependency structure of the question. In addition, the results show that our
system performs stably and works well on not only multi-constraint questions but also on
simple questions.

4.4. Error Analysis

We sampled 100 error cases randomly and obtained the following two types of errors.
First, due to the query graph generation strategy, it is difficult to generate a query graph
for some questions without predicate relations in the knowledge graph, which are approxi-
mately 63% of the questions. Second, the wrong query graph is generated due to the wrong
entity or expression link, which is approximately 32% of the query graphs. For example, for
the question “What guitar does Corey Taylor play?”, there is no obvious constraint word in
the question that leads to the wrong query graph.

5. Conclusions

In this paper, we proposed a graph convolution operation on a dependency structure
of the question to obtain relation information between words and then integrated the
relation information into the question vector to generate and rank the query graph. Our
proposed methods have a dual objective of reducing the search space and improving the
accuracy of relation selection during the query graph generation process. This, in turn,
has a direct impact on the ranking of query graphs. Through experimentation, the results
have demonstrates the effectiveness of our approach in addressing both complex questions
and the WQSP dataset, thereby highlighting the robustness of our method. Notably, our
method has shown a significant improvement over previous baseline methods.

Our methods also have its own weaknesses. One such weakness may be in the
handling of certain types of questions or datasets that require specialized treatment or have
unique characteristics. Additionally, there may be limitations in terms of scalability and
efficiency when dealing with extremely large-scale datasets or in scenarios with real-time
constraints. These weaknesses provide opportunities for future research and improvement.
In future work, we plan to explore additional enhancements. One aspect we will focus
on is pruning dependency structures to eliminate unnecessary information, which can
help streamline the processing and improve efficiency. Furthermore, we aim to increase
the accuracy of answer prediction, ensuring more precise and reliable responses. By
continuously refining and expanding our approach, we anticipate further advancements in
the field of question answering systems.

Author Contributions: Conceptualization, C.Z.; methodology, C.Z.; software, D.Z.; validation, D.Z.,
L.W. and C.Z.; formal analysis, N.M.; investigation, C.Z.; resources, C.Z.; writing—original draft
preparation, C.Y., C.Z.; writing—review and editing, C.Z., B.W., F.X. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Social Science Foundation under Award
19BYY076; in part by the Key R & D project of Shandong Province 2019 JZZY010129; in part by
the Shandong Natural Science Foundation under Award ZR2021MF064, Award ZR2021MF064, and
Award ZR2021QG041; and in part by the Shandong Provincial Social Science Planning Project
under Award 19BJCJ51, Award 18CXWJ01, and Award 18BJYJ04. This project is also supported
by Major Science and Technology Demonstration Projects: Intelligent Perception Technology in

359



Electronics 2023, 12, 2675

Complex Dynamic Scenes and IT Application Demonstration in Emergency Management and Social
Governance, No. 2021SFGC0102).

Data Availability Statement: The data presented in this study are openly available in [6,8].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bordes, A.; Usunier, N.; Chopra, S.; Weston, J. Large-scale simple question answering with memory networks. arXiv 2015,
arXiv:1506.02075. [CrossRef].

2. Cai, Q.; Alexander, Y. Large-scale semantic parsing via schema matching and lexicon extension. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, 4–9 August 2013; pp. 423–433.

3. Krishnamurthy, J.; Mitchel, T.M. Weakly supervised training of semantic parsers. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Jeju Island, Republic of Korea, 12–14 July 2012; pp. 754–765.

4. Abujabal, A.; Yahya, M.; Riedewald, M.; Weikum, G. Automated template generation for question answering over knowledge
graphs. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 1191–1200.
[CrossRef]

5. Hu, S.; Zou, L.; Yu, J.X.; Wang, H.; Zhao, D. Answering natural language questions by subgraph matching over knowledge
graphs. IEEE Trans. Knowl. Data Eng. 2017, 30, 824–837. [CrossRef]

6. Bao, J.; Duan, N.; Yan, Z.; Zhou, M.; Zhao, T. Constraint-based question answering with knowledge graph. In Proceedings of the
COLING, Osaka, Japan, 11–16 December 2016; pp. 2503–2514.

7. Luo, K.; Lin, F.; Luo, X.; Zhu, K.Q. Knowledge base question answering via encoding of complex query graphs. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018;
pp. 2185–2194. [CrossRef]

8. Yih, W.-T.; Chang, M.-W.; He, X.; Gao, J. Semantic Parsing via Staged Query Graph Generation: Question Answering with
Knowledge Base. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Beijing, China,
26–31 July 2015.

9. Chen, Z.-Y.; Chang, C.-H.; Chen, Y.-P.; Nayak, J.; Ku, L.-W. UHop: An unrestricted-hop relation extraction framework for
knowledge-based question answering. arXiv 2019, arXiv:1904.01246. [CrossRef].

10. Lan, Y.; Wang, S.; Jiang, J. Multi-hop knowledge base question answering with an iterative sequence matching model. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 359–368.
[CrossRef]

11. Lan, Y.; Jiang, J. Query graph generation for answering multi-hop complex questions from knowledge bases. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020. [CrossRef]

12. Miwa, M.; Bansal, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016. [CrossRef]

13. Xu, K.; Feng, Y.; Huang, S.; Zhao, D. Semantic Relation Classification via Convolutional Neural Networks with Simple Negative
Sampling. Comput. Sci. 2015, 71, 941–949. [CrossRef]

14. Youcef, D.; Gautam, S.; Wei, L.J.C. Fast and accurate convolution neural network for detecting manufacturing data. IEEE Trans.
Ind. Inform. 2020, 17, 2947–2955. [CrossRef]

15. Peng, H.; Chang, M.; Yih, W.T. Maximum margin reward networks for learning from explicit and implicit supervision. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017;
pp. 2368–2378. [CrossRef]

16. Sorokin, D.; Gurevych, I. Modeling semantics with gated graph neural networks for knowledge base question answering. In
Proceedings of the 27th International Conference on Computational Linguistics, Association for Computational Linguistics, Santa
Fe, NM, USA, 20–26 August 2018; pp. 3306–3317. [CrossRef]

17. Iyyer, M.; Yih, W.-T.; Chang, M.-W. Search-based neural structured learning for sequential question answering. In Proceedings
of the Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017;
pp. 1821–1831. [CrossRef]

18. Krishnamurthy, J.; Dasigi, P.; Gardner, M. Neural semantic parsing with type constraints for semi-structured tables. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017;
pp. 1516–1526. [CrossRef]

19. Moqurrab, S.A.; Ayub, U.; Anjum, A.; Asghar, S.; Srivastava, G. An accurate deep learning model for clinical entity recognition
from clinical notes. IEEE J. Biomed. Health Inform. 2021, 25, 3804–3811. [CrossRef] [PubMed]

20. Wang, F.; Wu, W.; Li, Z.; Zhou, M. Named entity disambiguation for questions in community question answering. Knowl.-Based
Syst. 2017, 126, 68–77. [CrossRef]

21. Bast, H.; Haussmann, E. More accurate question answering on freebase. In Proceedings of the 24th ACM International Conference
on Information and Knowledge Management, Melbourne, Australia, 18–23 October 2015; pp. 1431–1440. [CrossRef]

22. Chakraborty, N.; Lukovnikov, D.; Maheshwari, G.; Trivedi, P.; Lehmann, J.; Fischer, A. Introduction to neural network based
approaches for question answering over knowledge graphs. arXiv 2019, arXiv:1907.09361. [CrossRef].

360



Electronics 2023, 12, 2675

23. Chen, H.-C.; Chen, Z.-Y.; Huang, S.-Y.; Ku, L.-W.; Chiu, Y.-S.; Yang, W.-J. Relation extraction in knowledge base question
answering: From general-domain to the catering industry. In Proceedings of the International Conference on HCI in Business,
Government, and Organizations, Las Vegas, NV, USA, 15 July 2018; pp. 26–41. [CrossRef]

24. Yang, Z.; Garg, H.; Li, J.; Srivastava, G.; Cao, Z. Investigation of multiple heterogeneous relationships using a q-rung orthopair
fuzzy multi-criteria decision algorithm. Neural Comput. Appl. 2021, 33, 10771–10786. [CrossRef]

25. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2019, arXiv:1810.04805. [CrossRef].

26. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [CrossRef].
27. Marcheggiani, D.; Ivan, T. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In Proceedings

of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017;
pp. 1506–1515. [CrossRef]

28. Das, R.; Dhuliawala, S.; Zaheer, M.; Vilnis, L.; Durugkar, I.; Krishnamurthy, A.; Smola, A.; McCallum, A. Go for a walk and arrive
at the answer: Reasoning over paths in knowledge bases using reinforcement learning. arXiv 2018, arXiv:1711.05851.

29. Lan, Y.; Wang, S.; Jiang, J. Knowledge base question answering with topic units. In Proceedings of the International Joint
Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 5046–5052. [CrossRef]

30. Bhutani, N.; Suhara, Y.; Tan, W.-C.; Halevy, A.Y.; Jagadis, H.V. Open Information Extraction from Question-Answer Pairs. In
Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT 2019), Minneapolis, MN, USA, 3–5 June 2019; pp. 2294–2305.

31. Ahmed, G.A.; Saha, A.; Kumar, V.; Bhambhani, M.; Sankaranarayanan, K.; Chakrabarti, S. Neural Program Induction for KBQA
Without Gold Programs or Query Annotations. In Proceedings of the International Joint Conference on Artificial Intelligence,
Macao, China, 10–16 August 2019; pp. 4890–4896. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

361





Citation: Li, W.; Zhang, C.; Cui, Y.;

Shi, J. A Collaborative

Multi-Granularity Architecture for

Multi-Source IoT Sensor Data in Air

Quality Evaluations. Electronics 2023,

12, 2380. https://doi.org/10.3390/

electronics12112380

Academic Editor: Franco Cicirelli

Received: 17 April 2023

Revised: 13 May 2023

Accepted: 23 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Collaborative Multi-Granularity Architecture for
Multi-Source IoT Sensor Data in Air Quality Evaluations

Wantong Li, Chao Zhang *, Yifan Cui and Jiale Shi

School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;
wantongli2023@163.com (W.L.); cuiyifan0808@163.com (Y.C.); shijiale868@163.com (J.S.)
* Correspondence: czhang@sxu.edu.cn

Abstract: Air pollution (AP) is a significant environmental issue that poses a potential threat to
human health. Its adverse effects on human health are diverse, ranging from sensory discomfort
to acute physiological reactions. As such, air quality evaluation (AQE) serves as a crucial process
that involves the collection of samples from the environment and their analysis to measure AP levels.
With the proliferation of Internet of Things (IoT) devices and sensors, real-time and continuous
measurement of air pollutants in urban environments has become possible. However, the data
obtained from multiple sources of IoT sensors can be uncertain and inaccurate, posing challenges
in effectively utilizing and fusing this data. Meanwhile, differences in opinions among decision-
makers regarding AQE can affect the outcome of the final decision. To tackle these challenges,
this paper systematically investigates a novel multi-attribute group decision-making (MAGDM)
approach based on hesitant trapezoidal fuzzy (HTrF) information and discusses its application to
AQE. First, by combining HTrF sets (HTrFSs) with multi-granulation rough sets (MGRSs), a new
rough set model, named HTrF MGRSs, on a two-universe model is proposed. Second, the definition
and property of the presented model are studied. Third, a decision-making approach based on the
background of AQE is constructed via utilizing decision-making index sets (DMISs). Lastly, the
validity and feasibility of the constructed approach are demonstrated via a case study conducted
in the AQE setting using experimental and comparative analyses. The outcomes of the experiment
demonstrate that the presented architecture owns the ability to handle multi-source IoT sensor data
(MSIoTSD), providing a sensible conclusion for AQE. In summary, the MAGDM method presented
in this article is a promising scheme for solving decision-making problems, where HTrFSs possess
excellent information description capabilities and can adequately describe indecision and uncertainty
information. Meanwhile, MGRSs serve as an outstanding information fusion tool that can improve
the quality and level of decision-making. DMISs are better able to analyze and evaluate information
and reduce the impact of disagreement on decision outcomes. The proposed architecture, therefore,
provides a viable solution for MSIoTSD facing uncertainty or hesitancy in the AQE environment.

Keywords: granular computing; multi-granulation rough set; hesitant trapezoidal fuzzy set; air
quality evaluation

1. Introduction

AP [1,2] is a matter of paramount concern to both the environment and public health,
brought about by the contamination of air by chemical, physical, or biological agents. This
deleterious phenomenon is known to have far-reaching implications in the agricultural
industry [3], as it has been demonstrated to cause acid rain, reduced crop production, and
inferior soil fertility. Notably, AP is a leading contributor to the global climate change
crisis, resulting in more severe weather patterns across the globe [4]. Recent studies have
provided compelling evidence to suggest that exposure to AP is linked to several negative
health outcomes, including developmental delays in children [5], increased risk of mental
illnesses such as depression [6], and poor reproductive health in females [7]. In this light,
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AP is currently one of the most significant risk factors affecting global health. According to
a survey by the European Environment Agency (EEA) in 2020, 96% of city residents in the
European Union were exposed to higher than recommended levels of fine particulate matter,
according to the World Health Organization (WHO) [8], resulting in 238,000 premature
deaths. Furthermore, WHO has conducted extensive research on the effects of AP and
found that environmental and household AP cause approximately 6.7 million deaths per
year, with 2.4 billion people exposed to hazardous levels of household AP.

AQE is an indispensable tool for comprehending the state of air quality and forecasting
its future trends. The objective of AQE is to mitigate the deleterious impact of AP and foster
a healthy atmospheric environment, and, thus, it has become a prominent research topic
in recent years [9,10]. Numerous scholars have conducted research in various directions
via using different approaches in the context of AQE. For instance, Oprea [11] utilized an
expert system to carry out research on knowledge modeling for better analysis of AP in
city regions. Wang et al. [12] proposed a deep convolutional neural network method for
predicting AP. Gu et al. [13] suggested a new fuzzy multiple linear regression model to
forecast the air quality index [14–16]. However, AQE, using neural networks, necessitates
an adequate amount of training examples to ensure sufficient training of the model, and
AQE based on expert systems requires frequent manual maintenance and manipulation
of the AQE knowledge base, which hinder the accuracy guarantee. With the widespread
adoption of IoT technologies [17–20], sensor networks have become increasingly popular
for collecting air quality data from multiple sources. IoT sensors [21] are capable of
collecting and transmitting data in real time, providing a dynamic understanding of AP
patterns by continuous and high-resolution measurements of air quality parameters. The
use of MSIoTSD allows for a more comprehensive and accurate assessment of air quality.
However, the accuracy and reliability of MSIoTSD [22] can be affected by various factors,
leading to uncertain data. Moreover, effectively utilizing and fusing MSIoTSD presents a
challenge. In contrast, AQE, using fuzzy methods, not only overcomes the limitations of the
aforementioned approaches, but can also effectively deal with multi-source uncertain data.
Furthermore, AQE is influenced by several factors, including different locations, attributes,
and times, which can be established as a typical MAGDM problem.

This paper primarily examines and resolves the AQE issue from three perspectives.
First, we investigate a fuzzy approach applied to AQE in the context of HTrFSs during the
information description process. Second, we use MGRSs to fuse multiple sources of AQE
data during the information fusion stage process. Finally, we employ DMISs to diminish
the impact of inconsistent opinions of individual decision-makers within a decision group
on the decision outcome during the information analysis process. Based on the analysis
above, we recall the components of HTrFSs and MGRSs below.

1.1. A Brief Review of HTrFSs

Zadeh [23] proposed the theory of fuzzy sets to describe various fuzzy concepts of
reality in 1965. However, classical fuzzy sets have their own limitations when dealing
with multiple sources of uncertain information. Therefore, scholars have explored general-
ized fuzzy sets in depth [24–27]. Hesitant fuzzy sets (HFSs), which represent generalized
fuzzy sets describing hesitant information, were proposed by Torra [28]. HFSs permit the
membership degree of elements belonging to a set to consist of multiple possible values.
Since the creation of HFSs, many experts have researched HFSs from various perspec-
tives, and a series of achievements have been obtained. For instance, Divsalar et al. [29]
presented a novel TODIM approach using the Choquet integral in a probabilistic hesitant
fuzzy environment. Krishankumar et al. [30] proposed a novel decision framework with
completely unknown weight information in the context of interval-valued probabilistic
HFSs. Ahmad et al. [31] proposed an innovative resolution of multi-objective optimization
issues by applying hesitant fuzzy aggregation operators. Fuzzy data serve as a type of data
that are imprecise or have uncertain sources. Trapezoidal fuzzy numbers (TrFNs) have
more advantages in describing fuzzy data compared with simple real-valued numbers, as
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they contain a specific interval with a full membership rank. Therefore, Ye [32] introduced
the concept of HTrFSs, which takes advantage of the unique benefits of TrFNs and HFSs.
The distinctive advantages of HTrFSs in dealing with uncertain information have prompted
scholars to conduct a substantial number of theoretical and practical explorations [33,34].

1.2. A Brief Review of MGRSs

Granular computing (GrC) has emerged as a structured solution model for addressing
large-scale complicated problems by simulating human thinking and replacing exact so-
lutions with feasible satisfactory approximations that meet the needs of actual problems.
As a novel concept and computing paradigm in artificial intelligence, GrC has revolu-
tionized the traditional understanding of computing and holds great value in tackling
complex problems [35,36]. Zadeh introduced the concept of fuzzy information granulation
in 1979 [37], and, after years of research, officially presented the concept of GrC in 1997 [38].
With continuous research and development efforts, GrC has been widely utilized and
refined [39–41].

The rough set theory is a prominent GrC model that was first proposed by Pawlak [42]
in 1982. However, due to the overly stringent requirements for equivalence relations in
classical rough set models, scholars have extended rough sets from different aspects [43–45].
In terms of relations, Qian et al. introduced optimistic and pessimistic styles of MGRSs [46]
to describe issues through multiple binary relations, thereby enhancing the ability of
multi-source information systems to handle uncertain information. In recent years, many
generalized MGRSs have been developed to cater to the diverse needs of users [47–50].
In terms of universes, decision-makers can express decision information more accurately
on two universes [51] than on a single universe. Sun and Ma [52] further proposed the
theory of MGRSs on two-universe. The MGRSs on two-universe can effectively describe
complex real-world information. For instance, in AQE, it is essential to consider the
relationship between locations and air pollutants. This relationship consists of two distinct
types of objects that belong to different universes. Furthermore, MGRSs on two-universe
offer both optimistic and pessimistic information fusion strategies, which are valuable for
risk-seeking and risk-averse decision-making, respectively. This allows the integration of
diverse opinions from various experts, leading to a consensus through the integration of
multiple binary relations. Thus, MGRSs on two-universe serve as an excellent information
fusion strategy. Therefore, the research on the MGRSs theory of two universes and its
application has made significant progress [53–55]. Moreover, the probabilistic soft logic has
also shown remarkable performance in handling uncertain information and integrating
multiple sources of information. In recent years, researchers have applied this approach to
a wide range of fields. For instance, Gu et al. [56] proposed a novel approach for extracting
temporal information about complex medicine by integrating the probabilistic soft logic
and textual feature feedback. Alshukaili et al. [57] presented a technique for structuring
linked data search results by leveraging the probabilistic soft logic. Fakhraei et al. [58]
developed a network-based method for predicting drug-targeted interactions using the
probabilistic soft logic.

1.3. Study Motivations

This paper explores an MAGDM approach based on HTrF MGRSs and its applications
in AQE. In the following, we introduce some of the main study motivations.

1. As AQE plays a crucial role in measuring air quality to reduce air pollution, there
is a pressing need to explore further methods in AQE. Consequently, we intend to
propose a new collaborative multi-granularity architecture to AQE.

2. HTrFSs demonstrate superior capabilities in handling hesitant and uncertain data,
while MGRSs exhibit excellent performance in multi-source information fusion. Thus,
we intend to synergistically combine HTrFSs and MGRSs to present a novel model.
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3. Considering that the opinions of different experts within a decision-making group
may differ significantly, it is imperative to utilize DMISs to mitigate the impact of
disagreement on the outcome of decisions.

1.4. Contributions of This Article

By combining the above research motivations, this article presents the following
innovative ideas.

1. An HTrF MGRS two-universe model is proposed, and some properties and definitions
are discussed.

2. A novel MAGDM method is constructed by utilizing HTrF, MGRSs, and DMISs, and
applying them to the AQE.

This paper is structured as below. In Section 2, we review the fundamental concept of
HTrFSs and MGRSs on two-universe. In Section 3, we develop the concept of HTrF MGRSs
and introduce the related properties. In Section 4, we present an MAGDM method based
on HTrF MGRSs. Then, we give an application of the presented approach to AQE and
analyze it in comparison with other approaches in Section 5. In Section 6, we summarize
the article and discuss several options for research in the future.

Furthermore, we add a table to this paper to provide readers with easy-to-find expla-
nations of any abbreviations used in the text, as shown in Abbreviations section.

2. Basic Knowledge

For a better understanding, this section introduces the fundamental concepts of HTrFSs
and MGRSs.

2.1. HTrFSs

HTrFSs have shown flexibility in handling hesitant, inaccurate information. Before
introducing the notion of HTrFSs, we first present the TrFN.

Definition 1 ([59]). A fuzzy number ã = (a, b, c, d) is called a TrFN when its membership function
is denoted as:

μα̃(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, (x < a or x > d)
(x− a)/(b− a), (a ≤ x < b)
1, (b ≤ x ≤ c)
(x− d)/(c− d), (c < x ≤ d)

, (1)

where 0 ≤ a ≤ b ≤ c ≤ d ≤ 1, a and the closed interval [b, c] and d stand for the lower, mode,
upper limits of ã, respectively.

Afterward, we review the fundamental understanding of HTrFSs.

Definition 2 ([32]). Suppose U is a universe. An HTrFS on U is expressed as:

E = {〈x, hE(x)〉|x ∈ U }, (2)

where hE(x) : U → Trap[0, 1] represents the possible degree of memberships of x in E, and
Trap[0, 1] is the set containing all trapezoidal values in [0, 1]. Moreover, hE(x) is named as an
HTrF element, and the set of all HTrFSs on U is expressed as HTrF(U).

As the rules for the operations of HTrFSs support decision-making processes to effi-
ciently analyze data, we present the laws for the operations of HTrFSs below.

Definition 3 ([32]). Suppose U is a universe. ∀E1, E2 ∈ HTrF(U), then:
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1. The complement of E1, expressed as Ec
1, is given by ∀x ∈ U, hEc

1
(x) =∼ hE1(x) =

{
(1− a f

E1
,

1− b f
E1

,1− c f
E1

,1− d f
E1
) | f = 1, 2, . . . l }.

2. The intersection of E1 and E2, expressed as E1 ∩ E2, is given by ∀x ∈ U, hE1∩E2(x)=

hE1(x) ∧ hE2(x) =
{
(a f

E1
∧ a f

E2
, b f

E1
∧ b f

E2
, c f

E1
∧ c f

E2
, d f

E1
∧ d f

E2
)| f = 1, 2, . . . l

}
.

3. The union of E1 and E2, expressed as E1 ∪ E2, is given by ∀x ∈ U, hE1∪E2(x) =hE1(x)∨
hE2(x) =

{
(a f

E1
∨ a f

E2
, b f

E1
∨ b f

E2
, c f

E1
∨ c f

E2
, d f

E1
∨ d f

E2
)| f = 1, 2, . . . l

}
.

The utilization of score functions represents a pivotal approach for the selection of the
optimal alternative in HTrF MAGDM problems; hence, we discuss the following notion of
HTrF score functions.

Definition 4 ([32]). For an HTrF element, hE(x), S(hE(x)) = 1
4#(hE(x))∑ã∈hE(x) ã, where

#(hE(x)) is the number of TrFNs in hE(x). For two HTrF elements, hE(x) and hF(x), if S(hE(x)) ≥
S(hF(x)), then hE(x) ≥ hF(x).

To compare two HTrFSs, it is necessary to propose a new definition; hence, we present
the notion of HTrF subsets below.

Definition 5. Suppose U is a universe. ∀E, F ∈ HTrF(U), if hE(x)≺hF(x) is true for every
x ∈ U , such that hE(x)≺hF(x)⇔ a f

E ≤ a f
F , b f

E ≤ b f
F, c f

E ≤ c f
F, d f

E ≤ d f
F f= 1, 2, . . . l, then E

is mentioned as an HTrF subset of F, expressed as E ⊆ F. It is evident that ⊆ is anti-symmetric,
reflexive, and transitive on HTrF(U).

2.2. MGRSs on Two-Universe

MGRSs on two-universe have outstanding performance in multi-source information
fusion, and we recall the fundamental definitions of MGRSs on two-universe below.

Definition 6 ([51]). Suppose U, V are two universes, and R is a binary compatibility relation family
over U × V, in respect to a family of binary mapping Fk : U → 2V u �→ {v ∈ V|(u, v) ∈ Rk} ,
Rk ∈ R, k = 1, 2, . . . , n. Then, the MG approximation space on two-universe is expressed as
(U, V, R).

Definition 7 ([52]). Suppose F1 and F2 are two binary mappings over U × V. ∀Y ⊆ V, the
pessimistic and optimistic lower and upper MG approximations in the matter of (U, V, R) are
expressed as:

aprP
F1+F2

(Y) = {x ∈ U|F1(x) ⊆ Y ∧ F2(x) ⊆ Y }; (3)

aprP
F1+F2

(Y) = aprP
F1+F2

(Yc)c; (4)

aprO
F1+F2

(Y) = {x ∈ U|F1(x) ⊆ Y ∨ F2(x) ⊆ Y }; (5)

aprO
F1+F2

(Y) = aprO
F1+F2

(Yc)c, (6)

The pair (aprP
F1+F2

(Y), aprP
F1+F2

(Y)) and (aprO
F1+F2

(Y), aprO
F1+F2

(Y)) are referred to as a
pessimistic MGRS on two-universe and an optimistic MGRS on two-universe, respectively.

This section offers a comprehensive overview of the theoretical foundations underlying
TrFNs, HTrFSs, HTrF score functions and subsets, as well as MGRSs on two-universe. First,
we present the definition of TrFNs and proceed to discuss the fundamental definition
and operation rules of HTrFSs. Subsequently, we introduce the definition of HTrF score
functions and HTrF subsets. Moreover, we provide a brief introduction to the basic concepts
of optimistic and pessimistic MGRSs on two-universe.
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3. HTrF MGRSs on Two-Universe

This section systematically discusses the notion of HTrF MGRSs on two-universe. First,
a definition of HTrF relations (HTrFRs) on two-universe is given.

Definition 8. An HTrFR R on U ×V is given by:

R = {〈(x, y), hR(x, y)〉|(x, y) ∈ U ×V }, (7)

where hR(x, y) : U ×V → Trap[0, 1] represents the possible degree of memberships of (x, y) ∈
U ×V. For convenience, the set of all HTrFRs on U ×Vis expressed as HTrFR(U ×V).

Then, we extend the HTrFRs on two-universe to the context of MGRSs.

3.1. Optimistic HTrF MGRSs on Two-Universe

Definition 9. Suppose U, V are two universes, Rk ∈ HTrFR(U × V)(k = 1, 2, . . . , n) is an
HTrFR over U ×V. Moreover, an HTrF MG approximation space on two-universe is expressed as
(U, V, Rk). ∀E ∈ HTrF(V), the definitions of optimistic HTrF MG lower and upper approxima-
tions on two-universe of E are given below:

n

∑
k=1

Rk

O

(E) =

⎧⎪⎨⎪⎩
〈

x, h n
∑

k=1
Rk

O
(E)

(x)

〉
|x ∈ U

⎫⎪⎬⎪⎭, (8)

n

∑
k=1

Rk

O

(E) =

⎧⎪⎨⎪⎩
〈

x, h n
∑

k=1
Rk

O

(E)
(x)

〉
|x ∈ U

⎫⎪⎬⎪⎭, (9)

where h n
∑

k=1
Rk

O
(E)

(x) = ∨n
k=1 ∧y∈V

{
hRk

c(x, y) ∨ hE(y)
}

; h n
∑

k=1
Rk

O

(E)
(x) =

∧n
k=1∨y∈V

{
hRk (x, y) ∧ hE(y)}.

The pair

(
n
∑

k=1
Rk

O
(E),

n
∑

k=1
Rk

O

(E)

)
indicates an optimistic HTrF MGRS on two-universe

of E in the matter of (U, V, Rk).

Theorem 1. Suppose U, V are two universes, Rk ∈ HTrFR(U × V)(k = 1, 2, . . ., n) is an
HTrFR over U ×V. ∀E, F ∈ HTrF(V), the optimistic HTrF MG lower and upper approximations
on two-universe meet these properties:

(1)
n
∑

k=1
Rk

O
(Ec) = (

n
∑

k=1
Rk

O

(E))
c

,
n
∑

k=1
Rk

O

(Ec) = (
n
∑

k=1
Rk

O
(E))c;

(2) E ⊆ F ⇒
n
∑

k=1
Rk

O
(E) ⊆

n
∑

k=1
Rk

O
(F) , E ⊆ F ⇒

n
∑

k=1
Rk

O

(E) ⊆
n
∑

k=1
Rk

O

(F) ;

(3)
n
∑

k=1
Rk

O
(E ∩ F) =

n
∑

k=1
Rk

O
(E) ∩

n
∑

k=1
Rk

O
(F),

n
∑

k=1
Rk

O

(E ∪ F) =
n
∑

k=1
Rk

O

(E)∪
n
∑

k=1
Rk

O

(F);

(4)
n
∑

k=1
Rk

O
(E ∪ F) ⊇

n
∑

k=1
Rk

O
(E) ∪

n
∑

k=1
Rk

O
(F),

n
∑

k=1
Rk

O

(E ∩ F) ⊆
n
∑

k=1
Rk

O

(E)∩
n
∑

k=1
Rk

O

(F).
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Proof.

(1) ∀x ∈ U, we have
n
∑

k=1
Rk

O
(Ec)=

{〈
x,∨n

k=1 ∧y∈V
{

hRk
c(x, y) ∨ hEc(y)

}〉∣∣x ∈ U
}

=
{〈

x,∨n
k=1 ∧y∈V

{
(∼ hRk (x, y)) ∨ (∼ hE(y))

}〉∣∣x ∈ U
}

=
{〈

x,∨n
k=1∧y∈V{

∼ (hRk (x, y) ∧hE(y))}〉 |x ∈ U} =
{〈

x,∼ (∧n
k=1 ∨y∈V

{
(hRk (x, y) ∧ hE(y))

}
)
〉∣∣

x ∈ U} =(
n
∑

k=1
Rk

O

(E))c.

n
∑

k=1
Rk

O

(Ec) = (
n
∑

k=1
Rk

O
(E))c is similarly obtained.

(2) Because of E ⊆ F, depending on Definition 5, we have hE(y)≺hF(y)⇔ a f
E ≤ a f

F,b f
E ≤

b f
F,c f

E ≤ c f
F,d f

E ≤ d f
F, so ∨n

k=1 ∧y∈V

{
a f

Rk
c ∨ a f

E

}
≤ ∨n

k=1∧y∈V

{
a f

Rk
c ∨ a f

F

}
and

∨n
k=1∧y∈V

{
b f

Rk
c ∨ b f

E

}
≤ ∨n

k=1 ∧y∈V

{
b f

Rk
c ∨ b f

F

}
and ∨n

k=1 ∧y∈V

{
c f

Rk
c ∨ c f

E

}
≤

∨n
k=1∧y∈V

{
c f

Rk
c ∨ c f

F

}
and ∨n

k=1 ∧y∈V

{
d f

Rk
c ∨ d f

E

}
≤ ∨n

k=1∧y∈V

{
d f

Rk
c ∨ d f

F

}
. There-

fore, we have E ⊆ F ⇒
n
∑

k=1
Rk

O
(E) ⊆

n
∑

k=1
Rk

O
(F).

E ⊆ F ⇒
n
∑

k=1
Rk

O

(E) ⊆
n
∑

k=1
Rk

O

(F) is similarly obtained.

(3) ∀x ∈ U, we have
n
∑

k=1
Rk

O
(E ∩ F) = {〈x,∨n

k=1 ∧y∈V {hRk
c(x, y) ∨ hE∩F(y)}〉|x ∈ U}=

{
〈

x,∨n
k=1 ∧y∈V {hRk

c(x, y) ∨ (hE(y) ∧ hF(y))}〉|x ∈ U} = {
〈

x, (∨n
k=1∧y∈V

{a f
Rk

c ∨ (a f
E ∧ a f

F)}, ∨n
k=1 ∧y∈V {b f

Rk
c ∨ (b f

E ∧ b f
F)}, ∨n

k=1 ∧y∈V {c f
Rk

c ∨ (c f
E ∧ c f

F)},
∨n

k=1 ∧y∈V {d f
Rk

c ∨ (d f
E ∧ d f

F)})〉|x ∈ U} = {〈x, (∨n
k=1 ∧y∈V {(a f

Rk
c ∨ a f

E) ∧ (a f
Rk

c ∨
a f

F)}, ∨n
k=1 ∧y∈V {(b f

Rk
c ∨ b f

E) ∧ (b f
Rk

c ∨ b f
F)}, ∨n

k=1 ∧y∈V {(c f
Rk

c ∨ c f
E) ∧ (c f

Rk
c ∨ c f

F)},
∨n

k=1 ∧y∈V {(d f
Rk

c ∨ d f
E) ∧ (d f

Rk
c ∨ d f

F)})〉|x ∈ U} = {〈x, h n
∑

k=1
Rk

O
(E)

(x)〉|x ∈ U} ∧

{〈x,h n
∑

k=1
Rk

O
(F)

(x)〉|x ∈ U}=
n
∑

k=1
Rk

O
(E) ∩

n
∑

k=1
Rk

O
(F) similarly,

n
∑

k=1
Rk

O

(E ∪ F)

=
n
∑

k=1
Rk

O

(E) ∪
n
∑

k=1
Rk

O

(F) is obtained.

(4) Based on the above findings, it is easily obtained that
n
∑

k=1
Rk

O
(E ∪ F) ⊇

n
∑

k=1
Rk

O
(E) ∪

n
∑

k=1
Rk

O
(F) and

n
∑

k=1
Rk

O

(E ∩ F) ⊆
n
∑

k=1
Rk

O

(E)∩
n
∑

k=1
Rk

O

(F).

�

In Theorem 1, (1) states the complement of optimistic HTrF MGRSs on two-universe;
(2) states the monotone of optimistic HTrF MGRSs on two-universe in the matter of various
HTrF targets; (3) states the multiplication of optimistic HTrF MGRSs on two-universe;
(4) states the addition of optimistic HTrF MGRSs on two-universe.

Theorem 2. Suppose U, V are two universes, Rk, Rk
′ ∈ HTrFR(U × V)(k = 1, 2, . . ., n) are

two HTrFRs on U ×V. If Rk ⊆ Rk
′, ∀E ∈ HTrF(V), the properties below are satisfied:

(1)
n
∑

k=1
Rk
′
O
(E) ⊆

n
∑

k=1
Rk

O
(E), ∀E ∈ HTrF(V);
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(2)
n
∑

k=1
Rk
′
O

(E) ⊇
n
∑

k=1
Rk

O

(E), ∀E ∈ HTrF(V).

Proof. Because of Rk ⊆ Rk
′, depending on Definition 5, we have a f

Rk
c ≥ a f

Rk
′c , and b f

Rk
c ≥

b f
Rk
′c , and c f

Rk
c ≥ c f

Rk
′c , and d f

Rk
c ≥ d f

Rk
′c∀(x, y) ∈ (U ×V).

Thus, it can be seen that
n
∑

k=1
Rk

O
(E)=

{〈
x,∨n

k=1 ∧y∈V
{

hRk
c(x, y) ∨ hE(y)

}〉∣∣x ∈ U
}
={〈

x, (∨n
k=1∧y∈V {a f

Rk
c ∨ a f

E},∨n
k=1 ∧y∈V {b f

Rk
c ∨ b f

E}, ∨n
k=1 ∧y∈V {c f

Rk
c ∨ c f

E},
∨n

k=1∧y∈V{d f
Rk

c ∨ d f
E})〉|x ∈ U} ≥ {〈x, (∨n

k=1∧y∈V{a f
R′c ∨ a f

E}, ∨n
k=1 ∧y∈V {b f

R′c ∨ b f
E},

∨n
k=1∧y∈V{c f

R′c ∨ c f
E}, ∨n

k=1 ∧y∈V {d f
R′c ∨ d f

E})〉|x ∈ U}=
n
∑

k=1
Rk
′
O
(E). Therefore, we have

n
∑

k=1
Rk
′
O
(E) ⊆

n
∑

k=1
Rk

O
(E).

Similarly,
n
∑

k=1
Rk
′
O

(E) ⊇
n
∑

k=1
Rk

O

(E) is obtained. �
Theorem 2 states that the optimistic HTrF MG lower and upper approximations on two-

universe exhibit monotonicity in the matter of the monotonic forms of multiple HTrFRs.

3.2. Pessimistic HTrF MGRSs on Two-Universe

Definition 10. Suppose U, V are two universes. Rk ∈ HTrFR(U × V)(k = 1, 2, . . . , n) is
an HTrFR over U × V. Moreover, an HTrF MG approximation space on two-universe is ex-
pressed as (U, V, Rk). ∀E ∈ HTrF(V), the definitions of pessimistic HTrF MG lower and upper
approximations on two-universe of E are given below:

n

∑
k=1

Rk

P

(E) =

⎧⎪⎨⎪⎩
〈

x, h n
∑

k=1
Rk

P
(E)

(x)

〉
|x ∈ U

⎫⎪⎬⎪⎭; (10)

n

∑
k=1

Rk

P

(E) =

⎧⎪⎨⎪⎩
〈

x, h n
∑

k=1
Rk

P

(E)
(x)

〉
|x ∈ U

⎫⎪⎬⎪⎭, (11)

where h n
∑

k=1
Rk

P
(E)

(x) = ∧n
k=1 ∧y∈V

{
hRk

c(x, y) ∨ hE(y)
}

; h n
∑

k=1
Rk

P

(E)
(x) = ∨n

k=1∨y∈V{
hRk (x, y)∧ hE(y)}.

The pair

(
n
∑

k=1
Rk

P
(E),

n
∑

k=1
Rk

P

(E)

)
indicates a pessimistic HTrF MGRS on two-universe

of E in the matter of (U, V, Rk).

Theorem 3. Suppose U, V are two universes. Rk ∈ HTrFR(U × V)(k = 1, 2, . . ., n) is an
HTrFR over U×V. ∀E, F ∈ HTrF(V), the pessimistic HTrF MG lower and upper approximations
on two-universe meet these properties:

(1)
n
∑

k=1
Rk

P
(Ec) = (

n
∑

k=1
Rk

P

(E))c,
n
∑

k=1
Rk

P

(Ec) = (
n
∑

k=1
Rk

P
(E))

c

;

(2) E ⊆ F ⇒
n
∑

k=1
Rk

P
(E) ⊆

n
∑

k=1
Rk

P
(F) , E ⊆ F ⇒

n
∑

k=1
Rk

P

(E) ⊆
n
∑

k=1
Rk

P

(F) ;
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(3)
n
∑

k=1
Rk

P
(E ∩ F) =

n
∑

k=1
Rk

P
(E) ∩

n
∑

k=1
Rk

P
(F),

n
∑

k=1
Rk

P

(E ∪ F) =
n
∑

k=1
Rk

P

(E)∪
n
∑

k=1
Rk

P

(F);

(4)
n
∑

k=1
Rk

P
(E ∪ F) ⊇

n
∑

k=1
Rk

P
(E) ∪

n
∑

k=1
Rk

P
(F),

n
∑

k=1
Rk

P

(E ∩ F) ⊆
n
∑

k=1
Rk

P

(E)∩
n
∑

k=1
Rk

P

(F).

In Theorem 3, (1) states the complement of pessimistic HTrF MGRSs on two-universe;
(2) states the monotone of pessimistic HTrF MGRSs on two-universe in the matter of various
HTrF targets; (3) states the multiplication of pessimistic HTrF MGRSs on two-universe;
(4) states the addition of pessimistic HTrF MGRSs on two-universe.

Theorem 4. Suppose U, V are two universes. Rk, Rk
′ ∈ HTrFR(U ×V)(k = 1, 2, . . ., n) are

two HTrFRs on U ×V. If Rk ⊆ Rk
′, ∀E ∈ HTrF(V), the properties below are satisfied:

(1)
n
∑

k=1
Rk
′
P
(E) ⊆

n
∑

k=1
Rk

P
(E), ∀E ∈ HTrF(V);

(2)
n
∑

k=1
Rk
′
P

(E) ⊇
n
∑

k=1
Rk

P

(E), ∀E ∈ HTrF(V);

Theorem 4 states the pessimistic HTrF MG lower and upper approximations on two-
universe exhibit monotonicity in the matter of the monotonic forms of multiple HTrFRs.

3.3. Relationships between Optimistic and Pessimistic HTrF MGRSs on Two-Universe

Theorem 5. Suppose U, V are two universes. Rk ∈ HTrFR(U × V)(k = 1, 2, . . ., n) is an
HTrFR over U ×V. ∀E ∈ HTrF(V), the optimistic and pessimistic HTrF MG lower and upper
approximations on two-universe meet these properties:

(1)
n
∑

k=1
Rk

P
(E) ⊆

n
∑

k=1
Rk

O
(E);

(2)
n
∑

k=1
Rk

P

(E) ⊇
n
∑

k=1
Rk

O

(E).

Proof. ∀x ∈ U,
n
∑

k=1
Rk

O
(E) = {〈x,∨n

k=1∧y∈V {hRk
c(x, y)∨ hE(y)}〉|x ∈ U}≥ {〈x,∧n

k=1∧y∈V

{hRk
c(x, y) ∨ hE(y)}〉|x ∈ U}=

n
∑

k=1
Rk

P
(E).

n
∑

k=1
Rk

P

(E) ⊇
n
∑

k=1
Rk

O

(E) is similarly obtained.

�

Theorem 5 states that the optimistic HTrF MG lower approximation includes the pes-
simistic HTrF MG lower approximation, and the pessimistic HTrF MG upper approximation
includes the optimistic HTrF MG upper approximation.

Remark 1. This section presents a novel model, named HTrF MGRSs, on two-universe. The model
combines the advantages of HTrFSs with MGRSs, which serves as a powerful tool to effectively
deal with the AQE issue. The HTrFSs integrate HFSs with TrFNs, which offer a robust and
flexible way of representing uncertain and imprecise AQE MSIoTSD. Compared to other fuzzy
numbers, TrFNs demonstrate higher stability and are less susceptible to minor parameter variations.
Furthermore, the various shapes of their membership functions enable them to capture fuzzy concepts
in a flexible manner, reflecting real-world scenarios more accurately. Meanwhile, HFSs enable the
expression of expert knowledge fully, as they allow the assignment of multiple membership values to
an object, thus effectively representing the uncertainty and fuzziness in human reasoning. In the
AQE process, determining the optimal solution requires the evaluation results provided by different
experts. However, these experts may have distinct viewpoints on AQE. MGRSs on two-universe are
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distinguished by their remarkable information fusion capabilities, which enable the integration of
distinct evaluation results from numerous experts via the provision of pessimistic and optimistic
strategies, ultimately leading to a consensus and agreement. In summary, the proposed HTrF
MGRSs model on two-universe has the potential to improve AQE decision ability and provide sound
conclusions for AQE.

This section presents an HTrF MGRSs on two-universe model. Initially, we provide
a precise definition of HTrFRs. Building upon this definition, we subsequently introduce
two types of HTrF MGRSs, specifically optimistic and pessimistic HTrF MGRSs. In order
to establish the theoretical foundation for the proposed model, we proceed to analyze
and prove the fundamental properties of both optimistic and pessimistic HTrF MGRSs on
two-universe.

4. The AQE Approach

The present section illustrates a novel MAGDM method to solve the AQE issue,
utilizing the presented model based on HTrF MGRSs on two-universe. The key steps of
our MAGDM method are as follows.

4.1. Application Model

We consider U =
{

x1, x2, . . . , xp
}

as a set of geographical locations and
V =

{
y1, y2, . . . , yq

}
as a set of air quality attributes. Suppose Rk ∈ HTrFR(U × V)

(k = 1, 2, . . ., n) are n HTrFRs on U ×V, which represents the HTrF AQE information pro-
vided by n experts. Then, we suppose E ∈ HTrF(U ×V) is the air quality testing sample.
Thus, an HTrF decision information system (U, V, Rk, E) in terms of AQE is obtained.

Subsequently, we propose an MAGDM method using HTrF MGRSs on two-universe.
First, based on Definitions 9 and 10, we compute the optimistic and pessimistic HTrF
MG lower and upper approximations on two-universe of E, respectively. Then, we attain

the sets
n
∑

k=1
Rk

O
(E),

n
∑

k=1
Rk

O

(E),
n
∑

k=1
Rk

P
(E), and

n
∑

k=1
Rk

P

(E). Depending on the rules of

operations in [32]: hE(x)⊕ hF(x) = ∪
ãE∈hE(x),ãF∈hF(x)

{(aE + aF, bE + bF, cE + cF, dE + dF)},

we get the sets
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E) and
n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E). Furthermore, according

to the decision strategy proposed by Sun et al. [60], we propose the decision rules for AQE
based on HTrF MGRSs over two universes. Initially, we indicated that:

T1 =

⎧⎨⎩l
∣∣∣∣max

xl∈U

⎧⎨⎩ n

∑
k=1

Rk

O

(E)(xl)⊕
n

∑
k=1

Rk

O

(E)(xl)

⎫⎬⎭
⎫⎬⎭ (12)

T2 =

⎧⎨⎩j

∣∣∣∣∣max
xj∈U

⎧⎨⎩ n

∑
k=1

Rk

P

(E)
(
xj
)
⊕

n

∑
k=1

Rk

P

(E)
(
xj
)⎫⎬⎭

⎫⎬⎭ (13)

T3 =

⎧⎨⎩i
∣∣∣∣max

xi∈U

⎧⎨⎩
⎛⎝ n

∑
k=1

Rk

O

(E)(xi)⊕
n

∑
k=1

Rk

O

(E)(xi)

⎞⎠ ⊕
⎛⎝ n

∑
k=1

Rk

P

(E)(xi)⊕
n

∑
k=1

Rk

P

(E)(xi)

⎞⎠⎫⎬⎭
⎫⎬⎭ (14)

where T1, T2, T3 denote the DMISs that consist of subscripts of the biggest HTrF ele-

ment in the corresponding HTrFSs
n
∑

k=1
Rk

O
(E) ⊕

n
∑

k=1
Rk

O

(E),
n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E) and(
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E)

)
⊕
(

n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E)

)
, respectively. In accordance with

Definition 4, the computation of the values of the score function for the HTrF elements in the
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corresponding HTrFSs mentioned above is feasible. Subsequently, we can easily obtain the
T1, T2, and T3 index sets. Next, we will discuss the practical implications of the three DMISs
described above. Optimistic MGRSs are founded on the principle of “seeking common
ground while preserving differences”, i.e., retaining both the same and inconsistent parts
of the opinions given by different experts, which can be regarded as a relatively risky
risk-seeking approach to information fusion; whereas, pessimistic MGRSs are founded on
the principle of “seeking common ground while excluding differences”, i.e., retaining the
same parts of the opinions given by different experts and removing different opinions and
claims, which can be regarded as a relatively conservative risk-averse approach to infor-
mation fusion. Thus, T1 is the optimistic evaluation result, T2 is the pessimistic evaluation
result, and T3 is the weighted evaluation result of T1 and T2, with a weighted value of 0.5.
According to the definitions above, the decision rules are given by:

1. In case T1 ∩ T2 ∩ T3 �= ∅, that xl(l ∈ T1 ∩ T2 ∩ T3) is the optimal location.
2. In case T1∩T2∩T3 = ∅, but also T1∩T2 �= ∅, that xl(l ∈ T1∩T2) is the optimal location.
3. In case T1 ∩ T2 ∩ T3 = ∅, but also T1 ∩ T2 = ∅, that xl(l ∈ T3) is the optimal location.

4.2. The Algorithm Based on HTrF MGRSs on Two-Universe for AQE

In the following, we summarize the specific steps of the proposed method, and
Algorithm 1 is further listed in terms of the specific steps.

Input: An HTrF decision information system (U, V, Rk, E).
Output: The optimal location.
Step1: Calculate the optimistic and pessimistic HTrF MG lower and upper approxima-

tions on two-universe of E, respectively.
Step2: Calculate optimistic and pessimistic HTrF MGRSs on two-universe of E, respectively.

Step3: Calculate

(
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E)

)
⊕
(

n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E)

)
.

Step4: Calculation of three types of DMISs.
Step5: Obtain the optimal location according to the decision rules.

Algorithm 1 The algorithm based on HTrF MGRSs over two universes for AQE.

Require: An HTrF decision information system (U, V, Rk, E).
Ensure: The optimal location.
1 for i = 1 to p,j = 1 to n, t = 1 to q do

2 Compute
n
∑

k=1
Rk

O
(E),

n
∑

k=1
Rk

O

(E),
n
∑

k=1
Rk

P
(E), and

n
∑

k=1
Rk

P

(E), respectively.

3 end for

4 for t = 1 to p do

5 Compute
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E) and
n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E), respectively.

6 end for

7 for t = 1 to p do

8 Compute

(
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E)

)
⊕
(

n
∑

k=1
Rk

P
(E)⊕

n
∑

k=1
Rk

P

(E)

)
.

9 end for

10 for t = 1 to p do

11 Calculate T1, T2 and T3.
12 end for

13 Calculate T1 ∩ T2 ∩ T3, T1 ∩ T2, and determine the optimal location.

Remark 2. In the above steps, we set the number of locations as p, the number of attributes as q, and
the number of experts as n. The first step has a complexity of O(pnq). For the subsequent steps, i.e.,
steps 2 to 4, the complexity is represented as O(p). Then, the complexity of the last step is denoted
as O(1). Consequently, the overall complexity of the proposed algorithm is represented as O(pnq).
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In this section, we introduce a novel MAGDM method based on HTrF MGRSs on two-
universe. We begin by introducing the HTrF decision information system. Subsequently,
we describe the specific steps of the proposed MAGDM method in detail. Then, we
apply the proposed method to AQE and propose a specific algorithm for this domain.
Additionally, we conduct a complexity analysis of the proposed algorithm to assess its
computational efficiency.

5. Case Analysis

The present section showcases the viability of the proposed MAGDM approach within
the realm of AQE by means of a practical case study. Additionally, a comprehensive series
of comparative and experimental analyses are executed to validate the efficacy of the
presented approach.

5.1. Case Study in the Background of AQE

This study utilizes the AQE data of 31 provincial capital cities in China (https://www.
aqistudy.cn/historydata/, accessed on 16 April 2023). Specifically, we employ six air pol-
lutants, namely PM2.5, PM10, SO2, CO, NO2, and O3, to determine the level of air quality,
and consider the data from February, March, June, September, October, and December in
the years 2018, 2019, and 2020 as decision-makers. Then, we define the set of 31 cities as
U = {x1, x2, . . . , x31}, while the set of attributes are defined as V = {y1, y2, y3, y4, y5, y6},
where y1 represents PM2.5, y2 represents PM10, y3 represents SO2, y4 represents CO, y5
represents NO2, and y6 represents O3. Next, we assume R = {R1, R2, R3} as the evaluation
information, and let the values of the air quality test sample E be the average values on
V. Furthermore, we process the obtained data to convert it into fuzzy data, which is done

by applying the formula: μij =

(
bij −min

i
bij

)
/
(

max
i

bij −min
i

bij

)
. Here, bij denotes the

raw value of air pollutant yj for city xi, while μij represents the corresponding fuzzy data.
Subsequently, we convert the fuzzy data to HTrF data. In particular, we denote μ2

ij, μ3
ij, μ6

ij,

μ9
ij, μ10

ij , and μ12
ij as the corresponding fuzzy data for February, March, June, September,

October, and December, respectively. Next, we can obtain the corresponding HTrF element
represented as dij =

{
(μ3

ij, μ6
ij, μ9

ij, μ12
ij ), (μ

2
ij, μ6

ij, μ10
ij , μ12

ij )
}

. By following this process, we
obtain the HTrF decision information system.

Then, we will follow the steps of the proposed algorithm to compute. First, we calcu-

late
n
∑

k=1
Rk

O
(E),

n
∑

k=1
Rk

O

(E),
n
∑
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Rk

P
(E), and
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(E), respectively. Next, we further get
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(E) and
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∑
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(E). Then, we calculate the values of the

score function for the HTrF elements in the corresponding sets
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)
, respectively. Thus, it is easy to get T1 ∩ T2 ∩ T3 ={12} �= ∅,

which implies that x12 is the optimal location and x12 is Haikou City.

5.2. Comparative Analysis

To establish the efficacy of the presented approach, the present section demonstrates
that the MAGDM approach based on HTrF MGRSs is efficient by comparing differ-

ent similar methods through comparative experiments. Set

(
n
∑

k=1
Rk

O
(E)⊕

n
∑

k=1
Rk

O

(E)

)

⊕
(

n
∑

k=1
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P
(E)⊕

n
∑

k=1
Rk

P

(E)

)
is a compromise that combines the optimistic and pessimistic
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scenarios, and its ranking results have the advantage of being comprehensive. Thus, we
use the ranking results of the above set for comparative analysis.

5.2.1. Comparative Analysis with Classic HTrF MAGDM Approaches

First, we conduct a comparison of the proposed approach with several classical HTrF
MAGDM methods, including HTrF averaging (HTrFA) operators, HTrF geometric (HTrFG)
operators, HTrF Einstein averaging (HTrFEA) operators, HTrF Einstein geometric (HTrFEG)
operators, the HTrF VIKOR method, the HTrF TOPSIS method, and the improved HTrF
TOPSIS method. The HTrF VIKOR method ranks alternatives by maximizing group utility
and minimizing individual regret values. The HTrF TOPSIS method sorts alternatives
according to their distance from the ideal solution. Despite its effectiveness, the optimal
solution selected by the HTrF TOPSIS method may not always be the nearest to the positive
ideal solution and the most distant from the negative ideal solution simultaneously. Thus,
the improved HTrF TOPSIS approach utilizes an improved approach for calculating the
relative closeness coefficient based on the HTrF TOPSIS approach. Our comparative
findings are shown in Figure 1.

It is apparent from Figure 1 that there is minimal disparity between the ranking
conclusions derived from various methodologies. The approach presented in this study
aligns with the optimal schemes adopted by HTrFG operators, HTrFEG operators, the
HTrF VIKOR method, the HTrF TOPSIS method, and the improved HTrF TOPSIS method.
While the optimal scheme selected by HTrFA operators and HTrFEA operators does not
correspond with the methodology proposed in this paper, the overall trend remains consistent.
This observation provides compelling evidence for the validity of the presented methodology.
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Figure 1. Comparison with classical HTrF MAGDM methods.

5.2.2. Comparative Analysis with the HTrF MABAC Method

This study next employs the Multi-Attributive Border Approximation area Com-
parison (MABAC) [61] approach to conduct a comparative analysis. The fundamental
assumption of this method is to define the distance between the alternatives and the
boundary approximation zone. In the MABAC method, each alternative is evaluated and
ranked based on the difference in the specified distances. Notably, the MABAC method
is distinguished by its mathematical simplicity and the stability of its evaluation results.
It also takes into consideration the potential value of gains and losses and produces com-
prehensive results. Therefore, it is essential to compare the presented approach with the
MABAC approach to validate the efficacy of the proposed approach. The conclusions of
the comparison between this presented method and the HTrF MABAC method are shown
in Figure 2.
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Figure 2. Comparison with the HTrF MABAC method.
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From Figure 2, it is incontrovertible that the presented methodology and the HTrF
MABAC approach demonstrate a congruous overall trend, and, more notably, select the
same optimal scheme. This observation serves as further evidence of the efficacy and
soundness of the proposed methodology.

5.3. Experimental Analysis

The Spearman correlation coefficient is widely utilized in statistical analysis as a non-
parametric measure for evaluating the correlation between two variables. It employs a
monotonic function to gauge the correlation strength between two statistical variables. In
this article, we apply the Spearman correlation coefficient to assess the relevance of the
method presented in this article in comparison to other similar methods. The number
of ranking positions for the presented approach and other approaches are denoted as
Ind(Xl)(l = 1, 2, . . . , n) and Ind(xl), respectively. Hence, the Spearman correlation coef-

ficient can be conveniently calculated as ρ = 1− 6∑ (Ind(xl)−Ind(Xl))
2

n(n2−1) . The results of this
analysis are shown in Table 1 and Figure 3.

Table 1. Spearman correlation coefficient between the presented approach and similar approaches.

Different Methods Spearman Correlation Coefficient

The HTrF MABAC method 0.8121
HTrFA operators 0.8048

HTrFEA operators 0.7989
The improved HTrF TOPSIS method 0.7915

HTrFG operators 0.7903
HTrFEG operators 0.7883

The HTrF TOPSIS method 0.7806
The HTrF VIKOR method 0.7641

According to the above experimental analysis, the correlation between the presented
MAGDM approach and other comparable approaches is relatively strong, which validate
the validity and stability of the proposed MAGDM approach.

Figure 3. Spearman correlation coefficient between different methods.
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Remark 3. It is important to note that the Equation ρ = 1− 6∑ (Ind(xl)−Ind(Xl))
2

n(n2−1) can only be
applied when all n ranks are unique integers, with Ind(xl)− Ind(Xl) representing the difference
between the two ranks of each observation and n indicating the total number of observations. This
condition must be satisfied in order for the equation to be valid and accurate in the calculation of the
Spearman correlation coefficient.

Furthermore, we summarize the advantages of the presented method, as shown
in Table 2.

Table 2. The advantage of different approaches.

Diverse
Approaches

Ranking
Decision-Making

Risks
Group

Decisions-Making
Uncertain

Information
Reduction of
Divergence

HTrF MABAC
√ × √ √ ×

HTrFA
√ × √ √ ×

HTrFEA
√ × √ √ ×

Improved
HTrF TOPSIS

√ × √ √ ×
HTrFG

√ × √ √ ×
HTrFEG

√ × √ √ ×
HTrF TOPSIS

√ × √ √ ×
HTrF VIKOR

√ × √ √ ×
The presented

method
√ √ √ √ √

5.4. Discussion

Deep learning algorithms, such as Convolutional Neural Networks, have been suc-
cessful in various applications. However, for MAGDM problems, they may not always
be the optimal solution. It should be noted that Convolutional Neural Networks and
their variations require the data to be divided into training and testing sets. While the
conventional division practice is usually to allocate 80% of the data to training and 20%
to testing, discrepancies in the ratio of training to testing data allocation, as well as the
stochasticity of the division process, may lead to dissimilar outcomes.

Regarding the data used in this study, the dataset included weather information for
367 cities in China from December 2013 onwards. However, for the purpose of demon-
stration, we selected some data from 31 provincial capital cities from 2018 to 2020 as our
sample. We took great care to ensure that the selected sample represents the characteristics
and distribution of the entire dataset. Nevertheless, future studies could use larger datasets
or incorporate additional attributes to improve the accuracy and generalizability of the
proposed method.

The experimental results outlined above demonstrate that the decision-making method
based on HTrF MGRSs on two-universe represents a comprehensive utilization of the
strengths of HTrFSs and MGRSs. First, HTrFSs offer significant advantages over other fuzzy
sets by allowing for a more precise representation of fuzzy or imprecise information through
TrFNs. Moreover, HTrFSs combine the advantages of HFSs to enable decision-makers to
express their hesitations or uncertainties during the decision-making process, thus enabling
them to consider all possible scenarios and make more informed decisions. Then, the
MGRSs on two-universe approach serves as an excellent information fusion strategy that
integrates the perspectives of different experts to arrive at a final conclusion. Furthermore,
we leverage DMISs to mitigate the impact of disagreements among the experts within the
expert group on the evaluation outcomes. By incorporating DMISs, the presented MAGDM
method offers a multifaceted evaluation scheme to experts, allowing them to attain more
sensible and precise evaluation results. In summary, the MAGDM method presented in
this article substantially reduces the uncertainty involved in decision-making and enhances
its accuracy and reliability. By combining the advantages of HTrFSs, MGRSs, and DMISs,
the proposed approach provides a viable option for assessment and decision-making in
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situations of uncertainty and fuzziness. The proposed approach demonstrates the potential
for solving decision problems in various domains.

Regarding the AQE in different cities, the experimental results indicate that the air
quality in Haikou is relatively good, whereas the air quality in Xining and Taiyuan is
relatively poor. First, the successful experience of Haikou city demonstrates that economic
development and environmental protection are not mutually exclusive. Therefore, the
government should actively strengthen ecological construction and protection to improve
air quality. Second, with sustained government control, recent data reveals that the overall
air quality in Xining has improved, suggesting the critical role of governance in improving
air quality. For cities such as Taiyuan, where coal is the main source of energy and coal
burning and industrial pollution are the main sources of pollution, the government should
actively promote the transformation of the energy structure, reduce dependence on coal,
promote clean energy, control the emissions from industrial pollution sources, and promote
other measures to reduce the emission of atmospheric pollutants. In summary, the govern-
ment should formulate and implement relevant policies and measures to improve urban
air quality and enhance residents’ quality of life.

This section presents a comprehensive case study that demonstrates the validity and
feasibility of the proposed MAGDM method within the domain of AQE. The evaluation em-
ploys comparative and experimental analysis to showcase the effectiveness of the proposed
approach. We begin by providing a detailed description of the experimental procedure.
Subsequently, we conduct a comparative analysis, where we compare and contrast the
proposed MAGDM method with several classical HTrF MAGDM methods and the HTrF
MABAC method. Moreover, we compute the Spearman correlation coefficient and plot a
graph that compares the proposed method with other similar methods. The advantages
of the proposed method are also presented in tabular format. Finally, a comprehensive
discussion and analysis is presented, which includes a discussion of the limitations of deep
learning methods, a detailed analysis of the datasets used in this paper, the potential of the
proposed method, and the implications of this paper’s research for government work.

6. Conclusions

AQE plays a crucial role in creating and maintaining a clean atmospheric environment.
In this article, we introduce a novel MAGDM method to AQE. First, we propose an HTrF
MGRS on two-universe model by combining the advantages of HTrFSs in information
representation and MGRSs in information fusion. Then, we investigate the fundamental
definitions and properties of optimistic and pessimistic HTrF MGRSs on two-universe.
Afterward, we present a general approach to the AQE decision problem. Finally, we
conduct several numerical analyses, using AQE-related datasets, to showcase the feasibility,
effectiveness, and stability of the presented MAGDM approach.

While the proposed architecture presents a promising solution for AQE, there are
still several challenging issues in theoretical and practical research. We recommend the
exploration of the following research directions in the future:

1. Realistic decision-making scenarios are diverse; hence, it is essential to extend the
application of the presented MAGDM approach to other real-world contexts, such as
water quality testing, forest fire prediction, disease diagnosis, etc.

2. Further exploration of property reduction methods and uncertainty measures for
HTrF MGRSs on two-universe has important implications for the application of the
presented MAGDM method to other uncertain and complicated decision scenarios.

3. Large-scale MAGDM can leverage the complementary knowledge structures of large
groups of people to enhance the precision and objectivity of decision-making. As such,
it is imperative to explore large-scale MAGDM to tackle intricate practical situations.
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Abbreviations

AP Air pollution AQE Air quality evaluation

MAGDM
Multi-attribute group

HTrF Hesitant trapezoidal fuzzy
decision-making

HTrFSs Hesitant trapezoidal fuzzy sets HTrFRs Hesitant trapezoidal fuzzy relations
MGRSs Multi-granulation rough sets EEA European environment agency
HFSs Hesitant fuzzy sets GrC Granular computing
WHO World health organization TrFNs Trapezoidal fuzzy numbers

HTrFA
Hesitant trapezoidal

HTrFG
Hesitant trapezoidal

fuzzy averaging fuzzy geometric

HTrFEA
Hesitant trapezoidal fuzzy

HTrFEG
Hesitant trapezoidal fuzzy

Einstein averaging Einstein geometric
DMISs Decision-making index sets IoT Internet of Things

MSIoTSD
Multi-source Internet of

MABAC
Multi-attributive border

Things sensor data approximation area comparison
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Abstract: The accuracy for target tracking using a conventional interacting multiple-model algorithm
(IMM) is limited. In this paper, a new variable structure of interacting multiple-model (VSIMM)
algorithm aided by center scaling (VSIMM-CS) is proposed to solve this problem. The novel VSIMM-
CS has two main steps. Firstly, we estimate the approximate location of the true model. This is aided
by the expected-mode augmentation algorithm (EMA), and a new method—namely, the expected
model optimization method—is proposed to further enhance the accuracy of EMA. Secondly, we
change the original model set to ensure the current true model as the symmetry center of the current
model set, and the model set is scaled down by a certain percentage. Considering the symmetry and
linearity of the system, the errors produced by symmetrical models can be well offset. Furthermore,
narrowing the distance between the true model and the default model is another effective method
to reduce the error. The second step is based on two theories: symmetric model set optimization
method and proportional reduction optimization method. All proposed theories aim to minimize
errors as much as possible, and simulation results highlight the correctness and effectiveness of the
proposed methods.

Keywords: variable structure of interacting multiple-model; symmetric model set optimization
method; proportional reduction optimization method; expected model optimization method

1. Introduction

Multiple-model (MM) is an advanced method to solve many problems, especially
the target tracking problem [1,2]. Compared with traditional algorithms combined with
radar systems [3,4], MM’s power of MM comes from the teamwork of multi parallel
estimators [5], not only a single estimator. The MM approach has been presented for more
than fifty years, and it was first proposed in [6,7]. It has a mature framework system [8,9],
and the parallel structure using Bayesian filters proves its great performance. Usually,
the model set designed in advance or generated in real-time is used to cover the possible
true models. Then, the system dynamics can be described as hybrid systems [10,11] with
discrete modes and continuous states. The model set used during the target tracking
process has a big influence on estimation results [12], and a better model set often leads to
more precise tracking results. The overall estimation is the combination of all estimations
from the parallel-running Bayesian filters [13,14]. In recent decades, the MM methods
have achieved rapid development [15]. The MM has been used widely because of its
completeness of method and easiness of implementation. In addition, it goes through three
stages altogether [16]: static MM (SMM), interacting MM (IMM) and variable-structure
interacting of MM (VSIMM).

Compared with SMM, the biggest advantage of IMM is considering the jumps between
models [6,7], and this drawback was fixed by Blom and Bar-Shalom [17]. Many advanced
methods of IMM have been proven that improving tracking accuracy and not increasing
computation burden can be conducted at the same time [18–20]. A reweighted interact-
ing multiple model algorithm [21], which is a recursive implementation of a maximum
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383



Electronics 2023, 12, 2257

a posteriori (MAP) state sequence estimator, is a competitive alternative to the popular
IMM algorithm and GPB methods. Considering the non-Gaussian white noise, the inter-
acting multiple model based on maximum correntropy Kalman filter (IMM-MCKF) [22] is
presented to combine interacting multiple model with MCKF to deal with the impulsive
noise [23]. Furthermore, to overcome the small kernel bandwidth, changing the kernel is
also presented in it. Not only that, some emerging technologies, such as neural network [24]
combined with MM also achieves rapid development. For example, the multiple model
tracking algorithm of the multiple processing switch is a reliable method to improve the
tracking precision [25]. However, the inherent defect, fixed model structure, of IMM limits
its development to a large extent. In many real-world scenarios, the true model space is not
discrete [26], but continues and uncountable. It is hard to design a model set to cover all
possible models. Therefore, it seems natural to design a model set including huge models
to fit the true model space perfectly. However, too many models leads to competition
between models, even worse than few models [5]. In addition, the surging computation
burden is another severe problem. Loosely speaking, the major objective of MM is to find a
method using as few models as possible to achieve better performance of target tracking.

FIMM and SMM both use fixed model set at all time, without considering the proper-
ties of true model space. VSIMM [27–29] is a successful method to consider. On the one
hand, it uses a limited number of models to reduce computation burden. On the other hand,
the model set generated on the current is closer than the original model set. Generally, the
VSIMM adapts the continuous mode space. It seems that tracking precision and acceptable
computation burden are both solved perfectly. The key problem of VSIMM is how to design
a highly cost-effective model set adaptive (MSA) mechanism. The model-group switching
algorithm (MGS) has been used widely in a large class of problems with hybrid (continuous
and discrete) uncertainties [30]. Compared with FIMM, the main advantage of MGS is
reducing computation significantly, but it has limited performance improvements. The
expected-mode augmentation covers a large continuous mode space by a relatively small
number of models at a given accuracy level [31]. Though the expected model is closer than
any other model, the results may even deteriorate because it is not precise enough. Simi-
larly, the model set is augmented by a variable model intended to best match the unknown
true model, and the algorithm is named the equivalent-model augmentation algorithm
(EqMA) [32]. Compared with IMM and EMA, the EqMA has stronger timeliness. The
likely-model set algorithm is also an adaptive method for VSIMM, and its cost-effectiveness
is more valid than many other methods [33]. However, those three algorithms mentioned
in [33] are more difficult to implement. A method using hypersphere-symmetric model-
subset and axis-symmetric model-subset is presented as the fundamental model-subset for
multiple models estimation with fixed structure, variable structure, and moving bank [34].
Different kinds of VSIMM algorithms provide reasonable methods to achieve model sets,
and MSA is still an open topic to study.

With the gradual upgrading of radar detection systems, the tracking of maneuvering
targets requires better accurate results. VSIMM-CS not only meets the requirements well in
terms of tracking accuracy but also hardly adds any computation. In this paper, a variable
structure of multiple-model algorithm aided by center scaling (VSIMM-CS) is proposed for
providing a rational method to generate model sets in real-time. Considering the properties
of the linear system [35] and the effect of distance between the model set and the true model
on final error, we provide a symmetric model set optimization method and proportional
reduction optimization method. For the Kalman filter [36], it is a linear system, and if the
true model is at the geometric center of the model set, any two symmetric models produce
opposite errors. Therefore, if the model set has an even number of models, the overall
error converges to 0. From another point of view, the error of a single filter is related to
the distance of the model from the actual model; thus, it is reasonable to scale down the
model set by a certain percentage. Those two theories are based on the current true model.
Therefore, to find a model that is closer to the true model, the expected model optimization
method is proposed. The modified model is closer to the real model than the original model.
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For many existing methods, such as FIMM, VSIMM-CS has excellent cost performance ratio
without more computation in the design of the initial model set. Compared with many
VSIMM algorithms, just like LMS proposed in [33], VSIMM has better implementability
with the same computation. In general, VSIMM-CS shows high precision and universality,
and it is also easy to implement.

The remaining parts of the paper are organized as follows: Section 2 introduces
the processes of the IMM and VSIMM. Section 3 provides three optimization methods:
symmetric model set optimization method, proportional reduction optimization method,
and expected model optimization method to prove the feasibility. Section 4 presents the
process of VSIMM-CS. Finally, Section 5 provides the conclusion.

2. Multiple-Model Algorithm

In this section, the processing of VSIMM and FIMM are briefly introduced.

2.1. The Process of FIMM

If the model set M = {m(1), m(2), ..., m(N)} is determined in advance, the model
probability transition matrix Π is also determined. The transition probability from i-th
model (m(i)) to j-th model (m(j)) is πij. If a multiple-model system has M models, each of
them can be denoted as

x(i)k = F(i)
k−1x(i)k−1 + G(i)

k−1(ak−1 + w(i)
k−1)

z(i)k = H(i)
k x(i)k + v(i)k

i = 1, ..., N

(1)

where x = (x, ẋ, y, ẏ)′ is the target state; a = (ax, ay)′ is the acceleration; the process noise
is wk ∼ N[0, Q]; the measurement value is z and its random measure error is v ∼ N[0, R];
F represents the state transition matrix, G represents the acceleration input matrix, and H
is the observation matrix.

Assume that the best target estimation, the state estimation covariance matrix and the
model probability of m(i) are x̂(i)k|k, p(i)k|k and u(i)

k at the time k, respectively. Then, the overall
state estimation and state estimation covariance are

x̂k|k = ∑i x(i)k|ku(i)
k (2)

pk|k = ∑i u(i)
k [p(i)k|k + (x̂k|k − x̂(i)k|k)(x̂k|k − x̂(i)k|k)

′] (3)

2.2. The Process of VSIMM

The biggest difference between FIMM and VSIMM is whether the model set changes
through the target tracking process. For a maneuvering target, its mode space of accelera-
tion S is very large and even uncountable. In most cases, the real model does not fall on
the model set. Thus, using a limited model set M to approach S is unreasonable. Simply
increasing the number of models does not improve the results, and it has a high probability
to degrade the performance, even worse than very few models. The significant advantages
of VSIMM are high precision, less computation, and strong adaptability.

If we obtain the current model set Mk through a specific method, and Mk = {m(j)
k ,

j = 1, ..., nk}. The model set Mk at any time is included in the total model set M. Then, the
model transition probability is πij = p{m(j)

k |m
(i)
k−1} = p{m(j)

k |m
(i)
k−1, sk ∈ M}. The overall

state estimation and state estimation covariance based on x̂(i)|Mk
k|k , p(i)|Mk

k|k and u(i)|Mk
k are,

respectively,
x̂k|k = ∑

m(i)∈Mk

x̂(i)|Mk
k|k u(i)|Mk

k (4)
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pk|k = ∑
m(i)∈Mk

[p(i)|Mk
k|k + (x̂(i)|Mk

k|k − x̂k|k)

(x̂(i)|Mk
k|k − x̂k|k)

′]u(i)|Mk
k|k

(5)

3. Model Optimization Method

In this section, we introduce three methods to optimize the model sets, including
symmetric model set optimization method, proportional reduction optimization method
and expected model optimization method.

3.1. Symmetric Model Set Optimization Method

A linear system can be described as shown in Figure 1. In addition, X is input and
output is AX + B. If input is −X, the output is −Ax + B. It is clear that the output of the
sum of −X and X is 2B. If AX is the error produced by the system, two opposite inputs
eliminate errors well.

Figure 1. A linear system.

It is assumed that two model sets M(1) and M(2), where M(1) = {m(1)
1 , m(1)

2 , ..., m(1)
N }

and M(2) = {m(2)
1 , m(2)

2 , ..., m(2)
N }. The current motion mode is sk. M(1) and M(2) are

centrosymmetric and axially symmetric, respectively. However, the centers of symmetries
are different. M(1)’s center of symmetry is (0,0) and M(2) is sk. Obviously, the connection
between M(1) and M(2), as shown in Figure 2, is

m(1)
i + sk = m(2)

i , i = 1, ..., N (6)

Figure 2. Example of M(1) and M(2).

For M(1), the distance between sk and m(1)
i is different, and the magnitude of the

distance is
|m(1)

q1 − sk| ≤ |m(1)
q2 − sk| ≤ · · · ≤ |m(1)

qN − sk| (7)

For IMM algorithm, the connection between the model probability u(i) and the distance
|m(i) − sk| is

|m(i) − sk| ∝
1

u(i)
(8)

Then, the following relation can be determined as

u(1)
q1 ≤ u(1)

q2 ≤ ... ≤ u(1)
qN (9)
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For each model m(1)
i , they have different errors x̂(i)|M

(1)

k|k − sk = δ
(1)
i ; thus, the overall

estimation error is
ERROR(1) = ∑

i
u(1)

i δ
(1)
i (10)

Clearly, according to (8), the overall estimation error has been reduced to a certain
extent. However, since the system is linear and it is asymmetrical with respect to sk, the
error of each m(1)

i is not eliminated well.
Since M(2) holds symmetric properties, the relationships can be obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(2)

p(1)1

− sk = . . . = m(2)

p
(2/N1)
1

− sk

= sk −m(2)

p
(2/N1+1)
1

. . . = sk −m(2)

p
(N1)
1

= δ
(2)
p1

...
m(2)

p(1)i

− sk = . . . = m(2)

p
(2/Ni)
i

− sk

= sk −m(2)

p
(2/Ni+1)
i

. . . = sk −m(2)

p
(Ni)
i

= δ
(2)
pi

...
m(2)

p(1)n
− sk = . . . = m(2)

p(2/Nn)
n

− sk

= sk −m(2)

p(2/Nn+1)
n

. . . = sk −m(2)

p(Nn)
n

= δ
(2)
pn

(11)

where N = ∑
i

Ni, and Ni is even number. In this linear system, m(2)

p(i)j

and m(2)

p
(i+Nj/2)

j

produce

two opposite errors ε
(2)
pj and −ε

(2)
pj , and

ε
(2)
pj = x

(pj)|M(2)

k|k − sk

−ε
(2)
pj = x

(pj+Nj/2)|M(2)

k|k − sk

(12)

Theoretically, if M(2) is strictly symmetric with respecting to sk, the overall errors are
equal to 0, without considering the system noise.

3.2. Proportional Reduction Optimization Method

Suppose two model sets M(1) = {m(1)
1 , m(1)

2 , ..., m(1)
N } and M(2) = {m(2)

1 , m(2)
2 , ..., m(2)

N },
and the current model is sk. The relationship between M(1) and M(2) is

m(1)
i − sk

m(2)
i − sk

= α > 1 (13)

Then, the model sets obeying the equation above can be called relative position
invariant model sets. The most important feature is that the position of the model sets
relative of sk does not change, as shown in Figure 3.

It is obvious that M(2) is more likely to have better performance than M(1). However,
the precondition is that the topology formed by M(1) includes all possible real models, as
shown in Figure 4. If the topology is tangent to the true mode space S, this situation can be
called the critical point, namely, α = α0.
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Figure 3. Topology structure of M(1) and M(2).

Figure 4. Topology of a model set including all model space S.

Thus, if some noise could be tolerated, the following relationships are determined as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(1)

1 = u(2)
1

u(1)
2 = u(2)

2
...

u(1)
N = u(2)

N

(14)

For IMM, the distance between mi and sk directly affects the final error

|mi − sk| ∝ |x̂(i)k|k − sk| (15)

From (13), if the value of α is suitable, it is easy to deduce as

|x̂(i)|M
(2)

k|k − sk| < |x̂(i)|M
(1)

k|k − sk| (16)

The connection between overall estimation error of M(1) and M(2) is

|ERROR(2)| < |ERROR(1)| (17)

Generally, if the model set is scaled down, its performance improves. However, the
scale should not be too small, or even exceed the critical point; otherwise, it may make the
covariance matrix irreversible.

3.3. Expected Model Optimization Method

If the theories referenced in Sections 3.1 and 3.2 is feasible, the common condition is:
the current model sk is known or a model is found to approach sk as close as possible. Then,
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an effective method to approach the current model sk, called expected-mode augmentation,
is given in [31]. The current expected model me is the weighted sum of all the models at
the current time

me = ∑
i

uimi (18)

and it is closer than any model to sk, namely, |me − sk| < min{|m1 − sk|, |m2 − sk|, ...,
|mN − sk|}. However, the value of |me − sk| is not small enough, as shown in Figure 5.
Expected model me may appear in anywhere in expected model space. If me + γ = sk,
where γ is the error, it is necessary to find a method to reduce γ to a certain extent.

Figure 5. Example of the mentioned hypothesis.

If me is scaled a little bit, let me becomes λme, where λ is scaling factor. Thus, (18) is
rewritten as

sk − λme = γ− (λ− 1)me (19)

and the conditions are {
λ > 1, γ < 0
0 < λ < 1, γ > 0

(20)

Obviously, the error γ reduces to γ− (λ− 1)me. If λ is chosen reasonably, the error
becomes small enough and λme becomes close enough to sk, namely, λme−sk

λme+sk
≈ 0. What is

worth noting is increasing or decreasing λ blindly contributes to serious mistakes, including
even worse performance.

4. Variable Structure of Interacting Multiple-Model Algorithm Aided by
Center Scaling

In this section, we introduce a new VSIMM algorithm: VSIMM-CS. The Sections 3.1–3.3
provide three model optimization theories. The main idea of VSIMM-CS is finding the
λme to approach the current real model sk as close as possible, and moving the original
model set M and scaling it to obtain the current model set M(k). The current model set M(k)

could achieve better performance than the original model set M. The main function of the
original model set M is locating the expected model me.

The VSIMM algorithm has a clear framework of inputs and outputs. The process of
Section 2.2 can be denoted as

VSIMM[M(k−1), M(k)] :

{x̂i|M(k)

k|k , pi|M(k)

k|k , ui|M(k)

k|k }

= VSIMM(x̂i|M(k−1)

k−1|k−1, pi|M(k−1)

k−1|k−1, ui|M(k−1)

k−1|k−1)

(21)
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Obviously, if M(k) = M(k−1), the processing becomes to FIMM. Thus, the FIMM is a
special case of VSIMM.

FIMM[M] :

{x̂i|M
k|k , pi|M

k|k , ui|M
k|k }

= FIMM(x̂i|M
k−1|k−1, pi|M

k−1|k−1, ui|M
k−1|k−1)

(22)

The novel VSIMM-CS always has an original model set M, which is taken part in the
whole processing of target tracking, and M(k) is always generated by M. M(k) and M(k−1)

are probably completely different. The steps of VSIMM-CS are shown in Algorithm 1.

Algorithm 1 VSIMM-CS Process

S1: Increase the time counter k by 1.
S2: Run the FIMM[M] cycle, and obtain the outputs: x̂i

k+1|k+1,ui
k+1|k+1 and pi

k+1|k+1,
based on the model set M.
S3: Obtain the expected model me by using EMA algorithm, which is the weighted
summation of all models.

me = ∑i ui
k+1|k+1mi

S4: Select the suitable values of α and λ to generate the current model set M(k+1).
M(k+1) = α{mi + λme, i = 1, 2, ..., N}
S5: Run the VSIMM[M(k), M(k+1)] cycle to obtain the final results.

x̂k+1|k+1 = ∑
m(i)∈M(k+1)

x̂(i)|M
(k+1)

k+1|k+1 u(i)|M(k+1)

k

pk+1|k+1 = ∑
m(i)∈M(k+1))

[p(i)|M
(k+1)

k+1|k+1 + (x̂(i)|M
(k+1)

k+1|k+1 − x̂k+1|k+1)

(x̂
(i)|M(k+1)
k+1|k+1 − x̂k+1|k+1)

′]u(i)|M(k+1)

k+1|k+1

S6: Go to S1.

The algorithm complexity is T(n) = 2n2 + 16n, and n equals to the number of models.
The most important part of the process is model set generation. The values of λ and

α have a huge impact on the performance of the model set. Therefore, it is unreasonable
to choose λ and α blindly. The biggest advantage of VSIMM-CS is that the model set is
generated in real-time without increasing huge computational complexity. In addition, if
the original model set is designed rational and the number of models is few, the proposed
VSIMM-CS can achieve rewarding results and keep the calculation volume within a reason-
able range at the same time. The rational combination of λ and α achieve great performance
in terms of precision.

5. Simulation Results

In this section, a reasonable simulation process is given: firstly, the target state, the
measurement equations and their specific parameters are presented. Secondly, the orig-
inal model set is given, including the probability transition matrix. Thirdly, the target
motion state and performance criterion are presented. Finally, different simulation results
are analyzed.

The target state and the measurement equations are, respectively, given as

xk+1 = F(j)
k xk + G(j)

k a(j)
k + w(j)

k (23)
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zk = H(j)
k xk + v(j)

k (24)

where w(j)
k ∼ N[0, 0.01]; v(j)

k ∼ N[0, 1250]; a(i)k is target acceleration input;

F =

⎡⎢⎢⎣
1 T 0 0
0 1 T 0
0 0 1 T
0 0 0 1

⎤⎥⎥⎦ and G =

[
0.5 1 0 0
0 0 0.5 1

]′
. T is time interval.

The original model set M included 4 models as{
m1 = [−10, 10]′ m2 = [10, 10]′

m4 = [−10,−10]′ m3 = [10,−10]′

}
(25)

and its topology structure is shown in Figure 6

Figure 6. Topology structure of M.

Its probability transition matrix Π is

⎡⎢⎢⎣
0.85 0.05 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.05 0.85 0.05
0.05 0.05 0.05 0.85

⎤⎥⎥⎦. The Table 1 illus-

trates an ensemble of maneuver trajectories for compare the existing and proposed algorithm.

Table 1. Parameters of deterministic scenarios.

Time k (s) ax (m/s2) ay (m/s2)

1–50 0 0
50–100 5 5
100–150 3 −7
150–200 7 −2
200–250 4 1
250–300 −4 −2
300–350 0 0

If ē represents the average error of the whole processing, it can be denoted as

ē =
kN

∑
k=k1

√√√√√√√√
⎛⎜⎜⎜⎝(x̂k − xk)

′

⎡⎢⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ∗

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎥⎦(x̂k − xk)

⎞⎟⎟⎟⎠/(kN − k1) (26)

where x̂k is the best estimation at time k, xk is the target state; and N = 300. Therefore,
different λ and α produce different ē, as shown in Table 2. The unit of ē is meters, and we
just consider the position error.
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Table 2. The average error ē of the tracking process.

λ

α
0.5 0.6 0.7 0.8 0.9

0.8 16.72 13.00 10.45 8.59 7.19
1.9 13.29 9.89 7.55 5.84 4.56
3 10.16 6.96 4.76 3.15 1.98
4.1 7.21 4.16 2.09 0.98 1.52
5.2 4.32 1.53 1.86 3.14 4.09

Different combinations of λ and α present different performances. Assume λ = 0.8, 1.9,
3, 4.1, 5.2 and α = 0.5, 0.6, 0.7, 0.8, 0.9. Their root mean square errors (RMSE) are shown in
Figure 7 with 50 times Montecarlo experiment.

In most cases, the VSIMM-CS shows great performance on target tracking, and its
errors are far lower than FIMM using 4 models. In some cases, the error is close to 0, and the
proposed VSIMM-CS achieves a perfect performance. Thus, sacrificing a certain amount of
computation for high accuracy is an acceptable approach.

When λ = 0.8, as shown in Figure 7a,b, most values of α do not present better
performance than IMM-4. Especially, when α = 0.5, it becomes the worst one and it
produces twice as many errors as IMM-4. As α is increasing, the errors reduce gradually.
Until α = 0.8, the error curve is as same as IMM-4. When α = 0.9, it becomes better than
IMM-4. Obviously, in the situation of λ = 0.8, VSIMM-CS does not show its high precision.
When λ = 1.9 in Figure 7c,d, compared with λ = 0.8, the tracking precision has been
improved. Noting that when α = 0.7 or 0.8, the errors are smaller than IMM-4. However,
when α = 0.5, it is still the worst one among them. It is surprising that, except α = 0.5
when λ = 3, other values of α have greater performance than IMM-4. The relationship
of these five algorithms has not changed. α = 0.9 is still the best one and α = 0.5 is still
the worst one. Only when α = 0.5, the performance is worse than IMM-4. While the
minimum position error is about two meters, it is not close enough to 0. Clearly, up to now,
λ does not achieve the most suitable value. When λ = 4.1, all VSIMM-CS algorithms have
better performance than IMM-4, even α = 0.5, α = 0.7, and α = 0.9 have similar tracking
precision, and α = 0.9 is not the best one anymore. When α = 0.7, the position error is
smaller than that in any situation as shown in Figure 7. When the true model does not
equal to (0, 0)′, the position error is also very close to 0. It seems that the best combination
is λ = 4.1 and α = 0.8 in this system. In this case, the conclusion, referenced in Section 3,
has been fully demonstrated. As shown in Figure 7i,j, VSIMM-CS still shows its great
performance. All the error curves are less than half of IMM-4’s, and α = 0.6 has the highest
accuracy. The simulation result of α = 0.7 is very close to α = 0.6. However, the best one
shown in Figure 7g,h does not maintain its advantage in Figure 7i,j.

For α = 0.5, as λ changes, its precision does not become better, except λ < 5.2. In
these simulation results, it is always the worst one among VSIMM-CS algorithms. The
main reason for this is that the value of α is too small. Similarly, α = 0.6 still does not
meet the requirements. Compared with α = 0.5, its performance becomes better. It is not
difficult to find that VSIMM-CS takes twice as much computation as IMM-4. However, in
most cases, the promotion of α = 0.6 is very limited, even it is worse than IMM-4 when
λ = 0.9 or 1.9. Only when λ = 5.2 does it have the best performance, which is shown in
Figure 7i,j. When α = 0.7, the precision becomes acceptable. Though it is not the best one
in all situations, the performance is greatly promoted. As λ increases, the tracking precision
of the proposed algorithm becomes better. When α = 0.8 and λ ≤ 3, it only performs worse
than α = 0.9. Especially when λ = 4.1, its performance becomes the best one. However, if
the value of λ is too large, referenced as Figure 7ij, its advantage disappears. When α = 0.9,
its performance is always the best one in Figure 7a–f. Similarly, when λ = 5.2, so much
large value of λ would deteriorate the performance.
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Figure 7. Root mean square error of VSIMM-CS.

A good demonstration of the average error ē of the unworkable portfolio is shown
in Table 2. If α < 0.7, the critical point would not bee meet the condition at certain times.
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When α = 0.7, 0.8, 0.9, respectively, there is a high probability that the proposed algorithm
achieves better performance.

In general, VSIMM-CS certainly achieves a big performance boost compared with
FIMM, if λ and α are selected rationally. Different systems tend to have different suitable
combinations of λ and α. Smaller α or larger λ do not promote the performance. According
to the current system, the reasonable λ and α always reflect satisfactory results.

6. Conclusions

In this paper, a new variable structure interacting multiple-model algorithm, VSIMM-
CS, is proposed. Its model set is generated in real-time, and the generated model set
is based on the original model set. Considering the error properties of a linear system
and the symmetry of model set structure, the two theories called proportional reduction
optimization method and symmetric model set optimization method are presented. The
main purpose of the two theories is to reduce errors. Without considering the effect of
noise, VSIMM-CS eliminates errors perfectly. To better locate the real model, the expected
model optimization method is proposed. The excepted model generated by this method
is closer than any other model. Simulation results show different combinations of α
and λ have different performances. In most cases, VSIMM-CS achieved better tracking
results. It is acceptable to sacrifice a certain amount of computation for high accuracy. A
huge performance boost can be obtained by the precise selection of α and λ. When the
performance achieves in the optimal situation, α and λ are 0.8 and 4.1, respectively. In
different simulation conditions, the results may be different. Many factors may influence
the values of α and λ, such as noise, original model set, and true mode space, etc., and our
following research aims to focus on these factors. However, the unreasonable selection of α
and λ leads to worse results. Simulation results also highlight the rationality and feasibility
of this novel approach.
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Abstract: Semi-supervised classification is one of the core methods to deal with incomplete tag
information without manual intervention, which has been widely used in various real problems for
its excellent performance. However, the existing algorithms need to store all the unlabeled instances
and repeatedly use them in the process of iteration. Thus, the large population size may result in
slow execution speed and large memory requirements. Many efforts have been devoted to solving
this problem, but mainly focused on supervised classification. Now, we propose an approach to
decrease the size of the unlabeled instance set for semi-supervised classification algorithms. In
this algorithm, we first divide the unlabeled instance set into several subsets with the information
granulation mechanism, then sort the divided subsets according to the contribution to the classifier.
Following this order, the subsets that take great classification performance are saved. The proposed
algorithm is compared with the state-of-the-art algorithms on 12 real datasets, and experiment results
show it could get a similar prediction ability but have the lowest instance storage ratio.

Keywords: semi-supervised classification; co-training method; instance selection; granular computing;
information granulation

1. Introduction

Co-training is a semi-supervised learning technique in which two classifiers are trained
on separate, complementary views of the same data, with the idea that the two views
contain different but complementary information [1–5]. In the context of co-training, a
view refers to a different representation of the same data. For example, if the data is a set of
documents, one view could be the text of the documents, while the other view could be
the meta-data associated with the documents, such as the author or the date of publication.
The basic idea behind co-training is that the two classifiers learn from each other and the
labeled data so that they become more accurate over time. In each iteration of co-training,
the classifiers make predictions on the unlabeled data, and the most confident predictions
are used to label more data. This newly labeled data is then used to retrain both classifiers,
and the process repeats. Research on co-training has shown that it can be an effective
technique for semi-supervised learning, especially in domains where the two views of the
data are indeed complementary.

It is also worth mentioning that co-training has been applied to a variety of domains,
including natural language processing (NLP), computer vision, and bioinformatics. In the
field of NLP, co-training has been used to improve the performance of sentiment analysis,
text classification, and topic modeling [6]. In computer vision, co-training has been used for
image classification and object detection [7]. In bioinformatics, co-training has been used
for protein function prediction and gene expression analysis [8]. One of the strengths of
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co-training is its ability to handle large and complex datasets, where traditional supervised
learning methods may struggle. For instance, in NLP, co-training has been shown to be
effective when dealing with imbalanced datasets, where the number of positive instances
is much smaller than the number of negative instances. In such scenarios, co-training
can effectively leverage the information contained in the unlabeled data to improve the
performance of the classifier. Another area of application for co-training is in data privacy,
where it is often the case that only a limited amount of labeled data is available for training
machine learning models. In these scenarios, co-training can effectively leverage the
information contained in the unlabeled data to improve the performance of the classifier,
without compromising privacy or security [9].

In recent years, several variations and extensions of co-training have been proposed
to address its limitations and improve its performance. For instance, some researchers
have proposed using multiple views of the data rather than just two to capture more
information and make the semi-supervised learning process more robust [10]. Another
line of research has focused on developing new co-training algorithms that are able to
handle noisy or conflicting views of the data [11]. These algorithms aim to identify and
discard unreliable predictions made by one of the classifiers so that the other classifier can
make better predictions in the absence of high-quality supervision. Additionally, there has
been a growing interest in using deep learning models for co-training. For instance, one
approach is to use generative models, such as Generative Adversarial Networks (GANs),
to generate synthetic samples that can be used to augment the labeled data [12]. By using
these synthetic samples in co-training, it is possible to effectively increase the size of the
labeled data, leading to improved performance. Meanwhile, co-training can handle high-
dimensional, complex data representations with deep learning models. For instance, some
researchers have proposed using deep neural networks as the classifiers in co-training and
have shown that this can lead to improved performance in various applications, including
image classification, sentiment analysis, and document classification [13]. Overall, the field
of co-training and semi-supervised learning is rapidly evolving, and there is a wealth of
ongoing research aimed at improving the performance and robustness of these algorithms.
As such, it is an exciting and promising area of study for anyone interested in machine
learning and data science.

Although co-training plays an important role in the semi-supervised classification
task, large-scale data poses a huge challenge to the efficiency of its modeling [14]. Existing
co-training-based semi-supervised classification algorithms usually need to traverse all
unlabeled samples multiple times to find high-confidence elements or valuable classifica-
tion information, but large-scale unlabeled instances make it difficult to achieve efficient
modeling. Some literature proposes using different subsets of unlabeled samples after
division to improve the efficiency of the algorithm; it does not consider the differences in
the contribution of different unlabeled samples to the algorithm. However, it takes a great
challenge for traditional semi-supervised classification algorithms based on co-training to
handle large-scale data in terms of compatibility, effectiveness, and timeliness. Instance
selection as an important data reduction method can solve the large-scale classification
problem by reducing the labeled instances depending on enough label information to
achieve the aim [15,16]. Therefore, traditional instance selection methods cannot be ap-
plied to the semi-supervised classification problem because there exists a small number
of labeled instances with little labeled information. Moreover, each instance is seen as a
basic processing unit to judge whether it is selected or not [17]. It is difficult to follow this
approach to dealing with large-scale unlabeled instances, and there is a need to solve this
problem from a new perspective.

Granular computing is a methodology for processing and analyzing complex data
by partitioning it into smaller, more manageable pieces [18–22]. These smaller pieces, or
granules, can then be further analyzed and processed to provide insights into the original
data. The goal of granular computing is to simplify complex problems by reducing their
complexity to more manageable pieces. This approach has been applied to a variety of
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problems in machine learning, including clustering, classification, and feature selection.
Meanwhile, granular computing and co-training are both techniques that can be used to
improve classification accuracy. Granular computing can be used to reduce the complexity
of the data by partitioning it into smaller, more manageable pieces [23]. Once the data
has been partitioned into granules, co-training can be used to train multiple models on
each granule. This approach can be particularly effective in semi-supervised learning
applications where labeled data is limited. Nevertheless, the contribution of each kind
of information granularity with a large difference to the classifier has not received suf-
ficient attention, so its efficiency has dropped dramatically, and information could be
redundant [24,25].

For the problem based on the above analysis, this paper has proposed an effective
instance selection for a co-training-based semi-supervised classification task using the
granulation mechanism, which deals with the large data using the information particles as
the basic processing unit rather than each instance and considers the different contribution
of granularity to the classifier. The contribution of this paper is as follows:

• Proposing a progressive instance selection mechanism to reduce unlabeled instances
by the significant variation in classification accuracy.

• Giving a novel unlabeled information granulation mechanism based on the extent to
which the unlabeled instance improves the performance of the classifier, and it avoids
the influence of human subjective factors.

• Adaptive determining in which unlabeled information granulation is ultimately saved
according to its contribution to the classification performance.

• Verifying the proposed method could largely reduce the unlabeled data size and keep
the original classification performance by the experiment result on the real datasets.

The rest of this paper is listed as follows. Section 2 introduces related work about
co-training-based semi-supervised classification algorithms. Section 3 analyzes the effect of
unlabeled instances on the classifier and has proposed an effective instance selection for
co-training-based semi-supervised classification. Section 4 verifies the effectiveness of the
proposed method. Section 5 concludes this paper.

2. Related Work

A co-training-based semi-supervised classification algorithm needs to cooperate with
different classifiers from multiple perspectives at the same time to realize the utilization of
unlabeled data, and it has become the focus of research with its higher effectiveness [3,26].
According to the different learning strategies, the existing co-training algorithms are mainly
divided into two categories: the ones based on the sample set augmentation and the ones
based on regularization.

Co-training algorithms based on sample set augmentation, which use classifiers from
different perspectives to select high-confidence unlabeled samples and corresponding
prediction labels from the unlabeled sample set, alternately assign the newly added samples
to different classifiers for retraining and finally repeat the above process until the prediction
results converge. In such algorithms, how to efficiently select labeled samples with high
confidence is the bottleneck that restricts the efficiency of the algorithm. Paper [27] divides
the sample space into a set of equivalence classes and uses cross-validation to determine
how to label unlabeled samples. Paper [28] uses voting to select unlabeled samples with
high confidence; In order to improve the robustness of the collaborative training algorithm,
and papers [29,30] use filtering to screen the newly added unlabeled samples instead of
using them all [31].

Co-training algorithms based on regularization use the information provided by dif-
ferent perspective classifiers as the regularization term of the learning object, and transform
the semi-supervised multi-view learning problem into an optimization problem [32,33].
In order to improve the training efficiency of such algorithms, Sun et al. [34] propose a
sequential training method that uses the union of different unlabeled sample subsets and
labeled sample set L on the basis of dividing the unlabeled sample set into ten subsets
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of equal size, the union of the first unlabeled sample subset and set L is first used for
modeling, and then the next unlabeled sample set, some elements of the utilized unlabeled
sample set participate in the modeling, and the union modeling of set L. Finally, repeat
the previous step until all unlabeled sample subsets are utilized. Existing difference-based
semi-supervised classification algorithms need to traverse all unlabeled samples multiple
times to find high-confidence elements or valuable classification information, but the mas-
sive scale of unlabeled data makes it difficult to achieve efficient modeling. Although some
literature proposes to use different subsets of unlabeled samples after division to improve
the efficiency of the algorithm, it does not consider the differences in the contribution of
different unlabeled samples to the algorithm.

In conclusion, the existing large-scale co-training-based supervised classification al-
gorithms mainly improve the training efficiency from the view of optimization design.
However, the time complexion is difficult to reduce and obtain a greater improvement for
the large problem, and it still suffers from the large training burden of using the whole of
the unlabeled instances to participate in the training process.

3. Main Content

For the given training set T, which is the union of the labeled instance set
L = {x1, x2, · · · , xl} and the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, where
xi denotes the training instance, l and u are the number of labeled instances and unlabeled
instances, and i = 1, 2, · · · , l + u. Semi-supervised classification algorithms simultaneously
use the labeled instance set L, and unlabeled instance set U to train a classifier f (x) with
good performance. A co-training-based semi-supervised classification algorithm uses the
idea of compatible complementarity of multiple views to learn the final classifier. It assumes
that the data has multiple sufficient and conditional independence views, and the classifier
trained on one view can offer supplemental information to the classifiers on the other view.
The supplemental information is achieved by selecting the most trusted unlabeled instances
and pseudo-labels. Nevertheless, several iterations are required, and each iteration must
scan the whole of the unlabeled instances set to the most trusted instances. The large-scale
unlabeled instance carries difficulty in efficiently learning the final classifier.

Instance selection, as one of the most important data preprocessing technologies
to reduce dataset size, is widely used for classification problems, as is the fact that the
contribution of training instances with the different locations in the space to learn a classifier
varies greatly. Numerous studies have shown that the training instances can be divided
into critical instances and non-critical instances, where critical instances mainly define
the class boundary and separate the instances of the same label from the ones from other
labels [16]. Meanwhile, the number of critical instances is significantly smaller than that
of non-critical instances in most real-world datasets. Therefore, the process requires an
effective way to reduce the training set to a relatively small subset by selecting critical
instances and preserving the original data information. Compared with the performance
on the original training set, the efficiency of training the classifier on the reduced set can be
significantly improved on the reduced subset.

Traditional instance selection methods for supervised classification tasks start with
each instance as the most basic processing unit, critical instances are selected by the con-
tribution of each labeled instance to the classifier. The contribution of an instance to the
classifier is usually measured by its location in the input space and the difference with
its nearest neighbors on the label. Although the instance selection is very efficient for
supervised classification tasks, it is difficult to apply directly to semi-supervised classifica-
tion tasks because of its limitations. Different from supervised classification, there exists
a large number of unlabeled instances and few labeled instances for the semi-supervised
classification tasks. Only labeled instances take labeled information to the learner, and this
information is vital to learn a classifier with good performance, so it cannot reduce labeled
instances. Otherwise, the generation ability of the obtained classifier could significantly
decrease. On other hand, traditional instance selection needs the labeled information of
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each instance to execute data reduction, while this condition is not met for the unlabeled in-
stances. Moreover, the way of treating each instance as the basic process unit is undesirable
for large-scale problems because it is very time-consuming.

To overcome this difficulty, we have proposed a novel instance selection with the
granulation mechanism. This proposed method consists of two key processes: unlabeled
information granulation and granulation selection.

3.1. Unlabeled Information Granulation

Unlabeled instance selection aims to reduce the unlabeled instance set U, and the
original unlabeled information remains relatively unchanged. Unlabeled information is ex-
pressed by the contribution of unlabeled instances to learn the classifier for semi-supervised
learning, and it is closely related to the feature of semi-supervised classification algorithms.
For co-training-based semi-supervised classification algorithms, the contribution of the
unlabeled instance to learn the final classifier mainly depends on the determination of
predictive label consistency of the classifiers trained with different views, as well as its
location in the input space. The unlabeled instances located in different regions in the
input space have different contributions to the classifier [35]. Figure 1 shows a 2-dimension
binary classification problem to learn a linear classifier, where two labeled instances from
different classes are represented by blue circle and yellow circle. The unlabeled instances
nearby the decision boundary have much more of a contribution than the ones far from the
decision boundary.

Figure 1. An example of a binary semi-supervised classification problem.

This difference in the contribution of unlabeled instances to the classifier yields the
possibility of executing an instance selection. Compared with the abundant labeled informa-
tion of the labeled instances, unlabeled instances bring a limited classification contribution
to the learner. Due to the presence of a large number of unlabeled instances with limited
classification information, it is difficult to select critical unlabeled instances with their
contribution one by one. Furthermore, semi-supervised classification should not reduce
unlabeled instances one by one from an execution efficiency perspective. This process is a
disaster, especially for classification algorithms with high time complexity. Therefore, we
adopt the idea of granular computing to divide the unlabeled instance set U into m disjoint

subsets Ui, U =
⋃ m

∑
i=1

Ui. All the instances in the same subset Ui are considered as a basic

information granularity to participate in the learning process. In this way, it can greatly
improve learning efficiency by only processing a small number of units. Meanwhile, the
contribution of a subset Ui is easy to obtain compared with the single unlabeled instance.
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Data partition, as one of the important data granulation techniques, plays a crucial
role in granular computing. There are three key factors to performing data partition for the
co-training-based semi-supervised classification tasks.

• Divided unlabeled instance subsets have the unbalanced information for the final
classifier to obtain a relatively small number of aim subsets to achieve data reduction.

• Number of divided subsets is determined by the characteristics of unlabeled instances
and the contribution to the classifier rather than the subjective prior determination.

• Data partition should use the contribution of the unlabeled instances to the semi-
supervised classifier and close together with the distinguishing feature of co-training.

Therefore, we utilize a similar framework as a Tri-Training [36] method to perform
data partition. Each initial decision tree classifier fr(x) is independently trained on the
different set Br sampled from the labeled set L using Bootstrap sampling method, where
r = 1, 2, 3. Owning to the feature of Bootstrap sampling, the sample set Br has a large
difference, as well as the classifier fr(x) on it. Then it iteratively retrains each classifier with
the enlarged labeled set L, which is created by introducing several confident unlabeled
instances and their pseudo-label until none of the classifiers changes. The confident
unlabeled instance and its pseudo-label obtained by each classifier are provided by the
remaining two classifiers. Specifically, if the two classifiers have the same prediction for the
same unlabeled instances, these instances are considered to have high labeling confidence
and are added to the labeled training set of the third classifier. In this way, we can estimate
the frequency f re(xi) at which each unlabeled instance xi is selected as a confident element
during this process. Finally, the unlabeled set U is divided into several subsets according to
the condition that all the unlabeled instances xi in the same subset have the same frequency.
The pseudocode of the proposed method is presented in Algorithm 1.

A decision tree (DT) is chosen as the basic classifier for the Tri-training algorithm
for its unique advantages in Algorithm 1, that is, learning features, high efficiency, and
instability. Both the conditional probability distribution information for the class and the
local geometry information in the input space are used to learn the classifier of DT, and
this kind of information is very comprehensive. Furthermore, the time complexion of DT is
approximately linear of time complexion to efficiently process large-scale data. Finally, the
instability of DT is sensitive to data change for its instability, this is constructive to instance
selection [37].

The measurement f re(xi) is the frequency at which each unlabeled instance xi is
selected as the confident instance for three classifiers in the whole training process, and it
reflects each unlabeled instance xi to learn the final classifier. The large value of frequency
f re(xi) means the unlabeled instance xi is always chosen and has a large contribution to
the final classifier. A different value of f re(xi) also indicates different degrees of effect on
classification performance. Different from previous methods to evaluate the contribution
with a real number, the measurement metrics takes a limited integer value. It is constructive
to divide the unlabeled set U into several subsets according to the possible value of the
measurement f re(xi). Moreover, the number n = max

xi∈U
f re(xi)−min

xi∈U
f re(xi) of discrete

values of the measurement f re(xi) is not subjectively predetermined; it depends on the
effect of unlabeled instances on the classifier.

402



Electronics 2023, 12, 2239

Algorithm 1 Unlabeled information granulation algorithm
Input : Training set T = L

⋃
U, where the labeled set L = {x1, x2, · · · , xl} and

the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, decision-tree
classification algorithm.

Output : The divided unlabeled instance subsets Uh, U =
⋃n

h=1 Uh.

1 Initialization : f re(xi) = 0 for xi ∈ U, L1 = L2 = L3 = L, Update = 1 ;
foreach r ∈ {1, 2, 3} do

2 Train the decision tree classifier fr(x) on the set Br sampled from the set L
using Bootstrap sampling method;

end

while Update= 1 do

foreach r ∈ {1, 2, 3} do

3 Updater = 0;
foreach xi ∈ U do

if f j(xi) = fk(xi) (j, k �= r) then

4 f re(xi) = f re(xi) + 1, Lr = Lr
⋃{(xi, f j(xi))}, Updater = 1;

end

end

end

foreach r ∈ {1, 2, 3} do

if Updater = 1 then

5 Re-train the decision tree classifier fr(x) on the new set Lr, Update = 1;
end

end

end

6 n = Max f −Min f + 1, where Max f = max
xi∈U

f re(xi) and Min f = min
xi∈U

f re(xi);

foreach h ∈ {1, 2, · · · , n} do

7 Uh = {xi ∈ U : f re(xi) = h− 1 + Min f };
end

Return The divided unlabeled instance subset Uh;

3.2. Granulation Selection

After the unlabeled data granulation with data partition, divided subsets of unlabeled
instances must be finally chosen to train the semi-supervised classifier. It is undesirable
to randomly select several divided subsets as the final result for different contributions
to the classifier. According to the same value of f (xi) of the instances xi ∈ Uh, the order
of contribution from smallest to largest is U1, U2, · · · , Um, where m is the number of the
divided unlabeled instance subsets. To keep the full information of the unlabeled set U
with the smaller number of divided unlabeled instance subsets as much as possible, we
adopt the way of one subset by one subset in reverse order. In this way, it is constructive to
search the smaller number of subsets with much more auxiliary classification information
to the learner in the following process. Moreover, this method relies solely on the value
f (xi) over the divided subset to select results without any limitation to the classifier.

Let Acc(Ug) be the measurement of classification performance for the classifier trained
on the set Uh and the labeled set L, the change on the classification performance
Δ(Ug−1) = Acc(Ug

⋃
Ug−1)− Acc(Ug−1) between Ug and Ug−1, g = 2, 3, · · · , m. Acc(Ug)

evaluates the effect of the set Uh to the semi-supervised learner classification performance,
and Δ(Ug − 1) indicates the effect of adding set Ug−1 to set Ug. If the value of Δ(Ug−1) is
small relative to Acc(Ug), then merging set Ug−1 with set Ug is difficult to train a strong
semi-supervised classifier. Therefore, the following condition (1) is set to judge whether it
merges set Ug−1 with set Ug or not.
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Acc(Ug
⋃

Ug−1)− Acc(Ug−1)

Acc(Ug)
≥ α, (1)

where α ∈ (0, 1), g = 2, 3, 4, · · · , m. Many papers suggest that the critical value α = 0.05
to obtain a significant change in performance [38]. Above all, the pseudocode of the
granulation selection is presented in Algorithm 2.

In Algorithm 2, the early stopping condition is used to prevent performing too many
iterations. The classifier trained on set L

⋃
Ug

⋃
Ug−1 may improve the classification per-

formance of the one on the set L
⋃

Ug because it adds more unlabeled sample information
from the set Ug−1. Moreover, the unsupervised information of the set Ug that is construc-
tive to improve the classification performance could be more than the set Ug−1, where
g = 2, 3, · · · , m. Therefore, the subset Uj is difficult to satisfy condition (1) if the previous
subset Ui cannot meet, where 1 ≤ j < i ≤ m. In this way, this selection process can be
terminated early and obtain a lower number of divided unlabeled instance subsets.

Algorithm 2 Granulation selection algorithm
Input : Training set T = L

⋃
U, where the labeled set L = {x1, x2, · · · , xl} and

the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, decision-tree
classification algorithm, and semi-supervised classification algorithm f ,
critical value α = 0.05.

Output : The reduced set Us of the set U.

1 Run Algorithm 1 with decision tree to get m divided subsets Uh, U =
m⋃

h=1
Uh ;

2 Train semi-supervised classifier with the set Um to obtain Acc∗, Us = Um ;
foreach g ∈ {m− 1, · · · , 2} do

3 Ũg = Us
⋃

Ug ;
4 Train semi-supervised classifier with the set Ũg to obtain Acc(Ũg) ;

if
Acc(Ũg)−Acc∗

Acc∗ ≥ α then

5 Us = Ũg ;
6 Acc∗ = Acc(Ũg) ;

else

7 Get out of the loop
end

end

Return The set Us;

3.3. Complexity Analysis

Complexity analysis is very important for evaluating the classifier, and it starts with
two main steps of the proposed method. The first step includes the frequency in which an
unlabeled instance is selected as a trust element and the frequency discretization, where the
former mainly depends on the time complexion of the basic classifier and the latter is linear
with the number of unlabeled instances. A decision tree is selected as the basic classifier in
this method of the approximately linear time complexity O(dml log(l)) with the size l of
labeled instances and m features. Meanwhile, the efficiency of a decision tree is very high
to predict the label for the unlabeled instances with the time complexity O(d), where d is
the depth of the tree. Thus, it can efficiently process big data, which has massive unlabeled
data, to offer the pseudo-labels of the linear time complexion that is linearly related to the
size of the data. Therefore, the time complexity of the first step is O(dml log(l) + du). The
time complexity of the second step relies on the complexity of the adopted semi-supervised
algorithm and the number of iterations n. In each iteration, the semi-supervised classifier
is trained using the subset of unlabeled set U rather than all the instances, and its time
complexity is proportional to the size of the labeled instance subset. Meanwhile, the early
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stopping condition is constructive in reducing the number of iterations. In conclusion,
the time complexity of the proposed method is approximately linear with the number
and the dimension of labeled instances and unlabeled instances, and it is proportional
to the time complexity of the adopted semi-supervised classifier that is used to get the
classification accuracy.

4. Experiments

To verify the effectiveness and efficiency of the proposed algorithm for real problems,
extensive experiments on real datasets have been implemented against the typical method
under differently labeled rations.

4.1. Experiment Setup

Twelve large datasets of different types are randomly selected to evaluate the per-
formance of the algorithms from the KEEL-dataset repository [31] and LIBSVM-dataset
repository [39], where each data has larger than 4000 instances. The basic information of
the selected datasets is listed in Table 1.

Table 1. Summary of twelve datasets.

Dataset Size Features Classes

combined 98,528 101 3
connect-4 67,557 126 3
covtype 581,012 54 7

letter 20,000 16 26
optdigits 5620 65 10
pendigits 10,992 17 10
phoneme 5404 5 2

ring 7400 21 2
seismic 98,528 51 3
texture 5500 41 11

usps 9298 257 10
winequality 4898 11 7

Further, a typical image dataset of five generic categories called NORB [40] is se-
lected to test the performance of the proposed method for high-dimensional datasets. The
following Figure 2 shows examples of the training image and test image of the dataset.

Figure 2. The examples of NORB dataset.

For each dataset, about 3/4 of the data is selected as the training set and the rest as
the test set, where each training set is the union of the labeled subset L and the unlabeled
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subset U. To effectively verify the generalization performance of the proposed algorithm
for real data, the proportion of labeled instances (PL) to the total training instances has
different values. According to the suggestion of the paper [36], the value of PL includes
20%, 40%, 60%, and 80%.

The most commonly used method for evaluating semi-supervised classification al-
gorithms is the performance measurement of algorithms on the datasets. Classification
accuracy (Acc) and Cohen’s kappa (Kappa) [41] on the test set are used to measure the
generation ability of algorithms, and executing time (ET) in seconds of learning the classifier
is applied to estimate training efficiency. Besides the above two performance indicators, the
number of the selected unlabeled instances to learn the semi-supervised classifier is also an
important measure of the performance of instance selection. Therefore, the proportion of
the selected unlabeled instances (PS) to the total unlabeled instances is adopted to eliminate
the impact of dataset size.

Tri-training (Tri) [36] is selected as the representative co-training semi-supervised
classification algorithm for its good performance, and the improved Tri-training algorithm
trained on the result based on the proposed instance selection is denoted as ISTri. To
verify whether there is a significant difference in the performance between Tri and ISTri
on different data, the Wilcoxon signed rank test [42] is selected for its weaker data distri-
bution assumptions and good statistical performance on the real datasets, where the null
hypothesis is that the proposed algorithm performance is significantly different from each
of the other algorithms on the same multiple datasets. The p-value of the test is computed
to judge whether the null hypothesis is rejected or not under the given significant level α. If
the p-value is larger than α, then the null hypothesis should be accepted. Otherwise, the
null hypothesis is rejected, and there exists a significant difference between the proposed
algorithm and another algorithm. The significant level α = 0.05. All the experiment is
executed in Python 3.10 on Windows 10 on a PC of Intel(R) Xeon(R) Silver 4280 CPU
(2.10 GHz) and 160 GB RAM.

4.2. Experimental Analysis

This section concretely compares the performance of the proposed algorithm with
the Tri algorithm from the perspective of classification performance, execution time, and
proportion of the selected unlabeled instances on twelve medium-dimensional datasets, as
well as a typical high-dimensional dataset. Furthermore, the effect of the proportion of the
selected unlabeled instances on the algorithm’s performance is also studied.

4.2.1. Classification Performance

Classification accuracy and Cohen’s Kappa are two common measurements to evaluate
the classification performance of the classifier, where the latter is an important complement
to the former for the class-imbalance problem.

Table 2 lists the classification accuracy on the selected data sets, where the mean and
median of classification accuracy on all the datasets are at the back of this table. Meanwhile,
the p-value of the Wilcoxon signed rank test between the two algorithms is also listed in
the last row of Table 2. Figure 3 intuitively shows the comparison of classification accuracy
of the two algorithms on different datasets under different label proportions.

The following comparative analysis is done from a single perspective and a holistic
perspective. It can be found that the ISTri algorithm obtains very similar classification
accuracy with the Tri algorithm on each dataset under the same labeled rate PL = 0.2, 0.4, 0.6,
and 0.8 from Figure 2. To compare the classification accuracy of different algorithms from a
holistic perspective, descriptive statistical analysis is made. The means of the classification
accuracy of the ISTri algorithm on all the datasets under different PLs are 0.851, 0.873, 0.889,
and 0.894, and the ones of the Tri algorithm are 0.857, 0.874, 0.886, and 0.893. This numeric
result also corroborates the absolute difference between the two algorithms on the mean
of classification accuracy under the same PL value is very small. Meanwhile, the medians
of the classification accuracy of the ISTri algorithm on all the datasets under different PLs
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are 0.890, 0.920, 0.933, and 0.947, and the ones of the Tri algorithm are 0.896, 0.919, 0.930,
and 0.942. Therefore, the absolute difference between the two algorithms on the median of
classification under the same PL value is also very small.

Table 2. Classification accuracy of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 0.815 0.821 0.823 0.824 0.831 0.830 0.834 0.837
connect-4 0.792 0.801 0.823 0.822 0.829 0.837 0.845 0.848
covtype 0.896 0.894 0.923 0.924 0.938 0.939 0.947 0.948

letter 0.895 0.886 0.932 0.927 0.951 0.947 0.960 0.959
optdigits 0.967 0.951 0.977 0.975 0.984 0.984 0.980 0.974
pendigits 0.978 0.976 0.988 0.986 0.990 0.990 0.992 0.990
phoneme 0.859 0.845 0.871 0.877 0.898 0.903 0.900 0.905

ring 0.917 0.905 0.915 0.917 0.922 0.928 0.938 0.945
seismic 0.729 0.731 0.731 0.734 0.741 0.744 0.744 0.746
texture 0.934 0.918 0.966 0.961 0.971 0.973 0.972 0.973

usps 0.930 0.921 0.951 0.947 0.949 0.949 0.959 0.963
winequality-white 0.567 0.565 0.585 0.583 0.624 0.638 0.641 0.642

Mean 0.857 0.851 0.874 0.873 0.886 0.889 0.893 0.894
Median 0.896 0.890 0.919 0.920 0.930 0.933 0.942 0.947

p-value 0.064 0.519 0.058 0.129

Figure 3. The comparison of classification accuracy between two algorithms on the selected datasets.

Finally, the Wilcoxon signed rank test between two algorithms classification accuracy
is made to avoid the effect of the subjective judgment. p-values of this test under different
PL are 0.060, 0.720, 0.375, and 0.206; these values are all larger than the given significant
level of 0.05. Thus, there exists no significant difference in the classification accuracy
between two algorithms.

Besides classification accuracy, Cohen’s kappa is also used to evaluate the classification
performance of the learner, which can solve the problem that accuracy does not compensate
for hits that can be attributed to mere chance. Similar to the result of Table 2, Table 3 lists
Kappa of two algorithms under different labeled proportions, as well as the descriptive
statistics and p-value of the Wilcoxon signed-rank test. Figure 4 shows the comparison of
the Kappa of the two algorithms.

Figure 4 shows the ISTri algorithm also obtains quite a similar Kappa as the Tri
algorithm on each dataset under the same labeled rate PL = 0.2, 0.4, 0.6, and 0.8. A
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descriptive statistical analysis of kappa is made to compare the classification accuracy
of different algorithms from a holistic perspective. The means of the Kappa of the ISTri
algorithm on all the datasets under different PL are 0.739, 0.777, 0.806, and 0.814, and the
ones of the Tri algorithm are 0.744, 0.775, 0.798, and 0.810. The absolute difference between
the two algorithms on the mean of Kappa under the same PL value is very small from this
numeric result. Meanwhile, the medians of the classification accuracy of the ISTri algorithm
on all the datasets under different PL are 0.818, 0.855, 0.878, and 0.904, and the ones of the
Tri algorithm are 0.833, 0.852, 0.872, and 0.895. Thus, the absolute difference between the
two algorithms on the median of classification under the same PL value is also very small.
Therefore, there exists a small difference between these two algorithms about Kappa from
the above descriptive statistical results.

To make a more objective comparative evaluation, Wilcoxon signed rank test between
two algorithms classification accuracy is made. p-values of this test under different PLs
are 0.168, 0.519, 0.028, and 0.041, where the first two values are both larger than the given
significant level of 0.05 and the latter two are smaller than 0.05. So, there exists no significant
difference in the classification accuracy between two algorithms under PL = 0.2 and 0.4,
while it exists no significant difference in the classification accuracy between two algorithms
under PL = 0.6 and 0.8. Combing with the medians of Kappa on all the datasets, the ISTri
algorithm achieves a better performance than the Tri algorithm under PL = 0.6 and 0.8.

The reason for the fact that the ISTri algorithm gets no significant difference classifi-
cation in accuracy with the Tri algorithm corroborates the effectiveness and availability
of the proposed unlabeled instance selection. It chooses the unlabeled instance subset
by selecting the frequently confident ones identified by two other classifiers, where these
selected unlabeled instances take much more ancillary information to the classifier than
others. In other words, the proposed instance selection method obtains enough classifica-
tion information as all the unlabeled instances so that the ISTri algorithm gets a similar
classification performance as Tri algorithm.

Table 3. Kappa of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 0.708 0.717 0.720 0.722 0.733 0.740 0.737 0.743
connect-4 0.371 0.415 0.478 0.486 0.519 0.550 0.555 0.568
covtype 0.831 0.827 0.875 0.876 0.900 0.902 0.915 0.916

letter 0.891 0.881 0.929 0.924 0.949 0.944 0.958 0.958
optdigits 0.963 0.945 0.975 0.972 0.982 0.982 0.978 0.972
pendigits 0.976 0.973 0.987 0.985 0.989 0.989 0.991 0.989
phoneme 0.649 0.613 0.694 0.705 0.752 0.765 0.758 0.771

ring 0.834 0.810 0.830 0.835 0.844 0.855 0.876 0.891
seismic 0.566 0.570 0.571 0.577 0.588 0.591 0.590 0.594
texture 0.926 0.908 0.962 0.956 0.967 0.970 0.968 0.970

usps 0.922 0.912 0.945 0.940 0.943 0.943 0.954 0.959
winequality-white 0.294 0.294 0.339 0.344 0.408 0.437 0.439 0.443

Mean 0.744 0.739 0.775 0.777 0.798 0.806 0.810 0.814
Median 0.833 0.818 0.852 0.855 0.872 0.878 0.895 0.904

p-value 0.168 0.519 0.028 0.041
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Figure 4. The comparison of Kappa between two algorithms on the selected datasets.

4.2.2. Selection Rate

The proportion of the selected instances to the original instances is an indicator to
evaluate the reduction performance of instance selection. In our proposed method, the
selected unlabeled instances and labeled instances reconstitute the training set that is used
to efficiently learn the classifier. Therefore, the reduction performance of unlabeled instance
selection affects the training efficiency of the classifier. Table 4 lists the PS of the proposed
method under different labeled proportions.

It can be found that the value of PS on each dataset is significantly smaller than
one under different PLs from Table 4. This result indicates the proposed method does
obviously reduce the unlabeled instances, and the reformed training set with the selected
unlabeled instances and labeled instances is smaller than the original set. Own to the
different characteristics of the dataset, the values of PS on different datasets have significant
differences. Especially for the winequality–white dataset, the proposed method finally
saves a storage rate of up to 25% unlabeled instances. To carefully evaluate the selection
proportion of the proposed algorithm from a global perspective, descriptive statistics are
also computed on all the datasets. The means of PS on all the datasets under different PL
are 0.539, 0.598, 0.618, and 0.648, and the medians are 0.568, 0.627, 0.661, and 0.693. The
proposed instance selection method can reduce at least 30% of unlabeled instances from
the average state.

There exist two reasons for the higher reduction ratio. Firstly, all the unlabeled
instances have different levels of contributions to learning the classifier, and the number of
unlabeled instances with large contributions is less than the ones with small contributions.
On the other hand, our method aims to select the unlabeled instances with high confidence
which have high contributions to the classifier. Thus, this experiment result has confirmed
the effectiveness of the proposed algorithm.
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Table 4. PS of ISTri algorithm on the selected dataset.

Data PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

combined 0.486 0.522 0.491 0.517
connect-4 0.585 0.641 0.629 0.672
covtype 0.670 0.728 0.761 0.808

letter 0.513 0.603 0.671 0.696
optdigits 0.531 0.603 0.651 0.718
pendigits 0.733 0.808 0.847 0.857
phoneme 0.590 0.653 0.682 0.693

ring 0.552 0.614 0.618 0.668
seismic 0.395 0.425 0.406 0.433
texture 0.686 0.743 0.745 0.779

usps 0.591 0.645 0.708 0.693
winequality–white 0.131 0.191 0.212 0.241

Mean 0.539 0.598 0.618 0.648
Median 0.568 0.627 0.661 0.693

4.2.3. Training Efficiency

Training efficiency is also an important indicator to evaluate the performance of the
classification algorithms, where the execution time (in seconds) on the selected data is
the common metric to measure training efficiency. Table 5 lists the execution time of two
methods under different PLs on the selected datasets, and the simple statistical result is
also listed in the bottom two rows of this table.

Table 5. ET of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 643.075 322.514 588.245 388.624 1328.337 795.159 1365.614 943.540
connect-4 11.757 5.905 14.787 8.466 18.317 10.916 21.232 13.493
covtype 768.997 395.715 1050.317 605.054 1336.295 815.328 1645.704 1036.018

letter 19.530 8.666 24.332 13.058 28.442 16.382 32.392 19.873
optdigits 6.763 3.204 7.974 4.502 9.265 5.615 10.407 6.582
pendigits 10.211 5.318 12.743 7.457 14.877 9.088 17.419 10.739
phoneme 5.076 2.556 6.293 3.506 7.417 4.386 8.888 5.325

ring 17.100 7.655 22.455 12.564 28.235 16.736 34.692 21.797
seismic 395.678 149.781 548.484 287.580 571.574 367.503 1038.199 511.116
texture 9.762 5.089 12.413 7.262 15.022 9.156 17.441 11.058

usps 45.562 24.265 59.183 38.108 73.571 50.979 89.867 66.263
winequality–white 6.142 2.468 7.805 3.846 9.200 5.121 10.698 6.351

Mean 161.638 77.761 196.253 115.002 286.713 175.531 357.713 221.013
Median 14.428 6.780 18.621 10.515 23.276 13.649 26.812 16.683

Table 5 shows that the ISTri algorithm has much less execution time on each dataset
under the same value of PL. Meanwhile, the means of ET of the ISTri algorithm on all the
datasets under different PL are 77.761, 115.005, 175.531, and 221.013, while the ones of
the Tri algorithm are 161.638, 196.253, 286.73, and 221.013. Additionally, the medians of
ET of the ISTri algorithm on all the datasets under different PL are 6.780, 10.515, 13.649,
and 16.683, while the ones of the Tri algorithm are 14.428, 18.621, 23.276, and 26.812. This
descriptive statistical result also corroborates the ISTri algorithm being able to obtain much
less execution time than the Tri algorithm. The execution time of algorithms is affected by
the dataset size, and its value is positively correlated with the amount of data.

To effectively compare the training efficiency of the algorithm, a speedup ratio named
SR = ET(Tri)/ET(ISTri) is defined, where ET(Tri) and ET(ISTri) are the execution time of
the Tri algorithm and IStri algorithm on the same dataset. This new relative indicator can
eliminate the effect of data volume on the algorithm performance, and it evaluates the
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difference between the two algorithms’ performance from a relative perspective. Table 6
lists the SR between two algorithms under different labeled proportions.

Table 6. SR between two algorithms on the selected datasets.

Data PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

combined 1.994 1.764 1.671 1.447
connect-4 1.991 1.747 1.678 1.574
covtype 1.943 1.736 1.639 1.588

letter 2.254 1.863 1.736 1.630
optdigits 2.111 1.771 1.650 1.581
pendigits 1.920 1.709 1.637 1.622
phoneme 1.986 1.795 1.691 1.669

ring 2.234 1.787 1.687 1.592
seismic 2.642 1.907 1.555 2.031
texture 1.918 1.709 1.641 1.577

usps 1.878 1.553 1.443 1.356
winequality-white 2.489 2.029 1.797 1.684

Mean 2.113 1.760 1.652 1.613
Median 1.993 1.759 1.660 1.590

The result of Table 6 shows that the value of SR on each data is significantly greater
than one on each dataset under different PLs, and it confirms that the proposed algorithm
obtains higher training efficiency than the original algorithm. Especially, the ISTri algorithm
obtains a training efficiency of more than two times higher than the Tri algorithm on dataset
letter, optdigits, ring, seismic, and winequality–white under PL = 0.2. ISTri algorithm also
obtains nearly 1.5 times higher training efficiency than the Tri algorithm on most datasets
when PL = 0.2, 0.4, and 0.6. Simple statistical result lists that the means of SR on all the
dataset under different PLs are 2.113, 1.760, 1.652, and 1.613, and the medians are 1.993,
1.759, 1.660, and 1.590. Therefore, the ISTri algorithm achieves a training efficiency of more
than 0.5 times higher than the original algorithm from a global perspective.

The reason for the higher training efficiency of the ISTri algorithm is that it uses the
reduced unlabeled instance subset rather than the original unlabeled instance set to learn
the classifier. As we all know, the training time of the classifier is negatively correlated
with the training set size. The larger the training set, the longer the training time. For the
semi-supervised classification tasks, unlabeled instances make up a large proportion of
the training set. Moreover, the proposed instance selection method can effectively and
efficiently compress unlabeled instances while retaining most of the information valid
for the classifier, and this result can be verified by the low proportion of the selected
unlabeled instances.

4.2.4. High-Dimensional Problem

The proposed method has obtained a good performance on twelve medium-dimensional
datasets in the previous experiment. In this section, a high-dimensional representative
image classification dataset called NORB is selected, in which each image is converted to a
2047-dimensional vector by the package SciPy. Table 7 lists classification accuracy, Kappa,
execution time, and selection ratio under different labeled ratios.

Table 7. The performance of two algorithms on NORB.

PL
Acc Kappa ET

PS-ISTri
Tri ISTri Tri ISTri Tri ISTri

0.2 0.980 0.971 0.974 0.968 481.778 271.731 0.326
0.4 0.987 0.982 0.984 0.979 621.516 514.607 0.424
0.6 0.994 0.992 0.992 0.990 795.907 686.806 0.499
0.8 0.996 0.995 0.994 0.993 936.799 836.467 0.514
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As the result in Table 7 shows, the ISTri algorithm efficiently and effectively processes
the high-dimensional problems and achieves comparable results to the Tri algorithm. The
absolute difference in Acc between two algorithms under different values of PL are 0.009,
0.005, 0.002, and 0.001, as well as the one on Kappa, are 0.006, 0.005, 0.002, and 0.001. In
the worst case, the largest difference between Acc and Kappa is 0.009 and 0.006, and this
difference is very small relative to the overall performance of the algorithm. Therefore,
there exists a negligible difference between Acc and Kappa under different values of PL.
The execution time of the ISTri algorithm is much less than the Tri algorithm under the
same PL. The ratio SR between them is 1.773, 1.208, 1.159, and 1.120; all the values are
larger than one. Therefore, the ISTri algorithm obtains higher training efficiency than the Tri
algorithm. The last column of Table 7 also lists the unlabeled selection proportion; the value
of PS is 0.326, 0.424, 0.499, and 0.514; the values are significantly smaller than one. To sum
up, the proposed instance selection method greatly reduces the size of unlabeled instances
while it can preserve the classification information to learn the classifier. Meanwhile, the
execution time of the IStri algorithm is much less than the Tri algorithm under each value
of PL, and the ratio SR between them is also larger than 1. Moreover, the selection ratio of
unlabeled instances under different PLs is 0.326, 0.424, 0.499, and 0.514, which shows that
the ISTri algorithm uses fewer unlabeled instances to constitute the training set. This result
demonstrates that the ISTri algorithm has a higher training efficiency than the Tri algorithm.

4.2.5. Effect of Labeled Proportion

The proposition of the labeled instances to all the training instances plays an important
role in the performance of the learner for the semi-supervised classification tasks. Therefore,
we study the effect of PL on the classifier from three metrics: classification performance,
selection rate, and training efficiency. Figures 5–7 separately show the effect of PL on three
metrics. Moreover, the Friedman test is used to compare whether there exists a significant
difference in each metric under the different values of PL or not, where the null hypothesis
is that there does not exist a significant difference against the alternative that there is a
significant difference.

Figure 5. Classification performance of ISTri algorithm under different PL.

Figure 5 shows the change in classification performance of the proposed method under
different PLs, where the left fig describes classification accuracy and the right fig for Kappa.
There exists a noticeable difference in the value of Acc on almost all datasets except data
combine, pendgitits, and seismic from Figure 5a. The value of Kappa also has a significant
change on each dataset under different PL, especially for dataset connext-4, phoneme,
winequality–white from Figure 5b. Meanwhile, the p-values of the Friedman test on Acc
and Kappa are 4.02 × 10−7 and 5.49 × 10−7, both smaller than the given significant level
of 0.05. So, PL affects the classification performance of the proposed method. Moreover,
Figure 5 also shows the value of Acc is positively correlated to PL on these datasets, i.e., its
value significantly increases by the increasing PL, as well as this similar result for Kappa.
The descriptive statistics of Acc and Kappa over all the datasets under different values
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of PLs also verify this result from Tables 3 and 4. The labeled instances take much more
valuable label information that is critical to learn the classifier than unlabeled instances, so
PS plays a key role in the classification performance of the classifier for semi-supervised
classification problems. This fact explains why the classification performance of the ISTri
algorithm is positively correlated with PS. Nevertheless, the ISTri algorithm still obtains no
significant difference from the Tri algorithm.

Figure 6 shows the change of the metric PS under different PLs. The value of PS
fluctuates greatly on each dataset, and this result is also proved by the numeric results
in Table 4. The p-value of the Friedman test on PS is 1.38 × 10−6. smaller than the given
significant level of 0.05. Therefore, there exists a significant difference in PS under different
values of PL. Similar to the performance of Acc and Kappa under different PLs, the value
of PS is also positively correlated with PL. The unlabeled instances selection of the ISTri
algorithm mainly depends on the agreement on the pseudo-labels offered by the classifiers
on the labeled instance subsets, where the parameter PL controls the number of labeled
instances. The classification ability of multi-view classifiers trained on the labeled instance
subsets increasingly improves as the enlarging value of PL so that the likelihood that
predictive labels for each unlabeled instance are the same could increase obviously. In this
way, the final selection of unlabeled data increases significantly.

The change in speedup ratio (SR) under different PLs is shown in Figure 7, where the
baseline SR = 1 is also plotted on it. It can be found that all the value of SR on each dataset
under different values of PL is larger than one. The metric SR has significantly different
values on each dataset under different PLs, and it can be validated by the result of Table 6.
The p-value of the Friedman test on SR is 3.73 × 10−7, smaller than the given significant
level of 0.05. Therefore, there exists a significant difference in SR under different values
of PL. Meanwhile, SR is negatively correlated with PL on each dataset from Figure 7. SR
evaluates the ratio of the execution time between the ISTri algorithm and the Tri algorithm,
and the main difference between them is the number of unlabeled instances that are used
to learn the classifier. The selected number of unlabeled instances continues to increase
with the increasing value of PL for the ISTri algorithm, and it also induces its execution
time to get longer. This result explains the reason that SR is negatively correlated with PL.

Figure 6. The change of PS under different PL.
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Figure 7. The change of SR under different PL.

5. Conclusions

For the problem of massive unlabeled instances bringing a great challenge to efficiently
train co-training-based semi-supervised classification algorithms, this paper has developed
an unlabeled instance selection algorithm based on the granulation mechanism. Different
from the previous approaches from the view of algorithm optimization, it takes advantage
of data reduction to avoid the difficulty of using domain knowledge to improve the
efficiency of algorithms. The proposed method treats the unlabeled instances with the
same frequency at which the trust instance is selected as the basic information granulation
rather than each unlabeled instance; it is constructive to significantly improve execution
efficiency. The selection of each unlabeled instance subset into the training set depends
on its contribution to the current classification performance; this operation is guaranteed
to have strong adaptability for different datasets and algorithms. The advantage of the
proposed method is verified by the experiment results on the medium-dimensional and
high-dimensional datasets. Especially it has a comparable classification performance with
the typical algorithm, while it has high execution efficiency and fewer unlabeled instances
within the training set. The proposed method can be widely used for driverless car obstacle
recognition, mobile phone face recognition, temperature monitoring in greenhouses, and
other large-scale application scenarios. Finally, this paper provides a potentially effective
solution to improve the training efficiency of other kinds of semi-supervised classification
algorithms. Future research work will explore the application of proposed algorithms in
practical systems such as text classification, image classification, and pattern recognition.
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Abstract: In exploring the flight delay problem, traditional deep learning algorithms suffer from
low accuracy and extreme computational complexity; therefore, the deep flight delay prediction
algorithm is difficult to directly deploy to the mobile terminal. In this paper, a flight delay prediction
model based on the lightweight network ECA-MobileNetV3 algorithm is proposed. The algorithm
first preprocesses the data with real flight information and weather information. Then, in order
to increase the accuracy of the model without increasing the computational complexity too much,
feature extraction is performed using the lightweight ECA-MobileNetV3 algorithm with the addition
of the Efficient Channel Attention mechanism. Finally, the flight delay classification prediction level
is output via a Softmax classifier. In the experiments of single airport and airport cluster datasets, the
optimal accuracy of the ECA-MobileNetV3 algorithm is 98.97% and 96.81%, the number of parameters
is 0.33 million and 0.55 million, and the computational volume is 32.80 million and 60.44 million,
respectively, which are better than the performance of the MobileNetV3 algorithm under the same
conditions. The improved model can achieve a better balance between accuracy and computational
complexity, which is more conducive mobility.

Keywords: delay prediction model; lightweight neural network; lightweight attention mechanism

1. Introduction

In recent years, China’s air traffic industry has grown rapidly with the implementation
of the 13th Five-Year Plan for Civil Aviation [1]. However, the number of flights continues
to grow, but the normal rate of flights is becoming lower and lower. During this period, the
Civil Aviation Administration carried out total control of flight slots and adjusted flight
structure, and the problem of flight delays was alleviated. According to a report from the
Civil Aviation Work Conference 2022 held by the Civil Aviation Administration of China [2],
since 2020, due to the impact of the epidemic, the number of flights has significantly
decreased abnormally, so flight delays during the epidemic are not considered. In addition,
China will overtake the United States as the largest air transport organization in 2029,
according to research from the International Air Transport Association (IATA) [3]. With
the COVID-19 epidemic under effective control, the volume of air traffic will also increase
rapidly. Therefore, the speed of air traffic recovery and the projections of international
reports firmly reflect the urgent traffic demand of China’s air traffic industry. Serious flight
delays are likely to trigger “mass incidents of air passengers” [4–6], thus endangering the
public safety of the airport and the personal safety of the passengers. Understanding flight
delays in advance has become a pressing issue for civil aviation. To this end, a large number
of studies have been carried out by domestic and foreign scholars in related fields.

The traditional flight delay prediction methods mainly include statistical inference,
simulation and modeling, and machine learning methods [7]. Xu et al. [8] proposed
a permutation and incremental permutation SVM algorithm considering the demand
of flight volume and real-time refreshment of flight data and validated it on manual
data. Finally, the accuracy of flight delay prediction can reach more than 80%. Similarly,
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Luo ‘s team [9] and Luo ‘s team [10] also gradually considered using support vector
machines or improved support vectors to analyze flight delays. In view of the irregular
dynamic distribution attributes of flight data, Cheng et al. [11] proposed a classification
prediction model of flight delay based on C4.5 decision tree to avoid the impact of flight
distribution changes on the algorithm model, which is a certain improvement compared
with the traditional Bayesian algorithm. Nigam and Govinda [12] analyzed the flight
data and meteorological data of several airports in the United States and used the logistic
regression algorithm in the machine learning algorithm to predict the flight departure
delay. Khanmohammadi et al. [13] proposed a flight delay prediction model based on an
improved Artificial Neural Network (ANN), and they used multiple linear N-1 coding
to preprocess complex airport data models. Wu et al. [14] proposed a flight delay spread
prediction model based on CBAM-CondenseNet, which enhances the transmission of
deep information in the network structure by adopting a channel and spatial attention
mechanism to increase the prediction accuracy. When using deep learning to predict
flight delay, these scholars chose a relatively deep learning network, which requires a lot of
computing time and resources. They can only choose to deploy the flight delay algorithm to
the PC terminal. However, for the deployment requirements of mobile terminals, there is no
trade-off between the accuracy and computational complexity of the prediction algorithm.

Recently, experts from home and abroad have carried out in-depth research and in-
novation in lightweight materials. In the beginning, experts used knowledge distillation,
model pruning and other methods to try out algorithms. The former first trains a Net-
T network and then uses network distillation to obtain a smaller Net-S network, thus
achieving the effect of a simplified model. The latter simplified the model through channel
pruning and other operations on the trained model [15–19]. Lightweight convolutional
neural networks are an emerging branch of deep learning algorithms. This type of net-
work applies lightweight operations to the algorithm itself and continuously innovates
the algorithm from within so that it can maximize accuracy and continuously meet the
computational power requirements of mobile devices. For example, the peerless team [20]
proposed the ShuffleNet series algorithm, which uses the Channel Shuffle and Channel
split operations [21] to speed up network and feature reuse, and the lightweight neural
network Efficientnet algorithms presented by the Google team [22]. This algorithm com-
prehensively considers the input data size, network depth, and width, and proposes a
model compound scaling method to control model computing power and ensure accu-
racy. Iandola et al. [23] proposed a lightweight SqueezeNet algorithm that proposes a Fire
module structure to design the network structure. In this structure, to extract features and
lessen model computation, single-layer and double-layer convolutions were used. The
Google team [24] proposed MobileNet series algorithms, which are extremely influential
in lightweight neural networks, which use deep separable convolution and SE attention
mechanism for feature extraction and combine with structures, such as inverted residual
error, which considerably improve the accuracy and computational performance of the
model [25,26]. Excellent results have been achieved in face recognition, image classification,
target detection, etc. [27–29].

To sum up, in view of the problems of low prediction accuracy and high computational
complexity of the existing flight delay prediction algorithms, which are not conducive
to deployment on mobile devices and other devices, this paper proposes an improved
lightweight ECA-MobilenetV3 algorithm, which replaces the SE model with a lightweight
ECA (Efficient Channel Attention) module, effectively reducing the computational com-
plexity of the model without losing accuracy; it lays a foundation for the application of the
model in mobile devices. The experiment uses real domestic meteorological data and flight
data for analysis and verification.

The organizational structure of this paper is as follows: Section 1 introduces the
background and significance of the paper, as well as the research status at home and
abroad. Section 2 proposes and introduces the ECA-MobileNetV3 network model. Section 3
introduces the building process of a flight delay prediction model in detail. Section 4
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shows the analysis of the experimental results and the application of the model. Section 5
summarizes the work of this paper and describes the future work.

2. Design of the ECA-MobileNetV3 Network Model

2.1. The Overall Structure of the Network

The network structure of the MobileNetV3 algorithm is shown in Figure 1a. Inherit-
ing the three advantages of deep separable convolution, inverted residue structure, and
linear bottleneck structure of MobileNetV2 network, the algorithm adds the SE atten-
tion mechanism in each inverted residue model [30]. In this paper, considering the non-
lightweight nature of the SE attention mechanism, we propose an improved lightweight
ECA-MobileNetV3 network, which replaces the SE module with the lightweight ECA
attention mechanism [31], and the improved algorithm structure is shown in Figure 1b.
The ECA-MobileNetV3 algorithm uses 1-dimensional convolution and cross-channel inter-
action methods to obtain channel importance, which effectively reduces the computational
complexity of the model while ensuring the accuracy of the model.
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Figure 1. Comparison of the backbone network structure of the two algorithms before and after the
improvement. (a) Backbone network structure of the MobileNetV3. (b) Backbone network structure
of the ECA-MobileNetV3.

The ECA-MobileNetV3 algorithm uses a deep convolution kernel of a different size
for the inverted residual structure. As can be seen from the structural configuration table
for the ECA-MobileNetV3 algorithm listed in Table 1, the size of the deep convolution
kernel in the inverted residual module 1, module 2, and module 3 is [3× 3], while the
size of the deep convolution kernel in the remaining inverted residual module is [5× 5].
Width Multiplier is the hyper parameter in the MobileNetV3 network; by adjusting its
size, one can change the channel number of the output matrix in each layer of the whole
network, so as to quickly change the model size; the number of output feature matrix
channels is NK ∈ (16, 16, 24, 24, 40, 40, 40, 48, 48, 96, 96, 96, 88, 1280, 5). The α denotes the
channel factor, which is the hyper parameter in the MobileNetV3 network. By adjusting
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its size, the number of channels in the output matrix in each layer of the network can be
changed, so that the model size can be changed quickly.

Table 1. Configuration table of the flight delay prediction model based on the ECA-MobileNetV3 algorithm.

Network Layer
Output Matrix

Size DF×DF

Convolutional Kernel
Size DK×DK

Number of Output
Matrix Channels NK

Input 8× 8/8× 9 - 1

Traditional convolutional layer 8× 8/8× 9 [3× 3] α × 16

Inverted residuals
module 1

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 16
Deep convolutional layer [3× 3]

ECA module -
Convolutional layer by point [1× 1]

Inverted residuals
module 2

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 24
Deep convolutional layer [3× 3]

ECA module -
Convolutional layer by point [1× 1]

. . . . . .

Inverted residuals
module 11

Traditional convolutional layer

8× 8/8× 9

[1× 1]

α × 96
Deep convolutional layer [5× 5]

ECA module -
Convolutional layer by point [1× 1]

Traditional convolutional layer 8× 8/8× 9 [1× 1] α × 88

GAP (Global Average Pooling) 8× 8/8× 9 - -

Fully Connected Layer 1× 1 - α × 1280

Dropout layer 1× 1 - -

Fully Connected Layer 1× 1 - 5

2.2. Lightweight ECA Module

There is an SE module in the MobileNetV3 algorithm, in which the feature matrix is
first dimensioned down and then dimensioned up to obtain the weight channel importance.
However, the dimensionality reducing operation between the two completely connected
layers is not conducive to the weight learning of the channel and will lose certain feature
information. Moreover, the model’s calculation load will increase a little with the fully
connected layer. Therefore, this paper considers using the lightweight attention mechanism
ECA module to replace the SE attention mechanism module in MobileNetV3. The ECA
module also functions as a channel attention mechanism, completing the acquisition of
channel weights through an adaptive one-dimensional convolution and a cross-channel
interaction technique without dimensionality reduction. The model can effectively reduce
the computational complexity while maintaining the property.

Figure 2 depicts the ECA module’s general structure. Assuming that the feature matrix
before the input to the ECA attention mechanism is X ∈ R(H ×W × C), through global
average pooling, the features first reduce the width and height of the feature matrix. The
model then enters the adaptive one-dimensional convolution calculation to complete the
acquisition of feature weights, as shown in Formula (1), in which adaptation refers to the
adaptive selection of k adjacent channels in the process of obtaining channel weights, as
shown in Formula (2).

Wc = σ(C1Dk(Zc)) (1)

k = ψ(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

(2)
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Figure 2. Structural diagram of the ECA attention mechanism.

In Formula (1), Wc represents the channel-acquired weights, σ(•) the Sigmoid activa-
tion function, C1Dk(•) the adaptive one-dimensional convolution, and Zc the feature matrix
after global average pooling. In Formula (2), k represents the number of local cross-channel
interactions, which is the size of the one-dimensional convolutional kernel, C represents the
number of channels in the feature matrix, and γ and b represent constants. The experiment
is set to 2 and 1, respectively, according to the requirements of the original paper.

2.3. Network Training of Forward Propagation

An inverted residue module inside ECA-MobileNetV3 consists of [1× 1] traditional
convolution, [3× 3]/[5× 5] deep convolution, ECA attention mechanism, and [1× 1] point-
by-point convolution. Each layer is convolved with a BN regularization layer and an
activation function layer. The ECA-MobileNetV3 algorithm has 11 reverse residual modules.
In the first three reverse residual modules, the ReLU function is chosen as the activation
function for the first conventional convolutional layer and the second depth layer, as
shown in Formula (3), and the H-Swish function as the activation function, as shown in
Formula (4); all successive convolutional layers use the linear function as an activation
function and Sigmoid function for channel weight, as shown in Formula (5).

ReLU(x) = max(x, 0) (3)

H-Swish(x) = x
ReLU6(x + 3)

6
(4)

Sigmoid(x) =
1

1 + e−x (5)

Through the above description, we can obtain the feature matrix in the calculation
process, the convolution layer can be expressed as the following Formulas (6) and (7),
which can derive a residual module after three convolution operations, and they can be
represented by Formulas (8)–(10).

zl
j = ∑

k
Wl

jk ⊗ yl−1
k + bl

j (6)

y
l

j = σ(BN(∑
k

Wl
jk ⊗ yl−1

k + bl
j)) (7)

y1
j = σ(BN(∑

k
W1

jk ⊗ Xk + b1
j )) (8)
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y2
j = σ(BN(∑

k
W2

jk ⊗ y1
k + b2

j )) (9)

y3
j = line(BN(∑

k
W3

jk⊗y2
k + b3

j )) (10)

where Wl
jk represents the weight of the k-th feature to the j-th feature in the layer l − 1, bl

j

represents the bias of the j-th feature in the layer l, zl
j represents the output value before

the k-th feature in layer l passes the activation function, σ(•) represents the activation
function, and yl−1

k represents the mapping value of the k-th feature in the layer l − 1 after
the activation function.

In addition, the feature matrix enters the ECA module after entering the deconvolu-
tional module and passing through traditional convolutional layers and deep convolutional
layers. The ECA module lies between deep convolution and pointwise convolution. As a
complete calculation unit for acquiring channel weights, its forward propagation process is
shown in Formula (11):

yj = yconv
k ⊗ sigmoid(C1D(GAP(yconv

k )) (11)

where yconv
k represents the feature matrix after the deep convolution operation, and the

second half of the formula represents the feature weights acquired through the ECA module.

2.4. Network Training of Back Propagation

After the forward propagation of the ECA-MobileNetV3 algorithm is completed to
obtain the predicted value of the model, the loss function between it and the true value
is computed. Then, the chain derivative rule is used to obtain the chain derivative of the
error term of the training samples, and the weight parameters and the bias are updated
continuously until the network model converges. Chain derivative rule can also be called
BP (back propagation) [32]. The error term δl

j between layers l + 1 and l is calculated
according to the rule, as shown in Formula (12). The chain analysis results of weight and
bias within a residual module are shown in Formulas (13) and (14):

δl
j =

∂J
∂zl

j
=

∂J
∂yl

j
σ(zl

j) = BN(∑
k

Wl+1
jk ⊗δl+1

k + bl
j)⊗ σ′(zl

j) (12)

∂J
∂W1

jk
= (δ4

j ⊗W4
j + δ3

j ⊗W3
j + δ2

j ⊗W2
j )⊗ yj (13)

∂J
∂b1

jk
= (δ4

j ⊗W4
j + δ3

j ⊗ b3
j + δ2

j ⊗ b2
j ) (14)

where J represents the loss function, δl
j represents the error value of the j-th eigenvalue in

layer l, Wl+1
jk represents the weight of neurons from k-th to j-th feature in layer l, and ⊗

represents the multiplication between matrices.δ2
j , δ3

j , and δ4
j , respectively, represent the

error terms between traditional convolutional layer, deep convolutional layer, ECA module,
and point-by-point convolutional layer. According to Formulas (13) and (14), the weight
and bias can be updated from back to forward, respectively.

3. Flight Delay Prediction Model Based on ECA-MobileNetV3

The overall structure of the flight delay prediction model based on ECA-MobileNetV3
is shown in Figure 3. The flight delay prediction model is divided into three parts [33]: data
processing, feature extraction of the delay prediction model, and classification prediction of
the model.
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Figure 3. Flight delay prediction model based on the ECA-MobileNetV3 algorithm.

3.1. Data Preprocessing

The dataset used in this paper is mainly the flight dataset integrated with meteoro-
logical information and independently built. The data acquisition mainly comes from two
sources: the flight dataset from March 2018 to March 2019 provided by the East China Air
Traffic Administration and the meteorological dataset observed by the Automatic Weather
Observation System (AWOS) [34], and the flight dataset from September 2019 to October
2020 provided by the North China Air Traffic Administration and the corresponding mete-
orological dataset. The flight dataset integrated with meteorological information contains
multiple characteristic variables, including flight number, departure airport, destination
airport, departure time, arrival time, delay time, flight status, etc. It also includes meteoro-
logical data, such as temperature, humidity, wind speed, precipitation, etc. According to
the different sources of data acquisition, the dataset is divided into the Shanghai Hongqiao
Airport dataset provided by the East China Air Traffic Control Bureau and the Beijing–
Tianjin–Hebei Airport Cluster dataset provided by the North China Air Traffic Control
Bureau. The Shanghai Hongqiao Airport dataset contains 301,594 sample data, and the
Beijing–Tianjin–Hebei Airport Cluster dataset contains 1,048,576 sample data. The dataset
also contains missing values and duplicate values, the flight data provided by the air traffic
control bureau is manually recorded, and the meteorological data are collected by the
airport’s sensor equipment. There will be errors and omissions in the manually recorded
data, and some data will be missing and incomplete due to sensor failure. During data
integration processing, the same data may also be recorded repeatedly, so the dataset needs
to be cleaned and processed to ensure data quality.

A series of preprocessing operations is performed on the dataset before feeding into the
lightweight convolutional neural network algorithm. Figure 4 shows a data preprocessing
flowchart. The whole process can be divided into: data cleaning, data fusion, data encoding,
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and matrix quadrature. For the dataset of Shanghai Hongqiao Airport, the flights of
Shanghai Hongqiao Airport should be extracted from the original dataset according to
the planned departure airport and planned arrival airport according to the four-character
code of civil aviation airport “ZSSS” (Shanghai Hongqiao International Airport). Similarly,
for the Beijing–Tianjin–Hebei airport cluster dataset, flights from major airports in Beijing,
Tianjin, and Shijiazhuang were, respectively, extracted according to the four-character code
of civil aviation airport “ZBAA” (Beijing Capital International Airport), “ZBAD” (Beijing
Daxing International Airport), “ZBTJ” (Tianjin Binhai International Airport), and “ZBSJ”
(Shijiazhuang Zhengding International Airport), and then the subsequent data pretreatment
work was carried out.

 

Figure 4. Data processing flowchart.

The first step in data preprocessing is data cleaning: attribute columns with many nulls
in the dataset, duplicate data and attribute deletion, and other operations. The second step
is data fusion operation: set the time attribute in the meteorological data as the association
primary key I, set the planned start time and planned landing time in the flight data as the
association primary key II according to the airport ID, and then conduct the association
fusion between the primary key I and the primary key II. In order to enhance the data, the
10 min meteorological information is fused in this paper to enlarge the feature information
of the fused data. The third step is the data encoding operation: Considering that the
categorical data in the dataset contain low-base data and high-base data, as well as the
numerical attributes of the data, the mixed encoding methods of Min–Max coding [35]
and CatBoost coding [36] are adopted in this paper to encode the dataset, so as to ensure
that the data remain in the same dimensional range before input into the algorithm. There
is also no dimensional explosion. The fourth step is the data matrix operation: since the
MobileNetV3 algorithm belongs to the convolutional neural network, its input data is
required to be in the form of a matrix, so the dataset in this paper needs to be converted
from the form of vector to the form of matrix before input into the algorithm, so as to meet
the input requirements.

3.2. Feature Extraction of the Delay Prediction Model

The processed dataset needs to be transformed into tensor form and fed into the
model for feature extraction and training. The specific feature extraction process is as
follows: After the ECA-MobileNetV3 network model accepts the input characteristic matrix,
the characteristic matrix first passes through the first standard convolution layer, which
converts the input characteristic matrix into a set of characteristic graphs and then activates
it immediately following a nonlinear activation function. Next, these feature maps will pass
through multiple inverse residual modules composed of a standard convolution layer, deep
convolution layer, ECA attention mechanism module, and point-by-point convolution layer
and activation function. These convolution layers with deep separability can effectively
reduce the model parameters and calculation amount, and multiple inverse residual models
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can extract features at different levels. During this period, the ECA-MobileNetV3 network
uses an ECA module and feature fusion technology to fuse feature maps at different levels
to improve the expression ability of feature maps. Then, the feature map passes through a
global average pooling layer. The global average pooling layer can reduce the dimension
of the feature map into a vector. Finally, this vector maps the feature vector to the target
category through a fully connected layer classifier to complete the classification task.

3.3. Classification Prediction

The pre-processed dataset needs to be transformed into tensor form and fed into the
model for training. According to the relevant definition of flight delay in Normal Flight
Management Regulations [37] issued by the Civil Aviation Administration of China in 2017,
on this basis, this paper subdivides the delay situation into five different time periods. In
this paper, the five levels of flight delay are taken as the labels of the dataset, and the flight
arrival delay time is taken as the flight delay time T. It defines the difference between the
actual arrival time and the planned arrival time.

According to the classification of flight delay levels given in Table 2 and the sample
number of each delay level in the two datasets, when T is less than 15 min, it is considered
as delay-free; that is, the flight delay level is 0 and the label is 0. When T is between 15
and 60 min, it is considered to be slightly delayed; that is, the flight delay level is 1 and the
label is 1. When T is between 60 and 120 min, it is considered moderate delay; that is, the
flight delay level is 2 and the label is 2. When T is between 120 and 240 min, it is considered
to be highly delayed; that is, the flight delay level is 3 and the label is 3. When T is above
240 min, it is considered a severe delay, that is, a flight delay level of 4 with a label of 4.

Table 2. Flight delay level classification.

Flight Delay Grade Flight Delay Time T (minute) Hongqiao Airport Beijing–Tianjin–Hebei Airport Cluster

0 (No delay) T ≤ 15 242,873 898,033
1 (Mild delay) 15 < T ≤ 60 34,388 91,362

2 (Moderate delay) 60 < T ≤ 120 14,904 32,053
3 (Highly delayed) 120 < T ≤ 240 7379 16,932

4 (Heavy delay) T > 240 2049 10,195

The flight delay prediction algorithm then uses the Softmax classifier to determine
the flight delay level. Softmax function is a commonly used activation function, which
is often used for the final output of multi-classification problems. The original Softmax
classifier formula is shown in (15), where xi represents the i-th sample, q represents the
number of categories, and j represents the number of categories. The Softmax function can
map a q-dimension vector to a q-dimension probability distribution, where the value of
each element represents the probability size of the category. Therefore, the classifier can
compute a probability value for each delay level, and the highest value is used as each
datum’s final result. The Softmax classifier formula is shown in (16):

so f tmax(xi) =
exi

q
∑

j=1
exi

(15)

hθ(x) =

⎡⎢⎢⎢⎢⎢⎣
p(y(i) = 1)x(i); θ

p(y(i) = 2)x(i); θ

p(y(i) = 3)x(i); θ
. . .

p(y(i) = q)x(i); θ

⎤⎥⎥⎥⎥⎥⎦ =
1

q
∑

j=1
eθT

j x(i)

⎡⎢⎢⎢⎢⎢⎢⎣
eθT

1 x(i)

eθT
2 x(i)

eθT
3 x(i)

. . .
eθT

q x(i)

⎤⎥⎥⎥⎥⎥⎥⎦ (16)
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Among them, hθ(x) is the final output of the flight delay prediction model, θ is the
optimal parameter obtained by the model, i represents the serial number of data quantity,
and q represents the classification number of flight delay level.

4. Interpretation

4.1. Experimental Environment and Model Parameter Configuration

The computer used in this paper was set up as follows under the described experi-
mental setting: the processor was an Intel Xeon E5-1620 with a CPU frequency of 3.60 GHz;
memory 16.004 GB; the OS is Ubuntu16.04. The graphics accelerator GeForce GTX TITAN
Xp; the deep learning development framework is Tensorflow 2.3.0. The sample size of the
Shanghai Hongqiao Airport dataset used in the experiment is 301,089, the feature attribute
quantity is 64, and the size after matrix is 8× 8; the sample size of Beijing–Tianjin–Hebei
airport cluster dataset is 1,650,797, the feature attribute quantity is 72, and the size after
matrix is 8× 9. The specific experimental parameter configurations used to train the model
are shown in Table 3 below.

Table 3. Table of configuration of experimental parameters.

Parameter Name
Hongqiao Airport

Parameters Take the Value
Beijing–Tianjin–Hebei Airport

Group Parameter Value

Iteration number 300 150
Train_test_split 9:1 9:1
Loss function Cross entropy Cross entropy

Optimizer Adam Adam
Learning rate 0.001 0.000001

Dropout 0.2 0.2
Training batch volume 256 128

Test batch volume 256 128
Width Multiplier α 0.50/0.75/1.00 0.50/0.75/1.00

4.2. Evaluation Index of the Model

Loss value and accuracy rate are evaluation metrics that characterize how well a deep
learning algorithm fits. The loss value is mainly used to measure the difference between
the predicted result of the model and the actual value and can be calculated from the
loss function, which is negatively correlated with accuracy, with higher accuracy leading
to smaller loss values. The percentage of samples that produced accurate predictions
compared to all samples is known as the accuracy rate. The formula is shown in (17), where
C represents the predicted correct sample.

Accuracy =
∑ C
N

(17)

Computational complexity can describe the hardware consumption at runtime. The
higher the complexity, the more memory is occupied and the higher the processing time
required. It is mainly divided into spatial complexity and time complexity: spatial com-
plexity is expressed in terms of the number of parameters. The number of parameters of
single-layer convolutional layer and single-layer fully connected layer in the algorithm can
be approximated as Formulas (18) and (19). The time complexity is expressed in compu-
tational quantities, which might be understood as the quantity of FLOPs (Floating Point
Operations). The computation amount of single-layer convolutional layer and single-layer
fully connected layer can be approximated as Formulas (20) and (21).

PC = DK × DK × CF × NK (18)

PQ = DF × DF × CF × NK (19)

FC = DF × DF × CF × NK × DK × DK (20)
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FQ = DF × DF × CF × NK × 1× 1 (21)

In Formulas (18) and (19), PC and PQ are the number of parameters of single-layer
convolutional layer and single-layer fully connected layer, respectively, DK is the convo-
lutional kernel size in the current layer, CF is the number of input feature channels of the
current layer, NK is the number of output feature channels of the current layer, and DF
is the input feature size of the current layer. In Formulas (20) and (21), FC and FQ are the
calculated amount of single-layer convolutional layer and single-layer full connection layer,
respectively. Thus, 1 represents the output feature size of the full connection layer, and the
other parameters have the same meaning in the parameter number formula.

4.3. Loss Values and Accuracy Rates

The validation will be performed on the Shanghai Hongqiao Airport dataset and the
Beijing–Tianjin–Hebei Airport dataset.

Based on the Shanghai Hongqiao Airport dataset, the accuracy and the magnitude of
loss values in the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm with different
channel factors are given in Table 4. According to Table 4, from the longitudinal analysis,
the accuracy of MobileNetV3 and ECA-MobileNetV3 algorithms gradually increases and
the loss value gradually decreases as the channel factor becomes larger, and the accuracy of
the MobileNetV3 algorithm reaches the highest at 98.87% when the channel factor is 1.00.
The ECA-MobileNetV3 algorithm achieves the highest accuracy of 98.97% at a channel
factor of 0.75. From a cross-sectional perspective, the accuracy of the ECA-MobileNetV3
algorithm with the addition of the ECA attention mechanism module is higher than that of
the original MobileNetV3 algorithm for the same number of channel factors, and it can be
seen that the improved algorithm does not lose accuracy on a single-airport dataset such as
the Shanghai Hongqiao Airport dataset.

Table 4. Comparison table of accuracy and loss values for different-width multipliers on Shanghai
Hongqiao Airport dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Accuracy Loss Value Accuracy Loss Value

0.50 98.00% 0.0716 98.41% 0.0675
0.75 98.53% 0.0553 98.97% 0.0445
1.00 98.87% 0.0419 98.90% 0.0449

Based on the dataset of Shanghai Hongqiao Airport, the accuracy and loss curves
of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm under different channel
factors are, respectively, presented in Figures 5 and 6. According to the trend of the curves,
at different channel factors, the accuracy rate gently increases while the loss value gently
decreases. The loss values and accuracies of MobileNetV3 and ECA-MobileNetV3 tend
to stabilize when the number of training rounds is around 300. From the experimental
results, the MobileNetV3 algorithm has a loss value of about 0.0419 when the channel
factor is 1.00. The highest accuracy was 98.87%. When the channel factor is 0.75, the
lowest loss value of the ECA-MobileNetV3 algorithm is about 0.0449, and the highest
accuracy is 98.90%. Compared with the MobileNetV3 algorithm, the accuracy of the
ECA-MobileNetV3 algorithm with attention mechanism is slightly improved and the loss
value is slightly increased.

Based on the Beijing–Tianjin–Hebei airport cluster dataset, according to Table 5, from
the longitudinal analysis, as the channel factor becomes larger, the accuracy of the two
algorithms gradually increases and the loss value gradually decreases. Further, the accuracy
rates of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm reach the highest
when the channel factor is 1.00, and the accuracy rate of the MobileNetV3 algorithm reaches
96.60%; the accuracy rate of the ECA-MobileNetV3 algorithm reaches 96.81%. From a cross-
sectional perspective, the accuracy of the ECA-MobileNetV3 algorithm is slightly lower
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than that of the MobileNetV3 algorithm at channel factor numbers of 0.50 and 0.75, and the
accuracy of the improved algorithm is 0.18% lower than that before the improvement at a
channel factor of 0.50. At a channel factor of 1.00, the accuracy of the ECA-MobileNetV3
algorithm is slightly higher than that of the MobileNetV3 algorithm, and the accuracy
of the improved algorithm is 0.21% higher than that before the improvement. Therefore,
on the whole, the improved ECA-MobileNetV3 algorithm has a minor loss in accuracy
and still has some advantages in a multi-airport-associated cluster dataset such as the
Beijing–Tianjin–Hebei airport cluster dataset.

  
(a) (b) 

Figure 5. Comparison of loss values and accuracy for different-width multipliers based on the
MobileNetV3 algorithm on Shanghai Hongqiao Airport dataset. (a) Accuracy comparison of different-
width multipliers. (b) Loss value comparison of different-width multipliers.

  
(a) (b) 

Figure 6. Comparison of loss values and accuracy for different-width multipliers based on the
ECA-MobileNetV3 algorithm on Shanghai Hongqiao Airport dataset. (a) Accuracy comparison of
different-width multipliers. (b) Loss value comparison of different-width multipliers.

Based on the Beijing–Tianjin–Hebei airport cluster dataset, the accuracy and loss
curves of the MobileNetV3 algorithm and ECA-MobileNetV3 algorithm under different
channel factors are, respectively, presented in Figures 7 and 8. According to the trend
of the curves, at different channel factors, the accuracy rate gently increases while the
loss value gently decreases. The loss values and accuracies of MobileNetV3 and ECA-
MobileNetV3 tend to stabilize when the number of training rounds is around 150. From
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the experimental results, the MobileNetV3 algorithm has a loss value of about 0.0819 when
the channel factor is 1.00. The highest accuracy was 96.60%. When the channel factor is
1.00, the lowest loss value of the ECA-MobileNetV3 algorithm is about 0.0813, and the
highest accuracy is 96.81%. Compared with the MobileNetV3 algorithm, the accuracy of
the ECA-MobileNetV3 algorithm with an attention mechanism is slightly improved, while
the loss value is slightly decreased.

Table 5. Comparison table of accuracy and loss values for different width multipliers on Beijing–
Tianjin–Hebei airport cluster dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Accuracy Loss Value Accuracy Loss Value

0.50 96.40% 0.0932 96.22% 0.1049
0.75 96.56% 0.0871 96.55% 0.0878
1.00 96.60% 0.0819 96.81% 0.0813

  

(a) (b) 

Figure 7. Comparison of loss values and accuracy for different-width multipliers based on the
MobileNetV3 algorithm on Beijing–Tianjin–Hebei airport cluster dataset. (a) Accuracy comparison of
different-width multipliers. (b) Loss value comparison of different-width multipliers.

  

(a) (b) 

Figure 8. Comparison of loss values and accuracy for different-width multipliers based on the ECA-
MobileNetV3 algorithm on Beijing–Tianjin–Hebei airport cluster dataset. (a) Accuracy comparison of
different-width multipliers. (b) Loss value comparison of different-width multipliers.
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4.4. Complex Calculation of the Model

Validation will be performed on the Shanghai Hongqiao Airport dataset and the
Beijing–Tianjin–Hebei Airport dataset.

Based on the Shanghai Hongqiao Airport dataset, Table 6 displays the suggested
algorithm’s accuracy and computational complexity before and after the enhancement.
Vertically, as the channel factor increases, the MobileNetV3 algorithm’s accuracy rises
together with the model’s complexity. The model complexity and accuracy of the ECA-
MobileNetV3 algorithm increase with the channel factor. However, for channel factors of
0.75 and 1.0, the accuracy rate does not improve significantly due to the complexity of the
model but gradually stabilizes. From a horizontal perspective, under the same channel
factor, the ECA-MobileNetV3 model can efficiently minimize the number of parameters
and computation without sacrificing accuracy.

Table 6. Algorithmic complexity comparison for different-width multipliers on Shanghai Hongqiao
Airport dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

0.50 0.29 16.43 98.00% 0.17 16.21 98.41%
0.75 0.60 33.31 98.53% 0.33 32.80 98.97%
1.00 1.01 54.66 98.87% 0.55 53.76 98.90%

Based on the Beijing–Tianjin–Hebei airport cluster dataset, the computational complex-
ity and accuracy of the proposed algorithm before and after the improvement are shown in
Table 7. From the longitudinal point of view, as the channel factor increases, the complexity
of the MobileNetV3 model increases and the accuracy improves. However, with channel
factors of 0.75 and 1.00, the accuracy increases slightly and remains essentially stable. As
the channel factor increases, the complexity of the ECA-MobileNetV3 model increases
and the accuracy improves. When the channel factors are 0.75 and 1.0, the accuracy is
significantly improved. From a horizontal perspective, the computational complexity of
the ECA-MobileNetV3 model is effectively reduced with little loss in accuracy for the same
channel factor.

Table 7. Algorithmic complexity comparison for different-width multipliers on Beijing–Tianjin–Hebei
airport cluster dataset.

Width Multiplier
MobileNetV3 ECA-MobileNetV3

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

0.50 0.29 18.44 96.40% 0.17 18.22 96.22%
0.75 0.60 37.39 96.56% 0.33 36.88 96.55%
1.00 1.01 61.35 96.60% 0.55 60.44 96.81%

It is clear from the experimental findings on the aforementioned two datasets that
the computational cost and precision of the proposed model are not only linear. We can
find algorithms that better balance the accuracy and computational complexity of the
model, which is also the direction of efforts in lightweight neural networks. By computing
conditions on different mobile devices, it is possible to match flight delay prediction models
of different sizes to maximize the model utilization.

4.5. Comparison of Different Network Models

Compared with traditional deep learning algorithms, the modified ECA-MobileNetV3
achieves better performance in terms of computational complexity and model accuracy
when dealing with real domestic flight datasets with weather information fusion. In this
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regard, this paper verifies the single airport and airport group datasets, compares the ECA-
MobileNetV3_1.00 model with the traditional ResNet [38], DenseNet [39] algorithm, and
MobileNetV2 algorithm under the same channel factor and analyzes it from the following
three aspects. ResNet and DenseNet are models that have been trained and widely used in
large-scale datasets and have achieved good results in many computer vision and natural
language processing tasks. Therefore, they are very representative models and can be used
as benchmarks for other models. MobileNetV2, as the leader in the lightweight model, has
been widely used in many mobile device applications. MobileNetV2 is the predecessor of
MobileNetV3, which can verify whether the improvement in ECA-MobileNetV3 is effective.
Taking MobileNetV2 as a comparative test can also provide reference and inspiration for
more lightweight model design. The results are shown in Table 8.

Table 8. Comparison of the evaluation indicators for the different models.

Model Name
Shanghai Hongqiao Airport Beijing-Tianjin-Heibei Airport Group

Params(M) FLOPs(M) Accuracy Params(M) FLOPs(M) Accuracy

ResNet18 11.18 1429.40 95.56% 11.18 1608.07 94.33%
DenseNet121 7.04 498.36 94.94% 7.04 580.54 93.76%

MobileNetV2_1.00 2.26 70.75 99.06% 2.26 88.40 95.99%
MobileNetV3_1.00 1.01 54.66 98.87% 1.01 61.35 96.60%

ECA-MobileNetV3_1.00 0.55 53.76 98.90% 0.55 60.44 96.81%

In the Hongqiao Airport dataset, the accuracy of the ECA-MobileNetV3_1.00 algorithm
increases by 3.34% and 3.96% and the number of citations decreases by 10.63 million and
6.49 million, respectively, compared to the other two traditional networks. The calculated
amounts were reduced by 1375.64 million and 444.6 million, respectively. In the single
airport dataset, it can be seen that the enhanced ECA-MobileNetV3 model outperforms
in terms of accuracy and computational complexity. In addition, when compared to the
MobileNetV2 method at the same channel factor, the accuracy of the enhanced algorithm is
decreased by 0.16%, and the number of parameters and computational cost are decreased,
respectively, by 171 million and 16.99 million. As compared to the MobileNetV2 algorithm
at the same level, it can be seen that the upgraded algorithm achieves a better balance
between model complexity and accuracy.

In the Beijing–Tianjin–Hebei airport cluster dataset, the accuracy of the ECA-
MobileNetV3_1.00 model increases by 2.48% and 3.05% and the reference number de-
creases by 10.63 million and 6.49 million, respectively, compared to the other two traditional
networks. The calculated amounts were reduced by 1547.63 million and 520.10 million,
respectively. On the airport cluster dataset, it can be shown that the revised model
performs quite well in the three evaluation measures mentioned above. Additionally,
the ECA-MobileNetV3 algorithm’s accuracy is increased by 0.82% when compared to
MobileNetV2 at the same channel factor, while the algorithm’s computational cost and
parameter count are decreased by 1.71 million and 27.96 million, respectively. As is evident,
the improved model also achieves a better balance of the above three metrics compared to
the MobileNetV2 algorithm of the same level.

4.6. Application of the Model

At present, the flight delay prediction Web visualization system based on the flight
delay prediction model of ECA-MobileNetV3 has been put into use in the air traffic control
bureau. The system uses the flight delay prediction model studied in this paper to predict
flight delay and then displays the predicted delay results on the web page through the
Web visualization technology and can carry out statistical analysis on the historical delay
information, so as to explore the deeper laws of delay generation, for example, to see in
which time periods of the day and in which months of the year flight delays mainly occur.
This application mainly takes advantage of the high prediction accuracy of the flight delay
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prediction model studied in this paper. The subsequent application direction will focus
on the advantages of light weight. The lightweight model has the characteristics of fast
prediction speed, less demand for computing resources, higher real-time performance, and
portability. Therefore, this model can be deployed on some low-power devices, such as
mobile devices and sensors. This can quickly process data input and quickly update
forecast results and provide real-time information for airlines and the base to help them
plan and manage flight missions.

5. Conclusions

This paper studies the lightweight neural network MobileNetV3 algorithm and the
improved ECA-MobileNetV3 algorithm. By using the Shanghai Hongqiao Airport dataset
and the Beijing–Tianjin–Hebei Airport Cluster dataset, for example, analysis and practical
application of the model, the following conclusions are drawn: The algorithm proposed
in this paper can effectively reduce the computational complexity in the model without
loss of accuracy or with a small loss of accuracy by replacing the SE module in the original
MobileNetV3 algorithm with a lightweight ECA attention mechanism module. Compared
with the ResNet algorithm, DenseNet algorithm, and MobileNetV2 algorithm under the
same channel factor, the improved ECA-MobileNetV3 algorithm has more advantages in
computational complexity and accuracy. The flight delay prediction model based on ECA-
the MobileNetV3 algorithm has the advantage of light weight compared with the flight
delay prediction model that has been deployed now. The lightweight flight delay model
can bring faster execution speed, fewer computing resources, higher real-time performance,
and higher flexibility and portability, which can greatly lay the foundation for subsequent
deployment on mobile terminals and other platform devices, and for airlines, the airport
and passengers provide better service and better experience. However, there is still a lot
of room for improvement in the process of research in this paper. On the one hand, the
number of flight samples with different delay levels is quite different, which will affect the
accuracy of flight prediction. It is necessary to consider the impact of sample imbalance
on model training. On the other hand, the problem of flight delay is time-varying, and
the prediction model needs to be updated at any time. The next step is to explore how to
achieve a real-time update of the model and improve the practicability of the model.
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Abstract: Orphan genes (OGs) may evolve from noncoding sequences or be derived from older
coding material. Some shares of OGs are present in all sequenced genomes, participating in the
biochemical and physiological pathways of many species, while many of them may be associated with
the response to environmental stresses and species-specific traits or regulatory patterns. However,
identifying OGs is a laborious and time-consuming task. This paper presents an automated predictor,
XGBoost-A2OGs (identification of OGs for angiosperm based on XGBoost), used to identify OGs
for seven angiosperm species based on hybrid features and XGBoost. The precision and accuracy
of the proposed model based on fivefold cross-validation and independent testing reached 0.90
and 0.91, respectively, outperforming other classifiers in cross-species validation via other models,
namely, Random Forest, AdaBoost, GBDT, and SVM. Furthermore, by analyzing and subdividing the
hybrid features into five sets, it was proven that different hybrid feature sets influenced the prediction
performance of OGs involving eudicot and monocot groups. Finally, testing of small-scale empirical
datasets of each species separately based on optimal hybrid features revealed that the proposed
model performed better for eudicot groups than for monocot groups.

Keywords: orphan genes (OGs); hybrid features; machine learning; angiosperm

1. Introduction

Monocotyledonous and eudicotyledonous plants (monocots and eudicots) have mor-
phological differences in the number and arrangement of their embryonic leaves. These
are typically parallel in monocots and reticulate in eudicots; besides, monocots have a
sheathing leaf base encircling the stem. Monocots diverged from their eudicot relatives
in angiosperm evolution derived from the whole genome duplication (WGD), which con-
tributed to increased diversification, environmental adaptation, and genomic novelty [1].
In the evolutionary process, orphan genes (OGs) can arise in a lineage and are preva-
lently expressed in many organisms [2]. In particular, taxonomically restricted OGs are
widely distributed in angiosperm species, including eudicot and monocot groups, such
as Arabidopsis thaliana, Populus trichocarpa, Citrus sinensis, Triticum aestivum, Oryza sativa,
cowpea, Camellia sinensis, and Saccharum spontaneum [3–10]. Numerous studies of OGs have
identified general trends in the sequence features of OGs across different species, including
gene length, GC content, and introns, which are also vital for environmental adaptation,
including biotic and abiotic stress [11–13]. Specifically, the OG Qua-Quine Starch (QQS)
in Arabidopsis thaliana is known to regulate the ratio of protein and starch carbon. Being
transferred and expressed in other species, QQS has been reported to change the metabolic
process by regulating the allocation of carbon and nitrogen in proteins and carbohydrates
and affecting the compounds in seeds and leaves, consequently improving crop yields [14].
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Previous studies also revealed that OGs play a vital role in response to drought stress in
cowpea and Fusarium resistance in Triticum aestivum [6,7].

OGs have usually been applied through BLAST (Basic Local Alignment Search Tool)
sequence alignment, involving genome and transcriptome sequences for all analysis pro-
cesses, including BLASTP, BLASTN, TBLASTX, and so on [15]. However, this method is
time-consuming and requires considerable server-driven resources to identify OGs. Alter-
natively, OGs can be distinguished from nonorphan genes (NOGs), e.g., protein-coding
genes, by more significant differences in gene length, exon number, GC content, and ex-
pression level [11]. Their analysis and further classification can be facilitated via machine
learning-based methods, which have already been successfully applied to classifying bio-
logical datasets and solving various discrimination problems. Thus, such ensemble learning
methods as Gradient Boosting Decision Tree (GBDT), Random Forest, and Adaboost have
been used for biological prediction based on genome datasets. In particular, Zhu et al. used
GBDT to classify tissue and cell types in cancer samples using a gene expression dataset,
which performed similarly to other machine learning methods [16]. In contrast, the Extreme
Gradient Boost (XGBoost) method adopted by Chen and Guestrin [17] outperformed nu-
merous machine learning methods and found wide applications in data mining, regression,
and classification domains. In addition, Gao et al. have used an effective model named
SMOTE-ENN-XGBoost to predict the OGs of A. thaliana [18]. However, to the best of the
authors’ knowledge, it has yet to be carried out in the bioinformatic field of predicting OGs
of different types of plant species.

In this study, OGs were measured by taking into account sequence features, which
share some characteristics of other angiosperm species (shorter sequence length, fewer
exon numbers, and lower GC content), while having fewer transcript support and lower
expression than NOGs [12]. Then, these protein features were extracted, and the XGBoost-
A2OG model was constructed and applied to the prediction of OGs in angiosperm species.

2. Related Works

Recently, machine learning methods have received considerable interest in the identifi-
cation of OGs fields, which are an important source of genetics and contribute to evolu-
tionary innovations. These methods include the Decision tree (DT) [19], Neural network
(NN) [19], Convolutional Neural Network (CNN) with transformer [20], and ensemble
learning method [20]. Besides, many researchers have been conducted to compare dif-
ferent machine learning algorithms or combined with other methods to accelerate the
performance of identification of OGs.

Gao et al. proposed a novel ensemble method to predict the OGs of A. thaliana
in bioinformatics studies. Then another deep learning method, CNN with transformer
technique was successfully applied to identifying OGs in moso bamboo which used a
convolutional neural network in combination with a transform neural network in protein
sequences [19]. Their proposed approach provides better performance in a specific species.

In addition, decision trees and neural networks were employed to improve the accurate
discovery of OGs by Casola et al. relying on basic sequence features obtained from DNA
and protein sequences in three angiosperm families. The experimental results showed that
both DT and NN classifiers achieve high levels of accuracy and recall in identifying OGs.

Recently, many studies have confirmed that OGs generated de novo in a species
may be more prevalent than gene duplication and be one of the main ways of orphan
generation [21–25]. Some researchers have found that in the newly evolved OGs in Ara-
bidopsis, protein length is usually shorter, mainly due to the evolution of the orphan gene
having fewer exons in the process, while in some species, the exon length is significantly
shorter [26,27].

However, these researchers haven’t focused on different families of angiosperm plants.
To find a general method to identify a large number of plants of OGs based on a rapid
accumulation of genomic data, we have analyzed some features regarding the genome and
protein sequences that may affect the results in the classification process.
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3. Materials and Methods

3.1. The Framework of the XGBoost-A2OG Model

The workflow used in this study and depicted in Figure 1 comprised the following
five parts: data selection, data pre-processing, data modelling, model development, and
model interpretation.

Figure 1. Workflow of the model framework.

3.2. Data Collection

This study collected protein sequences and gene annotation datasets for 136 plant
species from Phytozome [28]. Non-redundant protein sequences (NR) were obtained from
the NCBI database [29] and Ensemble Plants [30]. Next, BLASTp was used to identify
OG based on a previous study [28] to search for homologs of all 401,834 gene annotations
in seven plants (Arabidopsis thaliana, Populus trichocarpa, Citrus sinensis, Camellia sinensis
Sorghum bicolour, Oryza sativa, Zea mays) (Figure 2) of the other 94 species released in
Phytozome V12.1 with an E-value cutoff of 1 × 10−3. Noteworthy is that the E-value or
expectation value is a more inclusive value than probability, defining the number of times
the query sequence is expected to match with the database sequences by random chance.
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Figure 2. The phylogenetic tree of Monocotyledonous and eudicotyledonous plants.

The obtained 9022 OGs and 392,812 NOGs were identified with label 1 and label 0,
respectively, to thoroughly train the ensemble learning model. All of them were combined
to form the five plant species’ OG datasets. Then, we extracted the characteristics of gene
structure, cDNA sequence, and protein-coding genes of all five species from Phytozome
and Ensemble plants, forming databases containing high annotation of plant genomes.

3.3. Ensemble Algorithm

XGBoost (Extreme Gradient Boost) is an ensemble learning technique for regression
and classification problems based on the boosting algorithm [17]. The motivation is to
classify data using the best hyperplane representing the most extensive separation between
two classes. Unlike the traditional integrated decision tree algorithm, XGBoost adds a
regular term to the loss function, which can control the complexity of the model and
prevent the model from overfitting. The objective function is given to be optimized by the
following formula:

(1) Taylor’s formula to approximate the original goal.

obj(θ) = ∑n
i=1 l(yi,yi,) (1)

(2) Taylor expansion:

obj(t) =
n

∑
i=1

l(yi, ŷi

t−1

) + gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft) + constant · · · (2)

(3) Among them, gi, hi are expressed as:{
gi = ∂

ŷ
(t−1) l(yi, ŷ(t−1)),

hi = ∂2
ŷ
(t−1) l(yi, ŷ(t−1)).

}
(3)
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(4) The formula of decision tree complexity calculation:

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (4)

(5) T is the number of leaf nodes, and w is the leaf node score. Substituting (2)–(4) into
(1) the objective function:

obj(t) =
T

∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j ] + γT (5)

(6) Among, Iij = {i|q(xi = j}, which represents the sample set belonging to the j-th
leaf node.

Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi (6)

(7) To minimize the objective function, set the derivative being 0 and find the optimal
prediction score of each leaf node:

w∗j = −
Gj

Hj + λ
(7)

(8) Substitute the objective function again to get its minimum value:

obj∗ = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (8)

(9) Use obj* to find the tree with the best structure and add it to the model and apply
the greedy algorithm to find the optimal tree structure. Each time when trying to add a
split to an existing leaf, the Gain is calculated as follows:

Gain(Φ) =
1
2
[

( ∑
i⊆IL

gi)
2

∑
i⊆IL

hi + λ
+

( ∑
i⊆IR

gi)
2

∑
i⊆IR

hi + λ
−

( ∑
i⊆I

gi)
2

∑
i⊆I

hi + λ
]− γ (9)

When the XGBoost model was used in the experiment, the following parameters
were adjusted to make the model perform its best performance. For example, one of the
most critical parameters in this and other tree-based ensemble algorithms, such as GBDT,
Random Forest (RF), and AdaBoost, is “learning_rate”, which dramatically affects the
model performance. Another parameter is “n_estimators”, which is the number of iterations
in training: too small or too large parameters will lead to underfitting or overfitting,
respectively. The third critical parameter is “max_depth”, which is the maximum depth of
the tree. Its higher values make the tree model more complex and improve its fitting ability,
but at the same time, it increases the risk of overfitting.

In contrast to XGBoost, the GBDT is a radial basis function kernel that adopts an
automatic gamma value (which is the inner product coefficient in the polynomial) and soft
margin parameter C = 1, which controls the trade-off between the slack variable penalty
and the margin size. Random Forest (RF) is based on trees and is characterized by the
square root of the number of features. In AdaBoost, the most critical parameters are
“base_estimator”, “n_estimators”, and “learning_rate”.

3.4. Data Preparation and Feature Selection Settings

Data pre-processing is the base step before mining data, including cleanup, integration,
and transformation, as well as data discretization, missing value, and outlier processing.
The first pre-processing stage focuses on detecting incomplete, accurate, consistent, and
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corrupt data and then modifying or deleting these false data with some techniques. Differ-
ent datasets have various characteristics in actual research, so there are different ways to
predict the data.

In this paper, we divide into two parts feature selection, one is the filter-based feature
selection. This algorithm adopts some principles involving information, consistency, de-
pendency, and distance for measuring the feature characteristics, which are generalized
for various classifiers based on the independent features of the machine learning algo-
rithm [31]. For example, a variation filter is to remove the features with small difference
value and retain the features with large variance value, because the variance of each feature
determines the different degree of the feature in a sample. When a feature in the data
set is exposed to Bernoulli distribution (binary classification), it can be used the formula
as follow:

σ = p(1 − p) (10)

The classic Chi-square(Chi2) filter method is a statistical test for computing the cor-
relation from two types of categorical data. Considering the inconsistency between the
observed value and the expected value of the sampling frequency, such as the independent
variable equal to i and the dependent variable equal to j, the statistic is constructed, Chi2
tests use the following formula to calculate the test statistic:

κ2 =
(A− E)2

E
(11)

The other part is manual feature selection. In this section, we set three main experi-
ments to evaluate the classifiers to validate the performance of classifying the OGs from
various feature datasets with the proposed model.

Firstly, two sets of experiments were organized based on nine gene pair feature datasets
involving GC, GC%, protein length, molecular weight (Mw(Da)), isoelectric point value
(pI), exon number, average exon length, intron number, average intron length, gene length,
and the output value as an assessment criterion, namely, AGI, for detecting the conditional
relatedness between a pair of genes. For model training, the datasets were divided into
two sections containing training and testing parts, and the target labels of AGI values were
marked as 1 s and 0 s for the two types of gene pairs. The total datasets were divided
into training, validating and testing processes using 5-fold cross-validation. The training
dataset was used to develop the aforementioned statistical criteria for selected models. The
testing dataset was applied to assess the performance of these models with the default
parameters without tuning.

Secondly, to explore the importance of genomic and cDNA sequence features after
selecting the optimal models, we used a feature selection method by removing one feature
from “set_all” of features each time with no redundancy, such as set1 of feature data with
no protein length, set2 with no protein of Mw(Da), set3 with no protein of pI, set4 with no
exon number, and set5 with no GC%.

Finally, to validate this model for predicting the OGs of each plant species with specific
feature sets, we selected seven testing datasets matched with seven plants (Arabidopsis
thaliana, Populus trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and
Camellia sinensis).

3.5. Validation Strategies and Evaluation Metrics

The confusion matrix is a matrix table (shown in Table 1) that is used to judge the
validation of classification. The results of the prediction model are analyzed using four
basic indicators: true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).
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Table 1. Binary confusion matrix.

Real Positive Real Negative

Predict positive TP FP
Predict negative FN TN

We performed an initial statistical analysis to evaluate the prediction performance for
binary classes and grasp the critical features. As the performance measures, stratified five-
fold cross-validation was used for obtaining classification accuracy; however, accuracy was
found to be an inappropriate evaluation metric for class-imbalanced datasets. Alternatively,
precision, recall, F1-Score, and AUC (area under the ROC curve) parameters were used
to evaluate the proposed method’s feasibility, as in [32]. The AUC is the value of the area
under the ROC curve (receiver operating characteristic) that reflects the probability of
identifying correct and wrong results according to different thresholds, which is generally
between 0.5–1. The quantized index value can better compare the performance of the
classifiers: a high-performance classifier AUC value is close to 1properly reflected the
test performance.

(i) Accuracy rate (accuracy rate of positive samples):

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

(ii) Recall rate (accuracy rate of positive samples):

Recall =
TP

TP + FN
(13)

(iii) Precision (precision rate of positive samples):

Precision =
TP

TP + FP
(14)

(iv) F1-score value:

F1 =
2PR

P + R
(15)

4. Results and Discussion

4.1. The Compared Features between OGs and NOGs in Different Species

After the above seven species of gene datasets were introduced, the next step was
to arrange their variable features for constructing a prediction model. The annotations of
all protein sequences, CD sequences, and gene characteristics included GC, GC%, gene
length, Mw (Da), pI, average exon length, average intron length, and so on. Seven species
were compared in regard to OGs and NOGs. As seen in Figure 3b–d, OGs had lower
values of gene length, Mw (Da), and GC% than NOGs, with the opposite result on pI values
(Figure 3a).

Another critical step was data selection. This paper selected nine features: (1) GC,
(2) GC%, (3) protein length, (4) molecular weight (Mw (Da)), (5) isoelectric point value (pI),
(6) exon number, (7) average exon length, (8) intron number, and (9) average intron length,
which were denoted as 1 to 9, respectively, and recorded as V1–V9. The classes of orphan
genes and nonorphan genes were recorded as 1 and 0, respectively. Since the datasets
contained various types of features, and attribute units were inconsistent in dimensions, it
was necessary to use the pre-processing method to standardize the data.
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Figure 3. Comparison of various features of OGs and NOGs in seven species: (a) pI, (b) gene length,
(c) Mw, (d) GC%.

4.2. Comparison with Other Methods for Predicting Cross-Species OGs

This study constructed a novel hybrid classification XGBoost-A2OG model for classify-
ing the angiosperm species of OG distributions. We tested the dataset of Arabidopsis thaliana,
Populus trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and Camellia
sinensis, obtaining 6322 OGs from the public release of these species’ protein sequences
through the BLAST sequence alignment. To predict the OGs, XGBoost-A2OGs were trained
using the following parameters: 200 estimators and a learning rate of 0.02 with a maximum
depth of six. To optimize the parameters, the optimized XGBoost-A2OG models were
trained by 5-fold nested cross-validation. In addition, we compared XGBoost-A2OGs with
SVM and tree-based ensemble algorithms (GBDT, RF, and AdaBoost).

The results on the accuracy, precision, recall, and F1-score of the five models are listed
in Table 2. Compared to the above four reference methods, the proposed XGBoost-A2OG
model achieved competitive performance in recall and F1-score, outperforming them in
precision. Thus, it more precisely distinguished normal OGs from NOGs, exhibiting the
best classification effect on the AG datasets.

Table 2. Performance measure indices of the five models based on the same parameters of the training
and test datasets.

Index SVM RF GBDT AdaBoost XGBoost

Accuracy 0.88 0.85 0.88 0.88 0.91
Precision 0.86 0.79 0.87 0.87 0.90

Recall 0.91 0.97 0.89 0.88 0.91
F1-Score 0.88 0.87 0.88 0.88 0.91
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Moreover, according to the area under the curve (AUC) value shown in Figure 4,
the ROC and precision-recall (P-R) curves of the XGBoost model completely wrapped
those of the other four methods (AdaBoost, GBDT, RF, and SVM), outperforming them by
classification efficiency.

Figure 4. The ROC (a) and precision-recall (P-R) (b) curves of XGBoost, Adaboost, GBDT, RF, and
SVM methods.

4.3. Predicting OGs with Different Feature Sets in Eudicot and Monocot Species via
XGBoost-A2OGs

Some features might become noise, deteriorating the robustness and stability of the
constructed model. Moreover, contribution rates of various features differ, the highest
ones being the most lucrative for OGs’ prediction. Therefore, this work presents two
filter-based selection methods to remove irrelevant and redundant features in terms of
both training processes. In particular, we selected two types of delegated species from the
eudicot subclass (P. trichocarpa and Camellia sinensis) and monocot subclass (O. sativa and
S. bicolour) applied with filter-based selection methods. Then the filtered feature are the
same containing the GC, protein length, Mw (Da), and pI. Thus, the classification results on
these selection methods with four species separately by variation and Chi2 method based
on the XGBoost-A2OGs model are listed in Table 3.
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Table 3. Performance measure indices of eudicot and monocot species for the training and testing
datasets by filter method based on the same parameters.

Type Species Filter Method Precision Accuracy AUC

Eudicots P. trichocarpa variation 0.92 0.93 0.94
Eudicots P. trichocarpa Chi2 0.9 0.92 0.94
Eudicots Camellia sinensis variation 0.82 0.69 0.85
Eudicots Camellia sinensis Chi2 0.82 0.69 0.85

Monocots O. sativa variation 0.78 0.83 0.9
Monocots O. sativa Chi2 0.78 0.83 0.9
Monocots S. bicolor variation 0.81 0.87 0.94
Monocots S. bicolor Chi2 0.81 0.87 0.94

Filter algorithms can scale for multiple dimensional datasets. However, the features
selected by the filter method ignore the interaction among features, and individual scores
in a filter-based method are assigned to each feature without considering its significance
in combination with other shared features. Therefore, we further proposed an artificial
group for feature selection to explore the contribution of each feature for different types
of angiosperm. First of all, we also selected a eudicot subclass (P. trichocarpa and Camellia
sinensis) and applied to them five sets of feature selection methods to identify the one with
the optimal performance. The classification results on five sets of feature selection methods
with two species separately based on XGBoost-A2OGs are listed in Table 4, where the Set3
of Camellia sinensis featured the lowest precision, accuracy, and AUC values (0.80, 0.69,
and 0.85). Meanwhile, the Set5 of P. trichocarpa combined the highest respective values
(precision of 0.9, accuracy of 0.92, and AUC = 0.94).

Table 4. Performance measure indices of eudicot species for the training and testing datasets by
feature sets based on the same parameters.

Type Species Feature Precision Accuracy AUC

Eudicots P. trichocarpa Set_all 0.9 0.9 0.92
Eudicots P. trichocarpa Set1 0.89 0.87 0.89
Eudicots P. trichocarpa Set2 0.9 0.9 0.91
Eudicots P. trichocarpa Set3 0.88 0.9 0.92
Eudicots P. trichocarpa Set4 0.9 0.9 0.94
Eudicots P. trichocarpa Set5 0.9 0.92 0.94
Eudicots Camellia sinensis Set_all 0.89 0.74 0.85
Eudicots Camellia sinensis Set1 0.83 0.68 0.84
Eudicots Camellia sinensis Set2 0.83 0.69 0.82
Eudicots Camellia sinensis Set3 0.80 0.69 0.85
Eudicots Camellia sinensis Set4 0.94 0.76 0.87
Eudicots Camellia sinensis Set5 0.89 0.74 0.88

As it was mentioned earlier, monocots have branched off from eudicots via whole
genome duplication (WGD) [33]. Systematic identification of orphan genes in eudicots
revealed that the optimal precision of P. trichocarpa and Camellia sinensis orphan genes were
nearly 0.9 shown in Table 4. Five sets of feature selection methods were also applied to
reveal the optimal feature selection performance with XGBoost-A2Ogs for the monocot
group containing O. sativa and S. bicolour. The results are listed in Table 5, indicating that
the Set5 feature selection in the monocot group yielded higher precision, accuracy, and
AUC values than those obtained via the Set_all feature selection. The respective values
of S. bicolour in Set5 (0.82, 0.87, and 0.94) exceeded those in Set_all (0.65, 0.73, and 0.6) by
about 26, 19, and 57%, respectively.
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Table 5. Performance measure indices of monocot species for the training and testing datasets by
feature sets based on the same parameters.

Type Species Feature Precision Accuracy AUC

Monocots O. sativa Set_all 0.78 0.83 0.9
Monocots O. sativa Set1 0.76 0.81 0.9
Monocots O. sativa Set2 0.76 0.81 0.88
Monocots O. sativa Set3 0.76 0.81 0.93
Monocots O. sativa Set4 0.76 0.81 0.9
Monocots O. sativa Set5 0.79 0.83 0.9
Monocots S. bicolor Set_all 0.65 0.73 0.6
Monocots S. bicolor Set1 0.65 0.73 0.6
Monocots S. bicolor Set2 0.65 0.73 0.62
Monocots S. bicolor Set3 0.65 0.73 0.62
Monocots S. bicolor Set4 0.65 0.73 0.6
Monocots S. bicolor Set5 0.82 0.87 0.94

Additionally, we further explored and compared these combined feature sets of four
selected plant species, containing the eudicot and monocot species of evolutionary lineages.
The results, plotted in Figure 5, strongly indicate that the featured protein of pI, which
plays a vital role in determining molecular biochemical function, is essential for predicting
OGs in eudicot genomes and further clarifying their biochemical function in eudicots via
proteomic studies.

 

Figure 5. The performance precision for eudicots and monocots via different selected feature sets in
angiosperm specie.

We also observed that GC content was more likely to impact prediction performance,
as real OGs in monocot groups evolved from eudicots, such as O. sativa and S. bicolour.
However, GC content is one of the critical compositional features of the genome and varies
significantly among different genomes and regions within a genome [34,35].

Finally, to further validate the performance of the XGBoost-A2OG model for eudicot
and monocot groups, we tested the model on the dataset of Arabidopsis thaliana, Populus
trichocarpa, Sorghum bicolour, Oryza sativa, Zea mays, Citrus sinensis, and Camellia sinensis
with feature set5 separately. The results are shown in Figure 6.
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Figure 6. The testing performance in predicting OGs of various angiosperm species.

The precision of predicting OGs for different angiosperm species was not the same,
indicating a higher reliability of XGBoost-A2OGs in identifying OGs of eudicot species
(P. trichocarpa, Camellia sinensis, Citrus sinensis, and A. thaliana) than that of monocot species
(O. sativa, S. bicolour, and Z. mays).

With a range of evolutionary processes, OGs can be derived in a lineage and provide
lineage-specific adaptations. As mentioned above, there is some evidence that the sequence
characteristics of orphan genes are common in two groups of angiosperm: eudicot and
monocot species. However, some of them play different roles in identifying OGs based on
the XGBoost-A2OG model due to differences in their evolution and origins. However, there
is a lack of evidence on the mechanism of origin for the divergence of essential features of
OGs between monocots and eudicots due to the rapid evolution of orphan genes.

5. Conclusions

Based on the background of enlarged genome sequences in angiosperm plants, this
study proposed an XGBoost-A2OGs model to identify orphan genes (OGs) via the ensemble
learning approach applied to several genome and cDNA features in angiosperm species,
some of which have a consistent distribution. Cross-species models were trained on
datasets of seven angiosperm species, performing better than SVM and other ensemble
models (Adaboost, GBDT, and Random Forest). The proposed XGBoost-A2OGs method
adopted makes multiple feature sets that have been proven helpful in OG identification
and used feature selection to select the optimal feature subset. Thus, plant OGs exhibited
discrepant results on combined features in eudicots (P. trichocarpa and Camellia sinensis) and
monocots (O. sativa and S. bicolour) but still shared some features. Finally, the proposed
method further established species-specific models with the optimal features on seven
plants’ datasets, which performed better on eudicot groups than on monocot ones.

In summary, XGBoost-A2OGs is a helpful method for identifying OGs from genome
features. The feature importance of monocot and eudicot orphans was analyzed, providing
a theoretical basis for the inheritance and variation of orphan genes in the process of
evolution. In future work, with the rapid development of next-generation sequencing
technologies, an ensemble learning approach with comparative genomics can be imported
to obtain information on different types of angiosperm plants. Alternative deep learning
algorithms, such as Transformer and LSTM, can also be applied to improve the potential
performance. The follow-up study envisages incorporating some other essential features,
such as gene expression, into the proposed model, which may significantly improve the
efficiency of predicting OGs in angiosperm plants.
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Abstract: With the rapid development of UAVs (Unmanned Aerial Vehicles), abnormal state detection
has become a critical technology to ensure the flight safety of UAVs. The position and orientation
system (POS) data, etc., used to evaluate UAV flight status are from different sensors. The traditional
abnormal state detection model ignores the difference of POS data in the frequency domain during
feature learning, which leads to the loss of key feature information and limits the further improvement
of detection performance. To deal with this and improve UAV flight safety, this paper presents a
method for detecting the abnormal state of a UAV based on a timestamp slice and multi-separable
convolutional neural network (TS-MSCNN). Firstly, TS-MSCNN divides the POS data reasonably in
the time domain by setting a set of specific timestamps and then extracts and fuses the key features
to avoid the loss of feature information. Secondly, TS-MSCNN converts these feature data into
grayscale images by data reconstruction. Lastly, TS-MSCNN utilizes a multi-separable convolution
neural network (MSCNN) to learn key features more effectively. The binary and multi-classification
experiments conducted on the real flight data, Air Lab Fault and Anomaly (ALFA), demonstrate that
the TS-MSCNN outperforms traditional machine learning (ML) and the latest deep learning methods
in terms of accuracy.

Keywords: unmanned aerial vehicle; anomaly detection; ALFA; CNN

1. Introduction

With the development of unmanned aerial vehicles (UAVs), their applications in
civilian and military fields have expanded, including agriculture [1], transportation [2], and
fire protection [3]. However, as UAVs play an increasingly important role, their flight safety
problems have become more prominent [4]. Network attacks can lead to UAV failures,
and physical component failures such as elevators and rudders can also affect UAV flight
safety. For example, in June 2020, a US Air Force MQ-9 “Death” UAV crashed in Africa,
causing a loss of USD 11.29 million [5]. In February 2022, a DJI civilian UAV crashed out of
control, resulting in a personal economic loss of up to 16,300 RMB [6]. According to the
Civil Aviation Administration of China, the number of registered UAVs in China alone has
reached 8.3 million [7]. Therefore, it is necessary to establish a UAV safety detection model
to ensure the safety and reliability of UAV flights. Improving the flight safety of UAVs has
become a major research topic in the field of UAVs. Currently, a common method to ensure
UAV flight safety is to monitor UAV flight data for anomalies [8]. Abnormal flight data
indicates that the UAV may have hardware failure or misoperation, and timely identification
of the cause of the failure can effectively prevent UAV flight accidents. Figure 1 shows the
main components of a typical UAV anomaly detection system.

UAV flight data is mainly extracted from attitude estimation data of different UAV
sensors [9,10], which include the POS data and the system status (SS) data. These data
enable the detection of UAV flight status. The POS data consists of a triple of values in the
x, y, and z directions, while the SS data contains only a single value. Additionally, these
data are closely related to UAV guidance, navigation, and control (GNC) [11,12]. The early

Electronics 2023, 12, 1299. https://doi.org/10.3390/electronics12061299 https://www.mdpi.com/journal/electronics
449



Electronics 2023, 12, 1299

UAV anomaly detection method was based on flight data rules; however, the rule-based
anomaly detection method has a low detection performance [13]. To better ensure the flight
safety of UAVs, ML and deep learning methods have been introduced into the research
field of UAV safety. The development of these methods has opened up new ideas for the
research of UAV anomaly detection. However, the traditional anomaly detection method
ignored the difference between POS data and SS data used to evaluate the flight status
of UAVs in the frequency domain, resulting in the loss of some key feature information
in-flight data. This limitation restricts the performance of UAV anomaly detection models.
To address these problems, this paper proposes a method of extracting frequency domain
information by setting timestamp slices and proposes a UAV anomaly detection model
based on a multi-separable convolution neural network fusion method. It should be noted
that this paper takes the time of UAV failure as the dividing point and does not consider
the recovery process.

Figure 1. Main components in the UAV anomaly detection system.

In the next part of this paper, Section 2 describes the related research. Section 3
introduces the processing method of the ALFA dataset [14] and proposes the TS-MSCNN
anomaly detection model. Section 4 carries out experiments from various angles and
analyzes the experimental results of binary and multi-class classification. The final section
provides a summary and conclusion of this paper.

2. Related Works

This section provides a review of research related to UAV anomaly detection, covering
rule-based algorithms and those based on ML and deep learning methods.

Regarding rule-based algorithms, Chen et al. [15] investigated the impact of attackers’
behavior on the effectiveness of malware detection technology and proposed a specification-
based intrusion detection system that showed effective detection with high probability and
low false positives. Mitchell et al. [16] considered seven threat models and proposed a
specification-based intrusion detection system with specific adaptability and low runtime
resource consumption. Sedjelmaci et al. [17] studied four attacks—false information propa-
gation, GPS deception, jamming, and black hole and gray hole attacks—and designed and
implemented a new intrusion detection scheme with an efficient and lightweight response,
which showed high detection rates, low false alarm rates, and low communication over-
head. This scheme was also able to detect attacks well in situations involving many UAVs
and attackers.

In terms of the UAV anomaly detection model based on traditional ML methods,
Liu et al. [18] proposed a real-time UAV anomaly detection method based on the KNN
algorithm for the UAV flight sensor data stream in 2015, which has high efficiency and
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high accuracy. In 2016, Senouci et al. [19] focused on the two main problems of intrusion
detection and attacker pop-up in the UAV-assisted network. The Bayesian game model was
used to balance the intrusion detection rate and intrusion detection resource consumption.
This method achieved a high detection rate and a low false positive rate. In 2019, Keifour
et al. [20] released an initial version of the ALFA dataset [13] and proposed a real-time
UAV anomaly detection model using the least squares method. This method does not need
to assume a specific aircraft model and can detect multiple types of faults and anomalies.
In 2021, Shrestha et al. [21] simulated a 5G network and UAV environment through the
CSE-CIC-IDS-2018 network dataset, established a model for intrusion detection based on
the ML algorithm, and also implemented the model based on ML into ground or satellite
gateways. This research proves that the ML algorithm can be used to classify benign or
malicious packets in UAV networks to enhance security.

However, some outliers can be difficult to detect using traditional machine learning
(ML) techniques [22]. To address this challenge, deep learning (DL) methods have been
increasingly used to improve the detection accuracy of UAV anomalies, especially when
processing high-dimensional UAV flight data. In 2021, Park et al. [23] proposed a UAV
anomaly detection model using a stacking autoencoder to address the limitations of the
current rule-based model. This model mainly judges the normal and abnormal conditions
of data through the loss of data reconstruction. The experimental results on different UAV
data demonstrate the effectiveness of the proposed model. In 2022, Abu et al. [24] proposed
UAV intrusion detection models in homogeneous and heterogeneous UAV network envi-
ronments based on a convolutional neural network (CNN) using three types of UAV WIFI
data records. The final experimental results demonstrate the effectiveness of the proposed
model. Dudukcu et al. [25] utilized power consumption data and simple moving average
data of the UAV battery sensor as the multivariate input of the time-domain convolution
network to identify the anomaly of the instantaneous power consumption of the UAV bat-
tery. The simulation results show that the time-domain convolutional network can achieve
good results in instantaneous power consumption prediction and anomaly detection when
combining simple moving average data and UAV sensor data. In addition, some studies
have explored the use of probability models, time series data, and data dimensions for
anomaly detection, achieving effective results [26–28], which have important implications
for this study.

All of the previously mentioned methods have been successful in detecting anomalies,
but they have not taken into account the differences between the POS data and SS data
used to evaluate UAV flight status in the frequency domain. This has resulted in the loss of
some key feature information in the flight data, which limits the improvement of anomaly
detection model performance. The differences in the frequency domain can be seen in
two aspects: first, the feature information amount of the POS data and the SS data in the
frequency domain is inconsistent in the same time domain; second, the data structure is
different. The feature of POS data in the frequency domain is triple, while SS data is a
single value. When the amount of feature information is inconsistent, a feature vector with
variable length is generated, which leads to the loss of key feature information in the model
training process. Additionally, the difference in data structure causes POS data and SS
data to lose some key information due to the confusion of feature information during the
anomaly detection model’s feature extraction process.

To address the issues mentioned above, this paper proposes several solutions. Firstly, a
specific timestamp size is set, and the frequency domain information of UAV data is divided
and extracted to fuse key feature information, addressing the problem of inconsistency
between POS data and SS data in the frequency domain. Secondly, POS and SS data are
reconstructed into grayscale images. Lastly, the MSCNN is utilized to learn and fuse the
key features of POS and SS data, overcoming the problem of key feature information loss
caused by the structural differences between POS data and SS data. The following sections
will provide a detailed description of these solutions.
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3. TS-MSCNN Model Design

Taking into account the analysis presented above, this section proposes a TS-MSCNN
anomaly detection model, which consists of two main components: a time stamp slice-
based frequency domain information processing method for extracting and fusing key
features of UAV flight data, and an MSCNN-based anomaly detection method for learning
and fusing flight data features. The processing flow of the TS-MSCNN model is illustrated
in Figure 2. The subsequent section will provide a detailed description of the model design.

Figure 2. The block diagram of the proposed TS-MSCNN.

3.1. UAV Flight Data Processing Methods
3.1.1. Analysis of ALFA Dataset

The ALFA dataset comprises the original flight log of a fixed-wing UAV that operated
in a real flight environment and can be roughly classified into five categories: no failure,
engine failure, rudder failure, elevator failure, and aileron failure. The UAV was flown at
Pittsburgh Airport in the United States. The dataset includes two types of data: SS data
with only one numerical dimension and POS data with three numerical dimensions. The
POS data contains latitude, longitude, elevation, heading angle (Phi), pitch angle (Omega),
and roll angle (Kappa) data obtained during the UAV flight, which are mainly represented
by different values in the X, Y, and Z directions. The original UAV flight log contains a
multitude of features, which are not conducive to model training. Therefore, this paper uses
the feature selection method in [23] to obtain the key features of UAV flight data shown
in Table 1.

Table 1. Features selected from the ALFA.

Category Feature Name Description

POS Data

Magnetic Field (x, y, z) The value of the magnetic field at axis x, y and z
Linear Acceleration (x, y, z) The linear acceleration at axis x, y and z
Angular Velocity (x, y, z) An angular velocity at axis x, y and z
Velocity (x, y, z) Measured velocity of axis x, y and z

System status Data

Fluid Pressure The value of the pressure using fluid pressure sensors
Temperature The temperature of the battery
Altitude Error The error value of current altitude
Airspeed Error The error value of current airspeed
Tracking Error (x) The tracking error at x axis
WP Distance The distance between ideal location and current location

3.1.2. Frequency Domain Information Extraction and Fusion Method Based on
Timestamp Slices

The frequency domain information of the original UAV data in the same time domain
is different, so the fixed length feature vector cannot be formed, which leads to the loss of
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key feature information in the model training process. Suppose that at time t, by observing
the temperature information of the UAV battery, ftemperature can be expressed as a binary,
that is, ftemperature = {temp1, temp2}. At different times, the value of the ftemperature binary
is different. According to the above representation, other flight data information from
UAV, such as fluid pressure and magnetic field value, can be expressed as corresponding
characteristic tuples, namely f pressure = {pre1, pre2, pre3, pre4}, fmagnetic = {mag1, mag2, mag3,
mag4, mag5, mag6}. These feature tuples are marked with inconsistent frequency domain
feature information at the same time (as shown in Figure 3a). During the calculation process,
features with more frequency domain information will cover other feature information
values, leading to the loss of key information. Therefore, this paper will process based on
the following methods.

Figure 3. (a) Distribution of various features. (b) Extraction of the features in the timestamp.

Step 1: Feature information extraction in the frequency domain.

select(feature)= {vij| when t = tk and (index (vij & tk) �= index (vij & tk−1))} (1)

where vij represents the characteristic value, i represents the characteristic number, j rep-
resents the characteristic value number, index() represents the index of the characteristic
value in the frequency domain, and tk represents the time.

Step 2: Frequency domain information fusion.

v = {select(feature0)∪select(feature1) . . . ∪select(featuren)|when t = tk} (2)

where n represents the characteristic number and tk represents the time.
Figure 3b illustrates the results of information extraction and fusion at different time

points. It shows that the same feature has different index positions in different timestamps,
which preserves the differences between features in different time domains and enables
the maximum amount of information to be obtained. In real UAV log data, POS data
and other values change significantly, and there are more characteristic data in the same
timestamp than in the SS data. Therefore, this paper extracts and fuses flight log data based
on Equations (1) and (2), using the time span of the feature with the least amount of data as
the time stamp unit. This approach ensures the difference between different features, as
well as the consistency of frequency domain information of different features in the time
domain, and the frequency domain difference of the same feature in different time domains.

3.1.3. Unbalanced Data Processing

Based on the idea presented in Section 1, this paper performed information extraction
and fusion on the ALFA UAV flight dataset, and the results are shown in Figure 4a. The
dataset had a serious data imbalance, with the largest percentage of abnormal data for
engines being 58% of the entire dataset, the minimum percentage of abnormal data for
elevators being 4%, and only 12% of the data being normal. This imbalance can lead
to learning deviations in the anomaly detection model, causing the model to learn the
features of the data with a high proportion while only learning a few features from the
data with a low proportion. Therefore, this paper balanced the data distribution using the
down-sampling method, and the resulting balanced data distribution is shown in Figure 4b.
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Figure 4. (a) The data distribution of ALFA. (b) The balanced ALFA.

3.1.4. Validation of Flight Data

To demonstrate the effectiveness of the obtained UAV flight data, this paper repro-
duces normal flight and flight with elevator failure using a UAV flight simulator. The
configuration of the main parameters is shown in Table 2, and the flight path is illustrated
in Figure 5. During the flight, when the elevator fails at a specific time, the UAV cannot
complete the ascent and descent, so it can only maintain the same flight altitude. The
trouble-free UAV completes the difficult flight activities by lifting and lowering. This paper
simulates the flight trajectory of UAVs using the obtained data, and the trajectory has a
noticeable difference in 2D and 3D space, thus demonstrating the difference of abnormal
data of different UAVs and the effectiveness of the proposed UAV data processing method
in this paper.

Figure 5. (a) The normal flight data. (b) The flight data of elevator failure.

454



Electronics 2023, 12, 1299

Table 2. Parameter configuration of the simulator.

SITL Parameter Default Description

SIM_RC_FAIL 0.000000 Force RC failure
SIM_ACCEL_FAIL 0.000000 Force IMU ACC failure

SIM_ENGINE_MUL 1.000000 -
SIM_MAG1_DEVID 97,539.000000 1st Compass (0 to remove)

SIM_SPEEDUP 1.000000 Allows running sim SPEEDUP times faster
SIM_WIND_TURB 0.000000 Not implemented

SIM_GYR_FAIL_MSK 0.000000 Bitmask for setting a Gyro 1, 2, and/or 3 failure

3.2. Design of Anomaly Detection Model
3.2.1. Separable Convolutional

The separable convolution technique offers several advantages, including fewer pa-
rameters and lower computational cost, while also exhibiting high expressiveness in the
field of texture image recognition [29]. Its primary structure consists of a channel convo-
lution kernel that has the same size as the input image and a 1 × 1 convolution kernel
used to fuse the channel convolution information, as shown in Figure 6a. The structure of
the separable convolutional neural network (SCNN) is shown in Figure 6b. Compared to
traditional convolutional neural networks, separable convolution networks require fewer
parameters and consume less computational resources while maintaining classification
accuracy, as illustrated in Figure 7.

Figure 6. (a) The separable convolutions. (b) The separable convolutional neural network.

Figure 7. Traditional CNN convolution layers.

Set the input as M channels, the image size as Df_in × Df_in, the convolution kernel as
N× (M×Dk ×Dk), and the output feature map as N channels and size Df_out×Df_out. So, the
parameters of the separable convolution are Dk × Dk ×M + M × N; the parameter quantity
of the conventional convolution is Dk × Dk × M × N. The calculation consumption of the
separable convolution is M×Dk ×Dk ×Df_out ×Df_out +1× 1×N×Df_out ×Df_out; the cal-
culation consumption of the conventional convolution is M×Dk ×Dk ×Df_out ×Df_out ×N.
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The comparison of parameter quantity and computational consumption between separable
convolution and conventional convolution is presented in Figures 8 and 9. It is evident that
as the number of channels and convolution layers increases, the parameter quantity and
computational consumption of the conventional convolution layer are much higher than
those of the separable convolution layer, and the increase of the conventional convolution
is exponential. This illustrates that the separable convolution layer can save more parame-
ters and computational consumption than the conventional convolution layer and has a
faster calculation speed. Consequently, this paper will devise an efficient model based on
separable convolution.

Figure 8. The influence of model structure on the number of parameters.

Figure 9. The influence of model structure on computational overhead.

3.2.2. Feature Extraction and Fusion Layer

Based on the analysis above, this section presents the design of the feature extraction
and fusion layer (FEF) for POS data and SS data in UAV flight data using separable
convolution, as illustrated in Figure 10. FEF mainly consists of multi-layer parallel separable
convolutions and a feature fusion layer, and the number of separable convolution layers
varies for each data image. The main methods of feature extraction and fusion calculations
are as follows:

f =
p

∑
k=1

max
(

wc2k
Tmax

(
∑c1k

l=1 wl
Txi,j + bc1k , 0

)
+ bc2k , 0

)
(3)

where (i, j) is the pixel index in the feature map, xi,j is the input slice centered on the
position (i, j), c is the channel index in the feature map, and p is the separable convolutional
parallel number.
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Figure 10. The feature extraction and fusion layer.

The FEF layer is designed to extract features from the grayscale image corresponding
to the POS and SS data, and then fuse the two extracted features. The main fusion method
involves concatenating the two feature maps. For instance, if there are 3 feature maps from
the convolution layer for each of the POS and SS data, the resulting feature map size after
fusion will be 6.

3.2.3. Feature Mapping and Classification Layer

Based on the fusion feature map of the FEF layer, this paper requires an effective
feature mapping to the sample classification space. Therefore, this paper designed a
Feature Mapping and Classification (FMC) layer, as illustrated in Figure 11a. The FMC
layer is composed of three layers, namely the Flatten layer, the Fully Connected layer, and
the Output layer. The Flatten layer maps the obtained feature map to a one-dimensional
space. The Fully Connected layer acts as a classifier by fusing local information of features.
The Output layer mainly uses the softmax function to map the calculated values of neurons
to a probability space with a sum of 1. The working mode of the flattened layer is shown in
Figure 11b. The classification calculation equation is as follows:

class = max

⎛⎝ emax(wT f
′
+b,0)i

∑k
j=1 emax(wT f ′+b,0)j

∣∣∣∣∣∣i = 1, . . . , k

⎞⎠ (4)

where f’ represents one-dimensional characteristic data and k represents the number of
sample categories.

Figure 11. (a) Feature mapping and classification layer. (b) The way the feature flattens out.

3.2.4. TS-MSCNN Model Design

The complete design of the TS-MSCNN model is illustrated in Figure 12. During the
training process, the model is validated using the verification set to ensure the accuracy
of the training process. The loss rate threshold is set as the termination condition for
the model training. Finally, the trained model is used to detect the test set and output
the evaluation metrics. The process of the TS-MSCNN model, from training to anomaly
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detection, involves three main stages: forward propagation, backward propagation, and
model testing, which can be broken down into the following six steps.

Figure 12. The structure of TS-MSCNN model.

Step 1: Feature data extraction and fusion. Set the timestamp slice, extract and fuse the
UAV frequency domain information through Equations (1) and (2), and obtain the fixed
length UAV flight data feature vector.
Step 2: Data to image. The POS and SS data of UAV are transformed into two-dimensional
grayscale images by data reconstruction to adapt to model input.
Step 3: Feature extraction and fusion. The grayscale image features of UAV POS data and
SS data are extracted and fused using the FEF layer pass-through Equation (3).
Step 4: Feature mapping and classification. The feature map from the FEF layer is flattened
into one-dimensional data, and then the one-dimensional feature data is mapped to the
sample category space using Equation (4) to achieve classification.
Step 5: Backpropagation and parameter updating. After classification, the cross-entropy
loss function is first used to calculate the loss between the predicted and actual values.
The cross-entropy loss function is given as Equation (5) (where p(si) and q(si), respectively,
represent the real and predicted distributions of sample i, and H represents the final loss
value. Backpropagation is then carried out according to the loss value. The Adam optimizer
is adopted for the backward propagation to update the weight and bias of each layer.):

H(p, q) = −∑k
i=1 p(ci)log(q(ci)) (5)

Step 6: Model testing. Input test data into the model to test the effect of the model.

4. Experiment

This study employs the PyTorch [30] deep learning library to train the TS-MSCNN and
conventional CNN models. The experiments were conducted on an HP-Z480 workstation
equipped with an Intel Xeon ® CPU and 64 GB of RAM. In this section, we will first
introduce the evaluation metrics of the model and then demonstrate the performance of the
TS-MSCNN model in binary and multi-classification tasks. We compare our model with
conventional machine learning algorithms, conventional CNNs, and other relevant research
results to verify its effectiveness. It should be noted that to adapt the convolutional structure
for feature extraction, we convert the UAV flight data into a two-dimensional grayscale
image using a data reconstruction method. Figure 13 displays the data reconstruction
method and UAV image data, where the ‘ALL’ chart shows the image data used for
the single model structure. The detailed experimental process will be discussed in the
next section.
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Figure 13. Two-dimensional UAV flight data.

4.1. Evaluation Metrics

The main performance metric used in this paper is accuracy, followed by Recall,
F1-score, and Precision. TPs (true positive) refers to the number of abnormal records
identified as abnormal. True negative (TNs) is the number of normal records that are
considered normal. False positives (FPs) are the number of normal records identified as
abnormal. False negatives (FNs) are the number of abnormal records identified as normal.
The performance metrics used in this paper are defined as follows.

Accuracy: the percentage of the number of correctly classified records to the total
number of records, as shown in Equation (6).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (6)

Recall: Measure how many positive examples in the sample are correctly predicted,
that is, the proportion of all positive examples correctly predicted, as shown in Equation (7).

Recall = TP/(TP + FN) (7)

Precision: It is used to measure how many samples with positive prediction are real
positive samples, that is, the proportion of real positive samples in the results with positive
prediction, as shown in Equation (8).

Precision = TP/(TP + FP) (8)

F1-score: The F1-score measures the harmonic mean of the precision and recall, which
serves as a derived effectiveness measurement, as shown in Equation (9).

F1 =
2× Precision× Rcall

Precision + Rcall
(9)

4.2. Single SCNN Model for Binary Classification

In previous research, UAV flight data has been imaged. In this section, traditional
CNN and SCNN models of a single model will be trained based on UAV image data. To
better train the model, this paper sets the learning rate to 0.001 and the termination loss
rate of model training to 0.001. Divide the processed ALFA dataset into a training set,
test set and verification set according to the ratio of 6:3:1, and classify the data set into
abnormal and normal. In addition, the number of convolution layers in various models is
both designed as 3. Table 3 shows the experimental result of the CNN model and SCNN
model and it also shows that separable convolution ensures the validity of the model while
optimizing the model parameters and computing consumption.
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Table 3. The accuracy of the single model.

Model Accuracy

CNN 95.40%
SCNN 96.35%

Next, this paper will use conventional ML methods to detect binary anomalies based
on UAV flight data. Among them, the main algorithms used are ZeroR, OneR, Naive-
Bayes [31], KNN [32], J48 [33], RandomForest [34], RandomTree [35], and Adaboost [36].
Figure 14a shows the comparison between traditional ML algorithms and CNN and SCNN
models. Additionally, the SCNN model is the best, with 96.35%. Obviously, the CNN
model has great potential for detecting UAV anomalies, and it can accurately learn fea-
tures from data. At the same time, the SCNN model based on separable convolution has
higher accuracy.

Figure 14. (a) Performance of the single model. (b) Performance of the TS-MSCNN and other models.

4.3. Multi-SCNN Fusion Model for Binary Classification

To enhance the accuracy of the UAV binary anomaly detection model, this paper
proposes a TS-MSCNN model that leverages the characteristics of UAV flight data. Table 4
presents the performance of CNN, SCNN, and TS-MSCNN models in terms of binary
classification. The TS-MSCNN model outperforms CNN and SCNN in all metrics. Further-
more, Figure 14b compares the TS-MSCNN model with other models, showing that the
TS-MSCNN model achieves superior accuracy to other comparison algorithms, with the
highest accuracy rate of 98.50%. The results demonstrate that the TS-MSCNN model effec-
tively extracts and fuses features from UAV flight data and accurately detects anomalies.

Table 4. The detailed performance of CNN, SCNN, and TS-MSCNN.

Model Accuracy Class Recall Precision F1-Score

CNN 95.40%
No_failure 99.50% 95.41% 97.41%

failure 67.56% 95.27% 79.06%

SCNN 96.35%
No_failure 98.35% 96.53% 97.43%

failure 76.06% 87.18% 81.24%

TS-MSCNN 98.50%
No_failure 99.24% 98.98% 99.11%

failure 93.06% 94.76% 93.91%

4.4. Single SCNN Model for Multiclass Classification

The objective of UAV anomaly detection is to identify UAV faults and prevent po-
tential losses. This paper conducts a multi-class anomaly detection experiment using the
ALFA dataset, which includes multiple classes of objects. The dataset contains four types
of abnormal flight data and one type of normal flight data. In this section, we implement a
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multi-classification experiment using a single-model SCNN and present the specific experi-
mental results in Table 5. The results show that, in the case of multi-classification, the SCNN
not only optimizes the convolution structure parameters and computational consumption
but also ensures the effectiveness of the model and accurately detects anomalies across
multiple classes.

Table 5. The accuracy of the single model.

Model Accuracy

CNN 93.10%
SCNN 94.68%

Furthermore, this paper also employs traditional ML methods, consistent with those
used above, to detect anomalies. Figure 15a presents the experimental results. Among
them, the SCNN model achieved the best performance, with 94.68%. These results indicate
that the SCNN model has advantages over traditional ML methods in processing high-
dimensional UAV data. Moreover, the OneR algorithm obtains the lowest accuracy rate, as
it only uses a specific feature in the training data as the classification basis.

Figure 15. (a) Performance of the single model. (b) Performance of the TS-MSCNN and other models.

4.5. Multi-SCNN Fusion Model for Multiclass Classification

In the case of multi-classification, it has been shown that the single-structure anomaly
detection model has limitations. To address this issue, this paper proposes using the feature
fusion method described above to enhance the accuracy of the convolution-based anomaly
detection model. The training and test sets used are consistent with those described above.
Table 6 presents the detailed performance of the CNN, SCNN, and TS-MSCNN models in
multi-classification. The TS-MSCNN model outperforms the CNN and SCNN models in
all metrics. Furthermore, Figure 15b shows a comparison between the TS-MSCNN model
and other models, where the TS-MSCNN model performs better than other comparison
algorithms with the highest accuracy rate being 97.99%.

In addition, this paper compares the anomaly detection results of multi-classification
and binary classification, as shown in Figure 16. It can be inferred that due to the more
detailed classification of anomaly types, there are significant differences among the data
types, which increases the challenge of model classification and leads to better experi-
mental results in binary classification than in multi-classification. For the TS-MSCNN
model, the results of the binary classification experiment are only 0.51 higher than those
of the multi-classification experiment, which further verifies the effectiveness of the pro-
posed TS-MSCNN model and demonstrates that it can accurately extract UAV flight data
characteristics in both multi-classification and binary classification scenarios.
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Table 6. The detailed performance of CNN, SCNN, and TS-MSCNN.

Model Accuracy Class Recall Precision F1-Score

CNN 93.10%

aileron_failure 94.33% 93.42% 93.87%
elevator_failure 77.11% 90.14% 83.12%
engine_failure 98.01% 96.19% 97.09%

no_failure 91.50% 93.59% 92.53%
rudder_failure 84.07% 88.95% 86.44%

SCNN 94.68%

aileron_failure 95.44% 93.50% 94.46%
elevator_failure 75.90% 86.90% 81.03%
engine_failure 97.91% 96.57% 97.24%
no_failure_failure 91.28% 92.10% 91.69%
rudder_failure 82.42% 90.91% 86.46%

TS-MSCNN 97.99%

aileron_failure 99.72% 96.39% 98.03%
elevator_failure 90.36% 94.94% 92.59%
engine_failure 98.98% 99.08% 99.03%

no_failure 96.20% 97.07% 96.63%
rudder_failure 91.76% 97.66% 94.62%

Figure 16. Comparison between the binary classification and the multiclass classification.

The research in [20] and [23] are similar to the research conducted in this paper. In
order to compare the experimental results, Table 7 is presented. It is important to note that
while [23] evaluates the area under the curve (AUC) of the receiver operating characteristic
curve (ROC), this section supplements the AUC results for multiple classifications. The
authors of [20] utilized a reduced version of the ALFA dataset, whereas [23] employed
the same full version of the ALFA dataset as used in this paper. The experimental model
proposed in this paper outperforms the other comparison algorithms. Overall, the experi-
mental results show that the TS-MSCNN model proposed in this paper has achieved the
desired purpose and is ready to be used for UAV flight anomaly detection.

Table 7. The accuracies of the TS-MSCNN and the other latest algorithm in multiclass classification.

Model
AUC

ACC
Aileron_Failure Elevator_Failure Engine_Failure Rudder_Failure

TS-MSCNN 99.75% 98.35% 99.77% 98.14% 97.99%
Autoencoder [23] 75.09% 80.76% 76.46% 93.21% /

Recursive Least Squares [20] / / / / 88.23%
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5. Conclusions

UAV flight anomaly detection is a common safety measure to ensure the safety of
UAV flights by identifying abnormal UAV flight data. However, the conventional anomaly
detection model neglects the difference in POS data used to evaluate UAV flight status in
the frequency domain, resulting in the loss of some crucial feature information that limits
the improvement of the UAV anomaly detection model’s accuracy. Therefore, without
considering the recoverable operation of UAV, this paper proposes a TS-MSCNN anomaly
detection model based on timestamp slice and the MSCNN. Firstly, by setting a specific
timestamp size, this paper extracts and fuses the frequency domain key features of POS
data and SS data in the UAV flight log time domain. Then, the POS data and SS data are
transformed into two-dimensional grayscale images to serve as the input data of the TS-
SCNN model through data reconstruction. Finally, the TS-SCNN model accurately learns
and fuses UAV grayscale image data features. The final experimental results demonstrate
that the TS-SCNN model outperforms the comparative algorithm in the experimental
results of binary classification and multi-classification, which validates the effectiveness of
the TS-SCNN model proposed in this paper.

The deep learning model used in anomaly detection has a high time complexity, and
UAVs typically have limited resources. Therefore, in future research, the authors of this
paper will investigate a lightweight UAV anomaly detection model, taking into account
both the timeliness of the anomaly detection model and the computational resources
required by the model. The goal is to develop an anomaly detection model that can meet
the resource constraints of UAV-embedded systems.
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Abstract: The rapid increase in the number of sensors in the Internet of things (IoT) environment has
resulted in the continuous generation of massive and rich data in Location-Based Social Networks
(LBSN). In LBSN, the next point-of-interest (POI) recommendation has become an important task,
which provides the best POI recommendation according to the user’s recent check-in sequences.
However, all existing methods for the next POI recommendation only focus on modeling the correla-
tion between POIs based on users’ check-in sequences but ignore the significant fact that the next
POI recommendation is a time-subtle recommendation task. In view of the fact that the attention
mechanism does not comprehensively consider the influence of the user’s trajectory sequences, time
information, social relations and geographic information of Point-of-Interest (POI) in the next POI
recommendation field, a Context Geographical-Temporal-Social Awareness Hierarchical Attention
Network (CGTS-HAN) model is proposed. The model extracts context information from the user’s
trajectory sequences and designs a Geographical-Temporal-Social attention network and a common
attention network for learning dynamic user preferences. In particular, a bidirectional LSTM model is
used to capture the temporal influence between POIs in a user’s check-in trajectory. Moreover, In
the context interaction layer, a feedforward neural network is introduced to capture the interaction
between users and context information, which can connect multiple context factors with users. Then
an embedded layer is added after the interaction layer, and three types of vectors are established
for each POI to represent its sign-in trend so as to solve the heterogeneity problem between context
factors. Finally reconstructs the objective function and learns model parameters through a negative
sampling algorithm. The experimental results on Foursquare and Yelp real datasets show that the
AUC, precision and recall of CGTS-HAN are better than the comparison models, which proves the
effectiveness and superiority of CGTS-HAN.

Keywords: context awareness; attention network; dynamic user preferences; next POI recommenda-
tion; IoT

1. Introduction

The rapid increase in the number of sensors in IoT environment has resulted in the
continuous generation of massive and rich data in LBSN, which has greatly promoted
the development of POIs recommendations. It is an important and challenging task to
understand the mobility of users and recommend the next POI to users. The research
on POIs recommendation considers user check-in data as a whole, which only considers
the relationship between target users and points of interest but ignores the relationship
between points of interest. In fact, there is a strong correlation between the user’s current
POI and the POI to be accessed next. For example, when users obtain off work at night,
they may go to restaurants, bars and other places instead of traveling. Different from
ordinary POI recommendations, the next POI recommendation is to recommend the POI
to visit next based on the user’s historical trajectory information and the current POI
location. The next POI recommendation can enhance the user’s travel experience but also
help real economists push advertisements to the target user groups. Because the next

Electronics 2022, 11, 3977. https://doi.org/10.3390/electronics11233977 https://www.mdpi.com/journal/electronics
465



Electronics 2022, 11, 3977

POI recommendation is of great significance to users and enterprises, the improvement of
the next POI recommendation system is popular in the academic community, and much
research focuses on enhancing the recommendation performance of the next POI.

Modeling according to the check-in sequence of users is the basic work for the next
POI recommendation, and POIs tend to have certain correlations among themselves [1–4].
Some previous studies adopted Markov Chain [1,5–7] matrix decomposition [2,3], tensor
decomposition [8,9] or transformation model [10,11] to solve the next POI recommendation
problem. In recent years, the Recurrent Neural Network (RNN) model in Deep Neural
Networks [12–15] has shown a good recommendation effect in processing sequence data.
MST-RNN [16] exploits the duration time dimension and semantic tag dimension of POIs
in each layer of the neural network. Attention Network [17–20], as a branch of RNN, has
strong recommendation performance when applied to a recommendation. In real life, the
check-in sequences of users on different dates will have different time characteristics in
their historical trajectories. For example, users usually check in at POIs near the company
on weekdays and go to shopping malls and tourist attractions on weekends. However,
these studies did not explore the diversity of time sequence characteristics.

When the POI recommendation systems encounter new users, fewer user trajectories,
or users in a new area, the cold-start problem may occur, and the recommendation system
cannot effectively recommend the next POI for the user. Moreover, how to extract valuable
contextual information [21] (e.g., geographical location, time, social relations) from the
massive data generated by IoT sensors is particularly vital.

In order to enhance the accuracy of the next POI recommendation, this paper proposes
the next POI recommendation model embedded with user context check-in information,
which comprehensively considers the influence of geographical, temporal and social factors.
This paper studies the next point of interest recommendation problem, and the main
contributions are as follows:

(1) We propose the next POI recommendation model named CGTS-HAN. It uses the
attention mechanism and the Bi-directional Long Short-Term Memory (BiLSTM) to
establish a geo-temporal social attention network to learn user check-in sequences,
which can simultaneously capture the user’s social relationships, the temporal de-
pendence of sequence patterns, and the geographical relationships between points of
interest. Taking the influence of geography, time and social factors into account and
embedding the user context check-in information can effectively reduce the problem
of a cold start.

(2) We propose a recommendation algorithm suitable for a hierarchical model system.
Incorporating the context interaction layer into CGTS-HAN, a feedforward neural
network is used to learn feature intersections to describe the interaction effects of
users and contexts.

(3) Combining the context interaction layer and CGTS-HAN model, a Co-attention Net-
work is developed to learn the dynamic preferences of users so that CGTS-HAN can
distinguish user preference degrees in its historical check-in trajectories.

(4) Experiments were conducted on two real-world datasets. The experimental results
demonstrate that CGTS-HAN achieves better performance than other baseline com-
parison models in terms of AUC, precision and recall.

2. Related Work

The influence of sequential factors. Most next Points-of-Interest (POIs) recommenda-
tions rely on the sequence correlation in the user check-in. Wen et al. [5] calculated the
global and individual transition probabilities between clusters according to the user’s check-
in sequence, then used multi-order Markov chains to discover and rank subsequent clusters,
and finally combined with individual preferences to generate a ranking list. Although it
can model time series well, the correlation between POIs is not high. Zhang et al. [1] used
N-order Markov chains to implement POIs recommendations for higher-order sequences.
The authors recommend coarse-grained areas to users, such as location recommendations
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based on city streets, rather than user personalization. The recommended points of interest
are not targeted. Kong et al. [15] aimed to discover users’ uncertain check-in points of
interest; they extended Skip Gram to capture user preference transitions and then predicted
the next POI for uncertain check-in users. Wang et al. [22] propose a location-aware POI
recommendation system that user preferences by using user history trajectory and user
review information. However, the collaborative filtering algorithm used in the article is
likely to have a cold start problem.

The influence of geographical factors. Debnath et al. [7] mined sequential patterns from
each user’s check-in location, then used Markov chains to construct transition probability
matrices and combined them with spatial influences to generate space-aware location
recommendations. Liu et al. [2] improved the accuracy of POIs recommendations by
using the conversion mode of the user’s preference for the POIs category. Feng et al. [11]
established a hierarchical binary tree according to the physical distance between POIs to
reflect the influence of geographical location. However, previous efforts mainly consider the
location information of check-in points as a whole and ignore their temporal relation. Using
the information from users’ location history, Yang et al. [23] proposed a location-aware POI
recommendation system that uses information from users’ location history and models
user preferences based on their reviews. It aims to solve the user’s POIs recommendation
in new regions and cities without considering the impact of time context and other time
dynamics.

The influence of time factors. Considering the spatiotemporal characteristics of LBSN,
Cheng et al. [3] proposed FPMC with candidates Region Constraint (FPMC-LR) method
and provided new POIs for users by combining individual Markov chains and local and
regional constraints. Rendle et al. [10] used Factorized Personalized Markov Chains (FPMC)
to predict the next check-in interest point by expressing the short-term and long-term
preferences of users. Xiong et al. [8] proposed a Bayesian probability tensor decomposition
model based on time context, which dynamically acquired the potential features of users,
POIs and months and could learn the global evolution of potential features. However,
it is too sparse to model the time factor by month, which made the results not ideal.
However, in practical recommendation applications, the recommendation results obtained
by these traditional recommendation methods lack the user’s personalized requirements for
POI. [24]. Liu et al. [14] used Skip Gram to train the temporal latent representation vector
of POIs and proposed a time-aware POIs recommendation model. The spatio-temporal
model TS-RNN proposed in this paper takes the spatio-temporal context elements into
account in RNN mode to replace MF and FPMC, but the evaluation standard is still BPR.

With the continuous application of the Markov chain and factorization in the next
POIs recommendation, both of them show their own limitations. The Markov chain is that
it assumes strong independence among different factors, and the state of each POI in the
first-order Markov chain is only related to the previous POI, which limits its performance.
The limitation of tensor decomposition is that it is faced with a difficult problem which is
called cold-start.

Some research work [5,9,12,13,17–19] shows that combining sequence, geography
and time factors can obtain better recommendation results. Liu et al. [12] extended RNN
and proposed a spatiotemporal recurrent neural network method. In this method, the
time conversion matrix can be created with different time intervals to simulate the time
context, and the distance conversion matrix can be created with different geographical
distances to simulate the spatial context. Inspired by the Word2Vec framework, Zhao
et al. [13] proposed the Geo-Teaser model, which embedded the time factor into the model
to capture the time characteristics, and constructed the pairwise preference ranking at the
geographical level. Then, POIs are ranked according to the preference score function, and
the top-N POIs with the highest scores are recommended for users. In order to predict
the access preference for the next POIs, Li et al. [17] introduced the time and multi-level
context attention mechanism, which can dynamically select relevant check-in locations
and distinguish context factors. The geographic-time awareness hierarchical attention
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network, which is developed by Liu et al. [18], can reveal the dependencies of the overall
sequence and the relationship between POIs through the BiLSTM network while using
the geographic factor. Huang et al. [19] proposed a context-based self-attention network
for the next POIs recommendation, which used positional encoding matrices instead of
time encodings to model dynamic contextual dependencies. Guo et al. [25] proposed
DeepFM, which combined factorization machine and feature embedding and sharing
strategy to recommend. Among them, feature embedding and sharing strategies can avoid
the establishment of feature engineering. However, the invalid second-order combination
features may bring noise and adversely affect the model performance.

However, each of the above models [13,17–19,25] does not deeply mine the distance
and time relationship between POIs in the trajectory when obtaining the correlation between
POIs and does not add user social information into the model or framework. Research
work [26,27] shows that although the influence of social relations is far less than geographi-
cal factors and time factors, it can affect the user’s check-in location selection that introduces
the social factors into the next POIs recommendation.

The proposed CGTS-HAN model uses geographic factors to capture the features of
POIs and their correlations in order to improve the recommendation performance of the
next POIs recommendation.

3. Preliminaries

3.1. Problem Definition

This section presents five definitions [14] and specific problem statements related to
the proposed next POIs recommendation problem.

Definition 1. User set. The user sets represent a set of |U | users, denoted by U =
{

u1, u2, ..., u|U |
}

.

Definition 2. POIs sets. The POIs sets represent a set of p points of interest, denoted by P ={
𝓅1,𝓅2, ...,𝓅|P|

}
. Each object in set of POIs consists of a 2-tuple, denoted by (𝓁oni,𝓁ati, ti) ,

where 𝓁oni and 𝓁ati represent the longitude and latitude of the point of interest, respectively, and ti
represents the check-in time.

Definition 3. Time state set. The time state set denoted by T =
{

t1, t2, ..., t|T |
}

, which is used to
indicate the time points of the user’s check-in sorted by time in a day.

Definition 4. Check-in records. The check-in records denoted by T ri. A check-in record represents
a record of a user’s visit to a point of interest in one day.

Definition 5. Check-in history. The check-in history denoted by T r = {T r1, T r2, ..., T ri, ...}. A
user’s check-in history contains all his check-in records. The check-in history represents a series of
check-in POI records of the user arranged in chronological order.

Problem statement: Given a user, denoted by ui, and his check-in history, denoted by
T r, according to the user’s check-in history and the current point of interest, recommend
the 𝓅n for the user to visit at the next moment from P .

3.2. Symbols Definition

To illustrate, Table 1 summarizes the main symbols used in this paper as follows.
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Table 1. Main Notation.

Symbols Interpretation

ui, pi Preference vectors of ui, 𝓅i
T r Sets of trajectory sequences for users
T ri A set of check-ins for user ui
ci Context of user ui
ti ti latent semantic vector

Ui,So,Ti Matrices of user preference, social relationship
and ti latent semantic

pr,su,pi
The geographical predecessor vector, the

geographical successor vector, the preference
vector of POI

Pr,Su,Pi
The geographical predecessor matrix, the

geographical successor matrix, the preference
matrix of POI

udp
i

Dynamic preferences of ui
W1,W2,W3,...,Wu

z Weight matrices in the model

eui ,ci

Feature vector of the interaction between user
ui and context ci

pui Original feature vector of ui
gci Context feature vector of ci

b1, b2, b3,..., bu
z Bias terms in the model

4. CGTS-HAN Model

The framework of the CGTS-HAN model proposed in this paper is shown in Figure 1.

Figure 1. The Framework of CGTS-HAN Model.

The model mainly consists of a context interaction layer, a geo-temporal social attention
network and a co-attention network. The context interaction layer models the interaction
between each user and their context information in the context environment and obtains
the influence of each context on the user. Embedding layers are used to address the
heterogeneity that exists among recommendation factors. Afterward, the model introduces
a geo-temporal-social attention network to model the geographic relationships, temporal
dependencies, and users’ social relationships among POIs of check-in sequences. The
co-attention network is used to capture the dynamic preferences of users. Finally, we use a
negative sampling algorithm to train the model. The next POI recommendation usually
feeds back a sorted list of points of interest to the user, so this model first calculates the
probability of the target user visiting the points of interest, then calculates the scores of
candidate points of interest according to the Bayesian Equation, and finally sorts POIs to
obtain an ordered list of top N POIs.

4.1. The Context Interaction Layer

In this paper, a feedforward neural network is introduced to simultaneously learn
high-order features and low-order features to capture the interaction between the user and
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the context and obtain the influence of the context on the user. The eigenvectors are as
follows.

eui ,ci = f1(pui , gci ) (1)

In the above formula, the f1(·) is used to represent the feature interaction function;
its input is the user and the context, which are represented by ui and ci, respectively. The
eui ,ci in the Equation represents the feature vector of the interaction between the user and
context.

The input layer is responsible for receiving input and distributing it to the hidden
layers (so called because they are invisible to the user). These hidden layers are responsible
for the required calculations and output to the output layer, and the user can see the
final output of the output layer. The modeling process of the context interaction layer
feedforward neural network is shown in Figure 2.

 

Figure 2. The Structure of Context Interaction Layer Module.

Since the user and the context belong to different feature types of input data, the model
uses a nonlinear connection layer to map the user’s original feature vector pui and context
feature vector gci to the additional semantic space. The Equation is as follows:

y = RELU(Wuz pui + Wczgci + bz) (2)

In the above formula, Wuz and Wcz are the weight matrices of the nonlinear connection
layer, bz is the bias term; RELU (·) is the nonlinear activation function Linear Unit. After
the input layer is multiplied by the weight, the result is often further processed; that is, the
result is used as the input of the first layer of the hidden layer.

In order to enhance the interaction between the user and the context, the model
builds three hidden layers on top of the nonlinear connection layer, which are specifically
expressed as follows:

y1 = RELU1(W1y + b1) (3a)

y2 = RELU2(W2y1 + b2) (3b)

y3 = RELU3(W3y2 + b3) (3c)

In the above formula, W1, b1, and RELU1(·) represent the weight matrix, bias term
and RELU activation function of the first hidden layer, respectively. The pronouns in the
second and third hidden layer Equations have meanings and so on.

y1, y2, y3 represent the outgoing vectors of the first, second and third hidden layers,
respectively.
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The outgoing vector (y3) of the third hidden layer in the model is passed to the output
unit, and the output unit converts it into the feature vector of the context that acts on the
user, which is expressed as follows:

eui ,ci = (Wu
z y3 + bu

z ) (4)

In the above formula, Wu
z and bu

z represent the weight matrix and bias term of the
output layer, respectively.

4.2. The Embedding Layer

The function of the embedding layer is to project the POIs into the latent semantic
space, and use the matrix form to transform the geographic, temporal and social relation-
ship factors of the points of interest in the context interaction layer, so as to relieve the
heterogeneity that exists among the geographical, temporal and social factors.

Inspired by Transition [2], this paper firstly establishes a geographical predecessor
vector, a geographical successor vector and a preference vector of points of interest for each
POI, denoted as pr ∈ R1×d, su ∈ R1×d, pi ∈ R1×d, respectively, where d is the potential
dimension. The predecessor vector is used to receive the check-in trend of other POIs, and
the successor vector is used to reflect the check-in trend of this POI transferring to other
POIs. After that, the embedding layer transforms the established POI vector into three
matrices Pr ∈ R|P|×d, Su ∈ R|P|×d, Pi ∈ R|P|×d, respectively. Similarly, we sequentially
create a latent semantic matrix Ti ∈ R|T |×d for temporal states, a social relationship matrix
So ∈ R|U |×d and a user preference matrix Ui ∈ R|U |×d for users.

4.3. Geographical–Temporal Social Attention Networks
4.3.1. Modeling for Geographic Factors

The geographical attention network adopts the Transformer [4] mechanism. The
input vector is regarded as a key-value pair by the encoder. The output of the encoder is
compressed into the query by the decoder. Finally, the output query is mapped to the set of
keys and values. The transformer network structure is simple, based on a self-attention
mechanism, and computation is executed in parallel, which makes the Transformer efficient
and requires less training time. The attention function in Transformer is described as
mapping a query and a set of key value pairs to the output. Queries, keys and values are
vectors. The attention weight is calculated by computing the dot product attention for each
word in the sentence. The final score is a weighted sum of these values. The transformer
mechanism is divided into the following four steps.

Step 1: Take the dot product of the keys for each input vector in the query. The input
data consists of a geographic predecessor matrix (Pr(query)), a geographic successor matrix
(Su(key)) and a POI preference matrix (Pi(value)).

Step 2: Scale the dot product by dividing by the square root of the dimension of the
key vector.

Step 3: Use softmax to normalize the scale values. After softmax is applied, all values
are positive and add up to 1.

Step 4: Apply the dot product between the normalized fraction and the value vector
QKT
√

n , and then calculate the sum.
A nonlinear transformation of shared parameters is used to map Pr and Su into the

same semantic space and then compute their weight matrix as follows.

AG(Pr, Su) = softmax(
QKT
√

n
)Pi (5)

Q = RELU(PrWQ + Bq) (6)

K = RELU(SuWK + Bk) (7)
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Among them, Q, K are vectors of size 1 × d, WQ ∈ Rd×d, WK ∈ Rd×d, Bq ∈ RM×d and
Bk ∈ RM×d are model parameters,

√
n is used to scale the dot product value of QKT, and

the matrix output by Equation (5) represents the geographic relationship between M POIs.
Since the dot product cannot model the geographic distance between POIs, this paper

uses a Power Law Function (PLF) [28] based on the geographic relationship to examine the
effect of geographic distance between POIs. The PLF is defined as follows.

P(x) = αx−γ (8)

In the above formula, x and P(x) are positive random variables, and α and γ are
constants greater than zero. In the model, the probability value of a user visiting a point of
interest follows a PLF.

The model introduces the influence of geographical factors between adjacent POIs
into the attention network, then embed Equation (8) into Equation (5), and the rewritten
Equation (5) is as follows.

ÃG(Pr, Su) = softmax(
QKT
√

n
)Pi× P(x) (9)

To output the geographic impact to the next stage (i.e., the temporal impact), the matrix
output by the geographical attention network from Equation (9) is defined as follows.

G̃AG(Pr, Su, P(x)) = ÃG(Pr, Su)× P(x) (10)

4.3.2. Modeling for Time Factors

This paper captures the user’s long-term and recent interest features according to the
bidirectional LSTM [29] based on the Attention mechanism. The output of the bidirectional
LSTM G̃AG is used as the input for the time factor modeling, and the output is a vector
set H : [h1, h2, ..., h𝒾 , ..., hT ] with dimension M× d, where h𝒾 represents the output at the
time step 𝒾, T is the sentence length 𝒾 =1, ..., T. This part of the network includes two sub-
networks, sequence and context, which transfer time information forward and backward,
respectively. Then pass the set of output vectors H of the LSTM layer to the Attention layer
to obtain a weight matrix for temporal factor modeling. Firstly, the model uses the tanh
activation function to make the time factor available to the nonlinear model, as shown
below.

Z = tanh(H) (11)

Then, the model process the values using the softmax function to transform Z into
probabilities, as shown below.

αt = softmax(xTZ) (12)

Finally, the model obtains the weight matrix r based on the set H of output vectors
and the probability αt.

r = HαT
t (13)

In the above formula, H ∈ RM×d, xT is the transpose of the parameter vector, αT
t is

the transpose of the αt. The representation r of the sentence is formed by a weighted sum
of these output vectors. Finally, The resulting classification sequence pair is denoted as
follows.

h∗ = tanh(r) (14)

4.3.3. Modeling for Social Factors

The model uses a multi-layer sub-network to obtain the attention score, and the results
are as follows.

s1(ui, um) = RELU(...RELU(RELU(Wu
1 · pui + Wu

2 · em + b4) + b5)...) (15)

472



Electronics 2022, 11, 3977

In the above Equation, Wu
1 and Wu

2 are weight coefficients, b4 and b5 are bias terms,
and em is the embedded data of the user’s (ui) neighbor user (um). After s1(ui, um) is
calculated by Equation (15), it is normalized by the softmax function used in Equation (16),
and finally, the social influence score is obtained as follows.

αui ,um = softmax(s1(ui, um)) =
exp(s1(ui, um))

∑
n∈So

exp(s1(ui, un))
(16)

4.4. Co-Attention Network

This paper creates a co-attention network to capture users’ dynamic preferences.
Specifically, the co-attention network uses a late fusion strategy to incorporate different
weighted attention values (Ww) and nonlinear connection layers to learn the dynamic
preferences of users. Given the context feature vector of ui, the sequence pair of time factors
and the social influence score, and then obtain the overall effect of the context on the target
user by weighting and summing them, which is represented by the dynamic preference
(udp

i ), which is calculated as follows.

udp
i = Ψ(α

dp
i Wα + b6)WU (17)

α
dp
i = concat([(ui, eui ,ci )W

W, (ti, h∗)WW, (αui ,um)W
W]) (18)

In the above formula, Wα ∈ Rd×d and WU ∈ Rd×d are model parameters, b6 is bias
terms, Ψ(·) represents the nonlinear connection function and α

dp
i is the weighted joint score

of the common attention network layers.

4.5. Learning and Optimization

After obtaining the user’s dynamic preference, the model uses the softmax function to
generate the conditional probability distribution of the next POI 𝓅n, as follows.

P(𝓅n|ui, ci, T r) =
exp(udp

i , piT)

|P|
∑

v=1
exp(udp

i , pvT)

(19)

where P(𝓅n|ui, ci, T r) is the probability distribution of user ui’s access to POI 𝓅n, which
is calculated according to the weighted average of user ui’s dynamic preference udp

i ’s
attention weight. piT is the transpose matrix of preference vectors of POI 𝓅i, and pvT is the
transpose matrix of preference vectors of random POI 𝓅v.

Given a training dataset X = {T r, ui, ci,𝓅n}, its joint probability distribution is
denoted as follows.

PΘ(X ) = ∏
x∈X

P(𝓅n|ui, ci, T r) = ∏
x∈X

exp(udp
i , piT)

|P|
∑

v=1
exp(udp

i , pvT)

(20)

In the above formula, X represents the training set, and the model parameter value
is Θ =

{
Pr, Su, Pi, So, Ui, Ti, WQ, WK, WU, WW}

. By processing the regularization term of
the above formula, the objective function is transformed into the following form.

L = ∑
x∈X

P(𝓅n|ui, ci, T r) − λΘ (21)

The computational cost of the above objective function will increase with the increase
of POIs during optimization. Using the negative sampling method to optimize the objective
function will reduce the training complexity, which can significantly improve computational
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efficiency. Therefore, the model rewrites Equation (18) using the Negative Sampling
technique, and the results are shown below.

L = ∑
x∈X

(log σ(udp
i , piT) +

K

∑
k=1,pi∼q

log σ(−udp
i , piT)− λΘ (22)

In the above formula, σ = 1
1+e−x is used to approximate the probability, and K is the

number of negatively sampled POIs.

4.6. Generation of Recommendation List

In the case of known ui and his check-in history (ui), the model can calculate the
ranking score of each candidate POI according to the Bayesian and then recommends
top-ranked POIs to the user. The score is calculated as follows.

r̂p
ui = P(𝓅n|T r) ∝ P(𝓅n)P(T r|𝓅n) = P(𝓅n) ∏

𝓅n∈T ri

P(𝓅n
′|𝓅n) (23)

The ranking score of each POI in the final recommendation list of the model is formed
according to the ranking score (r̂p

ui ) of the candidate POIs and their probability distribution.

Sr̂p
ui = r̂p

ui × P(pn

∣∣∣ui, ci, Tr) (24)

The following Algorithm 1 summarizes the learning algorithm flow of CGTS-HAN,
which is mainly composed of three modules: data (lines 2–9), factor modeling (lines 10–15)
and prediction (lines 16–19).

Algorithm 1: The Procedure of CGTS-HAN.

Input: U , P , T , X , Θ.
Output: Final POIs recommendation list.
1. Initialization: ti = 0.
// Data Module

2. for each ui ∈ U do
3. Split check-in record T ri by T r;
4. Model preference vector ui;
5. Model original feature vector pui ;
6. Model context feature vector gci ;
7. for each ui ∈ T do
8. Split check-in time by day;
9. Model preference vector ti;
// Factor Module

10. for each ui = 1; ui ∈ U ; ui ++ do
11. Model αui ,um ;
12. for each 𝓅i = 1; 𝓅i ∈ P ; 𝓅i ++ do
13. Model GAG;
14. for each ti = 1; ti ∈ T ; ti++ do
15. Model h∗

// Prediction Module

16. for each ui ∈ U do
17. Calculate the candidate POIs scores according to Equation (23);
18. Calculate the POIs scores according to Equation (24);
19. Rank POIs and select top-N individual POIs.
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5. Experiment

5.1. Processing of Datasets

In this paper, we use the published Foursquare dataset and Yelp dataset for experi-
ments. Among them, the Foursquare dataset selects the check-in data of New York users
from 1 May to 30 June 2014. The Yelp dataset selects the activity data of New York users
from 1 August 1 to 30 October 2017. Moreover, we remove inactive users with less than 10
check-in locations and POIs with less than 10 check-ins from the datasets.

Table 2 shows the dataset statistics after preprocessing. In order to make the model
proposed in this paper more suitable for the check-in scenario of POIs, we take 80% of the
check-in trajectories of each user in the two datasets as the training sets and 20% as the test
sets.

Table 2. Statistics of Datasets.

Amount Foursquare Yelp

users 48,763 22,754
POIs 18,158 37,879

check-in records 1,287,429 248,5027
social ties 118,421 78,647

According to the research results in related works, the two important factors in the
recommendation of the next POIs are the distance and time between POIs. Figure 3a
and Figure 3b, respectively, represent the Cumulative Distribution Function (CDF) of the
distance between two adjacent POIs checked in by each user in one day on the Foursquare
datasets and Yelp datasets. The role of CDF is to help us understand the imbalance
of distance distribution and find out which check-in distance accounts for the largest
proportion of the total.

  
(a) (b) 

Figure 3. CDF of Dis between next Check-ins POIs: (a) CDF on Foursquare; (b) CDF on Yelp.

In Figure 4, the horizontal axis represents the check-in distance between POIs, and
the vertical axis represents the distance distribution ratio. It can be seen that about 85%
of the consecutive check-in distances in the Foursquare and Yelp datasets are within the
range of 8.2 km and 7.8 km. It is well known that weekdays and weekends in a week
have different effects on check-in locations, so we divide the check-in times in the datasets
into two categories: weekdays and weekends. Similarly, in order to observe the influence
of the time of day on the check-in location, we divided the time of day into six periods:
Early Morning (04:01–08:00), Morning (08:01–12:00), noon (Noon, 12:01–16:00), afternoon
(Afternoon, 16:01–20:00), evening (Night, 20:01–24:00) and late night (Wee, 00:01–04:00).
The results in Figure 4. show that the distance between consecutive check-in points on
weekends is slightly larger than that during weekdays, which means that people are more
inclined to go to places with farther distances between POIs on weekends.
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(a) (b) 

  
(c) (d) 

Figure 4. CDF of Dis between next Check-ins POIs on Weekday and Weekend: (a) Weekday’s CDF
on Foursquare; (b) Weekday’s CDF on Yelp; (c) Weekend’s CDF on Foursquare; (d) Weekend’s CDF
on Yelp.

5.2. Experimental Evaluation

To evaluate the performance of the recommendation algorithm, we use the Area Under
the ROC curve (AUC), Precision and Recall as the evaluation indicators. AUC is a common
indicator for evaluating the quality of ranking lists in machine learning, and it is calculated
as follows.

AUC =
1
U ∑

ui∈U

1
|J| |J′| ∑j∈|J|

∑
j∈|J′ |

δ(pui ,j > pui ,j′) (25)

In the above formula, J represents the positive sample set, and J′ represents the
negative sample set, ui represents the i’th user in the set U . When the indicator function
δ(pui ,j > pui ,j′) returns true, it means that the predicted probability of ui acting on positive
samples is greater than the predicted probability of negative samples. The opposite is true
if the instructed function δ(pui ,j > pui ,j′) returns false. The higher the AUC, the stronger
the ranking ability of the model.

Precision and Recall are used to compare the prediction results of all algorithms’ bias
sizes.

The calculation method of Precision@N is as follows.

Precision@N =
1
|U | ∑

ui∈U

∣∣∣PT
ui
∩ PR

ui

∣∣∣
N

(26)

The calculation method of Recall@N is as follows:

Recall@N =
1
|U |

|U |
∑

ui=1

∣∣∣PT
ui
∩ PR

ui

∣∣∣
PT

ui

(27)

In the above formula, ui represents the i’th user in the set U , PR
ui

represents the set of
POIs recommended to ui in the training set, and PT

ui
represents the set of POIs that ui has

checked in in the test set. N represents the number of test instances. Moreover, the higher
the Precision@N and Recall@N, the more accurate and comprehensive the recommendation
results are.
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5.3. Compared Models

This paper compares the CGTS-HAN model proposed in this paper with the following
four state-of-the-art models.

(1) Geo-Teaser [13]: Geo-Teaser introduces geographic factors based on the temporal
POIs embedding model, which can capture the context of check-in sequences and
various temporal features of different dates and establish a geographic-level preference
ranking model.

(2) HST-LSTM [15]: This model combines the time factor with LSTM and adopts a
hierarchical architecture to predict the next location by utilizing user historical check-
in information.

(3) CSAN [19]: CSAN is a multi-modal content unified framework based on an attention
mechanism, which projects users’ heterogeneous behaviors into a common latent
semantic space and then inputs the output results into a feature self-attention network
to capture the polysemy of user behaviors.

(4) DeepFM [25]: DeepFM is a new neural network structure that combines the recom-
mendation ability of factorization machines and the feature learning ability of deep
learning.

Among these methods, CSAN and DeepFM do not introduce temporal effects, while
Geo-Teaser and HST-LSTM do not introduce neural networks to learn user behavior fea-
tures. The parameters of each method are set as follows:

(1) The weight of time and geographical influence in (2) is set to 0.5; (2), (3) and (4)
the initial learning rate of the deep model is set to 0.01. In (2), the context window length
and vector size of the hierarchical softmax algorithm are set to 8 and 200, respectively.
The parameter Settings involved in the CGTS-HAN model proposed in this paper are the
same as the above comparison methods, and CGTS-HAN uses three layers in the context
iteration layer.

5.4. Experimental Results and Analysis
5.4.1. Analysis of the Effect

Table 3 shows the AUC experimental results of different models on the two datasets. It
can be seen that the AUC of the CGTS-HAN model is consistently higher than all baseline
models. The AUC of CGTS-HAN on both datasets is at least 21.4% and 14.5% higher than
other models.

Table 3. Experimental Results of AUC.

Methods Foursquare Yelp

Geo-Teaser 0.422 0.473
HST-LSTM 0.498 0.520

CSAN 0.0584 0.0587
DeepFM 0.621 0.704

CGTS-HAN 0.835 0.849

5.4.2. Analysis of Effectiveness

This paper conduct experiments with different values of the recommendation list size
and extracts the experimental results of N = {5,8,15,30} as samples. The experimental results
of precision and recall are shown in Figures 5 and 6.
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(a) (b) 

  
(c) (d) 

Figure 5. Comparison Results of Precision with N: (a) Precision of train on Foursquare; (b) Precision
of test on Foursquare; (c) Precision of train on Yelp; (d) Precision of test on Yelp.

  
(a) (b) 

  
(c) (d) 

Figure 6. Comparison Results of Recall with N: (a) Recall of train on Foursquare; (b) Recall of test on
Foursquare; (c) Recall of train on Yelp; (d) Recall of test on Yelp.

It can be seen from Figure 5 that, with the increase of N, the Precision of the rest of the
models except the HST-LSTM model increases first and then gradually decreases. Moreover,
it can see from Figure 6 that the Recall rate of all models increases with the increase of N.
To balance the effects of precision and recall, we select the top 15 POIs for recommendation
in the experiment. In this case, the precision of the proposed CGTS-HAN model on the
Foursquare and Yelp datasets is 18% and 6% higher than that of DeepFM, and the Recall is
10% and 6% higher, respectively. This verifies the good effect of CGTS-HAN integrating
sequence, geographic, time and social influencing factors. Experiments demonstrate that
adding auxiliary information of social connections helps improve POIs recommendation
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performance and, at the same time, confirms the effectiveness of modeling with attention
networks.

5.4.3. Parameter Analysis

In this experiment, the parameter sensitivities of time influence weight coefficient
α, geographical influence weight coefficient β and learning rate η were quantitatively
analyzed by the control variable method. This part of the parameter analysis uses the
preprocessed data set and does not divide the training set and the test set.

From Figure 7, we can see how the parameters affect the precision and recall of CGTS-
HAN. In order not to tune A, this paper integrates η into α and β in the tuning process
(that is, α × η→ α, β × η→ β.) and then tunes the two parameters of α and β to weigh the
influence of time and geographical factors. In order to ensure convergence, we make the
values of α and β as small as possible in the experiment. At the beginning of the tuning,
we assume that the values of α and η are equal and change the learning rate by tuning
α. The experimental results show that when α increases, the precision and recall rate of
the experimental model maintain an upward trend as a whole, and the growth rate slows
down as the coefficient value increases. When α is equal to 0.05, the precision and recall
performance of the model in this paper is balanced and reaches the best. Therefore, we
assume that α is equal to 0.05 and remains unchanged by tuning the β value to observe
the changes of β

α in the precision and recall rate of the model in the [0, 2] interval. Figure 7
shows that the CGTS-HAN can achieve the best recommendation performance when
β
α ∈ [0.5, 1].

( ) (b) 

Figure 7. Parameter effect on α and β: (a) Precision on CGTS-HAN; (b) Recall of on CGTS-HAN.

5.4.4. Time Complexity Analysis

Complexity. For one check-in trajectory, learning the temporal embedding model
costs O(T·K·d), where T, K and d denote the context window size, the number of negative
samples and the latent vector dimension, respectively. For the dynamic preference (udp

i )
learning in Algorithm 1, we sample m unvisited POIs, which can generate maximum O(m2).
For each trajectory, the learning procedures cost O(m2·d). Therefore, the complexity of
CGTS-HAN is O(m2·d·T r), where T r denote the user trajectory length.

Scalability. Generally, POIs are sparse in LBSN, and the number of check-in POIs is
greater than the number of unchecked POIs. Furthermore, in order to make the model
more efficient, we use Negative Sampling for optimization. The calculation time of each
iteration of Equation (21) is approximately O((T r·K)|X|), where K is the number of
negative samples, and |X| is the training set size. In fact, the values of T r and K both
satisfy a relation (T r, K < <|X|). Therefore, as the check-in trajectories distribution of
POIs in LBSNs follows PLF, the time complexity of CGTS-HAN proposed in this paper is
linearly related to the number of check-in training sets |X|, which also guarantees that
CGTS-HAN to parallel the parameter updates and scalable on large datasets.
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6. Conclusions and Future Directions

This work studies the use of contextual information and interest preferences of users’
location-based social networks to recommend the next POI for users in the IoT environment.
This paper proposed a new next POI recommendation model named CGTS-HAN, which
can learn the contextual features of users’ POI more accurately than other models. The
model aims to recommend the next POI according to the user’s historical trajectory, inte-
grates the user’s current geographical location and time and considers its social influence
to model the user’s dynamic preferences. In particular, the model can infer users’ interest
preferences based on their social information to provide high-quality recommendations
in the IoT environment when users have little or no activity history. Experiments are
conducted on two datasets based on geo-social information, and the results demonstrate
the effectiveness and efficiency of the method.

At present, the CGTS-HAN model uses offline training data, and future work will
consider developing effective online training data to improve the accuracy of recommen-
dation results. At the same time, sophisticated distributed representation methods can be
developed to improve the next POI recommendation task.
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Abstract: A multigranulation rough set (MGRS) model is an expansion of the Pawlak rough set, in
which the uncertain concept is characterized by optimistic and pessimistic upper/lower approximate
boundaries, respectively. However, there is a lack of approximate descriptions of uncertain concepts
by existing information granules in MGRS. The approximation sets of rough sets presented by
Zhang provide a way to approximately describe knowledge by using existing information granules.
Based on the approximation set theory, this paper proposes the cost-sensitive multigranulation
approximation of rough sets, i.e., optimistic approximation and pessimistic approximation. Their
related properties were further analyzed. Furthermore, a cost-sensitive selection algorithm to optimize
the multigranulation approximation was performed. The experimental results show that when
multigranulation approximation sets and upper/lower approximation sets are applied to decision-
making environments, multigranulation approximation produces the least misclassification costs on
each dataset. In particular, misclassification costs are reduced by more than 50% at each granularity
on some datasets.

Keywords: multigranulation rough sets; optimistic approximation; pessimistic approximation; cost-
sensitive; decision-making applications

1. Introduction

As a human-inspired paradigm, granular computing (GrC) solves complex problems
by utilizing multiple granular layers [1–4]. Zadeh [1] noted that information in granules
refer to pieces, classes, and groups, into which complex information is divided in accordance
with the characteristics and processes of understanding and decision-making. From the
different views, GrC models mainly cover four types: fuzzy sets [5], rough sets [6], quotient
spaces [7], and cloud models [8]. As representative models of GrC, rough sets describe
uncertain concepts by upper and lower approximation boundaries, which have been
applied to data mining [9,10], medical systems [11], attribute reductions [12,13], decision
systems [14,15], and machine learning [16].

Regarding similarity, Zhang [17–20] presented the approximation set of rough sets,
vague sets, rough fuzzy sets, rough vague sets, etc. These approximation models were
developed by utilizing the existing equivalence classes to describe uncertain concepts.
The approximation model has a higher similarity with the target concept than the up-
per/lower approximations. Furthermore, the approximation model has been applied in
attribute reduction [21], image segmentation [22], the optimization algorithm [23], etc.
Based on the approximation set theory, Yang [24,25] developed the approximation model
of rough sets based on misclassification costs. In the process of cost-sensitive learning,
the smaller misclassification costs will help to improve the decision-making qualities in
real applications. Recently, from the perspective of three-way decisions [26–29], Yao [30]
constructed a symbol–meaning–value (SMV) model for data analysis. In the three-way
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decision model, the equivalence classes in a boundary region will produce misclassification
costs when they are used as approximation sets. Hence, the approximation model that
is constructed from the perspective of similarity is no longer applicable to cost-sensitive
scenarios. To minimize the misclassification costs of constructing the approximation set,
we proposed the multigranulation approximation, i.e., the optimistic approximation model
and pessimistic approximation model. Moreover, to search the optimal approximation
layer for multigranulation rough sets [31] under the constraints, the algorithm of the cost-
sensitive multigranulation approximation selection is further proposed to be applied to
decision-making environments.

The following sections are arranged as follows: Section 2 presents the related works.
Section 3 introduces the relevant definitions of the multigranulation rough set and ap-
proximation set. Section 4 introduces an approximate representation of the rough sets.
Section 5 presents the cost-sensitive multigranulation approximations of rough sets and
further introduces the optimal multigranulation approximation algorithm. To verify the
availability of the proposed model, the related experiments and discussion are presented in
Section 6. Ultimately, in Section 7, the conclusions are presented.

2. Literature Review

Rough sets are typically constructed based on a single binary relation. However,
in many cases, they may be described in multiple granularity structures. In order to extend
single granularity to multi-granularity in rough approximations, Qian [31] proposed the
multigranulation rough set model (MGRS), where the upper/lower approximations were
defined by multi-equivalence relations (multiple granulations) in the universe [32,33].
For the lower approximation of optimistic MGRS, at least one granular space was obtained,
such that objects completely belonged to the target concept. For the lower approximation
of pessimistic MGRS, objects completely belong to target concepts in each granular space.
MGRS has two advantages: (1) In the process of decision-making applications, the decision
of each decision maker may be independent of the same project (or an element) in the
universe [34]. In this situation, the intersection operations between any two granularity
structures will be redundant for decision-making [35]. (2) Extract decision rules from
distributive information systems and groups of intelligent agents by using rough set
approaches [34,36].

There are many works [33–35,37–42] on multigranulation rough sets. To extend
the MGRS to the neighborhood information system, Hu [43,44] presented matrix-based
incremental approaches to update knowledge about neighborhood information systems by
changing the granular structures. From the perspective of uncertainty measure, Sun [39]
proposed a feature selection based on fuzzy neighborhood multigranulation rough sets.
Xu [38] proposed a dynamic approximation update mechanism of a multigranulation
neighborhood rough set from a local viewpoint. Liu [35] introduced a parameter-free multi-
granularity attribute reduction scheme, which is more effective for microarray data than
other well-established attribute reductions. Based on the three-way decision theory, She [40]
presented a five-valued logic approach for the multigranulation rough set model. From the
above, however, the method of approximately describing the target concept with existing
information granules is not given, which limits the application of the multigranulation
rough set theory. Li [41] presented two kinds of local multigranulation rough set models
in the ordered decision system by extending the single granulation environment to a
multigranulation case. Zhang [42] constructed hesitant fuzzy multigranulation rough sets
to handle the hesitant fuzzy information and group decision-making for person–job fit.

3. Preliminaries

In this section, some necessary definitions related to the multigranulation rough
set and approximation set are reviewed to facilitate the framework of this paper. Let
S = (U, C ∪ D, V, f ) be a decision information table, where U is a non-empty finite set of
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objects, C is a non-empty finite set of condition attributes, D is a set of decision attributes,
V is the set of all attribute values, and f : U × C is an information function.

Definition 1 ((Rough Sets) [6]). Let S = (U, C∪D, V, f ) be a decision information table, A ⊆ C
and X ⊆ U, the lower and upper approximation sets of X are given as follows:

A(X) = { x ∈ U|[x]A ⊆ X},
A(X) = { x ∈ U|[x]A ∩ X �= φ}.

where [x]A denotes the equivalence class induced by U/A, namely, U/A = {[x]R} = {[x]1, [x]2,
· · ·, [x]l}.

Based on the lower and upper approximations, the universe U can be divided into
three disjoint regions, which are expressed as follows:

POSA(X) = A(X),

BNDA(X) = A(X)− A(X),

NEGA(X) = U − A(X).

Definition 2 ((Optimistic multigranulation rough sets) [36]). Let S = (U, C ∪ D, V, f )
be a decision information table, A1, A2, . . ., Am ⊆ C and X ⊆ U, then the lower and upper
approximation sets of X related to A1, A2, . . ., Am are given as follows:

m

∑
i=1

AO
i (X) = { x|[x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ . . . ∨ [x]Am ⊆ X, x ∈ U}, (1)

m

∑
i=1

AO
i (X) =∼

m

∑
i=1

AO
i (∼ X). (2)

Then, (
m
∑

i=1
AO

i (X),
m
∑

i=1
AO

i (X)) is called optimistic multigranulation rough sets. The lower

and upper approximation sets of X in optimistic multigranulation rough sets are presented by
multiple independent approximation spaces. The boundary regions are defined as follows:

BNDO
m
∑

i=1
Ai

(X) =
m

∑
i=1

AO
i (X)−

m

∑
i=1

AO
i (X). (3)

Definition 3 ((Pessimistic multigranulation rough sets) [36]). Let S = (U, C ∪ D, V, f ) be a
decision information table, A1, A2, . . ., Am ⊆ C, and X ⊆ U. The lower and upper approximation
sets of X related to A1, A2, . . ., Am are given as follows:

m

∑
i=1

AP
i (X) = { x|[x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ . . . ∧ [x]Am ⊆ X, x ∈ U}, (4)

m

∑
i=1

AP
i (X) =∼

m

∑
i=1

AP
i (∼ X). (5)

Then, (
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X)) is called pessimistic multigranulation rough sets. The lower

and upper approximation sets of X in pessimistic multigranulation rough sets are presented by

485



Electronics 2022, 11, 3801

multiple independent approximation spaces. However, the strategy is different from optimistic
multigranulation rough sets. The boundary region is defined as follows:

BNDP
m
∑

i=1
Ai

(X) =
m

∑
i=1

AP
i (X)−

m

∑
i=1

AP
i (X). (6)

Definition 4 ((Approximation of rough sets) [17]). Let S = (U, C ∪ D, V, f ) be a decision
information table, A ⊆ C and X ⊆ U. U/A = {[x]1, [x]2, · · ·, [x]l} is a granularity layer on U,
then the α-approximation of X on U/A is defined as follows:

Aα(X) = ∪{[x]i|μ([x]i) ≥ α, [x]i ⊆ U }. (7)

where 0 ≤ α ≤ 1, μ([x]i) =
|[x]i∩X|
|[x]i | denotes the membership degree of the equivalence class [x]i

belongs to X.

Example 1. Let Table 1 be a decision information table, A1, A2, A3 ⊆ C and X ⊆ U. For the
element x4, the equivalence classes [x4]i(i = 1, 2, 3) belonging to X in the multigranulation approx-
imation space are as follows:

[x4]1 = {x1, x2, x3, x4};
[x4]2 = {x3, x4, x7, x8};
[x4]3 = {x2, x4, x6, x8}.

Accordingly, the membership degrees are computed:

μ([x4]1) =
0 + 0 + 0 + 1

4
= 0.25;

μ([x4]2) =
0 + 1 + 1 + 1

4
= 0.75;

μ([x4]3) =
0 + 1 + 1 + 1

4
= 0.75.

Table 1. A decision information table.

A1 A2 A3 X

x1 0 0 0 0
x2 0 0 1 0
x3 0 1 0 0
x4 0 1 1 1
x5 1 0 0 0
x6 1 0 1 1
x7 1 1 0 1
x8 1 1 1 1

If α is set to 0.5, considering the optimistic approximation, element x4 will be classified into
the optimistic lower approximation sets of X due to one of its membership degrees being greater than
0.5. However, if considering the pessimistic approximation, element x4 will only be classified into
the pessimistic upper approximation sets of X.

Based on the given conditions, we have:

X =
0.25 + 0.25 + 0.25

x1
+

0.25 + 0.25 + 0.75
x2

+
0.25 + 0.75 + 0.05

x3
+

0.25 + 0.75 + 0.75
x4

+
0.75 + 0.25 + 0.25

x5
+

0.75 + 0.25 + 0.75
x6

+
0.75 + 0.75 + 0.25

x7
+

0.75 + 0.75 + 0.75
x8

.
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Then, the results of the optimistic approximations are shown as follows:

m

∑
i=1

AO
i (X) = {x2, x3, x4, x5, x6, x7, x8},

m

∑
i=1

AO
i (X) = {x1, x2, x3, x4, x5, x6, x7, x8},

BNDO
m
∑

i=1
Ai

(X) = {x1}.

Moreover, the results of the pessimistic approximations, in this case, are changed as follows:

m

∑
i=1

AP
i (X) = {x8},

m

∑
i=1

AP
i (X) = {x1, x2, x3, x4, x5, x6, x7, x8},

BNDP
m
∑

i=1
Ai

(X) = {x1, x2, x3, x4, x5, x6, x7}.

4. Cost-Sensitive Approximation Methods of the Rough Sets

Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U. U/A =
{[x]1, [x]2, · · ·, [x]l} is a granularity layer on U. λ12 represents the cost generated by taking
an element belonging to X as the approximation, λ21 represents the cost generated by taking
an element that does not belong to X as the approximation. Furthermore, misclassification
costs incurred by the equivalence classes in characterizing X on U/A are given in the
following:

λY = λ12(1− μ([x]i))|[x]i|. (8)

Misclassification costs incurred by the equivalence classes when not characterizing X
on U/A are given in the following:

λN = λ21μ([x]i)|[x]i|. (9)

Herein, μ([x]i) (i = 1, 2, . . ., l) denotes the membership degree of [x]i belonging to X.
Based on the Bayesian decision procedure, the minimum cost decision rules are expressed
as follows:

(P) If λY ≤ λN , [x]i ⊆ A(X);
(N) If λY > λN , [x]i �⊂ A(X).

It is clear that the above rules are only relevant to the loss function μ̄([x]i). From
Formulas (8) and (9), the decision rules are re-expressed in the following:

(P1) If μ([x]i) ≥ λ12
λ12+λ21

, [x]i ⊆ A(X);

(N1) If μ([x]i) <
λ12

λ12+λ21
, [x]i �⊂ A(X).

Supposing γ = λ12
λ12+λ21

, then we have the following decision rules:

(P2) If μ([x]i) ≥ γ, [x]i ⊆ A(X);
(N2) If μ([x]i) < γ, [x]i �⊂ A(X).

Definition 5. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U.
U/A = {[x]1, [x]2, · · ·, [x]l} is a granularity layer on U, then the cost-sensitive approximation
model (CSA) of rough sets is defined as follows:

A(X) = ∪
{
[x]i

∣∣∣∣μ([x]i) ≥ λ12

λ12+λ21
, [x]i ⊆ U

}
. (10)
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Suppose 0 ≤ λ12, λ21 ≤ 1, boundary region I and boundary region II are denoted
by BN1(X) = { [x]i| λ12

λ12+λ21
≤ μ([x]i) < 1}and BN2(X) = { [x]i|0 < μ([x]i) < λ12

λ12+λ21
},

respectively, then BN(X) = BN1(X) ∪ BN2(X), and A(X) = BN1(X) ∪ POS(X). Figure 1
shows the CSA of rough sets, where BN1(X) is the dark blue region, which denotes the
region in the boundary region used as the approximation. BN2(X) is the light blue region,
which denotes the region in the boundary region not used as the approximation. Therefore,
the region surrounded by the green broken line in Figure 1 constructs the approximations
of rough sets, and the misclassification costs come from two uncertain regions, defined as
follows:

DC(A(X)) = ∑
[x]i∈BN1(X)

λY + ∑
[x]i∈BN2(X)

λN . (11)

Figure 1. The approximation of rough sets (surrounded by the broken line).

Theorem 1. Let S = (U, A ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C, then
DC(A1(X)) ≥ DC(A2(X)).

Proof of Theorem 1. Let U be a non-empty finite domain, U/A1 = {E1, E2, · · ·, El} and
U/A2 = {F1, F2, · · ·, Fm}. Because A1 ⊆ A2, U/A2 � U/A1. According to the condition,
for simplicity, supposing only one granule E1 can be subdivided into two finer sub-granules
by ΔA = A2 − A1 (the more complicated cases can be transformed into this case, so
we will not repeat them here). Without loss of generality, let E1 = F1 ∪ F2, E2 = F3,
E3 = F4, . . ., El = Fm (m = l + 1), namely, U/A2 = {F1, F2, E2, E3, . . ., El}. There are two
cases to prove the theorem as follows:

(1) Suppose μ̄(E1) ≥ γ, obviously, E1 ⊆ A1(X).

Case 1. μ̄(F1) ≥ γ and μ̄(F2) ≥ γ. Namely, F1 ⊆ A(X) and F2 ⊆ A(X). Case 1, in
which the granules are subdivided in BN1(X), can be shown in Figure 2a, then

ΔDCA1−A2(X) = DC(A1(X))− DC(A2(X))

= λ12(1− μ(E1))|E1| − λ12(1− μ(F1))|F1| − λ12(1− μ(F2))|F2|.
= (|E1| − |F1| − |F2|+ ∑

xi∈F1

μ(xi) + ∑
xi∈F2

μ(xi)− ∑
xi∈E1

μ(xi))λ12.

Because ∑
xi∈E1

μ(xi) = ∑
xi∈F1

μ(xi) + ∑
xi∈F2

μ(xi) and |E1| = |F1|+ |F2|, then ΔDCA1−A2 =

0. Therefore, DC(A1(X)) = DC(A2(X)).
Case 2. μ̄(F1) ≥ γ and μ̄(F2) < γ. Namely, F1 ⊆ A(X) and F2 �⊂ A(X). Case 2, in

which the granules are subdivided in BN1(X), can be shown in Figure 2b, then

ΔDCA1−A2 = DC(A1(X))− DC(A2(X))

= λ12(1− μ(E1))|E1| − λ12(1− μ(F1))|F1| − λ21μ(F2)|F2|
= |F2|(λ12 − μ̄(F2)(λ21 + λ12))

Because μ̄(F2) < γ = λ12
λ12+λ21

and |E1| = |F1|+ |F2|, then ΔDCA1−A2(X) ≥ 0. There-
fore, DC(A1(X)) > DC(A2(X)).
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(2) Suppose μ̄(E1) < γ, obviously, E1 �⊂ A1(X).

Case 1. μ̄(F1) ≥ γ and μ̄(F2) < γ. Namely, F1 ⊆ A(X) and F2 �⊂ A(X). Case 1, in
which the granules are subdivided in BN2(X), can be shown in Figure 2c, then

ΔDCA1−A2 = DC(A1(X))− DC(A2(X))

= μ̄(E1)|E1|λ21 − μ̄(F2)|F2|λ21 − (1− μ̄(F1))|F1|λ12

= |F1|μ̄(F1)((λ21 + λ12)− λ12).

Because μ̄(F1) ≥ γ = λ12
λ12+λ21

, then ΔDCA1−A2 ≥ 0. Therefore, DC(A1(X)) ≥
DC(A2(X)).

Case 2. μ̄(F1) < γ and μ̄(F2) < γ. Namely, F1 �⊂ R(X) and F2 �⊂ R(X). Case 2, in
which the granules are subdivided in BN2(X), can be shown in Figure 2d, then

ΔDCA1−A2 = DC(A1(X))− DC(A2(X))

= μ̄(E1)|E1|λ21 − μ̄(F1)|F1|λ21 − μ̄(F2)|F2|λ21

= ( ∑
xi∈E1

μ(xi)− ∑
xi∈F1

μ(xi)− ∑
xi∈F2

μ(xi))λ21.

(a)

(b)

(c)

(d)

Figure 2. The granules subdivided in BN1(X) and BN2(X) of the cost-sensitive approximation
model of rough sets. And all the red circles in the figure represent the set X. In addition, (a) shows the
case 1 in which the granules are subdivided in BN1(X); (b) shows the case 2 in which the granules
are subdivided in BN1(X); (c) shows the case 1 in which the granules are subdivided in BN2(X);
(d) shows the case 2 in which the granules are subdivided in BN2(X).
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Because ∑
xi∈E1

μ(xi) = ∑
xi∈F1

μ(xi) + ∑
xi∈F2

μ(xi), then ΔDCA1−A2 = 0. Therefore, DC(A1

(X)) = DC(A2(X)).

Theorem 1 shows that the misclassification costs in the approximation model will
monotonously decrease with the changing approximation space, in accordance with human
cognitive mechanisms.

5. Cost-Sensitive Multigranulation Approximations and Optimal Granularity
Selection Method

The multigranulation rough set model (MGRS) [43] extends single granularity to
multi-granularity in rough approximations to describe an uncertain concept. MGRS is an
expansion of the classical rough set, and the target concept is characterized by optimistic
and pessimistic upper/lower approximation boundaries in MGRS, respectively. However,
there is a lack of an approximate description of an uncertain concept by utilizing the
equivalence classes in MGRS. In this section, based on the model proposed in Section 3, we
further construct the approximations of MGRS.

5.1. Cost-Sensitive Multigranulation Approximations of Rough Sets

Definition 6. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The optimistic membership degree of x ∈ U related to A1, A2, . . ., Am is given as follows:

μO
m
∑

i=1
Ai

(x) = max{μ([x]Ai )|i = 1, 2, . . ., m}. (12)

Definition 7. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The approximation model of the optimistic MGRS of X related to A1, A2, . . ., Am is given
as follows:

m

∑
i=1

AO
i (X) = { x|μ([x]A1) ≥ γ ∨ μ([x]A2) ≥ γ ∨ . . . ∨ μ([x]Am) ≥ γ, x ∈ U}. (13)

From the perspective of the optimistic membership degree,
m
∑

i=1
AO

i (X) can be =expressed as

follows:

m

∑
i=1

AO
i (X) = { x|μO

m
∑

i=1
Ai

(x) ≥ γ, x ∈ U}. (14)

The corresponding decision regions are defined as follows:

BN1O
m
∑

i=1
Ai

(X) = { x|1 > μO
m
∑

i=1
Ai

(x) ≥ γ, x ∈ U},

BN2O
m
∑

i=1
Ai

(X) = { x|0 < μO
m
∑

i=1
Ai

(x) < γ, x ∈ U},

POSO
m
∑

i=1
Ai

(X) = { x|μO
m
∑

i=1
Ai

(x) = 1, x ∈ U},

NEGO
m
∑

i=1
Ai

(X) = { x|μO
m
∑

i=1
Ai

(x) = 0, x ∈ U}.

We have

m

∑
i=1

AO
i (X) = BN1O

m
∑

i=1
Ai

(X) ∪ POSO
m
∑

i=1
Ai

(X). (15)
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The misclassification costs of approximations of optimistic MGRS come from two uncertain
regions BN1O

m
∑

i=1
Ai

(X) and BN2O
m
∑

i=1
Ai

(X), which are defined in the following:

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1O
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN .
(16)

Theorem 2. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
X ⊆ U and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AO

i (X) =
⋃m

i=1 Ai(X);

(2)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 (
⋂n

j=1 AO
i (Xj));

(3)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) ⊆
⋂n

j=1 (
m
∑

i=1
AO

i (Xj));

(4)
m
∑

i=1
AO

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AO

i (Xj));

(5)
m
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X).

Proof of Theorem 2.

(1) From Formula (14),
m
∑

i=1
AO

i (X) =
⋃m

i=1 Ai(X) obviously holds.

(2)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 AO
i (

⋂n
j=1 Xj) =

⋃m
i=1 (

⋂n
j=1 AO

i (Xj)).

(3)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 (
⋂n

j=1 Ai(Xj))

=
⋂n

j=1 (
⋃m

i=1 Ai(Xj) ∩ · · ·

=
⋂n

j=1 (
m
∑

i=1
AO

i (Xj)) ∩ · · ·

=
⋂n

j=1 (
m
∑

i=1
AO

i (Xj)).

(4) From Xj ⊆
⋃n

j=1 Xj,wehave
m
∑

i=1
AO

i (Xj) ⊆
m
∑

i=1
AO

i (
⋃n

j=1 Xj). Therefore,
m
∑

i=1
AO

i (
⋃n

j=1 Xj) ⊇⋃n
j=1 (

m
∑

i=1
AO

i (Xj)).

(5) It is easy to prove by Formulas (1), (2), and (14).

Definition 8. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The pessimistic membership degree of x ∈ U related to A1, A2, . . ., Am is given as follows:

μP
m
∑

i=1
Ai

(x) = min{μ([x]Ai )|i = 1, 2, . . ., m}. (17)

Definition 9. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The approximation model of pessimistic MGRS of X related to A1, A2, . . ., Am is given
as follows:

m

∑
i=1

AP
i (X) = { x|μ([x]A1) ≥ γ ∧ μ([x]A2) ≥ γ ∧ . . . ∧ μ([x]Am) ≥ γ, x ∈ U}. (18)
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From the perspective of the pessimistic membership degree,
m
∑

i=1
AP

i (X) can be expressed

as follows:
m

∑
i=1

AP
i (X) = { x|μP

m
∑

i=1
Ai

(x) ≥ γ, x ∈ U}. (19)

The corresponding decision regions are expressed in the following:

BN1P
m
∑

i=1
Ai

(X) = { x|1 > μP
m
∑

i=1
Ai

(x) ≥ γ, x ∈ U},

BN2P
m
∑

i=1
Ai

(X) = { x|0 < μP
m
∑

i=1
Ai

(x) < γ, x ∈ U},

POSP
m
∑

i=1
Ai

(X) = { x|μP
m
∑

i=1
Ai

(x) = 1, x ∈ U},

NEGP
m
∑

i=1
Ai

(X) = { x|μP
m
∑

i=1
Ai

(x) = 0, x ∈ U}.

We have

m

∑
i=1

AP
i (X) = BN1P

m
∑

i=1
Ai

(X) ∪ POSP
m
∑

i=1
Ai

(X) . (20)

The misclassification costs of approximations of optimistic MGRS come from two uncertain
regions BN1P

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X) , which are defined in the following:

DC(
m

∑
i=1

AP
i (X)) = ∑

x∈BN1P
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN .
(21)

Theorem 3. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
X ⊆ U and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AP

i (X) =
⋂m

i=1 (Ai(X));

(2)
m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂n

j=1 (
m
∑

i=1
AP

i (Xj));

(3)
m
∑

i=1
AP

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AP

i (Xj));

(4)
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AP

i (X).

Proof of Theorem 3.

(1) ∀x ∈
m
∑

i=1
AP

i (X), according to Definition 9, μ([x]Ai ) ≥ γ holds, i = 1, 2, · · ·, m. Ac-

cording to Definition 5, x ∈ Ai(X), i = 1, 2, · · ·, m and x ∈ ⋂m
i=1 (Ai(X)) holds, i.e.,

m
∑

i=1
AP

i (X) ⊆ ⋂m
i=1 (Ai(X)). ∀x ∈ ⋂m

i=1 (Ai(X)), μ([x]Ai ) ≥ γ, i = 1, 2, · · ·, m. Accord-

ing to Definition 7, x ∈
m
∑

i=1
AP

i (X) holds, i.e.,
⋂m

i=1 (Ai(X)) ⊆
m
∑

i=1
AP

i (X). Therefore,

we have
m
∑

i=1
AP

i (X) =
⋂m

i=1 (Ai(X)).
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(2) From the proof of (1),
m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂m

i=1 Ai(
⋂n

j=1 Xj). According to Defini-

tion 7,
⋂m

i=1 Ai(
⋂n

j=1 Xj) =
⋂m

i=1
⋂n

j=1 Ai(Xj). Because
⋂m

i=1 Ai(Xj) =
m
∑

i=1
AP

i (Xj),

m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂m

i=1 Ai(
⋂n

j=1 Xj) =
⋂n

j=1
⋂m

i=1 Ai(Xj) =
⋂n

j=1(
m
∑

i=1
AP

i (Xj)).

(3) ∀x ∈ ⋃n
j=1 (

m
∑

i=1
AP

i (Xj)), ∃Xk(k ∈ {1, 2, · · ·, n}), x ∈
m
∑

i=1
AP

i (Xj). According to Defini-

tion 7, ∀Xj, j = 1, 2, · · ·, n, μ([x]Ai ) ≥ γ, , i = 1, 2, · · ·, m, x ∈
m
∑

i=1
AP

i (
⋃n

j=1 (Xj)) holds.

Therefore,
m
∑

i=1
AP

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AP

i (Xj)).

(4) It is easy to prove by Formulas (4), (5), and (19).

Theorem 4. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U, A = A1 ∪ A2 ∪ . . . ∪ Am and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AO

i (X) ⊆ A(X);

(2)
m−1
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X) and
m−1
∑

i=1
AP

i (X) ⊇
m
∑

i=1
AP

i (X).

Proof of Theorem 4.

(1) According to Definition 6, we only need to prove
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AO

i (X). ∀x ∈
m
∑

i=1
AP

i (X), according to Definition 7, μ([x]Ai ) ≥ γ. From Definition 5, we have

x ∈
m
∑

i=1
AO

i (X).

(2) It is easy to prove according to Definitions 5 and 7.

Lemma 1. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U,
U/A = {E1, E2, ..., El} is a granularity layer on U. The following properties hold:

(1) ∑
Ei∈BN1(X)

λY
Ei
≤ ∑

Ei∈BN1(X)
λN

Ei
;

(2) ∑
Ei∈BN2(X)

λN
Ei
≤ ∑

Ei∈BN2(X)
λY

Ei
. Here, Ei ∈ U/A (i = 1, 2, . . ., l).

Proof of Lemma 1.

(1) λY
Ei
− λN

Ei
= λ12(1 − μ(Ei))|Ei| − λ21μ(Ei)|Ei| = |Ei|(λ12 − (λ12 + λ21))μ(Ei), be-

cause Ei ∈ BN1(X), we have λ12
λ12+λ21

≤ μ(Ei) < 1, then λY
Ei
≤ λN

Ei
, therefore

∑
Ei∈BN1(X)

λY
Ei
≤ ∑

Ei∈BN1(X)
λN

Ei
.

(2) λY
Ei
− λN

Ei
= λ12(1 − μ(Ei))|Ei| − λ21μ(Ei)|Ei| = |Ei|(λ12 − (λ12 + λ21))μ(Ei). Be-

cause Ei ∈ BN2(X), we have 0 < μ(Ei) < λ12
λ12+λ21

, then λY
Ei
≥ λN

Ei
. Therefore,

∑
Ei∈BN2(X)

λN
Ei
≤ ∑

Ei∈BN2(X)
λY

Ei
.

Lemma 1 shows that the misclassification costs incurred by the equivalence classes in
characterizing X are not more than the misclassification costs incurred by the equivalence
classes when they do not characterize X in BN1(X). Moreover, misclassification costs
incurred by the equivalence classes when they do not characterize X are not more than the
misclassification costs incurred by the equivalence classes in characterizing X in BN2(X).
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Theorem 5. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U,
the following properties hold:

(1) ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λY ≤ ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY ≤ ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN ;

(2) ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN ≤ ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λY and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN ≤ ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY.

Proof of Theorem 5. From Lemma 1, Theorem 5 holds.

Theorem 5 shows that misclassification costs incurred by the equivalence classes in
characterizing X are not more than misclassification costs incurred by the equivalence
classes when they do not characterize X in BN1O

m
∑

i=1
Ai

(X) and BN1P
m
∑

i=1
Ri

(X). Moreover, mis-

classification costs incurred by the equivalence classes when they do not characterize X are
not more than misclassification costs incurred by the equivalence classes in characterizing
X in BN2O

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X).

DC(
m
∑

i=1
AO

i (X)), DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)) denote the misclassification costs

generated when
m
∑

i=1
AO

i (X),
m
∑

i=1
AO

i (X) and
m
∑

i=1
AO

i (X) are approximated to X, respectively.

Then, the following theorem holds:

Theorem 6. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U, Then,

DC(
m
∑

i=1
AO

i (X)) ≤ DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)) ≤ DC(
m
∑

i=1
AO

i (X)).

Proof of Theorem 6. When
m
∑

i=1
AO

i (X) is taken as the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN(X)

λN; when
m
∑

i=1
AO

i (X) is considered the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN(X)

λY; when DC(
m
∑

i=1
AO

i (X)) is considered the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN1(X)

λY + ∑
x∈BN2(X)

λN .

Because BN(X) = BN1(X) ∪ BN2(X), we have:

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1(X)

λN + ∑
x∈BN2(X)

λN ,

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1(X)

λY + ∑
x∈BN2(X)

λY.

Therefore, according to Theorem 5,

DC(
m

∑
i=1

AO
i (X)) ≤ DC(

m

∑
i=1

AO
i (X)),

DC(
m

∑
i=1

AO
i (X)) ≤ DC(

m

∑
i=1

AO
i (X)).
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Theorem 6 indicates that when DC(
m
∑

i=1
AO

i (X)), DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X))

are used as approximations of X, respectively, DC(
m
∑

i=1
AO

i (X)) generates the least misclassi-

fication costs.

DC(
m
∑

i=1
AP

i (X)), DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) denote the misclassification costs

generated when
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X) and
m
∑

i=1
AP

i (X) are approximated to X, respectively.

Theorem 7. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U. Then,

DC(
m
∑

i=1
AP

i (X)) ≤ DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) ≤ DC(
m
∑

i=1
AP

i (X)).

Proof of Theorem 7. Similar to Theorem 6, Theorem 7 is easy to prove.

From Theorem 7, when DC(
m
∑

i=1
AP

i (X)), DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) are used

as approximations of X, respectively, DC(
m
∑

i=1
AP

i (X)) generates the least misclassification

costs. Theorems 6 and 7 reflect the advantages of the multigranulation approximation sets
that are used for approximating the target concept.

5.2. The Optimal Multigranulation Approximation Selection Method

The objects in the boundary region may be reclassified under different granularities.
As a result, the equivalence classes used to represent the approximation set will be changed
in the boundary region. In practical applications, the optimal approximation selection
should consider both the misclassification and test costs. In MGRS, uncertain concepts
characterized in a finer approximation layer result in lower misclassification costs, and test
costs increase with the added attributes. Therefore, it is essential to find a balance between
misclassification and test costs.

Lemma 2. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am, and X ⊆ U, then ∀x ∈ U, μO

m−1
∑

i=1
Ai

(x) ≤ μO
m
∑

i=1
Ai

(x).

Lemma 3. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am, and X ⊆ U, then ∀x ∈ U, μP

m−1
∑

i=1
Ai

(x) ≥ μP
m
∑

i=1
Ai

(x).

Theorem 8. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am and X ⊆ U, only when μ(x)(x ∈ BN1O

m−1
∑

i=1
Ai

(X)) changed with the

attribute increased, then DC(
m−1
∑

i=1
AO

i (X)) ≥ DC(
m
∑

i=1
AO

i (X)).
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Proof of Theorem 8.

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1O
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN

= ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λ12(1− μ(x)) + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λ21μ(x).

According to Lemma 2, we have

μO
m−1
∑

i=1
Ai

(x) ≤ μO
m
∑

i=1
Ai

(x).

Obviously, DC(
m−1
∑

i=1
AO

i (X)) ≥ DC(
m
∑

i=1
AO

i (X)).

From Theorem 7, for optimistic MGRS, to reduce the misclassification costs of the
approximation, we can add the attribute that only changes the membership of objects in
x ∈ BN1O

m−1
∑

i=1
Ai

(X).

Theorem 9. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
A1 ⊆ A2 ⊆, . . .,⊆ Am, X ⊆ U, only when μ(x) (x ∈ BN2P

m−1
∑

i=1
Ai

(X)) changed with the attributes

increased, then DC(
m−1
∑

i=1
AP

i (X)) ≥ DC(
m
∑

i=1
AP

i (X)).

Proof of Theorem 9.

DC(
m

∑
i=1

AP
i (X)) = ∑

x∈BN1P
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λN

= ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λ12(1− μ(x)) + ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λ21μ(x).

According to Lemma 3, we have

μP
m−1
∑

i=1
Ai

(x) ≥ μP
m
∑

i=1
Ai

(x).

Obviously, DC(
m−1
∑

i=1
AP

i (X)) ≥ DC(
m
∑

i=1
AP

i (X)).

From Theorem 9, for pessimistic MGRS, to reduce the misclassification costs of the
approximation, we can add the attribute that only changes the membership of objects in
x ∈ BN2O

m−1
∑

i=1
Ri

(X).

In practical applications, on the one hand, the factors included in the test cost, such as
money, time, environment, etc., are hard to evaluate objectively. On the other hand, these
factors are hard to be integrated because of their different dimensions. In this section, we
will evaluate test costs in an attribute-driven form, which are more objective.
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Definition 10. Let S = (U, C ∪ D, V, f ) be a decision information table, a ∈ C and X ⊆ U,
the significance of a is defined as follows:

Sig(a, C, D) = DCC−{a} − DCC. (22)

Definition 11. Let S = (U, C ∪ D, V, f ) be a decision information table, a ∈ C, A ⊆ C and
X ⊆ U; the test cost to construct A(X) is defined as follows:

TCA= ∑
a∈A

Sig(a, C, D). (23)

In this paper, for simplicity, to present the optimal granularity selection of the multi-
granulation approximation, we only use the optimistic MGRS as an example.

Definition 12. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C

and X ⊆ U; the test cost to construct
m
∑

i=1
AO

i (X) can be defined as follows:

TC m
∑

i=1
AO

i

=
m

∑
i=1

TCAi . (24)

In this paper, the misclassification and test costs for user requirements are represented

as DCu and TCu, respectively. A multigranulation approximation
k
∑

i=1
AO

i (X) is selected to

meet the constraints DC k
∑

i=1
AO

i (X)
≤ DCu and TC k

∑
i=1

AO
i (X)

≤ TCu, then the related decision

are made on
k
∑

i=1
AO

i (X). Figure 3 presents the optimal multigranulation approximation

selection of optimistic MGRS. Herein,
3
∑

i=1
AO

i (X) complies with the requirements of the

misclassification costs and fails to comply with the requirements of the test costs; AO
1 (X)

complies with the requirements of the test cost and fails to comply with the requirements

of misclassification costs;
2
∑

i=1
AO

i (X) complies with both requirements of misclassification

costs and test costs, enabling effective calculations according to granularity optimization.
Similarly, the optimal approximation selection of pessimistic MGRS is the same. We
formalize the computation as an optimization problem:

arg min
k

Cost k
∑

i=1
AO

i (X)
, (25)

s.t.

ξDC k
∑

i=1
AO

i (X)
≤ DCu;

TC k
∑

i=1
AO

i (X)
≤ TCu.

where Cost k
∑

i=1
AO

i (X)
= ξDC k

∑
i=1

AO
i

+ TC k
∑

i=1
AO

i

, and Cost k
∑

i=1
AO

i (X)
denotes the total cost for

constructing
k
∑

i=1
AO

i (X). ξ = |U|∣∣∣∣ m
∑

i=1
AO

i (X)

∣∣∣∣ ∗
1

DC(Am(X))
reflects the contribution degree of the

multigranulation approximation layer for the misclassification costs of
k
∑

i=1
AO

i (X).
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Figure 3. The optimal granularity selection of the optimistic multigranulation approximation. And
the red circles in the figure represent the set X.

5.3. Case Study

Table 2 is an evaluation form of the company venture capital given by five experts.
U = {x1, x2, . . ., x900} is 900 investment plans, which are evaluated by 5 experts. The risk
level is divided into three categories, including high and low. Suppose that DCu = 5 and
TCu = 2.5.

(1) According to the above conditions, the attribute significance can be computed by
Formula (25), which is shown in Table 3.

(2) Each multigranulation approximation is obtained by adding attributes in ascending
order of attribute significance, E4 → E3 → E2 → E1 → E5 in each stage, respectively.
We represent the attributes as follows: A1 = E4, A2 = E3, A3 = E2, A4 = E1, and
A5 = E5.

(3) For each multigranulation approximation layer, DC k
∑

i=1
AO

i

, TC k
∑

i=1
AO

i

, and Cost k
∑

i=1
AO

i (X)

are computed by Formulas (16), (24), and (25), respectively, where k = 1, 2, . . ., 5 and
the results are displayed in Table 4.

Table 2. Evaluation form of the company’s venture capital.

Firm E1 E2 E3 E4 E5 D

x1 3 3 3 3 1 High
x2 2 1 2 3 2 High
x3 2 1 2 1 2 High
· · · · · · ·
· · · · · · ·
· · · · · · ·

x898 3 3 2 2 3 Low
x899 3 1 3 3 1 Low
x900 1 1 3 3 1 Low

Table 3. Description of attribute significance.

Attribute E1 E2 E3 E4 E5

Sig(a, C, D) 0.74 0.56 0.54 0.36 0.77
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Table 4. The description of cost in each multigranulation approximation.

AO
1 (X)

2

∑
i=1

AO
i (X)

3

∑
i=1

AO
i (X)

4

∑
i=1

AO
i (X)

5

∑
i=1

AO
i (X)

ξDC 8.3 5.9 4.7 3.6 3.5
TC 0.36 0.9 1.46 2.2 2.97

Cost 8.66 6.8 6.16 5.8 6.47

Cost k
∑

i=1
AO

i (X)
changes with the increased attributes and only Cost 3

∑
i=1

AO
i (X)

and Cost 4
∑

i=1
AO

i (X)

satisfy DC k
∑

i=1
AO

i (X)
≤ DCu and TC k

∑
i=1

AO
i (X)

≤ TCu at the same time. According to the For-

mula (25), we choose the multigranulation approximation layer with the lowest total cost

from the above layers; its corresponding approximation layer is
3
∑

i=1
AO

i (X). Therefore,

3
∑

i=1
AO

i (X) is the optimal multigranulation approximation used for deciding investment

plans, because it possesses lower misclassification costs, i.e., from the perspective of op-
timistic MGRS, E4, E3, and E2 are reasonable expert sets. The analysis of the case study
shows that the proposed method can search for a reasonable approximation under the
constraint conditions.

6. Simulation Experiment and Result Analysis

6.1. Simulation Experiment

In this section, the effectiveness and rationality of our model are demonstrated as
shown by illustrative experiments. The computer used in the experiments was a WIN
10 operating system with 3.10-GHz CPU and 16.0 GB RAM, and the programming soft-
ware was MATLAB R2022a. The capability of the proposed model was evaluated on six
UCI datasets, which are shown in Table 5. In our experiments, we randomly took away
some known attribute values from datasets 10–12 to create incomplete decision systems.
The missing values are randomly distributed on all conditional attributes.

Table 5. The description of datasets.

ID Dataset
Attribute

Characteristics
Instances

Condition
Attributes

1 Bank Integer 39 12
2 Breast-Cancer Integer 699 9
3 Car Integer 1728 6
4 ENB2012data Real 768 8
5 Mushroom Integer 8124 22
6 Tic Integer 958 9
7 Air Quality Real 9358 12
8 Concrete Real 1030 8
9 Hcv Real 569 10
10 Wisconsin Real 699 9
11 Zoo Integer 101 16
12 Balance Integer 625 4

From Figure 4, for classical rough sets, the misclassification costs of the approximation
model monotonously decrease with the granularity being finer, which complies with human
cognitive habits.
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Figure 4. The misclassification cost with the changing granularity on each dataset.

In Figure 5, O DC1, O DC2, O DC3 and O DC4 represent ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λY, ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λN,

∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λY, respectively. P DC1, P DC2, P DC3 and P DC4 rep-

resent ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY, ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN , ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY, respectively.

From Figure 5, under different granular layers, misclassification costs incurred by the
equivalence classes in approximating X are always less than or equal to misclassification
costs incurred by the equivalence classes when they do not characterize X in BN1O

m
∑

i=1
Ai

(X)

and BN1P
m
∑

i=1
Ai

(X). Moreover, misclassification costs incurred by equivalence classes when

they do not characterize X are less than or equal to the misclassification costs incurred
by the equivalence classes in approximating X in BN2O

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X). This is

consistent with Theorem 4.
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Figure 5. The misclassification cost of two boundary regions under different granularities.

In Figure 6, the horizontal and vertical axes denote the granularity and misclassifi-

cation costs, respectively. O DC_lower, O DC_upper and O DC represent DC(
m
∑

i=1
AO

i (X)),

DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)). P DC_lower, P DC_upper and P DC represent

DC(
m
∑

i=1
AP

i (X)),DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)), respectively, namely, the misclassi-

fication costs generated when
m
∑

i=1
AO

i (X),
m
∑

i=1
RO

i (X) and
m
∑

i=1
AO

i (X) are approximated to

X and the misclassification costs generated when
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X) and
m
∑

i=1
AP

i (X)

are approximated to X. Obviously, compared with
m
∑

i=1
AO

i (X) and
m
∑

i=1
AO

i (X), the mis-

classification costs of
m
∑

i=1
AO

i (X) are the least on each granularity. Similarly, compared
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with
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X), the misclassification costs of
m
∑

i=1
AP

i (X) are the least on each

granularity. This is consistent with Theorems 5 and 6.
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with the changing granularity of each dataset.

6.2. Results and Discussions

According to the above experiments, compared with the upper/lower approxima-
tion sets, we can conclude that the multigranulation approximations have the following
advantages when applied to decision-making environments:

(1) The misclassification costs of the approximation model monotonously decrease with
the granularity being finer;

(2) In multigranulation approximations, under different granular layers, the misclassi-
fication costs incurred by the equivalence classes in approximating X are less than
or equal to the misclassification costs incurred by the equivalence classes when they
do not characterize X in boundary region I of optimistic and pessimistic rough sets.
Moreover, the misclassification costs incurred by equivalence classes when they do
not characterize X are less than or equal to the misclassification costs incurred by
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the equivalence classes in approximating X in boundary region II of optimistic and
pessimistic rough sets;

(3) Compared with the upper/lower approximation sets, the misclassification costs of
the multigranulation approximations are the least on each granularity.

7. Conclusions

In MGRS, optimistic and pessimistic upper/lower approximation boundaries are
utilized to characterize uncertain concepts. They still cannot take advantage of the known
equivalence classes to establish the approximation of an uncertain concept. To handle the
problem, cost-sensitive multigranulation approximations of rough sets were constructed.
Furthermore, an optimization mechanism of the multigranulation approximations is pro-
posed, which selects the optimal approximation to obtain the minimum misclassification
costs under the conditions. The case study shows that the proposed algorithm is capa-
ble of searching for a rational approximation under restraints. Finally, the experiments
demonstrate that the multigranulation approximations possess the least misclassification
costs. In particular, our models apply to the decision-making environment where each
decision-maker is independent. Moreover, our models are useful for extracting decision
rules from distributive information systems and groups of intelligent agents through rough
set approaches [34,36]. Figure 7 presents a diagram that summarizes the works conducted
in this paper. Herein, we present the process of the cost-sensitive multigranulation approxi-
mations of rough sets; according to different granulation mechanisms, our approach can
be extended to uncertainty models, i.e., vague sets, shadow sets, and neighborhood rough
sets. These results will be important to contribute to the progress of the GrC theory.

Figure 7. Diagram of works conducted in this paper.

Our future work will focus on the following two aspects: (1) We hope to build a more
reasonable three-way decision model based on our model from optimistic and pessimistic
perspectives; (2) we wish to combine the model with the cloud model theory to extend
our model to construct a multigranulation approximation model with bidirectional cog-
nitive computing. This will offer more cognitive advantages and benefits in application
fields with uncertainty from multiple perspectives, i.e., image segmentation, clustering,
and recommendation systems.
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Abstract: Knowledge distance is used to measure the difference between granular spaces, which
is an uncertainty measure with strong distinguishing ability in a rough set. However, the current
knowledge distance failed to take the relative difference between granular spaces into account
under the given perspective of uncertain concepts. To solve this problem, this paper studies the
relative knowledge distance of intuitionistic fuzzy concept (IFC). Firstly, a micro-knowledge distance
(md) based on information entropy is proposed to measure the difference between intuitionistic
fuzzy information granules. Then, based on md, a macro-knowledge distance (MD) with strong
distinguishing ability is further constructed, and it is revealed the rule that MD is monotonic with the
granularity being finer in multi-granularity spaces. Furthermore, the relative MD is further proposed
to analyze the relative differences between different granular spaces from multiple perspectives.
Finally, the effectiveness of relative MD is verified by relevant experiments. According to these
experiments, the relative MD has successfully measured the differences in granular space from
multiple perspectives. Compared with other attribute reduction algorithms, the number of subsets
after reduction by our algorithm is in the middle, and the mean-square error value is appropriate.

Keywords: intuitionistic fuzzy concept; rough set; multi-granularity; relative macro-knowledge distance

1. Introduction

Granular computing (GrC) [1–4] is a new type of computing used to solve problems
by simulating the cognitive mechanism of humans. Information granule is the fundamental
element in GrC for constructing granular spaces. A granular space consists of several
information granules and their relationships, while a granular structure consists of many
granular spaces and their relationships. By fusing the structure and optimization approach
of granularity, Pedrycz [2] introduced the notion of justifiable granularity. Yao [5,6] exam-
ined the two fields of three-way decision and GrC, as well as their interplay. Wang [7,8]
reviewed the GrC work from three aspects, including granularity optimization, granularity
switching, and multi-granulation computing.

As the main GrC model, rough set [9] is a useful tool for handling uncertain knowl-
edge by utilizing existing information granules. Uncertainty measure is a crucial tool for
data analysis in a rough set. Wang [10] introduced a series of uncertainty measures for
selecting the optimal features effectively. Li [11] offered the axiom definition of uncertainty
measure for covering information systems by using its information structures. Sun [12]
investigated the fuzzy neighborhood multigranulation rough set model to construct uncer-
tainty measures. In generalized rough set models, Wang [13] described new uncertainty
measures from the perspectives of the upper and lower approximations. Nevertheless,
these uncertainty measures struggle to distinguish the differences between granular spaces
when they possess the same uncertainty. To address this issue, Qian [14,15] first introduced
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the concept of knowledge distance, and there have been several works on knowledge dis-
tance in recent years. Li [16] proposed an interval-valued intuitionistic fuzzy set to describe
fuzzy granular structure distance, and proved that knowledge distance is a special form of
intuitionistic fuzzy granular structure distance. Yang [17,18] proposed a partition-based
knowledge distance based on the Earth Mover’s Distance and further established the fuzzy
knowledge distance. Chen [19] presented a new measure formula of knowledge distance
by using Jaccard distance to replace set similarity. To measure the uncertainty derived from
the disparities between local upper and lower approximation sets, Xia [20] introduced the
local knowledge distance.

In practical applications, the target concept may be vague or uncertain. As a classical
soft computing tool, the intuitionistic fuzzy set [21] extends the membership from single
value to interval value. For uncertain information, the intuitionistic fuzzy set has more pow-
erful ability than the fuzzy set [22], and it is currently extensively applied in different fields,
i.e., decision-making [23–25], pattern recognition [26,27], control and reasoning [28,29],
and fuzzy reasoning [30,31]. In rough set, an intuitionistic fuzzy concept (IFC) can be
characterized by a pair of lower and upper approximation fuzzy sets. There are many
research works [32–37] on the combination between rough set and the intuitionistic fuzzy
set. In particular, the uncertainty measure of IFC in granular spaces becomes a basic
issue. A novel concept of an intuitionistic fuzzy rough set based on two universes was
proposed by Zhang [32] along with a specification of the associated operators. On the basis
of the rough set, Dubey [35] presented an intuitionistic fuzzy c-means clustering algorithm
and applied it to the segmentation of the magnetic resonance brain images. Zheng [36]
proposed an improved roughness method to measure the uncertainty of covering-based
rough intuitionistic fuzzy sets. These works indicate that intuitionistic fuzzy set and rough
set are suitable mathematical methods for studying vagueness and uncertainty. Current
uncertainty measures failed to distinguish different rough granular spaces with the same
uncertainty when they are used to describe an IFC; that is, it is difficult to reflect on the
differences between them. However, in some situations, such as attribute reduction or gran-
ularity selection, the different rough granular spaces for describing an IFC are necessary to
distinguish. To solve this problem, based on our previous works [17,18], two-layer knowl-
edge distance measures—that is, micro-knowledge distance (md) and macro-knowledge
distance (MD)—are constructed to reflect the difference between granular spaces for de-
scribing an IFC. Finally, in order to analyze the relative differences between rough granular
spaces under certain prior granular spaces, the concept of relative MD applied to data
analysis is also proposed.

The following are the main contributions of our paper: (1) Based on information
entropy, md is designed to measure the difference among intuitionistic fuzzy information
granules. (2) On the basis of md, MD with strong distinguishing ability is further con-
structed, which can calculate the difference between rough granular spaces for describing
an IFC. (3) The relative MD is proposed to analyze the relative difference between two rough
granular spaces from multiple perspectives. (4) An algorithm of attribute reduction based
on MD or relative MD is presented, and its effectiveness is verified by relevant experiments.

The rest of this paper is arranged as follows. Section 2 introduces related preliminary
concepts. In Section 3, the two types of information entropy-based distance measure
(md and MD) are presented. Section 4 presents the concept of relative MD. The relevant
experiments are reported in Section 5. Finally, in Section 6, conclusions are formed.

2. Preliminaries

This part will go through some of the core concepts. Let S = (U, C ∪ D, V, f ) be an
information system, where U, C, D and V represent the universe of discourse, condition
attribute set, decision attribute set and attribute value set corresponding to each object,
respectively, and f : U × C is an information function that specifies the property value of
each object x in U.
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Definition 1 (Intuitionistic fuzzy set). Assume that U is the universe of discourse, the following
is the definition of an intuitionistic fuzzy set I on U:

I = {< x, γI(x), υI(x) > |x ∈ U}

where γI(x) and υI(x) denote two nonempty finite sets on the interval [0, 1], which refer to the set
of degrees of membership and non-membership of x on I, respectively, and satisfy the conditions:
∀xi ∈ U, 0 ≤ γI(xi) + υI(xi) ≤ 1.

Note: For convenience, all I below are represented as intuitionistic fuzzy sets on U.

Definition 2 (Average step intuitionistic fuzzy set [38]). Assume that in S = (U, C ∪ D),
R ⊆ C and U/R = {[x]R} = {[x]1, [x]2, · · · , [x]l}, where ∀x ∈ [x]i, i = 1, 2, · · · , l, then,

IR(x) = [γIR
(x), 1− υIR

(x)]

where, γIR
(x) =

∑
x∈[x]i

γIR (x)

|[x]i |
, υIR

(x) =
∑

x∈[x]i
υIR (x)

|[x]i |
. IR(x) is therefore referred to as an average

step intuitionistic fuzzy set on U/R .

As well known, the information entropy as an uncertainty measure is proposed in
rough set theory,

E(x) = ∑
xi∈U

e(xi)

where, e(xi)=− 2μ(xi)log2μ(xi). Let U be a nonempty universe and I be an intuitionistic
fuzzy set on U.

The information entropy of I can be expressed as follows:
(1) When U is continuous.

EI(x) =
∫ b

a
eI(xi) (1)

(2) When U is discrete.
EI(x) = ∑

xi∈U
eI(xi)

where, eI(xi) = −2
∫ 1−υI(xi)

γI(xi)
μlog2μdμ, and μ denotes the membership degree of xi belongs

to the intuitionistic fuzzy set I.
To measure the information entropy of the rough granular space U/R of the IFC, this

paper further proposed the definition of average information entropy as follows:
(1) When U is continuous, the average information entropy of the rough granular

space of I can be denoted by:

EĪR
(x) =

∫ b

a
eĪR

(x)

(2) When U is discrete, the average information entropy of the rough granular space
of I can be denoted by:

EĪR
(x) = ∑

x∈U
eĪR

(x) (2)

where, eIR
(x) = −2

∫ 1−υIR
(x)

γIR
(x) μlog2μdμ, and μ denotes the membership degree of x belongs

to the intuitionistic fuzzy set I, IR(x) is the average step intuitionistic fuzzy set of U/R.
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Example 1. Assume that in S = (U, C∪D), R ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+ [0.6,0.7]
x4

+
[0.8,0.9]

x5
and U/R = {{x1, x2, x3}, {x4, x5}}.

ĪR(x1) = ĪR(x2) = ĪR(x3) = [
0, 1 + 0, 3 + 0.5

3
,

0.3 + 0.5 + 0.7
3

] = [0.3, 0.5]

ĪR(x4) = ĪR(x5) = [
0, 6 + 0, 8

2
,

0.7 + 0.9
2

] = [0.7, 0.8]

ĪR =
[0.3, 0.5]

x1
+

[0.3, 0.5]
x2

+
[0.3, 0.5]

x3
+

[0.7, 0.8]
x4

+
[0.7, 0.8]

x5

Then

eĪR
(x1) = eĪR

(x2) = eĪR
(x3) = −2

∫ 0.5

0.3
μlog2μdμ = 0.209

eĪR
(x4) = eĪR

(x5) = −2
∫ 0.8

0.7
μlog2μdμ = 0.062

By Formula (2),

EĪR
(x) = ∑

x∈U
eĪR

(x) = 0.209× 3 + 0.062× 2 = 0.751

Definition 3 (Distance measure [39]). Assume that U is the universe of discourse; Y, P and Q are
three finite sets on U. When d(·, ·) meets the following criteria, it is considered a distance measure,
(1) Positive: d(P, Q) ≥ 0;
(2) Symmetric: d(P, Q) = D(Q, P);
(3) Triangle inequality: d(Y, P) + d(P, Q) ≥ d(Y, Q).

Definition 4 (Granularity measure [40]). Assume that in S = (U, C ∪D), G is a mapping from
the power set of C to the real number set. For any R1, R2 ⊆ C, when G meets the following criteria,
it is considered a granularity measure,
(1) G(R1) ≥ 0;
(2) U/R1 ≺ U/R2 ⇒ G(R1) < G(R2);
(3) U/R1 = U/R2 ⇒ G(R1) = G(R2).

Definition 5 (Information measure [41]). Assume that in S = (U, C ∪ D), H is a mapping
from the power set of C to the real number set. For any R1, R2 ⊆ C, when H meets the following
criteria, it is considered an information measure,
(1) H(R1) ≥ 0;
(2) U/R1 ≺ U/R2 ⇒ H(R1) > H(R2);
(3) U/R1 = U/R2 ⇒ H(R1) = H(R2).

3. Information-Entropy-Based Two-Layer Knowledge Distance Measure

Although there are many research works [42–45] on distance measures between intu-
itionistic fuzzy sets from different perspectives, when an IFC is characterized by different
rough granular spaces, respectively, the present fuzzy set distance measures failed to cap-
ture the differences between these granular spaces. In addition, as explained in Section 1,
when an IFC is defined by two granular spaces, the measure result (fuzziness or information
entropy) may be the same. Nevertheless, this does not mean that these two granular spaces
are absolutely equal, and the difference between them for characterizing an IFC cannot
be reflected. To tackle the difficulties listed above, this paper proposed micro-knowledge
distance and macro-knowledge distance based on information entropy, which construct
the two-layer knowledge distance measure in this section.
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Example 2. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+
[0.6,0.7]

x4
+ [0.8,0.9]

x5
, U/R1 = {{x2}, {x1, x3}, {x4, x5}} and U/R2 = {{x1, x2, x3}, {x4, x5}}.

By Formula (2),

EĪR1
(x) = EĪR2

(x) = 0.751

It shows that calculating the average information entropy does not necessarily distin-
guish and describe two different rough granular spaces. Although the average information
entropy values of U/R1 and U/R2 are the same, U/R2 is superior to U/R1 in terms of gran-
ularity selection, since U/R2 has a coarser granularity and has a stronger generalization
ability for describing IFC.

Assume S = (U, C ∪D), A is a finite set on U. Then, we call the intuitionistic fuzzy set
generated by A as the intuitionistic fuzzy information granule (FIG), abbreviated as FIGA.

Example 3 (Continued example 1). Let P = {x1, x2, x3} and Q = {x4, x5}, then:

IFGP =
[0.1, 0.3]

x1
+

[0.3, 0.5]
x2

+
[0.5, 0.7]

x3

IFGQ =
[0.6, 0.7]

x4
+

[0.8, 0.9]
x5

Definition 6 (Micro-knowledge distance). Assume in S = (U, C ∪ D), IFGP and IFGQ are
two intuitionistic fuzzy information granules on U, hence, the following is the definition of the
md formula:

md(P, Q) =

∑
xi∈U

eIFGP∪IFGQ(xi)− ∑
xi∈U

eIFGP∩IFGQ(xi)

EI(x)

Theorem 1. md(·, ·) is a distance measure.

Proof of Theorem 1. Let IFGY, IFGP and IFGQ be three intuitionistic fuzzy information
granules. Let:

a = ∑
xi∈U

eIFGY∪IFGP(xi)− ∑
xi∈U

eIFGY∩IFGP(xi)

b = ∑
xi∈U

eIFGP∪IFGQ(xi)− ∑
xi∈U

eIFGP∩IFGQ(xi)

c = ∑
xi∈U

eIFGY∪IFGQ(xi)− ∑
xi∈U

eIFGY∩IFGQ(xi)

Because (Y ∪ P−Y ∩ P) + (P ∪Q− P ∩Q) ≥ Y ∪Q−Y ∩Q, then a + b ≥ c.

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
+

∑
xi∈U

eFIGP∪FIGQ(xi)− ∑
xi∈U

eFIGP∩FIGQ(xi)

EI(x)

≥
∑

xi∈U
eFIGY∪FIGQ(xi)− ∑

xi∈U
eFIGY∩FIGQ(xi)

EI(x)

Then md(Y, P) + md(P, Q) ≥ md(Y, Q).
According to Definition 3, conditions (1) and (2) are obviously satisfied, Therefore,

md(·, ·) is a distance measure.
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Example 4. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.3,0.6]
x1

+ [0.2,0.5]
x2

+ [0.5,0.7]
x3

+
[0.7,0.9]

x4
+ [0.6,0.8]

x5
+ [0.1,0.2]

x6
+ [0.2,0.4]

x7
is an intuitionistic fuzzy set on U, A = {x1, x3, x4, x6} and

B = {x3, x4, x5, x7} are two finite sets on U.

FIGA =
[0.3, 0.6]

x1
+

[0.5, 0.7]
x3

+
[0.7, 0.9]

x4
+

[0.1, 0.2]
x6

FIGB =
[0.5, 0.7]

x3
+

[0.7, 0.9]
x4

+
[0.6, 0.8]

x5
+

[0.2, 0.4]
x7

Then,

eI(xi) = −2
∫ 1−υI(xi)

γI(xi)
μlog2μdμ

∑
xi∈U

eFIGA∪FIGB(xi) = 1.009

∑
xi∈U

eFIGA∩FIGB(xi) = 0.277

EI(x) = ∑
xi∈U

eI(xi) = 1.318

From Definition 6,

md(A, B) =
∑

xi∈U
eFIGA∪FIGB(xi)− ∑

xi∈U
eFIGA∩FIGB(xi)

EI(x)
=

1.009− 0.277
1.318

= 0.555

Theorem 2. Let Y, P and Q be three intuitionistic fuzzy sets on U. If Y ⊆ P ⊆ Q, then
md(Y, P) ≤ md(Y, Q).

Proof of Theorem 2. According to condition, because Y ⊆ P ⊆ Q, obviously,

∑
xi∈U

eFIGY∪FIGP(xi) = ∑
xi∈U

eFIGP(xi) ≤ ∑
xi∈U

eFIGY∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi)

∑
xi∈U

eFIGY∩FIGP(xi) = ∑
xi∈U

eFIGY∩FIGQ(xi)

Then,

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
≤

∑
xi∈U

eFIGY∪FIGQ(xi)− ∑
xi∈U

eFIGY∩FIGQ(xi)

EI(x)

Therefore, md(Y, P) ≤ md(Y, Q) holds. Similarly, it is easy to get md(P, Q) ≤ md(Y, Q).

Theorem 3. Let Y, P and Q be three intuitionistic fuzzy sets on U. If Y ⊆ P ⊆ Q, then
md(Y, Q) = md(Y, P) + md(P, Q).

Proof of Theorem 3. Theorem 3 obviously holds.

∑
xi∈U

eFIGY∪FIGP(xi) = ∑
xi∈U

eFIGP(xi), ∑
xi∈U

eFIGY∩FIGP(xi) = ∑
xi∈U

eFIGY (xi),

∑
xi∈U

eFIGP∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi), ∑
xi∈U

eFIGP∩FIGQ(xi) = ∑
xi∈U

eFIGP(xi),

∑
xi∈U

eFIGY∪FIGQ(xi) = ∑
xi∈U

eFIGQ(xi), ∑
xi∈U

eFIGY∩FIGQ(xi) = ∑
xi∈U

eFIGY (xi).
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Then

md(Y, P) + md(P, Q)

=

∑
xi∈U

eFIGY∪FIGP(xi)− ∑
xi∈U

eFIGY∩FIGP(xi)

EI(x)
+

∑
xi∈U

eFIGP∪FIGQ(xi)− ∑
xi∈U

eFIGP∩FIGQ(xi)

EI(x)

=

∑
xi∈U

eFIGQ(xi)− ∑
xi∈U

eFIGY (xi)

EI(x)
= md(Y, Q)

Therefore, md(Y, Q) = md(Y, P) + md(P, Q).

Based on md, this research further created MD, which is formulated as follows, to ex-
press the difference between two rough granular spaces for characterizing an IFC.

Definition 7 (Macro-knowledge distance). Assume that in S = (U, C ∪ D), R1, R2 ⊆ C,
U/R1 = {g1, g2, ..., gn} and U/R2 = {g′1, g

′
2, ..., g

′
m} are two granular spaces induced by R1 and

R2, respectively. Then, the following is the definition of MD between U/R1 and U/R2.

MD(U/R1, U/R2) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij (3)

where, mdij = md(gi, g
′
j) and fij =

∣∣∣gi ∩ g
′
j

∣∣∣. Figure 1 shows the relationship between md and MD.

Figure 1. The relationship between md and MD.

Suppose that U/R1 = {g1, g2, ..., gn} is a granular space on U induced by R1, where
gi = {xi1, xi2, · · · , xi|gi |}, Then, gi = sR1(xi1) = sR1(xi2) = · · · = sR1(xi|gi |).

For example,

U/R1 = {{x1, x2}, {x3}, {x4, x5}} = {g1, g2, g3}
g1 = sR1(x1) = sR1(x2) = {x1, x2}
g2 = sR1(x3) = {x3}
g3 = sR1(x4) = sR1(x5) = {x4, x5}

Theorem 4. MD(·, ·) is a distance measure.
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Proof of Theorem 4. Assume that in S = (U, C∪D), R1, R2, R3 ⊆ C, U/R1 = {g1, g2, ..., gn},
U/R2 = {g′1, g

′
2, ..., g

′
m} and U/R3 = {g′′1 , g

′′
2 , ..., g

′′
l } are three granular spaces induced by

R1, R2 andR3, respectively. Obviously, MD(·, ·) is positive and symmetric.

MD(U/R1, U/R2) + MD(U/R2, U/R3) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij +
1
|U|

m

∑
j=1

l

∑
k=1

mdij fij

=
1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi)))

MD(U/R1, U/R3) =
1
|U|

n

∑
i=1

l

∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR1(xi), sR3(xi)) (4)

From Theorem 1, md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi)) ≥ md(sR1(xi), sR3(xi))
Then,

1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi)) + md(sR2(xi), sR3(xi))) ≥

1
|U| ∑

xi∈U
md(sR1(xi), sR3(xi))

MD(U/R1, U/R2) + MD(U/R2, U/R3) ≥ MD(U/R1, U/R3)

Therefore, from Definition 3, MD(·, ·) is a distance measure.

In fact, md measures the difference between two sets, and MD measures the difference
between two rough granular spaces, which integrates the md of all sets of the two granular
spaces. According to Theorem 1, Theorem 4 and Formula (4), as long as md in MD is a
distance measure, then MD is a distance measure.

Example 5 (Continued Example 2). According to Formula (3),

MD(U/R1, U/R2) =
1
|U|

3

∑
i=1

2

∑
j=1

mdij fij

=
md11 + md21 ∗ 2 + md32 ∗ 2

5

=
0.356 + 0.209× 2 + 0× 2

5× 0.686
= 0.226

Theorem 5. Assume that in S = (U, C ∪ D), R1, R2, R3 ⊆ C. If R1 ⊆ R2 ⊆ R3, then
MD(U/R1, U/R2) ≤ MD(U/R1, U/R3).

Proof of Theorem 5. As shown in Figure 2, suppose U/R1 = {g1, g2, ..., gn},
U/R2 = {g′1, g

′
2, ..., g

′
m} and U/R3 = {g′′1 , g

′′
2 , ..., g

′′
l } are three granular spaces induced

by R1, R2 and R3, respectively. Because R1 ⊆ R2 ⊆ R3, so U/R3≺U/R2≺U/R1. For sim-
plicity, supposing only one granule g1 can be subdivided into two finer sub-granules g

′
1 and

g
′
2 by ΔR = R2− R1 and only one granule g

′
1 can be subdivided into two finer sub-granules

g
′′
1 and g

′′
2 by ΔR = R3 − R2 (Because more sophisticated examples may be turned into this

scenario, this essay will not go through them again.).
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Figure 2. The relationship of MD among three granular spaces.

According to the above assumption, g1 = g
′
1 ∪ g

′
2, g2 = g

′
3, g3 = g

′
4, · · · , gn = g

′
m

(m = n + 1), g
′
1 = g

′′
1 ∪ g

′′
2 , g

′
2 = g

′′
3 , g

′
3 = g

′′
4 , · · · , g

′
m = g

′′
l (l = m + 1), namely, U/R2 =

{g′1, g
′
2, g2, · · · , gn} and U/R3 = {g′′1 , g

′′
2 , g

′
2, · · · , g

′
m}. Then, from Definition 7,

MD(U/R1, U/R2) =
1
|U|

n

∑
i=1

m

∑
j=1

mdij fij =
1
|U| (md(g1, g

′
1)
∣∣∣g′1∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

MD(U/R1, U/R3) =
1
|U|

n

∑
i=1

l

∑
j=1

mdij fij

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

Because g
′
1 = g

′′
1 ∪ g

′′
2 , g

′
2 = g

′′
3

MD(U/R1, U/R3)−MD(U/R1, U/R2)

=
1
|U| ((md(g1, g

′′
1)−md(g1, g

′
1))

∣∣∣g′′1 ∣∣∣+(md(g1, g
′′
2)−md(g1, g

′
1))

∣∣∣g′′2 ∣∣∣)
According to Theorem 2, because md(g1, g

′
1) ≤ md(g1, g

′′
1) and md(g1, g

′
1) ≤ md(g1, g

′′
2),

then MD(U/R1, U/R3)−MD(U/R1, U/R2) ≥ 0.
Therefore, MD(U/R1, U/R2) ≤ MD(U/R1, U/R3) holds. Similarly, it is easy to get

MD(U/R2, U/R3) ≤ MD(U/R1, U/R3).

In this paper, the finest and coarsest granular spaces are represented by ω and σ,
respectively. The following corollaries derive from Theorem 5:

Corollary 1. Assume that in S = (U, C∪D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then MD(U/R1, ω)
≥ MD(U/R2, ω).

Corollary 2. Assume that in S = (U, C∪D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then MD(U/R1, σ)
≤ MD(U/R2, σ).

Theorem 6. Assume that in S = (U, C ∪ D), R ⊆ C. According to Definition 4, MD(U/R, ω)
is a granularity measure.
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Proof of Theorem 6. Suppose that R1, R2 ⊆ C,
(1) From Theorem 4, MD(U/R, ω) ≥ 0;
(2) When U/R1=U/R2, obviously, MD(U/R1, ω) = MD(U/R2, ω);
(3) From Corollary 1, if R1 ⊆ R2, then MD(U/R1, ω) ≥ MD(U/R2, ω).

Theorem 7. Assume that in S = (U, C ∪ D), R ⊆ C. According to Definition 5, MD(U/R, σ)
is an information measure.

Proof of Theorem 7. Suppose that R1, R2 ⊆ C,
(1) From Theorem 4, MD(U/R, σ) ≥ 0;
(2) When U/R1=U/R2, obviously, MD(U/R1, σ) = MD(U/R2, σ);
(3) From Corollary 2, if R1 ⊆ R2, then MD(U/R1, σ) ≤ MD(U/R2, σ).

Theorem 8. Assume that in S = (U, C ∪ D), R1 ⊆ R2 ⊆ R3 ⊆ C, then MD(U/R1, U/R3) =
MD(U/R1, U/R2) + MD(U/R2, U/R3).

Proof of Theorem 8. For simplicity, based on the proof of Theorem 5,

MD(U/R1, U/R2) =
1
|U| (md(g1, g

′
1)
∣∣∣g′1∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

MD(U/R1, U/R3) =
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

Similarly,

MD(U/R2, U/R3) =
1
|U| (md(g

′
1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g

′
1, g

′′
2)
∣∣∣g′′2 ∣∣∣)

Because g1 = g
′
1 ∪ g

′
2, g

′
1 = g

′′
1 ∪ g

′′
2 and g

′
2 = g

′′
3 .

According to Theorem 3,

MD(U/R1, U/R2) + MD(U/R2, U/R3)

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′
2)
∣∣∣g′2∣∣∣)

=
1
|U| (md(g1, g

′′
1)
∣∣∣g′′1 ∣∣∣+ md(g1, g

′′
2)
∣∣∣g′′2 ∣∣∣+ md(g1, g

′′
3)
∣∣∣g′′3 ∣∣∣)

= MD(U/R1, U/R3)

According to Theorem 8, from the perspective of distance, the granular spaces in
hierarchical granular structure are linearly additive, which can be explained by Figure 2
intuitively. Moreover, the following corollaries hold:

Corollary 3. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then
MD(U/R1, U/R2) = MD(U/R1, ω)−MD(U/R2, ω).

Corollary 4. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. If R1 ⊆ R2 ⊆ C, then,
MD(U/R1, U/R2) = MD(U/R2, σ)−MD(U/R1, σ).

Corollary 5. Assumethat in S = (U, C ∪ D), R ⊆ C. Then MD(U/R, ω) + MD(U/R, σ)= |U|−1
|U| .
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Proof of Corollary 5.

MD(U/R, ω) =
1
|U|

n

∑
i=1

|U|
∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR(xi), {xi})

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x)
EI(x)

MD(U/R, σ) =
1
|U|

n

∑
i=1

1

∑
j=1

mdij fij =
1
|U| ∑

xi∈U
md(sR(xi), U)

=
1
|U| ∑

xi∈U

∑ eCUsR(xi)
(x)

EI(x)

MD(U/R, ω) + MD(U/R, σ)

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x)
EI(x)

+
1
|U| ∑

xi∈U

∑ eCUsR(xi)
(x)

EI(x)

=
1
|U| ∑

xi∈U

∑ esR(xi)−{xi}(x) + ∑ eCU sR(xi)
(x)

EI(x)

=
1
|U| ∑

xi∈U

∑ eU−{xi}(x)
EI(x)

=
1
|U| ∑

xi∈U

EI(x)− e(xi)

EI(x)

=
1
|U| ×

|U| × EI(x)− EI(x)
EI(x)

=
|U| − 1
|U|

Therefore, MD(U/R, ω) + MD(U/R, σ) = |U|−1
|U| holds.

From Corollary 3 and Theorem 6, for an IFC, the larger the granularity difference
between granular spaces in hierarchical granular structure, the larger MD between them.
From Corollary 4 and Theorem 7, for an IFC, the larger the information difference be-
tween granular spaces in hierarchical granular structure, the larger MD between them.
From Corollary 5, the larger the information measure, the smaller the granularity measure,
and one measure value can be deduced from another.

Note: By using a suitable md in Formula (3), the method of this paper is able to extend
to quantify the difference between any types of granular spaces. These specifics are outside
the scope of this paper’s discussion.

4. Relative Macro-Knowledge Distance

Section 3 has constructed an MD based on md, which described the difference be-
tween two rough granular spaces of IFC. We regarded this knowledge distance as absolute.
Because in data analysis, sometimes some conditions are known, it is necessary to analyze
the differences between rough granular spaces at this time; that is, to analyze the differ-
ences between rough granular spaces under different prior granular spaces. Inspired by
Wang [46], this section proposes the concept of relative MD and analyzes its properties.

Definition 8 (Relative macro-knowledge distance). Assumethat in S = (U, C∪D), R1, R2 ⊆ C,
U/R is the prior granular space on U, U/R1 = {g1, g2, · · · , gn} and U/R2 = {g′1, g

′
2, · · · , g

′
m}

are two granular spaces induced by R1 and R2, respectively. Then, the relative MD of U/R1 and
U/R2 under U/R is defined as:

RMD((U/R1 , U/R2 )/(U/R)) =
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) (5)

where, sR1/R(xi) = sR1(xi) ∩ sR(xi) and sR2/R(xi) = sR2(xi) ∩ sR(xi).
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Based on the original MD, this definition adds prior granular space U/R, which reflects
the relative differences between two rough granular spaces from different perspectives.

Theorem 9. RMD(·, ·/·) is a distance measure.

Proof of Theorem 9. Assume that in S = (U, C∪D), U/R is the prior granular space on U.
R1, R2, R3 ⊆ C, U/R1 = {g1, g2, · · · , gn}, U/R2 = {g′1, g

′
2, · · · , g

′
m} and

U/R3 = {g′′1 , g
′′
2 , · · · , g

′′
l } are three granular spaces induced by R1, R2 andR3, respectively.

Obviously, RMD(·, ·/·) is positive and symmetric.

RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R))

=
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

RMD((U/R1, U/R3)/(U/R)) =
1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

According to Theorem 1,

md(sR1/R(xi), sR2/R(xi)) + md(sR2/R(xi), sR3/R(xi)) ≥ md(sR1/R(xi), sR3/R(xi))

Then,

1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

≥ 1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R))

≥ RMD((U/R1, U/R3)/(U/R))

Therefore, from Definition 3, RMD(·, ·/·) is a distance measure.

Example 6. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, I = [0.1,0.3]
x1

+ [0.3,0.5]
x2

+ [0.5,0.7]
x3

+
[0.6,0.7]

x4
+ [0.8,0.9]

x5
. U/R1 = {{x2}, {x1, x3}, {x4, x5}} and U/R2 = {{x1, x2, x3}, {x4, x5}}.

Under the prior granular spaces U/R3 = {{x1, x3, x5}, {x2, x4}} and U/R4 =
{{x1, x5}, {x2, x3, x4}}, the relative MD of U/R1 and U/R2 are as follows:

RMD((U/R1, U/R2)/(U/R3)) =
1
|U| ∑

xi∈U
md(sR1/R3

(xi), sR2/R3(xi)) = 0

RMD((U/R1, U/R2)/(U/R4)) =
1
|U| ∑

xi∈U
md(sR1/R4

(xi), sR2/R4(xi))

=
1
5
× (0 +

0.175
0.686

+
0.209
0.686

+ 0 + 0) = 0.112

From Examples 5 and 6, after adding the prior granular space, the difference between
the two rough granular spaces may change, and when the prior granular space is different,
the obtained results may also be different.

Theorem 10. Assume that in S = (U, C ∪ D), U/R is the prior granular space on U. If
R1 ⊆ R2 ⊆ R3 ⊆ C, then RMD((U/R1, U/R2)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)).
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Proof of Theorem 10. According to the conditions, U/R3≺U/R2≺U/R1, then
sR3(xi) ⊆ sR2(xi) ⊆ sR1(xi), xi ⊆ U.

sR1/R(xi) = sR1(xi) ∩ sR(xi)

sR2/R(xi) = sR2(xi) ∩ sR(xi)

sR3/R(xi) = sR3(xi) ∩ sR(xi)

So, sR3/R(xi) ⊆ sR2/R(xi) ⊆ sR1/R(xi).
According to Theorem 2,

md(sR1/R(xi), sR2/R(xi)) ≤ md(sR1/R(xi), sR3/R(xi))

1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) ≤

1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

Therefore, RMD((U/R1, U/R2)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)) holds.
Similarly, it is easy to get
RMD((U/R2, U/R3)/(U/R)) ≤ RMD((U/R1, U/R3)/(U/R)).

Theorem 11. Assume that in S = (U, C ∪ D), U/R is the prior granular space on U. If
R1 ⊆ R2 ⊆ R3 ⊆ C, then RMD((U/R1, U/R3)/(U/R)) = RMD((U/R1, U/R2)/(U/R))
+ RMD((U/R2, U/R3)/(U/R)).

Proof of Theorem 11. According to Theorem 10, it can be deduced sR3/R(xi) ⊆ sR2/R(xi) ⊆
sR1/R(xi) from condition R1 ⊆ R2 ⊆ R3 ⊆ C. Additionally, according to Theorem 3,
md(sR1/R(xi), sR3/R(xi)) = md(sR1/R(xi), sR2/R(xi)) + md( sR2/R(xi), sR3/R(xi) ). Then,

1
|U| ∑

xi∈U
md(sR1/R(xi), sR3/R(xi))

=
1
|U| ∑

xi∈U
md(sR1/R(xi), sR2/R(xi)) +

1
|U| ∑

xi∈U
md(sR2/R(xi), sR3/R(xi))

Therefore, RMD((U/R1, U/R3)/(U/R))
= RMD((U/R1, U/R2)/(U/R)) + RMD((U/R2, U/R3)/(U/R)) holds.

From Theorem 11, under the same prior granular space, the relative MD is linearly ad-
ditive.

Theorem 12. Assume that in S = (U, C ∪ D), U/R3 and U/R4 are two prior granular spaces
on U, respectively, R1, R2 ⊆ C. If U/R3≺U/R4,
then RMD((U/R1, U/R2)/(U/R3)) ≤ RMD((U/R1, U/R2)/(U/R4)).

Proof of Theorem 12.

RMD((U/R1 , U/R2 )/(U/R3 ))

=
1
|U| ∑

xi∈U
md(sR1(xi) ∩ sR3(xi), sR2(xi) ∩ sR3(xi))

=
1
|U| ∑

xi∈U

∑
x∈U

e(sR1 (xi)∩sR3 (xi))∪(sR2 (xi)∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR3 (xi))∩(sR2 (xi)∩sR3 (xi))

(x)

EI(x)

=
1
|U|

a
EI(x)
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a = ∑
xi∈U

( ∑
x∈U

e(sR1 (xi)∩sR3 (xi))∪(sR2 (xi)∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR3 (xi))∩(sR2 (xi)∩sR3 (xi))

(x))

= ∑
xi∈U

( ∑
x∈U

e((sR1 (xi)∪sR2 (xi))∩sR3 (xi))
(x)− ∑

x∈U
e(sR1 (xi)∩sR2 (xi)∩sR3 (xi))

(x))

= ∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR3 (xi))
(x)

Similarly,
RMD((U/R1 , U/R2 )/(U/R4 )) = ∑

xi∈U
∑

x∈U
e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR4 (xi))

(x)

According to U/R3≺U/R4, sR3(xi) ⊆ sR4(xi), xi ⊆ U. Obviously,

((sR1(xi) ∪ sR2(xi)− sR1(xi) ∩ sR2(xi)) ∩ sR3(xi))

⊆ ((sR1(xi) ∪ sR2(xi)− sR1(xi) ∩ sR2(xi)) ∩ sR4(xi))

∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR3 (xi))
(x)

≤ ∑
xi∈U

∑
x∈U

e((sR1 (xi)∪sR2 (xi)−sR1 (xi)∩sR2 (xi))∩sR4 (xi))
(x)

Therefore, RMD((U/R1, U/R2)/(U/R3)) ≤ RMD((U/R1, U/R2)/(U/R4))
holds.

Corollary 6. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, σ is the prior granular space on U,
then RMD((U/R1, U/R2)/σ) = MD(U/R1, U/R2).

Proof of Corollary 6.

RMD((U/R1, U/R2)/σ) =
1
|U| ∑

xi∈U
md(sR1(xi) ∩U, sR2(xi) ∩U)

=
1
|U| ∑

xi∈U
md(sR1(xi), sR2(xi)) = MD(U/R1, U/R2)

Corollary 7. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C, ω is the prior granular space on U,
then RMD((U/R1, U/R2)/ω) = 0.

Proof of Corollary 7.

RMD((U/R1, U/R2)/ω) =
1
|U| ∑

xi∈U
md(sR1(xi) ∩ {xi}, sR2(xi) ∩ {xi})

=
1
|U| ∑

xi∈U
md({xi}, {xi}) = 0

Note: From Example 6, when the prior granular space is not the most refined, the rela-
tive MD may also be zero. Therefore, the prior granular space is the most refined granular
space, which is only a sufficient condition for the relative MD to be zero, not a neces-
sary condition.

According to Corollary 6, the absolute MD is the relative MD without any prior
granular space; that is, the absolute MD can be viewed as a special case of the relative MD.
By Corollary 7, when the prior granular space is fine enough, the relative MD between two
different rough granular spaces has been infinitely reduced or even to zero. Combining
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Theorem 12, it follows that RMD((U/R1, U/R2)/ω)) ≤ RMD((U/R1, U/R2)/(U/R)) ≤
RMD((U/R1, U/R2)/σ) is true when ω ≺ U/R≺ σ.

That is, 0 ≤ RMD((U/R1, U/R2)/(U/R)) ≤ MD(U/R1, U/R2).

Theorem 13. Assume that in S = (U, C ∪ D), R1, R2 ⊆ C. Then
RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2)) = MD(U/R1, U/R2).

Proof of Theorem 13.

RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2))

=
1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR1(xi), sR2(xi) ∩ sR1(xi)))

+
1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi) ∩ sR2(xi)))

=
1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi) ∩ sR1(xi))) +

1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi)))

According to Theorem 3,

1
|U| ∑

xi∈U
(md(sR1(xi), sR2(xi) ∩ sR1(xi))) +

1
|U| ∑

xi∈U
(md(sR1(xi) ∩ sR2(xi), sR2(xi)))

=
1
|U| ∑

xi∈U
md(sR1(xi), sR2(xi)) = MD(U/R1, U/R2)

Therefore, RMD((U/R1, U/R2)/(U/R1)) + RMD((U/R1, U/R2)/(U/R2))
= MD(U/R1, U/R2) holds.

From Theorem 13, an absolute MD was divided into the sum of two unidirectional
relative MD in different directions. That is, the absolute MD of the two granular spaces is
equal to the relative MD of the two granular spaces when the prior granular space is one of
the two granular spaces, plus the relative MD of the two granular spaces when the prior
granular space is the other granular space of the two granular spaces. This theoretically
explains the dialectical unity of relative MD and absolute MD.

5. Experiment and Analysis

This section verifies that MD has a good advantage when describing IFC in multi-
granularity space through relevant experiments. The experimental environments are
Windows 10, Intel Core (TM) I5-10500 CPU (3.10 GHz) and 16GB RAM. The experimental
platform is MATLAB 2022a. We filtered out nine datasets with decision attributes and
a sufficient number of conditional attributes from UCI [47] and Dryad. Meanwhile, we
removed attributes from some datasets that are completely independent of the decision
attributes, such as serial number and date. The dataset’s basic information is recorded in
Table 1, and experiments will use the following formula [48] to convert numerical values
to discrete values. For convenience, the ID numbers in Table 1 will be used to represent
the datasets.

α1(x) = $(α(x)−minα)/σα%
where α(x) represent the attribute value, minα represent the minimum value of α(x) and
σα represent the standard deviation of the attribute.
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Table 1. Experimental dataset.

ID Dataset Instances
Condition
Attributes

1 Hungarian Chickenpox Cases Dataset 521 19

2
Data from: Relative importance of chemical attractiveness
to parasites for susceptibility to trematode infection [49] 67 7

3
Waterlow score on admission in acutely admitted patients

aged 65 and over [50] 839 11

4
Data from: Salivary gland ultrasonography as a

predictor of clinical activity in Sjögren’s syndrome [51] 70 10

5
Data from: Development and validation of a postoperative

delirium prediction model for patients admitted to an
intensive care unit in China: a prospective study [52]

300 13

6
Data from: Age of first infection across a range of parasite

taxa in a wild mammalian population [53] 140 12

7 Air Quality 9538 10

8 Concrete 1030 8

9 ENB2012 768 8

5.1. Monotonicity Experiment

In this experiment, some attributes of the dataset in Table 1 were selected. Sup-
pose GL = (GL1, GL2, GL3, GL4, GL5) is a hierarchical quotient space structure consisting
of five granularity layers. GLi = (Ui, Ri ∪ D, V, f ) , Ri represent attribute sets, and
R1 ⊂ R2 ⊂ R3 ⊂ R4 ⊂ R5. As shown in Figure 3, this figure shows that the behavior of
each dataset is similar; that is, MD increases with the increase in the granularity differ-
ence between two granular spaces, and conversely, MD decreases with the decrease in
the granularity difference between two granular spaces. Table 2 summarizes the changes
in the two measures (granularity measure and information measure) based on MD in a
hierarchical quotient space structure as the granularity layer becomes finer. The findings
indicate that these two measures can provide additional information for assessing the
uncertainty of fuzzy concepts. These findings support Theorems 6 and 7. The granularity
measure decreases as the available information increases, while the information measure
increases as the available information increases. According to Table 2, Corollary 5 can also
be verified, the sum of granularity measure and information measure is fixed, and the
result is |U|−1

|U| .

5.2. Attribute Reduction

The so-called attribute reduction is to delete the irrelevant or unimportant attributes
under the condition that the classification ability of the knowledge base remains unchanged.
In data analysis, deleting unnecessary attributes can greatly improve the efficiency of data
analysis, and the subset derived from attribute reduction with prior granular space may be
different from the subset derived from attribute reduction without prior granular space.
Aiming at this problem, this section makes a comparative experiment of attribute reduction
based on relative MD in different prior granular spaces and attribute reduction based on
absolute MD; in this paper, the attributes that divide the prior granular space are called
prior conditions.
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(a) ID 1 (b) ID 2 (c) ID 3

(d) ID 4 (e) ID 5 (f) ID 6

(g) ID 7 (h) ID 8 (i) ID 9

Figure 3. The change of MD between different granular spaces. Each dataset is represented by ID
number.

Table 2. Granularity measure and Information measure.

ID (Dataset) Measure GL1 GL2 GL3 GL4 GL5

1 Granularity measure 0.4052 0.1523 0.0790 0.0453 0.0357
Information measure 0.5928 0.8458 0.9190 0.9528 0.9624

2 Granularity measure 0.2952 0.0853 0.0253 0.0060 0.0012
Information measure 0.6899 0.8998 0.9598 0.9791 0.9839

3 Granularity measure 0.5156 0.2604 0.1040 0.0451 0.0191
Information measure 0.4832 0.7384 0.8948 0.9537 0.9797

4 Granularity measure 0.7516 0.3777 0.1916 0.0805 0.0199
Information measure 0.2341 0.6080 0.7942 0.9052 0.9658

5 Granularity measure 0.5249 0.2229 0.1233 0.0653 0.0244
Information measure 0.4717 0.7737 0.8734 0.9314 0.9723

6 Granularity measure 0.4975 0.2463 0.1267 0.0493 0.0155
Information measure 0.4954 0.7466 0.8661 0.9436 0.9773

7 Granularity measure 0.3788 0.3438 0.2087 0.1170 0.0872
Information measure 0.6211 0.6561 0.7911 0.8828 0.9127

8 Granularity measure 0.2557 0.0869 0.0588 0.0217 0.0112
Information measure 0.7433 0.9121 0.9402 0.9773 0.9878

9 Granularity measure 0.3675 0.2237 0.0829 0.0271 0.0066
information measure 0.6312 0.7750 0.9157 0.9716 0.9921

Some attributes of the dataset in Table 1 were selected in the experiment. Taking the
calculation of attribute reduction based on relative MD as an example, Algorithm 1 is the
algorithm used in the experiment. Attribute reduction based on absolute MD only needs
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to change the fourth step in Algorithm 1 to delete the first and last items in conT; that
is, without any prior conditions. In this paper, Algorithm 2 is used to represent attribute
reduction based on absolute MD. Suppose an information system S = (U, C ∪ D, V, f ),
then the calculation formula of attribute importance id is as follows:

id = MD(U/C, U/{C− ci}) (6)

As shown in Figure 4, the attribute importance represents MD between the granular
space after removing attribute i in the dataset and the granular space without removing
this attribute. The larger the distance, the higher the attribute importance degree, and ci
represents attribute i. Therefore, in this paper, the attributes with the largest and smallest
attribute importance of the dataset are selected as prior conditions, and attribute reduction
based on relative MD is carried out. Moreover, attribute reduction based on absolute MD is
also performed without any prior conditions.

Algorithm 1 Attribute reduction based on relative MD

Input: An information system S = (U, C ∪ D, V, f )
Output: Attribute subset R obtained after attribute reduction

1: Let R = C and conT = C
2: Calculate the information entropy of each instance by Formula (1)
3: Calculate the attribute importance of all attributes in conT by Formula (6), and sort this

in ascending order, the result is recorded as conT_rank
4: Take conT_rank(1) or conT_rank(length(conT)) as a prior condition, that is, delete the

last or first item in conT_rank and ensure that the first item or last item in conT_rank
always exists

5: while conT_rank �= ∅ do
6: conT_rank = conT_rank− {c}, where c is the first element in conT_rank
7: According to Formula (3), calculate MD from the granular space obtained by the

remaining conditions after R− {c} to the granular space obtained by all conditions
8: if MD < ξ then
9: R = R− {c}

10: end if
11: end while
12: Return R

Figure 4. Attribute importance of different attributes.
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(Note: Figure 4 is only used to analyze the importance of the conditional attribute
of a single system, so there is no correlation between the height of the line graph of
different systems).

As shown in Table 3, in the attribute reduction based on absolute MD, ξ is the maxi-
mum absolute MD between the granular space divided by attribute subsets after attribute
reduction and the granular space divided by all attributes. In attribute reduction based
on relative MD, ξ is the maximum relative MD between the granular space divided by
attribute subsets after attribute reduction and the granular space divided by all attributes.
This paper sets ξ to 0.003 and 0.006 for comparison. In the table, numbers are directly used
to represent the serial numbers of the conditional attributes.

According to the analysis in Figure 4 and Table 3:
(1) When the prior conditions are more important attributes, the number of attributes

is significantly reduced compared to the attribute reduction based on absolute MD, which
shows that selecting more important properties increases the cognitive ability of the system,
consistent with Theorem 12.

(2) When the prior condition is an unimportant attribute, compared with the prior
condition is an important attribute, the number of subsets after attribute reduction is
usually more, which also indicates that the more important the prior condition is, the more
cognitive ability of the attribute to the system can be improved.

(3) When ξ is different—that is, the maximum MD between the granular space remains
conditionally divided after attribute reduction and the granular space divided without
reduction changes—the subsets after attribute reduction may be different, which illustrates
the efficiency of this algorithm. The algorithm will obtain different attribute subsets as the
requirements increase and decrease.

(4) The reduced attributes are all attributes with low attribute importance, which
shows the effectiveness of this algorithm in calculating attribute importance.

Table 3. Attribute reduction on each dataset based on different situations.

ID (Dataset)
The Original Attributes

(Number)
Attribute Reduction Based on MD

(In Parentheses Is the Number of Attributes after Attribute Reduction)

1 6,16,11,13,4,3,19,15,2,
8,18,17,14,9,1,12,10 (17)

Absolute MD ξ = 0.003 15,2,8,18,17,14,9,1,12,10 (10)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

Relative MD with attribute 7
as a prior condition

ξ = 0.003 15,2,8,18,17,14,9,1,12,10 (10)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

Relative MD with attribute 5
as a prior condition

ξ = 0.003 2,8,18,17,14,9,1,12,10 (9)
ξ = 0.006 8,18,17,14,9,1,12,10 (8)

2 3,7,1,4,2 (5)

Absolute MD ξ = 0.003 3,7,1,4,2 (5)
ξ = 0.006 7,1,4,2 (4)

Relative MD with attribute 6
as a prior condition

ξ = 0.003 7,1,4,2 (4)
ξ = 0.006 1,4,2 (3)

Relative MD with attribute 5
as a prior condition

ξ = 0.003 7,1,4,2 (4)
ξ = 0.006 7,1,2 (3)

3 11,8,6,7,4,9,1,5,3 (9)

Absolute MD ξ = 0.003 8,6,7,4,9,1,5,3 (8)
ξ = 0.006 6,7,4,9,1,5,3 (7)

Relative MD with attribute 10
as a prior condition

ξ = 0.003 8,6,7,4,9,1,5,3 (8)
ξ = 0.006 6,7,4,9,1,5,3 (7)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 6,7,4,9,1,5,3 (7)
ξ = 0.006 7,4,9,1,5,3 (6)
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Table 3. Cont.

ID (Dataset)
The Original Attributes

(Number)
Attribute Reduction Based on MD

(In Parentheses Is the Number of Attributes after Attribute Reduction)

4 6,2,3,9,10,7,5,1 (8)

Absolute MD ξ = 0.003 6,2,3,9,10,7,5,1 (8)
ξ = 0.006 6,3,9,10,7,5,1 (7)

Relative MD with attribute 4
as a prior condition

ξ = 0.003 6,3,9,10,7,5,1 (7)
ξ = 0.006 6,3,10,7,5,1 (6)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,9,10,7,5,1 (6)
ξ = 0.006 3,10,7,5,1 (5)

5 12,13,1,6,3,4,7,2,9,
5,11 (11)

Absolute MD ξ = 0.003 1,6,3,4,7,2,9,5,11 (9)
ξ = 0.006 6,3,4,7,2,9,5,11 (8)

Relative MD with attribute 10
as a prior condition

ξ = 0.003 1,6,3,4,7,2,9,5,11 (9)
ξ = 0.006 3,4,7,2,9,5,11 (7)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,4,7,2,9,5,11 (7)
ξ = 0.006 3,4,2,9,5,11 (6)

6 7,9,8,11,5,10,6,3,4,
1 (10)

Absolute MD ξ = 0.003 9,8,5,10,6,3,4,1 (8)
ξ = 0.006 8,5,10,6,3,4,1 (7)

Relative MD with attribute 12
as a prior condition

ξ = 0.003 8,11,5,10,6,3,4,1 (8)
ξ = 0.006 8,5,10,6,3,4,1 (7)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 11,5,10,6,3,4,1 (7)
ξ = 0.006 5,10,6,3,4,1 (6)

7 6,1,4,5,2,10,7,9 (8)

Absolute MD ξ = 0.003 1,4,5,2,10,7,9 (7)
ξ = 0.006 1,4,5,2,10,7,9 (7)

Relative MD with attribute 3
as a prior condition

ξ = 0.003 1,4,5,2,10,7,9 (7)
ξ = 0.006 1,5,2,10,7,9 (6)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 1,5,2,10,7,9 (6)
ξ = 0.006 4,5,2,10,7,9 (6)

8 5,3,7,1,4,6 (6)

Absolute MD ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 3,7,1,4,6 (5)

Relative MD with attribute 2
as a prior condition

ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 7,1,4,6 (4)

Relative MD with attribute 8
as a prior condition

ξ = 0.003 3,7,1,4,6 (5)
ξ = 0.006 7,1,4,6 (4)

9 4,1,2,5,6 (5)

Absolute MD ξ = 0.003 1,2,5,6 (4)
ξ = 0.006 2,5,6 (3)

Relative MD with attribute 3
as a prior condition

ξ = 0.003 2,5,6 (3)
ξ = 0.006 2,5,6 (3)

Relative MD with attribute 7
as a prior condition

ξ = 0.003 2,5,6 (3)
ξ = 0.006 2,5,6 (3)

As shown in Figure 5, Algorithm 1 and Algorithm 2, respectively, represent the
attribute reduction based on absolute MD and the attribute reduction based on relative
MD with important condition as a prior condition proposed in this paper. Algorithm
3, Algorithm 4, and Algorithm 5 denote three attribute reduction algorithms based on
Mi’s fuzziness, entropy-based fuzziness, and secondary fuzziness, respectively, where the
left figure shows the case of ξ = 0.003, and the right figure shows the case of ξ = 0.006.
From Figure 5, the number of remaining attribute subsets in Algorithm 1 after attribute
reduction is appropriate. In addition, after adding the prior conditions, the number of
subsets obtained after attribute reduction is significantly reduced in Algorithm 2, indicating
that our algorithm greatly improves the cognitive ability of the system. Figure 6 shows
the average value of the mean-square error before and after attribute reduction in three
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different regression models (random forest regression, decision tree regression and GBDT
regularization) after the normalization of the nine datasets. In the figure, the prior condition
of relative MD1 is the least important attribute, and the prior condition of relative MD2
is the most important attribute. After attribute reduction, we discover that the mean-
squared error does not significantly change, and sometimes even decreases. This shows the
feasibility of our algorithm and also shows that the algorithm can be effectively used in
data analysis.
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Figure 5. Average number of attribute subsets after five different attribute reductions.
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(d) ID 4 (e) ID 5 (f) ID 6

(g) ID 7 (h) ID 8 (i) ID 9

Figure 6. Average value of the mean-square error on each dataset. Each dataset is represented by
ID number.

This paper also conducted a series of comparative experiments using the five algo-
rithms mentioned above to compare the mean-square error values following the reduction
of five different attributes. The experimental results are shown in Figure 7. In order to unify
the standard, ξ = 0.003 is used. Except for the datasets with ID 8 and ID 9, the mean-square
error values obtained by our algorithm are in the middle. From Figure 6, after attribute
reduction of dataset ID 8 and dataset ID 9, the mean-square error does not change much.
Therefore, the reason for this result is that the correlation between some attributes of the
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dataset itself and the decision attributes is too large or too small. There is still room for
improvement in this regard.
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Figure 7. Average value of the mean-square error of five different attribute reductions. Each dataset
is represented by ID number.

6. Conclusions and Discussion

In this paper, the macro-knowledge distance of intuitionistic fuzzy sets is proposed to
measure the difference between granular spaces effectively. Under the given perspective
of uncertain concepts, the current knowledge distance failed to account for the relative
difference between granular spaces. As a result, we further propose the relative macro-
knowledge distance and demonstrate its practicability through relative attribute reduction
experiments. These results provide a new perspective to current knowledge distance
research by measuring the relative differences between different granular spaces under
prior granular spaces. The conclusions are as follows:

(1) Macro-knowledge distance increases with the increase in the granularity differ-
ence between two granular spaces, and vice versa. The sum of granularity measure and
information measure is always |U|−1

|U| .
(2) After attribute reduction, the number of subsets obtained by our algorithm is

appropriate, and in comparison to other algorithms, our mean square error is suitable. In
the analysis of data, the more important the prior condition is, the more it can improve the
cognitive ability of the attributes.

Under specific circumstances, the relative macro-knowledge distance is able to remove
unnecessary attributes in practical applications, which can significantly increase the accu-
racy of attribute reduction and the effectiveness of data analysis. The characteristics of the
data will be more thoroughly understood during the attribute reduction process.
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