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Asteroids and Their Mathematical Methods
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Abstract: In this paper, the basic classification of asteroids and the history and current situation
of asteroid exploration are introduced. Furthermore, some recent research progress on the orbital
dynamics of asteroids, including models of the gravitational potential field, the dynamics near
asteroids, hopping motion on the surface, and bifurcations under varying external parameters, is
reviewed. In the meanwhile, the future research development such as the configuration and evolution
of binary or triple asteroid systems and near-Earth asteroid defense is briefly discussed.

Keywords: mathematical physics; planetary science; applied mathematics; asteroids

MSC: 85-02

1. Introduction

Exploring, understanding, and trying to conquer one’s own environment is the most
fundamental driver of human progress. During this process, human beings have discovered
new knowledge, created new technologies, and discovered the truth through practice.
Cognition guides practice, and this new knowledge and these new technologies actively
develop from perceptual knowledge to rational knowledge, thus actively guiding practice,
which in turn guides human beings to transform the world and promotes the further
expansion of human territory. From Alexander’s expedition to the East to Zhang Qian’s
mission to the Western Regions, Zheng He’s seven voyages to the West, and the space race
in the middle of the 20th century, civilizations that have gained advantages in exploration
have established scientific and technological advantages due to their exploration.

Although the exploration of travelers has been limited to land and sea due to technical
reasons until modern times, the sages have never given up looking up at the stars. Moreover,
the observation and understanding of the vast universe has constantly changed the human
world view. Johannes Kepler derived Kepler’s laws using the detailed observational
data of Tycho Brahe, making Nicholas Copernicus’s heliocentric theory recognized; Isaac
Newton proposed the law of universal gravitation to explain the mathematical laws of
celestial motion. In the three centuries after Newton and Kepler, the world’s greatest
mathematicians studied celestial mechanics very well. In the decades before the first
launch event of the Soviet Union in 1957, celestial mechanics did not necessary appear
in college courses. However, before human spaceflight missions, celestial mechanics for
ancient mathematicians, mechanics, and astronomers was limited to predicting the orbits
of naturally existing celestial bodies in the solar system. Only in recent decades has the
problem of orbital design for visiting target planets under complex constraints appeared [1].

With the advancement in science and technology, the scope of the world recognized
by mankind in the past 200 years has also reached an unprecedented level. William
Herschel discovered Uranus with the help of a telescope in 1781. This is the first time
that humans discovered a planet with a telescope. Before this, the six major planets
have been known to humans since ancient times. Twenty years later, Giuseppe Piazzi
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discovered the first asteroid, (1) Ceres, on 1 January 1801. It was initially thought to be
a new planet and is now within the orbit of Neptune under the current definition. Since
Piazzi interrupted the observation on 11 February 1801 due to illness, people only lost the
asteroid with the observation data of Ceres’ orbit of about 3◦ in 41 days. Gauss used an
orbit determination method he developed to determine Ceres’ orbit nearly a year after its
disappearance using short-term observational data. Thanks to the work of Gauss, Franz
Xavier von Zach rediscovered Ceres. Gauss’s calculation of Ceres clearly demonstrated that
no assumptions were required and that the orbits of celestial bodies could be determined
fairly accurately with just a few days of good observational data, followed by the discovery
and orbit determination of (2) Pallas, (3) Juno, and (4) Vesta further verifies the efficiency
of this method. This is also the first scientific progress made by humans based on small
celestial bodies.

From the beginning of the 19th century to the middle of the 20th century, human beings
gradually discovered more small objects in the solar system, but the related research was
not given much attention because of their small masses. In the early 1950s, the development
of intercontinental rockets allowed humans to use artificial spacecraft for spaceflight, and
humans gradually began to plan space missions. Since the Soviet Union successfully
launched Luna 1 in 1959, various major powers have made breakthroughs in near-Earth
exploration and research on the Moon in the past 60 years of space exploration history. The
main belt asteroids, the Jupiter system, the Saturn system, Pluto, the Kuiper Belt, and other
solar system celestial bodies have been explored using various methods [2–11]. Especially
since the 1970s, human beings have successively carried out many missions for small
celestial bodies and have conducted in-depth and comprehensive research on small celestial
bodies, both theoretically and practically. By studying the geological properties of celestial
bodies and their space environment and exploring the formation and evolution history of
the solar system, the chemical composition and internal structure of small celestial bodies
have been preliminarily determined. The shapes of many small celestial bodies have been
obtained through optical observations, radar observations, and photographs taken by fly-by
missions. Among them, due to the irregular shape of small celestial bodies, the complexity
of its nearby dynamic behavior, and its important research significance, the exploration
of small celestial bodies has become an important part of deep space exploration, and
countries have carried out space missions related to small celestial bodies. It has attracted
a large number of scholars to study the dynamics of small celestial bodies [7,12–15]. It is
widely accepted that small celestial bodies relatively completely retain the early information
of the formation of the solar system [16–18]. Some small celestial bodies may also contain
abundant rare metals and other resources needed by human beings, which have potential
space mining value. The long-term effects of various perturbation forces in space and
possible collisions between near-Earth celestial bodies may cause the small celestial bodies
to change their original orbits and fall to the Earth, bringing devastating disasters to
life. Some events are well-known—for example, the Tunguska explosion in 1909 and the
meteorite impact in Chelyabinsk, Russia on 15 February 2013. Therefore, the observation
and defense of near-Earth small objects is also a highly valued research subject [19,20]. In the
past 50 years, the research on small celestial bodies in the solar system has already broken
through the content of past astronomy, involving the development of nonlinear dynamics,
including aerospace engineering, geology, biology, weapons research, and other fields.

For deep space explorations, it is inseparable from the content of close-range fly-by,
imaging, landing, sampling, and returning. Compared with pure radar observations, these
on-site explorations can provide more intuitive and richer details and evidence for scientific
research on small celestial bodies and the defense of near-Earth small objects. The resource
exploitation of small celestial bodies is even more inseparable from actual field detection.
Some important missions that achieved sample returns from celestial bodies other than the
Moon are Stardust, Hayabusa, Hayabusa 2, and OSIRIS-REx. One of the landmarks made
by China to become one of the top aerospace powers around 2030 is to realize the sampling
return of small celestial bodies.
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In-depth research on the shape of small celestial bodies, nearby periodic orbital mo-
tions, and surface transition dynamics and quantitative analysis methods for quasi-periodic
orbits is the scientific basis for completing the above tasks. In the process of close-range
explorations, the orbits of probes near small celestial bodies are significantly different from
those near large planets, and the internal mechanisms and laws have not been completely
sorted out so far. What is certain is that the regularity of the geometric shape of the small
celestial body largely determines the difference between the gravitational field near the
small celestial body and the familiar spherical gravitational field near the large planet,
which brings about a series of different dynamics and control problems. Therefore, ex-
ploring the indicators for scientifically describing the geometric shape of small celestial
bodies has a great reference value for the preliminary analysis of the gravitational fields. In
addition, considering that the mass of small celestial bodies is generally small, many space
perturbations, including the Sun’s gravity, may also have a relatively large influence on
the motion of the probe. The richness of the orbital dynamics near small celestial bodies
also provides a good soil for discovering and studying nonlinear dynamics in real systems
and making them useful. The difficulties of the orbital dynamics and the limitations of the
measurement methods make the data parameters obtained before approaching the target
small celestial body still have a certain error with the real situation. These factors and the
complex mechanical environment near the small celestial body jointly affect the exploration.
The orbital design and control of orbiters near small bodies pose great challenges. Even
for periodic orbits, considering various gravitational and perturbative effects, they may be
perturbed into quasi-periodic orbits or produce chaotic motions. A thorough and accurate
analysis of these orbits will aid in orbital design for exploration missions. Due to the
strong irregular shape, complex topography, and fast rotation rate of small celestial bodies,
the surface escape velocity of small celestial bodies is usually small. To truly realize the
sampling return of small celestial bodies, it is necessary to select the soft-landing region
and optimize the trajectory, which requires us to deeply study the dynamic laws of surface
motions on small celestial bodies.

Although humans have now begun to explore the solar system, the small celestial
bodies that account for the vast majority of solar system celestial bodies have only been
visited by very few spacecraft. The continued exploration of the vast universe by mankind
in the future is inseparable from the in-depth detection and research of small celestial bodies.
By studying the shape regularity and nearby periodic orbits of small celestial bodies, the
dynamic phenomena in the theory can be verified in the real system in science, enriching
the scientific connotation of modern celestial mechanics and nonlinear dynamics [21,22].

2. Basic Classification and Exploration of Small Celestial Bodies

Since the 1980s, many deep space exploration missions related to small celestial bodies
have been carried out. This section will introduce the general situation of small celestial
bodies, deep space exploration missions, etc.

2.1. Overview of Small Celestial Bodies

Small celestial bodies usually refer to celestial bodies that exclude large planets and their
satellites in the solar system, mainly including dwarf planets, asteroids, and comets [23,24].
Small celestial bodies orbit the Sun but are much smaller in size and mass than large
planets. According to data from the IAU Minor Planet Center, as of 10 July 2021, a total of
1,091,258 small celestial bodies have been discovered in the solar system, of which there are
5 dwarf planets and 4603 comets, and the rest are asteroids [25]. Among these asteroids,
567,132 have been permanently numbered (orbits have been calculated) (more than 90%
of them have been newly discovered in the past 20 years; see Figure 1) [26]. A total of
22,568 asteroids have been named [27].

3
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Figure 1. Statistics on the year of discovery of permanently numbered asteroids.

The semi-major axis of near-Earth asteroids is similar to that of Earth. There are
currently 26,351 near-Earth asteroids, of which 940 are larger than 1 km in size. Scientists
believe that the mass extinction 65 million years ago was caused by an asteroid about 10 km
in size hitting the Earth [20]. The defense of near-Earth asteroids is also an important part
of the field of deep space exploration. The orbital inclinations of near-Earth asteroids range
from 0.02◦ to 154◦, and the orbital eccentricity ranges from 0.062 to 0.999 [28,29]. According
to its orbital semi-major axis a, perihelion distance q, and the relationship between the
aphelion distance Q and the Earth, it can be divided into the Atira type, Aten type, Apollo
type, and Amor type, as shown in Table 1.

Table 1. Classification of Near-Earth Asteroids.

Type Semi-Major Axis a Perihelion Distance q Aphelion Distance Q

Atira a < 1 AU - Q < 0.983 AU
Aten a < 1 AU - Q > 0.983 AU

Apollo a > 1 AU q < 1.017 AU -
Amor a > 1 AU 1.017 AU < q < 1.3 AU -

Atira-type and Amor-type asteroids are less dangerous to Earth because their orbits
and Earth’s orbits are inward and outward, respectively. Arten-type and Apollo-type
asteroids are small celestial bodies with a greater potential danger to the Earth due to their
inward and outward swept orbits and Earth’s orbits, respectively.

Near-Mars asteroids are divided into Hungarian-type asteroids and Mars-orbiting
asteroids. The semi-major axes of the Hungarian-type asteroids are between 1.78 and
2.00 AU, and they are located inside the Kirkwood gap, which is in a 1:4 resonance with
Jupiter. Their orbital periods are about 2.5 years, roughly 3:2 resonant with Mars and
2:9 resonant with Jupiter. Their orbital eccentricities are less than 0.18, and their orbital
inclinations are between 16◦ and 34◦. The perihelion distance of the Mars orbit crossing
the asteroid orbit is between the distance between the perihelion and the aphelion of
Mars, that is, 1.381 AU < q < 1.666 AU. Asteroids with a perihelion distance q < 1.3 AU
are classified as near-Earth asteroids. According to this classification standard, a total of
18,043 Mars-orbiting asteroids have been discovered so far.

Asteroids in the middle solar system are divided into main belt asteroids, Jupiter
Trojan asteroids, and Hilda asteroids. The main-belt asteroids are located between the
orbits of Mars and Jupiter, and the orbital semi-major axis a is between 2.1 and 3.3 AU. The

4
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orbital eccentricities of most main-belt asteroids are less than 0.4, and the orbital inclination
angles are less than 30◦. The main belt is the area with the densest distribution of asteroids,
and a total of 1,022,771 asteroids have been observed in the main belt. It is generally
believed that the main-belt asteroids are the remnants of the original astrolabe that failed
to form large planets due to the perturbation of Jupiter’s huge gravitational force during
the evolution of the solar system. According to the current definition, the three largest
asteroids in the main belt are small celestial bodies: (4) Vesta, (2) Pallas, and (10) Hygiea.
The Jupiter Trojan asteroids are located near the L4 and L5 points of the circular restricted
three-body system. The L4 and L5 points are regarded as the stable equilibrium points
of this system. The motion periods are basically the same as that of Jupiter, with a phase
difference of about 60◦. So far, 10,470 Jupiter Trojan-type asteroids have been observed.
In addition to the Sun–Jupiter system, there are also four and six Trojan asteroids in the
Sun–Mars and Sun–Neptune systems, respectively. So far, only one Trojan asteroid, 2010
TK7, has been discovered in the Sun–Earth system; this was done in 2010. It is located
near the L4 point of the Sun–Earth system. A total of 4978 Hilda-type asteroids have been
observed. Their semi-major axes are between 3.7 and 4.2 AU. Their orbital eccentricities
are less than 0.3, and their orbital inclinations satisfy i < 20◦. The Hilda-type asteroids are
in a 2:3 resonance with the orbit of Jupiter and approach the L3, L5, and L4 points of the
Sun–Jupiter system, in turn, in three orbital periods.

Asteroids in the outer solar system include Centaur and extra-Neptunian asteroids.
Centaurs are small celestial bodies whose perihelions are outside the orbit of Jupiter and
whose semi-major axes are smaller than Neptune’s semi-major axis by 30 AU. Because
the small celestial bodies here have the characteristics of asteroids and comets, they are
mostly named after the centaur gods in Greek mythology. For example, (2060) Chiron
and (60588) Echeclus have the comet numbers 95P/Chiron and 174P/Echeclus due to
coma activity. Extra-Neptunian asteroids refer to the celestial bodies in the solar system
whose semi-major axes are greater than 30 AU. Excluding the currently discovered (134340)
Pluto, (136108) Haumea, (136472) Makemake, and (136199) Eris and four other dwarf
planets, a total of 4,053 extra-Neptunian asteroids have been discovered so far. Most of
these celestial bodies contain methane, ammonia, and water, which are volatile. The region
outside Neptune between 30 and 50 AU from the Sun is called the Kuiper Belt. Similar
to the main-belt asteroids, Kuiper Belt objects are also the original remnants that failed to
form large planets. The interesting relations between Kuiper Belt objects and comets can
be found in reference [30]. In addition, research on the orbital dynamics of Kuiper Belt
objects plays an important role in the process of the human search for the ninth largest
planet in the solar system. Based on the orbital eccentricity vector and angular momentum
vector of six Kuiper Belt objects, Batygin [31] and Brown [32] inferred that there may be an
unknown planet with a semi-major axis a ≈ 700 AU and an eccentricity e ≈ 0.6. This study
has prompted scholars from various countries to conduct in-depth research and sky survey
observations to find this potential ninth planet in the solar system [33].

According to the spectral characteristics, there are 17 types of asteroids: A, B, C, D, E,
F, G, K, L, M, O, P, Q, R, S, T, V. Asteroids are mainly divided into three groups: C, S, and
X [34–36], and a few other types are not included in these three groups. Group C asteroids
contain a large amount of carbon, accounting for about 75% of the total number of asteroids
in the solar system; group S asteroids contain a large number of silicates, accounting for
about 17% of the total number; group M asteroids contain a large amount of iron and
nickel and other metallic elements, which are considered to be the debris of the asteroid’s
impacted core and the source of iron meteorites [37]. The specific classification of asteroids
according to their spectra can be found in Table 2. It should be noted that the diversity of
the spectra of asteroids can be affected by space weathering [38,39].
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Table 2. Spectral Classification of Asteroids.

Group Type Criterion Representative

C

B

The general properties are the same as the C type, but the ultraviolet
absorption below 0.5 μm is smaller, and the slight blueness is more

obvious than the redness in the spectrum. The albedo also tends to be
greater than the darker C-type.

(2) Pallas

C

There is moderate absorption at UV wavelengths of 0.4–0.5 μm, and
there are no obvious features but slight reddening at longer

wavelengths. There is a mineral feature indicative of hydration known
as water absorption around the wavelength of 3 μm.

(10) Hygiea

F
Similar to B-type asteroids but lacks water absorption features

indicative of hydrated minerals around wavelengths around 3 μm and
differs from the B-type in the low-wavelength UV portion below 0.4 μm.

(704) Interamnia

G

Similar to C-type asteroids but has strong absorption characteristics for
ultraviolet wavelengths below 0.5 μm. There may also be absorption
properties around 0.7 μm, implying the presence of layered silicate

minerals such as clay and mica.

(1) Ceres

S

A Significant olivine features at a 1 μm wavelength and strong reddening
at wavelengths below 0.7 μm. (446) Aeternitas

K There is moderate reddening at wavelengths below 0.75 μm and slight
bluing at wavelengths above 0.75 μm. (221) Eos

L

There is strong reddening at wavelengths below 0.75 μm, and the
spectrum is flat at wavelengths above 0.75 μm. Compared with the K

type, the redness is more obvious in the visible band, and the spectrum
in the infrared band is more gentle.

(83) Beatrix

Q
There are prominent features of olivine and pyroxene in the 1 μm band,

and their spectral changes indicate the possible presence of metallic
substances. There is an absorption spectrum at 0.7 μm.

(1862) Apollo

R There are distinct olivine and pyroxene features at 1 μm and 2 μm. The
spectrum is strongly reddened at wavelengths below 0.7 μm. (349) Dembowska

S
There is moderate spectral variation at wavelengths shorter than 0.7 μm

and moderate spectral absorption at 1 μm and 2 μm wavelengths.
There is also a shallow but broad spectral absorption around 0.63 μm.

(3) Juno

X

E The albedo is greater than 0.3, the spectrum is flat and reddish, and
there are no obvious features. (44) Nysa

M
The albedo is between 0.1 and 0.2, there are subtle spectral absorption
lines in the bands above 0.75 μm and below 0.55 μm, and the overall

spectrum is flat and slightly reddened, lacking obvious features.
(16) Psyche

P The albedo is less than 0.1, and the color is redder than that of the
S-type asteroid, but it is not reflected in the spectral properties. Sylvia

Not
grouped

D Very low albedo and featureless, light red electromagnetic spectrum. (624) Hektor

O Strong spectral absorption in the band above 0.75 μm (3628) Božněmcová

T The spectrum is moderately reddened, darker, and has moderate
spectral absorption in the band below 0.85 μm. (114) Kassandra

V There is strong spectral absorption in the bands above 0.75 μm and 1
μm and strong reddening in the bands below 0.7 μm. (4) Vesta

Comets can be divided into the nucleus, coma, and tail. Comet nuclei are composed
of loose water ice, rubble piles, solid carbon dioxide, methane, ammonia, etc. [40] Comets
usually have long-period, highly eccentric orbits. Therefore, as the comet approaches the
Sun, the water ice and volatile matter in the comet’s nucleus will be heated and turned
into gas, forming an observable atmosphere called a coma. The coma is affected by the
solar wind and solar light pressure to produce a long tail facing away from the Sun, called
a comet tail. Comets are perturbed by the gravitational force of Jupiter and other large
planets during their operation, which may cause dramatic changes in their orbits or their
own shapes or even disintegration: Comet Shoemaker-Levy 9 (Shoemaker-Levy 9) was
destroyed by Jupiter in 1994. The gravity ripped apart into 21 pieces and crashed into
Jupiter. Hsieh and Jewitt [41] inferred the existence of a population of comets originating in
the main asteroid belt based on the optical data. In the past, people often used the presence
of volatile gas as a criterion to distinguish asteroids and comets, but with the discovery
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of active centaurs, especially after the discovery that Ceres also has water vapor [42], the
difference between asteroids and comets becomes less clear.

2.2. Exploration of Small Celestial Bodies

With the development of science and technology, the exploration of small celestial
bodies has gradually developed from optical observation with telescopes in the 19th century
to radar observation and visits through spacecraft. These three methods provide different
kinds of information for the research and exploration of small celestial bodies.

Since Piazzi discovered Ceres, the vast majority of small objects have been discov-
ered through optical observations. The introduction of astrophotography and scintillation
comparators allowed optical observations to move away from relying on the naked eye to
identify asteroids. Using advanced orbiting telescopes and observatories, it has been possi-
ble to obtain basic images of large-scale small celestial bodies through optical observation.
The double asteroid system (45) Eugenia was discovered in this way [42]. Orbit information
can also be used to calculate the size of small celestial bodies by observing the apparent
magnitude. Moreover, the rotation period and spatial orientation of the rotation axis can be
calculated from the light change information of small celestial bodies. The temperature and
spectral information of asteroids can be determined through optical observations in visible
light and infrared bands [39]. Different from the optical observation, radar observation is
an active observation method, and radar observation can provide the orbit data of small
celestial bodies with a higher relative accuracy and information such as small celestial body
shape, rotation speed, and albedo. A higher-precision model of small celestial bodies (on
the order of 10 m) can also be reconstructed through radar observations. Since the first
high-precision shape model of (4769) Castalia was reconstructed in 1994, more and more
small celestial body models have been obtained by this method. However, due to the atten-
uation of radar echoes, ideal radar observations require small celestial bodies to be close
enough to Earth, so radar observations are mostly concentrated in near-Earth asteroids.

With the deepening of deep space exploration activities, the United States, the Soviet
Union, and Europe have carried out space exploration activities for small celestial bodies
since the 1980s. Japan and China have joined the deep space exploration team one after
another. Table 3 lists the small object missions that have occurred and may be carried out in
the future. Through these exploration missions, human beings have gained further under-
standing of the geological characteristics of small celestial bodies, the space environment,
and the formation and evolution of the solar system.

The early exploration activities of small celestial bodies were mainly affected by the
return of Halley’s Comet (1P/Halley) in 1986, and the fly-by of the comet was the mainstay.
The first exploration of small celestial bodies by humans was the International Cometary
Explorer (ICE), jointly conducted by ESA and NASA in 1982. The predecessor of ICE was
the first International Sun–Earth Explorer-3 (ISEE-3) located at the Sun–Earth L1 point. It
was renamed as the International Comet Explorer to conduct comet exploration activities.
After a low-altitude fly-by of the Moon on 22 December 1983 for gravity assistance, the
International Comet Explorer passed through the tail of Comet 21P/Giacobini-Zinner at a
distance of 7800 km from the nucleus in 1985, while the geomagnetic field downstream of
the long tail blown by the solar wind was also detected during the Earth–Moon gravitational
assistance and passed through the tail of Halley’s Comet in 1986 [43–45]. From 1984 to 1985,
when Halley’s Comet returned, the Soviet Union launched Vega-1 and Vega-2 successively.
In the process of exploring Venus, the two spacecraft were placed at distances of 10,000 km
and 3000 km to conduct fly-bys of Halley’s Comet. Japan also launched two probes,
Sakigake and Suisei, to conduct fly-bys of Halley’s Comet at distances of 7,000,000 km and
150,000 km. In 1985, ESA launched the Giotto probe to observe Halley’s Comet. Giotto flew
by Halley’s Comet at a distance of 596 km in March 1986 and was the first probe to observe
the comet at close range [46–48]. Giotto flew by Comet 26P/Grigg-Skjellerup at a distance
of 200 km in 1992 after gravitational assistance in 1990. Vega 1, Vega 2, Pioneer, Comet, and
Giotto are known as the “Halley Fleet” for their continuous exploration of Halley’s Comet.
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In 1989, NASA launched the Galileo probe on its way to Jupiter. It flew by (951) Gaspra
and (243) Ida in 1991 and 1993, respectively, and discovered the moons (Dactyl) of Ida. This
is the first time that humans have explored asteroids and double asteroid systems [49–52].

Table 3. Asteroid exploration missions.

Spacecraft Agency Start Date Asteroid Mission Type

International Comet
Explorer NASA ESA 1982 21P/Giacobini-Zinner Fly-by

Vega 1/2 IKI 1984 1P/Halley Fly-by

Pioneer/Comet JAXA 1985 1P/Halley Fly-by

Giotto ESA 1985 1P/Halley
26P/Grigg–Skjellerup Fly-by

Galileo NASA 1989 (951) Gaspra
(243) Ida Fly-by

Near-Shoemaker NASA 1996 (253) Mathilde
(433) Eros Fly-by/Orbiting/Landing

Cassini-Huygens NASA 1997 (2685) Masursky Fly-by

Deep Space 1 NASA 1998 (9969) Braille
(19P/Borrelly) Fly-by/Orbiting

Stardust NASA 1999
(5535) Annefrank

81P/Wild 2
9P/Tempel 1

Fly-by

Comet Nucleus Tourer
(Failed) NASA 2002

2P/Encke
73P/Schwassmann-Wachmann 3

6P/d’Arrest
Fly-by

Hayabusa JAXA 2003 (25143) Itokawa Orbiting/Landing/Sample return

Rosetta ESA 2004
(2867) Steins
(21) Lutetia

67P/Churyumov-Gerasimenko
Orbiting/Landing/Sample return

Deep Impact/EPOXI NASA 2005 9P/Tempel 1
103P/Hartley 2

Impact/
Fly-by

New Horizons NASA 2006
132524 APL

(134340) Pluto
2014 MU69

Fly-by

Dawn NASA 2007 (4) Vesta
(1) Ceres Orbiting

Chang’e 2 CNSA 2010 (4179) Toutatis Fly-by

Hayabusa 2 JAXA 2014 (162173) Ryugu Orbiting/Landing/Sample return

OSIRIS-REx NASA 2016 (101955) Bennu Orbiting/Landing/Sample return

Don Quixote (in progress) ESA - 2003 SM84 Fly-by/Impact

Double Asteroid
Redirection Test (DART) NASA 2021 (65803) Didymos Impact

Lucy NASA 2021 15094 Polymele
21900 Orus Fly-by

Psyche mission NASA 2022 (16) Psyche Orbiting

Tianwen 2
(in progress) CNSA 2025 (469219) Kamo‘oalewa (2016 HO3)

311P/PanSTARRS
Orbiting/Landing/Sample return

Orbiting

In the 1990s, the exploration of small celestial bodies took various forms such as orbit-
ing, impacting, landing, and sampling return. In 1996, NASA launched the Rendezvous–
Shoemaker probe. Shoemaker was originally only planned for an orbital mission, but
Dr. Bob Farquhar calculated that Shoemaker could successfully land in a saddle-shaped
area on the southern surface of the small body (433) Eros without a soft-landing device.
Shoemaker landed undamaged and continued to work for another 16 days, making it the
first probe to soft-land an asteroid [53–57]. In 1997, NASA launched the Cassini-Huygens
probe to probe Saturn. Cassini flew by (2685) Masursky on its way to Saturn in 2000,
confirming that its diameter is between 15 and 20 km [58]. In 1998, the Deep Space 1 probe
launched by NASA first flew by (9969) Braille in July 1999 and then rendezvoused with
Comet Borrelly (19P/Borrelly) in September 2001 for observations [59–62]. In 1999, NASA
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launched the Stardust probe, which flew by (5535) Annefrank in 2002-11 and flew by
81P/Wild 2 in January 2004. The dust was sampled and returned. In February 2011, the
probe visited 9P/Tempel 1 [63–71].

After entering the 21st century, in 2002, NASA launched the Comet Nucleus Tourer
(CONTOUR), which plans to fly by Comet 2P/Encke, 73P/Schwassmann-Wachmann 3,
and 6P/d’Arrest. Due to the failed launch, the mission has become the only small celestial
object mission that has completely failed so far. In 2003, the Japan Aerospace Exploration
Agency (JAXA) launched the Hayabusa probe to visit (25143) Itokawa. It landed on the
asteroid in November 2005, collected some asteroid samples, and returned to the Earth. It
is the first deep space exploration mission to sample and return asteroids [72–76]. In 2004,
ESA launched the Rosetta comet probe to visit 67P/Churyumov-Gerasimenko, and on the
way, it flew by (2867) Steins at a distance of 800 km in 2008 and flew over (21) Lutetia at a
distance of 3160 km in 2010 [77]. On 12 November 2014, the lander Philae carried by the
Rosetta probe landed in the pre-selected J region on the comet, becoming the first probe to
land on the surface of a comet’s nucleus [78–81]. In 2005, NASA launched the Deep Impact
program to study the composition of the comet nucleus of Comet Tempel 1. In July of the
same year, the impactor was released to complete the impact mission of Comet Tempel 1
and probe in deep space. For the first time in history, the material ejected from the surface
of a comet had been measured [82–84]. The deep impact was then extended to the EPOXI
mission, which conducted a fly-by of Comet 103P/Hartley 2 in November 2010 with the
aid of Earth’s gravity [85,86]. In 2006, NASA launched the New Horizon probe, which flew
by 132,524 APL at a distance of 100,000 km in 2006 and approached the dwarf planet Pluto
and its five moons in January 2015, becoming the first probe in history to visit a dwarf
planet. It flew by Pluto at a distance of 12,500 km in July of the same year, after which
NASA designated the fly-by of the Kuiper Belt small object 2014 MU69 as an extended
mission of New Horizons [87]. In 2007, NASA launched the Dawn probe to visit (4) Vesta
and the dwarf planet Ceres. Dawn arrived at the small celestial body (4) Vesta in July 2011.
After the exploration, it flew to Ceres and arrived at Ceres in March 2015. This is the first
probe in human history to orbit asteroids and dwarf planets in the main belt [88–91]. In
2010, the China National Space Administration (CNSA) launched Chang’e-2 probe to orbit
the Moon. After that, the probe went to (4179) Toutatis in April 2012 and completed the
mission of flying over (4179) Toutatis at a distance of 3.2 km in December 2012, which led
to the obtention of a clear image of the surface of (4179) Toutatis for the first time [92–94].
Through this extended mission, China explored an asteroid for the first time, becoming
the fourth country in the world to explore asteroids after the United States, Europe, and
Japan. In 2014, after the Hayabusa mission, JAXA launched the Hayabusa-2 probe to detect
(162173) Ryugu and used the blasting method to collect its deep samples and return. On
6 December 2020, the “Hyabusa 2” landed in the desert area of southern Australia and
obtained 5.4 g of the sample, which aroused enthusiastic attention from all walks of life. In
2016, NASA launched the Pluto probe (OSIRIS-REx) to carry out a sampling return mission
to (101955) Bennu. In December 2018, the probe reached the asteroid Bennu. After more
than a year of short-range detection, a “touch and go” sampling was carried out to confirm
that the sample was collected, and it is planned to arrive on Earth in September 2023.

In order to effectively deal with the potential collision threat of NEOs to Earth, scien-
tists have been studying various means of NEO defense. For asteroid defense, the basic
technical way is to use nuclear bombs for interception, use spacecraft for kinetic energy
impact, or use laser ablation and other schemes. Other methods such as ion traction,
gravitational drag, and mass drive are still in the argumentation stage. ESA launched a
preliminary study of the Don Quijote project in 2006 and plans to test asteroid defense
technology targeting 2003 SM84 or Destroyer (99942) Apophis in the future. NASA started
the Double Asteroid Redirection Test (DART) in November 2021 to test the asteroid impact
and defense against the binary asteroid system (65803) Didymos. According to the plan,
the DART spacecraft will approach the target asteroid between the end of September and
the beginning of October 2022 and finally hit the asteroid head-on at a speed of about
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6.6 km/s. Such an impact would change the speed of the Moon in its orbit around the
primary by one percent, and the period may be varied by a few minutes. China has been
monitoring near-Earth asteroids since the 1950s. At the 7th International Academy of
Astronautics Planetary Defense Conference, Yanhua Wu, Deputy Director of the Chinese
Space Administration, mentioned that China will establish an organizational system and
process to deal with the risk of asteroid impact.

In addition to planetary defense, research on the evolution of the solar system is also a
focus related to small celestial bodies. NASA launched the Lucy probe in October 2021 and
planned to fly by an asteroid in the inner main belt and five other Jupiter Trojan asteroids.
NASA also plans to launch the Psyche spacecraft in 2022 to probe a series of questions
related to the evolution of Psyche through its orbit.

The white paper “2016 China’s Aerospace” proposes to deepen the demonstration and
key technological breakthroughs in the main tasks of Mars sampling and return, asteroid
exploration, Jupiter system and planetary transit detection, etc. In April 2019, the “Asteroid
Exploration Mission Payload and Carrying Project Opportunities Announcement” issued
by the National Space Administration confirmed that China’s asteroid exploration mission
will achieve a near-Earth asteroid sampling return and a main-belt comet orbit through one
launch. In 2021, the first Mars exploration mission of China (Tianwen 1) has achieved great
success. China plans to launch a small celestial body detector around 2025 and spend 10 years
visiting two small celestial bodies: (2016) HO3 near-Earth asteroid and comet (133) P.

3. Research on Small Celestial Body Gravitational Field Environments and
Orbital Mechanics

Deep space exploration missions related to small celestial bodies have stimulated a
large number of studies on related issues, including analysis of the dynamic environment
of small celestial body detectors, orbit design and control, the formation and evolution
of celestial bodies, nonlinear dynamic characteristics, and other aspects. This section will
introduce the research on the gravitational field model of small celestial bodies, the orbital
dynamics, the surface transition dynamics, and the research on the gravitational field
environment of small celestial bodies under the change of physical parameters, etc.

3.1. Research on the Gravitational Field Model of Small Celestial Bodies

The study of the periodic and quasi-periodic orbital dynamics around small irregular
celestial bodies depends on the proper description of the dynamic model of the small
celestial bodies. The work of Hamilton et al. [95] shows that the influence of the planetary
gravitational perturbation is very small compared with the Sun’s gravitational perturbation,
and its influence can be ignored. Therefore, the dynamic equation of the particle moving
near the small celestial body can be expressed as

··
r = a + aS (1)

In the formula, r represents the position of the particle in the small celestial body coor-
dinate system, a represents the acceleration obtained by the particle due to the gravitational
force of the small celestial body, and aS represents the acceleration obtained by the particle
perturbed by the gravitational force of the Sun. Since the particle motion is considered, the
influence of solar pressure perturbation can be ignored. For the distance range applicable
to the dynamic model of small celestial bodies, generally consider the radius of the sphere
affected by the gravitational force of the small celestial body relative to the gravitational
force of the Sun:

R1

D
=

(
MA
MS

) 2
5

(2)

In the formula, R1 is the radius of the influence sphere, D is the revolving distance of
the small celestial body around the Sun, MA is the mass of the small celestial body, and MS
is the mass of the Sun. Within the range of the small celestial body’s influence sphere radius
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R1, the gravitational force of the small celestial body can be regarded as the main force
affecting the motion of the particle, and the Sun’s gravitational force can be regarded as
the perturbing force. For a more rigorous estimate, the radius at the point of gravitational
neutralization for small bodies and the Sun can be considered:

R2

D
=

(
MA
MS

) 1
2

(3)

In the formula, R2 is the radius of the gravitational neutralization point. It is easy
to see that R1 > R2. Yu [96] gave the gravitational radii of 23 small celestial bodies in his
doctoral dissertation. Table 4 lists the radius range of the small celestial body’s gravitational
action, calculated according to Formulas (2) and (3). It is not difficult to see that the radius
R1 of the gravitational influence sphere is about two orders of magnitude larger than the
radius R2 at the gravitational neutralization point.

Table 4. Gravitational radius of asteroids.

Asteroids MA/MS D/AU R1/km R2/km

(216)
Kleopatra 2.33 × 10−12 [2.09, 3.49] [6.97 × 103, 1.16 × 104] [4.78 × 102, 7.99 × 102]

(243) Ida 2.11 × 10−14 [2.74, 2.98] [1.39 × 103, 1.51 × 103] [5.97 × 10, 6.50 × 10]
(433) Eros 3.36 × 10−15 [1.13, 1.78] [2.75 × 102, 4.34 × 102] [9.83 × 100, 1.55 × 10]

(1620)
Geographos 1.30 × 10−17 [0.83, 1.66] [2.19 × 10, 4.38 × 10] [4.49 × 10−1, 8.98 × 10−1]

(6489)
Golevka 1.06 × 10−19 [0.99, 4.02] [3.81 × 100, 1.55 × 10] [4.83 × 10−2, 1.96 × 10−1]

Small celestial bodies are irregular in shape, rotate faster than large planets, and have
smaller masses. They are very different from the gravitational fields around large celestial
bodies, showing the characteristics of asymmetry and irregularity. Therefore, in order
to study the dynamics of small irregular celestial bodies, it is necessary to approximate
their gravitational field with an appropriate model. Common approximate models of
gravitational field are: the simple geometry model; the spherical harmonic and ellipsoidal
harmonic function model; the particle group model; and the polyhedron model.

The simple geometry model has the characteristics of a simple structure, few shape
parameters, and convenient calculation. It is easy to obtain analytical results and quali-
tative conclusions about shape parameters. The simple geometries commonly used for
simulation in current research include the homogeneous thin straight rod model [97], the
homogeneous ring model [98], the triaxial ellipsoid model [99], and the dipole model [100].
The early simple geometric models can only reflect the basic characteristics of small celestial
bodies and cannot accurately simulate the surrounding gravitational field environment.
With the continuous development of the study of simulating irregular gravitational fields
with simple geometric models, the dipole model proposed by Zeng et al. [100] can better
reflect the gravitational field near the equilibrium point of irregular small celestial bodies.
Accuracy is also taken into account.

The main idea of the spherical harmonic model is to use infinite series to approximate
the gravitational potential function of celestial bodies. It was first applied in the dynamics of
near-Earth satellite orbits and then introduced into the study of gravitational field modeling
of small celestial bodies to describe small celestial bodies. Using the spherical harmonic
function method, the gravitational potential can be expanded as

U(r) =
GMA

r
{1 +

∞

∑
l=1

l

∑
m=0

(
re

r
)

l
Plm(sin(φ))[Clm cos(mλ) + Slm sin(mλ)]} (4)
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where G is the gravitational constant G = 6.674 28 × 10−11 m3·kg−1·s−2; r is the position
vector of the particle; r, φ, λ are the three components of the vector in spherical coordinates;
MA is the mass of the small celestial body; Plm is the associative Legendre polynomial; re is
the radius of the Brillouin sphere, reflecting the range of convergence of the series, that is,
the applicable range of Formula (4); and Clm and Slm are spherical harmonic coefficients,
reflecting the shape irregularity and inhomogeneity of internal mass distribution [101]. The
advantage of this method is that the gravitational potential can be given analytically. It
is convenient for obtaining theoretical solutions through analytical methods. In addition,
once the spherical harmonic function coefficient is obtained, it can be directly substituted in
the subsequent numerical calculation, which is convenient to use, especially for inversion
calculation through flight data [102]. During the orbiting of Ceres by the Dawn probe,
Takahashi et al. [103,104] used the spherical harmonic model to estimate the precise gravi-
tational field of Ceres and iteratively iterated the known spherical harmonics to give the
direction of its principal axis. The main limitations are that the model cannot be applied to
the region located within the Brillouin sphere. The reason for this is that the series does not
converge [105]. The truncation error in calculations may lead to large errors in the obtained
gravitational field model in some cases [106].

Considering the convergence region of spherical harmonics, Hobson [107] uses Lamé
polynomials to approximate the ellipsoidal harmonics model of the gravitational potential
function. Pick [108] established the theory of ellipsoid harmonics on this basis. Using
the ellipsoid harmonic method, the gravitational potential of a unit mass particle can be
expanded as

U(r) = GMA

∞

∑
l=0

2l+1

∑
m=1

αlm
Flm(λ1)

Flm(λe)
Flm(λ2)Flm(λ3) (5)

In the formula, λ1, λ2, λ3 are the ellipsoid coordinate components of the vector r. λe
is the parameter of the Brillouin ellipsoid, which reflects the range of convergence of the
series, that is, the range of use of Formula (5). Flm is the Lamé equation canonical solution,
and αlm is the ellipsoid harmonic coefficient [105]. A conversion method between spherical
harmonics and ellipsoidal harmonics was proposed by Dechambre et al. [109] to simplify
the solution process. The ellipsoid harmonic function model expands the convergence
region of small celestial bodies while still retaining the characteristics of the spherical
harmonic function model for easy calculation [110].

The convergence rate of the two models near the boundary of the convergence domain
decreases rapidly as the distance from the particle to the small body decreases. In addition,
the spherical harmonic function and ellipsoidal harmonic function models lack the infor-
mation to judge whether the particle is located inside or outside the small irregular celestial
body. Therefore, it cannot meet the calculation requirements of the global gravitational
field in the application of studying the dynamics.

Particle swarm models are often used to model dynamic environments in asteroid
evolution and near-Earth asteroid orbit collision avoidance problems. This model is a
very intuitive method that discretizes the space where the small celestial body is located
into a series of particles, calculating the gravitational force or gravitational potential of
these particles separately and summing them up to obtain the overall gravitational force or
gravitational potential of the small celestial body. Assuming that the small celestial body
is divided into N voxels, the position coordinate of the i-th voxel is ri, and the mass is Mi.
Then, the gravitational potential can be expressed as

U(r) =
N

∑
i=1

GMi
|r− ri|

(6)

The advantage of the method is that its algorithm is simple and easy to implement,
and it can ensure the convergence. By increasing the number and distribution of divided
voxels by appropriate rules, the accuracy of the gravitational field of small celestial bodies
can be improved. Real-world problems such as distribution have good scalability [111,112].
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However, this method also has some defects: the number of voxels increases rapidly with
the accuracy requirements, which leads to a sharp increase in the amount of calculation and
a great decrease in the calculation speed; it cannot provide a direct and effective judgment
for whether the orbit of the particle intersects with the small irregular celestial body.

The polyhedron model is a numerical modeling method for the gravitational field
of small irregular celestial bodies. Since the nineteenth century, in order to describe
a rugged terrain in geology, scholars have studied the gravitational field of a simple
polyhedron. MacMillan and Waldvogel [113,114] successively gave the analytical form of
the gravitational potential energy of the cuboid and the general homogeneous polyhedron.
The disadvantage is that the amount of calculation is large. In the 1990s, Werner [115,116]
used a polyhedron in which every surface is a triangle to approximate the shape of a
small irregular celestial body. Moreover, he used Gauss’s theorem and Green’s formula to
simplify the triple integral. Werner also studied the orbital behavior around the regular
tetrahedron, which was compared to the orbitals affected by the J3 and J33 terms in the
spherical harmonic model. Then, Werner et al. [117] sorted out the previous work, taking
(4769) Castalia as an example, and introduced the modeling method of the polyhedral
gravitational field in detail. Mirtich [118] also applied Gauss’s theorem and Green’s formula
to replace the integral by summation and calculated the center of mass, the moment of
inertia, the product of inertia, and other physical quantities of a homogeneous polyhedron.

The gravitational potential, gravitational force, and gravitational gradient tensors
of the polyhedron at any point outside the homogeneous polyhedron can be expressed
as [117,118]:

U(r)
1
2

Gσ ∑
e∈E

Le(re·Ee·re)−
1
2

Gσ ∑
f∈F

θ f (r f ·F f ·r f ) (7)

∇U(r) = Gσ ∑
e∈E

Le(Ee·re)− Gσ ∑
f∈F

θ f (F f ·r f ) (8)

∇2U(r) = Gσ ∑
e∈E

LeEe − Gσ ∑
f∈F

θ f F f (9)

In the formula, σ is the density of the homogeneous polyhedron P, E is the set of all
edges on the surface f, F is the set of faces of the polyhedron P, re represents the vector from
r to any point on edge e, r f represents the vector from r to any point on the side f, Le, Ee, Ff
are the quantities related to the edge and the side, and θf is the solid angle formed by the
points at the side f and r. Its specific calculation formula is

θ f = 2arctan
r1·(r2 × r3)

r1r2r3 + r3r1·r2 + r1r2·r3 + r2r1·r3
(10)

where r1 r2 r3 are the vector radii from the point at r to the three vertices on the side of the
triangle. Denote

Ω = ∑
f∈F

θ f (11)

when the point is inside the polyhedron P, Ω = 4π; when the point is outside the polyhedron
P, Ω = 0. From this, the positional relationship between the point and the polyhedron can
be determined.

The polyhedron model has no truncation error; the error only comes from the shape
error and numerical calculation error between the model and the real celestial body. The
calculation accuracy is high, and the polyhedron is not necessarily a convex polyhedron.
Moreover, it can be well simulated near the surface and even inside the asteroid, and it
can meet the requirements of global calculations. In the analysis of orbital dynamics, the
polyhedron method also easily judges whether the particle is outside the asteroid. The
main disadvantage of the polyhedron model is the large amount of calculation. Every time
the gravity calculation needs to be performed on all edges and vertices, the calculation
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speed will be greatly reduced when the number of edges and vertices increases. (101955)
Bennu’s geometric shape based on the polyhedron model can be found in Figure 2.

 
Figure 2. The geometric shape of (101955) Bennu based on the polyhedron model [119].

The above methods have their own advantages and disadvantages and need to be
appropriately selected according to the characteristics of specific problems.

3.2. Research on Orbital Dynamics near Small Celestial Bodies

Based on the various dynamical models described in the previous section, the dynamic
research on the vicinity of small irregular celestial bodies mainly includes the manifold
structure and the local motion at the equilibrium point and its vicinity, large-scale periodic
orbits and their bifurcations and resonances, quasi-periodic orbits, chaos, dynamic configu-
ration, and the evolution of binary asteroids or multi-star systems. Dynamic equilibrium
points, periodic orbits, and quasi-periodic orbits are important ways to study the phase
space structure of complex dynamical systems.

The research related to equilibrium points started with the dynamic problem near
small celestial bodies and has the most relevant research so far. Early research focused
on the existence, quantity, and stability of equilibrium points near special geometries.
Zhuravlev [120] first studied the stability of equilibrium points near the three-axis spheroid
and calculated the stable and unstable regions.

Scheeres et al. [121,122] also used the spherical harmonic gravitational field model to
calculate the position of the equilibrium point of (4769) Castalia and analyze its stability.
Elipe et al. [123] found four equilibrium points in the gravitational field of a finite straight
segment and analyzed their stability. Scheeres et al. [124] calculated the positions of the
four equilibrium points of (25143) Itokawa. Mondelo et al. [125] calculated the positions
of four equilibrium points of (4) Vesta and analyzed the stability. Liu et al. [126] analyzed
the manifold structure near the equilibrium points in the gravitational field of a rotat-
ing homogeneous cube and the heteroclinic orbits between different equilibrium points.
Yu et al. [127] calculated the coordinates of four equilibrium points in the gravitational
field of (216) Kleopatra, linearized the eigenvalues of the matrix, and analyzed the stabil-
ity based on this. Scheeres [128] calculated the equilibrium points of (1580) Betulia and
67P/Churyumov-Gerasimenko.

Jiang et al. [129] gave a linearized equation for motions near the equilibrium points,
deduced a sufficient and necessary condition for the stability of the equilibrium point, and
studied the characteristic root distribution, stability, and topological types of equilibrium
points. According to the sub-manifold structure, the non-degenerate equilibrium points
are divided into eight categories, which is a major advancement for scientists in correctly
understanding the relevant characteristics of the equilibrium points of small celestial bodies.
Wang et al. [130] used the polyhedron model to calculate the positions of the equilibrium
points of 23 small celestial bodies and analyzed their stability. In particular, they found eight
equilibrium points near the asteroid Bennu. This shows that the number and distribution
of equilibrium points near small bodies are diverse and cannot be completely divided into
two types determined by a simple geometric model.
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Regarding the change in equilibrium points with the normalization parameters of
the density and the rotational speed of small celestial bodies, Jiang et al. [131] found that
equilibrium points always appear or annihilate in pairs, and the number of non-degenerate
relative equilibrium points is odd. Wang et al. [132] took Bennu as an example to summarize
the bifurcations of equilibrium points.

Since the 1990s, scientists have also conducted many studies on the periodic orbits in
the gravitational field of small rotating irregular celestial bodies. The main focus is on the
search for periodic orbits, orbit classification and stability analysis, and the dynamic bifur-
cation behavior due to changes in parameters such as the rotation speed of small celestial
bodies and the energy integral of particle motion. Scheeres et al. [121,133] calculated the
periodic orbits in the equatorial plane of (4) Vesta and (433) Eros using a three-axis ellipsoid
model. Scheeres et al. [134] also used the second-order quadratic gravitational field model
to calculate the frozen orbits and periodic orbits near Tutatis and analyzed the effects of
the C20 and C30 terms on the frozen orbits. Antreasian et al. [135] and Scheeres et al. [136]
successively used the second-order quadratic gravitational field model and the average
method to analyze the motions near (433) Eros and found a family of retrograde periodic
orbits, which were used for the Shoemaker mission. Shang et al. [137] investigated various
periodic orbits near non-principal-axis rotation asteroids.

Scheeres et al. [138–142] also studied the influence of the C20 and C22 terms on the
energy and angular momentum of the particle motion and numerically calculated the
stable and unstable orbital regions in the parameter space. They further studied the orbital
dynamics considering the non-spherical gravity of small celestial bodies, solar radiation
pressure, and solar gravity and used the averaging method to find the frozen orbits near
small celestial bodies. The property is closely related to the area-to-mass ratio of the
spacecraft and the distance from the small celestial body to the Sun. Because the search for
periodic orbits is very complicated, it is generally necessary to use symmetry for analysis
and research, but the gravitational field of small irregular celestial bodies does not have
this feature [128–143]. Yu et al. [144] proposed a global search method for 3D periodic
orbit families in the vicinity of irregular small bodies by using the polyhedral model and
the hierarchical grid method. The 29 periodic orbits are given by taking asteroid (216)
Kleopatra as an example. The periodic orbits are classified into seven types according to the
orbits of the four-dimensional symplectic manifold by calculating the eigenvalues of the
monodromy matrix of periodic orbits [145]. Topological types, the bifurcation phenomenon,
and the stability of periodic orbits with the continuation of energy are studied. Jiang et al.
pointed out that periodic orbits move in a six-dimensional symplectic manifold and that
its manifold structure is different from that of the four-dimensional case and re-classified
the periodic orbits near small irregular celestial bodies into 13 topological types [132].
Applying this theory, Yu et al. [146] found periodic orbit families belonging to different
topological types near (243) Ida and the bifurcation behavior in the continuation process
in the periodical orbit search and continuation near (243) Ida. Jiang’s theory provides a
powerful tool for follow-up research to better understand the type and stability of periodic
orbits near irregular small celestial bodies from the topological structure. Non-equatorial
equilibrium points near an asteroid with gravitational orbit-attitude coupling perturbation
were analyzed in reference [147]. Li et al. [148] calculated the geophysical environments
and periodic orbits near 2016 HO3 by using different shape models.

With the development of orbital dynamics and calculation methods for spacecraft
near asteroids, people’s research on small celestial bodies has gradually expanded from
single asteroids to binary asteroid systems and even systems comprised of multiple small
bodies. Liang et al. [149] used the Poincare section and Jacobi constant to find the homo-
clinic and heteroclinic orbits connecting the equilibria near the contacting binary asteroids,
which provided an important reference for designing low-energy transfer orbits between
equilibria. Hou and Xin [150] constructed an explicit first-order solution to the rotations
and the orbital motion in the planar two-body problem. Shi et al. [151] studied the equi-
librium points and periodic orbits of the binary asteroid system (66391) 1999KW4 by the
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homotopy method based on the restricted full three-body problem. Wang and Fu [152]
constructed a semi-analytical model for spacecraft near the primary of a binary asteroid
system based on a perturbed two-body problem. For nonlinear dynamics of multiple body
systems, the discrete element model is usually applied to simplify related calculations [153].
Jiang et al. [154] analyzed the dynamical configurations of the five triple-asteroid systems
45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC and the six-body
system 134340 Pluto. Figure 3 shows the dynamical configuration of binary asteroid
system (66391) 1999 KW4. Valvano et al. [155] discussed the stability regions near the
triple asteroid system 2001 SN 263 considering the effect of irregular shapes and the solar
radiation pressure.

Figure 3. Dynamical configuration of binary asteroids 1999 KW4.

Due to the complex orbital shape near the small celestial body, the theoretically
calculated periodic orbit may not be closed. Wang [156] expanded the definition of the
resonant orbit from the orbital period satisfying the conventional relationship to the angular
velocity of the particle moving around the small celestial body. In addition, some theoretical
periodic orbits are affected by various perturbations, and the orbits will not be closed.
Scheeres et al. [134] studied the quasi-periodic frozen orbit near (4179) Toutatis under the
second-order quadratic gravitational field model. Chanut et al. used the polyhedron model
to study the long-term motion of particles near the small celestial bodies (433) Eros and
(216) Kleopatra [157,158].

Chaos phenomena are ubiquitous in the natural world and in engineering problems
such as chemistry, mechanical systems, financial economics, and nanoscience [159–164].
The generation of chaotic phenomena in dynamics is usually closely related to bifurcation
and resonance phenomena [165]. Studies on simple geometric models of gravitational fields
have uncovered the chaotic behavior of particles. Elipe et al. [123] found the bifurcation
caused by 1:1 resonance in the gravitational field of a finite straight segment and chaos due
to parameter changes. Lindner et al. [166] discovered the chaotic phenomenon of particles
moving around a line segment. Makarov et al. [167] found the chaotic phenomenon of the
rotation of triaxial asteroids and minor planets. Since most of the small celestial bodies
have strong irregular shapes, the resonance mechanism in the double asteroid or multi-
asteroid system is more complicated, and the influence of the mutual coupling of orbit and
attitude must be considered. Based on the sphere-ellipsoid model, Nadoushan et al. [168]
found that aspheric factors and orbital eccentricity can significantly affect the size of the
resonance region. After a certain critical value, the resonance regions intersect and lead to
the appearance of chaos.

The YORP effect is a thermal-radiation torque acting on small asteroids and plays
a crucial role in their physical and dynamical evolution. A detailed introduction can
be found in Section 3.4. Cuk Nadoushan et al. [169] considered the solar gravitational
perturbation, the orbital attitude dynamics, and the long-term evolution of the binary
asteroid system under the YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effect. They
found the chaotic behavior of the attitude under the condition of small orbital eccentricity,
even with the same rotation period. The widespread existence of chaotic phenomena
makes it very important to distinguish between ordered and chaotic motions. Lyapunov
Characteristic Exponents (LCE) [170] provide the distinction criterion from theoretical and
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numerical viewpoints and provide the chaotic intensity quantitative characterization. How-
ever, in practice, the numerical computation required to discover chaotic phenomena is
time-consuming, especially for some chaotic motions that are very close to ordered motions.
Froeschlé et al. [171,172] and Fouchard et al. [173] successively developed the Fast Lya-
punov Indicator (FLI) and the Orthogonal Fast Lyapunov indicator (FLI) in response to the
shortcomings of LCE. This provides an effective indicator for effectively distinguishing or-
dered and chaotic motions. Ni et al. [174] proposed to quantitatively analyze the indicators
of quasi-periodic orbits from the perspective of frequency domain analysis and specifically
analyzed the indicators of orbits in the gravitational field that neither escape nor collide
with small celestial bodies. Among them, a complex orbit in the gravitational field of (6489)
Golevka can be seen in Figure 4.

Figure 4. A complex orbit in the gravitational field of (6489) Golevka.

3.3. Research on Surface Motion Dynamics and the Capillary Phenomenon of Small
Celestial Bodies

After exploring the special orbits near small bodies, people naturally pay attention to
the selection of the soft-landing region and trajectory optimization, which are closely related
to the transition dynamics on the surface of small celestial bodies. Generally speaking,
the matter on the surface of irregular small celestial bodies may undergo transitions or
even launch and escape behaviors. These motions are specifically classified into surface
equilibria, motion confined on the surface, surface transition, and bouncing. For example,
ESA’s Rosetta probe’s lander Philae clearly observed two bounces when it touched down
on 67P/Churyumov–Gerasimenko, which means that Philae was observed to make three
landings. It is noteworthy that the interval between the first landing and the final resting
on the surface of the comet nucleus is 2 h. ESA did not fully consider the contact mechanics,
collision, and bounce of the soft-landing process on the surface of irregular bodies. This led
to the fact that the final soft-landing position of the lander was hundreds of meters away
from the preset position.

A large number of previous studies have studied the physical and chemical properties
of the surface particles of small celestial bodies, including the electrokinetic and rotational
emission of dust particles in cometary cores [175] and the mineralogy and mineralogy
of asteroid dust particles [176]. Moving particles and dust may be caused by a variety
of reasons, including the YORP effect [177], the windmill effect on the surface of small
celestial bodies [175], the collision and gravitational reconstruction of asteroid families
and small moons [178], and the gravel disintegration of rubble-pile asteroids [179,180].
The disintegration of asteroid P/2013 R3 produced more than 10 distinct small bodies,
numerous small grains, and a comet-like dust tail [180]. Most asteroids and comet nuclei
have irregular shapes, and particles can move on the surface of small irregular bodies.
To understand the dynamical behaviors of particles on the surfaces of irregular celestial
bodies, we need to study the surface mechanical environment. In addition, the movement
of the lander or the rover on the surface of the irregular small celestial body also needs to
be studied. If the lander lands on the surface of an irregular small body, the collision and
bounce of the lander on the irregular surface also exist [181].

Beginners choose simple shapes, including ellipsoids [182,183] and cubes [184], to
help understand the surface motion. Guibout and Scheeres [182] discussed the existence
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and stability of surface equilibrium points for spheroids of revolution. Bellerose and
Scheeres [183] used ellipsoids to simulate the shape and gravity of asteroids, studying
hopping on flat surfaces. Belleros et al. [181] considered the motion and control of the
surface exploration robot under the gravitational force of the uniformly rotating ellipsoid.
Liu et al. [184] calculated the positions and eigenvalues of the surface equilibrium of
a uniformly rotating cube. The non-degenerate equilibria in the gravitational field of
general irregular celestial bodies can be divided into eight different types [129]. The motion
confined on the surface of the irregular small celestial body is different from the motion
in the gravitational field [185]. The former needs to consider the irregular gravitational
force and the contact force, while the latter only considers the irregular gravitational force.
Generally speaking, the transition or landing process of particles or landers on the surface
of irregular celestial bodies includes orbital motion, collision, jumping motion, surface
motion, and surface equilibria.

Considering a non-smooth surface with a constant coefficient of friction, the equilibria
remain but are not as stable as the equilibria on a smooth surface [184]. Considering the
precise gravity and irregular shape, Yu and Baoyin [186,187] numerically calculated the
motion and particle migration of the rover on the asteroid surface and found that the most
stable direction is the rotational pole direction, which can limit the rover’s movement after
landing. However, the friction phenomenon on the surface of irregular small celestial
bodies has a stick-slip effect [188], and the surface transition particles may be charged [189].
The orbital motion, collision and jumping motion, surface motion, and surface equilibrium
of particles released over three different regions (flat surface, concave region, convex region)
relative to asteroid 6489 Golevka were investigated in [185]. The results showed that when
the particles were released over a flat surface and concave region, the surface equilibrium
can be reached in a short time.

In the research of water ice material in small celestial bodies, previous studies in
several pieces of literature found that the water on Earth comes from asteroids [190,191].
Kanno et al. [192] analyzed the wavelengths of the infrared spectrum to confirm the pres-
ence of water and ice on class D asteroids. Asteroids may release meteoroids, which fall to
Earth as meteor showers or meteors, bringing material to Earth [193–195].
Treiman et al. [193] studied the Eucrite from the asteroid (4) Vesta and found quartz in the
meteorite, arguing that quartz originates from the deposition of liquid water and that water
may originate from (4) Vesta. Campins et al. [196] reported the presence of water and ice on
the surface of (24) Themis and the widespread distribution of this water and ice. Comets
also tend to have water on them. Sunshine et al. [197] detected the presence of water and
ice on Comet 9P/Tempel, indicating that the surface deposits of the comet nucleus are
loose aggregates. Taylor [198] reported in detail the presence of water in Eucrite meteorites
originating from the asteroid (4) Vesta. Zolensky et al. [199] discussed temperatures of
alteration, water:rock ratios, and the oxygen isotopic composition of water by analyzing
the record of low-temperature alteration in asteroids. Trigo-Rodríguez et al. [200] presented
the action of water in asteroids by studying carbonaceous chondrite meteorites.

The research on capillary action on asteroid surfaces is closely related to the equilib-
rium points and surface motion of particles. The height of the water in the capillary tube on
the surface of the asteroid depends on the irregular shape and the gravitational potential
of the asteroid. Different surfaces produce different heights of water in the capillary tube,
so the friction coefficients of different surfaces are different, resulting in the stability of
the surface balance sex being different. It was found that the gravitational field and spin
velocity of asteroids have a significant effect on the height of the liquid in the capillaries
on the asteroid surface [201]. This research can be applied in the following four aspects:
1© This research helps to further study the distribution of water and ice on the surface of

asteroids, and the different distributions of water and ice are related to the different distri-
butions of liquid lengths in the capillary [196]. 2© On the scale of millions of years, water
can corrode the surfaces of asteroids and the structure inside, and the surface material
and shape of a large number of asteroids have changed through surface erosion, espe-
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cially for rubble-pile asteroids. In other words, long-term erosion could cause asteroids to
break up and disintegrate. Aqueous alteration processes in asteroids were investigated by
Rotelli et al. [202] to better understand the increasing complexity towards prebiotic chem-
istry. 3© The different heights of the liquid in the capillary can affect the electrokinetic and
rotational jets of gas and dust particles on the surface of small celestial bodies [189]. Under
the action of sunlight pressure, the jet may form a mini fountain on the surface of small
celestial bodies. The change in the length distribution of the liquid in the capillary causes
the height of the fountain and the radius of the fountain envelope to change [189]. 4© The
probe can carry some liquid to the surface of the asteroid, so the study of the height of the
liquid in the capillary may also be applied to future asteroid missions.

3.4. Dynamic Characteristics under Varying Parameters

The rotational speed, density, shape, internal structure, and other physical parameters
of small celestial bodies vary widely, resulting in very different dynamic behaviors in
their gravitational fields. Taking the rotational speed as an example, there is only one
equilibrium point in the gravity field of 1998KY26 when it is rapidly rotating. For (52760)
1998 ML14, comet 1P/Halley, and 9P/Tempel 1, the external equilibrium points are farther
away from the small celestial body. Asteroid (216) Kleopatra has seven relative equilibrium
points, which is different from the five relative equilibrium points of most asteroids [131].
The YORP effect of small celestial bodies is closely related to thermosphysical parameters.
It is a phenomenon that the rotation axis and rotation speed of small celestial bodies vary
slowly due to the photon moment generated by sunlight [203]. Studies have shown that
the YORP effect can slowly change the rotation speed of small celestial bodies and even
cause the rotational disintegration of small celestial bodies. For example, the YORP ef-
fect can make the rotation rate of the small celestial body 54509 (2000PH5) accelerate by
(2.0± 0.2)× 10−4 (◦)/d2 [204], and the rotation rate of the small celestial body (1620) Ge-
ographos can be accelerated by 1.15× 10−8 rad/d2 [205]. Numerical experiments show
that the YORP effect can lead to the disintegration of rubble-like celestial bodies and the
formation of small moons. The YORP effect may also indirectly affect the distribution and
topological characteristics of the relative equilibrium points in the gravitational field. The
shapes of asteroids may also be deformed as landslides and mass shedding occur. Similar
to Comet Shoemaker-Levy 9, small rubble-like bodies can change their topography dra-
matically as they approach a planet, and some even disintegrate. Holsapple et al. [206,207]
established the mechanical mechanism of tidal deformation caused by the influence of
nearby larger celestial bodies. The variations in the shape, spin, and state during the slowly
increasing angular momentum of rubble-pile, self-gravitating, homogeneous ellipsoidal
bodies were investigated in reference [208,209]. Zhang et al. [210] found that three typical
tidal response outcomes may appear on rubble piles, namely, deformation, scattering,
and destruction. During the long-term evolution of small celestial bodies, their density,
rotational speed, shape, and internal structure may change. The disintegration and gravi-
tational aggregation of asteroids will also affect their internal structure, average density,
and shape. These factors lead to changes in the parameters of small celestial bodies. If the
parameters of the primary in binary asteroids with a large-scale ratio vary, it is bound to
have an impact on the movement of the small moon. In addition, changes in parameters
will also affect the movement of dust, particles, and gravel in the gravitational field of small
celestial bodies.

Tanbakouei et al. [211] studied the mechanical properties of particles on the surface
of asteroid 25143 Itokawa using the nanoindentation technique. They found that these
particles of asteroid regolith can be more compacted than the minerals forming the particu-
lar LL chondrite associated with potentially hazardous asteroids. For the DART mission,
the impact with the secondary of the Didymos system will cause a momentum transfer
from the spacecraft to the binary asteroid. It is expected to change the orbit period of this
system and force it to librate in the original orbit [212]. Furthermore, the primary may be
reshaped due to landslides or internal deformation during this process. A detailed analysis
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can be seen in reference [213]. In 2024 October, the ESA Hera mission will be launched to
obtain a detailed characterization of the physical properties of binary asteroids and of the
crater caused by the DART mission [214]. For ringed asteroids, a change in the parameters
may also lead to a variation in the parameters of the ring and even cause the formation or
disappearance of the ring.

The influence of parameter changes on the dynamic behaviors in the gravitational
field of small celestial bodies is very complex. Many scholars usually assume uniform
mass distribution when modeling small celestial bodies. However, there may be mascons
inside small celestial bodies, which make the mass distribution uneven. The density and
distribution will inevitably have an impact on the gravitational field environment. Based
on the polyhedron model, Chanut et al. [215] established a small celestial body model
considering mascons. Aljbaae et al. [216] studied the gravitational field environment and
the position of equilibrium points of the (21) Lutetia asteroid in the three cases: no mascons,
three-layer mascons, or four-layer mascons. Chanut et al. [217] studied the orbital stability
in the equatorial plane of the asteroid (101955) Bennu under the conditions of uniform
mass and non-uniform mass distribution and found that, for Bennu, it is more appropriate
to divide the mascon structure into 10 layers. Jiang [218] considered the position and
topology transitions of the equilibrium points in the gravitational field of (2867) Steins
with single-layer similarity, single-layer spherical, multi-layer similarity, and multi-layer
spherical mascons. Jiang et al. [219] studied the bifurcation types corresponding to the
collision and annihilation of equilibrium points during increasing the spin rate of (216)
Kleopatra. It was found that the number of non-degenerate equilibrium points is changed
from seven to five, then to three, and, finally, to 1. Moreover, they found a conserved
quantity about the equilibrium points and deduced that the number of non-degenerate
equilibrium points in the gravitational field of small celestial bodies can only be an odd
number. Considering the shape effect on the environment of the gravitational field, the
homotopy analysis method was used to generate continuous shape variation from small
celestial bodies to simple symmetric geometric bodies (such as spheres, ellipsoids, and
cubes), and the bifurcation phenomena of equilibrium points in the gravitational field are
studied in [220].

4. Summary and Future Development

This paper introduces the general situation of small celestial bodies, summarizes the
history and status of international missions, and sorts out the research progress of the
orbital mechanics of spacecraft, such as modeling the gravitational field, orbital dynam-
ics, surface motion dynamics, and dynamic properties under varying parameters. First,
building an accurate gravitational model of small bodies lays the foundation for research
on orbital dynamics. Taking into account the resource constraints of the onboard com-
puter, how to balance computational efficiency and computational accuracy is still a key
issue in modeling the gravitational field of asteroids. Second, considering the needs and
constraints of real missions, the design of low-energy transfer orbits and corresponding
control schemes deserves more attention. It is an important way to make full use of the
orbital dynamics near asteroid systems, such as invariant manifolds and heteroclinic orbits.
Moreover, studying the evolution of multiple asteroid systems is of great significance
for understanding the origin of the solar system. Finally, the impact monitoring of near-
Earth objects and estimating the impact probability with the Earth is the first step towards
planetary defense. Furthermore, investigations on the means of deflecting a potentially
hazardous object and the evaluation of the defense effectiveness also need the jointed
efforts of international communities.

China achieved the first fly-by exploration of small celestial bodies in 2012 and plans
to implement the mission of orbiting, landing on, and obtaining sampling returns from
small celestial bodies in 2025. At present, the exploration mission of small bodies has
entered the engineering development stage. The core technology needed to realize the
orbiting of and landing on small celestial bodies lies in the orbital dynamics and control of
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spacecraft. The strong irregular shape of small celestial bodies causes their gravitational
fields to be very different. This brings great challenges to the design and control of the
orbit. Therefore, it is necessary to conduct a more comprehensive and in-depth study on
related orbital mechanics.

Author Contributions: Conceptualization, Y.J. and Y.N.; methodology, Y.N.; validation, J.L., H.B.
and Y.L.; formal analysis, Y.N.; investigation, Y.J. and Y.N.; resources, Y.J.; data curation, Y.N.;
writing—original draft preparation, Y.J. and Y.N.; writing—review and editing, Y.L.; visualization,
Y.N.; supervision, J.L. and H.B.; project administration, J.L. and H.B.; funding acquisition, Y.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number U21B2050.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Battin, R.H. An Introduction to the Mathematics and Methods of Astrodynamics, revised ed.; AIAA: Reston, VA, USA, 1999.
2. Breakwell, J.V.; Gillespie, R.W.; Ross, S. Researches in interplanetary transfer. ARS J. 1961, 31, 201–208. [CrossRef]
3. Clarke, V.C., Jr. Design of lunar and interplanetary ascent trajectories. AIAA J. 1963, 1, 1559–1567. [CrossRef]
4. Clarke, V.C., Jr.; Bollman, W.E.; Roth, R.Y.; Scholey, W.J.; Hamilton, T.W. Design Parameters for Ballistic Inter Planetary Trajectories,

Part I. One-Way Transfers to Mars and Venus; JPL Technical Report No. 32–77; The Jet Propulsion Laboratory: La Cañada Flintridge,
CA, USA, 1963.

5. Mickelwait, A.B.; Tompkins, E.H.; Park, R.A. Three-dimensional interplanetary trajectories. IRE Trans. Mil. Electron. 1959, MIL-3,
149–159. [CrossRef]

6. Vasile, M.; Zazzera, F.B. Optimizing low-thrust and gravity assist maneuvers to design interplanetary trajectories. J. Astronaut.
Sci. 2003, 51, 13–35. [CrossRef]

7. Vasile, M. A systematic-heuristic approach for space trajectory design. Ann. N. Y. Acad. Sci. 2004, 1017, 234–254. [CrossRef]
[PubMed]

8. Kubota, T.; Kuroda, Y.; Kunii, Y.; Natakani, I. Small, light-Weight Rover “Micro5” for Lunar Exploration. Acta Astronaut. 2003, 52,
447–453. [CrossRef]

9. Zheng, Y.; Ouyang, Z.; Li, C.; Liu, J.; Zou, Y. China’s Lunar Exploration Program: Present and future. Planet. Space Sci. 2008, 56,
881–886. [CrossRef]

10. Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [CrossRef]
[PubMed]

11. Rayman, M.D.; Varghese, P.; Lehman, D.H.; Livesay, L.L. Results from the Deep Space 1 Technology Validation Mission. Acta
Astronaut. 2000, 47, 475–487. [CrossRef]

12. Jean, I.; Misra, A.; Ng, A.; Dutta, S. Orbital Dynamics of a Spacecraft in the Vicinity of a Binary Asteroid System: Impact of Solar
Radiation Pressure on Orbital Motion. In Proceedings of the 2018 Space Flight Mechanics Meeting, Kissimmee, FL, USA, 8–12
January 2018.

13. Takahashi, Y. Gravity Field Characterization around Small Bodies. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO,
USA, 2013.

14. Martin, R.G.; Livio, M. On the formation and evolution of asteroid belts and their potential significance for life. Mon. Not. R.
Astron. Soc. Lett. 2013, 428, L11–L15. [CrossRef]

15. Lange, C.; Ho, T.M.; Grimm, C.D.; Grundman, J.T.; Ziach, C.; Lichtenheldt, R. Exploring Small Bodies: Nano- and micro lander
options derived from the Mobile Asteroid Surface Scout. Adv. Space Res. 2018, 62, 2055–2083. [CrossRef]

16. Taylor, S.R. Solar System Evolution: A New Perspective; Cambridge University Press: Cambridge, UK, 2001; p. 460.
17. McSween, H., Jr.; Huss, G. Cosmochemistry; Cambridge University Press: Cambridge, UK, 2010.
18. Weidenschilling, S.J. Formation of Planetesimals and Accretion of the Terrestrial Planets. Space Sci. Rev. 2000, 92, 295–310.

[CrossRef]
19. Chapman, C.R.; Morrison, D. Impacts on the Earth by asteroids and comets: Assessing the hazard. Nature 1994, 367, 33–40.

[CrossRef]
20. Trigo-Rodríguez, J.M. Asteroid Impact Risk: Impact Hazard from Asteroids and Comets; Springer: Cham, Switzerland, 2022.
21. Morbidelli, A. Modern Celestial Mechanics: Aspects of Solar System Dynamics; Springer: La Turbie, France, 2002.

21



Mathematics 2022, 10, 2897

22. Shilnikov, L.P.; Shilnikov, A.L.; Turaev, D.V.; Chua, L.O. Methods of Qualitative Theory in Nonlinear Dynamics; World Scientific:
Hackensack, NJ, USA, 2001.

23. Arnold, J.R. The Origin of Meteorites as Small Bodies. II. The Model. Astrophys. J. 1965, 141, 1536–1547. [CrossRef]
24. Wilson, L.; Keil, K.; Love, S.J. The Internal Structures and Densities of Asteroid. Meteorit. Planet. Sci. 1999, 34, 479–483. [CrossRef]
25. IAU Minor Planet Center. Latest Published Data [EB/OL]. Available online: https://minorplanetcenter.net/mpc/summary

(accessed on 10 July 2021).
26. IAU Minor Planet Center. Discovery Circumstances: Numbered Minor Planets [EB/OL]. Available online: http://www.

minorplanetcenter.net/iau/lists/NumberedMPs.html (accessed on 10 July 2021).
27. IAU Minor Planet Center. Minor Planet Names: Alphabetical List [EB/OL]. Available online: http://www.minorplanetcenter.

net/iau/lists/MPNames.html (accessed on 10 July 2021).
28. Morbidelli, A.; Bottke, W.F., Jr.; Froeschl, C.; Michel, P. Origin and evolution of Near-earth Objects. In Asteroids III; Bottke, W.F.,

Cellino, A., Paolicchi, P., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2002; pp. 409–422.
29. Ma, P.; Baoyin, H. Research on the Threat and Defense of Near-Earth Asteroid. J. Deep Space Explor. 2016, 3, 10–17. (In Chinese)
30. Jewitt, D. Kuiper Belt and Comets: An observational perspective. In Trans-Neptunian Objects and Comets, Swiss Society for

Astrophysics and Astronomy; Springer: Berlin/Heidelberg, Germany, 2008.
31. Batygin, K.; Brown, M.E. Evidence for a Distant Giant Planet in the Solar System. Astron. J. 2016, 151, 22. [CrossRef]
32. Brown, M.E.; Batygin, K. Observational Constraints on the Orbit and Location of Planet Nine in the Outer Solar System. Astrophys.

J. Lett. 2016, 824, L23. [CrossRef]
33. Beust, H. Orbital clustering of distant Kuiper Belt Objects by Hypothetical Planet 9. Secular or Resonant? Astron. Astrophys. 2016,

590, L2. [CrossRef]
34. Johnson, T.V.; Fanale, F.P. Optical properties of carbonaceous chondrites and their relationship to asteroids. J. Geophys. Res. 1973,

78, 8507–8518. [CrossRef]
35. Bus, S.J.; Binzel, R.P. Phase II of the Small Main-Belt Asteroid Spectroscopic Survey: A Feature-Based Taxonomy. Icarus 2002, 158,

146–177. [CrossRef]
36. Pieters, C.M.; McFadden, L.A. Meteorite and asteroid reflectance spectroscopy: Clues to early solar system processes. Annu. Rev.

Earth Planet. Sci. 1994, 22, 457–497. [CrossRef]
37. Christou, A.A.; Wiegert, P. A Population of Main Belt Asteroids Co-Orbiting with Ceres and Vesta. Icarus 2012, 217, 27–42.

[CrossRef]
38. Nesvorný, D.; Jedicke, R.; Whiteley, R.J.; Ivezi, E. Evidence for asteroid space weathering from the Sloan Digital Sky Survey. Icarus

2005, 173, 132–152. [CrossRef]
39. Vernazza, P.; Binzel, R.P.; Rossi, A.; Fulchignoni, M.; Birlan, M. Solar wind as the origin of rapid reddening of asteroid surfaces.

Nature 2009, 458, 993–995. [CrossRef]
40. Umbach, R.; Jockers, K.; Geyer, E.H. Spatial Distribution of Neutral and Ionic Constituents in Comet P/Halley. Astron. Astrophys.

Suppl. Ser. 1998, 127, 479–499I. [CrossRef]
41. Hsieh, H.H.; Jewitt, D. A population of comets in the Main Asteroid Belt. Science 2006, 312, 561–563. [CrossRef] [PubMed]
42. Küppers, M.; O’Rourke, L.; Bockelée-Morvan, D.; Zakharov, V.; Lee, S.; von Allmen, P.; Carry, B.; Teyssier, D.; Marston, A.; Muller,

T.; et al. Localized sources of Water Vapour on the Dwarf Planet (1) Ceres. Nature 2014, 505, 525–527. [CrossRef] [PubMed]
43. Ogilvie, K.W.; Coplan, M.A.; Bochsler, P.; Geiss, J. Ion Composition Results During the International Cometary Explorer Encounter

with Giacobini-Zinner. Science 1986, 232, 374–377. [CrossRef]
44. Smith, E.J.; Tsurutani, B.T.; Slavin, J.A.; Jones, D.E.; Siscoe, G.L.; Mendis, D.A. International Cometary Explorer Encounter with

Giacobini-Zinner: Magnetic Field Observations. Science 1986, 232, 382–389. [CrossRef]
45. Von Rosenvinge, T.T.; Brandt, J.C.; Farquhar, R.W. The International Cometary Explorer Mission to Comet Giacobini-Zinner.

Science 1986, 232, 353–356. [CrossRef]
46. Kissel, J.; Brownlee, D.E.; Büchler, K.; Clark, B.; Fechtig, H.; Grun, E.; Hornung, K.; Igenbergs, E.; Jessberger, E.; Krueger, F.; et al.

Composition of Comet Halley Dust Particles from Giotto Observations. Nature 1986, 321, 336–337. [CrossRef]
47. Levasseur-Regourd, A.C.; Bertaux, J.L.; Dumont, R.; Festou, M.; Giese, R.; Giovane, F.; Lamy, P.; Blanc, J.M.; Liebaria, A.; Weinberg,

J.L. Optical Probing of Comet Halley from the Giotto Spacecraft. Nature 1986, 321, 341–344. [CrossRef]
48. McDonnell, J.; Alexander, W.M.; Burton, W.M.; Bussoletti, E.; Clark, D.H.; Grard, R.; Grun, E.; Hanner, M.; Hughes, D.; Igenbergs,

E.; et al. Dust Density and Mass Distribution near Comet Halley from Giotto Observations. Nature 1986, 321, 338–341. [CrossRef]
49. Belton, M.J.S.; Veverka, J.; Thomas, P.; Helfenstein, P.; Simonelli, D.; Chapman, C.; Davies, M.E.; Greeley, R.; Greenberg, R.; Head,

J.; et al. Galileo encounter with 951 Gaspra: First pictures of an asteroid. Science 1992, 257, 1647–1652. [CrossRef]
50. Belton, M.J.S.; Chapman, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D’Amario, L.; Synnott, S.;

Johnson, T.V.; et al. Bulk-Density of Asteroid 243-Ida from the Orbit of Its Satellite Dactyl. Nature 1995, 374, 785–788. [CrossRef]
51. Chapman, C.R.; Veverka, J.; Thomas, P.C.; Klaasen, K.; Belton, M.J.; Harch, A.; McEwen, A.; Johnson, T.V.; Helfenstein, P.; Davies,

M.E.; et al. Discovery and Physical-Properties of Dactyl, a Satellite of Asteroid 243-IDA. Nature 1995, 374, 783–789. [CrossRef]
52. Veverka, J.; Belton, M.; Klaasen, K.; Chapman, C. Galileo’s Encounter with 951 Gaspra: Overview. Icarus 1994, 107, 2–17.

[CrossRef]
53. Veverka, J.; Thomas, P.; Harch, A.; Clark, B.; Bell, J.F., III; Carcich, B.; Cheng, A.; Joseph, J.; Chapman, C.; Malin, M.; et al. NEAR’s

Flyby of 253 Mathilde: Images of a C asteroid. Science 1997, 278, 2109–2114. [CrossRef]

22



Mathematics 2022, 10, 2897

54. Veverka, J.; Thomas, P.; Harch, A.; Clark, B.; Bell, J.F., III; Joseph, J.; Chapman, C.; Miller, J.K.; Cheng, A.; Carcich, B.; et al. NEAR
at Eros: Imaging and Spectral Results. Science 2000, 289, 2088–2097. [CrossRef] [PubMed]

55. Yeomans, D.K.; Barriot, J.P.; Dunham, D.W.; Farquhar, R.W.; Giorgini, J.D.; Helfrich, C.E.; Konopliv, A.S.; McAdams, J.; Miller, J.K.;
Owen, W.M.; et al. Estimating the Mass of Asteroid 253 Mathilde from tracking Data During the NEAR Flyby. Science 1997, 278,
2106–2109. [CrossRef]

56. Yeomans, D.K.; Antreasian, P.G.; Barriot, J.P.; Chesley, S.R.; Dunham, D.W.; Farquhar, R.W.; Giorgini, J.D.; Helfrich, C.E.; Konopliv,
A.S.; McAdams, J.V.; et al. Radio Science Results During the NEAR-Shoemaker Spacecraft Rendezvous with Eros. Science 2000,
289, 2085–2088. [CrossRef]

57. Zuber, M.T.; Smith, D.E.; Cheng, A.F.; Garvin, J.B.; Aharonson, O.; Cole, T.D.; Dunn, P.J.; Guo, Y.; Lemoine, F.G.; Neumann, G.A.;
et al. The Shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder. Science 2000, 289, 2097–2101. [CrossRef]

58. Burton, M.E.; Buratti, B.; Matson, D.L.; Lebreton, J.P. The Cassini/Huygens Venus and Earth flybys: An Overview of Operations
and Results. J. Geophys. Res. Space Phys. 2001, 106, 30099–30107. [CrossRef]

59. Farnham, T.L.; Cochran, A.L. A McDonald Observatory Study of Comet 19P/Borrelly: Placing the Deep Space 1 Observations
into a Broader Context. Icarus 2002, 160, 398–418. [CrossRef]

60. Kerr, R.A. Deep Space 1 Traces Braille Back to Vesta. Science 1999, 285, 993–994. [CrossRef]
61. Soderblom, L.A.; Boice, D.C.; Britt, D.; Brown, R.H.; Buratti, B.J.; Hicks, J.; Hillier, J.; Lee, R.; Meler, R.; Nelson, J.; et al. Deep Space

1 MICAS Observations of 9969 Braille. Bull. Am. Astron. Soc. 1999, 31, 1127.
62. Soderblom, L.A.; Becker, T.L.; Bennett, G.; Boice, D.C.; Britt, D.T.; Brown, R.H.; Buratti, B.J.; Isbell, C.; Giese, B.; Hare, T.; et al.

Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1. Science 2002,
296, 1087–1091. [CrossRef]

63. Belton, M.J.; Meech, K.J.; Chesley, S.; Pittchova, J.; Carcich, B.; Drahus, M.; Harris, A.; Gillam, S.; Veverka, J.; Mastrodemos, N.;
et al. Stardust-NExT, Deep Impact, and the Accelerating Spin of 9P/Tempel 1. Icarus 2011, 213, 345–368. [CrossRef]

64. Brownlee, D.E.; Horz, F.; Newburn, R.L.; Zolensky, M.; Duxbury, T.C.; Sandford, S.; Sekanina, Z.; Tsou, P.; Hanner, M.S.; Clark,
B.C.; et al. Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft. Science 2004, 304, 1765–1769.
[CrossRef]

65. Duxbury, T.C. The Exploration of Asteroid Annefrank by STARDUST; Asteroids Comets Meteors: Berlin, Germany, 2002.
66. Duxbury, T.C. The Flyby of Asteroid Annefrank by STARDUST for Wild2 Testing; Asteroids Comets Meteors: Berlin, Germany, 2002.
67. Farquhar, R.; Kawaguchi, J.I.; Russell, C.; Schwehm, G.; Veverka, J.; Yeomans, D. Spacecraft Exploration of Asteroids: The 2001

Perspective. In Asteroids III; University of Arizona Press: Tucson, AZ, USA, 2002; pp. 367–376.
68. Ishiguro, M.; Kwon, S.M.; Sarugaku, Y.; Hasegawa, S.; Usui, F.; Nishiura, S.; Nakada, Y.; Yano, H. Discovery of the Dust Trail of

the Stardust Comet Sample Return Mission Target: 81P/Wild 2. Astrophys. J. Lett. 2003, 589, L101. [CrossRef]
69. Ishii, H.A.; Bradley, J.P.; Dai, Z.R.; Chi, M.; Kearsley, A.T.; Burchell, M.J.; Browning, N.D. Comparison of Comet 81P/Wild 2 Dust

with Interplanetary Dust from Comets. Science 2008, 319, 447–450. [CrossRef]
70. Kissel, J.; Krueger, F.R.; Silén, J.; Clark, B.C. The Cometary and Interstellar Dust Analyzer at Comet 81P/Wild 2. Science 2004, 304,

1775–1776. [CrossRef]
71. Sekanina, Z.; Brownlee, D.E.; Economou, T.E.; Tuzzolino, A.J.; Green, S.F. Modeling the Nucleus and Jets of Comet 81P/Wild 2

Based on the Stardust Encounter Data. Science 2004, 304, 1769–1774. [CrossRef]
72. Abe, S.; Mukai, T.; Hirata, N.; Barnouin-Jha, O.S.; Cheng, A.F.; Demura, H.; Gaskell, R.W.; Hashimoto, T.; Hiraoka, K.; Honda, T.

Mass and local Topography Measurements of Itokawa by Hayabusa. Science 2006, 312, 1345–1347. [CrossRef]
73. Fujiwara, A.; Kawaguchi, J.; Yeomans, D.K.; Abel, M.; Mukai, T.; Okada, T.; Saito, J.; Yano, H.; Yoshikawa, M.; Scheeres, D.J. The

rubble-Pile Asteroid Itokawa as Observed by Hayabusa. Science 2006, 312, 1330–1334. [CrossRef]
74. Kaasalainen, M.; Kwiatkowski, T.; Abe, M.; Piironen, J.; Nakamura, T.; Ohba, Y.; Dermawan, B.; Farnham, T.; Colas, F.; Lowry, S.

CCD Photometry and Model of MUSES-C Target (25143) 1998 SF36. Astron. Astrophys. 2003, 405, L29–L32. [CrossRef]
75. Saito, J.; Miyamoto, H.; Nakamura, R.; Ishiguro, M.; Michikami, T.; Nakamura, A.M.; Demrua, H.; Sasaki, S.; Hirata, N.; Honda,

C.; et al. Detailed Images of Asteroid 25143 Itokawa from Hayabusa. Science 2006, 312, 1341–1344. [CrossRef]
76. Yano, H.; Kubota, T.; Miyamoto, H.; Okada, T.; Scheeres, D.J.; Takagi, Y.; Yoshida, K.; Abe, M.; Abe, S.; Barnouin-Jha, O.; et al.

Touchdown of the Hayabusa Spacecraft at the Muses Sea on Itokawa. Science 2006, 312, 1350–1353. [CrossRef]
77. Barucci, M.A.; Fulchignoni, M.; Rossi, A. Rosetta Asteroid Targets: 2867 Steins and 21 Lutetia. Space Sci. Rev. 2007, 128, 67–78.

[CrossRef]
78. Barucci, M.A.; Fulchignoni, M.; Fornasier, S.; Dotto, E.; Vernazza, P.; Birlan, M.; Binzel, R.; Carvano, J.; Merlin, F.; Barbieri, C.; et al.

Asteroid Target Selection for the New Rosetta Mission Baseline: 21 Lutetia and 2867 Steins. Astron. Astrophys. 2005, 430, 313–317.
[CrossRef]

79. Glassmeier, K.H.; Boehnhardt, H.; Koschny, D.; Kuhrt, E.; Richter, I. The Rosetta Mission: Flying Towards the Origin of the Solar
System. Space Sci. Rev. 2007, 128, 1–21. [CrossRef]

80. Scheeres, D.J.; Marzari, F.; Tomasella, L.; Vanzani, V. ROSETTA Mission: Satellite Orbits Around a Cometary Nucleus. Planet.
Space Sci. 1998, 46, 649–671. [CrossRef]

81. Ulamec, S.; Espinasse, S.; Feuerbacher, B.; Hilchenhach, M.; Moura, D.; Rosenbauer, H.; Scheuerle, H.; Willnecker, R. Rosetta
Lander—Philae: Implications of an Alternative Mission. Acta Astronaut. 2006, 58, 435–441. [CrossRef]

23



Mathematics 2022, 10, 2897

82. A’Hearn, M.F.; Belton, M.J.S.; Delamere, W.A.; Kissel, J.; Klaasen, K.; McFadden, L.; Meech, K.; Melosh, H.; Schultz, P.; Sunshine,
J.; et al. Deep Impact: Excavating Comet Tempel 1. Science 2005, 310, 258–264. [CrossRef] [PubMed]

83. Harker, D.E.; Woodward, C.E.; Wooden, D.H. The Dust Grains from 9P/Tempel 1 Before and After The Encounter with Deep
Impact. Science 2005, 310, 278–280. [CrossRef]

84. Lisse, C.M.; Van Cleve, J.; Adams, A.C.; Ahearn, M.F.; Ferhandez, Y.R.; Farham, T.L.; Armus, L.; Grillmarir, C.J.; Ingalls, J.;
Sunshine, J.M. Spitzer Spectral Observations of the Deep Impact Ejecta. Science 2006, 313, 635–640. [CrossRef]

85. A’Hearn, M.F.; Belton, M.J.; Delamere, W.A.; Feaga, L.M.; Hampton, D.; Kissel, J.; Klaasen, K.P.; McFadden, L.A.; Meech, K.J.;
Melosh, H.J.; et al. EPOXI at Comet Hartley 2. Science 2011, 332, 1396–1400. [CrossRef]

86. Meech, K.J.; A’Hearn, M.F.; Adams, J.A.; Bacci, P.; Bai, J.; Barrera, L.; Battelino, M.; Bauer, J.M.; Becklin, E.; Bhatt, B.; et al. EPOXI:
Comet 103P/Hartley 2 Observations from a Worldwide Campaign. Astrophys. J. Lett. 2011, 734, L1. [CrossRef]

87. Stern, S.A. The New Horizons Pluto Kuiper belt mission: An overview with historical context. In New Horizons; Springer: Los
Angeles, CA, USA, 2009.

88. Rayman, M.D.; Fraschetti, T.C.; Raymond, C.A.; Russell, C. Dawn: A Mission in Development for Exploration of Main Belt
Asteroids Vesta and Ceres. Acta Astronaut. 2006, 58, 605–616. [CrossRef]

89. Reddy, V.; Nathues, A.; Le Corre, L.; Sierks, H.; Li, J.; Gaskell, R.; McCoy, T.; Beck, A.W.; Schroder, S.E.; Pieters, C.M.; et al. Color
and Albedo Heterogeneity of Vesta from Dawn. Science 2012, 336, 700–704. [CrossRef] [PubMed]

90. Russell, C.T.; Capaccioni, F.; Coradini, A.; Sanctis, M.C.; Feldman, W.C.; Jaumann, R.; Keller, H.U.; McCord, T.B.; McFadden, L.A.;
Mottola, S.; et al. Dawn Mission to Vesta and Ceres. Earth Moon Planets 2007, 101, 65–91. [CrossRef]

91. Russell, C.T.; Raymond, C.A.; Coradini, A.; McSween, H.Y.; Zuber, M.T.; Nathues, A.; Sanctis, M.C.D.; Jaumann, R.; Konopliv,
A.S.; Preusker, F. Dawn at Vesta: Testing the Protoplanetary Paradigm. Science 2012, 336, 685–686. [CrossRef] [PubMed]

92. Huang, J.; Ji, J.; Ye, P.; Wang, X.; Yan, J.; Meng, L.; Wang, S.; Li, C.; Li, Y.; Qiao, D.; et al. The Ginger-Shaped Asteroid 4179 Toutatis:
New Observations from a Successful Flyby of Chang’e-2. Sci. Rep. 2013, 3, 3411. [CrossRef]

93. Zhao, Y.; Wang, S.; Hu, S.; Ji, J. A Research on the Imaging Strategy and Imaging Simulation of Toutatis in the Chang’e-2 Flyby
Mission. Chin. Astron. Astrophys. 2014, 38, 163–171.

94. Zou, X.; Li, C.; Liu, J.; Wang, W.; Li, H.; Ping, J. The Preliminary Analysis of the 4179 Toutatis Snapshots of the Chang’E-2 Flyby.
Icarus 2014, 229, 348–354. [CrossRef]

95. Hamilton, D.P.; Burns, J.A. Orbital Stability Zones About Asteroids: II. The Destabilizing Effects of Eccentric Orbits and of Solar
Radiation. Icarus 1992, 96, 43–64. [CrossRef]

96. Yu, Y. Research on Orbital Dynamics in Gravitational Field of Small Celestial Bodies. Ph.D. Thesis, Tsinghua University, Beijing,
China, 2014.

97. Riaguas, A.; Elipe, A.; López-Moratalla, T. Non-Linear Stability of the Equilibria in the Gravity Field of a Finite Straight Segment.
Celest. Mech. Dyn. Astron. 2001, 81, 235–248. [CrossRef]

98. Broucke, R.; Elipe, A. The Dynamics of Orbits in a Potential Field of a Solid Circular Ring. Regul. Chaotic Dyn. 2005, 10, 129–143.
[CrossRef]

99. Romanov, V.A.; Doedel, E.J. Periodic Orbits Associated with the Libration Points of the Homogeneous Rotating Gravitating
Triaxial Ellipsoid. Int. J. Bifurc. Chaos 2012, 22, 1230035. [CrossRef]

100. Zeng, X.; Jiang, F.; Li, J.; Baoyin, H. Study on the Connection Between the Rotating Mass Dipole and Natural Elongated Bodies.
Astrophys. Space Sci. 2015, 356, 29–42. [CrossRef]

101. Liu, L. Spacecraft Orbit Theory; National Defense Industry Press: Beijing, China, 2000. (In Chinese)
102. Miller, J.K.; Konopliv, A.S.; Antreasian, P.G.; Bordi, J.J.; Chesley, S.; Helfrich, C.E.; Scheeres, D.J.; Owen, W.M.; Wang, T.C.;

Williams, B.G.; et al. Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros. Icarus 2002, 155, 3–17. [CrossRef]
103. Takahashi, Y.; Grebow, D.; Kennedy, B.; Rambaux, N.; Castillo-Rogez, J. Forward Modeling of Ceres’ Gravity Field for Planetary

Protection Assessment. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA, USA, 13–16
September 2016; AIAA: Reston, VA, USA, 2016; p. 5262.

104. Takahashi, Y.; Bradley, N.; Kennedy, B. Determination of Celestial Body Principal Axes via Gravity Field Estimation. J. Guid.
Control Dyn. 2017, 40, 3050–3060. [CrossRef]

105. Romain, G.; Jean-Pierre, B. Ellipsoidal Harmonic Expansions of the Gravitational Potential: Theory and Application. Celest. Mech.
Dyn. Astron. 2001, 79, 235–275. [CrossRef]

106. Rossi, A.; Marzari, F.; Farinella, P. Orbital Evolution Around Irregular Bodies. Earth Planets Space 1999, 51, 1173–1180. [CrossRef]
107. Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press: Cambridge, UK, 1931.
108. Pick, M.; Picha, J.; Vyskocil, V. Theory of the Earth’s Gravity Field; Elsevier Scientific Pub Co.: Amsterdam, The Netherlands, 1973.
109. Dechambre, D.; Scheeres, D.J. Transformation of Spherical Harmonic Coefficients to Ellipsoidal Harmonic Coefficients. Astron.

Astrophys. 2002, 387, 1114–1122. [CrossRef]
110. Garmier, R.; Barriot, J.P.; Konopliv, A.S.; Yeomans, D.K. Modeling of the Eros gravity Field as an Ellipsoidal Harmonic Expansion

from the NEAR Doppler Tracking Data. Geophys. Res. Lett. 2002, 29, 721–723. [CrossRef]
111. Britt, D.T.; Yeomans, D.; Housen, K.; Consolmagno, G. Asteroid Density, Porosity, and Structure. In Asteroids III; University of

Arizona Press: Tucson, AZ, USA, 2002; pp. 485–500.
112. Geissler, P.; Petit, J.M.; Durda, D.D.; Greenberg, R.; Bottke, W.; Nolan, M.; Moore, J. Erosion and Ejecta Reaccretion on 243 Ida and

Its Moon. Icarus 1996, 120, 140–157. [CrossRef]

24



Mathematics 2022, 10, 2897

113. MacMillan, W.D. The Theory of the Potential; McGraw-Hill: New York, NY, USA, 1930.
114. Waldvogel, J. The Newtonian Potential of Homogeneous Polyhedra. Z. Angew. Math. Phys. ZAMP 1979, 30, 388–398. [CrossRef]
115. Werner, R.A. The Gravitational Potential of a Homogeneous Polyhedron or Don’t Cut Corners. Celest. Mech. Dyn. Astron. 1994,

59, 253–278. [CrossRef]
116. Werner, R.A. On the Gravity Field of Irregularly Shaped Celestial Bodies; The University of Texas at Austin: Austin, TX, USA, 1996.
117. Werner, R.A.; Scheeres, D.J. Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation

Representations of Asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 1996, 65, 313–344. [CrossRef]
118. Mirtich, B. Fast and Accurate Computation of Polyhedral Mass Properties. J. Graph. Tools 1996, 1, 31–50. [CrossRef]
119. Nolan, M.C.; Magri, C.; Howell, E.S.; Benner, L.A.; Giorgini, J.D.; Hergenrother, C.W.; Scheeres, D.J.; Hudson, R.S.; Ostro, S.J.;

Lauretta, D.S.; et al. Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and
lightcurve observations. Icarus 2013, 226, 629–640. [CrossRef]

120. Zhuravlev, S.G. About the Stability of the Libration Points of a Rotating Triaxial Ellipsoid in a Degenerate Case. Celest. Mech.
1973, 8, 75–84. [CrossRef]

121. Scheeres, D.J. Dynamics about Uniformly Rotating Triaxial Ellipsoids: Applications to Asteroids. Icarus 1994, 110, 225–238.
[CrossRef]

122. Scheeres, D.J.; Ostro, S.J.; Hudson, R.S.; Werner, R.A. Orbits Close to Asteroid 4769 Castalia. Icarus 1996, 121, 67–87. [CrossRef]
123. Elipe, A.; Lara, M. A Simple Model for the Chaotic Motion Around (433) Eros. J. Astronaut. Sci. 2003, 51, 391–404. [CrossRef]
124. Scheeres, D.; Broschart, S.; Ostro, S.; Benner, L. The Dynamical Environment About Asteroid 25143 Itokawa, Target of the

Hayabusa Mission. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, RI, USA,
16–19 August 2004; AIAA: Reston, VA, USA, 2004; p. 4864.

125. Mondelo, J.M.; Broschart, S.; Villac, B. Dynamical Analysis of 1:1 Resonances Near Asteroids-Application to Vesta. In Proceedings
of the AIAA/AAS Astrodynamics Specialist Conference, Toronto, ON, Canada, 2–5 August 2010; AIAA: Reston, VA, USA, 2010;
p. 8373.

126. Liu, X.; Baoyin, H.; Ma, X. Equilibria, Periodic Orbits Around Equilibria, and Heteroclinic Connections in the Gravity Field of a
Rotating Homogeneous Cube. Astrophys. Space Sci. 2011, 333, 409–418. [CrossRef]

127. Yu, Y.; Baoyin, H. Orbital Dynamics in the Vicinity of Asteroid 216 Kleopatra. Astron. J. 2012, 143, 62. [CrossRef]
128. Scheeres, D.J. Orbit Mechanics About Asteroids and Comets. J. Guid. Control Dyn. 2012, 35, 987. [CrossRef]
129. Jiang, Y.; Baoyin, H.; Li, J.; Li, H. Orbits and Manifolds near the Equilibrium Points Around a Rotating Asteroid. Astrophys. Space

Sci. 2014, 349, 83–106. [CrossRef]
130. Wang, X.; Jiang, Y.; Gong, S. Analysis of the Potential Field and Equilibrium Points of Irregular-shaped Minor Celestial Bodies.

Astrophys. Space Sci. 2014, 353, 105–121. [CrossRef]
131. Jiang, Y.; Yu, Y.; Baoyin, H. Topological Classifications and Bifurcations of Periodic Orbits in the Potential Field of Highly

Irregular-Shaped Celestial Bodies. Nonlinear Dyn. 2015, 81, 119–140. [CrossRef]
132. Wang, X.; Li, J.; Gong, S. Bifurcation of Equilibrium Points in the Potential Field of Asteroid 101955 Bennu. Mon. Not. R. Astron.

Soc. 2016, 455, 3725–3734. [CrossRef]
133. Scheeres, D.J. Analysis of Orbital Motion Around 433 Eros. J. Astronaut. Sci. 1995, 43, 427–452.
134. Scheeres, D.J.; Ostro, S.J.; Hudson, R.S.; Dejong, E.M.; Suzuki, S. Dynamics of Orbits Close to Asteroid 4179 Toutatis. Icarus 1998,

132, 53–79. [CrossRef]
135. Antreasian, P.; Helfrich, C.; Miller, J.; Owen, W.; Williams, B.; Yeomans, D.; Giorgini, J.; Dunham, D.; Farquhar, R.; McAdams,

J. Preliminary Considerations for NEAR’s Low-Altitude Passes and Landing Operations at 433 Eros. In Proceedings of the
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, MA, USA, 10–12 August 1998; AIAA: Reston, VA, USA,
1998; p. 4397.

136. Scheeres, D.J.; Williams, B.G.; Miller, J.K. Evaluation of the Dynamic Environment of an Asteroid: Applications to 433 Eros. J.
Guid. Control Dyn. 2000, 23, 466–479. [CrossRef]

137. Shang, H.; Wu, X.; Qin, X.; Qiao, D. Periodic motion near non-principal-axis rotation asteroids. Mon. Not. R. Astron. Soc. 2017,
471, 3234–3244. [CrossRef]

138. Scheeres, D.J.; Hu, W. Secular Motion in a 2nd Degree and Order-Gravity Field with No Rotation. Celest. Mech. Dyn. Astron. 2001,
79, 183–200. [CrossRef]

139. Hu, W.; Scheeres, D.J. Spacecraft Motion About Slowly Rotating Asteroids. J. Guid. Control Dyn. 2002, 25, 765–779. [CrossRef]
140. Hu, W.; Scheeres, D.J. Numerical Determination of Stability Regions for Orbital Motion in Uniformly Rotating Second Degree

and Order Gravity Fields. Planet. Space Sci. 2004, 52, 685–692. [CrossRef]
141. Hu, W.D.; Scheeres, D.J. Periodic Orbits in Rotating Second Degree and Order Gravity Fields. Chin. J. Astron. Astrophys. 2008, 8,

108. [CrossRef]
142. Hu, W.D.; Scheeres, D.J. Averaging Analyses for Spacecraft Orbital Motions Around Asteroids. Acta Mech. Sin. 2014, 30, 295–300.

[CrossRef]
143. Scheeres, D.J. Orbital Mechanics About Small Bodies. Acta Astronaut. 2012, 72, 1–14. [CrossRef]
144. Yu, Y.; Baoyin, H. Generating Families of 3D Periodic Orbits About Asteroids. Mon. Not. R. Astron. Soc. 2012, 427, 872–881.

[CrossRef]
145. Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry; Springer: New York, NY, USA, 1999.

25



Mathematics 2022, 10, 2897

146. Yu, Y.; Baoyin, H.; Jiang, Y. Constructing the Natural Families of Periodic Orbits near Irregular Bodies. Mon. Not. R. Astron. Soc.
2015, 453, 3269–3277. [CrossRef]

147. Wang, Y.; Xu, S. Non-equatorial equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation.
Astrodynamics 2020, 4, 1–16. [CrossRef]

148. Li, X.; Scheeres, D.J.; Qiao, D.; Liu, Z. Geophysical and orbital environments of asteroid 469219 2016 HO3. Astrodynamics 2022, 2,
1–21. [CrossRef]

149. Liang, Y.; Xu, M.; Xu, S. Homoclinic/Heteroclinic Connections of Equilibria and Periodic Orbits of Contact Binary Asteroids. J.
Guid. Control Dyn. 2017, 40, 2042–2061. [CrossRef]

150. Hou, X.; Xin, X. A note on the full two-body problem and related restricted full three body problem. Astrodynamics 2018, 2, 39–52.
[CrossRef]

151. Shi, Y.; Wang, Y.; Xu, S. Equilibrium Points and Associated Periodic Orbits in the Gravity of Binary Asteroid Systems: (66391)
1999 KW4 as an Example. Celest. Mech. Dyn. Astron. 2018, 130, 32. [CrossRef]

152. Wang, Y.; Fu, T. Semi-analytical orbital dynamics around the primary of a binary asteroid system. Mon. Not. R. Astron. Soc. 2020,
495, 3307–3322. [CrossRef]

153. Richardson, D.C.; Leinhardt, Z.M.; Melosh, H.J.; Bottke, W.F. Gravitational aggregates: Evidence and evolution. Asteroids III 2002,
1, 501–515.

154. Jiang, Y.; Zhang, Y.; Baoyin, H.; Li, J. Dynamical configurations of celestial systems comprised of multiple irregular bodies.
Astrophys. Space Sci. 2016, 361, 306. [CrossRef]

155. Valvano, G.; Winter, O.C.; Sfair, R.; Oliverira, R.M.; Borderes-Motta, G. 2001 SN263—the contribution of their irregular shapes on
the neighbourhood dynamics. Mon. Not. R. Astron. Soc. 2022, 515, 606–616. [CrossRef]

156. Wang, X. Research on Dynamics near the Equilibrium Points of Irregular Small Celestial Bodies. Ph.D. Thesis, Tsinghua University,
Beijing, China, 2017.

157. Chanut, T.G.G.; Winter, O.C.; Tsuchida, M. 3D Stability Orbits Close to 433 Eros Using an Effective Polyhedral Model Method.
Mon. Not. R. Astron. Soc. 2014, 438, 2672–2682. [CrossRef]

158. Chanut, T.G.G.; Winter, O.C.; Amarante, A.; Araujo, N.C. 3D Plausible Orbital Stability Close to Asteroid (216) Kleopatra. Mon.
Not. R. Astron. Soc. 2015, 452, 1316–1327. [CrossRef]

159. Zhao, Z.; Chen, L. Chemical Chaos in Enzyme Kinetics. Nonlinear Dyn. 2009, 57, 135–142. [CrossRef]
160. Farshidianfar, A.; Saghafi, A. Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems. Nonlinear Dyn.

2014, 75, 783–806. [CrossRef]
161. Nordstrøm Jensen, C.; True, H. On a New Route to Chaos in Railway Dynamics. Nonlinear Dyn. 1997, 13, 117–129. [CrossRef]
162. Gao, Q.; Ma, J. Chaos and Hopf Bifurcation of a Finance System. Nonlinear Dyn. 2009, 58, 209–216. [CrossRef]
163. Hu, W.; Deng, Z.; Wang, B.; Ouyang, H. Chaos in an Embedded Single-Walled Carbon Nanotube. Nonlinear Dyn. 2013, 72,

389–398. [CrossRef]
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Abstract: This paper addresses the problem of spatiotemporal wind velocity field estimation for air
traffic management applications. Using data obtained from aircraft, the eastward and northward
components of the wind velocity field inside a specific air space are calculated as functions of time.
Both short-term wind velocity field forecasting and wind velocity field reconstruction are performed.
Wind velocity data are indirectly obtained from the states of the aircraft flying in the relevant airspace,
which are broadcast by the ADS-B and Mode-S aircraft surveillance systems. The wind velocity field
is estimated by combining two data-driven techniques: the polynomial chaos expansion and the
Gaussian process regression. The former approximates the global behavior of the wind velocity field,
whereas the latter approximates the local behavior. The eastward and northward wind components
of the wind velocity field must be estimated, which causes the problem to be a multiple-output
problem. This method enables the estimation of the wind velocity field at any spatiotemporal location
using wind velocity observations from any spatiotemporal location, eliminating the need for spatial
and temporal grids. Moreover, since the method proposed in this article allows for the probability
distributions of the estimates to be computed, it causes the computation of the confidence intervals to
be possible. Furthermore, since the method presented in this paper allows for data assimilation, it
can be used online to continuously update the wind velocity field estimation. The method is tested
on different wind scenarios and different training-test data configurations, by means of which the
consistency between the results of the wind velocity field forecasting and the wind velocity field
reconstruction is checked. Finally, the ERA5 meteorological reanalysis data of the European Centre
for Medium-Range Weather Forecasts are used to validate the proposed technique. The results show
that the method is able to reliably estimate the wind velocity field from aircraft-derived data.

Keywords: polynomial chaos expansion; Gaussian process regression; air traffic management; wind
velocity field estimation; ADS-B; Mode S

MSC: 62M20

1. Introduction

1.1. Motivation

Uncertainty is pervasive in the Air Traffic Management (ATM) system, and weather is
one of the most significant sources of uncertainty. Four-Dimensional (4D) trajectories will
be central elements in the future ATM paradigm; it relies on Trajectory-Based Operations
(TBO) because aircraft will be allowed to fly 4D trajectories based on the preferences of
the airlines, with the obligation to precisely follow them for traffic synchronization. This
means that aircraft trajectories must be predicted with great precision based on reliable me-
teorological forecasts. Therefore, precise wind information is required to increase trajectory
predictability, i.e., the correspondence between planned and actual trajectories [1,2].
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Currently, most wind predictions used in aircraft trajectory planning come from
Numerical Weather Prediction (NWP) models. NWP meteorological forecasts have a low
update rate, typically once every 6 h, and have a coarse spatial resolution. Moreover,
observations are mainly gathered from radiosondes, which are launched at specific times,
no more than four times per day. All these factors cause using NWP to be inadequate for
TBO [3,4]. Therefore, using aircraft-derived data could improve the spatial and temporal
resolution of wind forecasts [5].

This paper studies the problem of the spatiotemporal estimation of the wind velocity
field within a given air space, in which the eastward and northward components of the
wind velocity field are estimated as functions of time using aircraft-derived data. Both
short-term wind velocity field forecasting and wind velocity field reconstruction are carried
out within a specific air space, in this case, the Terminal Maneuvering Area of the Adolfo
Suarez Madrid-Barajas (LEMD) airport, which is located at an altitude of 610 m above
sea level. More precisely, the considered airspace is a cuboidal region with a base size of
500× 500 km centered at the LEMD airport, with heights ranging from 0.61 km to 14 km.
In particular, Mode-S and ADS-B surveillance systems [6,7] will be used in this article
to derive the wind velocity, which is indirectly obtained using the relation among the
following vectors: the ground speed, the air speed, and the wind velocity itself. A detailed
description of the ADS-B and Mode-S technologies can be found in [7].

Several atmospheric data assimilation techniques, which are intended to combine
different information sources to estimate the state of the atmosphere, were developed [8].
However, most methods for assimilating these non-conventional aircraft-derived meteoro-
logical data are designed to assimilate them into NWP models [9–11].

In this article, a different approach to the problem of estimating the state of the
atmosphere using aircraft-derived meteorological data is followed. Specifically, the problem
of wind velocity field estimation using aircraft-derived wind observations is solved based
on a combination of the Polynomial Chaos Expansion (PCE) and the Gaussian Process
Regression (GPR) methods, which will be referred to as PCE-GPR. The wind is modeled
as a random field with the spatiotemporal position as the input and the wind velocity as
the output. The combination of these two techniques is suitable for representing random
fields since the PCE models the mean function of the random field and approximates the
global behavior of the wind velocity field, whereas the GPR represents the auto-covariance
function and approximates the local behavior of such a wind velocity field.

1.2. State of the Art

In [12], a Kalman Filter (KF) was used to estimate the wind speed profile along descent
paths using aircraft-derived data. The KF was adapted to account for the uncertainty due
to the distance at which observations are collected. This uncertainty was added to the
measurement covariance matrix of the KF as a function of the horizontal distance between
the observation and estimation locations.

In [13], a novel algorithm for inferring the wind velocity vector from ADS-B data,
capable of working in both small and large turning angle situations, is studied. A circle
fitting problem is considered, and a sequential least squares optimization algorithm is used.

In [14], the Kriging technique was employed to estimate the wind velocity and temper-
ature fields in the airspace surrounding an airport using aircraft-derived data. Moreover,
the same technique was used to predict wind velocity and temperature profiles along
descending paths.

In [15], a novel technique that combines particle filtering and Lagrangian transporta-
tion was used to partially reconstruct the wind velocity and temperature fields in those
regions of the airspace surrounding an airport where a sufficient amount of aircraft-derived
data are available. In [16], the technique was further studied, where meteo-particle pa-
rameters were optimized and an extrapolation method, based on Delaunay triangulation,
to construct a complete wind velocity field was presented.
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In [2], the B-splines method was employed to estimate the wind speed profile along
descent paths using aircraft-derived data to update the optimal descent trajectory in real-
time.

In [17], two approaches to improve the wind velocity data to support TBO are ex-
plored: by providing interpolated inter-forecast wind velocity and temperature data and by
using aircraft-derived atmospheric observations, such as wind velocity and temperature,
to update the forecasted conditions.

In [18], a comparison between several techniques based on the KF and the GPR for
wind speed profile estimation from aircraft-derived data in the vertical direction of a
given geographical location was conducted, showing that the technique based on the GPR
outperforms the methods based on the KF.

In [19], the techniques based on the KF and the GPR for wind speed profile estimation
from aircraft-derived data presented in [18] were generalized to wind velocity profile
estimation in the vertical direction of a given geographical location, showing that the
technique based on the GPR outperforms the methods based on the KF in this case as well.

Finally, in [20], the GPR technique presented in [19] for wind velocity profile estimation
in the vertical direction of a given geographical location was extended to the reconstruction
and the short-term prediction of the wind velocity field within a given air space. The results
showed that the reconstruction has a performance comparable to that of the method
proposed in [15] with the advantage of providing an estimate of the entire wind velocity
field within a given air space.

In this paper, the PCE is used to enhance the GPR technique. In [21], Wiener first
introduced the term PCE for representing the Gaussian distributions using Hermite poly-
nomials.

In [22], the Wiener PCE was extended to other canonical distributions. In [23], the PCE
was further extended to arbitrary distributions, which can be specified either analytically,
numerically as histograms, or as raw data sets with the introduction of the arbitrary
Polynomial Chaos Expansion (aPCE). The aPCE only requires the existence of a finite
number of statistical moments and does not rely on the complete knowledge or even on the
existence of a probability density function. The aPCE is especially suitable for data-driven
applications where no other information is known about the probability distribution of the
data, as it eliminates the need to assign parametric probability distributions not sufficiently
supported by the available data.

The main contribution of this paper is an innovative method, the PCE-GPR technique,
for the reconstruction and short-term prediction of the wind velocity field. The method
is iterative and fast, ensuring real-time assimilation of aircraft-derived data is possible.
Additionally, the PCE-GPR approach, which previously only allowed for the estimation
of scalar output variables, is extended in this study to estimate two output variables: the
wind velocity components.

In this paper, the GPR technique employed in [20] is combined with PCE to solve
the same problem, generalizing and improving the previous methodology. The PCE-GPR
technique was recently introduced in [24] for uncertainty quantification and in [25] for
rare event estimation. In both articles, it is referred to as Polynomial Chaos Kriging (PCK).
To the best of the authors’ knowledge, the PCE-GPR method has not yet been used for
wind velocity field reconstruction and wind velocity field short-term forecasting using
aircraft-derived data.

Notice that the terms Kriging and GPR are used interchangeably in the literature.
Indeed, GPR and Kriging are essentially the same method, with differences in notation,
conceptualization, and in the computation of the confidence intervals of the estimations [26].

The capability of the PCE-GPR method to reconstruct the wind velocity field and to
provide short-term predictions within a certain air space was tested using historical aircraft-
derived data. Wind velocity observations from two different days characterized by different
wind behaviors were chosen. In particular, on the first day, the wind was weaker with a
higher degree of directional dispersion, whereas, on the second day, it was stronger with a
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lower degree of directional dispersion. The data sets were split into training and test sets
in two different ways, namely by randomly selecting sets of individual observations and
by randomly selecting sets of flights. Moreover, the wind velocity field estimates obtained
through the PCE-GPR method were validated using the meteorological reanalysis data
retrieved from the ERA5 repository of the European Centre for Medium-Range Weather
Forecasts (ECMWF). The results of the validation show that the estimates are consistent
with the reanalysis data, demonstrating the capability of the method presented in this
article to estimate the wind velocity even in those regions of the air space in which a
reduced number of observations are available.

The paper is structured as follows. The procedure for obtaining the aircraft-derived
data and the results of the exploratory analysis of the obtained data sets are described
in Section 2.1. The GPR technique is introduced in Section 2.2, and the mathematical
development of the PCE method is described in Section 2.3. The combination of both
methods is explained in Section 2.4, and the extension of the PCE-GPR method to multi-
output processes is presented in Section 2.5. The results of the numerical experiments are
described in Section 3 and discussed in Section 4. Finally, Section 5 contains the conclusions.

2. Methods

2.1. Data Derivation and Exploratory Analysis

This section presents the procedure through which the wind velocity information is
derived from the ADS-B and Mode S data. In addition, the main results of the exploratory
analysis of these aircraft-derived data are also summarized.

2.1.1. Data Source

The data employed in this work were supplied by the Spanish Air Navigation Service
Provider (ENAIRE). Specifically, the data were extracted from the All-Purpose Structured
EUROCONTROL Surveillance Information Exchange (ASTERIX) database, which contains
a great amount of flight information, as described in the technical reports of EUROCON-
TROL [27], from which the ADS-B [28] and Mode-S [29] data were obtained. More precisely,
two data sets were extracted from this database. The observations of the first data set,
which contains data with lower wind speeds and higher dispersion in the wind direction,
correspond to 23 February 2020. It will be referred to as the Day 1 data set. The observations
of the second data set, which contains data with higher wind speeds and lower dispersion
in the wind direction, correspond to 21 December 2019. It will be referred to as the Day 2
data set. The observations in both data sets were obtained from 08:00 to 14:00 UTC, which
corresponds to the time period with the maximum level of traffic at the LEMD airport.

2.1.2. ADS-B and Mode S Systems

The ADS-B system automatically transmits the position and ground speed of the
aircraft approximately every 0.5 s. Mode S is a selective interrogation system used to
transmit additional flight information. Aircraft are interrogated by surveillance radars
and reply through a transponder by means of the so-called Mode S Enhanced Surveillance
communication protocol. In fact, the Mode S extended squitter transponder is the most
common implementation of ADS-B. In particular, as described in [29], binary data store
registers 50 and 60 contain the information necessary for deriving the wind velocity, as it
will be explained in Section 2.1.3. For further details on surveillance technologies, the reader
is referred to [7].

2.1.3. Wind Velocity Derivation from ADS-B and Mode S Data

The vector that represents the wind velocity can be obtained as the difference between
the vectors that represent the ground speed and the actual airspeed using the true airspeed,
the ground speed, and the heading and track angles. The relationship between the ground
speed, true airspeed, and wind velocity vectors, denoted as Vgs, Vtas, and Vw, respectively,
is shown in Figure 1, where χg, χa, and χw represent the track angle, the heading angle,
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and the wind direction angle, respectively. Thus, the wind velocity data sets employed in
this work were built from the wind velocity observations derived from different aircraft
states, which were obtained through the ADS-B and Mode-S surveillance technologies.

χw

χa

χg

Vgs

Vw

Vtas

Figure 1. Relationship among the true airspeed, ground speed, and wind velocity vectors.

2.1.4. Exploratory Data Analysis

Table 1 shows the main statistics of the wind velocity of the Day 1 and Day 2 data sets.
Circular statistics were used to compute the mean and dispersion of angles [30]. It can be
seen that the average wind speed in the Day 2 data set is around 3 times larger than in
the Day 1 data set, whereas the dispersion of the wind direction is about 10 times lower.
The dispersion of the wind direction, in circular statistics, is measured by a percentage.
A 100% dispersion means that the direction of the wind velocity observations is uniformly
distributed in all directions, whereas a 0% dispersion means that all the wind velocity
observations have the same direction.

Table 1. Main statistics of the wind velocity.

Wind Speed (m/s) Wind Direction (Deg)

Day 1 Day 2 Day 1 Day 2

Min. 0 0.013 0.01 163.79
Max. 56.04 100.75 359.99 351.55
Mean 17.80 60.56 307.16 166.66
Dispersion 11.30 16.67 19.40 (%) 2.11 (%)

The spatial configuration of the Day 1 data set is represented in Figure 2, in which the
coverage region over the Iberian Peninsula, together with the flight routes, can be observed.
Using this kind of data set to estimate wind velocity fields is a challenging task, since they
are non-uniformly distributed in the air space.

For a detailed exploratory analysis of these two data sets, the reader is referred to [20].

2.2. Gaussian Process Regression

Gaussian Processes (GP) are stochastic processes that allow for a wide variety of
properties to be modeled, including linearity, continuity, smoothness, differentiability,
symmetry, and periodicity. GP can be completely determined by their mean and covariance
functions. The deterministic trends of the GP are represented by the mean functions,
whereas their stochastic properties are described by the covariance functions, which are
usually referred to as kernel functions.
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Figure 2. Aircraft flight routes for the Day 1 data set.

GPR may be thought of as a general regression model, which can be employed in
many research areas, such as machine learning [31] or functional data analysis [32]. Given
some predictor variables x = (x1, x2, . . . , xd), a GPR model provides a predictionM(x) of
the value of a scalar output variable y, assuming the mapping y =M(x) to be a realization
of a Gaussian random process, and generalizing the linear regression model

y = xT β + ε, (1)

in which ε ∼ N(0, σ2), β = (β1, β2, . . . , βd) represent the parameters of the regression
model, and σ2 denotes the error variance.

GPR introduces a new term f (x) in the linear model (1), which is assumed to be a Gaussian
process, i.e., it is assumed that, jointly, the random variables { f (x1), f (x2), f (x3), . . . , f (xn)}
have zero-mean Gaussian distribution with covariance function K(x, x′), for any collection
of observations {x1, x2, ..., xn}. Additionally, the linear term in (1) is replaced by a basis
function h(·), which projects the predictor variable x into a p-dimensional feature space.
Thus, the GPR model can be formulated as:

y =M(x) = h(x)T
1×pβp×1 + f (x) + ε. (2)

Given a set of observations (X ,Y) =
{
(xj, yj), j = 1, 2, . . . , n

}
that relate the input

variables x with the output variable y through the GPR model (2), it can be shown that
ŷ, the predicted output variable at point x̂, is also Gaussian distributed [31]. As a conse-
quence, GPR is able to provide both an estimation of the output variable and its associated
probability distribution.

2.3. Polynomial Chaos Expansion

Following [33], this section presents the PCE method, which allows for the compu-
tation of an analytical model that maps an input random vector onto an output random
variable under certain hypotheses.

Let (Ω,F ,P) be a probability space, with Ω the space of events, F a σ-algebra, and P
a probability measure. Assume that there exists an unknown deterministic mappingM
from a d-dimensional input parameter space to a one-dimensional output space, namely
M : Rd → R, such that y =M(x), with x = (x1, x2, . . . , xd).
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If the input vector x is assumed to be affected by uncertainties, it can be represented
by a random vector X = (X1, X2, . . . , Xd) with a joint Probability Density Function (PDF)
fX = ( fX1 , fX2 , . . . , fXd), and then Y =M(X) is an output random variable, which is
obtained by propagating the input vector uncertainties through the mappingM.

PCE is a spectral decomposition method that provides a computationally efficient
way to calculate an analytical representation that maps the input random vector X onto
the output random variable Y, under two hypotheses. The output random variable Y is
assumed to be a second-order variable, namely:

E[Y2] =
∫
Rd
M2(x) fX(x)dx < +∞.

Additionally, each component Xi, i = 1, 2, . . . , d, of the input random vector X is
assumed to have finite moments of all orders.

Provided that these two assumptions are fulfilled, the output random variable Y can
be represented by the following PCE

Y(X) =M(X) = ∑
α∈Nd

cαΨα(X), (3)

where {cα, α ∈ Nd} are the coefficients of the expansion and {Ψα(·), α ∈ Nd} is a basis of
polynomials orthonormal with respect to the probability measure P represented by the
joint PDF fX, namely ∫

Rd
Ψα(x)Ψβ(x) fX(x) dx = δαβ, (4)

with δαβ denoting the Kronecker delta and α, β ∈ Nd representing multi-indexes.
Assuming that the input random vector X has statistically independent components,

each multivariate polynomial Ψα of the PCE basis {Ψα(·), α ∈ Nd} can be computed as the
tensor product of d univariate orthogonal polynomials as follows

Ψα(x) =
d

∏
i=1

ψ
(i)
αi (xi), (5)

where each univariate polynomial ψ
(i)
αi (·), i = 1, 2, . . . , d, is the component of degree αi

of a basis of univariate polynomials orthonormal with respect to the marginal PDF fXi
of X, namely the PDF of the random variable Xi. The component αi of the multi-index
α = (α1, α2 . . . , αd) ∈ Nd designates the degree of the multivariate polynomial Ψα in the
i-variable, for i = 1, 2, ..., d. The total degree of Ψα is calculated as |α| = ∑d

i=1 αi.
In practice, the infinite terms of the PCE (3) must be truncated to a finite sum. There

are different ways to choose a truncation scheme, in which a set of multi-indexes is selected.
The most commonly used truncation scheme consists of setting an upper bound p on the
total degree |α| of the multivariate polynomials Ψα, namely the set of multi-indexes:

Ad,p = {α ∈ Nd : |α| ≤ p}. (6)

Thus, the truncated PCE that approximates the infinite series (3) can be formulated as

YPC(X) =MPC(X) =
|Ad,p |
∑
k=1

ckΨk(X), (7)

where

|Ad,p| = (d + p)!
d!p!

.

There are different ways to construct the basis of orthonormal polynomials {Ψα(·), α ∈
Nd}. In general, the computation of each Ψα requires the availability of the marginal dis-
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tributions of Xi, i = 1, 2, . . . , d, which are employed in the tensor product (5). However,
a wide variety of univariate distributions is associated with a specific family of orthonormal
polynomials [22]. In this case, it is straightforward to compute the basis of orthonormal
polynomials. For instance, the Hermite polynomials are associated with the Gaussian dis-
tribution.

When the distributions of the input random variables Xi, i = 1, 2, . . . , d, have no
family of orthonormal polynomials associated, a common approach consists of directly
constructing the basis of orthonormal polynomials using Stiltjes or Gram–Schmidt orthogo-
nalization [34].

As mentioned in the Introduction, a more general approach is the aPCE [23], which
consists of constructing the basis of orthonormal polynomials from the statistical moments
of the input random variables Xi, i = 1, 2, . . . , d. Thus, this approach does not require
the availability or even the existence of a functional representation of the marginal PDFs
fXi , i = 1, 2, . . . , d. However, in the aPCE approach a large number of input samples is
necessary for an accurate estimation of higher order moments [35].

In this paper, the Kernel Density Estimation (KDE) [36] was employed to estimate
the marginal PDFs fXi , i = 1, 2, . . . , d, and then the Stiltjes orthogonalization was used to
build the corresponding basis of the orthonormal polynomials. More specifically, given
a set Xi =

{
x1

i , x2
i , . . . , xn

i
}

of n observations of the input random variable Xi, the kernel
density estimate of the marginal PDF fXi was calculated as

f̂Xi (x) =
1

nη

n

∑
j=1

K

(
x− xj

i
η

)
, (8)

where K(·) represents the kernel function and η denotes an appropriate kernel bandwidth.
In particular, a Gaussian kernel was used, and the corresponding kernel bandwidth was
learned from the set of observations Xi by means of the Silverman’s rule [37].

Once the truncation scheme (6) was selected, the coefficients ck, k = 1, 2, . . . , |Ad,p|, of
the truncated expansion (7) can be calculated using different approaches, such as Galerkin
projection, collocation, numerical integration, or regression [22].

In this paper, given a set of observations of the input random vector and the corre-
sponding output random variable, namely (X ,Y) =

{
(xj, yj), j = 1, 2, . . . , n

}
the expan-

sion coefficients have been estimated using regression. More specifically, the vector of
expansion coefficients c = (c1, c2, . . . , c|Ad,p |) was estimated by solving the least squares
minimization problem:

ĉ = arg min
c∈R|Ad,p |

n

∑
j=1

(
yj −YPC(x

j)
)2

= arg min
c∈R|Ad,p |

n

∑
j=1

⎛⎝yj −
|Ad,p |
∑
k=1

ckΨk(x
j)

⎞⎠2

. (9)

In particular, the vector of expansion coefficients ĉ estimated in (9) was calculated as

ĉ = (ATA)−1AT

⎛⎜⎜⎜⎝
y1

y2

...
yn

⎞⎟⎟⎟⎠,

where ajk = Ψk(x
j), j = 1, 2, . . . , n, k = 1, 2, . . . , |Ad,p|, are the entries of matrix A.

2.4. Polynomial Chaos Expansion-Based Enhanced Gaussian Process Regression

As explained in Section 2.2, the GPR model (2) interpolates local variations of the
output variable y as a function of experimental observations of the predictor variables x,
whereas the PCE model (3) approximates the global behavior of the mapping y =M(x)
by means of a set of orthonormal polynomials, as described in Section 2.3. Therefore,
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as pointed out in [24], the aim of combining PCE and GPR is to capture at the same
time both the global behavior and the local variability of the mapping that relates the
output variable y to the predictor variables x. To this end, the trend of the GPR model (2),
represented by the term h(x)T

1×pβp×1, is replaced by the truncated PCE (7), so that the
PCE-GPR model can be formulated as follows:

y =M(x) =
|Ad,p |
∑
k=1

ckΨk(x) + f (x) + ε. (10)

The ability of capturing local and global properties through the PCE-GPR model (10)
is analyzed in [24] through several benchmark analytical functions, such as the Rastrigin
function [38], which is a two-dimensional function that combines a quadratic term and a
high-frequency trigonometric term. The contour plot of the Rastrigin function is illustrated
in Figure 3a–d to show the approximations of the Rastrigin function by the GPR, PCE,
and PCE-GPR models, which were generated using 128 sample points from a standard
normal bivariate distribution, respectively.

It can be seen in Figure 3b that the GPR model properly approximates the local extrema
of the Rastrigin function, whereas the global feature of the function is barely learned by this
model. Conversely, Figure 3b shows how the PCE model reproduces the global behaviour
of the Rastrigin function while missing out on the local extrema. Finally, the capability of
the PCE-GPR model to combine both characteristics of the Rastrigin function is illustrated
in Figure 3d.

(a) Rastrigin function (b) GPR model

(c) PCE model (d) PCE-GPR model

Figure 3. The Rastrigin function and its approximation by the GPR, PCE, and PCE-GPR models.

2.5. Adaptation of PCE-GPR to the Wind Velocity Output

As mentioned before, this paper addresses the problem of spatiotemporal wind veloc-
ity field estimation. More specifically, the eastward and northward components of the wind
velocity, which will be referred to as u and v components, respectively, are inferred at dif-
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ferent altitudes as functions of time from aircraft-derived data. Therefore, the single output
PCE-GPR model described in Section 2.4 must be extended to this multiple-output setting.

The GPR method cannot be directly generalized to multi-output processes in a unique
and effective way. The ability of the GPR model to estimate multiple-outputs, seeking
to take advantage of the knowledge about the relation between them, is still a field of
active research. Usually, a covariance function describing both the auto-correlation of the
output variables as well as the correlation among them is included in the formulation of
the model [39]. However, the formulation of a covariance function for multiple correlated
output variables is a difficult task. Besides, the estimation efficiency of a GPR model can
be significantly reduced if the covariance structure among outputs is mis-specified [40].
Therefore, the common approach in practice is to address these estimation problems by
means of independent single-output GPR models.

In this paper, the following approach was followed to adapt the PCE-GPR method
to the wind velocity output. First, the wind speed and wind direction were predicted
using three outputs, namely (y1, y2, y3) = (r, cos γ, sin γ), with r being the wind speed
and γ the wind velocity direction. Then, the u and v components were retrieved as
(u, v) = (r cos γ, r sin γ).

The motivation behind this approach is threefold. The estimation of the wind velocity
using independent single-output GPR models has already been proven to be effective
in [20]. Moreover, since they are two different physical magnitudes, the separation between
the wind speed and the wind direction predictions benefits the training process of the
PCE-GPR model. Finally, because each of the three output variables (y1, y2, y3) are trained
independently, parallel computing can be used.

3. Results

3.1. Model Set Up

In this section, the PCE-GPR model layout is presented, namely the selection of
the model parameters, which include the total degree of the truncated PCE expansion,
the hyperparameter vector of the kernel function, and the error standard deviation.

The total degree p of the truncated PCE expansion included in (10) was selected
between 1 and 10. More specifically, the value of p that provides the least leave-one-out
error, εLOO, was chosen, where

εLOO =
1
n

n

∑
j=1

(
yj −YPC(x

j)

1− νj

)2

,

with νj, j = 1, 2, . . . , n, being the jth diagonal term of the matrix A(ATA)−1AT [24].
The covariance function in (10) was computed using the squared exponential ker-

nel [31], namely
K(x, x′|θ) = σ2

f e−R2
, (11)

with

R =

√√√√ d

∑
i=1

(xi − x′i)
2

σ2
i

,

where θ = (σf , σ1, σ2, σ3, σ4) is the hyperparameter vector and d = 4, since the components
of the input vector x are the coordinates of the spatiotemporal position of the aircraft. The
kernel function (11) produces continuous and smooth GP samples, thus providing a smooth
regression capable of uniformly approximating any continuous function on a compact
subset contained in the input space [41].

Moreover, the correlation between two spatiotemporal input points decreases as a
function of the weighted Euclidean distance. Since, in the wind velocity estimation the
input variables have different length scales, each input variable xi, i = 1, 2, 3, 4, in the
kernel function (11) was scaled by a factor σ2

i . The hyperparameter σf , referred to as the
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signal standard deviation, allows the auto-covariance to be adapted to the output scale. To
achieve a fast and accurate estimation of the hyperparameter vector θ, the subset of the
data method [31], together with the block coordinate descent approximation [42], were
used during the training phase of the model.

Finally, according to [12], the standard deviation σ of the model error ε in (10) was set
to 3 m/s, which is the typical wind instrumental error.

3.2. Wind Velocity Field Reconstruction

The capability of the PCE-GPR method to reconstruct the wind velocity fields within a
particular air space using historical aircraft-derived data is studied in this section. More
specifically, the wind velocity field was reconstructed around the LEMD airport employ-
ing the wind velocity data sets introduced in Section 2.1.1 using data collected over a
one-hour period. In particular, a cuboidal region centered at the LEMD airport with base
size 500× 500 km and altitude ranging between 0.6 km and 14 km was used. Moreover,
both aircraft-derived data sets were split into training and test sets using two different ap-
proaches:

• By randomly choosing sets of individual observations, which will be referred to as
data set randomly split by observation.

• By randomly selecting sets of flights, employing the individual observations gathered
from them, which will be referred to as a data set randomly split by flight.

Specifically, in both cases, 20% of the data were kept for testing to assess the accuracy
of the wind velocity field reconstruction. Thus, four different PCE-GPR models were
trained. The computational time of the training phase for each of these models was less
than 5 min.

Three different measurements of the estimation error were computed for each of the
four models, namely the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE),
and the Median Absolute Deviation (MAD), which are reported in Table 2.

Table 2. Wind velocity field reconstruction: Estimation errors for the u and v components of the
wind velocity.

Data Set Split by Observation Data Set Split by Flight
Measure of Error Component Day 1 Day 2 Day 1 Day 2

RMSE (m/s) u 2.26 (18%) 1.50 (21%) 5.84 (1%) 6.06 (−4%)
v 1.46 (44%) 1.45 (22%) 4.79 (14%) 4.84 (1%)

MAE (m/s) u 1.17 (22%) 0.99 (22%) 4.46 (−1%) 4.37 (−2%)
v 0.83 (43%) 1.05 (19%) 3.45 (13%) 3.59 (3%)

MAD (m/s) u 0.53 (23%) 0.64 (22%) 3.60 (−6%) 3.03 (−2%)
v 0.49 (31%) 0.80 (15%) 2.44 (9%) 2.70 (5%)

It can be seen that the values of the estimation errors of the wind velocity components
for both the Day 1 and Day 2 data sets are similar. Conversely, the values of the estimation
errors significantly differ depending on the data splitting procedure chosen. This is due
to the fact that the spatiotemporal distance between the training and test observations is
higher when the data sets are randomly split by flight, which causes the estimation to be
more challenging.

Table 2 also reports, between parentheses, the relative improvement obtained in com-
parison with the values of the estimation errors reported in [20], in which the wind velocity
field reconstruction was carried out using the GPR method without the enhancement
provided by the PCE. It can be seen that the PCE-GPR method considerably outperforms
the GPR method when the data sets are randomly split by observation, whereas the incor-
poration of the PCE into the GPR model does not statistically improve the estimation errors
already achieved when the data sets are randomly split by flight.
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Figure 4 shows the rose diagrams of the wind velocity estimation errors for each of
the four models, which can be thought of as circular histograms. The values in the inner
circumferences represent percentages of the total data set, whereas the quantities in the
outer circumference denote angles representing the wind velocity direction errors that are
expressed in degrees. Moreover, a color scale is used to indicate the wind speed. It can be
seen that the estimation errors of the wind velocity direction are symmetrically distributed
around 0 degrees, showing a low dispersion. Moreover, the dispersion is particularly low
when the data sets are randomly split by observation. Likewise, the estimation errors of
the wind speed adopt low values, ranging between 0 and 5 m/s.

The wind velocity fields reconstructed using the PCE-GPR method from the Day 1
data set, at a given instant in time and for different altitudes ranging from 2 to 12 km,
are shown in Figure 5, together with the value of the associated mean wind speed sw. A
selection of members of the corresponding training and test data sets are also depicted.
It can be observed that the reconstructed wind velocity fields properly fit the data and
behave smoothly.

(a) Day 1 data set split by observation. (b) Day 1 data set split by flight.

(c) Day 2 data set split by observation. (d) Day 2 data set split by flight.

Figure 4. Rose diagrams of the wind velocity estimation errors.

In addition, to complement Figure 5, the rose diagrams that represent the wind
velocity estimation errors segmented by height are shown in Figure 6. It can be seen
that, at altitudes below 10 km, the wind speed is low, ranging from 0 km/h to 36 km/h,
and the wind direction variability is high. This effect can be observed in the first three
rose diagrams.
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Figure 5. Wind velocity field reconstruction: Reconstructed wind velocity field obtained using the
Day 1 data set and the PCE-GPR method for different altitudes (A). A selection of members of the
training and test data sets, along with the mean wind speed (sw), are also included.

Figure 6. Rose diagrams of the wind velocity estimation errors, segmented by altitude, for the Day 1
data set split by flight.

The reconstruction of the wind speed dynamics from 14:10 to 15:00 UTC at cruise
altitude (10.3 km) for the Day 2 data set is illustrated in Figure 7 by means of an isotach
map. It can be seen how the contour bars gradually change over the considered space and
time period.
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Figure 7. Wind speed reconstruction from 14:10 to 15:00 UTC at cruise altitude for the Day 2 data set.

3.3. Wind Velocity Field Short-Term Prediction

The capability of the PCE-GPR method to provide the short-term wind velocity field
predictions is studied in this section. In particular, several wind velocity fields were
predicted around the LEMD airport using the two data sets introduced in Section 2.1.1.
Each of these short time horizon predictions consists of a 15 min ahead forecast, in which
the PCE-GPR model was trained using data from the previous hour and the corresponding
prediction was compared to the test data available at this short time horizon. The estimation
errors of these predictions were collected and aggregated. More specifically, the RMSE,
the MAE, and the MAD were computed and are summarized in Table 3.

Table 3. Wind velocity field prediction: Estimation errors for the u and v components of the wind
velocity field.

Measure of Error Component Day 1 Day 2

RMSE (m/s) u 5.28 (6%) 6.37 (13%)
v 5.16 (6%) 5.80 (8%)

MAE (m/s) u 4.00 (12%) 4.19 (29%)
v 3.93 (12%) 4.40 (15%)

MAD (m/s) u 3.00 (4%) 3.25 (12%)
v 3.07 (3%) 3.52 (4%)

It can be observed that the magnitude of the estimation errors shown in Table 3 for the
wind velocity field prediction is similar to the magnitude of the estimation errors reported
in Table 2 for the wind velocity field reconstruction using the data sets randomly split by
flight. This higher value of the estimation uncertainty with respect to the wind velocity
field reconstruction using the data sets randomly split by observation is due to the fact that,
unlike the PCE-GPR reconstruction model, the PCE-GPR prediction model solely relies on
past observations of the wind velocity.
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Table 3 also reports, between parentheses, the relative improvement obtained in
comparison with the values of the estimation errors reported in [20], in which the wind
velocity field prediction was carried out using the GPR method without the improvement
provided by the PCE. It can be seen that, for all error measures, the PCE-GPR method
outperforms the GPR method. Therefore, the PCE-GPR model yields better short-term
forecasts than those provided by the GPR model, which already provided short-term
predictions with reasonable estimation errors.

Figure 8 presents the wind velocity field prediction at cruise altitude obtained using
the Day 2 data set and the PCE-GPR method for different instants in time. In addition,
some of the members of the test data sets along with the mean wind speed at each instant
in time are also shown. It can be seen that the predicted wind velocity fields largely agree
with the observations.

Figure 8. Wind velocity field prediction: Predicted wind velocity field at cruise altitude obtained
using the Day 2 data set and the PCE-GPR method for different instants in time. A selection of
members of the test data sets, along with the mean wind speed (sw), are also included.

3.4. Validation of the PCE-GPR Model

This section presents the validation of the PCE-GPR model. More specifically, the ob-
tained estimates are compared with the observations available in the ECMWF ERA5
reanalysis database, which contains global atmospheric reanalysis data for each altitude
level with a resolution of 0.25 degrees in the latitude and longitude.

In order to assess whether the aircraft-derived data agree with the reanalysis data,
a comparison between the aircraft-derived data and the ECMWF ERA5 data was carried
out in [20]. The differences between the aircraft-derived data and the reanalysis data
were calculated for each hour ranging between 09:00 and 15:00 UTC, with a time gap of
15 min and an altitude difference of 1000 ft. Since the ECMWF ERA5 data are provided
at the grid points, a linear interpolation was used to compute the reanalysis observations
corresponding to the locations at which aircraft-derived observations were available. It
can be seen in ([20], Table 4) that, for both the Day 1 and Day 2 data sets, the wind speed
bias is less than 3 m/s, whereas the wind direction bias is less than 4 degrees. Moreover,
the MAE of the wind speed is similar for both data sets, whereas the dispersion in the wind
direction is significantly higher for the Day 1 data set. However, despite the difference, it is
expected that the estimates provided by the PCE-GPR model agree on average with the
reanalysis data.

The following steps were performed to compare the estimates of the PCE-GPR method
with the ECMWF ERA5 reanalysis data. First, the reanalysis data corresponding to the Day
1 and Day 2 data sets were extracted from the ECMWF ERA5 database. Various instants in
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time and altitudes were considered for each data set. More precisely, the ECMWF ERA5
reanalysis data for altitudes of 5.6, 9.3, 10.5, 11.2, 12, and 12.9 km, corresponding to times
09:00, 12:00, and 15:00 UTC were considered. A cuboidal space centered at the LEMD
airport with base size 500× 500 km was used to represent the relevant airspace. Then,
the PCE-GPR model was trained on the aircraft-derived data observed in the relevant
airspace and an estimation was performed at every grid point of the ECMWF ERA5 data
set. The obtained estimates were compared with the ECMWF ERA5 reanalysis observations.
Finally, several measures of error were calculated.

The comparison between the estimates of the wind speed and the wind direction
computed using the PCE-GPR technique and the ECMWF ERA5 observations, for both the
Day 1 and Day 2 data sets, are shown in Table 4. It can be seen that all the measures are
even smaller than those reported in ([20], Table 4), except for the MAE of the wind speed
for the Day 2 data set, which is almost the same. This is because the wind velocity field
estimates provided by using the PCE-GPR method are smoother than the aircraft-derived
data, which contain noise. Since the measurement noise ε is incorporated into the model
(2), the PCE-GPR acts as a noise filter.

Table 4. Validation of the PCE-GPR model: Comparison between the estimates obtained using the
PCE-GPR method and the ECMWF ERA5 reanalysis data.

Measure Variable Day 1 Day 2

Bias (m/s) Wind speed −2.75 −0.24
MAE (m/s) Wind speed 4.5 5.79

Bias (deg) Wind direction 2.06 −1.36
Dispersion (%) Wind direction 8.5 0.33

Notice that most of the aircraft-derived observations are located at cruise altitudes
close to the LEMD airport. Nevertheless, the estimates provided by using the PCE-GPR
model are also similar to the reanalysis data when the aircraft-derived observations near
the ECMWF ERA5 grid points are not available, which shows the ability of the PCE-GPR
method to yield reasonable wind velocity field estimations.

4. Discussion

Aircraft-derived wind velocity data employed in this article were supplied by ENAIRE.
Specifically, they were extracted from the ASTERIX database. The wind velocity was
indirectly obtained from the state of the aircraft. An exploratory analysis of the data can
be found in [20], where it was observed that the noise in the wind speed increases in
the data collected during aircraft turning maneuvers. The data availability and quality
are expected to increase after the deployment of the European System-Wide Information
Management (SWIM), an ongoing European project [43,44], which consists of a unified
infrastructure to exchange the flight information, including the wind velocity directly
measured by the aircraft.

The method proposed in this article was tested in different wind scenarios and different
training-test data configurations. Specifically, two sets of data collected on two different
days with different wind intensities and directions were selected. Each data set was
randomly split in two different ways, namely by observation and by flight.

The method was tested first in the wind vector field reconstruction using both data
sets. The performance of the method in terms of errors is similar. In particular, as expected,
the data set configuration obtained by randomly splitting the data set by flight led to the
worst wind vector field reconstruction errors in comparison to the data set configuration
obtained by randomly splitting the data set by observation because, in the first case, the
observations are less evenly distributed in space. However, in all training-test data configu-
rations, these errors are unbiased and have little dispersion. Therefore, it can be concluded
that the method is not affected by the wind scenario in wind vector field reconstruction.
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The proposed method has also been tested in wind vector field short-term prediction
using both data sets. The performance of the method, in terms of errors, is again similar.
The prediction errors are higher than the reconstruction errors using the data set config-
uration obtained by randomly splitting the data set by observation but are similar to the
reconstruction errors using the data set configuration obtained by randomly splitting the
data set by flight. Therefore, it can be concluded that the errors in the short-term wind
velocity field prediction are reasonably small, given that wind velocity information is only
based on the past observations and therefore carries a higher level of uncertainty compared
to wind velocity field reconstruction.

The performance in terms of the estimation errors of the method proposed in this paper
was compared with that of the Gaussian process regression method presented by the same
authors in [20]. The results demonstrate that the good performance of the previous method
was further improved. Moreover, the obtained estimates were validated using an external
data set, namely the ECMWF ERA5 reanalysis data, which are a reliable collection of
historical atmospheric data. This comparison has shown that there is consistency between
the obtained estimates and the ECMWF ERA5 reanalysis data, including the regions in
which the aircraft-derived data broadcasting is low or nonexistent.

5. Conclusions

In this paper, a technique for short-term wind velocity field forecasting and wind veloc-
ity field reconstruction using aircraft-derived wind velocity data was presented. The wind
velocity data were obtained in an indirect way from the states of the aircraft transmitted by
the ADS-B and Mode-S aircraft surveillance systems. The amount of wind velocity data
derived from aircraft states continuously transmitted airborne is large, causing these aircraft
surveillance systems to be a suitable source for data assimilation algorithms. The proposed
technique combines the Gaussian process regression method with the arbitrary polynomial
chaos expansion, which causes the Gaussian process regression to be more precise since
it models the mean spatiotemporal behavior of the wind through polynomial functions
rather than linear functions.

The main advantages of the method are that it does not rely on spatial and temporal
grids and that new observations can be assimilated in less than 5 min, causing it to be
suitable for short-term forecasting. The ultimate goal of the method presented in this article
is to increase aircraft trajectory predictability in TBO, which is an operational concept that
is expected to be implemented soon [45].

Future research will concentrate on showing the advantages of the improved wind
velocity information obtained through the method described in this paper on the pre-
dictability of aircraft trajectories in the TBO framework. These advantages have already
been demonstrated in some articles, such as [2], where the optimal descent trajectory is
updated in real-time using wind velocity profiles, and [12], where KF-based wind velocity
profiles are used for reducing the temporal spacing error between aircraft.
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Abstract: The irregular shapes of small bodies usually lead to non-uniform distributions of mass,
which makes dynamic behaviors in the vicinities of small bodies different to that of planets. This study
proposes shape entropy (SE) as an index that compares the shapes of small bodies and spheres to
describe the shape of a small body. The results of derivation and calculation of SE in two-dimensional
and three-dimensional cases show that: SE is independent of the size of geometric figures but depends
on the shape of the figures; the SE difference between a geometric figure and a circle or a sphere,
which is the limit of SE value, reflects the difference between this figure and a circle or a sphere.
Therefore, the description of shapes of small bodies, such as near-spherical, ellipsoid, and elongated,
can be quantitatively described via a continuous index. Combining SE and the original inertia index,
describing the shape of small bodies, can define the shapes of small bodies and provide a reasonably
simple metric to describe a complex shape that is applicable to generalized discussion and analysis
rather than highly detailed work on a specific, unique, polyhedral model.

Keywords: entropy; applied mathematics; mathematical physics; small body
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1. Introduction

Small Solar System Bodies (hereafter called small bodies) offer unique opportunities
to study the mechanical structures, different processes, and responses that are related to the
origin, evolution, and current architecture of the Solar System [1]. Small bodies are all other
objects orbiting the Sun that are neither planets, dwarf planets, nor satellites, according to In-
ternational Astronomical Union (IAU) resolutions five and six (Resolution_GA26-5-6) [2,3].
Therefore, a small body lacks sufficient mass for its self-gravity to overcome rigid body
forces and assume hydrostatic equilibrium in a nearly round shape [2], which leads to
irregular shapes of small bodies.

The shapes of small bodies span from spherical to ellipsoidal and elongated [4]. It
is the irregular distribution of mass in space, caused by irregular shapes, that makes the
dynamic characteristics of small bodies, such as equilibrium points [5–7] and periodic
orbits [8–13], different from that of planets, provides rich research contents for celestial
mechanics and nonlinear dynamics, and brings challenges to the orbit design and control
of spacecraft in the vicinity of small bodies. Besides, fly-by, impacting, and rendezvous
missions to small bodies demand that the shape of small bodies is accurately known
to select the best-suited image processing technique for optical navigation, such as the
center of brightness, intensity weighted centroiding, correlation with Lambertian spheres,
and center finding by correlation [14,15]. However, this information may not always be
available from ground-based observation for interplanetary missions. Spacecraft should be
able to return good navigation results with the proper technique according to the shape,
though small bodies can assume a wide variety of shapes.
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Although the shape regularity of a small body significantly impacts the dynamical
characteristics of its gravitational field and the robustness of the image processing for optical
navigation, there is a lack of sufficient description, research, and quantitative analysis on
the regularity of a small body, simulated by a polyhedral model with a single parameter,
for further understanding on the dynamic behavior related to shapes of small bodies. Hu
and Scheeres [16] defined an index describing the shape of a small body according to its
principal moments of inertia, which is developed from Scheeres et al. [17]

ρ =
Iy − Ix

Iz − Ix
, (1)

where the z-axis is the principal axis with maximum inertia, and the x-axis is with minimum
inertia, i.e., Ix ≤ Iy ≤ Iz. According to Equation (1), the index is ρ ∈ [0, 1]. When ρ = 0, the
shape of the small body is symmetric about the z-axis; when ρ = 1, the shape is symmetric
about the x-axis. This shape index can describe the mass distribution characteristics of
small bodies and reflect the shape of small bodies to a certain extent. However, when the
shape of a small body is close to a sphere, that is, the three-axis inertias are very close, this
index cannot accurately describe the shape characteristics of a small body, especially the
approximation between the small body and the sphere.

Although it is possible to describe the regularity of the shape of a small body by
spherical harmonic coefficients, the similarity between the shape of the small body and
the sphere can only be accurately described by the multi-dimensional array composed
of many spherical harmonic coefficients, which is not conducive to directly judging the
shape similarity of different small bodies through a few indicators. If we investigate the
coefficients C20, C22, and S22 [18], we can find that these three coefficients still reflect the
relationship between the inertia of small bodies.

Approximating a small body to a triaxial ellipsoid [19,20] is also possible to describe
the regularity of the shape of a small body; however, the gravitational field in the vicinity of
a triaxial ellipsoid is different from that of the small body, and the dynamical characteristics
in the triaxial ellipsoid case [20] is thus distinct from the polyhedron case [21], which is
more accurate.

Jiang et al. [22] reviewed the common approximate models of gravitational fields, such
as the simple geometry models [23–27], the spherical harmonic and ellipsoidal harmonic
function model [28–33], the particle group model [34], and the polyhedral model [35–38].
In the studies of dynamic characteristics, the accuracy of the description of the gravitational
field near irregular small bodies and the collision test is much more of a concern. Therefore,
it is more reasonable to select the polyhedral model as the gravitational field model of the
particle motion near an irregular small body [39–42].

Buonagura et al. [43] developed a shape-cube method to describe the shapes of small
bodies from regular to irregular. Fifteen small bodies were placed into three layers according
to whether they were near-spherical bodies, approximated to ellipsoids, or elongated and
irregular bodies. In this shape-cube method, shapes of small bodies can be described as
linear combinations of the starting ones. However, there is still a lack of a continuous
index to quantitatively describe which small bodies should be recognized as near-spherical
bodies, approximated to ellipsoids, or elongated bodies. Since Buonagura et al. used this
method to assess the image processing robustness of small-body shapes and to compare
the best technique, it would be better to have an index to define layers.

In this research, with the concept of entropy in statistical physics, a characteristic shape
index, called shape entropy, is proposed to compare the shape difference between small
bodies and uniform spheres. Entropy mainly describes the degree of data concentration,
which differs from the variance as entropy has more tremendous advantages in describing
the degree of data concentration with a multimodal distribution. When the data set
distributes near several peaks, the variance will reflect that the data is not centralized
enough, while the entropy can still reflect the data set with obvious peaks. Ni et al. have
given a detailed description and derivation [44].
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In order to illustrate the applicability of shape entropy, firstly, in Section 2, the shape
differences among regular polygons, rectangles, ellipses, and circles with different aspect
ratios are compared by using shape entropy using the 2D continuous case. Secondly,
in Section 3, the shape differences among three kinds of regular polyhedrons, cuboids,
triaxial ellipsoids with different axial length ratios, and spheres are compared by using
shape entropy using the 3D continuous case. Finally, in Section 4, combined with the
characteristics of the polyhedral models, the shape entropies are used to describe the
shape differences between the small bodies and the homogeneous spheres of equal volume
in the cases of three-dimensional discretization, and the results are compared with that
of Equation (1).

2. Shape Entropy in the 2D Continuous Cases

2.1. Definition

A plane geometric figure is compared with a circle. According to the polar coordinates
defined in Figure 1, we have a normalized quantity

ps(θ) =
rs(θ)2/2∫ 2π

0 (rs(θ)2/2)dθ
, (2)

where rs(θ) is a single-valued function, and the denominator part depicts the area of the
plane geometry, making ∫ 2π

0
psdθ = 1. (3)

r

Figure 1. An illustration of arbitrary planar geometry.

The shape entropy in the 2D continuous case is defined as

S = −
∫ 2π

0
ps log(ps)dθ. (4)

For a circle with radius a, we have rs(θ) ≡ a, thus

ps(θ) =
rs(θ)2/2∫ 2π

0 (rs(θ)2/2)dθ
=

a2/2
πa2 =

1
2π

, (5)

S = −
∫ 2π

0
ps log(ps)dθ = log(2π) = 1.83788 . . . (6)
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2.2. Regular Polygons

The shape entropies of regular polygons are calculated and compared with the result
of Equation (6). The calculation diagram is illustrated in Figure 2.

r
a

ra

ra
ra

Figure 2. An illustration of regular polygon shape entropy calculations.

For a regular triangle with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

3
,
π

3

]
, (7)

ps(θ) =
rs(θ)2/2

3
∫ π

3
−π

3
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

6
√

3a2
=

1
12
√

3 cos2 θ
, (8)

S = −3
∫ π

3

−π
3

ps log(ps)dθ = 1.74557 . . . (9)

The derivation of their entropies can be referred to as Appendix A for the square,
regular pentagon, and regular hexagon cases. The results are summarized in Table 1.

Table 1. The shape entropies of regular polygons.

Number of Sides of Regular Polygons Shape Entropy S

3 1.74557 . . .

4 1.81549 . . .

5 1.82964 . . .

6 1.83412 . . .

. . . . . .

∞ log(2π) = 1.83788 . . .

It is not difficult to see that the shape entropy is independent of the size of the geometry,
a, and only related to the shape. With the increase of the regular n-sided shape, n, the value
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of S tends to be closer to the circular case log(2π) = 1.83788 . . . In fact, it can be obtained
through calculation

lim
n→+∞

− n
∫ π

n
−π

n

a2

2 cos2 θ

n
∫ π

n
−π

n

[
a2

2 cos2 θ

]
dθ

log

{
a2

2 cos2 θ

n
∫ π

n
−π

n

[
a2

2 cos2 θ

]
dθ

}
dθ

= lim
n→+∞

− n
∫ π

n
−π

n

{
sec2 θ

n
∫ π

n
−π

n
sec2 θdθ

log

[
sec2 θ

n
∫ π

n
−π

n
sec2 θdθ

]}
dθ = log(2π),

(10)

so that the series of shape entropy of the regular n-sided shape {Sn} tends to the shape
entropy of a circle log(2π) = 1.83788 . . . when n tends to +∞. Note that entropy in statistical
physics describes the concentration of states, and the value of entropy is the largest when
the probabilities of all states are equal. Thus, when rs are equal, corresponding to the most
regular case, the shape entropy in 2D cases is the largest.

2.3. Rectangles and Ellipses

For a rectangle with a long side 2a and a short side 2b, Equations (2)–(4) are trans-
formed as

rs(θ) =

{ a
cos θ , θ ∈ [0, arctan(b/a)]
b

sin θ , θ ∈
[
arctan(b/a), π2

] , (11)

ps(θ) =
rs(θ)2/2

4
∫ π

2
0 (rs(θ)2/2)dθ

=

{
a

8b cos2 θ
, θ ∈ [0, arctan(b/a)]

b
8a sin2 θ

, θ ∈
[
arctan(b/a), π2

] , (12)

S = −4
∫ π

2

0
ps log(ps)dθ. (13)

The shape entropy of any rectangle can be calculated via Equations (11)–(13).
For an ellipse with a major axis 2a and a minor axis 2b, Equations (2)–(4) are trans-

formed as
rs(θ) =

ab√
b2 cos2 θ + a2 sin2 θ

, (14)

ps(θ) =
rs(θ)2/2∫ π

0 (rs(θ)2/2)dθ
=

ab
2π
[
b2 cos2 θ + a2 sin2 θ

] , (15)

S = −
∫ 2π

0
ps log(ps)dθ. (16)

It should be noted that Equation (14) is not the parametric equation of an ellipse.
The shape entropy of any ellipse can be calculated via Equations (14)–(16).
For different shapes of rectangles and ellipses represented by a:b, their shape entropies

are calculated and summarized as Table 2.
For rectangles, when a:b tends to 1:1, S tends to the shape entropy of the square 1.81549...

and when a:b = 1:1, Equations (11)–(13) degenerate to the square case Equations (A1)–(A3).
The shape entropy of a rectangle is independent of the size of the rectangle and only
depends on its shape, which is consistent with the general understanding.

For ellipses, when a:b tends to 1:1, S tends to the shape entropy of the circle 1.83788 . . .
and when a:b = 1:1, Equations (14)–(16) degenerate to the circle case Equations (5) and (6).
Similarly, as in the rectangles cases, the shape entropy of an ellipse is independent of the
size and only depends on its shape, which is also consistent with the general understanding.

Comparing the results of Table 2, it can also be found that when a rectangle and an
ellipse with the same length ratio are compared, the shape of the ellipse is closer to the
circle, which is also consistent with general cognition.
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Table 2. The shape entropies of rectangles and ellipses.

a:b Rectangle Ellipse

3:1 1.49387 . . . 1.55019 . . .

2:1 1.68228 . . . 1.72009 . . .

1.5:1 1.76905 . . . 1.79706 . . .

1:1 1.81549... log(2π) = 1.83788 . . .

For non-convex shapes described in Figure 3, Equations (11) and (12) are trans-
formed as

rs(θ) =

⎧⎨⎩
a

cos θ , θ ∈ [0, arctan(b/a)]√
x2(θ) + y2(θ), θ ∈

[
arctan(b/a), π2

]
where x(θ) = ac

c−b+a tan θ , y(θ) = x(θ) tan θ

, (17)

ps(θ) =
rs(θ)2/2

4
∫ π

2
0 (rs(θ)2/2)dθ

=

⎧⎨⎩
a2

2 cos2 θ[4ab−2a(b−c)] , θ ∈ [0, arctan(b/a)]
x2(θ)+y2(θ)

2[4ab−2a(b−c)] , θ ∈
[
arctan(b/a), π2

] . (18)

a

b
c

r

 

Figure 3. An illustration of the non-convex shapes transformed from a rectangle.

The shape entropies of non-convex shapes from Figure 3 are calculated as
Equations (13), (17) and (18). Setting b = 1, c varying from 0.1 to 1 and a = 1, 1.5,

√
3,

and 2, the shape entropies are shown in Figure 4. The results show that non-convex shapes
are more irregular as c decreases, which is intuitive. Therefore, it is reasonable to compare
the difference between the two-dimensional shape and the circle with the shape entropy
defined by Equations (2)–(4).

Figure 4. The shape entropies of non-convex shapes are shown in Figure 3, provided that b = 1, a = 1,
1.5,

√
3, 2, and c ∈ [0.1, 1].
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3. Shape Entropy in the 3D Continuous Cases

3.1. Definition

In this section, the description of the shape entropy is extended from 2D to 3D to
compare the difference between spatial geometry and a sphere. According to the spherical
coordinates defined in Figure 5, we can write a similar normalized quantity as in Section 2.

ps(θ, φ) =
sin φ rs(θ, φ)3/3∫ 2π

0

∫ π
0

(
rs(θ, φ)3/3

)
sin φdφdθ

, (19)

where rs (θ, φ) is a single-valued function, and the denominator part depicts the volume of
the spatial geometry, making

∫ 2π

0

∫ π

0
ps(θ, φ)dφdθ = 1. (20)

 

r

 
Figure 5. An illustration of arbitrary spatial geometry.

The shape entropy in the 3D continuous case is defined as

S = −
∫ 2π

0

∫ π

0
ps(θ, φ) log[ps(θ, φ)]dφdθ. (21)

For a sphere with rs (θ, ϕ) ≡ a, Equation (19) is transformed as

ps(θ, φ) =
sin φ rs(θ, φ)3/3∫ 2π

0

∫ π
0

(
rs(θ, φ)3/3

)
sin φdφdθ

=
sin φ a3/3

4πa3/3
=

sin φ

4π
, (22)

and the shape entropy calculated via Equation (21) is

S = −
∫ 2π

0

∫ π

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = log(2π) + 1 = 2.83788 . . . (23)

55



Mathematics 2023, 11, 878

3.2. Regular Polyhedrons

In this subsection, the shape entropies of a regular tetrahedron, hexahedron, and
octahedron are derived and summarized in Table 3. For a regular tetrahedron, 1/24 of it is
taken according to symmetry, as shown in Figure 6, and it can be deduced that:

rs(θ, φ) =
a

cos φ
, θ ∈

[
0,

π

3

]
, φ ∈

[
0, arctan

( √
2

cos θ

)]
, (24)

ps(θ, φ) = sin φrs(θ,φ)3/3

24
∫ π

3
0
∫ arctan[

√
2

cos θ
]

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φa3/3/ cos3 φ

8
√

3a3 = sin φ

24
√

3 cos3 φ
,

(25)

S = −24
∫ π

3

0

∫ arctan[
√

2
cos θ ]

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.60889 . . . (26)

Table 3. The shape entropies of regular polyhedrons.

Number of Faces of Regular Polyhedrons Shape Entropy S

4 2.60889 . . .

6 2.73379 . . .

8 2.82407...

Spherical case log(2π) + 1 = 2.83788...

 

a

a

a
a

a
θ

Figure 6. An illustration of a regular tetrahedron and the calculation of its shape entropy.

For a regular hexahedron with an edge length of 2a, as shown in Figure 7, one-eighth
of the hexahedron is taken according to symmetry. In this part, the distance from the point
on the surface to the centroid of the regular hexahedron can be determined according to θ
and ϕ into four parts:

rs(θ, φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

cos φ , θ ∈
[
0, π4
]
, φ ∈ [0, arctan(cos θ)]

a
cos θ sin φ , θ ∈

[
0, π4
]
, φ ∈

[
arctan(cos θ), π2

]
a

cos φ , θ ∈
[
π
4 , π2

]
, φ ∈ [0, arctan(sin θ)]

a
sin θ sin φ , θ ∈

[
π
4 , π2

]
, φ ∈

[
arctan(sin θ), π2

] , (27)
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then we have

ps(θ, φ) =
rs

3(θ, φ) sin φ

24a3 , (28)

S = −8
∫ π

2

0

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.73379 . . . (29)

 

a

a

a

 

a

a
θ

a
φ

Figure 7. An illustration of a regular hexahedron and the calculation of its shape entropy.

For a regular octahedron with an edge length of 2a, as shown in Figure 8, one-eighth
of the octahedron is taken according to symmetry. In this part, using the sine theorem and
cosine theorem, the distance from the point on the surface of the original regular octahedron
to the centroid can be expressed as:

rs(θ, φ) =

√
2a

cos φ +
√

2 cos θ sin φ
, θ ∈

[
−π

4
,
π

4

]
, φ ∈

[
0,

π

2

]
, (30)

Equation (19) is transformed as

ps(θ, φ) = sin φ rs(θ,φ)3/3

8
∫ π

4
−π

4

∫ π
2

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φ rs(θ,φ)3/3
8
√

3a3/3
= sin φ rs(θ,φ)3

8
√

3a3 ,
(31)

so, the shape entropy of a regular octahedron is

S = −8
∫ π

4

−π
4

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ = 2.82407 . . . (32)

It is not difficult to see that the shape entropy of 3D continuous cases, defined in
Section 3.1, is independent of the size of the geometry, a, and is only related to the shape.
With the face increasing of regular polyhedrons, the value of S is closer to the spherical case
log(2π) + 1 = 2.83788...
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a
 

 

a

a

a
θ

a
φ θ φ+

 
Figure 8. An illustration of a regular octahedron and the calculation of its shape entropy.

3.3. Cuboids and Triaxial Ellipsoids

For a cuboid with edge lengths 2a, 2b and 2c respectively (a > b > c), it can be de-
duced that

rs(θ, φ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c

cos φ , θ ∈
[
0, arctan

( a
b
)]

, φ ∈
[
0, arctan

( c
b cos θ

)]
b

cos θ sin φ , θ ∈
[
0, arctan

( a
b
)]

, φ ∈
[
arctan

( c
b cos θ

)
, π2
]

c
cos φ , θ ∈

[
arctan

( a
b
)
, π2
]
, φ ∈

[
0, arctan

( c
a sin θ

)]
a

sin θ sin φ , θ ∈
[
arctan

( a
b
)
, π2
]
, φ ∈

[
arctan

( c
a sin θ

)
, π2
] , (33)

Equation (19) is transformed as

ps(θ, φ) = rs
3(θ,φ) sin φ

24abc

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c2 sin φ

24ab cos3 φ
, θ ∈

[
0, arctan

( a
b
)]

, φ ∈
[
0, arctan

( c
b cos θ

)]
b2

24ac cos3 θ sin2 φ
, θ ∈

[
0, arctan

( a
b
)]

, φ ∈
[
arctan

( c
b cos θ

)
, π2
]

c2 sin φ
24ab cos3 φ

, θ ∈
[
arctan

( a
b
)
, π2
]
, φ ∈

[
0, arctan

( c
a sin θ

)]
a2

24bc sin3 θ sin2 φ
, θ ∈

[
arctan

( a
b
)
, π2
]
, φ ∈

[
arctan

( c
a sin θ

)
, π2
]

,
(34)

and the shape entropy of the cuboid is

S = −8
∫ π

2

0

∫ π
2

0
ps(θ, φ) log[ps(θ, φ)]dφdθ. (35)

The shape entropy of an arbitrary cuboid can be calculated by Equations (33)–(35).
Shape entropies of cuboids with different combinations of a and b, provided that c = 1,
are calculated, and the results are shown in Figure 9. When a:b:c = 1:1:1, Equation (33)
degenerates to Equation (27), and the shape entropy equals the hexahedron case 2.73379....
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It is shown again that the shape entropy of a cuboid is independent of the size, and only
depends on the shape of the cuboid.

Figure 9. The shape entropies of cuboids with different edge length ratios of a and b, provided
that c = 1. The blue area suggests a more irregular shape. The lower left corner corresponds to the
regular hexahedron.

For an ellipsoid with triaxial lengths 2a, 2b and 2c respectively (a > b > c), it can be
deduced that

rs(θ, φ) =
abc√

b2c2cos2φ sin2 θ + a2c2 sin2 φ sin2 θ + a2b2 cos2 φ
, (36)

ps(θ, φ) = sin φ rs(θ,φ)3/3∫ 2π
0
∫ π

0 (rs(θ,φ)3/3) sin φdφdθ

= sin φ rs(θ,φ)3/3
4πabc/3 = sin φ rs(θ,φ)3

4πabc ,
(37)

S = −
∫ 2π

0

∫ π

0
ps log(ps)dφdθ. (38)

It should also be noted that Equation (36) is not the parametric equation of an ellipsoid.
The shape entropy of an arbitrary ellipsoid can be calculated by Equations (36)–(38).

Shape entropies of ellipsoids with different combinations of a and b, provided that c = 1, are
calculated, and results are shown in Figure 10. When a:b:c = 1:1:1, Equation (36) degenerates
to the sphere case, and the shape entropy equals the sphere case. It is shown again that the
shape entropy of an ellipsoid is independent of the size, and only depends on the shape of
the ellipsoid.

By comparing the results of a few values of a and b, summarized in Table 4, it can
also be deduced that the shape of the ellipsoid is closer to the sphere when a cuboid
and an ellipsoid with the same axial/edge length ratio are compared. When c = 1, the
difference between the shape entropy of the ellipsoid and the cuboid calculated by different
combinations of a and b is shown in Figure 11. It can be seen that when the shape is
close to slender, the difference between the shape of the ellipsoid and the cuboid is more
significant; when the shape is nearly flat, the difference between the ellipsoid and the
cuboid is relatively small; when the axial/edge length ratio is 1:1:1, the shape difference
between the two is minimal.
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Figure 10. The shape entropies of ellipsoids with different axial length ratios of a and b, provided that
c = 1. The blue area suggests a more irregular shape. The lower left corner corresponds to the sphere.

Table 4. The shape entropies of cuboids and ellipsoids.

a:b:c Cuboid Ellipsoid

3:2:1 2.15642 . . . 2.29111 . . .

2:2:1 2.37094 . . . 2.48964 . . .

2:1.5:1 2.43230 . . . 2.55064 . . .

1:1:1 2.73379.... log(2π) + 1 = 2.83788 . . .

Figure 11. The differences in shape entropies of ellipsoids and cuboids with different axial length
ratios. The blue area suggests less difference. Since it is assumed that c = 1 for all shapes shown,
diagonal line a = b corresponds to flat shapes, and axis a or b corresponds to slender shapes.
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4. Shape Entropy Applied to Polyhedral Models of Small Bodies

4.1. Definition

Since the polyhedral models of small bodies are discrete vertex-face models, we
transform Equation (19) as

pn
S =

rn
S

N
∑

n=1
rn

S

, (39)

where rn
S denotes the distance between the nth vertex and the centroid, and N denotes the

number of vertices. Equation (39) is a normalized quantity whose denominator part is the
sum of the distances from all vertices to the centroid, making

N

∑
n=1

pn
S = 1. (40)

The shape entropy of the polyhedral model of a small body is defined as

S = −
N

∑
n=1

pn
S log(pn

S)− log(N). (41)

At the last term of Equation (41), log(N) is subtracted to eliminate the influence caused
by the different number of vertices of polyhedral models. When the object is a sphere, each
point is the same distance from the centroid, and the shape entropy is

S = −
N

∑
n=1

1
N

log
(

1
N

)
− log(N) = log(N)− log(N) = 0. (42)

By comparing the shape entropy S, as defined by Equations (39)–(41), we can compare
the shape of the polyhedral model with that of the homogeneous sphere with equal volume.

4.2. Results

The shape entropies, S, of some polyhedral models [45] of small bodies are calcu-
lated according to Equations (39)–(41) and are listed in Table 5 in the order of S from
large to small, listed together with the values of ρ from Equation (1). It can be seen that
although the shape entropies of the first four small bodies are the same, the range of ρ is
extensive. It can be seen more clearly from Figure 12 that the four near-spherical small
bodies, corresponding to points 1–4, are on the most right in the figure, and their shapes
are close to spheres (Figure 13). Although the four small bodies approximated to ellipsoids
(Figure 14), corresponding to points 5–8, have specific differences in shape and spheres,
they are obviously different from the shape of elongated small bodies, corresponding to
points 9–12 (Figure 15), on the left of the figure.

Only ρ calculated by Equation (1) cannot describe the shape well. When the principal
moments of inertia of the small body are relatively close, the ρ values differ significantly.
However, the appearances of small bodies are similar, such as the four small bodies
numbered 1–4. The appearance and shape of small bodies with similar ρ values may also
differ significantly, such as small bodies 6 and 8, and 9–12. The shape of the polyhedral
model can be compared with that of the homogeneous sphere of the same volume sphere
with the help of Equation (42), and the shape of the small body can be better described
together with Equation (1).

According to the results in Table 5 and Figure 12, the shapes of small bodies from
near-spherical to elongated can be described with shape entropy from large to small. The
new description is quantitative rather than terms without accurate definitions, although the
exact demarcation for near-spherical, ellipsoids, and elongated can be further discussed. In
this work, we suggest that so-called near-spherical bodies have shape entropies larger than
−0.004, small bodies approximated to ellipsoids corresponding to those whose entropies
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lie between −0.02 and −0.004, and small bodies with shape entropies less than −0.02
can be labeled as elongated. It would also be more applicable in a further discussion on
characteristics related to shapes.

Table 5. The shape entropies of polyhedral models of small bodies.

Name of Small Bodies Shape Entropy S Vertices Faces ρ from Equation (1) No. in Figure 12

52760 (1998 ML14) −0.001118600 8162 16,320 0.877608 1

101955 Bennu −0.001171272 1348 2692 0.320574 2

1998 KY26 −0.001469927 2048 4092 0.823293 3

4 Vesta −0.003386096 2522 5040 0.165797 4

9P/Tempel −0.008419353 16,022 32,040 0.779807 5

6489 Golevka −0.011491285 2048 4092 0.964472 6

3103 Eger −0.013905315 997 1990 0.648360 7

951 Gaspra −0.019957635 2522 5040 0.914083 8

4769 Castalia −0.028763986 2048 4092 0.896695 /

2063 Bacchus −0.034839183 2048 4092 0.986248 /

25143 Itokawa −0.039069503 25,350 49,152 0.932418 /

1P/Halley −0.039881773 2522 5040 0.934006 /

1620 Geographos −0.042576975 8192 16,380 0.942497 /

4486 Mithra −0.049464462 3000 5996 0.860466 /

1996 HW1 −0.057551792 1392 2780 0.973871 /

433 Eros −0.060992619 99,846 196,608 0.978736 9

216 Kleopatra −0.074191101 2048 4092 0.990365 10

243 Ida −0.085757437 2522 5040 0.883693 11

103P/Hartley −0.098676873 16,022 32,040 0.975002 12

Figure 12. The distribution of shape entropies (S) and ρ from Equation (1) of different small bodies.
No. 1–12 can be referred in Table 5, and their shapes are shown in Figures 13–15.

62



Mathematics 2023, 11, 878

(a) (b) 

(c) (d) 

Figure 13. Polyhedral models corresponding to points 1–4 in Figure 12. (a) 52,760 (1998 ML14).
(b) 101,955 Bennu. (c) 1998 KY26. (d) 4 Vesta.

 
(a) (b) 

 
(c) (d) 

Figure 14. Polyhedral models corresponding to points 5–8 in Figure 12. (a) 9P/Tempel. (b) 6489
Golevka. (c) 3103 Eger. (d) 951 Gaspra.
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(a) (b) 

 
(c) (d) 

Figure 15. Polyhedral models corresponding to points 9–12 in Figure 12. (a) 433 Eros. (b) 216
Kleopatra. (c) 243 Ida. (d) 103P/Hartley.

5. Conclusions

This study proposes shape entropy as an index to compare the shape differences
between small bodies and homogeneous spheres of equal volume. First, the methods of
comparing plane geometry with circle and space geometry with sphere by using the shape
entropy in continuous cases are given, and then the shape entropy applied to discrete cases
is derived for polyhedral models. The shape entropy is independent of the size of the
geometry and only depends on the shape.

In comparing plane geometric figures with circles, the shape entropies of circles and
regular polygons are derived and calculated. It is proved that when n tends to infinity,
the shape entropy of the regular n-sided shape tends to that of the circle. The shape
entropies of rectangles and ellipses are derived and calculated, respectively. The shape
entropy is used to compare the rectangle and ellipse with the same edge/axis length ratio.
The shape entropies of dumbbell-like non-convex shapes transformed from rectangles are
also calculated, and results show that such shapes are more irregular as their necks are
more narrow, which is intuitive. Derivation and calculation prove that comparing plane
geometries with circles by shape entropies is reasonable.

In comparing space geometric figures with spheres, due to the limited number of regu-
lar polyhedrons, the shape entropies of spheres, regular tetrahedrons, regular hexahedrons,
and regular octahedrons are derived and calculated. It is found that the shape entropy
of regular polyhedrons approaches the shape entropy of spheres with the increase in the
number of faces. The shape entropies of cuboids and ellipsoids are derived and calculated,
respectively. The rationality is verified by comparing different edge/axial length ratios
until they degenerate to cube and sphere, respectively. The shape differences between
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cuboids and ellipsoids with the same edge/axial length ratio are compared by using shape
entropy. The difference between an ellipsoid and a cuboid is more significant when the
shape is close to slender. The difference between an ellipsoid and a cuboid is relatively
small when the shape is nearly flat. When the axial/edge length ratio is 1:1:1, the shape
difference between the ellipsoid and the cuboid is the smallest. Derivation and calculation
prove that comparing space geometries with spheres with shape entropies is reasonable.

Sections 2 and 3 show that shape entropy is suitable for comparing 2D and 3D geo-
metric figures with circles and spheres under continuous conditions, and the entropies of
circles and spheres are the limit values in 2D and 3D cases, respectively. The difference be-
tween the shape entropy of each geometric figure and the limit value reflects the difference
between this figure and the circle or sphere in shape.

A discrete form of the shape entropy is defined for small bodies simulated by polyhe-
dral models. The shape entropies of 19 small bodies with polyhedral models are calculated,
which describes the comparison results between small bodies and homogeneous spheres
of equal volume. The shape comparison results between different small bodies are com-
pared using both the shape entropy, S, and the inertia index, ρ, proposed by Hu and
Scheeres [16]. For small bodies with shape entropies larger than −0.004, the inertia indices
vary in the whole range of [0, 1] due to the three-axis inertia being very close; thus can
not describe so-called near-spherical small bodies well. The shape entropy of a sphere
body is zero, and the shape entropy of a small body decreases as the shape varies from
near-spherical to elongated. The former so-called near-spherical small bodies, small bodies
approximated to ellipsoids, and elongated small bodies, in Buonagura et al. [43], can be
referred to as shape entropies larger than −0.004, between −0.02 and −0.004, and smaller
than −0.02, respectively.

Therefore, shape entropy is a continuous index and provides a reasonably simple
metric to quantitatively describe a complex shape (such as the shape of small bodies) in
a generalized discussion and analysis, including further research on the shape effect of
dynamic behaviors in the vicinity of small bodies (which is related to both shape/mass
distribution and rotation rate and, therefore, is limited to reflect behaviors independently)
and on-board optical navigations during interplanetary missions, as mentioned in the
introduction, rather than highly detailed work on a specific, unique, polyhedral model.
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Appendix A

For a square with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

4
,
π

4

]
, (A1)

ps(θ) =
rs(θ)2/2

4
∫ π

4
−π

4
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

4a2 =
1

8 cos2 θ
, (A2)
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S = −4
∫ π

4

−π
4

ps log(ps)dθ = 1.81549 . . . (A3)

For a regular pentagon with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

5
,
π

5

]
, (A4)

ps(θ) =
rs(θ)2/2

5
∫ π

5
−π

5
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

5× 2
√

5− 2
√

5a2
, (A5)

S = −5
∫ π

5

−π
5

ps log(ps)dθ = 1.82964 . . . (A6)

For a regular hexagon with an inscribed circle radius a, we have

rs(θ) =
a

cos θ
, θ ∈

[
−π

6
,
π

6

]
, (A7)

ps(θ) =
rs(θ)2/2

6
∫ π

6
−π

6
(rs(θ)2/2)dθ

=
a2

2 cos2 θ

4
√

3a2
=

1
8
√

3 cos2 θ
, (A8)

S = −6
∫ π

6

−π
6

ps log(ps)dθ = 1.83412 . . . (A9)
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Abstract: Determining the attitude of a non-cooperative target in space is an important frontier
issue in the aerospace field, and has important application value in the fields of malfunctioning
satellite state assessment and non-cooperative target detection in space. This paper proposes a
non-cooperative target attitude estimation method based on the deep learning of ground and space
access (GSA) scene radar images to solve this problem. In GSA scenes, the observed target satellite
can be imaged not only by inverse synthetic-aperture radar (ISAR), but also by space-based optical
satellites, with space-based optical images providing more accurate attitude estimates for the target.
The spatial orientation of the intersection of the orbital planes of the target and observation satellites
can be changed by fine tuning the orbit of the observation satellite. The intersection of the orbital
planes is controlled to ensure that it is collinear with the position vector of the target satellite when
it is accessible to the radar. Thus, a series of GSA scenes are generated. In these GSA scenes, the
high-precision attitude values of the target satellite can be estimated from the space-based optical
images obtained by the observation satellite. Thus, the corresponding relationship between a series
of ISAR images and the attitude estimation of the target at this moment can be obtained. Because the
target attitude can be accurately estimated from the GSA scenes obtained by a space-based optical
telescope, these attitude estimation values can be used as training datasets of ISAR images, and
deep learning training can be performed on ISAR images of GSA scenes. This paper proposes an
instantaneous attitude estimation method based on a deep network, which can achieve robust attitude
estimation under different signal-to-noise ratio conditions. First, ISAR observation and imaging
models were created, and the theoretical projection relationship from the three-dimensional point
cloud to the ISAR imaging plane was constructed based on the radar line of sight. Under the premise
that the ISAR imaging plane was fixed, the ISAR imaging results, theoretical projection map, and
target attitude were in a one-to-one correspondence, which meant that the mapping relationship
could be learned using a deep network. Specifically, in order to suppress noise interference, a UNet++
network with strong feature extraction ability was used to learn the mapping relationship between
the ISAR imaging results and the theoretical projection map to achieve ISAR image enhancement.
The shifted window (swin) transformer was then used to learn the mapping relationship between the
enhanced ISAR images and target attitude to achieve instantaneous attitude estimation. Finally, the
effectiveness of the proposed method was verified using electromagnetic simulation data, and it was
found that the average attitude estimation error of the proposed method was less than 1◦.

Keywords: deep learning; radar image; attitude estimation; non-collaborate target
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1. Introduction

Determining the attitude of a non-cooperative target in space has important application
value in the aerospace field. Potential applications include assessing the flight state of a
malfunctioning satellite, preparing target information for space debris-related missions [1,2],
and estimating the point on the ground where a remote sensing satellite’s lens is pointing
by estimating its attitude [3].

Inverse synthetic-aperture radar (ISAR) is a type of ground-based radar used for space
targets. It can be used to acquire target images under all weather conditions and at all times.

Because the ISAR imaging detection of space targets can obtain information about a
target’s attitude over a long distance, it is an important means of estimating the attitudes of
non-cooperative targets in space.

In terms of ISAR image attitude determination, because a single ISAR image of a
single station is not sufficient for three-dimensional space attitude estimation, multi-station
ground-based radar co-vision has been used in many studies for ISAR image attitude
determination [4,5]. For attitude estimation based on sparse image data, informatics
methods are used, such as multi-feature fusion [6], compressed sensing [7], a hidden
Markov model [8], accommodation parameters [9], and a Gaussian window [10]. In
recent years, with the development of artificial intelligence neural network technology,
the application of a deep learning network to attitude estimation using ISAR images has
obtained better simulation data [3,11,12]. Although various methods are used, ISAR-based
image attitude estimation is still less accurate than optical-image attitude estimation.

In terms of optical-image attitude determination, in recent years, convolutional neural
network (CNN) technology has realized highly accurate reconstruction and attitude estima-
tion based on optical images. In fields such as human-organ image reconstruction [13–15],
multi-view image reconstruction [16,17], wave modeling [18], face modeling [19], archi-
tectural modeling [20], and human pose analysis, a CNN can achieve three-dimensional
reconstruction and attitude estimation [21,22].

In space-based optical image attitude determination, CNNs are mainly used in fields
such as space target imaging [23–26] and autonomous rendezvous and docking [27,28]. Its
attitude determination method is often combined with the three-dimensional modeling and
recognition of the target [29,30]. In recent years, artificial neural networks have achieved
good application results in the fields of the three-dimensional reconstruction and the
attitude estimation of targets in space [31–34].

This paper is structured as follows. Section 2 presents a method of non-cooperative
target attitude estimation. This is a non-cooperative target attitude estimation method based
on the machine learning of GSA scene radar images. Section 3 presents the construction
method for the GSA scenes. Section 4 gives the framework used for the machine learning.
Section 5 shows how the effectiveness of the attitude estimation method proposed in this
paper was verified using a test bed with high-fidelity simulation data. Section 6 summarizes
the full text.

2. Non-Cooperative Target Attitude Estimation Method Based on Machine Learning of
Radar Images in GSA Scenes

A direct way to use radar images to determine attitude is to use a deep learning neural
network to learn radar images. After training, the network can output the attitude.

However, this is based on the premise that the training dataset shows a one-to-one
correspondence between the radar images and attitude values.

This requires the training data to meet two necessary conditions.
(1) There is a one-to-one correspondence between the radar images and attitude values.
First, the observation coordinate system shown in Figure 1 needs to be defined.
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Figure 1. Schematic diagram of the observation coordinate system.

The vector direction of the target pointing to the radar is taken as the Z axis, and the
direction of the cross product between the relative velocity direction and the Z axis is taken
as the Y axis. The right-hand rule is used with Z and Y to determine the X axis, and the
origin of the coordinate system is located at the centroid of the target.

The attitude angle in the following observation coordinate system then needs to
be defined.

The Euler angle that rotates from the target body coordinate system, Body, to the
observation coordinate system, Obs, is the attitude angle in the observation system.

Finally, the following lemma needs to be given.

Lemma 1. The attitude angles of a space target in the observation coordinate system have a
one-to-one correspondence with the ISAR images.

Only when the attitudes are defined in the observation coordinate system can the
target radar images have a one-to-one correspondence with the attitude values. In other
words, if two radar images are identical, they must have the same attitude values in the
observation coordinate system. This is because when the attitude angle of the observation
system is determined, the angles between the direction of the radar waves irradiating
the target and the X, Y, and Z axes of the target body coordinate system are uniquely
determined.

(2) The data should come from GSA scenes.
When the radar images the target, in order to obtain an accurate value for the target’s

attitude, a space-based satellite should be used to simultaneously image the target and
estimate the attitude, as shown in Figure 2 below.

As stated in the literature review, methods have been developed to determine the
attitude based on optical images, and determining the attitude of a target based on space-
based optical images is also an engineering problem that has been solved. Therefore, this
is not the research content of this paper. The only problem that needs to be solved is the
simultaneous use of a satellite in space to optically image the target at the moment of radar
imaging. This concerns the construction of GSA scenes, as discussed in the next section.
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Figure 2. GSA scene.

3. Building of GSA Scene with Co-Vision from Space and Earth

3.1. Methods and Ideas

Here, the ground station is designated as GS. The target satellite to be observed by
the GSA is Sat_Target, and the shooting satellite is Sat_Obs. The basic idea of building GSA
scenes is to slightly change the orbital parameters of Sat_Obs, Ha (apogee height) and Hp
(perigee height), so that Sat_Obs is close to Sat_Target while Sat_Target can be observed by
the ISAR of GS, thus generating GSA scenes.

3.2. Method for Solving Orbital Maneuver
3.2.1. Step 1: Alignment Maneuver of the Track Surface Intersection

The intersection vector of the Sat_Obs orbital plane and Sat_Target orbital plane is set
as OC, which can be expressed as follows:⎧⎨⎩

Sat_Targetorbit_normal_vector = [sin(i1)· cos(θ1), sin(i1)· sin(θ1), cos(i1)]
Sat_Obsorbit_normal_vector = [sin(i2)· cos(θ2), sin(i2)· sin(θ2), cos(i2)]

OC = Sat_Targetorbit_normal_vector × Sat_Obsorbit_normal_vector

, (1)

When Sat_Target and GS have access, the geocentric vector of Sat_Target is OT, as
shown in Figure 3.

Figure 3. GSA scene building principle.
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As shown in Figure 3, as long as OC and OT coincide, GSA can be generated.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = cos(i2)· sin(i1)· sin(θ1)− cos(i1)· sin(i2)· sin(θ2)
Y = cos(i1)· sin(i2)· cos(θ2)− sin(i1)· cos(i2)· cos(θ1)
Z = sin(i1)· sin(i2)· sin(θ2 − θ1)

OCx = X√
X2+Y2+Z2

OCy = Y√
X2+Y2+Z2

OCz =
Z√

X2+Y2+Z2

, (2)

where θ1 and θ2 are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ1 =
(
Ω1 − π

2
)
+

.
Ω1·Δt

.
Ω1 = − 3·n1·J2·R2

e

2·a2
1(1−e2

1)
2 · cos(i1)

θ2 =
(
Ω2 − π

2
)
+

.
Ω2·Δt

.
Ω2 = − 3·n2·J2·R2

e

2·a2
2(1−e2

2)
2 · cos(i2)

, (3)

where Ω, n, i, a, and e are the right ascension, horizontal velocity, inclination, semi-major
axis, and eccentricity of the ascending node of satellite Sat_Target and satellite Sat_Obs,
respectively. Re is the Earth’s radius, and J2 is the J2-perturbed parameter.

The required orbital adjustment can be obtained using the following algorithm. This
algorithm mainly realizes the alignment of the two orbital plane intersections by using the
change in the orbital plane intersection caused by the orbital plane precession of the J2
gravitational term.

Algorithm 1. Step A: Calculate all the access of Sat_Target to GS, and get the sequence
of [T_access, XYZ_access], where T_access is the sequence of all the access moments, and
XYZ_access is the XYZ position coordinates in the J2000 coordinate system corresponding
to these access moments.

Step B: Search for a suitable T_access within the acceptable range of a and e changes,
so as to satisfy the following:

OC = XYZ_access, (4)

As long as the above equation is satisfied, intersection point C of the orbital planes of
the two satellites can be made accessible to GS, thereby completing the alignment of the
intersecting orbital planes.

3.2.2. Step 2: In-Plane Pursuit Orbital Maneuver

Only the orbital plane conditions are produced in the last step, and it is necessary to
carry out orbit control of Sat_Obs in the orbital plane one or two orbital periods before
reaching the intersection point, as well as mild control of a, e, and ω (argument of perigee),
so that Sat_Obs can chase after Sat_Target in the orbital plane and reach XYZ_access at time
T_access. This problem can be solved as a Lambert problem. This kind of in-plane catching-
up problem has been well solved in academia, so no further description is given here.

3.3. Calculation Example

The initial conditions are listed in Table 1. The latitude and longitude of GS are 31.1 N
121.3 E.
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Table 1. Initial calculation conditions.

Sat_Target Sat_Obs

Epoch (UTC) 27 November 2022 16:00:00.000 27 November 2022 16:00:00.000
Ha (km) 700 700
Hp (km) 600 350

i (◦) 43 99
Ω (◦) 290 10
ω (◦) 100 0
M (◦) 200 316.5

ω is Augment of Perigee and M is Mean Anomaly.

Based on Sat_Target and GS, the [T_access, XYZ_access] sequence is calculated first, and
then shooting changes Ha and Hp to minimize the difference between

[
OCx, OCy, OCz

]
and XYZ_access.

This example shows that when the apogee altitude of Sat_Obs increases by 19 km
and the perigee altitude increases by 29.3 km,

[
OCx, OCy, OCz

]
can almost coincide with

XYZ_access when T_access is 2022-12-4 11:28:29, and the difference is equivalent to a distance
between them of only 6 km, as shown in Figure 4. This distance is sufficient for Sat_Obs to
perform high-definition imaging and high-precision attitude determination of Sat_Target
using an optical telescope.

Figure 4. Calculation example scene.

4. Attitude Estimation Based on Deep Network

4.1. Brief Introduction

Space target state estimation aims to obtain state parameters such as the target’s on-
orbit attitude movement and geometric structure. It is a key technology for completing
tasks such as target action intention analysis, troubleshooting potential failure threats,
and predicting on-orbit situations. This study had the goal of providing a method for
determining the real attitude of a target using an optical telescope and learning the mapping
relationship between ISAR images and the real attitudes using a deep network so as to
efficiently realize instantaneous attitude estimation based on single-frame ISAR images.
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4.2. Attitude Estimation Modeling

In the orbital coordinate system, the on-orbit attitude of a three-axis stable space target
remains unchanged. ISAR is used to observe the target for a long time. The movement
of the target along its orbit makes the target rotate relative to the radar line of sight and
produce Doppler modulation on the echo. A sequence of high-resolution ISAR images
of the target can be obtained by the sub-aperture division and imaging processing of the
echo data.

An ISAR observation and imaging model of a three-axis stable space target is shown
in Figure 5, in which O-XYZ represents the orbital coordinate system. In the long-term
continuous observation process, the radar line of sight at each observation moment forms
a green curved surface in Figure 5. Among these, the direction vector of the radar line of
sight at time tm is determined by pitch angle αtm and azimuth angle βtm . Specifically, αtm

is the angle between the radar line of sight and its projection vector ltm on the XOY plane,
and βtm is the rotation angle of ltm and the X axis in the counterclockwise direction, with
α(tm) ∈ [−π/2, π/2] and β(tm) ∈ [0, 2π]. The radar line-of-sight direction vector at time
tm can be expressed as follows:

rtm = (cos αtm cos βtm , cos αtm sin βtm , sin αtm)
T , (5)

Figure 5. ISAR observation and imaging model.

For the kth scattering center, Pk, on the target, its coordinates are recorded as (xk, yk, zk)
T .

The projection of the scattering center in the distance direction of the ISAR imaging plane
is shown as follows:

rk(tm) = rT
tm ·(xk, yk, zk)

T , (6)

The velocity of the scattering center along the distance direction is calculated as follows:

vk(tm) = dT
tm ·(xk, yk, zk)

T , (7)

where
dtm =

·
rtm

=
(
− sin αtm cos βtm

.
αtm − cos αtm sin βtm

.
βtm

,

− sin αtm sin βtm

.
αtm + cos αtm cos βtm

.
βtm

, cos αtm

.
αtm

)T
, (8)

and
.
αtm and

.
βtm

represent the change rates of the pitch angle and azimuth angle at time tm,
respectively. Then, the Doppler of scattering center Pk at time tm can be obtained:

dk(tm) = −
2vk(tm)

λ
, (9)
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where λ is the wavelength of the signal emitted by the radar. Therefore, at time tm, the pro-
jection position of scattering center Pk on the imaging plane satisfies the following equation:

(
rk(tm)
dk(tm)

)
=

(
rT

tm

dT
tm

)
·

⎛⎝xk
yk
zk

⎞⎠, (10)

where (rk(tm), dk(tm))
T is the projection coordinates of the scattering center, and Atm =

(rtm , dtm)
T is the imaging projection matrix.

The on-orbit attitude of the target is defined by the Euler angle, and α, β, and γ
represent the azimuth, pitch, and yaw of the attitude angle, respectively. Compared to
the target body coordinate system, the target attitude in the orbit coordinate system is
determined by the three-dimensional rotation matrix, R, as follows:

R = Rα·Rβ·Rγ, (11)

where Rα, Rβ, and Rγ represent the rotation matrices corresponding to the Euler angles.

Assuming that the coordinates of scattering center Pk are
(
xr

k, yr
k, zr

k
)T in the target body

coordinate system, the following equation is obtained:⎛⎝xk
yk
zk

⎞⎠ = R·

⎛⎝xr
k

yr
k

zr
k

⎞⎠, (12)

Then, considering the attitude of the target in the orbital coordinates, the projection
relation of the ISAR imaging of the scattering center at time tm can be completely expressed
as follows: (

rk(tm)
dk(tm)

)
=

(
rT

tm

dT
tm

)
·

⎛⎝R·

⎛⎝xr
k

yr
k

zr
k

⎞⎠⎞⎠. (13)

4.3. Attitude Estimation Based on Deep Network

In order to realize the instantaneous attitude estimation of the space target, this section
proposes instantaneous attitude estimation methods based on a deep network, namely
ISAR image enhancement based on UNet++ [35] and instantaneous attitude estimation
based on the shifted window (swin) transformer [36]. Finally, the training steps of the
proposed methods are given.

4.3.1. ISAR Image Enhancement Based on UNet++

ISAR observes and receives the echoes from non-cooperative targets, compensates
the translation components, which are not beneficial to imaging, and then transforms
them into turntable models for imaging. However, because of the occlusion effect, the
key components of the target can be missing in the imaging results, and the quality of
the imaging results can be poor under noisy conditions. These problems can lead to a
low-accuracy attitude estimation based on a deep network. To enhance the ISAR imaging
results, UNet++, which has strong feature extraction ability, is used to learn the mapping
relationship between the ISAR imaging results and theoretical binary projection images,
and to provide high-quality imaging results for subsequent attitude estimation.

A flow chart of the ISAR image enhancement based on UNet++ is shown in Figure 6.
The network input is the ISAR imaging result, and the deep features of the ISAR image are
extracted through a series of convolution and down-sampling operations. The image is
then restored by up-sampling, and more high-resolution information is obtained by using
a dense jump connection. Thus, the details of the input image can be more completely
restored, and the restoration accuracy can be improved. In order to make full use of the
structural advantages of UNet++ and to apply it to ISAR image enhancement, a convolution
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layer with one channel is added after X0,1, X0,2, X0,3, and X0,4, and its output is averaged to
obtain the final ISAR image enhancement result.

Conv Conv Conv Conv

Mean

0,0X 0,1X 0,2X 0,3X 0,4X

1,0X 1,1X 1,2X 1,3X

2,0X 2,1X 2,2X

3,0X 3,1X

4,0X  

Figure 6. Flow chart of ISAR image enhancement based on UNet++.

Let oi,j represent the output of node Xi,j, where i represents the down-sampling layer
number of the encoder, and j represents the convolution layer number of the dense hopping
connection. The output of each node can then be expressed as follows:

oi,j =

⎧⎨⎩H
(
D
(
oi−1,j)), j = 0

H
([[

oi,k
]j

k=0
,U
(
oi+1,j−1)]), j > 0

, (14)

whereH(·) represents two convolution layers with linear rectification activation functions.
The convolution kernel size is 3× 3, and the number of convolution kernels is shown in
Table 2. As shown by the red downward arrow in Figure 6, D(·) represents the down-
sampling operation, which is realized by a pool layer with 2× 2 kernels, as shown by
the blue upward arrow in Figure 6. U (·) represents the up-sampling operation, which is
realized by a deconvolution layer with 2× 2 kernels and a step size of 2. In addition, [·]
indicates a splicing operation, and the brown arrow indicates a dense jump connection.

Table 2. Number of convolution kernels.

Node X0,0–4 X1,0–3 X2,0–2 X3,0–1 X4,0

Number of convolution kernels 32 64 128 256 512

To achieve better ISAR image enhancement results, the proposed method uses theo-
retical binary projection images as labels for end-to-end training, and the loss function is
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defined as the normalized mean square error between network output Xoutput and label
Xlabel ,

L1

(
Xoutput, Xlabel

)
=
‖Xoutput − Xlabel‖F

‖Xlabel‖F
, (15)

where ‖·‖F represents the Frobenius norm.

4.3.2. Instantaneous Attitude Estimation Based on Swin Transformer

When the radar line of sight is fixed, the attitude angle has a one-to-one correspondence
to the enhanced ISAR image. Therefore, this study used the swin transformer to learn the
mapping relationship.

A flow chart of the instantaneous attitude estimation based on the swin transformer
is shown in Figure 7. First, an enhanced ISAR imaging result with a size of H×W× 1
is inputted into the network. It is then divided into non-overlapping patch sets by patch
partition, based on a patch of 4 × 4 adjacent pixels, and each patch is flattened in the
channel direction to obtain a feature map of H

4 × W
4 × 16. Four stages are then stacked

to build feature maps of different sizes for attention calculation. The first stage changes
the feature dimension from 16 to C using linear embedding, and the other three stages
are down-sampled by patch merging. Thus, the height and width of the feature maps are
halved, and the depth is doubled. The feature map sizes are H

8 × W
8 × 2C, H

16 × W
16 × 4C,

and H
32 × W

32 × 8C. After changing the dimension of the feature maps, the swin transformer
modules are repeatedly stacked, with the swin transformer modules in subsequent stages
stacked 2, 2, 6, and 2 times. A single swin transformer module is shown in the dashed box
on the right side of Figure 7. It is connected using layer normalization (LN) with a windows
multi-head self-attention (W-MSA) module, or a shifted windows multi-head self-attention
(SW-MSA) module, in which the LN layer is used to normalize different channels of the
same sample to ensure the stability of the data feature distribution. Among them, the
self-attention mechanism [37] is the key module of the transformer, and its calculation
method is as follows:

A = Attention(Q, K, V) = SoftMax
(

QKT/
√

d
)

V, (16)

where Q is the query, K is the key, V is the value, and d is the query dimension.
Multi-head self-attention is used to process the original input sequence into self-

attention groups, splice the results, and perform a linear transformation to obtain the final
output result:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) , (17)

where each self-attention module defines dk = dv = dmodel/h, and the weight matrix
satisfies the following:

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dk , WO

i ∈ Rhdv×dmodel , (18)
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Figure 7. Flow chart of attitude estimation based on swin transformer.

W-MSA in the swin transformer module further divides the image block into non-
overlapping areas and calculates the multi-head self-attention in the areas. In W-MSA, only
the self-attention calculation is performed in each window. Thus, the information cannot
be transmitted between windows. Therefore, the SW-MSA module is introduced. After
the non-overlapping windows are divided in the Lth layer, the windows are re-divided in
the Lth+1 layer with an offset of half the window distance, which allows the information
of some windows in different layers to interact. Next, another LN layer is inputted to
connect the multilayer perceptron (MLP). The MLP is a feedforward network that uses
the GeLU function as an activation function, with the goal of completing the non-linear
transformation and improving the fitting ability of the algorithm. In addition, subsequent
stages have 3, 6, 12, and 24 heads. The residual connection added to each swin transformer
module is shown in the yellow line in Figure 7. This module has two different structures
and needs to be used in pairs: the first structure uses W-MSA, and the second structure
connects with SW-MSA. During the process of passing through this module, the output of
each part is shown in Equations (19)–(22):

ẑl = W_MSA
(

LN
(

zl−1
))

+ zl−1, (19)
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zl = MLP
(

LN
(

ẑl
))

+ ẑl (20)

ẑl+1 = SW_MSA
(

LN
(

zl
))

+ zl (21)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (22)

The dimension of the last stage output feature is H
32 × W

32 × 8C. A feature vector with a
length of 8C can be obtained by a one-dimensional AdaptiveAvgPool1d with an output
dimension of 1, and the Euler angle estimation can be obtained by a fully connected layer
with a dimension of 3.

The network loss function is defined as the mean square error between output Euler
angle youtput and label Euler angle ylabel :

L2

(
youtput, ylabel

)
=

1
N

N

∑
i=1

(
youtput

i − ylabel
i

)2
, (23)

where three Euler angles are represented as N = 3.
The swin transformer has the hierarchy, locality, and translation invariance character-

istics. The hierarchy is reflected in the feature extraction stage, which uses a hierarchical
construction method similar to a CNN. The input image is down-sampled 4 times, 8 times,
and 16 times to obtain a multi-scale feature map. The locality is mainly reflected in the
process of the self-attention calculation, in which the calculation is constrained in a divided
local non-overlapping window. The calculation complexity of W-MSA and traditional MSA
is as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C
Ω(W-MSA) = 4hwC2 + 2M2hwC

, (24)

where M is the window size for the self-attention calculation. It can be seen that the
complexity of the algorithm has changed from a square relationship with the image size to
a linear relationship, which greatly reduces the amount of calculation and improves the
efficiency of the algorithm. In SW-MSA, the division of non-overlapping windows is offset
by half a window compared with W-MSA, which allows the information of the upper and
lower windows to effectively interact. Compared with the common sliding window design
in a CNN, it retains the translation invariability without reducing the accuracy.

4.3.3. Network Training

The proposed method consists of two deep networks, the UNet++ for ISAR image
enhancement and the swin transformer for attitude estimation. During network training,
the epoch is set to 100, the batch size is set to 32, and the initial learning rate is set to
2e− 4. With an increase in the epoch, exponential attenuation is then performed with an
attenuation rate of 0.98. Finally, the network parameters are optimized using the Adam
optimizer. For each epoch, the network training steps can be summarized as follows:

(1) Randomly obtain an ISAR imaging result for the batch size from a training dataset;
(2) Input the ISAR imaging results into UNet++, output the enhanced ISAR imaging

results, and calculate the loss function according to Equation (15);
(3) Input the enhanced ISAR imaging results into the swin transformer, output the

Euler angle estimation values, and calculate the loss function according to Equation (22);
(4) Update the swin transformer network parameters;
(5) Update the UNet++ network parameters;
(6) Repeat steps 1–5 until all the training data are taken.
After the network is trained, any ISAR imaging result can be inputted into the network

to simultaneously realize ISAR image enhancement and instantaneous attitude estimation.
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5. Data Simulation Verification Results

5.1. Basic Settings

This section shows how Tiangong was chosen as the observation target. Its three-
dimensional model is shown in Figure 8. After obtaining a three-dimensional model, an
attitude estimation simulation experiment was carried out to verify the effectiveness of
the proposed method. First, an echo was simulated by FEKO electromagnetic calculation
software using the simulation parameters listed in Table 3.

Figure 8. Three-dimensional model of Tiangong.

Table 3. Radar simulation parameters.

Carrier frequency 15 GHz
Bandwidth 1.6 GHz
Pitch angle 0◦

Accumulation angle 5.1◦

Distance points 256
Azimuth points 256

5.2. Data Generation and Processing

(1) Data set generation: As can be seen from Table 3, the radar line of sight was
fixed, the pitch angle was 0◦, the azimuth angle varied from −2.55 to +2.55, and the
angular interval was 0.02◦. At this time, the ISAR imaging results showed a one-to-one
correspondence to its attitude angle (namely the Euler angle). Therefore, in order to
obtain the training dataset, a total of 5000 ISAR imaging results with randomly varying
attitude angles were generated by simulation, and a theoretical binary projection diagram
was generated by Equation (10). The ISAR imaging results, theoretical binary projection
diagram, and attitude angles were used for training. Three Euler angles were randomly
distributed between −45◦ and +45◦, with 4000 ISAR imaging results used for training sets
and 1000 used for testing sets.

(2) ISAR image enhancement: First, ISAR imaging results were taken as network
inputs, and UNet++ was trained with theoretical binary projection as the label. After
training UNet++, ISAR imaging results were randomly used for testing. An imaging result
is shown in Figure 9. It can be seen that the network output and theoretical binary projection
results were similar after the ISAR imaging results were enhanced by the proposed method,
which proved the effectiveness of the proposed method.

(3) Instantaneous attitude estimation: In order to realize instantaneous attitude estima-
tion, the original ISAR images and image enhancement results were used as inputs, and the
true value of the Euler angle was used as a label to train the swin transformer. Table 4 lists
the average Euler angle estimation error on 1000 test datasets after training. It can be seen
that the attitude estimation error with image enhancement was smaller than that without
image enhancement, which proved the effectiveness of the proposed method. Random
ISAR imaging results were taken for testing. Test data 1 is shown in Figures 10 and 11,
and the attitude estimation results are listed in Tables 5 and 6. It can be seen that the data
enhancement results were clear enough to show the structural components of the target,
and the attitude estimation result was more accurate with less error, which proved the
effectiveness of the proposed method.
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Figure 9. ISAR image enhancement results based on UNet++.

Table 4. Euler angle estimation error based on swin transformer.

z/◦ y/◦ x/◦

Without image enhancement 1.3867 1.2231 1.7971
With image enhancement 0.7302 0.7050 0.9579

ISAR image Label image Network output

50 100 150 200 250

50

100

150

200

250 -30

-25

-20

-15

-10

-5

0

50 100 150 200 250

50

100

150

200

250 -30

-25

-20

-15

-10

-5

0

50 100 150 200 250

50

100

150

200

250 -30

-25

-20

-15

-10

-5

0

-5

-10

-15

-20

-25

-30

-5

-10

-15

-20

-25

-30

-5

-10

-15

-20

-25

-30

Figure 10. The imaging results of test data 1.
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Figure 11. The imaging results of test data 2.

Table 5. The attitude estimation results of test data 1.

z/◦ y/◦ x/◦

Label −27.0569 −20.4094 20.2146

Without image enhancement Estimated value −27.9102 −21.9417 19.6320
Error 0.8533 1.5322 0.5827

With image enhancement Estimated value −27.1155 −19.9481 19.5822
Error 0.0587 −0.4613 0.6325

Table 6. The attitude estimation results of test data 2.

z/◦ y/◦ x/◦

Label −13.5862 −35.0809 −14.4134

Without image enhancement Estimated value −14.7988 −36.1443 −15.7292
Error 1.2125 1.0634 1.3158

With image enhancement Estimated value −13.5347 −35.6672 −14.7969
Error −0.0515 0.5863 0.3835

5.3. Noise Robustness Analysis

To analyze the robustness of the proposed method to noise, the signal-to-noise ratio
(SNR) of the training dataset was set to randomly change within a range of −3 dB to
+15 dB, and the test SNR was set to 0, 5, and 10 dB. Table 7 shows the average Euler angle
estimation error of 1000 test samples after the network training. It can be seen that the
proposed method had the smallest estimation error under the different SNR conditions,
and the fluctuation was small, which proved that the proposed method is robust to noise.

Table 7. Average Euler angle estimation error values of test set under different SNR conditions.

SNR z/◦ y/◦ x/◦

Without image enhancement
0 dB 1.4405 1.4354 1.9950
5 dB 1.3620 1.3414 1.8249

10 dB 1.3100 1.3210 1.7834

With image enhancement
0 dB 0.6179 0.8326 0.8755
5 dB 0.6193 0.8047 0.8147

10 dB 0.6163 0.8052 0.8047

At the same time, two random test images were selected for visual analysis. The
imaging results are shown in Figures 12 and 13, and the Euler angle estimation results are
listed in Tables 8 and 9.
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Figure 12. The imaging results of test data 3 under different SNRs.

Table 8. The Euler angle estimation results of test data 3.

SNR z/◦ y/◦ x/◦

Label 36.9615 −36.9176 −21.4118

Without image enhancement

0 dB
Estimated value 37.9141 −37.9030 −18.1337

Error −0.9525 0.9853 −3.2781

5 dB
Estimated value 37.4324 −37.2864 −19.9296

Error −0.4708 0.3687 −1.4822

10 dB
Estimated value 37.6068 −36.9699 −19.4128

Error −0.6452 0.0522 −1.9990

With image enhancement

0 dB
Estimated value 37.0437 −37.0494 −21.7160

Error −0.0821 0.1318 0.3042

5 dB
Estimated value 36.8439 −37.1574 −21.9101

Error 0.1177 0.2398 0.4983

10 dB
Estimated value 36.9237 −36.8922 −21.3185

Error 0.0379 −0.0254 −0.0933
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Figure 13. The imaging results of test data 4 under different SNRs.

Table 9. The Euler angle estimation results of test data 4.

SNR z/◦ y/◦ x/◦

Label −10.3241 −17.8594 −41.7762

Without image enhancement

0 dB
Estimated value −9.9148 −18.7568 −42.4823

Error −0.4093 0.8973 0.7061

5 dB
Estimated value −11.0111 −20.0738 −42.1863

Error 0.6869 2.2144 0.4101

10 dB
Estimated value −11.3889 −19.4947 −41.9493

Error 1.0647 1.6352 0.1731

With image enhancement

0 dB
Estimated value −10.9262 −17.8358 −41.8396

Error 0.6021 −0.0236 0.0634

5 dB
Estimated value −10.7412 −17.5429 −42.0876

Error 0.4171 −0.3165 0.3114

10 dB
Estimated value −10.9565 −17.6848 −41.9112

Error 0.6323 −0.1746 0.1350

6. Conclusions

This paper presented an effective method for estimating the attitude of a non-cooperative
target in space using deep learning based on radar images of GSA scenes. This method
generates many GSA scenes through orbital maneuvers. Taking advantage of the fact that
the attitude of the target in the GSA scenes can be estimated more accurately by space-based
optical telescopes, these attitude estimates are used as a training dataset of ISAR images.
Deep learning training is then carried out on the ISAR images of the GSA scenes. An
experimental verification under simulation conditions showed that the attitude estimation
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accuracy of the method for non-cooperative targets could reach a level of within 1◦. The
high estimation accuracy of this method would allow it to be widely used in fields such as
malfunctioning satellite state analysis and space target detection.
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Abstract: The reachability assessment of low-thrust spacecraft is of great significance for orbital
transfer, because it can give a priori criteria for the challenging low-thrust trajectory design and
optimization. This paper proposes an approximation method to obtain the variation maximum of each
orbital element. Specifically, two steps organize the contribution of this study. First, combined with
functional approximations, a set of analytical expressions for the variation maxima of orbital elements
over one orbital revolution are derived. Second, the secular approximations for the variation maxima
of the inclination and the right ascension of the ascending node are derived and expressed explicitly.
An iterative algorithm is given to obtain the secular variation maxima of the other orbital elements
the orbital elements other than the inclination and right ascension of the ascending node. Numerical
simulations for approximating the variation maxima and a preliminary application in estimation
of the velocity increment are given to demonstrate the efficiency and accuracy of the proposed
method. Compared with the indirect method used alone for low-thrust trajectory optimization, the
computation burden of the proposed method is reduced by over five orders of magnitude, and the
computational accuracy is still high.

Keywords: low-thrust orbital transfer; trajectory optimization; variations of orbital elements;
reachability assessment; estimation of velocity increment

MSC: 70M20

1. Introduction

Interplanetary space missions propelled by solar electric propulsion, such as the Deep
Space 1 [1] and BepiColombo [2], have demonstrated that low-thrust propulsion can be an
alternative propulsion other than the traditional chemical propulsion for space exploration
missions. Benefiting from its high propellant efficiency, this low-thrust electric propulsion
system is drawing increasing attention from researchers. Space missions propelled by the
low-thrust propulsion system are increasing rapidly [3,4]. Assessment of the state reacha-
bility of the low-thrust spacecraft provides meaningful reference for the preliminary design
of space missions, such as multitarget missions [3,5], multiple debris removal missions [6],
and collision avoidance missions [7–9]. It enables us to develop a smarter autonomous
spacecraft [10]. Existing studies mainly focus on the reachability of impulsive spacecraft,
while there are few studies on the reachability of low-thrust spacecraft. Therefore, this paper
aims to develop a methodology that assesses the reachability of low-thrust orbital transfers.
It should be able to benefit the global trajectory optimization for multitarget missions.

Numerous researchers focus on the reachability of spacecraft propelled with impulsive
thrust [11–17]. For example, the upper bound [12] for the reachable domain was determined
for spacecraft with a single fixed-magnitude impulse. Vinh et al. [15] analyzed the reachable
surface of an interceptor at a given time. Otherwise, the reachability was also analyzed for
spacecraft with a given impulse in a definite direction, such as a tangent impulse [16] and a
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norm impulse [17]. These studies have given wide analyses of the reachability of spacecraft
with different impulses.

The reachability assessment of the low-thrust spacecraft can be obtained by solving for
the variation ranges of orbital elements. The variation extrema of orbital elements can be
modeled as optimal control problems [18]. The indirect methods and direct methods [19],
specifically, such as the primer vector theory [20,21] and the convex optimization [22], are
usually applied to solving the optimal control problems. However, the initial guesses of
the shooting unknowns and multiple shooting strategies are usually needed by the indirect
and direct methods. Moreover, the equations of the motion of the spacecraft propelled
by the low thrust is generally non-integrable. Thus, numerical propagation of the low-
thrust trajectories is fundamental but time-consuming when used to solve the trajectory
optimization problems [19,23–25]. To improve the solution efficiency, two major ways have
been developed. The first way is to simplify the motion equation. For example, the Fourier
series expansions were applied to approximate the thrust profiles [26–28] and the equations
of motion [29–31]. However, a nonlinear programming solver was needed to generate an
approximate optimal trajectory by optimizing the coefficients of the Fourier series. The
second way is to predict the evolution of the orbital elements [32] of low-thrust spacecraft,
specifically, such as the semi-analytical theory [33], the orbital averaging method [34], and
the asymptotic solution for the orbital motion subjected to constant thrust [35,36]. With
the short-periodic terms ignored, Gao et al. [34] have made significant efforts to find an
analytical solution for the evolutions of the orbital elements considering the J2 perturbation
and the Earth shadow. Recently, innovative artificial intelligence methods such as machine
learning have been applied in orbital guidance and control [37–39]. However, the machine
learning methods are now still suffering from unknown black-box optimization models. To
some extent, these two ways, simplifying the equations of motion and predicting the orbital
evolution, can improve the computational efficiency and convergence rate when used to
solve the optimal control problems. However, these methods are still time-consuming
because they still rely heavily on numerical methods.

In order to assess the reachability of a low-thrust transfer, an effective approximation
is necessary to obtain the variation ranges of the classical orbital elements of low-thrust
spacecraft propelled over a long period of time. The variation maximum of each orbital
element will be investigated analytically in this paper, and their variation minima can be ob-
tained in the same way, but is omitted here for the sake of conciseness. The contribution of
this paper is accomplished in two steps. Firstly, combined with functional approximations,
the variation maxima of classical orbital elements over one orbital revolution are derived
analytically by applying the local optimal control profile. Secondly, a set of explicit expres-
sions are derived and an iteration algorithm is established to obtain the approximation for
the secular maximum of each orbital element. The simulation results will demonstrate the
efficiency and accuracy of the proposed method over the indirect method.

The rest of this paper is organized as follows. In Section 2, Gauss’s variational equa-
tions for classical orbital elements are listed, and several simplifying assumptions are
stated. In Section 3, the analytical approximation to the secular variation maximum of
each classical orbital element is proposed. The model for the indirect method used to
solve the variation maxima of the orbital elements is expressed first in Section 4, and then
the simulations for the approximations of the variation maxima and the estimation of the
velocity increment are described. Finally, the conclusion is drawn in Section 6.

2. Gauss’s Variational Equations and Simplifying Assumptions

Gauss’s variational equations will be listed, where the thrust acceleration vector is
projected onto the tangential-normal coordinate frame. Then, three assumptions will be
stated, based on which Gauss’s variational equations are simplified so that the secular
variation maxima of the classical orbital elements can be investigated analytically.
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2.1. Gauss’s Variational Equations for Classical Orbital Elements

The Gauss’s variational equations with respect to time t in tangential-normal coordi-
nates are expressed in the forms [11]

da
dt

=
2a2v

μ
at (1)

de
dt

=
1
v

[
2(e + cos f )at −

r
a

sin f an

]
(2)

di
dt

=
r cos θ

h
ah (3)

dΩ

dt
=

r sin θ

h sin i
ah (4)

dω

dt
=

1
ev

[
2 sin f at +

(
2e +

r
a

cos f
)

an

]
− r sin θ cos i

h sin i
ah (5)

d f
dt

=
h
r2 −

1
ev

[
2 sin f at +

(
2e +

r
a

cos f
)

an

]
(6)

where θ = ω + f denotes the argument of latitude, r = h2

μ(1+e cos f ) represents the orbital ra-

dius, and v = μ
h

√
e2 + 1 + 2e cos f represents the orbital velocity. The vector a = [at, an, ah]

denotes the propulsive acceleration vector projected onto the tangential-normal coordinate
frame, which is shown in Figure 1. The unit vector et lies in the plane of the osculating
orbit along the velocity vector, eh is along the specific angular momentum vector, and en
is towards the central body and forms the right-handed coordinate system with the other
two components.

Figure 1. Tangential-normal coordinate frame.

2.2. Simplifying Assumptions

To approximate the secular variations of the classical orbital elements, some assump-
tions are needed to simplify the variational Equations (1)–(6). They are as follows
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1. The fuel consumption is small and ignored due to the low magnitude of the thrust
compared to the total mass of the spacecraft. Consequently, the magnitude of the
propulsive acceleration amax becomes constant because of the constant low-thrust
magnitude Tmax. Thus, the following equation holds

‖a‖ = Tmax

m
= amax = const (7)

The thrust magnitude Tmax is modeled as a function of the maximum thruster input
power Pmax and specific impulse Isp as [40]

Tmax =
2ηPmax

Ispg0
(8)

where η denotes the thruster efficiency, whose value together with Pmax are selected
from [40]. They are assumed to be constant in this paper to obtain a constant low-thrust
magnitude. Meanwhile, g0 = 9.80665 m/s2 is the standard gravitational acceleration.

2. The variation of the true anomaly caused by the three components of a can be ignored
because its maximum amax is much smaller than the central gravitational accelera-
tion [34].

d f
dt
≈ h

r2 (9)

In Equation (9), the approximation of the Equation (6) can be derived when the effect
on d f /dt caused by the low thrust is small enough compared to the term h/r2 (a
similar approximation can also obtained in [36,41]).
Divided by Equation (9), Gauss’s variational equations of classical orbital elements
are transformed into the following differential equations in terms of the true anomaly

da
d f

=
2a2r2v

μh
at (10)

de
d f

=
r2

hv

[
2(e + cos f )at −

r
a

sin f an

]
(11)

di
d f

=
r3 cos θ

h2 ah (12)

dΩ

d f
=

r3 sin θ

h2 sin i
ah (13)

dω

d f
=

r2

hev

[
2 sin f at +

(
2e +

r
a

cos f
)

an

]
− r3 sin θ cos i

h2 sin i
ah (14)

3. Owing to their very small variations within one revolution, the orbital elements are
assumed to be unchanged within every orbital revolution when the related right
sides of Equations (10)–(14) are used to estimate the variations of orbital elements
immediately after the revolution.

3. Secular Variation Maximum of Single Classical Orbital Element

Based on the previous assumptions, the approximations for the secular variation
maxima of the classical orbital elements are derived and expressed as some semi-analytical
formulas in this section. First, we try to derive the approximation for the variation maxi-
mum of each orbital element over one orbital revolution analytically. Second, we focus only
on the variations of the orbital elements immediately after integer revolutions but ignore
the short-term variations within one orbital revolution.
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The procedure for approximating the secular variation maxima of the classical orbital
elements is shown in Figure 2.

Figure 2. Procedure for approximating the secular variation maxima.

As shown in Figure 2, the secular variation maximum of each orbital element is
obtained through two steps. The variation maximum over one orbital revolution, Δx, is
solved at first. Then, the approximations for the secular variation maxima of the orbital
elements are divided into two groups. For the three orbital elements a, e, and ω, an iterative
algorithm is used to obtain their secular variation maxima. Meanwhile, two analytical
solutions are derived to obtain those for i and Ω.

3.1. Secular Variation Maximum of Semi-Major Axis

Replacing the orbital velocity in Equation (10) with its well-known expression with
respect to the COE results in the semi-major axis with respect to the true anomaly:

da
d f

=
2ata3(1− e2)

μ

√
1 + e2 + 2e cos f
(1 + e cos f )2 (15)

which demonstrates that the well-known way to maximize the variation of the semi-major
axis is to apply the acceleration along the tangent direction.

When the orbital elements remain unchanged within one revolution, as assumed in
Section 2.2, the variation maximum of the semi-major axis over one revolution, denoted by
ΔaN , is derived

ΔaN =
2a3

N−1(1− e2
N−1)at

μ
CI,N−1 (16)
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where the parameter CI,N−1 expressed by the definite integral (17) remains unchanged, as
the eccentricity eN−1 remains unchanged within the (N − 1)-th orbital revolution.

CI,N−1 =
∫ 2π

0

√
1 + e2

N−1 + 2eN−1 cos f

(1 + eN−1 cos f )2 d f

=
4EllipticE(eN−1)

1− e2
N−1

(17)

where EllipticE(eN−1) denotes the complete elliptic integral with the form [42]

EllipticE(eN−1) =
∫ 1

0

√
−e2

N−1t2 + 1
√
−t2 + 1

dt (18)

When the thrust acceleration is applied along the tangent direction, the variation of
the eccentricity is derived, as follows

eN = eN−1 + ΔeN

ΔeN =
2ata2

N−1(1− e2
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2

μ∫ 2π

0

eN−1 + cos f
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√
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The closed-form solution for Equation (19) can be expressed as∫ e + cos f
(1 + e cos f )2
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where EllipticE(φ|m) and EllipticPi(n; φ|m) are the complete elliptic integrals of the second
kind and the third kind, respectively, which can be obtained in [42].

By combining Equation (16) with Equation (19), we can design an iterative algorithm,
as shown in Algorithm 1, to obtain the approximations of the secular variation maxima of
the semi-major axis and the consequent variation of the eccentricity.

Algorithm 1: Iterative algorithm.

Input:

Initial orbital elements a0, e0, i0, Ω0, and ω0
For each loop iteration of each subsection:

1. Calculate the variation maxima ΔxN over one orbital revolution
2. Add the variations of the orbital elements xN = ΔxN + xN−1

Stopping conditions:

The time of flight reaches the given value.
Output:

Approximations for the variation of the orbital elements xN
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3.2. Secular Variation Maximum of Eccentricity

Two spherical angles α and β are introduced to represent the propulsive acceleration
vector, as shown in Equation (21). The out-of-plane (yaw) steering angle β is measured
from the orbit plane to the thrust vector. The in-plane thrust-steering angle α is measured
from the velocity vector to the projection of the thrust vector onto the orbit plane [43].
Therefore, the three components of the propulsive acceleration vector are expressed by

at = amax cos β cos α

an = amax cos β sin α

ah = amax sin β

(21)

Some researchers have derived the optimal thrust angle that maximizes the rate of the
change of the orbital elements [43–45]. By applying the optimal control theory, one can
deduce the optimal thrust angles that maximize the change rate of each orbital element.
Specifically, they satisfy ∂ẋ/∂α∗ = 0 and ∂ẋ/∂β∗ = 0. Then, the optimal control profile
to maximize the eccentricity is obtained as β∗ = 0. Meanwhile, the optimal thrust angle
α∗ satisfies

sin α∗ =
Be√

A2
e + B2

e

cos α∗ =
Ae√

A2
e + B2

e

(22)

where the parameters Ae and Be hold the forms

Ae = 2(e + cos f )

Be = −
r
a

sin f
(23)

Furthermore, combining the optimal control profile in Equation (22) with Equa-
tions (11) and (21), the variation maximum of the eccentricity over the N-th orbital revolu-
tion is obtained as

ΔeN =
amaxa2

N−1(1− e2
N−1)

2

μ

∫ 2π

0

√
A2

e,N−1 + B2
e,N−1

ρ2
N−1

√
1 + e2

N−1 + 2eN−1 cos f
d f (24)

In Equation (24), Ae,N−1 and Be,N−1 represent the values of the parameters Ae and Be
corresponding to the revolution number N − 1, respectively. Meanwhile, the parameter
ρN−1 is defined as 1 + eN−1 cos f . Then, substituting the optimal control profile in Equa-
tion (22) into Equation (10) yields the variation of the semi-major axis over one revolution

ΔaN =
2amaxa3

N−1(1− e2
N−1)

μ

∫ 2π

0
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√
1 + e2
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e,N−1ρ2

N−1

d f (25)

The optimal control Equation (22) that maximizes the variation of the eccentricity
leads to the variation equation of the argument of periapsis in the following form

dω

d f
=

amaxa2(1− e2)2

μe(1 + e cos f )2
√
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As the above equation with respect to the true anomaly is an odd function, thus the
variation of the argument of periapsis in each orbital revolution is equal to zero. Then, it
satisfied that Δω = 0, and ωN = ω0.

The two integral parts in Equations (24) and (25), respectively, have no analytical
primitive functions; however, they can be expanded in a power series in the eccentricity.
Thus, the polynomial approximations Pe(e) = ∑4

k=0 pe,kek and Pa(e) = ∑4
k=0 pa,kek are

employed to represent the two integrals. The analytical expressions of the variations of the
eccentricity and the semi-major axis are expressed as:

ΔeN =
amaxa2

N−1
μ

Pe(eN)

ΔaN =
2amaxa3

N−1
μ

Pa(eN)

(27)

Using the Equation (27), one can obtain the secular approximation of the upper bound
for the eccentricity ΔeN by applying the iterative algorithm in Algorithm 1. The consequent
variation of the semi-major axis can be obtained as well.

3.3. Secular Variation Maximum of Inclination

It can be inferred from Equation (12) that the variation of orbital inclination only de-
pends on the normal acceleration ah. Therefore, the other two components of the propulsive
acceleration vector are set to zero. Accordingly, the semi-major axis and the eccentricity are
invariant, i.e., a = a0 and e = e0, and the differential equation of the inclination becomes

di
d f

=
ah p2

0
μ

cos θ

(1 + e0 cos f )3 (28)

The optimal control profile ah to maximize the inclination variation has two parts: the
direction and the magnitude. The magnitude is always equal to amax. Since the value of
cos θ changes periodically, the sign of ah within one revolution will be switched according
to the instantaneous value of cos θ. Therefore, the optimal control profile to maximize the
variation of the inclination is founded by

|ah| = amax

sgn(ah) =

{
1 θ ∈ [2kπ− π

2 , 2kπ+ π
2 ]

−1 θ ∈ [2kπ+ π
2 , 2kπ+ 3π

2 ]

(29)

where the parameter k ∈ Z represents an arbitrary integer. The variation maximum of the
inclination over one revolution can be integrated directly.

Δi =
amax cos ωp2

0
μ
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sgn(ah) cos f
(1 + e0 cos f )3 d f

− amax sin ωp2
0

μ

∫ 2π
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sgn(ah) sin f
(1 + e0 cos f )3 d f

(30)

These two integrals in Equation (30) have general analytical primitive functions, which
are expressed in terms of the eccentric anomaly E [46]

H =
∫ f

f0

cos f
(1 + e cos f )3 d f

= −
(

1− e2
)− 5

2 ×
[

3eE
2
−
(

1 + e2
)

sin E +
e
4

sin 2E− (
3eE0

2
−
(

1 + e2
)

sin E0 +
e
4

sin 2E0)

]
G =

∫ f

f0

sin f
(1 + e cos f )3 d f

= (1− e2)−2
(
− cos E +

e
4

cos 2E + cos E0 −
e
4

cos 2E0

)
(31)
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Here, we use the Hi and Gi to denote the primitive functions of the two integrals
in Equation (30). The variation maximum of the inclination over one revolution can be
written as

Δi =
amax cos ωp2

0
μ

Hi −
amax sin ωp2

0
μ

Gi (32)

Meanwhile, the variational equations of the right ascension of the ascending node and
the argument of periapsis under the optimal control profile (29) are expressed as

dΩ

d f
=

ah p2
0

μ sin i
sin(ω + f )
(1 + e cos f )3

dω

d f
= − cos i

dΩ

d f

(33)

As the variation maximum of the inclination is obtained analytically, we will propose
two strategies with different computational efficiency and accuracy to solve for the secular
variation maximum of the inclination.

3.3.1. Strategy 1

The variation of the argument of the periapsis is small when investigating the variation
maximum of the inclination. Therefore, it can be ignored to obtain an explicit analytical
solution. When the argument of periapsis remains unchanged, the variation maximum of
the inclination and the variation of Ω and ω are represented as

Δi =
amax cos ω0 p2

0
μ

Hi −
amax sin ω0 p2

0
μ

Gi = const

ΔΩ =
ah p2

0 sin ω0

μ sin i
Hi +

ah p2
0 cos ω0

μ sin i
Gi = const

Δω = 0

(34)

Similarly, the differential equations for the variation maxima of the inclination and the
right ascension of the ascending node, with respect to the number of orbital revolutions,
are given as

di
dN

= Ci

dΩ

dN
=

CΩ

sin(i)

(35)

where Ci = Δi and CΩ are both constant. Meanwhile, CΩ holds the form

CΩ =
ah p2

0 sin ω0HΩ

μ
+

ah p2
0 cos ω0GΩ

μ
(36)

We can solve the differential equations (35) for the variation maximum of inclination
and the consequent variations of the right ascension of the ascending node. They are of
the forms

iN = i0 + Ci N

ΩN = Ω0 +
CΩ

Ci
[ln(tan

i0 + Ci N
2

)− ln(tan
i0
2
)]

(37)

This shows that the maximum of the inclination increases linearly under the normal
propulsive acceleration.
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3.3.2. Strategy 2

For a higher accuracy, we take the small variation of the argument of periapsis into
account. The variations of i, Ω and ω over one revolution are expressed as

ΔiN =
amax cos ωN−1 p2

0
μ

Hi −
amax sin ωN−1 p2

0
μ

Gi

ΔΩN =
ah p2

0 sin ωN−1

μ sin iN−1
Hi +

ah p2
0 cos ωN−1

μ sin iN−1
Gi

ΔωN = − cos iN−1ΔΩN

(38)

The variations of i, Ω, and ω over one revolution are obtained analytically by Equa-
tion (38). The secular variation maximum of the inclination and the variations of the right
ascension of the ascending node and the argument of periapsis can be obtained through
the iterative algorithm given in Algorithm 1.

3.4. Secular Variation Maximum of Right Ascension of the Ascending Node

Similar to the approximation of the inclination, the variation of the right ascension of
the ascending node depends only on the normal acceleration ah. Meanwhile, a = a0 and
e = e0 are still satisfied. The variational Equation (13) is rewritten as

dΩ

d f
=

ah p2
0

μ sin i
sin(ω0 + f )
(1 + e cos f )3 (39)

To maximize the variation of the right ascension of the ascending node over one orbital
revolution, the magnitude of the acceleration in the norm direction should achieve its
maximum amax. When the inclination angle is equal to 0 or π, the variational equations will
be singular. Therefore, the inclination range, (0,π), is considered to avoid the singularities.
Then, the sign of ah depends on the value of the sine function sin(ω0 + f ). Consequently,
the optimal control profile to maximize the variation of Ω is derived as

|ah| = amax

sgn(ah) =

{
1 θ ∈ [2kπ, 2kπ+ π]

−1 θ ∈ [2kπ+ π, 2(k + 1)π]
(40)

Substituting the optimal control profile (40) into the differential Equation (39), results
in the variation maximum of the right ascension of the ascending node ΔΩ over one
revolution. The method to maximize the right ascension of the ascending node is same
as the one to maximize the inclination. The only difference is that the optimal control
profiles (40) and (29) are applied, respectively. Therefore, the secular maximum of the right
ascension of the ascending node can be obtained by Equations (37) and (38) from the two
strategies proposed in Section 3.3. Meanwhile, the consequent variations of the inclination
and the argument of periapsis are obtained as well.

The approximation of the right ascension of the ascending node in the previous
part of this subsection is obtained, assuming no other orbital perturbation acceleration is
considered except the low-thrust acceleration. In the low-Earth orbit, the variations of Ω
and ω caused by the second order zonal harmonic of the Earth’s gravitational potential,
J2, are not small enough. In the next part of this subsection, the variation maximum of the
right ascension of the ascending node is conducted by considering the J2 perturbation and
the low-thrust acceleration.

The variational equations for the orbit elements, x = [a, e, i, Ω, ω], considering the
low thrust acceleration and the J2 perturbation, can be expressed as dx/dt = dxLT/dt +
dxJ2 /dt, where dxLT/dt and dxJ2 /dt represent the components of the variational equations
under the low-thrust acceleration and the J2 perturbation, respectively, and dxLT/dt holds
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the form in Equations (1)–(6). Neglecting the short-term effect of the J2 perturbation, one
can obtain the variational equations dxJ2 /dt [47].

daJ2

dt
=

deJ2

dt
=

diJ2

dt
= 0

dΩJ2

dt
= −3

2
J2
√

μ(
RE

1− e2 )
2a−

7
2 cos i

dωJ2

dt
=

3
2

J2
√

μ(
RE

1− e2 )
2a−

7
2 (2− 5

2
sin2 i)

(41)

where J2 = 1.08262668 × 10−3 is the coefficient of the flattening perturbation and
RE = 6,378,137 m. The average changes of the orbital elements a, e, and i caused by the J2
perturbation per orbit are null.

The variation maximum of Ω and the consequent variations of i and ω over one orbital
revolution, considering the effect of the low-thrust acceleration and the J2 perturbation,
hold the form

ΔΩN = ΔΩLT,N + ΔΩJ2,N

ΔiN = ΔiLT,N + ΔiJ2,N

ΔωN = ΔωLT,N + ΔωJ2,N

(42)

where ΔΩLT,N , ΔiLT,N , and ΔωLT,N donate the variations over one revolution caused by the
given optimal control low thrust expressed in Equation (40). ΔΩLT,N , ΔiLT,N , and ΔωLT,N
donate the variations caused by the J2 perturbation over one revolution, and they can be
derived as

ΔΩJ2,N = −3π J2(
RE

a0(1− e2
0)
)2 cos iN−1

ΔiJ2,N = 0

ΔωJ2,N = 3π J2(
RE

a0(1− e2
0)
)2(2− 5

2
sin2 iN−1)

(43)

We can obtain the secular variation maximum of the right ascension of the ascending
node, as well as the consequent variation of the inclination and the argument of periapsis,
by combining the Equation (42) and the iterative algorithm given in Algorithm 1.

3.5. Secular Variation Maximum of Argument of Periapsis

The variation of the argument of periapsis depends on all the three components of the
propulsive acceleration vector. Thus, Equations (21) are used to represent the acceleration
vector. By substituting Equation (21) into Equation (14), we can derive the parameterized
differential equation of the argument of periapsis.

dω

d f
=

amax p2

h(1 + e cos f )2 (A cos β cos α + B cos β sin α + C cos β)) (44)

where
A =

1
ev

2 sin f

B =
1
ev

(
2e +

r
a

cos f
)

C = − r sin θ cos i
h sin i

(45)
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As the term r2

h in Equation (44) is always positive, one can deduce the optimal thrust
angles by applying the optimal control theory.

cos α∗ =
A√

A2 + B2

sin α∗ =
B√

A2 + B2

cos β∗ =

√
A2 + B2

√
A2 + B2 + C2

sin β∗ =
C√

A2 + B2 + C2

(46)

Substituting the optimal control profile (46) into Equation (44), we can obtain the
variation maximum of the argument of periapsis over one revolution.

ΔωLT,N =
∫ 2π

0

amax p2
N−1

hN−1

√
A2

N−1 + B2
N−1 + C2

N−1

(1 + eN−1 cos f )2 d f (47)

The consequent variations of the other orbital elements over one revolution can also
be obtained by applying the control profile (46). Then, by using the designed iterative
algorithm in Algorithm 1, we can obtain the secular variation maximum of the argument of
periapsis and the consequent variations of the other elements.

Two primary additional analysis can also be performed. First, a correction for the
variation of the argument of periapsis over one revolution is conducted. The variation with
the time of the argument of latitude is [11]

dω

dt
+

d f real

dt
=

h
r2 −

r sin(ω + f ) cos i
h sin i

≈ h
r2 (48)

where the f real denotes the exact value of the true anomaly. The approximation in Equa-
tion (48) is based on the assumption that the normal acceleration is small enough to produce
a negligible effect. By dividing Equation (48) by the assumption in Equation (9), the follow-
ing expression can be derived.

d f real

d f
≈ 1− dω

d f
(49)

The following expression can be obtained by integrating the Equation (49).

Δ f real = 2π− ΔωLT,N (50)

The variation maximum of the argument of periapsis over one revolution with a
correction, denoted by Δωcor

N , can be obtained by the linear interpolation as

Δωcor
LT,N =

2π
2π− ΔωN

ΔωLT,N (51)

Second, parameter K = max(A2+B2)
max(C2)

is used to evaluate the magnitude ratio of A2 + B2

to C2. The parameter K can be expanded in the power series in the eccentricity. The
approximation of K can be expressed as K ≈ 4/(e2 cot2 i). Its values for different eccentricity
and inclination are shown in Figure 3. It can be inferred that the smaller the eccentricity and
the closer the inclination to π/2, the bigger the value of K. To some extent, the parameter
K indicates the effect of the acceleration component ah on the variation maximum of the
argument of periapsis. Combining the Equation (21) and the optimal thrust angle in
Equation (46), the bigger the value of K is, the closer the applied acceleration ah is to zero.
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Figure 3. Value of parameter log10 K for different inclination and eccentricity.

When the value of K is large, A2 + B2 +C2 ≈ A2 + B2, and the acceleration component
ah is small and ignored. Then, the optimal control profile is transferred as

a∗t = amax
A√

A2 + B2

a∗n = amax
B√

A2 + B2

a∗h = 0

(52)

Substituting the simplified optimal control profile into Equations (10)–(14), we can
find that the variational equations of the semi-major axis and the eccentricity are odd
functions. Thus, their variations over one revolution are zero. Meanwhile, the variation
of the inclination and the right ascension of the ascending node are small and ignored.
Therefore, a = a0, e = e0, i = i0, Ω = Ω0, and the variation of the argument of periapsis
over one revolution is simplified as

ΔωLT,N =
∫ 2π

0

amax p2
0

h0

√
A2

0 + B2
0

(1 + e0 cos f )2 d f = const (53)

It means that the variation maximum of the argument of periapsis caused by the
low-thrust acceleration is constant over each revolution when the parameter K is large.

From the former parts of this subsection, we can obtained the variation maximum of
the argument of periapsis caused by the low-thrust acceleration. Meanwhile, the variation
caused by the J2 perturbation has been derived in Equation (43). By using the formulas
in Equation (42) and the iterative algorithm given in Algorithm 1, we can now obtain the
secular variation maximum of the argument of periapsis, considering both the low-thrust
acceleration and the J2 perturbation.
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4. Numerical Simulations

In the first part of this section, the optimization model of the indirect method is
established. To validate the optimality of the indirect method, we conducted several
simulations to compare the solutions to those obtained by GPOPS version 1.0 [48], which
is a MATLAB software for solving multiple-phase optimal control problems using the
Gauss pseudospectral method. Meanwhile, simulations for the variation maxima of the
orbital elements over a fixed flight time are conducted to demonstrate the efficiency and
accuracy of the proposed method compared with the indirect method. Then, a preliminary
application of the proposed method is conducted to estimate the velocity increments of
orbital transfers. All the simulations are coded in C++ and performed on a personal desktop
with an Intel Core i7-7700 CPU of 3.6 GHz and 16.00 GB of RAM.

4.1. Simulations for Variation Maximum of Each Orbital Element

In this study, the approximation solutions obtained by the proposed method are
compared with those by an indirect method. The optimization model is established first by
considering the mass consumption. The nonlinear optimal control model that maximizes
the variation maximum of the semi-major axis over a fixed flight time is taken as an example
and given as follows.

Minimize:
J = −a(t f ) (54)

Subject to
Ẋ(t) = f (X, u, m, t)

ṁ(t) = −Tmaxu
Ispg0

X(t0) = X0, m(t0) = m0

(55)

where u denotes the control vector, u = Tmaxu
m α. α is an unit vector and denotes the

direction of the control vector. The engine thrust ratio is u ∈ [0, 1]. The state X represents
X = [a, e, i, Ω, ω, f ]T. The right-hand side of the first equation in Equation (55) represents
Gauss’s variational equations in Equations (1)–(6), and it holds the form as f (X, u, m, t) =
Mu. The final conditions are expressed as

X(t f ) = [a(t f ), e(t f ), i(t f ), Ω(t f ), ω(t f ), f (t f )]
T = free

m(t f ) = free

ToF = t f − t0

(56)

First, by introducing the costate vector λ = [λX , λm], which is known as the functional
Lagrange multiplier, the Hamiltonian is built as [49]

H = λT
X Mu− λm

Tmax

Ispg0

u (57)

The costate differential equations that are termed as Euler-Lagrange equations are
given as λ̇X = −∂H/∂X and λ̇m = −∂H/∂m. By applying the optimal control theory [50],

we can obtain the final costate λ(t f ) =
∂(−a(t f ))

∂X(t f )
= [−1, 0, 0, 0, 0, 0]T, and the final mass

costate λm(t f ) =
∂(−a(t f ))

∂m(t f ) = 0.
The optimal thrust direction and magnitude, which minimize the Hamiltonian, are

determined by [49]
u = 1

α = − MTλX

||MTλX ||
(58)
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Given the initial costates λ(t0) and the initial state in Equation (55), we can obtain
the final states and costates by integrating the differential equations of the states and
costates. Meanwhile, the final states are free and the final costates should satisfy their final
values. Therefore, the optimal control problem yields a two-point boundary value problem
consisting of a set of equations of the form:

Φ = [λX(t f ), λm(t f )]
T − [−1, 0, 0, 0, 0, 0, 0]T = 0 (59)

where Equation (59) is called the shooting function. MinPack-1 [51], a package of FORTRAN
subprograms for the numerical solution of the systems of nonlinear equations and nonlinear
least-squares problems is used here to solve the shooting functions in the indirect method.
Then, we can obtain the variation maximum over a finite flight time of the semi-major axis.
Meanwhile, the solution of the indirect method in solving the variation maxima of the other
elements can be also obtained in this way, but is omitted here for the sake of conciseness.

Four numerical simulation cases including three geocentric orbital transfers and one
heliocentric orbital transfer are given to substantiate the proposed method. In each case,
the simulation of approximating the secular variation maximum of each orbital element is
carried out individually. The spacecraft parameters are selected as Pmax = 2.86 kW, η = 0.6,
and Isp = 3500 s from a NEXT engine [40], and the initial mass is m0 = 1000 kg. Thus, the
constant acceleration magnitude is amax = 10−4 m/s2, corresponding to the mass-flow rate
2.91× 10−6 kg/s. The fixed flight times are set to 50 days and 400 days for cases 1–3 and
case 4, respectively. The mean equatorial radius of the Earth, RE, is used to normalize the
values of the semi-major axis in cases 1–3. The astronomical unit, AU, is used in case 4. The
simulation parameters with a wide range of initial orbital elements are listed in Table 1.
The eccentricity is near singularity in case 1 and the thrust-to-gravity ratio is large in case 4.
The variation maxima of the argument of periapsis are very huge over a short flight time,
being much lower than 50 days in both of these two cases. Therefore, the simulations for
argument of periapsis in case 1 and case 4 are omitted.

Table 1. Parameters for initial orbital elements.

Case a0 e0 i0, deg Ω0, deg ω0, deg f0, deg

1 1.1759, RE 0.001 10 30 10 0
2 3.9196, RE 0.5 55 150 130 0
3 5.8011, RE 0.3 100 270 250 0
4 1.0, AU 0.0167 5 30 50 0

As shown in Table 2, the solutions produced by the indirect method for case 3 are
compared with those of GPOPS. The percentage errors are on the order of one-thousandth.
It indicates that when solving the secular variations of orbital elements, the performance
of the indirect method is comparable to that of GPOPS in terms of the optimality. Al-
though GPOPS is a powerful MATLAB software for solving multiple-phase optimal control
problems, good initial guesses of the state and control are also needed to guarantee the
convergence and to obtain a good local optimal solution. In this paper, the solutions of the
indirect method are used as references to compare with those of the proposed method.

Table 2. Comparison of the solutions solved by GPOPS and the indirect method for Case 3.

Case 3 a f , RE e f i f , deg Ω f , deg ω f , deg

Indirect method 7.6628 0.4875 104.9775 275.8517 291.4525
GPOPS 7.6775 0.4837 105.0753 275.8700 290.1070

Percentage error 1.9× 10−3 7.8× 10−3 9.3× 10−4 6.6× 10−5 4.6× 10−3
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The computational times spent by the proposed method and the indirect method are
listed in Table 3. The numbers after S1 and S2 are the computational times of the strategy 1
and 2 proposed in Section 3.3. The subscripted symbols represent the computational times.
For example, ta represents the computational time in solving the variation maximum of the
semi-major axis. It shows that the propose method spends tens of microseconds to obtain a
variation maximum of one orbital element and the indirect method spends several seconds
in general. Due to the limited number of orbital revolutions in case 4, both of the two
methods require less computational time than they do in the other cases. Compared with
the numerical indirect method, the proposed method greatly saves the computational time.
In general, the computational time for approximating the secular variation maximum of
each orbital element could be reduced by over five orders of magnitude. The computational
times for solving the variational maxima by the proposed strategy 1 are reduced by over
seven orders of magnitude.

Table 3. Computational times.

Proposed Method Indirect Method

Case ta,×10−5 s te,×10−5 s ti,×10−5 s tΩ,×10−5 s tω,×10−5 s ta, s te, s ti, s tΩ, s tω, s

1 6.2 7.3 S1: 0.08 S1: 0.04 / 25.64 4.58 150.73 6.91 /S2: 20 S2: 19

2 1.1 1.2 S1: 0.05 S1: 0.06 10 10.19 71.48 1.51 5.84 16.07S2: 3.3 S2: 3.2

3 1.0 0.7 S1: 0.09 S1: 0.08 20 1.44 15.65 1.15 9.02 27.67S2: 1.9 S2: 1.9
4 0.093 0.016 0.011 0.083 / 0.036 0.032 0.082 0.367 /

The variation maxima of orbital elements over a fixed flight time are listed in Table 4.
The results obtained by the proposed method are slightly less than those by the indirect
method. The indirect method provides better solutions of the variation maxima with longer
computational times. Compared with the indirect method, the percentage errors of the
solutions obtained by the proposed method are on the order of the one-thousandth for
cases 1–3. From the approximations for the secular variations of the inclination and the
right ascension of the ascending node in cases 1–3, we can find that the accuracies of the
two strategies conducted in Section 3.3 are similar, but their computational times are quite
different. The approximations for the secular variation maxima of the right ascension of the
ascending node considering the J2 perturbation and low thrust by the proposed method
are also consistent with the accuracy solutions of the indirect method. In case 2, when the
J2 perturbation is taken into account, the variation maximum of the right ascension of the
ascending node decreases, while the variation maximum of the periapsis argument grows.
These simulation results are consistent with the results of the analysis of Equation (41). In
case 2, the signs of the differentials of the right ascension of the ascending node and the
argument of periapsis under the J2 perturbation are negative and positive, respectively. On
the contrary, in case 3, the J2 perturbation decreases the right ascension of the ascending
node and increases the argument of periapsis. Meanwhile, for case 4, which has a higher
thrust-to-gravity ratio, the percentage error increases to the order of one percent.
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Table 4. Variation maxima of the orbital elements over a fixed flight time.

x f Proposed Indirect Method Percentage Error

Case 1

a f , RE 1.3287 1.3297 8.2 × 10−4

e f 0.0923 0.0928 6.3 × 10−3

i f , deg S1: 12.1615 12.1647 2.6 × 10−4

S2: 12.1615 2.6 × 10−4

Ω f , deg S1: 42.4473 42.6318 4.3 × 10−3

S2: 42.4287 4.7 × 10−3

Case 2

a f , RE 4.8558 4.8658 2.1 × 10−3

e f 0.6369 0.6376 1.1 × 10−3

i f , deg S1: 59.9658 60.1101 2.4 × 10−3

S2: 59.9955 1.9 × 10−3

Ω f , deg S1: 156.6328 156.9221 1.8 × 10−3

S2: 156.8552 1.6 × 10−3

Ω f (J2), deg 152.2657 152.8683 3.9 × 10−3

ω f , deg 147.5200 147.9650 3.0 × 10−3

ω f (J2), deg 147.5433 147.9809 2.9 × 10−3

Case 3

a f , RE 7.6366 7.6628 3.4 × 10−3

e f 0.4863 0.4875 2.4 × 10−4

i f , deg S1: 104.9113 104.9775 6.3 × 10−4

S2: 104.9107 6.4 × 10−4

Ω f , deg S1: 275.6966 275.8517 5.6 × 10−4

S2: 275.6077 8.8 × 10−4

Ω f (J2), deg 275.8296 276.0224 6.9 × 10−4

ω f , deg 287.4059 291.4525 13 × 10−3

ω f (J2), deg 287.3791 290.9265 12 × 10−3

Case 4

a f , AU 1.2387 1.2684 2.6 × 10−2

e f 0.1952 0.2081 6.2 × 10−2

i f , deg 9.2333 9.5141 2.9 × 10−3

Ω f , deg 78.5656 84.9038 7.5 × 10−2

4.2. Estimation of the Velocity Increment

As the variation maxima of the COE of low-thrust spacecraft have been obtained
effectively, one application for the proposed method is to estimate the velocity increment of
the orbital transfer. Simulations of two minimum-time orbital transfer examples, whose
COE are listed in Table 5, are designed to estimate the ΔV. The spacecraft is launched into a
middle Earth orbit, and the initial semi-major axis is 27,906 km and the initial inclination is
40 deg. For the example 1, we aim to increase the inclination only. The initial inclination is
40 degrees. The final orbital inclinations range from 42 degrees to 56 degrees. In example 2,
we test the orbital transfers from initial orbits with different eccentricities to the targets.
The initial eccentricities range from 0.0106 to 0.4106. The increments of the semi-major axis
and the inclination between the target orbit and the initial orbit are 3000 km and 5 degrees,
respectively.

Table 5. Orbit elements of the initial orbit and the target.

Example 1 Example 2

Orbit Elements Initial Orbit Target Initial Orbit Target

Semi-major axis, km 27,906 27,906 27,906 30,906
Eccentricity 0.0106 0.0106 0.0106–0.4106 free

Inclination, deg 40 42–56 40 45
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The indirect method is used to solve for the accurate velocity increments for the time
optimal orbital transfer problem of the simulation examples. The time optimal problem of
the indirect method is modeled for the orbital transfer problem.

Minimize:
J =
∫ t0+ToF

t0
1dt (60)

Subject to
Ẋ(t) = f (X, u, m, t)

ṁ(t) = −Tmaxu
Ispg0

X(t0) = X0, m(t0) = m0

(61)

The final conditions are expressed as

Example 1 :

⎧⎨⎩
[a(t f ), e(t f ), i(t f )]

T = [a0, e0, i f ]
T

[Ω(t f ), ω(t f ), f (t f ), m(t f )]
T = free

ToF = free

Example 2 :

⎧⎨⎩
[a(t f ), i(t f )]

T = [a f , i f ]
T

[e(t f ), Ω(t f ), ω(t f ), f (t f ), m(t f )]
T = free

ToF = free

(62)

By solving the time optimal transfer problem, we can obtain the minimum transfer
time ToFI . Then, the velocity increments are calculated by integrating the immediate
propulsive acceleration from t0 to t0 + ToFI as ΔVI =

∫ t0+ToFI
t0

||u||dt. The percentage error

is calculated by |ΔVP−ΔVI |
ΔVI

. ΔVP = amaxToFP represents the velocity increment solved by the
proposed method. The ToFP is obtained by adding up the transfer time until the desired
final orbital elements are reached.

For the inclination increment problem of example 1, the velocity increments estimated
by the proposed method and the indirect method are shown in Figure 4. The ΔV increases
with the increase in the inclination. In general, the percentage error grows with the increase
in the inclination of the target.
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Figure 4. Comparison of ΔV, for example 1. (a) ΔV solved by the two methods. (b) Percentage error
of the estimation of ΔV.

In example 2, the velocity increment estimated by the proposed method is obtained by
taking the vector addition of the tangential component ΔVP,t and the normal component
ΔVP,h. First, using the proposed method in Section 3.1, we can increase the semi-major
axis to its target by applying the tangent acceleration. The time of flight is calculated as
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ToFP = ∑N
1 ToFP,k. The semi-major axis of the target is the stopping condition, then the

flight time can be obtained by the linear interpolation as aN−1 ≤ a f < aN

ToFP,t =
N−1

∑
k=1

ToFP,k +
a f − aN−1

aN − aN−1
ToFP,N (63)

where the ToFP,k denotes the flight time of the k-th orbital revolution. The velocity increment
ΔVP,t can be calculated as ΔVP,t = amaxToFP,t.

Then, using the proposed method in Section 3.3, we can obtain the flight time ΔVP,h,
by linear interpolation, as iN−1 ≤ i f < iN

ToFP,h =
N−1

∑
k=1

ToFP,k +
i f − iN−1

iN − iN−1
ToFP,N (64)

The velocity increment ΔVP,h can be calculated as ΔVP,h = amaxToFP,h. Thus, the total

velocity increment is calculated as ΔVP =
√

ΔV2
P,t + ΔV2

P,h.
In example 2, the velocity increments estimated by the two methods are shown in

Figure 5a, and the percentage error of the proposed method in estimating the ΔV is shown
in Figure 5b. Though, the differences of the semi-major axis and of the inclination between
the target and initial orbits are equal, respectively, it shows that the velocity increment
decreases with the increase in initial eccentricity. Meanwhile, when the eccentricity is
smaller, the percentage error of the velocity increment estimated by the proposed method
is small.
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Figure 5. Comparison of ΔV for example 2. (a) ΔV solved by the two methods. (b) Percentage error
of the estimation of ΔV.

Finally, the computational time of the proposed method in estimating the velocity
increment of the orbital transfer is compared with the indirect method. For both of the
examples, we estimate the velocity increments of eight transfers from the initial orbits to
the targets. The average computational times are calculated and listed in Table 6. The
proposed method takes 0.43 ms on average and 0.061 ms on average to estimate the velocity
increments for a single transfer in examples 1 and 2, respectively. However, the indirect
method spends tens of seconds and several seconds on average. Compared with the
indirect method, the computational time of the proposed method could be reduced by over
five orders of magnitude. It indicates that the proposed method has a great advantage in
computational time saving in estimating the velocity increment of the orbital transfer.
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Table 6. Computational times of two methods.

Average Computational Time Example 1 Example 2

Proposed method, s 4.3× 10−4 6.1× 10−5

Indirect method, s 82 8.8

5. Discussion

The assessment of the state reachability of the low-thrust spacecraft provides a mean-
ingful reference for the preliminary design of space missions. We conduct an efficient
method for approximating the variation maxima to assess the reachability. The direct
method solver, GPOPS, is used as a comparison to validate the optimality of the indirect
method. It indicates that the performance of the indirect method is comparable to that
of GPOPS in terms of the optimality. By solving the time-consuming numerical shooting
functions, the indirect method works out the solution. Compared with the solution of
the indirect method, the approximations for the secular variation maxima obtained by
the proposed method are of high efficiency and accuracy. Though the indirect method
gives a better solution, the proposed method reduces the computational time by over five
orders of magnitude, and the percentage error is on the order of one-thousandth in general.
Compared with strategy 2, strategy 1 gives a similar solution, but its computational time is
reduced a lot. The accuracy and efficiency are still guaranteed, considering the J2 perturba-
tion and low-thrust acceleration. Meanwhile, the simulation results of cases 1–3 in Table 4
are consistent with the analysis of the analytical expressions. The estimation of the velocity
increment for two kinds of orbital transfers is conducted and demonstrates the usefulness
of the proposed method.

However, there are some limitations to this paper. We applied some simplified as-
sumptions of the variational equations to obtain the analytical solution, such as the neglects
of the mass consumption and the variation of the true anomaly caused by the low thrust.
Though these assumptions are applied, the accuracy is still guaranteed. Meanwhile, the
application of the proposed method in estimating the velocity increment of the orbital
transfer is conducted in several special cases, such as the increment of the inclination and
the semi-major axis. A further application in estimating the velocity increment for a general
orbital transfer is of great significance.

6. Conclusions

In this paper, an approximation method is established to obtain the secular variation
maxima of the classical orbital elements of low-thrust spacecraft over a finite flight time. First,
the variation maxima of each orbital element over one revolution are derived analytically
by applying the optimal control profile. The power series in the eccentricity are employed
to expand the integrals, which have no analytical primitive functions. Then, an iterative
algorithm is established to obtain the secular variation maxima of the semi-major axis, the
eccentricity, and the argument of periapsis. Meanwhile, two strategies with a number of
explicit expressions are conducted to approximate the secular variation maxima of the inclina-
tion and the right ascension of the ascending node. Particularly, the variation maxima of the
right ascension of the ascending node and the argument of the periapsis take into account the
effects of the low-thrust acceleration and of the J2 perturbation of the Earth.

Two kinds of simulations are given to compare the solutions of the proposed method
with the indirect method. The simulations of the variation maximum of each orbital element
are conducted and demonstrate the efficiency and accuracy of the proposed method. In
general, the percentage errors in approximating the variational maxima are on the order
of one thousandth. Meanwhile, a preliminary application of the approximation of the
secular variation maxima is given to estimate the velocity increments of low-thrust orbital
transfers. The simulation demonstrates that the proposed method has a high estimating
accuracy compared with the indirect method. The percentage error is on the order of one
percent. In particular, both kinds of simulations indicate that the computational times of
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the proposed method are reduced by over five orders of magnitude, as compared with the
indirect method.

7. Future Work

In this paper, we have demonstrated an efficient method with analytical derivations
to approximate the secular maxima of the classical orbital elements and the preliminary
application of the proposed method. It is foreseeable that the fast and accurate estimate of
the variation maxima of the orbital elements can provide a priori information for the low-
thrust trajectory design and optimization. Thus, the proposed method can bring benefits to
the sequence search of multi-target low-thrust missions. Meanwhile, given the limitations
of this paper, it will be important that future research investigates the variation maxima of
the orbital elements, considering the mass consumption. Additionally, a significant topic
for future research might be the estimation of the velocity increment for a general orbital
transfer, taking into account the combination of various orbital elements.
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Nomenclature

Symbols
a Semi-major axis
e Eccentricity
i Inclination
Ω Right ascension of ascending node
ω Argument of periapsis
f True anomaly
h Magnitude of specific angular momentum
μ Gravitational constant
a Propulsive acceleration vector
Δx Variation group of the classical orbital elements over one orbital revolution
xN Values of the orbital elements after N orbital revolutions
Tmax Thrust magnitude
RE Mean equatorial radius of the Earth
J2 Second order zonal harmonic of the Earth’s gravitational potential
ΔV Velocity increment
X Group of the orbital elements
u Thrust vector
u Engine thrust ratio
α Unit vector of thrust direction
ToF Time of flight
λ Lagrange multiplier associated with state, i.e., costate
H Hamiltonian
AU Astronomical unit
Φ Combination of shooting functions
m Instantaneous mass of spacecraft
β Out-of-plane (yaw) steering angle
α In-plane thrust-steering angle
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Subscripts
LT Low thrust
J2 J2 perturbation
P Proposed method
I Indirect method
N N-th orbital revolution
0 Initial time
f Final time
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Abstract: In response to the increasing threat of hypersonic weapons, it is of great importance for
the defensive side to achieve fast prediction of their feasible attack domain and online inference
of their most probable targets. In this study, an online footprint prediction and attack intention
inference algorithm for hypersonic glide vehicles (HGVs) is proposed by leveraging the utilization of
deep neural networks (DNNs). Specifically, this study focuses on the following three contributions.
First, a baseline multi-constrained entry guidance algorithm is developed based on a compound
bank angle corridor, and then a dataset containing enough trajectories for the following DNN
learning is generated offline by traversing different initial states and control commands. Second,
DNNs are developed to learn the functional relationship between the flight state/command and
the corresponding ranges; on this basis, an online footprint prediction algorithm is developed by
traversing the maximum/minimum ranges and different heading angles. Due to the substitution
of DNNs for multiple times of trajectory integration, the computational efficiency for footprint
prediction is significantly improved to the millisecond level. Third, combined with the predicted
footprint and the hidden information in historical flight data, the attack intention and most probable
targets can be further inferred. Simulations are conducted through comparing with the state-of-the-art
algorithms, and results demonstrate that the proposed algorithm can achieve accurate prediction for
flight footprint and attack intention while possessing significant real-time advantage.

Keywords: reentry guidance; footprint prediction; attack intention inference; deep neural network

MSC: 85; 97R40

1. Introduction

Hypersonic glide vehicles have attracted much attention in recent decades due to
their dominant advantages on fast speed, wide attack range, and strong maneuverability.
The whole flight time from the beginning entry to the final attack can be shortened to within
one hour, which results in a daunting challenge for the interception system of the defensive
side. Acquiring the feasible footprint and possible intention of an attacking HGV as early as
possible and getting more time for the interception system is crucial for a successful defense.
However, most of the existing methods/algorithms suffer the drawbacks of insufficient
prediction accuracy and poor real-time performance. In this study, we focus on an online
footprint prediction and attack intent inference algorithm for HGVs by leveraging the
utilization of deep neural networks, and we achieve performance improvement for both
prediction accuracy and computational speed.

The footprint is the set of terminals of all possible trajectories. Traditionally, the foot-
print is generated by traversing the maximum/minimum ranges and different heading
angles using a baseline trajectory planner. The method difference for footprint generation
is mainly reflected in the method difference for the planner design. The methods for foot-
print generation can be roughly divided into three categories. (1) Trajectory optimization
methods, such as the Legendre pseudospectral method [1,2], the Gauss pseudospectral
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method [3], the hp-adaptive Radau pseudospectral method, and convex optimization [4–6]
are utilized to generate the landing footprint. (2) The quasi-equilibrium glide condition
(QEGC) [7] simplifies footprint generation. In [8], footprint generation is simplified to find
the solutions to closest approaches to a moving virtual target. On the basis of [8], a selec-
tion scheme of a virtual target is proposed to increase the applicability of this method [9].
In [10], based on the simplified dynamics model, the convex optimization is utilized to
generate the maximum crossrange trajectory. Footprint generation under the failure of the
control components was solved by QEGC in [11]. (3) Based on the Evolved Acceleration
Guidance Logic for Entry (EAGLE), drag acceleration-energy profiles can be designed for
footprint generation [12]. On the basis of EAGLE, footprint generation algorithms follow
drag acceleration–energy profiles tracking scheme satisfying the no-fly zone constraint
in [13]. However, the existing footprint generation methods inevitably require numerical
integration, and the time-consuming integration calculation and algorithm iteration cannot
meet the real-time requirements for online footprint generation.

At the same time, few published studies pay attention to the discussion about attack
intention for an attacking HGV, which specifically refers to information mining from past
flight data and assists the defensive side to deploy interceptor systems for the most possible
attack targets. Representative work is reviewed here. On the basis of the traditional state
extrapolation prediction ideas in [14,15], a Bayesian trajectory prediction method based on
intention inference is proposed. Aiming at the uncertainty of HGVs maneuvering, it is one
of the effective ways to improve the accuracy of long-term trajectory prediction to reason-
ably infer the flight intention based on the characteristics of target motion. The trajectory
prediction accuracy of this method is high in the short term, but the long-term prediction
accuracy is low. The intention analysis only provides a reference for the long-term trajectory
prediction, and cannot analyze the final attack target. In [16], a dynamic Bayesian network
is used to infer the relationship between HGVs and attack targets to achieve attack intention
prediction. However, this method can only determine the final attack target in the middle
and later stages of the flight and cannot provide guidance for early warning and defense.
DNN-based maneuver pattern recognition, such as penetration, attack, transportation, civil
aviation flight, reconnaissance, etc., is designed in [17]. In summary, there are few studies
to discuss the online attack intention for a flying HGV, and the main reasons are summa-
rized as follows. (1) The real-time requirement for online footprint generation cannot be
met. (2) The control strategy is unknown. Due to the aerodynamic force, HGVs perform
non-inertial maneuver driven by the control command, and it is very difficult to exactly
identify their control strategies. (3) HGVs are highly maneuverable. HGVs can theoretically
attack every target within a large footprint through maneuvering changes. Due to the
restrictions of the no-fly zone and the need for maneuver penetration, it is unavoidable that
the control variable may change sharply. Compared with ballistic missiles, the intention
analysis for HGVs is more difficult due to HGVs’ strong maneuverability.

In recent years, DNNs have been widely used in the aerospace field [18]. Multi-layer
feedforward neural networks are utilized to approximate the mapping relationship be-
tween the real-time flight states of high lifting vehicles and guidance commands in [19].
In [20,21], a neural network predictor assists in calculating guidance parameters. In our
previous study [22], DNN is developed to replace the trajectory integrator to help achieve
real-time numerical predictor–corrector guidance (NPCG). In this study, we focus on the
online prediction of feasible footprint and attack intention for HGVs, and DNN and data
mining technologies help achieve the combined advantages on real-time performance and
prediction accuracy. Specifically, the following three contributions are emphasized. (1) A
baseline multi-constrained entry guidance algorithm is developed based on a compound
bank angle corridor, and then a dataset containing enough trajectories for the following
DNN learning is generated offline by traversing different initial states and control com-
mands. (2) DNNs are developed to learn the functional relationship between the flight
state/command and the corresponding ranges; on this basis, an online footprint predic-
tion algorithm is developed by traversing the maximum/minimum ranges and different
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heading angles. Due to the substitution of DNN for trajectory integration, the computa-
tional efficiency for footprint prediction is significantly improved to the millisecond level.
(3) Combined with the predicted footprint and the hidden information in historical flight
data, the attack intention and most probable targets can be further inferred. A forgetting
mechanism helps the proposed attack intention inference algorithm to still be effective
when the HGVs change their attack target during the flight. Simulations are given to
estimate the effectiveness of the proposed techniques.

This study is organized as follows: The problem formulation of reentry is described in
Section 2. In Section 3, a DNN is developed to approximate the ranges, following which an
intelligent DNN-based footprint algorithm is proposed. In Section 4, an intent inference
algorithm is proposed. Simulations are given in Section 5 to evaluate the performance of
the proposed algorithm. Section 6 summarizes this study.

2. Problem Formulation

The purpose of this study is to achieve online footprint generation and attack intention
inference of an enemy HGV. In this section, reentry dynamics, constraints, and control
parameterization are provided and analyzed.

2.1. Reentry Dynamics

In order to achieve the footprint prediction of a flying HGV, it is necessary to describe
its reentry dynamical motion. Without considering the influence of the Earth’s rotation,
the three-degree-of-freedom motion model is given as [23]:

ṙ = v sin θ
λ̇ = v cos θ sin ψ/(r cos φ)
φ̇ = v cos θ cos ψ/r
v̇ = −D/m0 − g sin θ
θ̇ = (1/v)

[
L cos σ/m0 +

(
v2/r− g

)
cos θ

]
ψ̇ = (1/v)

[
L sin σ/(m0 cos θ) + v2/r cos θ sin ψ tan φ

]
Ṡe = v cos θ/r

(1)

where r represents the geocentric distance of the vehicle, λ and φ represent the longitude
and latitude, v is the speed of the vehicle relative to the Earth, θ represents the trajectory
inclination angle, ψ represents the heading angle. Se is the cumulative range angle of the
vehicle; m0 is the mass of the vehicle, which remains constant during reentry, σ denotes
the bank angle, and g is the acceleration of gravity, which is calculated by a simple inverse
square model [22]:

g =
R2

0

(R0 + h)2 g0, (2)

where g0 = 9.8 m/s2 is the gravitational acceleration at sea level, and R0 = 6378 km is the
average radius of the Earth.

The atmospheric density ρ is expressed as [24,25]:

ρ = ρ0e−h/β, (3)

where ρ0 = 1.225 kg/m3 represents the atmospheric density at sea level, and β = 7200 m.
The variables L and D represent the lift and drag of the vehicle, and the expressions

are [23]:
L = 0.5ρv2CLSre f , (4)

D = 0.5ρv2CDSre f , (5)

where Sre f represents the aerodynamic reference area of the vehicle, and CL and CD repre-
sent the lift and drag coefficients of the vehicle, which are related to the speed of the vehicle

115



Mathematics 2023, 11, 185

and the angle of attack α. During reentry, α takes the form of a three-section profile related
to flight speed v [22]:

α =

⎧⎨⎩
αmax v > v1

(αmax − αmin)(v− v2)/(v1 − v2) v2 < v < v1
αmin v < v2

(6)

where αmax = 20◦ is the maximum allowable angle of attack, αmin = 8.5◦ is the angle
of attack at the maximum lift-to-drag ratio, and v1 = 4700 m/s, v2 = 3100 m/s are
velocity nodes.

As a result, the bank angle σ is the only control variable for reentry; xstate = [h, θ, φ, v, γ, ψ]T

represents the current state of the vehicle.

2.2. Reentry Constraints

In order to ensure the safety and meet the mission requirements of the vehicles,
the HGVs need to meet the path constraints and terminal constraints during reentry.
Path constraints include heating rate constraint, overload constraint, dynamic pressure
constraint, and equilibrium glide condition. These expressions are as follows [23]:

Q̇(t) =
C1√
Rd

(
ρ

ρ0

)0.5( v
VC

)3.15
≤ Q̇max, (7)

n(t) =

√[
L

m0g0

]2
+

[
D

m0g0

]2
= q(t)

√
C2

L + C2
D

Sre f

m0g0
≤ nmax, (8)

q(t) =
1
2

ρv2 ≤ qmax, (9)

L cos σQEGC/m0 +
(

v2/r− g
)
= 0, (10)

where Q̇(t) represents the heating rate at the stagnation point, Q̇max is the upper limit of
the allowable heating rate, C1 and Rd are the overall design parameters of the vehicle, Vc
represents the first cosmic velocity, n(t) represents the actual total overload, nmax is the
upper limit of allowable overload, q(t) represents the actual dynamic pressure, qmax is the
upper limit of allowable dynamic pressure, and σQEGC is the equilibrium glide angle.

To ensure a successful transition to the terminal area energy management (TAEM),
the final reentry segment must meet specific position and velocity requirements. Terminal
constraints include [23]:

h
(

t f

)
= h f , v

(
t f

)
= v f , λ

(
t f

)
= λ f , φ

(
t f

)
= φ f , (11)

where h f , v f , λ f , φ f are the altitude, speed, longitude, and latitude of the end of the
reentry flight.

Terminal latitude and longitude constraints are usually transformed into the range
constraint Se(t f ) = Sgo; Sgo is defined as the spherical distance from the vehicle to the
target [22]:

Sgo = arccos
[
sin λ sin λ f + cos λ cos λ f cos

(
φ− φ f

)]
. (12)

2.3. Control Parameterization

In this subsection, the noted reentry constraints in Section 2.2 are transformed into the
upper and lower boundaries for the bank angle. Then, by weighting the upper and lower
boundaries, the bank angle profile can be determined, which corresponds to trajectories of
different ranges. By traversing different initial reentry conditions and different weighting
coefficients, a dataset composed of trajectories can be generated offline and used to train
DNNs for range prediction.
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2.3.1. Bank Angle Corridor

HGVs need to satisfy path constraints, terminal constraints, and control constraints.
Constraining trajectories within reasonably constructed corridors is a way to deal with
multiple constraints. Common corridors include height–velocity corridors, bank angle
corridors, drag acceleration corridors, etc. In this study, a compound bank angle corridor
is employed [22]. We substitute the atmospheric density Equation (3) and aerodynamic
Equations (4) and (5) into the heating rate, overload, and dynamic pressure constraint
Equations (7)–(9). Denoting HQ̇max

, Hnmax , Hqmax as the height boundary of the maximum
heating rate, overload, and dynamic pressure according to the speed v, as shown in Figure 1,
the height constraint according to v can be obtained as

H >
2
β

ln

[
C1

Q̇max
√

Rd

(
V
VC

)3.15
]
= HQ̇max

(V), (13)

H >
1
β

ln

⎡⎣ρ0V2S
√

C2
D + C2

L

2nmaxm0g0

⎤⎦ = Hnmax(V), (14)

H >
1
β

ln
(

ρ0V2

2qmax

)
= Hqmax(V), (15)

H(V) > Hdown(V) = max
(

HQ̇max
, Hnmax , Hqmax

)
. (16)

Figure 1. Lower boundary of the height–velocity corridor.

According to the QEGC, with known height and speed, the equilibrium glide angle
σQEGC can be determined as

σQEGC = cos−1 m0
(

g−V2/r
)

L
. (17)

The Hdown(V) is a function of speed, and the σQEGCup corresponding to Hdown(V) can
be obtained by Equation (17). The definition of QEGC determines

σQEGCdown(V) = 0. (18)

Therefore, the bank angle needs to be less than σQEGCup(V) and greater than σQEGCdown(V):

σQEGCdown(V) ≤ σ(V) ≤ σQEGCup(V). (19)
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So far, we have obtained the upper and lower bounds of the bank angle corridor for
the incoming HGVs to satisfy the path constraints. In the initial glide segment, due to the
high flight altitude, the flight aerodynamic force is insufficient. In order to prevent the
vehicle from falling too fast to generate a large amount of aerodynamic heat, the bank angle
keeps a small constant value in the initial glide segment. In this paper, σImax represents
the maximum allowable bank angle amplitude during the initial glide segment. It is
determined so that the heating rate in the initial glide segment is exactly equal to Q̇max, that
is, max(Q̇(σI max)) = Q̇max. The velocity at the end of the initial glide segment is expressed
as the velocity corresponding to the maximum heating rate, denoted as vI f .

In order to ensure the smooth handover of the reentry flight and the TAEM, the termi-
nal of the reentry flight must satisfy both the range constraints and the terminal constraints.
Combined with the QEGC, the terminal equilibrium glide angle σTAEM can be obtained by
bringing the terminal states h f , v f into Equation (10).

Based on the above analysis, a bank angle corridor must comprehensively consider
path constraints and terminal constraints. In the initial glide segment, the constant bank
angle needs to be less than σI max, and in the equilibrium glide segment, the bank angle
profile is restricted between σE max and σE min. In addition, in order to ensure the terminal
altitude h f and speed v f constraints, the bank angle at the end of reentry is set as σTAEM.
Considering the analysis results of the three sections, the bank angle corridor of the entire
reentry flight can finally be obtained, where the upper bound is composed of σI max, σE max,
and σTAEM, and the lower bound is composed of σE min and σTAEM. The final compound
bank angle corridor is shown in Figure 2, with the upper bound denoted as σmax(v) and
the lower bound denoted as σmin(v). In the process of trajectory planning, as long as the
bank angle is limited within the corridor, the path constraints and the terminal height and
speed constraints are satisfied to a certain extent.

Figure 2. Compound bank angle corridor.

2.3.2. Control Parameterization

According to Equation (1), it is easy to obtain the derivative relationship between
range and speed as ∣∣∣∣dSe

dv

∣∣∣∣ = ∣∣∣∣ v cos θ/r
−D/m0 − g sin θ

∣∣∣∣. (20)

It can be known from QEGC that r ≈ R0, θ ≈ 0. Bringing Equation (5) into Equa-
tion (20), the derivative relationship between range and speed becomes∣∣∣∣dSe

dv

∣∣∣∣ =
∣∣∣∣∣ m0

−1/2ρvCDSre f R0

∣∣∣∣∣. (21)
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Here, |dSe/dv| decreases exponentially with an increase in height h. Combined with
QEGC, h is inversely proportional to σTAEM. Finally, it can be concluded that the smaller
the bank angle, the smaller the |dSe/dv|, and the stronger the gliding capability of the
vehicle. Therefore, the bank angle profile σdesign(v) is weighted by the upper and lower
bounds of the compound corridor, and its expression is

σdesign(v) = ω · σmin(v) + (1−ω) · σmax(v), (22)

where ω is the weighting coefficient, which can adjust the height of the entire bank angle
profile to obtain different downrange, and the downrange increases monotonically with ω.

Traditionally, given the initial states xstate0 and weighting coefficient ω, a complete
trajectory is obtained by integrating dynamic differential equations:

xstate = xstate0 +
∫ t f

t0

ẋstatedt. (23)

where ẋstate is calculated by Equation (1). Generally, the fourth-order Runge–Kutta is
selected as the trajectory integrator.

Different weighting coefficients ω can integrate different feasible trajectories. As shown
in Figure 3, when ω traverses [0, 1], all possible trajectories at the current state of the HGV
can be generated, and the corresponding terminal points compose the footprint. The gener-
ation of a trajectory is inseparable from the long-term integration, and the long flight time
of the HGVs and the large number of trajectories required to form the footprint lead to
the exponential increase for computational burden, which makes it difficult to meet the
real-time requirements of online footprint generation. Therefore, in the next section, we
try to use DNNs to replace the traditional integrator to solve the problem in which the
traditional footprint generation methods cannot meet the real-time performance.

Figure 3. The footprint formed by trajectories with different weighting coefficients.

As such, the reentry problem is formulated, and a baseline predictor–corrector reentry
guidance is developed based on a compound bank angle corridor, which can be used to
generate feasible reentry trajectories. In the remainder of this study, we will focus on the
following two study purposes: online footprint prediction and online attack intention
inference. The details are given in the following two sections.

3. DNN-Based Footprint Prediction

This section focuses on the first purpose of this study, that is, online footprint pre-
diction. Specifically, first, a DNN is trained to approximate the nonlinear functional
relationship between flight states and ranges. Second, the trained DNN is leveraged to
achieve the real-time performance and accuracy for range prediction. Third, on the basis of
the trained DNN, an online footprint prediction algorithm is developed.
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3.1. DNN Development for Range Prediction

This subsection focuses on the generation of the dataset and the construction of the
DNN. First, based on Section 2.3.2, reentry trajectories of different ranges can be obtained
offline. The downrange and crossrange of the reentry flight is uniquely determined by
the three flight states h, v, θ, and the weighting coefficient ω of the compound bank corri-
dor. Different initial states and weighting coefficients are randomly selected to generate
10,000 trajectories, and 100 sample points are randomly selected from each trajectory. Specif-
ically, the selection rules are shown in Table 1. Finally, a total of 1 million data samples
are obtained, as shown in Figure 4, where the input are the flight states h, v, θ, and the
weighting coefficients ω, and the output is the downrange and crossrange. The dataset is
further divided into three sub-datasets, namely the training set, validation set, and test set,
according to the ratio of 0.8:0.1:0.1. On this basis, Scikit-learn further normalizes the input
and output of the dataset.

Table 1. Initial state space.

State Values Distribution

h(t0) 100± 20 km Uniform
v(t0) 7200± 200 m/s Uniform
θ(t0) −1± 1 deg Uniform

ω [0, 1] Uniform

Figure 4. Distribution histograph of input and output of the dataset.

Second, a fully connected feedforward neural network is utilized to approximate
the ranges. The input of the network is x = [h, v, θ] and ω, and the prediction results
of the network is the downrange Netdpre and the crossrange Netcpre. The design of the
network refers to the optimized network design in [20,22,26]. The network is set up with
6 hidden layers and 128 neural units per layer. The activation functions of the hidden
layers adopt Tanh [−1, 1]; the activation function of the output layer adopts ReLU [0,+∞].
The Adam algorithm is used to adjust the network weights to minimize the mean square
error. The initial learning rate is 0.001, and the exponential decay coefficient is 10−6.

3.2. Accuracy and Rapidity Analysis

In this subsection, learning results and figures are used to illustrate the real-time
performance and accuracy of the DNN approximation for ranges. We use the Pearson
product–moment correlation coefficient to quantitatively evaluate the learning effect of
the DNN. Table 2 gives the statistical results of the approximation error. At the same time,
Figure 5 shows the error distribution histogram. Considering the very large range of the
reentry, this error is reasonable and acceptable.
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Table 2. Error statistics of the DNN-based range prediction.

Netdpre Netcpre

Mean error 0.508 km 0.196 km
Mean square error 0.458 km 0.152 km

Maximum error 17.01 km 9.642 km
Correlation coefficient 0.9999906 0.9999728

Figure 5. Error histogram of the DNN-based range prediction.

Table 3 gives the computational time it takes to predict ranges for different times by
DNN and integrator. We can see that a single prediction by integrator takes 50 times as
long as a single prediction by DNN. As the number of predictions grows, the rapidity of
DNN becomes more and more significant, and the average time spent on a prediction by
DNN becomes less and less. DNN not only has good real-time performance for a single
prediction, but also is more suitable for multiple predictions. As footprint generation
and intent inference require multiple range predictions, DNN is a good way to meet
real-time requirements.

Table 3. The time consumption of range prediction by trajectory integrator and DNN.

Method DNN Integrator

The Number of Times of Range Prediction 1 10 10,000 1 10

Total Time Consumption 0.041 s 0.054 s 0.29 s 1.86 s 13.07 s
Average Time Consumption 0.041 s 5.43 ms 0.029 ms 1.86 s 1.31 s

In summary, we can conclude that the trained DNN can meet the real-time requirement
and has a good fitting accuracy on the ranges. Based on the above conclusions, DNN can
be utilized for online footprint prediction and intent inference.

3.3. Real-Time Footprint Prediction

In this subsection, an online footprint prediction algorithm is developed on the basis
of the trained DNN. Traditionally, the footprint is generated by traversing the ranges
using a baseline trajectory planner. However, the traditional planner cannot meet the
real-time requirements due to the long integration time. As discussed in Section 3.2,
DNN can replace the integrator to predict the ranges according to the flight states and
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the weighting coefficient meeting the real-time requirement and ensuring a good fitting
accuracy. Therefore, in this study, DNN is utilized to generate the footprint by traversing
the ranges.

Knowing state xin = [hin, vin, θin], when ωi ⊆ [0, 1], the corresponding downrange
Netdpre

∣∣∣
ω=ωi

and crossrange Netcpre
∣∣
ω=ωi

are obtained. Here, Netcpre
∣∣
ω=ωi

only represents

the maximum lateral maneuverability and does not mean that the value of the crossrange
must be Netcpre

∣∣
ω=ωi

. By the bank angle reversals, the actual crossrange can be any number
between [−Netcpre

∣∣
ω=ωi

, Netcpre
∣∣
ω=ωi

].
As shown in Figure 6, the boundaries of the footprint consist of the following four sides:

• Lower boundary: The downrange is Netdpre

∣∣∣
ω=0

, and the crossrange traverses

[−Netcpre
∣∣
ω=0, Netcpre

∣∣
ω=0]. The downrange of this edge is the minimum downrange;

• Upper boundary: The downrange is Netdpre

∣∣∣
ω=1

, and the crossrange traverses

[−Netcpre
∣∣
ω=1, Netcpre

∣∣
ω=1]. The downrange of this edge is the maximum downrange;

• Right boundary: When ωi ⊆ (0, 1), the downrange is Netdpre

∣∣∣
ω=ωi

, and the crossrange

is Netcpre
∣∣
ω=ωi

(Based on the heading direction of the enemy vehicle at the current
moment, the lateral range of the left deviation is negative, and the right deviation
is positive);

• Left boundary: When ωi ⊆ (0, 1), the downrange is Netdpre

∣∣∣
ω=ωi

, and the crossrange

is −Netcpre
∣∣
ω=ωi

.

Figure 6. A footprint diagram.

Now we know the current longitude λin , latitude φin, heading angle ψin of the flying
HGV, and the predicted range sequence of the boundary of the footprint. It is also necessary
to convert the downrange sequence Netdpre

∣∣∣
ω=ωi

and the crossrange sequence Netcpre
∣∣
ω=ωi

into the longitude sequence λ f and latitude sequence φ f of the boundary of the footprint.

Ad =
Netdpre

∣∣∣
ω=ωi

R0
(24)

Ac =
Netcpre

∣∣
ω=ωi

R0
(25)

ψ f = arcsin
Ac

Ad
+ ψin (26)

φ f = π/2− arccos(sin(φin) cos(Ad) + cos(φin) sin(Ad) cos(ψ f )) (27)

λ f = λin + arcsin(sin(ψ f ) sin(Ad)/ cos(φ f )) (28)

So far, as long as the current states xin = [hin, λin, φin, vin, θin, ψin] are known, the lat-
itude and longitude of the footprint can be calculated. After the footprint is known, it
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can be determined which targets are within the attack zone at the current moment. One
simple way of finding whether a target is inside or outside the footprint is a ray casting
algorithm [27]. As shown in Figure 7, one can draw a ray from this target and count the
number of points at which the ray intersects the footprint. If the number is odd, the target
is inside the footprint; otherwise, it is outside the footprint.

Figure 7. Ray casting algorithm.

This section focuses on the problem of HGVs footprint prediction. Fast and accurate
prediction of the footprint can maximize the effectiveness of pre-deployed interceptor
forces. First, we generate a large number of HGV trajectories offline and use DNN to
learn the range accurately. Results show that DNN approximation for ranges has real-time
performance and accuracy. Then, based on it, the footprint can be generated rapidly by
predicting a series of ranges, and targets can be judged as to whether they are within
the footprint. However, there are many targets in the footprint. In the following section,
an online attack intention inference algorithm that calculates the target probability to be
attacked in the footprint is proposed.

4. Attack Intention Inference

This section focuses on the second purpose of this study, that is, online attack intention
inference. This section contains three parts. The first part introduces the criteria of intention
inference. Target reachability and the historical data, including the orientation and the
control strategy of the HGVs, are taken into consideration. A forgetting mechanism is
proposed in the second part in case the enemy changes the target during flight. The third
part describes the attack intention inference system and potential performance.

4.1. Intention Inference Criteria

Although landmarks outside the footprint can be excluded according to Section 3.3,
there are many landmarks remaining in the footprint and we cannot judge which one is the
attack target. During the flight of HGVs, as long as the landmarks still stay in the footprint,
they can be attacked by proactive maneuvers of the vehicle. Using only the flight state at
the current moment, the attack intention cannot be inferred. How to combine the current
footprint prediction with the historical flight data is the key point of this section.

Through in-depth mining of the internal information hidden in the trajectories, three
evaluation criteria are set. First, the control strategy of HGVs will not change sharply when
the HGV aims at one specific target. Second, in order to achieve precise strikes, the HGVs’
heading angle should be maintained around the target direction. Third, landmarks with
higher importance are more likely to be attacked.

4.1.1. Change Detection of the Control Strategy

Due to the high speed of HGVs, a slight change in the control command will lead to a
obvious change in the trajectory, and it is very likely to lead to an increase in miss distance
and lose stability. Therefore, in the actual flight process, frequent and sharp changes of the
control command are avoided. The bank angle shows piecewise linear characteristics when
the guidance strategy is reference trajectory-based guidance (RTG) [28,29]. The bank angle
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is constantly corrected in small amplitudes according to the remaining downrange when
the guidance strategy is NPCG [22,30].

As shown by the red line in Figure 8, if the landmark is the attack target, the weighting
coefficient ω inferred from the detected historical flight state to attack this landmark is
almost unchanged. As shown by the blue line in Figure 8, if the landmark is not the target,
the distance between the vehicle and the landmark is not always decreasing. The weighting
coefficient ω inferred from the detected historical flight state to attack this landmark
changes sharply.

Figure 8. Change tendency of inferred ω.

When the defender does not know the enemy’s attack intention and can only detect
the flight states, how to infer the weighting coefficient ω when an HGV is going to attack
one specific landmark will be explained below. Suppose there are m landmarks, and we
need to infer whether they are likely to be attacked and which landmark is most likely
to be attacked. The state xk = [hk, λk, φk, vk, θk, ψk] of the HGV at the current time tk and
the latitude φj and longitude λj of the jth landmark are known. The steps of estimating
the weighting coefficient ωj(tk) if a HGV is going to attack the jth landmark at the current
moment tk by the gradient descent method are as follows. The flowchart is shown in
Figure 9.

Figure 9. Flowchart for estimating ω using gradient descent.
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• Step1: Set ωold = 0.5, ωnew = 0.6. According to xk = [hk, vk, θk], ωold and ωnew,

Netdpre

∣∣∣
ω=ωold

and Netdpre

∣∣∣
ω=ωnew

can be predicted by DNN. Then, calculate the

distance Sj(tk) between the current latitude φk and longitude λk of the HGV and the
latitude φj and longitude λj of the jth landmark.

• Step2: Calculate k = ( Netdpre

∣∣∣
ω=ωnew

− Netdpre

∣∣∣∣
ω=ωold

)/(ωnew − ωold). Then, set

ωold = ωnew, Netdpre

∣∣∣
ω=ωold

= Netdpre

∣∣∣
ω=ωnew

.

• Step3: Calculate ωnew = ωold + (Sj(tk) − Netdpre

∣∣∣
ω=ωold

)/k. The new downrange

Netdpre

∣∣∣
ω=ωnew

is obtained by DNN.

• Step4: If
∣∣∣∣Sj(tk)− Netdpre

∣∣∣
ω=ωnew

∣∣∣∣ ≤ ε (ε is the allowable deviation of the downrange),

output ωj(tk) = ωnew. If
∣∣∣∣Sj(tk)− Netdpre

∣∣∣
ω=ωnew

∣∣∣∣ > ε, return to Step2.

So far, we have obtained ωj(tk) if the enemy HGV intends to attack the jth landmark
at tk. Similarly, we can calculate the weighting coefficient ωj(tk)(j = 1, 2, . . . , m) if the
vehicle intends to attack each remaining landmark at tk. Not only that, given the current
states and historical states xi = [hi, λi, φi, vi, θi, ψi](i = 1, 2, . . . , k) of the vehicle, we can
get the sequence of weighting coefficients to attack each landmark corresponding to time
ωj(ti(i = 1, 2, . . . , k))(j = 1, 2, . . . , m).

For each landmark j, there is a sequence of weighting coefficients ωj(ti(i = 1, 2, . . . , k))
with respect to time ti(i = 0, 1, . . . , k). Use variance var(ωj(ti(i = 1, 2, . . . , k))) to char-
acterize the change detection of the control strategy of the jth landmark. Normalize
var(ωj(ti(i = 1, 2, . . . , k)))(j = 1, 2, . . . , m) of each landmark to [0, 1] and sort it. The smaller
the variance var(ωj(ti(i = 1, 2, . . . , k))) is, the more likely the jth landmark is to be attacked.
By continuously detecting new states of the vehicle in a new moment, the variance sequence
can be updated and sorted to predict which landmark is the most likely to be attacked.

4.1.2. The Cumulative Deviation of ψ and the LOS

In order to strike one specific target, the heading angle ψ of the HGV is maintained
around the target direction, and the deviation between the ψ and the line of sight (LOS) is
not very large. As shown by the red line in Figure 10, if the landmark is the attack target,
due to the bank angle reversals, ψ will swing left and right around the LOS. As shown by
the blue line in Figure 10, if the landmark is not the target, the deviation between ψ and the
LOS of the landmark is relatively large. As the flight time becomes longer, the deviation
becomes larger and larger, and ψ is likely to be on one side of the LOS and will no longer
swing left and right around the LOS.

When the defender does not know the enemy’s attack intention and can only detect
the flight states, how to characterize and rank the deviation between the ψ and LOS will be
explained below. The expression ψ(tk) is the heading angle of the vehicle at the current
moment tk; LOSj(tk) is the LOS between the vehicle and the jth landmark at tk; ψ(tk)−
LOSj(tk) represents the deviation of the heading angle of the vehicle and the LOS of the
jth landmark. Given ψ(ti)(i = 1, 2, . . . , k) and LOSj(ti)(i = 1, 2, . . . , k) at ti(i = 0, 1, . . . , k),
the mean of the cumulative deviation

∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣ between

the heading angle of the vehicle and the LOS of the jth landmark at all times can be cal-
culated. For each landmark, the mean sequence

∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣

(j = 1, 2, . . . , m) can be calculated, normalized to [0, 1], and sorted. The smaller the mean∣∣mean(ψ(ti)− LOSj(ti)(i = 1, 2, . . . , k))
∣∣, the more likely the jth landmark is to be attacked.

Continuously detecting the states of the vehicle in a new moment can update and sort the
mean sequence of the deviation of the ψ and the LOS.
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Figure 10. Deviation of the heading angle and the LOS.

4.1.3. The Importance of Landmarks

Among the multitudinous input landmarks, it is impossible that all the landmarks have
the same degree of importance. In actual wars, attackers are more inclined to attack large
cities, economically developed areas, and areas with high population density. Therefore,
the importance of the landmarks needs to be scored on a [0, 1] scale. The smaller the
importance degree weight Ij, the more important the jth landmark is. Because some of the
less important landmarks are close to the important landmarks, var(ω(ti(i = 1, 2, . . . , k)))
and |mean(ψi − LOSi)(i = 1, 2, . . . , k)| of the less important landmarks are numerically
close to those of the important landmarks, which may lead the system to judge that less
important landmarks are also likely to be attacked. The importance weights I solve the
problem of less important landmarks interfering with the attack intention inference system.

4.2. Forgetting Mechanism

With the development of reentry guidance, the maneuvering form of HGVs has
become more and more complex. In actual flight, in order to bypass the no-fly zone and
avoid being detected by radar, HGVs may conduct proactive maneuvers or change the
attack target during flight. In order to instantly identify an HGV’s changing target and
re-predict its new target, this subsection proposes a forgetting mechanism.

Exponentially weighted moving average (EWMA) is a variable-weight mean calcula-
tion method, which has been widely used in machine learning and technical analysis of
financial data [31]. EWMA is designed as such that older data are given lower weights.
The weights fall exponentially as the data get older. EWMA is used because recent in-
put data have a greater impact on the average value, and it can better reflect the recent
data information.

Let xi(i = 1, 2, . . . , t) be the dynamic input data, then the average μt at time t can be
expressed as

μt = βμt−1 + (1− β)xt = (1− β)(xt + βxt−1 + β2xt−2 + . . . + βt−1x1), (29)

where β is the decay rate, and the value is between [0, 1]. The smaller the β, the more the
mean is affected by the recent input data. However, μt is very different from the mean
value due to too little input data at the beginning. Therefore, the deviation correction is
performed on Equation (29):

μt = (1− β)/(1− βt)(xt + βxt−1 + β2xt−2 + . . . + βt−1x1). (30)
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So far, we have obtained the average value μt of the dynamic input data represented by
EWMA. In [31], exponentially weighted moving variance (EWMV) is proposed to describe
the variance of variable weights. The formula of EWMV is expressed as

σ2
t = βσ2

t−1 + β(1− β)(xt − μt−1)
2. (31)

Similarly, EWMV is designed to be more affected by the recent input data, so the
variance of the older data is given lower weights that fall exponentially as the data get older.
On the basis of Equations (30) and (31), EWMV is improved. We replace the mean μt in the
variance Equation (31) with the latest data xt from the dynamic input data. The improved
EWMV is expressed as

σt
2 = (1− β)/(1− βt)[(xt − xt)

2 + β(xt−1 − xt)
2 + . . . + βt−1(x1 − xt)

2]. (32)

In summary, we design the mean and variance with forgetting properties. We sub-
stitute EWMV for the variance in Section 4.1.1 and EWMA for the mean in Section 4.1.2.
In this way, the change detection of the control strategy and the cumulative deviation
between the ψ and the LOS is more affected by the recent flight states. This is conducive to
predicting the enemy’s attack intention at every moment without knowing whether and
when to change the attack target during flight.

4.3. Attack Intention Inference System and Algorithm

This section will briefly describe the algorithm of the attack intention inference system
and its potential performance. Referring to the pseudocode below, we will describe the
Algorithm 1 of the attack intention inference system in detail.

Algorithm 1 Attack Intention Inference Algorithm
Data: new flight states of the enemy HGV xk = [hk, λk, φk, vk, θk, ψk] at time tk,

landmarks, importance of landmarks I
Result: ranked Pk

1 while detect the new states xk at tk do

2 predict f ootprint(tk) by DNN ;
3 for each landmark j in landmarks do

4 if landmark j within f ootprint(tk) then

5 Calculate ωj(tk) by DNN→ ωj[k];
6 Calculate ψ(tk)− LOSj(tk)→ Δψj[k];
7 Var(ωj)← EWMV(ωj);
8 Mean(Δψj)← EWMA(Δψj);
9 P(tk)[j] = α1Var(ωj) + α2

∣∣Mean(Δψj)
∣∣+ α3 Ij;

10 rank P(tk);
11 return ranked P(tk);

First, we predict the current footprint by DNN approximation for ranges and de-
termine whether the input landmarks are within the footprint according to Section 3.3.
If the landmark is within the footprint, the probability of it being attacked will be esti-
mated. Combined with the forgetting mechanism in Section 4.2, the normalized var(ω(ti)
(i = 1, 2, . . . , k)) and|mean(ψ(ti)− LOS(ti)(i = 1, 2, . . . , k))| of each landmark can be cal-
culated according to Sections 4.1.1 and 4.1.2. Weighting them with landmark importance
weights I yields the probability of each landmark of being attacked,

P = α1var(ω(t)) + α2
∣∣mean(ψ(t)− LOSj(t))

∣∣+ α3 I, (33)
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where α1, α2, α3 are the weights of intention inference criteria, satisfying α1 + α2 + α3 = 1;
α1, α2, α3 can be set and adjusted according to actual operational needs and the importance
of each criteria. Then, we calculate and sort P of each landmark. The smaller the P,
the greater the probability of the landmark to be attacked. The defending side continuously
detects the current states of the flying HGV, updates and sorts in real-time P to infer the
intention of the HGV. As time progresses, the accuracy of the intention inference system
greatly improves.

This proposed algorithm has the following potential advantages.

1. Ability to quickly and accurately predict the footprint: Since the DNN replaces the
traditional integrator to approximate the ranges, the footprint prediction meets the
real-time requirements while ensuring high accuracy;

2. Ability to infer the intention of enemy HGVs: The underlying logic of the attack
intention inference system in this study is that the defender infers from the perspective
of the attacker. First, the control strategy of HGVs will not change sharply when the
HGV aims at one specific target. Second, in order to achieve precise strikes, the HGVs’
heading angle should be maintained around the target direction. Third, attackers are
more willing to attack important landmarks. It is precisely because these criteria are
condensed from the rules discovered from the trajectory planning of the attacker side
that the defending side can use these criteria to infer the enemy’s intention;

3. Ability to identify enemy HGVs changing attack intention online and re-predict
new targets: Mean and variance with forgetting properties makes the system more
affected by the recent flight states. Therefore, the forgetting mechanism can gradually
forget the early intention and predict new target based on the data of the recent period;

4. Good real-time performance: Both the footprint prediction and the change detection of
the control strategy avoid long-term trajectory integration, and DNN greatly improves
the computational efficiency.

The next section uses simulation examples to verify the aforementioned performance
of the algorithm.

5. Simulations and Results

This section focuses on the performance verification of the proposed algorithm. Specif-
ically, three experiments are conducted. The first experiment is to verify the accuracy of
the footprint prediction algorithm. The second experiment verifies the effectiveness of
the intention inference system. The third experiment verifies that the system is suitable
for inferring the intention of the enemy to change the target during the flight. The forth
subsection discusses the advantages and disadvantages of the algorithm. The common areo
vehicle (CAV) designed by Boeing Company in 1998 has two configurations. In this study,
the vehicle for simulation is the CAV-L with lower lift-to-drag ratio, and its aerodynamic
data and overall design parameters are shown in [32].

5.1. Evaluation of Footprint Prediction

First, the accuracy and real-time performance of the DNN-based footprint predictions
are evaluated by comparing it with the traditional integrator. Given the flight states of
an enemy CAV, the results of footprint prediction using DNN and traditional integrator
are shown in Figure 11. It can be seen that the footprint predicted by the two methods
almost overlap. Table 4 shows the comparison of the coordinates of the following five
typical points calculated by DNN and integrator. Point A has the largest downrange and
crossrange of 0; B has the largest downrange and the corresponding maximum lateral
maneuverability; C has the largest crossrange; D has the minimum downrange and the
corresponding maximum lateral maneuverability; and E has the minimum downrange and
crossrange of 0. It can be seen that the deviation between the coordinates predicted by the
two methods is very small. The time consumption of one footprint prediction by DNN is
0.85 s, and at the same time, the time consumption of one footprint prediction by integrator
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is 52.71 s. Consequently, DNN-based footprint prediction is accurate and greatly improves
real-time performance.

Figure 11. Comparison of footprint predicted by integrator and DNN.

Table 4. Comparison of the footprint prediction by integrator and DNN.

Integrator DNN Deviation

Coordinates of A (deg) (89.397, 0.160) (89.381, 0.160) (1.6× 10−2,−9.2× 10−5)
Coordinates of B (deg) (89.391,−0.459) (89.376,−0.358) (1.5× 10−2,−0.101)
Coordinates of C (deg) (69.712,−16.017) (69.849,−15.973) (−0.137,−4.4× 10−2)
Coordinates of D (deg) (47.587,−6.653) (47.632,−6.772) (−4.5× 10−2, 0.119)
Coordinates of E (deg) (49.592, 0.330) (49.693, 0.330) (−0.101, 2.6× 10−4)

5.2. Typical Intention Inference Simulation

In this section, we turn our attention to demonstrating the effectiveness of the typical
intention inference. Part of the information of the flying CAV is shown in Table 5. Of course,
this information is unknown to the defender, and the defender can only detect the states of
the CAV during the flight. Twenty-five landmarks B∼Z with longitude between [90◦ W,
140◦ W], latitude between [20◦ S, 60◦ S], and the importance weights I between [0, 1] are
generated by random numbers. We set a landmark A with longitude of 100◦ W, latitude
of 40◦ S, and importance I of 0. We set the weight of each intention inference criterion to
α1 = 0.8, α2 = 0.1, α3 = 0.1, respectively. The probability of attacking these 26 landmarks is
predicted and ranked in real time. The first jump of CAV was detected at 282 s. Due to the
complex dynamic characteristics of the initial descent phase of HGV, intention inference was
not performed in the initial glide segment. The first prediction is at 285 s. The prediction
interval is 5 s.

Table 5. The information of the incoming CAV (unknown to the defender).

Initial
Longitude

Initial Latitude
Longitude of

the Target
Latitude of the

Target
Guidance Law

180◦ 0◦ 100◦ W 40◦ S NPCG
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The result is shown in the Figure 12, which contains the following information.

• Historical trajectory of the CAV;
• Footprint at the current state;
• Landmarks that may be attacked within the footprint;
• Temporarily safe landmarks outside the footprint;
• Landmarks within the footprint are ranked by probability of being attacked.

Figure 12. Footprint and intention inference at 305 s.

After five predictions (at 305 s), it is predicted that the target of the incoming CAV
is A, as shown in Figure 12. The reason for needing five predictions is that the change
detection of the control strategy and the cumulative deviation between the ψ and the LOS
are characterized by the variance and mean in the intention inference system, requiring >2
sample data to calculate variance and mean. Predicting the correct attack intention within
25 s shows that the system has good foresight.

The prediction at 800 s is shown in Figure 13. It can be seen that the footprint becomes
smaller and the number of landmarks that may be attacked decreases. The landmark that
is most likely to be attacked is still A, which shows the intention inference system has good
stability. As shown in Figure 14, the footprint is shrunk to the range containing only A at
1195 s. Consequently, the DNN-based intention inference system has good performance of
effectiveness, perspective, and stability.

Figure 13. Footprint and intention inference at 800 s.
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Figure 14. Footprint and intention inference at 1195 s.

5.3. Evaluation of Forgetting Mechanism

This section verifies the effectiveness of the forgetting mechanism by predicting the
intention of a CAV that changes its attack target during the flight. Part of the information
of the flying CAV is shown in Table 6. The vehicle originally intended to attack Landmark
A at 100◦ W, 40◦ S, but changed its attack intention at 500 s to attack Landmark B at 120◦ W,
30◦ S. Of course, the above information and whether and when to change the attack target
is unknown to the defender. Twenty-four landmarks C∼Z with longitude between [90◦ W,
140◦ W], latitude between [20◦ S, 60◦ S], and the importance weights I between [0, 1] are
generated by random numbers. We set a landmark A with longitude of 100◦ W, latitude
of 40◦ S, and importance I of 0, and set a landmark B with longitude of 120◦ W, latitude
of 30◦ S, and importance I of 0. We set the weight of each intention inference criterion to
α1 = 0.85, α2 = 0.05, α3 = 0.1, respectively. The decay rate of forgetting mechanism is set
to 0.7. The probability of attacking these 26 landmarks is predicted and ranked in real time.
The first prediction is at 290 s. The prediction interval is 10 s.

Table 6. The flying CAV information (unknown to the defender).

Initial Coordinates of
the CAV

Coordinates of the
Original Target

Time When the Target
Is Changed

Coordinates of the
Changed Target

Guidance Law

(180◦, 0◦) (100◦ W, 40◦ S) 500 s (20◦ W, 30◦ S) RTG

For ease of observation, the light blue dotted line in the graph represents the original
trajectory if the CAV has not changed its attack target during the flight.

After four predictions (at 320 s), it is predicted that the target of the CAV is A, as shown
in Figure 15. During 320∼500 s, results show that the CAV intended to attack A.

As shown in Figure 16, the prediction results begin to change at 510 s, which means
the system quickly recognizes that the enemy is maneuvering to change its attack target.
The probability PB of B became smaller, and the rank moved forward; PA of A increased,
and the rank went backward. This shows that the system gradually reduces the impact of
the initial trajectory on the predicted results through the forgetting mechanism and grad-
ually forgets that the CAV is going to attack landmark A at the beginning. At 520 s, it is
predicted that the CAV changes to attack landmark B, which means that the forgetting
mechanism of this system is responsive, forward-looking, and accurate. The prediction
results fluctuate with small amplitude between 560 s and ∼580 s and stabilize after 590 s,
showing that B is most likely to be attacked, as shown in Figure 17. Consequently, the forget-
ting mechanism can quickly identify that the enemy has changed its intention and quickly
re-predict the new attack target correctly. The prediction results are accurate and stable,
and fewer predictions are required to re-predict the new target after maneuvering.
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Figure 15. Footprint and intention inference at 320 s.

Figure 16. Ranking of probability of being attacked over time.

Figure 17. Footprint and intention inference at 590 s.
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5.4. Advantages and Disadvantages

Combined with the above three typical simulations, the advantages of footprint
prediction and intention inference system are summarized below.

1. The system has good real-time performance.
A maximum of 4.74 s is required for one footprint prediction and intention inference
(predictions are made for 26 landmarks) due to the substitution of DNN for trajectory
integration. Therefore, as long as each prediction period is more than 5 s, it can recon-
cile the requirements for real-time performance. Table 7 exhibits the comparison of the
time consumption by trajectory integrator and DNN. We can see from the Table 7 that
a high-precision trajectory integration is time-consuming due to the long flight time.
For this reason, it is difficult to meet the demand of real-time performance for footprint
prediction and intention inference. In contrast, the DNN shows obvious improvement
of the real-time performance while ensuring an acceptable prediction accuracy.

2. This system can infer the intention of HGVs that change attack target during flight.
This system adopts EWMA and improves EWMV. Mean and variance with forgetting
properties makes the system more affected by the recent flight states. Therefore,
the forgetting mechanism can infer in a timely manner that the flying HGV has
maneuvered and predict its new attack target.

3. The system is forward-looking.
The first few predictions after the initial descent segment can basically determine
which landmark is most likely to be attacked. The flight time of a reentry is about
30 min, and the flight time of the initial descent segment is about five minutes. Forty
seconds after the initial descent segment, the most likely landmark to be attacked can
be predicted, leaving as much time as possible for the defender to intercept the enemy.
In addition, when the HGV changes its attack target during its reentry, the system can
also analyze that the HGV has changed its attack intention and predict the new target
within 20 s.

4. The DNN-based footprint prediction can not only provide decision-making reference
for the defender, but also be utilized for the attacker to generate the current footprint
of the own HGV.
The current literature on footprint generation of HGVs is only from the perspective
of the attacker. The footprint of HGVs provides critical information for trajectory
planning, such as providing guidance for entering into the TAEM. It takes an average
time of 13.42 s to generate a footprint in [13]. Compared with the footprint generation
based on the Gaussian pseudospectral method, the calculation speed of [13] has been
greatly improved, but it still has room for improvement. If the DNN is utilized to
replace the traditional integrator to generate the footprint from the perspective of the
attacker, the calculation time of each generation can be less than 1 s, which greatly
improves the real-time performance of battlefield mission planning. In addition, since
the model, aerodynamic parameters, guidance law, and constraints are completely
known, the accuracy of generating the footprint of the friendly HGV will be greatly
improved compared with the accuracy of predicting the footprint of the enemy in
this study.

Table 7. The comparison of the time consumption by trajectory integrator and DNN.

One Range Prediction One Footprint Prediction One Intention Inference

Integrator DNN Integrator DNN Integrator DNN

Time consumption 1.53 s 0.6 ms 52.71 s 0.85 s 189.95 s 3.66 s
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The system still has the following shortcomings that need to be improved:

1. This system can only infer the probability of attacking the set landmarks. If the
set landmarks do not include the enemy’s real attack target, the system may only
speculate that a set landmark close to the real target is most likely to be attacked.

2. Because the research object of the intention inference in this study is non-cooperative
vehicles, the overall design parameters and aerodynamic parameters of them are not
completely known, and many of them are estimated based on reverse engineering
estimation methods [33]. Therefore, the ranges approximated by DNN in this study
are not accurate when the enemy model deviates greatly from the hypothetical model
in this study, and the predicted footprint will also not be so accurate. In particular,
landmarks near the boundary of the footprint are also likely to be attacked.
In the future work, we will introduce parameter identification into the footprint pre-
diction and intention inference system to improve the inaccuracy of range prediction
and footprint prediction. One solution is to identify lift, drag, aircraft mass, reference
area, and bank angle through aerodynamic parameter identification, as suggested
in [15]. Another solution is to refer to the idea in [34], that is, to identify the distur-
bance of the standard aerodynamic data through Kalman filtering. In future work,
the aerodynamic parameters will be identified according to the trajectory information
of the flying HGVs in real time, and the aerodynamic model fitted by the existing pub-
lic information or public literature will be continuously corrected. Using the revised
aerodynamic model, DNNs can predict more accurate ranges, footprint, and intention
in real time.

6. Conclusions

In this paper, a DNN-based footprint prediction and intention inference of HGVs is
proposed. First, a baseline multi-constrained entry guidance algorithm is developed based
on a compound bank angle corridor, and then a dataset containing enough trajectories
for the following DNN learning is generated offline by traversing different initial states
and control commands. Second, DNNs replace traditional integrator to approximate the
relationship between the flight state/command and the ranges. On this basis, an online
footprint prediction algorithm is developed by traversing the ranges meeting the real-time
requirements and ensuring high accuracy. Third, the intention inference system performs
online intelligent prediction of the target probability to be attacked. Target reachability,
importance, and historical data including the orientation and the control strategy of the
HGVs are taken into consideration. A forgetting mechanism is proposed to help the
intention inference algorithm to be effective when the HGVs change their attack target
during the flight. On these bases, DNN-based footprint prediction and intention inference
of HGVs is proposed.

Simulations are given to substantiate the effectiveness and the real-time capability
of the proposed techniques. The results show that the calculation time of each footprint
generation and intention inference is about 4.51 s, reconciling the requirements for real-time
performance while ensuring high accuracy. The system can infer the final attack target
correctly in the early stage of reentry flight and can instantly identify the enemy’s change
of attack intention and re-predict the new attack target.
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Abstract: A Ganymede-synchronous frozen orbit around Europa provides a stable spatial geometry
between a Europa probe and a Ganymede lander, which facilitates the observation of Ganymede and
data transmission between probes. However, the third-body gravitation perturbation of Ganymede
continues to accumulate and affect the long-term evolution of the Europa probe. In this paper, the
relative orbit of Ganymede with respect to Europa is considered to accurately capture the perturbation
potential. The orbital evolution behaviors of the Europa probe under the non-spherical gravitation
of Europa and the third-body gravitation of Jupiter and Ganymede are studied based on a double-
averaging framework. Then, the initial orbital conditions of the Ganymede-synchronous frozen
orbit are developed. A station-keeping maneuver was performed to maintain the orbital elements to
achieve the Ganymede-synchronous and frozen behaviors. A numerical simulation showed that the
consumption for orbital maintenance is acceptable.
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1. Introduction

One of the scientific objectives for a practical Jovian system mission is exploring the
Galilean moons such as Europa and Ganymede. NASA is carrying out the Europa Clipper
mission to tour the Galilean moons by multiple fly-bys [1]. The Europa Clipper probe
requires a wide-breadth imaging system to achieve global coverage with about 50 fly-bys,
which constricts the imaging resolutions. The original design of the Europa Clipper mission
includes a surface lander to improve the exploration efficiency [1]. However, this lander
was canceled later due to budget issues. The ESA’s Jupiter Icy Moons Explorer (JUICE)
will employ a high inclination that orbits around one of the Galilean moons to achieve
global observing capacity [2,3]. Meanwhile, the imaging resolution of JUICE is improved
with frequent revisits compared to that of the Europa Clipper mission. Theoretically, the
exploration efficiency can be further enhanced if the JUICE probe carries a surface lander
to investigate the surface of another Galilean moon, such as Ganymede. However, a
probe orbiting around a Galilean moon suffers from multiple perturbations, resulting in a
complicated evolution of the orbit. Meanwhile, to manage the data relay, the geometry of
the Europa probe and the Ganymede lander should keep a stable transmission condition,
which is also determined by the long-term orbital behavior of the Europa probe.

In order to study the long-term evolution behavior of the Galilean moon probe, re-
searchers applied the mean element theory to eliminate the short-period variations in the
orbital elements [4,5]. It was first employed to construct the secular evolution model with
respect to classic orbital elements under the non-spherical gravitation perturbation of the
central body such as the zonal terms J2 and J3 [6], the harmonic term C22 [7], and irregular
celestial body shapes [8,9]. Later, the third-body gravitation perturbation of the planet
was taken into account, and the secular evolution behavior was studied in the planetary
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system exploration mission [5,10–12]. Scheeres et al. [11] and Broucke [13] derived the
secular Lagrange equations of a Europa probe under Europa’s non-spherical gravitation
and Jovian third-body gravitation perturbations. They both employed a double-averaging
method to eliminate the periodic terms of the motions of the probe around Europa and
of Europa around Jupiter. The orbits around Europa are summarized as the stable orbits
with low inclinations and the unstable orbits with high inclinations. More recently, further
studies were performed to search for frozen orbits around Europa by considering more
complex dynamic models [14–17]. The studies focus on the behaviors of the frozen orbits in
aspect of the eccentricity, inclination, and argument of periapsis, which denote the motion
with respect to the central moon. The evolution of the longitude of the ascending node,
which represents the orbital behavior with respect to another Galilean moon, is always
neglected. However, in order to achieve a stable condition for transmission, for instance, a
moon-synchronous behavior, the evolution of the longitude of the ascending node should
also be taken into account.

In previous studies, the methods of designing a series of synchronous orbits were
proposed, such as the sun-synchronous orbit in the Sun–Earth system [18,19], around
a comet [20], and the lunar synchronous orbit in the Earth–Moon system [21]. These
synchronous orbits are generated by drifting the longitude of the ascending node in
specific periods considering non-spherical gravitation perturbation [18] and solar radiation
pressure [20]. A Galilean-moon-synchronous orbit, taking the Ganymede-synchronous orbit
around Europa as an example, experiences a periodic behavior with respect to Ganymede.
When Europa and Ganymede are synodic, the angle between the Europa–Ganymede vector
and the normal vector of the orbital plane is a constant. Consequently, the orbit possesses
a fixed spatial geometry with respect to Ganymede, which provides a periodic observing
chance of Ganymede and a constant data transmission configuration between the Europa
probe and the Ganymede lander. However, although the perturbation on the Europa probe
from Ganymede gravity is small [22–24], this perturbation continues to accumulate due to
the fixed space geometry. This brings about a long-term effect on the orbital evolution of
the Europa probe. However, the corresponding evolution behavior has not been analyzed
yet. Meanwhile, due to the fact that the orbital conditions of the synchronous are strict,
an orbital maneuver is employed to loosen the constraint of the orbital condition and to
generate the artificial synchronous orbits. Macdonald et al. generated an artificial sun-
synchronous orbit by maintaining the right ascension of the ascending node [18]. This orbit
can be of arbitrary inclination and semi-major axis. Wang et al. developed control strategies
to eliminate the drift of the argument of periapsis and generated artificial sun-synchronous
frozen orbits [25]. Wu et al. proposed a design method for an artificial sun-synchronous
frozen orbit around Mars [26]. These research examples illustrate that an orbital maneuver
can be executed to maintain the orbital elements to satisfy specific orbital constraints and
generate artificial orbits.

This paper addresses the problem of the orbit evolution behavior of a Europa probe
under Ganymede’s gravitation perturbation and generates a Ganymede-synchronous
frozen orbit around Europa. The main contributions are summarized as follows: (1) Long-
term Lagrange planetary equations for a Europa probe considering multiple gravitation
perturbations are derived. Due to a transient impact on the probe when Ganymede is
close to Europa, Ganymede’s gravitation is considered using an averaging method and a
numerically double averaging framework [27]. Then, the Lagrange equations of the Europa
probe in terms of classical orbital elements are obtained. (2) The long-term evolution
behavior for a high-inclination near-circular orbit is analyzed. Since the perturbation of
Ganymede’s gravitation accumulates, the analysis was conducted by numerical simulations
to estimate the major influence on the orbit. The orbital conditions of the Ganymede-
synchronous frozen orbit are summarized on the basis of these behaviors. (3) A design
method for a Ganymede-synchronous frozen orbit is developed. In order to maintain
a fixed perturbing effect of Ganymede’s gravitation, the design method is searching for
an orbit with a synchronous behavior with respect to the longitude of the ascending
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node, and frozen behavior with respect to the inclination and argument of periapsis.
Inspired by [28], the impulsive consumption of orbit maintenance is evaluated. The rest
of the paper is organized as follows: In Section 2, a dynamic model of a Europa probe
considering Jovian and Europa’s non-spherical gravitations is introduced. Long-term
perturbation potential and corresponding Lagrange’s equations are derived based on the
double-averaging method in Section 3. Then, the analyses of the orbital behaviors are
performed in Section 4. Finally, the conclusion of the paper is presented in Section 5.

2. Dynamic Model

For the Jupiter–Europa–Ganymede–probe system where Europa and Ganymede are
orbiting around Jupiter and the probe is orbiting around Europa, the coordinate systems
and the equations of motion are established in this section. Then, a Legendre expansion is
performed to simplify the perturbing potential.

2.1. Dynamical Model of Europa Probe

When Ganymede’s gravitation is considered, the perturbation effects on a Europa
probe include Europa’s non-spherical gravitation and Jovian and Ganymede’s third-body
gravitations. In this case, the perturbing potential from Europa’s non-spherical gravitation
is calculated in the Europa-centric coordinate system, while the perturbing potentials from
Jovian and Ganymede’s gravities and their positions are generally obtained in the Jovian-
centric coordinate system. These coordinate systems and corresponding parameters are
shown in Figure 1. In this figure, the Jovian-centric Jovian equator inertial (JCI) coordinate
system [XJ, YJ, ZJ] and Jovian equator are shown in black. The XJ-axis points to the Jupiter
equinox, the ZJ-axis is aligned with the Jupiter rotation axis, and the YJ-axis completes
the right-handed frame. The Europa-centric inertial (ECI) coordinate system [XE, YE,
ZE] and Ganymede-centric inertial coordinate system [XG, YG, ZG], which also represent
the revolutions of Europa and Ganymede around Jupiter, are illustrated in red and blue,
respectively. The XE-axis is in the intersection line between the Jovian equator and Europa’s
revolution plane, the ZE-axis is normal to Europa’s revolution plane, and the YE-axis
satisfies the positively oriented frame. In this case, the angle between XJ and XE is defined as
the longitude of the ascending node ΩE of Europa’s revolution orbit with respect to Jupiter,
and the angle between the fundamental planes of these two systems is the inclination iE of
Europa’s revolution orbit. It should be noted that Europa’s equator and Europa’s revolution
plane around Jupiter are assumed as coplanar since the axial tilt between these two planes
around Jupiter is 0.0965◦. Similarly, the XG-axis coincides with the intersection between
the Jovian equator and Ganymede’s revolution plane, the ZG-axis is normal to Ganymede’s
revolution plane, and the YG-axis completes the right-hand frame. The angle between
XJ and XG defines the longitude of the ascending node ΩG of Ganymede’s revolution
orbit around Jupiter. Additionally, the angle between the fundamental planes of these two
systems is the inclination iG of Ganymede’s revolution plane.

Figure 1. The definition of coordinate systems for a Europa probe.
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Depending on the definition of the Europa probe, the motion of the probe is described
in the Europa-centric inertial coordinate system and suffers from the perturbations from
Europa’s non-spherical gravitation, Jovian third-body gravitation, and Ganymede’s third-
body gravitation. According to the research of Cinelli [17], as the mass of the probe is much
smaller than those of Europa, Jupiter, and Ganymede, the equation of motion of the Europa
probe can be expressed as:

d2r
dt2 = −μE

r
r3 − μJ

(
rJP

r3
JP

+
rEJ

r3
EJ

)
− μG

(
rGP

r3
GP

+
rEG

r3
EG

)
(1)

where
..
r represents the acceleration vector of the probe; μE, μJ, μG are the gravitational

parameters of Europa, Jupiter, and Ganymede, respectively; r represents the position vector
of the probe in an Europa-centric inertial coordinate system, r = ||r||; rJP and rEJ are the
vectors from Jupiter to the probe and from Europa to Jupiter, rJP = ||rJP||, rEJ = ||rEJ||,
respectively; rGP and rEG are the vectors from Ganymede to the probe and from Europa to
Ganymede, rGP = ||rGP||, rEG = ||rEG||, respectively.

Based on the above equation of motion, the perturbing potential on the probe due to
Europa’s non-spherical gravitation is given by [17]

RE =
μE

r

[
1− J2R2

E
2r2

(
3 sin2 ϕ− 1

)]
(2)

where J2 represents the coefficient of Europa’s J2 non-spherical gravitation; RE represents
Europa’s radius; ϕ is the latitude of the probe regarding to the Europa.

Moreover, the perturbing potential on the probe due to Jovian gravitation is given as
follows [17]:

RJ =
μJ

rJP
− μJ

r3
EJ

r · rEJ (3)

The perturbing potential on the probe due to Ganymede’s gravity is given as follows:

RG =
μG

rGP
− μG

r3
EG

r · rEJ (4)

Moreover, the relative positions between Jupiter, Europa, Ganymede, and the probe
are illustrated in Figure 2. The angle α is the angle between the distances r (the distance
between the probe and Europa) and rEG (the distance between Europa and Ganymede).
Meanwhile, angle β defines the angle between the distances rEJ (the distance between
Europa and Jupiter) and rJG (the distance between Jupiter and Ganymede). Consequently,
distance rGP, from Ganymede to the probe, is determined by distances r, rJE, and rJG, as well
as the angles α and β, which can be calculated in a simple trigonometric way as follows:

rGP =
√

r2 + r2
EG − 2rrEG cos α (5)

rEG =
√

r2
JG + r2

EJ − 2rJGrEJ cos β (6)
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Figure 2. Positions of the planet, moons, and the probe.

The intersection angles α and β can be calculated as follows:

cos α =
1

rEG
(K1 cos u + K2 sin u) (7)

cos β = cos ΔΩIII cos uE cos uG + sin ΔΩIII cos iG cos uE sin uG
− sin ΔΩIII cos iE sin uE cos uG
+(cos ΔΩIII cos iE cos iG + sin iE sin iG) sin uE sin uG

(8)

where a, e, I, Ω, ω, and f are semi-major axis, eccentricity, inclination, longitude of the
ascending node, argument of periapsis, and true anomaly, respectively, which constitutes
the set of orbital elements oe, oe = [a, e, i, Ω, ω, f ]. The symbol u is defined as the argument
of latitude, u = ω + f. Particularly, the orbital elements without subscript denote the
orbit of the probe in the ECI coordinate system. The subscripts “E” and “G” represents
the orbital elements of Europa and Ganymede in the JCI coordinate system. ΔΩIII is
the difference of longitude of the ascending node between Ganymede’s and Europa’s
revolution orbits, ΔΩIII = ΩE −ΩG. The detailed expressions of variables K1 and K2 are
given in Equations (35)–(39) of Appendix A.

Meanwhile, because Europa’s and Ganymede’s revolution orbits around Jupiter are
near-circular, this study also considered the simplified conditions that the eccentricities
of Europa’s and Ganymede’s revolution orbits are 0, and the inclinations of both Galilean
moons are 0◦. In these situations, both longitudes of the ascending nodes and arguments
of periapsis of these two moons are 0◦, respectively. These conditions are summarized
as follows {

eE = 0, iE = 0, ΩE = 0, ωE = 0
eG = 0, iG = 0, ΩG = 0, ωG = 0

(9)

Therefore, the distance between Europa and Ganymede is simplified as below:

r′EG =
√

a2
G + a2

E − 2aGaE cos β (10)

and angle β in Equation (10) is given as β = f G − f E. The position vectors in Equations (5)–(8)
are derived as follows: ⎧⎨⎩

XEG = aG cos fG − aE cos fE
YEG = aG sin fG − aE sin fE
ZEG = 0

(11)

It should be emphasized that since Europa and Ganymede are Galilean moons orbiting
around Jupiter, the Europa–Ganymede distance rEG oscillates significantly, which makes
the mean relative motion of Ganymede around Europa significantly different from that
in other cases due to the apparent motion of Jupiter around Europa. The long-term orbit
evolution behaviors of the Europa probe under the proposed accurate model and simplified
model are investigated in the next section.
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2.2. Legendre Expansion

Since previous studies have already discussed the long-term effect of Europa’s non-
spherical gravitation perturbation and Jovian gravitation perturbation, the influence of
Ganymede’s third-body gravitation perturbation is the main focus here. In order to simplify
the derivation, the perturbing potential in Equation (4) is split into individual terms
as follows: {

RG,a = μG
rGP

RG,b = − μGr cos α

r2
EG

(12)

According to Equations (5), (6), and (12), the perturbing effect from Ganymede’s
gravitation on the probe depends on the relative motion between Ganymede and Europa,
especially the relative distance rEG in Equation (6).

Based on the classic Legendre expansion method in Appendix A, the perturbing
potential RG,a is given in Equation (16). Considering the magnitudes of distances r and rEG,
the expansion is truncated to zero order, first order, and second order, respectively.⎧⎪⎪⎨⎪⎪⎩

RG,a,0 = μG
rEG

RG,a,1 = μGr
r2

EG
cos α

RG,a,2 = μG
r2

2r3
EG

(
3 cos2 α− 1

) (13)

From Equation (13), the zero-order term of the Ganymede gravitation potential is
irrelevant to the orbital elements of the probe. Therefore, this term is neglected in the
following analysis. Furthermore, the first-order term compensates the potential RG,b in
Equation (12). Therefore, the potential term RG,a,2 dominates the Ganymede gravitation
perturbation on the long-term evolution of Europa probe.

Furthermore, according to Equation (12), the variable that denotes the relative motion
of Ganymede to Europa is the Europa–Ganymede distance rEG. From the definition in
Equation (6), the distance rEG is determined by the motions of Europa and Ganymede,
whose orbits are not exactly circular and coplanar. In this situation, it is difficult to analyti-
cally expand the distance rEG to high order. Consequently, only the mean motion of the
Europa probe is considered rather than the accurate model. Then, applying the simplified
model in Equations (10) and (11), both the mean motion of the Europa probe and the mean
relative motion of Ganymede around Europa are considered. The Legendre expansion
is employed again towards the Europa–Ganymede distance rEG. Since the magnitudes
of Europa’s and Ganymede’s semi-major axes are approximated, the expression of the
distance rEG is truncated up to the fifth order (about 0.1 of order of magnitude) to guarantee
the accuracy.

3. Long-Term Evolution and Analysis

In order to develop a Ganymede-synchronous frozen orbit around Europa, this section
first derives the mean motion of the Europa probe. Then, the control strategy for generating
a Ganymede-synchronous frozen orbit is provided.

3.1. Double-Averaging Method

In the Europa probe case, the magnitude of the orbital period for 1RE-3RE of semi-
major axis is 104, while the revolution periods of Jovian and Ganymede’s apparent motions
around Europa are about 3 × 105 s and 6 × 105 s, respectively. Therefore, the motion of the
probe can be considered as a fast variable. Consequently, the secular effect of Ganymede
gravitation can be obtained by eliminating the short-period term oscillations with a double-
averaging method. The first averaging is performed regarding the mean motion of the
probe to obtain the mean variations of the orbital elements in one orbital period:

〈R〉 = 1
T

∫ T

0
R(t)dt =

1
2π

∫ 2π

0

R( f )η3

(1 + e cos f )2 d f (14)
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where T = 2π/n represents the orbital period of the probe and n =
√

μ/a3 is its related
mean motion, while η =

√
1− e2.

Then, the second averaging is performed with respect to Ganymede’s apparent motion
around Europa to obtain the mean variations in one revolution period. This second
averaging is given as follows:

〈〈R〉〉 = 1
TA,G

∫ TA,G

0
〈R〉dt =

1
2π

∫ 2π

0

η3
E〈R〉

(1 + eE cos fE)
2 d fE (15)

where TA represents the periods of Jovian and Ganymede’s apparent motions around
Europa. The Jovian apparent motion period TA equals the revolution period of Europa
around Jupiter. The period of Ganymede’s apparent motion TA,G is the synodic period of

the relative motion of Ganymede to Europa as shown in Equation (15), where nE =
√

μJ/a3
E

and nG =
√

μJ/a3
G. It should be noted that the orbit of Ganymede’s apparent motion

around Europa is not a conic curve, and hence the right part of Equation (15) is invalid for
Ganymede’s mean motion.

TA,G =
2π

nE − nG
(16)

Using the double-averaging method, the mean motion of the probe under Europa’s
non-spherical gravitation, Jovian third-body gravitation and Ganymede’s third-body gravi-
tation is obtained.

3.2. Mean Motion of the Probe around Europa

Based on the perturbing potential RG,a,2, an accurate Europa–Ganymede distance rEG
is first derived with the averaging method in Equation (14). The average potential of the
probe under Ganymede’s gravitation in one orbit period is given as follows:

〈RG,a,2〉 = μGa2

2r5
EG

[ 3
2 K2

1
(
5e2 cos2 ω− e2 + 1

)
+ 3

2 K2
2
(
5e2 sin2 ω− e2 + 1

)
+9K1K2e2 sin ω cos ω− 3

2 e2 + 1
] (17)

where the definitions of K1 and K2 are provided in Appendix A.
Since Ganymede’s apparent motion around Europa is non-elliptical, the Europa–

Ganymede distance rEG is time-varying significantly, which makes it difficult to derive
Ganymede’s mean apparent motion analytically using the double-averaging method in
Equation (18). In this situation, the average potential for the Europa probe under Europa’s
non-spherical gravitation and Jovian and Ganymede’s third-body gravitation is given as:

〈RA〉 = 〈RG,a,2〉+ 〈〈RE〉〉+ 〈〈RJ〉〉 (18)

〈〈RE〉〉 =
μE J2,E

4a3η3

(
2− 3 sin2 i

)
(19)

〈〈RJ〉〉 =
μJa2

4a3
E

[(
1− 3

2
sin2 i

)(
1 +

3
2

e2
)
+

15
4

e2 cos 2ω sin2 i
]

(20)

It should be emphasized that since the orbit of the probe and that of Jovian apparent
motion around Europa are both near-circular, the double-averaging method is employed to
eliminate the short-period terms of the probe and Jovian motions in research [11].

By substituting the potential term with the accurate average potential in the Lagrange
planetary equations (seeing Appendix B), the equations of motion of the orbital elements
are obtained analytically. The long-term evolution model for the Europa probe is given
as follows:

da
dt

= 0 (21)
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de
dt

=
3μGηe
4nr5

EG

[
5
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2
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sin 2ω− 6K1K2 cos 2ω

]
+

15μJηe
8a3

En
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4n sin ir5
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dt = 3μGη
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[
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1
(
5 cos2 ω− 1

)
+ K2

2
(
5 sin2 ω− 1

)
+ 3K1K2 sin 2ω− 1

]
+
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Enη
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]
+
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It can be seen from the Lagrange equations that the semi-major axis keeps constant
during the evolution, which means that Ganymede’s gravitation has no secular influence
on the orbital energy of the probe. The variables in these Lagrange equations are provided
in Equation (6) and in Equations (32)–(36) of Appendix A. Furthermore, although the
analytical form of the mean potential of Ganymede’s gravity is difficult to obtain, the
long-term evolution behavior of the probe can be studied following the accurate and
simplified model using numerical propagation. Based on the double-averaging method in
Equation (15), the average Lagrange equations of the probe’s orbital elements are computed
as follows: 〈〈

dϕ

dt

〉〉
=

1
TA,G

∫ TA,G

0

〈
dϕ

dt

〉
dt (26)

where ϕ represents the orbital element of the probe.
To validate the long-term evolution behavior based on the double-averaging method,

a large-eccentricity, high-inclination orbit is taken as an example to simulate the orbital
behavior under the accurate average model. The adopted values of the gravitational
parameters of Jupiter, Europa, and Ganymede are given in Table 1. The initial orbital
conditions of the probe are set to for a = 1.2 RE, i = 93◦, Ω = 0◦, and ω = 0◦, unless otherwise
specified in the following simulations. Eccentricity e = 0.1 is selected, and the evolution
duration is set as 150 days. The orbital evolutions of the eccentricity, inclination, longitude
of the ascending node and argument of periapsis are given in Figure 3. Blue and red
curves represent the oscillating and mean orbits, respectively. Note that the semi-major
axis remains constant and is not propagated.

Table 1. Dynamical parameters of the Jovian system [23,24].

Parameter Value

μJ 126,686,534.9218 km3/s2

μE 3202.74 km3/s2

μG 9887.83 km3/s2

J2,E 0.0004355
RE 1560.8 km
aE 671,100 km
eE 0.0094
iE 0.465◦

aG 1,070,587.5 km
eG 0.00195
iG 0.135◦
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Figure 3. Evolution behavior of a probe around Europa, for a = 1.2 RE, e = 0.1, i = 93◦, Ω = 0◦, and
ω = 0◦. Subplots (a–d) are the behaviors of the eccentricity, inclination, longitude of the ascending
node and argument of periapsis, respectively.

As shown in Figure 3, the long-term evolution tendencies of the mean orbital elements
and the oscillating orbital elements are consistent with each other. By removing the
short-period oscillation, the evolution of the mean elements are smoother than that of the
oscillating elements, which makes the mean orbit more applicable for the analysis of long-
term evolution. Moreover, the orbital elements also suffer from long-period oscillations,
which is similar to the research by Scheeres et al. [11]. This behavior suggests that Europa’s
non-spherical gravitation and Jovian third-body gravitation are the major perturbations,
while Ganymede’s gravitation is the weak perturbation. In the next section, the perturbing
effect of Ganymede’s gravitation on the secular motion of the Europa probe is further
analyzed, and a Ganymede-synchronous frozen orbit is generated.

3.3. Sensitivity Analysis

Based on the long-term models in Equations (21)–(25), the effects of Ganymede’s
gravitation on the orbital elements with respect to the initial phase angle are studied. This
initial phase angle is the difference between the initial longitude of the ascending node
and the argument of latitude of Europa, i.e., Ω − uE. The average rates of change of the
eccentricity and inclination are shown in Figure 4. The initial conditions of a near-circular
orbit are considered by setting e = 0.001, ω = 35◦. The average rates of change are propagated
using the numerical integration method. From Figure 4a, it can be seen that the oscillation
amplitude was four orders of magnitude smaller than the value of the rate of change,
which suggests that Ganymede’s gravitation perturbation on the eccentricity is weaker
compared to those of Europa’s non-spherical gravitation and Jovian gravitation. According
to the literature [11,13], the eccentricity evolution mainly depends on the inclination and
argument of periapsis.
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Figure 4. Rates of change of the eccentricity (a) and inclination (b), for a = 1.2 RE, e = 0.001, i = 93◦,
and ω = 35◦.

According to the average rate of change of the inclination in Figure 4b, the rate
of change of the inclination oscillates significantly, which is different from that of the
eccentricity. This suggests that for a near-circular orbit, the perturbing effects due to
Europa’s non-spherical gravitation and Jovian gravitation are small, while Ganymede’s
gravitation dominates the evolution of the inclination. Moreover, the initial phase angle
Ω − uE determinates the value of the average rate of change. For a Ganymede-synchronous
orbit, the initial phase angle is fixed with respect to both Europa and Ganymede for
each Ganymede-apparent revolution period. In this situation, the average rate of change
of the inclination is constant, which drifts the inclination continuously. Four zero-rate
change conditions are obtained when the initial phase angle Ω − uE approximates −92.5◦,
−3◦, 87.5◦, and 177◦. These conditions keep the inclination constant under Ganymede’s
gravitation with a Ganymede-synchronous orbit.

Moreover, the average rates of change of the longitude of the ascending node and
argument of periapsis with respect to the initial phase angle Ω − uE are studied. The initial
orbital conditions of the probe are e = 0.001 and ω = 35◦. The calculation results are shown
in Figure 5. Similarly, the average rates of change are propagated using the numerical
integral method. According to Figure 5a, for the average rate of change of the longitude of
the ascending node, the oscillation amplitude is eight orders of magnitude smaller than
the value of the average rate of change. This means that Ganymede’s gravitation has little
effect on the longitude of the ascending node. Meanwhile, the literature [11,13] shows
that the semi-major axis and inclination determine the rate of change of the longitude
of the ascending node when considering Europa’s non-spherical gravitation and Jovian
gravitation perturbations. Therefore, to generate the Ganymede-synchronous frozen orbit,
it can be assumed that the evolution of the longitude of the ascending node is decoupled
with the initial phase angle Ω − uE to simplify the design of the initial orbital conditions.

Furthermore, from Figure 5b it can be seen that the oscillation amplitude of the
argument of periapsis is four orders of magnitude smaller than the value of the average rate
of change. Therefore, Ganymede’s gravitation perturbation on the argument of periapsis
is a small disturbance. In order to generate a Ganymede-synchronous frozen orbit whose
argument of periapsis is fixed, a station-keeping (SK) maneuver is employed to cancel out
the slight drift caused by Ganymede’s gravity.
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Figure 5. Rates of change of the longitude of the ascending node (a) and the argument of periapsis
(b), for a = 1.2 RE, e = 0.001, i = 93◦, and ω = 35◦.

Next, the rate of change of the inclination with respect to the eccentricity and inclina-
tion are studied. The results are shown in Figure 6 for i = 93◦ (a) and e = 0.001 (b). Note
that the distributions of the rate of change in other conditions are similar and not given
here. The rate of change of the inclination with respect to the eccentricity is provided
in Figure 6a. According to the distribution of the rate of change of the inclination di/dt,
the orbits are divided into an elliptic case (for an elliptic orbit with eccentricity larger
than 0.1) and a near-circular case (with eccentricity smaller than 0.1). For an elliptic orbit,
the eccentricity has an influence on the rate of change of the inclination. However, for a
near-circular orbit, the rate of change of the inclination is nearly constant with respect to
the eccentricity. Therefore, small eccentricity is considered for the initial condition of the
Ganymede-synchronous frozen orbit. Nevertheless, the effect of the eccentricity on the rate
of change of the inclination is neglected.

Figure 6. Rates of change of the inclination with respect to the eccentricity in subplot (a) and
inclination (b) in subplot (a), for a = 1.2 RE.

Then, the rate of change with respect to the inclination is shown in Figure 6b. Ac-
cording to Figure 6b, the rate of change of the inclination is divided into positive regions
where the initial phase angle Ω − uE is (−180◦, −90◦) and (0◦, 90◦) and negative regions
where the initial phase angle Ω − uE is (−90◦, 0◦) and (90◦, 180◦). Between these regions,
the contour line of di/dt = 0 deg/sec is obtained (define this line as DIZL). Due to the
fact that for the synchronous frozen orbit the initial phase angle Ω − uE and inclination
keep constant, the rate of change of the inclination is fixed. Therefore, the initial condition
should locate on the DIZL to achieve the frozen behavior.

Finally, the rate of change of the inclination with respect to the argument of periapsis
is analyzed. A series of eccentricities 0.1, 0.05, 0.01, and 0.001 are taken as examples to
study the evolution of di/dt. The results are contoured in Figure 7 for e = 0.1 (a), e = 0.05 (b),
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e = 0.01 (c), and e = 0.001 (d). According to Figure 7a for eccentricity e = 0.1, the argument of
periapsis dominates the rate of change of the inclination for an elliptic orbit. The DIZLs are
discovered when the argument of periapsis is about −180◦, −90◦, 0◦, and 90◦. Figure 7b,c
show the transition of di/dt between the elliptic orbit and the near-circular orbit. With the
eccentricity descending, the effect of the argument of periapsis decreases. Furthermore,
for a near-circular orbit in Figure 7d, this rate of change mainly depends on the initial
phase angle Ω − uE. The initial phase angles Ω − uE of the DIZL are about −91◦, −1◦, 89◦,
and 179◦. Therefore, when a near-circular Ganymede-synchronous orbit is considered, the
initial argument of periapsis can be chosen arbitrarily.

Figure 7. Rates of change of the inclination with respect to the argument of periapsis for e = 0.1 (a),
e = 0.05 (b), e = 0.01 (c), and e = 0.001 (d).

4. Design of a Ganymede-Synchronous Frozen Orbit

4.1. Conditions of Synchronous Frozen Orbit

A Ganymede-synchronous frozen orbit around Europa constitutes synchronous be-
havior with respect to Ganymede and frozen behavior in terms of the orbital elements. For
Ganymede-synchronous behavior, when the Europa–Ganymede distance rEG approaches
the minimum, the intersection angle of the orbital plane and the Europa–Ganymede vector
should be a constant. Consequently, the geometry between the orbit and Ganymede is
fixed. This Ganymede-synchronous condition can be described as in Equation (27). The
rate of change of the longitude of the ascending node should be equal to the drift rate of the
elongation in the inertial coordinate system to achieve Ganymede-synchronous behavior.〈〈

dΩ
dt

〉〉
=

du
dt

(27)

According to the synodic motion between Europa and Ganymede, the drift rate of the
elongation is given as follows:

du
dt

= 2nG − nE (28)

In addition, the literature [17] shows that a large velocity increment (ΔV) is needed to
freeze the eccentricity because of the drift of the argument of periapsis. A more cost-efficient
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way is to freeze the inclination and argument of periapsis. Meanwhile, the value of the
argument of periapsis should be in the regions of (−90◦, 0◦) and (90◦, 180◦), where the
eccentricity continuously decreases. In this situation, the orbit keeps circularizing and
achieves a long lifetime. These frozen conditions are summarized as follows:〈〈

di
dt

〉〉
= 0 (29)

〈〈
dω

dt

〉〉
= 0 (30)

4.2. Preliminary Design of a Ganymede-Synchronous Frozen Orbit

Based on the dynamical evolution of the orbital elements and the conditions of the
synchronous frozen orbit, the design method for a Ganymede-synchronous frozen orbit
was developed. Since the accurate model is time-varying, it is difficult to analytically design
a Ganymede-synchronous frozen orbit. Therefore, a preliminary design method based on
the simplified model was developed and is given in Algorithm 1.

Algorithm 1 Design Method for a Ganymede-Synchronous Frozen Orbit

Input: Semi-major axis a, eccentricity e;
Output: Inclination i, initial phase angle Ω − uE, argument of periapsis
1: Assign oe0 = [a, e] as the initial conditions;
2: Assign dΩ

dt = du
dt as the expected rate of change of the longitude of ascending node;

3. Main

4: Inclination i ← dΩ
dt ;

5: DIZL and DWZL
(

di
dt , dω

dt

)
← (a, e, i) ;

6: Initial phase angle and argument of periapsis (Ω− uE, ω)←
(

di
dt , dω

dt

)
;

7: end

Firstly, a semi-major axis is chosen according to the mission requirement. In this study,
the initial eccentricity is set as e = 0.001. Then, according to literatures [11,14], the rate
of change of the longitude of the ascending node is determined by the inclination. The
inclination of the orbit is solved based on the synchronous condition in Equation (30). The
rate of change of the longitude of the ascending node and the corresponding Ganymede-
synchronous condition are shown in Figure 8. The purple dotted line represents the
synchronous condition with respect to Ganymede. From Figure 8, because the drift rate of
the elongation is negative, the inclination of the Ganymede-synchronous orbit ranges from
78.8◦ to 81.8◦ which is equivalent to about 98.96% and 98.98% of global coverage. For the
semi-major axis a = 1.2 RE, the obtained inclination is given as i = 78.842◦.

After obtaining the inclination, the longitude of the ascending node and argument of
periapsis are designed. The contour lines of the inclination di/dt = 0 deg/sec (denoted as
DIZL) and argument of periapsis dω/dt = 0 deg/sec (denoted as DWZL) with respect to
the eccentricity are calculated. For the inclination i = 78.842◦, the intersection of DIZL and
DWZL is shown in Figure 9. Blue and red points represent DIZL and DWZL, respectively.
From Figure 9, it is seen that the argument of periapsis of the intersection of the DIZL
and DWZL was about –133.1◦, −46.9◦, 46.9◦, and 133.1◦. In order to keep the eccentricity
decreasing, the argument of periapsis ω = 133.1◦ was chosen as the initial condition. The
intersection line with respect to eccentricity is given in Figure 10, in which the initial phase
angle Ω − uE is nearly constant when the eccentricity is small. In this situation, initial
phase angle Ω − uE = 87.46◦ was chosen in the preliminary design phase. This orbit was
considered as an expected orbit. The method of maintaining this orbit with the accurate
model is discussed in the following section.
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Figure 8. Rate of change of the longitude of the ascending node for a = 1.2 RE and e = 0.001.

 

Figure 9. Distributions of DIZL and DWZL. Subplots (a) and (b) are two different viewpoints.

Figure 10. Distribution of DIZL.
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4.3. Orbit Maintenance with Accurate Model

Since the expected orbit was designed based on the simplified model in the preliminary
phase, the actual orbit under an accurate dynamical model naturally drifts and deviates
from the expected orbit. Therefore, in this section, the SK maneuver is designed to maintain
the inclination, longitude of the ascending node, and argument of periapsis at their expected
values. The ΔV consumptions for the inclination, longitude of the ascending node, and
argument of periapsis are evaluated by taking the impulse propulsion as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔVi =
√

μE
aη2 (1 + e cos ω)Δi

ΔVΩ =
√

μE
aη2 (1 + e sin ω) sin iΔΩ

ΔVω =
√

μE
aη2 Δω

(31)

Using this SK strategy, the Ganymede-synchronous frozen orbit was validated by a
numerical simulation. Except the perturbations of Europa’s J2 non-spherical gravitation,
Jovian and Ganymede’s third body gravitations, the perturbations of Jovian J2 non-spherical
gravitation and solar gravitation were both considered to guarantee the accuracy. The
initial conditions were a = 1.2 RE, e = 0.001, i = 78.842◦, Ω = 120.7575◦, and ω = 133.07◦. In
order to achieve a collinear behavior of uE − eG = 0◦, the initial date MJD was selected
as MJD = 62504.384619. The SK period was set as one synodic period of the Europa–
Ganymede revolution TA,G. Fifteen numbers of SK maneuvers were performed to evaluate
ΔV consumption. The evolution of the orbit is shown in Figure 11, and ΔV consumptions
of the inclination (blue line), longitude of the ascending node (black line), and argument of
periapsis (red line) are given in Figure 12.

 

Figure 11. Evolutions of orbital elements, for a = 1.2 RE, e = 0.001, i = 78.842◦, Ω = 120.7575◦, and
ω = 133.07◦. Subplots (a–d) show the evolutions of the eccentricity, inclination, longitude of the
ascending node and argument of periapsis, respectively.
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Figure 12. Consumption of the Ganymede-synchronous frozen orbit.

In Figure 11, the blue and red curves represent the evolution of natural drift and SK
maneuver, respectively. According to Figure 11, the eccentricity kept decreasing, which
circularized the orbit. Due to the difference between the simplified dynamical model and
accurate model, the inclination oscillated in a small amplitude, while the argument of
periapsis oscillated heavily. The SK maneuver was employed to directly maintain these
two elements at the expected values. Meanwhile, the longitude of the ascending node kept
decreasing. According to the numerical calculation, the evolution period of the longitude
was about 500 days, which equaled the synodic period of Europa and Ganymede. In this
situation, the orbit demonstrated Ganymede-synchronous behavior.

Furthermore, according to Figure 12, for about 105 days of evolution, the maintaining
ΔV for the inclination, longitude of the ascending node, and argument of periapsis were
1.36 m/s, 4.8 m/s, and 20 m/s. The total ΔV consumption was about 26.16 m/s, which
was 0.25 m/s per day. This is an acceptable ΔV for a practical mission. Most of the ΔV is
consumed to maintain the argument of periapsis, while maintaining the inclination cost
the least ΔV. This suggests that the effect of an accurate dynamic model has little influence
on the evolution of the inclination.

5. Conclusions

This paper focuses on the long-term evolution behavior of a probe around Europa.
The non-spherical gravitation perturbation of Europa and the third-body gravitation pertur-
bations of Ganymede and Jupiter were considered to derive the Lagrange equation based
on the double-averaging framework. Then, a design method of a Ganymede-synchronous
frozen orbit was proposed using the simplified model. The angle between the normal vector
of this orbit and the Europa–Ganymede vector is constant when Europa and Ganymede
come synodic. In this situation, the Europa probe has the stable capacity to observe
Ganymede and to transmit data with the Ganymede lander.

The numerical simulation showed that Ganymede’s gravity has a small but continu-
ously accumulated effect on the inclination. The rate of change of the inclination mainly
depends on the argument of periapsis for an elliptic orbit, while it is determined by the
phase angle between the longitude of the ascending node and the Europa–Ganymede
vector. Moreover, due to the difference between the accurate model and the simplified
model, the obtained orbit drifts slightly. A station-keeping maneuver was employed to
maintain the longitude of the ascending node and argument of periapsis. With the pro-
posed maintenance method, the eccentricity of the Ganymede-synchronous frozen orbit
kept decreasing, while the inclination and argument of periapsis maintained the expected
values. The evolution period of the longitude of the ascending node was 500 days, which
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achieved Ganymede-synchronous behavior. The total maintenance ΔV consumption was
26.16 m/s for 105 days of evolution, or 0.25 m/s per day, which is acceptable for practical
mission application.
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Appendix A

In this paper, Jovian and Ganymede’s apparent motions orbiting around Europa are
considered. The distance from the Europa-to-Ganymede intersection is determined by the
angle α. Angle α is expressed using Equation (7), whose variables are given as follows:{

K1 = XEG cos Ω + YEG sin Ω
K1,Ω = −XEG sin Ω + YEG cos Ω

(A1)

⎧⎨⎩
K2 = −XEG sin Ω cos i + YEG cos Ω cos i + ZEG sin i
K2,i = XEG sin Ω sin i−YEG cos Ω sin i + ZEG cos i
K2,Ω = −XEG cos Ω cos i−YEG sin Ω cos i

(A2)

XEG =
aGη2

G
1 + eG cos fG

(cos ΔΩ cos uG − cos iG sin ΔΩ sin uG)−
aGη2

E
1 + eE cos fE

cos uE (A3)

YEG =
aGη2

G
1+eG cos fG

[cos iE(sin ΔΩ cos uG + cos iG cos ΔΩ sin uG) + sin iE sin iG sin uG]

− aEη2
E

1+eE cos fE
sin uE

(A4)

ZEG =
aGη2

G
1+eG cos fG

(sin ΔΩ cos uG + cos iG cos ΔΩ sin uG)

+
aEη2

E
1+eE cos fE

cos iE sin iG sin uG

(A5)

where ΔΩIII = ΩE −ΩG.
The classical Legendre polynomial expansion is applied to express the perturbing

potential in Equation (12) into individual terms. This expansion is shown as follows:

1
‖r − r′‖ =

1√
r2 + r′2 − 2rr′ cos γ

=
1
r

∞

∑
n=0

(
r′

r

)n

Pn(cos γ) (A6)

cos γ =
r· r′
rr′

(A7)

Pn(x) =
1

2nn!
dn

dxn

(
x2 − 1

)n
(A8)
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Appendix B

In order to study the long-term evolution of orbital elements, the Lagrange planetary
equations which derive the effect of perturbing potential on the orbital elements are given
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

da
dt = 2

na
∂R
∂M

de
dt =

1
na2e

(
η2 ∂R

∂M − η ∂R
∂ω

)
di
dt =

1
na2η sin i

(
cos i ∂R

∂ω − ∂R
∂Ω

)
dΩ
dt = 1

na2η sin i
∂R
∂i

dω
dt = η

na2e
∂R
∂e − cos i

na2η sin i
∂R
∂i

(A9)

Then, the long-term evolution of Europa probe’s orbital elements can be obtained.
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Abstract: With the rapid development of more-electric and all-electric aircraft, the role of power
supply systems in aircraft is becoming increasingly prominent. However, due to the complex coupling
within the power supply system, a fault in one component often leads to parameter abnormalities
in multiple components within the system, which are termed associated faults. Compared with
conventional faults, the diagnosis of associated faults is difficult because the fault source is hard
to trace and the fault mode is difficult to identify accurately. To this end, this paper proposes a
graph-matching approach for the associated fault diagnosis of power supply systems based on a
deep residual shrinkage network. The core of the proposed approach involves supplementing the
incomplete prior fault knowledge with monitoring data to obtain a complete cluster of associated
fault graphs. The association graph model of the power supply system is first constructed based
on a topology with characteristic signal propagation and the associated measurements of typical
components. Furthermore, fault propagation paths are backtracked based on the Warshall algorithm,
and abnormal components are set to update and enhance the association relationship, establishing
a complete cluster of typical associated fault mode graphs and realizing the organic combination
and structured storage of knowledge and data. Finally, a deep residual shrinkage network is used to
diagnose the associated faults via graph matching between the current state graph and the historical
graph cluster. The comparative experiments conducted on the simulation model of an aircraft
power supply system demonstrate that the proposed method can achieve high-precision associated
fault diagnosis, even under circumstances where there are an insufficient number of samples and
missing parameters.

Keywords: deep residual shrinkage network; association graph model; knowledge and data fusion;
Warshall algorithm; power supply system

MSC: 94C12

1. Introduction

Decades ago, the ideas of more-electric aircraft (MEA) and all-electric aircraft (AEA)
came into being [1]. In AEA, not only would all replaceable systems be replaced by electrical
systems, but the propulsion power would also use electrochemical energy (e.g., batteries
and fuel cells). At the same time, electrification has increased the supply of electric energy.
With the continuous development of aircraft electrification, the requirements for the quality
of aircraft power supply are increasing. Meanwhile, the complexity of aircraft power
systems is also gradually increasing, which leads to higher requirements for the safety,
maintainability, reliability, and testability of aircraft power supply systems [2,3].
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Fault diagnosis is one of the important links in fault prediction and health manage-
ment technologies [4,5]. Its purpose is to identify whether the system’s working state is
normal and whether it has deteriorated using intelligent algorithms in a certain working
environment by combining the system’s historical status information, fault information,
working condition information, and other multi-source information, as well as historical
parameter data. Then, fault isolation and location according to data characteristics can
be realized [6,7]. Due to the complexity of the technical conditions of modern industrial
processes, the influence of internal interaction loops is becoming increasingly prominent.
When one monitoring variable is abnormal, it can easily cause changes in other monitoring
variables through the relationships between faults, thus leading to related faults [8]. As
a result, it is important to be able to analyze the fault source and locate the fault based
on the numerous alarm data and their relationships. Power supply systems have such
characteristics in real life. Therefore, the problem we aim to solve in this paper is how to
correlate fault diagnosis and fault location through the node characteristics of the power
supply system and their correlations.

There are mainly four kinds of fault diagnosis methods for power supply systems:
knowledge-based [9,10], model-based [11,12], data-driven, and fault detection and diag-
nosis methods based on external equipment [13–15]. The model-based fault diagnosis
method can mathematically express the research object and reveal the fault generation
mechanism through the mathematical model. However, it is difficult to account for the
coupling between components and their interactions with the environment during the
modeling process. This results in models with limited ability to represent real faults and a
high level of model complexity [16–18].

The data-driven fault diagnosis algorithm needs many historical data samples to
support the model construction and training process. However, power supply systems
have problems, such as difficulty obtaining fault samples, sample imbalance, etc. In
addition, many data-driven algorithms lack certain physical meaning and interpretability,
which makes it difficult to further apply and popularize the algorithm model. Data driven
models, such as deep learning models, involve a large amount of computation and complex
super parameters. How to further deploy them is also a problem to be considered [19–23].
The fault diagnosis of power supply systems based on external equipment is mainly carried
out by actively applying different signals, via the system performance under different
states, or through fault diagnosis rules. The authors of [24] proposed a development and
implementation method for a permanent magnet synchronous motor controller for safety-
critical applications. The authors of [25] proposed a method of fault diagnosis for aircraft
secondary power distribution systems based on multi-valued logic and added cable fault
detection and location functions to a traditional solid-state power controller.

The knowledge-based fault diagnosis method mainly uses knowledge to establish a
diagnosis model. It performs fault inference analysis using object mechanisms, structure–
function relationships, qualitative parameter analyses, and historical fault diagnosis expe-
riences. Fault diagnosis expert systems and qualitative model-based methods are widely
used [26–28]. However, in recent years, knowledge is used to remedy the problem of
insufficient fault information in the data-driven model, to improve the adaptability and
diagnostic ability of the model, and to make the model more targeted. The knowledge is
supplemented in a data-driven way to improve the efficiency of model construction. At
present, knowledge and data fusion is still in the exploration stage, and there are few re-
lated research achievements. Its main methods can be roughly divided into two categories:
knowledge and data fusion model based on graph theory and knowledge and data fusion
method based on the evidential reasoning model.

In association fault diagnosis, existing methods tend to focus on the correlation be-
tween parameters, the temporal relationship of fault propagation, and the probabilistic
correlation of fault occurrence [29–34]. For special objects such as power supply systems,
the parameter forms are often voltage, current, impedance, etc. The signal characteristics
are relatively simple. It is difficult to analyze the association relationship only through
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parameters, and the propagation speed of current signals is fast. It is difficult to directly
analyze the association between faults through time series, and the confidence of the prob-
ability association between faults is low when the data are incomplete. Therefore, we
can summarize the urgent problem in the field of fault diagnosis as how to combine the
advantages of data-driven and knowledge-driven models to quickly diagnose and locate
faults through the correlations of components in different fault modes and their association
patterns [35].

To solve the above problem, this paper proposes a high-level construction method of
typical associated fault patterns of power supply systems based on a graph model. Based
on anomaly monitoring and fault path tracking, the proposed method supplements the
incomplete prior fault knowledge with monitoring data to obtain a complete cluster of
associated fault graphs and realizes the fusion of knowledge and data. The main innovation
points and contributions of this study can be summarized as follows:

(1) A knowledge and data fusion approach is proposed to diagnose the associated faults
of power supply systems. The anomaly monitoring and fault path tracking based on
the Warshall algorithm utilize historical data to supplement the incomplete prior fault
knowledge, which establishes the complete cluster of typical associated fault mode
graphs and realizes the organic combination and structured storage of knowledge
and data.

(2) The proposed graph-matching strategy based on a deep residual contraction network
achieves high precision with regard to fault diagnosis, even under the circumstances
of an insufficient number of samples and missing parameters. The comparative
experiments verify the depth feature extraction ability of the proposed method, as
well as its high accuracy, noise resistance, and robust diagnostic capability.

(3) The proposed method preliminarily realizes deep association diagnosis and path
backtracking under the condition of insufficient traditional FMEA knowledge and in-
complete association information and provides an effective technical approach to solve
accurate online fault diagnosis under strong coupling in the power supply system.

The remainder of this paper starts with a preliminary overview in Section 2. Then,
Section 3 describes the two main methods of this study, including the association graph
model based on knowledge and data fusion and the enhancement of component-associated
knowledge based on the Warshall algorithm. The case studies in Section 4 show the
process of the diagnosis of associated faults in power supply systems. The results indicate
the priority of the methods in terms of accuracy under normal and missing-parameter
situations. The paper closes with the main conclusions in Section 5.

2. Preliminary Overview

2.1. Warshall Algorithm

Definition 1. Set digraph G = 〈V, E〉, set vertex V = {v1, v2, . . . , vn}, set edge
E = {e1, e2, . . . , en}, and define the adjacency matrix of digraph G as:

A = (aij)n×n, (1)

where, aij is the number of edges adjacent vi to the vertex vj, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

The Warshall algorithm is an algorithm for finding the transitive closure of adja-
cency [36]. In order to solve the problem of the large computation of the reachable
matrix, the algorithm starts from the adjacency matrix A to obtain the matrix sequence
A, A1, A2, . . . , An. In order to judge the reachable path of each node in the matrix, the
intermediate elements are fixed. Through the traversal of the intermediate elements, the
path between two points is found to meet the requirement that only the nodes in the middle
pass through {v1, v2, . . . , vk} so that the algorithm only needs to perform sub addition n3
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times and sub multiplication n3 times without matrix iteration. As a result, the number of
calculations is reduced effectively. The algorithm steps are as follows [37]:

Step 1: Set matrix F = A, where A represents the adjacency matrix, 1 represents that
there are edges between nodes, and 0 represents that there are no edges between nodes;

Step 2: Set i = 1;
Step 3: For any j, if F[j, i] = 1, then F[j, k] = F[j, k] + F[j, i], where k = 1, 2, . . . , n;
Step 4: i plus 1;
Step 5: If i < n, go to Step 2;
Step 6: The algorithm ends.
The final matrix F is the reachable matrix, which can determine whether there is a

path in the two nodes. If there is a path, it is represented by 1, and if not, it is represented
by 0.

The Warshall algorithm will be used in Section 3.2 to achieve associated knowledge
enhancement and updates on component associations based on abnormality monitoring
and fault path retrieval so that the organic integration and structured storage of knowledge
and data are realized.

2.2. Frechet Distance

The Frechet distance is a curve similarity measure algorithm. It considers not only the
similarity of curves but also the distance between the data points of curves. It can evaluate
the correlation between curves comprehensively, with the advantages of high diagnostic
accuracy, speed, and adaptability [38,39]. Its calculation is described below.

The Frechet distance starts by calculating the values of the metric functions of different
data points of a curve to the points on another curve. Then, the maximum values of the
different metric functions are used as the set of Frechet distances to be determined. The final
Frechet distance is the value of the lower bound of the Frechet distance to be determined.
To calculate the Frechet distance, first set the binary group (S, d) as a metric space, where d
is a metric function of S. Thus, the strict mathematical definition of the Frechet distance is
as follows [40]:

Definition 2. Set the binary group (S, d) as a metric space, where d is a metric function of S. To
define the Frechet distance, the following conditions must be met:

(1) The mapping γ of F on the unit interval [0, 1] is continuous.
(2) The vector ξ is mapped from the unit interval to itself, i.e., ξ : [0, 1]→ [0, 1] , and the mapping

relation has the following conditions: the mapping function is continuous non-degenerate and
ξ is full projective, at which point the function ξ is said to be a reparametrized function of the
unit curve [0, 1].

(3) Let A and B be two continuous curves on S; that is, A : [0, 1]→ S, B : [0, 1]→ S . d(x)
is the metric function of S. Then, let α and β be two reparametrized functions of the unit
interval. Then, the Frechet distance F(A, B) of the curves A and B is defined as:

F(A, B) = inf
α,β,t∈[0,1]

max{d(A(α(t)), B(β(t))}, (2)

The Frechet distance is sometimes referred to as “leash distance”. As is shown in
Figure 1, the dog walks along its own set trajectory between the owner and the dog, the
owner’s trajectory is A, the dog’s trajectory is B. There is a rope between the owner and the
dog to constrain the longest distance between them. During the travel, the Frechet distance
is the minimum value of the rope that can ensure both can move along the trajectory.
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Figure 1. Typical structure diagram of convolutional neural network.

In this study, the optimal correlation analysis method needs to be selected to have the
best correlation fuzzy metric effect, which can differentiate different modes. In a normal
state, the correlation between the input signal and output signal of a component should be
kept within a certain range, and when a fault occurs, the distance will change. Thus, the
identification of different fault modes can be achieved based on the change in correlation.

The Frechet distance is used in the following correlation metric-based component
fault diagnosis method. Typically, a distance metric is applied to the range of values and
curve similarity between the operating parameters and the normal parameters. Then, we
determine the extent to which the parameter deviates from the normal operating conditions
combined with a distance threshold. When the distance value deviates from the threshold
value, the component can be identified as abnormal.

2.3. Deep Residual Shrinkage Network
2.3.1. Convolutional Neural Networks (CNN)

Convolutional neural network is a classical deep learning model, which adds convolu-
tion to the traditional network to extract features. With development, it is now utilized in
not only image processing but natural language and time series handling. Some widely
used CNN models are LeNet-5, AlexNet, VGGNet, ResNet and so on [41,42].

A typical CNN contains three major layers, namely, a convolutional layer, pooling
layer and fully connected layer. The network uses gradient descent to minimize the loss
function for the purpose of adjusting the weight parameters in the network layer by layer,
and the accuracy of the network is improved through iterative back-propagation training.
LeNet-5 does not have an input layer. There are 7 layers in total, including 5 hidden
layers (excluding pooling layers), that is, the number of layers that can train parameters
is 5. VGGNet is mainly proposed to solve the problem that Lenet’s recognition of large
size pictures is not satisfactory. Compared with LeNet, AlexNet has a deeper network
structure, with a total of eight hidden layers, including five convolutional layers and three
full connection layers. However, although AlexNet has a good effect, it does not give
the design direction of deep neural network, that is, how to make the network deeper.
VGGNet strictly uses 3 × 3 small-scale convolution and pooling layer to construct depth
of CNN, achieving good results. Small convolution can reduce parameters and facilitate
stacking convolution layers to increase depth, that is, deepen the network and reduce
convolution. At the same time, there is another network, ResNet, which uses the residual
connection structure to make the network deeper from the perspective of avoiding gradient
disappearance or explosion. There are five versions in total, of which ResNet-18 is the
18-layer version.

2.3.2. Deep Residual Network

In traditional CNNs, due to the complexity of the input parameters, it is often necessary
to increase the depth of the model in order to improve the feature extraction capability
and classification ability of the model. When too many hidden layer structures are added
to the network structure, it may lead to a problem of gradient disappearance and step
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explosion. During the construction of the model, the parameters of each iteration of the
model need to be back-propagated. The important operation during back propagation is
the derivation of the gradient from the model error. The gradients will be accumulated and
piled up in the network. As the number of hidden layers increases, the gradient will grow
or decay exponentially with the number of layers, which is the phenomenon of gradient
explosion and gradient disappearance. This will affect the running speed of the model and
the classification effect.

As a new deep learning method, the core contribution of a deep residual network
(ResNet) is to introduce the idea of identity mapping to the traditional network struc-
ture [43]. The core idea is to transfer the features of shallow data to the deep network
through identity mapping so that the deep network contains the feature information of
the shallow mesh structure, which greatly reduces the probability of gradient disappear-
ance and gradient explosion, thus enhancing the feature extraction ability of the network
model [44]. The specific structure is shown in Figure 2. When data are input, on the
one hand, the data will pass through the residual path and a residual network is built
on the residual path. After the input data pass through the path, a residual item F(x)
will be obtained, and the data x will also be output through the identity mapping model.
Currently, the learned feature is x + F(x). The goal of the residual network is to fit the
residual term F(x).

x

Figure 2. Schematic graph of residual unit.

By increasing the residual units, the training difficulty of the network parameters in
the model is greatly reduced through the same path, the feature extraction ability of the
original CNN is enhanced, the gradient disappearance and gradient explosion problems in
the model are greatly reduced, and a model with stronger classification ability is trained to
better adapt to complex data conditions.

2.3.3. Deep Residual Shrinkage Network

In general, the collected data often contain noisy information and redundant parame-
ters unrelated to the target problem due to the limitations of the data collection methods or
the influence of the working environment. It will affect the output accuracy of the model on
the one hand and the operation efficiency of the model on the other. To solve this problem,
the deep residual reduction network improves the original residual module based on the
above-mentioned deep residual network. Additionally, the influence of target-independent
features on the results is minimized by adding a soft thresholding operation. That is,
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features with absolute values less than the threshold are assigned to 0 by a nonlinear trans-
formation in the soft thresholding operation, which “shrinks” the redundant features in the
direction of 0, thus enabling feature selection [45]. Referring to the related article [46,47],
the basic structure of the deep residual reduction network is as follows (Figure 3):

K C

Figure 3. Basic structure of deep residual shrinkage network.

The principle of the soft threshold function is as follows:

y =

⎧⎨⎩
x− thr x > thr

0 −thr ≤ x ≤ thr
x + thr x < −thr

, (3)

where x represents the input feature, y represents the output feature, and thr represents the
threshold value.

In the neural network model, a gradient operation is required for the features of each
layer; that is, the derivation of the above formula. The results are as follows:

∂y
∂x

=

⎧⎪⎨⎪⎩
1 x > thr
0 −thr ≤ x ≤ thr
1 x < −thr

, (4)

It can be seen that soft thresholding can limit the gradient to 0 and 1, thus preventing
the problem of gradient disappearance and gradient explosion. Additionally, it can be
seen that the key problem of soft thresholding is the acquisition of a threshold, and the
self-learning of a threshold for different features can reduce sample noise and redundant
feature interference, which is an advantage of deep residual shrinkage networks.

The threshold value in the residual shrinkage network is obtained by using the absolute
operation and the GAP layer (global average pooling layer) to simplify the feature and
convert it into a one-dimensional vector. The feature is marked as A =

{
ajic
}

, where i, j, c
represent the length, width, and number of channels of the input feature map, respectively.
On the other hand, features are propagated to the two-layer full connection layer network
(FC layer). Finally, the output of the FC network is scaled to the range of (0,1) via the
following formula:

α =
1

1 + e−z , (5)
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where α represents the scaling coefficient and z represents the characteristics of neurons.
Thus, the expression of the threshold value can be obtained as follows:

τ = α · average
∣∣ai,j,c

∣∣, (6)

where τ represents the calculated threshold value. In the deep residual shrinkage network,
the threshold value τ must be positive and cannot be greater than the maximum absolute
value of the feature map. Otherwise, according to the formula, the final output will be
0. Through this soft thresholding method, the threshold value can be kept within a small
positive range. Due to the special structure of the depth residual shrinkage network, each
sample can form a set of thresholds according to its own characteristic graph so that noise
and redundant features can be reduced for specific samples.

The deep residual shrinkage network and the other neural networks mentioned are
used in this work to conduct the mining and classification of features for the cluster of
associated fault modes and to diagnose the current operating conditions in the power
supply system. The comparison of different networks is shown by case studies in Section 4.

3. Proposed Method

There are two core steps of the proposed method. First, the initial graph models for
different fault modes are established by extracting features sensitive to fault information and
combining them with a priori knowledge of the power supply systems. Secondly, through
data-driven correlation metrics and path tracking, model enhancement for correlated faults
is achieved, which complements the absence of priori knowledge about associated faults
and provides the main innovation of the proposed method.

3.1. Association Graph Model Based on Knowledge and Data Fusion

Since most of the currents generated in the power supply system are AC signals with
high frequency and high fluctuation characteristics, the processing methods using time
domain signals are often prone to loss of information. Thus, the pre-processing of the
signal is required to extract the required fault state characteristic information from the
complex signal. Commonly used signal analysis methods include time domain analysis,
frequency domain analysis, and time-frequency domain analysis. This paper utilizes the
Hilbert–Huang (HHT) transform-based time-frequency domain signal feature extraction
method to analyze the signals and extract the features more adequately. At the same time,
this paper also performs signal feature extraction via RMS, which is an important parameter
to characterize the energy and stability of AC signals in circuit analysis.

The HHT transform can decompose high-frequency signals and obtain the instan-
taneous frequency and instantaneous amplitude of the signals. The RMS feature, as a
common parameter in circuit analysis, can reflect the trend of circuit energy changes over
time. Therefore, the feature extraction method in this study can obtain the feature informa-
tion of data from three aspects: frequency, amplitude, and trend, which can achieve the
retention or even enhancement of the fault characteristics.

Next, we build the association graph model based on knowledge and data fusion.
There is a wide range of associations between components in the power supply system, and
the associations are often distinguished in different operating states. Therefore, graph mod-
els can be established to describe the component associations in different operating states.
There are two objectives, which are to realize the backtracking of abnormal component
propagation paths under different associated fault states and to realize fault diagnosis based
on the associated characteristics of components under different fault states. Specifically,
there are many components in the power supply system, and there are natural physical
connections between the components. In order to describe the association relationships of
components in the power supply system, the components in the power supply system are
regarded as nodes, while the association metrics between components are regarded as edge
weights in the graph model to ultimately obtain an undirected weighted graph (defined
as follows).
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Definition 3. Undirected weighted graph means that the edges in the graph model are undirected
and weighted. The so-called undirected refers to any point pair (i, j) and (j, i)corresponding to the
same edge, and vertex i and vertex j are also called the two endpoints of the undirected edge. The
adjacency matrix of the undirected weighted graph G is:

A = (aij)n×n, (7)

where aij is the weight of the edge vj adjacent to the vertex vi, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

By analyzing the association between components in different fault modes, we obtain
the association diagram model of the power supply system in different states. Meanwhile,
the actions of various power controllers inside the power supply system can affect or block
the propagation of fault signals, so the association of components in fault states may occur
outside the physical structure. Therefore, it is necessary to combine the associated fault
states together.

Since the electrical energy of the power supply system is generated by the primary
power supply and then transmitted to the supply load through the secondary power
supply, it can be assumed that the fault signal of the component is also propagated along
the direction of electrical energy transmission. Therefore, the propagation direction of the
electrical signal can be added to the original undirected weighted graph to create a directed
weighted graph. The directed weighted graph gives directions to the edges based on the
undirected weighted graph, which can further characterize the bidirectional propagation
relationship between nodes. Therefore, the association graph model of the power supply
system is constructed by combining the knowledge of the functional structure and the
current transmission direction, as is shown in Figure 4. In the constructed association
graph model, the transmission direction of the electrical signal is specified by the direction
of the arrow and represented by the association degree results of the components. The
system topology is simplified by the physical connection associations of the components.
In the figure below, the yellow part indicates the components of the main power supply
equipment of each channel, including the auxiliary exciter, rectifier bridge, main exciter,
rotary rectifier, and main motor; light green indicates the next layer of signal transmission,
including the AC load and each transformer rectifier; brown indicates the rectification part
of each transformer rectifier; dark green indicates each transformer rectifier; red indicates
each bus; and blue indicates each DC load. The hierarchical representation of the association
graph allows the transmission level and direction to be clearly seen, providing support for
further analysis.

 Power supply 
system 

simulation model

Figure 4. Reconstruction and reduction of the power supply system association graph model.
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The graph model visually represents and structures the associations between compo-
nents through nodes and edges so that the graph model can be used as an identification
criterion for different fault modes. Thus, the identification of associated fault modes can be
realized in Section 4.

3.2. Enhancement of Component Associated Knowledge Based on the Warshall Algorithm

The associated faults in the power supply system are often caused by the transmission
of fault signals from the fault source to the associated components, resulting in a drift in
the monitoring signals of the components. Additionally, this causes association alarms,
making it difficult to identify the fault source and diagnose the fault mode. However, the
topology of the power supply system is already determined. When the data are incomplete,
it is difficult to fully explore the associations between the components due to the influence
of monitoring noise and the uncertainty of the operating mode present in the data. The
situation gets worse when the knowledge is incomplete as well. Although the association
graph model of the power supply system developed in 3.1 can locate the fault source
to a certain extent, the presence of the power controller still often affects or hinders the
propagation of the fault signals due to the complexity of the associated faults. In the
association fault model, there will always be components associated with the power supply
system outside of its physical structure. Therefore, it is necessary to enhance the association
knowledge based on component anomaly detection.

Definition 4. Set digraph G = 〈V, E〉, set vertext V = {v1, v2, . . . , vn}, set edge
E = {e1, e2, . . . , en}, and define the adjacency matrix of digraph G as:

A = (aij)n×n, (8)

where aij is the number of edges adjacent vi to the vertex vj, i = 1, 2, . . . , n, j = 1, 2, . . . , n.

In the directed graph, if a node can reach the target node through other nodes in the
graph, it is considered that there is a reachable path between the node and the target node.
Then, the existing alarm component set can be analyzed through the directed graph, the
fault propagation path can be inferred with, and the fault source can be found. In this
paper, the accessibility matrix is used to trace the source of typical associated fault modes,
and thus the knowledge of the association graph model can be enhanced.

The accessibility matrix of digraph G is:

P = (Pij)n×n, (9)

where pij = 1 if and only if the vertex vi can reach the vertex vj, otherwise pij = 0,
i = 1, 2, . . . , n, j = 1, 2, . . . , n.

In this paper, Warshall’s method is used to calculate the accessibility matrix and to
further enhance the knowledge of the association graph model. The algorithm flow is as
follows (Figure 5):

Firstly, the graph model is structured and stored according to the power supply
system association graph model through the adjacency matrix. Secondly, the accessibility
matrix is calculated through the Warshall algorithm to analyze the accessibility path of
the association graph model. Then, according to the actual detection parameters of the
power supply system, component fault detection based on association measurement is
carried out, and a set of associated fault alarm components is obtained. According to the
hierarchical structure of the association graph model, the accessibility path traversal of the
alarm component set is performed in reverse (i.e., from the load level to the main power
level). When the path cannot be traced forward, the last backtracking point is considered
as the fault source under a certain path.
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Figure 5. Knowledge enhancement process of power supply system association graph model.

In addition, with the association measurement algorithm based on Frechet distance
proposed in this paper, the associations between different components can be obtained and
applied to fault feature classification and fault diagnosis. Therefore, in the association graph
model of the power supply system, the associations between components, i.e., weights, can
be replaced by the association measurement results, thus organically combining data and
knowledge. In addition, the graph structure can be stored in matrix form via adjacency
matrices. Each adjacency matrix can be considered a graph. Multiple data under each
associated fault mode can be considered a cluster of graphs. Multiple data under multiple
associated fault modes can form a typical cluster of associated fault mode graphs. Compo-
nent associations and signaling under different associated fault modes are stored to form a
knowledge base to provide a basis for fault diagnosis. The associated fault mode clusters
are defined as follows:

Graph =
[
gij
]

f×n, (10)

g = [Frechet(a, b)]m×m, (11)

where gij represents the j-th graph under the mode of the i-th associated fault mode;
Frechet(a, b) represents the Frechet-associated metric between component a and component
b, f represents the number of fault modes in the clusters, n represents the number of fault
samples, and m represents the number of power supply system components included in
the clusters.

4. Case Studies

4.1. Construction of the Simulation Model

The data in this paper come from an aviation AC main power supply simulation
model. This paper combines research data and experimental verification to construct a
simulation model of a typical aircraft four-channel power supply system based on the
Simulink tool in MATLAB. Moreover, this paper also combines the real parameter data
of the power supply system provided for model modification and improvement. In this
model, four three-phase alternators are used to supply power, which constitute a constant-
speed and constant-frequency AC power supply system, and its four AC channels are
not connected in parallel. The secondary power supply uses variable voltage rectifiers
for a 270 V variable voltage rectifier and a 28 V variable voltage rectifier, and each is
connected to one 270 V variable voltage rectifier and one 28 V variable voltage rectifier
(high voltage and low voltage), respectively. At the same time, the first and second channels’
DC power supply comes through the convergence bar for power integration, and the third
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and fourth channels’ DC power supply comes through the convergence bar for power
integration. The DC power supplies are connected to two hydraulic pump loads (high
voltage loads, working in parallel) and two resistors (low voltage loads, working in parallel).
There are also four AC loads in the system, represented by two three-phase resistors, which
are connected to four generators. The simulation model graph of the power supply system
is as follows (Figure 6):

Figure 6. Power supply system simulation model.

In the power supply system structure used in this paper, the four channels of AC
power are independently powered and connected to the AC load, while the DC power
is sinked and distributed through the DC sink bar. In order to analyze the power supply
modes in different channels and to obtain the complete data characteristics, the circuit
switching logic in the fault state is not considered in this study.

In order to realize the fault characterization and parameter change analysis of the
power supply system under different fault modes, it is necessary to collect and analyze
the parameters of each component at each level. Therefore, a total of 218 measurement
points including the power supply system level, equipment level, and component level are
added to this model in order to monitor the status of 4 levels, 12 pieces of equipment, and
60 components in the power supply system.

4.2. Establishment of the Associated Fault Diagnosis Model

This paper uses the deep residual contraction network model to carry out fault di-
agnosis based on the power supply system’s associated fault mode graph. The model
construction process is shown in Figure 7.

First, construct a cluster of associated fault modes based on the topological knowledge
and historical parameter information. Second, construct a deep residual shrinkage network
model based on the residual shrinkage network units. Third, complete the training of
the fault diagnosis model library based on the cluster of associated fault modes. Then,
generate an association graph based on the actual measured parameters. The process
uses the association metric analysis technique of actual monitoring parameters and the
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association graph model. Finally, input the association graph into the trained deep residual
shrinkage network model for diagnosis and obtain the diagnosis results.

Figure 7. Schematic graph of power supply system associated fault diagnosis model.

To start with, we proceed with the associated fault detection based on the Frechet
distance metric. The purpose is to obtain the set of abnormalities in each fault mode and
to visually display the associated graph model. The associated fault detection results of a
typical power supply system under the first channel are shown in Figure 8. The green nodes
in the figure represent components with normal parameters and the red nodes represent
components with abnormal parameters. From the results, it can be seen that when the
associated faults occur, the fault source and the associated components will have abnormal
parameters to some extent.

Figure 8. Detection results of associated faults of typical power supply systems.

The following conclusions can be drawn from the analysis of the associated fault
detection results:

(1) Under different associated fault modes, the sets of abnormal components caused
by different associations are different due to the complexity of the power supply system
connection structure, functional composition, and transmission mode. It is difficult to
comprehensively analyze the component associations under different associated faults
using only a simple power supply system structure.
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(2) In the power supply system, the association direction of the fault-related compo-
nents caused by the fault source is not only related to the power supply system structure.
Due to the incomplete selection of the electrical energy control and component acquisition
parameters of the generator controller in the power supply system, associations outside the
power supply system structure often occur. For example, a phase-to-phase short-circuit
fault in the armature winding of the main generator, No. 1, causes a fault not only in
low-voltage transformer No. 1 but also in low-voltage transformer No. 2. This is because
the low-voltage DC bus of the power supply system is converged by transformers No. 1
and No. 2. Therefore, it is necessary to strengthen the associations of the association graph
model of the power supply system according to the fault detection results in different
fault modes.

(3) In typical associated faults of the power supply system, the propagation direction
of the fault signal is not necessarily unidirectional. For example, the open-circuit fault
of a single diode of the rotating rectifier can also cause a parameter shift for the exciter.
Therefore, when constructing the association graph model, it is also necessary to consider
the associations of the bi-directional connected components.

(4) The associations of each component of the power supply system need to further
rely on component anomaly detection analysis and fault path back analysis. This is to
analyze and strengthen the association features such as transmission direction of fault
signals and component association outside the physical structure in the power supply
system so as to improve the feature extraction capability and fault diagnosis capability of
the model.

Further, the enhancement of component-associated knowledge is performed based
on knowledge and data fusion. Take the phase-to-phase short-circuit fault in the armature
winding of the exciter of the power supply system as an example. Figure 9 shows the
backtracking path and fault source detection after the accessible path traversal of the fault
alarm set. As can be seen from the fault alarm component set, the fault in the exciter
armature winding is transmitted to the 28 V transformer rectifier through the rotating
rectifier and the main motor, causing a series of associated fault representations. The red
path is the fault tracing path consistent with the true fault source, while the yellow path can
only be traced back to LV transformer #2. In fact, there are two sources of faults, the main
exciter #1 and the LV transformer #2. This indicates that, due to the generator controller,
the fault signal from the rectification of transformer #1 28 V may affect the rectification
of transformer #2 28 V in order to ensure that the current and voltage of the circuit meet
the target requirements, thus causing a deviation in the parameters of transformer #2 LV.
Therefore, the associations under the fault path should be considered in the association
graph model. The research content of this paper assumes that the fault source of the
associated fault mode in the power supply system is a single fault source or a double fault
source of the same component. Therefore, the associations of the original association graph
model are enhanced by the blue path, thus further improving the ability of the model to
represent the overall state of the power supply system.

The association graph model of the power supply system constructed in this paper
is further updated with knowledge through the fault path retrieval and association en-
hancement under each typical associated fault mode. Further, the model is more capable
of representing the associations of components under different fault states, thus further
enhancing the fault diagnosis capability. The improved association graph model of the
power supply system is shown in Figure 10. In the updated association model, the clusters
of the components are not changed. However, the fault path retrieval based on the War-
shall algorithm enhances the association knowledge of the components. On the one hand,
the association direction of the components is supplemented with the original edges; on
the other hand, the association outside the physical structure shown by the components,
i.e., the edges in the graph, is enhanced in the associated fault mode.
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Figure 9. Example graph of phase-to-phase short-circuit fault backtracking of exciter armature winding.

Figure 10. The power supply system’s association graph model.

Then, we obtain the results of a cluster of associated fault modes based on the Frechet
distance and the Warshall algorithm.

In the graphs, the horizontal and vertical coordinates represent the serial numbers of
the components, respectively, and the weight corresponding to the coordinates (a, b) is the
weight of the associated measurement between component a and component b, as shown
in Table 1.

In Figure 11, different colors represent the weights of each aspect, which means
that the differences in association measurements between components can be shown. As
can be seen from the figure, both the basic structure of the cluster of association modes
and the connection topology between components remain unchanged, which is mainly
because the structure of the association graph model does not change. Nevertheless, the
associations between components change under different fault modes, and the weights
of the edges change accordingly. Figure 12 shows a comparison of the associated fault
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graphs under normal conditions and under the phase-to-phase short-circuit of the excitation
armature winding.

Table 1. Associated mode cluster component serial number name comparison table.

No. Components No. Components No. Components No. Components

0 Pilot exciter 1 17 Main motor 2 34 High variable
filter 13 51 270 V

regulating 4

1 Pilot exciter 2 18 Main motor 3 35 High variable
filter 14 52 28 V

regulating 1

2 Pilot exciter 3 19 Main motor 4 36 Low variation
filter 11 53 28 V

regulating 2

3 Pilot exciter 4 20 AC load 1 37 Low variation
filter 12 54 28 V

regulating 3

4 Rectifier bridge 1 21 AC load 2 38 Low variation
filter 13 55 28 V

regulating 4

5 Rectifier bridge 2 22 AC load 3 39 Low variation
filter 14 56 High voltage

busbar 1

6 Rectifier bridge 3 23 AC load 4 40 High variable
filter 21 57 High voltage

busbar 2

7 Rectifier bridge 4 24 High voltage
transformer 1 41 High variable

filter 22 58 Low voltage
busbar 1

8 Main exciter 1 25 High voltage
transformer 2 42 High variable

filter 23 59 Low voltage
busbar 2

9 Main exciter 2 26 High voltage
transformer 3 43 High variable

filter 24 60 Fuel pump 1

10 Main exciter 3 27 High voltage
transformer 4 44 Low variation

filter 21 61 Fuel pump 2

11 Main exciter 4 28 Low voltage
transformer 1 45 Low variation

filter 22 62 Fuel pump 3

12 Rotating rectifier 1 29 Low voltage
transformer 2 46 Low variation

filter 23 63 Fuel pump 4

13 Rotating rectifier 2 30 Low voltage
transformer 3 47 Low variation

filter 24 64 Heater 1

14 Rotating rectifier 3 31 Low voltage
transformer 4 48 270 V

regulating 1 65 Heater 2

15 Rotating rectifier 4 32 High variable
filter 11 49 270 V

regulating 2 66 Heater 3

16 Main motor 1 33 High variable
filter 12 50 270 V

regulating 3 67 Heater 4

Figure 11. Schematic graph of a cluster of associated fault mode results.
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Figure 12. Comparison of associated fault graph.

As is shown in Figure 12, the associations of the components highlighted in the
two graphs have changed, and the coordinates are (8, 12) and (12, 8), respectively. In the
graphs, 4 represents No. 1 main exciter and 12 represents No. 1 rotating rectifier. The
change also verified that the armature winding of the exciter has a phase-to-phase short-
circuit fault and further verified the rationality and interpretability of the construction of
the graphs.

Based on this, this study constructs a cluster of typical associated fault modes of
the power supply system, organically integrates the structural knowledge of the power
supply system, signal propagation direction, and parameter characteristics, and realizes
the enhancement of data-based associations. Finally, structured storage is carried out. On
the one hand, the associations and signal propagation relationship of each component of
the power supply system can be obtained through the graphs, and on the other hand, the
characteristics of the components are deeply extracted. The graphs can directly reflect the
changes in component associations caused by the change of parameter characteristics under
different fault conditions, thus saving storage space and providing a basis for improving
the efficiency of the diagnosis model.

4.3. Diagnosis Results and Analysis
4.3.1. Data Introduction

In this part, the relevant fault diagnosis models of the power supply system are
validated using simulation modeling of a typical aircraft power supply system and data
sets created in fault injections. The data set includes seven typical fault injections: phase-to-
phase short-circuit in the main generator armature winding, single phase open-circuit in
the main generator armature winding, single phase open-circuit in the exciter armature
winding, phase-to-phase short-circuit in the exciter armature winding, single diode short-
circuit in the rotary rectifier, impedance attenuation in the 28 V transformer rectifier, and
open-circuit and normal in the 270 V transformer rectifier filter inductor. Together with the
fault data of single-fault point injections and double-fault point injections, there are 42 fault
modes. By adding Gaussian noise with a signal-to-noise ratio of 5, 50 sets of samples
are generated for each fault mode, and 43 sets of associated fault mode hierarchies for
different fault types are generated by the above method of constructing the associated
mode hierarchies for power supply systems. Each group has 50 graphs as training and
testing data for the deep residual shrinkage network.
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4.3.2. Operating Environment

In this section, the deep residual systolic network model is built by PyTorch, and
the model is trained and validated. Compared with other deep learning frameworks, the
PyTorch framework has the advantages of simple design and high operational efficiency.
The fault diagnosis model related to power supply systems based on a deep residual
systolic network proposed in this study is built with PyTorch 1.9.0.

4.3.3. Diagnosis Results

In this section, a network model based on deep residual shrinkage is constructed for
a power supply system-associated fault diagnosis. Forty sets of samples are used as the
training and validation sets, and the last 10 sets of samples are used as the test set for model
testing and validation. The model is trained for 300 iterations, and the convolution kernel
parameter is set to 3. The training loss and final confusion matrix during model training
are shown in Figures 13 and 14.

Figure 13. Training loss in the process of associated fault diagnosis.

Figure 14. Confusion matrix in the process of associated fault diagnosis.
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From the above fault diagnosis results, it is apparent that, on the one hand, the
deep residual shrinkage network model constructed in this paper can realize the feature
mining and classification of the association fault pattern graphs. Moreover, due to the
soft threshold and identity mapping in the deep residual unit, the model converges faster
and can effectively reduce the redundant information and noise interference in the graph
model, and the accuracy rate of association fault diagnosis reaches 100%. On the other
hand, it can be seen from the loss function that the trend of the loss function of the training
set is basically consistent with that of the validation set. This indicates that the associated
fault mode mapping of the power supply system in this paper can still construct data
features with strong consistency under the condition of noise, which means it can be used
for fault diagnosis.

4.3.4. Validation and Comparison

To further verify that the correlation metric based on the Frechet distance in this paper
is optimal, the effects of several common correlation metrics are compared. Here, the
correlation metric is calculated and the results are analyzed using the parameters under
different fault modes, such as exciter output voltage and rotating rectifier input voltage,
selected from normal conditions, exciter armature winding phase short circuit, exciter
armature winding open circuit, main generator armature winding single phase open circuit,
rotating rectifier single diode open circuit, and 28 V varactor impedance degradation. The
different algorithms are evaluated using three parameters: intra-cluster sum of squares,
contour coefficients, and CH metrics. The mathematical definitions of the several methods
are as follows:

(1) Cluster sum of square

CSS =
m

∑
j=0

n

∑
i=1

(xi − μi)
2, (12)

n represents the number of data points in each class, m represents the number of
clusters, xi represents the data points, and μi represents the mean value of each class.

(2) Contour coefficient

S(i) =
b(i)− a(i)

max(a(i), b(i))
, (13)

where a(i) denotes the average distance from each point i to other points in the cluster and
b(i) denotes the average distance from each point to all other points in the cluster.

(3) Calinski–Harabaz index (CH)

CH(k) =
BGSS
K− 1

/
WGSS
n− K

(14)

WGSS =
1
2

[
(n1 − 1)d

2
1 + · · ·+ (nκ − 1)d

2
K

]
(15)

BGSS =
1
2

[
(K− 1)d

2
+ (n− K)AK

]
(16)

AK =
1

n− K

n

∑
i=1

(ni − 1)
(

d
2 − d

2
i

)
(17)

where n is the number of samples in the data set, K is the number of categories, d
2
j is the

average distance between samples in the j-th category, j = 1, 2, · · · , k, and d
2

is the average
distance between all samples. A larger CH indicator indicates that the clustering result
is more concentrated within clusters and more dispersed between clusters, i.e., there is a
better clustering effect.
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In this paper, the correlation analysis method is used to achieve the correlation measure
of components in different states from the parameter level. Common correlation analysis
methods are as follows:

(1) Pearson’s correlation coefficient

Pearson correlation coefficient is a common analysis index in vector similarity anal-
ysis [48–51] that is mainly used to portray the linear correlation between two vectors. A
coefficient output result of 0 means that there is no correlation between two vectors, a posi-
tive result means a positive correlation, and a negative result means a negative correlation.
Its calculation formula is as follows:

ρX,Y = cov(X,Y)
σXσY

= E((X−μX)(Y−μY))
σXσY

= E(XY)−E(X)E(Y)√
E(X2)−E2(X)

√
E(Y2)−E2(Y)

, (18)

(2) Parametric analysis based on the gray correlation analysis model

The basic idea of gray correlation analysis is to reflect the correlation between pa-
rameters through the degree of similarity of the curve geometry between the data of each
parameter [52–55]. It is mainly applied to the description and analysis of the developmental
changes between parameters within the system [56]. Let the reference series be Xo(t) and
the comparison series be Xi(t), then the gray correlation degree is calculated as.

ηi(t) =
m + ρM

Δi(t) + M
, ρ ∈ [0, 1], (19)

where Δi(t) = |x0(t)− xi(t)|, i = 1, 2, · · ·m, t = 1, 2, · · · , n, M = max(Δi(t)),
m = min(Δi(t)).

(3) Mahalanobis distance

The Mahalanobis distance is a method of measuring the similarity between two sample
sets starting from the perspective of the distribution characteristics of the sample set [57–60],
and its main feature involves considering the connection between different features to be
able to be independent of the measurement scale. It is often used to measure the distance
between multidimensional time series parameters, and the Mahalanobis distance between
the data vectors x and y is:

DM(x, y) =
√
(x− y)T∑−1

(x− y), (20)

where ∑−1 is the covariance matrix of the multidimensional random variables.

(4) Cosine similarity

The cosine similarity measures the cosine of the angle between the vectors by convert-
ing the parameters into vectors to determine the consistency of the direction between the
two vectors, which further determines the correlation of the parameters [61–64]. Therefore,
this method is commonly used to determine the consistency of the variation between
two parameters. The range of values is between −1 and 1, with −1 indicating that the
two vectors are the exact opposite and 1 indicating that they are exactly the same. The
cosine similarity between sequence X and sequence Y is:

sim(X, Y) = cos θ =

n
∑

i=1
(Xi ×Yi)√√√√ n

∑
i=1

X2
i ×
√

n
∑

i=1
Y2

i

, (21)
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(5) DTW (dynamic time warping algorithm)

The DTW (dynamic time warping) algorithm, commonly used for speech similarity
recognition, has the main advantage of being able to measure the similarity of two time
series data, especially two data of different lengths, through a dynamic planning algo-
rithm [65–68]. The basic algorithm of dynamic time regularization is as follows. Assuming
that two time series are X and Y, set their lengths as n and m, respectively, where:

X = x1, x2, . . . , xi, . . . , xn
Y = y1, y2, . . . , yj, . . . , ym

(22)

To calculate the shortest path between the two, first construct a n× m path matrix
W where each element in the matrix corresponds to the Euclidean distance between the
two points, i.e.,:

w = d
(

xth, yth
)

, (23)

d
(
xi, yj

)
=
√(

xi − yj
)2, (24)

When the path matrix is constructed, the minimum cumulative distance between the
two sequences, i.e., the DTW distance, is calculated as follows:

DTW(X, Y) = min

⎧⎨⎩
√√√√ K

∑
K=1

wk/K , (25)

where K is the number of alignment points and wk is an element of the path matrix
representing the distance between x and y in the k-th group of points.

A comparative situation analysis for each distance metric algorithm with different
metric parameters is shown in Table 2:

Table 2. Associated mode clusters’ component serial number name comparison table.

Metric Algorithm CSS Contour Factor CH

Pearson correlation coefficient 3.4692 0.0536 199.5176
Grey correlation analysis 11.6526 −0.1574 21.9299

Mahalanobis distance 5.0645 0.6025 116.6640
Cosine similarity 0.5429 0.1715 2694.7450

Dynamic Time Warping 0.0080 0.7599 343,059.7323
Frechet distance 0.0001 0.9425 15,413,927.6165

From the comparison of the indicators, it can be seen that the clustering concentration
of the Frechet distance is much higher than that of other algorithms, which proves that
for the characteristic parameters of the power supply system in this paper, the Frechet
distance can sharply identify the changes to the data in terms of curve trends and numerical
distances so as to achieve more accurate fault diagnosis.

In more detail, firstly, the Pearson correlation coefficient and gray correlation analysis
methods are used to measure the correlation between the change trends of two series. In
this study, however, the data are characterized as stable variation data that maintain certain
fluctuation characteristics, and it is difficult to analyze their correlation by variation trends,
so it is difficult to distinguish different failure modes. Secondly, the Marxian distance and
cosine distance can measure the similarity between two stable sample data; however, both
have the disadvantage of not being sensitive to the absolute value of the specific value of
the sample, i.e., the size of the data value has little effect on the results. However, through
the aforementioned analysis, the current and voltage tend to change only numerically in
certain fault modes and do not change in frequency, so it is difficult for both to achieve
excellent results in certain fault modes. Both the dynamic time regularization algorithm
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and the Frechet distance analyze the correlation between parameters from the dimension of
path similarity of time series, while it can be seen from the results that the Frechet distance
has a better clustering effect.

To further verify the improvement in diagnostic capability brought by the deep
residual shrinkage network proposed in this paper, two neural networks are tested ad-
ditionally, including ResNet18 and basic CNN. These methods are commonly used after
research [69–73]. The diagnostic accuracy and confusion matrix of each model is shown in
Figures 15 and 16.

Figure 15. Comparison chart of fault diagnosis accuracy of two methods by number of samples.

Figure 16. Comparison of confusion matrix of two methods with different numbers of
training samples.

At the same time, we have adopted AutoGluon 0.5.2, which uses automatic super
parameter adjustment, model selection or integration, architecture search and data pro-
cessing to rapidly prototype the original data for deep learning and classical machine
learning solutions. We applied some other nsetworks trained by AutoGluon, and obtained
the accuracy results, whose values are all distributed between 0.7386 and 0.7727, far from
0.9907 of the deep neural shrinkage network proposed in this paper (Table 3).
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Table 3. Accuracy results for several networks trained by AutoGluon.

No. Model Accuracy

1 WeightedEnsemble_L2 0.7727
2 RandomForestGini 0.7386
3 LightGBMXT 0.7636
4 CatBoost 0.7636
5 XGBoost 0.7705
6 LightGBMLarge 0.7568
7 NeuralNetTorch 0.7523
8 NeuralNetFastAI 0.7545
9 LightGBM 0.7409
10 KNeighborsUnif 0.7409
11 The proposed model 0.9907

The superiority of neural networks can be clearly seen from the results. From the
comparison of the above diagnosis results, it can be seen that the associated fault diagnosis
model based on the deep residual shrinkage network model proposed in this paper is
significantly less affected by the size of the fault samples than the traditional CNN model.
This is mainly because the residual shrinkage unit in the model reduces the interference of
the model with redundant data and noise and can better achieve the feature extraction and
classification of the associated fault mode graphs. Through the cross-sectional comparison
of test results, the fault diagnosis accuracy of both can be maintained above 70% when the
amount of data is only five groups. This can prove that the construction method of clusters
of associated fault modes proposed in this paper can achieve robust fault feature extraction
and structured storage of noisy parameter data and has excellent performance in terms
of fault diagnosis. It can alleviate the problem of insufficient data samples under actual
operating conditions.

To further verify the superiority of the association graph model, we apply the feature
extraction results directly in three networks for training. Several classical machine learning
models trained with AutoGluon including WeightedEnsemble_L2, RandomForestGini,
KNeighborsUnif, SVM and XGBoost. The comparison of the diagnostic accuracy with and
without the association graph model is shown below. We obtained the accuracy results of
training samples of 5, 10, 20, 30 and 40, respectively, and averaged them (Table 4).

Table 4. Comparison of the diagnostic accuracy with and without the association graph model.

No. Model
Accuracy

with Graph Model
Accuracy

without Graph Model

1 WeightedEnsemble_L2 0.7727 0.7341
2 RandomForestGini 0.7386 0.7341
3 KNeighborsUnif 0.7409 0.7386
4 SVM 0.7334 0.7080
5 XGBoost 0.7705 0.7293

It can be seen from the table that the association graph model has brought about
improvement for all models, with 5.65% at most and 0.31% at least. This is because the
association graph model integrates knowledge and data and has more information than
the unstructured stored feature extraction results.

To further validate the feature extraction capability of the associated fault mode graphs
of the power supply system proposed in this paper, specific fault points are removed in this
paper. This is carried out to verify the robustness and accuracy of the feature extraction
and fault diagnosis of the model in the absence of parameters. In the experiment, the data
points of No. 1 main motor, No. 1 rectifier, No. 1 auxiliary exciter, No. 1 main exciter, and
No. 1 rotary rectifier in the associated fault graph of the power supply system are set to
zero to simulate the actual monitoring environment in which the monitoring parameters
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of No. 1 main power supply are missing in order to verify the fault diagnosis effect of the
model under the condition of missing fault parameters. Figure 17 shows the graphs of the
normal state before and after the missing parameters. From the figure, it can be seen that
due to the missing parameters of the main power supply components, the points of the
related fault mode graph are also missing.

Figure 17. Comparison graph of normal state-associated fault mode graph before and after
missing parameters.

In this paper, the training set and the test set are processed for parameter loss at the
same time. With 40 groups of samples as the training set and 10 groups of samples as the
test set, the deep residual shrinkage network model and CNN model are constructed and
trained. The results of the confusion matrix are shown in Figure 18.

Figure 18. Comparison of the two confusion matrices in the case of missing parameters.

The test results show that the deep residual shrinkage network model constructed in
this paper can achieve the diagnosis of typical associated fault modes with 99.07% accuracy,
even when the main power parameters of the first channel are completely missing. In
addition, the diagnosis accuracy by CNN reaches 95.35%, which reflects the robustness
of the model for feature extraction in this paper. Due to the structural expression of
component and parameter associations in the cluster, the graph model has the ability of
feature extraction against parameter loss, thus adapting to the actual usage environment.

Further analysis reveals that in the confusion matrix of the deep residual shrinkage
network, the misclassification of the model is mainly fault 13 and fault 25, which correspond
to the phase-to-phase short-circuit in the first channel of the armature winding and the
impedance drop fault in the first channel of the 28 V transformer rectifier, respectively. Since
they are closely related to the main power supply parameters, some feature information is
lost, leading to a decrease in the diagnostic accuracy of the model. The misclassification
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of the CNN is mainly for faults 7, 13, 11, 17, and 25, corresponding to the faults single-
phase open-circuit of the excitation armature winding of the first channel, phase-to-phase
short-circuit of the excitation armature winding of the first channel, impedance drop
of the 28 V transformer rectifier of the first channel, phase-to-phase short-circuit of the
excitation armature winding (first and second channels), and single-phase open-circuit of
the excitation armature winding (first and second channels), respectively.

The experiment proves that the graph model-based component analysis and asso-
ciated fault diagnosis model can solve the problems of information structured storage
and complex feature extraction for power supply systems based on knowledge and data
fusion. Additionally, it can realize accurate fault diagnosis of typical associated fault modes
and achieve high accuracy diagnosis under the circumstances of insufficient samples and
missing parameters. In short, the model has good robustness and adaptability.

5. Conclusions

This paper proposes a knowledge and data fusion approach for the associated fault
diagnosis of power supply systems. Based on the graph model, the proposed approach
organically combines the hierarchical structure, signal transmission direction, and data
association relationship of the power supply system to construct the initial cluster of typical
associated fault mode graphs, solving the problem of assigning data information to the
power supply system structure and associating knowledge and parameters. Then, the
accessibility matrix of the association graph model is calculated according to the Warshall
algorithm, and the fault path set is obtained by backtracking the component fault detection
results based on the association measurement. By comparison with the real fault source,
the association relationship is updated and the incomplete prior fault knowledge is sup-
plemented, establishing the final cluster of typical associated fault mode graphs. Finally,
a deep residual reduction network model is constructed for graph matching, realizing
the diagnosis of associated faults. Compared with other models, the proposed model
can achieve more high-precision associated fault diagnosis, even under difficult situa-
tions such as insufficient sample size or missing parameters, demonstrating its robustness
and adaptability.
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Abstract: This paper focuses on cooperative multi-task assignment and re-assignment problems
when multiple unmanned aerial vehicles (UAVs) attack multiple known targets. A unified multi-
objective optimization framework for UAV cooperative task assignment and re-assignment is studied
in this paper. In order to simultaneously optimize the losses and benefits of the UAVs, we establish
a multi-objective optimization model. The amount of tasks that each UAV can perform and the
number of attacks on each target are limited according to the ammunition capacity of each UAV
and the value of each target. To solve this multi-objective optimization problem, a multi-objective
genetic algorithm suitable for UAV cooperative task assignment is constructed based on the NSGA-II
algorithm. At the same time, a selection strategy is used to assist decision-makers in choosing one
or more solutions from the Pareto-optimal front. Moreover, to deal with emergencies such as UAV
damage and to detect of new targets, a task re-assignment algorithm based on the contract network
protocol (CNP) is developed. It can be implemented in real-time while only slightly sacrificing the
ability to seek the optimal solution. Simulation results demonstrate that the methods developed in
this paper are effective.

Keywords: unmanned aerial vehicle; cooperative task assignment; multi-objective optimization;
genetic algorithm; contract network protocol

MSC: 90C29

1. Introduction

Unmanned aerial vehicles (UAVs) refer to aircraft without pilots; such aircraft can
fly autonomously or can be remotely controlled by an operator [1]. They can completely
reduce casualties and costs when performing high-risk missions [2]. At present, UAVs
have become very popular in many fields, such as infrastructure inspection, coastal border
surveillance, military applications, and others fields [3–6]. In the increasingly complex
battlefield situation, a single UAV cannot quickly adapt to the changing battlefield envi-
ronment due to lack of information interaction. At the same time, the effectiveness of a
single UAV in perform tasks is not high due to the limited ammunition capacity of a single
UAV. However, when a team composed of multiple UAVs performs tasks cooperatively it
can overcome the shortcomings of a single UAV. The UAV team can share information and
fully allocate internal resources, allowing tasks to be completed efficiently [7,8].

In order to take the advantage of multiple UAVs when performing tasks realize im-
provements in efficiency, cooperative task assignment is important. In recent years, results
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have been achieved in research on task assignment in different fields [9,10]. According to
the different factors considered by researchers, the task assignment problem of multiple
UAVs can be categorized into different models, and many related algorithms have been
proposed as well. Swarm intelligence optimization algorithms are widely used in this field,
particularly genetic algorithms [11]. The UAV team can be composed of either homoge-
neous UAVs or heterogeneous UAVs. For cooperative task assignment of homogeneous
UAVs considering the limitations on the total flight distance of UAVs, Wang et al. [12] es-
tablished a combinatorial optimization problem with the total weighted cost of target value
and distance cost as the objective, and presented an improved genetic algorithm based
on the beetle antennae search algorithm. Venugopalan et al. [13] presented a team search-
based decentralized task assignment scheme for homogeneous UAVs. Velhal et al. [14]
formulated the restricted airspace protection problem as a multi-UAV spatio-temporal
multi-task allocation problem, and proposed a modified consensus-based bundled auction
method to solve it. For cooperative task assignment of heterogeneous UAVs, Fatemeh
Afghah et al. [15] proposed a coalition formation approach to solve the problem of adver-
sary target detection and subsequent task completion. Schwarzrock et al. [16] proposed a
method to increase the amount of tasks performed within the problem of task allocation
among agents representing UAVs. Taking the minimization of the task execution time of
UAVs as the objective, Ye et al. [17] established a task assignment model and proposed a
modified genetic algorithm with a multi-type-gene chromosome encoding method. Consid-
ering a coupled task allocation and path planning problem, Yan et al. [18] proposed a task
allocation algorithm and a cooperative particle swarm algorithm. Uncertain factors are
considered in the cooperative task assignment problem as well. Considering the parameter
and time-sensitive uncertainties in the task assignment problem, Chen et al. [19] proposed
an algorithm that combines the interior point method and the modified two-part wolf pack
search algorithm. Jia et al. [20] established a two-stage stochastic programming model of
the cooperative task assignment problem incorporating the stochastic velocities of UAVs,
and proposed a novel metaheuristic based on a modified genetic algorithm.

However, only a single goal is considered by the above task assignment problems. In
order to simultaneously optimize the losses and benefits of the UAV team, it is necessary to
study the multi-objective optimization problem for multi-UAV task assignment. NSGA-II
and its variants are widely used in the study of multi-objective optimization for UAV
mission assignment [21,22]. Cheng et al. [23] considered the multi-objective optimization of
task assignment, with minimization of cost and maximization of the value of destroyed tar-
gets regarded as the objectives. Taking into account the relationship between the UAVs and
the ground control stations, Cristian et al. [24] proposed a new multi-objective genetic algo-
rithm for solving complex mission planning problems be formulating mission planning as a
constraint satisfaction problem [25]. Chen et al. [26] studied the task assignment problem for
UAVs with different sensor capacities, and proposed a modified multi-objective symbiotic
organism search algorithm. Wang et al. [27] considered a high-dimensional multi-objective
optimization problem containing four objectives for task assignment, then used an im-
proved multi-objective quantum-behaved particle swarm optimization algorithm to solve
the problem. Pohl et al. [28] developed an innovative algorithm for multi-UAV mission
routing. Phiboon et al. [29] studied multi-fidelity multi-objective airfoil design optimization
for fixed-wing UAVs. However, the above studies have not explained how decision-makers
are to choose a solution from the Pareto-optimal front. At the same time, the above litera-
ture does not consider the emergencies that may occur on the battlefield. The complexity of
the battlefield environment inevitably causes emergencies; for example, damage to UAVs,
the appearance of new targets, etc. The problem of UAV task re-assignment needs to be
considered when such emergencies occur. Unlike the general task assignment problem,
task re-assignment in emergencies must be completed in a short time. Therefore, the task
re-assignment problem has higher requirements with respect to the calculation speed of the
algorithm. A contract network algorithm [30] based on the auction mechanism has been
applied to the real-time task assignment problem. Zhen et al. [31] proposed an improved
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contract network protocol-based cooperative target assignment scheme to deal with hetero-
geneous overloading and time sequence problems. Zhang et al. [32] established a model
of real-time assignment of tasking based on reconnaissance benefits and reconnaissance
costs, and proposed an improved contract network algorithm. Xiang et al. [33] studied
the cooperation target assignment of multiple agents, and proposed an improved contract
network protocol according to the characteristics and restrictions of target assignment.

The contributions of the present article are provided as follows:

(1) Based on the idea of the NSGA-II algorithm, an algorithm suitable for solving the
multi-objective optimization problem of multi-UAV task assignment is presented,
and the encoding format and genetic operators therein are specially designed.

(2) A method for aiding commanders in choosing an operation plan from among the
Pareto solution set is provided.

(3) A highly efficient CNP-based algorithm is developed for real-time task re-assignment
in emergencies.

The remainder of this paper is organized as follows. Section 2 presents a multi-
objective optimization model of cooperative task assignment. Section 3 provides the
multi-objective optimization strategy. Section 4 provides the method of selecting solutions
from the Pareto solution set. The problem of task re-assignment in emergencies is studied
in Section 5. Numerical examples are provided in Section 6. Finally, Section 7 concludes
the paper.

2. Multi-Objective Optimization Model of Cooperative Task Assignment

For convenience, let In := {1, 2, · · · , n}, Īn := {0} ∪ In, n ∈ N+. On the battlefield,
UAVs with attack capabilities are required to attack multiple known targets in coordination
to improve efficiency. Assume that NU (NU ∈ N+) UAVs coordinately attack NT (NT ∈ N+)
targets in the combat area. Let U := {U1, U2, · · · , UNU} be the set of UAVs, where Ui
(i ∈ INU ) represents the i-th UAV. The target set is recorded as T := {T1, T2, · · · , TNT},
where Tj (j ∈ INT ) represents the j-th target. When a UAV attacks a target, the UAV may be
destroyed, and different UAVs have different probabilities of being destroyed when they
attack different targets. Let Pij, Kij respectively denote the probability that Ui (i ∈ INU )
and Tj (j ∈ INT ) are destroyed when Ui attacks Tj. Let VTj (j ∈ INT ) and WUi (i ∈ INU )
represent the value of Tj and Ui, respectively.

Because the previous single-objective optimization cannot achieve simultaneous op-
timization of two conflicting objectives, i.e., simultaneous optimization of the costs and
benefits in terms of UAVs, it is necessary to establish a multi-objective optimization model
for the cooperative task assignment problem. Considering the respective probabilities of
UAVs and targets being destroyed, the following two objectives are used to maximize the
value of the destroyed targets while incurring the minimum cost in damaged UAVs.

(i) Maximizing the total value of the targets destroyed by UAVs:

max f1(x) =
NU

∑
i=1

NT

∑
j=1

KijVTj xij, (1)

(ii) Minimizing the total cost of the damaged UAVs:

min f2(x) =
NU

∑
i=1

NT

∑
j=1

PijWUi xij, (2)

where xij ∈ {0, 1}, i ∈ INU , and j ∈ INT . If xij = 1, this means that Ui attacks Tj,; otherwise,
Tj is not attacked by Ui.
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The UAVs have a limited amount of ammunition, which makes it impossible to allocate
more tasks to each UAV than its ammunition capacity. Targets have different values, and
are divided into high-value targets and low-value targets. In this paper, the values of
enemy targets are known in advance. Multiple attack missions are assigned to the same
high-value target in order to increase the probability of success. To decrease the time that
UAVs must stay within the enemy’s threat range, the following assumption is made.

Hypothesis 1 (H1). Different tasks for the same target are performed by different UAVs.

The implicit constraint in H1 is that the same UAV can only attack the same target
once. This constraint not being taken into account can cause the limited ammunition to be
distributed unevenly, which can affect efficiency. For this reason, the number of high-value
targets to be attacked needs to be limited. According to the above description, the task
assignment problem needs to satisfy the following constraints.

(i) The amount of tasks assigned to each UAV cannot exceed its own ammunition capacity:

NT

∑
j=1

xij ≤ ni, i ∈ INU , (3)

(ii) The number of tasks for each target is limited:

NU

∑
i=1

xij ≤ mj, j ∈ INT , (4)

(iii) The same UAV can only attack the same target once:

aij ≤ 1, i ∈ INU , j ∈ INT , (5)

where ni (i ∈ INU ) represents the ammunition capacity of Ui, mj (j ∈ INT ) represents the
maximum number of Tj being attacked, and aij (i ∈ INU , j ∈ INT ) represents the number of
tasks performed by Ui on Tj.

Let F(x) :=
(
− f1(x), f2(x)

)�. The multi-objective optimization problem of the
cooperative task assignment (CTAMOP) is expressed as follows.

(CTAMOP) min F(x)

s.t.
NT

∑
j=1

xij ≤ ni,

NU

∑
i=1

xij ≤ mj,

aij ≤ 1, i ∈ INU , j ∈ INT ,

xij ∈ {0, 1}, i ∈ INU , j ∈ INT .

(6)

3. Multi-Objective Optimization Strategy

In order to solve CTAMOP, an improved multi-objective genetic algorithm based on
the NSGA-II algorithm [34] is constructed in this section. Based on the characteristics of the
task assignment problem, the chromosome encoding method along with the crossover and
mutation operators are specially designed and constructed.

3.1. Chromosome Encoding

The task assignment problem has two characteristics. First, the problem is that multiple
UAVs may attack multiple targets; second, whether Ui (i ∈ INU ) attacks Tj (j ∈ INT ) is

188



Mathematics 2022, 10, 4241

represented by 0 and 1. Considering the above factors, we use the binary matrix encoding
method to encode the chromosomes in order to accurately describe the situation of UAVs
performing tasks.

For the scenario of NU UAVs attacking NT targets, the generated chromosomes should
be NU × NT order matrices, which only contain 0 and 1 elements. Constraints (3)–(5) need
to be satisfied, i.e., the sum of the i-th row (i ∈ INU ) of each generated matrix is less than
or equal to ni, and the sum of the j-th (j ∈ INT ) column is less than or equal to mj. The i-th
row represents the situation of the targets attacked by Ui, and the j-th column represents
the situation of UAVs attacking Tj.

The chromosome encoding method is suitable for all combat situations, i.e., when am-
munition is sufficient and when ammunition is insufficient. In order to ensure randomness,
the chromosomes are generated in the following way. First, a UAV Ui (i ∈ INU ) and a
target Tj (j ∈ INT ) are randomly selected; then, it is determined whether constraints (3)–(5)
are satisfied. If both constraints are satisfied, a variable (0 or 1) is randomly assigned to
xij; otherwise, xij = 0. This process is executed repeatedly. When all UAVs do not satisfy
constraint (3) or all targets do not satisfy constraint (4) or (5), the process is terminated.
At the same time, all xij (i ∈ INU , j ∈ INT ) that have not been assigned a value receive a
value of 0.

Here, a specific example is provided to illustrate how chromosomes are encoded
considering the case of NU = 4 and NT = 10. The ammunition capacity of UAVs is
n1 = n2 = n3 = 3 and n4 = 2, and the maximum number of targets that can be attacked
is m1 = m2 = · · · = m10 = 2. For the scenario in Figure 1a, T4, T5, T9 are assigned to
U1, T1, T2, T7 are assigned to U2, T3, T9, T10 are assigned to U3, and T6, T8 are assigned
to U4. The values of the corresponding positions of the chromosome are set to 1, and the
remaining positions are set to 0, as shown in Figure 1b.

(a) Assignment of tasks (b) Chromosome form

Figure 1. Assignment of tasks and the chromosome encoding method.
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In the evolution process, the offspring are composed of the retained elite individuals
and the individuals obtained by crossover and mutation operations. The crossover and
mutation operators play key roles. Because the chromosomes are binary matrix, it is
necessary to design the crossover and mutation operators for algorithm.

3.2. The Crossover Operator

Two chromosomes F1 and F2 are selected from the parents, then a crossover operation
is performed on F1 and F2 with crossover probability Pc. The specific crossover steps are
as follows. First, the l1-th (l1 ∈ INU ) row and the l2-th (l2 ∈ INU ) row from F1 and F2,
respectively, are randomly selected. Then, the l1-th row of F1 and the l2-th row of F2 are
swapped to obtain two new chromosomes O1 and O2. If the task assignment of the obtained
chromosome satisfies constraints (3) and (4) and there is no idle UAV, then the obtained
chromosome is the crossover offspring. It is common that O1 and O2 do not satisfy the
constraints, and the following cases may exist as well.

• Task assignment satisfies constraint (4) while not satisfying constraint (3). If the l1-
th (l1 ∈ INU ) row of O1 does not satisfy constraint (3), that is, the number of tasks
assigned to Ul1 exceeds the ammunition capacity nl1 of Ul1 , we sort the tasks of
Ul1 according to the number of tasks attacked, then delete the corresponding tasks
from the task set of Ul1 according to their number, from high to low. When the l1-th
(l1 ∈ INU ) row satisfies constraint (3), then the operation is stopped.

• Task assignment satisfies constraint (3) while not satisfying constraint (4). If the j-th
(j ∈ INT ) column of O2 does not satisfy constraint (4), that is, the number of attacks on Tj
exceeds the upper limit mj, the attack task of Tj is randomly deleted from the rows that
have not been exchanged. If Tj satisfies the constraint (4), then the operation is stopped.

• Task assignment satisfies neither constraint (3) nor (4). In this case, the same method
as in case 1 is first used to change the chromosome and then to determine whether
constraint (4) is satisfied. If constraint (4) is not satisfied, then the method from case 2
is used to change the chromosome.

If both constraints (3) and (4) are satisfied and there is an idle UAV, then as many
tasks as possible are assigned to the idle UAV under the premise that constraints (3)–(4) are
satisfied; targets that have not yet been attacked are prioritized.

The example provided in Section 3.1 is used to illustrate the construction of the
crossover operator. The two selected parent chromosomes are shown in Figure 2. Let the
rows randomly selected from F1 and F2 be the second and fourth rows, respectively. It can
be seen from Figure 2 that T3 (i.e., the third column marked in yellow) in the offspring
chromosome obtained by F1 does not satisfy constraint (4). As this scenario belongs to the
first case, an attack task of T3 is randomly deleted from the first or fourth row. If the task of
U1 (i.e., the first row marked in yellow) is randomly deleted, U1 becomes an idle UAV. Thus,
as many tasks as possible are assigned to U1 under the premise that the constraints are
satisfied, and the crossover offspring C1 can be obtained. Here, T4 and U4 (i.e., the fourth
column and fourth row marked in yellow) in the offspring chromosome obtained by F2 fail
to satisfy constraints (4) and (3), respectively. This belongs to the third case. According to
the method used in the third case, the attack task of U4 is deleted. Then, as the chromosome
satisfies the constraints and there are no idle UAVs, we have the crossover offspring C2.
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Figure 2. Example of crossover operator.

3.3. The Mutation Operator

A mutation operation is performed on crossover offspring with a mutation probability
of Pm. There are three situations that may occur with respect to the crossover offspring,
and different mutation operations are used for different situations.

• If there are targets in the chromosome that have not been attacked and there are UAVs
with ammunition that can perform tasks, then the mutation operation seeks to assign
the targets to these UAVs under the premise that constraint (3) is satisfied.

• If there are targets in the chromosome that have not been attacked and the UAVs have
no remaining ammunition, then the mutation operation randomly selects the task sets
of two UAVs from the chromosome and exchanges them.

• If all targets are attacked, then the task sets of two UAVs from the chromosome are
randomly selected and exchanged.

3.4. The Improved Multi-Objective Genetic Algorithm

Based on the methods used to construct the chromosomes, crossover operators and
mutation operators, the following multi-objective optimization algorithm (i.e., Algorithm 1)
suitable for UAV cooperative task assignment is developed.
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Algorithm 1 Multi-objective optimization algorithm.

1: Initialize the values of the following parameters: the population size N, crossover
probability Pc, mutation probability Pm, and maximum number of evolutions G;

2: g ⇐ 0;
3: Randomly generate an initial population Pg of size N. The chromosome encoding

method and chromosome generation method are based on the methods described in
Section 3.1;

4: while g < G do
5: Calculate the objective function values of each chromosome in population Pg using

(1) and (2);
6: Sort population Pg using the fast non-dominated sorting approach, then determine

the front of each chromosome;
7: Perform crossover operations on the selected parents according to the crossover

probability Pc, then mutate the obtained crossover offspring with probability Pm. Pro-
ceed to the next step when a progeny population Sg with N chromosomes is obtained;

8: Combine the parent population Pg with the offspring population Sg to obtain a new
population Qg; then, the size of population Qg is 2N;

9: Perform the process in lines 5–6 on population Qg to obtain the front of each
chromosome in Qg;

10: Select chromosomes from the front;
11: while the number of chromosomes selected is less than N do
12: First, the chromosome is selected from the first front, then, the chromosome is

selected from the second front, and so on;
13: if the number of chromosomes required is less than the number of chromosomes

in the l-th front then
14: Calculate the crowded distances;
15: Select the chromosomes based on the crowding distance from large to small;
16: end if
17: end while
18: g ⇐ g + 1 and q ⇐ g
19: if g = G then
20: Sort Pg using the fast non-dominated sorting approach, then output the chromo-

somes in the first front;
21: end if
22: end while

4. Selection Strategy

Because the decision-maker needs to select one or more solutions from the Pareto
solution set in order to perform specific operations, it is necessary to have a strategy for
selecting non-dominated solutions from the Pareto-optimal front. Let f j denote the j-th
objective function, n denote the number of objective functions, and m denote the number of
non-dominated solution on the Pareto-optimal front. The specific selection steps are shown
in Algorithm 2.

The specific value of αj (j ∈ In) depends on the degree of preference of the decision-
maker for the objective function f j. Let C = {c1, c2, · · · , cn}, where cj (j ∈ In) represents
the degree of preference of the decision-maker for f j. The rules for setting the value of αj
(j ∈ In) are as follows:

• If cj1 > cj2 > · · · > cjn, then αj1 > αj2 > · · · > αjn, and
jn
∑

l=j1
αl = 1, ji ∈ In, i ∈ In.

• If cj1 = cj2 , then αj1 = αj2 , ∀ j1, j2 ∈ In. In particular, if cj1 = cj2 = · · · = cjn, then
αj1 = αj2 = · · · = αjn = 1

n .

Finally, the flowchart diagram of the improved genetic algorithm together with the
selection strategy is shown in Figure 3.
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Algorithm 2 The strategy for selecting solutions.

1: Convert all objective functions f j (j ∈ In) into a form that minimizes or maximizes the
function Fj (j ∈ In).

2: Solve the problem using the improved NSGA-II algorithm to obtain the Pareto-optimal
front.

3: If the dimensions of any two objective functions are different or the orders of magnitude
of the values of any two objective functions are different, then normalize the objective
function values; otherwise, the objective function values are not normalized. The j-th
objective function of the i-th non-dominated solution on the Pareto-optimal front is
denoted as F̄i

j (j ∈ In, i ∈ Im).
4: Weight and sum each group of objective function values obtained in step 3 to obtain

the following set:

S =
{

Si|Si =
n

∑
j=1

αj F̄i
j ,

n

∑
j=1

αj = 1, i ∈ Im

}
.

5: In step 1, if the objective functions are transformed into the form of seeking the mini-
mum value, then the solution corresponding to the minimum value in set S obtained in
step 4 is selected; otherwise, the solution corresponding to the maximum value in set S
is selected.

Figure 3. The flowchart of task assignment.
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5. Task Re-Assignment For Emergencies

The task assignment process is carried out on the enemy targets found on the battle-
field. However, there are many uncertain factors due to the complexity of the battlefield
environment. For example, after assigning the discovered targets, new enemy targets may
be found on the battlefield again, or certain UAVs in the task assignment may suddenly
malfunction and be unable to continue performing combat tasks. Both new targets and
targets in the task sets of damaged UAVs need to be re-assigned. There are two methods
of assigning tasks. The first method is to assign all tasks according to the current health
status of the UAVs, and the second is to assign tasks that need to be assigned based on
the obtained task assignment plan. In combat, efficiency issues are more important when
solving unexpected situations. Compared with the first method, the second method takes
less time and has a higher task assignment efficiency.

In this paper, the re-assignment strategy for new tasks is constructed based on the idea
of the contract network protocol and the characteristics of the task assignment problem.
Smith first proposed the idea of a contract network protocol [30]. The principle idea of a
contract network protocol is to assign tasks through a process of tendering and bidding
between agents. There are three types of agents in a contract network protocol: the tender
agent, bidding agent, and winning agent. In the problem of UAV task re-assignment,
the tender agent is the reconnaissance UAV that discovers a new task or the UAVs that
becomes damaged, the bidding agents are UAVs with the ability to perform the newly
available tasks, and the winning agent is the UAV corresponding to the bid with the best
function value.

5.1. Task Re-Assignment Model

Based on the above description, there are two trigger conditions for task reassignment:
(1) new enemy targets are discovered and (2) one or more UAVs are damaged. Suppose
that the number of new targets found on the battlefield is s1, and the number of destroyed
UAVs is s2. Let T̄ denote the set of targets that need to be assigned,

T̄ := {TNT+1, TNT+2, · · · , TNT+s1},

where TNT+i (i ∈ Is1) represents the i-th task that needs to be assigned. Let Ū denote the
set of UAVs that can perform tasks,

Ū := {Ul1 , Ul2 , UlNU−s2
} = U − {Ul̄1 , Ul̄2 , · · · , Ul̄s2

},

where Ul̄j
(j ∈ Is2 ) represents the l̄j-th damaged UAV. Based on (1) and (2), an objective

function is constructed with the following form:

max f̄ = α1

lNU−s2
∑

i=l1
Ki(NT+j)VTNT+j xi(NT+j)

+α2

lNU−s2
∑

i=l1

(
1− Pi(NT+j)

)
WUi xi(NT+j) − α1

lNU−s2
∑

i=l1
Kijr VTjr

xijr

−α2

lNU−s2
∑

i=l1

(
1− Pijr

)
WUi xijr ,

(7)

where j ∈ Is1 and Tjr (jr ∈ INT+j−1) represents the target replaced by TNT+j; Tjr is only
considered in an interchange contract, which is described along with sales contracts in the
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next section. The values of α1 and α2 are the same as the values of α1 and α2 in Algorithm 2
in Section 4. Thus, the model of task re-assignment (TRAM) is as follows:

(TRAM) max f̄

s.t.
NT+j

∑̃
j=1

xij̃ ≤ ni,

lNU−s2

∑
i=l1

xi(NT+j) ≤ mj,

ai(NT+j) ≤ 1, i ∈ {l1, l2, · · · , lNU−s2},

xi(NT+j) ∈ {0, 1}, i ∈ {l1, l2, · · · , lNU−s2},

(8)

where j ∈ Is1 .

5.2. Task Re-Assignment Algorithm

In the CNP-based algorithm, sales contracts and interchange contracts are considered.
The idea of a sales contract is that a new task is added to the task set of the bidding agent.
The specific form of a sales contract of a UAV Ui for a target TNT+j is represented as follows:

< Ui, TNT+j, 0, f̄ >, (9)

where, i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1 . The sales contract (9) indicates that the revenue
obtained by adding target TNT+j to the task set of Ui is f̄ . An interchange contract, on the
other hand, replaces a target in the UAV task set with a target that needs to be assigned.
The specific form of an interchange contract of a UAV Ui for a target TNT+j is represented
as follows:

< Ui, TNT+j, Tjr , f̄ >, (10)

where i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1 , and jr ∈ INT+j−1. The interchange contract (10)
indicates that the revenue obtained by replacing Tjr in the task set of Ui with TNT+j is f̄ . If
UAV Ui (i ∈ {l1, l2, · · · , lNU−s2}) has ammunition remaining, then Ui can execute both the
sales contract and the interchange contract; otherwise, Ui can only execute the interchange
contract. The steps for assigning target TNT+j (j ∈ Is1) are provided in Algorithm 3.

Algorithm 3 Task re-assignment algorithm TNT+j (j ∈ Is1).

1: Initialize the information of UAV Ui, the values of parameters Ki(NT+j), Pi(NT+j), VTNT+j

(i ∈ {l1, l2, · · · , lNU−s2}, j ∈ Is1), and the number of iterations of interchange contract
Gic.

2: Calculate the remaining ammunition Rm
i (i ∈ {l1, l2, · · · , lNU−s2}) of Ui.

3: If Rm
i �= 0, then Ui executes the interchange contract and sales contract for TNT+j;

otherwise, Ui only executes the interchange contract for TNT+j. Then, bidding agent Ui
chooses the contract with the largest value of f̄ .

4: The bidding agent evaluates the received contracts and selects the contract with the
largest value of f̄ as the winning contract, then broadcasts the information of winning
agent.

The flowchart diagram of the CNP-based algorithm is shown in Figure 4.
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Figure 4. The flowchart of task re-assignment

6. Numerical Experiments

In order to verify the effectiveness of Algorithms 1–3, simulation examples of various
battle situations are analyzed in this section. Examples of the improved multi-objective ge-
netic algorithm and selection strategy are provided in Section 6.1. In Sections 6.1.1 and 6.1.2,
examples where the total amount of ammunition is less than or equal to the total number
of tasks are considered, and the effectiveness of Algorithm 1 is verified. In Section 6.1.3,
a large-scale example where the total amount of ammunition is greater than the total
number of tasks is provided. Examples of task re-assignment in emergencies are laid out
in Section 6.2. In Section 6.2.1, an example is used to illustrate the process of Algorithm 3.
A large-scale example considering emergencies is provided in Section 6.2.2 to verify the
effectiveness and advantages of Algorithm 3. In Section 6.2.3, we analyze why the CNP-
based method is not directly used to solve the task assignment problem. All numerical
experiments were implemented using Python 3.8 on a computer with an Intel Core i5-
10210U CPU @ 1.60GHz, 2.11 GHz, and 4.00 GB RAM. The code for the algorithms can
be found at the URL (accessed on 6 November 2022) https://github.com/gaoxh-github/
multi-objetive-task-assignment-source-code. For the different examples provided in this
paper, the reader only needs to change the corresponding parameters in the code.

6.1. Test of the Improved Multi-Objective Genetic Algorithm
6.1.1. Case 1: Total Amount of Ammunition = Total Number of Tasks

First, we consider a case in which NU = 4 and NT = 8. The ammunition capacity of
each UAV is ni = 2 (i ∈ I4), and the upper limit of each target being attacked is mj = 1
(j ∈ I8). When Ui (i ∈ I4) attacks Tj (j ∈ I8), the probability Pij of Ui being destroyed
and the probability Kij of Tj being destroyed are shown in Table 1. The values of Ui
and Tj are shown in Table 2. To verify the effectiveness of Algorithm 1, we compare it

196



Mathematics 2022, 10, 4241

with the Multiple Objective Particle Swarm Optimization (MOPSO) algorithm using the
example in this section. In Algorithm 1, the crossover probability is Pc = 0.8 and the
mutation probability is Pm = 0.2. In MOPSO, the values of the parameters are ω = 0.7298,
c1 = 1.49618 and c2 = 1.49618. The population size and maximum number of iterations of
the two algorithms are N = 100 and G = 200, respectively.

The comparison results of the obtained Pareto-optimal fronts and CPU runtime are
shown in Figure 5. According to the definition of the Pareto solution [34], it can be seen
from Figure 5a that all the non-dominated solutions obtained by Algorithm 1 dominate
the non-dominated solution obtained by MOPSO. As can be seen from Figure 5b, the CPU
runtime of GA-CTAP is significantly shorter than that of MOPSO. The convergence curves
of the objective functions are shown in Figure 6. Clearly, thte GA-CTAP algorithm achieves
better convergence performance compared to MOPSO. For convenient description, the task
assignment corresponding to the non-dominated solutions A, B, and C are provided in
Table 3.

Table 1. Probabilities of UAVs and targets being destroyed.

T1 T2 T3 T4 T5 T6 T7 T8

U1
P1j 0.16 0.65 0.14 0.16 0.44 0.14 0.35 0.25

K1j 0.5 0.8 0.3 0.4 0.5 0.6 0.6 0.7

U2
P2j 0.14 0.16 0.44 0.14 0.65 0.16 0.45 0.35

K2j 0.8 0.4 0.4 0.8 0.7 0.6 0.8 0.6

U3
P3j 0.44 0.14 0.16 0.16 0.14 0.65 0.35 0.18

K3j 0.6 0.5 0.8 0.3 0.8 0.3 0.7 0.7

U4
P4j 0.65 0.14 0.16 0.44 0.08 0.16 0.55 0.48

K4j 0.6 0.4 0.2 0.3 0.3 0.6 0.5 0.6

Table 2. Values of UAVs and targets.

Target T1 T2 T3 T4 T5 T6 T7 T8

Value 0.62 0.65 0.68 0.7 0.73 0.78 0.81 0.85

UAV U1 U2 U3 U4

Value 0.8 1.1 0.9 1.3

(a) Pareto-optimal front of case 1 (b) CPU runtime

Figure 5. Comparison of results.
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Figure 6. Convergence curves of objective functions for case 1.

Table 3. Specific task assignment of non-dominated solutions A, B, C.

A B C

x

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

Case 1 considers a situation in which the total amount of ammunition is equal to the
number of tasks. However, in actual combat it is possible that the number of tasks is more
or less than the amount of ammunition.

6.1.2. Case 2: Total Amount of Ammunition < Total Number of Tasks

In this section, we analyze a case in which four UAVs attack twenty targets. For
convenience of calculation, it is assumed that each UAV has the same amount of ammuni-
tion ni = 4 (i ∈ I4). At the same time, in order to simplify the description, the parameter
information of multiple UAVs carrying out attacking tasks on the first eight targets takes the
values in Tables 1 and 2. When Ui (i ∈ I4) attacks Tj (j ∈ {9, 10, · · · , 20}), the probability
Pij of Ui being destroyed, the probability Kij of Tj being destroyed, and the value of Tj
(j ∈ {9, 10, · · · , 20}) are provided in Table 4.

Table 4. Probabilities of UAVs and targets being destroyed and target values.

T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

U1
P1j 0.21 0.15 0.32 0.18 0.46 0.23 0.55 0.14 0.35 0.16 0.26 0.25
K1j 0.7 0.6 0.5 0.6 0.4 0.6 0.4 0.3 0.3 0.8 0.3 0.7

U2
P2j 0.30 0.24 0.51 0.44 0.44 0.30 0.42 0.15 0.16 0.18 0.08 0.48
K2j 0.6 0.7 0.7 0.3 0.3 0.5 0.3 0.5 0.3 0.7 0.3 0.6

U3
P3j 0.53 0.16 0.44 0.68 0.14 0.25 0.50 0.48 0.14 0.09 0.13 0.60
K3j 0.7 0.4 0.6 0.5 0.3 0.5 0.4 0.6 0.3 0.8 0.4 0.8

U4
P4j 0.65 0.30 0.42 0.08 0.50 0.18 0.48 0.15 0.16 0.20 0.15 0.60
K4j 0.7 0.6 0.6 0.7 0.4 0.7 0.6 0.5 0.4 0.8 0.4 0.8

Target value 0.72 0.78 0.62 0.65 0.76 0.88 0.63 0.7 0.68 0.82 0.75 0.81

The obtained Pareto-optimal front is shown in Figure 7. It can be seen that the non-
dominated solutions are evenly distributed and the population diversity is good. Figure 8
shows the changes of the maximum value of f2 and the minimum value of f1 in each
iteration over the course of the entire iteration when ni = 4 (i ∈ I4). It can be seen that as
the evolutionary algebra increases, the values of the two functions converge.
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Figure 7. Pareto-optimal front of case 2.

Figure 8. Convergence curves of objective functions for case 2.

The process of selecting solutions from the Pareto solution set using the selection
strategy is as follows. Let S := {S0, S1, · · · , S44} represent the result obtained in Step 4 of
Algorithm 2, where Si = α1Fi

1 + α2Fi
2, Fi

1 = − f i
1, Fi

2 = f i
2 (i ∈ Ī44), α1, and α2 represent the

weights and (Fi
1, Fi

2) represents the i-th non-dominated solution in the Pareto-optimal front.
Based on this example and the description of weights in Section 4, the rules for setting the
values of αi (i ∈ I2) are as follows:

• If c1 > c2, then α1 ∈ (0.5, 1].
• If c1 = c2, then α1 = α2 = 0.5.
• If c1 < c2, then α1 ∈ [0, 0.5).

For the Pareto-optimal front shown in Figure 7, the solutions from the upper left corner
to the lower right corner are the 0th to the 44th non-dominated solutions. In this example,
the objective function values are not normalized because the dimensions of f1 and f2 are the
same, and the order of magnitude of the values of f1 and f2 is the same at 2.62 ≤ f1 ≤ 7.71
and 0.78 ≤ f2 ≤ 3.81, respectively. Assuming the weights α1 = 0.5, α2 = 0.5, the results
obtained by selection strategy are shown in Table 5.

As can be seen from Table 5, the sixth and seventh non-dominated solutions on the
Pareto-optimal front are the best choices, while the 44th non-dominated solution is the
worst choice. For the sake of simplifying the description, only the non-dominated solution
information and the specific task assignment corresponding to the first five choices are
shown. The positions of the five solutions are shown in Figure 7, and the corresponding
specific task assignments are shown in Table 6.
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The above description represents the process of selecting solutions of the multi-
objective task assignment problem containing two objective functions. For general multi-
objective optimization problems, the process of selecting solutions from the Pareto-optimal
front is similar to the above process, and the values of weights are set according to the rules
in Section 4.

Table 5. The order of selection of non-dominated solutions.

Si −2.185 −2.185 −2.135 −2.11 −2.105 −2.105 −2.1 −2.1 −2.065 −2.055 −2.05 −2.05

i 6 7 9 10 3 8 2 5 11 13 4 12

Si −2.01 −1.99 −1.99 −1.98 −1.975 −1.97 −1.95 −1.94 −1.925 −1.915 −1.9 −1.86

i 1 15 16 14 17 18 0 19 20 21 22 23

Si −1.85 −1.765 −1.755 −1.715 −1.7 −1.675 −1.655 −1.565 −1.545 −1.53 −1.465 −1.395

i 24 25 26 27 28 29 30 31 32 33 34 35

Si −1.37 −1.355 −1.355 −1.34 −1.105 −1.09 −1.08 −0.935 −0.92

i 36 37 38 39 40 41 42 43 44

Table 6. The information of the first five non-dominated solutions

(− f 1, f 2) x

6th (−6.84, 2.47)

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

7th (−6.68, 2.31)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

9th (−6.45, 2.18)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

10th (−6.33, 2.11)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

3th (−7.32, 3.11)

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1

Let MUi (i ∈ INU ) denote the task set of UAV Ui. According to the meaning of
chromosomes, the task assignment information corresponding to the five non-dominated
solutions in Table 6 is provided in Table 7.
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Table 7. The task assignment schemes of the solutions in Table 6.

UAV Task Set UAV Task Set

6th

U1 MU1 = {T8, T9, T10, T11}
7th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6} U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5, T7} U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T14, T16} U4 MU4 = {T12, T14, T16}

9th

U1 MU1 = {T7, T8, T9, T10}
10th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6} U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5} U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T14, T16} U4 MU4 = {T12, T14}

3th

U1 MU1 = {T7, T8, T9, T10}
U2 MU2 = {T1, T4, T6}
U3 MU3 = {T2, T3, T5, T13}
U4 MU4 = {T12, T18, T19, T20}

6.1.3. Case 3: Total Amount of Ammunition > Total Number of Tasks

In this section, a large-scale task assignment example of 15 UAVs attacking 100 targets
is considered. The ammunition capacity of each UAV is ni = 7 (i ∈ I15), and the upper
limit of each target being attacked is mj = 1 (j ∈ I100). Considering the length of the paper,
the values of parameters VTj , WUi , Pij, and Kij (i ∈ I15, j ∈ I100) are not provided. The values
of these parameters can be downloaded from the website (accessed on 6 November 2022)
https://github.com/gaoxh-github/Values-of-parameters. In Algorithm 1, the values of
the parameters are as follows: N = 100, G = 200, Pc = 0.8, Pm = 0.2. The obtained Pareto-
optimal front is shown in Figure 9. The average time for this scale of experiment is about
60 min.

Figure 9. Pareto-optimal front of case 3.

Algorithm 2 is used to select the solution from the Pareto solution set in Figure 9.
In Algorithm 2, the values of weights α1 and α2 are α1 = α2 = 0.5. The obtained results are
shown in Table 8. It can be seen from Table 8 that the 53rd non-dominated solution should
be selected. The information of the 53rd non-dominated solution is shown in Figure 9
and the task assignment scheme of the 53rd non-dominated solution is shown in Table 9.

To further verify the effectiveness of the proposed task assignment algorithm combined
with the solution selection strategy, in this section we compare the algorithms developed in
this paper with the well-developed Gurobi optimization solver. There are three methods
for solving multi-objective optimization problems in the Gurobi solver, namely, Blend,
Hierarchical, and a combination of these two methods. In this paper, after obtaining
the Pareto front of the task assignment problem using Algorithm 1, the decision-maker
can be assisted in selecting a solution from the set of non-dominated solutions based on
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Algorithm 2, which is constructed based on the weights. Considering the idea behind the
construction of Algorithm 2, we compared Algorithm 1 and Algorithm 2 with the Blend
method in Gurobi in order to better reflect the comparison results. The comparison process
is as follows. First, given nine different sets of weights, the solution of the example provided
in this section is solved for each set of weights using Blend in Gurobi. Second, the Pareto
front of the example is solved using Algorithm 1, then the solution is selected from the
Pareto front under each set of weights using Algorithm 2. Finally, the solutions obtained by
the two methods are compared for each case of weights. Table 10 shows the results of the
comparison between Gurobi and the algorithms in this paper under nine sets of weights.
As can be seen in Table 10, for each set of weights, the solutions developed this paper and
those obtained by Gurobi are not dominated by each other, i.e., both are non-dominated
solutions of the problem. Although it cannot be proven that the algorithms in this paper are
better than the Gurobi solver, it can be seen that the proposed algorithms are not inferior to
Gurobi in terms of solution quality.

Table 8. The order of selecting non-dominated solutions.

Si −8.75 −8.56 −8.555 −8.55 −8.54 −8.525 −8.515 −8.51 −8.46 −8.44 −8.375 −8.355

i 53 64 54 58 55 57 62 56 59 61 60 51

Si −8.355 −8.35 −8.275 −8.165 −8.14 −8.12 −8.095 −8.03 −7.995 −7.935 −7.92 −7.91

i 65 49 63 48 66 52 68 50 67 46 73 70

Si −7.88 −7.87 −7.865 −7.83 −7.78 −7.745 −7.745 −7.715 −7.715 −7.665 −7.655 −7.62

i 43 69 72 71 47 74 75 44 45 76 42 38

Si −7.61 −7.55 −7.485 −7.46 −7.405 −7.375 −7.325 −7.315 −7.155 −7.13 −7.13 −7.12

i 39 37 40 77 41 80 78 79 30 26 35 33

Si −7.045 −7.04 −7.025 −6.995 −6.975 −6.95 −6.915 −6.81 −6.805 −6.775 −6.605 −6.56

i 31 81 32 36 29 27 34 83 82 28 84 85

Si −6.525 −6.51 −6.42 −6.34 −6.335 −6.28 −6.19 −6.19 −6.165 −6.125 −6.085 −5.995

i 25 86 87 24 20 23 22 88 89 21 19 91

Si −5.965 −5.85 −5.815 −5.675 −5.605 −5.58 −5.57 −5.53 −5.52 −5.48 −5.06 −5.02

i 90 18 92 15 14 17 16 93 94 13 10 11

Si −4.965 −4.92 −4.825 −4.49 −4.4 −4.285 −4.2 −3.935 −3.915 −3.57 −3.465

i 12 9 8 7 6 4 3 2 5 1 0

Table 9. Task assignment of the 53rd non-dominated solution in Figure 9.

UAV Task Set UAV Task Set

U1 MU1 = {T8, T27, T29, T41, T48, T96, T98} U2 MU2 = {T19, T44, T64, T65, T79, T86}
U3 MU3 = {T22, T24, T62, T80, T89, T91} U4 MU4 = {T16, T33, T43, T71}
U5 MU5 = {T34} U6 MU6 = {T3, T68}
U7 MU7 = {T10, T23, T78, T83, T85} U8 MU8 = {T21, T45}
U9 MU9 = {T5, T11, T32, T36, T54, T57, T75} U10 MU10 = {T7, T66}
U11 MU11 = {T73} U12 MU12 = {T13, T38, T74, T76, T77, T93}
U13 MU13 = {T6, T9} U14 MU14 = {T99}
U15 MU15 = {T28, T52, T55, T84, T88}
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Table 10. Comparison results of the proposed algorithms and the multi-objective method in Gurobi.

Weight (α1, α2) (0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.4, 0.6) (0.5, 0.5)

Gurobi
(− f1, f2)

(−8.61, 0.02) (−8.61, 0.05) (−19.26, 3.22) (−19.26, 3.22) (−19.26, 3.22)
Algorithm 1 and 2 (−15.01, 3.38) (−15.01, 3.38) (−20.27, 5.52) (−25.97, 8.85) (−30.06, 12.56)

Weight (α1, α2) (0.6, 0.4) (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

Gurobi
(− f1, f2)

(−19.26, 3.22) (−19.31, 3.32) (−19.38, 3.5) (−19.41, 3.68)
Algorithm 1 and 2 (−40.73, 26.47) (−50.94, 44.01) (−50.94, 44.01) (−50.94, 44.01)

6.2. Test of the CNP-Based Task Re-Assignment Algorithm
6.2.1. Case 1: A Small-Scale Scenario Involving the Task Re-Assignment Problem

In order to introduce the specific steps of Algorithm 3 in detail, the process of task re-
assignment is explained based on the sixth non-dominated solution selected in Section 6.1.2.
Suppose that four new targets Ti (i ∈ {21, 22, 23, 24}) are found on the battlefield. The prob-
ability of UAVs successfully attacking these targets, the probability of UAVs being de-
stroyed, and the values of these new targets are shown in Table 11. In Algorithm 3,
the value of the parameter Gic is 10 and α1 = α2 = 0.5.

Table 11. Probabilities of UAVs and new targets being destroyed and the value of new targets.

T21 T22 T23 T24 T21 T22 T23 T24

U1
P1j 0.3 0.22 0.44 0.17 U2

P1j 0.21 0.29 0.41 0.15
K1j 0.58 0.86 0.45 0.82 K1j 0.51 0.95 0.55 0.92

U3
P1j 0.34 0.2 0.21 0.32 U4

P1j 0.41 0.33 0.46 0.23
K1j 0.69 0.86 0.54 0.82 K1j 0.64 0.94 0.62 0.95

Target value 0.8 0.6 0.75 0.65

Targets Ti (i ∈ {21, 22, 23, 24}) are assigned using Algorithm 3; the bidding process
is shown in Table 12. The results of task re-assignment are shown in Figure 10, where
Figure 10a shows the results for the initial assignment and Figure 10b the results for task re-
assignment in emergencies. From Figure 10 and Table 12, the following can be determined.
The winning agents of T21 and T22 are U4 and U2, respectively, and the contracts of U4 and
U2 are all sales contracts. The winning agents of T23 and T24 are U3 and U2, respectively,
and the contracts of U3 and U2 are all interchange contracts. In the contract of U3 and U2,
the replaced targets are T2 and T22, respectively, while in the bidding processes of T2 and
T22, no UAV bids for T2 or T22.

Table 12. The bidding process and results.

T21 T22 Winning contract

U1 - - -
U2 < 2, 21, 0, 0.6385 > < 2, 22, 0, 0.6755 > < 2, 22, 0, 0.6755 >
U3 < 3, 21, 2, 0.0235 > < 3, 22, 2, 0.0685 > -
U4 < 4, 21, 0, 0.6395 > - < 4, 21, 0, 0.6395 >

T23 T24 Winning contract

T2 T22

U1 - - < 1, 24, 11, 0.001 > - -
U2 - - < 2, 24, 22, 0.0455 > - < 2, 24, 22, 0.0455 >
U3 < 3, 23, 2, 0.0085 > - - - < 3, 23, 2, 0.0085 >
U4 - - - -
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(a) The result of initial task assignment (b) The result of task re-assignment

Figure 10. Results of initial task assignment and task re-assignment in emergencies.

6.2.2. Case 2: A Large-Scale Scenario involving the Task Re-Assignment Problem

The primary advantage of the CNP-based method is that it can shorten the time
requried for task assignment. The effectiveness of this method can be fully reflected in
large-scale calculation examples. In a large-scale problem, to assign all the current tasks
again takes a lot of time. However, if only new tasks are assigned using the CNP-based
method, a large amount of time can be saved. In this section, the large-scale calculation
example in Section 6.1.3 is used to discuss the effectiveness of the task re-assignment
method in emergencies.

Suppose that ten new targets are found. The values of the parameters VTj , Pij, Kij

(i ∈ I15, j ∈ {101, 102, · · · , 110}) of the new targets can be downloaded from the website
(accessed on 6 November 2022) https://github.com/gaoxh-github/Values-of-parameters.
In Algorithm 3, the value of the parameter Gic is 50. The results of the assignment of ten
new targets based on the original assignment results are shown in Table 13. It can be seen
from Table 13 that the task sets of UAVs U4, U6, U11, and U14 have changed. The task
assignment results obtained using Algorithms 1 and 2 to assign all 110 targets are shown
in Table 14. Through calculation, the values of S1 corresponding to the task assignment
schemes in Tables 13 and 14 are −8.91 and −9.42, respectively. The performance of the
assignment scheme obtained using Algorithms 1 and 2 to assign all tasks is better than the
performance of the assignment scheme obtained using Algorithm 3 to assign new tasks.
However, the calculation time of Algorithm 3 is lower than that of Algorithm 1 combined
with Algorithm 2. Figure 11 shows the time of ten task re-assignment experiments under
these two assignment methods. It can be seen from Figure 11 that Algorithm 3 requires less
time to solve the problem of task re-assignment in emergencies than Algorithm 1 combined
with Algorithm 2. Therefore, in emergency situations, Algorithm 3 can perform real-time
task re-assignment by slightly sacrificing the ability to seek global optimization.

Table 13. Results of task re-assignment using Algorithm 3.

UAV Task Set UAV Task Set

U1 MU1 = {T8, T27, T29, T41, T48, T96, T98} U2 MU2 = {T19, T44, T64, T65, T79, T86}
U3 MU3 = {T22, T24, T62, T80, T89, T91} U4 MU4 = {T16, T33, T43, T71, T103, T105, T106}
U5 MU5 = {T34} U6 MU6 = {T3, T68, T110}
U7 MU7 = {T10, T23, T78, T83, T85} U8 MU8 = {T21, T45}
U9 MU9 = {T5, T11, T32, T36, T54, T57, T75} U10 MU10 = {T7, T66}
U11 MU11 = {T73, T107, T109} U12 MU12 = {T13, T38, T74, T76, T77, T93}
U13 MU13 = {T6, T9} U14 MU14 = {T99, T101, T102, T104, T108}
U15 MU15 = {T28, T52, T55, T84, T88}
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Table 14. Results of task re-assignment using Algorithm 1 and Algorithm 2.

UAV Task Set UAV Task Set

U1 MU1 = {T3, T27, T106} U2 MU2 = {T108}
U3 MU3 = {T14, T38, T39, T79, T80, T94} U4 MU4 = {T44, T57, T77, T84}
U5 MU5 = {T8} U6 MU6 = {T22}
U7 MU7 = {T5, T9, T17, T34, T68, T74, T75} U8 MU8 = {T86}
U9 MU9 = {T11, T48, T65, T73, T98} U10 MU10 = {T40, T52, T69}
U11 MU11 = {T55, T66, T87} U12 MU12 = {T6, T21, T32, T76, T100, T101, T103}
U13 MU13 = {T24, T89} U14 MU14 = {T83}
U15 MU15 = {T1, T10, T33, T45, T78, T93, T99}

Figure 11. CPU runtime required for the task re-assignment process. (a) Algorithm 1 combined with
Algorithm 2. (b) Algorithm 3.

6.2.3. Case 3: Attempting to Solve the Task Assignment Problem Directly Using the
CNP-Based Method

Considering that Algorithm 3 can quickly solve the task re-assignment problem, it
may be possible to use this algorithm directly to solve the task assignment problem. An
analysis of this problem is provided in this section. In the task assignment problem before
the battle, the main goal of assignment is to find an assignment plan that achieves better
performance. Taking the 15 UAVs attacking 100 targets in Section 6.1.3 as an example. Let
α1 = α2 = 0.5, the calculation time of Algorithm 3 is about 1 second. The task assignment
plan obtained using the CNP-based algorithm is shown in Table 15. The values of S1
corresponding to the task assignment schemes in Tables 9 and 15 are −8.75 and −5.189,
respectively. Obviously, the calculation result of the improved multi-objective genetic
algorithm combined with selection strategy is much better than the calculation result of
the CNP-based method. For the task assignment problem, the CNP-based method is much
faster than the improved multi-objective genetic algorithm combined with selection strategy.
However, the result obtained by the improved multi-objective genetic algorithm combined
with selection strategy is much better than the result obtained by the CNP-based algorithm.
Therefore, according to the above analysis, Algorithms 1 and 2 should be used in the task
assignment phase with high requirements for the performance of the task assignment
scheme, and Algorithm 3 should be used in the task re-assignment phase in emergencies
with high requirements related to assignment time.
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Table 15. The result of Case 3 in Section 6.1.3 based on the CNP-based method.

UAV Task Set UAV Task Set

U1 MU1 = {T33, T40, T48, T52, T55, T64, T65} U2 MU2 = {T72, T73, T75, T76, T77, T78, T79}
U3 MU3 = {T99, T100} U4 MU4 = {T5, T9, T10, T14, T16, T21, T22}
U5 MU5 = {T36, T44, T46, T53, T54, T60, T61} U6 MU6 = {T1, T6, T18, T24, T26, T29, T31}
U7 MU7 = {T74, T80, T82, T84, T85, T88, T96} U8 MU8 = {T2, T42, T49, T50, T58, T59, T69}
U9 MU9 = {T43, T51, T57, T62, T66, T68, T70} U10 MU10 = {T15, T17, T19, T20, T25, T30, T32}
U11 MU11 = {T23, T27, T28, T34, T35, T38, T39} U12 MU12 = {T81, T86, T87, T90, T91, T97, T98}
U13 MU13 = {T37, T41, T45, T47, T56, T63, T67} U14 MU14 = {T3, T4, T7, T8, T11, T12, T13}
U15 MU15 = {T71, T83, T89, T92, T93, T94, T95}

7. Conclusions

In this paper, we have provided a unified multi-objective optimization framework for
the cooperative task assignment and re-assignment of multiple UAVs. First, we propose
a multi-objective optimization problem in which the minimization of the cost and the
maximization of the benefits are regarded as the objectives. To solve the problem, a multi-
objective genetic algorithm suitable for UAV cooperative task assignment is proposed
and the encoding format and genetic operators in the proposed algorithm are specially
designed. Then, we provide a selection strategy to facilitate the choice of an operation
plan from the Pareto solution set by the decision-maker. Finally, taking into account the
possible emergencies in the complex combat environment, the task re-assignment problem
in emergencies before the battle is studied and a task re-assignment algorithm based on
a contract network protocol is proposed. Simulation examples are used to verify the
effectiveness of the proposed algorithms.

When the battlefield environment is more complex, a single target may contain multi-
ple different tasks. For multiple types of tasks, heterogeneous UAVs have higher efficiency
in performing their tasks compared to homogeneous UAVs. At the same time, there may be
multiple obstacles in the environment that affect UAV flight. In addition, it is important to
study the performance of the algorithm. Therefore, in our next work we intend to focus on
the performance of the algorithm and task assignment of heterogeneous UAVs in complex
environments containing obstacles.
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Abstract: The maintenance of carrier-based aircraft is a critical factor restricting the availability of
aircraft fleets and their capacity to sortie and operate. In this study, an aeronautical maintenance
and repair task scheduling problem for carrier-based aircraft fleets in hangar bays is investigated to
improve the maintenance efficiency of aircraft carrier hangar bays. First, the operational process of
scheduling aeronautical maintenance tasks is systematically analyzed. Based on maintenance resource
constraints and actual maintenance task requirements, a wave availability index and load balance
index for the maintenance personnel are proposed for optimization. An aeronautical maintenance
task scheduling model is formulated for carrier-based aircraft fleets. Second, model abstraction
is performed to simulate a multi-skill resource-constrained project scheduling problem, and an
improved teaching-learning-based optimization algorithm is proposed. The algorithm utilizes a serial
scheduling generation scheme based on resource constraint advancement. Finally, the feasibility and
effectiveness of the modeling and algorithm are verified by using simulation cases and algorithm
comparisons. The improved teaching-learning-based optimization algorithm exhibits improved
solution stability and optimization performance. This method provides theoretical support for
deterministic aeronautical maintenance scheduling planning and reduces the burden associated with
manual scheduling and planning.

Keywords: carrier-based aircraft; maintenance scheduling; resource-constrained; teaching-learning-
based optimization; scheduling optimization

MSC: 90-10; 90B25

1. Introduction

As the core combat unit of an aircraft carrier formation, carrier-based aircraft play
an essential role in air control, air-to-submarine defense, electronic countermeasures, and
strikes against ships. Aeronautical maintenance is necessary and indispensable in military
operations to restore the fleet to excellent technical conditions and provide flight safety
guarantees for various combat and training missions [1]. The efficiency of aeronautical
maintenance significantly affects the availability and sustained combat capabilities of a
fleet. As the scale of combat or training increases, the impact of such constraints becomes
more prominent. A hangar bay is required to execute an efficient scheduling scheme for
maintenance tasks to shorten the time for maintaining the fleet. Compared with land-based
maintenance workshops, hangar bays have the following characteristics: (i) a smaller
workspace and complex environment; (ii) complicated processes for fleet-aeronautical
maintenance tasks; (iii) the need for a high degree of coordination among maintenance
personnel; (iv) limited resources for maintenance personnel, equipment, and workshops;
and (v) strict requirements for task timelines. These characteristics make maintenance tasks
challenging to execute. In this context, meeting reliability and timeliness requirements using
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a manual scheduling scheme based on experience is difficult. Based on the environmental
characteristics of the hangar bay and the actual needs of combat and training missions,
a scientific time-series scheduling scheme and resource allocation approach for limited
maintenance personnel, equipment, and workshops can shorten the duration of operations
and enable the fleet to quickly return to a usable and combat-ready state. This is a critical
and urgent issue that needs to be addressed to maintain the availability of the fleet. It is
also a core consideration restricting the overall effectiveness of maritime operations, an
essential aspect of future military efforts. This is vital to the evolution of future warfare.

For several years, the process scheduling of carrier-based aircraft has relied heavily
on manual empirical approaches for formulating plans. The U.S. Navy has evolved to
use an aviation data management and control system [2], known as the “electronic Ouija
board”, to simulate the locations and statuses of carrier-based aircraft and associated main-
tenance personnel. Compared with the old Ouija board, this system incorporates multiple
interaction modes, and the operator interacts with the system by pointing at the aircraft
and gesturing to make decisions. However, a considerable amount of the corresponding
work [3] relies on manual completion because a mechanism that can generate autonomous
and intelligent scheduling solutions is lacking. Ryan et al. [4] developed a decision system
for carrier deck operations based on the concept of human-computer interaction and de-
signed a set of experiments for comparing automatic planning algorithms with manual
empirical decisions [5]; this enabled the development of automatic scenario planning and
rapid decision-making capabilities for carrier-based aircraft scheduling. However, cur-
rent research on maintenance scheduling remains limited. A lack of transparency within
naval fleet aviation maintenance, complex constraints, special research areas, and the
confidentiality of information or data [6] cause challenges to the development of this field.

By contrast, research on civil aeronautical maintenance and management is more
established and centered on aircraft maintenance planning (AMP) problems [7]. In the
context of optimization problems, AMP is a complex decision problem [8] that involves
resource allocation to maintenance tasks but may also involve distributed maintenance
area selection. For maintenance tasks in a certain area, the scheduling allocation problem
involves assigning maintenance operations to the maintenance equipment/workshops
performing the task, assigning maintenance personnel to the tasks of the corresponding
operation, and determining the start and end times of the operation [9]. The shortcomings
arise from the limitations in maintenance resources or the number of tasks that can be
performed simultaneously. The focus of maintenance assurance tasks in naval aircraft fleet
aviation differs from that in civil aviation in the following ways:

i. Slack of distributed constraints. Commercial airlines must manage a complex network
of routes and the complex coupling between distributed workshops and routes,
whereas the majority of military aeronautical maintenance tasks are concentrated in
ship-based hanging bays on large sea platforms;

ii. Differences in the maintenance cycles, civil aeronautical maintenance optimization
models, and methods applied to solve problems in fleet decision optimization. A com-
mercial fleet is highly stable and has longer maintenance cycle intervals than a military
naval aircraft fleet. The carrier-based aircraft fleet aeronautical maintenance tasks
investigated in this study involve military tasks with urgent task requirements [10];

iii. Differences in maintenance goals. The literature on civil aeronautical maintenance
mainly focuses on profitability, and the optimizations mainly consider economic
benefits [11], such as balancing the maintenance cost of the fleet with the amount of
hangar resources [12] or the labor costs of maintenance personnel [13]. By contrast,
military aviation maintenance tasks are optimized to avoid delaying military response
and to ensure appropriate conduct in both combat and training tasks. In other words,
the goal is to positively impact operational effectiveness and subsequent warfare.

These differences make the direct application of civil aviation maintenance mission
scheduling models to the maritime military domain difficult. Moreover, because of the
characteristics of a cluster wave sortie in fleet combat and training missions, the downtime
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caused by preventive maintenance and failure repairs within a specified flight interval
can significantly impact a wave sortie mission [14], thus requiring the redesign of models
and optimization requirements applicable to fleet aviation maintenance assurances. The
following attempts have been made in the military domain to address these issues:

i. Mission maintenance aspects: Han et al. [15] simulated mission maintenance for
deck crews, with the number of aircraft ranging from five to nine. However, they
considered only a single maintenance mode and not multimode/hybrid situations,
such as preventative maintenance and failure repairs, and realistic constraints, such as
maintenance coverage, parallel maintenance capacity, and maintenance workstation
space. Thus, the simulation differs substantially from an actual task;

ii. Optimization/scheduling of fleet maintenance tasks: Most studies on optimizing
fleet maintenance tasks have focused on minimizing the maintenance completion
time [16]. However, Raju et al. [17] defined a military aircraft availability index for
fleet wave sortie availability; the index comprised the ratio of the number of aircraft
in mission-capable states to the total number of aircraft in the fleet at a given time
point. The military maintenance and operational characteristics of naval aircraft were
used for closer integration by the index;

iii. Optimization/Scheduling of resources: The main considerations in terms of resources
have involved personnel and personnel scheduling strategies [18], resource constraints
for maintenance personnel [19], and maintenance personnel time balancing [20]. No
studies have been conducted to integrate limited maintenance resources, such as
maintenance equipment, workshops, and space, in the models.

Moreover, differences exist in the selection of optimization models in previous stud-
ies, in which maintenance scheduling planning was typically treated as a mixed integer
linear program (MILP) [21]. The scheduling problem in naval aircraft fleet maintenance
involves the coordination of related personnel, equipment, and workshops; in addition,
it incorporates complex and highly constrained operational processes and resources and
a long makespan. This is the core of the challenge in scheduling the entire process of
aircraft carriers and amphibious ships. It is also a typical resource-constrained project
scheduling problem (RCPSP) [20]. The RCPSP differs from the MILP in that it emphasizes
resource constraints [19]. The RCPSP can be studied to combine the classical RCPSP with
the maintenance scheduling task, particularly for the scheduling of resources, such as
multi-skill personnel or multifunctional equipment. Based on this feature, the maintenance
scheduling problem has been classified as a multi-skill resource-constrained project schedul-
ing problem (MS-RCPSP) to better approximate the actual situation [22]. The MS-RCPSP
rationalizes scheduling in terms of time and resources to optimize the objectives while
optimizing the use of skills and resources. Because the RCPSP has been proven to be
an NP-hard problem, exact algorithms, such as the branch-and-bound method [19] and
linear programming [23], treat the maintenance state or the working state of the object as
the decision variable, and the value of the variable is usually 0 or 1. These approaches
can precisely and efficiently find the optimal solution for a small-scale RCPSP within a
reasonable time frame [24,25]. However, most mathematical models are oversimplified,
less scalable, and still have limitations in solving large-scale problems. In addition, the
solutions for integer decision variables and linear constraints rely heavily on optimization
solvers, such as CPLEX [26]. However, as the problem scale increases, the complexity
of the corresponding solution space increases significantly. Hence, an exact algorithm
cannot complete the solution within an acceptable time frame [27]. Studies have shown
that the current best exact methods can solve instances with up to only 60 activities and
low resource constraints. As real projects often exceed this size and usually require fast
scheduling solutions, exact algorithms are not suitable [28]. Common optimization meth-
ods, such as sequential games [29] and multi-agent approaches [18], involve the same
issue. Recent developments to improve the solutions for large-scale MS-RCPSPs have been
based on classical mathematical techniques. Peschiera [30] proposed a new approach based
on a new mixed integer program, highlighting a good trade-off between optimality and
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infeasibility degradation in the performance search process. Another approach is the use
of metaheuristic algorithms. Metaheuristic algorithms have been widely used to quickly
obtain approximate optimal solutions for project scheduling, as they achieve the best trade-
offs between accuracy, computation time, ease of implementation, and flexibility [31]. The
literature is more abundant in this regard. Teaching-learning-based optimization (TLBO)
is a population-based algorithm that is similar to the genetic algorithm, particle swarm
optimization (PSO), and differential evolution (DE) algorithms [32]. However, TLBO differs
from other algorithms in that it does not require algorithm-specific parameter settings.
This avoids different optimization effects owing to different parameter settings. The algo-
rithm has been successfully applied to problems such as flow shop scheduling [33], job
shop scheduling [34], steelmaking-continuous casting scheduling [35], and RCPSP [36,37],
showing good optimization performance and problem adaptability.

Overall, the current research on naval aeronautical maintenance and repair tasks is limited
owing to the unique characteristics of the field, such as its complexity and confidentiality.

Above all, the unique characteristics of the naval aeronautical maintenance and repair
tasks, such as complexity and confidentiality, make current research on it quite limited. In
contrast, the research on civil aviation maintenance and management is more established.
However, because the maintenance and repair tasks in naval aeronautics differ from those
in civil aviation, the models and optimization objectives need to be redesigned. Some
research attempts have been made in the field of military maintenance, but some shortcom-
ings still remain. Moreover, various characteristics of the scheduling problem in naval fleet
maintenance are consistent with those of the RCPSP. Therefore, to solve the aeronautical
maintenance and repair task scheduling problem (AMRSP), we propose a mathematical for-
mulation model based on the RCPSP using the currently popular metaheuristic algorithm.

The contributions of this study are as follows. First, a comprehensive mathematical
model is proposed for the AMRSP of a carrier-based aircraft fleet for the requirements of
carrier-based aircraft wave sorties. This model considers constraints regarding person-
nel, equipment, workshop, workspace, and operational processes, allowing the model to
approximate situations in the military aviation maintenance field. Second, an improved
teaching-learning-based optimization algorithm with a serial scheduling generation scheme
(ITLBO-S) is proposed for solving the model. The algorithm includes a new assistant teach-
ing phase and serial scheduling generation scheme (SSGS) based on resource constraint
advancement. Third, simulation cases for method comparisons are used to verify the
feasibility and effectiveness of the model and algorithm for large-scale tasks and highly
resource-constrained conditions, thereby providing a scheduling scheme for the mainte-
nance process, personnel, and equipment/workshop.

The remainder of this paper is outlined as follows. Section 2 describes the AMRSP.
Section 3 presents the mathematical model of the AMRSP. Section 4 describes the process
and improvement measures of the ITLBO-S. Section 5 presents a case analysis and details of
the simulations. Finally, Section 6 provides conclusions and suggestions for future studies.
The research content and framework of this study are shown in Figure 1.
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Figure 1. Research content and framework.

2. Problem Statement

The most common military aeronautical maintenance tasks include preventive main-
tenance, failure repair, and overhaul. Overhaul is the detailed inspection of airborne
equipment and accessories of carrier-based aircraft. Generally, this task must be transferred
to a land-based repair workshop for standard land-level maintenance. The ship-based
hangar bay is responsible for carrier-based aircraft maintenance and repair (MR) tasks.
These two types of tasks are the main focus of this study and are collectively called MR
tasks. Carrier-based aircraft must be tested for failure before and after a mission. If losses
are detected, the aircraft must be recovered to the hanging bay and queued for repair after
entering the parking spots. After a repair, failures are fixed within certain limits, and the
structural shape and performance are restored. In addition to unplanned repair tasks, both
scheduled and preventive maintenance must be completed. Maintenance activities are
typically conducted after an aircraft has been operational for a certain number of flight
hours. Carrier-based aircraft maintenance activities are also performed after an aircraft
has been operational for a certain number of flight hours [38]. Periodic inspections are
usually conducted after 25, 50, and 100 flight hours, seven days, three months, and six
months, respectively. The hangar is subject to extensive MR tasks to maintain high fleet
availability. Figure 2 shows the maintenance resources and environment of the Kuznetsov
aircraft carrier hangar bay. The involved constraints are described in more detail below.

Figure 2. Maintenance resources and environment of the Kuznetsov aircraft carrier hangar bay.

2.1. Maintenance Process

The MR task operations of carrier-based aircraft have a precedence-based logical
relations constraint. For the repair tasks of carrier-based aircraft, the sequential order of op-
erations is as follows: failure location, failure repair, and re-inspection. For preventive main-
tenance tasks, the operations are in networked precedence relations, and any immediately
preceding operation is not unique. In the case of the RCPSP, the maintenance task of a single
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aircraft can be regarded as a project, and the precedence constraints of the maintenance oper-
ations can be described by the activity-on-node (AoN) network node, where an operation is
represented by a node, and the precedence constraints between activities are denoted by the
arcs. I represents a set of carrier-based aircraft, I = {1, 2, · · · , i, · · · , |I|}. Ji represents the
set of all maintenance operations of the ith carrier-based aircraft, Ji = {1, 2, · · · , j, · · · , |Ji|},
and J represents the set of all maintenance operations of the fleet, J = {(i, j)|i ∈ I, j ∈ Ji }.
A maintenance operation starts after its tethering completion time Exi in parking spot
pi. An AoN diagram for preventive maintenance operations is shown in Figure 3. Oij
represents the jth maintenance operation of the ith aircraft in the fleet to be maintained.
OS and OE refer to the virtual start and end of the virtual operation, respectively; these
do not consume any resources, have zero operation durations, and serve to integrate all
maintenance operations. OS has no immediately preceding operations, and OE has no
immediately subsequent operations. The dotted line represents the process and virtual
process connections.

Figure 3. Activity-on-node (AoN) diagram of preventive maintenance operations.

2.2. Maintenance Personnel and Skills

In the AMRSP, the maintenance skills represent the direct operational demands, and
the operations correspond to specific skill categories. As the number of maintenance
personnel is a constraint, it is common to allocate personnel with multiple skills to enhance
the flexibility of task execution. In other words, a set of maintenance personnel is established
as a flexible resource with multiple skills. Each person is equipped to perform cross-
professional maintenance work in a compatible manner. Different maintenance operations
usually require different skills, and a competent professional is identified according to their
maintenance skills to complete the task. Lp indicates the set of maintenance personnel.
Kc indicates the set of skill categories of the maintenance personnel, Kc = {1, 2, · · · , |Kc|}.
Figure 4 shows the matching relationship between maintenance operations, skills, and
personnel. It represents a further refinement of the maintenance skills and personnel
requirements corresponding to the operations.
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Figure 4. Matching relationship between maintenance operations, skills, and personnel.

2.3. Maintenance Equipment, Workshop, and Workspace

The maintenance equipment of hangar bays can be divided into fixed resource stations
and maintenance workshops. Fixed resource stations support the tasks of carrier-based
aircraft at the parking spots within the coverage area. Workshops are distributed around
the hanging bay and provide regular maintenance and off-site repair of aviation compo-
nents. This study focuses on a power supply station among the fixed resource stations, as
represented by the red line in Figure 2. Maintenance workshops are also located around
the hangar bay. They are used to provide scheduled maintenance and off-site repair for
aviation components. These workshops consist of aeronautical machine repair, oil and
fluid inspection, ordnance, and electronic equipment maintenance workshops. Le indicates
a set of maintenance equipment or workshops. Ke indicates the set of skill categories for a
piece of maintenance equipment/workshop, and Ke = {1, 2, · · · , |Ke|}.

Given the aeronautical MR process for carrier-based aircraft, owing to space con-
straints, some operations, such as cockpit operations, can accommodate only a certain
number of personnel for parallel operations. Ks indicates the set of skill categories for the
maintenance workspace, and Ks = {1, 2, · · · , |Ks|}.

3. Mathematical Model for Aeronautical Maintenance and Repair Task Scheduling
Problem (AMRSP)

3.1. Problem Assumptions

The AMRSP mathematical modeling includes the following simplifications.

i. The MR tasks are known with certainty and do not consider the interference of
dynamic factors.

ii. The MR process cannot be preempted or interrupted once started.
iii. The maintenance skills are adapted to each aircraft’s MR task mode.
iv. The transit time in the hangar bay is ignored.
v. An adequate reserve of fixed-resource station resources is available.

3.2. Constraints

The related notations and descriptions of the AMRSP mathematical modeling are
formulated in Table 1.
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Table 1. Related notations and description of the AMRSP mathematical model.

Notations Descriptions

I The set of carrier-based aircraft, I = {1, 2, · · · , i, · · · , |I|}.
pi The parking spot of the ith carrier-based aircraft.
Ji The set of maintenance operations of the ith carrier-based aircraft, Ji = {1, 2, · · · , j, · · · , |Ji|}.
J The set of all maintenance operations of the fleet, J = {(i, j)|i ∈ I, j ∈ Ji }.

At The set of all maintenance operations of the fleet in the execution state at time point t.
Ait The set of maintenance operations of the ith carrier-based aircraft in the execution state at time point t.
Oij The jth maintenance operation of the ith carrier-based aircraft.
Psij The set of immediately preceding operations of Oij.
Exi The tethering completion time of the ith carrier-based aircraft.
dij The operation duration of Oij.

BM A sufficiently large real number.
Lp The set of maintenance personnel.
Le The set of maintenance equipment/workshops.
Kc The set of skill categories of the maintenance personnel, Kc = {1, 2, · · · , |Kc|}.
Ke The set of skill categories for maintenance equipment/workshops, Ke = {1, 2, · · · , |Ke|}.
Ks The set of skill categories at the maintenance workspace, Ks = {1, 2, · · · , |Ks|}.

rcijk
An indicator variable valued 0 or 1, where 1 indicates that Oij has a demand for the kth skill category, whereas
0 indicates otherwise.

reijk
An indicator variable valued 0 or 1, where 1 indicates that Oij has a demand for the kth maintenance
equipment/workshop category, whereas 0 indicates otherwise.

rsijk
An indicator variable valued 0 or 1, where 1 indicates that Oij has a demand for the kth maintenance
workspace, whereas 0 indicates otherwise.

λ
p
kl

An indicator variable valued 0 or 1, where 1 indicates that the lth of the kth maintenance equipment/workshop
category has a reachability relation with p, whereas 0 indicates otherwise.

nsik The number of personnel who can work in parallel with the ith carrier-based aircraft kth workspace category.
Nekl The number of operations that can be accommodated in parallel in the lth workshop of the kth category.

Smij A decision variable indicating the start time of Oij.
Emij A decision variable indicating the end time of Oij.

Xpijkl
A decision variable valued 0 or 1, where 1 indicates that Oij is assigned to the lth maintenance personnel using
the kth skill category, whereas 0 indicates otherwise.

Xeijkl
A decision variable valued 0 or 1, where 1 indicates that Oij is assigned to the lth of the kth maintenance
equipment/workshop category, whereas 0 indicates otherwise.

Ypijeg
A decision variable valued 0 or 1, where 1 indicates that Oij is assigned to the same maintenance personnel as
Oeg, and Oij is prioritized over Oeg, whereas 0 indicates otherwise.

Yeijeg
A decision variable valued 0 or 1, where 1 indicates that Oij is assigned to the same maintenance equipment/
workshop as Oeg, and Oij is prioritized over Oeg, whereas 0 indicates otherwise.

Constraints:
The first constraint concerns the starting time sequence for an MR task operation

after tethering in the parking spot is completed. Smi1 is the maintenance start time of the
first maintenance operation of aircraft i(i ∈ I). Aircraft i must start the first maintenance
operation after the tethering completion time Exi. This constraint is expressed as follows:

Smi1 ≥ Exi, ∀i ∈ I (1)

The MR task process for each aircraft must be performed sequentially by following the
established workflow and precedence relations. Emih denotes the end time of maintenance
operation Oih, where (i, h) ∈ Psij; Psij denotes the set of processes immediately preceding
maintenance operation Oij. This constraint is expressed as follows:

Smij ≥ Emih, ∀(i, h) ∈ Psij, ∀(i, j) ∈ J (2)

When different operations require the same resources and because the number of
maintenance personnel and maintenance equipment/workshops are limited, it is necessary
to determine the order of maintenance according to priority. BM denotes a sufficiently
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large positive number; dih denotes the operation duration of a maintenance operation
Oij. Ypijeg = 1 indicates that the maintenance operation Oij is assigned to the same
maintenance personnel as Oeg and that Oij takes priority over Oeg. Yeijeg = 1 indicates that
the maintenance operation Oij is assigned to the same maintenance equipment/workshop
as Oeg and that Oij takes priority over Oeg. This constraint is expressed as follows:

Smij + dij ≤ Smeg + BM · (1−Ypijeg), ∀(i, j), (e, g) ∈ J (3)

Smij ≤ Smeg + BM · (1−Yeijeg), ∀(i, j), (e, g) ∈ J (4)

Skills are direct demand resources for MR task operations. The number of skills
demanded by any MR task operation should match the number of personnel assigned to
that operation. rcijk = 1 indicates that the maintenance operation Oij has a demand for the
kth category skill. Xpijkl = 1 indicates that the maintenance operation Oij is assigned to the
lth(l ∈ Lp) personnel and that the personnel performs the operation using the kth(k ∈ Kc)
skill category. This constraint is expressed as follows:

∑
l∈Lp

Xpijkl = rcijk, ∀(i, j) ∈ J, ∀k ∈ Kc (5)

The demand for various types of maintenance equipment/workshops should match
the number of resources assigned to that operation. reijk = 1 indicates that Oij has a
demand for the kth maintenance equipment/workshop category (which can accommodate
a certain number of parallel operations). Xeijkl = 1 indicates that Oij is assigned to the
lth of the kth maintenance equipment/workshop category. The constraint is expressed as
follows:

∑
l∈Le

Xeijkl = reijk, ∀(i, j) ∈ J, ∀k ∈ Ke (6)

Each person uses at most one skill for any operation. This constraint is expressed as
follows:

∑
k∈Kc

Xpijkl ≤ 1, ∀(i, j) ∈ J, ∀l ∈ Lp (7)

Constraint (8) represents the coverage of the fixed resource stations. λ
p
kl = 1 indi-

cates that the maintenance equipment/workshop has a reachability relationship with p.
Constraint (8) is expressed as follows:

∑
(i,j)∈J

∑
k∈Ke

∑
l∈Le

Xeijkl ·
(

1− λ
pi
kl

)
= 0, ∀(i, j) ∈ J (8)

Constraint (9) concerns the number of resources in a parallel workspace, and
constraint (10) is used for the maintenance workshop. Ait indicates the set of mainte-
nance operations of the ith carrier-based aircraft in the execution state at time point t. At
indicates the set of all maintenance operations when the fleet is in the execution state at
time point t. rsijk = 1 indicates that Oij has a demand for the kth maintenance workspace.
nsik indicates the number of personnel that can work in parallel with the ith carrier-based
aircraft kth category workspace. Nekl indicates the number of operations that can be accom-
modated in parallel in the lth workshop in the kth category. This constraint is expressed
as follows:

∑
j∈Ait

rsijk ≤ nsik, ∀i ∈ I, ∀k ∈ Ks, ∀t > 0 (9)

∑
j∈At

reijk · Xeijkl ≤ Nekl , ∀i ∈ I, ∀k ∈ Ke, ∀l ∈ Le, ∀t > 0 (10)

217



Mathematics 2022, 10, 3777

Constraint (11) states that Xpijkl , Xeijk′ l′ , Ypijeg, and Yeijeg are Boolean variables.

Xpijkl , Xeijk′ l′ , Ypijeg, Yeijeg ∈ {0, 1},
∀k ∈ Kc, ∀l ∈ Lp, ∀k′ ∈ Ke, ∀l′ ∈ Le, ∀(i, j), (e, g) ∈ J

(11)

3.3. Objective Function

The optimization objectives for fleet wave availability and maintenance personnel load
variance are constructed based on the requirements of aircraft fleet combat and training
missions. The optimization objectives for the maintenance of existing equipment or support
mission studies are usually set to minimize the maximum makespan (minCmax). However,
owing to the operational characteristics of carrier-based aircraft (which usually attack in
clusters), the aircraft sorties are mainly focused on fleet wave sorties with the prerequisite
of maximizing the number of available fleets in the sortie plan. After a command to
launch the fleet is received, if the number of aircraft in good condition is insufficient for the
wave, there will be aircraft with incomplete preventive maintenance or failure repair tasks.
This situation can severely affect operational effectiveness if the available fleet cannot be
replenished in time. In this study, the wave availability index is defined as the weighted
availability of the fleet before each subsequent wave. The increased wave availability
means that MR tasks can provide more intact aircraft for each wave. That is, MR tasks
can meet the numbers for the wave sorties’ requirements. Another consideration is to
minimize the load variance of the maintenance personnel to increase the sustainability of
personnel operations.

(1) Maximizing fleet-wave availability (WA)

maxWA = ∑
w∈W

vw

Nm− ∑
i∈I

pcf(ETi − SWw)

Nm
(12)

Here, W denotes the set of wave sorties, SWw the start time of the waves, vw the weight
for wave availability, and ETi the makespan of the maintenance of carrier-based aircraft i.
Moreover, pcf(·) is an indicator function, where pcf(x) = 1 when x > 0, and pcf(x) = 0
when x ≤ 0. The purpose of the WA function is to maximize the sum of the weighted
availability in the set of waves.

(2) Minimizing the personnel load variance (PLV) results in

minPLV =

∑
l∈Lp

(
TBl − TB

)2

|Lp| (13)

Here, TBl denotes the total number of task hours spent by the l(l ∈ Lp) maintenance
personnel, and TB represents the mean value of the maintenance task hours for all person-
nel. PLV defines the personnel load variance in hours, and the objective is to minimize it.

4. Algorithm for AMRSP

4.1. Encoding and Serial Scheduling Generation Scheme (SSGS)

The encoding strategy is an essential factor affecting the effectiveness and efficiency
of an algorithm search. The primary encoding strategies for solving an RCPSP problem
include the task list, random number, and priority rules. Owing to the precedence relations
between the operations of a task, the encoding forms from the task list and priority rules
may be used to obtain combinations of operations that do not conform to the relations in
the next crossover and mutation; therefore, random number encoding is used. The Gth
generation population PG,PG = [X1,G, X2,G, · · · , Xn,G], n = 1 , 2 , · · · , Np, where Np
denotes the number of individuals in the population and Xn,G denotes the nth individual
code of the Gth generation, can be defined as Xn,G =

[
x11,n,G, x12,n,G, · · · , xij,n,G, · · ·

]
,

∀i ∈ I, j ∈ Ji. Here, xij,n,G denotes the priority number of the jth maintenance operation of
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the ith carrier-based aircraft in the nth individual of the Gth generation. Each aircraft is
sequentially arranged in order of operation and assigned a random priority number in the
interval (0, 1). The smaller the priority number, the higher the priority of the corresponding
operation. Integration and stitching form an individual encoding matrix with ∑i∈I |I| × |Ji|
dimensions for each Xn,G. A schematic representation of the encoding structure is shown in
Figure 5. The discrete encoding matrix avoids illegal generation in subsequent operations.

Figure 5. Schematic diagram of the encoding structure.

The schedule generation scheme (SGS) is at the core of most RCPSP metaheuristic
algorithms. The SGS can generate a feasible scheduling scheme by incrementally extending
the partial schedule from the start of the project. A partial schedule for a project with J
tasks contains only l (l < J) tasks. Depending on the generated method, the SGS can be
classified into task-based and time-based phase variables [39]. The SGS with task-based
phase variables is also called a serial schedule generation scheme (SSGS), whereas that
with time-based phase variables is called a parallel schedule generation scheme (PSGS).
Hartmann [40] pointed out that the search space of the PSGS is a subset of the solution
space, and using the PSGS can find a better solution in a short time, but it may not contain
the optimal solution. Therefore, using an SSGS remains the optimal choice.

Unlike the conventional SSGS, to address the MS-RCPSP, the ITLBO-S is used for
any waiting scheduling maintenance operation Oij. The search phase of the schedule
advancement, which includes constraints on the maintenance personnel, equipment, and
workspace requirements, has an embedded function for matching the skills required for Oij
with suitable personnel. In other words, the allocation of personnel and selection of skills
occur simultaneously during the progressive expansion of the schedule. A set of scheduled
operations Sg is defined, along with a set of schedulable operations Dg. In the scheduling
generation scheme, operation Oij is selected from Dg according to the precedence relations,
and the start time for Oij is equal to the tethering completion time. Dg is determined by the
sequence constraints and precedence relations from the AoN diagram. Next, Oij is selected
from Dg, and resources, such as personnel, equipment, and workshops, are then allocated
to Oij. After the allocation is completed, Oij is added to set Sg. The iteration moves to the
next selection stage and gradually expands the scheduling scheme until all operations are
scheduled. Figure 6 shows the flowchart of the SSGS.

The following heuristic rules are added to the SSGS. First, considering that multi-
skilled personnel are more flexible than regular personnel, priority is given to personnel
with fewer skills to improve the scheduling scheme’s robustness and ensure that the
availability of the skills required for subsequent maintenance processes is maximized.
Second, a tie-breaking priority rule is added; if the same numbers of skills are available,
the personnel with fewer accumulated work hours are assigned to perform the task first
to maintain the load balance. Third, the minimum total processing time remaining in the
covering area rule is used for the allocation of the maintenance equipment. Fourth, in
assigning maintenance workshops, a resource concentration rule is used, which assigns the
tasks to the workshops with the highest number of maintenance operations in execution.
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Figure 6. Flowchart of serial scheduling generation scheme (SSGS).

A decoding process is used to facilitate individual evaluation. For simplicity, this
study utilizes a weighted sum approach [41] to construct the fitness function f . Several
objectives are multiplied, according to their importance, by a set of weight coefficients
α1, α2, . . . , αn, which are then summed as the final objective function, thus simplifying the
multi-objective problem to a single-objective problem. This significantly simplifies the
computational process. The objective functions WA and PLV are combined linearly with
weight coefficients as a single fitness function. Thus, f is formulated as follows:

min f = α1 · (1−WA) + α2 · LBM (14)

In the above, α1 and α2 are the weight coefficients, and the weights can be adjusted
according to the task requirements. According to this method, a set of single-objective
optimization subproblems can be constructed, and the smaller the result, the better the
individual fitness function.

By integrating the above preparations, a solution strategy for the algorithm is proposed,
where the encoding of each individual in the population represents the order priority of
all maintenance operations, and the operation of the SSGS maps this encoding to the
actual operation order. In this process, a judgment that includes all types of resources
(personnel, equipment, space) and the logical relations of the precedence operation order
(AoN diagram) is required. This is because although some operations of a high priority
level should be prioritized, if they do not meet the constraints, they are held back until
the resources meet the conditions and then prioritized if they are still of a high priority.
After applying the SSGS for all individuals, we obtained a population with a variety of
operational orderings that meet the constraints. The quality of these operational sequences
can be good or bad. We need to evaluate and evolve the population such that the quality of
the operational order improves until the set conditions are met; these steps are achieved by
the ITLBO main loop.
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4.2. Improved Teaching-Learning-Based Optimization (ITLBO) Main Loop

Similar to other nature-inspired algorithms, TLBO is a population-based approach that
uses population evolution for globally optimal solutions [31]. It simulates a teacher-student
teaching-learning process in the classroom, and the optimization process consists of a
teaching phase and a learning phase. The teaching phase refers to learning from the teacher,
and the learning phase refers to learning through student interaction. The individual with
the optimal fitness value in the population is the teacher (i.e., the optimal individual in
the population). The other individuals in the population are students. The TLBO uses an
objective function to evaluate an individual’s performance and to determine a solution for
the individual’s optimal global performance. The learning results will increase in “fitness”,
similar to other population-based optimization algorithms.

Traditional TLBOs used in optimization problems have the following disadvantages.
In the teaching phase, all individuals gain knowledge from the teacher based on the
difference between the teacher and the individuals’ overall average position. Therefore, in
the teaching phase, all individuals gather around the teacher, ensuring a quick convergence.
However, as the teacher approaches the local optimal solution, the population inevitably
converges early. In the learning phase, individuals learn from each other to escape the
local optima [42]. However, without the injection of new knowledge, the search space
in the learning phase remains limited, and the diversity of the population can hardly
increase further.

Therefore, the TLBO is still very likely to fall into a local convergence phenomenon
when dealing with complex optimization problems [43]. To solve this problem, this study
proposes the ITLBO-S, which is based on the TLBO, with an assistant teaching phase based
on the optimal fitness-distance ranking ratio. This guides all individuals to learn from the
teachers and assistant teachers according to the differential law. The exploitation and explo-
ration abilities of the TLBO are improved by the differential knowledge between students
and teachers and between students and assistant teachers. A balance between local and
global exploitation is achieved, improving the performance of the algorithm [44]. Mean-
while, to capture the characteristics of the AMRSP, an SSGS based on resource constraint
advancement is added to the algorithm to enable it to solve the MS-RCPSP.

4.2.1. Teaching Phase

In the teaching phase, the individual with the best fitness from the Gth generation
population is selected as the individual teacher Xt,G. According to the instructional guid-
ance mechanism, all individuals (students) Xn,G learn from the Gth generation population
and teacher Xt,G (their encoding numbers will be closer to the teacher’s encoding number).
Each individual produces a new individual Xnew

n,G after the teaching phase, as shown in
Equation (15). {

Xnew
n,G = Xn,G + rn · (Xt,G − TF ·MG)

TF = round(1 + rand(0 , 1))
(15)

Here, MG represents the average encoding matrix for the Gth generation of individuals,
rn denotes a random number between (0 , 1), and TF denotes the learning weight. From
Equation (15), it can be seen that TF takes a value of 1 or 2. The two random parameters
rn and TF perform the teaching phase randomization. Comparing Xn,G with Xnew

n,G in the
one-to-one method for adaptation evaluation, the individual with the better adaptation
is selected to update and replace the original individual. Updating is performed using
Equation (16).

Xn,G =

{
Xn,G, i f f (Xn,G) ≤ f

(
Xnew

n,G

)
Xnew

n,G , otherwise
(16)
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4.2.2. Learning Phase

In the learning phase, new individuals Xnew
n,G are generated among the students in the

Gth generation population through mutual learning according to the learning guidance
mechanism described by Equation (17), as follows:

Xnew
n,G =

{
Xn1,G + rn1 ·

(
Xn1,G − Xn2,G

)
, i f f

(
Xn1,G

)
≤ f
(
Xn2,G

)
Xn1,G + rn1 ·

(
Xn2,G − Xn1,G

)
, otherwise

(17)

In the above, rn1 denotes a random number between (0 , 1), Xn1,G and Xn2,G are two
randomly selected student individuals in the current generation population, and n1 �= n2.
After the learning phase has generated the new individual Xnew

n,G , the same adaptation
assessment is performed for Xn,G and Xnew

n,G . An individual with better adaptation is
selected to update and replace the original individual. The updating method is shown in
Equation (16).

4.2.3. Assistant Teaching Phase

In the teaching phase, because the individual population learns from the teacher,
the algorithm achieves better convergence. However, when the individual teacher is
located near the local optimal solution, it causes all individuals to move closer to the
local optimal solution position, leading to the premature convergence of the algorithm. A
subsequent learning phase in which students learn from each other can be used to prevent
the population from falling into the local optimum. However, this is limited by the inherent
knowledge of students in the population, which leads to unsatisfactory results from the
algorithm exploration in the learning phase and makes it challenging to jump out of the
local optimum.

To solve these problems, an assistant teacher teaching phase is proposed to guide
students to learn from both the teacher and the assistant teacher. The assistant-teaching
phase is based on an optimal fitness-distance ranking ratio method. Subsequently, the
algorithm can balance the local exploitation and global exploration abilities of the solution
space in the assistant-teaching phase.

(1) Fitness-distance ranking ratio

In any Gth generation, a fitness sorting matrix F = [F1 , F2 , . . . , Fn] is defined. F

is obtained using [ f (X1,G) , f (X2,G) , · · · , f (Xn,G)] after sorting the fitness values f (Xn,G)
of the individuals Xn,G from best to worst. Fn corresponds to the index value of [ f (X1,G) ,
f (X2,G) , · · · , f (Xn,G)] after sorting so that the individual Xn,G with the best fitness is

used as the Gth generation teacher; that is, the individual Xn,G corresponding to Fn = 1 is
used as the individual teacher Xt,G.

The Euclidean distance sorting matrix is defined as D = [D1 , D2 , · · · , Dn]. D is
obtained after sorting in ascending order using [E(X1,G) , E(X2,G) , · · · , E(Xn,G)] (Eu-
clidean distance from near to far), where E(Xn,G) is the Euclidean distance between
an individual Xn,G and teacher individual Xt,G. Dn corresponds to the index value of
[E(X1,G) , E(X2,G) , · · · , E(Xn,G)] after sorting. The fitness-distance ranking ratio is de-
fined as FD = [FD1 , FD2 , · · · , FDn], FDn = Fn

Dn
. The sorting ratio FDn of the smallest

fitness distance corresponds to the individual Xn,G as the Gth generation of assistant teacher
individual Xa,G. In other words, the individual Xn,G corresponding to the minor value FDn
in FD is Xa,G. To illustrate the relative positions, fitness levels, and distance distributions of
the teachers and assistant teachers, a two-dimensional population with 20 individuals in the
Gth generation is selected as an example. Figure 7a shows a schematic of the distribution
of the individual positions. Figure 7b shows the fitness levels of the population individuals
and distances between the population individuals and teacher individuals; these can be
used to determine the individuals with the best fitness X4,G as Xt,G. The sorting matrices F

and D can be obtained after sorting the information in Figure 7b, and the fitness-distance
ranking ratio FD can then be calculated. From this, the individual X17,G can be determined
as the assistant teacher’s individual Xa,G.
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Figure 7. Example of fitness-distance ranking ratio. (a) Individual position distribution; (b) Fitness
and distance distribution between teachers and assistant teachers.

(2) Assistant Teacher Teaching

In this phase, based on the difference operators r1,n · (Xt,G −Xn,G) and r2,n · (Xa,G −Xn,G),
the individual Xn,G learns from teachers and assistant teachers to form new individuals.
Equation (18) represents the generation of new individuals, as follows:

Xnew
n,G = Xn,G + r1,n · (Xt,G − Xn,G) + r2,n · (Xa,G − Xn,G) (18)

where r1,n and r2,n are random numbers between (0, 1). When r1,n ≥ r2,n, the position of
the new individual Xnew

n,G leans toward the teacher Xt,G to improve the algorithm’s local
search capability. When r1,l < r2,l , the position of the new individual Xnew

n,G leans toward
the assistant teacher Xa,G to improve the algorithm’s global search capability. Taking the
two-dimensional space as an example, a new individual Xnew

n,G is generated, as shown in
Figure 8.

Figure 8. Schematic diagram of the two-dimensional new individual generation.
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The Gth assistant teaching phase is defined to generate population Pnew
G and Pnew

G =[
Xnew

1,G , Xnew
2,G , · · · , Xnew

n,G

]
. After the assistant teaching phase, the population generation

is G + 1. NP individuals with optimal fitness from
{

PG ∪ Pnew
G
}

are selected as the new
population PG+1. A flowchart for the ITLBO-S is shown in Figure 9.

Figure 9. Flowchart for improved teaching-learning-based optimization algorithm with a serial
scheduling generation scheme (ITLBO-S).

4.3. Complexity Analysis

The complexity of the ITLBO-S is reflected in two aspects. First, it is reflected in
the teaching phase, learning phase, and assistant teaching phase, where each individual
is coded with the dimension ∑i∈I |I| × |Ji|, and the complexity of the teaching phase is
O(Np×∑i∈I |I| × |Ji|). This indicates that Np individuals learn from the teacher. The
complexity of the learning phase is also O(Np×∑i∈I |I| × |Ji|). This indicates that Np
individuals learn from each other. The complexity of the assistant teaching phase is
O(Np×∑i∈I |I| × |Ji|) + O(Np× log2(2Np)), indicating that Np individuals learn simul-
taneously from the teacher and assistant teacher and that Np individuals are selected from
2Np individuals as the next generation of the population.

However, the computational complexity of the ITLBO-S is also reflected in the SSGS
process. According to the literature [39,45], the complexity of an SSGS is O

(
|J|2R

)
, where R

is the number of reproducible resource types. In the AMRSP, three resource states must be
considered when finding feasible resources, and the complexities of finding the spaces for
the maintenance personnel, maintenance equipment/workshops, and maintenance station
space are O

(
|J|2|Lp|

)
, O
(
|J|2|Le|

)
, and O

(
|J|2 × |Ks|

)
, respectively.

5. Simulation Case Analysis

5.1. Maintenance and Repair (MR) Task Case Generation

The simulation case in this study is based on the hangar-bay environment shown in
Figure 2. Multimode mixed situations, such as preventive maintenance and failure repair,
were considered, and 10, 12, and 14 carrier-based aircraft numbered A–N were set for the
MR tasks. The task settings for the fleet MR are shown in Table 2. In the table, maintenance
modes 1–6 correspond to six maintenance modes: mechanical failure, avionics system
failure, special equipment failure, and maintenance after 25, 50, and 100 h flight hours. The
maintenance process of the AoN diagram for preventive maintenance is shown in Figure 10.
The subsequent outgoing wave was set as |W| = 3. The earlier the wave is deployed, the
more critical the impact on the battlefield and the greater its importance. The wave weight
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was set as [v1, v2, v3] = [0.5, 0.3, 0.2]. The wave interval period was 100 min; that is,
the starting times were [SW1, SW2, SW3] = [100, 200, 300] min.

Table 2. MR tasks for fleet.

P. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MR
Tasks

Carrier-based aircraft no.; Ex (min)
MR tasks modes

Case 1 A; 2
2

B; 8
3

C; 0
5

D; 0
4

E; 9
1

F; 16
1

G; 0
6

H; 0
5

I; 3
1

J; 15
2 - - - -

Case 2 A; 2
2

B; 8
3

C; 0
5

D; 0
4

E; 9
1

F; 16
1

G; 0
6

H; 0
5

I; 3
1

J; 15
2

K; 21
5

L; 22
3 - -

Case 3 A; 2
2

B; 8
3

C; 0
5

D; 0
4

E; 9
1

F; 16
1

G; 0
6

H; 0
5

I; 3
1

J; 15
2

K; 21
3

L; 22
4

M; 27
4

N; 29
4

Figure 10. Process AoN diagram for preventive maintenance.

The reachability relation between parking spots (P.) and equipment is shown in Table 3.
In Table 3, Ke1 indicates the type of power supply station. As for the configuration of the
maintenance workshops, owing to the space limitations of the compartment around the
hangar bay, each workshop is equipped with one maintenance workshop covering the
entire hangar bay. Ke2–5 denote the aeronautical machine repair, oil and fluid inspection,
ordnance maintenance, and electronic equipment maintenance workshops, respectively,
and the number of parallel operations are [Ne1, Ne2, Ne3, Ne4, Ne5] = [∞, 3, 2, 1, 4]
for each workshop. The number of resources in this category usable for the parking space is
indicated by [.]. The operation duration, resources, and skills required for each maintenance
operation are shown in Table 4. In Table 4, Kc1–4 denote special equipment, avionics,
ordnance, and machinery specialties, respectively. In addition, the number of personnel
is configured as [5, 6, 4, 10]. Special equipment is set to be compatible with avionics,
ordnance, and machinery. The first four personnel in each profession have corresponding
and compatible skills. Bold numbers indicate that the operation needs two personnel. The
workstation space constraint Ks considers the cockpit space; “1” indicates that the number
of personnel able to work in parallel is one, and “-” indicates that there is no demand for
such resources.

Table 3. Reachability relation between parking spots and equipment.

P. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ke1 [3] [4] [3,5] [5] [9] [10] [9] [10] [6] [1] [3] [7] [2] [8]
Ke2–5 [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
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Table 4. Duration and requirements of maintenance and repair operations for carrier-based aircraft.

MR Task Modes

Operation No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Operation Duration (min)

Mechanical failure 0 0 0 0 24 0 0 0 0 44 0 0 0 0 0 12 0 0 0 0
Avionics system

failure 0 0 0 0 19 0 0 0 0 53 0 0 0 0 0 22 0 0 0 0

Special equipment
failure 0 0 0 0 26 0 0 0 0 47 0 0 0 0 0 17 0 0 0 0

Maintenance after 25
flight hours 0 18 30 8 6 8 10 6 8 15 20 0 16 18 0 3 10 8 6 0

Maintenance after 50
flight hours 0 25 45 8 8 8 12 6 8 30 30 26 26 28 16 8 18 10 10 0

Maintenance after
100 flight hours 0 34 66 10 12 10 15 10 12 48 40 45 33 44 46 16 26 18 14 0

Required
resource type

Kc - 4 4 3 1,2,3,4 2 2 1 1 1,2,4 4 4 2 1 3 1,2,4 2 1 3 -
Ke - - - - 1 - 1 - 1 2,5 3 3 5 5 4 1 1 1 1 -
Ks - - - - 1 - 1 - 1 - - - - - - 1 1 1 1 -

5.2. Simulation Comparison Analysis
5.2.1. Algorithm Comparison

To verify the effectiveness of the proposed ITLBO-S algorithm and its performance in
solving the AMRSP, the TLBO, DE, and PSO were selected for the performance comparison.
The parameters of each algorithm were set as follows. An Np = 30 was selected as the
population size for both the ITLBO-S and the TLBO. In the PSO, the number of particles
was set as N = 30; the learning factors were c1 = 2 and c2 = 2; and the linear decreasing
weight strategy was ω = (ωini −ωend)(Q− q)/Q + ωend, where ω indicates the variable
inertia weight, Q indicates the maximum number of evaluations, q is the current number
of evaluations, ωini is the initial weight, and ωend represents the end-of-iteration weight.
The ωini and ωend were 1.2 and 0.1, respectively. In the DE, the population size was set as
Np = 30, the crossover rate as cr = 0.1, and the mutation probability as F = 0.1. A weight
coefficient of α = 10−6 was used for the variance of the maintenance personnel load in the
above algorithm fitness function f . Because the MR task demand prioritizes the number of
intact aircraft provided for each sortie wave, the weight coefficients were selected as α1 = 1
and α2 = 10−6. In all methods, an evaluation number of Q = 3000 was used to mark the
end of the iteration.

Each algorithm was programmed using MATLAB 2020a and a personal computer
(Windows 7 64-bit operating system, Intel Xeon Gold 5122 CPU @ 3.60 GHz, 32G of
RAM). Each algorithm was run 15 times independently, and the results were recorded.
After the optimization simulation, a statistical comparison between the algorithms of the
optimization functions, WA and PLV, for the three groups of hangar MR task scheduling
cases was conducted, and the results are listed in Table 5. The evaluation indicators were
the optimal solution (Best.), average solution (Avg.), and standard deviation (Std.). In
Table 5, the bold numbers indicate the optimal solutions for the algorithm comparison.
A box plot of the distribution of the solutions for the repeated calculations is shown in
Figure 11. The convergence trend of each algorithm is shown in Figure 12 (the result of one
iteration when the WA achieves the optimal value in Case 1 is considered).
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Table 5. Statistical comparison of algorithmic results.

Cases
Objective
Functions

Evaluating
Indicators

Algorithms

ITLBO-S TLBO DE PSO

Case 1

WA
Best. 0.750 0.720 0.720 0.720
Avg. 0.750 0.709 0.714 0.713
Std. 0 0.010 0.008 0.009

PLV
Best. 52.382 59.380 66.107 65.866
Avg. 53.720 64.663 69.068 69.424
Std. 1.264 3.383 1.999 1.802

Case 2

WA
Best. 0.710 0.690 0.600 0.620
Avg. 0.702 0.648 0.592 0.598
Std. 0.012 0.021 0.019 0.028

PLV
Best. 5.626 16.186 25.946 20.026
Avg. 10.612 33.983 51.695 55.754
Std. 5.113 13.326 21.837 26.416

Case 3

WA
Best. 0.650 0.620 0.600 0.600
Avg. 0.627 0.620 0.582 0.584
Std. 0.015 0 0.031 0.018

PLV
Best. 19.280 24.480 66.582 60.720
Avg. 45.088 54.560 83.964 100.624
Std. 12.503 21.056 16.966 31.059

Figure 11. Box plot of the repeated calculation results.

Figure 12. Change trend of wave availability (WA) and personnel load variance (PLV).

The shapes of this Pareto front are presented in Figure 13 to validate the feasibility
of the solutions’ distribution. The distribution of the solutions shows that the feasible
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solutions are scattered throughout the two-dimensional plane and that the number of
points gathered in the Pareto front is small. Meanwhile, note that for the case set in this
paper, the area of greatest concern is the feasible solution at the bottom right corner of
Figure 13 (the maximum WA and the minimum PLV); therefore, the other Pareto front
points are not of high priority.

Figure 13. Pareto front and feasible solution for ITLBO-S.

First, the results in Table 5 show that based on the quality of the solutions, the ITLBO-S
exhibits the best performance among the four algorithms in the three sets of experiments
comprising three evaluation indicators and two objective functions. Notably, in Case 1, the
ITLBO-S has the best convergence effect, and the indicators for WA converge to 0.750 for
the 15 independent operations. By contrast, the other algorithms do not have sufficient
search depths and are unable to search for a better solution. The box plot in Figure 11
shows the stability of the distribution of the observed results; with regard to the WA and
PLV, the ITLBO-S reaches the highest median, upper quartile, and maximum value for all
three sets of simulations compared to the other three classical metaheuristic algorithms
while showing strong stability. By contrast, the DE and PSO perform poorly in the three
sets of cases, either failing to find the optimal result or resulting in the WA having a more
scattered distribution of solutions, indicating that the DE and PSO are less adaptable in
finding the solution to this problem. In Case 3, the indicator WA for the TLBO converges to
0.620 for the 15 independent operations, whereas the optimal value of the ITLBO-S reaches
0.650. This is the most intuitive and evident indication that the conventional TLBO falls
into a local optimum in the process of solving the problem. Owing to the enhanced global
and local search operations in the assistant teaching phase, the ITLBO-S can explore better
solutions in the local search process. This improves the diversity of populations and the
accuracy and stability of the local optimal solutions, and the optimization effect of the
algorithm is improved. However, one problem reflected in the results is that the stability of
the algorithm tends to decrease as the problem scale increases; therefore, it is necessary to
continue to test the adaptability of the algorithm for increasing problem scales. In summary,
the ITLBO-S proposed herein is the optimal solution compared with other optimization
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algorithms, such as the TLBO, under the premise of considering the quality and stability of
the solution.

The optimal Gantt charts for scheduling maintenance personnel and maintenance
equipment/workshops, obtained from the Case 1 results, are shown in Figure 14. In
Figure 14a, the vertical coordinate “Lp− l” indicates the lth personnel, and the order is
numbered according to the special equipment, avionics, ordnance, and machinery special-
ties. The maintenance operations are indicated on the Gantt chart bars, where i− j (hyphen
in the Figure) represents the maintenance operationof Oij. In Figure 14b, when the vertical
coordinate is k = 1, Lel

1 refers to the lth power supply station. For consistency, aeronautical
machine repair, oil and fluid inspection, ordnance, and electronic equipment maintenance
workshops are indicated by k = 2− 5, respectively. Lel

2−5 denotes the lth parallel main-
tenance operation line for the corresponding workshop. Owing to length constraints,
the maintenance scheduling schemes for Cases 2 and 3 are not provided. After testing,
the scheduling schemes shown in each Gantt chart were proven to satisfy all constraints,
thereby verifying the correctness of the proposed model and scheduling method.

Figure 14. Gantt chart of maintenance and repair (MR) task scheduling schemes.
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5.2.2. Adaptation Verification of Algorithms

To verify the performance of the ITLBO-S for highly constrained resources and large-
scale fleet MR tasks, the sortie wave interval was shortened to 80 min, and a test simulation
was conducted with the other algorithm parameters kept constant. The algorithm was
independently run 15 times, resulting in the statistics shown in Table 6.

Table 6. Statistics of high-intensity task simulation results.

Objective
Functions

Evaluating
Indicators

MR Tasks

Case 1 Case 2 Case 3

WA
Best. 0.520 0.492 0.450
Avg. 0.520 0.461 0.430
Std. 0 0.023 0.008

PLV
Best. 57.862 16.580 6.400
Avg. 65.7 21.337 11.447
Std. 3.276 2.789 2.686

Time/s Avg. 173.2 240.8 321.8

The comparison results from the simulation reveal the following three conclusions.
First, after the wave interval period is shortened, the WA gradually decreases, and the
PLV gradually decreases with an increase in the fleet scale. This is because completing
these MR tasks within the specified time is difficult, and the ratio of a sufficient number of
aircraft at the start time of the wave gradually decreases owing to the highly constrained
resource situation of tight MR tasks. Furthermore, the large number of MR tasks completed
by the personnel results in inter-task idle times, a short gap between the work hours of the
maintenance personnel, and a minor load variance. The stability aspect was considered
under index Std. The results in Table 6 show that increasing the scale of the problem
can improve the stability of the algorithm. However, the results also indicate that the
algorithm’s adaptability to the problem is an advantage. The computation time of the
algorithm for solving the scheduling tasks gradually increases as the problem scale increases
but remains within the acceptable solution time. In summary, the proposed ITLBO-S
algorithm performs well in solving the AMRSP under high resource constraints.

6. Conclusions and Future Work

In this study, for the AMRSP, we first analyzed the maintenance process, personnel,
equipment, workshop, workspace, skills, and other constraints in MR task scheduling.
Next, using the WA and PLV as optimization indexes, we constructed a mathematical
model for aeronautical MR task scheduling problems in carrier-based aircraft fleets. An
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ITLBO-S algorithm was proposed to solve the model. Finally, after case simulations and
comparative experiments were performed, an optimal scheduling scheme was provided
for maintenance personnel and equipment/workshops. After verification, the scheduling
scheme obtained by employing the ITLBO-S algorithm was proven to comply with the
constraints of the model. The improved algorithm shows advantages in terms of the quality
and stability of the solution. In other words, the algorithm has strong adaptability in
solving large-scale scheduling problems.

However, in this study, the model and optimization of carrier-based aircraft MR
tasks were applied only to deterministic tasks. The assumption that the interference of
unexpected factors, such as task changes, can be excluded is inconsistent with an actual
and complex maintenance environment. Failures in aircraft systems or components often
appear to be random, and maintenance activities are tightly coupled in a sequential manner.
Any delay in performing a task may have a snowball effect on subsequent maintenance
activities, eventually leading to maintenance delays [46]. With appropriate modifications,
this model can be used for a dynamic MR system or to optimize other factors.

Subsequent research will improve the algorithm to achieve dynamic scheduling and
to cope with unforeseen situations, unpredictability, and different organizational scenarios,
thereby making it more relevant to the AMRSP. Moreover, according to the “no free lunch”
theory [47], each algorithm has its applicable problem scope. The applicable scope is
related to the characteristics of the algorithm. In this context, by considering the scale
of the problem, we can select the best algorithm based on its actual performance on a
particular problem.
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9. Kowalski, M.; Izdebski, M.; Żak, J.; Gołda, P.; Manerowski, J. Planning and Management of Aircraft Maintenance Using a Genetic

Algorithm. Eksploat. Niezawodn. 2021, 23, 143–153. [CrossRef]
10. Witteman, M.; Deng, Q.; Santos, B.F. A Bin Packing Approach to Solve the Aircraft Maintenance Task Allocation Problem. Eur. J.

Oper. Res. 2021, 294, 365–376. [CrossRef]
11. Eltoukhy, A.E.E.; Chan, F.T.S.; Chung, S.H.; Niu, B. A Model with a Solution Algorithm for the Operational Aircraft Maintenance

Routing Problem. Comput. Ind. Eng. 2018, 120, 346–359. [CrossRef]

231



Mathematics 2022, 10, 3777

12. Lin, L.; Wang, F.; Luo, B. An Optimization Algorithm Inspired by Propagation of Yeast for Fleet Maintenance Decision Making
Problem Involving Fatigue Structures. Appl. Soft Comput. 2019, 85, 105755. [CrossRef]

13. de Bruecker, P.; van den Bergh, J.; Beliën, J.; Demeulemeester, E. A Model Enhancement Heuristic for Building Robust Aircraft
Maintenance Personnel Rosters with Stochastic Constraints. Eur. J. Oper. Res. 2015, 246, 661–673. [CrossRef]

14. Verhoeff, M.; Verhagen, W.J.C.; Curran, R. Maximizing Operational Readiness in Military Aviation by Optimizing Flight and
Maintenance Planning. Transp. Res. Procedia 2015, 10, 941–950. [CrossRef]

15. Han, Q.T.; Cao, W.J.; Zhang, Y. Research on Maintenance Resources Distribution Based on Queuing Theory. Trans. Tech. Publ.
2013, 239, 1428–1431. [CrossRef]

16. Zhaodong, H.; Wenbing, C.; Yiyong, X.; Rui, L. Optimizing Human Resources Allocation on Aircraft Maintenance with Predefined
Sequence. In Proceedings of the 2010 International Conference on Logistics Systems and Intelligent Management (ICLSIM),
Harbin, China, 9–10 January 2010; Volume 2, pp. 1018–1022.

17. Raju, V.R.S.; Gandhi, O.P.; Deshmukh, S.G. Maintenance, Repair, and Overhaul Performance Indicators for Military Aircraft. Def.
Sci. J. 2012, 62, 83–89. [CrossRef]

18. Feng, Q.; Li, S.; Sun, B. A Multi-Agent Based Intelligent Configuration Method for Aircraft Fleet Maintenance Personnel. Chin. J.
Aeronaut. 2014, 27, 280–290. [CrossRef]

19. Safaei, N.; Banjevic, D.; Jardine, A.K.S. Workforce-Constrained Maintenance Scheduling for Military Aircraft Fleet: A Case Study.
Ann. Oper. Res. 2011, 186, 295–316. [CrossRef]

20. Zhang, Y.; Li, C.; Su, X.; Cui, R.; Wan, B. A Baseline-Reactive Scheduling Method for Carrier-Based Aircraft Maintenance Tasks.
Complex Intell. Syst. 2022. [CrossRef]

21. Mollahassani-Pour, M.; Abdollahi, A.; Rashidinejad, M. Application of a Novel Cost Reduction Index to Preventive Maintenance
Scheduling. Int. J. Electr. Power Energy Syst. 2014, 56, 235–240. [CrossRef]

22. Lin, J.; Zhu, L.; Gao, K. A Genetic Programming Hyper-Heuristic Approach for the Multi-Skill Resource Constrained Project
Scheduling Problem. Expert Syst. Appl. 2020, 140, 112915. [CrossRef]

23. Cui, R.; Dong, X.; Lin, Y. Models for Aircraft Maintenance Routing Problem with Consideration of Remaining Time and
Robustness. Comput. Ind. Eng. 2019, 137, 106045. [CrossRef]

24. Moukrim, A.; Quilliot, A.; Toussaint, H. An Effective Branch-and-Price Algorithm for the Preemptive Resource Constrained
Project Scheduling Problem Based on Minimal Interval Order Enumeration. Eur. J. Oper. Res. 2015, 244, 360–368. [CrossRef]

25. Chakrabortty, R.K.; Sarker, R.; Essam, D. Resource Constrained Project Scheduling: A Branch and Cut Approach. In Proceedings
of the 45th International Conference on Computers and Industrial Engineering, Metz, France, 28–30 October 2015.

26. Kiefer, A.; Schilde, M.; Doerner, K.F. Scheduling of Maintenance Work of a Large-Scale Tramway Network. Eur. J. Oper. Res. 2018,
270, 1158–1170. [CrossRef]
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Abstract: For the mission requirement of collision-free asteroid landing with a given time of flight
(TOF), a fast generation method of landing reachable domain based on section and expansion is
proposed. First, to overcome the difficulties of trajectory optimization caused by anti-collision path
constraints, a two-stage collision-free trajectory optimization model is used to improve the efficiency
of trajectory optimization. Second, the velocity increment under a long TOF is analyzed to obtain
the distribution law of the reachable domain affected by the TOF, and the generation problem of the
reachable domain is transformed into the solution problem of the initial boundary and the continuous
boundary. For the initial boundary, the section method is used to acquire a point on the boundary as
the preliminary reachable domain boundary. The solution of continuous boundary is based on the
initial boundary continuously expanding the section into the reachable domain until the boundary is
continuous. Finally, the proposed method is applied to the asteroids 101955 Bennu and 2063 Bacchus.
The simulation results show that this method can quickly and accurately obtain the reachable domain
of collision-free asteroid landing in a given TOF and is applicable to different initial positions.

Keywords: collision-free asteroid landing; given time of flight; reachable domain; section and
expansion method; trajectory optimization

MSC: 70F05

1. Introduction

Asteroid exploration is the main way to understand the formation and evolution of
the solar system, which is of great significance to the development and utilization of space
resources and the defense against asteroid impact threats [1–3]. Asteroid sample return
missions have attracted the attention of space-faring powers, such as the ongoing OSIRIS-
Rex mission [4] of the United States and the Japanese Hayabusa2 mission [5] that landed
on the surface of the near-Earth asteroid Ryugu and has successfully sampled and returned.
The landing of the spacecraft on the asteroid surface to collect the high-resolution data
and soil samples is a crucial step of the asteroid sample return mission. In the OSIRIS-REx
mission, in order to select the most suitable landing site, the ground personnel screened
and compared four sampling areas on the surface of the asteroid Bennu. These landing
sites are controllable within the landing range that the spacecraft can reach, so they can be
regarded as feasible candidate landing sites [6]. Therefore, the generation and analysis of
the reachable domain of the asteroid surface are of great significance in landing site selection
and mission planning [7]. The reachable domain refers to the set of terminal positions that
the spacecraft can reach under given initial conditions and constraints. At present, it is
mainly obtained by solving a series of trajectory optimization problems [8]. Benito and
Mease [9] defined the reachable set and the controllable set and introduced the calculation
method. The reachable set is obtained by the grid detection method. By defining boundary
constraints, control constraints, path constraints, and cost functions, a large number of
trajectory optimization is performed according to the resolution of each mesh. Arslantaş
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and Oehlschlägel [10] used the optimization-based method to calculate the reachable set
of nonlinear system dynamics with constraints, which was used in the terminal landing
phase for the lunar mission. The state space is discretized by equidistant grid points, and a
distance function is defined for each grid point as the objective function to solve the feasible
trajectory. The above two methods [9,10] need a lot of time to solve the reachable domain.
Chen and Qiao [11] used an improved method to solve the envelope of the reachable
domain of spacecraft after a gravity-assist flyby. It is determined whether the reachable
domain intersects with the orbit of a planet to indicate whether the spacecraft can fly over
the planet. Lee and Hwang [12] proposed a new algorithm for calculating the reachable
set of spacecraft relative motion with energy-limited low thrust. By deriving the analytical
solution of the optimal control problem, and applying the ellipsoid approximation method,
the inner and outer two ellipsoids approaching the exact boundary of the reachable set
are obtained, which effectively solves the problem of large computational complexity in
solving the reachable set. It should be noted that the application of the analytical solution
is any relative dynamic model in which the transfer matrix is available and analytically
integrable. The reachable domain can be used not only to solve reachable terminal positions
but also to design the low-thrust trajectory. Kulumani and Lee [13] designed continuous
low-thrust transfers between asteroid periodic orbits by using reachable sets generated on a
lower dimensional Poincare surface. The calculation of the reachable set reduces the need to
generate accurate initial guesses for optimization and only needs to select a trajectory with
the smallest distance to the target from the reachable set as the optimal transfer trajectory.

At present, the existing generation methods of reachable domain mainly take Earth,
Mars, and the moon as landing objects, and the relevant research on the landing reachable
domain of asteroid surface is less [8]. Wen and Zeng [14] obtained the landing reachable
domain of the hopping rover after one maneuver on the asteroid surface and when it
naturally evolves to rest through numerical simulation. This is different from the case of
solving the reachable domain of soft landing on the asteroid surface under thrust control
in this study. Huang and Liang [8] proposed a reachable domain generation method
based on a dynamic neighborhood search. Specifically, the optimization problem of the
reachable domain is transformed into three subproblems: the calculation of the landing
point with minimum fuel consumption, the calculation of the landing point when fuel
is exhausted, and the dynamic neighborhood search for the reachable domain boundary.
This method can obtain the landing reachable domain of the asteroid surface with high
efficiency. However, the landing trajectory optimization process in this method [8] does not
consider the anti-collision path constraint.

The choice of landing trajectory optimization method is important for solving the
reachable domain. When the initial state of the spacecraft is known, it is necessary to
quickly obtain the reachable domain on the asteroid surface in a given time of flight (TOF)
before the powered descending. Therefore, it is necessary not only to optimize the solution
method of the reachable domain but also to select an energy-efficient landing trajectory
optimization method. In the existing research, the energy-optimal problem is mostly
studied by the optimal control theory and has various applications. In the transport mission,
the minimum-energy trajectory can maximize the energy efficiency of the transport [15].
For robots working in special environments, energy consumption must be considered
in the design phase to ensure the completion of tasks. Energy consumption caused by
both motion and communication belongs to the field of energy-optimal problems [16].
Additionally, it is important to minimize energy consumption and extend the network life
cycle in wireless networks [17]. The optimal energy control problem is also widely studied
in astrophysics. In recent years, fast trajectory optimization methods for collision-free
asteroid landing in the gravitational field have been studied [18–23]. The algorithm based
on convex optimization [18–20] has the problem that as the flight distance increases, the
variables of the optimization model also increase significantly, resulting in the low efficiency
of long-distance trajectory optimization [19]. The anti-collision path constraints [19,20] are
expressed as the combined constraints of ellipsoid/sphere and glide slope. Zhang and
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Zhang [21] designed a saturated adaptive six-degree-of-freedom control law suitable for
collision-free asteroid landing by separating the spacecraft from the asteroid using the
designed curved surface to avoid collision. However, the control is not optimal. Zhu and
Yang [22] proposed a new guidance method for avoiding danger by improving the artificial
potential function and designed an anti-collision zone with continuity and rapid numerical
change rate that can effectively prevent the spacecraft from falling into the local minimum
area in complex terrain. The authors [23] proposed a new two-stage collision-free trajectory
optimization method based on the indirect method by using the two-stage anti-collision
path constraint composed of the ellipsoid and the glide slope [20] that can quickly generate
the energy optimal trajectory. According to the anti-collision path constraint, the whole
flight process is divided into the descent stage and the final landing stage, and the trajectory
optimization problem is transformed into a two-stage energy optimal control problem with
the given TOF. The approximate analytical solution of the initial costate [24] provides the
guess of the initial costate for the trajectory optimization in the descent stage and directly
serves as the initial costate of the final landing stage, which simplifies the complexity of the
path constraint and improves the efficiency of trajectory optimization.

Before the powered descending, it is needed to generate and analyze the landing
reachable domain with different flight times to determine whether the landing site can be
reached. This requires trajectory optimization for all points on the asteroid surface, and
every time the TOF is changed, the trajectory optimization of all surface points must be
solved again, resulting in low efficiency. To this end, a method was proposed for quickly
generating the landing reachable domain within a given TOF. To overcome the difficulty
of landing trajectory optimization caused by anti-collision path constraints, a two-stage
collision-free trajectory optimization method [23] was used to improve the efficiency and
convergence of the optimization problem. Here, by analyzing the velocity increment under
a long TOF, the distribution law of the reachable domain affected by TOF is obtained, so the
generation of the reachable domain is simplified to the solution of the initial boundary and
the continuous boundary. The initial boundary is defined as the boundary of the reachable
domain preliminarily obtained by the section method. In view of the irregular shape
of asteroids and the uneven gravitational field, the reachable domain usually presents a
complex shape, and the boundary obtained by a one-time solution is usually difficult to
clearly describe the boundary of the reachable domain. Therefore, it is proposed that the
initial boundary is continuously extended to the interior of the reachable domain until the
boundary is continuous to obtain the final continuous boundary. Finally, the proposed
method is applied to the asteroids Bennu and Bacchus to verify the effectiveness and
efficiency of the method.

2. Trajectory Optimization for Collision-Free Landing

2.1. Dynamic Models and Constraints

An asteroid-fixed coordinate system o-xyz with the mass center o of the asteroid as
the coordinate origin is defined, of which the three axes are aligned with the three principle
axes. Assume that asteroids uniformly rotate around the axis of maximum moment of
inertia, and the motion equations of a spacecraft in the frame o-xyz are [24]⎧⎪⎨⎪⎩

.
r = v
.
v = −2ω× .

r−ω× (ω× r) + g(r) + Tmaxuα
m.

m = − Tmaxu
Ispg0

, (1)

where r = [x, y, z]T is the position vector, v = [vx, vy, vz]T is the velocity vector, and m is the
mass of the spacecraft system, respectively. Vector ω = [0, 0, ω]T is the angular velocity of
the asteroid, g(r) is the gravitational acceleration, Tmax represents the maximum magnitude
of the thrust, u ∈ [0, 1] is the thrust ratio, α is the direction of the thrust, Isp is the specific
impulse, and g0 = 9.80665 m/s2 is the standard gravity.
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Assume that the initial state vector of the spacecraft is known and expressed as

r(0) = r0 v(0) = v0 m(0) = m0. (2)

In this study, the reachable domain is defined as a set of points on the surface of an
asteroid that can be reached. Based on the used polyhedron model, points on the surface of
an asteroid are represented by the center of the surface triangle on the polyhedron, that is

(rc)i =
(r1)i + (r2)i + (r3)i

3
i = 1, 2, . . .Nf , (3)

where r1, r2, and r3 are three vertexes of a triangle, i stands for the i-th triangle, and Nf
represents the total number of surface triangles of the selected polyhedral model. Then, for
the soft landing problem with a given flight time tf, the final state vector of the spacecraft is
known and written as

r(t f ) = rc v(t f ) = 0. (4)

Due to the irregular gravity field and the rotation of the asteroid, it is necessary to set
anti-collision path constraints to prevent the spacecraft from colliding with the asteroid’s
surface during landing. The anti-collision path constraints are defined as the combination
of external ellipsoid constraint and glide-slope constraint [20], which are respectively
expressed as

r(t)TRer(t) ≥ 1 , (5)

[r(t)− rc]
Tn

‖r(t)− rc‖‖n‖ ≥ cos `, (6)

where Re means diagonal matrix, with Re = diag( 1
a2 , 1

b2 , 1
c2 ), and a, b and c are the semiaxis

of the ellipsoid. Vector n is the outer normal vector of the triangle on the asteroid surface,
and θ is the conical angle of the glide-slope constraint.

2.2. Two-Stage Simplified Method for Collision-Free Trajectory Optimization

In this study, the energy-optimal trajectory optimization problem for collision-free
asteroid landing is considered, and the two-stage simplified solution method [23] proposed
by authors in the previous research is used to solve this problem. In this method, the aster-
oid landing process is divided into the descent stage that satisfies the ellipsoid constraint
and the final landing stage that flies in the ellipsoid and meets the glide-slope constraint.
In the descent stage, the approximate initial costate of the generalized gravity-free energy-
optimal control problem [24] is employed as the initial guess. In the final landing stage,
the approximate analytical solution [24] can directly provide initial costate and the energy
consumption for the optimal trajectories.

To plan the two-stage energy-optimal trajectory, the performance index is [23]

J = J1 + J2 = λ0

∫ tp

0
u2 dt+

1
2

∫ t f

tp
aTa dt, (7)

where J1 and J2 are the performance index of the energy-optimal control problem in the
descent stage and the gravity-free energy-optimal control problem [24] in the final landing
stage, respectively, λ0 = Tmax

2/2m0
2 is a positive numerical factor that does not inherently

change the optimal problem [25], m0 is the initial mass of the spacecraft, tp is the flight time
of the descent stage, and a is the control acceleration of the final landing stage.

For the energy-optimal control problem in the descent stage, the costate λ(t) satisfies⎧⎪⎨⎪⎩
.
λr = ω×(ω×λv)− ∂

∂r (λv · g(r)).
λv = −λr + 2λv ×ω
.
λm = λv · Tmaxuα

m2

, (8)
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where the costate λ(t) = [λr, λv, λm]T correspond to the state X(t) = [r, v, m]T. The optimal
thrust direction α and the optimal thrust magnitude u are

α = − λv

‖λv‖
, (9)

u =

{
æ i f æ < 1
1 i f æ ≥ 1

, (10)

where ρ is the switching function, expressed by

ρ =
1

2λ0
(

Tmaxλm

Ispg0
+

Tmax‖λv‖
m

). (11)

In addition, according to the transversality condition, the final mass costate of the
descent stage can be written as

λm(t f ) = 0. (12)

For the gravity-free energy-optimal control problem [24] in the final landing stage, the
initial costate λ(t0) = [λr0, λv0, λm0] can be solved by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λr0 =
6(tp f vp+2rp−2rc)

t3
p f

λv0 =
2(2tp f vp+3rp−3rc)

t2
p f

λm0 = 1
m0

(
1
3 λr0 · λr0t3

p f − λr0 · λv0t2
p f + λv0 · λv0tp f

) , (13)

and the optimal-control acceleration a* is obtained as

a∗ =
6
(

tp f vp + 2rp − 2r f

)
t3

p f
t−

2
(

2t f vp + 3rp − 3r f

)
t2

p f
, (14)

where tpf is the flight time of the final landing stage, rp and vp are the final position and
velocity of the descent stage, respectively. When rp and vp are determined, by solving
Equations (13) and (14), the energy consumption J2 and initial costate of the final landing
stage can be analytically obtained, while the trajectory is required to satisfy the glide-
slope constraint given by Equation (6). Since the landing state and flight time are fixed,
the trajectory only changes with rp and vp, i.e., the trajectory satisfying the glide-slope
constraint can be obtained by changing rp and vp. In the descent stage, known the initial
state in Equation (2) and flight time tp, if the initial costates of this stage are given, the
trajectory and rp and vp can be obtained by integrating Equations (1) and (8), thereby
generating the trajectory of the final landing stage by rp and vp. Under the conditions that
the trajectory satisfies the path constraint of the descent stage, and rp and vp make the final
landing stage satisfy the anti-collision path constraint, the initial costate that minimizes the
energy consumption J of the two stages is found. Then, the problem can be solved.

The numerical integration method used above is the fourth-order Runge–Kutta al-
gorithm with fixed step size. The optimal trajectories of anti-collision landing fulfill the
following constraints: the dynamic constraints described by Equations (1), (8), and (13),
initial-final state constraints described by Equations (2)–(4), anti-collision path constraints
in Equations (5) and (6), the transversal condition described by Equation (12), and thrust
magnitude constraint. The gradient descent method [26] is used to solve this problem,
which can be performed by a nonlinear programming solver such as fmincon of the Matlab
functions. Using the fmincon algorithm to solve this problem can be expressed as finding the
initial costates that make the objective function, i.e., the two-stage energy consumption J,
obtain the minimum value under the conditions of satisfying the above nonlinear inequality
and equality constraints.
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The feasibility of the trajectory optimization method depends on the error between
the approximate analytical solution and the optimal solution in the final landing stage. The
simulation results [23] show that the mean absolute error between them is less than 0.05,
which means that the trajectories obtained by these two solutions are very close, and the
convergence rate of the optimal trajectories can reach 96.4%. Because the anti-collision
trajectory optimization problem has strong nonlinearity, compared with the traditional
random guess method which is difficult to converge, the trajectory optimization algorithm
has excellent performance.

3. Generation Method of the Reachable Domain

Through the above trajectory optimization method, the set of landing points with
feasible solutions within a given TOF constitutes the landing reachable domain, which
is expressed as Uc(tf). The obtained Uc(tf) is a set of terminal positions r(tf) satisfying
constraints described in the previous section.

Solving times of feasible solution of landing trajectory depends on the number of
surface triangles of the polyhedron model. The higher the model accuracy, the finer the
division of surface triangles, that is, the more triangles, which leads to a large amount of
computation and time-consuming to obtain the feasible solution of all surface points to
obtain the reachable domain. To improve the efficiency of solving the reachable domain,
this paper proposes to obtain the reachable domain boundary based on the distribution
law of the reachable domain. The boundary roughly divides the asteroid surface into two
parts with and without feasible solutions, and the former is the reachable domain of the
required solution.

The reachable boundary is solved based on the section method and the expansion
method. The section method is used to determine the rough boundary preliminarily. Since
the boundary extracted by the section method is located at the edge of the reachable
domain, it is difficult for the landing sites with the feasible solution to accurately describe
the boundary contour. In order to improve the accuracy of the obtained reachable domain,
an expansion method is proposed, that is, by expanding the initial boundary to the region
with the feasible solution in the form of the section, the final continuous boundary is
obtained. The method transforms the trajectory optimization problem of a large number
of points in the region into that of a few points constituting the boundary, which avoids
solving the feasible solutions of all points on the asteroid surface, and greatly reduces
the amount of calculation on the premise of satisfying the high-precision solution of the
reachable domain.

3.1. Initial Boundary of the Reachable Domain

The strategy of solving the boundary to obtain the reachable domain is based on the
analysis of the distribution law of the reachable domain. By solving the distribution of the
velocity increment of points with the feasible solution on the asteroid surface under the
long TOF, the distribution law of the reachable domain affected by the TOF is obtained.
The longer TOF is chosen to ensure that most of the points on the asteroid’s surface have
feasible solutions. Velocity increment refers to the initial and final velocity variation of the
landing trajectory with the feasible solution. It can be seen from Figure 1 that the velocity
increment increases with the increase in the distance between the initial position and the
landing site of the spacecraft. At the same time, the change in the velocity increment
depends on the flight time; that is, when the flight time is short and it is difficult to reach a
large velocity increment, it can be considered that the landing site in the region with large
velocity increment does not have a feasible solution. Therefore, the numerical variation law
of velocity increment can be regarded as the variation law of the asteroid surface region
that the spacecraft can reach limited by the TOF. In Figure 1, taking Bacchus as an example,
the distribution of the velocity increment of the spacecraft landing on the asteroid surface
from different initial positions and the same longer TOF is described. The initial velocity
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of the spacecraft is assumed to be 0, and the black dot in the figure represents the initial
position.

Figure 1. Velocity increment distributions at different initial positions. (a) Over the North Pole.
(b) Over the Equator. (c) Over the mid-latitude region.

According to the above analysis, it is concluded that the landing reachable domain
increases with increasing flight time, and its distribution on the asteroid surface is closely
related to the initial position of the spacecraft. The reachable domain boundary is deter-
mined by the position of any point on the boundary. Specifically, taking the distance from
the point to the initial position as the radius, applying an upper and lower deviation to
the radius to obtain a radius range, taking out the points on the asteroid surface within
the radius range, and obtaining the reachable domain boundary by solving the feasible
solution. At this time, the key to the problem is to determine the position of any point on
the boundary.

Take out a group of asteroid surface points that change with the distance from the
initial position, expressed as P(d), as shown by the yellow dot in Figure 2a. Then obtain a
point on the reachable domain boundary by successively calculating the feasible solutions
of these points. Since the reachable domain boundary refers to the edge of the region
composed of the asteroid surface points with feasible solutions, the last point with feasible
solutions in P(d) is the point on the boundary. In order to obtain uniformly and continuously
distributed P(d), a plane section method is proposed that is defined as a method of obtaining
two parallel planes after a plane is translated by the same distance along the normal vector
of the plane in two opposite directions. The translation distance is determined by the size
of the triangle on the asteroid surface and is generally taken as one half of the height h
of the triangle to ensure the uniform and continuous distribution of points between the
two planes. Thereby, the plane passes through the mass center of the asteroid, and the
normal vector of the plane is perpendicular to the vector from the initial point to the mass
center of the asteroid. As shown in Figure 2a, the two parallel planes are obtained by the
plane section method, and the yellow dot between the planes is P(d). The points with
feasible solutions in this group of points are shown as yellow “o” in Figure 2b. It should be
pointed out that landing points with feasible but scattered solutions will be ignored when
taking a point on the boundary. This is because the gravitational field near the asteroid
is irregular, and the surface points of the asteroid with feasible solutions are not strictly
within a certain region. Inevitably, some points fall outside the reachable domain obtained
by the distribution law, and these points are scattered and small in number. Therefore, the
scattered points are all ignored in this study. After removing the scattered points “o” in
Figure 2b, the point “o” farthest from the initial position is a point on the boundary. The
basis for determining whether a point is a scattered point is whether the distance between
adjacent points exceeds 3h.

241



Mathematics 2022, 10, 3763

Figure 2. Use of the section method. (a) Solving a point on the initial boundary by the section method.
(b) A group of asteroid surface points used to solve the initial boundary. The yellow “o” stand
for points with feasible solutions between parallel planes. The green “Δ“stand for points between
parallel planes when solving initial boundary.

After determining a point on the boundary, the radius r0 is calculated, and the reach-
able domain boundary is obtained by using the circle section method, which is a method
of obtaining the asteroid surface points between large and small radii by increasing and
decreasing the radius by the same size. The size of increase and decrease is generally taken
as one half of h, that is, the value range of radius r obtained is {r|r0 − h/2 ≤ r ≤ r0 + h/2}.
This makes the number of points needed to solve the reachable domain boundary less and
evenly distributed, and it greatly reduces the time consumption for solving the optimiza-
tion problem. The obtained group of asteroid surface points is expressed as P(r), as shown
by the green “Δ“ in Figure 2b. The reachable domain boundary can be obtained by taking
out the points with feasible solutions.

However, since this group of points is located at the boundary between the points
with feasible solutions and those without feasible solutions, the probability of occurrence of
the two cases with and without feasible solutions is the same, which leads to the possibility
that the points with feasible solutions may be discontinuous as the reachable domain
boundary and the boundary description may not be clear. Discontinuity means that the
distance between adjacent points is too large. In order to ensure computational efficiency
and improve the accuracy of the boundary, the obtained boundary is defined as the initial
boundary, and on this basis, the continuous boundary is obtained by extending to the
region with the feasible solution.

3.2. Continuous Boundary of the Reachable Domain

The specific process of extending the initial boundary to the continuous boundary is
as follows. First, the distance between adjacent points on the initial boundary is used to
determine whether it is continuous. When the distance is less than 3h, it is continuous;
otherwise, it is discontinuous. If any adjacent points are continuous, the initial boundary is
the required final continuous boundary, and the reachable domain can be obtained. If it is
not continuous, the extension method is used. Since the region composed of points with
feasible solutions is the region close to the initial position in the two-part region divided
by the boundary, the expansion method is to reduce the radius r to obtain a continuous
boundary composed of points with feasible solutions.

The radius r1 is obtained by reducing r by h, and the value range obtained by the
circular section method is {rr1 |r0 − 3h/2 ≤ rr1 ≤ r0 − h/2}, so as to obtain a group of
asteroid surface points after the first expansion, expressed as P(r1). Points between all
discontinuous points on the initial boundary are extracted from P(r1) along the vector
direction from the asteroid centroid to the initial position. Through trajectory optimization,
the obtained points with feasible solutions and the initial boundary form the boundary after
the first expansion. Judge whether the boundary is continuous or not. If it is continuous,
the final continuous boundary is obtained; otherwise, it continues to expand. The radius r2
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is obtained by reducing r1 by h, and the value range obtained by using the circular section
method is {rr2 |r0 − 5h/2 ≤ rr2 ≤ r0 − 3h/2}, so as to obtain a group of asteroid surface
points P(r2) after the second expansion. The points between discontinuous points in the
boundary are taken out along the vector direction. The obtained feasible solution and the
boundary after the first expansion form the boundary after the second expansion. Repeat
the above process until the obtained boundary is continuous. From the above expansion
process, it can be seen that the height h of the triangle on the asteroid surface is taken as an
expansion unit because this expansion unit can appropriately take out a layer of asteroid
surface points, and its number and distribution state are the most suitable for solving the
boundary.

Figure 3 shows the expansion process that the initial boundary is expanded twice to
obtain a continuous boundary. In Figure 3a, “0” represents the initial boundary, and “1”
and “2” represent the boundary obtained after the first and second expansion, respectively.
Judging that “2” is a continuous boundary by the distance between adjacent points, the
expansion stops and the reachable domain is obtained. Figure 3b highlights the specific
expansion process of discontinuous adjacent points. Taking the extension of the “a” part
with the discontinuous initial boundary as an example, after P(r1) is obtained, the points
between green planes perpendicular to the paper surface are taken out according to the
direction indicated by the arrow, and the points with feasible solutions form the boundary
of this part. The direction indicated by the arrow is the vector direction from the mass
center of the asteroid to the initial position. After determining the discontinuity of the
“b” part in the boundary according to the distance, it continues to expand to obtain P(r2),
and then takes out the points between red planes perpendicular to the paper according to
the direction indicated by the arrow. At this time, the points with feasible solutions are
continuous, and we can know that the continuous boundary of the “a” part is obtained
after expanding it twice. The red dot in Figure 3b represents the points with the feasible
solution obtained by trajectory optimization of all points on the asteroid surface.

Figure 3. Use of the extension method. (a) The extension from the initial boundary to the continuous
boundary. (b) The extension of the “a” part. “0” represents the initial boundary, and “1” and “2”
represent the boundary obtained after the first and second expansion, respectively.

4. Simulation Results and Analysis

The section and extension method is applied to obtain the reachable domain of the
top-shaped asteroid Bennu and the elongated asteroid Bacchus to verify the effectiveness
of the proposed method. All the simulations are implemented on a desktop computer
with Intel Core i9-7920X CPU @2.90 GHz. To quickly calculate the gravitational field of the
asteroids, the 2nd order spherical harmonic model and the rotating mass dipole model [27]
be applied, respectively. For the spacecraft, the initial mass is 2000 kg, the maximum thrust
Tmax = 20 N, the engine specific impulse Isp = 400 s, and the scaling is used, where the
length scaling factor LU is set to 246 m and 1 km, respectively, and the time scaling factor

TU =
√

LU3

μ0
s [24].
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4.1. Applications to 101,955 Bennu

The rotation period of Bennu is 4.288 h and the average diameter is 492 m. A polyhe-
dron model with 1348 vertices and 2692 faces is used in this paper. The number of faces
is the number of target landing points. Taking energy optimization as the performance
index, the trajectory optimization problem of collision-free asteroid landing is solved. 2692
trajectories need to be optimized when solving the landing reachable domain, which is
extremely time-consuming. Therefore, the section and expansion method is used to obtain
the boundary to improve the efficiency of the reachable domain under the given TOF. In
order to fully reflect the effectiveness and applicability of the proposed reachable domain
generation method, the initial positions of the spacecraft are selected to be above the North
Pole, the Equator, and the mid-latitude region of the asteroid, which are [0 0 0.8] T km, [0.8
0 0] T km and [0.6 0 0.5] T km respectively. The initial velocity is set to 0 m/s.

4.1.1. Initial Boundary

The initial boundary is determined according to the distribution of velocity increment
with a long TOF. As shown in Figure 4, the velocity increment distribution at different
initial positions when tf = 1200 s and the TOF of the final landing stage is 200 s. It can be
seen from the figure that at different initial positions, the velocity increment increases with
the increase of the distance from the initial position. Therefore, the section method can be
used to obtain a point on the initial boundary of the reachable domain.

Figure 4. Distribution of velocity increment with different initial positions at tf = 1200 s. (a) Over the
North Pole. (b) Over the Equator. (c) Over the mid-latitude region.

The process of taking a point on the boundary using the section method is shown
by the yellow connecting line in Figure 5. Yellow “o” represents the points with feasible
solutions between planes. After ignoring the scattered points, the remaining points are
connected as lines. The far endpoint of the line relative to the initial position is the point
on the initial boundary, and the distance from this point to the initial position is taken as
the radius r0. Taking Figure 5a as an example, the radius r0 = 625 m, and the height h of
the triangle on the asteroid surface is taken as 25 m. Using the circular section method, the
surface points of the asteroid with a radius of more than 612.5 m but less than 637.5 m are
taken out, and the points with feasible solutions form the initial boundary, as shown in
green “o”. Figure 5a–f display the reachable domains of the asteroid surface at different
initial positions when tf = 700 s and tf = 900 s. Among them, the purple dots indicate the
points with feasible solutions obtained after trajectory optimization of all points on the
asteroid surface, which are used as the references of the reachable domain to verify the
effectiveness and accuracy of the reachable domain boundary solution.
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Figure 5. Initial boundary of the reachable domain under different initial states. (a) Initial boundary
for landing from over the North Pole with tf = 700 s. (b) Initial boundary for landing from over the
North Pole with tf = 900 s. (c) Initial boundary for landing from over the Equator with tf = 700 s.
(d) Initial boundary for landing from over the Equator with tf = 900 s. (e) Initial boundary for landing
from over the mid-latitude region with when tf = 700 s. (f) Initial boundary for landing from over
the mid-latitude region with when tf = 900 s. The yellow “o” stand for points with feasible solutions
between parallel planes. The green “o” stand for points that make up the initial boundary. The purple
dots indicate the points with feasible solutions on the asteroid surface.

It can be seen from Figure 5 that the range of the reachable domain is related to the
initial position and the TOF of the spacecraft, and the proposed solution of the reachable
domain can be applied to different situations. When the initial position is the same, the
longer the given flight time, the larger the reachable range. In addition, Figure 5 shows that
the initial boundary can effectively surround most of the purple points, and only a few
scattered points are not within the boundary.

When tf = 900 s, histories of the position, velocity, mass, and descent trajectory of the
energy optimal control problem landing on the asteroid surface from above the North Pole
are shown in Figure 6. These results show that the two-stage simplified solution method
based on the anti-collision path constraint enables the spacecraft to land safely at the target
landing site. In the figure, the red “Δ“ and “•“ respectively indicate the transition position
and landing position. In addition, the time consumption for solving an optimal landing
trajectory is about 60 s.
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Figure 6. Trajectory optimization results of landing on the asteroid Bennu from above the North Pole.
(a) Histories of the position. (b) Histories of the velocity. (c) Histories of the thrust. (d) History of
the descent trajectory. The red “Δ” and “•” indicate the transition position and landing position,
respectively. “•” indicate the transition position and landing position, respectively.

4.1.2. Continuous Boundary

Based on the initial boundary obtained, judge whether it is continuous by the distance
between adjacent points. When the distance is greater than 3h, i.e., 75 m, it is considered
discontinuous, and the radius r needs to be reduced. Taking Figure 5a as an example, the
radius r0 = 625 m at the initial boundary is obtained, and the radius r1 = r0 − h = 600 m
after the first expansion. The surface point P(r1) of the asteroid after the first expansion is
obtained using the circular section method. Along the vector direction from the asteroid
centroid to the initial position, the points between all discontinuous points on the initial
boundary are taken from P(r1) for trajectory optimization, and the obtained points with
feasible solutions are connected with the initial boundary to become the boundary after the
first expansion. Judge the distance of the boundary, repeat the above expansion process
until the distance between all adjacent points is less than 75 m, and then obtain the final
continuous boundary to determine the reachable domain.

Figure 7 shows the boundary at different initial positions when tf = 700 s, where
the green connecting line represents the initial boundary, and the purple connecting line
represents the continuous boundary. It can be seen that most of the initial boundary and the
continuous boundary are coincident, and only when the distance between adjacent points
is too large to describe the boundary is expansion required. In Figure 5, the initial boundary
can basically surround the actual reachable domain, while the continuous boundary further
improves the accuracy of the reachable domain boundary on the premise of a small increase
in calculation.
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Figure 7. Boundary of the reachable domain under different initial states with tf = 700 s. (a) 3D view
of the boundary when the initial position is over the North Pole. (b) Supplementary view of the
boundary when the initial position is over the North Pole. (c) 3D view of the boundary when the
initial position is over the Equator. (d) Supplementary view of the boundary when the initial position
is over the Equator. (e) 3D view of the boundary when the initial position is over the mid-latitude
region. (f) Supplementary view of the boundary when the initial position is over the mid-latitude
region. The green connecting line stands for the initial boundary. The purple connecting line stands
for the continuous boundary.

In this study, considering the anti-collision path constraint and improving the trajectory
optimization efficiency, the trajectory optimization methods used are two-stage simplified
solutions [23]. Whether it is the traditional method of optimizing the trajectory of all points
on the surface of the asteroid to obtain the reachable domain or the method of solving
the boundary of the reachable domain proposed in this study, the time consumption for
the trajectory optimization of a single point is basically the same. Therefore, the time-
consuming ratio of the proposed method to the traditional method is approximated by
comparing the number of points where the two methods need trajectory optimization,
which illustrates the efficiency of trajectory optimization.

Table 1 lists the total number of points N of trajectory optimization required by the
proposed method for obtaining a continuous boundary under different initial states, the
total number of points Nf on the asteroid surface, and their ratio, i.e., the time-consuming
ratio. In the table, P(d) represents the number of points needed for trajectory optimization
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when solving a point on the boundary; P(r) represents the number of points needed for
trajectory optimization when solving the initial boundary; P(e) represents the number of
points needed for trajectory optimization to obtain a continuous boundary by expanding
the initial boundary and n represents the number of extension times.

Table 1. Time-consuming statistics.

Initial Condition
Over the

North Pole
Over the
Equator

Over the Mid-
Latitude Region

700 s 900 s 700 s 900 s 700 s 900 s
P(d) 39 33 34
P(r) 97 77 49 78 61 115
P(e) 22 39 51 40 40 0

n 2 2 2 2 2 0
N 158 155 133 151 135 149
Nf 2692

Time-consuming ratio (%) 5.8692 5.7578 4.9406 5.6092 5.0149 5.5349

It can be seen that the ratio of N to Nf is not more than 6%, that is, the time-consuming
ratio of the proposed method and the traditional method for solving the reachable domain
is less than 6%. Therefore, the reachable domain solution method based on the section and
expansion method proposed in this study can reduce the solution time by more than 94%,
and greatly improve the solution efficiency. It should be pointed out that the use of the
parfor greatly improves the efficiency of trajectory optimization.

We also verify that the more the number of faces on the surface of asteroid is, the
smaller the time-consuming ratio is, and the advantages of the proposed method are more
prominent. This is because the number of points taken by the section method for trajectory
optimization can be determined manually, and the less the better under the condition
of uniform and continuous distribution. Therefore, when the number of faces increases,
the number of points in the section is almost unchanged, so the reduction of the time
consumption ratio is the multiple of the increase of the number of faces.

4.2. Applications to 2063 Bacchus

In order to further prove the effectiveness of the proposed method, Bacchus was
selected to solve the reachable domain. The rotation period of the asteroid is 14.9 h, and the
polyhedron model with 2048 vertices and 4092 faces was adopted; that is, the number of
triangle center points on the asteroid surface was 4092. Therefore, the number of trajectories
that needed to be optimized with the two-stage simplified solution method was 4092. To
further verify the effectiveness and applicability of the proposed method, it was also
considered that the initial positions of the spacecraft are above the North Pole, the Equator,
and the mid-latitude region of the asteroid, which were chosen as [0 0 0.6]T km, [1 0 0]T km
and [0.4 0 0.6]T km, respectively. The initial velocity was set to 0 m/s.

4.2.1. Initial Boundary

The velocity increment of Bacchus at different initial positions when tf = 1600 s and the
TOF of the final landing stage is 300 s is shown in Figure 1. It can be clearly seen that the
velocity increment increases with the increase of the distance from the initial position. The
process of obtaining a point on the initial boundary by using the section method is shown
by the yellow connecting line in Figures 8–10. The yellow “o” represents the point with the
feasible solution in P®. After ignoring the scattered points, the yellow point “o” farthest
from the initial position is the point on the initial boundary. Use this point to determine the
radius to obtain the initial boundary, as shown by the green connecting line.
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Figure 8. Initial boundary when the initial position is above the North Pole. (a) 3D view of the initial
boundary with tf = 900 s. (b) Supplementary view of the initial boundary with tf = 900 s. (c) 3D view
of the initial boundary with tf = 1000 s. (d) Supplementary view of the initial boundary with tf = 1000
s. The yellow “o” stand for points with feasible solutions between parallel planes. The green “o”
stand for points that make up the initial boundary. The purple dots indicate the points with feasible
solutions on the asteroid surface.

Figure 9. Initial boundary when the initial position is above the Equator. (a) 3D view of the initial
boundary with tf = 1000 s. (b) Supplementary view of the initial boundary with tf = 1000 s. (c) 3D
view of the initial boundary with tf = 1100 s. (d) Supplementary view of the initial boundary with tf =
1100 s.
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Figure 10. Initial boundary when the initial position is above the mid-latitude region. (a) 3D view of
the initial boundary with tf = 900 s. (b) Supplementary view of the initial boundary with tf = 900 s. (c)
3D view of the initial boundary with tf = 1000 s. (d) Supplementary view of the initial boundary with
tf = 1000 s.

Taking Figure 8a as an example, the radius r0 and the height h of the triangle on
the asteroid surface are taken as 620 m and 40 m, respectively. Using the circular section
method, the asteroid surface points with radius r greater than 600 m but less than 640
m are extracted, and the initial boundary is obtained by trajectory optimization of these
points. Figures 8–10 show the initial boundaries of the reachable domain with different
TOF when the initial positions of the spacecraft are over the North Pole, the Equator, and
the mid-latitude region.

It can be seen from Figures 8–10 that the reachable range is related to the initial
position and the TOF of the spacecraft, and the proposed boundary method can be applied
to different initial states. When the initial position is the same, the longer the given TOF,
the larger the reachable range. The initial boundary can effectively surround most of the
purple points, which further shows the effectiveness of the proposed method for solving
the reachable domain boundary.

When tf = 1000 s, histories of the position, velocity, mass, and descent trajectory of
the energy optimal control problem landing on the asteroid surface from above the North
Pole are shown in Figure 11. These results show that the two-stage simplified solution
method enables the spacecraft to land on the target point without collision. Similarly, the
time consumption for solving an optimal landing trajectory is about 60 s.
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Figure 11. Trajectory optimization results of landing on the asteroid Bacchus from above the North
Pole. (a) Histories of the position. (b) Histories of the velocity. (c) Histories of the thrust. (d) History
of the descent trajectory. The red “Δ“ and “•” indicate the transition position and landing position,
respectively.

4.2.2. Continuous Boundary

Judge whether the distance between adjacent points meets the continuity condition
based on the initial boundary, that is, when the distance between adjacent points is greater
than 3h, i.e., 120 m, it is considered discontinuous. In this case, the radius r needs to be
reduced. Taking Figure 12a as an example, when the initial boundary is obtained, the
radius r0 = 620 m, and the radius r1 = r0 − h = 580 m after the first expansion. Based on
r1, asteroid surface points P(r1) after the first expansion is obtained by using the circular
section method. Along the vector direction from the asteroid centroid to the initial position,
the points between all discontinuous points on the initial boundary are taken from P(r1) for
trajectory optimization, and the obtained points with feasible solutions are connected with
the initial boundary to become the boundary after the first expansion. Judge the distance of
the boundary, repeat the above expansion process until the distance between all adjacent
points is less than 120 m, and then obtain the final continuous boundary to determine the
reachable domain.
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Figure 12. Boundary of the reachable domain under different initial states with tf = 1000 s. (a) 3D
view of the boundary when the initial position is over the North Pole. (b) Supplementary view of the
boundary when the initial position is over the North Pole. (c) 3D view of the boundary when the
initial position is over the Equator. (d) Supplementary view of the boundary when the initial position
is over the Equator. (e) 3D view of the boundary when the initial position is over the mid-latitude
region. (f) Supplementary view of the boundary when the initial position is over the mid-latitude
region. The green connecting line stands for the initial boundary. The purple connecting line stands
for the continuous boundary. The red arrow stands for the direction of expansion.

Figure 12 shows the boundary at different initial positions when tf = 1000 s, where
the green connecting line represents the initial boundary and the purple connecting line
represents the continuous boundary. It can be seen that most of the initial boundary and the
continuous boundary are coincident, and only when the distance between adjacent points
is too large to describe the boundary, expansion is required. From Figures 8–10, it can be
seen that the initial boundary can basically surround the actual reachable domain, while
the continuous boundary further improves the accuracy of the reachable domain boundary
on the premise of increasing a small amount of calculation. The expansion indicated by
the red arrows in Figure 12d, f clearly illustrates the necessity of solving the continuous
boundary.

Table 2 lists the total number of points N of trajectory optimization required for the
proposed method to obtain the continuous boundary, the total number of points Nf on the
asteroid surface, and their ratio, i.e., time-consuming ratio. It can be seen from Table 2
that the ratio of N to Nf is not more than 10%, that is, the time-consuming ratio of the
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proposed method and the traditional method to solve the reachable domain is less than
10%. Therefore, the reachable domain solution method based on the section and expansion
method proposed in this study can reduce the solution time by more than 90%, and greatly
improve the solution efficiency.

Table 2. Time-consuming statistics.

Initial Condition
Over the

North Pole
Over the
Equator

Over the Mid-
Latitude Region

900 s 1000 s 1000 s 1100 s 900 s 1000 s
P(d) 49 53 29
P(r) 139 126 84 54 102 157
P(e) 65 94 76 53 56 153

n 3 2 1 3 1 3
N 254 269 213 160 187 339
Nf 4092

Time-consuming ratio (%) 6.210 6.574 5.2053 3.9101 4.5699 8.2845

5. Conclusions

In this paper, a fast generation method based on section and expansion is proposed
to generate the reachable domain of collision-free asteroid landing with the given TOF.
Considering the anti-collision requirements, a two-stage simplified solution method is used,
which improves the efficiency and convergence of the trajectory optimization problem. By
analyzing the velocity increment, the distribution law of the reachable domain is obtained.
The generation problem of the reachable domain is transformed into three subproblems and
solved in turn: the solution of a point on the initial boundary, the calculation of the initial
boundary, and the calculation of the continuous boundary. The section and expansion
method is used to solve these problems. Finally, the generation of the reachable domain on
the asteroid surface is realized, and the efficiency of solving is greatly improved. Compared
with the traversal algorithm, the time-consuming ratio is reduced by more than 90%. The
effectiveness and applicability of the proposed method are verified by simulation analysis
with asteroids of different shapes and spacecraft with different initial positions and different
flight times.
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Abstract: Numerical calculation provides essential tools for deep space exploration, which are
indispensable to mission design and planetary research. In a specific case of binary asteroid defense
such as the DART mission, an accurate understanding of the possible dynamical responses and
the system’s stability and engineers’ prerequisite. In this paper, we discuss the numeric techniques
for tracking the year-long motion of the secondary after being perturbed, based upon which its
rotational stability is analyzed. For long-term simulations, we compared the performances of several
integrating schemes in the scenario of a post-impact full two-body system, including low- and high-
order Runge–Kutta methods, and a symplectic integrator that combines the finite element method
with a symplectic integral format. For rotational stability analysis of the secondary, we focus on the
rotation of the secondary around its long-axis. We calculated a linearised error propagation matrix
and found that, in the case of tidal locking of the secondary to the primary, the rotation is stable;
as the perturbation amplitude of the spin angular velocity of the secondary increases, the rotation
will lose stability and will be prone to being unstable in the long-axis direction of the secondary.
Furthermore, we investigated the one-year-long influences of the non-spherical perturbations of the
primary and the secondary.

Keywords: motion stability; numerical simulation scheme; binary asteroid; dynamics

MSC: 85-10

1. Introduction

The dynamics of binary asteroid systems is a hot topic in the field of astronomy,
and the ongoing NASA’s Double Asteroid Redirection Test (DART) mission has sparked
profound and heated discussions on this topic. NASA’s DART mission launched on 24
November 2021, with plans to impact the secondary (Dimorphos) of binary asteroid system
65,803 Didymos on 26 September 2022, using a 563 kg impactor at 6.14 km/s [1–7]. Four
years later, ESA’s Hera mission will arrive at the Didymos system to observe the results of
the impact [7]. This mission will obtain important information, including the surface as
well as the internal properties of the binary asteroid system, which will have a significant
impact on our understanding of the history of the solar system [2].

For the prediction of the dynamic state of the Didymos system after the impact, the
mission team has organized related research [7]. In [8], it was determined that Dimorphos
is prone to unstable rotation in its long-axis direction after DART’s impact, which would
introduce significant uncertainty in the evolution of the rotational state of the secondary [9].
The unstable rotation poses challenges for understanding the state of motion of the binary
system at the time of HERA’s arrival, especially over a years-long period of time. In
this paper, we investigate the year-long rotational stability of the secondary through
mathematical and non-linear theoretical methods.
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The description of the gravitational field between two rigid bodies is the foundation
for the study of binary asteroid dynamics. There are some well-established methods, such
as [10–12], for describing the rigid body using the polyhedral method, and [13] for describ-
ing rigid body using agglomerates of grains of multiple spherical particles, etc. Reference
[14] proposed a finite element method (FEM) for computing the gravitational interactions
between two arbitrarily shaped rigid bodies that has no restrictions on the shape and inter-
nal mass distribution of the asteroid. This method differs from the polyhedral approach,
which divides two polyhedra into a series of elongated tetrahedra, each connecting the
centre of the rigid body to the triangular face of the polyhedron. The finite element method
divides the polyhedra into smaller tetrahedral meshes, so that the internal structure of the
two rigid bodies can be reconstructed by defining the density of each tetrahedron. Therefore,
we chose the finite element method to describe the gravitational field between two asteroids.
For calculating the dynamical states of binary asteroids, numerical simulation schemes are
indispensable tools. Especially when considering the long-term evolution, many commonly
used schemes may encounter the problem of numerical error accumulation.

There have been many studies on numerical algorithms for the long-term simulation of
a Hamiltonian system [15–18]. For the orbital problem of celestial bodies, Kosmas [19–23]
has proposed some numerical simulation methods that are excellent for the long-term
simulation of two-body and N-body problems. In terms of the motion of rigid bodies,
many studies have investigated the Sintegrator [24–28]. The symplectic algorithm is a
difference method which preserves the Hamiltonian system based on the basic principle of
Hamiltonian mechanics. It makes the discretized difference equations keep the symplectic
structure of the original system and has long time stability. Applying the finite element
method and the symplectic integrator, we study the stability of the rotational motion of
the secondary, which has not been studied much. [8] used fast Lyapunov indicators to
investigate the rotation stability of the secondary, and found that the secondary is prone
to become unstable near the resonance locations. Ref. [29] analyzed the rotation of the
secondary around its long axis through a large set of short numerical simulations and
referred to it as “barrel instability”.

The paper is organized as follows. In Section 2, we compare the conservation of total
mechanical energy, total momentum, and total angular momentum in several numerical
integrators for the full two-body problem, in order to find the suitable numerical simulation
scheme for our work. Based on the numerical simulation scheme presented, we propose an
error propagation matrix to study the stability of the motion of the secondary rotating from
its long axis, and we evaluate the effect of the non-spherical gravitational perturbation term
of the primary and the shape of the secondary on its stability, which we discuss in Section 3.
Our conclusions are given in Section 4. Our simulations were performed on a large-scale
computing cluster using CUDA and OpenMP parallelism techniques.

2. Comparison of Numerical Schemes for Long Assessment

We used numerical methods to simulate the motion of the binary asteroid. Therefore,
before analyzing the stability of the tumbling motion, it is necessary to discuss whether
the results of the numerical simulation scheme are reasonable. This section discusses
numerical simulation schemes for the full two-body problem. Three coordinate systems
were adopted: The world coordinate system T , the primary body-fixed frame P , and the
secondary body-fixed frame S . Assuming two rigid bodies P and S, the full two-body
problem is a conservative system with three conserved quantities, which are the total
mechanical energy (represented by T.M.E), the total momentum (represented by T.M), and
the total moment of momentum (represented by T.M.O.M). The former is a scalar, while
the latter two are vectors, which can be calculated as follows:
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E =
1
2

mPvT
PvP +

1
2

mSvT
S vS +

1
2

ωT
P JPωP +

1
2

ωT
S JSωS + UPS,

p = mPvp + mSvS,

π = rP ×mPvP + rS ×mSvS + JPωP + JSωS,

(1)

where E is the T.M.E., p is the T.M., π is the T.M.O.M., mP is the total mass of P,
rP = [rPx, rPy, rPz]

T is the position of P, vP = [vPx, vPy, vPz]
T is the velocity of P,

ωP = [ωPx, ωPy, ωPz]
T is the angular velocity of P, JP = diag(JPx, JPy, JPz) is the mo-

ment of inertia matrix of P, replacing the angle labels with S corresponds to the body S,
and UPS is the gravitational potential between P and S.

The critical evaluation criterion of the numerical schemes is that the cumulative error of
the above three conserved quantities can be kept within an acceptable range. For short-term
simulations, the Runge–Kutta integrator is widely used, due to its mature development
and ease of use. Meanwhile, for long-term simulations, the Runge–Kutta integrator may
not perform well, in terms of the cumulative error of the above conserved quantities. In
this section, we perform a decade-long simulation of the Didymos system and compare
the performance of three integrators. The binary asteroid shape model constructed by [30]
was adopted to describe the primary (Didymos), while the shape model constructed by [2]
was adopted to describe the secondary (Dimorphos). We chose the classic fourth-order
Runge–Kutta integrator (represented by RK4) and a high-order Runge–Kutta integrator
(represented by RK78) as the first two integrators. The task of these two integrators is to
solve the differential equations of the system numerically. For the full two-body problem,
the dynamical equations of the system are:

ṙP = vP,

v̇P =
FP
mP

,

λ̇P =
1
2

λP �ωP,

π̇P = πP ×ωP + TP,

(2)

where λP is the attitude quaternions of the body P; � is the Grassmann product opera-
tor ([31]), which defines multiplication between a quaternion and a vector; πP = JPωP is
the angular momentum of P; replacing the angle labels with S corresponds to the rigid body
S. It should be noted that the unity of quaternions can not naturally preserve, therefore,
the quaternions need to be renormalized at each time step. In Equation (2), FP is the
gravitational force of the rigid body P from S, and TP is the torque of gravitation from S to
P, calculated by the finite method proposed by [14]:

FP = G
NP

∑
α=1

NS

∑
β=1

wαwβσ(ρPα)σ
(

ρSβ

) rSβ − rPα

|rSβ − rAα|3
,

TP = G
NP

∑
α=1

NS

∑
β=1

wαwβσ(ρPα)σ
(

ρSβ

)ρPα ×
(
rPα − rSβ

)
|rPα − rSβ|3

,

TS = G
NP

∑
α=1

NS

∑
β=1

wαwβσ(ρPα)σ
(

ρSβ

)ρSβ ×
(
rPα − rSβ

)
|rPα − rSβ|3

,

(3)

where the parameters are explained as follows:

NP The number of the nodes of the rigid body P
rPα The position of node α in body P in the world coordinate system T
ρPα The position of node α in body P in the body-fixed frame P
wPα The nodal weights of node α in body P
σ(ρPα) The density at node α in body P
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Replacing the angle labels with S and β corresponds to body S and the node in body
S, while FP and FS are equal in modulus and opposite in direction.

Combining the symplectic integration scheme proposed by [24] and the finite method
to calculate the full two-body problem, we used a symplectic integrator (represented by SI)
as the third tested integrator. Some of its parameters are detailed as follows:

qP position of body P
QP orientation matrix of body P
pP momentum of body P
πP angular momentum of body P

Replacing the angle labels with S corresponds to body S. The states qt
P, qt

S, Qt
P, Qt

S,
pt

P, pt
S, πt

P, and πt
S of the two rigid bodies are at time t, the step size of the integrator is

taken as Δt and the states qt+Δt
P , qt+Δt

S , Qt+Δt
P , Qt+Δt

S , pt+Δt
P , pt+Δt

S , πt+Δt
P , and πt+Δt

S of the
two rigid bodies are obtained after integration. The specific calculation process used in one
integration step is given below.

First, calculate the gravitational attraction forces Ft
P on P and Ft

S and S, as well as the
torques T t

P on P and T t
P on S, using the finite method (Equation (3)). Then, perform the

following calculations for the momentum and angular momentum of each of the two rigid
bodies (here, only the formula of the body P is given, replace the angle labels with S for
that of the body S):

pt+ 1
2 Δt

P = pt
P +

1
2

ΔtFt
P

π
t+ 1

2 Δt
P = πt

P +
1
2

ΔtT t
P.

(4)

QP can be written as:

QT
P = [sP1, sP2, sP3]. (5)

Second, the angular momentum and rotation matrices of the rigid body are then
transformed five times in the order RP1, RP2, RP3, RP2, RP1 respectively, with the first
transformation given below:

π
t+ 1

2 Δt
P = RP1π

t+ 1
2 Δt

P , st
Pj = RP1st

Pj, (j = 1, 2, 3), (6)

where

RP1 =

⎡⎢⎢⎣
1 0 0
0 cos

(
πPx
JPx

Δt
)

sin
(

πPx
JPx

Δt
)

0 − sin
(

πPx
JPx

Δt
)

cos
(

πPx
JPx

Δt
)
⎤⎥⎥⎦,

RP2 =

⎡⎢⎢⎣
cos
(

πPy
JPy

Δt
)

0 − sin
(

πPy
JPy

Δt
)

0 1 0
sin
(

πPy
JPy

Δt
)

0 cos
(

πPy
JPy

Δt
)
⎤⎥⎥⎦,

RP3 =

⎡⎢⎢⎣
cos
(

πPz
JPz

Δt
)

sin
(

πPz
JPz

Δt
)

0

− sin
(

πPz
JPz

Δt
)

cos
(

πPz
JPz

Δt
)

0
0 0 1.

⎤⎥⎥⎦

(7)

Third, update the positions of the two bodies:

qt+Δt
P = qt

P + Δt
pt+ 1

2 Δt
P
mP

. (8)
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Fourth, according to the positions qt+Δt
P , qt+Δt

S and attitudes Qt+Δt
P , Qt+Δt

S of the two
rigid bodies at moment t + Δt, calculate Ft+Δt

P , Ft+Δt
S , T t+Δt

P , and T t+Δt
S using Equation (3).

Then, update the momentum and angular momentum, as follows:

pt+Δt
P = pt+ 1

2 Δt
P +

1
2

ΔtFt+Δt
P

πt+Δt
P = π

t+ 1
2 Δt

P +
1
2

ΔtT t+Δt
P .

(9)

Note that the forces and torques calculated here can be used in the next time step, such
that they only need to be calculated once per time step.

Regarding the selection of step size for the integrator, our principle was to ensure the
same computational cost for the three integrators. In this simulation, the most computa-
tionally expensive step was the calculation of the full two-body gravitational potential,
for which we used the GPU parallelization method proposed by [32] to accelerate the
calculation. For RK4, the gravitational potential needs to be calculated four times per time
step; for RK78, it needs to be calculated 12 times; and, for SI, it needs to be calculated once.
Therefore, we set the step size of RK4 to be 4 s, RK78 to be 12 s, and SI to be 1 s. In terms
of setting system parameters, in order to ensure generality, we arbitrarily set the rotation
states of the two asteroids (not a tidal locking state, the angular velocity had components in
all three directions), in order to test the performance of all integrators in a relatively terrible
simulation environment.

We performed simulations of the binary asteroid Didymos system over 10 years, using
the step settings mentioned above, with a calculation time of 14 days for all three integrators.
Figures 1–3 show the simulation results of the relative errors (represented by RelErr) for
the three conserved quantities of the three integrators over 10 years. The first part of each
figure represents the relative error T.M.E. varying with time, the second represents the
modulus of T.M., the third represents the modulus of T.M.O.M., and the fourth to sixth
parts represent the relative error change of T.M.O.M. in the three directions of X, Y, and Z
(represented by T.M.O.M.X, T.M.O.M.Y, and T.M.O.M.Z, respectively).

By analyzing the relative error curves of the conserved quantities of the three integra-
tors, we find that the performance of the different integrators varies considerably. In terms
of the T.M.E, the two Runge–Kutta integrators performed better than the symplectic inte-
grator. The relative error of RK4 and RK78 was on the order of 10−13, and RK78 performed
slightly better than RK4. That of SI was on the order of 10−9, and partial magnification
shows the change of a chord curve with no significant change in amplitude with time.
Regarding the T.M., the relative error of RK4 and SI was on the order of 10−12, while
that of RK78 was on the order of 10−13, thus showing better performance. As the three
components of T.M. had no more obvious characteristics, we do not show them in the
figure, but only give the variation of the modulus. For the T.M.O.M., an obvious difference
between three integrators was that the relative errors of the components of T.M.O.M. with
the Runge–Kutta methods were monotonically varying, which was not the case for SI. SI
also performed better in terms of the order of magnitude of relative error for the T.M.O.M.
Considering the possible reason for the choice of step size, we reduced the step size to
0.1 s for both RK4 and RK78, and the results show that the relative errors of components
of angular momentum still show monotonic variations. Monotonically variation in the
relative error can lead to the accumulation of errors, reducing the accuracy of the integrator
under long simulation periods. As the integration time increases, the truncation error
introduced by the RK method accumulates, resulting in a constant decrease in the relative
error accuracy of the conserved quantities. The relative errors in the conserved quantities
of the SI show a long-term stable trend. Therefore, SI only has a truncation error, not a
cumulative error, in the case of long integration time is required, SI relies on its stability
and has some potential and advantages in terms of numerical solution accuracy. Therefore,
a higher-order RK integrator can be used if the relative error of mechanical energy is
to be minimized, while the symplectic integrator can be used if the conservativeness of
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the conserved quantities of the system is pursued. Considering the above, we use the
symplectic integrator for further simulations.
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Figure 1. Variation of the relative error of the conserved quantities over ten years for simulations of
the full two-body problem using the RK4 integrator.
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Figure 2. Variation of the relative error of the conserved quantities over ten years for simulations of
the full two-body problem using the RK78 integrator.
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Figure 3. Variation of the relative error of the conserved quantities over ten years for simulations of
the full two-body problem using the SI integrator.
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3. Stability of the Excited Spin State of the Secondary

Using the SI integrator mentioned in Section 2, we investigated the stability of motion
of the secondary rotating around its long axis. Observation showed that the secondary
(Dimorphos) of the Didymos system is in a state of tidal locking to the primary (Didymos);
that is, the rotational angular velocity of the secondary is equal to the orbital angular
velocity around the primary. The impact of DART on the secondary is expected to change
this state. The study of [8] showed that the secondary is prone to unstable spins in its long
axis. In this section, we study this phenomenon using a linearised error propagation matrix.

3.1. Definition of the Linearised Error Propagation Matrix M(t)

We also determined the unstable tumbling rotation of the secondary in the long-axis
direction in a simplified model. In this section, we use a mass point–seven mass points
model, in which the primary is simplified to a single mass point whose mass is equal to the
total mass of the primary, while the secondary is simplified to seven mass points whose
positions are at the centre of mass of the secondary and the endpoints of the three axes
of the ellipsoid, each mass being 1/7 of the total mass of the secondary (Figure 4). For
the parameters of the binary system, please refer to [33]. We used the 1-2-3 Euler angle
to describe the attitude of the secondary, as shown in Figure 4. We denote the rotational
angular velocity (around the axis perpendicular to the orbit surface) of the tidal locking
of the secondary as ω0. When the disturbance of the system is 0, no matter the rotational
angular velocity of the secondary, the attitude of the secondary will only vary in the
direction of ψ. However, in practice, disturbances are unavoidable due to the irregular
shape and the uneven distribution of the internal mass of two asteroids, as well as various
other forces in the Solar system. Here, we consider a small perturbation in the direction of φ.
Figure 5 shows the variation in the three Euler angles when the rotational angular velocity
is 1.0ω0 and 1.5ω0. It can be seen that when the rotation angular velocity was 1.5ω0,
φ exceeded 90 degrees on the third day, and we denote this phenomenon as secondary
“flips” in the direction of φ. Meanwhile, when the rotation angular velocity was 1.0ω0, this
situation did not occur. Therefore, this tumbling rotation may be related to the rotational
angular velocity of the secondary. In order to study the characteristics of the motion of the
secondary, we defined a linearised error propagation matrix M(t), the specific calculation
method of which is described below.

Figure 4. Diagram of the 1-2-3 Euler angles of the secondary: (a) diagram of the Didymos system;
and (b) the simplified model.
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Figure 5. Variation of the three Euler angles of the secondary over time: (a) initial spin angular
velocity = 1.0ω0 and (b) initial spin angular velocity = 1.5ω0.

There are 12 quantities in the motion of the secondary: three components each of
position, velocity, attitude, and angular velocity, which are denoted as:

s =
[
x, y, z, vx, vy, vz, φ, θ, ψ, ωx, ωy, ωz

]T, (10)

We denote an undisturbed system state as:

s0 =
[
x0, y0, z0, vx0, vy0, vz0, φ0, θ0, ψ0, ωx0, ωy0, ωz0

]T. (11)

The state at the initial time is denoted by s(0), while the state at time t is denoted by
s(t). Then, we introduce a disturbance to each state at the initial moment, and perform 12
calculations. The disturbance is defined as:

δs(0) = [δx1(0), δy2(0), δz3(0), δvx4(0), δvy5(0), δvz6(0),

δφ7(0), δθ8(0), δψ9(0), δωx10(0), δωy11(0), δωz12(0)]T.
(12)

The specific process for these twelve calculations is as follows. The first calculation only intro-
duces a disturbance δx1(0) at the initial moment, and the initial state of the system becomes:

s1(0) = [x0(0) + δx1(0), y0(0), z0(0), vx0(0), vy0(0), vz0(0),

φ0(0), θ0(0), ψ0(0), ωx0(0), ωy0(0), ωz0(0)]T.
(13)

Then, the state of the system at time t becomes:

s1(t) = [x0(t) + δx1(t), y0(t) + δy1(t), z0(t) + δz1(t),

vx0(t) + δvx1(t), vy0(t) + δvy1(t), vz0(t) + δvz1(t),

φ0(t) + δφ1(t), θ0(t) + δθ1(t), ψ0(t) + δψ1(t),

ωx0(t) + δωx1(t), ωy0(t) + δωy1(t), ωz0(t) + δωz1(t)]T.

(14)

The second calculation only introduces disturbance δy2(0) at the initial moment, and the
initial state of the system becomes:

s2(0) = [x0(0), y0(0) + δy2(0), z0(0), vx0(0), vy0(0), vz0(0),

φ0(0), θ0(0), ψ0(0), ωx0(0), ωy0(0), ωz0(0)]T.
(15)
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Then, the state of the system at time t becomes:

s2(t) = [x0(t) + δx2(t), y0(t) + δy2(t), z0(t) + δz2(t),

vx0(t) + δvx2(t), vy0(t) + δvy2(t), vz0(t) + δvz2(t),

φ0(t) + δφ2(t), θ0(t) + δθ2(t), ψ0(t) + δψ2(t),

ωx0(t) + δωx2(t), ωy0(t) + δωy2(t), ωz0(t) + δωz2(t)]T.

(16)

The third to twelfth calculations are carried out similarly. Therefore, when a small distur-
bance is introduced at the initial time, the error of the system at time t is:⎡⎢⎢⎢⎣

δx(t)
δy(t)

...
δωz(t)

⎤⎥⎥⎥⎦
12×1

= M(t)

⎡⎢⎢⎢⎣
δx1(0)
δy2(0)

...
δωz12(0)

⎤⎥⎥⎥⎦
12×1

, (17)

where

M(t) =

⎡⎢⎢⎢⎢⎢⎣
δx1(t)
δx1(0)

δx2(t)
δy2(0)

· · · δx12(t)
δωz12(0)

δy1(t)
δx1(0)

δy2(t)
δy2(0)

· · · δy2(t)
δωz12(0)

...
. . .

...
δωz1(t)
δx1(0)

δωz2(t)
δy2(0)

· · · δωz12(t)
δωz12(0)

⎤⎥⎥⎥⎥⎥⎦
12×12

. (18)

Equation (17) can be written as
δ(t) = M(t)δ(0) (19)

Diagonalize M(t), then
δ(t) = P−1ΛPδ(0). (20)

Transform the perturbation vector to the eigenvector coordinate system, and we have

Pδ(t) = δe(t) = [e1(t), e2(t), . . . , e12(t)]
T. (21)

Then,
δe(t) = Λδe(0). (22)

The full form of Equation (22) is:⎡⎢⎢⎢⎣
e1(t)
e2(t)

...
e12(t)

⎤⎥⎥⎥⎦
12×1

=

⎡⎢⎢⎢⎣
m1(t) 0 · · · 0

0 m2(t) · · · 0
...

...
. . .

...
0 0 0 m12(t)

⎤⎥⎥⎥⎦
12×12

⎡⎢⎢⎢⎣
e1(0)
e2(0)

...
e12(0)

⎤⎥⎥⎥⎦
12×1

. (23)

At each moment, the error of the system (in the eigenvector coordinate system) is:

ei(t) = mi(t)ei(0), i = 1, 2, . . . , 12. (24)

It should be noted that in the calculation of M(t), the initial minutely perturbation
should be chosen to be as small as possible (but needs to be greater than the accuracy
of the computer) so that the calculated M(t) can be guaranteed to be consistent. M(t)
is a linearised error propagation matrix, representing the transfer properties of an initial
minutely perturbation vector on an unperturbed system. The implication is that an initial
minutely perturbation vector δs(0) is transformed to δs(t) after time t by the effect of the
M(t). This transformation relationship can be determined by analyzing the eigenvalues
and eigenvectors of M(t). There are 12 eigenvalues of M(t), representing a combination
of a series of scaling and rotation actions on δs(0). If an eigenvalue of the matrix is a real
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eigenvalue, then the transformation represented by this eigenvalue is scaled in the direction
of the eigenvector corresponding to this eigenvalue, and the scaling factor is equal to the
eigenvalue. If two eigenvalues of the matrix are complex (and, consequently, appear as a
pair), then the pair of eigenvalues represents a rotation plus a scaling, where the angle of
rotation is the argument of the complex eigenvalue, the rotation occurs in the plane formed
by the real and imaginary vectors of the complex eigenvectors, and the scaling factor is the
modulus of the complex eigenvalues. For our calculations, scaling greater than 1 indicates
that the initial error is scaled up over time.

3.2. Analysis of M(t) with the Initial Angular Velocity from 1.0ω0 to 1.5ω0

We calculated the eigenvalue distribution of M(t) in 106 seconds considering the
state of the secondary with the spin angular velocity of 1.0ω0 (i.e., tidal locking to the
primary). Figure 6 shows the distribution of the M(t) eigenvalues at four moments: 8000 s,
110,000 s, 623,000 s, and 990,000 s. For each diagram, we sampled every 1 s, giving the
distribution of eigenvalues for the 2000 s before the given moment. The arrow indicates
the direction of the change of this next eigenvalue. The results show that there were
12 eigenvalues of M(t). One eigenvalue varied around 0, which means that this eigenvalue
did not magnify the initial error; another 10 eigenvalues basically varied on or near the
unit circle, which means that the initial error was not magnified unrestrictedly by these
ten eigenvalues; however, there was also one eigenvalue that varied with time, where its
modulus became larger (always a real eigenvalue), which means that, in this eigenvalue, the
initial error of the system is continuously amplified with time. Here, we call this eigenvalue
the maximum eigenvalue. Figure 7 shows the distribution of all eigenvalues over 106 s.
Due to the sampling frequency, some of the eigenvalues are discontinuous. There were
12 eigenvalues at each moment, and cool colours represent the initial moment, while warm
colours represent the later moments. The results indicate that the modulus of the largest
eigenvalue reached more than 800, demonstrating that the error was amplified.

Figure 6. The distribution of the eigenvalues of M(t) at t = 8000 s, 110,000 s, 623,000 s, and 990,000 s,
where the initial angular velocity of the secondary is 1.0ω0.
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Figure 7. The distribution of the eigenvalues of M(t) in 106 s, with initial angular velocity of the
secondary of 1.0ω0.

Next, we focused on the maximum eigenvalue at each time step and the corresponding
eigenvectors, in which the error scaling was maximal in this direction. Figure 8a shows the
variation in the modulus of the maximum eigenvalue with time, and the results show that
the modulus basically showed an increasing trend as time progressed. As we are concerned
with the error propagation from the secondary in the φ-direction, we also analyzed the
variation of the component of the corresponding eigenvectors in the φ-direction, as shown
in Figure 8b. These results show that the components of the eigenvectors in this direction
were of particularly low order in magnitude, and the errors did not diverge in this direction.

Figure 8. The maximum eigenvalue of M(t) and the corresponding eigenvector component in the
φ-direction, where the initial angular velocity of the secondary is 1.0ω0: (a) Variation of the modulus
of the maximum eigenvalue over 106 s seconds; and (b) the component of the eigenvector in the
φ-direction corresponding to the maximum eigenvalue.

We observed the 12 components of the eigenvector corresponding to the maximum
eigenvalue at each time step, and found that the largest components of the eigenvector
were in the x and y directions, and the components of the other directions were all much
smaller than these two directions. Figure 9 shows the variation of these two components,
so the error amplification caused by the maximum eigenvalue was mainly concentrated
in the x and y directions of the orbital position of the secondary. Therefore, at the angular
velocity of 1.0ω0, the error accumulation is mainly in the x and y axes of the orbit, and not
in the attitude of the secondary.
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Figure 9. Components of the eigenvector in the x-direction and y-direction corresponding to the
maximum eigenvalue.

Next, we increased the initial angular velocity and repeated the analysis above. The
distributions of the eigenvalues of M(t) for initial spin angular velocities of 1.1ω0, 1.2ω0,
and 1.3ω0 are shown in Figure 10, where (a) and (b) are the results of 1.1ω0, (c) and (d) are
the results of 1.2ω0, (e) and (f) are the results of 1.3ω0. (a), (c) and (e) indicate the overall
distribution of eigenvalues within the simulation time (with a sampling step of 10 s), while
(b), (d) and (f) indicate the trend of each eigenvalue towards the end of the simulation.
The results in (a)–(d) show that the distribution of eigenvalues of M(t) for initial angular
velocities of 1.1ω0 and 1.2ω0 were similar to those with an initial angular velocity of 1.0ω0,
with one eigenvalue moving away from the unit circle and all other eigenvalues distributed
near the unit circle, indicating that the motion in the direction of interest is relatively stable
for these two initial conditions.

Unlike the previous two cases, the results with an initial angular velocity of 1.3ω0
presented three eigenvalues moving away from the unit circle during the simulation time
(through further analysis, the eigenvalue shown in Figure 10f around 5.5 was found not to
move away from the unit circle, instead varying around it). Therefore, we further analyzed
the eigenvectors corresponding to these three eigenvalues. These three eigenvalues are
real eigenvalues, Figure 11a–c shows the variation of the modulus of these eigenvalues
with time, while (d)–(f) depict the components of the eigenvectors in the φ-direction
corresponding to these three eigenvalues, respectively.

The results show that, similar to the first three cases, for the first eigenvalue, the com-
ponent of its corresponding eigenvector in the φ-direction was extremely small, indicating
that this eigenvalue does not amplify the error of motion in the φ-direction. In contrast, the
second and third eigenvectors correspond to eigenvectors with large components in the
φ-direction, indicating that these two eigenvectors amplify the error of the motion in the
φ-direction. As time passes, the cumulative error in this direction will exceed the defined
stability range (90°).

In addition, we provide the components of the eigenvectors in the θ-direction cor-
responding to these three eigenvalues in Figure 11g–i. The eigenvector corresponding
to the first eigenvalue had a tiny component in the θ-direction, while the second and
third eigenvectors had significantly smaller components in the θ-direction than in the
φ-direction, suggesting that errors accumulated significantly more in the φ-direction than
in the θ-direction and, therefore, the motion is more prone to become unstable in the
φ-direction.
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Figure 10. Distribution of the eigenvalues of M(t) over 106 s seconds. (a,b) The initial angular
velocity of the secondary is 1.1ω0. (c,d) The initial angular velocity of the secondary is 1.2ω0. (e,f)
The initial angular velocity of the secondary is 1.3ω0.

Figure 12 shows the distribution of the eigenvalues of M(t) with initial spin angular
velocities of 1.4ω0 and 1.5ω0. The results show that, in these two cases, most of the
eigenvalues have moved away from the unit circle, indicating that large initial angular
velocities lead to more error amplification and a more unstable motion of the secondary
than in the previous cases.
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Figure 11. The variation of the modulus of the eigenvalues of M(t) and the components of the
eigenvector in the φ- and θ-directions corresponding to the eigenvalues over 106 s, where the initial
angular velocity of the secondary is 1.3ω0. (a) Modulus of the 1st eigenvalue. (b) Modulus of the
2nd eigenvalue. (c) Modulus of the 3rd eigenvalue. (d) φ of the 1st eigenvector. (e) φ of the 2nd
eigenvector. (f) φ of the 3rd eigenvector. (g) θ of the 1st eigenvector. (h) θ of the 2nd eigenvector. (i) θ

of the 3rd eigenvector.

Figure 12. The distribution of the eigenvalues of M(t) over 106 seconds, where the initial angular
velocity of the secondary is 1.4ω0 (a) and 1.5ω0 (b).
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3.3. Effect of the Non-Spherical Gravitational Field of the Primary and the Shape of the Secondary
on the Tumbling Motion of the Secondary

Based on the above analysis, an increase in the spin angular velocity can lead to unsta-
ble tumbling motion of the secondary. Next, we discuss the perturbation factors leading to
the tumbling rotation of the secondary, focusing on the non-spherical gravitational potential
of the primary and the shape of the secondary.

In terms of the non-spherical gravitational potential, we used the homogeneous
polyhedron model constructed by [30] as the model for the primary and calculated the
non-spherical gravitational terms J2–J7 of the model (please refer to the Appendix A for the
specific calculation method and the values of J2–J7). In order to study the influence of each
disturbance term of J2–J7 on the stability of φ of the secondary, we chose the gravitational
field of the primary as the particle gravitational field plus the gravitational field generated
by the disturbance term. For the secondary, we chose the model proposed by [2]. Taking
the J2 term as an example, we calculated the maximum φ values under 0 perturbation to
5 times the current J2 perturbation under different initial spin angular velocities of the
secondary within one year.

Figure 13 shows the influences of these six disturbance terms on φ, in which the colour
represents the magnitude of the maximum φ value within a year. In terms of the range
of angular velocity, we chose 1.0ω0 to 1.5ω0. When the angular velocity was greater than
1.36ω0, φmax was 90 degrees, and when the angular velocity was less than 1.2ω0, φmax was
very small. Therefore, in the figure, we only show the results with the angular velocity
ranging from 1.2ω0 to 1.36ω0. The results show that as the six non-spherical perturbation
terms increase, φmax becomes larger, making it easier to “flip”. However, this change was
not very obvious; therefore, the non-spherical perturbation terms are not the main factor
affecting the “flip” of the secondary in the φ direction.

In terms of the shape of the secondary, we used a mass point to model the primary,
while the model of the secondary was still that proposed by [2]; however, we changed the
shape of the ellipsoid. Assuming that the three semi-long axes of the ellipsoid were a, b, c
(a > b > c), we performed two sets of simulations by varying the values of a/b and b/c,
respectively, while keeping the total mass of the ellipsoid constant. Taking the first set of
simulations as an example, we calculated the maximum φ for a/b ranging from 1 to 1.5
under different initial spin angular velocities of the secondary within one year (Figure 14).
The results show that this unstable tumbling rotation of the secondary was related to the
shape of the ellipsoid, with the most unstable cases occurring at a/b = 1.16 and b/c = 1.22.
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Figure 13. The maximum φ value under different perturbation terms and initial angular velocities
within 1 year.

Figure 14. The maximum φ value under different a/b, b/c, and initial angular velocity within 1 year.
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4. Conclusions

In this paper, we discussed the stability of the excited spin state of the secondary in a
binary asteroid system over one year. For long-term numerical simulation schemes, we
combined the finite element method with a symplectic integral format for the simulation
of the full two-body problem, and compared it with low- and high-order Runge–Kutta
methods. We analyzed the rotation stability of the secondary using a linearised error prop-
agation matrix, and discussed the influence of the non-spherical perturbation terms J2− J7
of the primary and the shape of the secondary on the rotation stability of the secondary.

The results of the numerical simulation schemes over 10 years show that the Runge–
Kutta methods led to a monotonic increase in the relative error of the components of the
angular momentum, which can be avoided by the symplectic integrator. Therefore, we
chose the symplectic integrator as the numerical scheme for the long-term simulation of the
full two-body system. For the rotation stability of the secondary, the results demonstrate
that the secondary is prone to losing stability in rotation around its long-axis, which is
related to the post-impact spin angular velocity of the secondary. The rotation of the
secondary is stable when the spin angular velocity of the secondary satisfies the tidal
locking state to the primary; as the spin angular velocity of the secondary increases, errors
caused by the irregular gravitational field of the primary or by other reasons are more
prone to accumulating in the rotation direction of the secondary around its long axis, so
as to lose stability. For the non-spherical gravitational perturbation of the primary, the
results show that the rotation stability of the secondary does not change significantly even
if we amplify each perturbation term by a maximum of five times, which indicates that
the non-spherical perturbation term of the primary is not the main factor affecting the
rotation stability of the secondary under the current model of the primary. Furthermore, we
varied the ratio of the semi-major axis a/b and b/c (a > b > c) of the ellipsoid model of the
secondary, and the results show significant differences in the critical spin angular velocity
at which the secondary loses rotational stability for different a/b and b/c, suggesting that
the shape abnormality of the secondary has a more significant effect on the rotating stability
of the secondary.

In the next work, it will be necessary to compare more numerical simulation methods
in order to find the most suitable numerical simulation scheme for the full two body
problem. In addition, in the simplified model of the binary asteroid system, we used a
model with seven masses as the model of the secondary for computational reasons, and in
the future, further studies can be carried out using more refined models of the secondary
after solving the computational consumption problem.

Author Contributions: Conceptualization, Y.G. and Y.Y.; methodology, Y.G. and Y.Y.; software, Y.G.
and Y.Y; validation, Y.G., Y.Y. and J.L.; formal analysis, Y.G., B.C. and Y.Y.; investigation, Y.G. and
Y.Y.; resources, Y.G. and Y.Y.; data curation, Y.G. and Y.Y.; writing—original draft preparation, Y.G.;
writing—review and editing, B.C., Y.Y., J.L. and H.B.; The research work is discussed by all authors.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China Grant
No. 12022212.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the members of Hera WG3 group for the constructive conversations.
Y.Y. acknowledges financial support provided by the National Natural Science Foundation of China
Grant No. 12022212.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix provides the method for calculating the coefficients of the spherical
harmonic function using the finite element method. The spherical harmonic function
method is a mature and effective method for dealing with the gravitational field of planets,
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and has been widely used in determining the dynamics of near-Earth satellite orbits. This
method can also be used to describe the non-spherical perturbation of the gravitational
field near small celestial bodies. The advantage of this method is that it is computationally
efficient and requires few parameters. Here, we combine the spherical harmonic function
method and the finite element method to calculate the orbit of a mass point around the
small celestial body, such that the irregular shape and non-homogeneous internal structure
of asteroids can be taken into account, while ensuring efficient computational efficiency.

In another work [34], we have given a calculation method for the gravitational force
of a small irregular celestial body on a mass point by FEM. The gravitational field can be
described as

U = G
N1

∑
α

wασα

|rα − r| (A1)

where N1 represents the number of nodes described by the finite element method of the
small celestial body, ωα represents the weight of the αth node, σα represents the density of
the αth node, rα represents the position of the node, and r represents the position of the mass
point (please refer to [14] for explanations of the specific parameters). The advantages of this
method have been described above, while the key disadvantage is that the computational
effort increases as the grid of the primary model is divided approximately finely. Even
if it is accelerated by various means, it still cannot change the fact that the gravitational
potential between each node and the mass point needs to be calculated. Therefore, we
desire to combine the spherical harmonic function method to improve the computational
efficiency in orbit calculation.

The general method for calculating the gravitational field by the spherical harmonic
function method is

U =
GMa

R

[
1 +

∞

∑
l=1

Cl0

( aa

R

)l
Pl0(sin ϕ)

+
∞

∑
l=1

l

∑
m=1

( aa

R

)l
Plm(sin ϕ)(Clm cos mλ + Slm sin mλ)

] (A2)

where Ma is the mass of the small celestial body, aa is the equatorial radius of the reference
ellipsoid of the small celestial body, Plm(sin ϕ′) is the Associated Legendre polynomial of
sin ϕ′,δ = 0 (m = 0) or δ = 1 (m �= 0), and R is the distance from the mass point to the centre
of the small celestial body. For the spherical harmonics method to describe the gravitational
field, the parameters describing the irregularity of the shape and the inhomogeneity of the
internal mass distribution of the small celestial body are

Clm = 2δ (l −m)!
(l + m)!

(
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Maal
a

) ∫∫∫
ρl Plm

(
sin ϕ′

)
cos mλ′dM

Slm = 2δ (l −m)!
(l + m)!

(
1

Maal
a

) ∫∫∫
ρl Plm

(
sin ϕ′

)
sin mλ′dM

(A3)

where λ′ and ϕ′ are the longitude and latitude of the volume element dM, respectively, and
ρ is the distance from the volume element dM to the centre of mass of the small celestial
body. In Equation (A2), the term with m = 0 is independent of longitude and is called the
zonal harmonic term; while the term with m �= 0 is related to longitude and is called the
tesseral harmonic term. Using the finite element method, replacing the body element dM
with the node, the integral number of Equation (A3) can be split. Then,

Clm = 2δ (l −m)!
(l + m)!

(
1

Maal
a

)
∑
α

wασαρl Plm
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sin ϕ′

)
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Slm = 2δ (l −m)!
(l + m)!

(
1

Maal
a

)
∑
α

wασαρl Plm
(
sin ϕ′

)
sin mλ′

(A4)
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Now, if we learn about the information of the shape and internal mass distribution
of a small body, we can model it using the finite element method, then calculate the
corresponding spherical harmonic function coefficients using the above method. Below, we
explain the accuracy of this method using the primary model of Didymos as an example.
We keep the mass constant and adjust the internal structure of the primary using four
models: (a) Uniform internal density distribution. (b) The density decreases from the
inside to the outside, with the centre density set to 3.2 g/cm2 (equivalent to the density
of granite) and the surface density set to 1.6 g/cm2 (equivalent to the density of sandy
soil); (c) The internal structure is hollow. (d) The internal structure contains some holes
(we implement this by removing some elements and replacing them with voids). The four
models correspond to Figure A1a–d, respectively. Then, the spherical harmonic function
coefficients are calculated using the above method. Some of these coefficients are shown in
Table A1.

Figure A1. The internal structure of the primary: (a) Uniform internal mass distribution; (b) density
decreases from inside to outside; (c) hollow structure; and (d) randomly distributed internal holes.

We calculated the orbits of the mass point around the primary over one month using
the finite element method and the spherical harmonic function method, respectively. We
set a random initial position and velocity for the mass point, with a distance 1200 m from
the primary and whose velocity kept it in a circular orbit.
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Table A1. The coefficients of the partial spherical harmonic functions of the four models correspond-
ing to Figure A1.

Model (a) Model (b) Model (c) Model (d)

J2 1.1806016× 10−2 9.8940464× 10−3 1.6734636× 10−2 1.5034951× 10−2

J3 1.6620303× 10−3 1.5130812× 10−3 2.4893284× 10−3 1.3309408× 10−3

J4 −8.2823689× 10−3 −6.5632877× 10−3 −1.1255250× 10−3 −8.4519822× 10−3

J5 1.3132394× 10−3 1.0301008× 10−3 1.9799122× 10−3 1.7177357× 10−3

J6 5.0458902× 10−3 4.3363831× 10−3 7.6811147× 10−3 5.0889960× 10−3

C22 1.4205710× 10−3 1.2214748× 10−3 2.0914078× 10−3 1.3592346× 10−3

S22 −1.4884062× 10−17 −6.5408149× 10−17 3.4962132× 10−17 2.7487490× 10−17

C31 1.4205710× 10−3 8.2970092× 10−4 1.4993794× 10−3 1.3687619× 10−3

C32 4.5358186× 10−4 3.1217587× 10−4 5.1968086× 10−4 6.2947825× 10−4

C33 −7.3986272× 10−5 −6.7329189× 10−5 −1.3757727× 10−4 −1.1369448× 10−4

S31 −1.7122335× 10−3 4.1793971× 10−3 7.1960664× 10−3 −4.8583376× 10−3

S32 −5.5112926× 10−4 5.0319504× 10−4 8.1352188× 10−4 −5.2487380× 10−4

S33 4.3490667× 10−5 −8.4002799× 10−5 −1.5102661× 10−4 7.3761001× 10−5

C41 8.2756971× 10−4 4.8424441× 10−4 7.54612325× 10−4 8.8267016× 10−4

C42 −3.6264708× 10−5 −5.1243370× 10−6 −7.8521454× 10−5 5.8103214× 10−5

C43 −4.9772428× 10−5 −6.6087746× 10−5 −9.8008247× 10−5 −4.0274728× 10−5

C44 2.2303289× 10−5 1.8673576× 10−5 3.19242917× 10−5 2.40624550× 10−5

S41 1.7122335× 10−3 1.4349064× 10−3 2.4430001× 10−3 −1.1834871× 10−3

S42 1.4850440× 10−4 −1.4613356× 10−4 −2.4425241× 10−4 1.9224648× 10−4

S43 −1.4255166× 10−4 1.0462180× 10−4 1.8717446× 10−4 −1.4832237× 10−4

S44 3.7897508× 10−6 2.1443836× 10−6 −5.813172× 10−7 4.12749518× 10−6

C51 −3.1272871× 10−5 −3.4821246× 10−5 −6.8427557× 10−5 5.3334476× 10−5

C52 −1.3763895× 10−5 −9.4857243× 10−6 −1.8897903× 10−5 1.2900471× 10−5

C53 1.5176728× 10−5 1.0813339× 10−5 1.9819451× 10−5 2.3163710× 10−5

C54 −1.3104122× 10−6 −1.7654773× 10−6 −3.5584973× 10−6 −1.5303503× 10−6

C55 1.1230563× 10−7 −3.5638557× 10−8 −2.0440055× 10−8 4.6177160× 10−7

S51 −3.0555771× 10−4 2.5269240× 10−4 3.9629143× 10−4 −1.9158968× 10−4

S52 −8.3027337× 10−5 5.5164301× 10−5 1.0287761× 10−4 −6.4137630× 10−5

S53 −2.1025676× 10−5 1.9801873× 10−5 3.2486021× 10−5 −1.9990395× 10−5

S54 −8.5562671× 10−7 4.0510217× 10−7 9.9360799× 10−7 −3.4240771× 10−7

S55 −5.6674802× 10−7 7.9659473× 10−7 1.3832809× 10−6 −1.2130380× 10−6

C61 7.4598908× 10−5 1.0254846× 10−5 1.3039376× 10−4 −1.0657605× 10−4

C62 −2.2087532× 10−5 −8.6100296× 10−6 −2.6696073× 10−5 −1.5985003× 10−5

C63 −8.0428517× 10−6 −7.3253673× 10−6 −1.1413149× 10−5 −9.1612740× 10−6

C64 −4.0554689× 10−7 −4.0401878× 10−8 −1.9263216× 10−7 −2.1994592× 10−7

C65 1.2221950× 10−7 8.2412156× 10−8 1.54076076× 10−7 2.1036180× 10−7

C66 −3.6108293× 10−8 −5.009707× 10−8 −8.8044116× 10−8 −6.2420189× 10−8

S61 −2.6668643× 10−4 1.8252031× 10−4 1.7433184× 10−4 −4.6283910× 10−4

S62 9.1296564× 10−5 −8.4002799× 10−5 −1.2608227× 10−4 7.36740260× 10−5

S63 −8.4915327× 10−6 −8.4002799× 10−5 1.4218991× 10−5 −1.0994466× 10−5

S64 4.3587887× 10−7 −8.4002799× 10−7 −6.6267905× 10−7 4.28696097× 10−8

S65 −1.4568412× 10−7 −8.4002799× 10−7 1.94633108× 10−7 −1.1636263× 10−7

S66 −1.4975725× 10−8 −8.4002799× 10−8 −1.4714211× 10−8 5.34328597× 10−9

Figure A2 shows the distance between the orbital position of the mass point calculated
by the spherical harmonic function method considering different perturbation terms and
the position calculated by the finite element method; that is, the error in the calculated
orbital positions of the spherical harmonic function method. The four figures correspond
to the four models of the primary in Figure A1. Here, we take Figure A2a as an example to
explain. The blue line indicates that only J2, J3, and J4 of the zonal harmonic terms and T2
of the tesseral harmonic terms were considered, which are the main perturbation terms
for the calculation of the Earth’s gravitational field. The result shows bad performance in
error maintenance, with a maximum error of 520.02 m within one month. The light blue
line indicates that we added the tesseral harmonic terms T3 and T4 to the blue one, and the
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results show a significant reduction in the error, with a maximum error of 12.43 m within
30 days. The yellow line indicates that we added J5 and T5 to the light blue one, with a
maximum error of 5.40 m within 30 days. The red line indicates the addition of J6 and T6
to the yellow case, and the calculation error was significantly reduced, with a maximum
error of 2.35 m within 30 days.

Figure A2. The distance error between the orbit calculated by the spherical harmonic function method
and the finite element method. (a–d) correspond to the four models of the primary in Figure A1,
and the different coloured lines indicate that different perturbation terms are considered, where JX
indicates the expansion to the Xth order of the zonal harmonic term and TX indicates the expansion
to the Xth tesseral harmonic term.

The results show that our method is effective. For longer simulation times, we can
further calculate higher-order zonal and tesseral harmonic terms, such that the errors can
be maintained within acceptable accuracy. This method imposes no restrictions on the
shape and internal mass distribution of the small body. Furthermore, using this method,
we can calculate the coefficients of the spherical harmonic function of any finite element
model at once and call them in the orbit calculation, thus avoiding the high computational
cost of the finite element method when calculating high-precision models.
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Abstract: Due to the increasing complexity of the entire satellite system and the deteriorating orbital
environment, multiple independent single faults may occur simultaneously in the satellite power
system. However, two stumbling blocks hinder the effective diagnosis of simultaneous-fault, namely,
the difficulty of obtaining the simultaneous-fault data and the extremely complicated mapping of
the simultaneous-fault modes to the sensor data. To tackle the challenges, a fault diagnosis strategy
based on a novel rough set model is proposed. Specifically, a novel rough set model named FNζDTRS
by introducing a concise loss function matrix and fuzzy neighborhood relationship is proposed to
accurately mine and characterize the relationship between fault and data. Furthermore, an attribute
rule-based fault matching strategy is designed without using simultaneous-fault data as training
samples. The numerical experiments demonstrate the effectiveness of the FNζDTRS model, and
the diagnosis experiments performed on a satellite power system illustrate the superiority of the
proposed approach.

Keywords: simultaneous-fault diagnosis; rough set; attribute reduction; satellite power system

MSC: 94C12

1. Introduction

The power system is regarded as the heart of a satellite, whose health management is
critical to the on-orbit operation of the entire satellite. The satellite power system is mainly
composed of a solar array and battery pack. The solar array exposes in the outer space
environment for a long time, and is very vulnerable to external environment intrusion. The
battery pack is in a frequent and long-term working state with the periodic operation of the
satellite. Therefore, with the increasing probability of space junk collisions, intense radiation
of space particles, and striking temperature differences in space, the satellite power system
may have multiple independent single faults occurring at the same time, which is called
simultaneous-fault [1]. Accurate fault diagnosis is the basis for the health management
of a satellite. At present, the research on the diagnosis of single-fault has achieved great
success [2,3]. However, as satellites become more complex in their functional composition
and longer in their mission time, the mode of simultaneous-fault has become the key factor
affecting the normal on-orbit operation of satellites, and the risk and influence caused
by such a fault mode cannot be ignored, because the development speed and destructive
power of such a fault mode are far more than that of a single-fault mode. Therefore, it is
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necessary to diagnose the simultaneous-fault precisely to make sound decisions to enable
satellites to perform their missions smoothly and safely. This is the core motivation of our
work, namely, we try to solve the diagnosis problem of simultaneous-fault, which is more
complex and more harmful than that of single-fault.

With respect to the diagnosis of simultaneous-fault, there are two major challenges that
can be listed as follows: (1) The historical simultaneous-fault data are scarce, which greatly
limits the effectiveness of data-driven models; (2) The simultaneous-faults would involve
multiple sensors, and the mapping between sensor data and fault modes is complicated,
which leads to the uncertainty in the diagnosis process. Therefore, new cognitive methods
and further research are needed for simultaneous-fault cognition and diagnosis. These can
be considered as the technical motivation of our research.

Regarding the first challenge issue, the absence of historical simultaneous-fault data is
a thorny problem that needs to be solved urgently. Unlike the traditional fault diagnosis
studies that require all kinds of samples during the training phase [4–6], some literature has
shown that multi-label classification is expected to achieve simultaneous-fault diagnosis
without historical simultaneous-fault data [1,7–10]. The multi-label classification task
focuses on the problem where each training simple is represented by a single instance with
a single label, and the task is to yield a model that can predict the proper label sets for
unseen instances [11]. Multi-label classification methods can be divided into two categories,
one of which is the problem transformation methods, including Binary Relevance [12],
Classifier Chains [13], Calibrated Label Ranking [14], and other classical methods; the
other includes the algorithm adaptation methods, including multi-label K-nearest neighbor
(ML-KNN) [15], multi-label decision tree (ML-DT) [16], etc. However, in the face of complex
problems, the above methods cannot effectively deal with the problem of insufficient data,
and there is still a need for long-term and in-depth research.

For the second challenge issue, some data mining methods are good solutions. In
terms of the cognition of things, rough set theory provides a perspective of knowledge
and data fusion. This is the main reason why this paper chooses the rough set model
as the basic model. The setting of condition attribute and decision attribute can provide
multiple information for the characterization of fault, which is conducive to extracting the
mapping information between sensor data and fault modes. Rough set theory initiated by
Pawlak [17] provides an authoritative mathematical framework for analyzing and handling
ambiguous and uncertain data, which can be used to attribute reduction [18–22], rule
extraction [23–26], and uncertainty reasoning [22,27–29]. Among kinds of rough set models,
the decision-theoretic rough set (DTRS) model has been proved to be a generalized model
of many other rough set models [30,31]. At present, there have been related studies on
various decision-theoretic rough set models for fault diagnosis, which have proved that the
models can effectively select the fault attributes when the pair of the threshold parameters
is set appropriately [30,31]. Nevertheless, how to determine the appropriate threshold
parameters is the biggest difficulty in the research and application of DTRS. In our previous
work [32], we have presented a single-parameter decision-theoretic rough set (SPDTRS)
model by setting only one parameter named compensation coefficient rather than two or
six, which facilitates the convenient application of the DTRS model. However, the setting
of the compensation coefficient in this model is still not clear enough, and the setting of the
loss function matrix is defective. In addition, this model lacks the consideration of uncertain
information in data description, which makes it unable to deal with continuous data directly.
Therefore, in order to make the rough set model (i.e., SPDTRS) more effective in dealing
with the simultaneous-fault problem, we need to carry out more targeted improvement
work. The details are as follows.

Motivated by the analyses mentioned above, in this work, we propose a fault matching
strategy for simultaneous-fault diagnosis based on a revised DTRS named fuzzy neighbor-
hood ζ-decision-theoretic rough set model (FNζDTRS). Since there is a coupling relationship
of fault characteristics between a single-fault and its associated simultaneous-fault, this
paper proposes the fault matching strategy based on this principle. The main idea of the
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proposed strategy is that when an unknown simultaneous-fault occurs, its fault attributes
are first selected by the FNζDTRS and then classified according to the correlation between
the obtained fault attributes and the fault attributes of each single-fault selected by the
FNζDTRS model beforehand. Therefore, the main novelties and contributions of this study
can be listed as follows.

(1) A novel and concise data-driven loss function matrix is designed for DTRS.
(2) A fuzzy neighborhood ζ-decision-theoretic rough set model is proposed with the help

of the fuzzy neighborhood relationship and the proposed loss function matrix, which
can deal with hybrid data common in engineering.

(3) The proposed FNζDTRS model, used for attribute reduction, has a significant advan-
tage in classification accuracy compared with other existing rough sets. This proves
that it is more suitable for real fault diagnosis.

(4) A diagnosis strategy of simultaneous-fault is put forward based on a coupling map-
ping relationship between single-fault and its associated simultaneous-fault. This
ensures that our strategy can handle both single-fault and simultaneous-fault.

(5) The proposed strategy is successfully applied to the simultaneous-fault diagnosis of
the satellite power system and only requires single-fault samples in the training phase,
which is highly feasible for practical applications.

The remainder of this paper starts with some preliminaries and related work, then
puts forward the presentation of the FNζDTRS model in Section 2 and presents the basic
framework of simultaneous-fault diagnosis in Section 3. The effectiveness and superiority
of the FNζDTRS model is verified through some numerical experiments in Section 4,
and further demonstrated by a comparative analysis with several baseline algorithms
for simultaneous-fault diagnosis in Section 5. The paper closes with main conclusions
in Section 6.

2. Preliminaries and Related Work

This subsection will review some notions about rough sets that are relevant to the
development of our theory.

Definition 1. (Decision system) A binary group: DS = (U, C ∪ D) can describe a decision system.
Among them, U = {x1, x2, · · · , xm} is called the universe, which is a finite and nonempty set. D
is the set of decision attributes which is a nonempty set. C is the collection of conditional attributes,
C ∩ D = ∅, D �= ∅ 31. Therefore, the relationship between each element in a decision system
can be represented as shown in Figure 1. To better understand the above definition, we describe
the above-mentioned elements in combination with the fault diagnosis problem. C represents the
parameters output by the sensor or the extracted feature attributes, D represents the category of the
failure mode, and U denotes the collected data.

Figure 1. The illustration of a decision system.
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The decision-theoretic rough set (DTRS) presented by Yao et al. [33]. provides a concise
semantic interpretation through a loss function matrix. The loss function matrix is described
in Table 1.

Table 1. The detailed information of a loss function matrix.

Q Qc

aP λPP λPN
aB λBP λBN
aN λNP λNN

Consider that X is the subset of samples with the same label dk. The state Q suggests
that a related sample defined as x is in X, and the state Qc suggests that x is not in X.
The set of actions aP, aB, and aN indicate the classification of x into three regions, which
are x ∈ POS(X), x ∈ BND(X), x ∈ NEG(X). POS(X) denotes the acceptance of the
event x ∈ X. BND(X) denotes the deferment of the event x ∈ X, also considers BND(X)
denotes the non-commitment of the event x ∈ X. NEG(X) denotes the rejection of x ∈ X.
Furthermore, λ•P denotes the loss caused by taking actions (aP, aB, aN) while x ∈ X. λ•N
is the loss caused by taking actions (aP, aB, aN) while x /∈ X.

Consider this scenario: the risk of delaying the execution of the correct action is increased
compared to that of the correct action, and both are less than the loss of taking the wrong
action, the DTRS model therefore made a reasonable assumption: 0 ≤ λPP ≤ λBP < λNP and
0 ≤ λNN ≤ λBN < λPN , which is the basis for generating this rough set model.

Thanks to the above assumption, a pair of threshold parameters is used to define the
positive region POS(X), the boundary region BND(X) and the negative region NEG(X)
to construct the DTRS model, which is guided by the Bayesian risk minimization principle
and the three-way decision theory. Thus, we have the form of a DTRS model as follows 31:

POS(α,β)(X) = {x ∈ U|P(X|[x]) ≥ α}, (1)

BND(α,β)(X) = {x ∈ U|β < P(X[x]) < α}, (2)

NEG(α,β)(X) = {x ∈ U|P(X|[x]) ≤ β}. (3)

The following equations represent the relationship between the two threshold param-
eters and the six loss functions:

α =
(λPN − λBN)

(λPN − λBN) + (λBP − λPP)
, (4)

β =
(λBN − λNN)

(λBN − λNN) + (λNP − λBP)
. (5)

The key parts of the DTRS model are the loss function or threshold parameter (α, β).
To study and employ the DTRS model, an important issue is how to determine these
parameters. Inspired by the idea of being data-driven, our previous work proposed a
single-parameter decision-theoretic rough set (SPDTRS) model [32] that simplifies the
traditional DTRS model. Specifically, the model requires only one parameter to be preset
rather than the pair of (α, β) or the six parameters in the loss function matrix. However, the
solution of employing two truncation functions utilized in the model calculation makes the
model relatively complex. Moreover, the interpretability of the loss function matrix in the
SPDTRS model is slightly insufficient. The above two disadvantages are the focus of this
paper in proposing a new rough set model.
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3. Fuzzy Neighborhood ζ-Decision-Theoretic Rough Set

3.1. Granular Computing Based on Fuzzy Neighborhood Relationship

In order to be more applicable to practical problems, rough set models need to be able
to handle a hybrid dataset, including continuous and discrete data. Fuzzy relationship and
neighborhood relationship are two effective means to deal with the spatial relationship of
samples. Their combined form is used by a variety of models [34]. The fuzzy neighborhood
relationship can analyze the relationship between the entities in the decision system more
precisely. Therefore, to overcome the inability of the SPDTRS model to handle the hybrid
dataset, we introduce this fuzzy neighborhood relationship.

Definition 2. (Fuzzy neighborhood relationship) Given a decision system DS = (U, C ∪ D), for
an arbitrary sample x ∈ U, the fuzzy neighborhood subset of x is defined as:

[x]δ = {y ∈ U|r(x, y) ≥ δ}, (6)

where δ is fuzzy neighborhood radius. The range of δ is 0 ≤ δ ≤ 1. If x and y are continuous data,

we have r(x, y) = 1− 1
n

√(
∑n

i=1(xi − yi)
2
)

. While the two elements x and y are discrete data,

we have

r(x, y) =
{

1, if xi = yi
0, if xi �= yi

, (7)

Thus, the fuzzy neighborhood subset is also called equivalence class. On this basis,
the fuzzy conditional probability of x could be described as:

P̃
(

X|[x]δ
)
=

∑
{

r(x, y)|y ∈
(

X ∩ [x]δ
)}

∑
{

r(x, z)|z ∈ [x]δ
} , (8)

where X is the subset of samples with the same label dk. Under the assumption of the fuzzy
neighborhood subset [x]δ ∩ X �= ∅, we have 0 < P̃

(
X|[x]δ

)
≤ 1, while P̃

(
X|[x]δ

)
= 1 if

and only if [x]δ ⊆ X. ∑ {} represents the sum of all elements in its set.

3.2. Determination of the Two Threshold Parameters

Considering the disadvantage of the SPDTRS model, a new loss function matrix is
proposed, which is under fuzzy neighborhood relationship by a concise loss function
relationship to avoid introducing the truncation functions. The novel SPDTRS model
avoids the discussion of multiple situations and reduces the computational complexity of
the SPDTRS model.

In the new loss function matrix, the data-driven loss functions under fuzzy neigh-
borhood relationship is shown in Table 2. Besides, P̃

(
X|[x]δ

)
is the fuzzy neighborhood

conditional probability, which can be calculated by Equation (8). The compensation coeffi-
cient is ζ with 0 ≤ ζ < 1. S̃

(
X|[x]δ

)
and S̃c

(
X|[x]δ

)
are the significance coefficients, which

can be described as follows:

S̃
(

X|[x]δ
)
=

∑
{

P̃
(

X|[y]δ
)
|y ∈

(
X ∩ [x]δ

)}
∑
{

P̃
(

X|[z]δ
)
|z ∈ X

} , (9)

S̃c
(

X|[x]δ
)
=

∑
{

P̃
(

Xc|[y]δ
)
|y ∈

(
Xc ∩ [x]δ

)}
∑
{

P̃
(

X|[z]δ
)
|z ∈ X

} . (10)
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where ∑ {} represents the sum of all elements in its set.
Under the assumption of the equivalence class [x]δ ∩ X �= ∅, the relationships

S̃
(

X|[x]δ
)
> 0 and S̃c

(
X|[x]δ

)
≥ 0 hold, and S̃c

(
X|[x]δ

)
= 0 if and only if [x]δ ⊆ X.

Table 2. The fuzzy neighborhood data-driven loss function matrix.

Q Qc

ap λPP = 0 λPN = S̃c
(

X|[x]δ
)

aB λBP = S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ λBN = S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ

aN λNP = S̃
(

X|[x]δ
)

λNN = 0

Subsequently, we can conclude the pair of threshold parameters according to the
fuzzy neighborhood data-driven loss function matrix, which can be represented as follows.
In addition, we rewrite S̃

(
X|[x]δ

)
= S,S̃c

(
X|[x]δ

)
= Sc,P̃

(
X|[x]δ

)
= P for the sake

of convenience.

α f n = (λPN−λBN)
(λPN−λBN)+(λBP−λPP)

=
(SC−SC(1−P)ζ)

(SC−SC(1−P)ζ)+(SPζ−0)

= SC(1−ζ+Pζ)
SC(1−ζ+Pζ)+SPζ

, (11)

β f n = (λBN−λNN)
(λBN−λNN)+(λNP−λBP)

=
(SC(1−P)ζ−0)

(SC(1−P)ζ−0)+(S−SPζ)

= SC(1−P)ζ
SC(1−P)ζ+S(1−Pζ)

. (12)

Subsequently, we can set up three-way decision rules as follows:
Rule (P): Decide x ∈ POS(X) while P̃

(
X|[x]δ

)
≥ α f n;

Rule (B): Decide x ∈ BND(X) while β f n < P̃
(

X|[x]δ
)
< α f n;

Rule (N): Decide x ∈ NEG(X) while P̃
(

X|[x]δ
)
≤ β f n.

According to the decision rules, the following roots about α f n and β f n can be described
in the following two cases.

Case 1: 0 < ζ < 1

From the rule (P), we can obtain

P ≤
(
2ζSC − SC)−√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
,

P ≥
(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
. (13)

From the rule (N), we can obtain

P ≤
(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

,

P ≥
(
2ζSC + S

)
+
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (14)
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From these results, we can only accept two roots because of the relationship 0 < P ≤ 1.
Thus, we can rewrite these two roots:

α
f n
1 =

(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
, (15)

β
f n
1 =

(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (16)

Case 2: ζ = 0

The values of these two parameters are as follows:

α
f n
2 = 1, (17)

β
f n
2 = 0. (18)

The model arising from this case corresponds to the Pawlak model. Both boundary loss
functions are equal to 0. Therefore the model clearly exhibits a two-way decision-making
characteristic. Thus, the Pawlak model is one of the specific examples of our model, and
ζ = 0 is a necessary non-sufficient condition for it.

Theorem 1. For the fuzzy neighborhood data-driven loss function matrix, assuming the equivalence
class [x]δ ∩ X �= ∅, when [x]δ � X holds, namely, the concerned equivalence class is not a
consistent class, then we have:

(a1) λPP ≤ λBP < λNP,
(a2) λNN ≤ λBN < λPN .
When [x]δ ⊆ X holds, i.e., the concerned equivalence class is a consistent class, then we have:
(b1) λPP ≤ λBP < λNP
(b2) λNN = λBN = λPN = 0

Proof.

(a1) If [x]δ � X, then S̃
(

X|[x]δ
)

> 0, 0 < P̃
(

X|[x]δ
)

< 1. Since 0 ≤ ζ < 1,

λBP = S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ , then 0 ≤ λBP < S̃
(

X|[x]δ
)

. Due to λPP = 0 and

λNP = S̃
(

X|[x]δ
)

, hence λPP ≤ λBP < λNP.

(a2) If [x]δ � X, then S̃c
(

X|[x]δ
)

> 0, 0 < P̃
(

X|[x]δ
)

< 1. Since 0 ≤ ζ < 1,

λBN = S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ, then 0 ≤ λBN < S̃c
(

X|[x]δ
)

. Due to λNN = 0 and

λPN = S̃c
(

X|[x]δ
)

, hence λNN ≤ λBN < λPN .

(b1) If [x]δ ⊆ X, then S̃
(

X|[x]δ
)

> 0, P̃
(

X|[x]δ
)

= 1. Since 0 ≤ ζ < 1, λBP =

S̃
(

X|[x]δ
)

P̃
(

X|[x]δ
)

ζ, then 0 ≤ λBP < S̃
(

X|[x]δ
)

. Due to λPP = 0 and λNP = S̃
(

X|[x]δ
)

,
hence λPP ≤ λBP < λNP.

(b2) If [x]δ ⊆ X, then S̃c
(

X|[x]δ
)
= 0, and P̃

(
X|[x]δ

)
= 1. Since 0 ≤ ζ < 1, λBN =

S̃c
(

X|[x]δ
)(

1− P̃
(

X|[x]δ
))

ζ, then λBN = 0. Due to λNN = 0 and λPN = S̃c
(

X|[x]δ
)

,
hence λNN = λBN = λPN = 0. QED. �

3.3. Establishment of FNζDTRS

Reasoning by Section 3.2, the expressions of these two threshold functions lead to the
following results:α f n = f (S, Sc, ζ) and β f n = f (S, Sc, ζ) under the above two conditions,
where α f n =

{
α

f n
1 , α

f n
2

}
and β f n =

{
β

f n
1 , β

f n
2

}
. Based on Equations (9) and (10), it is easily

to obtain S and Sc by confirming the parameter δ and analyzing the distribution information
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of the original data. In summary, we can change these two threshold parameters to
α f n = f (δ, ζ), β f n = f (δ, ζ). The rough set model below, which is including parameters δ
and ζ is defined as fuzzy neighborhood ζ-decision-theoretic rough set (FNζDTRS):

P̃OS =
{

x ∈ U|P̃
(

X|[x]δ
)
≥ α f n

}
, (19)

B̃ND =
{

x ∈ U|β f n < P̃
(

X|[x]δ
)
< α f n

}
, (20)

ÑEG =
{

x ∈ U|P̃
(

X|[x]δ
)
≤ β f n

}
, (21)

where both threshold parameters have different descriptions under the following two
conditions:

Case 1: 0 < ζ < 1, then

α
f n
1 =

(
2ζSC − SC)+√SC(−4ζ2S + 4ζS + SC)

2ζ(S + SC)
, (22)

β
f n
1 =

(
2ζSC + S

)
−
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

. (23)

Case 2: ζ = 0, then
α

f n
2 = 1, (24)

β
f n
2 = 0. (25)

In the above FNζDTRS model, there are only two cases to discuss, in contrast to the
SPDTRS model that requires four cases to discuss, which greatly reduces the computational
complexity of the SPDTRS model due to the concise setting of loss functions.

Theorem 2. In the FNζDTRS model, given two compensation coefficients ζ1 and ζ2 with
0 ≤ ζ1 < 1 and 0 ≤ ζ2 < 1, and the parameter δ is fixed, if there exists ζ1 ≥ ζ2, then
α f n(ζ1) ≤ α f n(ζ2) and β f n(ζ1) ≥ β f n(ζ2) hold.

Proof. If the equivalence class [x]δ ⊆ X, then SC = 0, according to Equations (22)–(25),
when 0 < ζ < 1, α f n(ζ1) = α f n(ζ2) = 0, β f n(ζ1) = β f n(ζ2) = 0, when ζ = 0,
α f n(ζ1) = α f n(ζ2) = 1, β f n(ζ1) = β f n(ζ2) = 0. If the equivalence class [x]δ � X, then
its monotonicity relations will be proved by the following derivations.

Part I: For ζ1 ≥ ζ2 ⇒ α f n(ζ1) ≤ α f n(ζ2) , two cases need to be considered.

Case 1: 0 < ζ < 1

Since α
f n
1 =

(2ζSC−SC)+
√

SC(−4ζ2S+4ζS+SC)
2ζ(S+SC)

, we set η = 1/ζ, due to 0 < ζ < 1, then

η > 1 and α
f n
1 =

(2SC−ηSC)+
√

η2(SC)
2
+4ηSSC−4SSC

2(S+SC)
. Due to S > 0, SC > 0, we can set

α
f n
1 =

(
2SC − ηSC)+√η2(SC)

2
+ 4ηSSC − 4SSC for simplicity of derivation. We can find

the partial derivative of it, denoted as f 1
α , which is

f 1
α =

∂α
f n
1

∂η
= −SC +

η
(
SC)2

+ 2SSC√
η2(SC)

2
+ 4ηSSC − 4SSC

.
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Its second-order partial derivative is denoted as f 2
α :

f 2
α =

∂2α
f n
1

∂2η
=

−4S
(
SC)2(S + SC)(

η2(SC)
2
+ 4ηSSC − 4SSC

)3/2 < 0.

Because f 2
α is less than 0, f 1

α is monotonically decreasing. Since η > 1, f 1
α → 2S > 0(1 ← η) ,

f 1
α → 0(η → +∞) , then f 1

α > 0. Therefore, α
f n
1 grows monotonically with respect to η.

Hence, α
f n
1 decreases monotonically with respect to ζ, that is ζ1 ≥ ζ2 ⇒ α

f n
1 (ζ1) ≤ α

f n
1 (ζ2) .

Case 2: ζ = 0
In this case, we have α

f n
2 = 1. Thus, for ζ1 ≥ ζ2, we have α

f n
2 (ζ1) = α

f n
2 (ζ2).

Part II: For ζ1 ≥ ζ2 ⇒ β f n(ζ1) ≥ β f n(ζ2) , two cases need to be considered as well.

Case 1: 0 < ζ < 1

Since β
f n
1 =

(2ζSC+S)−
√

S(−4ζ2SC+4ζSC+S)
2ζ(S+SC)

, we also set η = 1/ζ, due to 0 < ζ < 1,

then η > 1 and β
f n
1 =

(2SC+ηS)−
√

η2S2+4ηSSC−4SSC

2(S+SC)
. Due to S > 0, SC > 0, we have the

simple form β
f n
1 =

(
2SC + ηS

)
−
√

η2S2 + 4ηSSC − 4SSC. We describe partial derivatives

of β
f n
1 like:

f 1
β =

∂β
f n
1

∂η = S− ηS2+2SSC√
η2S2+4ηSSC−4SSC

,

f 2
β =

∂2β
f n
1

∂2η
=

4S2SC(S+SC)

(η2S2+4ηSSC−4SSC)
3/2 > 0.

From f 2
β > 0, we know that f 1

β increases monotonously along with η. Since η > 1,

f 1
β → −2SC < 0(1 ← η) , f 1

β → 0(η → +∞) , then f 1
α < 0, and β

f n
1 is monotonously de-

creasing with regard to η. Therefore, β
f n
1 is monotonously increasing with ζ, that is

ζ1 ≥ ζ2 ⇒ β
f n
1 (ζ1) ≥ β

f n
1 (ζ2) . QED. �

Theorem 3. In the FNζDTRS model, the relationship 0 ≤ β f n ≤ α f n ≤ 1 holds.

Proof. If the equivalence class [x]δ ⊆ X, then SC = 0, according to Equations (22)–(25),
when 0 < ζ < 1, α f n = β f n = 0, when ζ = 0, α f n = 0, β f n = 1, satisfying the inequality
0 ≤ β f n ≤ α f n ≤ 1. If the equivalence class [x]δ � X, then in following three parts we
intend to prove the inequality.

Part I: Proof of 0 ≤ β f n under two cases.

Case 1: 0 < ζ < 1

According to Equation (23), we could get β
f n
1 =

(
2ζSC+S

)
−ψ

2ζ(S+SC)
, ψ =

√
(S + 2ζSC)2 − 4ζ2SC(S + SC),

and then we only need to prove 4ζ 2 SC(S + SC) > 0. Since S > 0, SC > 0, then

4ζ 2 SC(S + SC) > 0, so β
f n
1 > 0.

Case 2: ζ = 0

In this case, we have β
f n
2 = 0.

Part II: Proof of the inequality β f n ≤ α f n in two cases.

Case 1: 0 < ζ < 1
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According to Equations (22) and (23), we could get

α
f n
1 − β

f n
1 =

−SC − S +
√

SC(−4ζ2S + 4ζS + SC) +
√

S(−4ζ2SC + 4ζSC + S)
2ζ(S + SC)

.

Since S > 0, SC ≥ 0, then√
SC(−4ζ2S + 4ζS + SC) =

√
4ζSSC(1− ζ) + (SC)

2
>
√
(SC)

2
= SC,√

S(−4ζ2SC + 4ζSC + S) =
√

4ζSSC(1− ζ) + S2 >
√

S2 = S,

so α
f n
1 − β

f n
1 > 0, that is β

f n
1 < α

f n
1 .

Case 2: ζ = 0

In this case, we have α
f n
2 = 1, β

f n
2 = 0, so β

f n
2 < α

f n
2 .

Part III: Proof of the inequality α f n ≤ 1 in two cases.

Case 1: 0 < ζ < 1

According to Equation (22), if we want to prove α
f n
1 ≤ 1, then we need to

prove
√

SC(−4ζ2S + 4ζS + SC) −
(
2ζS + SC) < 0, which means we need to prove

SC(−4ζ2S + 4ζS + SC)− (2ζS + SC)
2
< 0. Since S > 0, SC ≥ 0, then

SC
(
−4ζ2S + 4ζS + SC

)
− (2ζS + SC)

2
= −4ζ2SSC − 4ζ2S2 = −4ζ2S

(
SC + S

)
< 0.

Therefore, we have α
f n
1 < 1.

Case 2: ζ = 0

In this case, we have α
f n
2 = 1. QED. �

Theorem 4. For a decision system, which is described as DS = (U, C ∪ D) with a fixed parameter
δ, and two parameters ζ1 and ζ2 with 0 ≤ ζ1 ≤ ζ2 < 1, we have P̃OS1 ⊆ P̃OS2, ÑEG1 ⊆ ÑEG2,
B̃ND1 ⊇ B̃ND2.

Proof. At the very beginning of the proof, we assume an arbitrary sample y to facilitate the
proof of the theorem. While y ∈ P̃OS1, we have P(X|[y]) ≥ α f n(ζ1). Since 0 ≤ ζ1 ≤ ζ2 < 1,
the relation α f n(ζ1) ≥ α f n(ζ2) holds according to Theorem 2. Thus, P(X|[y]) ≥ α f n(ζ2)

and y ∈ P̃OS2 hold. Hence, we conclude that P̃OS1 ⊆ P̃OS2.

Likewise, to conclude that ÑEG1 ⊆ ÑEG2 and B̃ND1 ⊇ B̃ND2 is easy via Theorem 2.
From the above, we can find that ζ is inversely correlated with the range of neutrality

and positively correlated with the uncertainty of the decision. QED. �

3.4. FNζDTRS-Based Attribute Reduction Algorithm

Jia et al. [35] presented a reduction principle in response to the problem of attribute
reduction by using the DTRS model. The core idea of it is minimizing the risk of the
reduction subset. On this principle, our previous work has designed an attribute reduction
algorithm based on the SPDTRS model [32,34]. It is built on minimizing the risk of overall
decisions, which can be utilized for the attribute reduction in our proposed FNζDTRS
model. Therefore, the detailed attribute reduction algorithm is not repeated in this paper.
For details, the readers could refer to our previous work [32,34].
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4. Strategy of Simultaneous-Fault Diagnosis

Under the assumption that the data in all single-fault modes are fully available, when
an unknown fault occurs, we use the FNζDTRS model to mine the fault attributes of
the unknown fault. If the fault attributes of the unknown fault are different from the
fault attributes of the existing single-fault, then the unknown fault can be considered as
a simultaneous-fault. Furthermore, we can use the attribute reduction results obtained
from the FNζDTRS model to analyze and identify the corresponding fault modes of the
simultaneous-fault. Finally, a strategy of simultaneous-fault diagnosis called fault matching
strategy is formed, as shown in Figure 2.

The proposed fault matching strategy consists of two main parts, prior knowledge
acquisition and rule matching. In the first part, the single-fault data with abnormal labels
and normal data with normal labels are sent into the FNζDTRS model as the training data
set, and the optimal fault attribute subsets of each single-fault are obtained by attribute
reduction, used as the prior knowledge for subsequent diagnosis. In the second part, the
simultaneous-fault data with abnormal labels and normal data with normal labels are
combined to form the data to be diagnosed, and then the data are fed into the FNζDTRS
model to obtain the optimal fault attribute subset. The optimal fault attribute subset is then
obtained here and the optimal fault attribute subsets obtained in the first part are measured
by using the Jaccard similarity coeffective. It is worth noting that there may be some single
faults with the same fault attributes, therefore we set some rules based on the differences
between attribute data to subdivide the faults and complete the fault matching, which can
be seen in the subsequent experiments based on the satellite power system.

Figure 2. The procedure of fault diagnosis strategy for simultaneous-fault.

Based on the above description, we can write the core pseudo code in the above
process, as shown in Table 3.
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Table 3. The core pseudo code of the diagnosis strategy.

Input: Raw data of each single fault and normal state

Output: Fault mode

Part I Prior Knowledge Acquisition

For each DS regarding to single fault or state
Initialized: red = ∅, Cl = C, Rred = H, //H is a large positive number.
While Cl �= ∅

For c ∈ Cl
a = c ∪ red, //a is a temporary set.
Compute the risk generated by a.

End For
Find such a subset a = c ∪ red with the minimum risk, i.e., Ra.
If Ra < Rred

The subset a is the selected set
End If

End While
End For, return the reduction red set of each state.

Part II Rule Matching

Utilize the above code to obtain the reduction set r of the given fault data to be diagnosed.
For each red

Compute the similarity between red and r.
End For
Find such a red with the maximum similarity, which could be considered as the similar fault mode f.
Return f

5. Numerical Experiment of Attribute Reduction

The effectiveness and advantage of the proposed FNζDTRS model is verified on
several hybrid decision systems from the UCI (http://archive.ics.uci.edu/ml/index.php,
accessed on 21 July 2021) and KEEL (https://sci2s.ugr.es/keel/datasets.php, accessed on
21 July 2021) datasets. As shown in Table 4, the test datasets include both discrete and
continuous data. Specific comparative experiments regarding parameters test and attribute
reduction are conducted on the same hard and soft platforms. Ten baseline classifiers,
including NaiveBayes, REPTree, LogitBoost, SMO, Filtered, Bagging, PART, IBk, J48 and
JRip, are employed with a 10-fold cross-validation in Weka (https://waikato.github.io/
weka-wiki/downloading_weka/, accessed on 21 July 2021) software to demonstrate the
accuracy of attribute selection. The input data are normalized into the range of [0, 1] during
preprocessing.

Table 4. The information of the employed datasets.

ID Full Name Name Samples Attribute Discrete Continuous Class Source

1 Mutagenesis-Atoms Atoms 1618 10 8 2 2 KEEL
2 Australian Credit Approval Australian 690 14 8 6 2 UCI
3 Breast Cancer Breast 277 9 6 3 2 UCI
4 Heart Disease Cleveland Cleve 296 13 7 6 2 UCI
5 Statlog Heart Heart 270 13 6 7 2 UCI
6 Iris Iris 150 4 0 4 3 UCI
7 Website Phishing Phishing 1353 10 10 0 3 UCI
8 South African Hearth Saheart 462 9 1 8 2 UCI
9 Seismic-Bumps Seismic 2584 18 12 6 2 UCI

10 Congressional Voting Records Vote 435 16 16 0 2 UCI
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5.1. Parameters Test for FNζDTRS

For the FNζDTRS model, two parameters ζ and δ need to be set in advance. As
described in Section 2, the theoretic value field of ζ is [0, 1), and δ is [0, 1]. Therefore, ζ is
sampled with an interval of 0.05, and end at 0.99. δ is also sampled with an interval of 0.05,
but end at 1. Figure 3 shows the experimental results.

Figure 3. Cont.
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Figure 3. The accuracy results of ζ and δ with respect to FNζDTRS.

The results show that the appropriate settings of ζ and δ range in [0.3, 0.99] and
[0.85, 0.95], respectively. It could be explained by the fact that a smaller ζ will result in a
larger boundary region, marking more samples as uncertain state. It means setting a smaller
ζ for the FNζDTRS decision system will lead to greater uncertainty. When applied in real
world, ζ should be adjusted appropriately according to the risk of wrong decision. When
the danger of making a bad decision is low, ζ can be set larger, and vice versa. On the other
hand, with the fuzzy neighborhood threshold δ closer to 1, the fuzzy neighborhood granules
will be finer, allowing for the samples to be classified accurately into the appropriate regions.
The above two parameters are the core parameters of the model proposed in this paper,
and their setting values directly affect the test results. Therefore, when setting the above
parameters, the values of the two parameters need to be adjusted according to the actual
needs with the above principles.

5.2. Comparison Experiments on Attribute Reduction

In this part, seven related models, DTRS-EF [36], DTRS-SMDNS [37], SPDTRS-EF [32],
SPDTRS-SMDNS [32], NDTRS [38], FDTRS [39] and FN3WD [34], are introduced into
a contrastive analysis on the attribute reduction to demonstrate the superiority of the
proposed FNζDTRS. The settings of the relevant parameters in these comparison models
are the same as those of the corresponding models. The number of reduction attributes
and the classification accuracy are the common evaluation indicators of the comparison
experiment of attribute reduction [40,41]. The standard deviations of ten trials are also
calculated, and the results are shown in Tables 5 and 6.
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Table 5. The classification accuracy of the reduction subset.

ID Name DTRS-EF
DTRS-

SMDNS
SPDTRS-

EF
SPDTRS-
SMDNS

NDTRS FDTRS FN3WD FNζDTRS

1 Atoms 69.65 ± 2.38 71.08 ± 1.66 70.94 ± 1.20 71.27 ± 1.14 70.42 ± 1.61 70.87 ± 2.07 71.71 ± 1.00 72.08 ± 1.13

2 Australian 81.34 ± 5.09 82.39 ± 5.64 82.27 ± 2.87 83.46 ± 0.85 83.31 ± 2.76 72.06 ± 12.31 84.56 ± 0.39 84.97 ± 0.42

3 Breast 72.31 ± 1.06 72.53 ± 0.82 72.67 ± 0.70 72.65 ± 0.72 72.72 ± 0.67 70.38 ± 0.75 73.21 ± 0.29 74.01 ± 0.81

4 Cleve 79.13 ± 1.09 78.34 ± 5.02 78.99 ± 1.01 79.37 ± 0.61 77.69 ± 6.68 66.64 ± 11.29 80.13 ± 0.78 81.34 ± 0.37

5 Heart 78.34 ± 3.38 78.72 ± 5.20 79.99 ± 1.87 79.95 ± 0.88 76.31 ± 7.16 68.37 ± 10.42 80.27 ± 2.25 80.99 ± 1.23

6 Iris 94.85 ± 0.50 94.85 ± 0.62 94.93 ± 0.47 94.87 ± 0.55 94.95 ± 0.41 62.96 ± 17.98 94.82 ± 0.40 95.27 ± 0.33

7 Phishing 84.23 ± 9.62 86.05 ± 6.11 87.08 ± 1.10 87.08 ± 1.10 86.40 ± 5.08 69.93 ± 14.06 87.15 ± 1.06 87.14 ± 1.07

8 Saheart 69.23 ± 0.99 69.01 ± 1.29 69.49 ± 0.38 69.51 ± 0.43 69.35 ± 0.40 67.93 ± 1.99 69.63 ± 1.61 70.35 ± 1.06

9 Seismic 92.64 ± 0.80 92.33 ± 0.90 92.53 ± 0.46 91.94 ± 0.69 91.91 ± 0.70 92.01 ± 0.76 92.56 ± 0.48 93.21 ± 0.15

10 Vote 94.66 ± 0.38 94.67 ± 0.38 94.63 ± 0.36 94.63 ± 0.36 94.65 ± 0.38 83.86 ± 15.36 94.63 ± 0.36 94.65 ± 0.31

Average 81.64 ± 2.53 82.00 ± 2.76 82.35 ± 1.04 82.47 ± 0.73 81.77 ± 2.59 72.50 ± 8.70 82.87 ± 0.86 83.40 ± 0.69

* Bolded indicates that the model achieves the best performance on this dataset.

Table 6. The number of reduction attributes.

ID Name DTRS-EF
DTRS-

SMDNS
SPDTRS-

EF
SPDTRS-
SMDNS

NDTRS FDTRS FN3WD FNζDTRS

1 Atoms 5.5 ± 1.8 6.4 ± 1.8 6.8 ± 0.4 7.8 ± 0.4 5.2 ± 1.2 4.5 ± 1.3 1.2 ± 0.4 2.0 ± 0.0
2 Australian 11.2 ± 1.9 12.2 ± 3.0 11.3 ± 0.6 13.0 ± 0.1 12.7 ± 1.4 4.7 ± 2.7 10.8 ± 0.6 8.4 ± 0.5
3 Breast 7.7 ± 2.7 8.5 ± 2.0 9.0 ± 0.0 9.0 ± 0.1 9.0 ± 0.2 3.6 ± 1.0 8.0 ± 0.0 6.9 ± 0.6
4 Cleve 9.8 ± 0.5 12.5 ± 2.4 9.9 ± 0.5 13.0 ± 0.2 10.2 ± 2.6 4.1 ± 2.7 7.1 ± 1.6 3.0 ± 0.0

5 Heart 7.1 ± 2.0 12.1 ± 2.6 7.9 ± 0.6 12.7 ± 0.4 10.0 ± 3.0 4.8 ± 3.1 6.8 ± 1.3 3.0 ± 0.0

6 Iris 3.8 ± 0.7 3.6 ± 0.8 3.6 ± 0.5 4.0 ± 0.1 4.0 ± 0.0 1.7 ± 1.3 2.6 ± 0.5 1.0 ± 0.0

7 Phishing 8.3 ± 2.3 8.8 ± 1.4 9.0 ± 0.0 9.0 ± 0.0 8.8 ± 1.4 1.1 ± 0.2 9.0 ± 0.0 9.0 ± 0.0
8 Saheart 8.7 ± 1.6 8.5 ± 1.9 9.0 ± 0.0 9.0 ± 0.0 9.0 ± 0.0 6.4 ± 2.8 4.8 ± 0.4 2.6 ± 0.3

9 Seismic 6.6 ± 4.8 10.9 ± 6.3 4.0 ± 0.2 13.4 ± 0.9 13.8 ± 0.5 8.3 ± 0.7 2.0 ± 0.0 1.0 ± 0.0

10 Vote 8.5 ± 0.6 8.5 ± 0.6 8.5 ± 0.5 8.5 ± 0.5 8.5 ± 0.8 1.1 ± 0.3 8.5 ± 0.5 8.1 ± 0.3
Average 7.7 ± 1.9 9.2 ± 2.3 7.9 ± 0.3 9.9 ± 0.3 9.1 ± 1.1 4.0 ± 1.6 6.1 ± 0.5 4.5 ± 0.2

* Bolded indicates that the model achieves the best performance on this dataset.

According to the results in Tables 4 and 5, the following analysis can be obtained:

(a) The analysis based on the classification accuracy indicates that the FNζDTRS model is
superior to other rough set models. The main reason may lie in the different methods
to describe spatial granules. Discretization methods such as EF and SMDNS are
commonly introduced to process continuous data in the traditional DTRS models,
which results in the destruction of the spatial structure of granules. Using special
measures (such as fuzzy relationship, neighborhood relationship, etc.) can avoid the
distortion of the discretization method, but it also has some disadvantages, such as
simple measurement, insufficient description ability, etc. The proposed FNζDTRS
model utilizes fuzzy neighborhood relationships to overcome the above shortcomings.
Compared with other DTRS models, the description of spatial granules is more precise
in our model and results in the higher classification accuracy.

(b) With respect to the number of reduction attributes, the FDTRS model has the least
number of reduction attributes, but it fails to achieve a desired classification accuracy,
whereas the FNζDTRS model can maintain high classification accuracy while keeping
the number of reduction attributes small. The results show that the classification ability
can be maintained or improved only when the reduction attributes are accurately
selected. The above conclusion also conforms to the basic principle of attribute
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reduction, that is, in the operation of reduction, we want to get a relatively concise
set, which can ensure that the original classification accuracy is not reduced, and the
purpose is to improve the operation efficiency.

(c) The standard deviation is used to measure the robustness of models. It is obvious
that the standard deviation of the FNζDTRS model is the smallest regardless of the
classification accuracy or the number of reduced attributes, which directly proves that
the robustness of the FNζDTRS model is the highest compared to other models. The
above robustness characteristics also show that we have a large selection range when
setting our two parameters, which is conducive to the wide application of the model
in practical projects.

6. Simultaneous-Fault Diagnosis of Satellite Power System

In-orbit faults of the power system should be avoided to the maximum extent for
satellites. Therefore, simulation is the best platform to mine fault diagnosis knowledge.
In this section, the effectiveness of the proposed simultaneous-fault diagnosis scheme is
verified with the simulation model of a geosynchronous (GEO) satellite power system [3].
As shown in Figure 4, the power system works in a direct energy transfer mode during the
simulation, and ten telemetry parameters can be measured in the marked position. The
information of the telemetry parameters is shown in Table 7.

Figure 4. The schematic diagram of the power system.

Table 7. Information of the telemetry parameters.

ID Attribute Rate Range Data Type Unit

a1 Duty cycle 0–1 Continuous -
a2 Bus current 13.5–17.3 Continuous A
a3 Shunt current 5.3–12.4 Continuous A
a4 Battery current 3.6–19.4 Continuous A
a5 Output power 1070–1090 Continuous W
a6 Battery pressure 2.0–5.4 Continuous MPa
a7 Battery quantity 54.3–71.2 Continuous Ah
a8 Status word −1 0 1 Discrete -
a9 Bus voltage 40.5–43.1 Continuous V
a10 Battery voltage 33.0–40.5 Continuous V

The raw data used for simultaneous-fault diagnosis is composed of the above-mentioned
ten kinds of attributes, and all the data are selected in the stationary period. The dataset is
stored in a time-series format, with each subset representing one of the scenarios shown in
Table 8. There are a total of 12 scenarios, where scenario 0 represents the system without
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any fault. F1 represents open-circuit failure in solar array. F2 represents the short-circuit
failure in the battery. F3 represents shunt regulator failure without shunt. F4 represents
shunt regulator failure with constant shunt. The remaining 7 scenarios are concurrent
failures composed of the above 4 single failures occurring at the same time, where F3 and
F4 cannot occur simultaneously.

Table 8. Different scenarios for faults in satellite power system.

Scenario Fault Name Scenario Fault Name

0 —- 6 F1-F3
1 F1 7 F1-F4
2 F2 8 F2-F3
3 F3 9 F2-F4
4 F4 10 F1-F2-F3
5 F1-F2 11 F1-F2-F4

It can be seen that this means can effectively solve the problem of insufficient data
in the simultaneous-fault diagnosis, which also responds to one the difficulties in the
simultaneous-fault diagnosis introduced at the beginning of this paper.

6.1. Simultaneous-Fault Diagnosis Based on the Fault Matching Strategy

The two main parts of the simultaneous-fault diagnosis strategy, namely prior knowl-
edge acquisition and rule matching, are equivalent to the training and testing process.
We choose 4 kinds of single-fault data as the training set and the remaining 7 kinds of
simultaneous-fault data as the testing set. The results obtained through the first step of
prior knowledge acquisition are shown in Table 9. It can be found that the results of the
output attribute subset of F3 and F4 are the same. Therefore, in order to distinguish F3 and
F4, further information needs to be excavated. For attribute a3, its corresponding shunt
current data can directly distinguish F3 from F4. The shunt current value of F3 fluctuates
between 6.42–8.67 and that of F4 is between 12.45–14.77. Therefore, F3 and F4 can be
distinguished by setting the threshold value of the shunt current average.

Table 9. The results of the training process.

Fault Name The Output Attribute Subset
Average Value of the Data

for Attribute a3

F1 a5 -
F2 a7 -
F3 a2, a3, a9 7.46
F4 a2, a3, a9 13.47

The results obtained through the second step of rule matching are shown in Table 10.
For a simultaneous-fault, the Jaccard similarity coefficient between its output attribute
subset and the output attribute subset of each single-fault obtained in the training process
can be calculated in turn. If the Jaccard similarity coefficient is 0, the corresponding single
fault can be eliminated preliminarily. Since F3 and F4 cannot be distinguished by the Jaccard
similarity coefficient, it is necessary to further distinguish F3 and F4 through the set shunt
current threshold and to finally obtain the matching result. Through the final matching
result, it can be found that the diagnostic accuracy of the fault matching strategy is 100%.
The above fault matching process comprehensively utilizes the similarity of attributes and
expert knowledge, which can ensure that the obtained diagnosis results are more accurate.
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Table 10. The results of the testing process.

Fault Name
The Output

Attribute Subset

Jaccard Similarity Coefficient Average Value of
the Data for
Attribute a3

Matching
Result

F1 F2 F3 F4

F1-F2 a5, a7 0.50 0.50 0 0 - F1-F2
F1-F3 a2, a3, a5, a9 0.25 0 0.75 0.75 6.63 F1-F3
F1-F4 a2, a3, a5, a9 0.25 0 0.75 0.75 12.62 F1-F4
F2-F3 a2, a3, a7, a9 0 0.25 0.75 0.75 7.47 F2-F3
F2-F4 a2, a3, a7, a9 0 0.25 0.75 0.75 13.46 F2-F4

F1-F2-F3 a2, a3, a5, a7, a9 0.20 0.20 0.60 0.60 6.63 F1-F2-F3
F1-F2-F4 a2, a3, a5, a6, a7, a9 0.17 0.17 0.50 0.50 12.63 F1-F2-F4

6.2. Comparison Experiment on Simultaneous-Fault Diagnosis
6.2.1. Experimental Setup

The superiority of the proposed fault matching strategy is demonstrated through com-
parison experiments of simultaneous-fault diagnosis with several multi-label classification
algorithms (Binary Relevance, Classifier Chain, Calibrated Label Ranking, ML-KNN, and
ML-DT). In these comparison algorithms, the classifiers of the first three algorithms are all
set to Random Forest, which is the best classifier after the pretest, and the value of k for
ML-KNN is 12. Subset accuracy, hamming loss, precision, recall, and F1 are introduced as
the metrics of the multi-label classification performance [11].

Subset Accuracy =
1
n

n

∑
i=1

I(yi = ŷi)., (26)

Hamming Loss =
1

nL

n

∑
i=1

L
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I
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yj
i �= ŷj

i

)
, (27)
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2
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i = 1

∣∣∣∣∣∣yj
i = 1

∣∣∣+ ∣∣∣ŷj
i = 1

∣∣∣ , (30)

where yi represents the ground-truth label vector of the i sample, ŷi represents the predicted
label vector, yj

i represents the ground-truth label of j position in i sample, ŷj
i represents the

predicted label of j position in i sample. Intuitively, subset accuracy, precision, recall, F1
perform as the multi-label counterparts of traditional metrics. Hamming lose performs as a
special metric of multi-label.

The training set of all algorithms uses single-fault data, while the test set uses simultaneous-
fault data. Ten-fold cross validation is also employed in this part.

6.2.2. Experimental Results and Analysis

The results are shown in Table 11. It is obvious that the proposed method outperforms
other methods in the simultaneous-faults diagnosis of a satellite power system, which
benefits from both the FNζDTRS model and the fault matching strategy (FNζDTRS-FMS).
Fundamentally, on the one hand, the attribute reduction results obtained from the FNζDTRS
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model can accurately represent the fault information, and on the other hand, the proposed
matching rules are reasonable and reliable.

Table 11. The results of the simultaneous-fault diagnosis.

Algorithm
Accuracy/Subset

Accuracy
Hamming Loss Precision Recall F1

FNζDTRS–FMS 100.0 ± 0.0 - 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Binary Relevance 82.34 ± 5.39 4.43 ± 1.35 100.0 ± 0.0 93.88 ± 1.87 96.28 ± 1.14
Classifier Chain 65.78 ± 8.93 9.30 ± 2.63 100.0 ± 0.0 86.42 ± 4.45 91.31 ± 3.07

Calibrated Label Ranking 0.0 ± 0.0 32.14 ± 7.11 100.0 ± 0.0 45.24 ± 0.0 61.90 ± 0.0
ML-KNN 0.0 ± 0.0 32.15 ± 0.0 99.98 ± 0.0 45.23 ± 7.11 61.89 ± 0.0

ML-DT 0.0 ± 0.0 32.35 ± 0.31 99.59 ± 0.62 45.03 ± 0.31 61.63 ± 0.42

* Bolded indicates that the model achieves the best performance on this metric.

In addition to the results of our method, as for multi-label classification methods, the
false alarm rate performs satisfactorily, while the missed diagnosis rate performs poorly.
It can be seen that the recall rates have been lower than 50%, which is unacceptable in
engineering applications. At the same time, the results of the F1 index generated by
the multi-label classification methods are relatively low, only slightly higher than 60%.
Similarly, the results obtained by the Calibrated Label Ranking method are similar to those
of ML-KNN and ML-DT. The results obtained by the Classifier Chain method are in the
middle level. In addition, Binary Relevance has the best performance among the multi-label
classification methods, which means that there are no relevant dependencies between the
single faults.

7. Conclusions

In this work, a novel DTRS model called FNζDTRS is proposed and the fault match
strategy (FMS) based on the FNζDTRS model is designed to overcome three fundamental
hurdles faced by simultaneous-fault diagnosis. The effectiveness and superiority of our
methodology is demonstrated by both numerical experiments conducted on several stan-
dard datasets and comparison analysis of simultaneous-fault diagnosis performed on a
simulation model of a satellite power system. Consequently, two main conclusions can be
drawn, as follows.

(1) The proposed FNζDTRS model performs attribute reduction more effectively com-
pared with other models, and it has strong generalization ability. This benefits from
the concise loss functions and the introduction of the fuzzy neighborhood relation-
ships. The advantages of our model can greatly promote the smooth implementation
of the model in simultaneous-fault diagnosis, which reflects the effectiveness and
superiority of our selection of this model.

(2) The proposed FNζDTRS–FMS does not require simultaneous-fault samples to accom-
plish training and performs excellently in simultaneous-fault diagnosis compared
to classic multi-label classification algorithms. This is completely consistent with
the real situation, that is, the existing data cannot completely cover all the imagined
failure modes. Therefore, the diagnostic strategy proposed in this paper has stronger
application value.

Although the model we proposed has the above advantages, it still has the problem of
low computational efficiency compared with the classical rough set because of the use of
fuzzy neighborhood computing. This is one of our future research directions. Furthermore,
our future work will also focus on fusing rough set models and multi-label learning
algorithms to make the simultaneous-fault diagnosis framework more general.
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Nomenclature

U = {x1, x2, · · · , xm} the universe, which is a finite and nonempty set.
D the set of decision attributes that is a nonempty set.
C the collection of conditional attributes.
X the subset of samples with the same label dk.
aP, aB, and aN the classification of x into three regions, which are x ∈ POS(X),

x ∈ BND(X), x ∈ NEG(X).
POS(X) the acceptance of the event x ∈ X.
BND(X) the non-commitment of the event x ∈ X, denotes the deferment

of the event x ∈ X.
NEG(X) the rejection of x ∈ X.
λ•P the loss caused by taking actions (aP, aB, aN) while x ∈ X.
λ•N the loss caused by taking actions (aP, aB, aN) while x /∈ X.
α, β the threshold parameters of the DTRS model.
δ fuzzy neighborhood radius.
ζ the compensation coefficient.
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Abstract: Vibration signals collected in real industrial environments are usually limited and unlabeled.
In this case, fault diagnosis methods based on deep learning tend to perform poorly. Previous work
mainly used the unlabeled data of the same diagnostic object to improve the diagnostic accuracy,
but it did not make full use of the easily available unlabeled signals from different sources. In this
study, a signal momentum contrast for unsupervised representation learning (SMoCo) based on the
contrastive learning algorithm—momentum contrast for unsupervised visual representation Learning
(MoCo)—is proposed. It can learn how to automatically extract fault features from unlabeled data
collected from different diagnostic objects and then transfer this ability to target diagnostic tasks.
On the structure, SMoCo increases the stability by adding batch normalization to the multilayer
perceptron (MLP) layer of MoCo and increases the flexibility by adding a predictor to the query
network. Using the data augmentation method, SMoCo performs feature extraction on vibration
signals from both time and frequency domains, which is called signal multimodal learning (SML). It
has been proved by experiments that after pre-training with artificially injected fault bearing data,
SMoCo can learn a powerful and robust feature extractor, which can greatly improve the accuracy no
matter the target diagnostic data with different working conditions, different failure modes, or even
different types of equipment from the pre-training dataset. When faced with the target diagnosis
task, SMoCo can achieve accuracy far better than other representative methods in only a very short
time, and its excellent robustness regarding the amount of data in both the unlabeled pre-training
dataset and the target diagnosis dataset as well as the strong noise demonstrates its great potential
and superiority in fault diagnosis.

Keywords: self-supervised learning; data augmentation; limited data; fault diagnosis; aero-engine;
rolling bearing

MSC: 90B25

1. Introduction

As the key component of the aero-engine rotor system, rolling bearings often work in
the environment of large load and high-speed rotation, which will inevitably cause huge
economic losses or safety accidents [1–3]. Therefore, it is of great significance to improve the
diagnostic accuracy and efficiency of rolling bearings for the healthy and stable operation
of aero-engines.

With the continuous development of artificial intelligence technology, deep learning
has been widely used in rolling bearing fault diagnosis to ensure the high reliability of
aero-engines [4]. However, in practical industrial situations, it is very difficult to obtain a
sufficient amount of labeled data, which greatly affects the performance of fault diagnosis
methods based on deep learning [5].

In this case, researchers mainly use semi-supervised learning and transfer learning to
solve this problem. Semi-supervised learning uses both a large amount of unlabeled data
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and a small amount of labeled data for training, thereby improving the performance of the
model. A three-stage semi-supervised method using data augmentation was proposed by
Yu et al. [6] for bearing fault diagnosis. Zhang et al. [7] proposed a deep generative model
based on a variational autoencoder (VAE) for semi-supervised learning of bearing fault
diagnosis, which can effectively utilize the dataset when only a limited part of the data has
labels. Transfer learning transfers the knowledge obtained from the source domain to the
target domain to improve the diagnostic performance of the target domain. Wen et al. [8]
adopted a three-layer sparse autoencoder to extract the features of the original data and
forced the autoencoder to create a latent feature space containing the representations
of the source and target domain data by adding a maximum mean difference (MMD),
thereby predicting the failure of the target domain data. Wang et al. [9] proposed a deep
adversarial domain adaptation network to transfer fault diagnosis knowledge, which learns
domain-invariant features from raw signals using domain adversarial training based on
Wasserstein distance.

Although the above methods have achieved good results, they are still only for limited
application scenarios. Specifically, for semi-supervised learning, previous work mainly uses
unlabeled data of the same object, which is often difficult to obtain in practical situations.
For transfer learning, it requires that the distribution difference between the source and
target domain data is limited, and it requires the source domain data to be labeled [10]. In
addition, when faced with different diagnostic tasks, these two methods need to use all the
additional data and target diagnostic data for training, which is computationally expensive
and cannot be quickly and efficiently used for various diagnostic tasks.

Unlike the above algorithms, self-supervised learning provides a new solution [11].
From the perspective of data, self-supervised learning can automatically extract meaningful
features from unlabeled data for fault classification, thus making full use of the easily
available unlabeled data from different sources [12–15]. From the perspective of computa-
tional efficiency, self-supervised learning can be applied to various downstream diagnostic
tasks with only fine-tuning after the training is completed [16]. There is no need to reuse
unlabeled data for training on various downstream tasks, so that different downstream
diagnostic tasks can be quickly solved.

Contrastive learning has been successfully applied to the field of computer vision
as a state-of-the-art method for self-supervised learning [17–20] by reducing the distance
between different augmented views of the same image (positive pairs) and increasing the
distance between augmented views of different images (negative pairs) for representation
learning [21]. However, there are few studies on self-supervised learning in the field
of fault diagnosis. Wang et al. [16] performed self-supervised learning by having the
model identify the categories that augment the signal and convert it into a classification
model. The methods based on contrastive learning include: Wei et al. [22] used the data
augmentation method in the image field to perform representation learning by transforming
the signal through a simple reshape based on SimCLR [18]. Ding et al. [23] used momentum
contrastive learning for instance-level discrimination based on MoCo [24] for representation
learning. Peng et al. [25] proposed an automatic fault feature extractor based on BYOL [21]
to explore some transformations of signal time-domain features.

The above methods have made attempts to apply self-supervised learning in fault
diagnosis, but the problems they address are still limited to self-supervised learning using
unlabeled data from the same diagnostic object and do not take full advantage of unlabeled
data that are easier to obtain in other operating conditions or even other devices. In addition,
their data augmentation method is still limited to morphological changes in time-domain
signals and does not take advantage of the natural multi-modal characteristics of signals,
such as time-domain information and frequency-domain information.

In response to the above problems, this paper proposes a new self-supervised learn-
ing method called signal momentum contrast for unsupervised representation learning
(SMoCo). It improves the original MoCo in structure and designs a sufficiently difficult
task by adopting the time-domain and frequency-domain cross-learning in the data aug-

304



Mathematics 2022, 10, 2796

mentation stage, which helps the model to learn the essential characteristics of the signal.
For more details on SMoCo, please refer to Section 3.

This paper focuses on the problem of fault diagnosis of aero-engine bearing under
limited data. Based on this background, a fault diagnosis method based on SMoCo is
proposed. It first performs self-supervised learning on easily accessible unlabeled data to
obtain a powerful and robust feature extractor. It is worth noting that the unlabeled data
can be obtained from a wide range of sources, such as laboratory data of the same model
under different operating conditions, or even from completely different types of products,
which greatly improves the feasibility of the method. Subsequently, the feature extractor
can obtain the easily classifiable features of the target diagnostic object, thus solving the
difficult problem that it is difficult to diagnose aero-engine bearing faults with little data in
the actual industry. Despite its good performance, SMoCo requires a relatively long training
time to learn how to extract the essential features of the signal during the self-supervised
learning phase. The main contributions of this paper are summarized as follows:

1. In terms of structure, based on MoCo, this paper increases the performance of the
model and the stability of training by introducing a predictor to the query network
and adding batch normalization (BN) [26] to the multilayer perceptron (MLP) layer.

2. In terms of data augmentation method, this paper proposes signal multimodal learn-
ing (SML), which enables the model to learn the signal representation from both
the time domain and the frequency domain, thereby characterizing the signal from
two dimensions.

3. The unlabeled pre-training data used by SMoCo comes from a wide range of sources
and is no longer limited to the same diagnostic object, which makes it more feasible in
the real task.

4. Experiments show that SMoCo can be used as a feature extractor with fixed weights to
extract robust features after pre-training on artificially injected fault bearings, whether
it is a bearing with different failure modes under different working conditions or a
completely different type of rolling bearing. Aero-engine high-speed rolling bearings
can achieve extremely high diagnostic accuracy with very few samples, providing
timelier and more robust fault diagnosis than other state-of-the-art techniques.

5. Further studies have shown that SMoCo can still achieve excellent performance with
a much-reduced data volume and in the presence of strong noise, further broadening
its applicability.

The paper is structured as follows. In Section 2, the structure and idea of the origi-
nal MoCo are introduced. In Section 3, the SMoCo algorithm proposed in this paper is
introduced in detail, including the entire fault diagnosis process and its improvements
in structure and data augmentation methods. In Section 4, the performance of SMoCo
is verified via experiments on two datasets. In Section 5, this paper further explores the
sensitivity of SMoCo to the size of the unlabeled pre-training dataset and its robustness to
target diagnostic objects under different noise conditions. Section 6 summarizes the paper
and looks at future work.

2. MoCo Network

MoCo [24] is a contrastive learning method with good training stability; the structure
is shown in Figure 1. It performs representation learning in the latent space by minimizing
the distance between different augmented views of the same data and rejecting augmented
views of other samples.

MoCo uses two neural networks, query network fq and key network fk, with the
same structure for training, and its goal is to learn the convolutional layers in the query
network to serve as feature extractors for downstream tasks. Since negative pair-based
contrastive learning relies on the number of negative samples for representation learning,
MoCo maintains a queue, which contains a single positive sample and multiple negative
samples, the model learns representations by finding the corresponding positive samples.
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Figure 1. The framework of the MoCo network.

Specifically, for a given sample x and the distribution T of its data augmentation
methods, the data augmentation methods t ∼ T and t′ ∼ T are adopted respectively to
generate two different augmented views of the same instance, denoted as v and v′, and
treat these two as a positive pair. Input v to the fq produces a query batch q, and input v′ to
the fk produces the features in the queue. It uses a dynamically updated queue to store the
representations of multiple batches recently used for training. After a new batch enters the
queue, the oldest training batch is out of the queue, thereby maintaining a large number of
negative samples to help model training. For a given set of queues, K = {k0, k1, · · · , kN}
contains N + 1 encoding keys, where the encoder fk produces a positive sample k+ for
the current v′, and the others are negative samples, thus transforming the contrastive
learning task into positive and negative samples corresponding to a given query q. Finally,
InfoNCE [27] is used as the loss function:

L = − log
exp(q · k+/τ)

∑N
i=0 exp(q · ki/τ)

(1)

where τ is the temperature parameter.
During the training process, only the parameters of the fq are updated via gradi-

ent back-propagation, while the parameters of the fk are updated via a momentum up-
date. Specifically, denoting the parameters of fk as θk and the parameters of fq as θq, it
updates θk by:

θk ← αθk + (1− α)θq (2)

where α ∈ [0, 1) is the momentum update parameter.
MoCo builds a dynamic dictionary by using queues and momentum updates, which

enables it to learn in a wider range of negative samples, making the network learn better
and train more stably.

3. SMoCo

The framework of fault diagnosis based on SMoCo is shown in Figure 2, which is
mainly composed of three key steps: (1) data acquisition, (2) self-supervised on unlabeled
data, (3) fault diagnosis on labeled data. Given the difficulty of fault diagnosis of aero-
engines in the case of limited data, we use unlabeled vibration signals that are easily
obtained from different working conditions or even different equipment. Self-supervised
learning is first employed with unlabeled signals, using our proposed signal multimodal
learning (SML) as the data augmentation method. After the training is completed, the
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convolutional layers of the query network are selected as the feature extractor for the
downstream task, and it is worth noting that its weights remain unchanged. Finally, for the
downstream labeled aero-engine bearing dataset, the feature extractor is used to extract
features, and then support vector machines (SVMs) are used to classify the extracted
features, and finally, the diagnostic model is obtained. The SVM is a classifier that classifies
data in a supervised learning manner, where the decision boundary is the maximum-margin
hyperplane solved for the learned samples.

Figure 2. The framework of fault diagnosis based on SMoCo.

In this section, we first describe our unique data augmentation approach, signal
multimodal learning (SML). Then, the network structure of SMoCo is proposed through
several improvements based on MoCo. Finally, we specify an implementation detail based
on SMoCo for fault diagnosis.

3.1. Signal Multimodal Learning (SML)

The representation learning ability of contrastive learning depends greatly on the
design and optimization of data augmentation methods [18]. Aero-engine rolling bearings
diagnosis has difficult problems such as variable working conditions, strong noise, and
weak faults in a real task. If a model can be unaffected by these factors, then the essential
characteristics of the signal can be well characterized. The previous work was only limited
to making some morphological changes to the time-domain signal when designing data
augmentation methods. This paper proposes SML from the perspective of the time domain
and the frequency domain according to the characteristics of vibration signals, including
six basic data augmentation transformations as shown in Figure 3. The following describes
in detail how these methods transform a given vibration signal x = [x1, x2, · · · , xN ].
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Data augmentation of sampled signals. (a) Normalization; (b) Gaussian noise; (c) scaling;
(d) resampling; (e) truncation; (f) flip.

1. Normalization: There are differences in the measurement range of different sensors.
This strategy normalizes the signal to a uniform range, which is also beneficial for
model training. The formula is as follows:

x̃ = −1 + 2 ∗ x− xmin
xmax − xmin

(3)

2. Gaussian noise: There is an inevitable environmental noise problem during the
operation of the device. This strategy adds Gaussian noise to the original signal to
mimic this phenomenon. The formula is as follows:

x̃ = x + n, n ∼ N(0, σn) (4)

where n is generated by the Gaussian distribution N(0, σn).
3. Scaling: This strategy increases the sensitivity of the model to signals of different

amplitudes by directly amplifying or reducing the amplitude of the signal without
losing the semantics contained in the original data. The formula is as follows:

x̃ = x ∗ s, s ∼ N(1, σs) (5)

where s is generated from a Gaussian distribution N(1, σs).
4. Resampling: This strategy improves the robustness of the model to variable speed

scenarios by resampling and transforming the signal length to s ∼ N(1, σs) times the
original length.

5. Truncation: This strategy randomly covers part of the signal, and its formula is
as follows:

x̃ = x ∗mask (6)

where mask is a binary sequence with subsequence zeros at random positions.
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6. Flip: The vibration signal usually vibrates up and down with 0 as the mean value.
This strategy randomly flips the signal to increase the diversity of the signal. The
formula is as follows:

x̃ = −x (7)

Since the signal naturally has multi-modal characteristics, our proposed SML treats
the time-domain signal and the frequency-domain signal using fast Fourier transform
(FFT) as a positive pair, as shown in Figure 4. If the model can correspond the augmented
time-domain signal to the augmented frequency-domain signal, it can characterize the
signal more comprehensively from both the time-domain and frequency-domain dimen-
sions. Specifically, according to the characteristics of the time-domain signal, the order
of normalization, Gaussian noise, scaling, resampling, truncation, and flip is used as the
data augmentation method, which is called time-domain augmentation (TDA). For the
frequency-domain signal, the order of normalization and Gaussian noise is used as the data
augmentation method, which is called frequency-domain augmentation (FDA).

 

Figure 4. Signal multimodal learning (SML).

3.2. Fault Diagnosis Based on SMoCo

The network structure of SMoCo is shown in Figure 5, which includes query network
fq, predictor fp, key network fk, and queue. The query network and the key network have
the same structure. To increase the stability of model training, we add BN to the MLP
projection layer based on MoCo. In addition, we add a predictor to the query network,
which greatly increases the flexibility, so that the characteristics of the query network do
not need to be the same as those of the key network, but only need to be matched by
another predictor, which greatly improves the effect of representation learning. Like MoCo,
SMoCo maintains a dynamically updated queue, using only the gradient to update fq,
and using the parameter of fq to momentum update the parameters of fk. Specifically,
denoting the parameters of fk as θk and the parameters of fq as θq, it updates θk according
to the Equation (2).

Given a vibration signal x, the data augmentation distribution of the time-domain
signal is TDA, and the data augmentation distribution of the frequency-domain signal is
FDA. By adopting the data augmentation strategies t ∼ FDA and t′ ∼ TDA for x, two
augmented time series v = t(FFT(x)) and v′ = t′(x) are generated. For v, use the query
network to output the feature q = fq(v), and then use the predictor to predict q to get fp(q).
For v′, the key network outputs k+ = fk(v′). Therefore, for a given queue, for fp(q), except
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for k+, which is a positive pair, all other features in the queue are negative pairs. Its loss
function is formulated as:

L = −log
exp
(

fp(q) · k+/τ
)

∑N
i=0 exp

(
fp(q) · ki/τ

) (8)

where τ is the temperature parameter.

 

Figure 5. The structure of SMoCo.

It gets the symmetric loss function L̃ by feeding v′ to the query network and v to the
key network. Finally, the network updates the query network fq by minimizing the loss
LSMoCo:

LSMoCo = 0.5×
(
L+ L̃

)
(9)

The detailed SMoCo is shown in Algorithm 1.

Algorithm 1. The detailed SMoCo.

Input:

Structure of fq, fp, fk, temperature τ, momentum update α, queue size N
batch size nb, learning rate η, total number of optimization steps K,
distributions of transformations TDA, FDA, set of signals D
Initialize parameters, θk ← θq , and queue
for k = 1 to K do

Batch ← {xi ∼ D}nb
i=1

for xi ∈ Batch do

t ∈ FDA and t′ ∈ TDA
q1 ← fq(t(xi)) and k1

+ ← fk(t′(xi))
q2 ← fq(t′(xi)) and k2

+ ← fk(t(xi))

li ← 0.5× (− log
exp( fp(q1)·k1

+/τ)
∑N

i=0 exp( fp(q1)·ki/τ)
− log

exp( fp(q2)·k2
+/τ)

∑N
i=0 exp( fp(q2)·ki/τ)

)

end

// Back-propagation

θq ← θq − η ·
∂ 1

nb
∑

nb
i=1 li

θq

// Momentum update without back-propagation
θk ← αθk + (1− α)θq

// Update dictionary
Enqueue and dequeue with

{
k1
+

}nb
i=1 and

{
k2
+

}nb
i=1

end

Output: query network parameters θq
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After training, the convolutional layers in the query network are extracted to perform
feature extraction on downstream tasks. When performing downstream tasks, the weights
of the convolutional layers remain fixed and only serve as a function of feature extraction.
Since the SVM is the classifier with the largest interval in the feature space, the SVM is
adopted to classify the extracted features, which is more robust in the problem under
limited data.

4. Performance Verification of SMoCo

To verify the effectiveness and superiority of SMoCo, as proposed in this paper,
the bearing dataset of Paderborn University and the aero-engine bearing dataset of the
Polytechnic University of Turin are used for experimental verification. SMoCo is first
pre-trained on the unlabeled laboratory data of artificially injected faults from Paderborn
University. The learned feature extractors are then transferred to products of the same type
but with failures generated in natural operation from Paderborn University, and these two
datasets are characterized using different working conditions, different failure levels, and
different failure modes. It is further transferred to the aero-engine bearing dataset from
the Polytechnic University of Turin, which is a completely different model compared to
the pre-training dataset, and the data distributions of these two datasets differ significantly
and thus can effectively verify the validity of aero-engine bearing fault diagnosis under
limited data. The purpose of using two cases is to verify the effect of the proposed method
on different diagnostic subjects.

4.1. Self-Supervised on Artificially Damaged Bearing Data

The Paderborn University dataset [28] is a public dataset collected by the Paderborn
University Bearing Data Center in 2016 with high diagnostic difficulty [29]. In this dataset,
bearing damages are rich and can be divided into three categories: 6 healthy bearings,
12 artificially damaged bearings, and 14 real damaged bearings. Among them, the real
damaged data were obtained through the accelerated life test. The vibration signal was
obtained at a sampling rate of 64 khz, including 4 working conditions, as shown in Table 1,
and the test rig is shown in Figure 6.

Table 1. Operating parameters.

Name of Setting Rotational Speed [rpm] Load Torque [Nm] Radial Force [N]

N09_M07_F10 900 0.7 1000
N15_M07_F10 1500 0.7 1000
N15_M01_F10 1500 0.1 1000
N15_M07_F04 1500 0.7 400

 

Figure 6. Test rig of Paderborn dataset.

To better represent the easy-to-obtain unlabeled data, the artificially injected fault
bearing data in the Paderborn University dataset is used as the unlabeled pre-training
dataset, as shown in Table 2. There are 13 types of bearings including one type of health
status; 4096 is selected as the sample length to contain enough information, and the working
condition is N15_M01_F10. The number of samples in each category is 2000, and all data
are kept as raw time-domain data without any signal pre-processing.
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Table 2. Dataset 1: Unlabeled artificially damaged bearing dataset under N15_M01_F10.

Bearing Code Damaged Element Damaged Extent Damage Method

K001 Health state / Run-in 50 h before test
KA01 Outer ring Level 1 Made by EDM
KA03 Outer ring Level 2 Made by electric engraver
KA05 Outer ring Level 1 Made by electric engraver
KA06 Outer ring Level 2 Made by electric engraver
KA07 Outer ring Level 1 Made by drilling
KA08 Outer ring Level 2 Made by drilling
KA09 Outer ring Level 2 Made by drilling
KI01 Inner ring Level 1 Made by EDM
KI03 Inner ring Level 1 Made by electric engraver
KI05 Inner ring Level 1 Made by electric engraver
KI07 Inner ring Level 2 Made by electric engraver
KI08 Inner ring Level 2 Made by electric engraver

The original MoCo used ResNet50 [30] as the backbone network and achieved excellent
results. However, as the number of network layers increases, the computational complexity
of the network gradually increases and it is difficult to converge. The original MoCo uses a
deep ResNet network because it is used to solve computer vision tasks, while the feature
learning task of bearings is less difficult than the feature learning task of images, so the
backbone network of SMoCo adopts the ResNet18 [30].

The output dimension of the query network and the key network is 128 in line with
MoCo, thus ensuring that there is enough space to represent the extracted features. Since
the convolutional layer output of ResNet18 has a dimension of 512, the MLP layers in the
query network, key network, and predictor have the same structure with a hidden layer
dimension of 512 and an output layer dimension of 128, and this structure has also been
shown to be very effective for representation learning [21,24].

The initial learning rate η is set to 0.1 because using a larger learning rate can [24,25]
accelerate the convergence and allows the model to try multiple directions at the early
stage of optimization to prevent the model from getting stuck at the saddle point or the
local minimum due to the small learning rate. In addition, since this paper uses both
time-domain and frequency-domain data for learning, the data distribution between the
two differs greatly and the learning task is more complex, therefore, 0.1 is chosen as the
initial learning rate. The learning rate is updated via the cosine learning rate scheduler
with the following equation.

ηt =
1
2

(
1 + cos

(
tπ
T

))
η (10)

where η is the initial learning rate, ηt is the current learning rate, T is the maximum number
of epochs, and t is the current epoch.

It has been shown in MoCo that the model performs better when the value of momen-
tum α is in the range 0.99~0.9999, showing that a slowly progressing (i.e., relatively large
momentum) key encoder is beneficial, while when α is too small (e.g., 0.9), the accuracy
drops considerably [24]. This is because MoCo relies on a consistent dictionary for training,
which is the data in the queue generated by the key encoder [24]. Therefore, SMoCo chooses
to keep the same parameter selection as MoCo, i.e., 0.999. See Table 3 for other hyperpa-
rameters. In addition, the data augmentation methods in Table 3 are all implemented with
a probability of 50%, thereby increasing the variety of the transformation. The variation of
the loss values during the training process is shown in Figure 7; it can be found that the loss
value becomes smooth in the late training period, indicating that the training has reached
the fitting state. The experiment was conducted under Windows 11 and PyTorch1.11,
running on a computer with the following configurations: i5-12400F, NVIDIA RTX 3060,
and 16GB RAM. The training time for self-supervised learning is about 6.5 h.
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Table 3. Hyperparameter setting.

Hyperparameter Value Data Augmentation Value

Batch size 64 Normalization /
Optimizer SGD Gaussian noise Noise coefficient σn = 0.05

Learning rate 0.1 Scaling Scale coefficient σs = 0.05
Momentum 0.9 Resampling Stretch coefficient σs = 0.3

Weight decay 0.0001 Truncation Truncation length = 100
Epochs 350 Flip /

Learning rate schedule Cosine
Queue size 65536

Momentum update 0.999
Temperature 0.07

 
Figure 7. Loss history of self-supervised on unlabeled dataset 1.

Other self-supervised learning methods, Wang, SimCLR, BYOL, and MoCo, are carried
out for comparison. To exclude the influence of other factors, the backbone network of all
methods is ResNet18, which is trained using time-domain signals. In addition, to prove the
great superiority of SMoCo, as a comparison, the labeled dataset 1 is used for supervised
learning, and the network structure is also ResNet18, which is called labeled pretraining.
The feature extractors of all methods, that is, the convolutional layers of ResNet18, are used
to perform feature extraction on part of the data in dataset 1 and T-SNE is used to reduce it
to 2D for visualization. The results are shown in Figure 8. SMoCo can achieve an excellent
feature extraction performance without using labels and achieves the aggregation of each
category and the separation of different categories from each other, which greatly exceeds
all other self-supervised learning methods, even reaching the level of labeled pretraining.
Other self-supervised methods perform poorly, specifically for Wang, which only identifies
the corresponding data augmentation categories without instance-level self-supervised
learning and therefore does not perform feature extraction well. For SimCLR, its reliance on
learning in large batches, via comparing data within a batch without other techniques such
as momentum updates, makes its training less stable and less performant. For BYOL and
MoCo, although they achieve relatively good results without labels, they lack the unique
SML proposed in this paper, so the results are not as good as SMoCo.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. The visualization of feature extractors on unlabeled bearing dataset 1. (a) SMoCo;
(b) labeled pretraining; (c) Wang; (d) SimCLR; (e) BYOL; (f) MoCo.

4.2. Fault Diagnosis on Same Products under Different Fault Characteristic Distributions

To verify the diagnostic performance of SMoCo for the same products under different
failure levels, different failure models, and different working conditions, 10 types of real
damaged bearings in the Paderborn University dataset, including a healthy state bearing
and 2 mixed fault bearings with the working condition of N15_M07_F04, are selected as the
target diagnosis dataset. The specific information is shown in Table 4. To reflect the limited
data problem faced in the actual diagnosis task, the training set uses 5 samples per class,
and the testing set uses 50 samples per class.

To demonstrate the performance of the feature extractor obtained in the self-supervised
learning stage, the feature extractors trained in Section 4.1 are used to perform feature
extraction on the testing set without any training, and T-SNE is used for visualization.
The results are shown in Figure 9. The SMoCo proposed in this paper can achieve an
excellent feature extraction performance on target diagnostic data without using training
data. It not only greatly outperforms other self-supervised learning methods, but also
outperforms labeled pretraining. Compared to the result of extracting from dataset 1, other
methods are less capable of extracting features from the target diagnostic data at this time
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due to the difference between the distribution of the pre-training dataset and the target
diagnostic dataset.

Table 4. Dataset 2: Real damaged bearing dataset under N15_M07_F04.

Bearing
Code

Damaged Element Fault Mode Damage Form Arrangement Damaged Extent

K001 Health state / / / /
KA04 Outer ring Fatigue: pitting Single damage No repetition Level 1

KA15 Outer ring Plastic deform:
Indentations Single damage No repetition Level 1

KA16 Outer ring Fatigue: pitting Repetitive damage Random Level 2
KB23 Outer ring and inner ring Fatigue: pitting Multiple damage Random Level 2
KB24 Outer ring and inner ring Fatigue: pitting Multiple damage No repetition Level 3
KI14 Outer ring Fatigue: pitting Multiple damage No repetition Level 1
KI16 Outer ring Fatigue: pitting Single damage No repetition Level 3
KI17 Inner ring Fatigue: pitting Repetitive damage Random Level 1
KI18 Inner ring Fatigue: pitting Single damage No repetition Level 2

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. The visualization of feature extractors on labeled bearing dataset 2. (a) SMoCo; (b) labeled
pretraining; (c) Wang; (d) SimCLR; (e) BYOL; (f) MoCo.

To more fully demonstrate the superiority of our method, in addition to the methods
in Section 4.1, we also use MixMatch [31], ResNet18, and FFT + SVM as a comparison for
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the diagnosis task. Among them, MixMatch is one of the best-performing semi-supervised
methods, which uses the unlabeled dataset 1 and the training set of dataset 2 for training.
ResNet18 is trained using only the training set of dataset 2. The diagnostic accuracy of
each method is shown in Table 5 and Figure 10. FFT + SVM is a classical and effective fault
diagnosis method for small sample cases, which first performs FFT transformation on the
original signal and then uses SVM to classify the FFT transformed features.

Table 5. Comparison of diagnostic results on dataset 2 under 5 samples per class.

Method Accuracy (%) Time (s)

SMoCo 99.68 ± 0.26 1.47
MixMatch 89.96 ± 4.84 411.24

Labeled Pretraining 97.16 ± 1.80 25.11
Wang 73.88 ± 3.40 29.93

SimCLR 73.76 ± 1.35 30.44
BYOL 89.48 ± 3.29 30.72
MoCo 89.68 ± 2.16 30.75

ResNet18 71.96 ± 3.13 26.26
FFT + SVM 79.14 ± 7.86 0.16

Figure 10. Comparison of diagnostic results on dataset 2 under 5 samples per class.

It can be seen from Table 5 and Figure 10 that SMoCo benefits from its unique SML
and structural improvements to MoCo; its accuracy reaches an astonishing 99.68%, while
the time it takes is only 1.47 s, which even significantly exceeds the results of labeled
pretraining. This is also consistent with the visualization results in Figure 9. SMoCo can
distinguish each class well before training, so it only needs to use very few samples to
build an excellent classification surface. Labeled pretraining uses labels for pre-training,
but the obtained feature extractor is only adapted to the pre-training dataset. When faced
with new diagnostic tasks, although its diagnostic accuracy is improved, the effect is still
limited. Other self-supervised learning methods lack our unique SML and gaps in the
structure, so their performance falls far short of SMoCo. For FFT + SVM, it performs better
than ResNet18 using only time-domain features in the case of small samples; however, its
diagnostic accuracy is not high in the face of complex diagnostic problems under real faults.

The confusion matrix for SMoCo and labeled pretraining with the best diagnostic
performance is plotted as shown in Figure 11. SMoCo only misclassified one sample of KI17
as KI16, which is consistent with the results visualized in Figure 9. The interval between
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KI17 and KI16 is relatively close, which may cause errors in the classification plane due to
the special training samples. Nonetheless, our SMoCo outperforms labeled pretraining in
every category.

 
(a) (b) 

Figure 11. Confusion matrix of the two best-performing methods on dataset 2. (a) SMoCo;
(b) labeled pretraining.

The diagnostic accuracy of SMoCo in the case of fewer samples is also further explored
by selecting the best performing SMoCo and labeled pretraining as a comparison. For the
training set, a total of 5 groups of samples from 1 to 5 per class were used to explore the
results, as shown in Figure 12. It can be seen from Figure 12 that SMoCo is far better than
labeled pretraining in all cases. SMoCo can achieve 99.16% accuracy with only 3 samples
per class and its accuracy only drops more in the case of one sample per class. It is
demonstrated that our method has strong performance and robustness for diagnosis in
limited data.

 
Figure 12. Comparison of results under different training set sizes on dataset 2.
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4.3. Fault Diagnosis on Different Products of Aero-Engine Bearing

To verify the diagnostic effectiveness of SMoCo on aero-engine rolling bearings, this
paper uses the dataset of aero-engine high-speed bearings from the Department of Me-
chanical and Aeronautical Engineering of the Polytechnic University of Turin [32]. The
test rig is shown in Figure 13. For the dataset, we use the vibration acceleration data of
aero-engine bearings at different rotational speeds and different degrees of damage. The
length of a single sample is still 4096, and the y-direction channel data at A1 is used. To
reflect the extremely limited data situation in the actual diagnosis process, only 3 samples
per class are used in the training set, and 50 samples per class are used in the testing
set. The specific dataset information is shown in Table 6. At this point, the unlabeled
pre-training dataset 1 and the target diagnostic dataset 3 have completely different device
types, working conditions, and failure modes.

 

Figure 13. Test rig of the aero-engine bearing dataset from Polytechnic University of Turin.

Table 6. Dataset 3: Aero-engine bearing dataset from Polytechnic University of Turin.

Damaged
Element

Diameter
(μm)

Fault Mode Rotation Speed
(r/min)

Load
(N)

Training
Samples

Testing
Samples

Label

Healthy / 24,000 1400 3 50 0
Inner ring 450 24,000 1400 3 50 1
Inner ring 250 24,000 1400 3 50 2
Inner ring 150 24,000 1400 3 50 3

Roller 450 24,000 1400 3 50 4
Roller 250 24,000 1400 3 50 5
Roller 150 24,000 1400 3 50 6

Inner ring 450 18,000 1400 3 50 7
Inner ring 250 18,000 1400 3 50 8
Inner ring 150 18,000 1400 3 50 9

Roller 450 18,000 1400 3 50 10
Roller 250 18,000 1400 3 50 11
Roller 150 18,000 1400 3 50 12
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As in Section 4.2, the feature extractors trained in Section 4.1 are used to perform
feature extraction on the testing set data and visualize it using T-SNE. It’s worth noting
that this was done without any training on dataset 3. The results are shown in Figure 14.
The SMoCo proposed in this paper still achieves amazing feature extraction results in the
face of completely different devices without using any training data, greatly surpassing
other methods.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 14. The visualization of feature extractors on labeled aero-engine bearing dataset 3. (a) SMoCo;
(b) labeled pretraining; (c) Wang; (d) SimCLR; (e) BYOL; (f) MoCo.

The methods trained in Section 4.1, MixMatch, ResNet18, and FFT + SVM are used for
comparison on dataset 3, and the results are shown in Table 7 and Figure 15.

It can be seen from Table 7 and Figure 15 that SMoCo achieves 100% diagnostic
accuracy when faced with diagnostic problems of different devices, and its training and
inference time is only 1.6 s. Both the accuracy and efficiency achieved the best results,
greatly surpassing other methods. Although labeled pretraining can still improve the
accuracy at this time, in the case of different devices, due to the large difference between
the distribution of the pre-training data and the data to be diagnosed, namely dataset 1 and
dataset 3, its effect is greatly reduced at this time. Since MixMatch uses both dataset 1 and
dataset 3 for training, it can adapt the target diagnostic data with unlabeled data and thus
obtain better diagnostic accuracy, but even so it is not as good as SMoCo. In addition, it
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needs to be trained from scratch for each diagnostic task, so its training time is far inferior
to SMoCo. The performance of other self-supervised methods is still far from that of ours.
FFT + SVM has achieved good results in the face of relatively simple diagnostic tasks, but
there is still a big gap compared with SMoCo.

Table 7. Comparison of diagnostic results on dataset 3 under 3 samples per class.

Method Accuracy (%) Time (s)

SMoCo 100.00 ± 0.00 1.60
MixMatch 98.55 ± 0.65 469.06

Labeled Pretraining 90.92 ± 2.11 30.62
Wang 74.65 ± 4.56 36.04

SimCLR 81.85 ± 4.06 37.32
BYOL 85.66 ± 2.82 35.12
MoCo 84.00 ± 4.10 40.42

ResNet18 82.83 ± 2.88 29.78
FFT + SVM 94.94 ± 4.19 0.15

Figure 15. Comparison of diagnostic results on dataset 3 under 3 samples per class.

To further explore the effectiveness of SMoCo, MixMatch is also used as a comparison,
which is the best performing method among the other methods. For the training set of
dataset 3, one sample per class to three samples per class are used for training, and the
results are shown in Figure 16. SMoCo can achieve a diagnostic accuracy of 99.15% with
only one sample per class, which is also consistent with the results of feature visualization.
It is proven that SMoCo is efficient and robust in the face of diagnostic tasks of different
devices, which greatly reflects its superiority. In the case of extremely limited data, Mix-
Match’s diagnostic accuracy drops sharply. This is due to the lack of a stable and efficient
feature extractor, and it will encounter the common problem of deep learning, that is, the
performance will be greatly reduced when the amount of data is extremely limited.
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Figure 16. Comparison of results under different training set sizes on dataset 3.

5. Robustness Verification of SMoCo

5.1. Sensitivity to the Size of the Pre-Training Dataset

To further explore the sensitivity of SMoCo to the size of the unlabeled pre-training
dataset, in this section, five different data volumes of 2000, 1500, 1000, 500, and 100 for
each class are used for self-supervised learning on unlabeled dataset 1. After the self-
supervised training is completed, all feature extractors are used to perform fault diagnosis
on the labeled dataset 2 and dataset 3, respectively. In addition, to further explore their
performance with different numbers of labeled training sets, this paper varies the number
of samples per class from 1 to 5 for the training set of dataset 2 and from 1 to 3 for
dataset 3. For each dataset, an additional method that performs the best except SMoCo in
Sections 4.2 and 4.3 is performed as a comparison. Finally, to better evaluate their diagnostic
performance, the F1 score is used as the evaluation criterion [33], and the results are shown
in Table 8, Figure 17, Table 9, and Figure 18. Where SMoCo + 2000 means self-supervised
learning using 2000 unlabeled samples per class in dataset 1, the meaning of SMoCo + 1500,
etc. can be deduced accordingly. Labeled pretraining + 2000 means pre-training with
labels using 2000 samples per class in dataset 1. MixMatch + 2000 means semi-supervised
learning using both the 2000 unlabeled samples per class in dataset 1 and the labeled target
diagnostic dataset.

Table 8. Experimental results of the sensitivity to the size of the data set on dataset 2.

Method
Number of Samples Per Class on Dataset 2

1 (F1/%) 2 (F1/%) 3 (F1/%) 4 (F1/%) 5 (F1/%)

SMoCo + 2000 94.39 97.86 98.92 99.60 99.64
SMoCo + 1500 92.35 95.43 97.79 98.52 98.76
SMoCo + 1000 91.80 94.90 96.76 98.07 98.51
SMoCo + 500 89.85 94.26 96.46 97.00 97.95
SMoCo + 100 89.33 94.19 96.26 96.65 97.61

Labeled Pretraining + 2000 88.33 94.24 96.20 96.84 97.20
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Figure 17. Experimental results of the sensitivity to the size of the data set on dataset 2.

Table 9. Experimental results of the sensitivity to the size of the data set on dataset 3.

Method
Number of Samples Per Class on Dataset 3

1 (F1/%) 2 (F1/%) 3 (F1/%)

SMoCo + 2000 99.46 99.84 99.94
SMoCo + 1500 98.31 99.11 99.54
SMoCo + 1000 98.01 99.04 99.38
SMoCo + 500 97.74 98.86 99.20
SMoCo + 100 97.04 98.21 98.89

MixMatch + 2000 88.51 94.27 97.43

Figure 18. Experimental results of the sensitivity to the size of the data set on dataset 3.

From Table 8 and Figure 17, it can be seen that for dataset 2 when using 5 labeled
training samples per class, all SMoCo with different unlabeled data sizes achieved excellent
results. When using 1 labeled training sample per class, even SMoCo + 100 achieved a
score of nearly 90%. SMoCo + 100 achieved a similar level of performance as with labeled
pretraining and even reached the leading performance in the case of 1 sample per class and
5 samples per class, demonstrating the superior performance and robustness of SMoCo
regarding the size of the unlabeled dataset. With the increase in data volume, SMoCo can
achieve feature extractors with better performance via self-supervised learning.

As can be seen from Table 9 and Figure 18, SMoCo + 100 achieves excellent diagnostic
performance even in the face of diagnostic problems across different devices and surpris-
ingly greatly outperforms MixMatch + 2000. The progressive improvement in diagnostic
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performance from SMoCo + 100 to SMoCo + 2000 proves that the performance of SMoCo
can be increased gradually with the increase of the amount of data.

5.2. Sensitivity to Aero-Engine Bearing Dataset under Different Noise Levels

In this section, noise stress tests are carried out to demonstrate the robustness and
effectiveness of SMoCo with different signal-to-noise ratio (SNR) values on dataset 3. As a
comparison, MixMatch and FFT + SVM are also used to perform diagnosis on dataset 3
with 3 samples per class at different noise levels, which are the best performing methods
except SMoCo. SMoCo and MixMatch both use the full unlabeled dataset 1, i.e., 2000
samples per class. In this paper, we also further increase the difficulty of the experiment by
training SMoCo from 1 sample per class to 3 samples per class of the labeled datasets, to
verify the robustness of SMoCo under severe conditions, which are denoted as SMoCo + 1,
SMoCo + 2, and SMoCo + 3. The evaluation criterion is the F1 score, and the results are
shown in Table 10 and Figure 19.

Table 10. Experimental results of the sensitivity to the SNR on the aero-engine bearing dataset.

Method
SNR

0 dB 1 dB 2 dB 3 dB 4 dB 5 dB 6 dB 7 dB 8 dB 9 dB 10 dB

SMoCo + 3 96.61 97.60 97.90 98.03 98.65 98.74 99.23 99.53 99.56 99.69 99.75
SMoCo + 2 95.50 95.61 96.64 97.63 98.00 98.15 98.43 98.98 99.10 99.29 99.35
SMoCo + 1 91.54 92.03 92.74 93.75 94.92 96.06 96.68 97.08 97.32 97.93 98.58
MixMatch 54.84 67.54 72.41 79.27 85.79 90.95 92.94 93.56 93.72 94.99 95.58
FFT + SVM 83.28 85.46 87.15 88.55 89.98 90.85 91.41 91.95 92.89 93.11 94.09

Figure 19. Experimental results of the sensitivity to the SNR on the aero-engine bearing dataset.

From Table 10 and Figure 19, it can be seen that SMoCo achieves the best result
compared to the other two methods, even SMoCo + 1 can achieve a score of 91.54 at
0 dB, showing its strong robustness against noise. Although SMoCo + 1 achieves good
diagnostic accuracy, the gap between it and SMoCo + 2 is large compared to the gap
between SMoCo + 2 and SMoCo + 3, which is especially obvious in the case of strong
noise. This is because, in the case of extremely small samples, there is a deviation in the
decision boundary between the training and testing data sets due to interference of noise. In
addition, MixMatch performs worse than FFT + SVM in the case of higher noise due to the
fact that the gap between its data distribution and that of the unlabeled dataset gradually
widens when the noise of the target diagnostic data increases, resulting in MixMatch not
being able to make good use of the unlabeled data to improve the diagnostic accuracy of
the target labeled data.
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6. Conclusions

Under complex and harsh actual working conditions, there is a limited data problem in
the fault diagnosis of aero-engine rolling bearings, which seriously affects the performance
of intelligent diagnosis methods. Based on MoCo, this paper proposes a new intelligent
diagnosis method based on SMoCo through improvement of the structure and innovation
of the data augmentation method. SMoCo first performs self-supervised learning on easily
available unlabeled data and then utilizes the trained feature extractor for downstream
diagnostic tasks under limited data. Experimental results show that SMoCo not only has
high diagnostic accuracy and training efficiency, but also has good generalization ability.
The experimental results show that SMoCo can have high diagnostic accuracy and training
efficiency under limited data, whether the target data are from the same model but with
different failure modes and different working conditions or from a completely different
type from the pre-training data, which proves its good generalization ability. The main
conclusions are as follows:

1. In this paper, BN and a predictor are introduced to solve the deficiency of the MoCo
structure, and SML is innovatively proposed according to the time domain and
frequency domain of the signal, which regards the time-domain signal and frequency-
domain signal as a positive pair. Therefore, a fault diagnosis method based on SMoCo
is proposed.

2. SMoCo uses easily available unlabeled data for self-supervised learning, the sources
of which can be diverse and are not limited to objects that need to be diagnosed.
Therefore, its acquisition range is wider, and its feasibility in practical diagnostic tasks
is much greater than that of previous work.

3. This paper uses two independent bearing datasets from Paderborn University and
the Polytechnic University of Turin for experimental verification. In the experiment,
three important problems of aero-engine bearing fault diagnosis under the condition
of limited data are studied, which are different working conditions, different failure
modes, and different equipment. After SMoCo performs self-supervised learning
on artificially injected faulted bearings, the trained feature extractor can be used to
solve the above problems. The results show that the proposed SMoCo method can
effectively solve the diagnosis problem in the case of limited data, it greatly exceeds
the existing state-of-the-art methods both in accuracy and speed and is very little
affected by limited data, even requiring only one sample per class to achieve high
diagnostic accuracy for aero-engine bearing.

4. Compared with representative methods, SMoCo still achieves good performance
in the case of limited unlabeled pre-training data and less labeled training data
with strong noise, demonstrating the robustness of SMoCo regarding data volume
and noise.

Although the SMoCo proposed in this paper has achieved good results, there is still
some work that deserves further exploration, especially in relation to the time and efficiency
of self-supervised learning. SMoCo takes a relatively long time to learn the essential features
of the signal in the self-supervised learning phase, and future research could be conducted
to improve the training efficiency. In addition, in this paper, only Gaussian noise is explored
as the data augmentation method, while there are often other non-Gaussian noises and
mixed noises in the actual industry [34,35], which could be further investigated in the
future to be more robust regarding the complex conditions in actual industry. Future work
could also try to change the structure of the encoder to use a convolutional network with
better performance or a transformer network, which is currently performing extremely well
in the field of deep learning [36]. A larger pre-trained dataset with different data sources,
not just from one bearing dataset, could be used to try to build a unified feature extractor
for all rotating machinery problems.
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Abstract: With the development of aerospace science and technology, more and more probes are
expected to be deployed around extraterrestrial planets. In this paper, some special orbits around
Jupiter, Saturn, Uranus, and Neptune are discussed and analyzed. The design methods of some
special orbits are sorted out, considering the actual motion parameters and main perturbation forces
of these four planets. The characteristics of sun-synchronous orbits, repeating ground track orbits,
and synchronous planet orbits surrounding these plants are analyzed and compared. The analysis
results show that Uranus does not have sun-synchronous orbits in the general sense. This paper
also preliminarily calculates the orbital parameters of some special orbits around these planets,
including the relationship between the semi-major axis, the eccentricity and the orbital inclination of
the sun-synchronous orbits, the range of the regression coefficient of the sun-synchronous repeating
ground track orbits, and the orbital parameters of synchronous planet orbits, laying a foundation for
more accurate orbit design of future planetary probes.

Keywords: exoplanet; sun-synchronous orbit; repeating ground track orbit; planet-synchronous orbit

MSC: 70M20; 70F15

1. Introduction

Moving towards deep space is an important goal for the development of human
civilization, and the exploration of extraterrestrial planets is also the litmus test of human
technology. At present, many countries are actively exploring the planets in the solar
system. Mars, as a close neighbor of the Earth, already has a number of artificial satellites
in its orbit, such as the Odyssey [1], Mars Express [2], Mars Reconnaissance Orbiter [3], and
Mars Atmosphere and Volatile Evolution (MAVEN) [4]. In addition, China’s tianwen-1 [5],
the US Curiosity [6], InSight [7], and other landers have carried out various tests on the
surface of Mars.

The success of the exploration of Mars has further stimulated human enthusiasm for
the exploration of other planets: Jupiter, Saturn, Uranus, and Neptune. As early as half a
century ago, Voyager 1 was the first to provide detailed photos of Jupiter and Saturn [8];
after that, Voyager 2 [9] made a flyby exploration of all these four planets. However, with
the progress of space technology and the in-depth study of the solar system, human beings
have long been dissatisfied with this fleeting glimpse.

The new close-range planetary exploration mission has achieved great success. The
Juno Jupiter probe launched in 2016 has greatly promoted our understanding of Jupiter’s
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magnetic field model [10], core composition [11] and dynamic tides [12]. The data from
the Cassini Saturn probe [13] has also accelerated our research progress on Saturn’s upper
atmosphere [14], satellite system [15], interior structure [16], and ring system [17].

Although Uranus and Neptune are more distant from us, research about them is also
of great significance. Guillot’s research shows that Uranus and Neptune are the key to
understanding planets with hydrogen atmospheres [18]. Voosen et al. [19] said that Uranus
should be the primary goal of NASA. However, at present, our understanding of these two
planets is still relatively limited. Helled R. [20] pointed out that Uranus and Neptune are
still mysterious planets, and it is obvious that these planets need to be further explored in
theory and observation. Brozović’s research [21] shows that the satellite systems of Uranus
and Neptune are extremely complex and need further and more detailed observation.
Hofstadter et al. [22] pointed out that some key measurements can only be carried out by
orbiters of giant planets and detectors falling into their atmospheres.

It is obvious that probes dedicated to exclusive and focused study of Uranus and
Neptune are needed. Research on the detection of Uranus and Neptune has been car-
ried out. Rohan et al. [23] have designed the incident orbit of the Neptune detector.
Cohen et al. [24] have begun to study the detector design of Uranus. Deniz et al. [25] dis-
cussed how to effectively use the time when the detector flies to Uranus and Neptune to
detect gravitational waves.

2. Dynamic Model and Symbols

According to previous experience, in order to complete the detection task more
efficiently, these orbiting probes often work in some special orbits [26], such as sun-
synchronous orbit, repeating ground track orbit, and planet-synchronous orbit. Therefore,
it is necessary to analyze and compare some special orbits around these four planets.

This paper uses some traditional symbols to represent the dynamic parameters and
the orbital elements: a is the semi-major axis of the orbit. e is the orbital eccentricity. p is the
semi-latus rectum and p = a(1 – e2). i is the orbital inclination. Ω is the right ascension of the
ascending node. ω is the argument of perigee. M is the mean anomaly. f is the true anomaly.
n is the mean angular velocity. The geometric interpretations of these elements are shown
in Figure 1. The space coordinate system shown in Figure 1 is a right-hand coordinate
system, where O is the center of mass of the planet and a focal point of an elliptical orbit,
the x-axis points in the direction of the ascending node of the Sun, the z-axis points in the
direction of the angular momentum direction of the planet’s rotation. O’ is the center of the
ellipse, C is the perigee of the orbit, A is the apogee of the orbit, B is the ascending node of
the orbit and O’ is at the center of the ellipse ABC.

Figure 1. Schematic diagram of some orbital elements.
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Some relevant dynamic parameters of the four giant planets are shown in the table below:
For a planet, J2 is the second-order zonal harmonic coefficient. Additionally, J4 is the

fourth-order zonal harmonic coefficient. All parameters shown in Table 1 can be obtained
from the public website of NASA [27]. To make it convenient for readers to verify the
calculation results of this paper, the codes of this paper are available and can be obtained
through private communication.

Table 1. Main dynamic parameters of each planet [27].

Parameters Jupiter Saturn Uranus Neptune

Mass(1024 kg) 1898.13 568.32 86.81 102.41
Equatorial radius(km) 71,492 60,268 25,559 24,764

Tropical orbit period(days) 4330.59 10,746.94 30,588.74 59,799.90
Sidereal rotation period(hours) 9.92 10.65 17.24 16.11

Inclination of equator(deg) 3.13 26.73 97.77 28.32
J2 (10−6) 14,736 16,298 3343 3411
J4 (10−6) −586.61 −935.31 −34.52 −38.01

The gravitational field functions of the four giant planets are established in the planet
centroid system shown in Figure 1. References [28,29] show that the magnitude of the
non-spherical perturbation coming from the central body (irregular shape) is usually much
larger than the ones coming from the moons, but they give a zero net result concerning
variations of energy. Therefore, from this point of view, it is important to study those
perturbations individually [28,29].

The main non-spherical perturbation terms of these four planets are J2 and J4, and
therefore, their gravitational field functions can be expressed as [30,31]:

U =
μp

r

[
1− J2

2

(
Rp

r

)2(
3 sin2 ϕ− 1

)
− J4

8

(
Rp

r

)4(
35 sin4 ϕ− 30 sin2 ϕ + 3

)]
(1)

where μp is the gravitational field coefficient, Rp is the equatorial radius, ϕ is the geographic
latitude, λ is the geographic longitude, ωp is the rotational angular velocity, and r is the
distance between the probe and the centroid of the planet.

3. Sun-Synchronous Orbits

A remarkable feature of a sun-synchronous orbit is that the solar angle of the orbital
plane can maintain long-term stability, which is not only conducive to energy manage-
ment. However, it also can ensure the relative stability of the light conditions for the
observation [32].

In terms of the present technology, the service life of an artificial satellite generally
does not exceed ten years [33]. For a planet with a very long tropical orbit period like
Neptune, the change in the orbit’s solar angle caused by the planet’s revolution is not
significant during the life cycle of the probe. However, with the continuous development
of satellite manufacturing and propulsion system technology, the service life of a probe
will become longer and longer, especially for a planetary probe, and its service life would
be much longer than that of the Earth’s probe. Therefore, it is still necessary to study the
sun-synchronous orbits around planets with a long tropical period.

Taking the orbit design of the Earth satellite as a reference, the realization of sun-
synchronous orbits mainly utilizes the perturbation of the non-spherical gravitational field
of the planet. There will be a long-term drift of the right ascension of the ascending node
under the influence of the gravitational field described in Equation (1).

.
Ω, which represents

the drift rate of Ω, can be described as follows [32]:
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.
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To achieve the characteristics of sun synchronization, it is necessary to use the gravita-
tional field characteristics of different planets to design different semi-major axis, eccentric-
ity, and orbital inclination, so that the following relationship is established:

.
Ω =

.
Ms, (3)

where
.

Ms is the mean angular velocity during one sidereal rotation period of the planet.
When combining Equation (2) and Equation (3), we get:
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(4)

It can be seen from Equation (4) that with preset a and e, i can be obtained by solving
the cubic equation with cosi as the independent variable. The solution of a cubic equation
probably has one, two, or three distinct roots.

The properties of the solution of the cubic equation can be obtained by calculating the
following discriminant:

Δ =

.
Ms

2

4Γ32 +
Γ1

3

27Γ33 , (5)

where Γ1 is the coefficient of cosi and Γ3 is the coefficient of cos3i.
In combination with the dynamic parameters shown in Table 1, the discriminant is

calculated, and the results are shown in Figure 2:

Figure 2. Calculation results of discriminant under different semi-major axes and eccentricities.

As can be seen from Figure 2, the corresponding discriminant of the four giant planets
is always greater than zero, which indicates that the equation will have only one real root.
That is, for a given a and e, all four planets will be able to find a unique orbital inclination i
to meet the requirements of solar synchronous orbit.
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Combined with the physical parameters of the four giant planets shown in Table 1,
the semi-major axis, eccentricity, and orbital inclination of their solar synchronous orbit are
further calculated in this paper. To more intuitively show the change relationship among
the three parameters, the value range is wide, and the results are shown in Figure 3.

Figure 3. The relationship between the orbital inclination, semi-major axis, and eccentricity of
sun-synchronous orbits.

Calculations show that the orbital inclinations for the sun-synchronous orbits around
the four giant planets are greater than 90 degrees, which belong to retrograde orbits.
Jupiter’s sun-synchronous orbital inclination varies most significantly with the change
of its semi-major axis, while Neptune’s sun-synchronous orbit has the smallest orbital
inclination. In addition, for all four planets, when the semi-major axis is larger, and the
eccentricity is smaller, the orbital inclination changes more significantly, which indicates
that when deploying a probe to near-circular orbits with high orbit altitude, more attention
should be paid to the injection accuracy.

For a probe orbiting Uranus, this paper believes that running in this orbit does not
mean that it has the characteristics of sun-synchronization, although Equation (4) still has a
solution.

As mentioned above, the fundamental feature of a sun-synchronous orbit is that the
angle between the orbit plane normal vector and the direction vector of the Sun remains
relatively fixed. In the planetary equatorial coordinate system, the motion of the Sun can
be described by orbital elements introduced in Section 2, and the unit direction vector of
the Sun is [31]:

r̂s =

⎡⎣cos Ωs cos( fs + ωs)− sin Ωs cos is sin( fs + ωs)
sin Ωs cos( fs + ωs) + cos Ωs cos is sin( fs + ωs)

sin is sin( fs + ωs)

⎤⎦ (6)

where Ωs is the right ascension of the ascending node of the Sun, fs is the true anomaly of
the Sun, ωs is the argument of perigee of the Sun, and is is the orbital inclination of the Sun.

Under the same coordinate system, the orbit plane normal vector of the probe is [31]:

ĥ =

⎡⎣ sin Ω sin i
− cos Ω sin i

cos i

⎤⎦. (7)

331



Mathematics 2022, 10, 2684

Therefore, the cosine value of the orbital solar angle is:

cos Ψ = r̂s · ĥ, (8)

where Ψ is the angle between vector r̂s and vector ĥ, and Ψ is called the orbital solar angle.
Figure 4 shows the relationship between the location of the Sun and the orbital solar

angle Ψ under the coordinate system centered on Uranus. The outer circle represents the
trajectory of the Sun during a cycle of Uranus’ revolution.

Figure 4. Right-hand coordinate system centered on Uranus, where O is the center of mass of Uranus,
the x-axis points in the direction of the ascending node of the Sun, the z-axis points in the direction of
the angular momentum direction of Uranus’ rotation.

Considering the long-term stability of planetary revolution and the physical meaning
of the right ascension of ascending node, the following simplification can be made [31]:{

Ωs = 0
fs = Ms

, (9)

then Equation (8) can be expressed as:

cos Ψ = sin Ω sin i cos us − cos Ω sin i cos is sin us + cos i sin is sin us, (10)

where us = fs + Ms. When taking the derivative of the above equation with respect to time,
we get:

d
dt (cos Ψ) =

.
Ω(cos Ω sin i cos us + sin Ω sin i cos is sin us)

+
.
i(sin Ω cos i cos us − cos Ω cos i cos is sin us − sin i sin is sin us)

−
.

Ms(cos Ω sin i cos is cos us + sin Ω sin i sin us − cos i sin is cos us)

(11)

where
.
i is the drift rate of i. The ideal sun-synchronous orbit should meet the following

requirements:
d
dt
(cos Ψ) = 0. (12)
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For Earth, Mars, Jupiter, and Saturn, further simplifications tend to be made when
designing the sun-synchronous orbits around these planets [27,31,32]:{ .

i = 0
is = 0

, (13)

Equation (12) is therefore reduced to:( .
Ω−

.
Ms

)
(cos Ω sin i cos us + sin Ω sin i sin us) = 0. (14)

It is easy to see that the above equation can be established if
.

Ω =
.

Ms. However, due to
the existence of ecliptic obliquity is and the non-uniform speed of the planetary revolution,
even if Equation (14) is established, it only ensures that the angle between the orbital plane
and the mean Sun remains unchanged, the angle between the orbital plane and the real Sun
will still change within one revolution period. In the case of a sun-synchronous satellite
orbiting Earth, the solar angle will still change by about 20 degrees within a year, which
shows that is has a significant influence on the solar angle of the sun-synchronous orbit.

For Uranus, whose ecliptic obliquity is 97.7 degrees, the is = 0 simplification is no
longer an option.

Learning from the design of Earth’s sun-synchronous orbits [27,31,32], we introduce a
mean Sun under the coordinate system shown in Figure 3. The mean Sun orbiting Uranus
has the same ascending node and orbital period with the apparent Sun. Furthermore, its
motion plane is perpendicular to the equatorial plane of Uranus. Under this ideal model,
there is is = 90(deg), Equation (11) is simplified to:

d
dt (cos Ψ) =

.
Ω cos Ω sin i cos us

+
.
i(sin Ω cos i cos us − sin i sin us)

−
.

Ms(sin Ω sin i sin us − cos i cos us)

(15)

According to the perturbation theory [34], the long-term perturbation of the orbital
inclination mainly comes from the influence of the third-body gravitational force. When
considering the Sun’s gravity as the main third-body gravitational perturbation term, the
long-term average change rate of the orbital inclination angle is [35]:

.
i = 3

.
M

2
s

8n
(
sin 2Ω sin i + sin 2is sin Ω cos i− sin 2Ω cos2 is sin i

)
= 3

.
M

2
s

8n
(
sin i sin 2Ω sin2 is + cos i sin Ω sin 2is

)
.

(16)

It can be seen from above that when n is smaller,
.
i is larger. Taking the planet-

synchronous orbits around Uranus for example, n is taken as the rotation angular velocity
of Uranus, and with different orbital inclination and right ascension of ascending node,

.
i is

calculated as shown in Figure 5.
As can be seen from Figure 5, the drift rate of orbital inclination

.
i will change peri-

odically with the change of orbital inclination i and right ascension of ascending node Ω.
The right ascension of ascending node Ω mainly determines the direction of the orbital
inclination drift rate

.
i, and its magnitude is mainly determined by the orbital inclination

i. In addition, the maximum value of
.
i is only on the order of 10−14, while the angular

velocity of Uranus’s revolution
.

Ms is on the order of 10−9. There is a big difference in
magnitude between the two, so Equation (15) can be further simplified as:

d
dt
(cos Ψ) =

.
Ω cos Ω sin i cos us −

.
Ms(sin Ω sin i sin us − cos i cos us). (17)
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Figure 5. The relationship between the orbital inclination, right ascension of ascending node, and
long-term perturbation of the orbital inclination around Uranus.

Therefore, the following relationships are required in a sun-synchronous orbit:

.
Ω =

sin Ω sin i sin us − cos i cos us

cos Ω sin i cos us

.
Ms. (18)

For Uranus’ sun-synchronous orbits,
.

Ω should be a periodic function, which indicates
that there is no long-term constant

.
Ω to achieve the stability of the solar angle. However,

relevant studies have shown that
.

Ω is a secular term in a tropical period [30]; for a probe
orbiting Uranus, the long-term stability of solar angle would not be realized by orbit design.
Therefore, based on the above analysis, this paper believes that Uranus does not have a
natural sun-synchronous orbit.

Nevertheless, with the development of new technologies such as electric propul-
sion, we do not rule out the possibility of achieving long-term stability of the solar angle
of Uranus probes through orbit control. After all, for a probe running in Earth’s sun-
synchronous orbit, regular orbit control is also essential to achieve the stability of solar
angle [32].

4. Repeating Ground Track Orbits

Orbits with periodically repeated ground trajectory are called repeating ground track
orbits [36]. For a probe running in such orbits, after each regression period, the probe will
repass over specific places on the planet, which is conducive to the repeated observation of
specific targets and the dynamic monitoring of relevant areas. It is conceivable that if we
can have planetary probes running in such orbits, we can make more detailed observations
of specific targets on the surface of these planets, such as Jupiter’s mysterious Great Red
Spot, Saturn’s peculiar Great White Spot [37], and so on.

According to the definition, the repeating ground track orbits should meet the follow-
ing requirement [38]:

RTN = NDN , (19)

where R and N are positive integers, TN is the orbital period of the probe, DN is the node
period of the planet’s rotation relative to the orbital plane. The physical meaning of the
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above equation is as follows: when the probe moves around the planet R times, the planet
just rotates N times relative to the orbital plane. Specifically [31]:

TN =
2π

.
M +

.
ω

, (20)

where
.

M is the angular velocity of the probe’s mean anomaly, and
.

ω is drift velocity of
argument of perigee. The detailed form of

.
M and

.
ω are shown in Appendix A. DN can be

derived from:
DN =

2π

ωp −
.

Ω
. (21)

When the precession direction of the ascending node is the same as the rotation
direction of the planet,

.
Ω is positive, otherwise it is negative.

Many repeating ground track orbits can be designed around a planet. To better
distinguish these orbits, this paper uses the parameter Q to describe the different regression
characteristics between them, which is defined as:

Q =
R
N

=

.
M +

.
ω

ωp −
.

Ω
. (22)

The physical meaning of the above equation is as follows: after N planetary rotation
periods, the probe flies in R circles, and its trajectory on the planetary surface is closed.

Through adding the detailed form of
.

M and
.

ω into the above equation, the univariate
quadratic equation with sin2i as the independent variable is obtained:

A sin4 i + B sin2 i + C−Q
(

ωJ −
.

Ω
)
= 0, (23)

the detailed form of A, B and C are shown in Appendix B.
According to the quadratic equation, Equation (23) has a solution only when the

following inequality is true:

Δ = B2 − 4A
(

C−Q
(

ωp −
.

Ω
))
≥ 0. (24)

Solving this inequality yields the minimum value of Q:

Qmin =
C− B2

4A

ωp −
.

Ω
. (25)

By analyzing Equation (22), it can be found that for a certain planet, since
.

Ω and
.

ω are
both small quantities relative to

.
M, the maximum value of Q is basically determined by the

maximum value of
.

M, that is, the lower the orbit is, the greater the maximum value of Q.
Therefore, the choice of the Q value is not arbitrary when designing the repeating ground
track orbits, and different planets have different Q value ranges [35,39].

In addition, a semi-major axis and eccentricity must be preset for the solution of
the Q value range; otherwise the inequality cannot be solved. In the actual exploration
process, the orbit altitude needs to be determined in combination with the instrument
performance carried by the probe, the atmospheric environment of the planet, and the
specific exploration task. Therefore, the accurate Q value range of each planet is not given
in this paper.

It should be noted that when designing the repeating ground track orbits, the orbital
parameters, such as the semi-major axis a and eccentricity e, cannot be completely deter-
mined only based on the given Q value. In combination with the characteristics of the
Earth’s repeating ground track orbit, it is common that the orbits of this kind basically
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meet the sun-synchronous characteristics at the same time [27,40], and the orbit altitude
fluctuates very little within an orbit period so that the detection instrument can achieve
observation of specific targets under stable illumination conditions. Assuming that the
repeating ground track orbits around the four Giant planets are also sun-synchronous
orbits, Equation (3) is established.

In this paper, the relationship between the a, e, and Q values of the sun-synchronous
repeating ground track orbits around these four planets is calculated, as shown in Figure 5.
It should be noted that although Uranus does not have a sun-synchronous orbit, to better
compare the general characteristics of the repeating ground track orbits around the four
giant planets, the analysis of Uranus is also carried out under the condition that Equation
(3) is established.

It can be seen from Figure 6 that under the same orbit altitude, the Q value from
large to small is Neptune, Uranus, Jupiter, and Saturn. The larger the Q value is, the more
times the probe moves around the planet in a sidereal day. Moreover, the Q value of the
sun-synchronous repeating ground track orbits around the four giant planets is mainly
affected by a. When a is determined, the change of e has little effect on the Q value.

Figure 6. The relationship between the semi-major axis, eccentricity, and Q value of the sun-
synchronous repeating ground track orbits.

In practical engineering applications, the orbital design of the sun-synchronous repeat-
ing ground track orbits around these three planets can be carried out as follows [41]:

First, calculate the intersection period TN. According to the Equation (22), the probe
rotates R times around the planet in a regression period, and rotates Q times around the
planet every day, thus:

TN =
DN
Q

. (26)
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After that, taking the initial values of a and the orbital inclination i, and more accurate
values can be obtained through iteration. The selection of the initial value needs to be
combined with the physical parameters of different planets:{

a = Rp + H
i = π/2

. (27)

where H represents the estimated orbit altitude. Since the orbital inclination of the sun-
synchronous orbits around the four giant planets is close to 90 degrees, π/2 could be a
suitable initial value of i. Then, the initial value is carried into the following equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T0 = TN

1+
3J2R2

p
2a2 (1−4 cos2 i)

a =

[
μpT2

0
4π2

] 1
3

i = arccos
[
−

.
M

2
s × π

180 × 1
86400 × 2× a2

3nJ2R2
p

]
× 180

π

. (28)

Every calculation of Equation (28) gets a new value of a and i. Repeat this process
until the accuracy meets the requirements of the mission.

5. Planet-Synchronous Orbits

In a broad sense, a planet-synchronous orbit refers to an orbit with the same orbital
period as the planetary rotation period. According to Kepler’s third law, the square of
the orbit period is inversely proportional to the cube of the semi-major axis of the orbit.
Therefore, theoretically, the design of planet-synchronous orbit is mainly constrained by
the semi-major axis of the orbit, and there are no special requirements for parameters such
as orbit eccentricity and orbital inclination.

However, in practical engineering applications, it is often not enough to only meet
the requirements that the orbital period is the same as the planetary rotation period. The
main value of planet-synchronous orbits is to keep the longitude and latitude of the sub-
satellite point of the probe basically unchanged, which is extremely advantageous in relay
communication and other application scenarios [42]. A planet-synchronous orbit with such
characteristics is called a stationary orbit.

If generalized coordinates q = [r, λ, ϕ] are defined, the Lagrange equation can be
established [29]:

d
dt

(
∂T
∂

.
q

)
− ∂T

∂q
=

∂U
∂q

, (29)

where T = 1
2

(
.
r2

+ r2 .
ϕ

2
+ r2 cos2 ϕ

.
λ

2
)

, substituting the potential function shown in Equa-

tion (1) into Equation (29), we get:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
..
r− r

.
ϕ

2 − r cos2 ϕ
.
λ

2
= − μ

r2 +
3μp J2R2

p
2r4

(
3 sin2 ϕ− 1

)
+

5μp J4R4
p

8r6

(
35 sin4 ϕ− 30 sin2 ϕ + 3

)
d
dt

(
r2 cos2 ϕ

.
λ
)
= 0

d
dt
(
r2 .

ϕ
)
+ 1

2 r2 sin(2ϕ)
.
λ

2
= −

[
3μp J2R2

p
2r3 +

μp J4R4
p

8r5

(
70 sin2 ϕ− 30

)]
sin 2ϕ

. (30)

According to the physical meaning of stationary orbit, the motion equation should satisfy:⎧⎪⎨⎪⎩
.
λ = ωp,

..
λ = 0

ϕ =
.
ϕ =

..
ϕ = 0

.
r =

..
r = 0

, (31)
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The function f (r) is defined as:

f (r) =

√
μp

r3 +
3μp J2Rp2

2r5 − 15μp J4Rp4

8r7 −ωp. (32)

Taking different r values and calculating the f (r) of the four giant planets respectively,
the resulting values are shown in Figure 7.

Figure 7. The relationship between r and f (r).

According to the definition, the abscissas corresponding to the intersections of the
curves and f (r) = 0 are the semi-major axes of each planets’ stationary orbit. The orbital
semi-major axes of the stationary orbits around Jupiter, Saturn, Uranus, and Neptune are
obtained using the method above, as shown in Table 2.

Table 2. Parameters of the stationary orbits around each planet.

Parameters Jupiter Saturn Uranus Neptune

r/Rp 2.241 1.867 3.235 3.373
Centroid distance (km) 160,247 112,506 82,700 83,520

Orbit altitude (km) 88,755 52,238 57,141 58,756

The results show that the orbit altitude of Jupiter’s stationary orbit is much higher
than that of the other three planets. Although the volume of Saturn is much larger than
that of Uranus and Neptune, its stationary orbit altitude is very close to that of the latter
two planets. If sorted according to the value of r/Rp, Neptune, Uranus, Jupiter, and Saturn
are in order from the largest to the smallest, which is also not proportional to the volume of
the planets. Combined with the planetary parameters shown in Table 1, it can be found
that for the two planets with similar rotation angular velocity, the value of r/Rp is likely to
be positively related to planet density.
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6. Conclusions

In this paper, considering the perturbation of J2 and J4 terms, the sun-synchronous
orbits, the repeating ground track orbits, and the planet-synchronous orbits around Saturn,
Jupiter, Uranus, and Neptune are analyzed.

First, the sun-synchronous orbits around the four giant planets are studied. The
calculation results of the discriminant show that for a given semi-major axis and eccentricity,
the four giant planets can find a unique orbital inclination, making the declination drift
rate of the right ascension of ascending node equal to the planet revolution rate, which
satisfies the theoretical requirements of the sun-synchronous orbits design. The numerical
relationship between these three orbital parameters is then calculated. Since Uranus’ ecliptic
obliquity is close to 90 degrees, this paper defines a mean Sun moving around Uranus with
an orbital inclination of 90 degrees. Under this motion model, the variation law of the solar
angle of the probe orbiting around Uranus is theoretically analyzed. The results show that,
unlike the other three planets, considering the long-term invariance of the semi-major axis,
eccentricity, and orbital inclination, Uranus does not have a natural sun-synchronous orbit
in theory.

After that, this paper analyzes the repeating ground track orbits around these four
planets in combination with the parameter Q. Relevant studies have shown that for the
design of the repeating ground track orbits around a specific planet, the Q value cannot be
taken arbitrarily. This paper describes the calculation method of the Q value range. This
paper calculates the relationship between the orbital parameters of the sun-synchronous
repeating ground track orbits around each planet and gives the design methods except for
that of Uranus, aiming at the most probable application scenario.

Then, the planet-synchronous orbits around the four giant planets are analyzed, and
the parameters of the most typical representative, the stationary orbits, are calculated. The
results show that the altitudes of stationary orbits around Jupiter, Neptune, Uranus, and
Saturn are in descending order. A planet with a larger volume does not necessarily have
a higher stationary orbit altitude, while a fast-rotating and dense planet tends to have
this feature.

Furthermore, the real perturbation environments of the four giant planets are ex-
tremely complex under the influence of their ring system and satellite system [28,29]. How
to conduct a more precise and long-term analysis of the special orbits around the four giant
planets in a more realistic and complex perturbation environment is a work that needs
further exploration. It would be worth it to learn even more from the “Integral Indexes”
and the perturbation maps used as references [28,29] to study the dynamical behavior of
the orbits around planets analysis methods.

Finally, to make the planetary probe work in designed orbits throughout its life cycle,
orbit control is usually indispensable [23,32,39–41]; the orbit control methods applicable to
the four giant planets’ probes are also worthy of in-depth study.
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Appendix A

Under the gravitational field described in Equation (1), we have:

.
M = n +

3nJ2R2
J

2p2

(
1− 3

2 sin2 i
)√

1− e2

+
9nJ2

2 R4
J

4p4

√
1− e2

[
1
2
(
1− 3

2 sin2 i
)2√

1− e2 + e2
(

10
3 − 26

3 sin2 i + 103
12 sin4 i

)
+
(

5
2 − 19

3 sin2 i + 233
48 sin4 i

)
+ e4

1−e2

(
35
12 − 35

4 sin2 i + 315
32 sin4 i

)
− 35J4

18J2
2

e2
(

9
14 − 45

14 sin2 i + 45
16 sin4 i

)]
and:

.
ω = − 3nJ2R2

J
2p2

( 5
2 sin2 i− 2

)
+

9nJ2
2 R4

J
p4

{
e2
(

7
12 − 3

8 sin2 i− 15
32 sin4 i

)
+
√

1− e2
(

2− 11
2 sin2 i + 15

4 sin4 i
)
+
(

4− 103
12 sin2 i + 215

48 sin4 i
)

− 35J4
18J2

2

[
e2
(

27
14 − 27

4 sin2 i + 81
16 sin4 i

)
+
(

12
7 − 93

14 sin2 i + 21
4 sin4 i

)]}
Appendix B

The detailed form of A, B and C are:

A =
9nJ2

2 R4
p

4p4

[√
1− e2

(
9
8

√
1− e2 + 413

48 + 103
12 e2 + 315e4

32(1−e2)
− 105J4

32J2
2

e2
)

+ 215
48 − 15

32 e2 − 35J4
18J2

2

(
21
4 + 81

16 e2
)]

B =
9nJ2

2 R4
p

4p4

[√
1− e2

(
− 3

2

√
1− e2 − 71

6 − 26
3 e2 − 35e4

4(1−e2)
+ 25J4

4J2
2

e2 − p2

J2

)
− 103

12 − 3
8 e2 + 35J4

6J2
2

(
31
14 + 9

4 e2
)
− 5p2

3J2

]
C =

9nJ2
2 R4

p
4p4
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1− e2

(
1
2

√
1− e2 + 9

2 + 10
3 e2 − 35e4

12(1−e2)
− 5J4
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(
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]
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Abstract: Aiming at providing a high-performance terrestrial network for edge computing in satellite
networks, we experimentally demonstrate a high bandwidth and low latency decomposed optical
computing architecture based on distributed Nanoseconds Optical Switches (NOS). Experimental
validation of the decomposed computing network prototype employs a four-port NOS to interconnect
four processor/memory cubes. The SOA-based optical gates provide an ON/OFF ratio greater than
60 dB, enabling none-error transmission at a Bit Error Rate (BER) of 1 × 10−9. An end-to-end access
latency of 122.3 ns and zero packet loss are obtained in the experimental assessment. Scalability
and physical performance considering signal impairments when increasing the NOS port count are
also investigated. An output OSNR of up to 30.5 dB and an none-error transmission with 1.5 dB
penalty is obtained when scaling the NOS port count to 64. Moreover, exploiting the experimentally
measured parameters, the network performance of NOS-based decomposed computing architecture
is numerically assessed under larger network scales. The results indicate that, under a 4096-cube
network scale, the NOS-based decomposed computing architecture achieves 148.5 ns end-to-end
latency inside the same rack and zero packet loss at a link bandwidth of 40 Gb/s.

Keywords: satellite-terrestrial network; hardware decomposition; nanoseconds optical switches

MSC: 78-05; 94-10

1. Introduction

In order to satisfy various requirements of emerging big data applications (like Internet
of Things (IoT), automatic driving, and high-quality video/image processing), a novel
integrated Satellite-Terrestrial Network (STN) has been proposed combing the space-based
satellite communication system and terrestrial computing network [1–4]. The STN achieves
stable global coverage to the user-terminal utilizing satellite networks, while relieving
the limited processing performance of the satellite system by offloading the computing
procedure to terrestrial computing infrastructures [5,6]. The satellites can be applied as
front-end nodes and process delay sensitive tasks with less requirements of computing
performance. Meanwhile, the terrestrial network coordinates with satellites as the back-end
to process computing intensive tasks. This architecture requires a powerful and efficient
terrestrial computing network. However, because of the integrated on-board hardware
in current server-centric terrestrial computing architecture, a large amount of hardware
resources (processor, memory, and storage) is frequently underutilized [7]. Moreover, the
application performance can be degraded under server-centric computing architectures
when limited on-board hardware resources cannot meet the application requirements. In
addition, the failure or upgrade of just one kind of resource (only processor or memory) in
a server causes a significant impact to the whole server.
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To relieve the above issues of server-centric architectures, a novel computing architec-
ture consisting of decomposed hardware cubes (hence, naming decomposed architecture)
is developed to provide flexible resource provision and boosting performance for various
processor (memory) intensive applications [8–12]. In order to implement the decomposed
architecture, there are several issues to be addressed, in which the disaggregation of the
processor and memory is a key challenge. Due to the hardware decomposition, the on-
board high-speed point-to-point bus between the processor and memory is replaced by the
network interconnection. This difference requires a network connection of high bandwidth
and low latency to sustain the traffic among decomposed hardware cubes. The network
switching may also lead to signal deterioration (including channel crosstalk, OSNR degra-
dation, signal distortion, and power budget), hence, degrading the computing performance.
Therefore, a stable, error-free, and low packet loss network is also significantly important
for decomposed architectures.

In this paper, we design and implement an optical terrestrial computing network with
decomposed hardware for STN edge computing, while hardware cubes are interconnected
by an NOS-based flat network to minimize the communication delay. An independent
optical packet control plane is designed to process the optical packet switching and solve
the packet contention. The decomposed computing prototype is experimentally imple-
mented with a 4 × 4 NOS and four processor/memory cubes. The hardware resource
cubes (processor and memory) are implemented based on Field-Programmable Gate Array
(FPGA) platforms. The physical and network performance of the optical computing pro-
totype with decomposed hardware are experimentally assessed, while the scalability of
the decomposed computing architecture (up to 4096 hardware cubes) is also numerically
investigated based on experimentally measured parameters.

The article is organized as follows. Section 2 provides an overview of the existing
works and describes the contributions of this work. In Section 3, the NOS-based decom-
posed optical computing architecture for STN and its operation are presented. In Section 4,
the experimental demonstration of the NOS-based decomposed computing prototype is
discussed. Section 5 shows the scalability of the NOS-based computing architecture with
decomposed hardware in terms of physical performance and network performance. In ad-
dition, our proposed optical computing network with decomposed hardware is compared
with current works in this section. The main results of this work are concluded in Section 6.

2. Literature Review and Contribution

2.1. Related Works

STN has been investigated as a promising solution to provide various cloud services
and applications in next generation network architectures. Xie et al. [2] deployed the com-
puting resource in multi-layer heterogeneous edge computing clusters for STN, considering
the Quality of Service (QoS) requirements, computation offloading, and task scheduling.
Wang et al. [3] designed a space edge computing node for STN to provide services coordi-
nated with the terrestrial computing network, taking less computing time and consuming
less energy than traditional satellite constellation. Tang et al. [5] presented a three-tier
computation architecture combining hybrid terrestrial cloud computing architecture and
an edge computing Low Earth Orbit (LEO) satellite network to minimize the sum power
consumption of the user-terminal. Pfandzelter et al. [13] proposed a resource place method
to select a subset of satellites as computing nodes with QoS constraints. A joint offloading
decision and resource allocation scheme is designed in [14] considering satellites as the
computing node to assist the terrestrial computing network in task processing, which
minimizes the completion delay of computing tasks.

In order to implement the STN in the above studies and provide a minimal delay
for the user-terminal with QoS requirements, a powerful terrestrial computing network is
necessary. The decomposed computing architecture has been considered as an emerging
paradigm with flexible resource provision and faster task runtime. Several experimental
studies have been conducted to investigate the feasibility of decomposed architectures.
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According to the analysis in [15], the low packet loss and long-term network stability are
critical, but the extra network latency impacts the performance of decomposed architectures
the most. Some decomposed architectures were proposed based on current servers and
the hierarchical electrical network to implement decoupled memory blades [16,17]. A
decomposed in-memory store framework was proposed in [18] for big data applications,
utilizing theThymesisFlow memory system. A Software-Defined Networking (SDN)-based
orchestration plane is designed and experimentally implemented for a decomposed com-
puting architecture in [19] with hybrid optical switches. Decomposed architectures based
on optical switches were proposed and experimentally investigated in [20,21], exploiting
high aggregation bandwidths and transparent switching; however, the high switching
delay (milliseconds) of the optical switch technology cannot provide nanoseconds scale
communication between processor and memory cubes. An optically connected memory
architecture was demonstrated in [22,23] based on micro-ring resonator switches and the
Aurora 64B/66B protocol, which achieved an optical switching time of hundreds of mi-
croseconds. To provide fast optical switching, a flat optical network was developed based
on tunable lasers and passive gratings [24], which may lead to unstable operation during
high-speed processing. A decomposed optical computing architecture was proposed based
on Nanoseconds Optical Switches (NOS) [25]. The NOS is based on a broadcast and select
switch architecture employing Semiconductor Optical Amplifiers (SOA)-based optical gates.
Exploiting the nanoseconds switching of SOA-based gates and parallel optical flow control,
the proposed architecture can potentially provide an optical network interconnection of
high bandwidth and low latency for decomposed architectures.

2.2. Motivation and Contribution

Despite the fact that the decomposed computing architecture can provide a more
flexible and efficient terrestrial network with faster application runtime for STN, the inter-
connection and communication among hardware cubes are still challenges, which requires
low access latency and high aggregated bandwidth. Existing electrical network-based solu-
tions is based on commercially available hardware, which needs to be compatible with the
current on-board bus protocol. This inherent high latency due to the on-board peripheral
I/O connection and hierarchical server-to-server interconnect network leads to degraded
application performance, while repeatedly photovoltaic conversions deteriorate the energy
efficiency of decomposed computing architectures. The optical switches-based network
can avoid photovoltaic conversions and achieve a high aggregated bandwidth of up to
hundreds of gigabits. However, the long reconfiguration time (up to milliseconds) limits
the flexibility of the decomposed computing architectures. A stable and fast switching
interconnect network is significant for the decomposed terrestrial computing architecture of
STN. Our previous work in [25] only numerically assessed the application performance of
NOS-based decomposed computing architecture, and the impact of optical network switch-
ing based on NOS as well as network performance must be experimentally investigated to
validate the feasibility and scalability of the proposed decomposed architecture.

The contributions of our work are summarized as follows:

(1) A four-node decomposed computing prototype is experimentally implemented in this
work, consisting of two processor nodes, two memory nodes, and one four-port NOS.
The hardware cubes are implemented utilizing FPGA chip, and two independent
interconnect channels are designed between hardware cubes and NOS for sending
optical payload and signal tags respectively.

(2) The physical and network performance of the decomposed computing prototype are
investigated in experimental assessments. In the physical assessment, the SOA-based
optical gates achieve ON/OFF switch ratios larger than 60 dB and ensure low inter-
channel optical signal interference. The implemented prototype provides a none-error
transmission among decomposed hardware cubes with 0.5 dB power compensation at
a BER of 1 × 10−9. Meanwhile, in the network performance evaluation, the prototype
performs an end-to-end latency of 122.3 ns and zero packet loss after link establishing.
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(3) As the NOS port count directly impacts the scalability and feasibility of decomposed
architectures, we further investigate the physical performance in terms of output
OSNR and required power penalty as a function of the NOS port count. The proposed
decomposed architecture provides an output OSNR of up to 30.5 dB under the NOS
port count of 64. Scaling the NOS port count to 64, an error-free operation with a
power penalty of 1.5 dB is achieved.

(4) The scalability of the NOS-based computing network with decomposed hardware is
also evaluated in this work. Based on the experimentally measured parameters, the
network performance of the NOS-based decomposed architecture is also numerically
assessed under different network scales and link bandwidths. The results show that
with a scale of 4096 hardware cubes and a memory cube access rate of 0.9, an end-
to-end latency of 148.5 ns inside a rack and an end-to-end latency of 265.6 ns across
racks are obtained under a link bandwidth of 40 Gb/s.

3. Decomposed Optical Network for STN Edge Computing

The satellite-terrestrial edge computing network is shown in Figure 1a with a decom-
posed optical network. The satellite system receives the requests from user terminals and
transfers corresponding instructions to terrestrial decomposed computing architecture via
downlink. The decomposed optical computing architecture consists of diverse resource
pools such as processor, memory (Mem), and GPU, which can be flexibly configured based
on application requirements. The hardware-to-NOS interconnection is divided into two
parallel parts: optical packet sending plane and control plane. In the packet sending plane,
the NOS switch port is linked to hardware cubes for sending optical payloads; while, in
the packet control plane, the packet tag from the hardware cube is processed by the switch
controller to forward/block optical payloads and reduced optical packet contention. It is
significant for the scalability of the decomposed network to implement an NOS with large
port count.

  
(a) (b) 

Figure 1. (a) Satellite terrestrial network with decomposed computing architecture; (b) Schematic of
nanoseconds optical switch.

The schematic of NOS is depicted in Figure 1b. There are N hardware cubes in total,
split into M groups and F hardware cubes in each group. Leveraging distributed processing
modules, the NOS can process multiple optical packets from different hardware cubes in
parallel. When the FPGA-implemented switch controller analyzes the packet tag from the
control-path channel, the packet payload from the data-path channel is broadcasted to
SOA-based gates of the 1 × F switch using a splitter. The hardware cube grouping can scale
the port count of the NOS utilizing multiple 1 × F switch with smaller port counts. SOA
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gates can provide nanoseconds switching time and compensate the splitting power loss.
The number of cells Ncell that a packet payload occupied in TX is calculated as follows:

Ncell = �Lp/Lb� (1)

where Lp and Lb are the length of packet and each buffer unit, respectively. After the
1 × F switch, one F × 1 Arrayed Waveguide Gratings (AWG) gathers F different optical
wavelengths from the same group and sends packets to the corresponding receiver. Ac-
cording to the packet destination information in the packet tag, the controller switches the
corresponding SOA gate on and rest optical gates off, then the packet payload is forwarded
to the target hardware cube. Taken the group that wavelength λi of the hardware cube
n (1 ≤ n ≤ F, 1 ≤ I ≤ M) destine to as d. When M is equal to or larger than F, a feasible
wavelength mapping rule is shown in the following formula:

d = (i + 1 − n) mod M (2)

Due to the processing delay of the switch controller in the control-path channel, hard-
ware cubes send out optical packets with the respective delay. To guarantee the alignment
of the tag and packet, there is a periodic calibration in the control-path channel. The
switch controller is also responsible for solving potential contentions among optical pack-
ets. If packet contention occurs, the optical payload with higher priority is transmitted
at first, while the rest of the packet payloads sent in the same time slot are blocked by
switching corresponding SOA gates off. The switch controller then sends the acknowledg-
ment signals to the corresponding hardware cubes for successfully forwarding the packet
(ACK) or re-transmitting the packet (NACK) [26]. Benefiting from the structure of the
distributed modules and nanoseconds switching time of SOA gates, the NOS can provide
a scalable network with the minimal network latency and high aggregation bandwidth
for the decomposed hardware cubes interconnection. More details about the NOS can be
found in [27].

Each hardware cube has three kinds of components: on-board resource, resource
management module, and network interconnect module. The functional diagram of
the processor cube is illustrated in Figure 2a. The on-board resource of the processor
cubes is the CPU, and a small memory chunk (local memory) is still placed inside the
processor cube to run the operating system and cache core data. Both the CPU and local
memory are interconnected to the Memory Management Unit (MMU), which is the resource
management module of the processor cube. The MMU is responsible to the translation
of virtual data addresses to physical data addresses. The network interconnect module
consists of a flow controller, Network Interface (NI), and transmitters (TX and RX in
Figure 2a,b). The flow controller is for sending optical packets to corresponding TX and
processing packets from RX, while NI can package the instructions to network packets. All
the TRXs are divided into two parts: some in the packet plane for sending payloads and
others in the control plane for sending optical tags. The functional diagram of the memory
cube is shown in Figure 2b. The on-board resource of the memory cubes is based on the
Double Data Rate 4 (DDR4) memory or Hybrid Memory Cube (HMC), connected to the
memory controller (resource management module of memory cube). The memory cubes
have the same network interconnect module as processor cubes, processing packets of
reading/writing data from processor cubes and packets from other memory cubes for the
direct memory access. Same as current server-centric architectures, the CPU first accesses
the fast cache when processing application data [28]. Once data are missing in the fast
cache, the instruction and logical data address are sent to the MMU. If the physical address
of the target data locates in the local memory, CPU accesses the target data within the
processor cube. Otherwise, the instruction and physical data address are forwarded to the
flow controller. Based on the hardware cube address containing the target data address,
the instruction is packaged in NI, and then sent to the corresponding TX and forwarded to
destination memory cube.
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(a) (b) 

Figure 2. Functional diagram of (a) processor cube and (b) memory cube.

4. Experimental Demonstration of Decomposed Optical Architecture

4.1. Experimental Setup

The implemented experimental computing prototype with decomposed hardware is
depicted in Figure 3. There are four FPGA-based hardware cubes (two processor cubes
and two memory cubes) with one four-port-count NOS in the prototype. Four hardware
cubes are designed via Vivado utilizing Xilinx Vertex VU095 [29], and the controller for
the four-port-count optical switch is implemented with Xilinx Vertex-7 VC709 [30]. In this
work, we use DDR4 memory as the on-board resource of memory cubes. All the four
hardware cubes of NOS interconnections are based on two parallel commercial 10 Gb/s
SFP+ transceivers (TRX). One TRX is to connect hardware cube and the NOS input/output
port for the optical packet sending plane, while another TRX is for the optical packet control
plane to process the packet tag. All the components in the hardware cube (including MMU,
flow controller, and NI) are designed by FPGA circuit with a 322.3 MHz reference clock for
data processing. In the processor cube, all the transferred data are handled via 32 bit-width
format, and the payload length of each packet is set to 512 bits, as this value is the classical
size of a cache line in existing computing structures. Before sending the optical payload,
the packet has an eight-bit size preamble code to set up the link between hardware cube
and NOS. Meanwhile, there is also an eight-bit size check code after the optical payload.
Between two continuous optical packets, it has a slot to identify the start/end of packets,
including 16 ns slack and 6 ns rise/fall times. The transmitter has an output of 1.2 dBm by
utilizing the SFP+ transceiver, while a 2 m-length fiber is applied to connect the hardware
cubes and NOS. Each SOA-based optical gate is interconnected to the input/output port
of the NOS with a 1 m-length fiber. In the packet sending plane of the four-port-count
NOS, there are four 1-to-4 optical signal splitters, sixteen SOA-based optical gates, and four
4-to-1 optical signal couplers in total. The switch controller distributes its reference clock to
all the hardware cubes for time synchronization, and the processing of the optical packet
sending plane and control plane is synchronized by utilizing the same clock and periodic
calibration. At the same time, blank packets are sent to keep the link alive during periods
of no data packets.
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Figure 3. Experimental setup consisting of four hardware cubes and one NOS.

4.2. Physical Performance of Decomposed Prototype

Due to the broadcast and selective structure of NOS, only one of N optical gates is set to
ON status during sending optical payloads to the corresponding destination hardware cube.
This procedure requires the rest of the optical SOA gates to keep any optical signal from
passing NOS. Otherwise, these leaked optical signals may lead to the signal interference
after optical signal coupling at the output port of NOS. Therefore, in order to evaluate the
implemented prototype and quantify the performance degradation due to optical signal
interference, the optical power difference of SOA-based optical gates switching between
ON and OFF status (ON/OFF ratio) is assessed in this part. It is depicted in Figure 4a that
the SOA-based optical gate obtains a larger power difference when switching between ON
and OFF status at higher SOA operation currents (better performance). When increasing
the SOA operation current higher than 30 mA, the power difference of SOA-based optical
gates is larger than 60 dB. The power spectra of optical signal passing through the SOA-
based optical gates are shown in Figure 4b with ON and OFF status, respectively, and SOA
operation current is configured as 60 mA in the assessment. With an ON/OFF ratio of higher
than 60 dB, the SOA gates can block almost all the optical signals at OFF status, avoiding
extra noise at output channel. Meanwhile, the target optical signal is amplified though ON
SOA gate (output channel), guaranteeing a minimal signal interference across channels.
Benefiting from the operation features of SOA, we can set the ON/OFF status of SOA gates
within nanoseconds and achieve a rapid packet switching with good signal quality.

 
(a) (b) 

Figure 4. (a) Optical signal power difference with ON and OFF SOA status; (b) Power spectra of
optical signal passing through SOA based optical gates.
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To quantify the physical performance and validate the feasibility of the decomposed
computing architecture with decomposed hardware, the BER of the implemented comput-
ing prototype is assessed with a SOA operation current of 60 mA, as shown in Figure 5.
The Xilinx IBERT module [31] is deployed in all the four hardware cubes for calculating the
BER of the computing prototype. BER is recorded when processor cubes send instructions
to memory cubes. The commercially available plug-in SFP+ transceivers are applied in
the assessment. The end-to-end BER without NOS (B-to-B) is measured as a criterion in
the evaluation. It is shown in Figure 5 that the implemented computing prototype can
perform the none-error packet transmission with 0.5 dB power compensation under a
BER of 1 × 10−9 and operation current of 60 mA. This demonstrates that the implemented
computing prototype can provide a feasible physical interconnection among decomposed
hardware cubes

Figure 5. BER and eye diagram of decomposed computing prototype.

4.3. Network Performance of Decomposed Computing Prototype

The network performance of the decomposed computing prototype is assessed in
terms of end-to-end access latency and packet loss. The network latency of the decom-
posed prototype includes four components: the processing delay in the flow controller
and network interface of the source and destination hardware cubes, packet switching in
the NOS, and fiber transmission delay. The end-to-end access latency of the implemented
computing prototype with its breakdown is illustrated in Figure 6a, in which the latency is
recorded when the processor cubes send instructions to the memory cubes. The customized
transmission protocol is designed for the computing prototype with decomposed hardware
to minimize the protocol processing delay. It is shown that, based on customized transmis-
sion protocol, the processor cube contributes 20.63 ns to handle data access instructions
before sending optical packets out, while the memory cube takes 28.27 ns for receiving
instructions and finding the target data. The NOS switching delay is higher compared
to other components because it has more processing procedure including control signal
processing, switch driver delay, and acknowledgement signal generation. Utilizing fast
packet switching by NOS and customized transmission protocol for decomposed hardware,
the implemented computing prototype performs minimal end-to-end access latency of
122.3 ns. By applying the Application Specific Integrated Circuit (ASIC) to implement the
function of the decomposed hardware instead of the FPGA chip, the end-to-end access
latency can be reduced still further.
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(a) (b) 

Figure 6. (a) Network latency components when accessing memory cube; (b) Cumulative network
packet loss over 80 h.

To evaluate the network transmission stability of the computing prototype with de-
composed hardware, the packet loss is cumulatively measured during 80-h operation time.
In the assessment, the processor cube sent 5.8 × 10−11 instructions to memory cube in
total. As shown in Figure 6b, the cumulative packet loss of the implemented computing
prototype with decomposed hardware is less than 1.9 × 10−12 in the end. Only 11 packets
are lost during initialization stage before setting up the alive link. This is because the Clock
and Data Recovery (CDR) procedure is required during initialization stage at receiver part.
After finishing the initial CDR procedure, the NOS based network can provide a stable and
no packet loss interconnection for the decomposed hardware cubes. This is because that
the link keeps active and the clock is locked by inserting blank packets, avoiding resetting
up the link.

5. Scalability and Discussion

The decomposed architecture prototype has been experimentally validated in Section 4,
consisting of four hardware cubes. To better investigate the scalability of decomposed
optical computing architecture, the physical and network performance of decomposed
architecture are evaluated in this section under different network scales. For the physical
performance evaluation, the output OSNR and power penalty for error-free operation
are experimentally assessed as a function of the NOS port count. Meanwhile, exploiting
the experimentally measured parameters, the network latency of decomposed computing
architecture is numerically investigated under different network scales and bandwidths.

5.1. Physical Performance under Different Port Counts

In the optical computing architecture with decomposed hardware, all the on-board
interconnect buses are removed, and NOS based flat optical network is applied to inter-
connect hardware cube. Thus, the port count of NOS is significantly important for the
network scale of optical computing architecture with decomposed hardware. Due to the
broadcast & select structure, the input power of OSA based optical gates is dramatically
reduced when port count of NOS increases. Therefore, the output Optical Signal Noise
Ratio (OSNR) of NOS is evaluated with a range of NOS port counts (four-port to 64-port).
The output OSNR of decomposed hardware cubes is 62.3 dB in the experiment. With four
different SOA operation currents (60 mA, 90 mA, 120 mA, and 150 mA in the experiment),
the received OSNR at the decomposed hardware side is measured by increasing the NOS
port count from 4 to 64. It is shown in Figure 7a that, with SOA-based optical gates oper-
ated at 150 mA, the decomposed hardware cube receives optical signals of 43.3 dB OSNR
utilizing a four-port NOS, and obtains optical signals of 30.5 dB OSNR utilizing a 64-port
NOS. In addition, it is shown that, when deploying the NOS with small port counts in the
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experiment, the current values applied for SOA-based optical gates (from 60 mA to 150 mA)
do not impact the received OSNR of decomposed hardware cubes too much. Meanwhile,
when applying the NOS with larger port counts (>16) and a small SOA operation current
(<100 mA), the received OSNR dramatically increases under a larger operation current.

 

(a) (b) 

Figure 7. (a) Received ONSR of decomposed hardware under various operation currents; (b) Power
compensation for none-error transmission ranging from four-port to 64-port NOS.

In order to guarantee the stable communication among decomposed hardware cubes,
the required power compensation for none-error network transmission is investigated
ranging from four-port NOS to 64-port NOS. In the experiment, the required power com-
pensation is measured with a BER of 1 × 10−9. As depicted in Figure 7b, the optical
computing architecture with decomposed hardware requires a power compensation of
0.9 dB for the none-error transmission with an eight-port NOS. With a 64-port NOS, the
required power compensation increases to 1.5 dB for none-error transmission. The reason
is that, with the broadcast and select structure, there is much more power loss after optical
signal splitters (18 dB extra loss under NOS port count of 64). When amplifying the optical
signal at SOA-based optical gates, more noise is introduced under a lower input power.
The experimental investigation shows that the proposed optical computing architecture
with decomposed hardware is feasible and stable under a larger network scale.

5.2. Network Performance under Larger Network Scales

Due to the limitation of the hardware amount, it is not easy to experimentally evaluate
the network performance of the implemented computing prototype with decomposed hard-
ware cubes at larger scales. Thus, exploiting the experimental measurements (like the NOS
switching time and processing time of processor/memory cubes), we numerically assess
the network performance of optical computing architecture with decomposed hardware in
this part. The discrete event simulator OMNeT++ is applied to model the NOS-based flat
interconnect network and decomposed hardware cubes. Scaling the decomposed comput-
ing architecture, the network topology in [26] is applied in the assessment to interconnect
hardware cubes. Four different network scales and NOS with a corresponding port count
are considered in this evaluation: 64 hardware cubes (eight-port NOS), 256 hardware cubes
(16-port NOS), 1024 hardware cubes (32-port NOS), and 4096 hardware cubes (64-port
NOS). As analyzed in Section 3, the grouping number M is configured as 4, while each
group includes two to 16 hardware cubes. Considering the network performance and cost,
the TRX bandwidth in each hardware cube is configured as 40 Gb/s based on numerical
investigation in [25]. Benefiting from the local memory in the processor cube and on-board
resource in the memory cube, no packet loss can be measured in the experimental demon-
stration. Therefore, the end-to-end access latency is used as performance criterion in the
assessment. To study the end-to-end access latency of the NOS-based computing architec-
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ture with decomposed hardware, the Memory Cube Access Ratio (MCAR) is defined as
the ratio of required memory size in memory cubes and the overall memory size required
by processor cubes. The access instruction is sent from the processor cubes following
existing computing structures [32]. Based on the spatial and temporal characteristics of
data access, long-tailed Pareto distribution is applied to generate access instruction. Same
as the experimental investigation, each network packet is configured as 512 bit-length.
While a memory cube processes the data access instruction, the target cache line is first
fetched to the processor cube. Then, the remaining data of the same data page (4096 bytes)
are fetched to source the processor cube to avoid repeat remote memory cube access [33]. In
the assessment, the network packets carrying target data are assigned with higher priority.

Figure 8a reports the end-to-end access latency of the target data line with different
network scales and different locations of decomposed hardware cubes. There are two kinds
of locations: the source processor cube and destination memory cube are located inside
the same rack (intra-rack) and across different racks (inter-rack). It is illustrated that, with
the MCAR of less than 0.9, the intra-rack and inter-rack locations perform similar end-to-
end access latency with four different scales. With a network scale of 4096 decomposed
hardware cubes, intra-rack access latency of 130.8 ns and inter-rack access latency of 240.9 ns
are obtained. When the MCAR is larger than 0.9, the end-to-end access latency dramatically
increases scaling the optical computing architecture with decomposed hardware cubes.
However, while increasing decomposed hardware from 64 cubes to 4096 cubes, the intra-
rack end-to-end access latency increases by 12.6% with the MCAR of 0.9 (148.5 ns for
4096 decomposed hardware cubes), compared with 15.8% more access latency for inter-
rack interconnection (265.7 ns for 4096 decomposed hardware cubes).

 
(a) (b) 

Figure 8. (a) End-to-end access latency of fetching (a) target data line and (b) data page with 40 Gb/s
TRX bandwidth.

Besides the target data line access, the end-to-end access latency for data page access
is also numerically investigated as shown in Figure 8b. Different with target data line
access, the end-to-end latency for data page access increases with larger MCAR regard-
less of network scales. Scaling the amount of decomposed hardware from 64 cubes to
4096 cubes, the intra-rack end-to-end access latency increases by 11.1% under an MCAR of
0.9 (671.8 ns for 64-cube network and 755.8 ns for 4096-cube network). As for inter-rack
interconnection, the end-to-end latency for data page access performs only a small increase
of 7.4% under large network sizes (more than 256 cubes). It can be referred that the optical
computing architecture keeps similar performance when increasing the port count of NOS
and interconnecting more decomposed hardware cubes.

353



Mathematics 2022, 10, 2515

5.3. Discussion

Based on the above experimental and numerical assessments, it is shown that the
NOS-based optical network can provide stable and fast switching interconnection among
hardware cubes under various network scales. Compared with the microseconds access
latency of current electrical network-based solutions in [16,17], the implemented decom-
posed optical computing architecture performs lower target data access latency of 148.5 ns
under a 4096-cube network and an MCAR of 0.9. Meanwhile, the proposed NOS-based
optical computing architecture can achieve a higher aggregated bandwidth (up to hundreds
of gigabits) utilizing commercially available transceivers and Dense Wavelength Division
Multiplexing (DWDM) technologies.

Compared with milliseconds switching time in an Optical Circuit Switch (OCS)-
based network in [21] and microseconds switching time in a micro-ring resonator-based
network in [23], the implemented NOS-based decomposed computing prototype can
achieve nanoseconds switching time (43.4 ns), while keeping a stable interconnect link with
none packet loss. These assessment results demonstrate the superiority of the proposed
optical decomposed computing network based on NOS with respect to existing works.

6. Conclusions

We implement and experimentally investigate an optical computing prototype with
decomposed hardware cubes for STN edge computing. In the proposed NOS-based flat
terrestrial computing network, decomposed hardware cubes are interconnected, leverag-
ing two parallel optical packet sending plane and control plane. Based on a four-cube
computing prototype, the physical and network performance of the proposed computing
architecture are experimentally assessed. Then, utilizing the experimentally measured
parameters, the scalability of the decomposed computing network is numerically evalu-
ated scaling up to 4096 hardware cubes. Finally, compared with the existing terrestrial
computing networks, the superiority of the implemented optical computing network with
decomposed hardware cubes is verified, and it is feasible to apply the proposed decom-
posed architecture as terrestrial infrastructures for STN edge computing.

It is shown in experimental and numerical assessments:

(1) In the physical assessment, the implemented computing prototype with decomposed
hardware cubes achieves none-error packet transmission based on the power com-
pensation of 0.5 dB. Minimal signal interference across the optical channel is ensured
with larger than 60 dB ON/OFF ratio of SOA-based gates.

(2) For the network performance of the computing prototype with decomposed hardware
cubes, an end-to-end access latency of 122.3 ns can be obtained in the experimental
investigation, while there is zero packet loss after initial CDR procedure.

(3) When scaling the NOS port count to 64, the NOS-based interconnect network provides
optical signals with 30.5 dB OSNR at the receiver part of decomposed hardware cubes,
while requiring power compensation of 1.5 dB for none-error packet transmission.
Under a network scale of 4096 decomposed hardware cubes, numerical studies report
an end-to-end access latency of 148.5 ns inside the same rack with an MCAR of 0.9
and TRX bandwidth of 40 Gb/s.

Compared with current terrestrial computing networks, the proposed NOS-based
flat decomposed computing network can provide high bandwidth optical interconnection
among hardware cubes (even higher than hundreds of gigabits) and low access latency
(tens nanoseconds). Benefiting from the parallel and flat structure, the performance is
maintained when scaling the network (up to thousands of hardware cubes).

Due to the broadcast and select structure of NOS, the SOA-based gates receive much
lower optical power input when further increasing the port count of NOS. This limitation
may introduce more noise when amplifying the optical signals and degrade the perfor-
mance of the NOS-based decomposed computing network. Meanwhile, if the target data
are non-uniformly distributed among hardware cubes, there are more potential optical
packet contentions, leading to higher access latency. Therefore, it is necessary to design
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the corresponding data management algorithm and packet routing policy to minimize the
packet contention and access latency.
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Abstract: An approximation of orbit rendezvous is usually used in the global optimization of multi-
target rendezvous missions, which can greatly affect the efficiency of optimization process. A fast
neural network-based surrogate model is proposed to approximate the optimal velocity increment of
perturbed orbit rendezvous in low Earth orbits. According to a dynamic analysis, the initial and target
orbits together with the flight time are transformed into a nine-dimensional normalized vector that is
used as the input layer of the neural network. An existing approximation method is introduced to
quickly generate the training data. In simulations, different numbers of layer nodes and hidden layers
are tested to choose the best parameters. The proposed neural network model demonstrates high
precision and high efficiency compared with previous approximation methods and neural network
models. The mean relative error is less than 1%. Finally, a case of an optimization of a multi-target
rendezvous mission is tested to prove the potential application of the neural network model.

Keywords: neural network; perturbed orbit rendezvous; trajectory optimization

MSC: 85-08

1. Introduction

The fast approximation of orbit rendezvous is a basis for the global optimization
of a multi-target rendezvous mission [1]. Due to the drift of the right ascension of the
ascending node (RAAN) and argument of perigee [2], the rendezvous velocity increment is
closely related to the flight time for perturbed orbit rendezvous in low Earth orbits (LEOs),
which makes it difficult to obtain an analytical solution. Numerical methods based on
evolutionary algorithms can obtain a high-precision solution, but applying them for the
global optimization of a multi-target rendezvous sequence is time-consuming [3,4] because
the global search needs to evaluate the velocity increments required for orbit transfers
between the different targets at different times for many instances to find the global optimal
order and arrival time of each target.

To obtain efficient methods that quickly calculate the optimal velocity increment,
several studies have focused on analytical methods based on dynamic approximations.
A simple strategy is to calculate the orbit differences between the initial and target orbits
and add them to the velocity increment separately [5,6]. It is fast enough, but cannot
deal with the coupling terms between the different components of the orbit elements. As
differences in the semi-major axis and inclination may cause the RAAN to drift due to
perturbations, it can be used to indirectly change the RAAN instead of a normal impulse
maneuver. Cerf [7] proposed a traversal method to search for the optimal RAAN drift rate
to minimize the total impulses. Huang [8,9] established an equal constraint optimization
model of different impulse components and derived an extremality condition based on
the minimum principle. Shen [10] and Chen [11] separately proposed similar methods by
rewriting the objective function to obtain the analytical expression of the optimal solution.

With the development of artificial neural networks [12–14], several studies have
employed neural networks to approximate the solution of complex dynamic equations.
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Li [15] proposed a surrogate model of low-thrust transfer between asteroids in deep space.
Zhu [16,17] also studied the application of artificial neural networks in low-thrust and
impulsive orbit transfers. Due to the effect of perturbations on the orbit elements in
low Earth orbits, it is more difficult to find all the features that determine the optimal
velocity increment of the rendezvous. In [15,16], the residuals of the neural networks for
transfers in deep space were less than 1%. By contrast, in [17], the residual of the neural
network for perturbed rendezvous with a similar structure was more than 2%. Moreover,
in [17], multiple man-made combinations of characteristic parameters were tested to find
the optimal input layer of the neural network for perturbed orbit rendezvous. However,
a few of the candidate parameters lacked physical meanings and the orbit rendezvous
was divided into three types corresponding with three different neural networks to be
trained, which made the process more time-consuming. Therefore, we focused on a neural
network structure that precisely reflected the optimization of orbit rendezvous using the
fewest parameters.

The major contribution of this study is the proposition of a novel neural network
model for the approximation of long-duration perturbed orbit rendezvous. According to
the existing analytical methods, the feature vector that completely determines the optimal
velocity increment was exacted and normalized to be used as the input layer. The efficiency
of the training data generation processes was also improved. The simulation results
indicated that the relative error of the neural network was less than 1% and the calculation
time was much less. It can be reasonably applied to the global optimization of multi-target
rendezvous sequences.

2. Problem Description of Orbit Rendezvous

In this study, we addressed time-fixed impulsive orbit rendezvous in low Earth orbits
with small eccentricities. The spacecraft was deemed to be in an initial orbit and needed to
transfer to a given target orbit. The rendezvous time and flight time were fixed. Thus, the
optimal velocity increment was the minimum summary of impulses that transferred the
spacecraft to the target orbit under the gravity of the Earth and other perturbations. The
dynamics equations can be described as follows [8]:

.
r = v
.
v = − μ

r3 r + ap
(1)

where r and v are the position and velocity of the spacecraft, respectively; r is the magnitude
of r; μ is the gravity constant of the Earth; and ap is the acceleration of perturbations, which
included the non-sphere perturbation of the Earth, the gravities of the sun and the moon,
solar radial pressure, and the drag of the atmosphere [2].

The model of the impulsive maneuver was expressed as:

r(tm
+) = r(tm

−)
v(tm

+) = v(tm
−) + Δv

(2)

where tm
− and tm

+ are the instantaneous times before and after the maneuver, respectively,
and Δv is the vector of impulse. Assuming that {Δvi}, i = 1, 2 . . . n is the sequence of
impulses that ensures that the spacecraft rendezvous with a target orbit, the optimization
problem is:

minJ =
n
∑

i=1
|Δvi|

s.t. r(t f ) = r f
v(t f ) = v f

(3)

where t f is the rendezvous time; r f and v f are the position and velocity of the target orbit,
respectively; and n is the number of impulses.

Equation (3) is a non-linear optimization model and evolutionary algorithms are
always required to obtain a high-precision solution. When searching for the best path and
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rendezvous times of each target in a multi-target sequence, the global optimization process
needs to frequently evaluate the velocity increments of the transfers between the different
targets with different flight times, which is extremely time-consuming. Most existing
studies have employed different forms of approximation to improve the efficiency [5–8,11].
However, such a problem still lacks a solution that is fast enough for global optimization.
In this study, we propose a new artificial neural network approach to approximate the
optimal velocity increment.

3. Methodology

In this section, the semi-analytical approximation method in [8] was reviewed first.
Based on this method, the features that fully determined the velocity increment were
extracted and validated by the sampling data of different orbit elements and transfer
durations. The feature vector was then employed as the input layer of a multi-layer neural
network. Meanwhile, the numerical high-precision solution in [9] was applied to generate
the sampling data for the training and validation. The process was as follows.

3.1. Approximation Method of the Perturbed Orbit Rendezvous Problem

To quickly evaluate the optimal velocity increment, Huang [8] proposed a semi-
analytical model that considered both efficiency and precision in which the analytical
dynamic equations of J2 perturbation were used and the changes in the orbit elements by
maneuvers were set as unknown parameters. We assumed that Δa0, Δi0 and ΔΩ0 were the
differences of the semi-major axis, inclination, and RAAN between the initial and target
orbits. Δa1, Δi1, and ΔΩ1 then denoted the changes in the semi-major axis, inclination, and
RAAN caused by the impulses at the beginning of the transfer. Δa2, Δi2, and ΔΩ2 denoted
the changes in semi-major axis, inclination, and RAAN caused by the impulses at the end
of the transfer. Thus, the equality constraint optimization model was obtained as:

minΔv =

√
(Δa1

2a0
)

2
+ (Δi1)

2 + ( ΔΩ1
sin i0

)
2
+

√
(Δa2

2a0
)

2
+ (Δi2)

2 + ( ΔΩ2
sin i0

)
2

g.t. g1 � Δa1 + Δa2 = Δa0
g2 � Δi1 + Δi2 = Δi0
g3 � ΔΩ1 + ΔΩ2 + Δ

.
ΩΔt = ΔΩ0

(4)

where Δa1, Δi1, ΔΩ1, Δa2, Δi2, and ΔΩ2 are unknowns and g1, g2, and g3 are the con-
straints required for rendezvous. a0 and i0 are the initial semi-major axis and inclination,
respectively; note that, in this paper, i0 could not be zero. In g3, Δ

.
Ω is used to denote the

difference of the RAAN drift rate between the drift orbit (meaning that the orbit had been
changed by Δa1, Δi1, and ΔΩ1) and target orbit; Δ

.
Ω can be calculated by Δa1 and Δi1 [8].

According to the minimum principle, L = Δv + λ1g1 + λ2g2 + λ3g3 can denote the
Lagrange function where λ1, λ2, and λ3 are the Lagrange multipliers. The extreme condition
can be derived and easily solved by a non-linear algorithm [18]. The solution is locally
corrected by the differences in phase (Δu0) and eccentricity (Δex0 and Δey0) to obtain a
near-optimal solution that meets all the constraints. An iterative process [9] was further
developed to transfer the approximate solution into a high-precision solution of numerical
dynamics via a group of analytical correction equations.

Such a method can be well-applied to the multi-target rendezvous sequence opti-
mization of active debris removal missions. The shortcoming is that the method cannot
be applied directly to global optimization because the calculation time is still not accept-
able when repeating it many times. Instead, it is used to generate a data grid before the
optimization and the evaluation of the velocity increment is calculated by interpolation.

3.2. Features Analysis of the Perturbed Orbit Rendezvous Problem

Equation (4) and other processes in [8] indicated that the key factors of Δv were
the initial semi-major axis and inclination (a0, i0), the differences between the initial and
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target orbits (Δa0, Δi0, ΔΩ0, Δu0, Δex0, and Δey0), and the flight time Δt. To validate this
assumption, the same initial orbit and target orbit given in Table 6 in [8] were used to obtain
the vector x = [a0, i0, Δa0, Δi0, ΔΩ0, Δu0, Δex0, Δey0]. A group of random real numbers
were then generated to represent the initial RAAN, phase, and eccentricity (Ω0, u0, ex0, and
ey0) These corresponded with different orbit rendezvous problems with the same x.

Ω0 = 2πc1
u0 = 2πc2
ex0 = emaxc3 cos(2πc4)
ey0 = emaxc3 sin(2πc4)

(5)

where c1, c2, c3, and c4 are the real numbers in [0, 1] and emax = 0.02 is the maximum eccen-
tricity to analyze. The optimal velocity increments solved by the evolutionary algorithm
are illustrated in Figure 1. It can be seen that when Δt was fixed to different values and x
remained the same, the relative deviation of the optimized Δv was less than 1% although
the other orbit elements were randomly generated and not equal.

 
t t  

 
t t 

Figure 1. Box diagram of optimized velocity increments with different orbits and the same x.

According to Figure 1, the feature vector of perturbed orbit rendezvous could be
defined as x together with Δt. According to the range of orbit elements, it could be
normalized as yin:

yin = [
a0 − a
Δamax

,
i0 − i
Δimax

,
Δa0

Δamax
,

Δi0
Δimax

,
Δex0

emax
,

Δey0

emax
,

ΔΩ0

π
,

Δu0

π
,

Δt
Δtmax

] (6)

where a and i are the middle values of the semi-major axis and the inclination of all
orbits that needed to be analyzed to obtain the approximate model of orbit rendezvous,
respectively; Δamax and Δimax are the maximum values of the changes in the semi-major
axis and inclination; and Δtmax is the maximum transfer time. Each component of yin is
then within [−1, 1]. yin is used as an input layer to construct the neural network.
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3.3. Neural Network and Training

In this study, we applied a multi-layer fully connected neural network [15–17] to
obtain the surrogate model of the optimal velocity increment. The neural network structure
is illustrated in Figure 2.

w i

wk
i

wN
i f

bi
j

yi
j

y j

y j

Figure 2. Structure of the multi-layer neural network.

In Figure 2, the dashed box shows the relationship between the nodes of neighboring
layers. The value of the ith node in the jth layer was a weighted sum of the nodes of the
previous layer and a constant bias:

yj
i = f (

N

∑
k=1

wi
kyj−1

i + bj
i) (7)

where N is the number of nodes that are connected to the current node, wi
k is the weight,

bj
i is the bias, and f is a non-linear function named the activation function. The output was

calculated by a given input through multiple layers.
In this study, the input layer was yin and the output layer was the optimal velocity

increment. The number of hidden layers was set to 2 and each layer had 60 nodes. A
standard rectified linear unit function was set as the activation function. The training
process was as follows.

First, a large amount of training data from different inputs was needed. Equation (8)
was used to generate the random flight time and the initial and target orbits.

a0 = a + k1Δamax
i0 = i + k2Δimax
ex0 = k3emax cos(k4π)
ey0 = k3emax sin(k4π)
Ω0 = k5π
u0 = k6π
a f = a + k7Δamax

i f = i + k8Δimax
ex f = k9emax cos(k10π)
ey f = k9emax sin(k10π)
Ω f = Ω0 + k11ΔΩmax
u f = k12π

Δt = Δtmin + k13Δtmax

(8)
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where ki, i = 1, 2...12 are random real numbers within [−1, 1] and k13 is within (0, 1]. ΔΩmax
is the upper limit of the RAAN difference. The optimization method in [9] was applied to
obtain the corresponding Δv. Each group of yin and Δv was recorded in the dataset.

The dataset was divided into training (90%) and validating data (10%). Keras, a well-
known neural network framework [19], was adopted to complete the training process. For
details on the training algorithm, refer to [19]. In this paper, we did not need to adjust the
hyperparameters of the neural network by the validating result. Therefore, the functions
of the testing data and validating data were almost the same; the validating data could,
therefore, prove the precision of the trained neural network.

The training process and the application of the trained neural network are illustrated
in Figure 3. To obtain the neural network model, a dataset of optimal velocity increments
with different input orbits was generated first. We then obtained the optimal input vector
of such a perturbed orbit rendezvous problem and constructed the neural network. The
dataset was then used to train the neural network and obtain the weights. Finally, the
weights and bias in the neural network were obtained and used in Equation (7) to predict
the optimal velocity increment with various input values.

Application

Neural Network-based 
Approximation Model

Featrue analysis

Training via Keras

Structure of the neural 
network

Sampling data 
of orbit 

rendezvous 
optimization 

Weights of the neural 
network

Input: Given perturbed 
orbit rendezvous 

problem

Output: Approximate 
optimal velocity 

increment

Existing optimization 
methods

                               Analysis and training                               

Figure 3. Flowchart of the training and application of the neural network.

4. Experiments

To validate the proposed neural network design, the problem of the ninth Global
Trajectory Optimization Competition (GTOC9) [20] was tested, which provided 123 pieces
of debris in LEO that must be removed by multiple orbit transfer vehicles (OTVs) within a
given duration. The objective function was to minimize the total launch mass of all that
OTVs. It is a complex global optimization problem that has attracted many participants
even after the competition. Thus, in the simulation, we trained the neural network to help
evaluate the optimal velocity increment of the transfers between the different debris.

4.1. Dataset Generalization and Training Result

In GTOC9, the orbits of the debris are near-circular, the semi-major axis is centralized
at 7100 km, and the inclinations are centralized at 98◦. According to Equation (8), we set
a = 7100 km, i = 98◦, Δamax = 200 km, Δimax = 2◦, ΔΩmax = 10◦, and Δtmax = 30 d. A dataset
consisting of 130,000 groups of input orbits and flight times was generated and the optimal
Δv was calculated and recorded. The distribution of Δv is illustrated in Figure 4.
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Figure 4. Distribution of sampling Δv at different ranges.

In the Keras framework, the training algorithm was set to “rmsprop” (root mean
square propagation), the loss function was “mse” (mean square error), and the batch size
was 32. A total of five cases with different numbers of hidden layers and nodes were tested;
the results are detailed in Table 1. The results indicated that 2 hidden layers of 60 nodes
were enough to obtain high precision. The mean relative error (MRE) was less than 1%
and the mean absolute error (MAE) was less than 4 m/s from the validation data, which
was an improvement of more than 50% compared with the results achieved in [17]. This
was because the feature vector was extracted more reasonably; the training data were also
more precise.

Table 1. Comparison of different neural network parameters.

Number
of Hidden

Layers

Number of
Nodes in Each
Hidden Layer

MRE (%)
MAE
(m/s)

Time of
Each

Training
Epoch (s)

Training
Time (s)

Time of Δv
Evaluation

(s)

2 30 1.34 5.3 4.6 1380 1.2 × 10−6

2 60 0.96 3.8 5.0 1500 4.8 × 10−6

2 90 0.89 3.7 5.2 1560 1.1 × 10−5

3 60 0.81 3.3 6.0 1800 8.9 × 10−6

4 60 0.79 3.2 7.0 2100 1.3 × 10−5

The velocity increments of all transfers using the same input orbits and durations of the
solution in [20] (from the Jet Propulsion Laboratory, which won GTOC9) were recalculated
by the neural network model presented in this paper. Compared with the results from the
Jet Propulsion Laboratory [20], the MRE was less than 4% and close to the semi-analytical
method [8].

The correlation between the Δv predicted by the neural network and the optimized
Δv in [21] is illustrated in Figure 5, which indicated that the results of two methods were
close and the correlation was close to the function y = x. Moreover, the calculation time was
only 4.8 × 10−6 s using an AMD 4.2 GHz CPU, which demonstrated a higher efficiency
than previous approximation methods [8–11].
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v

v

Figure 5. Correlation between the proposed neural network and approximate method in Petropou-
los 2018.

4.2. Application in Global Optimization

The performance of the proposed neural network was evaluated in the global op-
timization of a multi-target rendezvous sequence in the GTOC9 problem. Based on the
problem description, OTVs can be launched one by one to complete the debris removal
mission. Each OTV starts from one debris point and then rendezvous with several targets
sequentially. As the optimal velocity required for an orbit rendezvous between two debris
objects changes with the orbit elements and transfer time, it is difficult to find the global
optimal path of all targets. In the problem description, the maximum duration of the
flight time is 25 d between every two debris points; another 5 d is required for the OTV
to release a de-orbit package (Δmkit = 30 kg) after a rendezvous with target debris. The
specific impulse is Isp = 1000 s and the dry mass of the OTV is 2000 kg. Optimizing one
OTV is a sub-problem of GTOC9, which aims to find the best path and rendezvous times of
given targets to minimize the objective function (the total cost of the OTV mission per unit:
million Euro, also MEUR), defined as:

J = 2× 10−6(m0 − 2000)2 + 55 (9)

where m0 is the launch mass and can be calculated by the velocity increments of all transfers:

mi−1 = mieΔvi/(Ispg) + Δmkit
mN = 2000 kg

(10)

where g is the gravity acceleration at the sea level, N is the number of debris objects in
sequence, mi represents the mass after the ith transfer, and Δvi is the velocity increment of
the ith transfer. The problem is illustrated in Figure 6.

The optimization method in [21] was adopted and the neural network was employed
to replace the evaluation of Δvi corresponding with orbit rendezvous between different
targets with different transfer times. In the optimization model, the dimension of the
decision variables was 2N. The integer variables {xi}, i = 1, 2 . . . N represented the order
of the rendezvous and the real number variables

{
Δti
}

, i = 1, 2 . . . N represented the flight
times between two debris points. Thus, the start time tstart

i and arrival time tarrivel
i of the ith

transfer could be calculated as Equation (11) and the orbit elements of the corresponding
targets could be obtained.
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tstart
i =

{
tarrivel
i−1 + Δtkit, i > 1

t0, i = 1
tarrivel
i = tstart

i + Δti

(11)

where t0 is the given initial time of the OTV mission and Δtkit = 5 d is the time required to
release the de-orbit package. Equation (6) was then sequentially applied to calculate the
input feature vector. The approximate Δvi could then be obtained by the trained neural
network. After all the velocity increments were known, the objective function could be
calculated by Equation (9).

t

t

t

t

Figure 6. Optimization of a sequence (N = 5).

The differential evolutionary algorithm was then used to solve this model and obtain
the optimal order of the debris and optimal rendezvous times. The results to rendezvous
with the same debris objects achieved by the different approximation methods of Δvi are
listed in Table 2, which indicates that the optimal J achieved by the neural network was
comparable with other results, but required less calculation using the same AMD 4.2 GHz
CPU. Moreover, the test was single-threaded and could be further accelerated because a
neural network is easy to parallelize.

Table 2. Comparison of different methods.

Model of Velocity
Increment

Optimal Order of Debris
Total Δv

(m/s)
J

(MEUR)
Computational

Time (s)

Method in [20] 72, 107, 61, 10, 28, 3, 64, 66, 31, 90, 73, 87,
57, 35, 69, 65, 8, 43, 71, 4, 29 3409.5 97.1 >3600

Method in [21] 72, 107, 61, 73, 3, 69, 64, 66, 31, 10, 90, 87,
57, 35, 28, 65, 8, 43, 71, 4, 29 3357.0 95.6 600

Neural network model
in this paper

72, 61, 107, 73, 3, 69, 64, 66, 31, 10, 90, 87,
57, 35, 28, 65, 8, 43, 71, 4, 29 3407.5 97.1 120

5. Conclusions

In this study, we proposed a novel neural network surrogate model for orbit ren-
dezvous between near-circular orbits in low Earth orbits. Most previous methods focused
on analytical approximation forms, which require an optimization process and thus lead
to an efficiency bottleneck. A few of the latest studies have employed neural networks,
but the structures have a lack of theoretical references. In this study, we designed an input
layer based on orbit dynamics and normalization was applied to improve the performance.
Based on an efficient data generalization process, the network was constructed using a
normal training process. The simulation results demonstrated the precision and efficiency
of the neural network model. The relative error was less than 1% and was better than that
achieved by a similar work [17] based on neural networks. Moreover, the calculation time
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was 5.8 × 10−6 s using an ordinary desktop processor and could be directly applied to the
global optimization of multi-target rendezvous missions.
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Nomenclature

a0 Semi-major axis of initial orbit
i0 Inclination of initial orbit
Δa0 Difference of semi-major axis between initial and target orbits
Δi0 Difference of inclination axis between initial and target orbits
ΔΩ0 Difference of RAAN axis between initial and target orbits
Δu0 Difference of phase axis between initial and target orbits
Δex0 Difference of e cosω between initial and target orbits
Δey0 Difference of e sinω between initial and target orbits
.

Ω0 Initial drift rate of RAAN
emax Upper limit of eccentricity
Δamax Upper limit of change in semi-major axis
Δimax Upper limit of change in inclination
ΔΩmax Upper limit of change in RAAN
Δtmax Upper limit of flight time
a Mean value of semi-major axis
i Mean value of inclination
Δv Velocity increment of orbit rendezvous
OTV Orbit transfer vehicle
m0 Launch mass of OTV
mN Dry mass of OTV
Δmkit Mass of de-orbit package released at each debris point
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Abstract: Geosynchronous orbit (GEO) is a very important strategic resource. In order to maximize
the utilization of the GEO resources, the use of all-electric propulsion GEO platforms can greatly
extend the service life of satellites. Therefore, this paper proposes a control scheme of the north/south
station keeping (NSSK) by using electric propulsion with a manipulator. First, on the basis of the
traditional calculation method of the semi-diurnal period of the orbital inclination, the calculation
method of the semi-monthly period and the semi-annual period of the orbital inclination are proposed.
The new method can reduce the fuel consumption and reduce the control amount and control
frequency of the station keeping (SK). Secondly, a fuel-optimized NSSK algorithm by using electric
propulsion with a manipulator is proposed. The algorithm can not only be applied to a large initial
orbital inclination but also can unload the large angular momentum of the asymmetric satellites
while keeping the north/south station, thereby avoiding the loss of control of the satellite’s attitude.
The research results of this paper provide a new idea for the SK control of the GEO satellites and have
great engineering application value.

Keywords: GEO; asymmetric configuration satellites; NSSK; mean orbital inclination

MSC: 85-10

1. Introduction

Geosynchronous orbit (GEO) satellites [1,2] rotate in the same direction as the earth’s
rotation. Its orbital period is equal to the earth’s rotation period, the orbital plane coincides
with the earth’s equatorial plane, and the orbital semi-major axis is also a constant (about
42,165.7 km). Therefore, the ideal GEO satellite is stationary relative to any point on the
earth, and the continuous and uninterrupted communication can be achieved by using
a fixed-point antenna at a fixed point on the ground. At the same time, due to the high
orbital altitude of the GEO satellites and a wide range of ground coverage, a GEO satellite
can perform long-term repeated observations on about one-third of the world’s mid- and
low-latitude regions. Due to these characteristics, GEO satellites can be widely used in
communication, navigation and meteorological observation and other fields. Therefore, the
GEO is actually a very important strategic resource.

However, under the action of various natural perturbations, satellites in GEO will
gradually drift away from the original orbit, which will not only reduce the work efficiency
of satellites but may also cause satellites in GEO to collide. Therefore, orbital control of
the GEO satellite is required on a regular basis to keep the GEO satellite near the designed
orbital position. Similarly, under the action of various natural perturbation torques, the
angular momentum of the GEO satellite will gradually accumulate and may exceed the
capacity of the on-board angular momentum storage device (here, the on-board angular
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momentum storage device generally refers to the flywheel or the control moment gyro).
At the limit, it will cause the satellite’s attitude to be out of control and unable to work,
and it may even cause the satellite to be scrapped early and become space junk because
it cannot obtain enough solar energy. Therefore, it is necessary to unload the angular
momentum of the GEO satellite regularly, so that the angular momentum of the on-board
angular momentum storage device is always within the limit range, and it can always have
sufficient control capability of the attitude to maintain the stability of the satellite’s attitude
and ensure the safety of the energy of the GEO satellite.

In order to maximize the utilization of the GEO resources, large-scale high-carrying
ratio and long-life satellite platforms are the future development trend [3]. Conventional
station keeping (SK) of the GEO satellite uses chemical thrusters. Zhang [4] used dual
tangential thrust control to realize the EWSK and NWSK. It adopts the iterative shooting
method to obtain the optimal orbital control interval that meets the requirements of posi-
tional accuracy. Simulation shows that this method can achieve an SK accuracy of 0.005◦.
Li [5,6] combined engineering practice to introduce several kinds of strategies of the SK
of the GEO satellite based on pulse thrust in detail, and they analyzed the advantages,
disadvantages and uses of various SK strategies. Park [7], Li [8], Shi [9], etc. gave the
co-location isolation strategy, the co-location strategy of multiple satellites and the design
method of the corresponding nominal orbit based on the eccentricity vector and orbital
inclination vector. Shi [10] discussed the relationship between the orbital control period
and the EWSK fuel consumption and gave an EWSK control strategy based on the pulse
method. Li et al. [11–13] introduced the EWSK method based on chemical thruster in detail,
and they successfully applied it on the Fengyun-2 satellite. No [14] designed the mean
longitude keeping strategy based on dead zone control and the mean eccentricity keeping
strategy based on the orbital eccentricity control by predicting the change of the mean
eccentricity vector, and they realized the EWSK of the satellite. Yang [15] adopted the LQG
(Linear Quadratic Gaussian) method to achieve an accuracy of the EWSK of 0.05◦ and
an accuracy of the NWSK of 0.02◦. Yang [16] draws on the idea of a “Deep Space One”
intelligent autonomous control system structure and tries to design a GEO satellite SK
strategy with strong autonomy. Vinod [17] designed an EWSK strategy based on perigee
pointing to the sun, which can effectively reduce the EWSK velocity increment. Chang [18]
adopted the method of equally spaced pulses to divide the jet volume required for one
EWSK into several smaller jets, which reduced the interference of a single jet on the satellite
attitude and improved the control accuracy of the mean longitude. The control amount
needs to be calculated and bet on the ground.

However, the specific impulse of chemical propellants is low, and a greater amount of
propellant is consumed for the velocity increments, which makes it difficult to ensure the
long life requirement of the GEO satellite. The specific impulse of electric propulsion (EP)
is 5–10 times that of chemical propulsion, and the propellant consumed to generate the
same velocity increment is only about 10% of that of chemical propulsion. Configuring an
all-EP system can not only increase the life of the GEO satellite but also reduce the weight
of the satellite, which can meet the requirement of the high load-carrying ratio and long life
of the GEO satellite.

In recent years, scholars have conducted a series of studies on the SK of the GEO
satellite. Weiss [19] introduced a Model Predictive Control (MPC)-based online real-time
control algorithm for GEO satellite SK. Weiss developed a feedback control algorithm in
the form of a linear quadratic constraint model over-policy control strategy, and through
co-simulation with commercial software high-precision orbital dynamics, the satellite’s
angular momentum management was realized, and the accuracy of the east/west station
keeping or north/south station keeping reached 0.01◦, which verifies the feasibility of
real-time closed-loop high-precision SK. However, he assumed that electric thrusters were
installed on all six surfaces of the satellite, leaving no layout space for solar panels and
payload antennas. He assumed that the electric thrusters were variable thrust, which was
inconsistent with the general switch-controlled constant small thrust model. In addition,
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his controller uses a 15-dimensional dynamic equation, which requires high computing
power. Frederik [20] used a convex optimization algorithm to study the problem of the
high-precision SK of the GEO satellite based on pulse and small thrust. Gazzino [21,22]
et al. decompose the SK problem into three steps to solve: the first step adopts the pulse
method, and the optimal control sequence is obtained by the indirect method; the second
step is to convert the pulse into a small thrust; the third step is to further optimize the
moment of the low-thrust switch. Gazzino [23,24] considered the SK period and the orbital
determination period as a whole, transformed the small thrust SK problem of the GEO
satellite into a linear integer programming problem, and realized the sub-optimal fuel GEO
SK. However, this strategy is computationally complex and can only be used on the ground.
A.A. Sukhanov [25] et al. introduced a small-thrust SK optimization algorithm, based on
which the SK of the GEO satellite was achieved. Roth [26] improved the optimization
algorithm by taking the solar light pressure dynamics with earth shadow as one of the
constraints of the global optimization of fuel for the nonlinear optimization problem of the
small thrust SK of the GEO satellite.

The above-mentioned low-thrust position-keeping algorithm has a high dimension
and a large amount of calculation; it needs to use a complex optimization algorithm [27].
Furthermore, some GEO satellites use asymmetric configurations (such as single-wing
solar panels) due to the needs of payload work, which may cause the accumulation of
the satellite’s daily angular momentum to reach 100 Nms [28]. Therefore, the angular
momentum unloading must be performed every day; otherwise, the satellite will be
affected by the actuator (flywheel or control moment gyroscope) exceeding its control
limit and losing attitude control ability [29]. This paper proposes a control method of
the north/south station keeping (NSSK) by using the electric propulsion (EP) with the
manipulator. By placing the electric thruster at the end of the manipulator, the active
adjustment of the position and direction of the manipulator end can be used to realize the
unloading of the satellite’s angular momentum while keeping the north/south station.

The novel contributions of this paper are as follows:

(1) The method proposed in this paper has great advantages in control accuracy and
fuel consumption.

(2) The method proposed in this paper can solve the problem that the angular momentum
cannot be unloaded in the traditional NWSK method, and it prevents the satellite’s
attitude from running out of control.

The structure of this paper is as follows: In Section 2, the basic concepts of the vernal
equinox orbital elements is introduced. The calculation method of the mean orbital incli-
nation for semi-monthly and semi-annual periods is proposed to be suitable for satellites
with different control precision or fuel requirements. The NSSK accuracy and the required
velocity increments for SK corresponding to different periods of the mean orbital inclination
are analyzed. Section 3 proposes a strategy of using the EP with a manipulator to unload
the large-scale angular momentum while in NSSK, and it proposes a zone control method
based on the angular momentum unloading requirements The correctness of the method
proposed in this paper is verified through mathematical simulation in Section 4; the full
text is summarized in Section 5.

2. Calculation of the Mean Orbital Inclination under Different NSSK Accuracy

2.1. The Vernal Equinox Orbital Elements

For an ideal GEO, when i = 0◦, e = 0, the values of Ω and ω are uncertain; they are
only singular values in the mathematical sense. In order to avoid singular values in orbital
calculation, this paper adopts the following vernal equinox orbital elements [5] (pp. 61–64):

x =
[
a l ey ex iy ix

]T (1)

where

a is the orbital semi-major axis, the unit is m.
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l is the mean orbital longitude, the unit is rad;
ey is the Y-component of the orbital eccentricity vector, dimensionless;
ex is the X-component of the orbital eccentricity vector, dimensionless;
iy is the Y-component of the orbital inclination vector, the unit is rad;
ix is the X-component of the orbital inclination vector, the unit is rad.

The expressions in formula (1) are expanded into:

Θ = Θ0 + ωet
ey = e sin(ω + Ω)
ex = e cos(ω + Ω)
iy = i sin(Ω)
ix = i cos(Ω)

(2)

where

ω is the argument of perigee of the satellite in the J2000.0 coordinate system, in rad;
M is the mean anomaly of the satellite in the J2000.0 coordinate system, in rad;
Ω is the right ascending of ascension node of the satellite in the J2000.0 coordinate system,
in rad;
i is the orbital inclination of the satellite in the J2000.0 coordinate system, in rad;
ωe is the rotational angular velocity of the earth, the unit is rad/s;
Θ is the Greenwich sidereal hour angle at the current moment, the unit is rad;
Θ0 is the Greenwich sidereal hour angle at the time of J2000.0, the value is 4.899787426069032 rad.

2.2. Calculation of the Mean Orbital Inclination

Generally speaking, the more period terms are eliminated by the mean orbital inclina-
tion vector of the GEO satellite, the lower the fuel required to keep the orbital inclination,
and the lower the required accuracy of the orbital inclination keeping. Therefore, when
calculating the mean orbital inclination vector, it is not enough to only deduct the semi-
diurnal period term. Generally, it is necessary to select the corresponding algorithm of the
mean orbital inclination vector according to the mission requirements.

The orbital inclination of the GEO satellite is mainly affected by the three-body gravi-
tational force, and the three-body motion is approximated as follows [30]:

xk = cos λk cos Ωk − sin λk sin Ωk cos ik
yk = cos λk sin Ωk + sin λk cos Ωk cos ik
zk = sin ik sin λk

(3)

where

xk, yk, and zk are the position of the third body (sun or moon) in the J2000 coordinate
system, the units are m;
λk is the longitude of the third body (moon or sun) in the J2000 coordinate system, in rad;
Ωk, is the right ascending of the ascension node of the third body (moon or sun) in the
J2000 coordinate system, in rad;
ik is the orbital inclination of the ascension node of the third body (moon or sun) in the
J2000 coordinate system, in rad.

The effect of three-body gravity on the orbital inclination vector is [30]:(
diy
dt

)
k
= 3

2
nk

2

ωe

(
ykzk + xkzk sin 2λk − ykzk cos 2λk + ixzk

2 − ixzk
2 cos 2λk − iyzk

2 sin 2λk
)(

dix
dt

)
k
= 3

2
nk

2

ωe

(
xkzk + ykzk sin 2λk + xkzk cos 2λk − iyzk

2 − iyzk
2 cos 2λk + ixzk

2 sin 2λk
) (4)

where nk is the orbital angular velocity of the third body (sun or moon), the unit is rad/s.
Combining Equations (3) and (4), ignoring the short period (semi-diurnal) term, the in-

372



Mathematics 2022, 10, 2340

fluence of the three-body gravity on the semi-monthly period, semi-annual period and
nutation period of the orbital inclination vector is obtained as follows:

(
diy
dt

)
k−long+D

= 3
8

nk
2

ωe

⎛⎝ cos Ωk sin 2ik
+2 sin ik sin Ωk sin 2λk
− sin 2ik cos Ωk cos 2λk

⎞⎠
(

dix
dt

)
k−long+D

= 3
8

nk
2

ωe

⎛⎝ − sin Ωk sin 2ik
+2 sin ik cos Ωk sin 2λk
+ sin 2ik sin Ωk cos 2λk

⎞⎠ (5)

where subscript “long” means long-term drift caused by the semi-monthly period term and
semi-annual period term; subscript “D” means drift caused by the nutation period term.

2.2.1. Nutation Period Term Perturbation

In formula (5), the perturbation equation including the nutation period term is:(
diy
dt

)
k−D

= 3
8

nk
2

ωe
(cos Ωk sin 2ik)(

dix
dt

)
k−D

= 3
8

nk
2

ωe
(− sin Ωk sin 2ik)

(6)

In Equation (6), considering the variation law of the ephemeris of the sun and the
moon, superimposing the perturbation forces of the sun and the moon on the GEO orbital
inclination, and deducting the semi-diurnal, semi-monthly and semi-annual period terms,
the perturbation equation of the mean orbit inclination vector under the perturbation effect
of the nutation period term can be obtained as follows [5] (p. 137):(

diy
dt

)
k−D

= (22.79 + 2.59 cos Ωsm)× 10−4◦/day(
dix
dt

)
k−D

= −3.5 sin Ωsm × 10−4◦/day
(7)

where Ωsm is the angle between the vernal equinox and the intersection of the lunar orbital
plane and the ecliptic plane, in rad, and its expression is [11]

Ωsm = 125.04456◦ − 1934.1362◦t + 0.0020767◦t2 (8)

where t is the Julian century number corresponding to the current moment.
It can be seen from Formula (8) that the ecliptic period of the ascending node of the

lunar orbit is 18.6 years, which is a nutation period of the earth.
The drift angle of the mean orbital inclination vector is defined as the projection

of the angle from the inertial system axis to the orbital mean inclination vector on the
instantaneous equatorial plane of the earth. According to the definition, it can be seen from
Equation (7) that the drift angle of the mean inclination vector under the nutation period
term perturbation is:

θni =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
arctan

((
diy
dt

)
k−D

/(
dix
dt

)
k−D

) (
dix
dt

)
k−D

> 0

π + arctan
((

diy
dt

)
k−D

/(
dix
dt

)
k−D

) (
dix
dt

)
k−D

< 0

π
2

(
dix
dt

)
k−D

= 0

=

⎧⎪⎨⎪⎩
arctan((22.79 + 2.59 cos Ωsm)/(−3.5 sin Ωsm)) sin Ωsm < 0
π + arctan((22.79 + 2.59 cos Ωsm)/(−3.5 sin Ωsm)) sin Ωsm > 0
π/2 sin Ωsm = 0

(9)

It can be seen from Equation (9) that under the influence of the nutation period per-
turbation, the drift angle of the mean orbital inclination vector is around 90◦. Equation (7)
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shows that the mean orbital inclination of GEO moves in an ellipse under the influence of
the nutation period perturbation, and the major semi-axis of the ellipse can represent the
oscillation amplitude of the mean orbital inclination under the influence of the nutation
period perturbation, which is:

Ani =
3.5× 10−4◦

86400s
· 18.6× 365.25× 86400s

2π
= 0.38◦ (10)

2.2.2. Semi-Annual and Semi-Monthly Period Term Perturbation

In Equation (5), retaining the semi-annual and semi-monthly period terms, the pertur-
bation equation of the mean orbital inclination vector under the influence of the semi-annual
and semi-monthly period terms of the sun-moon gravity can be obtained:(

diy
dt

)
k−long

= 3
8

nk
2

ωe
(2 sin ik sin Ωk sin 2λk − sin 2ik cos Ωk cos 2λk)(

dix
dt

)
k−long

= 3
8

nk
2

ωe
(2 sin ik cos Ωk sin 2λk + sin 2ik sin Ωk cos 2λk)

(11)

The semi-annual oscillation of the mean orbital inclination vector of the GEO satellite
caused by the gravity of the sun is:

amp
(
iy
)

s−long =
∫ (diy

dt

)
s−long

dt

amp(ix)s−long =
∫ (dix

dt

)
s−long

dt
(12)

Substitute Equation (11) into (12), and let the solar orbital parameter Ωs = 0, is be a
constant; then, the semi-annual oscillation of the mean orbital inclination vector of the GEO
satellite caused by the solar gravity can be calculated as:

amp
(
iy
)

s−long = 3
8

ns
ωe

(
− 1

2 sin 2is sin 2λs

)
amp(ix)s−long = 3

8
ns
ωe
(− sin is cos 2λs)

(13)

By formula (13), it can be seen that the semi-annual period fluctuation of the orbital
inclination of the GEO satellite under the influence of the sun’s gravity is about:

Asyi =
3
8

ns

ωe
sin is = 0.03◦ (14)

Similarly, the semi-monthly periodic oscillation of the orbital inclination vector of the
GEO satellite under the influence of the moon’s gravity is:

amp
(
iy
)

m−long =
∫ (diy

dt

)
m−long

dt

amp(ix)m−long =
∫ (dix

dt

)
m−long

dt
(15)

Substitute Equation (11) into (15), and let the solar orbit parameter im be a constant;
then, the semi-monthly oscillation of the mean orbital inclination vector of the GEO satellite
caused by the moon’s gravity can be calculated as:

amp
(
iy
)

m−long = 3
8

nm
2

nωm

(
− sin im sin Ωm cos 2λm − 1

2 sin 2im cos Ωm sin 2λm

)
amp(ix)m−long = 3

8
nm

2

nωm

(
− sin im cos Ωm cos 2λm + 1

2 sin 2im sin Ωm sin 2λm

) (16)
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In Formula (16), Ωm ∈ (−13◦, 13◦), approximately, let cos Ωm = 1, sin Ωm = 0; then,
the semi-monthly periodic oscillation amplitude of the mean orbital inclination of the GEO
satellite under the influence of lunar gravity is about:

Ammi =
3
8

nm
2 sin im
nωm

= 0.003◦ (17)

2.2.3. Semi-Diurnal Period Term Perturbation

The semi-diurnal periodic oscillation of the mean orbital inclination vector of the GEO
satellite under the influence of the three-body gravitational perturbation is:

amp
(
iy
)

k−short =
∫ (diy

dt

)
k−short

dt

amp(ix)k−short =
∫ (dix

dt

)
k−short

dt
(18)

Retaining only the semi-diurnal term in Equation (4), and substituting it into Equation (18),
the short-period oscillation of the mean orbital inclination vector of the GEO satellite under
the influence of three-body gravitational perturbation can be obtained as:

amp
(
iy
)

k−short =
3
4

nk
2

n
1

ωe−ωk

(
−xkzk cos 2λ− ykzk sin 2λ− ixz2

k sin 2λ + iyz2
k cos 2λ

)
amp(ix)k−short =

3
4

nk
2

n
1

ωe−ωk

(
−ykzk cos 2λ + xkzk sin 2λ− iyz2

k sin 2λ− ixz2
k cos 2λ

) (19)

According to Equation (19), the semi-diurnal oscillation amplitudes of the orbital
inclination of the GEO satellite under the influence of the sun’s gravitational and lunar
gravitational perturbations are:

Asdi =
3
4

ns
2

n
1

ωe −ωs
= 3.6× 10−4◦ (20)

Amdi =
3
4

nm
2

n
1

ωe −ωm
= 7.5× 10−4◦ (21)

To sum up, the period term of the orbital inclination vector of the satellites is mainly
affected by the three-body gravitational perturbation, which includes the semi-annual
period term, semi-monthly period term, and semi-diurnal period term. Among them, the
semi-annual period fluctuation of the orbital inclination of the GEO satellite under the
influence of the sun’s gravity is about 0.03◦; the semi-monthly period oscillation amplitude
of the mean orbital inclination of the GEO satellites under the influence of lunar gravity is
about 0.003◦; the semi-diurnal oscillation amplitudes of the orbital inclination of the GEO
satellite under the influence of the sun’s gravitational and lunar gravitational perturbations
is about 0.0008◦.

Therefore, we can draw the following conclusions:

(1) For a GEO satellite whose north/south keeping accuracy is required to be about 0.1◦,
it is recommended to use the calculation method of the mean orbital inclination after
deducting the semi-diurnal period term, semi-monthly period term and semi-annual
period term; that is, the item needed to be deducted is

amp
(
iy
)
= amp

(
iy
)

k + amp
(
iy
)

m−long + amp
(
iy
)

s−long
amp(ix) = amp(ix)k + amp(ix)m−long + amp(ix)s−long

(22)

The remaining term is the mean orbital inclination vector under the influence of the
nutation period term, as shown in Figure 1.

(2) For a GEO satellite whose north/south keeping accuracy is required to be about
0.01◦, it is recommended to use the calculation method of the mean inclination after
deducting the semi-monthly periodic term and semi-diurnal period term; that is, the
item needed to be deducted is
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amp
(
iy
)
= amp

(
iy
)

k + amp
(
iy
)

m−long
amp(ix) = amp(ix)k + amp(ix)m−long

(23)

The remaining term is the mean orbital inclination vector under the influence of the
semi-annual period term, as shown in Figure 2.

(3) For GEO satellites whose NSSK accuracy is required to be about 0.005◦, it is recom-
mended to use the calculation method of the mean orbital inclination after deducting
the semi-diurnal period term; that is, the item needed to be deducted is

amp
(
iy
)
= amp

(
iy
)

k
amp(ix) = amp(ix)k

(24)

The remaining term is the mean orbital inclination vector under the influence of the
semi-monthly period term, as shown in Figure 3.

Figure 1. Mean orbital inclination vector under the influence of the nutation period term.

Figure 2. Mean orbital inclination vector under the influence of the semi-annual period term.
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Figure 3. Mean orbital inclination vector under the influence of the semi-monthly period term.

3. North/South Station Keeping Control by Electric Propulsion with Manipulator

3.1. Basic Concepts

The SK of the GEO satellite is divided into north/south station keeping (NSSK) and
east/west station keeping (EWSK). The NSSK is also called orbital inclination keeping,
which is the out-of-plane control; the EWSK includes the mean longitude keeping and the
eccentricity vector keeping, which is the orbital in-plane control. The required velocity
increment of the satellite’s orbital semi-major axis keeping is no more than 2 m/s per year;
the required velocity increment of satellite’s orbital eccentricity vector keeping is no more
than 2 m/s per year; the required velocity increment of the satellite’s orbital inclination
vector keeping is no more than 51 m/s per year. Therefore, the NSSK accounts for more
than 92% of the velocity increment required for the SK of the GEO satellite, and it occupies
a large portion in the SK of the GEO satellite.

At this stage, chemical thrusters are used to keep the north/south station, which
has low control accuracy and large fuel consumption. This paper proposes a scheme of a
four-degree-of-freedom manipulator with the EP system. As shown in Figure 4, the EP
points to the Y-direction of the satellite. The manipulator includes a shoulder joint, an
elbow joint, a wrist joint and a double-degree-of-freedom wrist joint. Because there is no
need to offset the influence of eccentricity, the electric thrust only needs to work once in
an orbital period. By deflecting the thrust position and direction by the manipulator, the
angular momentum can be unloaded while keeping the north/south station.

 
Figure 4. Four-degree-of-freedom manipulator with EP solution.
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3.2. Range for North/South Station Keeping Zone

The process of the NSSK is essentially to offset the influence of the environmental
perturbation force on the orbital inclination vector through the velocity increment generated
by the EP. The NSSK can be regarded as keeping the orbital inclination of the satellite
relative to the target orbital inclination near zero. In order to facilitate the description of
the target orbit, the target orbit generally adopts constant orbital parameters. The mean
orbital inclination after deducting the period term mentioned in Section 2.2 of the satellite
is also used.

NSSK can be achieved by providing a negative normal velocity increment near the
relative orbital ascending node, or it can provide a positive normal velocity increment
near the relative orbital descending node. The magnitude of the control vector of the SK
is equal to the magnitude of the mean orbital inclination vector under the influence of
natural perturbation, and the direction of the control vector of the SK is opposed to the
direction of the mean orbital inclination vector under the influence of natural perturbation.
Because the natural drift direction of the mean orbital inclination vector is generally near
the Y-axis of the inertial system, in the steady-state control, the relative orbital ascending
node is generally near the inertial system Y-axis, and the relative orbital descending node is
generally near the inertial system Y-axis. Figure 5 shows the drift range of the mean orbital
inclination vector and the range of the SK zone.

Y

X

λΔλΔ

Figure 5. The range for NSSK zone of the GEO satellite.

In Figure 5, the gray zone is the envelope of the mean orbital inclination vector
direction. The zone enclosed by the red dotted line is the “normal SK zone”. Because the
EP points to the Y-direction of the satellite, the electric thrust points to the south, producing
a northward thrust. The range of the mean right ascension covered by each SK zone is
2Δλmax. During the SK, the larger Δλmax is, the larger interval of the optional SK point is,
and the stronger the orbital control adjustment ability, but the consistency of the station
between the initial position capture and steady SK may be poor. On the contrary, the smaller
Δλmax is, the smaller interval of the optional SK point is, and the weaker the orbital control

378



Mathematics 2022, 10, 2340

adjustment ability, but the consistency of the station between the initial station capture and
steady SK may be better. Obviously, in order for the satellite to have sufficient SK ability,
Δλmax needs to be large enough, but in order to make the SK point more consistent, Δλmax
should be designed to be as small as possible.

According to Figure 5, the NSSK capability of the GEO satellite needs to cover the drift
range of the mean orbit inclination vector under the influence of the natural perturbation,
that is:

Δλmax > max(
π

2
− θimin, θimax −

π

2
) (25)

where, θimax is the maximum value of the drift angle of the mean orbital inclination vector,
the unit is rad; θimin is the minimum value of the drift angle of the mean orbital inclination
vector, the unit is rad.

According to the definition of the SK zone, there are:∣∣∣∣∣Δvix
Δviy

∣∣∣∣∣ ≤ tan(Δλmax) (26)

where Δvix is the velocity increment required to control the inclination vector in the X-
direction of the inertial frame, in m/s; Δviy is the velocity increment required to control the
inclination vector in the Y-direction of the inertial frame, in m /s; its calculation formula is:

Δviy = −δiCy n0a0

Δvix = −δiCx n0a0
(27)

where

(δiCx , δiCy ) is the mean orbital inclination used for control, and it is also the orbital inclination
of the satellite’s orbit relative to the target orbit, in rad;
a0 is the initial orbital semi-major axis;
n0 is the orbital angular velocity.

In order to achieve the lowest fuel consumption, the velocity increment generated
by control needs to be opposite to the velocity increment generated by environmental
perturbation. The minimum velocity increment must meet the following conditions:

Δviy < 0 (28)

Then, when the electric thruster is used for SK, the calculation formula of the orbital
argument λtm corresponding to the center point of the ignition arc segment is:

λtm =

⎧⎪⎨⎪⎩
arctan(Δviy/Δvix) Δvix > 0
π+arctan(Δviy/Δvix) Δvix < 0
π/2 Δvix = 0

=

⎧⎪⎨⎪⎩
arctan(δiy/δix) δix > 0
π+arctan(δiy/δix) δix < 0
π/2 δix = 0

(29)

3.3. Duration of the North/South Station Keeping

After entering the stable maintenance state, the control duration of each SK theo-
retically corresponds to the change rate of the mean orbital inclination, and it changes
continuously. However, due to the initial orbital error, orbital control target switching (co-
location configuration switching, fixed-point position switching) and other requirements,
the control time of the orbit may be too long or too short. If the orbital control time is too
long, the entire satellite consumes too much energy, making it difficult to achieve energy
balance, and the orbital arc loss effect is obvious, reducing the efficiency of the orbital
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control. If the orbit control time is too short, not only the daily angular momentum cannot
be fully unloaded, causing the attitude to be out of control, but also the ability to keep
mean longitude may be insufficient, resulting in a decrease in the accuracy of the EWSK or
an increase in the motion envelope of the manipulator. Therefore, before entering a stable
maintenance state, it is hoped that the daily orbital control duration should be as uniform
as possible; that is, the difference between the maximum duration tmax designed for the
SK each time and the shortest duration tmin for the SK each time is minimized so as to
ensure the energy consumption of the whole satellite is smooth and the angular momentum
unloading capability varies smoothly.

Obviously, if we need to ensure that there is sufficient NSSK capability throughout the
whole process, it needs to meet:

tmax > tmax
tmin < tmin

(30)

where tmax is the longest orbital control time required to offset the daily drift of the mean
orbital inclination vector; tmin is the shortest orbital control time required to offset the daily
drift of the mean orbital inclination vector.

tmax and tmin can be calculated as follows:
The linear velocity of the GEO satellite is

V0 = n0a0 (31)

The maximum value of the velocity increment required for daily NSSK is

ΔVmax = dimaxV0 (32)

where

dimax is the maximum daily drift of the mean orbital inclination vector, in rad;
V0 is the initial velocity of the satellite.

When arc loss is not considered, the duration of the SK is

Δtmax =
mΔVmax

F
(33)

where

m is the mass of the satellite;
F is the magnitude of the thrust acting on the satellite.

When considering the arc loss, the orbital control efficiency of the thruster is

η =
sin(θ/2)

θ/2
(34)

where θ is the orbital control arc (true anomaly) of the satellite under the action of the thrust.
θ is calculated as

θ = n0Δtmax (35)

In order to offset the effect of arc loss, it is necessary to extend the original orbital
control arc to

θnew =
θ

η
=

θ2

2 sin θ
2

(36)

Combined with Equations (35) and (36), we can obtain

θnew =
(n0Δtmax)

2

2 sin( 1
2 n0Δtmax)

(37)
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Therefore, the longest orbital control time tmax required to offset the daily drift of the
mean orbital inclination vector is:

tmax =

(
dimaxn0a0m

F

)2
n0

2 sin( 1
2 n0

dimaxn0a0m
F )

(38)

Similarly, the shortest orbital control time tmin required to offset the daily drift of the
mean orbital inclination vector

tmin =

(
diminn0a0m

F

)2
n0

2 sin( 1
2 n0

diminn0a0m
F )

(39)

where

dimax is the maximum daily drift of the mean orbital inclination vector, in rad;
dimin is the minimum daily drift of the mean orbital inclination vector, in rad;

However, it is also necessary to consider that during the SK, the thrust direction
and the thrust position are slightly offset by the manipulator to achieve unloading of the
three-axis angular momentum, so the daily SK time cannot be too short. Therefore, it
must meet:

tmin > tdump (40)

where tdump is the daily minimum time required for angular momentum unloading.
Depending on the choice of the mean orbital inclination vector, Equations (30) and (40)

may conflict. Among them, Equation (40) must be satisfied, while Equation (30) does not
need to be satisfied. When Equation (30) is satisfied, it means that there is sufficient control
capability of the mean orbital inclination vector in the whole SK process. It is worth noting
that dimin and dimax are theoretical analysis values, the errors such as mean/osculating or-
bital inclination conversions error and orbital control error have not been considered. There-
fore, margins need to be considered when designing the algorithm. When Equation (30) is
not satisfied, it means that when the natural drift of the orbital inclination vector is small,
and the change of the orbital inclination vector caused by the minimum orbital control
amount is relatively large, the orbital inclination vector will continue to be controlled to
the moving direction (mainly the inertial frame-Y direction) under the control action, and
the mean orbital inclination vector cannot be normally kept near zero during this period.
However, once the natural drift of the orbital inclination vector is greater than the change
of the orbital inclination vector caused by the minimum orbital control amount, the orbital
inclination vector will gradually approach zero under the control and return to the normal
SK state.

3.4. The Control Amount of the North/South Station Keeping

The NSSK needs to meet the following five functional requirements and design con-
straints: (1) In order to facilitate the design of the entire satellite mission sequence and the
on-board autonomous SK sequence, the initial station capture and the steady-state SK need
to have a good consistency; (2) In order to have enough time to use EP for daily angular
momentum management, the single SK time must be large enough; (3) In order to ensure
optimal fuel during station capture and keeping, in the direction of the inclination vector,
the control amount must only be used for to overcome the orbital perturbation; (4) It needs
to have the ability to capture any orbital inclination angle vector within 0.1◦ of the initial
deviation; (5) There is no constraint on the duration of capturing the target.

When the SK is in a steady state, the orbital control amount and the environmental
perturbation amount cancel each other out, which can naturally meet the above functional
requirements. When the initial orbital deviation is too large or the station capture is
performed again, the overall design needs to be combined with the law of the environmental
perturbation force and the above functional requirements.
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3.4.1. Zone Control Method

For the convenience of illustration, the SK zone where the control position of the
orbital is the same as the drift direction of the current mean orbital inclination vector is
selected for illustration. The shaded part of the blue solid line in Figure 6 is the SK zone.
The orbital inclination control is used to adjust the orbital surface. When pulse control is
used, it can be understood as instantaneous control, that is, it is considered that the orbital
inclination will be adjusted in the decreasing direction under the action of orbital control
at the next moment. Therefore, the input of the orbital inclination control is the orbital
inclination deviation during orbital control, and it is not necessary to pay attention to the
orbital inclination change rate. Figure 6 shows the NSSK strategy.

i

i

λΔ

yiδ

xiδ

Figure 6. The NSSK strategy.

The coordinate system in Figure 6 is the inertial system, and the object described is the
mean orbital inclination vector for control. imin is the orbital inclination of the GEO satellite
changed by the time of the EP working time imin, and imax is the orbital inclination of the
GEO satellite changed by the EP working time imax.The radius of the small circle C1 is imin,
and the radius of the large circle C2 is imax. The straight line L1 is the boundary of the SK
zone, which is greater than 90◦. The straight line L2 is the boundary of the SK zone, which
is less than 90◦. Point A is the intersection of L1 and the circle C2, point B is the intersection
of L2 and the circle C2, point C is the intersection of L1 and the circle C1, and point D is
the intersection of L2 and the circle C1. L3 is a straight line passing through point A and
parallel to X, L4 is a straight line passing through point C and parallel to X, L5 is a straight
line passing through point C and parallel to Y, and L6 is a straight line passing through
point D and parallel to Y.

L1~L6, C1 and C2 divide XOY into nine zones, corresponding to six different working
conditions, namely:

(1) Normal working condition: closed zone enclosed by ABCD;
(2) Working condition one: It is a half-zone closed zone surrounded by L1, L2 and AB

arcs, and the modulus of the mean orbital inclination vector corresponding to the
target to the current orbit in this zone is greater than imax;

382



Mathematics 2022, 10, 2340

(3) Working condition two: It consists of two half-zone enclosed zones; one is enclosed
by L1, L3 and L4, and the other is enclosed by L2, L3 and L4, and they are all outside
the allowed SK zone;

(4) Working condition three: It is a half-zone closed zone surrounded by L5, L6 and CD
arcs, and the component in the Y-direction of this zone is less than imin;

(5) Working condition four: It consists of two half-zone enclosed zones; one is enclosed
by L1 and L3, the other is enclosed by L2 and L3, and both are outside the range of
the allowable SK zone;

(6) Working condition five: It includes two half-zone closed zones; one is enclosed by L4
and L5, the other is enclosed by L4 and L6, and the absolute value of the components
in X-direction of the two zones is greater than iminΔλmax.

The nine zones in Figure 6 can be divided into three categories: stable (the zone where
the green geometry is located), semi-stable (the zone where the yellow geometry is located)
and unstable (the zone where the red geometry is located).

(1) It contains a stable zone, namely the normal working condition. Under the nor-
mal working condition, the orbital inclination vector from the target orbit to the
current orbit will continue to maintain the normal working condition, that is, the
steady-state SK;

(2) It contains four semi-stable zones, including two zones of working condition two,
as well as working condition one and working condition three. These zones, in the
shape of pipelines, are connected to the intermediate normal working conditions, and
their orbital inclination vectors in the X-axis or Y-axis are in a closed-loop stable state,
so they will not leave the steady-state pipeline and will eventually enter the normal
working conditions along the pipeline. The semi-stable zone is further divided into
X-axis stability (condition two) and Y-axis stability (condition one and condition three).
In the semi-stable zone where the X-axis is stable, the center position of the NSSK
is unchanged, and the duration of the orbital control changes in real time with the
orbital inclination. In the semi-stable zone where the Y-axis is stable, the duration of
NSSK control is unchanged (the longest or the shortest duration), but the center of the
SK will change in real time with the orbital inclination.

(3) It contains four unstable zones, including two zones in working condition four and
two zones in working condition five. These zones are in the form of sectors. In these
zones, the orbital inclination vector will move under the combined action of orbital
control and natural perturbation. It will enter the semi-stable zone adjacent to it, and
then reaches the stable zone through the semi-stable zone.

Since the control force acting on the orbital inclination vector covers the drifting
of the orbital inclination vector caused by orbital perturbation, the switching between
zones is theoretically irreversible. Even if the reversible zone switching occurs due to
environmental perturbation changes, since the control law calculated at the junction of two
adjacent zones is the same, there will be no “jitter” of the control law caused by frequent
switching between two zones. In the unstable zone (working condition four and working
condition five), the point and the amount of the SK are both constant, and the control
strategy remains unchanged.

In the semi-stable zone (working condition one, working condition two and working
condition three) and stable zone (normal working condition), the orbital control amount
and orbital control position will fluctuate slightly with the motion of the mean orbital
inclination vector under the influence of perturbation. It can also be seen from Figure 6
that under all orbital control strategies, the orbital control amount in the Y-axis direction of
the inertial system is negative, that is to say, all the y-direction velocity increments are used
to overcome the natural drift of the mean orbital inclination vector under the influence of
perturbation. Therefore, the strategy of NSSK proposed in this paper is also the SK strategy
with the least fuel consumption.
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In Figure 6, the SK point of working condition four is located at point A (B), which
means that the time of the single orbital control is the longest. The Y-axis component of the
orbital inclination vector in this zone is large, so it is not only necessary to perform orbital
adjustment in the X-axis direction but also to ensure that the Y-axis direction continues to
decrease. In working condition one, at point A (B), the control ability in the Y-axis direction
is the weakest. In order to make the Y-axis still overcome the natural drift of the orbital
inclination and converge to zero, it is necessary to satisfy:

imax cos Δλmax > dimax (41)

Therefore, the maximum duration tmax of the single SK should satisfy:

tmax =

(
imaxn0a0m

F

)2
n0

2 sin( 1
2 n0

imaxn0a0m
F )

>

(
dimaxn0a0m
cos ΔλmaxF

)2
n0

2 sin( 1
2 n0

dimaxn0a0m
cos ΔλmaxF )

(42)

In Figure 6, for working condition three, it is necessary to use the environmental
perturbation force to realize the movement of the X-axis of the component of the orbital
inclination vector to zero. Therefore, the maximum point in the X-axis direction (the
midpoint of the CD arc) should be less than the minimum daily drift of the orbital inclination
vector; then, we have

tmin =

(
iminn0a0m

F

)2
n0

2 sin( 1
2 n0

iminn0a0m
F )

<

(
dminn0a0m

F

)2
n0

2 sin( 1
2 n0

dminn0a0m
F )

(43)

Combined with Equations (42) and (43), in the subsequent design and simulation of
this paper, we may make:

tmax = 1.1

(
dimaxn0a0m
cos ΔλmaxF

)2
n0

2 sin( 1
2 n0

dimaxn0a0m
cos ΔλmaxF )

tmin = 0.9

(
dminn0a0m

F

)2
n0

2 sin( 1
2 n0

dminn0a0m
F )

(44)

The detailed control amount of the SK for each working condition is described
as follows.

(1) Normal working condition
The normal working condition is the stable zone (complete coverage of the natural

drift range of the orbital inclination vector). The mean orbital inclination vector is moderate
in the inertial system, and the control amount of the NSSK and the drifting amount of
the mean orbital inclination vector are equal in magnitude and opposite in direction. The
position of the orbital control is within the allowable orbital control range. The NSSK in
normal working condition is shown in Figure 7.

In Figure 7 the direction of the straight arrow represents the change direction of the
orbital inclination vector under the action of orbital control. The starting point of the straight
arrow represents the control amount, and the starting point of the straight arrow is located
in the center of the normal working condition, indicating that the orbital control duration
is between the shortest and longest duration. The straight arrow is yellow, indicating that
the amount of orbital control is moderate. Under normal working conditions, under the
combined effect of the perturbation and control force, the orbital inclination vector from
the target to the current will continue to remain within the normal working conditions.
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Figure 7. The NSSK in normal working condition.

To meet the normal working conditions, the following conditions must be met at the
same time: √

δi2x + δi2y ≤ imax√
δi2x + δi2y ≥ imin

δiy > imin∣∣∣∣ δix
δiy

∣∣∣∣ < tan Δλmax

(45)

Considering the arc loss, under normal working condition, the mean orbital right
ascension λtm and the north/south ignition duration tNS corresponding to the midpoint of
the EP arc are:

λtm =

⎧⎪⎨⎪⎩
arctan(δiy/δix) δix < 0
π+arctan(δiy/δix) δix > 0
π/2 δix = 0

tNS =

⎛⎝
√

δi2x+δi2yn0a0m

F

⎞⎠2

n0

2 sin

⎛⎝
√

δi2x+δi2yn0a0m

2F n0

⎞⎠

(46)

(2) Working condition one
Working condition one is a semi-stable zone, and the orbital inclination vector is in a

positive bias state. The mean orbital inclination vector has a larger absolute value in the
Y-axis direction of the inertial system and a smaller absolute value in the X-axis direction of
the inertial system. Therefore, it is necessary to use the maximum orbital control capability
to overcome the drift of the orbital inclination vector under the perturbation, and finally
make the orbital inclination vector approach the target orbital inclination. In this condition,
the ignition duration of the control is longest, and the ignition position fluctuates a small
amount with the current orbital inclination vector within the range of the SK zone. The
NSSK in working condition one is shown in Figure 8.
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Figure 8. The NSSK in working condition one.

In Figure 8, the starting point of the straight line arrow is located on the AB arc on
the C2 circle, indicating that the orbital control time is the longest and remains unchanged,
which is most conducive to the management of angular momentum. The direction of the
straight line arrow points to the center of the circle, indicating that the SK point is in the
SK zone and needs to be adjusted in real time according to the actual orbital inclination
vector. The 45◦ arrow describes the approximate direction of the motion of the orbital
inclination vector under the combined action of the perturbation force and the control force.
Because the control force on the orbital inclination vector in two directions is greater than
the perturbation force on it, the working condition one will only enter the normal working
condition in one direction.

To meet the working conditions one, the following conditions must be met at the
same time: √(

δiCx
)2

+
(

δiCy
)2
≥ imin

δiCy > imax cos Δλmax∣∣∣∣ δiCx
δiCy

∣∣∣∣ < tan Δλmax

(47)

Considering the arc loss, under working condition one, the mean orbital right ascen-
sion λtm and the north/south ignition duration tNS corresponding to the midpoint of the
EP arc are:

λtm =

⎧⎪⎪⎨⎪⎪⎩
arctan(δiCy /δiCx ) δiCx > 0

π+arctan(δiCy /δiCx ) δiCx < 0

π/2 δiCx = 0

tNS =

(
imaxn0a0m

F

)2
n0

2 sin
(

imaxn0a0m
2F n0

)
(48)
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(3) Working condition two
Working condition two is in the semi-stable zone, and the absolute value of the mean

orbital inclination vector is small in the Y-axis direction of the inertial system, which can
keep stable control. The mean orbital inclination vector has a large absolute value in
the X-axis direction, and it is necessary to provide the control capability in the X-axis
direction as much as possible while ensuring the Y-axis control. The orbital inclination
vector approaches the normal working condition along the X-axis under control. During
the above process, the orbital control position of the orbital inclination does not change,
and the orbital control duration is between the longest and the shortest. The orbital control
position fluctuates slightly with the drift rate of the Y-axis orbital inclination. The NSSK in
working condition two is shown in Figure 9.
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Figure 9. The NSSK in working condition two.

In Figure 9, the starting point of the straight line arrow is located on the straight
line AC or BD between the C2 circle and the C1 circle, indicating that the SK duration
is between the shortest and longest duration. The straight-line arrows point in the AC
direction, indicating that the SK control points remain unchanged in the inertial space. The
45◦ arrow points to the normal zone, indicating that working condition two will enter the
normal working condition in one direction.

To meet the working conditions two, the following conditions must be met at the
same time:

imax cos Δλmax > δiy > imin cos Δλmax∣∣∣∣ δix
δiy

∣∣∣∣ > tan Δλmax
(49)

Considering the arc loss, under working condition two, the mean orbital right ascen-
sion λtm and the north/south ignition duration tNS corresponding to the midpoint of the
EP arc are:
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λtm =

⎧⎪⎨⎪⎩
arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax > 0
π+arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax < 0
π/2 sgn(δix)imax sin Δλmax = 0

tNS =

(
δiyn0a0m

cos ΔλmaxF

)2
n0

2 sin
(

δiyn0a0m
2 cos ΔλmaxF n0

)
(50)

(4) Working condition three
Working condition three is a semi-stable zone, and the orbital inclination vector is in a

negative bias state. It is necessary to take advantage of the natural perturbation force to
make the current orbital inclination vector approach the target orbital inclination. Under
this working condition, it is necessary to provide as little orbital control capability as
possible, so that the orbital inclination vector can drift to the normal working condition
as soon as possible under the action of natural perturbation. At the same time, the orbital
control adjustment capability is used to make the X-axis component of the orbit inclination
vector drift toward zero as much as possible. Under this condition, the orbital control
duration is the shortest, and the ignition position fluctuates a little within the SK zone along
with the current orbital inclination vector. The NSSK in working condition three is shown
in Figure 10.
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Figure 10. The NSSK in working condition three.

In Figure 10, the starting point of the straight arrow is located between the CD arc
segments on the C1 circle, indicating that the duration of the SK is shortest. The control
point of the SK is dynamically adjusted with the fluctuation of the current mean orbital
inclination vector. The 45◦ arrow points to the normal zone, indicating that working
condition three will enter the normal working condition in one direction. Working condition
three cannot be easily described with simple mathematical expressions. However, since
all six working conditions, including normal working conditions, cover all zones of a
two-dimensional plane, the exclusion method can be used to complete the conditions of
working condition three.
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Considering the arc loss, under working condition three, the mean orbital right ascen-
sion λtm and the north/south ignition duration tNS corresponding to the midpoint of the
EP arc are:

λtm =

⎧⎪⎪⎨⎪⎪⎩
arctan(

√
imin

2 − δi2x/sgn(δix)δix) sgn(δix)δix > 0

π+arctan(
√

imin
2 − δi2x/sgn(δix)δix) sgn(δix)δix < 0

π/2 sgn(δix)δix = 0

tNS =

(
iminn0a0m

F

)2
n0

2 sin
(

iminn0a0m
2F n0

)
(51)

(5) Working condition four
Working condition four is an unstable zone, and the absolute value of the mean orbital

inclination vector in the X-axis and Y-axis directions of the inertial system is large, and it is
positive in the Y-direction. In this case, it is necessary to have the orbital control capability
on both the X and Y axes, the position of orbital control is at the boundary of the allowable
orbital control range, and the orbital control time is the longest. The NSSK in working
condition four is shown in Figure 11.
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Figure 11. The NSSK in working condition four.

In Figure 11, the starting point of the straight line arrow is located at A or B on the
C2 circle, indicating that the duration of the orbital control is longest. The straight arrow
points in the direction of AC or BD, indicating that the orbital position is constant in the
inertial frame. The 45◦ arrow describes the approximate movement direction of the orbital
inclination vector under the combined action of the perturbation force and the control
force of the SK. Since the orbital control duration remains constant, if the rate of change
of the mean orbital inclination vector caused by the environmental perturbation force is
also regarded as a constant value, then under the action of the orbital control force and
the natural perturbation force, the mean orbital inclination vector will move in a fixed
direction. Because the control force of the inclination vector in both directions is greater
than the natural perturbation force, the working condition four will theoretically enter into
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two adjacent semi-stable zones along one direction (working condition one or working
condition two, which is related to the initial stage).

To meet the working condition four, the following conditions must be met at the
same time: √(

δiCx
)2

+
(

δiCy
)2
≥ imin

δiCy > imax cos Δλmax∣∣∣∣ δiCx
δiCy

∣∣∣∣ > tan Δλmax

(52)

Considering the arc loss, under working condition two, the mean orbital right ascen-
sion λtm and the north/south ignition duration tNS corresponding to the midpoint of the
EP arc are:

λtm =

⎧⎪⎨⎪⎩
arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax > 0
π + arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax < 0
π/2 sgn(δix)imax sin Δλmax = 0

tNS =

(
imaxn0a0m

F

)2
n0

2 sin
(

imaxn0a0m
2F n0

)
(53)

(5) Working condition five
Working condition five is an unstable zone, and the absolute value of the mean orbital

inclination vector in the X-axis and Y-axis directions of the inertial system is large, and it
is negative in the Y-direction. In this case, it is necessary to have orbital control capability
on both the X and Y axes at the same time. The position of the orbital control is at the
boundary of the allowable orbital control range, and the orbital control time is the shortest.
The NSSK in working condition five is shown in Figure 11.

In Figure 12, the starting point of the head of the straight arrow is located at C or D
on the C1 circle, which means that the orbital control time is the shortest. Straight arrows
point in the AC or BD direction, indicating that the position of the orbit is constant in the
inertial frame. The 45◦ arrow describes the approximate movement direction of the orbital
inclination vector under the combined action of the perturbation force and the control force
of the SK.
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yiδ

λΔ

Figure 12. The NSSK in working condition five.
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Since the duration of the orbital control remains constant, if the rate of change of the
mean orbital inclination vector caused by the environmental perturbation force is also
regarded as a constant value, then under the action of the orbit control force and the
natural perturbation force, the mean orbital inclination vector will move in a fixed direction.
Because the control force of the inclination vector in the two directions is greater than the
natural perturbation force, working condition five will theoretically enter into two adjacent
semi-stable zones along one direction (working condition two or working condition three,
which is related to the initial stage).

To meet working condition five, the following conditions must be met at the same time:

δiCy < imin cos Δλmax∣∣∣δiCx
∣∣∣ > imin sin Δλmax

(54)

Considering the arc loss, under working condition two, the mean orbital right ascen-
sion λtm and the north/south ignition duration tNS corresponding to the midpoint of the
EP arc are:

λtm =

⎧⎪⎨⎪⎩
arctan(imin cos Δλmax/sgn(δix)imin sin Δλmax) sgn(δix)imin sin Δλmax > 0
π+arctan(imin cos Δλmax/sgn(δix)imin sin Δλmax) sgn(δix)imin sin Δλmax < 0
π/2 sgn(δix)imin sin Δλmax = 0

tNS =

(
iminn0a0m

F

)2
n0

2 sin
(

iminn0a0m
2F n0

)
(55)

The five working conditions are summarized in Table 1.

Table 1. Summary of five working conditions.

Working
Condition

λtm tNS

Normal λtm =

⎧⎪⎨⎪⎩
arctan(δiy/δix) δix < 0
π+arctan(δiy/δix) δix > 0
π/2 δix = 0

(√
δi2x+δi2yn0 a0m

F

)2

n0

2 sin

(√
δi2x+δi2yn0 a0m

2F n0

)

One λtm =

⎧⎪⎪⎨⎪⎪⎩
arctan(δiCy /δiCx ) δiCx > 0

π+arctan(δiCy /δiCx ) δiCx < 0

π/2 δiCx = 0

(
imaxn0 a0m

F

)2
n0

2 sin
(

imaxn0 a0m
2F n0

)

Two λtm =

⎧⎪⎪⎨⎪⎪⎩
arctan(

√
imin

2 − δi2x/sgn(δix)δix) sgn(δix)δix > 0

π+arctan(
√

imin
2 − δi2x/sgn(δix)δix) sgn(δix)δix < 0

π/2 sgn(δix)δix = 0

(
iminn0 a0m

F

)2
n0

2 sin
(

iminn0 a0m
2F n0

)

Three λtm =

⎧⎪⎨⎪⎩
arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax > 0
π + arctan(imax cos Δλmax/sgn(δix)imax sin Δλmax) sgn(δix)imax sin Δλmax < 0
π/2 sgn(δix)imax sin Δλmax = 0

(
imaxn0 a0m

F

)2
n0

2 sin
(

imaxn0 a0m
2F n0

)

Four λtm =

⎧⎪⎨⎪⎩
arctan(imin cos Δλmax/sgn(δix)imin sin Δλmax) sgn(δix)imin sin Δλmax > 0
π+arctan(imin cos Δλmax/sgn(δix)imin sin Δλmax) sgn(δix)imin sin Δλmax < 0
π/2 sgn(δix)imin sin Δλmax = 0

(
iminn0 a0m

F

)2
n0

2 sin
(

iminn0 a0m
2F n0

)

3.4.2. Analysis of Fuel Consumption

In the stable stage of the NSSK, the control position of the north/south station is kept
at the ascending node or the descending node, which is the most ideal point of the SK.
At this time, the velocity increment generated by EP is due south or due north, and the
direction of the velocity increment is also optimal. Therefore, it can be considered that
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the velocity increment generated by EP is equal to the velocity increment generated by
environmental perturbation (three-body gravitational force), and the direction is opposite,
which is the optimal NSSK scheme for fuel.

In the initial state, for any initial orbital inclination vector within the allowable range,
the direction of the velocity increments generated by EP is opposite to the velocity incre-
ments generated by the environmental perturbation force; that is, the velocity increments
generated by EP are only used to overcome the environmental perturbation force. The
change of the orbital inclination vector caused by the environmental perturbation force
is mainly along the Y-axis direction, so the initial orbital inclination vector deviation in
the X-direction needs to be offset by the velocity increment generated by the EP. When
the initial orbital inclination vector in the Y-direction is greater than zero, it is necessary
to use additional electric thrust control force to eliminate the deviation on the basis of the
normal NSSK. At this time, the fuel consumption is slightly more than the fuel consump-
tion required by the SK in a steady state. When the initial orbital inclination vector in the
Y-direction is less than zero, the current orbital inclination vector can be made closer to
the target orbital inclination vector by using the environmental perturbation force. At this
time, the fuel consumption for the SK is slightly less than that required for the SK in a
steady state.

3.5. Orbital Inclination Vector for Control

The NSSK of the satellite can be regarded as the SK of the orbital inclination of the
deputy satellite relative to the chief satellite. The error between the current orbital inclina-
tion and the target orbital inclination for control should be clarified. The determination of
the orbital inclination of the target orbit for control includes two aspects: first, there is the
determination of the orbital inclination vector of the chief satellites. When multi-satellite
formation or multi-satellite co-location is kept, the orbital inclination vector of the chief
satellite is set by the ground and can be changed as required. For the SK of satellites gener-
ally located in GEO, the orbital inclination vector of the chief satellite can be regarded as
(0, 0). Second, on the basis of the first point, to improve the accuracy of the keeping control
of the orbital inclination, it is necessary to make the orbital inclination vector properly
negatively biased on the basis of predicting the change law of the orbital inclination. The
orbital inclination vector is ultimately kept within the minimum envelope radius centered
on the orbital inclination vector of the chief satellite.

The orbital inclination vector for control is shown in Figure 13.

X

Y

θ

dT

TΔ

x yi iδ δ

θ

 
Figure 13. The orbital inclination vector for control.

392



Mathematics 2022, 10, 2340

In Figure 13, point A represents the coordinates of the current mean orbital inclination
vector. Point C represents the coordinates of the mean orbital inclination vector under the
action of the natural perturbation force at the central moment of SK. Point B represents the
coordinates of the target mean orbital inclination vector. Point D represents the target of the
SK. AC and DB represent the drifting direction of the mean orbital inclination vector caused
by the natural perturbation force. After the orbit is controlled to point D, the mean orbital
inclination vector will pass through point B under the action of natural perturbation force,
and the natural drift trajectory of the orbital inclination vector will be evenly distributed
at both ends of point B. Therefore, taking D point as the target of the SK can improve the
keeping accuracy of the mean orbital inclination vector as much as possible. DC is the
orbital inclination vector for control.

The formula for calculating the mean orbital inclination vector for control is:

δiCy = iy +
ΔT
T di sin θni −

(
iy0 − 1

2 di sin θni

)
δiCx = ix +

ΔT
T di cos θni −

(
ix0 − 1

2 di cos θni

) (56)

where(
ix, iy

)
is the current mean orbital inclination vector of the satellite, in rad;(

ix0, iy0
)

is the target mean orbital inclination vector of the satellite, in rad;
di is the daily drift of the orbital inclination vector, in rad;
T is the orbital period, which is 86,400.091s.
ΔT is the time of the current position to the center of the target position.

The calculation formula of ΔT is:

ΔT =
mod(π

2 + θni − λ, 2π)

ωe
(57)

4. Simulation and Analysis

Let tdump = 3207 s be the minimum time required per day for angular momentum
unloading. The correctness of the SK control law under each working condition is verified
based on mathematical simulation. The design principles of the example include:

(1) The control law covers all working conditions;
(2) The result of the SK of the mean orbital inclination vector under the influence of

different period term perturbations is verified;
(3) The feasibility of parameter adaptation is verified.

Table 2 shows the examples used in the simulation.

Table 2. The examples used in the simulation.

Example Perturbation Term Working Condition

Example one Nutation Five→ two→normal
Example two Nutation Five→three→normal

Example three Nutation Four→one→normal
Example four Semi-annual Four→one→normal
Example five Semi-monthly Four→one→normal

The results of the five working conditions are shown in Table 3.

4.1. Example One

The simulation conditions are shown in Table 2, the simulation time is 360 days, and
the results are shown in Figure 14.
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Table 3. Summary of Simulation.

Example One Two Three Four Five

Perturbation term Nutation Nutation Nutation Semi-annual Semi-monthly

Ascending node right ascension (◦) 359.989 269.989 59.989 59.989 59.989

Initial orbital inclination vector (y-direction) (◦) 0.000 −0.080 0.069 0.069 0.069

Initial orbital inclination vector (x-direction) (◦) 0.080 0.000 0.040 0.040 0.040

tmax (◦) 5703 5703 5703 7688 24,970

tmin (◦) 3426 3426 3426 3207 3207

Δλmax (◦) 11.70 11.70 11.68 22.01 55.00

Velocity increment in one year (m/s) 44.04 41.48 46.89 47.82 54.93

Keeping accuracy of inclination (◦) 0.03 0.03 0.03 0.005 0.008

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 14. The results of example one. (a) Y-axis component of orbital inclination vector; (b) X-axis
component of orbital inclination vector; (c) Orbital inclination vector; (d) Velocity increment for SK;
(e) Duration of SK.
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It can be seen from Figure 14a,b that under the control action, the orbital inclination
vector converges and remains near zero. The keeping accuracy of the mean inclination
vector is better than 0.005◦.

It can be seen from Figure 14c that the initial value of the mean inclination is located
in working condition five (unstable zone). Under the action of the control law of working
condition five, it enters working condition two (semi-stable zone) with a certain slope,
and it finally enters and stays in normal working condition (stable zone) through working
condition two.

It can be seen from Figure 14d that the actual annual velocity increment used for the
NSSK is about 43 m/s, which is less than the theoretical velocity increment. There are two
main reasons: first, the total velocity increment calculated by the theoretical formula is
slightly larger; second, the initial orbital inclination vector in the Y- direction is less than
zero. According to Section 3.4.2, when the initial orbital inclination vector in the Y-direction
is less than 0, the fuel consumption for the SK is slightly less than that required for the SK
in a steady state.

It can be seen from Figure 14e that the duration of the orbital control of the condition
five is the shortest, which is consistent with the strategy of condition five, and the shortest
control duration is about 3417 s, which is consistent with the calculated value of 3426 s in
formula (36). In working condition two and normal working condition, the duration of
the orbital control varies between the longest and shortest according to different orbital
parameters. It is worth noting that when this strategy is used to calculate the duration of
the orbital control, error factors such as the semi-major axis and the eccentricity of the orbit
are ignored. Therefore, the duration of the orbital control calculated by the actual control
strategy will have a small error with the theoretical longest and shortest durations.

It can also be seen from Figure 14e that although the duration of the orbital control
is frequently abrupt within the allowed longest and shortest durations, the result of the
NSSK is good. Due to the existence of the orbital control error, the mean/osculating orbital
inclination conversions error and the target position prediction error, the single orbital
control amount will be too large or too small; thus, it breaks the allowable range. However,
the above error can be regarded as a high-frequency error compared with the orbital control
frequency, and the daily drift of the orbital inclination vector under the influence of the
perturbation of the nutation period term is close to a constant value. Therefore, the limiting
effect of the orbital control duration is equivalent to filtering the high-frequency error
part of the constant physical quantity, thereby realizing the high-precision SK of the mean
orbital inclination.

It can be seen from Figure 14a that the mean orbital inclination vector fluctuates
slightly in the Y-direction about 12 times a year. The peak of the fluctuation corresponds to
the longest orbital control duration in Figure 14e, indicating that there is still some residual
error when calculating the perturbation of the semi-monthly period term, which causes
the mean orbital inclination vector to drift and periodically exceeds the orbital control
capability. Nevertheless, the control error is still small, and it can be seen from Figure 14c
that the error hardly affects the accuracy of the final NSSK.

The algorithm of NSSK in this paper has the advantages of optimal fuel, fixed SK
points, and wide application range. The disadvantage is that small initial errors will
cause long orbital adjustment times. It can be seen from Figure 14a–c that the error of the
initial orbital inclination vector is 0.08◦, and it takes about six months to complete the final
inclination capture and keeping.

4.2. Example Two

The initial conditions of the simulation are shown in Table 2. In order to simulate from
working condition five to working condition three, the ascending node right ascension in
example two is rotated 90 degrees clockwise, and the other conditions are the same as those
in example one. The results are shown in Figure 15.
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 15. The results of example two. (a) Y-axis component of orbital inclination vector; (b) X-axis
component of orbital inclination vector; (c) Orbital inclination vector; (d) Velocity increment for SK;
(e) Duration of SK.

It can be seen from Figure 15a–c that under the control action, the orbital inclination
vector converges and remains near zero. It can be seen from Figure 15c that the initial value
of the mean orbital inclination is located in working condition five (unstable zone). Under
the action of the control law of working condition five, it enters working condition three
(semi-stable zone) with a certain slope, and it enters and stays in normal working condition
(stable zone) through working condition three.

In Figure 15d, the actual velocity increment is significantly lower than the theoretical
velocity increment, which is mainly because the Y-component of the initial inclination vector
has a large negative offset in this example. The greater the negative offset of the initial
orbital inclination, the more fuel is saved in NSSK. Therefore, using the NSSK algorithm
proposed in this paper can reduce a lot of velocity increment requirements.
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4.3. Example Three

The initial conditions of the simulation are shown in Table 2. In order to simulate from
working condition four to working condition one, the right ascending of the ascension
node in example two is rotated 60 degrees clockwise, and the other conditions are the same
as those in example one. The results are shown in Figure 16.

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 16. The results of example three. (a) Y-axis component of orbital inclination vector; (b) X-axis
component of orbital inclination vector; (c) Orbital inclination vector; (d) Velocity increment for SK;
(e) Duration of SK.

It can be seen from Figure 16a–c that under the control action, the orbital inclination
vector converges and remains near zero. It can be seen from Figure 16a,c that since the
control laws in working condition four and working condition one are relatively close, the
ignition time is the longest, so it is not easy to clearly distinguish the switching point from
working condition four to working condition one.

It can be seen from Figure 16d that in working condition four and working condition
one, the daily duration of orbital control is the longest. Therefore, the increase in the actual
velocity increment is faster than the theoretical velocity increment, and this part of the extra
velocity increment is caused by the positive bias of the mean orbital inclination vector in
the y-direction at the initial moment.
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4.4. Example Four

The initial conditions of the simulation are shown in Table 2. The minimum orbital
control duration calculated by Equation (30) is 2157 s, which contradicts the orbital control
duration of 3207 s required by Equation (32), so the shortest orbital control duration is
finally taken as 3207 s. Other conditions are the same as in example three. The results are
shown in Figure 17.

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 17. The results of the example four. (a) Y-axis component of orbital inclination vector;
(b) X-axis component of orbital inclination vector; (c) Orbital inclination vector; (d) Velocity increment
for SK; (e) Duration of SK.

It can be seen from Figure 17a,b that under the control action, the orbital inclination
vector converges and remains near zero. It can be seen from Figure 17c that the precision
of the mean orbital inclination vector is about 0.002◦, and the osculating accuracy of the
orbital inclination vector is about 0.005◦.

It can also be seen from Figure 17b that the mean orbital inclination vector fluctuates
significantly twice a year in the X-direction. This is because the mean orbital inclination
vector under the influence of the semi-annual period term perturbation presents the form
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of semi-annual periodic fluctuation, and the orbital control capability lags behind the
controlled target, resulting in the error of the system of the orbital control.

After entering the normal working condition, the fluctuation range of the duration of
the SK in Figure 17e is larger than that in Figure 16e. Although the initial orbital parameters
are the same as those of example three, the longest orbital control time allowed in example
three is longer after using the calculation method of the mean orbital inclination vector
under the influence of the semi-annual term perturbation. Therefore, in this example, the
duration from working condition four to the normal working condition is shorter than
that of example three. Although the fluctuation range of the SK duration in Figure 17e is
larger than that of Figure 16e, the design should consider global convergence; that is, the
longest time of the orbital control allowed by the design should also be larger. Therefore,
the duration of the SK does not always reach the maximum allowed duration. During
the stable state of the NSSK, although the minimum duration of the orbital control often
touches the lower boundary of the allowed duration of the orbital control, this does not
affect the stable keeping of the orbital inclination, which is consistent with the analysis
in Section 3.4.

4.5. Example Five

The initial conditions of the simulation are shown in Table 2. The minimum duration
of the orbital control calculated by Equation (30) is 1112 s, which contradicts the orbital
control duration of 3207 s required by Equation (32), so the shortest orbital control duration
is finally taken as 3207 s. According to the above analysis, in this example, it is theoretically
impossible to realize the controllability of any global point. Therefore, in order to achieve
the NSSK simulation, it is necessary to sacrifice the controllability of some areas and focus
on the overall controllability. In this simulation, let Δλmax = 55◦, and the other conditions
are the same as those in example three. The results are shown in Figure 18.

It can be seen from Figure 18a,b that under the control action, the orbital inclination
vector converges and remains near zero. It can be seen from Figure 18c that the precision
of the mean orbital inclination vector is about 0.008◦. It can also be seen from Figure 18b
that the mean orbital inclination vector fluctuates significantly twenty-six times a year in
the X-direction. This is because the mean orbital inclination vector under the influence
of the semi-annual period term perturbation presents the form of semi-annual periodic
fluctuation, and the orbital control capability lags behind the controlled target (flat orbital
inclination), resulting in the error of the system of the orbital control.

After entering the normal working condition, the fluctuation range of the duration of
the SK in Figure 18e is larger than that in Figure 17e. Although the initial orbital parameters
are the same as those of example four and example three, the longest orbital control time
allowed in example five is the longest after using the calculation method of the mean orbital
inclination vector under the influence of the semi-monthly term perturbation. Therefore, in
this example, the duration from working condition four to the normal working condition is
shorter than that of example three and example three. It can also be seen from Figure 18e
that the maximum SK time per day is about 14,400s, while the longest allowed orbital
control duration is 24,970s, which does not trigger the limiting effect of the longest allowed
orbital control duration. This is because in order to ensure that the calculation method of
the mean orbital inclination vector can still achieve the convergence of the global orbital
inclination under the influence of the semi-monthly period term perturbation, the boundary
relationship of each zone needs to be seamlessly connected. Therefore, the conditions of
Equations (26), (35) and (36) need to be satisfied at the same time, and finally, the longest and
shortest allowable durations of the orbital control are obtained according to Equation (36).
This longest duration of the orbital control is mainly used in the capture phase of the initial
inclination, and it will not be used in the stable keeping of the orbital inclination.
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(a) (b) 

 
(c) (d) 

(e) 

Figure 18. The results of the example five. (a) Y-axis component of orbital inclination vector; (b) X-axis
component of orbital inclination vector; (c) Orbital inclination vector; (d) Velocity increment for SK;
(e) Duration of SK.

In addition, the variation of the duration of daily SK in Figure 18e is more continuous
than that in Figures 16e and 17e. Because the fluctuation of the mean orbital inclination
vector is the most severe under the influence of the semi-monthly period perturbation,
using the same method of the orbital control, the error in this example is the smallest. That
is to say, the orbital control amount that overcomes the influence of the natural perturbation
of the orbital inclination plays a more dominant role, so the daily time length of the SK is
relatively continuous.

5. Conclusions

Aiming at the characteristics of low fuel utilization and weak angular momentum
unloading ability of traditional all-electric satellites, semi-monthly and semi-annual in-
clination calculation methods for mean orbital inclination are proposed, and a low fuel
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consumption NSSK method based on zone control strategy is proposed. The method in
this paper has the following characteristics:

(1) The longer the period of the drifting of the mean orbit inclination under the influence
of perturbation, the smaller the fluctuation of the center of the SK, the shorter required
duration for orbital control, and the smaller the velocity increment required for the
SK, but the accuracy of the NSSK is lower;

(2) The velocity increment required for the NSSK of the mean orbital inclination for a
semi-monthly period is about 45.5 m/s, and the accuracy of the NSSK is about 0.004◦,
which is suitable for a high-precision NSSK. The velocity increment required for the
NSSK of the mean orbital inclination for the semi-annual period is about 45.5 m/s,
and the accuracy of the NSSK is about 0.03◦, which is suitable for the NSSK with
medium precision and low fuel consumption;

(3) The zone control method of the NSSK has strong adaptability to the initial large
orbital inclination;

(4) When the initial orbital inclination has a negative bias, the velocity increment required
for the NSSK is less. When the initial orbital inclination has a positive bias, the velocity
increment requirements for the NSSK is large;

(5) The manipulator can also be used as a despinning platform for the satellite to achieve
the NSSK and angular momentum unloading during the attitude maneuver. The
angular momentum unloading scheme of manipulator with an electric thruster is
worthy of further study;

(6) The EWSK scheme of the manipulator with EP is worthy of further in-depth study.

The NSSK method proposed in this paper is applicable to any electric thrust and
specific impulse. However, from the perspective of optimal fuel, theoretically, the larger
the thrust, the better the specific impulse. From the perspective of engineering maturity,
the recommended electric propulsion is 80 mN, and the specific impulse is 3000 s.

For the NWSK by EP with manipulator, further research can be conducted in the
following aspects in the future:

(1) Carrying out EWSK at the same time in NWKS;
(2) Unloading angular momentum of a large number of stages (such as 50 Nms each

time) while in SK;
(3) Online solution for inverse motion of manipulator.
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Abstract: Space debris near Earth severely interferes with the development of space, and cataloging
space objects is increasingly important. Since optical telescopes and radars used to detect space
debris only provide short-arc observations, mathematical algorithms are needed to solve problems
in the correlation of observations. In this work, an efficient mathematical algorithm based on J2

analytic solutions is put forward. Initial orbit determination (IOD) serves as the starter and orbit
determination (OD) with the weighted least-squares method (WLSM) is used to improve the accuracy
of the estimated orbit. Meanwhile, the effect of the weight of different observation types is analyzed.
The correlation criteria for bistatic radar observations are accordingly developed. Lastly, the variation
in and evolution of the error of bistatic radar ranging are discussed.

Keywords: space debris; bistatic radar; correlation; J2 perturbation

MSC: 85-08

1. Introduction

The application of space technologies is the theme of this era. Growing uncontrolled
space debris and satellites greatly increase the possibility of collisions year by year. The
collision of Iridium 33 and Cosmos 2251 is believed to be the first accidental hypervelocity
collision of two intact satellites [1]. In August 2016, significant orbit and attitude changes
occurred to the Sentinel-1A, which were later proved to be the result of a 1 cm space debris
impact [2]. Therefore, there have been many efforts to calculate collision probabilities [3],
for collision avoidance [4] and to design space debris removal missions [5]. Above all,
cataloging space objects with precise orbits is needed for the good performance of collision
avoidance operations and space debris removal missions.

Restricted to the characteristics of current optical or radar surveys for space debris,
only short-arc observations, also called as tracklets, can be obtained. If a tracklet can
be correlated to one of the cataloged orbits, the tracklet can be used to update the orbit.
The left tracklets that are uncorrelated (UCT) are either newly generated debris or an
operational satellite after maneuvering. For UCTs, tracklet correlation is usually first
needed to accomplish cataloging.

Milani [6] suggested the method of an admissible region (AR) using attributables
to solve the observation correlation of asteroids. Tommei and Milani [7] applied the
AR method to space debris in Earth orbit and generalized the method to radar cases.
Fujimoto [8] gave circular and zero-inclination solutions to the AR method. Farnocchia [9]
proposed a virtual debris algorithm based on the AR method. For many correlation works,
only two-body integrals were considered. However, Reihs [10] showed that correlation
without considering J2 perturbation is effective only when the time interval between
two measurements is very limited. Rehis [11] suggested a solution of the AR method
considering J2 perturbation.
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The Gaussian and Laplacian methods are the most classical IOD algorithms, and
they are used in this work. IOD algorithms such as Gibbs are used to deal with radar
observations. Details of these algorithms can be found in Escobal [12], Vallado [13], and
Liu [14]. Hill [15] took the IOD result as an initial value for an unscented Kalman filter. The
calculated orbits and covariances are propagated to a common epoch to accomplish the
comparison of orbits. A numerical integral has good precision in propagating orbits and
covariances, but the computation requirements are heavy. It is not quite good at dealing
with massive amount of tracklets considering the cost of time.

The Air Force Space Surveillance System (AFSSS) has achieved great success in the
past few decades because of the wide coverage and its ability to detect high-speed LEO ob-
jects. Therefore, continuous attention is being paid to fencelike radar systems. Huang [16]
investigated a large-scale distributed space surveillance radar system, and a tracklet as-
sociation scheme for LEO space debris observed by the double fence radar system was
produced [17].

At one step further than other UCTs correlation algorithms, J2 analytic solutions are not
only used in orbit calculation but also used in covariance propagation in this work. With J2
analytic solutions, the lack of accuracy by Keplerian integrals can be compensated for, and
the cost of time is still much less than that of the numerical integral. For monostatic radars,
traditional IOD methods are accurate enough when dealing with a single tracklet. However,
the same IOD methods are not quite suitable for the sum of ranges by bistatic radars; thus,
an extra OD step is added, and a direct correlation criterion to the observations is raised. The
effect of the weight of different observation types in the OD process is analyzed. The criteria
can eliminate beforehand outliers that might lead to an error in the correlation process.
Lastly, the variation in and evolution of the error of bistatic radar ranging are discussed.

2. Initial Orbit Determination for Tracklets Observed by Bistatic Radar

Given the geocentric position rT of a transmitting station, the geocentric position rR of
the receiving station and the corresponding topocentric position of the space debris ρT , ρR,
the geocentric position r of space debris can be expressed as r = ρT + rT or r = ρR + rR.
As shown in Figure 1, there are two types of observation for bistatic radars.

• angles observed by the receiving station, usually azimuth and elevation (A, E) in
topocentric horizontal coordinate system for radars;

• the sum of ranges by the transmitting station and receiving station, ρ = ρT + ρR.
ρT = ρT ρ̂T and ρR = ρRρ̂R, ρ̂T and ρ̂R are the unit vector of ρT and ρR, ρT and ρR
are the length of ρT and ρR. Sum of ranges ρ can be measured directly, but ρT and ρR
are unknown.

Radar ranging is based on the measurement of signal transmission time, and angles are
based on the mechanical measurements of an antenna. Different measurement principles
and equipment capabilities result in a difference in accuracy. In normalized units in which
the unit of distance is the radius of Earth, and the unit of angles is radian, the error of
angles is dozens of times larger than the error of radar ranging.

Traditional IOD methods can deal with monostatic radar ranging, but they are not
quite suitable for a sum of ranges by a bistatic radar. Two approximate approaches can be
used to obtain an initial orbit from bistatic radar observations.

• Angles only: Since a series of angle observations is sufficient for IOD, a sum of ranges
can be temporarily put aside. With Equation (1),

ρ̂R × r = ρ̂R × rR, (1)

ρR from the receiving station to the space debris can be eliminated; therefore, only
azimuth and elevation observed by the receiving station are used. The defect of this ap-
proach is that low-accuracy measurements are used, and high-accuracy measurements
are rejected.

404



Mathematics 2022, 10, 2197

• ρR calculation: Since rR2T = rT − rR, ρ̂R and ρ are known with a simple geometric
calculation, ρR can be obtained. Then, the position of space debris can be calculated.
The problem of this approach is that the errors of angles are transferred to ρR.

Since a tracklet is usually short-arc with initial geocentric position and velocity (r0 =
r(t0), ṙ0 = ṙ(t0)) at t0 and prediction duration Δt = t− t0, the geocentric position r(t) of
the space debris at t could be calculated by series expansion:

r(t) = F(r0, ṙ0, Δt)r0 + G(r0, ṙ0, Δt)ṙ0, (2)

where F and G are the polynomial function of Δt. For the ρR calculation approach,
Equation (2) has 6 unknown variables (r0, ṙ0) and a known vector ρR. With at least 2
groups of measurements ρR(ti)(i = 1, 2, 3...), (r0, ṙ0) would be solvable.

By substituting Equation (2) into Equation (1),

ρ̂R × (Fr0 + Gṙ0) = ρ̂R × rR. (3)

For the angles-only approach, Equation (3) has 6 unknown variables (r0, ṙ0) and 2
known observations (A, E). With at least 3 groups of measurements ρ̂(ti)(i = 1, 2, 3...), (r0,
ṙ0) would be solvable.

Figure 1. Bistatic radar observation.

3. Orbit Improvement with Weighted Least Square Method

The angles-only and ρR calculation approaches can both provide a set of the estimated
state, but the accuracies of the two approaches much depend on the quality of angle mea-
surements. For the angles-only approach, the random noise of (A, E) is directly absorbed
by the estimated state. For the ρR calculation approach, the random noise of (A, E) is
absorbed by ρR and also leads to a huge error in the estimated state.

With the weighted least-squares method (WLSM) and an accurate measurement model,
the effects of the random noise of measurements can be reduced, measurements with large
error can be stripped out, and ρ can be appropriately calculated. Therefore, the accuracy of
the orbit can be improved.

3.1. Weighted Least-Squares Method

Suppose that zi is the observation at ti, xi is the calculated state at ti, and h(xi) = hi(x0)
is the observation equation. The loss function is defined as

J(x0) =
N

∑
i=1
‖zi − h(xi)‖, (4)
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the result xest
0 should satisfy

J(xest
0 ) = min

x0∈X0
J(x0) (5)

where X0 is the state-space of x0. For the least-squares method, either the position and
velocity or orbital elements could form the state vector of space debris. For analytic
solutions, the state of the space debris is usually expressed by orbital elements.

Define

Z = (z1, z2, ..., zn)
T , (6)

H(x0) = (h1(x0), h2(x0), ..., hn(x0))
T , (7)

ΔZ = (Δz1, Δz2, ..., Δzn)
T = (z1 − h1(x0), z2 − h2(x0), ..., zn − hn(x0))

T . (8)

The loss function can also be expressed as

J(x0) = (Z− H(x0))
T(Z− H(x0)) = ΔZTΔZ. (9)

Supposing that Δx0 = x0 − xtrue
0 where xtrue

0 is the actual state at t0, we have

J(x0) =
N

∑
i=1
‖∂hi(x0)

∂x0
Δx0‖. (10)

If ∂H(x0)/∂Δx0 is nonsingular, there exists a solution

Δxest
0 =

[(
∂H(x0)

Δx0

)T(∂H(x0)

Δx0

)]−1(
∂H(x0)

Δx0

)T
ΔZ (11)

which leads to ∂J(x0)/∂Δx0 = 0.
As mentioned in Section 2, the accuracies of ρ and (A, E) are different. Equal treatment

with different types of observations would lower the accuracy of the results, and a proper
weight is essential to data fusion. Thus, measurement errors σi(i = 1, 2, 3...) are put into
Equation (11) and form Equation (12).

Δxest
0 =

[(
∂H(x0)

Δx0

)T
W
(

∂H(x0)

Δx0

)]−1[(
∂H(x0)

Δx0

)T
WΔZ

]
(12)

where

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ−2
1 0 ... 0 ... 0
0 σ−2

2 ... 0 ... 0
... ... ... ... ... ...
0 0 ... σ−2

i ... 0
... ... ... ... ... ...
0 0 ... 0 ... σ−2

n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

Since observation equation h(xi) is an equation with respect to xi, to calculate ∂hi(x0)/∂x0,
the state transition matrix φi is needed:

∂hi(x0)

∂x0
=

∂h(xi)

∂xi
φi, (14)

φi =
∂xi
∂x0

. (15)

3.2. Effect of Weight

Theoretical weight in WLSM is the accuracy of observation, as shown in Equation (13).
In practice, it is not easy to obtain the exact error of each observation while tracking and
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observing. The errors of observations are different since the error is affected by multiple
factors. Usually, a composite weight from experience and equipment performance is set for
each type of observation.

In this work, the relative weight between different types of observations could affect
the accuracy of a certain orbital element. Two stations, as shown in Table 1, and a satellite,
as shown in Table 2, were simulated to demonstrate the effect of observation weight. The
duration of the simulated tracklet was 1 min.

Table 1. Description of two simulated stations.

Simulated Stations Latitude (deg) Longitude (deg) Height (m)

Transmitting station 30 108 0
Receiving station 30 105 0

Table 2. Description of the simulated satellite.

Semi-Major Axis (m) Eccentricity Inclination (deg) RAAN (deg)

6,878,137.0 0.001 60.0 60.0

As discussed in Section 2, there are mainly two types of observation for bistatic radar,
and the accuracy of radar ranging is usually better than that of angles. From Equation (12),
the results of estimation change with the relative weight between different observations,
instead of the absolute weight of observations. In normalized units which the unit of
distance is the radius of Earth, and the unit of angles is radian, variation in the relative error
between the sum of ranges and azimuth (σρ/σA) was set from 0.1 to 0.02, and variation in
the relative error between elevation and azimuth (σE/σA) was set from 0.5 to 2.0. Like the
relative errors of observations being used to describe weight, the relative error between
different orbital elements is used to describe the accuracy of certain orbital element. By
setting the error of the estimated eccentricity as the reference, the relative error between
the semimajor axis and eccentricity (σa/σe) can represent the accuracy of the estimated
semimajor axis, and the relative error between inclination and eccentricity (σi/σe) can
represent the accuracy of the estimated inclination. The effects of weight on the accuracy of
estimated orbital elements are shown in Figure 2.

Figure 2 shows that the accuracy of the estimated semimajor axis increases with the
weight of radar ranging. This effect becomes stronger when σE �= σA. On the other hand,
the accuracy of inclination decreases with the weight of radar ranging, and increases with
the weight of elevation.

Figure 2. Effect of weight on the accuracy of estimated orbital elements.
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4. Correlation Considering J2 Perturbation

The motion of space debris in terrestrial space is affected by all kinds of perturbations,
such as drag, solar radiation pressure, and the gravitational perturbations of the Sun and
Moon. Among all, the J2 term of Earth’s nonspherical perturbation has the strongest influence.

The J2 term represents the perturbation caused by the oblateness of Earth. The acceler-
ation of J2 perturbation is shown in Equation (16),

r̈J2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
2 J2

GMeR2
e

r5
ec f

(
1− 5

z2
ec f

r2
ec f

)
xec f

− 3
2 J2

GMeR2
e

r5
ec f

(
1− 5

z2
ec f

r2
ec f

)
yec f

− 3
2 J2

GMeR2
e

r5
ec f

(
3− 5

z2
ec f

r2
ec f

)
zec f

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

G is the gravitational constant, Me is the mass of Earth, Re is the radius of Earth, and
rec f = (xec f , yec f , zec f ) is the position of space debris in an Earth-centered fixed coordinate
system. J2 perturbation is not only considered in orbit prediction, but also in covariance
propagation in this work.

4.1. Orbit Propagation with J2 Perturbation

J2 perturbation causes a secular variation in the orbital plane (right ascension of
ascending node, Ω) and argument of perigee (ω) as shown in Equations (17) and (18):

Ω̇ = −3
2

J2

(
Re

p

)2
n cos i (17)

ω̇ =
3
2

J2

(
Re

p

)2
n
(

2− 5
2

sin2 i
)

(18)

where Re is the radius of Earth, n is the mean motion of a satellite, and p = a(1− e2).
Equation (19) shows that the mean motion (n) of space debris is affected by J2 perturbation,
but has no secular variation:

nJ2 = n +
3
4

J2

(
Re

a

)2
(

2− 3 sin2 i

p
3
2

)
. (19)

Since M = M0 + n(t − t0), variation in n leads to extra secular variation in mean
anomaly (M). Equation (20) gives the expression of Ṁ:

Ṁ = n +
3
2

nJ2

(
Re

p

)2(
1− 3

2
sin2 i

)√
1− e2. (20)

408



Mathematics 2022, 10, 2197

With Equations (17)–(20), analytic state transition matrix φ = φ(0) + φ(1),

φ(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

φ
(0)
61 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (21)

φ(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

φ
(1)
41 φ

(1)
42 φ

(1)
43 0 0 0

φ
(1)
51 φ

(1)
52 φ

(1)
53 0 0 0

φ
(1)
61 φ

(1)
62 φ

(1)
63 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

where φ
(0)
61 is a function of (a0, Δt), and φ

(1)
ij are functions of (a0, e0, i0, Δt). φ(0) represents

the state transition of Keplerian motion, and φ(1) represents the effect of J2 perturbation.

4.2. Correlation of Tracklets

Assuming that there are n tracklets (1, 2, ...j, ..., k, ..., n), and each tracklet has more
than 3 groups of measurements, the correlation between the jth tracklet and one of the
measurements in the kth tracklet is taken as an example.

After IOD and OD with WLSM, an improved state (xj) could be obtained for the jth

tracklet. Propagating xj and the error of xj to the kth tracklet, observation (Aj
k, Ej

k, ρ
j
k) and

the error of observation (ΔAj
k, ΔEj

k, Δρ
j
k) can be calculated. The error of xj by OD with only

one tracklet was much smaller than the actual deviation of xj. In order to more accurately

calculate (ΔAj
k, ΔEj

k, Δρ
j
k), the empirical error of the estimated orbit with one tracklet is

needed.
Since the observation error (ΔA, ΔE, ΔρR) of the receiving station was pairwise or-

thogonal, (A, E, ρR) should conform to the restriction of the error ellipsoid as shown in
Figure 3.

If the jth and kth tracklets belong to the same satellite, (A, E, ρR)k should satisfy
Equation (23): (

Ak − Aj
k

mΔAj
k

)2

+

(
Ek − Ej

k

mΔEj
k

)2

+

(
(ρR)k − (ρR)

j
k

m(ΔρR)
j
k

)2

< 1, (23)

m is the coefficient absorbing the inaccuracy of dynamic models and the error growth in
propagation.

The error of bistatic radar ranging (Δρ) is affected by three factors:

ΔρR the error produced by the receiving station;

ΔρT the error produced by the transmitting station;

Δρs the systematic error between the receiving station and the transmitting station.

Δρ = f (ΔρR, ΔρT , Δρs), (24)

Δρs is mainly decided by the performance of time synchronization between different
stations. According to Guo [18], timing with a global navigation satellite system (GNSS)
is about 0.1 ns. Thus, Δρs � ΔρR, ΔρT at present. Assuming that the variation in ΔρR
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and ΔρT is mainly affected by J2 perturbation, and Equation (24) can be approximated to
Equation (25) in one tracklet:

ρR
ρ
∼= ΔρR

Δρ
, (25)

Equation (23) can be transformed into Equation (26),(
Ak − Aj

k

mΔAj
k

)2

+

(
Ek − Ej

k

mΔEj
k

)2

+

(
ρk − ρ

j
k

mΔρ
j
k

)2

< 1. (26)

Figure 3. Error ellipsoid of observations of a receiving station.

Different from calculating the Mahalanobis distance of two orbits [11,19], each group
of observations was tested with Equation (26). If 70% measurements of the tracklet were
successfully correlated, the tracklet was successfully correlated. For tracklets with clean
data, the effect of the proposed approach is similar to that of calculating Mahalanobis
distance. However, tracklets with mixed measurements of different space debris appear
now and then, and mixed measurements could lead to a failure in an OD process or
an estimated orbit with huge error. With the proposed approach, correlation and data
cleansing can be accomplished in one step.

There were quite a few miscorrelations only with Equation (26). Orbit determination
with WLSM can also be used to screen out miscorrelations. Two tracklets were insufficient
for confirmation. Tests with real data were reported by Tommei [20], who found that the
correctness of correlation would be largely increased when at least 3 tracklets are confirmed
by the least-square method. In this work, only correlated observations, instead of the entire
tracklet, were used to implement the confirmation.

5. Discussion

Since the properties of azimuth and elevation observed by a receiving station are the
same with those observed by monostatic radars, which was discussed by Cordelli [21], ΔA
and ΔE are not discussed in the following. Two issues are discussed in detail:

1. the performance of orbit determination with WLSM for a single bistatic radar tracklet;
2. the effect of orbital elements’ accuracy and prediction duration on Δρ.
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5.1. Accuracy of Orbit Determination

In order to test the performance of orbit determination, 4298 tracklets of 3538 LEO
satellites were simulated. Detailed simulation strategies are shown in Table 3.

Table 3. Strategies of simulation.

Subject Content

Orbital elements Two-Line-Element (TLE)
Dynamic model sgp4
Minimal height threshold 200 km
Maximal height threshold 1700 km
Minimal time span 20 s
Maximal time span 300 s
Mean time span 120 s
σ of azimuth noise 0.1◦

σ of elevation noise 0.1◦

σ of ρ noise 50 m

For the initial orbit determination demonstration, the ρR calculation approach was
selected. Figure 4 gives the deviation between the estimated orbit elements by IOD and
the true orbital elements (TLE). μ is the mathematical expectation of the deviation which
represents the systematic bias of the estimated orbital elements.

Figure 4. Accuracy of ρR calculation approach.

The estimated inclination by IOD barely had systematic bias, and the error reached
σ ∼ 0.1◦. On the other hand, the systematic bias of the estimated semimajor axis by IOD
was as large as several kilometers, and the standard deviation was even larger.

Figure 5 gives the deviation between the estimated orbital elements by WLSM and the
true orbital elements (TLE).
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Figure 5. Accuracy of orbit determination with WLSM.

The accuracy of the estimated inclination by OD was only slightly higher than that of
the estimated inclination by IOD. However, the estimated semimajor axis was significantly
improved by OD with WLSM. The systematic bias of the estimated semimajor axis dropped
to the order of magnitude of ten meters, and the accuracy of the estimated semimajor axis
increased several dozens of times. This improvement was largely due to the proper use of
ρ. ρ had a strong restriction on the estimation of the semimajor axis, and this phenomenon
corresponded to the effect of weight discussed in Section 3.2.

Two more things were also noticed from the results of orbit determination:

• Orbit improvement with WLSM is indispensable. Since the error of the estimated orbit
elements by IOD was too large, the number of miscorrelations would grow rapidly as
the interval between tracklets increased. At the same time, the systematic bias of the
estimated semimajor axis would render the orbit propagation wrong.

• As mentioned in Section 4.2, an empirical error of the estimated orbit is needed to

calculate (ΔAj
k, ΔEj

k, Δρ
j
k) in Equation (26). From Figure 5, the empirical error can be

obtained.

5.2. Variation in and Evolution of Δρ

Δρ is mainly affected by the accuracy of orbit determination and the prediction du-
ration. In order to test the effect of different factors, the two stations in Table 1 and the
satellite in Table 2 were chosen to accomplish the experiment. Assuming that the prediction
duration was 1 day, Figure 6 shows the variation in Δρ with respect to the estimated orbit
element and its accuracy.

Δρ was easily found to always be positively associated with the absolute error of an
orbital element. This feature can substantially simplify the calculation because the extreme
value is sufficient for calculating the confidence zone of Δρ instead of traversing all possible
errors of orbital elements. Figure 6 also shows that Δρ became smaller for the satellites of a
higher altitude with the same semimajor axis error. The effect of the right ascension of the
ascending node (Ω) was almost identical to that of inclination, which demonstrates that
the orbit plane had no direct relationship with Δρ.
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Figure 6. Δρ with respect to the accuracy of the estimated orbital elements.

Assuming that the orbit was calculated with the tracklet in Pass 0, the orbit and its
error propagated to tracklets in Passes 1, 10, and 14. The evolution of ρ and Δρ is shown in
Figure 7.

Figure 7 shows that ρ in one tracklet could vary by several thousand kilometers for a
satellite with an altitude of 500 km, while Δρ only varies little. This shows that Δρ barely
had a relationship with ρ. σρ is not always positively associated with prediction duration.
If σρ drops, either the error of velocity or the error of azimuth and elevation grows.

Figure 7. Evolution of ρ and Δρ.

6. Conclusions

In this work, an efficient algorithm was presented to deal with the UCT correlation
problem. The algorithm was based on J2 analytic solutions for orbit and covariance
propagation. The lack of accuracy of Keplerian integral can be compensated to a certain
level by taking J2 perturbation into consideration.
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The process of correlation starts with the IOD of a tracklet, followed by obtaining
an improved orbit with WLSM. An empirical error of the estimated state is used to form
the covariance. The OD with an analytic orbit and covariance propagation runs fast
for sparse data, which also significantly decreases the systematic bias of the estimated
semimajor axis, and the accuracy of the estimated semimajor axis increases several dozens
of times. The orbit and covariance are propagated to the epoch of the second tracklet, and
Equation (26) was used to perform the correlation. Instead of OD for the second tracklet
and comparing the estimated orbit, each pair of observations in the second tracklet were
separately correlated. If 70% observations of the tracklet were successfully correlated, the
tracklet was successfully correlated. With the proposed approach, correlation and data
cleansing can be accomplished in one step. However, only the correlated observations in
the tracklet are used in the next step to implement the confirmation, and update the orbit
and covariance. The accuracy of the semimajor axis increased with the weight of radar
ranging. This effect became stronger when σE �= σA. On the other hand, the accuracy of
inclination decreased with the weight of radar ranging, and increased with the weight of
elevation. The error of bistatic radar ranging also became smaller for space debris of higher
altitude with the same semimajor axis error, and the orbit plane had no direct relationship
with the error of bistatic radar ranging.
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Abstract: With increasing attention on containment control problems in several areas, we investigate
this specific problem which can be more practical. Systems with nonconvex input and position
constraints are common but can be strongly nonlinear. A distribute algorithm using a projection
operator is proposed to ensure that the control input of every follower remains in a nonconvex set
and that all followers stay in the closed set given by leaders. In analysis, a model transformation is
proposed, and then we introduce a method utilizing two similar triangles to prove the acceptability
of the algorithm. The findings of the research could be pragmatic in robotics, astronautics, and so on.
At last, numerical simulations are provided to show the contrast and results.

Keywords: containment control; multiagent systems; control input constraints; position constraints;
switching topologies

MSC: 93A16; 93C10

1. Introduction

Over the past few years, containment control has attracted widespread attention
due to its potential applications in robotics, astronautics, biology, traffic engineering,
etc. The potential of containment control for different areas such as game theory and
cyberattack is significant. Numerous works on containment control have been conducted,
as in [1–26]. Containment control problem is associated with systems composed of follower
agents and multiple leaders. The purpose of containment control is to drive all followers
into the convex hull spanned by some static leaders. In [7], the containment control
problem was studied when the communication graph was fixed, while containment control
with switching topologies where the communication graphs were strongly connected
was discussed in [9]. In [16], communication delays for containment control were taken
into consideration.

Most of the above works focused on problems in which states and control input of
agents had no constraints. In practical situations, agents are always subject to constraints
due to physical limitations. For instance, the velocities of vehicles and satellites are con-
strained to lie in a certain zone. In [27], the consensus problem with convex constraints
were studied; the nonconvex constraints of velocity and control input were discussed
in [28]. In [29], switching topologies were taken into consideration, which are different
from a consensus problem, since the final positions of followers do not converge to one
point but a convex hull. The above methods cannot be directly applied to the containment
problem with constraints. In [30], the projection operator was used to solve the containment
problem with nonconvex control input constraints; the containment problem with position
constraints was studied in [31].

In this work, the main task is to take into consideration the control input and position
constraints for a containment control problem with switching topologies. A distributed
algorithm is proposed to ensure that every follower in the multiagent system can converge
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into the convex hull spanned by the given leaders. Meanwhile, the position of every
follower stays in a closed set given before and the control input does not need to keep
lying in a hypercube. In the following, by using model transformation and analyzing the
distance from each follower to the convex hull formed by given points, it is shown that
the containment control problem can be solved when the directed spanning tree exists in
the union of the graphs. In Section 2, the graph theory and multiagent dynamic model id
introduced. In Section 3, we describe the main algorithm of the containment control system
and the analysis of the main result when applied to a system with nonconvex control input
and position constraints. In Section 4, we provide some simulation examples to confirm
the feasibility of the algorithm. Finally, concluding notes and further works are remarked
in Section 5.

2. Model and Statement

2.1. Preliminaries and Notations

Let G(V , E ,A) represent a directed graph, where V = {1, 2, . . . , n + m} is the set of
nodes, E ⊆ V × V is the set of edges, and A = [aij] is the weighted adjacency matrix. Each
aij is nonnegative and aii = 0 holds for every agent i. Suppose that (j, i) ∈ E is an edge of
the directed graph, and a directed path is a sequence of edges of the form (i1, i2), (i2, i3), . . .,
otherwise, aij(k) > 0 if the agent i can get information from agent j at time k and aij(k) = 0.

Notations: The set of r-dimensional real column vectors is represented by Rr; R, N,
and N+ represent the set of positive real numbers, nonnegative integers, and positive
integers, respectively; ‖ x ‖ and xT denote the Euclidean norm and transpose of the vector
x, respectively; the projection of vector x onto a closed convex set X is represented by PY(x),
where PY(x) = argmin

x̃∈X
‖>‖ x− x̃ ‖.

2.2. Description of Model

Consider a multiagent system with n + m agents, i.e., n followers and m leaders. The
set of all followers and leaders can be denoted, respectively, by N f = {1, 2, .., n} and
Nl = {n + 1, n + 2, .., n + m}. Let yn+1, yn+2, . . . yn+m ∈ Rr be the m static points of the

leaders, which forms the convex hull denoted by Y = {
n+m
∑

i=n+1
αiyi|αi ≥ 0,

n+m
∑

i=n+1
αi = 1}.

Each follower is constrained to lie in a convex constraint set that is denoted by Xi. The
dynamics of follower is:

xi((k + 1)T) = PXi [xi(kT) + vi(kT)T]
vi((k + 1)T) = vi(kT) + ui(kT)T

(1)

where xi(kT) ∈ Rr, vi(kT) ∈ Rr, and ui(kT) ∈ Rr denote the position, the velocity, and the
control input of the follower i, respectively. In many practical systems, the control input
and position state of the agents are always constrained. Next, we give Assumption 1:

Assumption 1. Let 0 ∈ Ui ⊆ Rr for i = 1, 2, .., n be the bounded nonempty closed sets,
max
x∈Ui

‖ SUi (x) ‖= λi and min
x/∈Ui

‖ SUi (x) ‖= λi, where λi and λi are both positive constants.

Then, SUi (·) is a constrained operator defined by SUi (x) = x
‖x‖ max

0≤δ≤‖x‖
{δ| δγx

‖x‖ ∈ Ui, ∀0 ≤ γ ≤ 1}
where x �= 0 and SUi (0) = 0, as shown in Figure 1.
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Figure 1. Example of SUi (x).

Remark 1. Assumption 1 aims to find a new vector SUi (x) which has the same direction as vector
x and satisfies γSUi (x) ∈ Ui for all 0 ≤ γ ≤ 1 and ‖ SUi (x) ‖≤‖ x ‖ for the bounded nonempty
closed set Ui. This assumption shows that every follower can move in all directions. Moreover, the
control input of agents are constrained. We suppose each follower to be available in every direction
in this paper.

In this paper, our objective is to propose a proper algorithm to drive each follower,
whose position and control input are constrained, to move into the convex hull Y formed
by the leaders, that is, lim

k→∞
‖ xi(k)− PY(xi(k)) ‖= 0 for i ∈ N f .

3. Main Results

3.1. Containment Control Algorithm

In this section, we would give a nonlinear algorithm to solve the containment control
problem with nonconvex control input and position constraints and switching topologies.

ui = SUi [−pivi(k)− ci(k)(xi(k)− PYi(k)(xi(k)))
+ ∑

j∈Ni(k)
aij(k)(xj(k)− xi(k))] (2)

for i ∈ N f , where pi > 0 represents the velocity damping gain of follower i, ci(k) = c > 0
when follower i can receive information directly from one or more leaders at time k, and
ci(k) = 0 otherwise, and Ni(k) is the set of neighbors of agent i. aij(k) is the edge weight of
edge (j, i), and it is assumed that if aij(k) > 0, then aij(k) is lower bounded by a positive
constant. Yi(k) ⊆ Y is the convex hull formed by leaders whose information can be received
by follower i directly at time k.

3.2. Analysis of Algorithm

In this section, we provide some necessary assumptions and lemmas to analyze the
algorithm given in Section 3.1.

Assumption 2. Give an infinite sequence of time k0, k1, k2, k3, . . . satisfying k0 > 0 and
0 < kq+1 − kq ≤ C where q ∈ N and C ∈ N+. For every follower, it can be found at least
one directed path from given static points to this follower in the union of the graphs in each time
interval [kq, kq+1).

Remark 2. This assumption ensures that each follower can receive information from the given static
leaders directly or indirectly in every time interval.
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It is clear that System (1) with (2) has strong nonlinearities due to the existence of the
nonconvex control input and position constraints. For this reason, we first introduce a
model transformation as follows:

Define
θi(k) = −ci(k)[xi(k)− PYi(k)(xi(k))]

+ ∑
j∈Ni(k)

aij(k)(xj(k)− xi(k))

and

hi(k) =

{
1, i f − pivi(k) + θi(k) = 0
‖SUi

[−pivi(k)+θi(k)]‖
‖−pivi(k)+θi(k)‖ , else

Then, System (2) can be rewritten as:

ui(k) = hi(k)(−pivi(k) + θi(k)) (3)

Define
ṽi(k) = xi(k) +

2
pi

vi(k)

and
ei(k) = PXi [xi(k) +

pi
2 (ṽi(k)− xi(k)T)]

−[xi(k) +
pi
2 (ṽi(k)− xi(k)T)]

(4)

for i ∈ N f .
Systems (1) and (2) can be transformed into:

xi(k + 1) = PXi [xi(k) +
pi
2 (ṽi(k)− xi(k)T)]

ṽi(k + 1) = PXi [xi(k) +
pi
2 (ṽi(k)− xi(k)T)]

+(1− pihi(k)T)(ṽi(k)− xi(k))
+ 2hi(k)T

pi
∑

j∈Ni(k)
aij(k)(xj(k)− xi(k))

− 2hi(k)ciT
pi

(xi(k)− PYi(k)(xi(k)))

(5)

for i ∈ N f .
Put the definition of (4) into equation, System (5) could be rewritten as:

xi(k + 1) = (1− piT
2 )xi(k) +

pi
2 ṽi(k)T + ei(k)

ṽi(k + 1) = [pi(hi(k)− 1
2 )T −

2hi(k)T
pi

( ∑
j∈Ni

aij(k) + ci)]xi(k)

+(1− pi(hi(k)− 1
2 )T)ṽi(k)

+ 2hi(k)T
pi

∑
j∈Ni

aij(k)xj(k)

+ 2hi(k)ciT
pi

PYi(k)(xi(k)) + ei(k)

(6)

for i ∈ N f .
From System (6), it can be easily found that the sum of the coefficients of xi(k) and

ṽi(k) in the first equation and the coefficients of xi(k), ṽi(k), xj(k), and PYi(k)(xi(k)) in the
other equation are both equal to 1, which means the existence of ei(k) destroys the linearity
of xi(k + 1) with xi(k) and ṽi(k), ṽi(k + 1) with xi(k), ṽi(k), xj(k), and PYi(k)(xi(k)). Hence,
the next step is to remove ei(k) when k → ∞ . Give the following definition:

gi(k) = ∑
j∈Ni(k)

aij(k) + ci(k)

τia(k) = [piT(hi − 1
2 )−

2hiT
pi

gi(k)]/(1− 2hiT
pi

gi(k))

τib(k) = [1− piT(hi − 1
2 )]/(1−

2hiT
pi

gi(k))

τic(k) = 1− 2hiT
pi

gi(k)

(7)
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and
qia(k) = τia(k)xi(k) + τib(k)ṽi(k) +

1
τic(k)

ei(k) (8)

for i ∈ N f . Then, (6) could be transformed as:

ṽi(k + 1) = τic(k)qia(k) +
2hi(k)T

pi
∑

j∈Ni

aij(k)xj(k)

+ 2hi(k)ciT
pi

PY(xi(k))
(9)

for i ∈ N f .

Assumption 3. ‖ ∑
j∈Ni(k)

aij(k)(xj(k)− xi(k)) ‖≤ Qi/2 and ‖ ci(k)[xi(k)− PYi(k)(xi(k))] ‖≤

Qi/2 for some constant Qi > 0.

Remark 3. This assumption could be satisfied easily. By using the operator SUi (x) defined in
Assumption 1, the terms ∑

j∈Ni(k)
aij(k)(xj(k)− xi(k)) and ci(k)[xi(k)− PYi(k)(xi(k))] can be rede-

fined as SVi [ ∑
j∈Ni(k)

aij(k)(xj(k)− xi(k))] and SVi [ci(k)[xi(k)− PYi(k)(xi(k))]], where Vi = {y| ‖

y ‖≤ 1
2 Qi}. As the definition of hi(k), we define that hi(k) =

‖SVi
[ ∑
j∈Ni(k)

aij(k)(xj(k)−xi(k))]‖

‖ ∑
j∈Ni(k)

aij(k)(xj(k)−xi(k))‖

and h̃i(k) =
‖SVi

[ci(k)[xi(k)−PYi(k)
(xi(k))]]‖

‖ci(k)[xi(k)−PYi(k)
(xi(k))]‖ . It is clear that the two terms can be expressed as

∑
j∈Ni(k)

hi(k)aij(k)(xj(k)− xi(k)) and ci(k)h̃i(k)[xi(k) − PYi(k)(xi(k))], where 0 < hi(k),

h̃i(k) ≤ 1. Then, it can be similarly proven that hi(k) and h̃i(k) are lower bounded by a positive
constant with the discussion in Lemma 1.

Lemma 1. Under Assumption 4 and the definition of operator SUi (·), we have that if 0 ≤ Qi ≤
λi/2, there exists km > 0 such that:

σi ≤ hi(k) ≤ 1

for i ∈ N f and k ≥ km, where σi = (λi −Qi)/(2Qi).

Proof of Lemma 1. From the definition of hi(k), it is apparently that 0 < hi(k) < 1 and
‖ −pivi(k) + θi(k) ‖> λi when −pivi(k) + θi(k) �= SUi [−pivi(k) + θi(k)], and hi(k) = 1
otherwise. Define Φi(k) = 1

2 ‖ vi(k) ‖2. From the definition of difference, there is:

ΔΦi(k) = Φi(k + 1)−Φi(k)
= (‖ vi

T(k + 1) ‖2 − ‖ vi
T(k) ‖2)/2

≤ −2pihi(k)Φi(k) + Qi
√

2Φi(k)
= −

√
2Φi(k)(pihi(k)

√
2Φi(k)−Qi)

Considering the property of hi(k), it can be easily deduced that λi/(pi ‖ vi(k) ‖
+Qi) ≤ hi(k) < 1. Given all this and the condition of Lemma 1, we have:

‖ vi(k) ‖≤ −
√

2Φi(k)(
piλi

pi‖vi(k)‖+Qi

√
2Φi(k)−Qi)

≤ −
√

2Φi(k)(
piλi

pi+Qi/‖vi(k)‖ −Qi)

When piλi/(pi + Qi/ ‖ vi(k) ‖)−Qi > ε0, which is ‖ vi(k) ‖> Qi(ε0 + Qi)/[pi(λi −
Qi − ε0)], ε0 > 0 is a sufficiently small constant, ‖ vi(k) ‖≤ −Qi(ε0 + Qi)ε0/[pi(λi −Qi −
ε0)] can be obtained under the condition of this lemma. Therefore, there exists a constant
km > 0 such that ‖ vi(k) ‖> Qi(ε0 + Qi)/[pi(λi − Qi − ε0)] for all k ≥ km. From the
assumption of Lemma 1 that 0 ≤ Qi ≤ λi/2, we have Qi

2/[pi(λi − Qi)] > (λi − Qi)/pi.
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Then, we get (λi −Qi − ε0)/Qi ≤ hi(k) ≤ 1 for all k ≥ km. Since that ε0 can be arbitrarily
small, (λi −Qi)/2Qi ≤ hi(k) ≤ 1 holds, for all k ≥ km. �
Assumption 4. Suppose that 0 < piT < 1, p2

i − 4dim > α1, dim > ∑
j∈Ni

aij(k) + ci(k) for αi > 0,

dim > 0, for all i ∈ F and k.

Remark 4. This assumption gives the design rules of the algorithm parameters. The parameter pi
can be selected by the following steps:

(1) Select the value of pi such that 0 < piT < 1 and p2
i − 4dim > α1 for two constants αi > 0

and dim > 0.
(2) Select the values of each nonzero aij(k) and c such that ∑

j∈Ni

aij(k) + ci(k) < dim for each k.

Lemma 2 [32]. Let X ⊆ Rr denote a nonempty closed convex set. xi ∈ Rr and scalars ai ≥ 0

satisfying
n
∑

i=1
ai = 1. It follows ‖

n
∑

i=1
aixi − PX(

n
∑

i=1
aixi) ‖≤

n
∑

i=1
ai ‖ xi − PX(xi) ‖.

Lemma 3 [33]. Considering a closed convex set 0 �= Z ⊆ Rr, for any x, y ∈ Rr and all z ∈ Z,
inequalities [x− PZ(x)]T(x − z) ≥ 0, ‖ PZ(x) − z ‖2≤‖ x − z ‖2 − ‖ PZ(x) − x ‖2 and
‖ PZ(x)− PZ(y) ‖≤‖ x− y ‖ hold.

In order to eliminate ei(k), we present the following lemmas.

Lemma 4. Under Assumption 4, the following statements stand for all i ∈ N f and all k:

(1) τia(k) + τib(k) = 1 and τic(k) +
2hi(k)T

pi
∑

j∈Ni

aij(k) +
2hi(k)ciT

pi
= 1;

(2) α2 < τia(k) < 1
2 , 1

2 < τib(k) < 1− α2, 1
2 < τic(k) < 1.

Proof of Lemma 4.

(1) As the definition in (7), τic(k) = 1− 2hiT
pi

gi(k) and gi(k) = ∑
j∈Ni(k)

aij(k) + ci(k), for all

i ∈ F and all k. It follows that

τic(k) +
2hi(k)T

pi
∑

j∈Ni

aij(k) +
2hi(k)ciT

pi

= 1− 2hi(k)T
pi

( ∑
j∈Ni(k)

aij(k) + ci(k))

+ 2hi(k)T
pi

∑
j∈Ni

aij(k) +
2hi(k)ci(k)T

pi

= 1

Note that τia(k) = [piT(hi− 1
2 )−

2hiT
pi

gi(k)]/(1− 2hiT
pi

gi(k)) and τib(k) = [1− piT(hi−
1
2 )]/(1−

2hiT
pi

gi(k)), it is obviously that τia(k) + τib(k) = 1.

(2) Under Assumption 4, 0 < piT < 1 and p2
i − 4dim > 0. It can be deduced that

1
2 > 1

2 piT > 2dimT/pi > 2giT/pi ≥ 2ciT/pi ≥ 0. According to the definition of τib,
we have 1/2 < τib < 1− α2 for some constant 0 < α2 < 1/2. In the proof of Lemma
4(1), τia(k) + τib(k) = 1. Thus, α2 < τia(k) < 1/2; also under 0 ≤ 2giT/pi < 1/2 and
Lemma 1, it shows that 1

2 < τic(k) = 1− 2hiT
pi

gi(k) < 1. �

Lemma 5. Under Assumptions 4 and 5, the following two inequalities hold for all i ∈ N f and all k:
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Proof of Lemma 5.

(1) Let qib(k) = (1− piT
2 )xi(k) +

pi
2 ṽi(k)T for i ∈ N f . Since PY(qib(k)) ∈ Xi, we have

‖ xi(k + 1)− PY(xi(k + 1)) ‖
=‖ PXi (qib(k))− PY(PXi (qib(k))) ‖
≤‖ PXi (qib(k))− PY(qib(k)) ‖

for i ∈ N f . From Lemma 3, we have

‖ xi(k + 1)− PY(xi(k + 1)) ‖2

≤‖ PXi (qib(k))− PY(qib(k)) ‖2

≤‖ qib(k)− PY(qib(k)) ‖2 − ‖ PXi (qib(k))− qib(k) ‖2

=‖ qib(k)− PY(qib(k)) ‖2 − ‖ ei(k) ‖2

for i ∈ N f . Then, we use Lemma 2. It can transform to:

‖ xi(k + 1)− PY(xi(k + 1)) ‖
≤‖ qib(k)− PY(qib(k)) ‖
=‖ (1− piT

2 )xi(k) +
pi
2 ṽi(k)T

−PY((1− piT
2 )xi(k) +

pi
2 ṽi(k)T) ‖

≤ (1− piT
2 ) ‖ xi(k)− PY(xi(k)) ‖

+ piT
2 ‖ ṽi(k)− PY(ṽi(k)) ‖

for i ∈ N f .
(2) Notice that 2cihi(k)T/pi ≥ 0, 2aij(k)hi(k)T/pi ≥ 0, τic(k) > 1/2 and τic(k) + (2hi(k)

T/pi) ∑
j∈Ni

aij(k) + 2hi(k)ciT/pi = 1. It follows that

‖ ṽi(k + 1)− PY(ṽi(k + 1)) ‖
≤ τic(k) ‖ qia(k)− PY(qia(k)) ‖ + 2hi(k)T

pi

× ∑
j∈Ni

aij(k) ‖ xj(k)− PY(xj(k)) ‖ + 2hi(k)ciT
pi

× ‖ PYi(k)(xi(k))− PY(PYi(k)(xi(k))) ‖

for i ∈ N f . Because Yi(k) ⊆ Y, it follows that

‖ ṽi(k + 1)− PY(ṽi(k + 1)) ‖
≤ τic(k) ‖ qia(k)− PY(qia(k)) ‖ + 2hi(k)T

pi
× ∑

j∈Ni

aij(k) ‖ xj(k)− PY(xj(k)) ‖

for i ∈ N f . �

Lemma 6. Under Assumption 4, the following inequality:

‖ qia(k)− PY(qia(k)) ‖≤ τia(k) ‖ xi(k)− PY(xi(k)) ‖ +τib(k) ‖ ṽi(k)− PY(ṽi(k)) ‖

holds for all i ∈ N f and all k.

Proof of Lemma 6. Let qic(k) = τia(k)xi(k) + τib(k)ṽi(k) for i ∈ N f . It can be easily
observed that ‖ qia(k)− PY(qia(k)) ‖≤‖ qia(k)− PY(qic(k)) ‖ for i ∈ N f .

When ei(k) = 0, ‖ qia(k)− PY(qic(k)) ‖=‖ qic(k)− PY(qic(k)) ‖ for i ∈ N f . Now, it should
be proven that when ei(k) �= 0, ‖ qia(k)− PY(qic(k)) ‖≤‖ qic(k)− PY(qic(k)) ‖ for i ∈ N f .
Define qid(k) = PXi (qib(k)) for convenience, and it is clear that ei(k) = qid(k)− qib(k).
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Now, define two hyperplanes Ψ1 and Ψ2, shown in Figure 2, that ei(k) is perpendicular
to them, qid(k) ∈ Ψ1 and qia(k) ∈ Ψ2. Meanwhile, it is clear that ei(k)/τic(k) = qia(k)−
qic(k) is perpendicular to the hyperplanes. Then, define βia(k) and βib(k), as shown in
Figure 2.

βia(k) = (1− δi1)xi(k) + δi1ṽi(k) ∈ Ψ1βib(k) = (1− δi2)xi(k) + δi2ṽi(k) ∈ Ψ2

for the constants 0 < δi1 < 1 and 0 < δi2 < 1.

Figure 2. Example of similar triangles.

It follows that there exist two similar triangles constituted by points βia(k), qid(k),
qib(k) and points βib(k), qia(k), qic(k). Now, the characters of similar triangles can be applied.

As shown in Figure 2, define ai1 = piT/2 − δi1 > 0. It follows that
qib(k) − βia = ai1(ṽi(k) − xi(k)). Since the similarity of triangles, it can be obtained
that qic(k) − βib = ai1(ṽi(k) − xi(k))/τic(k), i.e., βib = qic(k) − ai1(ṽi(k) − xi(k))/τic(k).
δi2 = (1− piT + δi1)/τic > δi1 can be obtained in the same way. Moreover, Ψ2 and X
are at the different sides of Ψ1. Given all this, it follows that the angle between vec-
tors qia(k) − qic(k) and qia(k) − PY(qic(k)) is an obtuse angle, which means ‖ qia(k) −
PY(qic(k)) ‖≤‖ qic(k) − PY(qic(k)) ‖. Notice Lemma 2 and 4(1), it can be seen that
‖ qic(k)− PY(qic(k)) ‖≤ τia(k) ‖ xi(k)− PY(xi(k)) ‖ +τib(k) ‖ ṽi(k)− PY(ṽi(k)) ‖. Above
all, it follows that

‖ qia(k)− PY(qia(k)) ‖ ≤‖ qia(k)− PY(qic(k)) ‖
≤‖ qic(k)− PY(qic(k)) ‖
≤ τia(k) ‖ xi(k)− PY(xi(k)) ‖
+τib(k) ‖ ṽi(k)− PY(ṽi(k)) ‖

for i ∈ N f . �

3.3. Analysis of Result

In this section, the result of containment control using the given algorithm would be
analyzed. First, we design a Lyapunov function.
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Let ξ(k) = [xT
1 (k), ṽT

1 (k), . . . . . . xT
n (k), ṽT

n (k)]. Design a Lyapunov function as:

V(k) = max
i∈{1,2,...2n}

{‖ξi(k)− PY(ξi(k))‖}

Summarizing the above lemma and analysis, it follows that

‖ xi(k + 1)− PY(xi(k + 1)) ‖≤ max
i∈F
{‖ xi(k)− PY(xi(k)) ‖, ‖ ṽi(k)− PY(ṽi(k)) ‖}

and

‖ ṽi(k + 1)− PY(ṽi(k + 1)) ‖≤ max
i∈F
{‖ xi(k)− PY(xi(k)) ‖, ‖ ṽi(k)− PY(ṽi(k)) ‖}

for all i ∈ N f .
Next, we analyze the convergence of containment control problem under the given

algorithm in the time interval [kl , kl+1).
Case A. Assuming that there is an agent iq that can get information from one of the

static leaders at kl0 ∈ [kl , kl+1). Clearly, ciq > 0 and τiqc(k) + 2hiq(k)T/piq ∑
j∈Niq

aiq j(k) =

1− 2hiq(k)ciq T/piq < 1. Note that

‖ ṽi(k + 1)− PY(ṽi(k + 1)) ‖≤ τic(k) ‖ qia(k)− PY(qia(k)) ‖
+ 2hi(k)T

pi
∑

j∈Ni

aij(k) ‖ xj(k)− PY(xj(k)) ‖

and

‖ ṽiq(kl0 + 1)− PY(ṽiq(kl0 + 1)) ‖ ≤ (1− 2hiq (kl0)ciq T
piq

)V(kl0)

≤ (1− 2hiq (kl0)ciq T
piq

)V(kl) � m1V(kl)

where 0 < m1 < 1.
Moreover, there is

‖ xiq(kl0 + 1)− PY(xiq(kl0 + 1)) ‖≤ (1− 1
2 piq T)V(kl0) +

1
2 piq T

×(1− 2hiq (kl0)ciq T
piq

)V(kl0)

≤ (1− hiq(kl0)ciq T2)V(kl) � m2V(kl)

where 0 < m2 < 1.
Case B. Suppose that there exists an agent iq that satisfies ‖ ṽiq(kl0)− PY(ṽiq(kl0)) ‖≤

(1−m3)V(kl) at time kl0 ∈ [kl , kl+1). It can be deduced from Lemmas 4 and 5 that

‖ xiq(kl0 + 1)− PY(xiq(kl0 + 1)) ‖≤ (1− 1
2 piq T)V(kl) +

1
2 piq T(1−m3)V(kl)

≤ (1−m3hiq(kl0)ciq T)V(kl) � m4V(kl)

where 0 < m4 < 1.
Moreover, it follows that

‖ ṽiq(kl0 + 1)− PY(ṽiq(kl0 + 1)) ‖
≤ τiqc(kl0)τiqa(kl0)V(kl) + m3τiqc(kl0)τiqb(kl0)V(kl)

+
2hiq (kl0)T

piq
∑

j∈Niq ,j �=iq
aiq j(kl0)V(kl)

≤ [1− (1− 1
2 piq hiq(kl0)T)(1−m3)]V(kl)

≤ m4(kl0 + 1)V(kl)
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Then, after recursive calculations, we can obtain ‖ xiq(kl + 1)− PY(xiq(kl + 1)) ‖≤
m4V(kl) and ‖ ṽiq(kl + 1)− PY(ṽiq(kl + 1)) ‖≤ m4V(kl) where 0 < m4 < 1.

Case C. Suppose that there exist 2 agents iq and is that satisfy ‖ xiq(kl0)− PY(xiq(kl0)) ‖≤
m5V(kl) for some constant 0 ≤ m5 < 1 and aisiq > γ for some constant γ > 0 at time
kl0 ∈ [kl , kl+1), which means agent is can receive information from agent iq at kl0. It
follows that

‖ ṽis(kl0 + 1)− PY(ṽis(kl0 + 1)) ‖ ≤ τisc(kl0)V(kl) +
2his (kl0)T

pis

× ∑
j∈Nis ,j �=is

ais j(kl0)V(kl) +
2his (kl0)Tm5

pis
aisiq(kl0)V(kl)

≤ [1− (1−m5)
2his (kl0)T

pis
γ]V(kl) � m6V(kl)

where 0 < m6 < 1.
From pis T < 1, it can be obtained that

0 < 1− (1−m5)
2his(kl0)T

pis
γ < 1− (1−m5)γ2his(kl0)T2 < 1

Hence, by using Lemma 5, it follows that

‖ xis(kl0 + 1) −PY(xis(kl0 + 1)) ‖≤ (1− 1
2 pis T)V(kl) +

1
2 pis T

×[1− (1−m5)
2his (kl0)T

pis
γ]V(kl)

≤ [1− (1−m5)γ2his(kl0)T2]V(kl) = m6V(kl)

where 0 < m6 < 1.

Theorem 1. Based on Assumptions 1–4, applying constrained control input algorithm
(2) to System (1), all followers are driven into the convex hull spanned by leaders, i.e.,

lim
k→+∞

‖ xi(k)− PY(xi(k)) ‖= 0 for i ∈ N f .

Proof of Theorem 1. As shown in Assumption 2, it can always find one or more follower
that can receive information from one of the static leaders directly in every time interval
[kl , kl+1), which guarantees the condition of Case A. That is, ‖ ṽiq(kl0 + 1)− PY(ṽiq(kl0 +
1)) ‖≤ m1V(kl) and ‖ xiq(kl0 + 1)− PY(xiq(kl0 + 1)) ‖≤ m2V(kl) hold, where 0 < m1 < 1
and 0 < m2 < 1; then, consider Case B, it follows that ‖ xiq(k)− PY(xiq(k)) ‖≤ m4V(kl)
and ‖ ṽiq(k)− PY(ṽiq(k)) ‖≤ m4V(kl) works for 0 < m4 < 1 and all k ∈ [kl+1, kl+n+1). It is
clear that agent is �= iq which could get information from agent iq or one of the static leaders
at k ∈ [kl+1, kl+2) exists. Hence, by using the calculation of Cases A, B, and C, it could
be obtained that ‖ ṽis(k)− PY(ṽis(k)) ‖≤ m̃6V(kl) and ‖ xis(k)− PY(xis(k)) ‖≤ m̃6V(kl)
for 0 < m̃6 < 1 and all k ∈ [kl+2, kl+n). Recall that the constants m1, m2, m4, and m̃6 are
only affected by constants ci, T, pi, hi, γ, and topologies in the time interval. Therefore,
it can certainly find a constant 0 < η < 1 satisfying η > mi, where i = 1, 2, 4, 6. Given
all this, V(km+n) < ηnV(km) holds. To summarize all the calculations, we have lim

k→+∞
‖

xi(k)− PY(xi(k)) ‖= lim
k→+∞

V(k) = 0 for i ∈ N f . �

4. A Numerical Example

4.1. Simulation Parament Configuration

Give a multiagent system composed of 6 followers and 4 leaders. The graphs of
switching topologies are shown in Figure 3. The switching step of the system is 0.5 s and
the sequence of the graphs is {Ga, Gb}, {Gb, Gc}, {Gc, Gd}, {Gd, Ga}. The weights of all
edges aij = 0.7. The parameters are ci = 0.3 and pi = 12 for i ∈ N f and the sampling time

is T = 0.1 s. The control input constraint set is Ui = {x| ‖ x− [0,−
√

3/2]
T ‖≤ 0.5} ∪ {x| ‖
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x ‖≤ 1} ∪ {x| ‖ x − [0,
√

3/2]
T ‖≤ 0.5}. The position constraint sets of the followers

are X1 = {x| ‖ x − [0, 1]T ‖≤
√

6} and X2 = {x| ‖ x − [2, 1]T ‖≤
√

6}. For followers,
the initial states of position are [−1.5, 2;−2, 0.5; 0,−1; 3, 3; 4, 1; 3.5, 0]T and the initial states
of velocity states are [1, 1; 1, 0; 1, 1;−1,−1;−1, 0;−1, 1]T . For leaders, the initial states of
position is [0, 2; 2, 2; 2, 0; 0, 0]T .

Figure 3. Switching graphs.

4.2. Simulation Result

The convex hull is spanned by static points, as illustrated in Figure 4. Figure 5 shows
the control input of followers. The containment errors of followers are shown in Figure 6.

Figure 4. Position states xi(k) of all agents.
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Figure 5. Control input ui(k) of followers.

Figure 6. Containment errors of followers.

The switching graphs are illustrated in Figure 3 which satisfy the assumption that
each follower could get information from at least one leader directly or indirectly in every
time interval. In Figure 4, Followers 1, 2, and 3 stay in the left circle which illustrates the
constraint of position, while Followers 4, 5, and 6 stay in the right circle. The convex region
spread by the 4 leaders is the target region. Figure 5 gives the constraints of control input
that is a nonconvex hull. It shows the containment errors of followers by using the distance
form every follower to the target region in Figure 6.

4.3. Simulation Comparison

In this section, we provide some simulation comparison results.
As compared with Figure 5, Figure 7 shows the control input without constraints. It

is clear that our algorithm could be more practical in reality. In Figure 8, we can see that
the algorithm can still achieve containment control when a sudden interference happens,
which means the algorithm has stability to some extent.
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Figure 7. Control input without constraints.

Figure 8. Position states and containment errors with interference.

5. Conclusions

In the above work, containment control for a multiagent system with nonconvex
control input and position constraints was discussed. To solve the problem, a nonlinear
algorithm with projection operator for followers was proposed. After the analysis of the
distance from every follower to the convex hull spanned by static leaders, it is found that
all followers could be driven into the convex hull formed by leaders and the position states
of followers remain in the constraint set. Finally, a numerical example is given to guarantee
the theoretical results.
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Under analysis of the algorithm and simulation results, our work has the
following advantages:

(1) The projection operator we introduced can ensure the control input of every follower
to lie in a nonconvex set which is useful in practice. It has apparent superiority as
compared with other algorithms which can be seen in the simulation.

(2) With the existence of constraints both in control input and position, the system has
strong nonlinearity. By model transformation and introducing new error variable, we
successfully remove the nonlinearity and achieve containment control.

(3) In the process of analysis, we introduce a geometrical method which uses two
similar triangles. This method solves the problem in the proof of effectiveness of
our algorithm.

Of course, there are still many shortcomings in our current work. In future study, we
will take the dynamic situation of leaders into consideration. Meanwhile, we hope to make
better analysis and results against interference, and therefore, the algorithm may get closer
to practical application.
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Abstract: In view of the problem that the leader-follower joint navigation scheme relies too much
on the absolute navigation and positioning accuracy of the leader node, under the conditions of
distributed network-centric warfare (NCW) and to meet the location service accuracy, reliability,
and synergy efficiency of the future integrated communication, navigation (ICN), we built a joint
navigation and positioning system with low Earth orbit (LEO), airborne data link, and inertial
navigation system (INS) as the core; designed a ranging and time-synchronization scheme of the joint
navigation and positioning system; and established a joint navigation and positioning method for
formation and networking based on mutual ranging and velocity measurement information between
aircrafts. Finally, based on the designed LEO constellation, the universality, effectiveness, superiority,
and potential superiority of algorithm are verified, respectively. The simulation results show that the
scheme can meet the requirements of joint location services in challenging environments, and could
be used as a reference scheme for future ICN integration.

Keywords: distributed; joint navigation; ICN; LEO; Integrated Navigation; formation

MSC: 93-10; 94-10

1. Introduction

At present, satellite navigation systems have entered a new era of integration with
multi-source information carriers, such as positioning, navigation, timing, mobile com-
munication, and broadband Internet. Satellite navigation systems have become an im-
portant infrastructure for national defense system and national economic development.
The medium Earth orbit (MEO) constellation navigation systems represented by GPS,
Beidou, Galileo, and GLONASS have been rapidly developed and fully applied in various
fields [1–4], and the well-known absolute navigation positioning, relative navigation, and
collaborative navigation all depend on MEO constellation navigation systems, especially
the currently widely used collaborative navigation.

Collaborative navigation is a key technology for collaborative positioning among
formation flight members and has a wide of applications in the fields of fighter formation
flying, unmanned aerial vehicle (UAV) swarms, and aerial autonomous refueling [5,6].
However, the mission performance and anti-damage capability of a single UAV are limited.
Under the background of modern warfare in network-centric warfare (NCW) [7], the
focus of research is gradually transitioning to UAV swarms. Because UAV swarms have
the advantages of high survival rate, low cost, and high efficiency, joint navigation and
positioning has therefore become one of the key technologies for cluster networking and
cooperative air combat.

In recent years, a variety of co-localization techniques have been developed to improve
the localization performance of adjacent agents; however, it remains challenging to com-
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prehensively study their performance. At present, the research on cooperative navigation
mainly focuses on multi-UAV or unmanned underwater vehicle (UUV) cooperative navi-
gation based on leader-follower or hierarchical [8,9], GNSS/INS cooperative navigation
based on pseudorange differences, and micro-electro-mechanical system-inertial measure-
ment unit (MEMS-IMU)-based cooperative navigation scheme [10] and a collaborative
positioning architecture based on 3D modeling or terrain assistance [11,12]. In view of the
gradual formation of inter-aircraft communication and ranging systems, some scholars
have proposed a network positioning method that utilizes the mutual ranging of each
aircraft in the fleet [13,14]. In addition, based on the adaptive artificial potential function,
ref. [15] presents a cooperative navigation algorithm suitable for navigation and control
uncertainty. As for the guidance, navigation, and control methods of deep space formation,
the corresponding technical reference schemes are also given in references [16–18].

With the development of artificial intelligence (AI), smart cities, and future navigation
systems and to solve the problems of divergence of formation cooperative navigation
accuracy, large amounts of calculation for a fully connected cooperative navigation al-
gorithm and a heavy communication burden have been caused by leader failure in the
traditional single leader-follower UAV cooperative navigation. Therefore, it is necessary
to find another way and give a low-cost and efficient joint navigation and positioning
scheme suitable for the future so as to improve the stability of cluster navigation and the
utilization of navigation information. Finally, the formation positioning error is reduced,
and the problem of cooperative navigation formation is guaranteed. In recent years, with
the emergence of the broadband low Earth orbit (LEO) constellation, a number of typical
LEO constellation systems have gradually been applied in various fields, which provides a
potential opportunity for modern collaborative navigation and positioning.

In this paper, to solve the problem of low-cost and high-efficiency joint navigation and
positioning in the future, we start from the currently “hot” LEO constellation navigation
and propose a distributed formation joint network navigation and positioning reference
solution. In Section 2, firstly, we give the specific distributed joint navigation algorithm
principle and formation node self-positioning process and then give the construction
scheme of the relative navigation information required by the distributed joint navigation
and positioning; next, the platform composition and overall architecture of distributed joint
navigation and positioning are given; and finally, the ranging and time synchronization
problems involved in joint navigation and positioning are given and analyzed. In Section 3,
we establish the specific distributed joint navigation and positioning state model and
measurement model; in Section 4, we configure the designed distributed joint navigation
and positioning parameter model and then carry out simulation experiment verification
and comparative analysis. In the last section, we give our conclusions and point out the
improvement direction of the paper.

2. Distributed Joint Navigation Method

2.1. Principles of Distributed Joint Navigation

By using global navigation satellite system/inertial navigation system (GNSS/INS)
combined navigation algorithms or algorithms such as ultra-wide band (UWB) and visual
integration, we can obtain relatively accurate position, velocity, and attitude information
(typical values are: 0.1 m, 0.01 m/s, and 1× 10−3 deg [19–22]) of the navigation target. This
accurate information can provide a reference source for navigation information in formation
flight. Compared with GNSS signals, inter-machine communication is less susceptible to
interference, is conducive to the cooperation and control of formation flight, and can also
ensure the anti-interference performance of formation and the accuracy of cooperative
navigation and positioning [23].

Considering that the mutual ranging of each aircraft has high requirements on the
time synchronization of the ranging system and the real-time performance of the commu-
nication system, it is therefore difficult to implement. For this reason, we use the LEO
constellation as the navigation framework since, at present, most of the existing broadband
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LEO satellites, such as the satellites of constellations of SpaceX, oneweb, or Telesat, are
essentially communication satellites, and the clock bias between LEO satellite and user
terminal can be eliminated by a bidirectional communication method like full duplex (FD).
Therefore, when solving the absolute position and relative position of the user terminal, we
can use the “duplex” system to eliminate the time synchronization error. In addition, we
briefly introduce the time synchronization problem in joint positioning later in the article.

Based on the LEO navigation constellation for the formation of joint navigation,
we introduce relative navigation information, that is, relative position information and
relative velocity information, which can be obtained by relative sensors, such as laser
rangefinders, Doppler velocimeters, and goniometers, and then, a corresponding relative
navigation algorithm can be constructed to improve the navigation accuracy and fault
tolerance between formations. The members of the formation can obtain high enough
absolute position information through GNSS without relying on a reference node with high
absolute positioning accuracy. In addition, the formation node can realize the sharing of
navigation resources through the data link, and the formation nodes can access and exit at
will. This is the idea of the distributed joint navigation and positioning algorithm that we
built; the advantages of this distributed formation joint positioning scheme are that it is
easy to expand and has high reusability, strong reliability, and high fault tolerance. The
construction of relative position information and relative velocity information of formation
nodes is described below.

2.2. Self-Positioning Process of Distributed Joint Navigation and Positioning and Construction of
Relative Navigation Information

(1) Distributed joint navigation and positioning node self-positioning process [24]:

We call each aircraft in the formation as a formation node, assuming that the formation
has a total of N nodes, PR{xi, yi, zi}(i = 1, 2, . . . , N), which is the actual position of node
i; PI{xIi, yIi, zIi}(i = 1, 2, . . . , N), is the position of the INS solution output. The detailed
schematic diagram is shown in Figure 1.

Figure 1. Schematic diagram of node self-positioning process.

Without the aid of an altimeter, the absolute position information of node i and node j
can be solved by least squares or Kalman filter method through the following equations:⎧⎨⎩ ρi =

√
(xs1 − xi)

2 + (ys1 − yi)
2 + (zs1 − zi)

2

ρINS−i =
√
(xs1 − xIi)

2 + (ys1 − yIi)
2 + (zs1 − zIi)

2
(1)
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⎧⎨⎩ ρj =
√
(xs2 − xj)

2 + (ys2 − yj)
2 + (zs2 − zj)

2

ρINS−j =
√
(xs2 − xIj)

2 + (ys2 − yIj)
2 + (zs2 − zIj)

2
(2)

In the same way, with the aid of an altimeter, on the basis of Equations (1) and (2),
the absolute position information of node i and node j can be obtained by combining the
following equations:{

ρHi = Re + Hi

ρIH−i =
√
(xIi − 0)2 + (yIi − 0)2 + (zIi − 0)2 (3)

{
ρHj = Re + Hj

ρIH−j =
√
(xIj − 0)2 + (yIj − 0)2 + (zIj − 0)2 (4)

where Re is the average earth radius; Hi is the elevation reading of node I; and Hj is the
elevation reading of node j. Other parameters can be interpreted by referring to Figure 1 or
reference [24].

(2) Relative Navigation Information Construction of Distributed Joint Navigation
and Positioning:

The mutual ranging value Dm
ij between node i and node j can be expressed as:

Dm
ij = ‖Dj − Di‖

=
√
(xj − xi)

2 + (yj − yi)
2 + (zj − zi)

2 + δDm
ij

= Dij + δDm
ij

(5)

In the formula, Dij is the real relative position among the formation members i and j;
δDm

ij is the ranging error; and δDm
ij ~N(0, σ2

D_ij), σ2
D_ij is the ranging variance.

The relative angle between node i and node j measured by the node i angle sensor is{
θm1 = θ1 + Δθ1
θm2 = θ2 + Δθ2

(6)

where θm1 and θm2 are the measured values of the pitch and azimuth of node j relative to
node i in the body coordinate system (as shown in Figure 1); θ1 and θ2 represent the real
values of the pitch and azimuth, respectively; Δθ1 and Δθ2 represent the angle measurement
error of the pitch and azimuth, assuming that they meet the Gaussian white-noise process;
that is, Δθ1 ∼ N(0, σ2

θ1
), Δθ2 ∼ N(0, σ2

θ2), σ2
θ1, σ2

θ2 are the corresponding variances.
To correspond to the navigation information, we decompose Dm

ij along the three
directions of the carrier coordinate system:⎧⎪⎨⎪⎩

Dm
ij−x = Dm

ij cos θ1 sin θ2

Dm
ij−y = Dm

ij cos θ1 cos θ2

Dm
ij−z = Dm

ij sin θ1

(7)

Assuming that the relative ranging error and angle error are relatively small, according
to the infinitesimal equivalent replacement principle, there are⎧⎪⎪⎨⎪⎪⎩

cos(Δθ1) ≈ 1
cos(Δθ2) ≈ 1
sin(Δθ1) ≈ θ1
sin(Δθ2) ≈ θ2

(8)
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Ignoring higher-order small quantities, we have⎧⎪⎨⎪⎩
δDm

ij Δθ1 ≈ 0
δDm

ij Δθ2 ≈ 0
Δθ1Δθ2 ≈ 0

(9)

It can be obtained from Equations (1)~(5)⎧⎪⎨⎪⎩
Dm

ij−x = Dij−x − κx1

Dm
ij−y = Dij−y − κy1

Dm
ij−z = Dij−z − κz1

(10)

where, Dij−x, Dij−y, and Dij−z are the components of the real relative position along the
three directions of the body coordinate system; and the specific expressions of κx1, κy1, and
κz1 are as follows:⎧⎪⎨⎪⎩

κx1 = −δDm
ij cos θ1 cos θ2 + Δθ1Dij sin θ1 sin θ2 − Δθ2Dij cos θ1 cos θ2

κy1 = −δDm
ij cos θ1 cos θ2 + Δθ1Dij sin θ1 cos θ2 + Δθ2Dij cos θ1 sin θ2

κz1 = −δDm
ij sin θ1 − Δθ1Dij cos θ1

(11)

Similarly, omitting the redundant derivation process, we can obtain the relative veloc-
ity relationship between node i and node j as follows:⎧⎪⎨⎪⎩

Vm
ij−x = Vij−x − μx1

Vm
ij−y = Vij−y − μy1

Vm
ij−z = Vij−z − μz1

(12)

⎧⎪⎨⎪⎩
μx1 = −δVm

ij cos φ1 cos φ2 + Δφ1Vij sin φ1 sin φ2 − Δφ2Vij cos φ1 cos φ2

μy1 = −δVm
ij cos φ1 cos φ2 + Δφ1Vij sin φ1 cos φ2 + Δφ2Vij cos φ1 sin φ2

μz1 = −δVm
ij sin φ1 − Δφ1Vij cos φ1

(13)

where φ1 and φ2 have similar meanings to θ1 and θ2; and other parameters δVm
ij , Vij−x,

Vij−y, and Vij−z are also similar and are not repeated here.
Thus far, the relative position information and relative velocity information have

been constructed, and they are the state variables for the subsequent construction of joint
navigation and positioning measurement equations.

2.3. Platform Composition and Overall Architecture of Distributed Joint Navigation and
Positioning System

We assume that the joint positioning system of each node consists of a set of airborne
data links, INS and ranging/velocity sensors, and a networking computer. In the joint
positioning process, the local geographic coordinate system is selected as the navigation
system, and the directions of the three axes are north, east, and down, respectively. The
LEO and INS data of this node are transmitted to the airborne data link, and the transmit-
ted LEO and INS data include position information and velocity information as well as
the status word and frame number; the airborne data link has the functions of real-time
ranging and communication; thus, we used laser rangefinders to measure the position
Dm

ij (i = 1, 2, . . . , n, i �= j) between each node in the formation, and at the same time, com-
municate the joint navigation ranging and velocity measurement information to each other
in real time through radio communication equipment. Finally, the ranging information of
all nodes is transmitted to the networking computer for joint positioning calculation. The
node joint positioning system framework is shown in Figure 2.
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Figure 2. Overall architecture of distributed joint network navigation and positioning.

As one of the core devices of the system, the airborne data link is a link device based
on data link technology, which can form point-to-point, point-to-multipoint data links and
mesh data links and generally has real-time ranging and communication functions [25]; a
distributed non-central mesh data link structure is shown in Figure 3.

Figure 3. A distributed mesh data link network structure.

2.4. Ranging and Time Synchronization of Distributed Joint Navigation and Positioning
2.4.1. Ranging Scheme

After the formation aircraft assemble in the designated airspace, according to the time
system of each aircraft, the data link of the fleet is powered on and starts ranging at a
specified time. There are three commonly used radio ranging methods: one-way ranging
method, double-side two-way ranging method, and dual one-way ranging method. The
one-way ranging method requires expensive high-precision crystal oscillators [26], and
the double-side two-way ranging equipment is complicated, and it is difficult to measure
the distance of multiple machines at the same time. Therefore, the co-positioning system
adopts the t dual one-way ranging method [27]. The principle is as follows:

The data link device (hereinafter referred to as device i) equipped with node i transmits
one-way ranging signals and simultaneously receives one-way ranging signals from other
devices. Taking the mutual ranging between devices i and j as an example, let Δτij be
the time synchronization error between the clocks of devices i and j; tij is the radio signal
propagation time between devices i and j (usually on the microsecond scale [28]); t1 is
the signal propagation time measured by device i; and t2 is the signal propagation time
measured by device j. Then,

t1 = tij + Δτij (14)
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t2 = tij − Δτij (15)

During the ranging process, the working mechanisms of devices i and j are exactly
the same. Taking device i as an example: device i measures t1, and at the same time, the
receiving device j transmits t2; then, it can be calculated from Equations (14) and (15):

tij =
(t1 + t2)

2
(16)

Δτij =
(t1 − t2)

2
(17)

The ranging values for devices i and j are

Dm
ij = c× tij (18)

where c is the velocity of light.
It can be seen that the dual one-way ranging method can calculate the position between

nodes, and at the same time, it can also calculate the time synchronization error between
the clocks (ns magnitude [29]) of the airborne data link equipment, which is conducive to
the simultaneous ranging of multiple machines.

2.4.2. Time Synchronization

There are the following three time synchronization problems in the joint positioning
process of formation node networking:

(1) Time synchronization between the onboard data link clocks of each node:

To achieve synchronous mutual ranging, the airborne data link should have a uni-
fied time scale, but each airborne data link cannot achieve precise time synchronization
when they are turned on, so there is a time bias between their time scales. In the dual
one-way ranging method, the time bias between the clocks can be calculated according to
Equation (17). With the clock of an airborne data link device as a reference, time synchro-
nization can be achieved by adjusting the clocks of all devices.

(2) Time synchronization between the INS of node i and the airborne data link device:

Since the synchronous ranging moment of the airborne data link i is not necessarily the
measurement moment of the INS-i, there is a time bias Δti between the airborne data link
device i and the INS-i. Δti is a random constant. If the INS has 100 Hz output, assuming
that the aircraft velocity is 340 m/s, then the position error caused by Δti within ±1 ms
is usually within ±5 m, and this value is negligibly relative to the position error of INS.
Therefore, in the process of joint positioning calculation, it can be considered that the clocks
between the airborne data link and each INS are completely synchronized.

(3) Time synchronization between nodes (including INS) and satellites:

As mentioned in Section 2.1, since we use the LEO constellation as the navigation
framework, and the essence of the LEO satellites is communication satellite, the clock bias
between the LEO constellation and the user terminal can be eliminated in a way similar to
full duplex. When solving the absolute position and relative position of the user terminal,
we can eliminate the time synchronization error by means of the “duplex” system, and we
will not consider the variable of clock biases.

3. Establishment of Distributed Joint Navigation and Positioning Model

3.1. State Model

Without loss of generality, we only take the two formation nodes, Node 1 and Node 2,
as the study objects; select the position error and velocity error as state variables; supple-
ment the Markov noises of gyroscope and accelerometer as state variables; and establish
the following system state equation [30]:
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.
XJP = ΓXJP + ΦWJP (19)

XJP = [ϕN ϕE ϕD δVN δVE δVD δλ δL δh
ξgx ξgy ξgz ξax ξay ξaz]T

(20)

where ϕ = [ ϕN ϕE ϕD ] is the misalignment angle of the platform between the plat-
form coordinate system and the navigation coordinate system in the N, E, and D directions;
δV = [δVN δVE δVD]

T is the three-dimensional velocity error; δP =
[

δλ δL δh
]

is
the three-dimensional position error, and ξg =

[
ξgx ξgy ξgz

]
is the first-order Markov

drift of the gyroscope; ξa =
[

ξax ξay ξaz
]

is the first-order Markov drift of the ac-
celerometer. Γ is a 15 × 15-dimensional matrix, XJP is an 15 × 1-dimensional matrix, Φ is a
15 × 6-dimensional matrix, and WJP is a 6 × 1-dimensional matrix [31,32].

3.2. Measurement Model

Here, we assume that the relative position information and relative velocity informa-
tion (which can be obtained by angle measurement and distance measurement) can be
measured between the aircraft, and the relative position and relative velocity measured by
the distance measurement and velocity measurement sensors are converted from the body
coordinate system to the navigation coordinate system by

Dn
12 = Cn

b (Db
12 + δDb

12) (21)

Vn
12 = Cn

b (V
b
12 + δVb

12) (22)

where δDb
12 and δVb

12 are distance measurement and velocity measurement errors, assuming
that they are all Gaussian white noise with mean zero and variance σ2

Db_12 and σ2
Vb_12,

respectively; Cn
b is the transformation matrix from the carrier coordinate system to the

navigation coordinate system, and its expression is as follows [33]:

Cn
b =

⎡⎣ cos α cos β − cos γ sin β + sin γ cos β sin α sin γ sin β + cos γ cos β sin α
cos α sin β cos γ sin β + sin γ sin β sin α sin γ cos β + cos γ sin β sin α
− sin α cos α sin γ cos α cos γ

⎤⎦ (23)

where α, β, and γ represent the pitch, yaw, and roll of Node 1; D12 and V12 are the
relative position and relative velocity between Node 1 and Node 2, and the relationship is
as follows:

Dn
1 − Dn

2 = Dn
12 (24)

Vn
1 −Vn

2 = Vn
12 (25)

Since a high-precision navigation solution can be obtained between Node 1 and Node 2
by means of pseudorange-pseudorange rate [24], it can be considered that the navigation
solution is approximately equal to their real values. Then, transmit their position and
velocity solutions to each other by means of inter-node communication. At the same time,
we assume that Node 1 and Node 2 are equipped with an inertial measurement unit (IMU)
with a good index so that the accumulated error of the measurement is relatively slow;
therefore, it can be considered C̃n

b ≈ Cn
b . Taking Node 1 as an example, the relationship

between the relative navigation information, that is, the position and velocity deviation
between the nodes, can be written as follows:

�
D

n

1 −D̃n
2 − Dn

12

= Mn
e (

�
D

e

1 − D̃e
2)− C̃n

e (Db
12 + δDb

12)

= Mn
e (

�
D

e

1 −
�
D

e

2 − δD2)− C̃n
e (Db

12 + δDb
12)

(26)
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�
V

n

1 −Ṽn
2 −Vn

12

=
�
V

n

1 − Ṽn
2 − C̃n

b (V
b
12 + δVb

12)

=
�
V

n

1 −Vn
2 − δV2 − C̃n

b (V
b
12 + δVb

12)

(27)

where
�
D

n

1 and
�
V

n

1 are the position and velocity parameters of Node 1 in the Earth-centered
Earth-fixed (ECEF) coordinate system, and D̃n

2 is the position parameter to be corrected
of Node 2; in the case of a short baseline, the influence of the Earth’s curve radian can be
ignored, and it can be approximated by

Db
12 = Cn

b Mn
e (De

1 − De
2) (28)

where Mn
e is the transformation matrix of longitude-latitude-high to north-east-down; if

the radius of curvature of the coordinate system where Node 1 and Node 2 are located is
RMer, the radius of curvature of the Prime Vertical is RPri, the latitude is L, and the height is
h. Then, the form of Mn

e is as follows [34]:

Mn
e =

⎡⎣ RMer + h
(RPri + h) cos L

−1

⎤⎦ (29)

According to Formulas (26) and (27), ZD =
�
D

n

1 − D̃n
2 − Dn

12 and VD =
�
V

n

1 − Ṽn
2 −Vn

12
are selected as the observed variables, and the Kalman filter observation equation is
constructed as follows: {

ZD = HDXJP + σD
ZV = HV XJP + σV

(30)

where the specific expressions of HD and HV are as{
HD =

[
O3×3 −I3×3 O3×3 O3×3 O3×3

]
HV =

[
O3×3 O3×3 −Mn

e O3×3 O3×3
] (31)

where σD and σV are the ranging and velocity noise after coupling σDb_12 and σVb_12,
which we model as multiplicative noise with the modulo length of the position and
velocity vectors.

4. Simulation Verification

4.1. Simulation Parameter Configuration

We take two distributed nodes as an example: the initial baseline interval between
them is 10 km, and the height is also 10 km. The reference formation aircraft is located
in the airspace assembly trajectory shown in Figure 4, the flight velocity is 200 m/s, the
corresponding sensor data are generated to verify the effectiveness of the established
collaborative navigation algorithm. The reference aircraft, LEO constellation, and IMU
indicators are shown in Tables 1 and 2. Since the Walker constellation has the same orbital
height and uniformly distributed inclined orbital plane, it is a very suitable design scheme
for the LEO constellation, and most broadband LEO constellations are deployed with
this design scheme [35]. Secondly, considering the coverage characteristics in challenging
environments, we deliberately set the orbital inclination to a high orbital inclination (99 deg,
see Table 2) to cover the high latitudes of the Earth and the north and south poles.
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Figure 4. Reference airspace assembly trajectory of formation aircraft.

Table 1. Reference aircraft and navigation sensor parameters.

Parameter Node 1 Node 2

Gyroscope random walk (deg/
√

h) 0.0005 0.0005
Accelerometer random walk (m/s/

√
h) 0.003 0.003

Gyroscope first-order Markov noise RMS (deg/
√

h) 0.002 0.002
Accelerometer first-order Markov noise RMS (μg0) 10 10

Position noise (m) 0.1 0.1
Velocity noise (m/s) 0.01 0.01

Data link ranging error (m) 10 10
Flight velocity (m/s) 200 200

Flight duration (s) 420 420

Table 2. LEO constellation parameters.

Parameter Value

Constellation configuration type Walker [36]
Track height (km) 1250

Orbital inclination (deg) 99
Number of orbital faces 20

Number of satellites per orbit (total/orbit) 50
Number of satellites per orbit 1000

4.2. Simulation Results

According to the parameter settings in Section 4.1, we divide the algorithm into two
scenarios. The first is a joint navigation and positioning scenario without an altimeter
assistance, and the other is a joint navigation and positioning scenario assisted by an
altimeter. Then, the two scenarios are simulated and analyzed separately. Here, we only
take Node 1 and Node 2 as examples for simulation, where NPE and NVE and |alt, O
represent north position error, north velocity error, altimeter error (symbol “|” means
under the condition that the altimeter error is x m), and original trajectory, respectively.
The meaning of other parameters refers to these expressions.

4.2.1. Joint Navigation and Positioning Scenarios without an Altimeter Assistance

In the absence of an altimeter assistance, the simulation results are shown in Figure 5,
in which we compare and verify the INS individual navigation and positioning results
corresponding to Node 1 and Node 2 to verify the convergence effect of the algorithm.
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Figure 5. Positioning error curve of joint navigation without an altimeter assistance. (a) Position error
curve, (b) velocity error curve, (c) 3D trajectory error curve, and (d) 3D projection error curve.

From Figure 5, we can see that in the scenario without an altimeter assistance, the
position error of Node 1 and Node 2 does not fluctuate too much, and both converge to
zero, and as the velocity error is also very small, it also shows a convergence trend. For
the INS autonomous joint navigation scheme, we found that the pure INS autonomous
joint navigation error diverges faster, and the error is relatively large. The above results
are also fully reflected on the final 3D trajectory and projected trajectory error curves, and
the results are consistent; this result can be seen in Figure 5c,d. It can be clearly seen from
Figure 5 that the navigation and positioning results of the INS are significantly larger than
the navigation and positioning results of the corresponding nodes. These results fully show
that the joint navigation and positioning algorithm without an altimeter can effectively
suppress the divergence of pure INS navigation and positioning. To facilitate quantitative
analysis, Tables 3–6 shows the corresponding statistical results of indicators.

Table 3. Statistics of pure INS navigation positioning position error.

Indicators Node 1 Node 2

N E D N E D

Mean (m) −130.71 97.47 −91.31 −147.07 −154.98 −91.26
STD (m) 119.91 87.73 86.10 124.78 119.79 86.05
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Table 4. Statistics of joint navigation and positioning position error without an altimeter.

Indicators Node 1 Node 2

N E D N E D

Mean (m) −3.23 6.50 −13.8 −8.30 5.11 −16.98
STD (m) 6.80 5.89 14.11 5.02 7.55 11.79

Table 5. Statistics of pure INS navigation position positioning velocity error.

Indicators Node 1 Node 2

N E D N E D

Mean (m/s) −1.02 0.51 −0.69 −1.03 0.49 −0.69
STD (m/s) 0.63 0.43 0.45 0.63 0.41 0.45

Table 6. Statistics of joint navigation positioning velocity error without an altimeter.

Indicators Node 1 Node 2

N E D N E D

Mean (m/s) 0.01 0.04 −0.01 −0.02 −0.09 −0.06
STD (m/s) 0.22 0.19 0.20 0.21 0.39 0.37

As can be seen from the statistical results in Tables 3–6:

(1) For the position error curve, the position errors of Node 1 and Node 2 in the north
(N), east (E), and down (D) directions are not very different, and the mean error is
in the order of 1 m in both the N and E directions, while the error in the D direction
is relatively large, reaching the order of 10 m, mainly because the GNSS elevation
accuracy makes it difficult to distinguish the height of the moving node [32], which
results in a larger error compared to the N and E directions. Correspondingly, the
position error accuracy (STD) of two nodes has a similar behavior. In addition, the
mean value of the pure INS autonomous navigation error of the two nodes is basically
greater than 100 m, and the accuracy is also higher than 100 m. It can be seen that even
without the aid of an altimeter, the algorithm can significantly suppress the problem
of pure INS position divergence.

(2) For the velocity error curve, the velocity errors of Node 1 and Node 2 in the N, E, and
D directions are also not much different. The accuracy is in the order of 0.1 m/s; in
comparison, the mean of the respective pure INS navigation errors of the two nodes
is about 1 m/s, and the accuracy is also close to 1 m/s. Similarly, the algorithm can
also obviously suppress the problem of pure INS navigation velocity divergence.

It can be seen from the above analysis that without the aid of an altimeter, the joint
navigation and positioning algorithm can significantly suppress the divergence of the pure
INS and greatly improve the accuracy of navigation and positioning, meeting the needs of
most joint navigation and positioning services.

4.2.2. Altimeter-Assisted Joint Navigation and Positioning Scenarios

In the added altimeter scenario, we set the auxiliary altimeter error to 0 m (no error),
10 m, and 30 m for the simulations, and the results are shown in Figure 6. In addition, as a
comparison, we simulated without an altimeter auxiliary scene together, and the results
are also added as a comparative analysis, where alt = x m means that the altimeter error is
x m (x = 0, 10, 30).
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Figure 6. Altimeter-assisted joint navigation positioning error curve. (a) Position error curve,
(b) velocity error curve, (c) 3D trajectory error curve, and (d) 3D projection error curve.

It can be seen from the simulation results in Figure 6 that the addition of an altimeter,
especially the use of an unbiased altimeter, can further improve the performance of joint
navigation and positioning; in particular, the improvement effect in the D direction is the
best. In addition, we can also see that, as the altimeter error gradually increases from 0 m,
10 m, to 30 m, the corresponding joint navigation positioning error also gradually increases;
the final convergence result depends on the fixed altimeter bias we used, and it is expected
that the larger the fixed altimeter bias, the larger the final convergence result. In addition,
it can be observed that with the help of the altimeter, the relative elevation information
of the moving nodes can be measured, significantly improving the accuracy of the joint
positioning system in the elevation direction. Similarly, the improvement of elevation
also depends on the error accuracy of the altimeter used: the higher the accuracy of the
altimeter, the more obvious the improvement effect. To carry out quantitative analysis, we
also obtained statistics on the corresponding statistical indicators, and the specific error
statistics are shown in Tables 7 and 8.

Table 7. Statistics of joint navigation and positioning position error in the altimeter presence scenario.

Node Alt (m) Mean (m) STD (m)

N E D N E D

0 −1.45 3.49 −0.41 5.73 7.22 0.64

Node 1 10 −1.74 10.58 9.37 8.59 11.83 1.15

30 −2.33 24.78 28.96 15.56 24.37 2.98

0 −4.54 −4.39 −0.39 15.54 19.47 0.76

Node 2 10 −3.46 0.32 9.40 16.11 21.08 1.23

30 −1.29 9.75 28.99 16.17 27.90 3.02
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Table 8. Statistics of joint navigation positioning velocity error in the altimeter presence scenario.

Node Alt (m) Mean (m/s) STD (m/s)

N E D N E D

0 −0.008 −0.42 −0.01 0.11 0.21 0.03

Node 1 10 −0.11 −0.53 −0.01 0.11 0.22 0.03

30 −0.16 −0.59 −0.02 0.16 0.24 0.02

0 −0.09 −1.05 −0.02 0.28 0.45 0.03

Node 2 10 −0.10 −1.00 −0.02 0.29 0.45 0.04

30 −0.12 −0.91 −0.02 0.30 0.46 0.04

From the statistics results of Tables 7 and 8, it can be seen that the addition of an
altimeter can significantly improve the accuracy of joint navigation and positioning.

(1) For the position error curve, with the assistance of an unbiased altimeter, the mean
errors of Node 1 and Node 2 in the N and E directions are also in the order of 1 m,
and compared with the altimeter-free scene, the error was significantly improved,
especially in the D direction, which has an error of the order of 0.1 m showing relative
improvement of two orders of magnitude. For accuracy, the N and E directions were
also significantly improved, and the D direction accuracy also improved by two orders
of magnitude. When the altimeter deviation is 10 m and 30 m, the mean values of
the position errors of Node 1 and Node 2 in the N, E, and D directions also gradually
increase, and the accuracy also gradually deteriorates. However, we deduct the fixed
error accuracy, and it can be found that the corresponding position accuracy is also
very impressive.

(2) For the velocity error curve, compared with the scene without altitude assistance,
although the addition of the altimeter does not significantly improve the velocity
error in the N and E directions, the velocity error improvement in the D direction is
very significant. The accuracy is improved by one order of magnitude. In addition, as
the altimeter deviation increases, the corresponding joint navigation and positioning
velocity indicators also gradually deteriorate. Similarly, when we deduct the fixed
deviation, we can also obtain a good joint navigation and positioning effect, which is
also in line with expectations.

We can see from the above analysis results that the addition of an altimeter can
significantly improve the performance of joint navigation and positioning, especially in
the D direction. Thus, it can be seen that the algorithm effect can be further improved
by combining an altimeter, which can meet the vast majority of joint location service
requirements in challenging environments.

4.2.3. Influence of Formation Baseline on Joint Navigation and Positioning Performance

To explore the impact of different formation node baseline intervals on joint navigation
and positioning performance, in this subsection, we study the effect of joint navigation and
positioning of nodes at different baseline intervals. To this end, we set the formation node
baseline interval as 10 m, 100 m, 500 m, 1 km, 5 km, and 10 km and then use an unbiased
altimeter to conduct auxiliary navigation analysis. The simulation results are shown in
Figure 7, where B represents the baseline interval.
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Figure 7. Joint navigation and positioning error curves at different baseline intervals. (a) Position
travel curve, (b) velocity error curve, (c) 3D trajectory error curve, and (d) 3D projection error curve.

It can be seen from the simulation results in Figure 7 that with the increase of baseline
interval, the fluctuation of joint navigation positioning position error and velocity error
also increases gradually, but overall:

(1) For the N direction error: regardless of Node 1 or Node 2, the position error finally
converges between 0 m~10 m, the maximum fluctuation is about 50 m, the velocity
error almost converges to zero, and the maximum fluctuation is not more than 1 m/s;

(2) For the E direction error: the position error finally converges between 0 m and 20 m,
and the maximum fluctuation is about 50 m. For the velocity error, the error of
node 1 and Node 2 increases with the increase of the baseline interval, and the final
convergence error also increased, respectively, but ultimately did not exceed 1 m/s,
and the maximum fluctuation did not exceed 2 m/s;

(3) For the D direction error: whether it is the position error or the velocity error, the
final result converges to zero, and the maximum fluctuation is less than 3 m and
0.2 m/s, respectively.

For different baseline interval errors, we can select the appropriate formation flight
application according to the size range of the error, specifically:

(1) When the baseline interval is between 10 m and 1 km, the error is relatively small,
which is very suitable for small UAVs formation flying situation;

(2) When the baseline interval increases to more than 1 km, at this time, the error is
relatively large, but the final error curves all have zero-crossing points, which means
that the error is convergent, and this situation is suitable for the formation of large-
and medium-sized UAVs.

The above analysis results show that our proposed algorithm is suitable even for rela-
tively large baseline intervals, the maximum joint navigation positioning position error fluc-
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tuation does not exceed 50 m, and the maximum velocity error fluctuation does not exceed
2 m/s, which is sufficiently accurate for most joint navigation and positioning requirements.

5. Algorithm Comparison

In this section, to compare the universality, effectiveness, superiority, and potential
superiority of the algorithm horizontally and vertically, we start from three perspectives,
that is, using the current LEO constellations with relatively complete deployments, such
as SpaceX, OneWeb, and Telesat, to compare and verify the universality and effectiveness
of the algorithm horizontally. The vertical comparison between the proposed algorithm
and the current four GNSS navigation systems is carried out to verify the superiority of
the algorithm. Furthermore, our proposed algorithm is compared with existing advanced
algorithms to verify the advantages and potential superiority of our algorithm.

5.1. Comparison of Different LEO Systems

As a horizontal comparison, we use an unbiased altimeter for assistance. The simula-
tion results are shown in Figure 8 where, as a reference, we use the self-designed algorithm
as a comparison to simulate together. The specific parameters of the three constellations
SpaceX, OneWeb, and Telesat can be found in reference [37].

Figure 8. Comparison curve of joint navigation and positioning errors for different LEO systems.
(a) Position error curve, (b) velocity error curve, (c) 3D trajectory error curve, and (d) 3D projection
error curve.

It can be found from the simulation results in Figure 8 that, on the whole, the three
systems give good joint navigation and positioning results although the errors of each
system in individual directions may have some fluctuations, which mainly depends on
the orbital parameters of each constellation, such as the satellite orbit height, inclination,
the distribution of satellites, and the number of satellites in each orbit. However, the final
position error and velocity error of each LEO system are convergent, which means that the
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algorithm we propose is universal, suitable for present most LEO constellations, and can be
used as a reference scheme for joint navigation and positioning existing LEO systems and
especially as a reference for future integrated communication, navigation (ICN) technology
navigation, and positioning technology plans.

5.2. Comparison with MEO Constellation Algorithm

As a vertical comparison, we also used an unbiased altimeter for assistance, and
the simulation results are shown in Figure 9. Similarly, as a reference, we simulated the
self-designed algorithms as a comparison. The specific parameters of the four major MEO
systems BDS, GPS, Galileo, and GLONSS can be found in reference [38].

Figure 9. Comparison results with the four major GNSSs: GPS, GLONASS, Galileo, and BDS.
(a) Position travel curve, (b) velocity error curve, (c) 3D trajectory error curve, and (d) 3D projection
error curve.

Compared with the simulation results of Figure 9, our proposed algorithm has greater
accuracy advantages in both the position error and the velocity error than the traditional
MEO constellation system, especially in the N and E directions. In addition, similar
conclusions can be drawn on the final trajectory error curve. This shows that for the future
ICN navigation and positioning scheme, MEO-based constellations are not a well-fitting
alternative because the main reason for the larger navigation and positioning error of the
MEO constellation is that the satellite orbit height is higher than the LEO constellation at
the same observation time; as a result, GNSS signal propagation experiences more paths
than LEO constellation, and it suffers more serious interference. In addition, if the orbit
height is too high, the loss of GNSS signal power will be greater, and the propagation
delay will also increase. Therefore, the LEO constellation can be regarded as a considerable
option for future ICN technology.
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5.3. Comparison with Other Algorithms

To verify the superiority and potential superiority of our proposed algorithm, we
compare it with the existing advanced navigation and positioning algorithms. Here, we
only take the indicators of Node 1 as an example for comparison. The detailed comparison
indicators is shown in Figures 10 and 11. In addition, we transformed the ENU coordinate
system and the NED coordinate system correspondingly; among them, N/A means that no
specific data are given in the original papers.

Figure 10. Histogram of position error statistics comparison. (a) Huang [39], (b) Hsu [40], (c) Ye [24],
and (d) this paper.

From the statistical histogram of position error in Figure 10, our proposed algorithm
has certain advantages in terms of mean over algorithm [40] and algorithm [24]; in terms of
accuracy, our algorithm is comparable to algorithm [40], but the algorithm [40] fluctuates
greatly in the D direction, and our algorithm is just the opposite. In addition, our algorithm
also has certain advantages compared with the algorithm [39] and the algorithm [24], and
especially compared with the algorithm [39], the accuracy is improved by one order of
magnitude.

From the velocity error statistical histogram in Figure 11, the algorithm we propose
has a great advantage over the algorithm [40] in terms of mean, and the performance
is improved by one order of magnitude; compared with algorithm [24], although the
standard deviation of the algorithm [24] is relatively good in the D direction, our proposed
algorithm also has certain advantages in the mean and standard deviation, especially in
the N direction. From the point of view of accuracy, our proposed algorithm has great
advantages compared with algorithm [41], especially in the D direction, as the performance
is improved by 95.38%. Compared with algorithm [40] and algorithm [24], the performance
is roughly the same, but the mean error of our algorithm is smaller, which means that the
error fluctuation is smaller, and the algorithm is relatively more stable.

From the above comparison results, our algorithm has certain advantages or potential
advantages compared with some advanced transposition positioning algorithms [24,39–41].
For localization performance, in terms of mean and standard deviation, our algorithm is
simple in integration and easy to implement in engineering, thereby reducing the corre-
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sponding practical application cost. More importantly, our algorithm is oriented to future
ICN technology, so it has potentially important application value.

Figure 11. Histogram of velocity error statistics comparison. (a) Wei [41], (b) Hsu [40], (c) Ye [24],
and (d) this paper.

6. Conclusions

In this paper, we take the distributed joint navigation between formation aircraft as
the research background and propose a bidirectional distributed joint correction navigation
and positioning model that uses relative position information and velocity information to
correct the navigation state among formation members. Through the set LEO constellation,
the experimental scenario is divided into two scenarios without an altimeter assistance and
with an altimeter assistance, with the simulation experiment verifying the effectiveness
of the model in a challenging environment. Then, the two scenarios are compared and
analyzed, and from the horizontal comparison of the existing main LEO constellations, the
universality and effectiveness of the algorithm are strictly verified, and the MEO constella-
tions are compared vertically to verify the superiority of the algorithm. Finally, compared
with the existing advanced navigation and positioning algorithms, the superiority and
potential superiority of the algorithm are verified.

The experiments show the following:

(1) Compared with the traditional leader-fellow collaborative navigation structure that
relies on the leader node, our scheme is a distributed collaborative navigation and
positioning scheme, which, without the distinction between leader and follower, is a
flexible formation collaboration scheme; when performing special tasks, it will gain
huge formation reconfiguration advantages;

(2) Even without the aid of an altimeter, our algorithm can well suppress the divergence
of the pure INS collaborative navigation scheme. With the aid of an altimeter, the
collaborative navigation performance is further improved since the altimeter has
the advantage of low cost compared with other expensive sensors; thus, it has great
practical value;
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(3) Even if the node baseline interval gradually increases, our algorithm position can
converge to zero with or without altimeter assistance, which has a certain robust-
ness and can meet the needs of joint navigation and positioning location services in
challenging environments. It is suitable for formation flying and other application
scenarios that have high requirements for the accuracy and robustness of moving
target cooperative navigation.

In addition, due to our use of a wideband LEO constellation design, with some inherent
advantages of the LEO constellation, the accuracy and performance of the algorithm can be
further improved compared with the MEO constellation navigation algorithm and some
existing advanced schemes. Therefore, our algorithm can be regarded as an ICN reference
scheme for future joint navigation and positioning, and the research results can provide
reference value for the application of basic joint navigation technology and the application
in practical engineering.

Of course, with the increase of the baseline interval, our joint navigation and posi-
tioning accuracy is not high enough, and the velocity cannot fully converge in individual
directions. At the same time, the clock bias elimination technology in this paper needs
to be verified through specific engineering experiments. Finally, it is necessary to further
study the basic theory of joint navigation and positioning technology, which can provide
theoretical support for solving the above problems.
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