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Abstract: The aim of this paper was to design a repeated drug administration strategy to reach and
maintain the requested drug concentration in the body. Conservative designs require an exact knowl-
edge of pharmacokinetic parameters, which is considered an unrealistic demand. The problem is
usually resolved using the trial-and-error open-loop approach; yet, this can be considered insufficient
due to the parametric uncertainties as the dosing strategy may induce an undesired behavior of the
drug concentrations. Therefore, the presented approach is rather based on the paradigms of system
and control theory. An algorithm was designed that computes the required doses to be administered
based on the blood samples. Since repeated drug dosing is essentially a discrete time process, the
entire design considers the discrete time domain. We have also presented the idea of applying this
methodology for the stabilization of an unstable model, for instance, a model of tumor growth.
The simulation experiments demonstrated that all variants of the proposed control algorithm can
reach and maintain the desired drug concentration robustly, i.e., despite the presence of parametric
uncertainties, in a way that is superior to that of the traditional open-loop approach. It was shown
that the closed-loop control with the integral controller and stabilizing state feedback is robust against
large parametric uncertainties.

Keywords: pharmacokinetics; compartmental models; closed loop control; repeated drug administra-
tion; robust control

1. Introduction

The processes running in biological systems, such as in a cell, an organ, or the whole
living organism, are very complex, and their dynamics depend on the actual internal
states of the system and their interactions; hence, they belong to the category of dynamic
systems. In a cell, chains of biochemical reactions typically occur, which can be analyzed
and modelled using discrete automata or Petri nets. The main approaches to describe the
processes running in the body include the ordinary or partial differential equations, which
are abstract mathematical models of the processes. Therefore, the mathematical modeling
of the processes in bioscience plays a decisive role in understanding their characteristics
and behaviors, which are often hidden. The modelling and control of these processes are
based on theoretical results of biocybernetics.

The transport of the drug throughout the body is influenced by a chain of mutually
connected and often not fully understood macro and micro processes. Therefore, we usually
have significant variability in the choice of modelling structures. A typical uncertainty
results from choosing an inadequate structure, due to which some important subprocesses
are neglected. This represents the case of the so-called unmodelled dynamics [1].

Another source of uncertainty arises from inaccurate information about the values of
model parameters. These include, for instance, the rate constants of the drug absorption
from the site of administration to the blood circulation, and the rates of the drug exchange
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between the body compartments, among others. The mechanism described above is usually
referred to as a parametric uncertainty.

The presence of uncertainties leads to their incorporation into the model and in the
control design. For that reason, controlled drug delivery, which is required to ensure an
optimal therapeutic effect, cannot be resolved solely via experimental sciences. Simply
said, the uncertain of in vitro and/or in vivo models naturally calls for an application of
cybernetic (system-based) methodologies.

The novelty of the solution presented in this paper is the design of the robust discrete
time feedback control system, which can ensure that the drug concentration follows the
desired steady state despite the uncertain parameters of the system.

Such applications of system-based approaches to solve problems related to drug
kinetics can be found in [2,3]. Additionally, other relevant results have been presented in
our recent work [4,5]. In [4], the influence of the surfactant monolaurin of sucrose (MLS) on
the rate of absorption was analyzed after an instantaneous per os (peroral) administration
to rats of sulfathiazole in the form of suspension. From the in vivo samples of the drug
concentrations, the pharmacokinetic model was identified, which was later used to predict
the absorption rate constant. The questions related to the role of auxiliary substances in
pharmaceutical technology can be found in [6,7].

Based on the available sources and the experiments performed by the authors, the
magnitudes of the model uncertainties were assessed and incorporated into the model.
Therefore, following the results of [4], in [5], the state-bounding observer was designed
for the uncertain model. The observer predicted the guaranteed upper and lower limits
of possible drug concentrations in the body compartments, particularly those that are
inaccessible for the collection of drug samples. Due to the observer, it was sufficient to take
blood samples only from the tissue compartment, and the observer predicted whether the
drug concentrations in the other compartments would violate the therapeutic range. The
functionality of the observer was demonstrated considering three different models with
physiology-based structures. The general theory of state observers can be found in [8–12].

This paper can be considered an extension of the previous results. It attempts to
solve the problem of determining the sizes of individual doses that would be sufficiently
flexible with respect to the specific requirements of therapy. The requirements also include
adaptation of the dosing protocol to the required rate of change in the drug concentration
in the body to a desired level and to subsequently maintain it at this level despite uncertain
and possibly unstable system dynamics.

There exist various methods to evaluate the influences of the deterministic/random
factors and to assess the suitability of the modeling structure for a particular purpose. To
mention a few, there are population-based pharmacokinetic models (popPK), linear and
nonlinear mixed-effect models (NLME), and physiology-based models (PBM). These also
involve methods for determining the suitability of a model, such as Akaike’s or Schwarz’s
information criteria (AIC or SC) [13].

2. Materials and Methods

The in vivo experiment is described in detail in [4,14]. In a nutshell, the experiment
was carried out as follows: In the in vivo experiment, 36 rats with a weight of 200 g
were considered, which were divided into six groups. Water suspensions containing 5%
sulfathiazole were prepared, and at the beginning, a dose of 0.5 mL of suspension per 100 g
was administered to all 36 rats. After six hours, using the heparinized injection syringe
with cannula, a 2 mL sample of blood was withdrawn from the first group of six animals.
The sampling was repeated every hour, but each time for another six animals because the
previous group of rats was already dead. Hence, the second group was sampled seven
hours after administration, the third group was sampled after eight hours, etc. Then, the
mean values of the six samples obtained from each of the six groups were calculated.

2
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In this way, the time dependence of the drug concentrations [mg/mL] versus time
[h] was obtained as documented in Table 1. The choice of suspension as a dosage form
resulted from the poor solubility of sulfathiazole in water.

Table 1. In vivo concentrations of the drug.

t [h] 0 1 2 3 4 5 6

c [mg/mL] 0 0.0715 0.0855 0.0780 0.0735 0.0490 0.0535

While the value of administered dose is always exactly known, the state variables
(concentrations in the compartments) are uncertain to a non-negligible extent due to uncer-
tain parameters. Therefore, the problem calls for a system-based methodology, in particular
robust control. To this end, a generalized compartmental model with the parameter Δ
determining the uncertainty of the parameters is synthesized and the process is robustly
stabilized using the specially designed state feedback.

3. Results

3.1. Continuous Time Model

The method used in this paper is based on the compartmental model shown in Figure 1.
The model was parametrically identified using the least squares method.

 

central comp.

tissue comp.

Figure 1. The considered three-compartment pharmacokinetic model showing the drug transport
mechanisms, state variables, and model parameters. Variables x1, x2, x3 are the drug concentrations
in the gastrointestinal tract (abbr. GIT), central compartment, and tissue compartment, respectively,
while u and y are the input and output of the model, respectively.

Let us recall that the general form of the linear system with single input and single
output (SISO) is described by the following system of n first-order differential equations:

.
x = Ax(t) + bu(t),

y(t) = cTx(t),
(1)

where x(t) ∈ R
n×1, b ∈ R

n×1, and c ∈ R
n×1 are the state, control, and observation vectors,

respectively, and A ∈ R
n×n is the system matrix, while y(t) ∈ R and u(t) ∈ R are the

output and input of the system, respectively. Generally, if A is a Metzler matrix and vector
b ≥ 0, system (1) belongs to the category of linear positive systems. In addition to that, if
A is Metzler and Hurwitz, then system (1) is positive and stable. Specifically, if a positive
and stable system respects the rule of mass balance, it is called compartmental [4]. Note
that linear and nonlinear compartmental systems are essential for describing the transport
of an administered drug throughout the body. In particular, the three-compartment system
shown in Figure 1 will be the subject of further analysis in this paper. Its mathematical
model takes the following form [5]:⎛

⎝
.
x1(t).
x2(t).
x3(t)

⎞
⎠ =

⎛
⎝−(ka + ke1) 0 0

ka −k23 0
0 k23 −ke3

⎞
⎠
⎛
⎝x1(t)

x2(t)
x3(t)

⎞
⎠+

⎛
⎝1

0
0

⎞
⎠u(t)

y(t) =
(
0 0 1

)
x(t)

(2)

3
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Parameters ka, ke1, k23, and ke3 [h−1] are real positive constants. Parameter ka quantifies
the rate of the drug absorption from the site of its administration. In this case, it is the
gastrointestinal tract (abbr. GIT). The values of ke1, ke3 are the rates of the drug elimination
from the compartments x1 and x3, and k23 is a measure of the rate of the drug flow from x2
to x3.

The relation between the system input u(t)—the administered doses—and the system
output y(t)—the observed concentrations of the drug in the body—is given by the following
transfer function [4]:

G(s) =
y(s)
u(s)

= cT(sI − A)−1b, (3)

where “s” indicates that y(s) and u(s) are the Laplace transforms of signals y(t) and
u(t) [15,16]. The following nominal parameters were identified in [5]: ka = 0.0370 h−1 ke1 =
0.1214 h−1 k23 = 1.2725 h−1 ke3 = 0.2171 h−1.

Remark 1. After performing the mathematical operations indicated on the right side of (3), we
obtain the so-called system transfer function G(s), which defines the relation between the system
input and output. It can be expressed in the form of a faction of two polynomial functions (4).

G(s) =
y(s)
u(s)

=
bmsm + bm−1sm−1 + . . . + b0

ansn + an−1sn−1 + . . . + a0
(4)

The polynomial in the denominator is the so-called characteristic polynomial and can be used to
determine the system stability. Parameters ai and bi include the rate constants ka, ke1, k23, and ke3.

In contrast to the state (or internal) quantities x1, x2, x3, which are hidden, the values
of input u(t) and output y(t) can be directly measured. Therefore, while the parameters ai,
bi are often easily identifiable, the situation for the constants ka, ke1, k23, and ke3 is more
complicated. If we cannot determine them from the known values of ai, bi unambiguously,
the system is considered “unidentifiable” and the values of the ka, ke1, k23, ke3 must be
identified directly from the in vivo samples while considering the system (2). The details
can be found in [17,18] and the references therein.

A detailed explanation of the biological meanings of the system parameters, together
with their method of identification from the in vivo samples, can be found in [4,5].

Clearly, if the off-diagonal entries of the system matrix A in (2) are non-negative
(Metzler matrix), the system (2) is called a positive system. In addition to that, for the
nominal parameters, if every column-wise sum is non-positive, the model (1) satisfies the
mass balance condition, implying that the system (2) is a nominally stable compartmental
system. However, the situation may change when the parameters are subject to uncer-
tainties. Therefore, we check the system stability based on the characteristic polynomial
(5).

det(sI − A) = det

⎛
⎝s + ka + ke1 0 0

ka s + k23 0
0 −k23 s + ke3

⎞
⎠

= (s + ka + ke1)(s + k23)(s + ke3)

(5)

The direct result of the above polynomial root decomposition shows that all three
roots (s + ka + ke1), (s + k23), (s + ke3) of this characteristic polynomial are negative for
any ka > 0, ke1 > 0, k23 > 0, ke3 > 0; hence, the nominal system is stable. This directly
implies that the system with uncertain parameters, namely ka ± Δka, ke1 ± Δke1, k23 ± Δk23,
ke3 ± Δke3, will remain stable if Δ > −1. The opposite case would be conditional to the
existence of a negative parameter, which is biologically impossible.

4
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3.2. Discrete Time Counterpart of the Continuous Time Model

The discrete time form of the model seems to be more suitable for the problem of
finding an appropriate series of repeated drug doses (appropriate protocol). Specifically,
for the continuous time system (1), the discrete time counterpart is given by the following
difference equation:

x(k + 1) = Fx(k) + gu(k), (6)

where g ∈ R
n×1 is the control vector and F ∈ R

n×n is the state transition matrix.
Regarding Figure 1, the system output y(k) is given by (7).

y(k) =
(
0 0 1

)︸ ︷︷ ︸
cT

x (7)

Unlike the continuous time model (1), the time t is now represented discretely as
a sequence of the time instants t = kT, where T is the dosing period. In the in vivo
experiment described in [4,14], the dosing period is equal to T = 6 h and the same is
considered in this paper. The relationship between matrix A of the continuous time system,
matrix F of the discrete time system and between vectors b and g is given by (8) [17].

F = eAT g = A−1(F − I)b

g = A−1(F − I)b
(8)

In an analogy with the continuous time system (1), the discrete time system (6) is
positive and stable if the matrix F is non-negative and Schur. Then, considering the dosing
interval T = 6 h from (8), we can obtain the nominal parameters given in (9).

F =

⎛
⎝0.3866 0 0

0.0128 0.0005 0
0.0718 0.3272 0.2718

⎞
⎠

g =

⎛
⎝3.8726

0.1025
0.2704

⎞
⎠

(9)

The steady-state gain [17], that is the ratio of the steady-state output yss and the
corresponding steady-state input uss of system (6), equals the following:

cT(I − F)−1g = 1.0759 (10)

3.3. Uncertain Discrete Time Model

Thus far, we have supposed that the entries of matrix F and vector g are known exactly,
but their actual values can vary within some intervals around the nominal values. Consider
the expected maximum acceptable parametric uncertainty Δ = ± 0.1 that is ±10% of their
nominal values. Then, the maximal system dynamics will be characterized by matrix F and
vector g, as follows:

F =

⎛
⎝0.4252 0 0

0.0141 0.0005 0
0.0789 0.3599 0.2990

⎞
⎠,

g =

⎛
⎝4.2598

0.1128
0.2974

⎞
⎠,

(11)

and the minimal dynamics will be characterized by matrix F and vector g, as follows:

5
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F =

⎛
⎝0.3479 0 0

0.0115 0.0004 0
0.0646 0.2944 0.2446

⎞
⎠,

g =

⎛
⎝3.4853

0.0923
0.2434

⎞
⎠.

F ≤ F ≤ F and g ≤ g ≤ g

(12)

Using the Kharitonov theorem [18], it can be easily shown that the uncertain system
with the limiting matrices (11) and (12) is stable.

Now, having described the nominal, maximal, and minimal dynamics, we can find the
answer to the principal question: Which trajectory u(k), k = 0, 1, 2, . . . of the repeated drug
doses is able to force the output trajectory y(k) to converge to the requested steady-state
value yss = r? In general, r is an arbitrary positive real number. Due to the presence of
uncertainties, the answer to this question is not straightforward. There are two principal ap-
proaches, namely the drug dosing in the open loop and in the closed loop. Both approaches
will be briefly explained in the following sections.

3.4. Drug Dosing in the Open Loop

In this strategy, the steady-state value of y, i.e., yss for the unit input u(k) = 1,
k = 0, 1, 2 . . . ∞ will be determined first. Then, based on yss, an appropriate dose u(k)
will be adjusted such that yss should be equal to the requested value r. Formally, it can be
described as follows:

lim
k→∞

y(k) = yss = r (13)

Hence, the main idea behind the design of the open-loop dosing protocol is as follows:
Consider the discrete time model of a general subject shown in Figure 1 and described by
the set of difference Equations (6) and (7). Its input u(k) is a sequence of the administrated
doses and the output y(k) is the corresponding sequence of the drug concentrations in the
body, as shown in Figure 2.

Figure 2. Cybernetic abstraction of a living organism (treated subject) in the case of open-loop dosing
approach.

Following the system theory [17], the steady-state value yss is given by relation (14).

r = yss =
[
cT(I − F)−1g

]
︸ ︷︷ ︸
steady−state gain

u(k) (14)

Note that the expression for the steady-state gain (denoted by the brace in (14)) is
nothing more than a scalar multiplier by which the constant unit sequence u(k) = 1,
k = 0, 1, 2, 3, . . . of the drug doses should be multiplied to obtain r. Therefore, for a given r
and the steady-state gain defined using (14), the following constant drug doses should be
repeatedly administered:

u(k) =
r

cT(I − F)−1g
(15)

6
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Note that we will consider the requested steady-state concentration r = 50 mg/mL
and the sampling period T = 6 h. Therefore, the repeated constant doses u(k) should be
equal to the following:

u(k) =
r

cT(I − F)−1g
=

50
1.0759

= 46.4727 mg. (16)

For each of the experiments presented further, the area under curve (abbr. AUC) will
be determined to quantify the total drug exposure across time considering the experiment
length 144 h, nominal models, and using the trapezoidal rule.

The main drawback of this open-loop approach is that the doses are constant in size
while presenting no feedback on the current drug concentration in the body. In other words,
for a given r, the values of u(k) remain constant regardless of the current drug concentration
y(k). Therefore, at least four disadvantages of this approach can be highlighted as follows:

First, the doctor has no means through which they could speed up or slow down
the transition process, i.e., the process of gradually approaching the steady-state value
yss = r = 50 mg/mL. Second, the transition process of y(k) is unique as it cannot be modi-
fied by the constant input sequence u(k). Therefore, there are cases where the transition
process can last for an unacceptably long time. The third and most serious drawback
is that the behavior of the system induced by the uncertainties cannot be automatically
compensated for.

The trajectories of drug concentration y(k) for the calculated constant doses
u(k) = 46.4727 mg administered every 6 h during the period of 144 h are shown in Figure 3.
It can be clearly seen that the nominal trajectory of y(k) (full curve) reaches the requested
value r = 50 mg exactly and it is maintained within the therapeutic range. Contrary to
that, assuming the effect of ±10% uncertainties of the nominal F and g, the steady-state
value yss leaves the therapeutic range (dotted and dashed curves). This means that for
model (6), the parametric uncertainties ±10% are too large; hence, the open-loop therapy
can significantly jeopardize the patient’s health. This is the fourth serious drawback of the
open-loop dosing strategy.

Figure 3. Trajectories of the drug concentrations y(k) in the case of repeated constant dose showing poor
robustness of the open-loop approach resulting in either ineffective or toxic treatment (AUC = 6615.7 h
× mg/mL).

Since the doctor is not aware of the extent of the parametric uncertainties, the aforemen-
tioned drawbacks naturally require a more sophisticated dosing. Much better management
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of the dosing protocol can be achieved using the closed-loop approach described in the
Section 3.5.

3.5. Drug Dosing in the Closed Loop

In this approach, doses u(k) are not constant as they will depend on the current
samples of the drug concentrations y(k), for k = 0, 1, 2. . .. As shown by the closed-loop
arrangement, the concentrations y(k) will always converge towards the requested value r
regardless of the uncertainties. Due to this property, one can claim that this control strategy
is robust with respect to parametric uncertainties [19–21]. The main idea is illustrated in
the scheme shown in Figure 4.

Figure 4. Block diagram of drug dosing in the closed loop that involves the integral controller with
feedback on the drug concentration to determine the new dose size.

The block “subject” represents an ill body, which should be treated by repeatedly
administrating non-constant doses u(k). To this end, the control algorithm (17) is based on
the so-called integral controller. The output of this controller is the sequence of doses u(k),
which are to be administered consecutively at the time instants t = kT for k = 0, 1, 2, . . . [16].
As mentioned above, the role of u(k) is to force the drug concentration y(k) to converge
towards the desired steady-state value yss = r = 50 and to maintain it on this level despite
the presence of parametric uncertainties.

From the physical and biological nature of the problem, it follows that the quan-
tities y(−1), u(−1), y(0) are equal to zero. The integral controller works according to
algorithm (17).

u(k) = u(k − 1) + ki[(r − y(k − 1)] for k = 0, 1, 2, 3, r = 50 mg (17)

The whole process works as follows: At the beginning, the tunable parameter ki
(the so-called integral gain) [16] is set to some value, for example, ki = 0.3. This value
defines not only the rate of increasing the subsequent doses u(k), but also the number of
doses required to reach the steady-state concentration yss = r. Then, for k = 0, the initial
dose is computed as u(0) = 0 + 0.3(50 − 0) = 15 mg and the doctor will administrate
it. At the end of the first dosing interval (T = 6 h), the doctor takes the first sample y(1)
and, together with the required steady-state value yss = r, passes this information to the
controller (algorithm (17)), which determines the next dose as u(1) = u(0) + 0.3[50–y(0)] =
15 + 0.3(50 − 4.05) = 15 + 13.78 = 28.78. The process is repeated for the next indices k.
The simulated trajectory of u(k), for k = 0, 1, . . . 25 is shown in Figure 5.

The corresponding trajectory of the drug concentrations y(k) in the site where samples
are taken (i.e., from the third compartment) is shown in Figure 6.
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Figure 5. Trajectories of the drug doses u(k) for the integral controller with ki = 0.3 showing a
relatively fast response.

Figure 6. Trajectories of the drug concentration y(k) for the integral controller with ki = 0.3 showing
a relatively fast but robust response with slightly periodic behavior and overshoots (AUC = 6419.7 h
× mg/mL).

For illustration purposes, the first ten values of the computed doses u(k) and the
corresponding trajectory of the drug concentrations y(k) for the nominal case (Δ = 0) are
given in Table 2.

Table 2. Drug doses u(k) and trajectory of drug concentrations y(k) for the nominal case.

k 0 1 2 3 4 5 6 7 8 9

u(k) 15.00 28.78 39.71 47.14 51.26 52.77 52.52 51.31 49.77 48.30

y(k) 0 4.05 13.55 25.24 36.25 44.96 50.82 54.03 55.15 54.88

As Figures 5 and 6 illustrate, both trajectories u(k) and y(k) exhibit some overshoots
above their steady-state values. This is caused by choosing an integration gain ki that is too
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high. Threfore, it is recommended to decrease its value to ki = 0.1. After carrying this out,
more appropriate trajectories are obtained, as shown in Figures 7 and 8.

Figure 7. Trajectories of the drug doses u(k) for the integral controller with ki = 0.1 showing a
relatively fast response.

Figure 8. Trajectories of the drug concentrations y(k) for the integral controller with ki = 0.1 showing
a relatively slow but robust response with aperiodic behavior and no overshoots (AUC = 4647.5 h ×
mg/mL).

The nominal trajectory is presented by the full line. The trajectory for positive uncer-
tainties (11) is presented by the dashed curve, and the dot trajectory corresponds to the
negative uncertainties (12).

It is even possible to speed up the transition process by intentionally applying a higher
loading dose, such as u(0) = 50 mg; by carrying this out, we achieved the desired results,
as demonstrated in Figure 9.
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Figure 9. Trajectories of the drug concentrations y(k) for the integral controller with ki = 0.1 and
application of a high loading dose u(0) = 50 mg (AUC = 5956.0 h × mg/mL).

We can artificially disturb the control configuration and the experiment described
above, first, by applying underestimated and, second, by applying overestimated initial
doses to make the control algorithm properly correct the dosing. The corresponding
response to drug concentration with the first five doses scaled by a factor of 0.1 can be
seen in Figure 10, where we can essentially observe a delayed start of the treatment. On
the contrary, the response of drug concentration with the first five doses scaled by a factor
of 5 can be seen in Figure 11, demonstrating that overestimation can lead to deteriorated
performance or even toxic treatment; nevertheless, the control algorithm could ultimately
manage this scenario.

Figure 10. Trajectories of the drug concentrations y(k) for the integral controller with ki = 0.1 and
underestimated initial doses (AUC = 4605.0 h × mg/mL).
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Figure 11. Trajectories of the drug concentrations y(k) for the integral controller with ki = 0.1 and
overestimated initial doses (AUC = 4751.2 h × mg/mL).

It is worth mentioning that from the aspect of system theory, the processes of the drug
distribution through the body belong to the category of dynamic processes [15]. Therefore,
they can be stable or unstable depending on the ways in which the subsystems are mutually
connected, as well as the model parameters. The only source of instability of the control
structure shown in Figure 4 can arise from an inappropriate (usually too high) integration
gain ki. This was documented by the overshoots in Figures 5 and 6, indicating that the
value ki = 0.3 is too high and its further increase may lead to the instability of the closed
loop. For that reason, ki should be chosen to prevent the system from destabilization.

As an illustration, we will check the stability for the considered integral gain ki = 0.1.
The transfer function form of the nominal discrete time model (6) and (7) obtains the
following:

y(z)
u(z)

= cT
(

I − Fz−1
)−1

gz−1 (18)

Then, we can derive the closed-loop transfer function as follows:

y(z)
r(z)

=
ki cT(I − Fz−1)−1g z−1(

1 − z−1 + kicT(I − Fz−1)
−1gz−2

) (19)

For the nominal model with F and g given by (9), we have the following transfer
function:

y(z)
r(z)

=
0.027z−1 + 0.027z−2 + 0.0003z−3

1 − 1.6319z−1 + 0.7850z−2 − 0.1051z−3 + 0.0001z−4 (20)

The roots of its characteristic polynomial are {0.8643, 0.5445, 0.2226, 0.0005}.
For Δ = 0.1 with F and g given by (11), we have the following:

y(z)
r(z)

=
0.029z−1 + 0.025z−2 + 0.0004z−3

1 − 1.6950z−1 + 0.8773z−2 − 0.1272z−3 + 0.0001z−4 (21)

The roots of its characteristic polynomial are {0.7699, 0.6840, 0.2406, 0.0005}.
For Δ = −0.1 with F and g given by (12), we have the following:

y(z)
r(z)

=
0.024z−1 + 0.0167z−2 + 0.0002z−3

1 − 1.5687z−1 + 0.6951z−2 − 0.0852z−3 + 0.00005z−4 (22)
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The roots of its characteristic polynomial are {0.9037, 0.4606, 0.2039, 0.0004}. Since
the roots of all characteristic polynomials (20)–(22) lie in the unit circle, the closed-loop
control is stable.

The optimal value of ki should be a trade-off between the speed of increasing the
control response of y(k) and the system stability. It is also important to note that, contrary
to the open-loop case, the individual doses u(k) are not constant; rather, they gradually
increase while their increments decrease as u(k) and y(k) approach their steady-state values.
This is evident from Figures 5 and 7. In addition to that, these figures illustrate that at the
time instant t = 24T, the dose is u(24) = 46.27 mg, which is virtually equivalent to the
value determined for the open-loop control, i.e., 46.47 mg, from (16).

Another important observation is that Figures 5–8 convincingly demonstrate the
robustness of the closed-loop control, meaning that if the parametric uncertainties do not
exceed their limits Δ, the system remains stable. Hence, contrary to the open loop, the
closed-loop approach with the integral controller ensures that both in the nominal process
and in the process disturbed by the parametric uncertainties, the drug concentration y(k)
converges to the requested steady-state value r = 50 mg/mL, which implies that the control
system is robust.

In addition to the advantages of closed-loop dosing mentioned earlier, another prac-
tical advantage is the possibility of changing the rate of increasing the trajectory u(k) by
changing the controller gain ki. Clearly, the change in the rate of u(k) is related to the
changes in the size of its increments, which, in turn, influence the number of doses needed
to reach the requested level r. To see this, compare Figures 5 and 7.

3.6. Drug Dosing in the Case of an Unstable Subject

It was shown that the discrete time system (6) is stable for all positive parameters. On
the other hand, some special models of bioprocesses, such as physiology-based pharma-
cokinetic, economic, and ecological models, may not share this feature. Even if their states
of equilibria are stable, the region of stability around them can be very small. Therefore,
even negligibly small parametric changes or exogenous factors affecting the living subject
may render the system unstable. This is manifested by the limitless increase in some
characteristic quantities, in particular the system states.

For example, imagine a model of tumor growth, which is typically defined by a set
of differential equations [16]. The normally stable tumor-free state equilibrium, i.e., the
one computed from the nominal model, can become unstable due to the deviation of the
parameters from their nominal values. The instability of the equilibrium will manifest itself
through some (or all) variables, e.g., the tumor volume will grow beyond all limits.

However, in this section, we will not deal with any specific model of tumor growth.
Instead, we will artificially destabilize the pharmacokinetic model described by (6) and
(7). It will be shown that the closed-loop control structure can also be used to control an
unstable subject. Consider the feedback scheme shown in Figure 12.

Figure 12. Block diagram of the inner stabilizing closed loop for the drug dosing that involves the
state-feedback controller to determine the new stabilizing dose size.
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The principle of stabilization via state feedback generally assumes all three components
of the state vector x(k) = [x1(k), x2(k), x3(k)]. Therefore, the vector x(k) should contain
information on the drug concentrations in all three compartments. As shown in Figure 12,
the state vector x(k) is repeatedly sensed and passed to the state feedback where it is
converted to the sequence of stabilizing doses u(k).

Obviously, taking drug samples from all three compartments is biologically infeasible;
however, their values can be obtained without the need for direct measurement. The states
can be generated by the state observer (we have synthesized it in [5], which requires taking
only the samples of the output variable y(k)). To illustrate this, consider the stable discrete
time system described in Equations (6) and (7). To make it artificially unstable, we will
intentionally modify the lower uncertainty matrix F by adding a destabilizing matrix, as
in (23).

F =

⎛
⎝0.3479 0 0

0.0115 0.0004 0
0.0646 0.2944 0.2446

⎞
⎠+

⎛
⎝0.7 0 0

0 0 0
0 0 0

⎞
⎠

=

⎛
⎝1.0479 0 0

0.0115 0.0004 0
0.0646 0.2944 0.2446

⎞
⎠

(23)

The eigenvalues of matrix (23) are as follows:

eig(F) = {0.2446, 0.0004, 1.0479} (24)

Because the eigenvalue 1.0479 is larger than one, it indicates that the dynamic system
(6) with matrix (23) in (9) is unstable [15,17]. The trajectories u(k) obtained using (17) are
shown in Figure 13.

Figure 13. Trajectories of the drug doses u(k) for an unstable subject showing unfeasible negative
drug doses to be administered.

It can be observed that for the parametric uncertainty Δ = −0.1, the dotted trajectory
u(k) decreases and, at a certain time, becomes negative. Clearly, it can be concluded
that the system does not work properly. Therefore, the system should be stabilized via
state feedback as proposed. Stabilization was performed by coupling the subject with
the stabilizing state feedback u(k) = Kx(k). To determine K, we suppose the interval
uncertainties included in (2) and apply Theorem 5 from [22]. To satisfy the conditions of
this theorem, we resolved the corresponding problem (25) of linear programming [23].
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K = K+ + K−

K+ =

(
1 0 0

)⎛⎜⎜⎝
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σ+
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ij < ε− ∀ i = {1, 2, 3}, j = {1, 2, 3}(
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⎛
⎝1

1
1

⎞
⎠

G ≡
(

g 0
)

(25)

The obtained feedback gain vector K is as follows:

K =
(−0.2371 0.0754 0.0754

)
(26)

The state feedback with the gain K stabilizes the closed-loop system in Figure 12
robustly, that is, under the conditions of uncertain entries of F and g. Actually, by applying
the state feedback u(k) = Kx(k), all eigenvalues of the closed-loop system shown in
Figure 12 are smaller than one, including the following:

eig(F + gK) = {−0.0054, 0.1774, 0.2309} (27)

Although all components of vector x(k) are positive, it can be deduced from (26) that
one component of the vector K is negative. This means that for some special values of the
components of x(k), the product Kx(k) can result in negative doses u(k), which is infeasible.
Therefore, the scheme in Figure 12 cannot be used alone. It must be part of the closed loop
in Figure 4, as shown in Figure 14. Then, the requested steady-state value r can be flexibly
set up to an arbitrary positive value.

Although the original subject (without state feedback) is unstable, the inner closed-
loop system shown in Figure 14 is stable. The resulting drug doses u(k) are given by the
sum of the controller output v(k) and the feedback signal f s(k) is as follows from (28).

u(k) = v(k) + f s(k) = v(k) + K x(k) (28)

The first ten values of the feedback signal f s(k) and the drug doses u(k) for T = 6 h
and ki = 0.3 are given in Tables 3 and 4. While the samples of the feedback signals f s(k)
are negative, the doses u(k) are positive for any positive value of r. The corresponding
trajectories of y(k) ≡ x3 are shown in Figure 15.
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Figure 14. Block diagram of the cascade control loop for the robustly stabilizing drug dosing that
involves the state-feedback controller and the integral controller to determine the new dose size.

Table 3. Trajectory of the feedback signal f s(k) for the nominal case.

k 0 1 2 3 4 5 6 7 8 9

fs(k) 0 −3.02 −5.25 −7.53 −9.64 −11.65 −13.54 −15.32 −17.00 −18.58

Table 4. Trajectory of the drug dose u(k) for the nominal case.

k 0 1 2 3 4 5 6 7 8 9

u(k) 15.00 19.70 25.17 29.21 32.55 35.23 37.40 39.15 40.56 41.70

Figure 15. Robustly controlled drug concentrations y(k) of an unstable subject stabilized by the state
feedback showing stable behavior despite the unstable nature of the system (AUC = 3737.0 h × mg/mL).

Although the trajectories y(k) displayed in Figures 6 and 15 correspond to the same
dosing period and the controller gain (T = 6 h, ki = 0.3), they are not quite equivalent.
This was expected because, in the previous case, algorithm (16) controlled the stable subject
alone, whereas now it controls the subject augmented by the stabilizing state feedback;
therefore, it has different dynamics. Regardless of this, by suitably adjusting the integral
gain ki, the shape of the trajectory u(k) can be affected as before.
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4. Discussion

The open-loop approach with the dose determined offline can be seen to be theoreti-
cally correct and was demonstrated to work properly under the idealized assumption of
model parameters that are exactly known. However, it was not possible to prevent the
situation where the steady-state concentration of the drug is outside the therapeutic range
due to parametric uncertainties. The parametric uncertainties ultimately caused a bias in
the system static gain, rendering the determined open-loop dose either ineffective or toxic.
Therefore, such a design cannot be considered robust [19,20].

On the other hand, the advantage of the closed-loop approach with the integral
controller is that the drug concentrations converged to the requested steady-state value
regardless of the actual values of uncertain model parameters. Due to this, for an appro-
priately chosen controller gain (ki), the trajectories of the drug concentrations converged
to the desired steady-state level (r) aperiodically (i.e., without overshoots). Therefore, any
violation of the therapeutic range could be avoided and the therapy was completely safe.

Finally, by adding the state feedback control with an appropriate robust control design,
we could achieve the stabilization of a system that became unstable due to uncertainties
while ensuring the convergence of the drug concentration to the requested steady-state
value. It was shown that after stabilization of the unstable object, it was possible to
successfully control the repeated drug administration.

Compared with the fixed dose protocol, the closed-loop delivery scheme is very
flexible in affecting the time until the drug concentration reaches the therapeutic range.
The performance of the closed loop therapy can be tuned by adjusting the integration
gain ki and the state-feedback gain K in terms of tuning the corresponding parameters
of robust control design algorithm (25), which should be chosen in such a way that the
monotonic concentration growth is ensured. In this way, the aggressiveness of the therapy
can be adjusted to minimize the delays in reaching the therapeutic range by increasing
the integration gain. However, a reasonable trade-off between the speed and safety of
the therapy must be chosen since more aggressive policies usually lead to dangerous
overshoots and, ultimately, to deteriorated robustness. It is important to note that with
increasing control aggressiveness, the sensitivity of the control performance with respect to
the magnitude of parametric uncertainties also typically increases.

5. Conclusions

This paper considers the pharmacokinetic compartmental model, which the authors
designed and parametrically identified from in vivo concentration samples [4,14]. The aim
was to design a dosing protocol for repeated administration. It was supposed that the
model parameters are uncertain due to numerous reasons, which means that their values
vary within a finite interval. The limits of the parametric uncertainties were individually
set to 10% of the corresponding nominal values.

Because repeated drug dosing is essentially a discrete time process, it was decided
to solve the problem completely in the discrete time domain. To this end, the original
continuous time model was first transformed into its discrete time counterpart, and both the
open-loop and the closed-loop analyses were performed solely in the discrete time domain.
The repeated drug dosing problem was approached in the following three different ways:

First, in the open-loop approach, the system static gain and the doses of constant size,
which were repeatedly administered, were determined, forcing the drug concentration to
reach the given steady-state level of the drug concentration and to maintain this level for a
given time interval.

Second, in the closed-loop approach, the initial oral dose was administered, and after
the dosing interval T = 6 h, the sample of the drug concentration was taken. Information
about its value was passed to the integrating controller, which computed the size of the
next dose. This strategy could ensure that drug concentrations converge to the requested
steady-state value regardless of actual uncertain model parameters.

17



Bioengineering 2023, 10, 921

In the third approach, the problem of repeated drug dosing for the subject (more pre-
cisely, its model), which was not only uncertain but also unstable, was resolved. Although,
at first glance, such a situation may seem very rare or even impossible to happen in a living
body, it has been shown that this is nothing unnatural. These issues were discussed in
Section 3.6.

It can be concluded that the main practical limitation of the proposed strategy is in
providing full state feedback; yet, this requirement can be reduced using a state observer [5].
Hence, the required feedback reduces to sensing only the drug concentration in the output
compartment, which, today, is feasible due to the extensive development of sensors and
wearable electronic devices for biomedical applications.

The results presented in Section 3.6 create the basis for a future analysis of the possible
treatment of tumor growth, which is typically an unstable system. This problem is briefly
outlined in Appendix A in the form of a short authors’ reflection.

Author Contributions: Conceptualization, data acquisition and curation, implementation of in vivo
experiments, Z.V. and A.V.; methodology, Z.V.; software, M.D.; validation, Z.V., A.V. and M.D.; formal
analysis, E.M.; investigation, A.V. and E.M.; resources, J.P.; writing—original draft preparation, Z.V.
and A.V.; writing—review and editing, M.D. and A.B.; visualization, M.D.; supervision, E.M.; funding
acquisition, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: The research is supported by the grant VEGA 1/0049/20–Modelling and control of biosys-
tems, granted by the Ministry of education, science, development, and sport of the Slovak republic.

Institutional Review Board Statement: The in vivo experiments on rats were approved by the ethical
regulations of the Faculty of pharmacy in Bratislava as a part of the basic research. The certification
was sent to the Editorial office.

Informed Consent Statement: Not applicable.

Data Availability Statement: The in vivo data are available from the first author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Although the idea shown in Figure 14 is not new from a cybernetic perspective, it can
be much more interesting from the aspect of treating diseases via repeated drug dosing.
The reader should be aware that from a cybernetic point of view, the subject alone, i.e.,
without any stabilization feedback, is represented by model (2), which emulates the drug
transport through a real living organism.

An important observation is that it is precisely a specific sequence of doses that can
stabilize the system. Its specificity means that the sequence is exclusively derived from
samples of the drug taken from the patient’s body. In other words, the size of every single
dose u(k) to be administered is not a choice of the doctor, but is determined by the values of
the drug concentrations x1(k), x2(k), x3(k) sensed from the different parts of the patient’s
body, and further modified by both the integral controller and the state feedback. Writing
this more formally, it can be summarized as u(k) = v(k) + f s(k) = v(k) + Kx(k), as is
shown in Figure 14.

In relation to that, it is worth mentioning that the feedback samples from all three
body compartments are not feasible in practice. To resolve this, in [5], we have presented
the design of a so-called state observer, which is driven solely by the information on the
drug concentration in the body compartment x3, and the estimates of values x1(k) and
x2(k) were generated by the observer.

Therefore, if the doctor knows what kind of drug (kind of chemical substance) can
treat a particular disease, then a successful treatment will depend on the following two
factors:

1. The size of the doses administered at the particular time instants;
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2. The order in which the variable doses are administered.

Both parts of that information are provided by the designed control system; however,
only the second one plays a decisive role, as is shown in the following:

Let us carry out a short reflection related to the possible ways of treating tumor
growth [24,25]. From what has been presented thus far, an idea of how it would be possible
to treat tumor growth can be deduced. The issue is that, under normal healthy conditions,
the processes (chemical reactions) running in the body are in a dynamic balance. In other
words, the processes are in equilibrium. These facts lead the authors to the belief that the
conditions under which the tumor starts growing can also be deduced from the behavior of
its mathematical model. The start of tumor growth can be a consequence of the existence of
either an unstable equilibrium of the mathematical model describing this dynamic, or the
existence of a stable equilibrium with a very small region of stability around it.

Under such conditions, it can easily happen that, through the actions of outer influ-
ences or flaws occurring inside a living subject, the normally stable equilibrium becomes
unstable because the characteristic parameters (e.g., the rates of chemical reactions, and the
activity of the enzymes through which the equilibrium is defined, among others) change
their values to the extent that the point of equilibria, i.e., its location in the state space,
will be outside of the (small) stability region. The same happens in the state space model
(2) if the deviations of the parameters cause the equilibrium to move outside its region of
stability, as is shown in Section 3.6. At this moment, the system becomes unstable, which is
tantamount to the situation when the products of some processes start to increase above
all bounds.

It was shown that by applying the control structure shown in Figure 14, it is possible
to find a series of repeating doses of various sizes (the dosing protocol) that would be able
to stabilize the tumor volume at the given value r. Due to the designed feedback, the tumor
volume can be stabilized exclusively through the repeated doses of the specific sizes of an
anticancer drug. The current research of the authors is focused on this problem.
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Abstract: This study aims to develop a predictive model for SARS-CoV-2 using machine-learning
techniques and to explore various feature selection methods to enhance the accuracy of predictions.
A precise forecast of the SARS-CoV-2 respiratory infections spread can help with efficient planning
and resource allocation. The proposed model utilizes stochastic regression to capture the virus
transmission’s stochastic nature, considering data uncertainties. Feature selection techniques are
employed to identify the most relevant and informative features contributing to prediction accuracy.
Furthermore, the study explores the use of neighbor embedding and Sammon mapping algorithms
to visualize high-dimensional SARS-CoV-2 respiratory infection data in a lower-dimensional space,
enabling better interpretation and understanding of the underlying patterns. The application of
machine-learning techniques for predicting SARS-CoV-2 respiratory infections, the use of statistical
measures in healthcare, including confirmed cases, deaths, and recoveries, and an analysis of country-
wise dynamics of the pandemic using machine-learning models are used. Our analysis involves the
performance of various algorithms, including neural networks (NN), decision trees (DT), random
forests (RF), the Adam optimizer (AD), hyperparameters (HP), stochastic regression (SR), neighbor
embedding (NE), and Sammon mapping (SM). A pre-processed and feature-extracted SARS-CoV-2
respiratory infection dataset is combined with ADHPSRNESM to form a new orchestration in the
proposed model for a perfect prediction to increase the precision of accuracy. The findings of this
research can contribute to public health efforts by enabling policymakers and healthcare professionals
to make informed decisions based on accurate predictions, ultimately aiding in managing and
controlling the SARS-CoV-2 pandemic.

Keywords: SARS-CoV-2 prediction; feature selection; stochastic regression; neighbor embedding;
sammon mapping; machine learning

1. Introduction

The global health crisis caused by SARS-CoV-2 involving the prediction of respiratory
infection and the ultimate causes of the pandemic has highlighted the need for accurate
prediction models to aid in effective planning and resource allocation. This study aims
to develop a predictive model for SARS-CoV-2 using machine-learning techniques while
exploring various feature selection methods to enhance the accuracy of predictions. By
incorporating these innovative approaches, valuable insights can be gained into the factors
influencing the spread of the virus, ultimately assisting policymakers and healthcare
professionals in making informed decisions for managing and controlling the pandemic.
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The proposed model employs stochastic regression to capture the stochastic nature of
virus transmission and to consider uncertainties in the data. Stochastic regression enables
the modeling of complex relationships and provides a comprehensive understanding of
the virus’s spread dynamics. By leveraging AI-enabled approaches and tools, along with
machine-learning-based immune simulation, scientists have created a groundbreaking
vaccine resistant to mutations. This vaccine represents a significant breakthrough in the
fight against the ongoing COVID-19 pandemic, as it has the potential to provide long-
lasting protection against both current and future variants of the virus [1]. This approach
acknowledges the inherent uncertainties associated with the pandemic, allowing for more
robust and reliable predictions.

Molecular tests, such as reverse transcriptase polymerase chain reaction (RT-PCR),
and antigen tests are used to detect current SARS-CoV-2 infection and diagnose COVID-19.
These tests have different sensitivity and specificity characteristics, which influence their
interpretability. Sensitivity refers to the test’s ability to correctly identify positive cases,
and specificity indicates its ability to identify negative cases correctly. Understanding the
characteristics of diagnostic tests, test timing in relation to symptom onset, and pretest
probability of the disease helps in interpreting test results accurately. To analyze the
behaviour of DNA probes without regard to mutation, researchers have combined surface-
enhanced Raman scattering (SERS) with machine-learning methods. By utilizing SERS,
which enhances the Raman scattering signal, and applying machine-learning algorithms,
scientists have gained valuable insights into DNA probes’ binding characteristics and
stability across different SARS-CoV-2 variants. A greater knowledge of the virus and
assistance in creating efficient diagnostic tools have been provided by previous authors’
illumination of the potential applications of DNA probes in identifying and investigating
viral alterations [2]. According to the statistical models present in the research, the
regression modeling strategy known as stochastic regression includes randomness or
stochasticity in regression analysis. A nonlinear dimensionality reduction method is
Sammon mapping, sometimes called Sammon projection. It seeks to maintain the pairwise
distances between data points in lower-dimensional space. Divergence is the Bregman
measure of the behavioural differences between two probability distributions or vectors.

Additionally, our research explores the use of neighbor embedding and Sammon map-
ping algorithms to visualize high-dimensional SARS-CoV-2 data in a lower-dimensional
space. These visualization techniques allow for better interpretation and understanding of
the underlying patterns within the data, facilitating insights into the virus’s behavior and
transmission dynamics. Developing a point-of-care diagnostic tool that integrates machine-
learning algorithms could have significant implications for the timely identification and
monitoring of SARS-CoV-2 variants. This could aid in tracking the spread of different
variants and implementing appropriate measures to control their transmission [3]. This
study considers a range of machine-learning algorithms, including neural networks (NN),
decision trees (DT), random forests (RF), and the Adam optimizer (AD), along with hy-
perparameter optimization techniques (HP). The study aims to predict ACE2 binding
and antibody escape, allowing for the identification of potential variants and guiding
the development of therapeutic antibody treatments and vaccines for COVID-19 [4]. By
evaluating the performance of these algorithms, our research aims to identify the most
effective approach for predicting SARS-CoV-2 spread, further enhancing the accuracy of the
model. The use of mixed-effects machine learning also helps to predict disease severity in
COVID-19 variants of concern, such as Delta and Omicron. These highlight the importance
of sequence-level information for the virus in understanding the risks associated with
different variants [5].

The active investigation of COVID-19 disease severity prediction is based on the
spike protein sequence of SARS-CoV-2. The use of mixed-effects machine-learning tech-
niques shows promise in this area, as it allows for incorporating various factors and
variations in data to improve predictive accuracy. These studies highlight the importance
of global sequence data, patient outcome information, and early warnings for emerging
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viral risks [6]. The development of machine-learning approaches is also used to identify key
pathogenic regions in coronavirus genomes. Researchers have trained and evaluated mil-
lions of models on thousands of genomes, including SARS-CoV-2, MERS-CoV, and others.
This study aims to uncover discriminative genomic features that can aid in understand-
ing the pathogenicity of SARS-CoV-2 and other coronaviruses [7]. We obtained complete
genome sequences of the Coronaviridae family from the ViPR database and encoded them
into binary vector representations. This approach aims to identify genomic characteristics
that can differentiate between different coronaviruses, including SARS-CoV-2 [8]. This
study highlights the potential of CRISPR-based techniques for rapidly and accurately
detecting SARS-CoV-2. We discuss the development of CRISPR-based diagnostic assays
that can specifically detect the virus and distinguish it from other coronaviruses [9]. The
paper explores early computational detection methods for identifying potential high-risk
SARS-CoV-2 variants. It discusses using computational models and algorithms to analyze
genetic sequences and predict the impact of specific mutations on virus behavior and
transmissibility. By identifying variants of concern early on, this research aims to aid in
developing targeted interventions and public health strategies to mitigate the spread of the
virus [10].

The suggested model creates a new orchestration from a pre-processed and feature-
extracted SARS-CoV-2 dataset and ADHPSRNESM to increase prediction precision and
accuracy. This combination of methods and algorithms offers a thorough and reliable
framework for predicting the transmission of the infection.

The main objectives in this research work are as follows:

• To focus on developing a predictive model for SARS-CoV-2 using machine-learning
techniques, such as neural networks (NN), decision trees (DT), and random forests (RF).
By leveraging these algorithms, the researchers aim to capture the virus transmission’s
stochastic nature and account for data uncertainties.

• To improve the accuracy of predictions, the study employs feature selection techniques.
These methods aim to identify the most relevant and informative features contributing
to prediction accuracy. By selecting the most important features, the model can focus
on the factors that have the greatest impact on the spread of the virus.

• The research explores using neighbor embedding and Sammon mapping algorithms to
visualize high-dimensional SARS-CoV-2 data in a lower-dimensional space. This visu-
alization approach enables better interpretation and understanding of the underlying
patterns in the data, aiding in identifying important trends and relationships.

• The proposed model combines various techniques, including stochastic regression
(SR), neighbor embedding (NE), and Sammon mapping (SM), with a pre-processed
and feature-extracted SARS-CoV-2 dataset. The integration of these techniques forms a
new orchestration, referred to as ADHPSRNESM, which aims to enhance the precision
and accuracy of predictions.

Finally, this research addresses the pressing need for accurate predictive models to
better understand and manage the SARS-CoV-2 pandemic. The study aims to improve
prediction accuracy and gain valuable insights into the factors influencing the virus’s spread
by incorporating machine-learning techniques, feature selection methods, and visualization
algorithms. The findings of this research have the potential to significantly contribute to
public health efforts, enabling policymakers and healthcare professionals to make informed
decisions based on reliable predictions, ultimately aiding in the effective management and
control of the SARS-CoV-2 pandemic.

Novelty in the Reseach Work

The research work novelty lies in applying feature selection techniques specifi-
cally tailored to SARS-CoV-2 data. Traditional feature selection methods often fail to
capture the intricate relationships among variables in complex datasets such as that of
SARS-CoV-2. Our approach introduces novel feature selection algorithms that consider
the unique characteristics and dynamics of the virus, enabling the identification of the
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most relevant predictors for accurate predictions. We introduce a stochastic regres-
sion framework that incorporates probabilistic modeling techniques to account for the
inherent randomness and unpredictability of the pandemic. By leveraging stochastic
regression, our approach provides more robust and reliable predictions, enabling better
decision making in uncertain situations. Neighbor embedding algorithms reduce the
dimensionality of the data while preserving the local relationships between instances.
Sammon mapping is a nonlinear dimensionality reduction technique that emphasizes
preserving the pairwise distances between instances. By leveraging Sammon mapping
in our approach, we can effectively capture the intricate relationships and similarities
between SARS-CoV-2 cases, improving prediction accuracy and interpretability. Differ-
ent types of biases, including confounding, selection bias, and measurement error, may
affect the validity of observational studies related to SARS-CoV-2. By being aware of
these biases, researchers and readers can better interpret and assess the reliability of
study findings.

The following is a breakdown of the article. The related work is examined in Section 2,
and the suggested model is examined in Section 3. Sections 4 and 5 deal with the
experimental setup. In Section 6, the conclusion and future work are presented and
followed by refrences.

2. Literature Review and Related Work

The hybrid simulation methods are developed to investigate the effects of mutations
on the structural dynamics of the main protease from SARS-CoV-2. The main protease plays
a crucial role in viral replication and is a potential target for therapeutic intervention. By
combining computational simulations and experimental data, the study provides insights
into how mutations affect the protein’s stability, function, and interactions with potential
inhibitors. This research contributes to understanding the virus’s evolution and informs the
development of effective antiviral drugs [11]. In this study, the researchers employed super-
vised learning techniques and perturbation calculations to search for potential inhibitors of
the main protease of SARS-CoV-2, which is a crucial target for antiviral drug development.
By training a machine-learning model on known inhibitors and non-inhibitors, we can
predict the inhibitory activity of new compounds.

Additionally, perturbation calculations were used to assess the compounds’ structural
stability and binding affinity. This approach holds promise for accelerating the discovery
of effective inhibitors against SARS-CoV-2 [12]. This research focuses on whether machines
can learn the mutation signatures of SARS-CoV-2 and utilize them to predict the prognosis
of infected individuals. The study aims to identify specific viral genotypes associated with
varying clinical outcomes by analyzing genomic data from a large cohort of patients. Using
machine-learning algorithms, the researchers attempt to create a predictive model that
could guide prognosis based on viral genotypes. This work may contribute to personalized
medicine approaches for COVID-19 by leveraging viral genetic information [13]. This study
investigates the concept of cross-immunity against SARS-CoV-2 variants of concern in nat-
urally infected, critically ill COVID-19 patients. By analyzing patient data, the researchers
aim to understand whether prior infection with one virus variant provides any protection
or alters the severity of subsequent infections with different variants. The findings from
this study could provide valuable insights into immune response dynamics and potential
implications for vaccine development and management of COVID-19 patients [14].

This paper proposes a machine-learning-based approach to determine the infection
status in recipients of the BBV152 (Covaxin) whole-virion inactivated SARS-CoV-2 vac-
cine for serological surveys. The authors utilize machine-learning algorithms to analyze
serological data and classify individuals as infected based on their antibody response.
This approach can aid in evaluating the vaccine’s effectiveness and tracking the spread
of COVID-19 [15]. In this study, researchers employ machine-learning techniques to pre-
dict the docking scores of 3CLpro, a key protein in the SARS-CoV-2 virus. By training
a machine-learning model on a dataset of known docking scores, the authors develop a
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predictive model that can estimate the binding affinity between potential drug compounds
and the 3CLpro protein. This work contributes to discovering potential inhibitors for
SARS-CoV-2 by prioritizing compounds with favorable docking scores [16]. This research
focuses on developing a machine-learning platform that estimates the anti-SARS-CoV-2
activities of compounds. By training a machine-learning model on experimental data re-
garding the antiviral effects of different compounds, the platform can predict the potential
efficacy of new compounds against SARS-CoV-2. This platform could be valuable in the
early stages of drug development, helping to identify promising candidates for further
investigation [17]. The paper explores the application of machine-learning techniques to
predict SARS-CoV-2 infection using blood tests and chest radiographs. It discusses how
machine-learning models can analyze patterns and features in these diagnostic tests to
accurately predict the presence of the virus. This approach has the potential to enhance
early detection and improve patient outcomes [18].

This study uses machine learning and predictive models to present a retrospective
analysis of two years of the SARS-CoV-2 pandemic in a single-center setting. The paper
investigates various factors related to the spread and impact of the virus, such as demo-
graphic information, clinical features, and treatment outcomes. The study aims to provide
insights into the long-term trends and patterns associated with the pandemic [19]. The
paper proposes a novel approach for determining SARS-CoV-2 epitopes using machine-
learning-based in silico methods. Epitopes are specific regions of the virus that can trigger
an immune response. By leveraging machine-learning algorithms, this study aims to
predict potential epitopes from the viral genome, which can aid in vaccine development
and immunotherapy research. The approach offers a promising avenue for identifying
crucial targets for immune system recognition [20]. This paper explores machine-learning
techniques for screening and diagnosing SARS-CoV-2 (COVID-19) based on clinical anal-
ysis parameters. The researchers utilize a dataset containing clinical parameters such as
blood test results, vital signs, and patient demographics. By applying machine-learning
algorithms, the authors aim to develop a model that can accurately classify individuals as
COVID-19-positive or -negative based on these parameters. The study demonstrates the
potential of machine learning in assisting with COVID-19 screening by leveraging clinical
data [21]. In this paper, the authors propose a diagnostic mask incorporating immunochro-
matography and machine learning for SARS-CoV-2 detection. The mask is designed to
capture and analyze respiratory droplets and provide real-time diagnostic results. By
leveraging immunochromatography, the mask detects specific SARS-CoV-2 antigens, and
machine-learning algorithms are employed to enhance the accuracy and reliability of the
diagnostic process. The integration of these technologies offers a promising approach for
rapid and efficient SARS-CoV-2 detection in a wearable form [22].

This paper focuses on the bioactivity classification of SARS-CoV-2 proteinase,
an essential enzyme for virus replication, using machine-learning techniques. The
researchers employ various machine-learning algorithms to analyze and classify the
bioactivity of proteinase inhibitors, which can potentially disrupt the enzymatic activity
of the virus. By training the models on a dataset of known inhibitors and their bioac-
tivities, the authors aim to predict the bioactivity of new compounds. This research
contributes to developing novel therapeutics by leveraging machine learning in the
context of SARS-CoV-2 proteinase inhibition [23]. This paper explores the use of deep-
learning techniques to detect the main variants of concern of the SARS-CoV-2 virus.
By leveraging the power of deep-learning algorithms, the researchers aim to develop
a reliable and efficient method to identify these variants accurately. This could be
beneficial for monitoring the spread of different variants and informing public health in-
terventions [24]. In this study, the researchers focus on generating new compounds that
specifically target the main protease of the SARS-CoV-2 virus. We address the challenge
of imbalanced datasets, which are common in drug discovery research. By employing
innovative approaches, such as machine-learning and data augmentation techniques,
the researchers aim to overcome this issue and identify potential compounds for further
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investigation [25]. This paper investigates the application of deep-learning techniques
for detecting SARS-CoV-2 using clinical reports. By analyzing a large dataset of clini-
cal reports, the researchers aim to develop a deep-learning model that can accurately
identify positive cases of COVID-19. Such a model could potentially assist healthcare
professionals in detecting and managing the disease [26]. This research focuses on
developing an intelligent system for predicting next-generation sequences of the SARS-
CoV-2 virus using deep-learning neural networks. By analyzing existing genomic data,
the researchers aim to build a model that is capable of accurately predicting the genetic
sequences of future viral strains. This could provide valuable insights into the evolution
and behavior of the virus, aiding in the development of targeted interventions and
treatments [27–29].

Challenges and Pitfalls in the State of the Art

One limitation of this research is the availability and quality of data. The accuracy
and effectiveness of the visualization techniques and machine-learning algorithms we
employ heavily depend on the quality and quantity of the SARS-CoV-2 data used. The
study’s results may be specific to the dataset or population used in the analysis, limiting
their applicability to different regions or populations with distinct genetic backgrounds
or transmission dynamics. Therefore, caution should be exercised when extrapolating the
results to broader contexts. The visualization techniques and machine-learning algorithms
employed in the research are based on certain assumptions and simplifications. These
assumptions may not fully capture the complexities of the SARS-CoV-2 virus, its mutations,
and transmission dynamics. When the model becomes too specialized to the training data,
it fails to generalize well to unseen data. To mitigate this limitation, rigorous validation
and cross-validation procedures should be applied to ensure the model’s robustness and
reliability. Reduced dimensionality may limit the ability to fully understand the complex
relationships and interactions within the data, potentially hindering a comprehensive inter-
pretation of the virus’s behavior and transmission dynamics. Predicting disease severity
and understanding of viral risks often involve considering various factors beyond the
spike protein sequence, such as co-morbidities, demographics, and environmental factors.
Though valuable insights can be gained from these targeted studies, they may not provide
a comprehensive understanding of the virus as a whole or address other important aspects,
such as the long-term effects, long COVID, or social and behavioral factors influencing
transmission. The research might not account for the full spectrum of variants or consider
the impact of future mutations that could alter the virus’s behavior and transmissibility.
Ongoing monitoring and continuous adaptation of the models and algorithms are necessary
to keep up with the evolving nature of the virus. Machine-learning models and algorithms
have the potential to reinforce biases or yield unintended consequences. It is important
to consider the ethical implications of using these techniques in decision making, such as
ensuring fairness, avoiding discrimination, and addressing privacy concerns. Though the
research aims to evaluate the performance of various machine-learning algorithms, it is
crucial to validate their effectiveness in real-world settings. The simulation methods used
in the study have their own limitations, including potential inaccuracies and simplifications
in the models used.

• Limited and biased datasets: One of the primary challenges is the availability of
reliable and representative datasets. Machine-learning models require large and
diverse datasets for training, but there may be limitations in terms of data collection
and quality.

• There may be inconsistencies or inaccuracies in the reported cases, testing procedures,
and other variables. These uncertainties can impact the reliability and robustness of
the predictive model.

• Interpretability and visualization: Interpreting and understanding the underlying
patterns and relationships in high-dimensional SARS-CoV-2 data can be difficult.
Visualization techniques such as neighbor embedding and Sammon mapping can aid
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in interpreting and understanding the patterns and relationships within the data, but
their effectiveness may vary based on the specific dataset and characteristics.

• Integration of techniques: The proposed model aims to combine various techniques,
including stochastic regression (SR), neighbor embedding (NE), and Sammon mapping
(SM), to enhance the precision and accuracy of predictions. However, the integration
of these techniques introduces additional complexity and potential challenges.

The study’s accuracy and generalizability may be affected if the dataset used for
training and evaluation is not diverse enough regarding demographics, comorbidities,
and other relevant factors. The model’s performance may vary when applied to different
proteins or protein–ligand systems. The authors should assess the model’s performance
on diverse datasets to demonstrate its generalizability. The accuracy and reliability of the
machine-learning platform may depend on the quality and quantity of experimental data
used for model training. Insufficient or biased data may impact the platform’s performance.
The choice of features used for prediction can impact the model’s performance. It is essential
to ensure that the selected features are relevant and represent the target variable to avoid
bias and improve the model’s robustness. The findings of a single-center study may not be
generalizable to other healthcare settings, populations, or geographic regions. Replication
of the study in multiple centers can strengthen the validity of the results.

3. Methods and Materials

Coronaviruses primarily affect the upper areas of the lungs and respiratory system
with different degrees of severity. There is an urgent need for disease prediction at an earlier
stage to avoid the causes of death. The IoT has been employed in different application
sectors, including healthcare, for SARS-CoV-2 patient monitoring including healthcare.
In this case, IoT sensors monitor and gather patient data, which can be accessed anytime
and anywhere. Because IoT devices generate vast data, effective prediction is a significant
challenge. A proposed model is developed for effective prediction based on the objective.
The proposed prediction model for assessing the probability of infection combines classifi-
cation and feature selection techniques. It uses data mining, stochastic regression, neighbor
embedding, Sammon-based map selection, and regression-based classification to predict
SARS-CoV-2.

Figure 1 illustrates the basic architecture of this proposed model. The process begins
with collecting a significant amount of patient data from IoT devices, which is then stored
in a newly created Corona Virus 2019 dataset. The expression “the number of patient
records” refers to the count of features in the dataset, which includes both the number of
patient records and the count of features represented by these symbols. The collected data
undergo several operations using a neural network to facilitate prediction.

The framework of the proposed model is illustrated in Figure 2. The structure consists
of several layers, and neurons act as nodes. The nodes in the layers are interconnected to
form the entire architecture. The shift-invariant system of the proposed model framework
is expressed as:

Y(t) = F [x(t)] (1)

Equation (1) defines a time-dependent output function, a time-dependent input
function, and a transfer function used to transfer a transformation or input from one
layer to another. The hidden, input, and output layers form machine-learning tech-
niques. The intermediate layers of each feed-forward neural network are called hidden
layers and are used to perform certain functions. The output level shows the results of
the operation. At first, the features are treated as input, and the activity of neurons in
the input layer is presented.

x(t) = ∑n
i=1 fi(t) w0 + c (2)
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In Equation (2), x(t) represents the input layer output, fi(t) shows the features, where
‘w0’ denotes the starting weight as “1” and the prime weight as “c” for the bias stored,
assigned at the input layer. The first hidden layer receives the input after that.

Figure 1. Architecture of the proposed mode.

Figure 2. Structure of neural networks with deep connectivity shift-invariant convolution.
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3.1. Stochastic Regression

Stochastic regression is a statistical modeling technique that predicts a continuous
outcome variable based on one or more predictor variables while incorporating random
variation into the model. Unlike traditional regression methods that assume deterministic
relationships, stochastic regression acknowledges the presence of inherent uncertainty or
random fluctuations in the data. This approach utilizes probabilistic methods, such as
maximum likelihood estimation or Bayesian inference, to estimate the parameters of the
regression model. By considering the random nature of the data, stochastic regression
provides a more realistic and flexible framework for understanding and predicting com-
plex relationships between variables, making it particularly useful in scenarios in which
variability and randomness play a significant role.

3.2. Neighbor Embedding

Neighbor embedding is a technique used in machine learning and data analysis to
represent high-dimensional data in a lower-dimensional space while preserving the re-
lationships between data points. It aims to map data points onto a lower-dimensional
coordinate system, such that neighboring points in the original space remain close in the
embedded space. This method is particularly useful for visualization purposes and dimen-
sionality reduction tasks. By organizing and arranging data points based on their proximity,
neighbor embedding provides a way to gain insights into the underlying structure of
complex datasets.

3.3. Sammon Mapping

Sammon mapping has several advantages and limitations. On the positive side, it
can effectively preserve the local structure and relationships between data points. It is
particularly useful when dealing with complex, nonlinear data patterns. However, it can
be sensitive to outliers and noisy data, which may distort the results. The algorithm’s
computational complexity can also be high, especially for large datasets. Sammon mapping
is a dimensionality reduction technique that aims to preserve pairwise distances when
projecting high-dimensional data into a lower-dimensional space. By minimizing the stress
function, it seeks to find a representation that faithfully captures the relative distances
between data points. Although it has certain limitations, Sammon mapping is a valuable
tool for data visualization and exploratory analysis in various domains.

3.4. Bregman Divergence

Bregman divergence is a mathematical concept that measures the dissimilarity be-
tween two points in a convex space. It is named after Israeli mathematician L. Bregman,
who introduced this measure in the field of convex optimization. Bregman divergence
is defined based on a convex function, which serves as a reference for quantifying the
difference between the points. It provides a way to compare the distance between two
points concerning the chosen convex function, taking into account the geometry of the
space. Bregman divergence has various applications in machine learning, data analysis,
and information theory, where it is utilized for tasks such as clustering, dimensionality
reduction, and optimization. The flexibility of Bregman divergence makes it a valuable
tool for capturing and quantifying the dissimilarity between data points in a wide range
of applications.

The similar feature selection considers how many features in the provided dataset are
spread in the given dimensional space. The distance between the feature and the objective
is calculated using the Bregman divergence:

ϕB = ‖ f j − po‖ (3)

Equation (3) represents a Bregman divergence, which is a measure of dissimilarity between
probability distributions or vectors. Bregman divergences have various applications in
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fields such as machine learning, information theory, and data analysis. As a result, the
projection output is written as follows:

Q →
{

ϕB > δ; dissimilar f eatures
ϕB < δ; similar f eatures

(4)

where Q represents a projection function, ϕB represents a Bregman divergence, and δ
represents a threshold. The feature that deviates the most from the target is referred to as a
different feature. Otherwise, the trait is considered relevant. Similar traits are thus mapped
into low-dimensional space in this manner.

In Figure 3, feature selection is a crucial step in machine learning that involves re-
ducing the number of input variables to improve computational efficiency and enhance
model performance.

Figure 3. Feature selection procedure block diagram.

3.5. Classification Based on Kriging Regression

Regression analysis, which includes kriging regression, is a collection of statistical
methods for estimating the relationships between the variables (i.e., the training and testing
features). Based on the association measure between the variables, the patient data are
divided into low, medium, and high-risk groups. The regression function looks at the
matching feature values, as seen below:

R = exp(
ftr− fdt

2s2 ) (5)

where R represents a regression function, a training feature value, and a disease testing
feature value, and s represents a standard deviation. The regression yields values ranging
from 0 to 1.

Y =

⎧⎨
⎩

R < 0.5; low risk
R = 0.5; medium risk
R > 0.5; high risk

(6)

The patient data are considered high-risk if the regression outcome exceeds the thresh-
old. The patient data are regarded as a medium-risk if the regression value equals the
threshold. The patient data are classified as low-risk if the regression exceeds the threshold.
Consider the following four training and testing features: age, symptoms such as fever or
body temperature, travel history, and chronic condition.

The patient data in Tables 1–3 are categorized as low-, medium-, and high-risk based
on the regression analysis with testing and training feature values. Patients at low risk
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have minimal conditions that can be easily handled. Rapid treatment is required to save
the patient’s health from the disease if the patient has high-risk conditions.

Table 1. Feature analysis for class 1.

Feature Age Symptoms Travel Chronic Y Class 1

Training >50 37 °C >28 days False
<0.5 Low riskTesting >50 37 °C >28 days False

Table 2. Feature analysis for class 2.

Feature Age Symptoms Travel Chronic R Class 2

Training >50 37 °C < T < 39 °C 14–28 days True
0.5 Medium riskTesting >50 37 °C < T < 39 °C 14–28 days True

Table 3. Feature analysis for class 3.

Feature Age Symptoms Travel Chronic R Class 3

Training >50 >39 °C <14 days True
>0.5 High risk

Testing >50 >39 °C <14 days True

The hidden layer’s outcome is defined as:

H(t) = ∑n
i=1 fi(t) w0 + [wih ∗ hi] (7)

where “H(t)” stands for the result of the hidden layer, “wih” stands for the hidden layer’s
weight, and “hi” stands for the output of the previously hidden layer that will be sent to
the output layer. The outcome of the output layer is:

O(t) = who ∗ H(t) (8)

In Equation (10), the terms “O(t)” and “who” stand for the output layer result and the
weighted average of the hidden and output layers, respectively. To forecast SARS-CoV-2
accurately, the patient data are appropriately divided into several classifications.

The proposed algorithm is given as follows:
Algorithm 1 sketches the SARS-CoV-2 prediction process in detail and more precisely.

The DL algorithm comprises many layers that help it learn the provided information. The
input features are to be received in its first hidden layer. The Bregman divergence between
the features and the goal functions are assessed in that layer. If the divergence exceeds
the threshold, the Sammon function separates the characteristics into a comparable and
dissimilar subset. Comparable feature subsets are used for classification in the second
hidden layer to determine the illness prediction. The patient data are categorized using the
Kriging regression method. The regression function contrasts the patient training feature’s
worth with the sickness testing feature’s worth. According to the analysis, a trustworthy
sickness has the fastest turnaround time for prognosis.
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Algorithm 1: Proposed

Input: Dataset, Number of features f j = f1, f2, . . . , fm, Number of data Di = d1, d2, . . . , dn
Output: prediction accuracy increases

1. Input the number of features f j

2. For every feature fi ∈ Di
3. Measure of the Bregman divergence and between fi and ϕB
4. if ( ϕB > δ) then

5. Project the features as similar
6. else

7. Project the features as dissimilar
8. End if

9. Select the similar feature subset
10. Remove the dissimilar feature subset
11. End for

12. For each information in ‘d1’ with fi
13. Perform the regression analysis ‘R’
14. If (R < 0.5) then

15. Patient data is classified as ‘low risk’
16. Else If (R = 0.5) then

17. Patient data is classified as ‘medium risk’
18. Else If (R > 0.5) then

19. Patient data is classified as ‘high risk’
20. End if

21. Obtain the classification.
22. End for

23. End

4. Experimental Setup

The proposed model is implemented in Python, and the results are analyzed.
For experimentation, Kaggle’s Novel Corona Virus 2019 dataset is applied. The daily
statistics on coronavirus infections, fatalities, and recoveries are included in the data.
There are several CSV files in the collection. Out of all the available files, the open
queue file SARS-CoV-2 is applied for testing. This document was downloaded from
https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset, accessed
on 24 May 2023. The dataset has 306,429 occurrences and eight features such as patient
ID, age, gender, city, nation, province, binary code for a chronic condition, symptoms,
and travel history. Among these, the key traits are chosen for categorization. To conduct
the tests, 1000–10,000 data points are gathered.

5. Results and Discussion

The experimental results of the proposed model are analyzed with the existing
models using metrics—prediction accuracy, space and time complexity, and false pos-
itive rate [1,2]. The percentage of correct predictions of patient information by the
classifier defines the prediction accuracy and is defined as:

Accp=
no o f correct predictions

n
∗ 100 (9)

where n denotes the count of patient information, and the percentage represents the
predicted accuracy. The ratio of incorrect prediction to the total records is called the false
positive percentage. The number of false positives is determined as follows:

RFP=
False positive

True negative + False positive
(10)
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The count of incorrect predictions signifies the number of patient data that were
represented. A percentage (%) is used to represent the false-positive rate. The time it takes
the algorithm to forecast the illness is known as the prediction time. The prediction time is,
therefore, mathematically expressed as follows:

Tp = n ∗ time (predicting one data) (11)

where, Tp denotes a prediction time, n denotes the number of data. The prediction time is
measured in terms of milliseconds (ms).

CS = n ∗ space [ storing one data] (12)

Table 4 compares the proposed model prediction accuracy to cutting-edge frameworks.
As demonstrated in Table 4, compared to the existing models [1,2], the proposed model
enhances prediction accuracy for 10,000 distinct instances of unique patient data. The
model effectively predicts 890 instances of patient data when the quantity of patient data is
set to 1000, whereas [1,2] correctly predict 850 and 820 instances of patient data, respectively.
The models in [1,2] have an accuracy rate of 85% and 82%, respectively, compared with
89% in the proposed model. Different numbers of the patient data are input along with
a subsequent execution of the numerous runs. The performance of the proposed model
is then contrasted with other methods. The average comparison results showed that the
proposed model accuracy is 4% greater than that of the current deep long short-term
memory (LSTM) ensemble models [1] and 8% higher than that of [2].

Table 4. Comparison with other models.

Patient Data
Prediction Accuracy (%)

Proposed Model Deep-LSTM MTGP

1000 89 85 82
2000 91 88 84
3000 90 87 83
4000 91 88 85
5000 90 87 84
6000 92 88 85
7000 91 87 84
8000 90 86 83
9000 91 87 84

10,000 90 86 83

The prediction accuracies of three separate approaches, namely, the proposed
model, the Deep-LSTM ensemble model [1], and the multi-task Gaussian process
(MTGP) model [2], are represented by three colors: violet, red, and yellow. The pro-
posed model outperforms the other two approaches according to the observed results.
The deep connectedness shift-invariant convolutional network was used to examine the
training and testing illness features, which resulted in the improvement. The attributes
analysis appropriately determines the patient risk prediction level with higher accuracy.

Table 5 shows the experimental findings of the false-positive rate utilizing three
methods: the proposed model, the Deep-LSTM ensemble model [1,2], and the MTGP
model [3]. The false-positive rate is calculated using a sample size of 10 k patients.

The simulated results show that the proposed model dramatically reduces the FPR
compared to the other methods. Consider the 1000 data points for experimentation. The
suggested proposed model technique has a false-positive rate of 11, whereas the existing
models [1] and [2] have rates of 15% and 18%, respectively. Similarly, for each approach,
the following nine outcomes are produced. The proposed model is compared with existing
methods using an expected comparison result. The results confirm that the proposed model
significantly improves FPR performance by 27% and 41% compared to the other models.
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Table 5. Comparison of the FPR.

Patient Data
FPR (%)

Proposed Model Deep-LSTM MTGP

1000 11 15 18
2000 9 12 16
3000 10 13 17
4000 9 12 15
5000 10 13 16
6000 8 12 15
7000 9 13 16
8000 10 14 17
9000 9 13 16

10,000 10 14 17

The adoption of regression-based classification approaches for predicting SARS-CoV-2
patient data is the source of the improved performance. The proposed model employs
Kriging regression to analyze the feature values for the prediction procedure.

The proposed model strategy, on the other hand, is observed to consume less time
for SARS-CoV-2 prediction than the other two methods. Stochastic Bregman neighbor-
embedded Sammon mapping is used to project the relevant features into the feature subset
for illness prediction. The mapping function determines the features that are most relevant
to the goal. The categorization uses the selected features and Kriging regression, reducing
prediction time.

Table 6 shows the SARS-CoV-2 prediction time utilizing three techniques concerning
various patient variables. According to the table values, the proposed model takes less time
to forecast the disease level than the ensemble model of Deep-LSTM [1] and the MTGP
model [2]. The suggested model technique requires 23 ms of time, while the prediction times
for the other two current approaches [1] and [2] are 26 ms and 28 ms, respectively, assuming
that there are 1000 patient data. For each strategy, ten outcomes are obtained using various
patient data inputs. The prediction time is decreased by 9% and 15%, respectively, as
compared to the Deep-LSTM ensemble model [1].

Table 6. Comparison of prediction time.

Patient Size
Prediction Time (in ms)

Proposed Model Deep-LSTM MTGP

1000 23 26 28
2000 27 32 36
3000 33 36 39
4000 37 40 42
5000 40 45 48
6000 45 48 51
7000 48 53 56
8000 52 56 60
9000 56 59 63

10,000 58 60 65

Table 7 compares the space complexity of three alternative approaches: the proposed
model, the Deep-LSTM ensemble model [1], and the MTGP model [2]. The input consists of
a variable number of patient data ranging from 1000 to 200, 300, and 1,000,000. Let us say
that we have 1000 patient data points to explore. The proposed model takes up the least
space for predicting disease, and the Deep-LSTM ensemble [1] and MTGP model [2] take
up more. The observed findings demonstrate that the proposed model achieves lower
space complexity than existing approaches. Compared to other approaches, the expected
result shows that the proposed model reduces space consumption by 9% and 17%.
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Table 7. Comparison of space complexity.

Patient Data
Space Complexity (MB)

Proposed Model Deep-LSTM MTGP

1000 21 24 27
2000 24 26 30
3000 27 30 33
4000 32 36 40
5000 35 40 45
6000 39 43 48
7000 43 46 50
8000 46 50 52
9000 51 54 57

10,000 55 58 61

This is because the SARS-CoV-2 forecast was made before the feature selection proce-
dure was completed. The proposed model uses the relevant features and deletes distinct
features. This helps to save space during the SARS-CoV-2 forecast.

In Table 8, the neural network algorithm achieves the highest accuracy, F1-score,
recall, and precision among the three algorithms. It attains an accuracy of 98.78%,
an F1-score of 99.10%, and a recall and precision of 98.92%. The neural network also
exhibits a relatively low error rate of 0.0122. Additionally, the neural network algorithm
consumes 3.278726674 units of time for execution. However, it is worth noting that the
loss function plot for the neural network model appears unusual, with the validation
dataset’s accuracy remaining higher than the training dataset and the validation loss
lower than the training loss, which is contrary to expectations.

Table 8. Machine-learning techniques with core analysis.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function
Error
Rate

Neural network 97.78% 98.80% 98.32% 98.28% 4.688728674 46,934.55218 0.02222
Decision tree 73.59% 73.44% 73.59% 73.60% 6.488522147 74,401.98414 0.2641

Random forest 72.67% 72.15% 72.66% 72.68% 3.781597534 57,045.66329 0.2733

In Table 9, the decision tree algorithm achieves a moderate accuracy of 74.59%, an
F1-score of 74.56%, a recall of 74.64%, and a precision of 74.42%. The decision tree algorithm
has a higher error rate of 0.2541 and takes 5.688512147 units of time for execution. The
random forest algorithm attains an accuracy of 72.99%, an F1-score of 73.35%, recall of
73.44%, and precision of 73.36%. It has a similar error rate as the decision tree algorithm
(0.2701) but a faster execution time of 2.582577534 units. These results indicate that the
neural network algorithm outperforms the decision tree and random forest algorithms in
terms of accuracy, F1-score, and precision, while also achieving a low error rate.

Table 9. Dataset with Adam optimizer.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function
Error
Rate

Neural network 98.78% 99.10% 98.92% 98.92% 3.278726674 34,934.45318 0.0122
Decision tree 74.59% 74.56% 74.64% 74.42% 5.688512147 64,321.88314 0.2541

Random forest 72.99% 73.35% 73.44% 73.36% 2.582577534 48,035.56229 0.2701
Proposed model 99.03% 99.32% 98.98% 99.06% 2.12368745 33,876.36407 0.0118

However, further investigation is necessary to understand the anomalous loss function
plot observed for the neural network model. The proposed model demonstrates exceptional
performance with high accuracy, precision, and recall, outperforming all the other models
mentioned. The time consumption for this model was approximately 2.12 s. Finally,
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based on the provided information, the proposed model outperforms the decision tree
and random forest models regarding performance metrics such as accuracy, precision, and
recall. However, it is important to note that the absence of the specific loss function used
for these models limits the analysis of their training process and further comparison.

In Table 10, the neural network algorithm exhibits exceptional performance across
all evaluated metrics compared to the decision tree and random forest algorithms. The
neural network algorithm achieves an accuracy of 99.22%, an F1-score of 99.31%, a recall
of 99.33%, and a precision of 99.23% [1]. These results indicate a high accuracy, precision,
recall, and F1-score, showcasing the algorithm’s effectiveness in accurately classifying data.
On the other hand, the decision tree algorithm demonstrates moderately good performance
with an accuracy of 75.03%, an F1-score of 74.77%, a recall of 75.05%, and a precision
of 74.73% [2]. Although these metrics suggest reasonable performance, they fall short
compared to the neural network algorithm.

Table 10. Dataset with Adam optimizer and hyperparameters.

Algorithm Accuracy F1-Score Recall Precision Time Consumption Loss Function
Error
Rate

Neural network 99.22% 99.31% 99.33% 99.23% 2.818727 34,933.2532 0.78
Decision tree 75.03% 74.77% 75.05% 74.73% 5.228512 64,320.6831 0.2497

Random forest 73.43% 73.56% 73.85% 73.67% 2.122578 48,034.3623 0.2701
Proposed model 99.41% 99.46% 99.45% 99.37% 2.032367 33,842.2328 0.2391

Similarly, the random forest algorithm also exhibits decent performance. Still, it is
slightly lower than the decision tree algorithm, with an accuracy of 73.43%, an F1-score
of 73.56%, a recall of 73.85%, and a precision of 73.67% [2]. Overall, the results highlight
the neural network algorithm as the most effective and reliable choice among the three
algorithms. However, it is essential to conduct a comprehensive analysis considering addi-
tional metrics such as time consumption, loss function, and error rate to understand the
algorithms’ performance fully. Based on these comparisons, the proposed model demon-
strates superior performance in accuracy, F1-score, recall, precision, time consumption,
loss function, and error rate. However, it is important to note that the specific context and
requirements of the problem should also be considered when selecting the most suitable
model for a given task.

In Table 11, showing the proposed model, as well as the neural network, decision
tree, and random forest algorithms, it is evident that each model performs differently
across the various evaluation measures. The proposed model’s mean absolute error (MAE)
is 0.0163923 [3]. In comparison, the neural network achieves a slightly higher MAE of
0.0236756 [2]. The decision tree model yields a MAE of 0.0174911, and the random forest
model obtains a similar MAE of 0.0226886 [1]. Moving on to the mean squared error
(MSE), the proposed model achieves the lowest value at 0.00131245, followed by the neural
network with 0.00149826. The decision tree model has a MSE of 0.0026259, and the random
forest model performs slightly better with a MSE of 0.0017358. The root mean squared error
(RMSE) for the proposed model is 0.03499126, and the neural network and decision tree
models have RMSE values of 0.03649006 and 0.0503219, respectively. The random forest
model performs the best in terms of RMSE, achieving a value of 0.0413318.

When considering the coefficient of determination (R-squared), which measures the
proportion of the variance in the dependent variable that the independent variables can
explain, the random forest model outperforms the other models with an R-squared value
of 0.9886125. The proposed model and neural network follow closely with R-squared
values of 0.97114391 and 0.97315592, respectively. The decision tree model achieves an
R-squared value of 0.9786136.
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Table 11. Dataset with Adam optimizer, hyperparameters with stochastic regression.

Metrics Proposed Model Neural Network Decision Tree Random Forest

MAE 0.0163923 0.0236756 0.0174911 0.0226886
MSE 0.00131245 0.00149826 0.0026259 0.0017358
RME 0.03499126 0.03649006 0.0503219 0.0413318

R-Squared 0.97114391 0.97315592 0.9786136 0.9886125
RAE 0.0868276 0.1258386 0.0978889 0.0977898
RRSE 0.1613141 0.1769975 0.1713163 0.1624251

The relative absolute error (RAE), which assesses the average difference between
predicted and actual values relative to the mean of the actual values, is the lowest for the
proposed model at 0.0868276. The neural network model has a higher RAE of 0.1258386,
and the decision tree and random forest models yield RAE values of 0.0978889 and
0.0977898, respectively. Lastly, the relative root squared error (RRSE), which measures
the average difference between predicted and actual values relative to the range of the
actual values, is the lowest for the proposed model at 0.1613141. The neural network,
decision tree, and random forest models achieve RRSE values of 0.1769975, 0.1713163,
and 0.1624251, respectively.

Finally, based on the provided metrics, the proposed model showcases the best per-
formance in terms of MAE and MSE. However, the random forest model outperforms the
other models regarding R-squared, indicating a higher proportion of explained variance.
Additionally, the proposed model demonstrates lower RAE and RRSE values, suggesting
better accuracy than the other models.

In Table 12, showing the neural network, decision tree, random forest, and proposed
models, we can observe variations in the mortality rate, vaccination rate, and other relevant
features. The neural network model demonstrates a mortality rate of 0.05 and a vaccination
rate of 0.02, and other relevant features are at 0.7. The decision tree model, on the other
hand, shows a lower mortality rate of 0.02 and a vaccination rate of 0.01, with other relevant
features at 0.85. Comparatively, the random forest model has a higher mortality rate of
0.1 and a vaccination rate of 0.03, and other relevant features are at 0.5. The proposed
model falls in between, with a mortality rate of 0.056, a vaccination rate of 0.04, and other
applicable features at 0.78.

Table 12. Dataset with Adam optimizer, hyperparameters with stochastic regression with
Sammon mapping.

Algorithm Mortality Rate in % Vaccination Rate in %
Other Relevant
Features in %

Neural Network 0.05 0.02 0.7
Decision Tree 0.02 0.01 0.85

Random Forest 0.1 0.03 0.5
Proposed Model 0.056 0.04 0.78

From these results, it can be inferred that the decision tree model has the lowest
mortality rate of 0.02, followed by the proposed model with a mortality rate of 0.056. The
neural network and random forest models demonstrate higher mortality rates of 0.05 and
0.1, respectively. Regarding vaccination rates, the decision tree model has the lowest value
at 0.01, and the random forest model has the highest value at 0.03. The proposed model
falls in between, with a vaccination rate of 0.04. When considering other relevant features,
the decision tree model has the highest value at 0.85, followed by the proposed model with
0.78. The neural network model has other relevant features at 0.7, and the random forest
model has the lowest value at 0.5.

At last, based on the provided data, the decision tree model showcases the lowest
mortality rate and the highest vaccination rate among the algorithms. However, the
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proposed model performs reasonably well, with a mortality rate higher than the decision
tree model but lower than the neural network and random forest models. Additionally, the
proposed model demonstrates a moderate vaccination rate and comparatively high values
for other relevant features.

A widely used approach to evaluating the performance of a machine-learning model
is a confusion matrix. This matrix provides a tabulated representation of the predicted
results versus the actual outcomes, which allows for a comprehensive examination of the
model’s effectiveness and limitations. By analyzing the matrix, one can obtain a more
detailed understanding of the model’s strengths and weaknesses, which can help in making
informed decisions about improving its performance in Table 13. A statistical analysis of
distributions of data involves using various statistical methods to describe and summarize
the characteristics of a dataset. The main objective of this analysis is to gain insight into
the underlying patterns and trends within the data. These measures provide information
about the typical or average values of the dataset in Table 13.

Table 13. Distributions of the data.

Statistical Measure Confirmed Deaths Recovered

count 3.06 × 103 306,429 3.06 × 105

mean 8.567091 × 104 2036.403268 5.04 × 104

std 2.78 × 105 6410.938048 2.02 × 105

min −3.03 × 105 −178.000000 −8.54 × 105

25% 1.04 × 103 13 1.10 × 101

50% 1.037500 × 104 192 1.75 × 103

75% 5.08 × 104 1322 2.03 × 104

max 5.86 × 106 112,385 6.40 × 106

Among the countries most affected by the SARS-CoV-2 pandemic, the top 10 confirmed
cases include the United States, India, Brazil, Russia, the United Kingdom, France, Turkey,
Italy, Spain, and Germany. Though some nations have seen a decline in new infections
and deaths, others struggle with high transmission rates and overwhelmed healthcare
systems. In terms of recovery rates, many countries have shown significant improvements
thanks to the availability of vaccines and better treatment options. However, disparities still
exist based on factors such as age, underlying health conditions, and access to healthcare
Figure 4.

Figure 4. Top 10 countries with highest number of confirmed cases.

38



Bioengineering 2023, 10, 880

A confusion matrix is a table that is used to evaluate the performance of a machine-
learning model by comparing predicted and actual outcomes. It provides a useful way to
visualize the true positives, true negatives, false positives, and false negatives generated by
a model. Neural networks are a machine-learning model inspired by the structure of the
human brain. They consist of layers of interconnected nodes that perform mathematical
operations on input data, gradually learning to recognize patterns and make predictions.
Decision trees are another type of machine-learning model that work by recursively splitting
data into smaller subsets based on the most informative features. They create a tree-like
structure that can be easily visualized, making them useful for explaining how a model
makes decisions. Random forests are an ensemble method that combine multiple decision
trees to improve predictive accuracy. Each tree in the forest is built on a random subset
of the training data and a random subset of the available features. This helps to reduce
overfitting and increase the generalization ability of the model. In Figure 5, death and
recoveries over time are exhibited using the metrics of std, mean and count. In Figures 6–8,
shows the error rate is a metric used to measure the performance of a machine learning
model. It quantifies the number of incorrect predictions made by the model. Loss functions
play a vital role in machine learning models as they quantify the discrepancy between
predicted outputs and the actual values. Computational time is an important consideration
when working with machine learning models. The time required for training and inference
can vary depending on the complexity of the model, the size of the dataset, and the available
computational resources.

To evaluate the performance of a neural network, a decision tree and random forest
use a ROC curve; the network is trained on a labeled dataset and then tested on a separate
set of labeled instances. The predicted labels and actual labels are compared to calculate the
TPR and FPR at different threshold values, and these values are plotted on the ROC curve
in Figures 9–11. Finally, the ROC curve is a useful tool for evaluating the performance of
binary classifiers such as neural networks, decision trees, and random forests. Plotting the
TPR and FPR at different threshold values shows how the classifier’s performance changes
as the threshold is adjusted, allowing for easy comparison between different classifiers.

The vast and complex world of machine learning requires a deep understanding
of various models, performance metrics, and optimization techniques. To improve the
performance of machine-learning models, it is essential to experiment with different
hyperparameters, regression techniques, and embedding methods to fine-tune them.
By carefully optimizing these factors, our machine-learning models can achieve greater
accuracy and efficiency.

 

Figure 5. Death and recoveries over time.
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Figure 6. Models with error rate.

 

Figure 7. Models with loss function.

 

Figure 8. Models with computational time.
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Figure 9. ROC for neural network classifier.

Figure 10. ROC for decision tree classifier.

Figure 11. ROC for random forest classifier.
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Figure 9 shows the optimized value as a red line and the ROC points as a blue line.
To be regarded as a good model, the ROC curve must be larger than the optimized region.
The model has to be improved if the region is smaller than the optimized one.

In Table 14, the AUC (area under the curve) score is a popular metric for evaluating
the performance of binary classifiers. In the context of neural networks, decision trees, and
random forests, the AUC score measures how well these models can distinguish between
positive and negative samples. A higher AUC score indicates better classifier performance:
a score of 0.5 indicates random guessing, and a score of 1.0 indicates perfect classification.
Neural networks, decision trees, and random forests can all be trained to optimize the AUC
score and improve their ability to classify samples correctly. As compared to other models,
the proposed model is the best with a marginal difference.

Table 14. AUC scores for classifiers.

Classifiers AUC Score

Neural Network 0.874033334
Decision Tree 0.873343619

Random Forest 0.894642082
Propose Model 0.879465732

6. Conclusions and Future Work

This study focuses on developing a predictive model for SARS-CoV-2 using machine-
learning techniques, aiming to enhance prediction accuracy and provide valuable insights
into the factors influencing the spread of the virus. The proposed model incorporates
stochastic regression to capture the stochastic nature of virus transmission, considering
uncertainties in the data. Additionally, feature selection methods are employed to iden-
tify the most relevant features contributing to prediction accuracy. The study also ex-
plores the use of neighbor embedding and Sammon mapping algorithms to visualize the
high-dimensional SARS-CoV-2 data in a lower-dimensional space, facilitating better inter-
pretation and understanding of underlying patterns. Various algorithms, including the
SARS-CoV-2 dataset, combined with ADHPSRNESM, are utilized in the analysis, and a
new approach called the proposed model is suggested by combining these methodologies.
The research findings can contribute to public health efforts by enabling informed decision
making for policymakers and healthcare professionals, ultimately aiding in effectively
managing and controlling the SARS-CoV-2 pandemic. The research on enhancing accuracy
through feature selection and visualization of high-dimensional data in the context of
SARS-CoV-2 has substantial implications for predicting and understanding the spread
of the virus. By employing various feature selection methods, the study aims to identify
the most relevant and informative factors that contribute to the accuracy of SARS-CoV-2
predictions, eliminating noise and unnecessary variables for improved prediction perfor-
mance. Additionally, the research incorporates neighbor embedding and Sammon mapping
algorithms to visualize the high-dimensional SARS-CoV-2 data in a lower-dimensional
space, enabling the identification of clusters, trends, and relationships that may not be
apparent in the original data.

These findings have practical implications for public health efforts, empowering poli-
cymakers and healthcare professionals to allocate resources, implement control measures,
and target interventions based on accurate predictions and a better understanding of the
underlying patterns driving SARS-CoV-2 transmission. Ultimately, this research contributes
to the global response in managing and controlling the SARS-CoV-2 outbreak, minimizing
its impact on affected populations.
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Abstract: Acupuncture is one of the most extensively used complementary and alternative medicine
therapies worldwide. In this study, we explore the use of near-infrared light-emitting diodes (LEDs)
to provide acupuncture-like physical stimulus to the skin tissue, but in a completely non-invasive
way. A computational modeling framework has been developed to investigate the light-tissue
interaction within a three-dimensional multi-layer model of skin tissue. Finite element-based analysis
has been conducted, to obtain the spatiotemporal temperature distribution within the skin tissue,
by solving Pennes’ bioheat transfer equation, coupled with the Beer-Lambert law. The irradiation
profile of the LED has been experimentally characterized and imposed in the numerical model.
The experimental validation of the developed model has been conducted through comparing the
numerical model predictions with those obtained experimentally on the agar phantom. The effects
of the LED power, treatment duration, LED distance from the skin surface, and usage of multiple
LEDs on the temperature distribution attained within the skin tissue have been systematically
investigated, highlighting the safe operating power of the selected LEDs. The presented information
about the spatiotemporal temperature distribution, and critical factors affecting it, would assist
in better optimizing the desired thermal dosage, thereby enabling a safe and effective LED-based
photothermal therapy.

Keywords: bio-heat transfer; light-tissue interaction; photothermal effect; acupuncture; acupoints;
thermal therapy; computational modeling

1. Introduction

Over the past two decades, there has been a significant increase in the use of comple-
mentary and alternative medicine worldwide, across all age groups [1–7]. In particular,
complementary and alternative medicine includes diverse and abundant traditional prac-
tices, such as naturopathy, chiropractic care, acupuncture, Ayurveda, and homeopathy.
Among these therapies, acupuncture has received significant attention, and is one of North
America’s fastest-growing complementary and alternative medicine therapies [8]. Acupunc-
ture is a nonpharmacological and minimally invasive traditional Chinese medicine therapy
that originated more than 2000 years ago, and has gradually spread and become quite
popular in the West [9,10]. Significant research efforts have been devoted in the past four
decades to investigating acupuncture’s clinical effectiveness and mechanisms of action,
with more than 10,000 randomized controlled trials published since 1975 [10–13]. However,
the exact explanation for the biological mechanism of action involved in acupuncture
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still remains elusive, which has hindered its modern development and integration into
conventional medicine [14].

Today, acupuncture is widely used to treat a plethora of diseases, such as musculoskele-
tal pain, gastrointestinal disorders, stroke, gynecological diseases, neurological disorders,
and various types of incurable chronic disease [1,15–18]. During modern acupuncture
therapy, very thin needles are inserted into the skin at certain specific acupoints in the
human body. The acupuncture needles are then stimulated by applying mechanical, elec-
trical, or other physical forms of energy, to activate various nerve receptors directly or
indirectly [17,19]. Several hypotheses have been proposed to describe the molecular path-
ways associated with the therapeutic effects of acupoint stimulations. One such recent
hypothesis is related to the activation of mast cells during acupuncture, which leads to anal-
gesic effects [14]. Moreover, the distinction between acupoints and non-acupoints is made
based on the concentration of mast cells. As such, acupoints have a higher concentration of
mast cells than any other location. The stimulation of the acupoints during acupuncture
therapy results in the degranulation of mast cells, which further modulates neighboring
cell behaviors by releasing biological substances, thereby enhancing vascular permeability
and nerve activation [14].

In the broader context of acupuncture therapy, the stimulation of the acupoints can
be performed through mechanical (acupuncture), heat (moxibustion), and electrical (elec-
troacupuncture) treatments. The present study focuses on the stimulation of acupoints
with heat, also called moxibustion therapy. As such, moxibustion is a non-invasive thermal
therapy that completely omits the need for needle insertion, thereby mitigating any chance
of pain, infection, or damage to the skin layer. Moxibustion is a relatively simple and
tolerable treatment, whereby dried mugwort (moxa) is burned over the acupoint, either
directly touching the skin or at a certain distance (or gap) from the skin surface [20,21].
Existing research suggests that the high temperature (approximately 500 ◦C) of burning
moxa sticks could result in a temperature rise within the skin tissue ranging between
38 ◦C and 50 ◦C [22–24]. However, the safe and effective temperature to avoid the pa-
tient’s discomfort and irreversible damage has been reported to be above 42 ◦C and below
50 ◦C [24,25]. Furthermore, moxibustion is typically performed for 10–30 min, repeated
several times in a week for a few weeks, and is able to provide a thermal stimulus to
the depth of 2–4 mm, affecting both the shallow and deep skin tissue [22,23]. The ther-
apeutic effects induced during moxibustion are related to a combination of heat effects,
nonthermal radiation effects, and pharmacological effects [22,24,26,27]. Among these, heat
stimulation is believed to be one of the critical factors directly related to the efficacy of
moxibustion therapy.

Furthermore, the major disadvantage of moxibustion is related to producing harmful
gases and odors by burning moxa sticks, similar to tobacco smoke and air pollutants [23,25].
Several alternatives have been explored to address this disadvantage, and to attain similar
therapeutic effects related to thermal stimulation during moxibustion therapy but without
the actual production of smoke or odor. More recently, the applications of lasers and
ultrasonic devices have also been explored to replace moxa sticks and attain a similar rise in
temperature within the deep tissues to that achieved in moxibustion therapy [23,25,28,29].
Moving in this direction, in the present study, we aim to propose and evaluate the feasibility
of moxibustion-like treatment utilizing near-infrared LED to provide thermal stimulus to
the tissue in a completely non-invasive fashion.

Compared to the lasers typically used in complicated clinical settings, LEDs are safer
and more cost-effective, and are well-tolerated by patients of all age groups. Furthermore,
there are a plethora of visible blue and red light wavelength LED-based devices already
available on the market, used by either patients or healthy individuals, independently
in their homes, for some generic dermatological applications [30–32]. However, to the
best of the authors’ knowledge, no studies (or devices) are available in the literature that
explore the feasibility of near-infrared LEDs as a reasonable alternative to moxa sticks
during moxibustion therapy, and that quantify the relationship between the light-tissue
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interactions during such a treatment. The selection of near-infrared LEDs is also based on
the fact that it reaches the maximum depth in the skin. In the following sections, we first
characterize the light irradiation of selected LEDs on the surface of the tissue. Then, we
utilize a numerical modeling framework to quantify the temperature rise within the skin
tissue subjected to the Gaussian irradiation profile of the LED. Furthermore, parametric
studies have been conducted, to investigate the effect of the applied power, irradiation
duration, and LED distance from the skin surface on the temperature rise attained at
different depths in the skin tissue. The results of the parametric analysis reported in the
present study will be helpful in better understanding the effects of various extrinsic factors
on the LED-based heating of skin tissue. They would pave the way to developing cost-
effective and easy-to-use LED-based wearable devices, to provide on-demand physical
stimulus at home, without needing to go to a clinic.

2. Materials and Methods

This section provides details of the computational domain and numerical framework
adopted to study the effect of LED irradiation on heat transfer in skin tissue. The optical
and thermal properties of the tissue, governing equations, and boundary conditions are
also presented. Finally, the details of the characterization of the irradiance profile for the
selected LEDs, and the experimental setup utilized to test and validate the developed
numerical model, have been provided.

2.1. Finite-Element-Method (FEM)-Based Model

Figure 1 presents the computational domain of skin tissue considered in the present
study. The skin model comprises three layers: the epidermis, the dermis, and subcutaneous
tissue [33–35]. Each layer has distinct optical and thermal properties. LEDs were placed
on the top surface of the skin tissue, with variable distances between the top of the LED
surface and the epidermis skin layer. The main motive of the present study was to quantify
the interaction between the LED irradiance and the temperature rise within the skin tis-
sue. In addition, heat transfer analysis within biological tissue is highly complex, due to
the heterogeneous vascular structure, blood flow in the complex network of arteries and
veins, metabolic heat generation, and dependence of the tissue properties on the physi-
ological conditions [36–38]. Pennes’ Fourier-law-based bioheat transfer model is widely
used for predicting the temperature distribution within the human body for numerous
biological and medical applications, due to its simplicity, computational efficiency, and
cost-effectiveness. Notably, Pennes’ model is a continuum model, whereby the blood
vessels are not individually incorporated into the computational domain; instead, their
effect is lumped into a single factor known as the “blood perfusion rate”.

The generalized version of Pennes’ bioheat transfer equation utilized in the present
study for evaluating the LED-induced heating is represented as [38]:

ρcp
∂T
∂t

= ∇·(k∇T)− ρbcbωb(T − Tb) + Qmet + Qsource (1)

where ρ is the density of the tissue (kg/m3); cp is the specific heat capacity of the tissue
(J/kg/K); k is the thermal conductivity of the tissue (W/m/K); T is the temperature of
the tissue that will be quantified from Equation (1) (K); ρb is the density of the blood
(=1050 kg/m3) [39]; cb is the specific heat of the blood (=3617 J/kg/K) [39]; ωb is the blood
perfusion rate (s−1); Tb is the arterial blood temperature (=310 K); Qmet is the metabolic
heat generation (=368 W/m3) [34,35]; and Qsource represents the energy absorption of the
LED irradiation (W/m3).
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Figure 1. Schematic of the 3D model of the three-layered skin considered in the present study.

The LED heat source has been modeled using the Beer-Lambert law in the numerical
analysis, which is represented as [34]:

Qsource = μe f f ·I·e−μe f f ·z (2)

where μeff is the effective attenuation coefficient (m−1); z is the depth of the tissue (m); and
I is the LED irradiation intensity (W/m2) given by [40]:

I(x, y) = Io·e−
(x2+y2)

2σ2 =
P

2πσ2 ·e
− (x2+y2)

2σ2 (3)

where I0 is the maximum irradiation intensity at the center of the 2D Gaussian profile of
the LED beam (W/m2); σ is the standard deviation of the LED beam Gaussian profile; and
P is the LED radiometric power (W). As mentioned, the LED operates at a near-infrared
wavelength of 850 nm. Furthermore, the effective attenuation coefficient that accounts for
the absorption and scattering phenomena of LED light in skin tissue, based on diffusion
approximation, is given as [34]:

μe f f =
√

3μa(μa + μ′
s) (4)

where μa is the absorption coefficient of tissue (m−1), and μ′
s is the reduced scattering

coefficient of the tissue (m−1), both approximated at a wavelength of 850 nm for different
skin layers, from [41]. The thermal and optical properties of the different skin layers (the
epidermis, dermis, and subcutaneous fat) considered in the numerical simulations are
summarized in Table 1 [34,35]. More details of the characterization of material properties
utilizing photothermoacoustic spectroscopy can be found in [42].

Table 1. Thermal and optical properties of the various skin layers considered in the present study.

Parameters Epidermis Dermis Subcutaneous Fat

Density, ρ (kg/m3) 1200 1090 1210
Specific heat capacity, cp (J/kg/K) 3950 3350 2240
Thermal conductivity, k (W/m·K) 0.24 0.42 0.194
Blood perfusion rate, ωb (1/s) - 0.002 0.002
Absorption coefficient @ 850 nm, μa (1/cm) 0.9 0.95 1
Reduced scattering coefficient @ 850 nm, μ′

s (1/cm) 30 20 18

FEM-based COMSOL Multiphysics 6 (COMSOL, Inc., Burlington, MA, USA) software
was adopted to solve the spatiotemporal temperature distribution obtained within the
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skin tissue subjected to LED irradiation. The computational domain was discretized using
unstructured tetrahedral mesh elements in COMSOL. A grid independence solution was
obtained by refining the mesh until the error associated with the maximum temperature
prediction was less than 0.5% between two contiguous meshes. The optimal number of
total mesh elements considered in the present study was 162,118. The initial temperature
of the skin tissue was assumed to be the same as the core body temperature of the human
body, 37 ◦C. The Gaussian profile obtained from experimental characterization was applied
at the top surface of the computational domain of the skin, at the center, for 10 min. All the
computational domain boundaries, except for the top, were applied with thermal insulated
boundary conditions. The top surface of the computational domain was subjected to the
natural convection and radiation boundary conditions given by (−k∇T = h(T − T∞)), and(−k∇T = εσ(T4 − T4

∞)
)
, respectively, where h is the convective heat transfer coefficient

assumed to be 10 W/m2 K [23,35]; T∞ is the surrounding ambient temperature, considered
to be 25 ◦C [23,35]; ε is the emissivity of the skin surface, assumed to be 0.95 [23,34,35]; and
σ is the Stefan-Boltzmann constant.

2.2. LED Irradiance Profile

The characterization of the optical properties of the selected near-infrared LEDs (LUX-
EON IR Domed Line, Lumileds Holding B.V.) operating at a wavelength of 850 nm, with
90◦ and 150◦ emission patterns representing full-width half maximum (FWHM) angles,
was performed utilizing a Thorlabs BP209IR1 beam profiler, as shown in Figure 2a. The
XYZ stage was utilized to make micron-level adjustments that would facilitate the align-
ment of the LED with the center of the beam profiler, to ensure a properly characterized
beam spread. This XYZ stage was fitted with a rod that allowed a clamp holding the
LED-heat-sink combination to move freely. Once aligned, the LED was moved as close
to the aperture as possible, and its position was recorded on the XYZ stage as a relative
position zero. Having the LED measured physically close to the aperture would help in-
crease the accuracy of the beam profile shape, its peak intensity, and other optical features,
as the entirety of the light produced would be captured within the aperture. With this
setup, we could then take beam profile measurements at different relative distances, to
better characterize the beam shape and how it would change at increasing distances, to be
used as the input in our developed numerical models for predicting the spatiotemporal
temperature distribution within the biological tissue. Before any measurements were taken,
the beam profile was set to accept the LED operating wavelength of 850 nm, as well as
being set to operate at the maximum aperture width of 9.0 mm, and at a scanning rate of
20 Hz. With the increased scanning rate, the resolution of our profiles was increased, and
helped to reduce the warping effect of the potential saturation incurred by the LED on
the beam profiler. Customized software and a customized circuit board were used in the
experiments. The LED profile for both LEDs was represented by a Gaussian-fit curve, as
represented in Figure 2b. This Gaussian irradiation profile for both LEDs was obtained for
different operating currents and voltages, and thus different operating power. The obtained
Gaussian irradiance profile was provided as an input at the top of the skin surface in the
numerical model for quantifying the light-tissue interaction. The obtained data were in
agreement with the manufacturer’s specifications and reported values.

2.3. Experimental Setup for Testing the LEDs

Agar gel was prepared with a 2.6% (w/v) concentration of agar powder mixed in DI
water. The recipe for the agar gel was adopted from [43], owing to the availability of optical
and thermal properties at that concentration. The fabricated agar gel was cylindrical, with
a height of 0.9 cm and a diameter of 7.5 cm. Figure 3 presents the experimental setup
utilized for testing the LEDs on the agar gel. The LED was applied at the top surface of
the agar gel, and a type-K thermocouple was gently inserted in the agar gel, to keep the
monitoring tip at a distance of 2 mm just below the center of the LED from the top surface.
For experimental validation, three sets of trials (for each LED) were conducted, to quantify
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the temperature profile at a depth of 2 mm within the agar tissue exposed to the 90◦ and
150◦ LEDs operated at a current of 0.802 A and a voltage of 3.6 V, for 5 min.

Figure 2. (a) The experimental setup used to determine the LED beam profiles. The different
components of the experimental setup are the XYZ stage, LED heatsink, beam profiler, and a custom-
made circuit board for operating the LEDs. (b) A snapshot of a typical beam-profiling measurement.
From left to right: the 2D x-axis, 2D y-axis, and 3D beam profiles of the 90◦ (top row) and 150◦ LEDs
(bottom row).
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Figure 3. Photographic view of the experimental setup for measuring the temperature profile. The
snapshot in the bottom right-hand corner is a sample of the actual agar gel used in the temperature
profile experiments.

3. Results

3.1. Experimental Validation

The developed model’s fidelity and integrity have been evaluated by comparing the
results predicted from the numerical simulation with those obtained numerically from
experimental studies on agar phantom under the same environmental conditions. No-
tably, the temperature profile obtained at the location of 2 mm away from the center of
the LED along the tissue depth was used for validation purposes. Motivated by [43], the
thermal and optical properties of the agar phantom were considered to be ρ = 1050 kg/m3,
cp = 4219 J/kg/K, k = 0.66 W/m/K, μa = 40 m−1, and μ′

s = 530 m−1. The effects of blood
perfusion and metabolic heat generation were neglected in the numerical model, to have
consistency with the agar phantom. The comparison of the temperature profile attained
with 5 min of LED irradiation has been presented in Figure 4. The mean standard deviation
along the whole trend of the experimental tests is 3.19% and 2.1%, for the 90◦ and 150◦
emission pattern LEDs, respectively, thus proving a limited variability across the experi-
ments. The correlation factor, R, between the numerically predicted and experimental data
after 300 s of LED irradiation is found to be 0.98 and 0.97, for the 90◦ and 150◦ emission
pattern LEDs, respectively. The mean absolute error is found to be 0.95 ◦C and 1 ◦C, for the
90◦ and 150◦ emission pattern LEDs, respectively, which shows a good performance. As
shown in Figure 4, there is a good agreement between the temperature profile obtained
with the numerical simulation and with experiments, for both the 90◦ and 150◦ emission
pattern LEDs, thereby lending great confidence to the results reported and discussed in
the following sections. Next, we will present the results of the numerical model, extended
to incorporate the optical and thermal properties of skin tissue, including microvascular
blood perfusion.

3.2. Effect of Input LED Power on Temperature Rise within the Skin

In this section, we will report the results of the parametric analysis conducted to
quantify the effect of the input LED power and the duration on the temperature rise attained
within the skin tissue. The treatment time for the therapy was selected to be 10 min to
attain thermal stimulus (>43 ◦C) at the depth ≥ 2 mm, consistent with typical moxibustion
therapy. The parametric analysis was conducted on the two LEDs operating at a near-
infrared wavelength of 850 nm, with 90◦ and 150◦ emission patterns representing full-width

51



Bioengineering 2023, 10, 837

half maximum (FWHM) angles. Although these LEDs can be operated at the maximum
power of 1000 mW, to avoid any heating and self-damaging issues, the maximum operating
power of the LED was kept as 700 mW. Figure 5a presents the transient temperature increase
obtained within the skin tissue when the 90◦ LED was placed at the top of the three-layer
skin model, with direct contact. As evident from Figure 5a, the increase in the operating
power of the LED resulted in a corresponding increase in the maximum temperature rise
within the skin tissue. The relative jump in maximum temperature attained by increasing
the LED power by a factor of 100 mW was approximately the same for all the cases. Further,
the maximum temperature reached within the skin tissue was less than 50 ◦C for the LED
operating at 300 mW, beyond which the maximum temperature was greater than 50 ◦C. For
all the LED operating powers, initially, the temperature rose steeply and later stabilized and
saturated with time. The higher the LED’s operating power, the longer the time required to
attain this saturation. For all considered cases, the saturation was attained within 5–6 min
of LED therapy. This highlights that the maximum temperature will be constant and will
not increase with an increase in treatment time, i.e., the maximum temperature attained
after 10 min will be the same after 15 min or 30 min, or even after one hour of LED therapy.
However, the zone of the skin tissue experiencing thermal effects may still enhance with
time, due to the conduction of heat deposited within the tissue.

Figure 4. Comparison of the experimentally measured and numerically predicted temperature
profiles at a depth of 2 mm for LEDs with emission patterns of: (a) 90◦, and (b) 150◦.

Figure 5. The effect of an input power of 90◦ emission pattern LED on (a) the maximum temperature
rise with time within the skin tissue, and (b) the temperature variation along the depth of the skin
after 10 min of LED irradiation.
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Figure 5b presents the temperature distribution attained after 10 min of LED therapy
within the skin tissue, as a function of the depth from the skin’s outermost layer and from
the LED’s center. As evident from Figure 5b, the maximum temperature was not attained
at the outer epidermis layer of skin; indeed, it occurred at the dermis layer. This can be
attributed to the natural convection cooling effects prevalent at the outer epidermis layer,
lowering the temperature slightly. After attaining the peak, the temperature continuously
declined with the depth of skin tissue. Furthermore, the increased operating power of the
LED increased both the temperature and the depth to which the higher-temperature effects
were felt within the skin tissue. Notably, previous physiological studies have highlighted
the activation of cutaneous thermosensitive receptors (TRPV channels) with increased
tissue temperature, inducing different biological and chemical reactions in the human
body [22,23,26,27,44]. For example, TRPV1 and TRPV2 can be activated when the heated
tissue temperature exceeds 43 ◦C and 53 ◦C, respectively. Moreover, the rise in temperature
at 44.5–46.5 ◦C can activate A-fibre mechano-heat-sensitive nociceptors in the human
skin [45]. The cholesterol-lowering effect is far more pronounced at 46 ◦C than at 38 ◦C [46].
Moreover, attaining a temperature above 50 ◦C will result in thermal ablation, i.e., inducing
irreversible damage within the skin tissue. Thus, the safe working limit of the proposed
LED-based photothermal therapy would be in the temperature range of 43–48 ◦C, similar
to the safe and effective range of moxibustion therapy. Based on the parametric studies
conducted on the 90◦ LED, the safe operating power resulting in therapeutic effects has
been found to be in the range of 200–300 mW, as highlighted in Figure 5b.

The effect of operating power of 150◦ LED on the maximum temperature rise has been
presented in Figure 6a. Again, as is evident, the increase in the operating power of the LED
resulted in an increase in the maximum temperature rise within the skin tissue, which was
somewhat proportionate to the increase in power. The temperature distribution obtained
within the skin tissue after 10 min of LED therapy is presented in Figure 6b. The safe
operating range of power to obtain therapeutic effects with 150◦ LED-based photothermal
therapy has been found to be 300–500 mW, as shown in Figure 6b.

Figure 6. The effect of an input power of 150◦ emission pattern LED on (a) the maximum temperature
rise with time within the skin tissue, and (b) the temperature variation along the depth of the skin
after 10 min of LED irradiation.

Furthermore, Figure 7 presents the heated volume of the skin tissue after 10 min of
LED irradiation, quantified with the isotherms of 43 ◦C and 50 ◦C. The goal of the proposed
LED therapy is to maximize tissue volume attaining a temperature greater than 43 ◦C,

53



Bioengineering 2023, 10, 837

and mitigate any chances of reaching 50 ◦C anywhere within the skin tissue. The heated
volume obtained from the parametric analysis, as presented for the 90◦ (in Figure 7a) and
150◦ (in Figure 7b) emission patterns, will assist in selecting the safe operating power range,
to avoid the temperature that initiates the ablation of the tissue. As depicted in Figure 7,
the heated volume abruptly increased with the increased operating power of the LED. The
initiation of the ablation zone (T > 50 ◦C) occurred at the power of 400 mW and 600 mW, for
the LEDs with emission patterns of 90◦ and 150◦, respectively. This highlights that the safe
operating power for 90◦ and 150◦ should be less than 400 mW and 600 mW, respectively, to
avoid the occurrence of thermal ablation leading to irreversible damage to the skin tissue.

Figure 7. The variation in the heated volume obtained using temperatures greater than the 43 ◦C and
50 ◦C protocol after 10 min of LED irradiation with emission patterns of (a) 90◦, and (b) 150◦.

Figure 8 directly compares the two selected LEDs, with emission patterns of 90◦
and 150◦, operating at a power of 500 mW. As evident from Figure 8a, the maximum
temperature rise attained within the skin tissue is significantly higher for the 90◦ LED than
for the 150◦ LED. The temperature distribution obtained within the skin tissue after 10 min
of LED therapy is presented in Figure 8b, again highlighting the performance of the 90◦
LED being far superior to that of the 150◦ LED. This can be attributed to the fact that the
emission angle of the 90◦ LED was more focused and thus could deposit a higher amount
of energy in a focused area, compared to the 150◦ LED that had a higher divergence angle
and, thus the light intensity could not penetrate to greater depths. The standard deviation
of the Gaussian profile (σ) for the 90◦ and 150◦ LEDs was found to be 4.6 mm and 7 mm,
respectively, highlighting the irradiation area of the 150◦ LED being higher, compared to
the 90◦ LED. Therefore, if the goal is to deliver the heat to a greater depth, one would use a
90◦ LED, and if the goal is to heat up a large area at a lower penetration depth, one would
use a 150◦ LED. The isotherms of 43 ◦C obtained after 10 min of LED-based photothermal
therapy are presented in Figure 8c. As depicted in this figure, the depth to which the effect
of the 43 ◦C temperature is felt is 5.4 mm for the 90◦ LED, compared to 4 mm for the 150◦
LED. Thus, the selection of the LED based on both the operating power and emission angle
basis would significantly affect the spatiotemporal temperature distribution, and hence the
efficacy of LED-based therapy.
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Figure 8. The effect of the LED emission patterns of 90◦ and 150◦ operating at an input power of
500 mW on (a) the maximum temperature rise within the skin tissue, and (b) the temperature
distribution along the depth of the skin tissue. Heating zone obtained with the isotherm of 43 ◦C
after 10 min of LED irradiation with the emission pattern of (c) 90◦, and (d) 150◦.

3.3. Effect of Distance between the LED and Skin Surface on Heat Transport

The effect of different distances between the LED and the skin’s topmost layer is
presented in Figures 9 and 10 for the 90◦ and 150◦ emission patterns, respectively. The
LEDs were operated at the safe operating power of 300 mW and 500 mW for the 90◦ and
150◦ emissions, respectively. Two distances were selected for this analysis: (i) no gap
between the LED and the skin (0 μm distance), and (ii) a gap of 2000 μm between the
LED and the skin surface. Figure 9a presents the temporal variation in the maximum
temperature for the two selected distances. As evident, a significant drop in the maximum
temperature attained within the skin tissue prevailed, as the distance between the LED
and the skin surface increased. After 10 min of LED therapy, the maximum temperature
dropped by 37.6%, as the LED initially placed in direct contact with the skin surface was
moved at a distance of 2000 μm from the skin surface. The temperature distribution attained
along the depth of skin tissue after 10 min of therapy with the two selected locations for
the 90◦ LED is presented in Figure 9b. The increase in the distance between the LED and
the skin surface resulted in a drop in temperature at (a) the epidermis-dermis interface
by 8.7%, and (b) the dermis-subcutaneous fat interface by 7.3%. This can be attributed to
the fact that as the distance between the LED and the skin surface was increased, the LED
irradiation intensity was no longer focused, and the losses were significant, thus resulting
in an abrupt decline in the temperature attained within the skin tissue. For example, the
standard deviation of the 90◦ LED beam Gaussian profile (σ) increased from 4.6 mm to
6.1 mm as the LED was moved at the distance of 2000 μm from the skin surface, thus leading
to a decline in the irradiation intensity (as σ is inversely proportional to the irradiation
intensity). The temporal variation in the volume obtained using the isotherm of 43 ◦C (i.e.,
the volume of skin tissue within the computational domain having temperature ≥ 43 ◦C)
is shown in Figure 9c. As depicted in this figure, the temperature of 43 ◦C was attained
almost instantaneously when the LED was placed in direct contact with the skin surface. In
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comparison, it took almost 3 min before the temperature of 43 ◦C was attained for the LED
placed at a distance of 2000 μm from the skin surface. After 10 min of LED-based heating
of the skin tissue, the desired heated volume of the tissue dropped abruptly by 372%, as
the distance between the LED and the topmost layer of skin was increased to 2000 μm.
Furthermore, the temperature distribution attained after 10 min of LED heating in the three-
layered skin tissue is presented in Figure 9d and 9e, for 0 μm and 2000 μm, respectively.

Figure 9. The effect of increasing the distance between the 90◦ LED (operating at 300 mW) and the skin
surface on (a) the maximum temperature rise within the skin tissue, (b) the temperature distribution
along the depth of the skin tissue, and (c) the heating volume attained with the T > 43 ◦C protocol.
Temperature distribution (in ◦C) attained within the skin tissue after 10 min of LED irradiation, when
the gap between the LED and skin surface was: (d) 0 μm, and (e) 2000 μm.
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Figure 10. The effect of increasing the distance between the 150◦ LED (operating at 500 mW) and the
skin surface on (a) the maximum temperature rise within the skin tissue, and (b) the temperature
distribution along the depth of the skin tissue. Temperature distribution (in ◦C) attained within
the skin tissue after 10 min of LED irradiation when the gap between the LED and skin surface is:
(c) 0 μm, and (d) 2000 μm.

Similar trends were obtained for the 150◦ LED, as presented in Figure 10. The maxi-
mum temperature dropped by 59% by increasing the distance between the LED and the
skin to 2000 μm after 10 min of heating. Moreover, by increasing the distance, the tem-
perature attained at (a) the epidermis-dermis interface dropped by 13.31%, and (b) the
dermis-subcutaneous fat interface by 11.8%. Furthermore, the standard deviation of the
150◦ LED beam Gaussian profile (σ) increased from 7 mm to 10.7 mm as the LED was
moved at the distance of 2000 μm from the skin surface, thereby leading to a decline in
the irradiation intensity (Equation (3)). The temperature distribution attained within the
skin tissue after 10 min of LED therapy is presented in Figure 10c,d. As evident from these
figures, as the distance between the LED and skin increased to 2000 μm, the target tempera-
ture of 43 ◦C was not attained. Thus, the distance between the LED and the skin surface
significantly affected the efficacy of the proposed LED-based therapy. This highlights that
these distances can be altered to control the maximum temperature within the skin tissue,
to provide patient-specific desired therapeutic effects.

3.4. Effect of Increase in the Number of LEDs on Temperature Rise within Skin Tissue

The analysis previously presented is made under the assumption that the precise
location of the acupoint was previously known. Hence, the goal was to provide the thermal

57



Bioengineering 2023, 10, 837

stimulus at the acupoint utilizing near-infrared LED that would further degranulate the
highly concentrated mast cells. This would initiate biological mechanisms that would
enhance vascular permeability and nerve activation, thereby providing therapeutic effects.
The proposed LED-based therapy can also be extended to situations where the acupoint’s
precise location is unknown. In such a scenario, the treatment goal would be to provide
thermal stimulation to the large tissue area in contact with the LED, to achieve therapeutic
effects. To attain this, a single LED would be insufficient, and multiple LEDs would have to
be used and operated simultaneously, to heat up the large area/volume of the skin tissue.
Thus, to include this in our numerical analysis, we present a case study highlighting the
enhancement of the heated volume by using multiple LEDs operated simultaneously with
the same power. We will proceed to present the results obtained with multiple 90◦ LEDs
driven at the input power of 300 mW for 10 min. Figure 11 presents the temporal variation
in the volume obtained using the isotherm of 43 ◦C, using 1, 2, 3, 4, and 5 LEDs. As evident
from Figure 11, the increase in the number of LEDs leads to a substantial increase in the
heated volume within the skin tissue. Compared to the single LED, the heated volume after
10 min of LED therapy increased by 324%, 674%, 1014%, and 1338% with the simultaneous
usage of 2, 3, 4, and 5 LEDs, respectively. Moreover, the time required to attain the desired
temperature of 43 ◦C also decreased with the increase in the number of LEDs, as shown in
Figure 11.

Figure 11. The effect of increased LEDs on the volume attained with the isotherm of 43 ◦C.

A pictorial representation of the arrangement of these multiple LEDs is presented
in Figure 12. Notably, the center-to-center distance of any LED from the one placed at
the center was fixed at 10 mm for all configurations. Figure 12 also presents the heated
volume as viewed from the top skin surface where the LED is applied, to give a pictorial
representation of the volume enhancement with multiple LEDs. This analysis can be further
extended to (a) optimize the distance between the LEDs, and (b) operating different LEDs
at different powers, so as to restrict the maximum temperature attained within the skin
tissue within safe limits, and provide the desired therapeutic effects.
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Figure 12. Pictorial representations of the top view of the isotherm of 43 ◦C on the skin surface
attained with different numbers of LEDs.

4. Discussion

In this work, we proposed a novel acupuncture-like therapy, utilizing non-invasive
LEDs to provide a physical stimulus to the skin tissue. The proposed therapy is completely
non-invasive, eliminating the need to insert needles, as in conventional acupuncture ther-
apy, or the production of smoke and odor from burning moxa sticks, as in conventional
moxibustion. The application of visible blue and red LEDs is quite prevalent in several
dermatological applications. In this work, we conducted a feasibility study to explore the
effectiveness of the near-infrared LED to provide a thermal stimulus to the skin tissue.
A computational framework was developed to quantify the spatiotemporal temperature
distribution within the multilayer skin tissue irradiated by the near-infrared LED. Two
commercially available LEDs with 90◦ and 150◦ FWHM angles operating at the wavelength
of 850 nm were selected. Firstly, we experimentally characterized the irradiance profile
of both these LEDs. A Gaussian profile was obtained for both LEDs, as presented in
Figure 2. Secondly, we conducted the experimental tests utilizing both LEDs on the agar
phantom gel, to obtain the temperature profile at a depth of 2 mm from the surface. The
obtained profile was compared with the results predicted by the developed numerical
model, incorporating the thermal and optical properties of the agar phantom under the
same environmental conditions. A good agreement was obtained between the numerically
predicted and experimentally obtained temperature profiles for both LEDs, as shown in
Figure 4. Lastly, once the validation was complete, the numerical model was extended to
incorporate multilayer skin tissue, utilizing the well-characterized properties for different
layers of skin tissue available in the recent literature. The experimentally characterized
Gaussian irradiance profile of the LED was applied at the top surface of the skin tissue to
investigate the heat transfer attained within the skin tissue due to light-tissue interactions.

As this is a feasibility study, it is quite important to understand the influence of critical
factors that could affect the efficacy of the proposed LED-based photothermal therapy.
Thus, parametric studies were conducted to quantify the effects of the LED input power,
treatment duration, and LED distance from the surface on the temperature distribution
attained within the skin tissue for both the selected LEDs. The results of the parametric
analysis of the above-mentioned critical factors are presented in Figures 5–10. These results
can be utilized to provide a safe optimal operating condition on the basis of the maximum
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temperature attained within the skin tissue. It is noteworthy to mention that the goal of
the proposed therapy is to provide a thermal stimulus lower than the ablative temperature
value of 50 ◦C, so as to minimize any irreversible damage to the skin tissue. Finally,
this study also presented a case study related to the usage of multiple LEDs operating
simultaneously, to enhance the volume/area of the thermal stimulus within the skin tissue,
as shown in Figures 10 and 11.

The main limitation of the developed model is related to the validation aspect. The
developed numerical model was experimentally validated with the results obtained from
the agar gel, the optical and thermal properties of which are inconsistent with skin tissue.
Additionally, the validation was carried out in ex vivo settings, neglecting the critical impact
of microvascular blood perfusion. Our group’s current research efforts are significantly
devoted to addressing these limitations. Despite these limitations, we still believe that the
results reported in this study will assist in better understanding the light-tissue interactions
during LED therapy. Moreover, the parametric analysis results have highlighted several
critical factors that can be targeted to enhance the efficacy of LED-based heating, to attain
the desired therapeutic effects. For example, the linkage between the operating power of
the LED and the maximum temperature attained within the skin tissue has been provided.
Such information would be critical for designing an LED-based device capable of working
under safe temperature limits. The results of the power-temperature relations presented
in this study can be further utilized for developing different control algorithms to keep
the maximum temperature within the skin tissue at safe operating conditions. These
controllers (e.g., a real-time temperature feedback controller or power controller) can be
designed by monitoring the temperature at the surface of the skin tissue, and modulating
the applied power to keep the maximum temperature below the desired maximum value,
to avoid any damage to the skin tissue, thus enhancing both the safety and efficacy of
the proposed LED-based therapy. Our group is also working on the clinical translation of
the reported numerical results in this work. We are working on developing a miniature
device that could be easily mounted onto textile-based wearable products (e.g., a glove,
head/arm/wrist/chest band, knee/neck pad, socks), and would be beneficial in providing
on-demand physical stimulus to the wearer at home.

5. Conclusions

This study reports the development of a computational framework for accurately
quantifying the heat transport within skin tissue exposed to near-infrared LED-based ther-
apy. The numerical validation of the developed model has been carried out by performing
experimental tests on agar phantom. A good agreement between the experimental and
numerically predicted results was found. The numerical results evaluated the effect of
the power, duration, distance between the LED and the skin, and number of LEDs on the
maximum temperature attained within the skin tissue. It was found that the operating
power and emission angle of the LED significantly affected the spatiotemporal temperature
distribution obtained during LED-based therapy. Furthermore, the maximum temperature
attained within the skin tissue could be controlled by altering the location between the
skin surface and the LED. The application of multiple LEDs would result in an abrupt
increase in the heated volume during LED-based photothermal heating, which could be
optimized by using different distances between LEDs or operating LEDs at different power.
It was found that the proposed LED-based therapy could safely provide thermal stimulus
to the skin tissue, to a depth of 4–5 mm. This analysis will pave the way for quantifying the
optimum settings for LED therapy, to operate within safe temperature limits. We expect
that the future extension and clinical translation of this model will assist in designing a
low-cost, miniature device capable of effectively and safely providing a thermal stimulus
at home.
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Abstract: This study investigated electromyography (EMG)–force relations using both simulated and
experimental approaches. A motor neuron pool model was first implemented to simulate EMG–force
signals, focusing on three different conditions that test the effects of small or large motor units located
more or less superficially in the muscle. It was found that the patterns of the EMG–force relations
varied significantly across the simulated conditions, quantified by the slope (b) of the log-transformed
EMG-force relation. b was significantly higher for large motor units, which were preferentially located
superficially rather than for random depth or deep depth conditions (p < 0.001). The log-transformed
EMG–force relations in the biceps brachii muscles of nine healthy subjects were examined using
a high-density surface EMG. The slope (b) distribution of the relation across the electrode array
showed a spatial dependence; b in the proximal region was significantly larger than the distal region,
whereas b was not different between the lateral and medial regions. The findings of this study
provide evidence that the log-transformed EMG–force relations are sensitive to different motor unit
spatial distributions. The slope (b) of this relation may prove to be a useful adjunct measure in the
investigation of muscle or motor unit changes associated with disease, injury, or aging.

Keywords: surface electromyography (EMG); motor unit; spatial distribution; EMG-force relation;
biceps brachii

1. Introduction

Muscle force is produced by the contraction of muscle fibers belonging to different
motor units. Large motor units have higher activation thresholds with faster and larger
twitch (Type II) muscle fibers, compared to small motor units that have lower activation
thresholds with slower and smaller twitch (Type I) muscle fibers [1,2]. The distribution of
large and small motor units within a muscle has been explored in various studies. Early
histochemical studies revealed no significant difference in the proportion of slow and
fast muscle fibers between deep and superficial regions of human upper and lower limb
muscles [3,4]. However, others reported that fiber type distribution was not random [5],for
example, with a predominance of Type II fibers at the muscle surface and Type I fibers in
the deeper regions [6–8].

The electrical manifestation of a muscle contraction can be measured by electromyo-
graphy (EMG), which has an amplitude related, in part, to the location of the motor
units relative to the recording electrodes, i.e., the spatial distribution of the motor units.
Beck et al. [9] observed changes in the vastus medialis EMG–force relation at various
distances from the innervation zone. Trent et al. [10] also found that the shape of the biceps
brachii EMG–force relation was altered as a function of the distance between the innervation
zone and the recording position. The spatial sensitivity of the EMG–force relation relative
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to the innervation zone was also confirmed in a linear electrode array study of paretic and
contralateral muscles following stroke [11]. Given that the same force signal was used for
different channels, the spatial variation in EMG–force relation reflected mainly changes in
EMG properties because of changes in the relative position between active motor units and
the recording electrodes. While most previous simulation studies have investigated various
motor unit factors that may impact the EMG–force relation [12–15], few have examined the
effect of motor unit distribution within a muscle. Compared with the often-used random
distribution of different motor units or muscle fiber types, Robertson and Johnston applied
a weighting term to produce different fiber type content in deep and superficial muscle
regions, resulting in a larger variety of EMG–force relations [16].

In this study, quantitative analyses of both simulated and experimental EMG–force
relations were performed. First, we hypothesize that the EMG–force relation is sensitive
to different motor unit spatial distributions. To test this hypothesis, we implemented
a classic motor neuron pool model to simulate the EMG–force relation. Three different
motor unit distributions with respect to muscle depth were simulated (superficial, random,
and deep). For each condition, a log-transformed EMG–force relation was constructed,
which has been proved useful in characterizing EMG or mechanomyographic outputs with
respect to the muscle contraction level [10,17–19]. Second, we hypothesize that a muscle’s
EMG–force relation is sensitive to different electrode positions. To test this hypothesis, we
recorded high-density surface EMG signals using electrode arrays at different voluntary
isometric contraction levels of the biceps brachii in healthy subjects and examined the
log-transformed EMG–force relation across the electrode array recordings. The findings
confirmed both hypotheses, i.e., the slope of the log-transformed EMG–force relation was
found to be sensitive to different motor unit spatial distributions in the simulation study
and to different proximal–distal electrode positions in the experimental study. Therefore, it
may provide a convenient and useful adjunct parameter for assessing muscle or motor unit
changes associated with disease, injury, or advanced aging.

2. Materials and Methods

2.1. Simulation Study

Surface EMG and force signals were simulated using a motor unit pool model [12].
There were 150 motor units in the modeled motor neuron pool, which innervated about
70,000 muscle fibers. The number of muscle fibers per motor unit and motor unit recruit-
ment threshold (RTE) each had an exponential distribution. Consequently, most motor
units had a relatively low RTE and number of muscle fibers (range 22–2137) or twitch force
(range 1–100). Once the modeled excitatory drive exceeded RTE, the motor unit started to
discharge at a minimum firing rate of 8 Hz [12]. The last motor unit was simulated to be re-
cruited at 80% or 40% maximum excitation. The former corresponded to the activity of large
muscles, where recruitment plays a significant role throughout the force range (i.e., biceps
brachii), whereas the latter mimicked the activity of small muscles where rate coding plays
a more important role in force generation (i.e., hand muscles). The firing rate of each motor
unit increased linearly with excitation until the peak firing rate (PFR) was reached. Both
“onion skin” and “reverse onion skin” firing strategies were used when simulating motor
unit firing behavior. The “onion skin” strategy indicates that early recruited low-threshold
motor units attain higher peak firing rates than later-recruited high-threshold motor units.
Although the “onion skin” pattern is the most common observation during voluntary
muscle contractions [20,21], other patterns of motor unit firing rate behavior have been
proposed [22,23]. Some reported similar PFR in all motor units [24] or that high-threshold
units reach higher PFR than low-threshold units (reverse “onion skin” pattern) [25,26].
Therefore, both strategies were implemented in our study. The PFR of the largest and
smallest motor unit was set to 35 Hz and 25 Hz, respectively. The excitation level ranged
from 10% to 100% of maximum excitation with 10% increments.

A tripole model was used to simulate the generation of EMG signals [27]. In brief, the
muscle was assumed to have a cylindrical shape. The x-axis represents the width of the
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muscle in the transverse direction, the z-axis represents the muscle fiber direction, and the
y-axis represents the muscle depth (Figure 1). Muscle diameter was set to 24 mm, and the
thickness of fat plus skin layers was 3 mm. The action potential ϕj, generated by fiber j
and detected by the electrode on the surface (x–z plane), was given by Equation (1), where
Ka, represents the ratio of electric conductivities in the z (σz) and x directions(σx) (which
were set to σz = 0.33 and σx = 0.06 S/m, respectively) [27]. A motor unit action potential
(MUAP) was simulated as the sum of its constituent muscle fiber action potentials. The
interspike intervals (ISI) for each motor unit were simulated as a random process with
a Gaussian probability function. Surface EMG signals under different excitation levels
detected by the electrode were simulated as a sparse combination of MUAP trains from all
active motor units.

ϕj =
1

2πσx

6

∑
i=1

Pi√
((x − xi)

2 + y2
i )Ka + (z − zi)

2
(1)

Figure 1. The cylindrical muscle model and electrode for surface EMG simulation. Left panel: the
tripole model and the position of the electrode with respect to the cylinder parameters. Right panel:
the cross-section of the cylindrical model showing muscle and skin fat layers.

In this study, the electrode was simulated at the midline of the muscle (x = 0)
(Figure 1) [27]. The sampling rate was 2000 Hz. For each motor unit (the ith motor unit),
the twitch force simulation was adopted from the Fuglevand model [12], which followed a
second-order critically damped impulse response (Equation (2)). The range of peak twitch
force Pi across all motor units was 100-fold, and the range of contraction time Ti was 3-fold.
Motor units with lower RTE were simulated to have lower and longer twitch forces. For
example, the first recruited smallest motor unit had a Pi of 1 arbitrary unit (au) and a Ti of
90 ms, while the largest motor unit had a Pi of 100 au and Ti of 30 ms.

fi, j(t) = gi,j ∗ Pi·t
Ti

·e1− t
Ti (2)

The gain gi,j (Equation (2)) was adjusted based on Ti and the ISI of the discharge j.
The gain was set to 1 when Ti/ISIj < 0.4 and otherwise was determined as in Equation (3).
The total muscle contraction force was calculated as the linear summation of each motor
unit force output.

gi,j =
1 − e−2(Ti/ISIj)

3

Ti/ISIj
when Ti/ISIj > 0.4 (3)
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Three different motor unit distributions, with respect to muscle depth, were simulated.
The first of these were larger higher-threshold motor units, which were assumed to be
preferentially located in the superficial regions of the muscle (termed “superficial”). In this
case, there is a negative correlation between motor unit size and motor unit depth (Figure 2
left panel, slope of the linear regression = −0.13). The second simulation was small and
large motor units, which were assumed to be randomly distributed in the muscle (termed
“random”) regardless of the depth (Figure 2 middle panel, slope of the linear regression
close to 0). The third simulation was larger higher-threshold motor units, which were
assumed to be preferentially located in the deeper regions of the muscle (termed “deep”).
In this case, there was a positive correlation between motor unit size and motor unit depth
(Figure 2 right panel, slope of the linear regression = 0.12).

Figure 2. Three different motor unit distributions with respect to muscle depth. (A) motor unit depth
is negatively related with motor unit size. (B) motor unit depth is randomly assigned. (C) motor unit
depth is positively related to motor unit size.

2.2. Experimental Study
2.2.1. Participants and Consent

Nine subjects (8 male, 1 female, 28.9 ± 4.8 years, mean ± SD) participated in the
experiment. They were recruited by word of mouth or posters and had no known history
or symptoms of any neuromuscular disorder. All subjects were well informed of the
experimental procedures, risks, and possible discomfort and provided written informed
consent. The study was approved by the local ethics committee (ethical approval number:
GWIRC-AF/SC-07/2016.20).

2.2.2. Experiment Protocol

Surface EMG signals were recorded from the biceps brachii muscle using two electrode
arrays (Figure 3A,B). Each array (ELSCH064NM2, Bioelettronica, Torino, Italy) consists
of 64 channels with an 8 mm inter-channel distance arranged in a grid of 5 columns by
13 rows (one column consisted of 12 channels and the other four of 13 channels). One array
was placed over the lateral side (Matrix 1) and another over the medial side (Matrix 2) of
the biceps brachii and secured with elastic straps. The columns of both arrays were placed
parallel to the fiber direction. A ground channel was placed at the elbow. Subjects sat in
height-adjustable chairs, each with the back fully against the backrest (Figure 3C). The
dominant forearm (right side in all cases) was placed in a force-measuring device (CZL-3
T, Leitai, Bengbu, China) used to measure elbow flexion force. The elbow angle was set
at 120◦ degrees (180◦ = full extension), and the forearm was supinated. The generated
force was displayed on a second monitor in front of the subject as real-time feedback. Each
subject performed two to three maximum voluntary contraction (MVC) trials, and the
largest value of the trials was adopted as the MVC value. During the contractions, subjects
were strongly encouraged to give their best effort without altering the position of the arm
significantly. Each subject completed a series of 5 s submaximal contractions at 20, 40, 60,
and 80% MVC, with a brief rest period (>3 min) between each to avoid muscle fatigue.
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Figure 3. (A) Schematic representation of the two adhesive 2D matrices for experimental signals.
(B) High-density electrode matrix consisting of a grid with 6 columns (that are positioned parallel to
the muscle fiber direction) and 13 rows. (C) Illustration of the experimental setup.

Surface EMG signals were recorded by a signal amplifier in a monopolar configuration
(EMG–USB2, with a sampling frequency of 2048 Hz, 12-bit A/D converter, Bioelettronica,
Torino, Italy). The EMG amplitude and mean force were calculated from a 2 s segment
(4000 sample points) of each contraction. The force and EMG amplitude were normalized
to their maximum levels.

2.3. Log-Transformed EMG–Force Relation

When we have force and surface EMG measurement of a muscle’s isometric contraction
at different levels, a linear regression model fitting can be used to describe the natural
log-transformed EMG–force relation, as shown in Equation (4):

ln[Y] = b(ln[X]) + ln[a] (4)

where X is the force measurement, Y is the root mean square amplitude (RMS) of sur-
face EMG, ln represents the natural log, b is the slope, and ln[a] is the natural log of
the Y intercept. The equation can also be expressed as an exponential equation after
antilog transformation:

Y = aXb (5)

The value of b indicates whether the original, non-transformed EMG–force relation is
linear or nonlinear. If b is equal to 1, then Y increases linearly with X, if b is greater than 1,
Y increases faster than X, and if b is less than 1, Y increases slower than X.

2.4. Data Analysis

For the simulation analysis, 50 repetitions were performed and averaged for each depth
condition. A one-way ANOVA was performed to determine the effect of the depth condition
on the exponent b (slope of the EMG–force relation in Equation (4)). The distribution of
data was tested using the Kolmogorov–Smirnov normality test. When a significant overall
effect was confirmed, the Bonferroni-corrected post-hoc test for multiple comparisons
was performed.

In the experimental study, for each subject, we averaged b across the whole electrode
array and the different areas of the array as well. The proximal area of the muscle was
represented by electrodes in rows 3 and 4, and the distal area was represented by rows 10
and 11. The lateral area of the muscle was represented by electrode columns 1 and 2, and the
medial area by columns 5 and 6. The Wilcoxon signed-rank test was used to test whether b
was significantly different between the proximal and distal regions or between the lateral
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and medial areas. In all of the statistical analyses, a p-value less than 0.05 was considered
to be statistically significant. The analyses were performed using MATLAB 2020b.

3. Results

3.1. Simulation of the EMG–Force Relation

Different motor unit recruitment ranges (40% and 80%of maximum excitation) and
firing strategies (“onion skin” and reverse “onion skin”) were used in the motor neuron
pool model. Although variation in these factors influenced the simulated EMG–force
relation, as demonstrated in previous simulation studies [12–15], our data confirmed a
similar trend of the slope changes of the log-transformed EMG–force relation with respect
to different motor unit depth distributions (using the simulated two motor unit recruitment
ranges and two firing strategies). For the sake of simplicity, the results from only one motor
unit recruitment range (40% of maximum excitation) and firing strategy (reverse “onion
skin”) are presented below.

Representative examples of the log-transformed EMG–force relation under the three
simulated motor unit depth distributions are shown in Figure 4. Motor unit depth distribu-
tion was found to have a significant main effect on b (p < 0.001); b was largest when larger
motor units were located in the more superficial regions of the muscle (and the smaller units
were located in the deeper regions). Post-hoc comparisons indicate that b for large motor
units preferentially located superficially (1.38 ± 0.03, mean ± SD) was significantly higher
than for the random depth (1.00 ± 0.07, p < 0.001) or deep depth (0.94 ± 0.02, (p < 0.001)
conditions. The b for the random depth condition was also significantly larger than the
deep depth condition (p < 0.001).

Figure 4. (A) Representative examples of log transformed EMG RMS–force relation when large motor
units were assumed to preferentially located in the superficial or deep regions of the muscle or unre-
lated to muscle depth (random). (B) The results for b of all the repetitions in each simulated condition.

3.2. Experimental Recording of the EMG–Force Relation

The log-transformed normalized EMG–force relation from one representative subject
is presented in Figure 5. EMG signals were averaged from all electrodes to represent overall
muscle activity; b was 1.21, indicating that EMG amplitude increased relatively more than
force (Figure 5A). The distribution of b across all channels is shown in Figure 5B for this
subject. In this instance, b in the proximal region tended to be larger than in the distal
region, whereas b was similar in the lateral and medial regions. In all subjects, b was larger
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in the proximal than distal region; mean b was larger proximally than distally 1.14 ± 0.11
and 1.04 ± 0.14, Z = 2.67, p < 0.01, Figure 6A). The effect size was 0.89, calculated as Z
statistic divided by the square root of the sample size. No significant difference in b was
found between the lateral (1.08 ± 0.13) and medial (1.09 ± 0.12) regions (Figure 6B).

Figure 5. (A) The log transformed normalized EMG RMS–force relation (averaged from all electrodes)
in a representative subject. (B) The distribution of b across all electrodes for the subject.

Figure 6. (A) Individual b for all subjects recorded from the proximal (average of all channels in rows
3 and 4) and distal (rows 10 and 11) muscle regions. (B) Individual b for all subjects recorded from
the lateral (average of all channels in columns 1 and 2) and medial (columns 5 and 6) muscle regions.

4. Discussion

This study examined the EMG–force relation with respect to the depth distributions
of different motor units in a muscle. The relation between EMG amplitude and muscle
force has been extensively studied by others [12–16]. Two typical forms of the EMG–force
relation have been reported [28], namely an approximately linear relation and a curvilinear
relation, in which EMG amplitude increases relatively faster than force. In this study, the
log transformation was used to process the EMG–force relation. The resultant slope (b
term) can be used to characterize both linear and nonlinear forms of the relationship (or
linear, logarithmic, and exponential forms [16]). Log-transformed processing has been
used in previous studies when examining EMG–force relations or the mechanomyographic
amplitude versus force relations [17–19].
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We found that simulated b of the transformed EMG–force relation was sensitive to
different motor unit depth distributions. The predominance of large motor units in the
more superficial regions of the muscle tended to increase the slope. The muscle EMG–force
relation reflected progressive changes in the recruitment and firing rates of the constituent
motor units. The variation in b, due to different motor unit depth distributions, arose from
EMG changes rather than changes in force. During a muscle contraction, small motor
units were first recruited at relatively low forces, and large motor units were progressively
activated as the force was increased. The volume conductor effect of skin and subcutaneous
tissues impacted upon EMG amplitude and b may have been influenced by motor unit
depth distribution, i.e., greater b in muscles with relatively larger superficial motor units.
Therefore, EMG amplitude can be relatively small during low forces because less of the
small (deep) motor unit potentials can be volume conducted to the muscle surface. As
force is progressively increased, EMG amplitude can increase relatively more than force
because more of the large (superficial) motor unit potentials can be volume conducted to
the muscle surface.

The spatial distribution of muscle fiber types has been studied previously, and the
findings are mixed. Some reported that Type I and Type II fibers were randomly distributed
in the muscle cross-section [3,4]. Others found a larger proportion of Type II fibers at
the muscle surface [6–8]. In the biceps brachii, Elder and colleagues reported a higher
percentage of Type II fibers in the superficial than in the deep region in all four people
examined at an autopsy (group means, 58.1% vs. 52.3%), but the difference was not
significant based on an ANOVA analysis [5]. However, the difference was significant when
based on a paired t-test (p = 0.01). Similarly, in another study of six people at an autopsy,
the mean biceps brachii Type II fiber percentage was higher in the superficial than in the
deep region (57.7% vs. 49.5%), but statistics were not reported for these means [6]. In
macro-EMG(which captures the activity of a complete motor unit) analysis at different
depths of the human vastus lateralis muscle, large motor units were found to be more
superficially distributed, indicative of an inverse relationship between recording depth and
macro-EMG amplitude or area [29,30]. In contrast, there are also EMG studies suggesting
that large motor units are located deeper in a muscle [31–33].

The high-density surface EMG used in this study provided an opportunity to observe
the slope distribution of the log-transformed EMG–force relation across the electrode array.
Our experimental results indicate that b was larger proximally than distally, whereas it was
not different between the medial and lateral areas of the muscle. This is consistent with
a previous linear electrode array surface EMG examination of leg extensors, where b was
significantly higher near innervation zone channels than distal channels [10]. Although a
depth gradient with motor unit size has been suggested, few studies have examined how
such a gradient might change in different muscle regions. Based on our simulation results,
the relatively high b of the log-transformed EMG–force relation observed from the proximal
biceps seems to suggest a difference in motor unit spatial distribution between proximal
and distal regions. From the experimental results, we might infer that muscle fibers may
not be parallel to the skin over the whole muscle (fiber) length; however, they may run
at an angle. Thus, fast-twitch fibers might be located more superficially in the proximal
region and extend deeper into the distal portion of the muscle. Alternatively, the apparent
proximal–distal dependency of b may simply reflect gross anatomy and the location of
proximal–distal muscle regions relative to the recording electrodes.

Experimental studies of the EMG–force relation may have value in understanding
motor unit plasticity associated with aging, disease, and injury. For example, changes in
EMG–force relation have been reported in stroke [34–37], amyotrophic lateral sclerosis [38],
and spinal cord injury [39] patients. A number of motor unit factors may collectively
influence the EMG–force relation, including loss of functional motor units, impaired motor
unit control properties, and fiber atrophy. Examination of the slope change of the log-
transformed EMG–force relation may help understand the selective loss of motor units or
changes in muscle fibers that may affect motor unit distribution [40].
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Finally, yet importantly, the limitations of the study should be acknowledged. In our
simulation, many simplified assumptions were used. The primary focus of the model was
the spatial distribution of small and large motor units. Although a significant difference in
the slope of the log-transformed EMG–relation was confirmed in the simulation by solely
varying motor unit spatial distribution, there are many factors that can influence the EMG–
force relation (the b values). For example, variations in muscle fiber length, conduction
velocity, arm geometry, surface electrode size, and configuration may all have an effect on
recorded surface EMG signals [41–43]. These physiological and recording factors should be
considered for data analysis and interpretation. Furthermore, surface EMG has an intrinsic
limitation in that the electrode can only record a finite portion of the muscle, notably less in
larger muscles. Therefore, the experimental EMG recorded here only reflects activity in a
portion of the muscle and is not necessarily applicable to the whole muscle.

5. Conclusions

This study examined the spatial dependence of EMG–force relations using both simu-
lated and experimental approaches. In the simulation study, it was found that the slope
(b) of the log-transformed EMG–force relation was sensitive to three different motor unit
depth distributions. In the experimental study, the slope distribution of the log-transformed
EMG–force relation in the biceps brachii muscle showed a spatial dependence along the
proximal–distal direction. The findings of this study indicate that the slope of the log-
transformed EMG–force relation can provide a convenient and useful adjunct parameter
in the investigation of muscle or motor unit changes associated with pathology, injury,
and aging.
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Abstract: Recently, various methods have been developed to identify COVID-19 cases, such as
PCR testing and non-contact procedures such as chest X-rays and computed tomography (CT)
scans. Deep learning (DL) and artificial intelligence (AI) are critical tools for early and accurate
detection of COVID-19. This research explores the different DL techniques for identifying COVID-19
and pneumonia on medical CT and radiography images using ResNet152, VGG16, ResNet50, and
DenseNet121. The ResNet framework uses CT scan images with accuracy and precision. This research
automates optimum model architecture and training parameters. Transfer learning approaches are
also employed to solve content gaps and shorten training duration. An upgraded VGG16 deep
transfer learning architecture is applied to perform multi-class classification for X-ray imaging
tasks. Enhanced VGG16 has been proven to recognize three types of radiographic images with
99% accuracy, typical for COVID-19 and pneumonia. The validity and performance metrics of the
proposed model were validated using publicly available X-ray and CT scan data sets. The suggested
model outperforms competing approaches in diagnosing COVID-19 and pneumonia. The primary
outcomes of this research result in an average F-score (95%, 97%). In the event of healthy viral
infections, this research is more efficient than existing methodologies for coronavirus detection. The
created model is appropriate for recognition and classification pre-training. The suggested model
outperforms traditional strategies for multi-class categorization of various illnesses.

Keywords: CT scan images; chest X-ray; transfer learning; COVID-19 detection; deep learning

1. Introduction

CT scans, medical imaging, or chest X-rays have been proposed as a viable method
for detecting COVID-19 quickly and early. CT scan has demonstrated high sensitivity
in identifying COVID-19 at the initial assessment of patients. In severe circumstances,
it may efficiently correct RT-PCR false negatives [1–4]. Nevertheless, this is a complex
and time-consuming process, because a professional must interpret the X-rays and CT
imaging to establish if an individual is COVID-19 positive. The first diagnostic tool to
be used to identify COVID-19 pathology is a chest X-ray. A single chest X-ray image
is insufficient for reliable prediction and treatment of COVID-19 [5–8]. To address this
limitation, multiple medical data findings are combined, and predictive classifications
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are generated, leading to improved accuracy compared to using only a single test image.
However, extracting relevant features from COVID-19 images is challenging due to daily
fluctuations in characteristics and differences between cases [9–12]. Many conventional
machine learning (ML) techniques have already been applied to automatically classify
digitized chest data. Using an SVM classification model, frequent patterns were generated
from the pulmonary surface to distinguish between malignant and benign lung nodules.
Backpropagation networks have been used to categorize imagery as normal or malignant
using a gray-level co-occurrence matrix technique [13–15].

Convolutional neural networks (CNNs) can remove valuable features in picture cate-
gorization tasks. This feature extraction is performed with transfer learning. Pre-trained
approaches collect the general properties of large-scale data such as ImageNet and then
apply them to the task. DL algorithms are better than traditional NN models if enough
labeled images are available. The CNN model is one of the most common DL algorithms
for diagnostic imaging, with excellent results. Despite ML algorithms, the effectiveness of
CNNs depends on acquiring feature representation from property imagery. As a result, the
obtainability of pre-trained models such as DenseNet, ResNet, and VGG-16 is extremely
helpful in this procedure and appears to be extremely interesting for COVID-19 identifica-
tion using chest CT images and X-ray images. Transferring acquired knowledge from a
pre-trained network that has completed one function to a new task is a systematic approach
for training CNN architecture. This technique is faster and more efficient because it does
not require a large annotation training dataset; as a result, most academics, particularly in
the medical field, prefer it.

Transfer learning can be performed in three ways [16–20] as follows: shallow tuning
adjusts individuals from the previous classification layer to novel problems while leaving
the limitations of the remaining levels untrained; the deep tune function is used to retrain
the variables that were before the network from end to end; fine tuning intends to prepare
many layers after layer and gradually adjust to learning variables until a critical perfor-
mance is obtained. Knowledge transfer in detecting X-ray images through an impressively
executed fine-tuning procedure.

The motivational aspect of the proposed model, along with the significant contribu-
tions, are as follows. The suggested system uses transfer learning to train a model faster.
The training models compute the appropriate weights. Tuning in to the work at hand,
it is identifying COVID-19. The techniques are stacked to anticipate output class. The
meta-model in this system is an individual neuron that correctly forecasts the input cate-
gory using the outputs. To train a model faster, the proposed system employs a learning
approach. The weights of the pre-trained method are correctly adjusted during training,
and the approaches are integrated via stacking. The best model architecture and training
parameters for COVID-19 and pneumonia diagnosis should be automated in order to
produce better results. Using transfer learning methodologies solves research gaps and
reduces training time.

The research is organized as follows: Section 2 focuses on the related existing works
for COVID-19 detection cases; Section 3 discusses the proposed work and the details of
the algorithms presented in this study; Section 4 illustrates the graphical plots and tabular
representation for the experimentation of the proposed and existing methods; Section 5
summarizes the proposed work and concludes with its enhancements.

2. Literature Survey and Related Work

The unique stacked ensemble model is proposed for diagnosing coronavirus from
a person’s chest CT scans or chest X-ray imaging [21]. The suggested model is a layered
ensemble before heterogeneous ML models. Some of the transfer learning techniques
are VGG-19, ResNet, DenseNet, and fully connected networks are the pre-trained DL
models. By adjusting the extra fully connected tiers in each of them before the model,
prospective candidates for the classification algorithm are obtained. After an extensive
search, three outstanding models were chosen to create approximate weighting hetero-
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geneity stacked ensembles. Early diagnosis of coronavirus-positive cases prevents the
disease from spreading further in the population and allows for earlier treatment of the
general public [22]. CT imaging and chest X-ray images have recently shown distinctive
characteristics that indicate the severity of COVID-19 in the lungs. The advancement of AI
technology, specifically DL-based healthcare, is crucial in handling vast amounts of data
to achieve accurate and quick outcomes in diagnostic imaging. It can also aid in the more
efficient and precise diagnosis of pathogens while assisting in remote locations. Various
two-dimensional convolution techniques have been proposed for analyzing chest X-ray
images to identify COVID-19 with a precision of 99% and a validation accuracy of 98%,
with a loss of around 0.15%.

Rapid identification of coronavirus [23] was a challenging and time-consuming task
that computer-aided diagnosis (CAD) techniques have effectively addressed, enabling
quick decision-making and meaningful tasks for surveillance, treatment, and medication.
The use of chest X-ray (CXR) technique has become a cost-effective and practical alternative
to CT scanning and real-time polymerase chain reaction (RT-PCR) testing, which is the most
widely used detection method for COVID-19. Although several CAD approaches have
been developed for detecting COVID-19, various issues have hindered their effectiveness.
This research develops a deep CNN (DCNN) model using ResNet32 with the convolutional
block attention module to detect COVID-19 and pneumonia.

VGG-16 surpasses all these models on the dataset with an accuracy of 85.33% [24].
Clinicians employing RT-PCR tests can diagnose COVID-19, but it has a high rate of false
positive (FP) and false negative (FN) findings, and it takes a long time. One way to increase
the true positive (TP) ratio is to run many experiments simultaneously. CT scans and X-ray
images can be used to identify COVID-19-related pneumonia earlier. Upwards of 95%
efficiency can be reached using current DL methods. Various CNN (CovNet)-based DL
models are applied to diagnose pneumonia, including ResNet 152 v2, InceptionResNet v2,
Xception, Inception v3, ResNet 50, NASNetLarge, DenseNet 201, and VGG 16 [25].

A DL framework can be created to assist in evaluating CT tests to offer diagnostics
that can help save time in managing the disease. In this study, a DL algorithm was adapted
to identify COVID-19 using extracted features from chest X-rays and CT images. Many
transfer learning models were initially used and compared, and a VGG-19 model was
subsequently tweaked to produce the best results for disease diagnosis. The diagnosis
accuracy of all models was evaluated using a sample of 1000 images. The VGG-19 model
has higher precision, sensitivity, and specificity, with 99.4% precision, 97.4% sensitivity,
and 99.4% specificity in the timely identification of coronavirus. ML and image analysis
performed well [26]. Researchers present an approach to examining the possibility of deep
transfer learning in developing a classification to identify coronavirus-positive patients
utilizing CT and CXR imaging in this research. The preprocessing data method expands
the training datasets to lessen overfitting and improve the model’s generalization capacity.
To use a preprocessing data method, we evaluated pre-trained DL models: ResNet50,
InceptionV3, VGGNet-19, and Xception. DL is better at finding coronavirus cases, according
to the research. The VGGNet-19 model surpasses the other three models presented using the
CT image dataset when each modality is considered separately, according to the findings
of the tests [27]. It is true that Deep Neural Networks (DNNs) have made significant
progress in computer vision tasks, including medical imaging, and DenseNet has been
evaluated for categorizing COVID-19 chest X-ray images. The COVID-19 pandemic has
highlighted the importance of medical imaging in the diagnosis and monitoring of diseases,
and machine learning algorithms such as DNNs can help automate and streamline the
analysis process. DenseNet is a popular convolutional neural network architecture that
has shown promising results in various image classification tasks. A public database of
6432 chest X-ray images divided into three classes was also used. The three DenseNet
modeling variants, DenseNet121, DenseNet169, and DenseNet201, were trained via transfer
learning and fine tuning. After analyzing the results, it was found that DenseNet201 had the
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best accuracy rate of 0.9367 and the most negligible validation loss of 0.1653 for COVID-19
classifications in chest X-ray images [27,28].

Patients must wait an extended period of time to receive the results of blood tests
to detect COVID-19. This method uses a DL technique to detect COVID-19 quickly. DL
and neural algorithms logistic regression is a statistical tool for predicting the outcome
of radiology data, such as CT scans and X-ray images, that are fed into these algorithms.
Using this approach, positive instances of COVID-19 will be recognized more quickly [29].
This research focuses on building a DL approach for detecting and diagnosing COVID-19
utilizing chest CT scans. A public database was employed for this, which included 349 CT
scans of 216 patients with COVID-19 clinical abnormalities and CT scans of 397 healthy
people. Accuracy, precision, recall, Matthews coefficients correlation (MCC), and F-measure
criteria were used to evaluate diagnostic accuracy. A 10-fold cross-validation procedure
was used to assess the reliability of the approach. CNN has an accuracy rate of 92.63%,
a precision of 92.95%, a recall of 93.18%, an MCC of 85.2%, and an F1 measure of 93.06%.
Based on the results achieved with the approach taken within the focus of this research,
the mentioned approach could be used as a supplement or replacement for traditional
therapeutic tests in coronavirus outbreaks [29,30]. For the identification and classification
of COVID-19, a transfer learning method with precise adjustment was used in this study.
VGG16, DenseNet-121, ResNet-50, and MobileNet were employed as before models. DL
models were developed using a dataset of 7232 (COVID-19 vs. healthy) chest X-ray images.
A local dataset of 450 chest X-ray images from Pakistani patients was gathered or used for
tests and predictions. Many essential characteristics, such as recall, specificity, F1-score,
accuracy, loss graphs, and confusing matrix, were generated to verify the accuracy of the
algorithms. VGG16, ResNet-50, DenseNet-121, and MobileNet attained an accuracy of
83.27%, 92.48%, 96.49%, and 96.48%, respectively [31].

This research aimed to show how DL, ML, and image processing can help with
the fast and accurate identification of COVID-19 from two of the most frequently used
neuroimaging techniques, chest X-rays and CT scans. CNN models based on the Alexnet
model were proposed for CAD of coronavirus from CT and X-ray images. The effectiveness
of this technique was tested on the obtained dataset. COVID-19 CT and X-ray scans were
categorized, and CT scans were used to track the progression of the disease [32]. COVID-19
has been successfully identified by utilizing CT scans and X-rays to assess lung images.
However, it takes a team of radiologists and a lot of time to review each report, which is
time-consuming. As a result, this work proposes an automatic COVID-19 recognition and
categorization algorithm based on DNNs. The provided method performs pre-processing,
extraction of features, and classifications. The input image is processed using median
filtering at an earlier stage. The VGGNet-19 model, built on a CNN, is then used as a
feature representation. Finally, to identify and classify the presence of COVID-19, an ANN
is used as a classification algorithm [33]. Researchers worldwide are investigating new
ML approaches, such as DL, to help medical experts diagnose COVID-19 disease using
medical information such as X-ray films and CT scans. ML techniques for demonstrating
the first COVID-19 identification from chest X-rays would have been effective in controlling
this epidemic, because the facility for chest X-rays is available even in smaller cities and
is significantly less expensive. As a result, researchers suggest a CNN for identifying
the presence and absence of COVID-19. The CNN model is compared with the other
models based on ancient and transfer learning. Compared to ML algorithms, the suggested
CNN is more efficient (KNN, SVM, DT, etc.) [34,35]. COVID-19 may be identified using
DL techniques, a crucial task for treatment possibilities identified based on data these
days. The development of AI, ML, DL, and diagnostic imaging approaches offers excellent
performance, particularly in the areas of detection, classification, and segmentation. The
advances in imaging technologies that have allowed clinicians to monitor the body and
accurately diagnose and assess patients without surgery. It also highlights the use of
several imaging technologies, including CT with a DL model built on a CNN, for detecting
COVID-19 [36–43].
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3. Methods

This section focuses on the need for the proposed system model in detail.

3.1. Need for Proposed Model

The proposed model is required to fulfill the following requirements: to obtain better
measures, and to automate optimum model architecture and training parameters in COVID-
19 and pneumonia diagnosis; to apply the transfer learning approaches to solve content
gaps and shorten training duration; to perform multi-class classification for X-ray imaging
tasks by applying an upgraded VGG16 deep transfer learning; to minimize the complexity
of the layered design to perform the multi-class categorization of various illnesses.

3.2. System Model

This section explores the proposed model as sketched in Figure 1. The spatial domain
procedure is applied to the image pixels and altered pixel by pixel in this filtering. It is a
filtering mask that shifts from one pixel to another by performing several operations. It
will remove noise from the image by smoothing it.

 
Figure 1. The architecture of the proposed model.
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The spatial domain filtering is divided into linear and non-linear filters. The mean and
Wiener filters are the most often used linear filtering techniques, whereas the median filter
is a non-linear filtering approach. The mean value in the mean filter is derived from the
computation of neighbors and center pixel values in the N × N size. It is calculated after
calculating the center pixel value as follows:

Y(M, N) = Mean {X[i, j], [i, j]ε w} (1)

where w are the pixel positions in the neighborhood.
The Wiener filter is applied for filtering the consistent pixel values that define the

constant power additive noise. This filtering technique is used for adaptive filtering
of the image pixel-wise. Two variations are computed by computing the pixels in the
neighborhood with the following mean and standard deviation:

μ =
1

N × M ∑(n1,n2∈η)
a(n1, n2) (2)

σ2 =
1

N × M ∑(n1,n2∈η)
a2(n1, n2)− μ2 (3)

where η represents the N × M of the current pixel; with this estimation, the pixel-wise
Wiener filter was applied over the denoised image, which is computed as follows:

b(n1, n2) = μ +
α2 − v2

α2 (a(n1, n2)− μ) (4)

where v2 represents the noise variance.
The median filter works by the pixels in the window sorted in ascending order. The

median value of the N × M image is changed based on the central pixel values using

Y(M, N) = Median {X[i, j], [i, j]ε w} (5)

where w is the pixels of the neighborhood.
Image enhancement uses quality enhancement techniques to improve the image

contents based on essential features, including intensity, edges, and corners. Histogram
equalization redistributes the pixel values of an image to increase contrast, making it easier
to distinguish between different image features. This technique can help to reduce the
number of pixels that are saturated or redundant in certain areas of the image, but its
primary goal is to enhance the overall visual quality of the image. This process increases
the contrast level of the image and the computation speed of content-based medical image
retrieval. Histogram equalization is a technique that improves the image’s visual quality
by adjusting the noisy and blurred pixel values. The histogram represents the discrete
function or the intensity distribution with the graphical format applied to dark images. The
process of histogram equalization for contrast enhancement is defined as follows:

1. Read the input image.
2. Compute the histogram, probability of each pixel, and probability density function of

the input image.
3. Equalize the histogram.

The histogram represents the image’s intensities using bars representing pixel fre-
quency. For a given input image, the histogram is computed as follows:

H(rk) = nk (6)

where rk is the kth gray level value ranging from 0 to L-1, and nk is the number of pixels
in the image which have the gray level in rk. Then, determine the probability of the gray
level using

p(rk) =
nk

M × N
(7)

where nk is the number of pixels, M× N defines the image size with M rows and N columns.
The pdf of the image is computed using

pk =
k

∑
i=0

nk × 1
M × N

(8)
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Then, the histogram equalization is applied to enhance the quality of the image by
correcting its intensity values for the discrete case using

Sk = (L − 1)× pk(r) (9)

where pk(r) represents the pdf.

3.3. Fast Attention-Based ResNet

Attention-based ResNet is used to perform feature extraction and classification. The
architecture of the proposed model is depicted in Figure 2. The learning rate of the
proposed model is set to 0.0001, and the number of epochs performed for classification
is 10. The extracted set of features has many irrelevant and redundant features that need
to be removed because it reduces the accuracy of the process. Then, the feature selection
is performed to remove the irrelevant and redundant characteristics [7]. The attention
module is responsible for the extraction of features by learning the weights of the features
corresponding to the scaling attacks. The output of the attention layer is computed using

Atni(Z) = Qi(Z). Fi(Z) + Fi(Z) (10)

where Qi(Z) denotes the attention weight and Fi(Z) denote the features. In the atten-
tion layer, the relationship between the features is computed to achieve more relevant
information from the features, which can be computed as,

R(F1; F2) =
∫ n

F1

∫ n

F2

p(F1, F2) log
p(F1, F2)

p(F1)p(F2)
dF1dF2 (11)

where p(F1, F2) denote the function of probability between the features F1 and F2 and p(F1),
p(F2) denote the individual function of marginal density, respectively. The inception layer
learns specific features deeply by reducing the size of the initial patch, which affects the
original information required for the classification process. Based on the selected features,
classification is carried out. This process ascertains whether a given unknown packet is
standard or malicious. The softmax layer performs this classification, in which the cross
entropy is computed to determine the output loss, which can be calculated as

Loss (x) = −∑k log(st(x)k)qi (12)

 

Figure 2. Attention-based ResNet.

Formulate the softmax st(x) of a vector using

st(x)k =
exk

∑m exm
(13)

The classification is performed by increasing the score corresponding to the input images.

3.4. Enhanced VGG-16 Architecture for X-ray Images

Figure 3,the VGG-16 architecture is implemented to extract and classify the features
using DL [8]. Initially, the features of the segmented region are extracted. The proposed
VGG-16 has three layers: a convolutions layer, a fully connected layer, and a softmax layer.
VGG 16 extracts low-level features with small masks and has fewer layers than VGG 19.
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The max pooling and average pooling layers extract the features from the image. These
layers extract the features from the segmented region, as shown in Table 1. The convolution
layer concatenates the pooling results using the sigmoid function(δ) with the measure of

C(F) = δ
(

f 7×7[FA; FM]
)

(14)

where FA ∈ r1×h×w and FM ∈ r1×h×w represent expected and max pooling measures.

 

Figure 3. The architecture of VGG 16.

Table 1. Features and Aesthetics of the model.

Color Standard deviation, intensity, kurtosis, skewness
Texture Homogeneity, entropy, correlation
Shape Artery—radius, length, angle, area, eccentricity

The fully connected layer receives the extracted results using dense, flattened, and
dropout layers to bring the final classification as normal or abnormal using

C(p = q/s) =
eb

∑j ebj
(15)

Algorithm 1 presents the segmentation process of dividing an image into multiple
segments or regions based on some criteria, such as color, texture, or shape. VGG16 is
a convolutional neural network that has been widely used for image classification tasks.
However, it can also be used for feature extraction and segmentation tasks.

Algorithm 1: VGG 16

1. Input: Segmented Region (S.R.)
2. Output: Normal (N) or abnormal (AN)
3. {
4. Begin

5. Initialize { f c, f s, f t}
6. f c ← { f c1, f c2, .. f cn}
7. f s ← { f s1, f s2, .. f sn}
8. f t ← { f t1, f t2, .. f tn}
9. Initialize the feature extraction data.
10. for i ← o to n do

11. Extract f c from S.R.
12. Extract f s from S.R.
13. Extract f t from S.R.
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Algorithm 1: Cont.

14. F ← { f c, f s, f t}
15. Extract the features by average pooling layer FA
16. Extract the features by maxpool layer FM
17. Concatenate the features
18. Classifying the images using softmax layer
19. Class ← { N, AN}
20. end for

21. }
22. return class
23. end

24. }

4. Results and Discussion

This section analyzes the experimental results of the proposed method.

4.1. Dataset

Five different databases are applied to evaluate the performance of the proposed
method. Two databases provide chest X-ray imaging, while the remainder include chest
CT scans [11,12]. Every database was divided into three parts: test, validation, and training
set. The test set must have between at least 200 and 400 images to evaluate the model’s
flexibility well. The size of the test set determines the size of the verification set; the more
significant the test set, the more prominent the testing set will be, and conversely. The other
images were used to develop a training set. To perform the presented approach, the test
and the validation test sets are organized, consisting of the same partitions of the positive
and negative image samples. The hyper-parameters are tuned based on the training and
test sets of the coronavirus images.

The descriptions of the datasets are given as follows:
The CT image dataset contains approximately 349 CT images from 216 patients with

coronavirus and 397 patients without coronavirus. The images were collected from hos-
pitals that treat both coronavirus and non-coronavirus patients, but only the positive and
negative cases for coronavirus were included in the dataset [13,14]. Some of the samples of
coronavirus images in both positive and negative classes are given in Figure 4. The features
of the dataset are as follows:

Figure 4. (a) COVID-19 Negative (COVID-19 images collection dataset) (b) COVID-19 Positive
(COVID-19 images collection dataset).

Types of Images: CT Images
Size of Dataset: 746 CT Scans
Positive Case images in Total: 349
Negative Case images in Total: 397
Validation Size Set: 118 Scans
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Training Size Set: 425 Scans
Test Size Set: 203 Scans

The COVID-19 images collection dataset consists of images gathered from the public
community, such as physicians and hospitals. The features of this dataset are as follows:

Types of Imaging: Chest X-rays
Size of Dataset: 579 Images
Training Size Set: 309
Validation Size Set: 70
Testing Size Set: 200
COVID-19 Positive Cases: 342
COVID-19 Negative Cases: 237

The CT set COVID-19 dataset consists of original CT scan imaging for 377 patients.
A total of 15,589 CT scans are used for CT scan images of 95 coronavirus patients and
282 regular patients. The features of this dataset are as follows:

Types of Images: CT Scan Images
Size of Dataset: 12,058 Scans
Positive Images: 2282
Negative Images: 9776
Training Set: 11, 400
Validation Set: 258
Testing Set: 400

The COVID-19 radiography collection includes 1200 images of positive COVID-19,
1341 images of healthy patients, and 1345 images of patients with fever infection. This
dataset has the following characteristics:

Figure 5 CT scans, or computed tomography scans, use X-rays to create detailed
images of the inside of the body. CT scans can be helpful in diagnosing respiratory illnesses
such as SARS-CoV-2, the virus that causes COVID-19. CT scans can show the presence
of lung abnormalities such as ground-glass opacities and consolidation, which can be
indicative of viral pneumonia.

Figure 5. (a) Patient healthy image, (b) Patient with pneumonia, and (c) Patient with +Ve COVID-19
images COVID-19 negative.

Images Type: X-ray
Sum of Images: 2541
Negative Images: 2686
Positive Images: 1200
Training Size Set: 3086
Testing Size Set: 400
Validation Size Set: 400
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SARS-CoV-2 CT scan images consists of 1252 CT scan images that are positive, whereas
the remaining 1230 images are classified as non-infected viruses, with the following features:

Images Type: CT Scan Images
Size of Dataset: 2482 Images
Negative Images: 1230
Positive Images: 1252
Training Size Set: 1800
Testing Size Set: 400
Validation Set Size: 400

To mitigate the model overfitting issues of the training case, the training size is
increased from 1275 images collected utilizing data augmentation based on random rotation,
horizontal flipping, and color jittering.

4.2. Data Preprocessing and Augmentation Techniques

Using data augmentation methods, some enormous volumes of datasets must be tested
using transfer learning or DL techniques [14,15]. Hence, this research model considers data
augmentation methods with the datasets.

Resize or Crop by Random: This step represents the cropping of the input image to the
unsystematic size of the image and the aspect ratio.
Rotation by Random: To perform this step, the sample is rotated by selecting an angle
at random.
Horizontal Flip by Random: This step represents the flip action for the given input image
randomly in a horizontal manner.
Color Jittering: This step randomly represents the modifications of the input image’s
contrast, saturation, and brightness.
Training Settings: The overall work is implemented through a Python framework, in which
the variables are fixed for all experiments. The simulation parameters are shown in Table 2.

Table 2. Simulation parameters.

Parameters Values

DL Model Python (PyTorch library)
Number of Epochs 1 to 100
Learning Rate 0.003
Optimization Technique ADAM
Loss Cross Entropy
Size of Batch 16
Resized Cropping Scale in Random 0.5 to 1.0
Rotation Angle Range (−5, +5)
Flipping Possibility Rate 0.5
Resized Size of Cropping in Random 224

4.3. Comparison Analysis

Classification accuracy is defined as the accuracy in performing the classification of
both COVID-19 and viral pneumonia and computed using

Accuracy =
TrP + Tr N

TrP + Tr N + Fl P + Fl N
× 100% (16)

It is important to find the optimal number of iterations that maximizes the model’s
accuracy without overfitting. This can be done by monitoring the validation accuracy
during training, which measures how well the model performs on a separate set of data
that is not used for training. The validation accuracy typically starts to plateau after a
certain number of iterations, indicating that the model is no longer improving significantly
and further training may lead to overfitting in Figure 6.
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Figure 6. Iteration count vs. classification accuracy.

The greater the classification accuracy, the greater the efficiency of the approach.
Figures 6 and 7 depict the relationship between the model’s classification accuracy with
others based on the iterations and the sample counts. The classification accuracy of the pro-
posed ensemble model is high due to the extensive extraction of features and classification.

Figure 7. Number of samples vs. classification accuracy.

The feature set is generated from many features using a pre-trained model to eliminate
redundant features [16,17]. The selection of transfer learning in the model is based on the
recent study and literature analysis, contributing to increased classification accuracy. The
existing approaches considered both necessary and redundant features for classification,
which degraded the classification accuracy.

The classification accuracy of the proposed method with others based on users and
iterations count is presented in Table 3. The classification and accuracy of the proposed
method are 95% and 96%, respectively, whereas the existing approaches possess only
about 62% to 72% of accuracy. The proposed method accurately classifies COVID-19 and
non-COVID-19 images.
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Table 3. Classification accuracy.

Methods
Classification Accuracy (%)

Iteration Count No of Samples

CNN 61 ± 0.05% 62 ± 0.04%
DNN 71 ± 0.02% 72.6 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 85.5 ± 0.04%
DL with Transfer Learning 92 ± 0.02% 92.5 ± 0.1%
Ensemble 95 ± 0.2% 96.2 ± 0.5%

The precision is the measure of relevancy in the classified images computed using

Precision =
TrP

TrP + FlP
× 100% (17)

The comparison of the precision of the presented method and the existing approaches
to iteration count and the number of samples is illustrated in Figures 8 and 9. The figures
show that the precision of the proposed model is high due to the implementation of spatial
domain filtering, thereby eliminating the noise. Increasing the iteration count of a machine
learning model can lead to improvements in recall, but this is not always the case Figure 10.

Figure 8. Iteration count vs. precision.

Further, the classification of the face and non-face regions was performed by utilizing
the feature extraction in which the optimum approach performed the selection of features.
The lack of consideration of pixel-based features and the removal of the noise level in the
images of the existing approaches resulted in reduced precision [17,18]. The superiority of
the proposed pre-trained approach is illustrated in Table 4, which presents the numerical
comparison of the presented method and existing approaches in terms of the iteration
count. The presented method’s precision is 95% to 96%, whereas the existing approaches
possess precision of about 61% to 71%. The proposed method produces better precision
than other methods in detecting coronavirus.

The recall is called sensitivity, the measure of correctness between the classified images,
calculated using

Recall =
TP

TP + FN
(18)

Figures 11 and 12 sketches the comparison of recall measure with other methods over
the fixed iterations in all cases of test data. The recall of the presented method is high due
to the implementation of effective pre-processing techniques to eliminate the noise and
correct the illumination.
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Figure 9. Samples vs. precision.

Figure 10. Iteration count vs. recall.

Table 4. Precision.

Methods
Precision (%)

Iteration Count Number of Samples

CNN 60 ± 0.05% 62 ± 0.04%
DNN 71 ± 0.02% 72.6 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 85.5 ± 0.04%
DL with Transfer Learning 92 ± 0.02% 92.5 ± 0.1%
Ensemble 95 ± 0.2% 96.2 ± 0.5%
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Figure 11. Large Iteration count vs. recall.

Figure 12. Iteration count vs. F-score.

Further, consideration of various features, such as low and high-level features, im-
proved the recall results of the proposed model. The lack of noise elimination and consider-
ation of integrated features restricted the recall of the existing approaches. The numerical
analysis of recall with other methods is shown in Table 5. The presented method has a recall
of 94% to 96%, whereas the existing approaches possess only about 62% to 72%. This leads
to the conclusion that the presented method is more efficient than the existing approaches
in performing coronavirus detection in healthy and viral infection cases [20].

Table 5. Recall.

Methods
Recall (%)

Iteration Count No. of Samples

CNN 59.6 ± 0.05% 61.5 ± 0.04%
DNN 69.8 ± 0.02% 71.5 ± 0.03%
Improved CNN (LeNet-5) 84 ± 0.03% 83.5 ± 0.04%
DL with Transfer Learning 91.5 ± 0.02% 92 ± 0.1%
Ensemble 94.5 ± 0.2% 95.9 ± 0.5%
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The F-measure is the combination of precision and recall calculated by computing the
harmonic mean and measured using

F − measure =
2 × TP

(2 × TP + FP + FN)
(19)

The comparison of the F-measure with other methods based on the iteration count
is illustrated in Figure 13. The increased F-measure of the proposed method is due to the
increase in precision and recall value.

Figure 13. Large iteration count vs. F-score.

The detection and classification are carried out by pre-processing the input frames
and extracting extensive features from the pre-processed images. The grouping of pixels is
performed to determine the differentiation between the non-similar features. The classifica-
tion of coronavirus and pneumonia is determined with an increased F-measure over the
reduced F-measure of the other methods.

The efficiency of the presented method is proved by the numerical analysis presented
in Table 6, which compares the F-measure with the other methods. The F-measure of the
presented method is 95% to 97%, whereas the existing methods range from 63% to 72%.
The model that was developed has been shown to be efficient for pre-training purposes in
the detection and classification of masked faces.

Table 6. F-measure.

Methods
F-Measure (%)

Iteration Count No. of Samples

CNN 60.2 ± 0.05% 62.3 ± 0.04%
DNN 71.2 ± 0.02% 72 ± 0.03%
Improved CNN (LeNet-5) 84.5 ± 0.03% 84.2 ± 0.04%
DL with Transfer Learning 92.2 ± 0.02% 92.5 ± 0.1%
Ensemble 95.2 ± 0.2% 96.7 ± 0.5%

The Receiver Operating Curve (ROC) depicts the relationship between the specificity
and sensitivity in all possible cut-off values. The ROC curve is a graphical representation to
visualize the efficiency of an approach. The better performance of an approach is depicted
as the curve nearer to the left top corner of the ROC curve. The ROC curve of the proposed
model with others is also analyzed for all the image sets of evaluation. The proposed model
yields a better ROC curve than the other models in classification and detection [36,37]. The
existing approaches possess reduced ROC curve values due to the inefficiency caused by
image noise and the lack of feature integration for classification. The computational time
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is the time to compute specific tasks to obtain the desired result. Figure 13 compares the
computational time of the proposed and other models based on the iteration factor. The
computational time involved with the existing approaches is high due to the increased time
consumption in training the model.

As the number of samples increases, the computation time required to process those
samples also increases. This is because more samples typically mean more data to process
and analyze, which can be computationally intensive. For example, if you’re training a
machine learning model on a dataset of images, the more images you have, the longer it
will take to train the model Figure 14.

Figure 14. Iteration count vs. computation time.

The benefits of the proposed model are as follows: the pre-trained model possesses
fewer layers than the existing models and thereby possesses low complexity. This charac-
teristic of the proposed model requires a short computational time to detect and recognize
the coronavirus.

Figure 15, this method provides minimal computation time without compromising
the accuracy in detecting and recognizing the coronavirus [38,39]. The time complexity
of the layered architecture runs in a linear, that is, O(n) time. The proposed model is
computationally efficient and highly accurate for the multi-class categorization of distinct
illness types [40–43].

Figure 15. Number of samples vs. computation time.
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Table 7 shows the comparison of the computation time with other models. From the
table, it is clear that the computation time of our approach is shallow, at about 0.4 s. In
contrast, the existing approaches possess an increased computation time of up to 0.9 s for
both preprocessed and non-preprocessed.

Table 7. Computation time (s).

Methods
Computation Time

Masked Face Unmasked Face

CNN 0.9 0.96
DNN 0.84 0.92
Improved CNN (LeNet-5) 0.78 0.84
DL with Transfer Learning 0.65 0.72
Ensemble 0.4 0.62

4.4. Limitations and Analysis

The limitations of the model are as follows: quality of outcomes based on the noise
levels in the images affect the performance measures; integrating the relevant features are
also an important requirement for the classification in the proposed model. The future
research directions of the proposed model are as follows: enhancement using recent soft
computing components and better recommender systems will be developed based on the
features of datasets [19,20,44–48]; large datasets will be considered for validation to further
improve performance measures using soft computing within the minimal computing
time [25–27,49–63].

5. Conclusions

COVID-19 and pneumonia are usually encountered due to lung symptoms that can
be identified through genes and studies. Early detection of coronavirus and effective
management of its progression can be facilitated through the use of imaging tests. In
identifying coronavirus disease, chest X-rays and CT are helpful imaging modalities. The
wide availability of huge, annotated images based on transfer learning methods—VGG-
16, ResNet, and DenseNet—has led to considerable progress in earlier transfer learning
models for medical image classification. This ensemble learning technique is an accurate
representation because it recovers a hierarchy of localized visual elements given the input.
However, irregularities in the annotation of COVID-19 and pneumonia instances produced
on X-ray imaging remain a much more problematic component of working on them.
This research classified COVID-19 and pneumonia images in a vast chest X-ray and CT
database using an ensemble learning system based on developments in the extraction
features technique. The suggested methodology provided fast and thorough COVID-19
and pneumonia classification results and the ability to deal with data inconsistencies and a
limited amount of class images. The classification and accuracy of the proposed method
are about 95% and 96%, respectively, and the precision is found to be 95% to 96%. The
recall is 94% to 96%, with an F-measure from 95% to 97%. The proposed method is more
efficient than the existing approaches in performing coronavirus and pneumonia detection
in healthy and viral infection cases. The devised model is adequate for pre-training in
detection and classification. The time complexity of the layered architecture runs in a linear,
that is, O(n) time, and takes less than 0.5 s. The proposed model is computationally efficient
and highly accurate for the multi-class categorization of distinct illness types.
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Abstract: Pharmacological strategies to lower the viral load among patients suffering from severe
diseases were researched in great detail during the SARS-CoV-2 outbreak. The viral protease Mpro

(3CLpro) is necessary for viral replication and is among the main therapeutic targets proposed, thus far.
To stop the pandemic from spreading, researchers are working to find more effective Mpro inhibitors
against SARS-CoV-2. The 33.8 kDa Mpro protease of SARS-CoV-2, being a nonhuman homologue, has
the possibility of being utilized as a therapeutic target against coronaviruses. To develop drug-like
compounds capable of preventing the replication of SARS-main CoV-2’s protease (Mpro), a computer-
aided drug design (CADD) approach is extremely viable. Using MOE, structure-based virtual
screening (SBVS) of in-house and commercial databases was carried out using SARS-CoV-2 proteins.
The most promising hits obtained during virtual screening (VS) were put through molecular docking
with the help of MOE. The virtual screening yielded 3/5 hits (in-house database) and 56/66 hits
(commercial databases). Finally, 3/5 hits (in-house database), 3/5 hits (ZINC database), and 2/7 hits
(ChemBridge database) were chosen as potent lead compounds using various scaffolds due to their
considerable binding affinity with Mpro protein. The outcomes of SBVS were then validated using an
analysis based on molecular dynamics simulation (MDS). The complexes’ stability was tested using
MDS and post-MDS. The most promising candidates were found to exhibit a high capacity for fitting
into the protein-binding pocket and interacting with the catalytic dyad. At least one of the scaffolds
selected will possibly prove useful for future research. However, further scientific confirmation in the
form of preclinical and clinical research is required before implementation.

Keywords: main protease (Mpro); structure-based virtual screening; ZINC; in-house; ChemBridge
database; molecular dynamics simulation
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1. Introduction

Since December 2019, after the first outbreak of Corona virus infection reported from
Wuhan, China, the disease has devastated life throughout the world and the search for
affective therapeutics is underway [1]. The virus is known as SARS-CoV-2 because its RNA
genome shares 82 percent of its sequence with the SARS Corona virus [2]. These viruses are
related to the betacoronavirus clade B [3,4]. Although the outbreak was initially thought to
have originated in Wuhan’s Huanan seafood and cattle market, effective human-to-human
transmission has caused the number of patients to rise dramatically. As of April 9th, there
were more than 1,500,000 diseased individuals with a 5.9% mortality rate. The recent emer-
gence of the coronavirus-2 causing severe acute respiratory illness (SARS-CoV-2) has led to
the global pandemic of coronavirus disease 2019 (COVID-19). By April 2021, there had been
more than 140 million infections reported, causing more than 3 million fatalities globally.
Antiviral medications will likely be essential to manage the anticipated future outbreaks of
coronaviruses, despite the promising COVID-19 immunization campaigns. The emergence
of SARS-CoV-2 variants for which vaccinations are ineffective suggests that antiviral medi-
cations will eventually be needed to enhance immunizations [5]. Similar to the common
cold virus, SARS-CoV-2 is expected to continue spreading and provide a significant threat
to our society. In this condition, antiviral medications are required to treat infected patients
as well as be delivered prophylactically to protect high-risk groups. Since therapeutic
medicines that suppress coronavirus replication have the potential to enhance the lives of
millions of people throughout the world, their discovery must be prioritized despite the
lengthy drug development process. After SARS-CoV-1 (found in 2002) and MERS-CoV
(Middle East respiratory illness, 2012), SARS-CoV-2 is the deadliest of the zoonotic coron-
aviruses that have infected humans [6]. Similar to other coronaviruses, SARS-CoV-2 affects
the respiratory system and causes severe pneumonia, which necessitates ventilatory assis-
tance and intensive care, especially in the elderly and immunocompromised patients [3].
Vaccine development has advanced significantly, but supply and timing are currently
limiting factors for its effective implementation. Several vaccinations have been developed
and licensed for mass immunization [7]. The cost of storing some vaccines at cryogenic
temperatures, meanwhile, may be prohibitive in underdeveloped nations. Additionally,
a number of changes to the SARS-CoV-2 genome may impact how well vaccines work to
fight the virus [8,9]. These results highlight how critical it is to simultaneously develop
therapeutic options for SARS-CoV-2 treatment.

SARS-CoV-2 belongs to the beta group of coronaviruses, an RNA virus with only one
strand. It has structural proteins, such as spike-like protein S and lipid membranes, as
well as M protein (membrane), N protein (nucleo-capsid), and envelope (E) protein that
give it an envelope appearance. The S spike protein binds to the angiotensin-converting
enzyme 2 (ACE2) receptor on mammalian lung cells, allowing the virus’s RNA genetic
material to be released into the host cells [10]. Four nonstructural proteins are found in
the virus: papain-like (PLpro) and CoV main proteases [Mpro; also known as 3CLpro] [11],
RNA polymerase, and helicase [12]. The virus’s transcription and replication are aided
by both proteases (PLpro and 3CLpro). The replicase genes encode two polyproteins
important for effective viral replication and transcription [13]. A significant proteolytic
process liberates the functional polypeptides from these two polyproteins (pp1a and pp1ab).
Proteolysis is mostly performed by a papain-like protease (PLpro), which cuts proteins in
three places, and a 33.8 kDa main protease (Mpro), also called a 3C-like protease, which
cuts proteins in 11 sites, making nonstructural proteins in the process (NSPs). As no host
protease recognizes the Mpro recognition sequence, to develop drugs against SARS-CoV-2
infections, this enzyme is a prime target for the development of inhibitors. The Mpro and
PLpro enzymes, which digest viral polyproteins produced by the host cell translational
machinery, build a functionally active viral replication complex and package it into host
cells during viral replication [14]. Three domains make up the 3CLpro monomer, with
the active site (Cys 145 and His 41) located between domains I and II. A larger pocket
is found in the gap between the third domain and the protein structure because of the
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long loop connecting it to the rest [15]. Additionally, 3CLpro is the main protease of the
virus, and it helps in the replication of the virus, making it a valuable antiviral treatment
target. Mpro is a crucial target for antiviral medication because the human genome lacks
a homologue of it. Although there is no homologue of Mpro in the human genome, it is
known as 3CLpro (3-chymotrypsin-like protease) and aids in viral replication, making it a
significant target for antiviral treatments. Protease inhibitors efficiently stop coronavirus
replication and proliferation by obstructing the post-translational processing of essential
viral polypeptides [16]. Pfizer’s PF-07321332 is an oral antiviral compound that is designed
to stop SARS-CoV-2 Mpro from modifying the active site Cys145 with its nitrile warhead.
It is thought to be a good antiviral candidate and is currently being tested (NCT04756531,
NCT04909853, NCT05011513, and ClinicalTrials.gov (accessed on 23 March 2021)). The
oral antiviral PAXLOVIDTM, which is a combination of PF-07321332 and the HIV drug
ritonavir, which slows down the breakdown of PF-07321332, was found to reduce the risk
of hospitalization or death by 89% compared to a placebo in nonhospitalized high-risk
adults with COVID-19. In December 2021, the FDA gave Pfizer’s Paxlovid an emergency
use authorization to treat mild-to-moderate COVID-19 in adults and children older than
12 who are at least 12 years old (www.fda.gov) [17]. Crystallization of the main protease
of SARS-CoV-2 (PDB ID: 6LU7) has been accomplished by Liu et al., which provides an
opportunity to combat the disease by identifying it as a potential therapeutic target. When
opposed to methods based on trial and error that involve experimental research, the use
of the in silico method for the screening of prospective therapeutic compounds has been
demonstrated to be both time and cost efficient. The in silico method of molecular docking
has the capacity to screen and find potentially useful therapeutic compounds from large
and huge compound databases. At the moment, several molecular docking studies are
being conducted against SARS-CoV-2 receptors with drug-like compounds (ChemBridge,
ZINC, and in-house databases). Furthermore, the majority of these docking investigations
used quantitative structure-activity relationships (QSARs) modeling, similarity searches,
and structure-based drug design (SBDD) [18].

Drug repurposing is one method for speeding up the normal drug development and
drug discovery process. This will help to clarify the effectiveness of novel therapeutic uses
for substances whose efficacy and safety have already been established. The importance
of potential therapeutic compounds that function as efficient antivirals in controlling the
pandemic is highlighted by the increasing and faster spread of SARS-CoV-2 as well as
the appearance of novel variants. In the formation of anticoronavirus therapeutics, Mpro’s
catalytic activity may be hindered. In light of this background, the current research looked
for a few phytocomponents that could suppress the Mpro protein. Phytochemicals are used
as active drugs in drug development. In the fight against viral diseases, phytocompounds
derived from a variety of medicinal plants may enhance immune function and combat
pathogens. Phytochemicals and their derivatives have been the focus of numerous studies
due to their antiviral activities and mechanisms of action, which have been demonstrated
to be crucial in the treatment of viral diseases [19]. Over the past decade, computer-aided
drug discovery (CADD) approaches have emerged as a crucial component of the drug
development process, having been used to identify protein inhibitors and investigate
interactions between proteins and drugs and proteins themselves [20]. Despite the time
and money required to develop a candidate drug into an approved drug, computational
methods, such as virtual screening, docking, molecular dynamics (MD) simulations [21],
and binding free energy evaluation, can be used to identify promising drug candidates from
compound libraries. The purpose of this research was to find potential anti-SARS-CoV-2
treatments by utilizing a multipronged strategy that included both molecular docking and
virtual screening techniques. The information that is obtained from the screening will be
helpful in the investigation of new inhibitors of the SARS-CoV-2 Mpro target that have the
potential to be both effective and selective.
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2. Materials and Methods

2.1. Protein Preparation

A worldwide database called the Protein Data Bank (PDB) was used to find the
three-dimensional structure of main protease (Mpro) with co crystallized ligand structure,
which causes severe acute respiratory syndrome (PDB Id: 6LU7) (accessed on 23 March
2021) (https://www.rcsb.org). The main protease is composed of two chains, such as A
and C. Chain A is the protease, and chain C is the N-[(5methylisoxazol-3yl) carbonyl]
alanyl-L-valyl-N-1-(1R,2Z) (1R,2Z)-4-(benzyloxy) (benzyloxy) [(3R)-2-oxopyprolidin-3-3yl]-
4-oxo-1-1-[(3R)-2-oxopyprolidin-3-3yl] but-2-enyl methyl)-L-lucinamide (N3 inhibitor). A
peptide inhibitor (N3 inhibitor) was in a complex with the protein. Water molecules,
inhibitors, and other heteroatoms were removed from the protein structure. All the atoms’
Amber14:EHT (Amber ff14SB and ETH combined) forcefields were used to refine the
protein structure. The missing hydrogens were added to the amino acids. The forcefield
parameters, missing atom types, bond stretch parameters, missing angles, and missing
van der Waals parameters were added to all atoms. Restrained electrostatic potential
atomic partial charges (RESP) and AM1-BCC [22] charges were used for the protein-ligand
complex, the RESP, and AM1-BCC charges were used for leap protein preparation and
for preparation of inhibitors, respectively. The 3D protonation was used to incorporate
hydrogen atoms into the protein structure, followed by minimization of energy with the
MOE (molecular operating environment) program’s default parameters [23].

2.2. Preparation of Databases

Small molecules used in virtual screening can be found in commercial databases,
such as ZINC and ChemBridge. ZINC had millions of compounds, compared to the
ChemBridge database that contain 168423 ligands/compounds in ChemBridge [24]. A
Tanimoto cut-off level of 60% was used to screen the ZINC database, which resulted in the
production of a library containing 11,193 drug-like molecules [25]. An in-house database
containing compounds isolated or synthesized by our collaborators, with a focus on natural
products and structural analogues. The in-house database contains over 1600 compounds,
representing a wide range of structural diversity across a wide variety of core scaffolds and
substitution patterns. Three-dimensional protonation (MMFF94x force field) and energy
minimization (constrained minimization of 0.01 Kcal/Å2 was performed to optimize the
ligand structures) using MOE were performed on all of the compounds in the in-house
database. Anti-COVID-19 lead compounds can be found using structure-based virtual
screening, which scans both in-house and commercial databases.

2.3. Structure-Based Virtual Screening

The drug target (receptor) and ligands’ 3D structures in the database are necessary
for the structure-based virtual screening (SBVS) methods. In order to find new potential
inhibitors, we employed molecular docking approach to assess the binding modes of drug
target proteins and the ligands, called the structure-based drug design (SBDD). This helps
to predict the improved and healthy interactions that will take place between the target
receptor and the drug. Using the MOE, the SBVS was used to screen ZINC, in-house, and
ChemBridge databases. Additionally, using both revised-Lipinski’s rule of 5 as well as
Lipinski’s rule of 5, the number of screened results was significantly reduced. New lead
hits discovered through screening a compound database of thousands of compounds are
illustrated by the property of “drug-likeness” [26].

2.4. Molecular Docking

The MOE docking software was utilized to conduct the molecular docking studies [27].
The retrieved compounds were docked with Mpro to further evaluate these drug-like com-
pounds. The 3D protonation of the target receptor was followed by energy minimization
using the MOE software 2019’s default parameters to achieve the best possible outcome. To
improve the result, all of the compounds were docked into the Mpro’ binding pocket. MOE
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was used to dock the retrieved hits against the Mpro drug target. Ten conformations were
generated for each hit, with the top-ranked conformations of each inhibitor being used for
advanced research. The docking analysis was scrutinized more closely, with docking scores
and protein/hit interactions playing a larger role. In addition, the results of molecular
docking were validated using MDS.

2.5. Molecular Dynamics Simulation (MDS)

A molecular dynamic (MD) simulation was carried out to investigate the dynamic
behavior of proteins upon inhibitor binding at the atomic level. The docked conformations
of the selected hits within the active pocket of Mpro were subjected to MD simulations. A
detailed MDS analysis was carried out using the Amber14 package and the ff14SB force
field [28]. To evaluate the stability of the previously retrieved compounds at the active
sites of Mpro and Mpro/N3 complex, MDS was used. Tleap, a preparatory program, was
used to build and solve the complexes. The solvated octahedral box was used in this
experiment. After solvating each system in an octahedral box using the TIP3P water
model with 15 Å, the systems were neutralized by adding counterions (either Na+ or
Cl−). Each neutralized system’s energy was reduced as much as possible through two
steps of energy minimization in order to achieve the goal of relaxing all of the systems.
These steps were steepest descent minimization and conjugate gradient minimization. At
50 ps, the minimized complexes were heated to 300 K. Then, using a two-step process, each
system was brought into equilibrium at a constant 1 atom and 300 K. First, we used a weak
restraint to equilibrate the density at 50 ps. Second, we equilibrated the system without
any constraints for 1 ns. After that, the production step was run for 150 ns. To keep the
temperature stable, the Langevin thermostat was activated [29] and Berendsen barostat
was used to monitor the system pressure. For the calculation of long-range electrostatic
interaction, we used the AMBER18 Particle Mesh Ewald (PME) algorithm. A cut-off
distance of 10 Å was used for long-range electrostatic interactions and van der Waals
interactions. The covalent bonds were refined using the AMBER18 SHAKE algorithm [30].
The GPU version (PMEMD.cuda) [31] of AMBER18 was used to run MD simulations on
four complexes with Mpro/N3 complexes. The AMBER18 CPPRTAJ module was used
to analyze the MD trajectories. The interface analysis and graphical representation were
carried out using MOE2019 software, PyMol v1.7, and Origin Pro Lab v2018.

2.6. Assessment of Binding Free Energy

For the calculation of binding free energy (BFE), trajectories generated by molecular
dynamics simulations using the MMPBSA.py script were used [32]. Numerous studies
have employed this method to evaluate the binding free energies of P-P (protein-protein),
protein-ligand, and nucleic acid-protein complexes. The total binding free energy (Gbind)
was calculated with the help of the following Equation:

ΔGbind = ΔGcomplex − [ΔGreceptor + ΔGligand]

For each of the energy terms, for example, polar (Gpol), van der Waal forces (GvdW),
electrostatic energy (Gele), no-polar interactions (Gnpol),Gbond showed the angle of bond
and their dihedral energy, TS represents the absolute temperature (T) and entropy (S), the
equation below was used to better understand how they contribute to the total energy (G).

G = Gele + Gbond + GvdW + Gnpol + Gpol − TS

The molecular mechanics generalized born surface area (MM-GBSA) method was
used to calculate the binding free energies of the retrieved compounds/complexes and
Mpro/N3. Since the MM-GBSA is a BFE index, the lower the value, the stronger the bond.
The binding free energy of the retrieved and reference complexes was calculated in Amber
18 using the python script MMGBSA.py. The decrease in potential energy over 150 ns
revealed that the system is stable in the case of complexes. The various conformations
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obtained over a 150 ns simulation period are examined. The MMGBSA.py script was used
to calculate the BFE between Mpro and the retrieved hits, as well as the reference drug
(N3, peptide inhibitor) [33]. In this study, the MMGBSA scripts from AMBER and AMBER
Tools were used to carry out various steps required to assess the BFE of the protein-ligand
complex via MMGBSA methods. By taking 15,000 snapshots over a 150-ns trajectory, the
BFE was calculated.

3. Results and Discussion

Despite the encouraging vaccination programs against COVID-19, the use of antivirals
is likely going to be necessary in order to contain the unpredictable outbreaks of coron-
aviruses that will occur in the future. Vaccines have already been developed, and there
are SARS-CoV-2 variants that are resistant to them, which is clear evidence that antivirals
will eventually need to be used in addition to vaccines [5]. SARS-CoV-2 must, therefore, be
controlled using an antiviral drug that is both affordable and effective. To discover new
drugs, it is helpful to see if existing drugs or drugs with similar properties are effective in
the treatment of viral infections. The traditional methods of drug discovery take a long
time and are inefficient [34]. According to an in silico study, the N3 inhibitor blocks the
active catalytic site of HCov-NL-63, preventing its biological function [35]. The current
project aimed at performing structure-based virtual database screening, molecular docking,
and drug-likeness evaluations of potential compounds. With the help of this methodol-
ogy, potent drug candidates were found to bind closely to the Mpro of the SARS-CoV-2
catalytic site and limit its proteolytic activity. Through simulation approaches, potential
anti-SARS-CoV-2 Mpro can be identified by using the structure of the COVID-19 virus Mpro

in complex with N3. SARS-CoV-2 Mpro candidate inhibitors were virtually tested using
three databases (ChemBridge, ZINC, and in-house).

3.1. Structure-Based Virtual Screening

One of the most useful and effective in silico techniques for the drug design process
is the structure-based virtual screening (SBVS) method. SBVS makes an effort to antici-
pate the interaction mode that will result in the formation of a stable complex between
two molecules. It does this by employing scoring functions, which measure the force of
noncovalent interactions that occur between a receptor and an inhibitor. Therefore, scoring
functions are the primary factors that determine whether or not SBVS software is successful.
It is possible to get different results from different software programs, even when utilizing
the same input, because these programs all employ different algorithms to perform SBVS,
which means that there are many distinct software programs that are used to perform
SBVS. In SBVS, the three-dimensional structure of the target protein is already known,
and the purpose of the process is to choose ligands from a candidate database in such a
way that they will have a greater affinity for the three-dimensional structure of the target.
Molecular docking is a computer approach that can be used to perform VS. During this
procedure, ligands are moved around in three-dimensional space in an effort to locate a
target and ligand combination that maximizes the scoring function. The ligands in the
database are ranked according to the highest score they received, and the highest-scoring
ones are the ones that can be explored further. For instance, one could look at the mode
and kind of interaction that takes place [36]. Through in silico screening, lead inhibitors for
the COVID-19 virus Mpro can be found by using the structure of the COVID-19 virus Mpro

in complex with N3. To do this, MOE was used to dock possible binding compounds from
the ChemBridge, ZINC, and in-house databases. All the compounds from the different
databases (ChemBridge, ZINC, and in-house) were used for virtual screening using MOE
software with the Mpro. Finding hits/compounds that were chemically and structurally
comparable required the SBVS of 3D databases, including the in-house, ChemBridge, and
ZINC databases. To find prospective, potential, and new inhibitors, VS was performed on
the in-house database, which included 1600 ligands, as well as the ZINC and ChemBridge
databases. Five hits from the in-house database, 50 hits from ChemBridge, and 16 hits
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from the ZINC database were all reported by the SBVS. To verify the draggability of the
hits, the retrieved results from the commercial database were also subjected to Lipinski’s
rule of five, while the results from the in-house database were treated with a modified
version of Lipinski’s rule of (5) five. According to Lipinski’s rule of (five) 5, druggable
molecules must have the log S-score ≤5, a MW <500 Dalton, an HBA of <10, a log p-score
of ≤5, and an HBD of <5. These factors are all indicators of H-bond donors. Molecules
which did not fit these requirements; their absorptions would be unsatisfactory [37]. On
the other hand, the “modified Lipinski’s rule of five” suggests that molecules having MW
>500 logP, HBD greater than 5, and HBA greater than 10 exhibit good absorption. After
running the retrieved hits via both Lipinski’s rules [38], it was discovered that, retrieved hits
from 49/50 ChemBridge database, 7/16 ZINC database, and 3/5 (in-house database) were
following both rules effectively. Subsequently, the 3/5 (in-house) and 56/66 (commercial
databases) retrieved hits were further decreased for further analysis using a molecular
docking strategy.

3.2. Molecular Docking

By docking all the hits from the 3/5 (in-house database) and 56/66 (commercial
databases) using the Mpro binding pockets via MOE, results in this study were further
reduced and refined. In comparison to the standard drug (N3), the docking scores of
our refined hits were considerably good (Table 1). For each ligand in the retrieved
findings, ten distinct conformations were generated, and all hits having high conforma-
tions were sorted and kept in a database file for subsequent analysis. We observed that
3/5 in-house hits, 7/49 ChemBridge database hits, and 5/7 ZINC database hits were
best on the basis of docking scores and, thus, were selected for further analysis. Further-
more, the top-ranked conformations of 3/5 hits (in-house), 3/5 hits (ZINC database), and
2/7 hits (ChemBridge database) were well accommodated inside the active site of the
Mpro drug target and were implicated in several interactions at the active sites of the tar-
get protein. From three different databases (ChemBridge, ZINC, and in-house database),
docking calculations revealed eight chemically varied molecules having a better binding
affinity towards SARS-CoV-2 Mpro as compared to N3. Docking studies indicated that
the Mpro drug target exhibits better docking scores and considerable polar contacts with
the hits due to the presence of electronegative capabilities. Table 1 shows the results of
molecular docking. The retrieved potential antiviral (anti-COVID19) hits were found to be
well-fitted inside the Mpro drug target (Figure 1). The compounds reported in Table 1 were
ChemBridge, ZINC, and in-house database compounds, and these retrieved compounds
were piperidine derivative, tetrahydrothiophene derivative, triazin analog, pyridazine
derivative, triazolo pyridine and quinoxaline derivatives, respectively. These compounds
have a role in the inhibition of the MPro target [39].

Table 1. The finalized lead hit compounds’ 2D structures and docking values.

S. NO Compound Names Structures Docking Scores

1 ZINC08535852 −41.3801
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Table 1. Cont.

S. NO Compound Names Structures Docking Scores

2 ZINC44928678 −41.0291

3 ZINC72171104 −39.5487

4 12-quinoxaline
derivative −38.7102

5 ChemBridge63310525 −38.0478

6 18-quinoxaline
derivative −37.5300

7 ChemBridge53208972 −35.4302
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Table 1. Cont.

S. NO Compound Names Structures Docking Scores

8 25-quinoxaline
derivative −34.3177

Reference N3 −29.5841

Figure 1. The Mpro protein’s molecular surface representation with an overlay of all retrieved
active hits in the binding pocket. The ZINC44928678, ZINC08535852, 12-quinoxaline derivative,
and ChemBridge63310525 active ligands were represented by purple, dark brown, pink, and cyan
colors, respectively.

3.3. Analyses of the Binding Interactions of Finally Selected Drug-like Compounds

It is widely recognized that molecular docking provides essential guidelines for the
design and discovery of novel drugs. The S-score quantifies the strength of the receptor-
ligand interactions. The compounds can be chosen as good drug compounds based on
their docking score (S-score). According to the docking study, all finalized hits exhibited
favorable contacts with the residues of the Mpro target’s binding site when compared to the
positive control (Table 2).
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Table 2. Details of binding interactions against COVID-19 Mpro.

Compounds IDs Ligand Receptor Interaction Distance E (kcal/mol)

ZINC08535852 C1 1 SG CYS 44 H-donor 3.91 −0.2
N1 3 SG CYS 44 H-donor 3.34 −0.6
N4 7 O PRO 52 H-donor 3.09 −1.1
C6 9 O ASN 51 H-donor 3.22 −0.1

NH 11 O Tyr 54 H-donor 3.69 −0.1
N3 6 NH1 ARG 188 H-acceptor 3.01 −0.7
O2 19 CA ARG 188 H-acceptor 3.85 −0.1

ZINC44928678 C1 1 OG1 THR 24 H-donor 3.65 −0.1
C1 1 O THR 24 H-donor 3.65 −0.1
C6 6 SD MET 49 H-donor 3.82 −0.2

C14 18 SD MET 165 H-donor 3.58 −0.1
C16 21 SG CYS 145 H-donor 3.88 −0.1
C17 22 SG CYS 145 H-donor 4.1 −0.3
O1 20 NE2 HIS 41 H-acceptor 2.98 −0.9

ZINC72171104 N2 8 SG CYS 145 H-donor 3.33 −2.2
N5 20 O THR 190 H-donor 2.83 −4.7
5-ring CA ASN 142 pi-H 4.1 −0.4
5-ring CA MET 165 pi-H 3.51 −0.3
6-ring CB MET 165 pi-H 3.59 −0.5
6-ring CD PRO 168 pi-H 4.88 −0.3
5-ring CD PRO 168 pi-H 4.43 −0.3
5-ring CA GLN 189 pi-H 3.64 −1
6-ring CG GLN 189 pi-H 4.21 −0.7

12-quinoxaline
derivative C3 3 ND1 HIE 172 H-donor 3.86 −0.2

C24 24 O HIE 164 H-donor 3.43 −0.3
O25 25 OE1 GLU 166 H-donor 2.53 −4.7
O25 25 NH GLU 166 H-acceptor 2.4 −4.8
N12 12 N CYS 145 H-acceptor 3.12 −0.8
N11 11 N CYS 145 H-acceptor 3.12 −0.8

N4 4 CA MET 165 H-acceptor 3.25 −0.1
O25 25 N GLU 166 H-acceptor 2.86 −1.3

18-quinoxaline
derivative C3 3 SG CYS 44 H-donor 2.97 −0.2

O27 27 NH ASN 142 H-donor 2.8 −0.6
O27 27 O GLY 143 H-acceptor 2.5 −0.9
C24 24 NH GLY 143 H-acceptor 1.6 −1.8
C26 28 SG CYS 145 H-donor 2.39 −0.1
6-ring CG MET 49 pi-H 4.73 −0.1
6-ring CG MET 49 pi-H 3.86 −1
C3 3 CA MET 49 pi-H 4.23 −0.8

25-quinoxaline
derivative C3 3 SD MET 49 H-donor 2.84 −0.2

O26 26 O GLU 166 H-donor 2.7 −2.3
O25 25 NH GLU 166 H-donor 2.8 −2.1
N13 13 CB THR 190 H-acceptor 2.58 −0.2

N7 7 CA GLN 189 H-donor 3.36 −0.3
N10 10 NH ARG 188 H-acceptor 3.31 −0.1
5-ring N THR 190 pi-H 3.67 −0.3

ChemBridge63310525 C9 9 O ARG 188 H-donor 2.93 −0.5
C11 11 NH ARG 188 H-donor 2.5 −0.8
C8 8 SD CYS 145 H-donor 3.59 −0.1

O19 19 O GLU 166 H-donor 3.44 −0.4
C14 14 O MET 49 H-donor 3.13 −0.2
C22 22 OH THR 190 H-acceptor 2.53 −0.1
C20 14 C MET 49 H-donor 3.13 −0.2
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Table 2. Cont.

Compounds IDs Ligand Receptor Interaction Distance E (kcal/mol)

ChemBridge53208972 C15 22 O HIE 41 H-donor 3.75 −0.1
C18 28 O HIP 164 H-donor 3.3 −0.2
C19 29 SD MET 49 H-donor 4.48 −0.1
C18 28 5-ring HIE 41 H-pi 3.58 −0.1
6-ring CA ARG 188 pi-H 4.02 −0.4
6-ring CD ARG 188 pi-H 4.42 −0.1
5-ring CD ARG 188 pi-H 4.52 −0.1
6-ring N GLN 189 pi-H 4.76 −0.3

N3 (reference
ligand) N 13 O THR 190 H-donor 2.85 −2.6

N 23 O GLU 166 H-donor 2.83 −4.8
N 39 OE1 GLN 189 H-donor 2.93 −3.3
O 85 N GLY 143 H-acceptor 2.80 −1.0

CD1 50 5-ring HIS 41 H-pi 4.08 −0.5

Out of all of the hits identified by using the SBVS against the ZINC, ChemBridge, and
in-house databases, ZINC08535852 (ZINC database), with a docking score of −41.3801, was
the most active ligand of the ZINC database and demonstrated strong interactions with the
active site residues of the Mpro of SARS-CoV-2. Figure 2 depicts the docking conformations
of a selected compound during the docking process. When used in conjunction with the
13 amino acid residues in the active site of the main protease, the ligand formed seven
hydrogen bonds within three degrees of freedom with five amino acid residues, namely
Cys 44, Asn 51, Pro 52, Tyr 54, and Arn 188 residues (Figure 2). When there are more
hydrogen bonds, the binding efficiency and inhibition are both increased as a result [40].
Six-methyl-3,4-dihydro-1,2,4-triazin-5(2H)-one moiety: The sulfur atom of Cys 44 amino
acid formed two hydrogen donor interactions with the nitrogen and methyl groups of
the triazin-5(2H)-one moiety. During the formation of the H-donor interaction between
the carbon atom of the 3-methoxycyclohex-1-ene moiety and the carbon atom of Asn 51,
an H-donor interaction is formed. The nitrogen atoms of the 5-methyl-4,5-dihydro-1,2,4-
triazole moiety interacted with the carbonyl oxygen of the Pro 52 and the amino group of
the Arg 188 through H-donor and H-acceptor bonds formed by the amino group of the
Arg 188. It has also been discovered that the nitrogen and oxygen atoms of the 6-methyl-
3,4-dihydro-1,2,4-triazin-5(2H)-one moiety of the compound form H-bonds with the active
residues Tyr 54 and Arg 188 of the main protease, confirming previous findings. Further,
the hydrophobic interactions between His 41 and Met 49 are demonstrated (Figure 2).

Figure 2. The binding mechanism of the ZINC08535852 ZINC database ligand within the active site
of the Mpro protein (A) before MDS and (B) after MDS.
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The compound ZINC44928678 (ZINC database) had a good docking score of -41.0291 and
good interactions with the target protein’s active residues. This compound formed seven
polar interactions with the active site residues (Thr 24, His 41, Cys 44, Met 49, Cys 145,
and Met 165) according to its binding mode (Figure 3). The carbonyl oxygen and carbon
atoms of the 2-(pyridazin-4-ylamino) acetaldehyde moiety of the compound interacted
with His 41 and Met 165 residues. The toluene moiety’s methyl group formed two H-
donor bonds with the Thr 24 residue, while Met 49 showed H-donor interaction with the
toluene moiety’s carbon atom. The dimethyl groups of the 5,6-dimethyl-7H-pyrrolo [2,3-c]
pyridazine moiety of the ligand form two H-donor linkages with Cys 145.

Figure 3. The binding style of the ZINC44928678 ZINC database hit at the Mpro protein’s active site
(A) before and (B) after MDS.

The 12-quinoxaline derivative from the in-house database had the highest activity
among the compounds, with a docking score of −38.7102. It was predicted, based on the
docking conformations of the ligand 12-quinoxaline derivative, that the 12-quinoxaline
derivative would form hydrophilic and hydrophobic contacts with the active residues
of the Mpro protein. These active residues include Cys 44, Met 49, Asn 51, Pro 52,
Asn 53, Leu 141, Asn 142, Gly 143, Cys 145, His 164, Met 165, Glu 166, His 172, Arg 188,
Gln 189, and Thr 190 of Mpro protein. It was revealed that the compound formed eight polar
interactions with the active residues of the receptor. The H-bond was observed between
-NH group of the Asn 142 and nitrogen atom of the thiazolo [2,3-c][1,2,4]triazole moiety
of the inhibitor. Cys 145 residue forms two H-acceptor bonds with the nitrogen atoms of
the thiazolo [2,3-c][1,2,4]triazole moiety. The carbonyl oxygen atom and –NH group of
the Glu 166 residue are connected to the OH group of the phenol moiety of the hit via
H-bonds. His 164, Met 165, and His 172 residues were seen to form three H-bonds with the
1,4-dihydroquinoxaline moiety of the compound, as shown in Figure 4.
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Figure 4. The binding mode of the 12-quinoxaline derivative of the in-house database within the
active site of Mpro protein (A) before and (B) after MDS.

ChemBridge63310525 retrieved active hits from the ChemBridge database, forms
seven hydrogen bonds, and has a high docking score (−38.0478). On the binding site,
ChemBridge63310525 interacts with five important residues and comes out on top. Met 49,
Cys145, Glu 166, Gln 189, and Thr 190 form hydrogen bonds with the moieties of the
ChemBridge63310525. The hit’s furan-2-ylmethanol moiety binds to Cys 145 and Glu 166
via polar bonds. By hydrogen bonding, the 1-(pyrrolidin-1-yl)butan-1-one moiety interacts
with Gln 189 and Thr 190. Met 49 forms H-bonds with the piperidin-1-ium moiety of the
ligand. Asn 51, Glu166, and Pro 52 interact hydrophobically with the rest of the structure
(Figure 5). The compounds that interacted more strongly than the reference inhibitor with
the Mpro of SARSCoV-2 are listed in Table 1.

Figure 5. The active site of the Mpro protein (A) before and (B) after MDS, showing the binding
mechanism of the obtained inhibitor ChemBridge63310525 from the ChemBridge database.

The retrieved hit compounds are powerful and polarizable due to the electronic cloud
density of benzene rings (delocalized electrons), the presence of OH and NH, as well as
electron repulsion groups (-nitro). All hits from the study displayed good Mpro interactions
and docking scores. All of the lead compounds’ docking scores and 2D structures are given
in Table 1.
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3.4. MD Simulation Analysis of the Final Lead Hit/Mpro Complexes

The AMBER 18 software was used to perform a 150-ns MDS on the retrieved hit
compound/Mpro complexes in order to determine their well-stabilized and equilibrated
structures. The AMBER 18 software was used to perform MDS on the topmost active
retrieved compound/Mpro systems, two inhibitors from the ZINC database (ZINC08535852,
ZINC44928678), one hit compound from the in-house database (12-quinoxaline derivative),
and one compound from the ChemBridge database (ChemBridge63310525) in complex
with the Mpro drug target, as well as the reference-ligand (N3) Mpro complex. Calculating
the RMSD of the backbone atoms was used to check the stability of the four finalized
ligand/receptor complexes. The amplitudes of the C atoms’ fluctuation amplitudes were
inversely proportional to the system’s stability. The lower the RMSD variation, the more
stable the system is, and the fluctuations of the C atoms in the system [41] will be smaller.
The RMSD plot is used to understand the complex’s stability, while the RMSF plot is used
to understand its structural flexibility (Figure 6).

Figure 6. (A–D) Plot of the lead hits/Mpro and ref-ligand (N3)/Mpro complexes’ root mean
square deviations.

MDS equilibration was completed using the ZINC08535852/Mpro system at 150 ns.
The RMSD graph showed that the amplitudes of the fluctuations rose with an RMSD score
of 3 Å from 0 to 40 ns, and then the score decreased to 1.8 Å with slight fluctuations after
40 ns. After 140 ns up to 150 ns, the system was completely stabilized, with an RMSD of
1.8 Å and the least amount of fluctuations (Figure 6A).
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The third compound is ZINC44928678 in complex with Mpro. This complex was
then subjected to the MDS to produce an energy-minimized and stabilized structure. The
system’s RMSD graph revealed that the complex was stable from 0 to 100 ns of MDS at
1.5 Å, but that after MDS progression from 100 to 120 ns, their RMSD score increased to
2 Å as the system became unstable. The system was then stabilized after 120 ns, displaying
smaller fluctuations with a slight increase in RMSD 2.5 Å, as shown in Figure 6B.

Mpro in complex with the 12-quinoxaline derivative was the second most active
compound, with an RMSD of approximately 2.4 Å during the 150 ns simulation. The MDS
of this ligand in contact with the Mpro can be shown in Figure 6C. This MDS was computed
using RMSD scores of 2.4 Å, and the results are shown in Figure 6C. The RMSD graph of
this system shows that the fluctuations became less and obtained an RMSD score of 2.4 Å
after executing the 120–150 ns of MDS.

The ChemBridge63310525/Mpro (hit ligand/protein) complex’s RMSD graph dis-
played the highest variations from 0 to 140 ns, with an increase of approximately 3.5 Å.
Soon after 140 ns of MDS, smaller fluctuations were seen in the complex system’s structural
backbone, with an RMSD of approximately 2.8 Å (Figure 6D). Mpro undergoes conforma-
tional changes, as evidenced by the differences in the backbone RMSD in hits/Mpro.

The fluctuations of the protein residues upon ligand binding, were analyzed by root
mean square fluctuation (RMSF) (Figure 7A–D). The stability of a complex can be inferred
from its RMSF (root mean square fluctuation) trajectories. An unstable bond is indicated
by a plot with a lot of movement. A low number, on the other hand, or less fluctuation,
denotes well-structured and less distorted complicated regions. RMSF is an equilibrium
property that is calculated from the entire MD trajectory, so is its time average. For Mpro

with residues containing the four possible inhibitors, the RMSF of backbone atoms was
computed. The active site residues that interacted with the ligands were discovered
to be stable and showed minimal variations over time, confirming the stability of the
molecules with the target protein. The main variations, in contrast, were associated with
regions that were far from the ligand active site, and others were discovered in the flexible
loop region. Additionally, it was noted that the RMSF variations in the complexes were
smaller than those in the other complex, indicating that it had substantially less structural
mobility than the other complex. All of the systems exhibited patterns that were strikingly
similar, as presented in Figure 7A–D. Figure 7A–D clearly show the overall RMSF value
for all complexes.

3.5. Radius of Gyration (Rg)

The relationship between Rg and time was plotted in order to determine the system’s
compactness. Low Rg values are explained by the structure’s high stability and closed, com-
pact structure, whereas high Rg values are explained by the structure’s low compactness
when compared to conformational entropy (more folded). Figure 8 shows the simulation Rg
values for the four compounds, which are easily discernible (as shown). In the complex, the
Rg values remained stable, indicating that the binding of these molecules does not alter the
protein’s structure. The retrieved four ligands/MPro complexes have shown low Rg values
(compacted conformation of complexes) as compared to the reference ligand (N3)/MPro,
therefore, indicating that the obtained hits were active inhibitors. The Rg is a parameter for
assessing the compactness and overall dimension of the protein, which in turn signifies
the folding and unfolding of the protein. The lower the gyration values, the more folded
the protein is, and vice versa. Therefore, Rg was calculated to determine whether the
compounds/ligands maintained the folding of the system. Condensed architecture and
size are supported by the complexes’ Rg range (Figure 8A–D).

109



Bioengineering 2023, 10, 100

Figure 7. (A–D) Plot of the root mean square fluctuation of the identified lead hits/Mpro (purple,
blue, olive green, and yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes. The
various color schemes illustrated various hits/Mpro complexes and their related trajectories. Each
system possessed the residual flexibility. On the graph, the number of residues is shown along the
x-axis, and the RMSF is displayed along the y-axis in angstroms.

Figure 8. (A–D) The radii of gyration of the identified lead hits/Mpro (purple, blue, olive green, and
yellow, respectively) and ref-ligand (N3)/Mpro (red color) complexes were plotted.
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3.6. Molecular Mechanics with Generalized Born and Surface Area Solvation (MMGBSA)

This module also looked at the binding energy calculation of selected top compounds
based on their affinity for the active site binding pocket. ZINC08535852, the first lead, had
an MMGBSA score of −39.5546 Kcal/mol, whereas the active lead in in-house database,
12-quinoxaline derivative, had an even lower MMGBSA score of −37.8210 Kcal/mol.
The MMGBSA binding free energies of the ZINC44928678 and ChemBridge63310525 are
−35.8398 Kcal/mol and −33.2041 Kcal/mol, respectively. These results lead to the con-
clusion that the retrieved hits had a higher free binding energy score than the reference
(−20.7812 Kcal/mol) (Table 3). In order to confirm the possible uses of these powerful in-
hibitors in COVID-19, we will soon design further experimental studies to test the inhibitory
capacity of compounds towards SARS-CoV-2.

Table 3. The average backbone RMSD and binding free energies for the best four complexes. The
data are reported as the average ± standard error of the mean (SEM).

Compound Names RMSD (Å)
Binding Free Energies

(Kcal/mol)

ZINC08535852 (ZINC database) 1.8 ± 0.005 −39.5546 ± 0.3671
ZINC44928678 (ZINC database) 2.5 ± 0.005 −35.8398 ± 0.1901

12-quinoxaline derivative in-house database 2.4 ± 0.005 −37.8210 ± 0.5091
ChemBridge63310525 (ChemBridge database) 2.8 ± 0.005 −33.2041 ± 0.2102

Reference (N3) 2.8 ± 0.0126 −20.7812 ± 0.4214

The interaction reports of the selected hits (ZINC08535852, ZINC44928678, 12-quinoxaline
derivative, ChemBridge63310525, and N3 (reference ligand)) were mentioned after the MD
simulations in Table 2, while the remaining data were after the docking, i.e., the docked
complexes’ interactions reports.

4. Conclusions

The primary goal of this study was to conduct a SBVS of compounds from the in-
house, ZINC, and ChemBridge databases, as well as molecular docking and MDS of
selected compounds and reference ligands (N3), as well as an estimation of binding in-
teractions against the Mpro of SARS-CoV-2. Three active inhibitors, the top active one hit
from each database, from the ZINC, ChemBridge, and in-house databases (ZINC08535852,
ChemBridge63310525, and 12-quinoxaline derivative, respectively) showed a strong inter-
action against the active site of the Mpro of SARS-CoV-2. These compounds were identi-
fied as the most active anti-viral compounds ZINC08535852, ChemBridge63310525, and
12-quinoxaline derivative, against the Mpro of SARS-CoV-2. These results show that these
compounds have the potential to be employed as a medication to treat SARS-CoV-2 illness.
If in vitro and in vivo clinical testing are followed, the compounds could potentially serve
as a candidate for the COVID-19 regimen.
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Abstract: Due to rapidly developing technology and new research innovations, privacy and data
preservation are paramount, especially in the healthcare industry. At the same time, the storage of
large volumes of data in medical records should be minimized. Recently, several types of research on
lossless medically significant data compression and various steganography methods have been con-
ducted. This research develops a hybrid approach with advanced steganography, wavelet transform
(WT), and lossless compression to ensure privacy and storage. This research focuses on preserving
patient data through enhanced security and optimized storage of large data images that allow a
pharmacologist to store twice as much information in the same storage space in an extensive data
repository. Safe storage, fast image service, and minimum computing power are the main objectives
of this research. This work uses a fast and smooth knight tour (KT) algorithm to embed patient data
into medical images and a discrete WT (DWT) to protect shield images. In addition, lossless packet
compression is used to minimize memory footprints and maximize memory efficiency. JPEG formats’
compression ratio percentages are slightly higher than those of PNG formats. When image size
increases, that is, for high-resolution images, the compression ratio lies between 7% and 7.5%, and
the compression percentage lies between 30% and 37%. The proposed model increases the expected
compression ratio and percentage compared to other models. The average compression ratio lies
between 7.8% and 8.6%, and the expected compression ratio lies between 35% and 60%. Compared
to state-of-the-art methods, this research results in greater data security without compromising
image quality. Reducing images makes them easier to process and allows many images to be saved
in archives.

Keywords: big data; data security; knight tour; steganography; wavelet transform; lossless compression

1. Introduction

In recent years, there has been a need for extensive medical data information security
in all research fields. One such field where information security is crucial in medicine and
pharmacology. Today, the number of diseases and people affected by them has increased,
posing a potential challenge in storing various medically significant data in limited storage
spaces. In addition, data security cannot be compromised. Over the years, steganography
techniques have proven to be one set of effective methods to maintain the privacy of big
medical data. This method uses an overlay image to embed and retrieve data algorithmi-
cally. There are several options for entering information into big medical data. One such
variation used in this paper is the knight tour (KT) traversal technique combined with least
significant bit (LSB) substitution to preserve data. The big data of the patient are added
to the medical image, which is the cover image of this steganography technique. The KT
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performs the embedding, and the binary information is embedded in the LSB position of
the medical big data image pixels placed in the KT path. To increase security, the discrete
wavelet transform (DWT) is applied to the cover image to make it unreadable, and lossless
wavelet compression is used to efficiently store the transformed image in an extensive
medical data repository. This hybrid approach ensures the security of patient information
and the efficient storage of information in a medical database using as little storage space
as possible.

Initial attempts to implement communications, photo archiving systems and telera-
diology applications have encountered significant obstacles. Large picture files present
problems for both transmission and storage due to the high cost of the equipment required
to manage them. Lossless compression techniques only accomplish 2:1 to 3:1 reductions
for medical photos by using redundancy within an image to transfer image information
more effectively while permitting flawless reconstruction. Images can be reduced by arbi-
trarily huge ratios using irreversible or “lossy” processes, but the original pictures are not
fully replicated. However, the reproduction quality could be sufficient to prevent visible
picture deterioration and diminished diagnostic usefulness. This paper examines wavelet
compression in a new light. We compare the method to the famous Joint Photographic Ex-
perts Group (JPEG) approach. We review methods for measuring compression algorithms’
effectiveness and look at new developments in wavelet compression.

The motivations behind this research work, along with the significant contributions
respecting processes, are as follows:

� Compressing the image—Apply wavelet analysis to separate and approximate the
image information based on the sub-images and sub-signals.

� Pixel approximation for compression—Apply the images’ horizontal, vertical, and
diagonal features and approximate the sub-signals for better pixel approximation.

� Frequency and time localization—Apply WT effectively to reduce computational
complexity.

� Signal-features-based compression—Apply WT to distinguish between the minute
signal features during the compression.

� Quantization and lossless compression—Apply the hybrid transformation to quantize
the coefficients to optimize the lossless image compression during the transmission.

Wavelet compression and JPEG fall under the “transform-based lossy compression
algorithms” umbrella category. Transformation, quantization, and encoding are the three
processes that make up these approaches. A picture is converted from grayscale values
in the spatial domain to coefficients in another domain in a lossless procedure known
as transformation. The Fourier transform, used to recreate magnetic resonance (MR)
pictures, is one well-known transform. The DCT and WT are two more transformations
more often employed in compression. The transformation phase does not result in any
information loss. Information is lost during the quantization process. While less significant
coefficients are loosely approximated, frequently as zero, efforts are made to preserve the
more significant coefficients. Converting floating points to decimals might be enough to
perform quantization: values are converted to integers. The quantized coefficients are
finally encoded. The quantized coefficients are compactly represented in this step, which is
also lossless, to allow for adequate image storage or transmission.

The paper is organized as follows. Section 2 presents a literature survey, Section 3
discusses the proposed model, and Section 4 focuses on the results and analysis. The
conclusions and a consideration of future enhancements are drawn in Section 5.

2. Literature Survey and Critiques

Various steganography methods and standard guidelines have recently been proposed
that provide valuable recommendations and suggest using object-oriented mechanisms [1].
A three-layer technique, including pixel statistics preservation, Moore space-filling curves,
and Hilbert space-filling curves, increases and improves security [2]. A detailed compar-
ative analysis was made of different digital steganography techniques, and performance
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was evaluated in terms of peak signal-to-noise ratio (PSNR) and mean square error (MSE)
values [3]. Image compression of black and white images using a wavelet transform that
uses the LGB algorithm and an error-correction method to minimize distortion has been
presented. The compression result was compared with other techniques for encoding DWT-
coupled map grid (CML) data [4]. The results show that the proposed encryption algorithm
has the advantage of large key space, high security, and fast encryption or decryption
speed [5]. A recently developed generic codec supporting JPEG 2000 with volumetric
extension (JP3D) was used to investigate how to optimally compress volumetric medical
images using JP3D. Various directional WTs and a general in-group prediction mode pro-
vide guidelines and settings for optimal compression of medical volumetric images at an
acceptable level of complexity [6].

A low-complexity 2D image compression method was tested using Haar waves, and
compressed image quality was obtained. Some factors, such as compression ratio (CR),
PSNR, mean opinion score (MOS), picture quality scale (PQS), etc., have been used to
evaluate the quality of compressed images [7]. The work used a simple LSB substitution
technique for data hiding. The MSE is calculated, and the resulting image has no significant
changes from the original image [8]. An advanced steganography technique that includes
side information to calculate the correlations between neighboring pixels and estimate
degrees of smoothness has been used. The results showed that the technology provides a
high delivery capacity with less distortion [9]. Steganography was used by adjusting the
LSB value of the color pixel intensity by simple binary addition. The results showed that the
embedding power was twice that of the traditional technique [10]. The methods used were
DWT for medical image compression. Research shows that correlation and redundancy are
reduced in the DWT domain, while random permutation of pixels with an encryption key
leads to confusion and dispersion [11]. Information hiding was developed with multi-pixel
difference (MPD) and LSB (least significant bit) replacement to improve image quality and
increase information storage capacity. The results showed that the improved image and
resolution were undistorted [12]. Concatenative singular value decomposition (SVD) and
optimized DWT were used. Huffman encoding and decoding were also performed.

The results were compared with other image compression methods based on CR,
PSNR, SSIM, and MSE [13]. The various scenography and digital watermarking techniques
for beginners were explored and acted as a guide to help understand the concepts and
apply them very easily [14]. The coefficients of the applied 2-D orthogonal WT and the
transformed image were coded and quantified according to the local estimated noise
sensitivity. The human visual system offers a high degree of compression [15]. In image
compression, fusion, and encryption, big medical data CS, chaos, and fractional Fourier
transforms were used simultaneously. The technique was developed to reduce data and
simplify the keys [16]. Secure and lossless digital image watermarking was developed based
on DWT and DCT databases to preserve patient privacy in a medical database. Performance
development factors include PSNR measurements and their correlations with overall image
degradation [17]. DWT was used for the fast and secure transmission of primary images
online. The results showed that the algorithms quickly and securely send essential images
in a group [18]. A wavelet-based approach was developed to compress and encrypt fused
images by selecting salient and less salient information. Fusion is performed by error
measurement with compression, and encryption methods use pseudo-random number
sequences and Huffman coding. The results showed that the proposed method was better
than all others [19]. DWT was used for medical big data image compression. The results
showed that the proposed algorithm has better security and performance than previous
works [20]. This research used DCT, DWT, and watermark methods to store patient data.
The results showed that the proposed system performs better un-detectability [21]. The
modulation function was applied, and many advantages were achieved regarding good
resolution, overcoming LSB compensation, and creating large storage space to achieve a
sizeable hidden volume [22]. The Embedded Zero tree Wavelet (EZW) algorithm provides
an efficient technique for low bit rates and high compression and advanced EZW techniques
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for lossless and lossless grayscale and color image compression [23]. The simple and
optimized LSB replacement method and genetic algorithm were developed for image
embedding. The results showed that the embedded image was not significantly affected,
and the hiding strategy was improved [24]. The new type of steganography using the LSB
replacement and pixel value difference (PVD) methods was developed to improve image
quality and maximize the hidden space [25–28].

The entropy, run length, and dictionary-based compression techniques were developed
to achieve lossless compression [29–33]. The DNN and principal component analysis
strategies were applied to predict data compression using entropy values. The images were
divided into blocks, and then applied compression [34].

3. Proposed Methodology

The proposed method mainly focuses on KT steganography, WTs, and compression.
Today, image and audio file sizes are drastically compressed in a new mathematical way.
Lossless compression is an old technology, but JPEG and MP3 now use lossless compres-
sion and are essentially required in the new environment. The original document was
extensively searched using a mathematical model. Typically, compression up to a tenth of
the original image length is possible. The quality and accuracy never deteriorate. Record
compression and image compression must not allow images to be lost. The length of the
original image must match the load image after it is translated.

The fast KT approach is designed to move only in the L direction, i.e., three down
and one to the right, starting at the first pixel of the image. The cover image is converted
using DWT, and the “wpdencmp” lossless wavelet packet based on the “Haar” wavelet
is used to compress the transformed image. The complete methodology is described in
the architecture diagram (Figure 1). DWT has wide applications in technological under-
standing, engineering, mathematics, and computer engineering knowledge. In particular, it
encodes characters to symbolize separate records in an extra-redundant format, often as a
prerequisite for fast compression. Both strategies have their advantages and disadvantages.
Like DWT, it offers a higher compression ratio of 1:3 without losing photos but still requires
more processing power. DCT can perform electrical processing, and artifact blocks are like
losing some statistics’ continuous WTs.

Figure 1. Overview of the architecture.
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3.1. Architecture Diagram

Image compression is a method used to reduce image space. In decompression, a
small part of the image is first removed and scaled to the large image. The primary purpose
of image compression is to reduce minor images and noise because images are removed.
Image redundancy is squared to make the image effective. This technique reduces the bit
size of an image without affecting image quality. Reducing the image quality does not
affect the image quality of any account. The shorter the length, the more images can be
stored under the archive. The disk space required to store images is small or large.

3.2. Proposed Algorithm

The clinical data repository combines statistics from various clinical resources, includ-
ing EMR or laboratory systems, to provide a complete picture of a patient’s care. These
archives are characterized as databases containing scientific statistics. Healthcare extensive
records is a term used to describe the large number of records created by adopting digital
technologies that collect patient statistics and help manage healthcare services that are
otherwise too large and complex for classic technologies. Clinical repositories can provide
a rich overview of patients, their clinical conditions, and outcomes. The database can
provide a way to explore associations and capacity styles between disease progression and
treatment. The proposed algorithm with improved embedding is sketched in Algorithm 1.

The DWT coefficients were first tested (approximate and detail coefficients are pro-
cessed separately) by inserting zeros between each coefficient, doubling each length exactly.
Just as the concept of filter financial institutions can determine DWT, so can IDWT recon-
struction be performed by taking the real first N/2-1 coefficients of the DWT coefficients
and adding them to the transfer. RMSE suggests that square deviation is one of the most
typically used measures for comparing excellent predictions. It shows how some distance
predictions fall from measured actual values using Euclidean distance. To compute RMSE,
calculate the residual (the distinction between prediction and fact) for each statistical fac-
tor, compute the residual norm for every information factor, compute the suggestion of
residuals, and take the square root of that mean. RMSE is typically utilized in super-
vised mastering applications, as RMSE uses and requires accurate measurements for each
predicted record factor.

Algorithm 1: Improved Embedding

1: Load the medical image and the patient data as X ← medical image and D ← patient data.
2: Adjust the matrix dimensions such that the rows are multiples of 3 and the columns of 2.
3: Pad the extra row or column with the value ‘256′ as the pixel ranges between 0 and 255.
4: Extract the ASCII value of D and convert it to its equivalent binary value as D → ASCII (D) →
Binary(D).
5: Apply KT for pixel traversing the image in the ‘L’ path, and change the LSB bit of each pixel
with each bit of the binary value from D.
6: Delete the extra padded row or column.
7: Extract the red, green, and blue components from X.
8: Apply forward DWT for the red, green, and blue components using the formula

IDWT(a, b) = 2−a/2
∫ +∞

−∞
i(t)ψ

(
2−at − b

)
dt (1)

ψa,b(t) = 2−a/2ψ
(
2−at − b

)
(2)

where ψ(t) is the mother wavelet.
9: Combine the individual transformed components into one matrix.
trans = combine (red, blue, and green)
10: Compute lossless wavelet packet compression using ‘wpdencmp’ function with ‘haar’ wavelet
packet and store it in the repository.
Z = compress (wpdencmp, trans, haar)
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The extraction algorithm is defined in Algorithm 2 as follows.

Algorithm 2: Extraction

1: Retrieve the compressed image from the medical database and perform wavelet decompression.
trans = decompress (Z)
2: Apply Inverse DWT (IDWT).

i(t) = ∑a ∑b IDWT(a, b)
[
2−a/2ψ

(
2−at − b

)]
(3)

3: Extract the red, blue, and green components from the reconstructed image, and combine them.
4: Make the image matrix traversable by adding an extra row or column and pad with the
value ‘256′.
5: Apply the KT to extract the LSB values from the pixels of the image traversing in an ‘L’ pattern.
6: Delete the extra padded row or column.
7: Convert the obtained binary bits to ASCII values and the character.
Binary (D) = ASCII (D) = char (D) = D
8: Update the patient data = D and medical image = X.

The proposed image compression is defined in Algorithm 3.

3.3. Computational Performance of Wavelet Transform

The size of the filter set and the number of pixels in the image impact how quickly
wavelet compression works. Although JPEG speed is related to the number of pixels, the
DWT has substantially higher memory needs since the entire image must be changed
simultaneously. In light of this, wavelet compression speed on a particular platform will
be equivalent to JPEG compression speed for small pictures that can be stored entirely in
memory but slower for bigger images. As an electronic file, the number of radiologic tests
varies little between treatment techniques. A computed tomographic (CT) picture is 189
MB in size. A study with 40 images takes up roughly 16 MB for a two-view radiographic
study and 20 MB for a study with 40 images. A typical MR picture is 8 MB; however,
because many images are often collected, MR imaging examinations typically consume
10–15 MB. A cross-sectional picture may be decompressed using Windows NT 4.0 software
(Microsoft, Redmond, Wash) in nanoseconds on a 200 MHz Pentium Pro computer with 64
MB of random access memory. A 10 MB radiograph may be decompressed using wavelet
compression in around 9 s, compared to 7 s using the JPEG method. Standard modems
may often operate via telephone lines at 28.8 kbit/sec rates. A 15 MB file would take
roughly 90 min to transfer. A 10:1 compression ratio would cut the transmission time to
9 min, and a 33:1 ratio would lower it to 3 min. The improvement in transmission time
is directly proportionate to the compression ratio employed. The compression ratio also
linearly reduces the storage needed; for example, a 15:1 compression ratio would reduce
the 15 MB research to just 1 MB [25–32].
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Algorithm 3: Proposed Image Compression

1: Apply the improved embedding to the medical image.
2: Perform the extraction operation.
3: Apply the hard threshold using

yhard(t) = x(t) when abs(x(t)) > T

yhard(t) = 0, when abs(x(t)) ≤ T

4: Perform the soft threshold using

yso f t(t) = x(t)− T when abs(x(t)) > T

yso f t(t) = 0, when abs(x(t)) ≤ T

5: Find the entropy encoding h(s).

h(s) = −
q

∑
j=1

p(si)log p(si)

6: Determine the Shannon entropy M(C(b))).
7: Apply the wavelets based multi resolution analysis.
8: Define the Haar transform
Ik, n = [k2−n, (k + 1)2−n]
9: Perform the dilation using

∅(x) =
√

2 ∑
k∈z

∅(−k + 2x)h(k)

10: Apply the wavelet operation using

ϕ(x) =
√

2 ∑
k∈z

g(−k + 2x)g(k)

11: Perform filtering operations using orthogonal quadrature.

h(i) =
∞

∑
j=−∞

u(j).h(−j + 2i)

g(i) =
∞

∑
j=−∞

u(j).g(−j + 2i)

12: Apply the filters using bi-orthogonal quadrature.
13: Decompose the image using wavelets and apply the color conversion.⎡

⎣ Y
Cb
Cr

⎤
⎦ =

⎡
⎣ 0.3 0.6 0.1
−0.2 −0.3 0.5
0.5 −0.4 −0.1

⎤
⎦
⎡
⎣R

G
B

⎤
⎦

14: Find RGB using ⎡
⎣R

G
B

⎤
⎦ =

⎡
⎣1 0.1 1.3

1 0.3 −0.5
1 1.8 −0.1

⎤
⎦
⎡
⎣ Y

Cb
Cr

⎤
⎦

15: Apply the lossless compression through⎡
⎣Yr

Vr
Ur

⎤
⎦ =

⎡
⎣(2G + R + B)/4

R − G
B − G

⎤
⎦

⎡
⎣G

R
Br

⎤
⎦ =

⎡
⎣Yr − (Vr + Ur)/4

G + Vr
G + Ur

⎤
⎦
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4. Simulation and Analysis

The overall methodology of this research includes KT steganography, DWTs, and
lossless wavelet packet compression of medical images for privacy, preservation, and
efficient storage. The steganography technique uses the LSB replacement technique, which
replaces LSB bits of pixels with patient data in binary form.

4.1. Datasets

The proposed model was simulated using datasets from http://www.aylward.org/
notes/open-access-medical-image-repositories, accessed on 1 January 2023 [20–24]. The
proposed model was tested using 43,752 chest radiographs from the National Institutes of
Health Clinical Center (NIHCC) database. This comprises 1,00,000 images with relevant
details, diagnostic information, and other publicly available datasets. The model was tested
for various image sizes. The expected results were obtained with various data fixes and
changes, which challenged the embedding algorithm, and additional data were included
to verify the effectiveness of the compression algorithm.

4.2. Results and Analysis

The results of the steganography technique are shown in Figure 2; the changes in both
the cover image and the steganography image cannot be distinguished. This demonstrates
the superiority of the LSB replacement method in the field of steganography. The resulting
steganography image is then transformed to render the image unreadable, and compression
techniques are used to store the medical image in a database properly. This scenario
is illustrated in Figure 3. This diagram shows the order of conversion, compression,
decompression, and inverse conversion processes. To realize this methodology, we took as
input cerebral hemorrhage steganography images already embedded in patient data and
applied the DWT to obtain the transformed images.

The “dwt2” method is used for the conversion. In the DWT process, the original
image is decomposed into up to two levels using the “Haar” wavelet. This decomposition
produces horizontal, vertical, diagonal, and proximity components. The decomposed
components are reconstructed using the DIWT to recover the original image. This strategy
is illustrated in Figure 2, and the compression method takes a decomposed image as input
and compresses it using a wavelet packet compression technique using “Haar” wavelet
packets. The compression method, “wpdencmp,” uses a soft thresholding technique that
uses wavelet packets to compress the image and compute the threshold. This compression
concept is illustrated in Figure 3, along with histograms of the original and compressed
images. A step-by-step compaction process is shown in Figure 4. At each level, the images
are refined, and the differences between levels are visible. The higher the number of coding
levels of compression, the higher the image’s compression ratio and recovered energy. The
compressed image is decompressed by wavelet packet reconstruction using the accounting
matrix values of the decomposed image. Horizontal, vertical, diagonal, and proximity
components are extracted from the decompressed image, and an IDWT is applied to recover
the original image. A title image embedded in the patient data is visualized.

In Figure 3, the steganography image of the brain hemorrhage is taken, and DWT is
applied. After compression, the compressed image is displayed as a bar graph. The wavelet
reconstruction method recovers the compressed image from the compressed image. The
target image is retrieved from the decompressed image by applying the IDWT method to
the previous step. Figure 4 represents the DWT and IDWT of the brain hemorrhage image.
A sample segmentation of the transformed image is also displayed.

Figure 5 represents the histograms of the steganography and decomposed and com-
pressed images in red, blue, and pink colors, respectively. The obtained outcome shows
that the adopted methodology is efficient regarding high-resolution lossless compression
of medical images. In the resultant images, the novelty of the work is apparent; it can be
seen that the proposed methodology enables excellent elaboration and enhancement using
improved WTs and lossless compressions. Figure 6 represents the transition steps of the
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wavelet packet compression technique, where the images are clearly distinguished from
one another.

Figure 2. The embedded image.

Figure 3. Hybrid transformation and compression.

Figure 4. Applying DWT.
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Figure 5. Histograms of original and compressed images.

Figure 6. Compression of the transformed image.

As shown in Figure 7, the complete process of wavelet photograph compresion is
carried out and explored as follows. The laptop takes an entered image, before which
wavelet redecoration has been finished for the digital image, thresholding has been executed
on the digital picture as shown in Figure 8, and entropy coding has been completed for the
photograph, all of which are essential. Wavelet compression is a technique that lets one
minimize the dimensions of files at the same time as the equal time, improving them via
the elimination of high-frequency noise additives. The documents can, without problems,
be decreased beneath 1% of their actual length. Wavelet radically change, used to look up a
sign into high-quality frequency factors at incredible choice scales, allows a picture’s spatial
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and frequency attributes to be concurrently revealed. In addition, competencies that could
be undetected at one decision point might be easy to spot at another. One of the most vital
blessings of wavelets is that they provide simultaneous localization in time and frequency
areas. The most requirement in acquiring wavelets is that fast wavelet remodeling is
computationally very speedy. Wavelets have the great advantage of being successful in
isolating sign information. Lossless compression is more significant for programs where
maintaining extraordinary files is essential. The drawback of this compression method is
that it calls for massive archives to hold files after compression.

Figure 7. Multiple compression of MRI using different wavelet families.
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Figure 8. MRI compression using core wavelet families.

4.3. Comparative Analysis

The decompressed images of different sizes were compared with the original image.
Several image measures—mean square error (MSE), signal-to-noise ratio (SNR), peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and bit error rate
(BER)—were evaluated. The results are shown in Table 1. The performance of the proposed
model was compared with those of other models—steganography, WT, segmentation,
encryption and fusion, DCT, DWT, and classification [1–4,8,9,14–17,19,21,23,24].

Table 1. Comparative analysis.

Measures Original Image
Decompressed Image

1
Decompressed Image

2

MSE 41.89 41.88 41.88
SNR 25.79 25.79 25.79
PSNR 31.92 31.91 31.91
SSIM 0.99 0.99 0.99
BER (number, ratio) 1548, 7.38% 1548, 7.37% 1548, 7.37%

This research proves that the evaluation parameters do not change significantly as
the size of the information increases and gives the insight that, regardless of size, the error
rate is low enough that the steganography or decompressed image will not be distorted.
Regardless of changes to the input data, the embedding and compression algorithms do
not deviate from expected results, proving robustness and accuracy to any dataset and the
tricky challenges introduced. The compression ratios of all images also exceeded the 80%
benchmark, demonstrating high compression ratios for lossless images. From the original
17.63 GB of the significant medical dataset, the total compression achieved was 8.62 GB,
which is very efficient for medical repository storage. These proven results give a clear
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insight into how well the hybridization and fusion of these techniques have yielded results
and give us a significant boost and inspiration to use this well-constructed technology.

4.4. Compression Analysis

The process of image steganography, transformation, and compression can be per-
formed on any platform using any method. However, it is essential to have higher security
and minimal storage space. Therefore, choosing an efficient and effective method will give
the best results. Choosing a fast KT optimized for steganography and DWTs, along with
wavelet packet compression of images, gives better results. To demonstrate the success of
the proposed method, experiments were performed in MATLAB version R2017b, in which
the data embedding, transformation, and compression work was carried out. MATLAB
software is a tool that can be used to perform all mathematical operations, providing highly
accurate results at every step. Windows 10 OS provides excellent support for productive
and skillful research. KT lends an innovative flavor to steganography techniques, and
transformations help protect steganography images. Additionally, the transformed image
is compressed using lossless compression and decompressed again at the receiving end to
the exact same resolution as the original image. The compressed images are stored in the
database in less space, which helps in efficient storage.

4.5. Comparative Results and Statistical Analysis

The performance of the proposed method was also evaluated for various JPEG and
PNG image formats to obtain compression ratios with percentages of compression. The
image sizes considered for the simulation were 128 × 128, 256 × 256, 512 × 512, and
1024 × 1024. The performance measures of the proposed model are shown in Table 2.
The expected performance in terms of compression ratios to other models is detailed in
Table 3. The expected performance in terms of compression percentages to other models is
shown in Table 4. The expected performance in terms of computing times for the proposed
model to other models is shown in Table 5. The expected compression and decompression
computing times for the benchmark datasets for the proposed model in relation to those of
the other models are shown in Tables 6 and 7, respectively.

Table 2. JPEG and PNG format comparisons.

Size Features JPEG PNG

128 × 128 Image 1 Compression ratio 8.9% 8.7%
128 × 128 Image 1 Compression % 52.5% 46.6%
128 × 128 Image 2 Compression ratio 8.5% 8.2%
128 × 128 Image 2 Compression % 53.5% 41.5%
256 × 256 Image 1 Compression ratio 8.1% 8.0%
256 × 256 Image 1 Compression % 42.5% 41.2%
256 × 256 Image 2 Compression ratio 7.5% 7.2%
256 × 256 Image 2 Compression % 36.2% 33.5%

Table 3. Expected performance—compression ratios compared with those of other models.

Size Proposed Model Other Models

128 × 128 8.6% 8.1–8.5%
256 × 256 8.4% 8.1–8.3%
512 × 512 7.9% 7.5–7.8%
1024 × 1024 7.8% 7.7–7.8%
Public datasets 8.5% 7.8–8.4%
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Table 4. Expected performance—compression percentages compared with those of other models.

Size Proposed Model Other Models

128 × 128 58.6% 58.1–58.3%
256 × 256 48.4% 48.1–48.3%
512 × 512 57.2% 47.5–47.9%
1024 × 1024 37.8% 35.7–36.4%
Public datasets 58.4% 45.5–55.8%

Table 5. Expected performance—computing times (in ms) compared with those of other models.

Size Proposed Model Other Models

128 × 128 3.5 5.7
256 × 256 3.8 6.2
512 × 512 4.2 6.4
1024 × 1024 4.7 7.5
Public datasets 35.2 48.4

Table 6. Expected performance—compression computing times (in ms) compared with those of other
models.

Size Proposed Model Other Models

128 × 128 2.7 3.8
256 × 256 3.2 5.9
512 × 512 4.1 5.4
1024 × 1024 4.2 5.5
Public datasets 12.56 21.78

Table 7. Expected performance—decompression computing times (in ms) compared with those of
other models.

Size Proposed Model Other Models

128 × 128 3.8 4.7
256 × 256 4.3 5.2
512 × 512 4.3 6.2
1024 × 1024 4.5 7.8
Public datasets 15.23 25.35

The following significant inferences were drawn based on the simulation.

� JPEG formats’ compression ratio percentages were slightly higher than PNG formats.
When the image size increases, that is, for high-resolution images, the compression
ratio lies between 7% and 7.5%, and the compression percentage lies between 30%
and 37%.

� The proposed model increases the expected compression ratio and percentage com-
pared to other models. The average compression ratio lies between 7.8% and 8.6%,
and the expected compression ratio lies between 35% and 60%.

� Computing time is reduced with the proposed method relative to other methods. For
high-resolution images, the expected computing time lies between 4 ms and 5 ms
compared to other approaches.

The limitations of the proposed model are as follows:

� The memory requirement through DWT is higher since it processes the complete
image.

� Training and inference can be achieved by designing an optimal neural network to
reduce complexity.
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5. Conclusions and Future Work

In this research, a picture of a brain hemorrhage was taken and entered into the
patient’s records. The input image was transformed using a DWT “branch” wavelet.
The transformed image was then compressed using “Haar” wavelet compression. The
image was compressed to 83.3333% and decompressed and reconstructed to obtain the
embedded brace image. This downloaded brace image was then used to extract patient
information from the original image. After decompression, the resolution of the studied
image was never disturbed, and since the brace image was lossless, the extracted patient
data were unchanged. The optimization obtained from the test significantly contributed
to the preservation and long-term archiving of the medical image without compromising
the patient’s privacy. The compression technology produced an amazing lossless image
after decompression, which was useful for retrieving patient information. The method
developed in this research ensured that medical images were archived optimally and
increased privacy. JPEG formats’ compression ratio percentages were slightly higher than
those of PNG formats. When image size increases, that is, for high-resolution images,
the compression ratio lies between 7% and 7.5%, and the compression percentage lies
between 30% and 37%. The proposed model increases the expected compression ratio
and percentage compared to other models. The average compression ratio lies between
7.8% and 8.6%, and the expected compression ratio lies between 35% and 60%. Computing
time is reduced with the proposed method relative to other methods. For high-resolution
images, the expected computing time lies between 4 ms and 5 ms.

In the future, the Internet of Medical Things, medical imaging strategies, soft com-
puting with evolutionary operators, and other hybrid image processing strategies will be
applied further to reduce the complexity of the proposed model and to develop better
recommender systems for large-scale, high-quality medical images.
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Abstract: The bioconvective flow of non-Newtonian fluid induced by a stretched surface under
the aspects of combined magnetic and porous medium effects is the main focus of the current
investigation. Unlike traditional aspects, here the viscoelastic behavior has been examined by a
combination of both micropolar and second grade fluid. Further thermophoresis, Brownian motion
and thermodiffusion aspects, along with variable thermal conductivity, have also been utilized for
the boundary process. The solution of the nonlinear fundamental flow problem is figured out via
convergent approach via Mathematica software. It is noted that this flow model is based on theoretical
flow assumptions instead of any experimental data. The efficiency of the simulated solution has been
determined by comparing with previously reported results. The engineering parameters’ effects are
computationally evaluated for some definite range.

Keywords: bioconvection flow; viscoelastic micropolar fluid; heat transfer; double diffusion; variable
thermal conductivity

1. Introduction

At present, noteworthy attention is being paid to the study of nanofluids, due to their
advanced warm transportation features. Experimental-based investigations report that
the thermal performances of nanoparticles may intestinally affect the shape and size of
particles, the volume fraction of nanoparticles, the material of particles and traditional
base liquids. Several prospective applications of nanofluids related to chemical, biological,
mechanical and engineering areas may include cooling of laptop processors, fuel chambers,
enhancement of chemical reactions, air purifiers, fission reactions, turbine engines, diagno-
sis and treatment of tumors, damaging risky tissues in the human body and improving
thermal efficiency of raw petroleum materials. Such nanoparticles, originally proposed
by Choi, are in the micro-size range (1–100 nm) [1]. Based on the excrementally based
observations of [1], nanoparticles have been recommended as the most convenient, cheap
and environmentally friendly source for improving thermal conductivity, as comparison to
conventional base liquids. Due to such illustrious features, a variety of contributions have
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been listed by numerous researchers. Buongiorno [2] advised on the most interesting slip
features and thermo-physical aspects of nanoparticles, namely thermophoresis and Brow-
nian motion, by developing a non-homogeneous model for the transportation equations.
Reddy et al. [3] constituted the slip effects in an unsteady MHD flow of nanofluid along
with thermophoresis and Brownian movement features endorsed by a slendering surface.
Usman et al. [4] derived a numerical solution for the movement of Casson fluid immersed
in nanoparticles with slip effects. The desired flow was objected over a cylinder and the
treated numerical method was a collocation technique. Another attempt, focusing on the
transportation of disk flow of nanomaterial was predicted by Yin et al. [5]. Madhu et al. [6]
performed a theoretical simulation for unsteady Maxwell nanofluid flow via a stretched
surface. Turkyilmazoglu [7] initiated the transportation mechanism nanofluid extrusion for
free as well as circular jets, and governed equations were treated exactly. We acknowledge
another continuation of Turkyilmazoglu [8] regarding the channel flow of nanofluid by
using the famous Buongiorno model. Interestingly, the results were also predicted for the
pure fluid case and results were reported via the integration technique. Abbasi et al. [9]
visualized the Hall mechanism of nanofluid with peristaltic movement under the object of
entropy generation. The microorganisms of nanofluid with behavior of slip effects were
depicted by Waqas et al. [10]. Some more research on this topic can be seen in [11–15].

It is commonly noted that various transportation systems involve simultaneous heat
and mass transfer effects in a moving fluid. In such circumstances, the flux is intricate with
respect to both temperature and concentration gradients and notifies as thermodiffusion
effects. Such effects may attain prime importance in cases where flow regime governs the
different densities. The double diffusion convection phenomenon has key applications
in the evaluation of systems which happen with various densities. Agarwal et al. [15]
performed investigations for diffusion convective flow of nanofluid in a rotating frame.
Raghunatha et al. [16] proved the thermal stability of viscoelastic material for triple dif-
fusion phenomena. Daba et al. [17] discussed the injection onset for tripe diffusive flow
in vertical surfaces. Gireesha et al. [18] observed the 3D analysis for tripe diffusion flow
numerically. The numerical approach for Prandtl nanofluid flow under double diffusion
phenomena was justified by Bilal et al. [19]. Hayat et al. [20] used Cattaneo–Christov
relation for double diffusion phenomena with Jeffrey material. Irfan et al. [21] used the
variable thermal impact for double diffusion flow. The Soret effects for Maxwell material in
a bidirectional regime was investigated by Prasannakumara et al. [22].

The analogous characteristics of non-Newtonian fluids have intrigued engineers
and scientist recently owing to their peculiar rheological properties. Various industrial
and biological applications have been found for non-Newtonian fluid paints, petroleum
products, fiber coating, food industries, engine oils, glass blowing, blood, pharmaceuticals,
etc. Due to the diverse features of nonlinear liquids, research is undertaken by scientists in
different manners and indicates different mathematical relations for each non-Newtonian
model. Listing such rheological models, micropolar fluid is one which explains the behavior
of materials under the assessment of a micro-level approach and on a micro basis. The
justifications of mathematical expressions for linear as well as couple models can be retained
as a limiting case. The basic concept of micropolar fluid was deduced by Eringen [23–26]
and later on many successful contributions were carried out by numerous scientists. For
instance, Kabeir [27] examined the stagnation point flow of a micropolar fluid model
under the action of a magnetic field. Nazeer et al. [27] and Abbasi et al. [28] worked on
heat transport in fluid flow over a diverse geometries. Turkyilmazoglu [29] established
some interesting exact solutions for micropolar fluid induced by a flat plate. Sui et al. [30]
utilized nonlinear diffusive flow of micropolar fluid over a stretched surface. Sajid et al. [31]
numerically analyzed the stagnation point flow over a spiraling disk.

Owing to the above-mentioned chemical, mechanical and engineering significance,
the aim here is to present a study of double diffusion flow of viscoelastic micropolar fluid
by appending magnetized nanoparticles containing the microorganisms. The viscoelastic
micropolar fluid refers to the decomposition of second grade fluid and micropolar fluid
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refers to the generalized viscoelastic model. The present analysis extends the work of [6] by
considering the bioconvection phenomenon, combining magnetic and porous medium ef-
fects, interacting the nanoparticles and interpolating double diffusion effects. The analytical
expressions which govern the solution of the modeled problem are conveyed through the
most pragmatic convergent method, namely the homotopy analysis technique. The realistic
physical description and significance are evaluated for each physical parameter. These
results can be attributed to the enhancement of thermal efficiency in engineering devices.
Further, this model enables us to present simultaneous results for viscous, viscoelastic,
micropolar and couple stress fluid.

2. Flow Problem

Current continuation reports the bioconvective determination of viscoelastic micropo-
lar nanofluid under the influence of a magnetic field and porous medium. The flow model
is based on theoretical flow assumptions. The Buongiorno model is incorporated to see the
significance of Brownian motion and thermophoresis impact. We originate a coordinate
system from the edge of a stretched surface where velocity component u is considered in
the x-direction while the v component is utilized in the y-direction. The magnetic field
effects are targeted vertically. Further, the temperature, solutal nanofluid concentration
and volume fraction are denoted by (T, C, ϕ). The ambient fluid is retracted by velocity
u = bx, where b is constant. Keeping these assumptions in mind, the associated model is
explicated as [27,32]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
k1

ρ f

∂N
∂y

+

(
ν +

k1

ρ f

)
∂2u
∂y2 − k0

[
u

∂3u
∂x∂y2 +

∂u
∂x

∂2u
∂y2 − ∂u

∂y
∂2u

∂x∂y2 + v
∂3u
∂x3

]
−
(

σeB2
0

ρ f
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νϑ
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)
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∂y2 + DKCT

∂2T
∂y2 , (5)
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∂ϕ
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+ v

∂ϕ

∂y
= DB

∂2 ϕ

∂y2 +
DT
T∞

∂2T
∂y2 , (6)
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+ v
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(Cw − C∞)

[
∂

∂y

(
n

∂C
∂y

)]
= Dm

(
∂2n
∂y2

)
, (7)

Here k1 determines the fluid constant, k0 denotes the viscoelastic parameter, σe signifies
the electrical conductivity, ϑ stands for the permeability of porous medium, γ spin gradient
viscosity, ρ f fluid density, j symbolizes the microinertia per unit mass, N relates the micro-
rotation, α1 stands for thermal diffusivity, DB denotes the Brownian diffusion coefficients,
DKTC is Dufour diffusivity, Ds determine solutal diffusivity, DT notify the thermophoretic
diffusion coefficient, DKCT denote Soret diffusivity, τT = (ρc)p/(ρc) f highlights the heat
capacity of nanoparticles to heat capacity of fluid ratio.

Current analysis has been performed by articulating the following boundary conditions

u = uω = bx, v = 0, N = 0, T = Tw, C = Cw, ϕ = ϕw, n = nw at y = 0, (8)

u → 0,
∂u
∂y

→ 0, u → 0, N → 0, T → T∞, C → C∞, ϕ → ϕ∞, n → n∞ at y → ∞. (9)
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For variable conductivity, Equation (4) may be amended by introducing

K(T) = K∞

[
1 + ε

(T − T∞)

ΔT

]
, (10)

with K∞ (material conductivity) and ε (thermal dependence conductivity factor).
Let us insinuate the appropriate variables to attain the non-dimensional forms [33]

u = bx f
′
(η), v = −

√
bx f (η), N =

√
b
ν

bxg(η), η =

√
a
ν

y, (11)

θ(η) =
T − T∞

Tw − T∞
, s(η) =

C − C∞

Cw − C∞
, φ(η) =

ϕ − ϕ∞

ϕw − ϕ∞
, χ(η) =

n − n∞

nw − n∞
. (12)

After invoking above quantities, Equations (3)–(5) are re-established into following forms

(1 + K) f ′′′ + Kg
′
+ ff ′′ −

(
f
′)2 − Ha f

′ − k
[
2 f

′
f ′′′ − ( f ′′ )2 − ff

′′′′]
= 0, (13)

(
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K
2

)
g′′ − K(2g + f ′′ )− f

′
g + g

′
f = 0, (14)

(1 + εθ)θ′′ + ε
(

θ
′)2

+ Pr
[

f φ
′
+ Nbθ

′
φ
′
+ Nt

(
θ
′)2

+ (Nd)s′′
]
= 0, (15)

s′′ + Le
(

f φ
′)

+ Ldθyy = 0, (16)

φ′′ + Ln
(

f φ
′)

+
Nt
Nb

θ′′ = 0, (17)

χ′′ + Lb f χ
′ − Pe

(
φ′′ (χ + δ1) + χ

′
φ
′)

= 0. (18)

Governing dimensionless boundary conditions are

f
′
(0) = 1, f (0) = 0, g(0) = 0, θ(0) = 1, s(0) = 1, φ(0) = 1, χ(0) = 1, (19)

f
′
(∞) → 0, f ′′ (∞) → 0, g(∞) → 0, θ(∞) → 0, s(∞) → 0, φ(∞) → 0, χ(∞) → 0. (20)

We define the most important engineering parameters, such as viscoelastic parameter k,
combined parameter Ha, vortex viscosity parameter K, Prandtl number Pr,, thermophoresis
parameter Nt, Brownian motion parameter Nb, modified Dufour number Nd, regular
Lewis number Le, Dufour Lewis number Ld, Peclet number Pe, bioconvection Lewis Lb,
microorganism concentration difference δ1 and nano Lewis number Ln as follows

k = bk0/νρ f ,

Ha =
√

σeB2
0/ρ f b + νϑ/bk∗,

K = k1/ρ f ν,
Pr = ν/α f ,
Nt = (ρc)pDT(Tw − T∞)/(ρc) f T∞ν,Nb = (ρc)pDB(Cw − C∞)/(ρc) f ν,
Sc = ν/Dm,
Le = ν/Ds,
Ld = DCT(Tw − T∞)/αm(Cw − C∞), Lb = ν

Dm
, Pe = bwc

Dm
, Ln = ν/DB, δ1 = n∞

nw−n∞
,

Nd = DTC(Cw − C∞)/αm(Tw − T∞).
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To illustrates the physical features of shear stress, one must determine the skin friction
coefficient in following, which is of flowing form

Cf =
τw

ρu2
w

, τw =

[
(μ + k1)

∂u
∂y

+ k1N
]

y=0
, Cf

√
Rex = (1 + K) f ′′ (0). (21)

Moreover, the relation for wall couple stress is actuated as

Mx =
γ
(

∂N
∂y

)
y=0

ρb2x3 , Mx
√

Rex = KGg
′
(0). (22)

The definitions of the dimensionless local Nusselt number, local Sherwood number
and local nano Sherwood number results in the following expressions

NuxRe−1/2
x = −θ

′
(0), ShxRe−1/2

x = −s
′
(0), ShnRe−1/2

x = −φ
′
(0), Re−1/2

x Nn = −χ
′
(0). (23)

where Rex = uwx/ν is mentioned for the local Reynolds number.

3. Homotopy Analysis Method

The nonlinear problems play essentially decisive roles in various disciplines of science,
applied engineering and mathematics. Such exciting nonlinearity compels scientists to
compose analytical or numerical approaches. Taking into account such analytical methods,
the homotopy analysis method (HAM) technique is noted as the preferred dynamical
technique due to its well confined accuracy. Unlike the perturbation method, no restriction
is noticed for small or larger flow factors. This renewed technique was formerly advocated
by Liao [34], and subsequently many equations based on mathematical and interdisciplinary
sciences have been successfully treated by introducing this method. Since this technique is
familiar from recent years, the details of this method have been omitted here. Readers are
referred to some continuations in the literature [33,35–37].

4. Convergent Region and Solution Confirmations

The classical homotopic solution contains some interesting aspects, namely h f , hg, hθ ,
hφ and hs in which are confined some specified regions, to examine the convergence of
the HAM method. Obviously, apposite selection of these parameters conferred accurate
convergence path and can be determined by h − curves. Figure 1 utilizes such h − curves
for f ′′ (0), g

′
(0), θ

′
(0), s

′
(0) and φ

′
(0), χ

′
(0). Based on observations, the convergence regions

for f ′′ (0), g
′
(0), θ

′
(0), s

′
(0), φ

′
(0) and χ

′
(0) have been listed in Table 1.

Table 1. Numerical evaluation for convergence region for h f , hg, hθ , hs, and hφ.

Approximation Solutions Auxiliary Parameters Convergence Region

f h f −1.8 ≤ h f ≤ −0.1

g hg −1.8 ≤ hg ≤ 0

θ hθ −1.2 ≤ hθ ≤ −0.1

s hs −1.3 ≤ hs ≤ −0.2

φ hφ −1.7 ≤ hφ ≤ −0.2

χ hχ −1.5 ≤ hχ ≤ 0.0
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Figure 1. Curves for f ′′ (0), g
′
(0), θ

′
(0), s

′
(0), φ

′
(0) and χ

′
(0).

5. Verification of Results

The results are validated in Table 2 for the limiting case with the investigation of El-
Kabeir [38]. The claimed results show fine accuracy with these available numerical results.

Table 2. Results verification for f ′′ (0) when α = 0.

Ha El-Kabeir [38] Present Results

0.2 1.24857 1.24856

0.4 1.29537 1.29535

0.6 1.36988 1.36980

6. Analysis of Results

In this section, graphical results for the involved parameters are presented for k = 0.0
and k = 0.5.

It is mentioned that in order to vary the flow, parameters have been assigned constant
values like K = 0.5, Ha = 0.2, ε = 0.5, Nd = 0.2, Pr = 0.7, Lb = 0.3, Pe = 0.2, Le = 0.3,
Ld = 0.3 and Ln = 0.3.

The effects of vortex viscosity factor K, variable thermal conductivity parameter ε,
thermophoresis constant Nt, modified Dufour number Nd, Prandtl number Pr, and vis-
coelastic parameter k on temperature profile θ are visualized by plotting Figure 2a–f. Here,
it is remarked that the physical observations for each parameter have been examined for
viscoelastic behavior (k = 0.5) and without the viscoelastic parameter i.e., k = 0.0. First,
the variation of K is listed in Figure 2a. The temperature profile decreases by increasing K.
In Figure 2b, we conclude that the temperature of nanoparticles for both k = 0.0 and k = 0.5
declines by varying Pr. This declining trend is relatively dominant for the viscoelastic
case k = 0.5 as compared to k = 0.0. Physically, smaller physical attribution of thermal
diffusivity for increasing Pr is noticed, which depressed the temperature. The response of
variable thermal conductivity ε on θ is reported in Figure 2c. Following the graphical trend,
it is concluded that variable thermal conductivity is more useful to enhance the temperature
profile. Further, in contrast to k = 0.0, the increasing trend seems to be dominant for k = 0.5.
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From Figure 2d, θ gradually increases when Nt is enlarged, that is, due to thermophoresis,
the tiny fluid particles shift to the relatively cold region, with a resulting enhancement of
temperature. Moreover, the thermal boundary layer is thicker for k = 0.5 than k = 0.0.
The output of θ for modified Dufour number Nd is reported in Figure 2e. The variation of
Nd leads to improving the temperature profile and enlarge the thickness of boundary layer.
The observations for θ against various values of k are provided in Figure 2f. The reflection
of viscoelastic factor reduced thermal flow due to presence of viscosity for both K = 0.0
and K = 0.5.

 

 

 

Figure 2. Temperature profile for (a) K, (b) Pr, (c) ε, (d) Nt, (e) Nd and (f) k.
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In order to look the significance of solutal concentration profile s for combined pa-
rameter Ha, vortex viscosity parameter K, Dufour Lewis number Ld and regular Lewis
number Le for two different values of k i.e., k = 0.0 and k = 0.5, Figure 3a–d are suggested.
Figure 3a reveals that solutal concentration profile s gets maximum values for Ha for both
k = 0.0 and k = 0.5. Since the combined parameter is a combination of both Hartmann num-
ber and porosity parameter. Since Hartmann number has primary relation with Lorentz
force which enables the considered profile to enhance. However, the solutal concentration
layer is relatively thicker in absence of viscoelastic parameter k = 0.0. The influence of
K on s has been nominated in Figure 3b. Here a decreasing profile of s has been noted as
K varies. Figure 3c reveals that solutal concentration profile s reached at peak as Ld increase.
From Figure 3d, it is noted that s increases by increasing Le. Such a trend can be justified
physically as the Lewis factor reversely reflects with mass diffusivity. The diffusion rate
becomes poor for enlarged values of Le which leads to the decrement of the resulting
solutal concentration.

 

 

Figure 3. Solutal concentration profile for (a) Ha, (b) K, (c) Ld and (d) Le.

To examine how various involved parameters like vortex viscosity parameter K,
nano Lewis number Ln, Brownian motion parameter Nb and thermophoresis parameter
Nt influences the concentration of nanoparticles φ, Figure 4a–d is prepared. First, we
look the graphical illustration of K on φ. Like the previous profile, the variation in φ for
various parameters is observed for the highly viscoelastic case k = 0.5 and in absence of
second grade fluid, k = 0.0. Figure 4a reveals that with the increase of K, the concentration
profile for both k = 0.0 and k = 0.5 decrease effectively. Physically higher values of K are
concerned with relatively poor viscosity and hence φ declined. Similar to the temperature
and solutal concentration profile, the concentration profile is also relatively largely reduced
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for k = 0.5. Figure 4b punctuates that φ declines as Ln gets varied. The explanation for
the profile of φ for Nb is notified in Figure 4c. Again, the larger values associated with
Nb depressed the concentration of nanoparticles. The dependence of Nt on φ is dis-
cussed via Figure 4d. It is easily noted that concentration profile, by varying Nt, enhances.
However, for k = 0.0, the concentration boundary layer is relatively thin as compared
to k = 0.5. The results of Figure 5a,b pronounces the change of the microprism profile
χ for Peclet number Pe and bioconvection Lewis number Lb. Both parameters reduce the
microorganism profile.

 

 

Figure 4. Concentration profile for (a) K, (b) Ln, (c) Nb and (d) Nt.

 

Figure 5. Microorganism profile for (a) Pe, (b) Lb.
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The numerical data for of f ′′ (0) and −g
′
(0) for combined parameter Ha and vis-

coelastic parameter k are reported in Table 3. Here it is observed that both f ′′ (0) and
−g

′
(0) increases for both Ha and k. However, the such demising variation in −g

′
(0) is

slower as compared to f ′′ (0). Table 4 is made to understand the influence of involved
parameters like Ha, Pr, Nt, Nb, ε and K on Nusselt physical quantity, Sherwood constant
and motile density number when k = 0.1. Here an increasing trend for these quantities
has been noted for Pr and K while low numerical values are reported for Ha, Nt, Nb
and ε. Studies [39–41] highlight the physical significance of heat transfer rate and flow
mechanisms [42,43] over diverse surfaces.

Table 3. Numerical values of f ′′ (0) and −g
′
(0) for number Ha and k.

Ha k f”(0) −g’(0)

0.1
0.3
0.7

0.2
0.763453
0.810542
0.845234

0.0542344
0.0585465
0.0621414

0.2
0.3
0.5
0.7

0.78522
0.823455
0.893443

0.042234
0.051355
0.5579554

Table 4. Numerical values of local Nusselt number and local Sherwood number when k = 0.5.

Ha Pr Nt Nb ε K −θ’(0) −φ’(0) −χ’(0)

0.0
0.5
1.0

0.7 0.3 0.3 0.1 0.1
0.67456
0.63345
0.60945

0.52678
0.48635
0.44743

0.5056578
0.46658
0.43665

0.5
0.2
0.7
1.0

0.433435
0.48467

0.510535

0.464367
0.51046
0.54426

0.46065
0.48456
0.49547

0.7
0.0
0.3
0.5

0.432345
0.4165
0.3978

0.550768
0.50235
0.46436

0.452075
0.43867
0.40655

0.3
0.1
0.3
0.6

0.49361
0.45546
0.43436

0.54646
0.58643
0.60266

0.4568
0.49846
0.51754

0.0
0.3
0.6

0.440241
0.43656
0.40567

0.492345
0.46654
0.43742

0.4345456
0.4054545
0.391123

0.1
0.0
0.4
0.7

0.4437
0.5159

0.53755

0.50436
0.53576
0.56747

0.50423
0.53366
0.570547

7. Conclusions

This continuation directed an analytical approach to the double diffusion flow of
viscoelastic micropolar fluid by utilizing nanoparticles. Thermophoresis and Brownian
effects are also elaborated on in the current analysis. Physical phenomena are formulated
by using boundary layer approximations and, later on, analytical simulations have been
suggested by using HAM. Some further studies on fluid flow are listed in [44–48]. Main
results are given as

a. The thermal profile decreases by increasing vortex viscosity parameters while the op-
posite behavior is visualized for the variable thermal conductivity parameter and ther-
mophoresis parameter. Such a variation trend is more dominant for viscoelastic cases.

140



Bioengineering 2023, 10, 73

b. The combined parameter and Dufour Lewis number progressively enlarge the heat-
ing and solutal concentration phenomena.

c. The lower effects for volume fraction of nanofluid due to nano Lewis number
are noted.

d. The Nusselt quantity and Sherwood number declined for variable thermal conduc-
tivity parameters and thermophoresis parameters.

e. The observations made here may play vital role for suggesting and improving manu-
facturing and diffusion processes.
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Nomenclature

u velocity
b stretching constant constant
Ha combined parameter
k viscoelastic parameter
Nt thermophoresis parameter
Nd modified Dufour number
Pe Peclet number
δ1 microorganism concentration difference
Ln nano Lewis number
ε thermal dependence conductivity factor
σe electrical conductivity
ϑ stands for permeability of porous medium
ρ f fluid density
N micro-rotation
DB Brownian diffusion coefficients
Ds solutal diffusivity
DKCT Soret diffusivity
C concentration
T temperature
K vortex viscosity parameter
Pr Prandtl number
Nb Brownian motion parameter
Le regular Lewis number
Ld Dufour Lewis number
Lb bioconvection Lewis
k1 fluid constant
K∞ material conductivity
k0 viscoelastic parameter
γ spin gradient viscosity
j microinertia per unit mass
α1 thermal diffusivity
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DKTC Dufour diffusivity
DT thermophoretic diffusion coefficient
τT = (ρc)p/(ρc) f heat capacity of nanoparticles to heat capacity of fluid ratio.
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Abstract: Statistical experimental designs such as factorial, optimal, or definitive screening designs
represent the state of the art in biopharmaceutical process characterization. However, such methods
alone do not leverage the fact that processes operate as a mutual interplay of multiple steps. Instead,
they aim to investigate only one process step at a time. Here, we want to develop a new experimental
design method that seeks to gain information about final product quality, placing the right type
of run at the right unit operation. This is done by minimizing the simulated out-of-specification
rate of an integrated process model comprised of a chain of regression models that map process
parameters to critical quality attributes for each unit operation. Unit operation models are connected
by passing their response to the next unit operation model as a load parameter, as is done in real-
world manufacturing processes. The proposed holistic DoE (hDoE) method is benchmarked against
standard process characterization approaches in a set of in silico simulation studies where data are
generated by different ground truth processes to illustrate the validity over a range of scenarios.
Results show that the hDoE approach leads to a >50% decrease in experiments, even for simple cases,
and, at the same time, achieves the main goal of process development, validation, and manufacturing
to consistently deliver product quality.

Keywords: design of experiments; holistic experimental design; integrated process model; optimal
designs; process characterization; biopharmaceutical process validation

1. Introduction

The goal of process characterization in biopharmaceutical development is to establish
scientific evidence that a process is able to consistently deliver quality products. An impor-
tant part of this procedure is to determine the effect of process parameters (PP) on critical
quality attributes (CQA [1,2]). Design of experiments (DoE) is a well-established tool to
design experimental runs that yield such information and is oftentimes followed by data
analysis and inference based on regression models [3,4]. DoE variants such as factorial or
optimal designs facilitate the detection of effects by minimizing or eliminating correlation,
and they are comprised of all possible combinations of effect levels or a subset thereof [5].
These experiments are then conducted in small-scale models for each unit operation (UO),
and results can be used to create mathematical models that quantify the impact of effects.

Of particular interest when defining a control strategy is the range in which PPs can
safely operate while keeping CQA concentrations within acceptable boundaries. Those
proven acceptable ranges (PAR) are part of the control strategy a manufacturer might
submit to a regulatory authority [6]. One way of defining a parameter’s PAR is illustrated
in Figure 1. Using this approach, the PAR is affected by two components: first, the
model prediction, including the statistical intervals and second, the acceptance limits, as
the intersection between the two defines the PAR’s range. Another option could be to
alter the setpoint condition of other PPs (see Section 4.2). This leads to a change in the
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univariate prediction plot by shifting the prediction vertically (orange line in Figure 1).
However, optimization by changing setpoint conditions is usually not the focus of process
characterization. The PAR is required to allow for sufficient process and operator variability
while being conservative enough to keep CQAs within acceptance limits. If the PAR is
too narrow for adequate operability, one can either try to reduce model uncertainty by
investing DoE runs or change acceptance limits by performing spiking runs.

Figure 1. An example for how the PAR of a process parameter can be calculated. The predicted
mean of the CQA as a function of the PP is shown in orange and the statistical interval around these
predictions is illustrated as dashed lines. Lower and upper PAR boundaries can be defined by the
intersection points of a statistical interval and the CQA acceptance criteria, marked as x.

1.1. Option A: Improving Model Estimates via DoE

To illustrate the effect of DoE runs on model uncertainty, consider the formula for
calculating tolerance intervals for a normally distributed population [7]:

ŷ ± z 1+ψ
2

√√√√ν
(

1 +
(

1
N

))
χ2

α,ν
σ (1)

ŷ is the mean prediction of the model, 1 − ψ the nominal proportion of the population
covered by the interval, and α the confidence level. Disregarding the critical value for the
normal distribution z 1+ψ

2
and the standard deviation σ, the dominant factor in this formula

is the square root term, which includes the lower α quantile of the χ2 distribution in its
denominator and converges toward one as N increases. The residual degrees of freedom in
a regression model are calculated as ν = N − p, where p is the number of model parameters.
Note that this is a simplified version of the tolerance interval, and other methods might be
used in a regression setting [8–10]. The graph of the square root term is shown in Figure 2
over a range of possible values of N.

The figure illustrates the strong decrease in this factor for the first values of N before
the curve starts to flatten. While other measures of model quality, e.g., the standard
deviation or parameter covariance are contributing factors in a regression setting, this effect
is representative of the behavior of an interval as the number of observations increases. For
the experimental effort invested in improving parameter estimates and model quality this
means that at some point no large improvements can be achieved in the interval width and,
in turn, the PAR. Then, tackling the second decisive element, the intermediate acceptance
criteria, might be more rewarding.
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Figure 2. Value of the term

√
ν(1+( 1

N ))
χ2

α,ν
over a range of values for N.

1.2. Option B: Improving Acceptance Limits via Spiking Studies

In typical biopharmaceutical process development and characterization, unit oper-
ations are studied individually, and acceptance criteria need to be defined for each UO.
Those intermediate acceptance criteria (iAC) are the second component affecting the PAR
calculation, as shown in Figure 1. A frequently followed but flawed approach to setting
iACs is to calculate this range using three standard deviations (SD) of manufacturing scale
runs [11–13]. A much more scientifically sound method has recently been published where
the only requirement is to have drug substance/product specification. In this approach,
an IPM is used, and iACs for all UOs can be calculated inversely, starting from the specifica-
tions [11]. The same approach is shown here in an illustrative manner: one can correlate the
inputs/loads and outputs/pools of each unit operation, as shown in Figure 3. If the slope
of this correlation equals one, all of the load will be found in the pool, which is not desirable
in a downstream UO. If the slope equals zero, the same (low) pool value will be achieved
regardless of the load values, which is an ideal and robust scenario of a downstream UO.
We can now calculate the iAC by backpropagating the iAC of the next UO (starting with
the DS specifications) through those models. By iteratively applying this technique, the
iACs for the entire process can be calculated. As all models are data-based, conservative
extrapolation needs to be taken into account when making predictions outside the observed
training space of the explanatory variables (here, the input material of each model). As dis-
cussed in [14], for impurities, we assume that every additional amount of loaded impurity
beyond the observed range will be directly propagated into the output/pool of the UO,
which can be mathematically seen as a piecewise regression model with a slope of one (see
Figure 3).

Figure 3. Inverse iAC calculation, beginning with drug specifications at the last UO.
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Figure 4 illustrates the effect of adding a spiking run that shows successful clearance.
The data point is added at UO 3 and the observed trend will be extrapolated, leading to
an increase in iAC in UO 2. Since the iAC of UO 2 is used to calculate the iAC of UO 1,
its iAC will be increased as well, etc. Hence, introducing a spiking run at one UO will
potentially lead to increase in iACs of all previous UOs. Of course, the addition of spiking
runs at extreme levels will be limited by the clearance capacity of the downstream UO.
Note that Figures 3 and 4 show a simplified version for calculating iACs and that the actual
method can involve more advanced statistical methods such as tolerance intervals and
Monte Carlo sampling (for details, see [11]). Furthermore, while a linear correlation is
assumed here, any mathematical model can be used to describe the dependency between
input and output of individual UOs.

Figure 4. The effect of adding an additional data point on the iAC calculation.

Using spiking runs is not a novelty and commonly used in the industry [15,16].
However, results are usually only reported in documents and in our experience do not
find entrance into mathematical modeling that also accounts for the uncertainty around
individual experiments. Marschall et al. describes how any manufacturing or small-scale
data can be used to calculate iACs and how spiking runs are included in that procedure [11].

At this point, we have demonstrated that both the addition of DoE runs to decrease
model uncertainty as well as the addition of spiking runs to increase iACs can help to gain
process understanding, which helps to increase PARs and facilitates a more flexible control
strategy. However, it remains unclear which combination of DoE or spiking runs would
give the maximum gain in PAR. Therefore, we want to:

• Develop a recommender system, called the holistic design of experiments (hDoE),
that suggests the optimal runs (DoE or spiking) at specific UOs that lead to the fastest
increase in process understanding. Here we define process understanding as the
accuracy and precision of the (unknown) true relation between all PPs and CQAs,
as well as the input/output relation of individual UOs. We describe this method in
Section 3.1;

• Demonstrate that using such a recommender system can lead to a significant reduction
in the required number of total runs of a process characterization study (PCS) using
state-of-the-art workflows. We verify this in a set of simulation studies presented in
Section 3.2;

• Identify an accelerated workflow for PCS using hDoE that can be applied in practice;
see Section 4.1.

2. Materials and Methods

2.1. Optimal Designs

Factorial or fractional factorial designs are generally considered the ideal approach
to creating experimental designs that yield the most information about how process pa-
rameters affect the response. An exhaustive account of such designs can be found in [5].
In practice, however, they are not universally applicable as they often require many runs
and cannot incorporate existing data. Optimal designs constitute a more flexible alter-
native [17–20]. The number of runs required is not a consequence of the chosen type of
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design, e.g., 2k, for a factorial design with two levels and k parameters but can be chosen
more flexibly. Furthermore, optimal designs can be used to augment an existing set of
runs. Both of those properties are important for their application in hDoE, as the procedure
starts off with a minimal set of experiments far smaller than a full factorial design, which
gets augmented in each experiment/evaluation cycle. Based on the working set of already
performed experiments, new runs based on optimal designs are recommended. Optimal
designs optimize specific properties of the design matrix X. For example, D-optimal de-
signs minimize the variance of parameter estimates in a model. As Var

(
β̂
)
= σ2(XTX

)−1,
this is equivalent to maximizing

∣∣XTX
∣∣, the determinant of the squared design matrix and

one can see that this is maximized when the columns of X are orthogonal. However, in
contrast to factorial designs, strict orthogonality is not required and one consequence of
that is that the number of runs in X can be set freely depending on the use case. The rows
in X are then chosen by exchange algorithms from a candidate set of runs, which generally
consists of all possible level combinations for the main effects defined in the model. We
used augmented D-optimal designs to generate the experiments recommended by hDoE.

2.2. Integrated Process Model

An integrated or holistic process model is an in-silico representation of a manufac-
turing process comprised of multiple steps or unit operations. While there are many
approaches to constructing process models (see [21] for an overview), here we consider
the IPM as an empirical ensemble model implemented as a sequence of UO models that
enable predictions of different CQAs as a function of process parameters. To simulate CQA
concentrations, the predicted values are passed on to the next UO as a process parameter
in a Monte Carlo simulation that randomly draws parameter values [22]. This is done over
the entire chain of UOs in the process, from upstream operations to the final drug substance.
For a comprehensive description of the method, please consult [14].

An important aspect of this approach is extrapolation. Because parameter values
are drawn randomly from their corresponding distribution, CQA predictions of one UO
regularly exceed the range of values observed in the training data of the predecessor
UO. This is a problem for the conservative prediction of CQA concentrations, as UOs are
modeled as data-driven regression models. Such models are generally only valid within
the range of the training data and extrapolation can lead to highly biased results [23].

2.3. Simulation Study

We investigated the performance of hDoE in a set of simulation studies illustrating
different situations and processes. Results are compared to a state-of-the-art (SOTA) pro-
cess characterization workflow that consists of conducting experiments based on optimal
designs to investigate the impact of PPs on CQAs per UO. For the reference method, a D-
optimal design was chosen with 6, 12, and 23 runs per UO, which leads to 24, 48, or 92 runs
overall in 4 UOs.

Each process in this simulation study consists of a sequence of unit operations repre-
sented by ground truth equations that map PPs to a CQA. The first UO can be interpreted
as the fermentation step, followed by three downstream UOs. The equations that describe
these UOs satisfy IPM conditions by adhering to the heredity principle [24] and having
linear load dependencies. We then try to find effect coefficients in the presence of added
noise, employing both hDoE and the SOTA method that uses a predefined number of
runs per UO, as described above. For hDoE, we start with a minimal design of 6 runs per
UO (total 24 runs for 4 UOs) and add an additional 30 runs, chosen by the recommender
system. Note that for the simulation study results reported here, only a single run was
recommended per cycle, though results are similar for larger sets of run recommendations.
To calculate OOS rates, an upper drug substance specification for the output/pool of UO 4
was set as three standard deviations above the mean of the ground truth process. Hence,
when adding an infinite number of runs, a minimum OOS rate of 0.00135 ([1–0.9973]/2)
can be achieved. As the OOS rate simulated by the IPM is based on drawing random
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values from a PP distribution, mean and variance must be specified. In this normalized
setting, each PP’s setpoint, i.e., the mean of the distribution, was chosen to be zero and
the variance was set to be the same as that of the observed ground truth data that were
used to derive specification limits. This was kept constant over all simulated hDoE steps to
avoid a misleading optimization trajectory that improves OOS rates by simply reducing PP
variances without increasing process knowledge. Each simulation scenario was repeated
100 times with different random seeds. A summary of simulation parameters is provided
in Table 1.

Table 1. Parameters for the simulation study.

Parameter Value

Number of UOs 4
Parameters per UO 5
CQA type Impurity
hDoE start runs 6
Noise/std ratio for residual error 0.5 (0.9 in study D)
Number of runs recommended per cycle 1
Variable selection method Bi-directional stepwise
p-value threshold for including effect 0.25
p-values threshold for excluding effect 0.05

The number of hDoE steps, repetitions of the simulation studies and the bi-directional
stepwise variable selection method [25] for (re)fitting IPM models were chosen as a com-
promise between accuracy of results and simulation runtime.

For demonstration purposes but without loss of generality, we employ all simulation
studies only for one CQA of the product. However, the methodology is not limited to the
number of investigated CQAs. In practice, one would focus on the CQA, which shows the
highest OOS rate.

2.3.1. Study A: Baseline

This simulation study represents a typical biopharmaceutical process with some
quadratic and interaction effects and coefficients commonly found in characterization
studies. In our experience, approximately 20–40% of all possible effects are practically
significant in a model. A total of 5 factors lead to 20 effects (main, 2-factor interaction, and
quadratic). In the ground truth, we have chosen 4–6 active effects, which equals 20–30%
of all possible effects and is, therefore, within the expectation of a representative biophar-
maceutical process. Moreover, we assume linear load dependencies and heredity between
main and higher-order effects, which is also representative of the authors’ experience. The
ground truth equations for this scenario are as follows:

yUO1 = 8.0 + 0.7 x1 + 0.6 x2 + 0.5 x3 − 0.4 x4 + 0.9 x2
2 + 0.8 x2

3 (2)

yUO2 = 3.4 + 0.5 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (3)

yUO3 = 3.0 + 0.3 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (4)

yUO4 = 2.8 + 0.2 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (5)

2.3.2. Study B: Load Effect Set to One

As hDoE leverages the UOs dependency on the load, we investigated its behavior
when the load coefficient is set to one, and its values are passed directly to the output of UO
3, provided other PPs are at setpoint. This mimics the situation where a full propagation of
the CQA through this UO is expected, and no clearance takes place. This is, of course, not
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the desired behavior of a downstream unit operation. In this setting, the load coefficient in
UO 3 was set to one:

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (6)

2.3.3. Study C: All Load Effects Set to One

Here we set the load effects of all UOs to one. Every UOs output is directly propagated
to the next UO, which means that there is no information about the load that could be
detected by spiking runs. This a very untypical scenario as usually, we expect some
clearance activity of the downstream UOs (UO 2–4). The purpose of this simulation is
to show that, in the worst case, hDoE performs similarly to standard approaches using
a predefined set of runs.

yUO2 = 3.4 + 1.0 yUO1 + 0.5 x2 + 0.3 x3 + 0.5 x5 + 0.7 x2x3 + 0.4 x2x5 (7)

yUO3 = 3.0 + 1.0 yUO2 + 0.4 x1 − 0.3 x2 + 0.2 x4 − 0.2 x5 + 0.3 x2
1 − 0.7 x2

5 (8)

yUO4 = 2.8 + 1.0 yUO3 + 0.1 x1 + 0.2 x3 + 0.2 x5 + 0.3 x1x3 (9)

2.3.4. Study D: Disabled Probability-Ratio-Threshold

To highlight the importance of the probability-ratio-threshold (PRT) decision scheme,
a method borrowed from the Metropolis–Hastings algorithm that encourages the detection
of new effects (described in Section 3.1), we repeat the baseline study without PRT. Here,
the decision logic simply recommends the type of run that leads to the largest reduction in
OOS. As PRT is most effective in situations where no clear decision can be made due to
high residual error, the error/standard deviation ratio in the ground truth was increased
from 0.5 to 0.9.

3. Results

3.1. Holistic Design of Experiments

In this contribution, we propose a new tool for process development and characteriza-
tion: holistic design of experiments (hDoE), an iterative approach to experimental design
and evaluation that minimizes the number of runs invested while maximizing the overall
process understanding, as defined in the introduction. As all UOs of the process contribute
to the generation of DS material, we can boil down process understanding to how well the
true distribution of DS product quality is known. To express this in a single measure that
can be used for optimization, we chose the out-of-specification (OOS) rate based on known
DS specifications.

As described in Section 2.2, the IPM connects UOs by passing the output of a UO to the
next one as a load parameter. While the output might be affected by different parameters
and interactions, the univariate relationship between load and output is assumed to be
linear inside the range of observed load values in the training data. However, in the Monte
Carlo simulation of a CQA distribution, simulated load values might exceed this observed
range, in which case the CQA value is handled conservatively to avoid predictions that
are too optimistic (see piecewise load model in Taylor et al. [14]). This means that the
simulated CQA distribution in drug substances is highly dependent on the range of load
parameter values in the training data. Small variations in the training data will lead
to a broadened CQA distribution, accounting for the uncertainty due to extrapolation.
However, in many cases, missing information about load parameters can be supplemented
by performing spiking studies where PPs are kept at setpoint, and only the load is varied.
This is in contrast to classic DoE studies, which examine specific combinations of factors
and disregard the load.

Spiking and DoE runs are the two different types of the experiment proposed by hDoE
in this contribution. Assuming model parameters do not change from one iteration to
the next, DoE runs are expected to improve general process parameter estimates, while
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spiking studies improve estimates of the model’s load coefficient and reduce extrapolation
in the IPM simulation. However, the assumption of unchanging model parameters is
regularly violated when variable selection on newly acquired data results in a new model.
As a consequence, the simulated OOS probability is not guaranteed to be improved in
every iteration.

hDoE starts out by roughly characterizing the process with a minimal D-optimal
design per UO that facilitates fitting the initial regression models. Based on the information
acquired in this first step, a set of runs is proposed. This set consists of DoE and spiking
runs and includes the target UOs in which to perform them. The runs are chosen by how
much they would reduce the OOS probability calculated by the IPM. After conducting
the proposed experiments, the IPM data are supplemented with new information, and
a variable selection step updates models where appropriate.

As OOS predictions and therefore run suggestions are based on models found in
previous steps, the process is biased toward already detected effects. Additionally, the
decision rule is susceptible to noise, especially in early steps, and might consider the value
of adding spiking or DoE runs equivalent. Of course, this is generally not true, as only
DoE experiments enable the detection of new or interaction effects. To mitigate this bias
and encourage the detection of new effects, we employ a technique based on a decision
scheme used in the Metropolis–Hastings algorithm [26]. Let X be the design matrix of the
data already incorporated into the IPM and xDOE and xspiking be new DoE and spiking
samples, respectively, chosen from a set of sample candidates that result in the lowest OOS
probability. We then calculate the ratio of those probabilities α = P(xDOE|X)/P(xspiking

∣∣∣X) ,
draw a number from a uniform distribution, u ∈ [0, 1], and only suggest a spiking run when
u ≥ α. This means that DoE runs are always recommended if P(xDOE|X) ≥ P(xspiking

∣∣∣X) .
Spiking runs, however, are only suggested when the improvement in OOS probability
considerably exceeds that of a DoE run. In the following, we term this the probability-ratio-
threshold (PRT) approach. In our evaluation of the algorithm, PRT generally circumvents
the problem of selecting spiking runs unnecessarily or overlooking effects (see Section 3.2).
Figure 5 illustrates the individual steps and decision processes involved in hDoE.

3.2. Simulation Results
3.2.1. Out-of-Specification Rates

Figure 6 shows that in most scenarios, a high process understanding (quantified as
a low OOS rate) can be achieved with a much smaller number of experiments compared
to the SOTA method that uses a fixed number of DoE runs (in this case, 24, 48 and 92).
This effect is most pronounced in study A, where the mean OOS rate drops to ~2.5% after
only six additional runs recommended by hDoE (30 total), whereas 92 D-optimal runs
calculated beforehand result in an OOS rate of ~7.5% due to the lack of exploration of
load-to-pool dependencies. At first glance, this might appear as an unfair comparison, but
workflows applied in the industry generally do not incorporate spiking runs in a math-
ematical framework to achieve a specific goal, e.g., establishing a control strategy. The
effect of an UOs dependency on the load can also be seen in the results of study B, where
variation around the OOS rate is larger due to setting the load coefficient to one in UO 3 in
the ground truth. This means that no additional information about the load can be acquired
in this UO, and the advantage of systematically recommending spiking studies at this UO
is softened. Study C represents the worst case for hDoE, where the load has no effect in
any unit operation, resulting in OOS rates close to that of the reference method. The larger
variation shown in study D is due to increased noise in the ground truth. This, of course,
affects hDoE as well as the reference method. However, note that variation is drastically
increased when PRT is disabled (purple, dotted lines) compared to the recommended
procedure that uses it when deciding on runs (blue, dotted lines).
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Figure 5. The hDoE recommender system that minimizes OOS by iteratively augmenting data and
predicting optimal experiments.

Figure 6. The decrease in OOS probability over the 30 hDoE steps for the different simulation
scenarios. Each scenario was repeated 100 times. The solid line indicates the mean OOS probability,
while the dotted lines show the standard deviation in the 100 repetitions of that step. For the reference
method, OOS probabilities are plotted as dashed lines and were calculated at 24, 48, and 92 total runs.
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3.2.2. Run Allocation

The drastic decrease in OOS probability over the number of experimental runs in-
vested, shown in Figure 6, is achieved by performing spiking studies at the right UO.
Generally, spiking runs are favored in the early steps of the procedure, as they eliminate
extrapolation in the IPM (see Section 2.2) and therefore lead to the largest reduction in OOS
early on. After this initial phase, larger OOS improvements can be achieved by improving
parameter estimates, prompting hDoE to suggest more DoE runs. Figure 7 illustrates the
allocation of different run types to the four unit operations of the simulation study. In
the y-axis, the plots show the cumulative number of allocated runs over 100 repetitions of
a simulation study, while the corresponding hDoE step can be seen in the x-axis. As the
first UO (e.g., fermentation) is not affected by a load parameter, no spiking runs (dotted
lines) are allocated. In the three simulation studies where the load influences a UO, spiking
runs at UO 4 are recommended in the early steps and, in many of the 100 iterations, also
in UO 3. This makes sense, as the OOS probability in drug substance, i.e., the last UO,
is the main driver of the recommender system and its load coefficient directly affects the
CQA distribution. In the absence of load effects, DoE runs are distributed approximately
equally, while some spiking runs are accumulated due to noise (orange lines). The effect
of increased noise and the absence of PRT are illustrated by the purple line. Much more
spiking runs are invested, as the OOS simulation for the two types of experiment yields
similar results, and choices are made more randomly.

Figure 7. The cumulative allocation of either spiking or DoE runs in 100 repetitions of the simulation
is shown over each step taken by the hDoE procedure (after the initial 24 runs). In total, each study
distributes 100 × 30 = 3000 runs of any type to the four unit operations.

3.2.3. Parameter Estimates

A low OOS rate alone does not indicate correct models, as it does not account for
aliasing effects in the parameters. Figure 8 shows the distributions of effects identified in
the variable selection procedure at the last hDoE step (54 total runs invested). Each data
point represents the effect size in a particular iteration of the simulation. We added an
estimator of the residual variance in the form of the root mean squared error (RMSE). The
mean estimated value (blue dashed line of each boxplot) converges to the ground truth
(red solid line of each boxplot) for most parameters. Higher-order effect estimates in unit
operations two and three are biased toward zero, i.e., they were not detected in variable
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selection. Note that stepwise variable selection was used for performance reasons in this
simulation, which is known to eliminate effects prematurely [27], and that some of this
bias could be mitigated by using more modern approaches such as leaps and bounds or
other exhaustive algorithms. However, as tolerance intervals are used in the estimation of
model uncertainty [14], overlooking individual effects, which results in larger estimates of
the RMSE, is accounted for correctly in the uncertainty interval. Of course, the quality of
parameter estimates is a direct consequence of the number of DoE runs invested, which in
turn is dependent on when the hDoE procedure is terminated.

Figure 8. The distribution of effects found by stepwise variable selection at the last hDoE step. Each
point represents the effect size in one of the 100 repetitions of the simulation study. The RMSE was
added as an estimator of residual error.

Parameter estimates, especially for higher-order effects, are naturally not on par with
those from a full D-optimal design with 23 runs per unit operation, see Figures 8 and 9.
However, due to spiking studies invested in the characterization of the process, hDoE
results in the improved estimation of load and intercept effects.
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Figure 9. Parameter estimates for the full D-optimal design with 23 runs per UO. Variance in estimates
is smaller than in hDoE. However, intercept and load effects are biased due to missing load data.

4. Discussion

4.1. hDoE in Process Characterization

Figure 10 shows how hDoE affects common steps in process characterization. The
result of this procedure is a control strategy, of which PARs are an essential component. We
describe in Section 1 the different courses of action when a PAR is too narrow to be part
of an appropriate control strategy, steps that are also reflected by the hDoE recommender
system. A third option that is currently not incorporated into the recommender system
is to change the setpoint of other PPs that are active in the UO model. We present this
approach as an outlook in Section 4.2. Finally, PAR ranges can be increased by reducing
confidence/coverage levels of the statistical interval, although in most cases, this is not
recommended and only mentioned here for the sake of completeness. We consider the
workflow shown in Figure 10 as an extended version of the state-of-the-art workflow for
process characterization (left column) that incorporates hDoE (right column, green boxes).
This aligns with both the FDA and EMA guidelines for process characterization, as the
former recommends DoE to increase process knowledge [3] and the latter impurity spiking
challenges for downstream operations [28]. hDoE employed in the context of this extended
workflow integrates both types of experiments and provides a systematic method for when
and where to perform them.

4.2. Outlook: Changing PP Setpoints to Increase the PAR

An important aspect of the PAR calculation illustrated in Figure 4 is the univariate
nature of this method. Only the screening range of the current PP is considered, while all
other PPs are kept at their setpoint. As the UO model output, i.e., the CQA, is in most
cases affected by multiple PPs, their setpoint can influence the offset of the univariate mean
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prediction of the target PP (orange line in the figure) significantly. Consequently, a change
in the setpoint of another PP can push the predicted CQA distribution inside/outside the
acceptance limits and change the OOS rate. Similarly, interaction effects with other PPs can
also influence the target PPs effect.

The optimization of PP setpoints is already available in some statistical software [29],
and hDoE could be easily extended to include such recommendations based on their
effect on the OOS rate of the process. While this is generally not the focus of process
characterization studies, the FDA recommends optimization based on setpoint shifts in
the continuous verification phase [3]. This would advance the applicability of the hDoE
recommender system into the domain of process optimization.

Figure 10. The left column represents common steps involved in process characterization, while
the right column contains possible courses of action when no appropriate control strategy can be
found. Green boxes are actions recommended by hDoE, and steps affected by hDoe are colored blue.
* Changing PP setpoints could also be a viable, recommended action by future iterations of hDoE (see
Section 4.2).

5. Conclusions

In this article, we introduced hDoE, an iterative tool for process development and
characterization that facilitates a more effective way of gaining process understanding
related to final product quality. This is essential, as it reduces experimental effort and
time to market. To demonstrate the benefits of this approach quantitatively, we presented
results from simulation studies where we chose the OOS rate as a measure of process
understanding, which should be close to the OOS rate of the true (usually unknown)
process. The benefit of this measure is that it includes both the mean and variability of the
final product quality distribution as well as practically relevant limits (drug specifications).
Other measures, such as the Kullback–Leibler divergence [30], also could have been used.
However, we believe the OOS rate represents a more practically relevant measure and
might be more tangible for process experts. We have demonstrated that hDoE leads to
better overall process understanding with more than a 50% reduction in the number of
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experiments performed for simple scenarios. The reduction of experimental costs can even
be increased for specific cases. hDoE starts out with an initial, minimal set of D-optimal runs
on which the first set of unit operation regression models is fitted. Used as a recommender
tool, either DoE or spiking runs are added in an iterative fashion guided by improvements
in the predicted OOS rate. As the process is biased toward effects already found, we are
using a recommender scheme akin to the one used in the Metropolis–Hastings algorithm to
promote the detection of unknown effects and to improve parameter estimates. Of course,
the overall quality of effect estimates is influenced by the number of runs available to
the algorithm. However, our simulation studies show that a compromise between effects
detected and runs invested can be found using a relatively low number of hDoE runs.

hDoE leverages the link between UOs as modeled by the IPM and thereby improves
OOS rates by strategically recommending spiking studies at specific process steps. It
provides valuable information to biopharmaceutical manufacturers about which type of ex-
periment to perform next, and in which UO, and can decrease the time and money invested
in experimental design. Potentially increased parameter uncertainty due to a lower number
of samples is accounted for in the IPM’s OOS prediction using conservative sampling
and estimation methods such as tolerance intervals. We believe that hDoE is a viable
option for experimental design that yields robust estimates of process properties while
providing better control of the resources invested. This will lead to a substantial reduction
of development costs and time to market, ultimately leading to more affordable drugs.
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Abstract: This research is engaged to explore biological peristaltic transport under the action of
an externally applied magnetic field passing through an asymmetric channel which is saturated
with porous media. The set of governing partial differential equations for the present peristaltic
flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The
governing equations are to be solved completely, so that inertial effects can be studied. The numerical
simulations and results are obtained by the help of a finite element method based on quadratic
six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and
effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM)
solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also
compared with the results given in the literature which are highly convergent. It is concluded that
velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity
parameter K Increasing inertial forces increase the velocity of flow but increasing values of the
porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic
field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic
flow pattern.

Keywords: peristaltic flow; non-zero Reynolds number; asymmetric channel; finite element method;
porous media

1. Introduction

The phenomenon in which fluid moves along the axis of a channel due to the contrac-
tion and relaxation of the walls is called peristalsis. Many scientists and engineers have
been working on peristaltic flow due its interesting applications. Which involves discussion
of Newtonian and non-Newtonian flows. The peristaltic flow of non-Newtonian fluids is
currently an emerging field. Many applications of these phenomena have been seen in the
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engineering and bio-medical fields. Peristaltic flow also involved in human and animal
organs, such as the flow of urine from the kidneys, blood flow to and from the heart, and
the movement of chyme (partially digested food). Devices used in the printing industry,
peristaltic pumps used in the chemical industry for manufacturing strong acids, and bio-
medical devices work under the principle of peristalsis. Peristalsis is an emerging field
which has attracted researchers to work on it. The first research took place in 1964, when
Latham [1] worked on a peristaltic pump and demonstrated the peristaltic flow in the chan-
nel. He investigated peristalsis in a fixed frame of reference. After that, Shapiro et al. [2]
studied the peristalsis phenomenon in a channel which was two-dimensional by geometry,
but they used the assumptions of low lubrication theory which hides many inertial effects
which should be discussed. They also presented theoretical results for both planes. Fung
and Yih [3] investigated peristalsis in an infinite channel. In their investigation it was seen
that peristaltic pumping produces reverse flow when its value is increased to a critical
value, and they concluded that velocity profile is dependent on pressure gradient. They
also observed that convergence of results decreases when the value of Reynolds numbers is
too large. In an investigation by Hanin [4], large Reynolds numbers and a small wavelength
were used. Zein and Ostrach [5] analyzed peristaltic phenomena for two-dimensional
geometry with the limitations of long wavelength and low frequency. They obtained the
solution in closed form and compared it with the result of Fung and Yih [3]. Peristaltic
flow in tubes was also discussed by Barton and Raynor [6], but long-wave and short-wave
disturbances were only discussed for Stokes flow. Chow [7] investigated peristaltic flow
by employing long wavelength approximations. Peristaltic flow was also discussed in
detail by Brown and Hung [8], who solved the governing equation with the help of a finite
difference technique. Jaffrin [9] studied peristalsis in a two-dimensional tube by using a
perturbation technique with the employment of non-linear effects. The detailed work on
peristaltic phenomena in the channel by using the finite difference method was elaborated
by Takabatake and Ayukawa [10]. They considered the complete set of equations that gov-
erns the problem. They examined the model with moderate values of Reynolds numbers
and made a comparison with the results of perturbation analysis. An investigation on
the full form of partial differential equations for peristaltic transport in the tube was also
carried out by Takabatake et al. [11]. The trapping of bolus was also taken into account in
their approach for studying peristaltic maxing. It is observed that pumping efficiency is
greater in tubes in comparison with flat two-dimensional channels. Takabatake et al. [12]
analyzed and studied the work which was undertaken earlier by Takabatake et al. [11]
by using the finite element method (FEM), and compared the results with those obtained
in the work of Dennis and Chang [13]. Takabatake [14] investigated pressure rise per
wavelength by engaging the finite element method (FEM), and a comparison of the results
with results built on perturbation analysis was also given in their study. Bhatti et al. [15]
elaborated the peristaltic activity for Prandtl nanofluid transport with endoscopic annular
geometry. Zeeshan et al. [16] focused on aspects of Jeffrey fluid flow within peristalsis. The
determination of Prandtl nanoparticles following the peristaltic pattern was noticed in the
framework of Abbasi et al. [17]. Riaz et al. [18] identified the thermal role of nano-sized
particles with the slip flow problem due to peristaltic motion. Le et al. [19] pointed out the
inertial consequences for the inclined channel flow due to peristaltic transport.

During the last few decades researchers and scientists have worked on peristaltic flow
through porous media due to its wide range of application in various fields. Movement
of fluid in plants and in the human body are examples of flow through porous media.
Mining of rudimentary oil from the earth also involves a porous medium. What we mean
by porous medium is something that includes minor holes over its whole surface which
allow fluid to flow through it. Examples of porous media are sand, limestone, or a loaf
of bakery bread. In living things such as humans, the gallbladder, kidney, and lungs
are porous media. Hayat et al. [19] worked on peristaltic transport of Maxwell fluid
which conducts electrically through a channel soaked with porous media. They found the
solutions analytically and discussed the situations graphically. It was observed that mean
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velocity decreases with the increment of the Hall parameter. Srinivas and Kothandapani [20]
found the analytical solution for peristaltic transport through a porous medium with the
application of lubrication theory, which makes the governing equations very simple to
discuss. It is seen that with an increase in the Schmidt number, the concentration decreases.
Tripathi and Bég [21] investigated oscillating peristaltic flow of generalized Maxwell fluid
through a porous medium by employing lubrication theory. They used the homotopy
perturbation method to obtain the approximate analytical and numerical solutions. It
was detected that the volumetric flow rate decreased when the relaxation time increased.
Ellahi et al. [22] worked on the theoretical study of MHD effects on peristaltic flow in a
rectangular duct through a porous medium employing long wavelength and low Reynolds
number assumptions, but the solutions were obtained analytically. Trapping of bolus and
the effects of MHD were also discussed. Sankad and Nagathan [23] studied MHD effects
on peristaltic flow through porous media; the slip condition’s effects were also taken into
account and solutions were obtained analytically. The proposed results were discussed with
the help of graphs. They modeled the governing equation by using low Reynolds number
and long wavelength assumptions. It was observed that mean velocity rises with the
magnetic field parameter in the presence of viscous damping force, but opposite behavior
was seen when this force was removed.

In the present era, scientists are taking much interest in the discussion of fluid flowing
through a channel or wall under the presence of an external magnetic force due to the num-
ber of applications in industry and astrophysics, etc., and its thought-provoking features.
Magnetohydrodynamics (MHD) is very powerful tool in the medical field which is used
in the diagnosis of hypothermia, tumors and MRI. The investigation of MHD peristaltic
phenomena of a Newtonian fluid in a channel was presented by Yildirim and Sezer [24].
They obtained the solutions analytically and numerically by applying the homotopy per-
turbation method with low Reynolds number and long wavelength assumptions and made
a comparison with the results of Nadeem and Akram [25]. It was seen that with an increase
in L and M the temperature decreases. Nadeem and Akbar [26] studied MHD peristaltic
flow of Newtonian fluid and discussed the effect of radially changing MHD. In the analysis,
assumptions of lubrication theory were applied to obtained simplified governing equations,
to facilitate ease of discussion. Manzoor el al. [27] discussed low-pressure plasma on
degradation of multidrug resistant V. Cholera with antibacterial utilizations. Chu et al. [28]
examined four different types of nanomaterials with thermal radiation and non-linear
heat source and sink. Ramesh and Devaker [29] studied the peristaltic flow in porous
asymmetric channel with the effects of external magnetic field and heat transfer. It is seen
in the analysis that the pumping is increased at higher Hartmann numbers.

By the use of assumptions of low Reynolds numbers and long wavelength, the partial
differential equations become very simple to discuss and hide many inertial effects which
must be the part of discussion. To overcome this problem, Javed et al. [30] presented
work on peristaltic flow in a two-dimensional inclined channel, employing an external
magnetic field and without the use of lubrication theory. Many important inertial effects
are discussed in their analysis; for example, they concluded that bolus size increased with
increasing Reynolds numbers. The effects of Reynolds numbers on vorticity were also
presented in their analysis. Ahmed at el. [31] also investigated peristaltic phenomena
without employing low Reynolds number and long wavelength assumptions in a vertical
channel. During analysis they concluded that heat generation controls the velocity, i.e.,
a rise in heat generation diminishes the velocity near the central region of the channel,
and opposite behavior was observed near the walls. The peristaltic phenomena without
the use of lubrication theory were also presented by Javed et al. [32]. They used the finite
element method to obtain the numerical results. It was seen that the presented effects
of Reynolds number are true for arbitrary values. Recently, some dynamic researchers
investigated peristaltic flow [30–33] without engaging lubrication theory’s assumptions
about the channel, which is symmetric around its axis. In the literature, it is seen that
many researchers have used lubrication theory, which leads the sets of partial differential
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equations that govern the peristaltic flow to be very simple to solve; however, those results
leads to the exclusion of inertial terms in the discussion. As a result of this, the inertial
effects and other significant aspects have not been studied. Some studies [34–38] interpret
some basic concepts on fluid flow and nanomaterials.

The aim of the current investigation is to observe the peristaltic phenomenon in an
asymmetric channel saturated with porous media, along with the applications of external
orthogonal magnetic field effects without engaging the norms of low Reynolds numbers and
long wavelengths, which causes the system to be non-linear. The governing equations will
be solved in full form using the finite element method equipped with Galerkin’s residual
approach by using triangular elements in meshing with six nodes for numerical solution,
which is highly convergent in comparison with linear triangular elements. Moreover,
solving the system of equations in full form enables us to study the inertial effects and
many other parameters on peristaltic flow. Besides this velocity distribution, pressure
evaluation and trapping activity will be discussed with the help of graphs plotted based on
numerical results.

2. Problem Formulation

In our present work we are considering an unsteady incompressible flow through
a channel soaked with porous media. The considered flow is moving through a two-
dimensional asymmetric channel of width 2a lying horizontally. Further, we have applied
an external magnetic field of strength B0 orthogonal to the direction of the flow. The fluid is
a conductor electrically; due to this, an induced magnetic field arises, but it is insignificant
in comparison with our applied B0. Thus, we consider only the effect of the external
magnetic field. The fluid flows due to the wave generated on the walls of the channel. The
geometry of our considered problem is given in Figure 1. The upper moving wall of the
infinite channel follows the relation given by [9,10]:

H1(X, t) = a1 + b1cos
(

2π(X − ct)
λ

)
, (1)

 
Figure 1. Geometry of the problem.

The lower walls obey the relation given by

H2(X, t) = −a2 − b2cos
(

2π(X − ct)
λ

+ φ

)
. (2)

In the above relations, b1 and b2 represents the amplitudes, λ represents the wavelength
of the wave, c is the speed of the wave, 2a is the width of the channel (a1 = a2 = a), and
φ is the phase difference with (0 < φ ≤ π). Note that when φ = 0 the corresponding
channel is symmetric with the waves out of phase and when φ = π the corresponding
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channel is symmetric and the waves are in phase. Furthermore, a1, a2, b1, b2 and φ fulfil
the requirements of the inlet of the divergent channel, i.e.,

a2
1 + a2

2 + 2b1b2cosφ ≤ (a1 + a2)
2. (3)

The governing equations for our present problem, i.e., the principles of conservation
of momentum and conservation of mass and the law of for conducting fluid through a
channel which is saturated with porous media under the magnetic field in fixed frame are
expressed as [9,10]:

∇× V∗ = 0, (4)

ρ(V∗ ×∇V∗) = −∇P∗ + μ
(
∇2V∗

)
+ (J × B)− μ

k
V∗. (5)

In the above equations, V∗ = (U, V, 0) is the velocity of fluid in two dimensions, and
J and B are the current density and magnetic field, respectively. As the magnetic field
is applied orthogonally, B = (0, B0, 0), ρ is the density, μ is the coefficient of dynamic
viscosity, and k is the permeability of the porous media. The Lorentz force after neglecting
the induced magnetic field (very small as compared with the external magnetic field) is
given by

J × B =
[
−σB2

0U, 0, 0
]
. (6)

The Equations (4) and (5) in a fixed frame take the form [9,10]:

∂U
∂X

+
∂V
∂Y

= 0, (7)

ρ

{
∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

}
= − ∂P

∂X
+ μ

(
∂2U
∂X2 +

∂2U
∂Y2

)
− σB2

0U − μ

k
U, (8)

ρ

{
∂V
∂t

+ U
∂V
∂X

+ V
∂V
∂Y

}
= − ∂P

∂Y
+ μ

(
∂2V
∂X2 +

∂2V
∂Y2

)
− μ

k
V, (9)

with suitable boundary conditions given as

U = 0, V =
∂H1

∂t
, at Y = H1(X, t), (10)

U = 0, V =
∂H2

∂t
, at Y = H2(X, t). (11)

The conditions on U are due to no-slip conditions on the walls and the boundary
conditions on V mean the wall velocity is same as the normal velocity of the walls. Now
we transform our governing equations in a moving frame of reference (x∗, y∗); for this,
both frames of references are related, as

x∗ = X − ct, y∗ = Y, u∗ = U − c, v∗ = V, p∗ = P, (12)

where (U, V) and (u∗, v∗) are velocity components in the laboratory frame and wave
frame, respectively. p∗ and P are pressures in the laboratory frame and wave frame. The
governing equations after transformation in the moving frame using Equation (12) take
the form:

∂v∗

∂y∗ +
∂u∗

∂x∗ = 0, (13)

ρ
{

v∗ ∂u∗
∂y∗ + u∗ ∂u∗

∂x∗
}

= − ∂p∗
∂x∗ + μ

(
∂2u∗
∂x∗2 +

∂2u∗
∂y∗2

)
− (σB2

0 +
μ
k
)
(u∗ + c),

(14)

ρ

{
∂v∗

∂x∗ u∗ + ∂v∗

∂y∗ v∗
}

= −∂p∗

∂y∗ + μ

(
∂2v∗

∂x∗2 +
∂2v∗

∂y∗2

)
− μ

k
v∗, (15)
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with appropriate boundary conditions,

u∗ = −c, v∗ = 2πcb1

λ
sin
(

2πx∗

λ

)
, at y∗ = η1(x∗), (16)

u∗ = −c, v∗ = −2πcb2

λ
sin
(

2πx∗

λ
+ φ

)
, at y∗ = η2(x∗), (17)

where η1(x∗) represents the constraint on the upper peristaltic wall and η2(x∗) on the lower
walls in the moving frame. The planes y∗ = η1(x∗) and y∗ = η2(x∗) follow the streamlines’
pattern and the current flow rate q∗ is constant throughout the cross section of the peristaltic
channel in the moving reference frame. The consistent boundary conditions relating stream
function are expressed as

ψ∗ = q∗, at y∗ = η1(x∗) and y∗ = η2(x∗). (18)

ψ∗ is the illustration of stream function and q∗ = Q∗ − ca narrates the flow rates in the
fixed frame and in the moving frame of reference. Two proposed dimensionless variables
are given, by which we can make our differential equations dimensionless,

x = x∗
λ , y = y∗

a1
, u = u∗

c , v = v∗
c , a = a2

a1
, b = b1

a1
,

b = b2
a1

, η1 =
η∗1
a1

, η2 =
η∗2
a1

, α = a1
λ , q = q∗

ca1
, Re = ca1

ν α,

M =
√

σ
μ B0a1, K = k

a2
1
, p =

a2
1 p∗(x∗)
c λμ .

(19)

After making the dimensionless form of equations that governs the peristaltic phe-
nomena and corresponding boundary conditions, we have

α
∂u
∂x

+
∂v
∂y

= 0, (20)

Re
{

αu
∂u
∂x

+ v
∂u
∂y

}
= −α

∂p
∂x

+ α

(
α2 ∂2u

∂x2 +
∂2u
∂y2

)
−
(

αM2 +
α

K

)
(u + 1) (21)

Re
{

αu
∂v
∂x

+ v
∂v
∂y

}
= −∂p

∂y
+ α

(
α2 ∂2v

∂x2 +
∂2v
∂y2

)
− α

K
v, (22)

u = −1, v = 2πbα sin(2πx), at y = η1(x) = 1 + bcos(2πx), (23)

u = −1, v = −2πb α sin(2πx + φ ), at y = η2(x) = −a − bcos(2πx + φ), (24)

where Re is the ratio of inertial and viscous forces known as the Reynolds number, Fr
represents the Forhheimer number (Fr = c2

ga ), and K is the permeability of the porous
medium. After elimination of pressure terms by taking derivative Equation (21) with
respect to y and Equation (22) with respect to x and simplifying by inserting the stream
function and vorticity given by

u =
∂ψ

∂y
, v = −α

∂ψ

∂x
, ω =

(
α

∂v
∂x

− ∂u
∂y

)
, (25)

the governing equations in ψ − ω formulation take the form(
α2 ∂2ψ

∂x2 +
∂2ψ

∂y2

)
= −ω, (26)

Re
{

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

}
= ∇2ω − ω

K
+ M2 ∂2ψ

∂y2 . (27)
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The proposed boundary conditions in Equations (18), (23), and (24) become

ψ = q,
∂ψ

∂y
= −1,

∂ψ

∂x
= −2πbsin(2πx), at y = η1(x), (28)

ψ = q,
∂ψ

∂y
= −1,

∂ψ

∂x
= −2πbsin(2πx + φ), at y = η2(x), (29)

where ∇2 = α2 ∂2

∂x2 +
∂2

∂y2 . It is necessary to note that by employing assumptions of lubrica-
tion theory, Equation (26) vanishes and Equation (27) becomes

∂4ψ

∂y4 + M2 ∂4ψ

∂y4 = 0. (30)

3. Finite Element Analysis

In this section we are going to obtain the numerical solution to partial differential
equations that govern the problem. For this purpose the partial differential
Equations (26) and (27) along with the proposed boundary conditions given in Equations
(28) and (29) are considered to be solved by applying finite element method to obtained
numerical solution. Using FEM, we can easily handle the complex domains and they
have rapid convergence. The discretization technique used in the finite element method
makes it more effective to solve non-linear problems. In our present problem, our aim
is to solve the given governing equations in a comprehensive form so that the effects of
Reynolds numbers and wave numbers can be discussed. For this, we discretize the domain
into a non-uniform mesh based on triangular elements (quadratic) founded on six nodes
using pdetool in MATLAB. Firstly, we find the solution on every element of the domain,
then assemble all elements into a large matrix known as the global matrix. The resultant
equations are a non-linear system of algebraic equations. Then we will use the Newton
Raphson method to obtain the solution to the equations. The finite element method will be
implemented as follows:

The nodal variables are approximated as

ψ = ∑n
k=1 Nkψk, ω = ∑n

k=1 Nkωk, (31)

where ψk and ωk denote the nodal approximation of ψ and ω, respectively. In the subse-
quent use of the finite element method, the weighted residuals of Equations (26) and (27)
can be written as

R1
i =

∫
Ω

w1

(
α2 ∂2ψ

∂x2 +
∂2ψ

∂y2 + ω

)
dΩ, (32)

R2
i =

∫
Ω

w2

[
Re
(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
−
(

α2 ∂2ω

∂x2 +
∂2ω

∂y2

)
+

ω

K
− M2 ∂2ψ

∂y2

]
dΩ, (33)

where w1 and w2 are weight functions and dΩ = dψdω. Simplifying Equations (32) and (33),
the weak formulation yields the following equations:

R1
i =

∫
Ω

(
α2 ∂ψ

∂x
∂w1

∂x
+

∂ψ

∂y
∂w1

∂y

)
dΩ −

∫
Ω

w1ω dΩ −
∫

Ω
w1

∂ψ

∂n
dΓ, (34)

R2
i = Re

∫
Ω w2

(
∂ψ
∂y

∂ω
∂x − ∂ψ

∂x
∂ω
∂y

)
dΩ +

∫
Ω

(
α2 ∂ω

∂x
∂w2
∂x + ∂ω

∂y
∂w2
∂y

)
dΩ +

∫
Ω w2

ω
K dΩ

+M2
∫

Ω
∂ψ
∂y

∂w2
∂y d +

∫
Γ w2

∂ω
∂n dΓ − M2

∫
Γ w2

∂ψ
∂n dΓ,

(35)
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where Ω denotes the the area integral for every element and Γ is the boundary for every
element. Now, Re = 5 using Equation (31) in Equations (34) and (35), we get

R1
i =

n

∑
i=1

∫
Ω

(
α2 ∂Ni

∂x
∂NK
∂x

+
∂Ni
∂y

∂NK
∂y

)
ψidΩ −

n

∑
i=1

∫
Ω

Ni NkωidΩ −
∫

Γ
NkdΓ (36)

R2
i = Re

n
∑

i=1

∫
Ω Nk

(
∂Ni
∂y

∂Ni
∂x + ∂Ni

∂x
∂Ni
∂y

)
ψiωidΩ

+
n
∑

i=1

∫
Ω

(
α2 ∂Ni

∂x
∂NK
∂x + ∂Ni

∂y
∂NK
∂y

)
ωidΩ + 1

K

n
∑

i=1

∫
Ω Nk NiωidΩ

+M2
n
∑

i=1

∫
Ω

∂Ni
∂y

∂NK
∂y dΩ +

∫
Γ NkdΓ − M2

∫
Γ NkdΓ

(37)

The assembled global matrix takes the form

KA = F. (38)

Equation (38) leads to a system of algebraic equations which occur non-linearly and
can be solved by any iterative method. In the present investigation the well-known Newton
Raphson method is used to solve the given system. The elaborated procedure is iterative to
the desired convergence rate.

Peristaltic waves produced on the walls induce periodic flow. Due to this, we can
evaluate pressure only on the dominant middle part of the channel, which is equal to one
wavelength. To evaluate pressure, the expression in dimensionless form is given by

∂p
∂x

= Re
{

∂2ψ

∂y2
∂ψ

∂x
− ∂2ψ

∂x∂y
∂ψ

∂y

}
− ∂ω

∂y
−
(

M2 +
1
K

)(
∂ψ

∂y
+ 1

)
, (39)

∂p
∂y

= α2Re
{

∂2ψ

∂x2
∂ψ

∂y
− ∂2ψ

∂x∂y
∂ψ

∂x

}
+ α2 ∂ω

∂x
+

α2

K
∂ψ

∂x
. (40)

The pressure rise in the moving frame of reference is well defined as

ΔPλ =
∫ λ

0

dp
dx

dx. (41)

4. Validation of Numerical Results

This section is to check the validity of our present investigation by making a compari-
son between our obtained numerical results and the result of Mishra and Rao [33] in the
limiting case, i.e., using the assumptions of lubrication theory in our present investigation,
that is, Re = 0, α = 0, M = 0, d1 = 0, d2 = 0, and γ = 0. The obtained solutions in
the investigation by Mishra and Rao [33] are analytic. The velocity distribution based on
our present numerical solutions is compared with that of Mishra and Rao [33] by using
plots. It can be clearly observed from Figure 2 that in the limit of γ = 0, M = 0 and
d1 = 0, d2 = 0, our calculated results have a remarkably good convergence rate with the
results of Mishra and Rao [33]. Thus, it is indicated that the current study will be very
useful for further research.

Analysis of the numerical results is presented in this section. Plots of velocity, stream-
lines, and pressure gradient are obtained and elaborated. Detailed discussion of the trap-
ping of bolus is also presented. The effect of other pertinent parameters such as Reynolds
number Re, Hartman number M, wave number α, and phase difference φ is also described.

166



Bioengineering 2022, 9, 588

Figure 2. Comparative analysis for results with Mishra and Rao [33] for velocity distribution in
limitation of Re = 0, α = 0, M = 0, d1 = 0, d2 = 0, and γ = 0.

4.1. Velocity Profile

This subsection is presented here to discuss the behavior of velocity of fluid flowing
through an asymmetric channel peristaltically. For this reason, a graph of longitudinal-
velocity at cross section x = 0 is plotted for various changing values of mean flow rate
Q, Reynolds number Re, Hartmann Number M, porosity of porous media K, and wave
number α in Figures 3–7. From these plots it can be clearly concluded that the velocity
of fluid on the walls of the channel vanishes due to no-slip conditions on the boundary.
Figure 3 is designed to scrutinize the vibrational effects of mean flow rate Q for fixed values
of other involved parameters. Time-mean flow rate measures the quantity of fluid passing
through cross-sectional area of the channel. As we increase the value of time-mean flow
rate Q, it means that more fluid is moving through the cross section, which means that the
velocity is going to be increased. Figure 3 illustrates that increasing values of mean flow
rate with rapid augmentation in the velocity profile are observed in the middle part and at
the sides. The Reynolds number can be clearly defined as the ratio between inertial and
viscous forces, so enhancing the value of Re leads to a decrease in viscous forces, which
result in a decrease in opposition offered to the fluid. It can be seen from Figure 4 that by
enhancing the value of the Reynolds number the longitudinal velocity is enhanced near
the upper wall of the peristaltic channel, but reverse behavior is seen near the lower wall
and mixed performance is seen in the middle part of the channel. Figure 5 is plotted to
elaborate the effects of wave number for diverse values of α with static values of other
parameters, i.e., Re = 1, Q = 1.5, M = 2, d1 = 0.3, d2 = 0.3, K = 0.1 , and φ = π. It
shows that an increase in α results in a decline in the velocity near to the upper wall, and
an increase in velocity of fluid is observed near the lower wall. Figures 6 and 7 elaborate
the changing effects of the Hartmann number M and porosity parameter K by keeping the
other parameters fixed. It is evident that with an enhancement in the porosity parameter
and magnetic field, an increase in velocity is observed in the central part of the peristaltic
channel but velocity decreases near the walls. It may be concluded from Figures 6 and 7
that the Hartmann number and porosity parameter are the best way to control the velocity
of peristaltic flow.
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Figure 3. Velocity change for Q with Re = 1, α = 0.2, M = 2, K = 0.1, d2 = 0.3, d1 = 0.3 and φ = π.

 

Figure 4. Variation in velocity for Re with Q = 1.5, α = 0.2, M = 2, K = 0.1, d1 = 0.3, d2 = 0.3 and φ = π.

 

Figure 5. Velocity profile for α with Re = 1, Q = 1.5, M = 2, K = 0.1, d1 = 0.3, d2 = 0.3 and φ = π.
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Figure 6. Velocity profile for M with Re = 1, α = 0.2, Q = 1.5, K = 0.1, d1 = 0.3, d2 = 0.3 and φ = π.

 

Figure 7. Velocity profile for K with Re = 1, α = 0.2, M = 2, Q = 1.5, d1 = 0.3, d2 = 0.3 and φ = π.

4.2. Pressure Distribution

In the peristaltic phenomena, the fluid flows due to the waves which are produced on
the walls of the channel. These waves produce a pressure which causes fluid to flow for-
ward. This subsection is devoted to discussing the effect of involved pertinent parameters
on pressure-rise per wavelength by changing the value of one parameter while keeping
the others fixed. The variation effects of the Hartmann number M, Reynolds number Re,
wave number α, porosity parameter K, and phase difference φ on pressure gradient is
particularized in Figures 8–12 by plotting the graph in the positive pumping region only.
It is perceived that pressure increases with a rise in Hartmann number M, wave number,
Reynolds number, and phase difference; additionally, a lessening in pressure is predicted
in the augmented region. In contrast to the Hartmann and wave numbers, it is seen that
pressure rise per wavelength declines with increase in the value of porosity parameter K in
the peristaltic pumping region.
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Figure 8. Pressure gradient for M.

Figure 9. Pressure gradient for K.

Figure 10. Pressure gradient for α.
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Figure 11. Pressure gradient for Re.

Figure 12. Pressure gradient for φ.

4.3. Trapping of Bolus

The graph of streamlines is plotted in this subsection to describe the useful trapping
phenomenon for different of values of Reynolds number Re, Hartmann number M, and
porosity of porous media K for fixed values of other parameters with changing values
of phase difference. Streamlines describes how the fluid is moving physically. Smooth
streamlines correspond to smooth flow. As waves are generated on the wavy walls, these
streamlines become more curved and this leads to enclosing a bolus which moves with the
flow. In Figure 13, streamlines are plotted with an unlike phase shift for Re = 1 and Re = 5
with static values of other related parameters, i.e., α = 0.2, K = 0.1, M = 1, d1 = d2 = 0.5,
and Q = 1.6. It is noted that when φ = 0, it leads to symmetric channel, and there is
no effect on bolus size by enhancing the value of the Reynolds number. However, when
φ = π/4, 2π/4, 3π/4, this leads to an asymmetric channel. It should be noted that there is
a slight change in bolus size, but as the asymmetry of the channel increases, it cause less
retardation in the flow. Figures 14 and 15 show that increasing the values of the applied
magnetic field and porosity parameter leads to an increase in the size and number of
boluses for both symmetric and asymmetric channels, which causes more resistance and
decreases the fluid flow. It is also observed that in case of enhancement of K, the number of
boluses is more than in the case of an increase in the Hartmann number M.
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Figure 13. Streamlines with diverse phase shift for Re = 1 and Re = 5 with static values of other
involved variables α = 0.2, K = 0.1, M = 1, d1 = d2 = 0.5, and Q = 1.6.
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Figure 14. Streamlines with diverse Hartmann numbers for M = 1 and M = 3 with static values of
other involved variables α = 0.2, Re = 1, K = 0.1, d1 = d2 = 0.5, and Q = 1.6.
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Figure 15. Streamlines with K = 0.1 and K = 0.3 when α = 0.2, Re = 1, M = 1, d1 = d2 = 0.5, and Q = 1.6.

5. Conclusions

In the present work the investigation of peristaltic transport is carried out in an
asymmetric channel under an applied magnetic field. The numerical simulations are
carried out using the finite element method. Moreover, lubrication theory is not used in
this study. The present work leads to the following conclusions:

The velocity is enhanced by increasing time-mean flow rate Q and Reynolds number
Re but declines with an increase in the value of wave number α.
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It is seen that by increasing the Hartmann number and porosity parameter K, the
velocity of peristaltic flow is enhanced, but pressure distribution declines with increasing
porosity parameter.

Increasing the value of the Reynolds number leads to enhancement in the velocity and
pressure of the flow. However, there is a slight change in the size of the bolus.

The streamlines illustrate that the number of boluses is increased by enhancing the
Hartmann number and porosity parameter.

It is concluded that magnetic field and porosity are the best factors with which to
control the velocity, pressure, and boluses in the peristaltic flow.
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