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Preface

Biomedical image analysis plays a vital role in diagnosing numerous pathologies ranging from

infectious diseases to cancer. Advanced methodologies for signal and/or image processing and

analysis and biomedical analytics may be a powerful tool for classifying medical data, reasoning

individualized health trends, and finding evolutionary trajectories between normal and non-normal

cases in many medical applications. This Special Issue includes some of the latest research regarding

biomedical image analysis and computer-aided diagnosis, reports novel imaging methods with

biomedical applications, and explores the development of new algorithms for biomedical image

processing and analysis. The main goal of this Special Issue is the dissemination of scientific

results and innovative ideas among the scientific community and to bring different facets of health

monitoring together.

Michalis Vrigkas, Christophoros Nikou, and Ioannis A. Kakadiaris

Editors
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Abstract: Preclinical PET animal studies require immobilization of the animal, typically accomplished
through the administration of anesthesia, which may affect the radiotracer biodistribution. The use
of 18F point sources attached to the rat head is one of the most promising methods for motion
compensation in awake rat PET studies. However, the presence of radioactive markers may degrade
image quality. In this study, we aimed to investigate the most favorable conditions for preclinical
PET studies using awake rats with attached point sources. Firstly, we investigate the optimal activity
conditions for the markers and rat-injected tracer using Monte Carlo simulations to determine
the parameters of maximum detectability without compromising image quality. Additionally, we
scrutinize the impact of delayed window correction for random events on marker detectability and
overall image quality within these studies. Secondly, we present a method designed to mitigate
the influence of rapid rat movements, which resulted in a medium loss of events of around 30%,
primarily observed during the initial phase of the data acquisition. We validated our study with PET
acquisitions from an awake rat within the acceptable conditions of activity and motion compensation
parameters. This acquisition revealed an 8% reduction in resolution compared to a sedated animal,
along with a 6% decrease in signal-to-noise ratio (SNR). These outcomes affirm the viability of our
method for conducting awake preclinical brain studies.

Keywords: positron emission tomography; awake PET; Monte Carlo; delayed window; random
coincidences; anaesthesia; motion correction

1. Introduction

Positron emission tomography (PET) is a powerful tool for imaging biological pro-
cesses in vivo. PET scans can provide valuable information about molecular mechanisms
of disease, drug safety and efficacy, and the response to treatments. In preclinical PET,
animal models such as non-human primates and rodents are commonly used to develop
and validate novel radiotracers and investigate disease mechanisms. However, the use
of anesthesia during preclinical PET scans can have pharmacological effects that may
affect physiological parameters, potentially leading to confounding results that limit the
translation of preclinical results to the clinic [1–4].

Appl. Sci. 2023, 13, 12329. https://doi.org/10.3390/app132212329 https://www.mdpi.com/journal/applsci
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To overcome this limitation, the focus on conducting studies with awake animals
has gained importance in recent years. Several approaches have been taken in this field,
including the use of restraining devices [5–9], scanners attached to the animals [10,11],
and motion tracking and correction techniques. Restraining animals during PET scans can
limit the animal’s movement but may result in immobilization stress, leading to altered
uptake of radiotracers [5,6]. Scanners attached to animals, such as the RatCAP [12,13], offer
an alternative approach but may also induce stress in the animal. Motion tracking and
correction techniques are currently the most-studied approach, as they allow free animal
motion and ensure that the animal is not stressed during the scan.

Within the field of motion tracking and correction, several methods have been pro-
posed. Optical markers [14–17], natural head features [18], point clouds [19], and point
sources [20–22] are some of the most widely studied techniques. Optical markers require
the rat’s head to be facing the tracking camera, and there may be some limitations when
the marker is occluded or the bore of the scanner is small. Using natural head features
eliminates the need for attaching markers, but to obtain enough distinctive features, it may
be necessary to paint a black pattern on the animal’s head. Point clouds use a combination
of stereo vision and structured light projection to represent the 3D surface of the animal
head as point clouds, which can then be used to determine its 3D pose. Finally, point
sources attached to the rat head have been widely studied by Miranda et al. [3,20]. This
method uses the spatial location of the point sources in the PET data to calculate the head’s
pose [3]. This approach has shown promising results, making viable the acquisition of
awake animal data without requiring any external devices.

Given the potential of using point source markers for motion estimation, our study
aimed to optimize the parameters of point source markers strategy, a novel approach
in motion tracking and correction. Our primary focus is to evaluate the performance of
this motion-correction strategy, both with numerical phantoms as well as with several
acquisitions with awake rats, including a reference acquisition of an anesthetized rat for
comparison. The purpose of this research is to assess the performance of that method,
particularly in situations where motion correction may be challenging. We also investigate
when the activity of the point source markers may affect image quality. With these goals
in mind, we have conducted a comprehensive analysis to enhance the effectiveness of the
point source method and provide valuable insights for its practical applications.

2. Materials and Methods

2.1. Scanner

We have tested our mehtods in a 6R-SuperArgus [23]. The scanner is made up of
two layers of 13 × 13 crystal arrays, each with a crystal pitch of 1.55 mm. The front layer
consists of 7 mm-long lutetium–yttrium orthosilicate (LYSO) crystals, while the back layer
has cerium-doped 8 mm-long gadolinium orthosilicate (GSO) crystals. The scanner has
a total of 6 rings of 24 detectors each, with a radial field of view (FOV) of 17 cm and
an axial FOV of 15 cm. Additionally, the scanner acquires data in a single list-mode,
with information on the energy, time, and position of each event recorded.

2.2. Point Source Tracking and Motion Compensation

The overall workflow of the reconstruction process is divided into five steps (see
Figure 1):
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Figure 1. Workflow of the reconstruction process with motion tracking and compensation.

The reconstruction process is divided into five distinct steps, which are described
below:

1. LOR Centroid: To address motion-related issues, we track the rat’s movement during
the scan. The centroid position of all LORs is calculated every 50 milliseconds,
representing the movement center;

2. Quick-Movement Subtraction: Rapid movement is identified using the vmax parame-
ter, derived from periods with minimal centroid variation. Such periods are indicative
of minimal rat motion. Removing these high-movement intervals helps reduce motion
artifacts, vital for small animal studies;

3. Obtaining transformations: We use a reference image from the most stable part of
the scan. The acquisition is divided into 12.5 ms frames, reconstructed with low
iterations while considering rapid movement removal. Rigid transformation matrices
are derived by comparing point source locations with the reference;

4. Non-Precise transformations subtraction: To assess the quality of our transforma-
tions, we calculate a discrepancy measure, χ2

f r, for each frame:

χ2
f r =

N

∑
s
(pre f

s − T(p f r
s ))2

N
(1)

In this equation, N represents the total number of point sources, pre f
s is the position

of source s in the reference image, and T(p f rs) is the position of source s in a specific
frame f r after applying the transformation T. Frames with χ2 values below a set
limit (χ2max) are retained, as rigid transformations may not fully account for the rat’s
flexible skin, ensuring more accurate image reconstruction;

5. Final reconstruction: With the transformation parameters obtained for all frames, we
proceed with the reconstruction process. Each event within a frame is transformed
based on its corresponding transformation, adjusting scanner positions. As the scan-
ner position changes during reconstruction, we need to adapt the standard Expec-
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tation Maximization Maximum Likelihood (EMML) algorithm to ensure accurate
reconstruction. We modify sensitivity corrections aij as follows:

aij =
1

Tacq

∫ Tacq

0
T(t)ai′ jdt (2)

where Tacq is the total acquisition time and T(t) represents the transformation at each
time point; it should be noted that voxel i′ in ai′ j may not correspond to the same
voxel i after applying T(t).

2.3. Study of Optimal Conditions for Awake Acquisition with Point Sources

In this study, we aimed to investigate the detectability of point sources in PET imaging
using a rat numerical phantom with four point sources and to investigate how these
sources affect brain uptake estimation. The phantom was designed with two point sources
positioned at the snout and two under the ear.

To evaluate the detectability of point sources and their impact on brain uptake estima-
tion, we explored the effect of different parameters, including the activity of the numerical
rat phantom and the activity of the point sources. Specifically, we varied the activity of
the rat brain phantom in steps of 20 μCi , ranging from 10 to 210 μCi, and the activity of
the point sources in steps of 0.5 μCi, ranging from 1 to 10 μCi. This resulted in a total of
220 combinations of brain and point source activities.

It is important to note that the brain activity simulated in our experiments corresponds
to approximately 15% of the total activity in the rat body. This percentage represents the
median activity level observed in the brain across the four rat acquisitions explained in
Section 2.4. Since the process involves stochastic elements, each combination was simulated
100 times, randomly moving the rat within the FOV to obtain a detectability value for
each case.

For each simulation, we used a time step of 12.5 ms (corresponding to a frequency
of 80 Hz). This choice of time step strikes a balance between precise motion tracking and
good detectability of the sources in the image. The execution time of each simulation was
not lengthy due to the short time step. Additionally, to address the introduction of more
random coincidences with increasing acquisition activity, we investigated how well the
delayed window (DW) method, as proposed by Yavuz et al. [24], can mitigate this issue by
subtracting the contribution of random coincidences from the image.

Apart from detectability, we also studied how the activity of the point sources affects
image quality. Our primary goal is to study the brain of the animal accurately, which
requires avoiding halo artifacts induced by the point sources attached to the animal’s head.
Halo artifacts are circular regions around high-activity areas, such as the point sources,
where nearby regions underestimate the uptake [25]. In addition, we considered the impact
of random coincidences introduced by the sources, and we assessed how the DW method
can help reduce their impact.

To investigate the effects of point source activity on brain quantification, we conducted
simulations with different activities injected into the animal, both with and without point
sources. We used the image without point sources as the reference and computed the Root
Mean Square Error (RMSe) for the images with different point source activities. The RMSe
values are defined as

RMSe =

√√√√√ ∑
j∈BR

(Io
j − Ips

j )2

N
(3)

where the sum is performed over the voxels j inside the brain region BR. Io represents the
image without point sources, and Ips represents the image with point sources. N is the
total number of voxels inside the brain region. To ensure fair comparison, both images are
in relative standardized uptake value (SUVr).

4
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All simulations took into account scatter and random events to accurately model
real-world conditions.

The results of this study enable us to establish the optimal conditions for detecting
point sources while avoiding compromising the quality of the reconstructed brain image
by adding too much activity.

2.4. Study of Rat Behavior in PET Scanner and How Count Subtraction Affects the Image

The objective of this section is to investigate the effects of rat behavior on PET imaging
data, particularly focusing on the impact of subtracting coincidences from the acquisition,
as shown in steps 2 and 4 in Figure 1.

To assess the effects of animal behavior on PET imaging data, we conducted a com-
prehensive study using four different Wistar rats injected with 18F-FDG within the 6R-
SuperArgus scanner. During the experiments, the rats were awake. The rats were intro-
duced into a tube that offered freedom of movement. However, the limited diameter of the
tube prevented the animals from making full turns, thereby ensuring that they remained
within the FOV of the scanner. Acquisitions lasted approximately 600 s for each rat. A pri-
mary objective was to identify the parts of the acquisition where the rats moved too quickly,
as such movements can adversely affect image quality. Consequently, we subtracted these
fastest motion data from the final image reconstruction to improve the overall accuracy.

In one of the rats, four point sources of 18F were placed at the same positions as the
simulation shown in Figure 2. This rat is a wistar female rat weighing 255 g. Each point
source had an activity of 7 μCi, while the rat’s brain had a total activity of 110 μCi at the
beginning of the acquisition. Figure 3 shows the rat with the point sources. The study
focused on exploring the effects of subtracting more or fewer coincidences by varying the
parameters in the reconstruction process. The two parameters that significantly impact the
number of counts are vmax and χ2

max, as discussed earlier.

Figure 2. Schematic representation of the numerical rat phantom used in our simulations [26], located
inside the 6R-SuperArgus PET scanner. The phantom includes four point sources, two at the snout
and two under the ear. The point sources are shown larger than their actual size (1 mm diameter) for
visualization purposes.
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Figure 3. Rat with the point sources attached to the head.

Two different metrics were used to assess the effect of these parameters and the
subtraction of counts. First, we used the point sources attached to the animal’s brain
to measure the precision of motion compensation by calculating the Full Width at Half
Maximum (FWHM) of these sources. The FWHM is a useful measure of spatial resolution
that allows us to assess the amount of blurring caused by movement during acquisition.

Secondly, we used the cortex region to measure the signal-to-noise ratio (SNR) , which
provides valuable insight into the impact of count subtraction on image quality. SNR is
defined by the following formula:

SNR =
μ

std
(4)

Here, μ represents the mean value inside the region of the cortex, while std denotes
the standard deviation within the same region. A higher SNR indicates better image quality
with reduced noise.

By analyzing the FWHM and SNR under different conditions, we aim to understand
how the movement of rats during PET acquisitions affects image quality and how count
subtraction influences the final reconstruction. These insights will contribute to the opti-
mization of point source tracking in Awake Rat PET Imaging, leading to more accurate and
reliable data for neuroscience research and other related fields.

2.5. Comparison of Awake vs. Anesthetized Brain Reconstruction

To evaluate the performance of our method, we conducted experiments on a female
Wistar rat weighing 255 g, on which four 18F point sources were placed, as detailed in the
preceding section. Each point source had an activity of 7 μCi, while the rat’s brain had a
total activity of 110 μCi at the beginning of the acquisition. The experiments were carried
out in two states: under anesthesia and while the rat was awake.

The rat was positioned within the 6R-SuperArgus scanner, initially under anesthesia,
with data acquisition commencing just prior to the onset of the awakening process. Each
data acquisition session lasted for 600 s. For the anesthetized state, the acquisition yielded
a total of 1.55 × 108 coincidences. Once the rat had fully awakened, we performed the
second data acquisition, resulting in 1.45 × 108 coincidences.

By comparing the data obtained from the awake and anesthetized states, we gained
valuable insights into how motion affected image quality within the context of PET imaging.
This comparative analysis enabled us to assess the effectiveness of our motion compensation
methods by directly contrasting the resulting images.

3. Results

3.1. Study of Optimal Conditions for Awake Acquisition with Point Sources

The results presented in this section contribute significantly to understanding the
relationship between the activity of both the animal and the point sources and the success
rate of tracking the point sources. Figure 4 displays the percentage rate of correct tracking
of the point sources for frames of 12.5 ms. We have explored how Delayed Window (DW)
correction affects detectability, and it is evident that DW correction has a positive impact
on the detectability of short frames, expanding the scenarios in which all point sources
can be reliably detected. The dash-dotted line serves as a visual representation of the
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desired activity configuration in an experiment, where there is a 100% rate of correct
tracking of the point sources. This figure demonstrates the effectiveness of the tracking
system in high-activity scenarios and provides a reference for optimizing future tracking
systems. The results presented in this figure are crucial for guiding experimental design
and determining the optimal conditions for point source tracking.

Figure 4. Point source tracking success as a function of animal and point source activity for frames
of 12.5 ms: (a) without random correction, (b) with random correction using the delayed window
method. Since the point source locations are known, the success rate is defined as the percentage of
time that all four sources are correctly located. The area above the dashed line represents the ideal
activity configuration, where all point sources are tracked with 100% accuracy. This figure is the
result of 100 simulations for each configuration.

Next, we investigated how the presence of these point sources affects image quality.
Figure 5 illustrates the root mean square error (RMSe) between the image without point
sources and the image with point sources at the injected activity of the animal. All sim-
ulations encompassed 450 s of acquisition, considering that our acquisitions are of 600 s,
and we estimate a loss of counts of approximately 25% due to the methods of subtraction
mentioned in Section 2.2. In this case, DW correction is necessary, as it consistently im-
proves the image quality in all cases. The region below the dash line in Figure 5 represents
the range of point source activity that has an RMSe of less than 0.05, which we consider
to have a negligible effect on the quantification of activity in different brain regions of
the animal.

By combining the studies on detectability and image quality, we can identify the region
of optimal conditions for awake acquisitions with point sources. Figure 6 depicts this
region, shown in green. These conditions ensure that the point sources can be tracked every
12.5 ms, and the reconstructed image has a lower degradation than 0.05 RMSe compared
to the image without point sources. The star in the figure represents the conditions of the
acquisition analyzed in Sections 3.2 and 3.3.

The information presented in this section provides valuable insights into the best
conditions for awake PET imaging with point sources. These findings will contribute
significantly to the advancement of motion detection and correction techniques in this field
and serve as a foundation for further optimizing tracking systems in future experiments.
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Figure 5. RMSe as a function of animal and point sources activity for studies with 450 s acquisitions.
The region below the dashed line represents the activity configuration that has an RMSe of less than
0.05. All images have DW correction.

Figure 6. Regions of acceptable and non-acceptable conditions for awake acquisitions as a function
of animal and point source activity. The green region represents the area where the sources can be
tracked every 12.5 ms, and the image reconstructed has a lower degradation than 0.05 RMSe with
respect to the image without point sources. The star represents the conditions of the acquisition
analyzed in Sections 3.2 and 3.3.

3.2. Study of Rat Behaviour in PET Scanner and How Count Subtraction Affects the Image

In this section, our aim is to understand the effect of subtracting counts from the
original acquisition. We focus on the subtraction of counts during quick-movement phases.
As mentioned before, in order to achieve higher tracking success, we avoid coincidences
where the animal is moving quickly, but a trade off between better tracking and count loss
is at play. We also investigate the behavior of four different rats inside the 6R-SuperArgus
scanner while moving freely in order to identify fast motion periods.

Figure 7 displays the study of the movement of four rats inside the 6R-SuperArgus
scanner, showing the centroid of LORs every 50 ms. The areas in green represent regions
with low movement, while those in red indicate areas categorized as quick movement.
At the top of each graphic, the percentage of events inside low movement frames is shown.

We conducted tests with four different animals to assess the pattern of rat motion
inside the scanner and how many events would be removed in our approach. Figure 7
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reveals that we retain an average of 73.75% of the counts, with count subtractions ranging
from 13.5% in the case with the lowest animal movement to 43.3% in the worst case. We
can adjust the vmax value to achieve the best reconstruction, as shown shortly.

Figure 7. Study of the movement of four rats inside a 6R-SuperArgus scanner. Blue lines show the
centroid of LORs every 50 ms. Green areas indicate regions with low movement, while red areas
represent regions categorized as quick movement. The percentage of events inside low movement
frames is shown at the top of each graphic.

All studies have a total acquisition time of 600 s, providing a sufficient number of
events to obtain noise-free images despite possible statistical loss. Additionally, it can be
observed that, in most cases, at the early stages of the acquisition, the animal displays
significant movement but, after a brief period, relaxes and reduces the amount of movement
over time.

Now, we focus on the rat located in the top-left quadrant of Figure 7, which features
four point sources attached to its head. The point and rat activities were chosen to lie in
the region of optimal conditions, marked with a star in Figure 6. Now, further, we have
to adjust two key parameters: vmax, which controls the acceptance range for the speed of
movement, and χ2

max, which governs the tolerance for accepting less accurate point source
position determination. Exploring these parameters enables us to understand the trade off
between accepting more or fewer counts.

In Figure 8, we present a comprehensive overview of our study. Panel a shows how
higher tolerances in both vmax and χ2

max result in keeping more counts in the reconstruction.
Panel b shows the trade off between the number of counts used and the apparent size of
the reconstructed point sources. This panel suggests that the optimal choice for vmax is
1.0 mm/s, as, across different χ2

max values, deviating from this value increases the apparent
FWHM of the sources. Additionally, when χ2

max exceeds 0.055, we observe a deterioration
in resolution.

Panel c showcases the region of interest (ROI) within the cortex, which is utilized
to compute SNR values presented in Panel d. We can see that too strict criteria to ac-
cept counts result in pronounced noise in the image, leading to a smaller SNR in the
cortex region. Conversely, if we accept nearly all counts, as seen in the right-most case in
Figure 9, we introduce noise due to poorly compensated motion, ultimately degrading the
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image. The optimal combination of parameters yielding the best SNR and FWHM values is
achieved when χ2

max is close to 0.05 and vmax is set to 1 mm/s.

Figure 8. Study on the impact of count subtraction on the image. The total number of coincidences in
the acquisitions is 1.45 × 108. (a) Percentage of admitted counts for each combination of vmax and
χ2

max. (b) Average FWHM of the four point sources for each case. (c) Cortex region utilized for SNR
calculation. (d) SNR values corresponding to each case.

Figure 9. Reconstruction of five different scenarios with varied vmax and χ2
max.

3.3. Comparison of Awake vs. Anesthetized Brain Reconstruction

In this section, we compare the imaging results of a rat under anesthesia and in an
awake state. The awake state of this acquisition is shown in Figure 7a by its centroid.
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In the awake state, 73% of the events were retained after filtering the rapid motion
regions, using the best parameters determined in the previous section. Both reconstructions
reveal distinguishable brain structures, with only an 8% increase in FWHM of the point
sources in the awake rat, with a 6% decrease on SNR at the cortex. Consequently, we can
conclude that animal studies can be conducted in awake rats without severely affecting the
quantification in brain regions.

4. Discussion

In this study, a primary objective was to optimize the parameters chosen during
tracking of point sources in awake rat PET imaging using a motion detection and correction
system. We have achieved significant insights that shed light on the factors influencing
detectability and image quality in this motion correction strategy.

Initially, we investigated the effects of injected activity on the detectability of point
sources attached to the animal. Through extensive simulations, we demonstrated the impor-
tance of random correction in ensuring the detection of all point sources. It was also found
that that, to obtain image deviations below RMSe of 0.05 of the reference, requires keeping
the activity of the sources below 8 μCi. Additionally, the point sources require a minimum
activity when the brain’s activity exceeds 90 μCi. While this study was performed using
FDG as the tracer, we acknowledge that the activity levels in other organs may vary depend-
ing on the tracer used, potentially affecting random coincidences. Therefore, future studies
using different tracers should take this into account when optimizing tracking systems.

Next, we addressed the trade off of subtracting coincidences associated with quick-
movement and non-precise point source tracking. Through our observations of the four
rats within the scanner, as shown in Figure 7, we identified a tendency for these animals
to display increased movement during the initial stages of the acquisition. This initial
movement could be attributed to the novelty of the environment. However, it became
evident that, as the rats acclimated to the scanner, movement reduced.

By optimizing our motion detection and correction parameters, we achieved low
noise and excellent image resolution, with the best images obtained when retaining 73% of
coincidences for our rat. Remarkably, even with a loss of 27% of coincidences, the impact
on image resolution was only 8% and on SNR was 6%, as demonstrated in Figure 10.
While our current experiments were conducted with a 10 min acquisition time, future
research will explore the potential advantages of longer acquisition durations. Extending
the acquisition time may provide an opportunity to capture additional information and
enhance imaging sensitivity. However, it is important to recognize that longer acquisition
times can introduce challenges related to increased subject movement, necessitating further
investigation into the associated motion correction techniques and potential limitations.

We note that the position of the animal’s head near the end of the FOV of the scanner
may have contributed to the loss of resolution observed. The non-homogeneous resolution
across the FOV of the scanner, which exhibits a poorer resolution at the edges of the FOV
and could have worsened the image quality. For future studies, it would be beneficial
to consider this non-uniform resolution when placing the animal and optimizing motion
detection and correction systems for awake rat PET imaging. Additionally, exploring
methods to improve the resolution near the edges of the FOV could further enhance image
quality in awake rat PET studies [27].

Another important aspect is that, recently, Miranda et al. [28] have proposed adding
corrections for cases where point sources shift on the animal’s skin. In our approach,
instead of trying to correct for these, we remove them from the acquisition by introducing
the χ2 parameter. This way, whether the sources have shifted on the animal or an incorrect
transformation has been computed, these counts will not introduce erroneous information
into the reconstruction. The loss of counts introduced this way is moderate and can be
compensated by a modest increase in acquisition time.
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Figure 10. Rat head study with registered CT image in the 6R-SuperArgus scanner. On the left,
sagittal and coronal views of a rat in both states, awake and under anesthesia. On the right, the profile
of the yellow dashed line is shown.

5. Conclusions

This study offers valuable insights to optimize the parameters for 18F point source
tracking in awake rat PET imaging and establishes a methodology for determining the
appropriate marker activity levels relative to rat-injected activity. These levels are scanner-
dependent, contingent on sensitivity and resolution. Focusing on the 6R-SuperArgus
scanner, we found that random corrections are of great importance and that combining
these random correction techniques with carefully selected motion detection and correction
parameters ensures comparable image quality to anesthetized acquisitions. By selecting
coincidences during periods of no-quick rat motion (approximately 70–80% of acquisition
time), we can produce high-quality brain images with only minor resolution reduction,
yielding minimal disparities compared to anesthetized rat studies. In summary, we demon-
strate that appropriately dosed 18F point markers can facilitate motion detection and
compensation in awake rat PET studies, emphasizing the importance of tailoring the
approach to study-specific conditions for image comparability with sedated rat studies.
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Abstract: In recent years, U-Net and its extended variants have made remarkable progress in the
realm of liver and liver tumor segmentation. However, the limitations of single-path convolutional
operations have hindered the full exploitation of valuable features and restricted their mobility
within networks. Moreover, the semantic gap between shallow and deep features proves that a
simplistic shortcut is not enough. To address these issues and realize automatic liver and tumor area
segmentation in CT images, we introduced the multi-scale feature fusion with dense connections and
an attention mechanism segmentation method (MDAU-Net). This network leverages the multi-head
attention (MHA) mechanism and multi-scale feature fusion. First, we introduced a double-flow linear
pooling enhancement unit to optimize the fusion of deep and shallow features while mitigating the
semantic gap between them. Subsequently, we proposed a cascaded adaptive feature extraction unit,
combining attention mechanisms with a series of dense connections to capture valuable informa-
tion and encourage feature reuse. Additionally, we designed a cross-level information interaction
mechanism utilizing bidirectional residual connections to address the issue of forgetting a priori
knowledge during training. Finally, we assessed MDAU-Net’s performance on the LiTS and SLiver07
datasets. The experimental results demonstrated that MDAU-Net is well-suited for liver and tumor
segmentation tasks, outperforming existing widely used methods in terms of robustness and accuracy.

Keywords: semantic segmentation; liver tumor; attention mechanism; feature fusion; U-Net

1. Introduction

The liver is a crucial organ in the metabolic process of the human organism, and
liver tumors, as a highly prevalent disease, seriously threaten human life and health. The
accurate segmentation of tumor regions from computed tomography (CT) images is an
important step in the subsequent diagnostic and therapeutic phases. This process can
provide doctors with more precise information about the location of lesions, enhancing
diagnostic efficiency and accuracy and offering higher clinical value.

However, it is challenging to effectively and precisely distinguish tumor areas from
the background due to the diversity of tumor shapes and locations. In recent years, deep
learning methods have progressively taken center stage in the segmentation of liver tu-
mors [1]. Among them, the U-Net [2] model has proven to have a high level of segmentation
capabilities. To deal with difficult segmentation tasks, scientists have created numerous
U-Net variant networks.

Dickson et al. [3] proposed DCMC-Unet based on two-channel multi-scale convolution
for liver tumor segmentation. Meanwhile, they employed a thresholding method to elimi-
nate extraneous tissues for noise elimination. The network can effectively extract features
at multiples scales and is applicable to tumors of varying sizes and shapes. However,
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due to the oversimplified jump connections, the model’s ability to facilitate interaction
between shallow and deep information is limited. Additionally, the presence of semantic
gaps reduces the model’s capacity for extracting and combining features. To address this
problem, Sabir et al. [4] designed the deep dense network ResU-Net. This replaced the
convolutional layers with residual blocks, aiming to make full use of the advantages of the
U-Net network and deep residual learning for liver tumor segmentation. Deng et al. [5]
introduced deep jump connections into U-Net to fully extract features from the encoder for
enhanced feature learning. While the bottleneck layer in the aforementioned two methods
is relatively simplistic, encoder features cannot be fully utilized here. This limitation can
result in the loss of useful information and the degradation of network performance.

Therefore, to solve the issues mentioned above, we introduced multi-scale feature
extraction with dense connections and an attention mechanism U-Net (MDAU-Net) for
liver and liver tumor segmentation. The main contributions of this work are as follows:

1. We redesigned the jump connection and introduced a double-flow linear pooling
enhancement unit (DLE) to improve the interaction ability between deep and shallow
features, which helped to narrow the semantic gap.

2. To better realize the extraction and reuse of useful features, we proposed a cascaded
adaptive feature extraction unit (CAE) as a substitute for the bottleneck layer. It was
based on an multi-head attention mechanism and a series of dense connections.

3. We designed a cross-level information interaction mechanism (CII). It used bidirec-
tional residual connections and was placed in the skip connection to overcome the
problem of forgetting a priori knowledge in the learning process.

4. We proposed a residual encoder to bolster the preservation of original features and
supply additional initial information for the segmentation task.

2. Related Works

2.1. Medical Image Segmentation Methods

Medical image segmentation is one of the most important tasks in the field of medical
image analysis, aiming to extract quantitative information about various tissue structures
and lesions from complicated medical images.

The conventional manual segmentation method utilized in clinical practice entails
experienced clinicians manually segmenting raw CT images. This process is characterized
by its time-consuming and labor-intensive nature, and the quality of segmentation largely
hinges on the operator’s experience and medical knowledge. As medical image processing
technology has evolved, semi-automatic segmentation methods have gained prominence.
These methods encompass thresholding, region growth, statistics, and other automatic
segmentation approaches, with deep learning being a prominent representative.

The thresholding method separates the target liver region from the background by
selecting the appropriate gray value as the threshold. Seong et al. [6] used a combination of
adaptive thresholding and the angular line method to enhance segmentation performance.
However, this method is not effective in segmentation when the gray value of the target
region is much smaller than the background gray value. The region-growing method
initially selects suitable pixel points (i.e., seed points) within the region as the starting
point for growth. It then continually adds pixel points with similar properties to achieve
segmentation. Chen et al. [7] proposed an automatic liver segmentation method based
on the region-growing algorithm. They introduced center-of-mass detection and intensity
analysis to ensure quick and accurate liver region segmentation. Additionally, the texture-
based region growing method [8] achieves liver segmentation by automatically selecting
seed points and calculating a threshold for the region-growth-stopping condition. The
selection of seed point locations significantly impacts the performance of the algorithm.
Statistics-based segmentation methods [9] demand extensive clinical data as support,
limiting the models’ generalization ability for small-scale datasets like medical images.

The concept of deep learning was initially introduced by Hinton. In contrast to the
traditional methods mentioned above, deep-learning-based methods can automatically
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learn feature representations from raw data. This significantly enhances the segmentation
performance and generalization ability of a model. U-Net is a classic segmentation net-
work in medical image segmentation. Along with its variants, it is widely employed in
segmentation tasks due to its low parameter count and superior segmentation performance.
Zhou et al. [10] introduced a series of nested dense hopping connections between the en-
coder and the decoder to enhance U-Net. This resulted in a 3.9% improvement in the mean
intersection over union (mean IOU). Huang et al. [11] proposed UNet3+, which made more
comprehensive use of the multi-scale features in the feature map. Bi et al. [12] introduced
ResCEAttUnet to enhance the network’s capacity for extracting multi-scale features. This
ensured that the network could effectively capture high-level semantic information while
minimizing information loss. Kushnure et al. [13] developed HFRU-Net to meticulously
characterize contextual information by local feature reconstruction and feature fusion mech-
anisms. They also adaptively recalibrated the fused features to emphasize image details.
Zhou et al. [14] introduced MCFA-UNet, a multi-scale cascaded feature attention network,
to address the issue of edge detail loss resulting from inadequate feature extraction.

2.2. Atrous Spatial Pyramid Pooling

As the number of network layers deepens, the resolution of the images decreases, and
the generated semantic features become less effective in dense prediction tasks. To tackle
this issue, various solutions have been proposed [15–18].

DeepLab V3 [18] is a semantic segmentation model based on atrous convolution,
incorporating the atrous spatial pyramid pooling (ASPP) method to effectively fuse fea-
tures at different scales. As depicted in Figure 1, ASPP comprises five parallel branches:
a 1 × 1 convolutional branch; three atrous convolutional branches with varying expan-
sion rates (6, 12, 18); and a global average pooling branch. The global average pooling
branch downsamples the feature maps to a 1 × 1 size and subsequently upsamples them
to the original size using 1 × 1 convolution and bilinear interpolation. The outputs of
these five branches are concatenated to create a richer feature representation. Finally, a
1 × 1 convolution layer is employed to reduce the number of channels in the feature map
to the desired level.

The inclusion of the ASPP structure during liver and liver tumor segmentation can
combine the advantages of atrous convolution to expand the receptive field of the con-
volution kernel without losing resolution. This assists the network in learning semantic
information from the multi-scale receptive field, ultimately enhancing the model’s segmen-
tation performance.

Figure 1. The structure of atrous spatial pyramid pooling.

2.3. Multi-Head Attention Mechanism

Attention mechanisms have multiple applications in computer vision as crucial com-
ponents of neural networks [19,20]. When integrated into the liver tumor segmentation
process, attention mechanisms enable the model to adaptively extract lesion features while
suppressing irrelevant regions. This ensures that the network focuses on pertinent informa-
tion for a specific segmentation task.
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A generalized attention mechanism can be defined as a method for mapping a query
(Q) to a set of keys (K) and values (V). In contrast, the multi-head attention mechanism
(MHA) [21] implements a method for mapping a query to multiple key–value pairs. Figure 2
illustrates the structure of the multi-head attention mechanism.

In the multi-head attention mechanism, the input data consist of Q, K, and V matrices.
They are mapped to different subspaces by linear transformation to obtain new matrices:
Qi ∈ Rm×dk , Ki ∈ Rm×dk , and Vi ∈ Rm×dV . This transformation is achieved by multiplying
them with a learnable weight matrix, as shown in Equation (1).

Qi, Ki, Vi = QWQ
i , KWK

i , VWV
i (1)

where WQ
i , WK

i and WV
i denote the learnable weights of the corresponding Q, K, and V,

respectively.
Then, scaled dot-product attention is executed for each attention head. This operation

is used to compute the attention weights, as shown in Equation (2). It calculates the dot
production of Q and KT to determine the degree of the relationship between Q and K.
Subsequently, the outcome is rescaled, and the similarity scores undergo normalization via
the softmax function. This process guarantees that the sum of attention weights across all
positions equals 1. These weights are employed in a multiplication operation with V to
derive the output of the respective attention head.

head = Attention(Q, K, V) = so f tmax
((

QKT
)

/
(√

dk

))
V (2)

where
√

dk represents the scaling factor, which is designed to prevent gradient explosion in
the similarity score matrix caused by excessive dimensionality.

Finally, the outputs of each attention head are concatenated and mapped again to
obtain the final attention output, as shown in Equation (3).

MultiHead(Q, K, V) = (Concatenate(head1 · · · headh))Wo (3)

where headi represents the ith attention head, and the inclusion of multiple attention heads
enables the model to concurrently focus on various pieces of subspace information from
distinct locations. Additionally, Wo signifies the trainable weight matrix used for linear
mapping.

Incorporating multi-head attention into liver and liver tumor segmentation enables the
model to selectively extract pertinent features while concurrently attenuating superfluous
regions. This strategy guarantees the network’s concentration on pertinent information
for a given segmentation task, thereby mitigating segmentation errors induced by noisy
signals. Furthermore, leveraging multi-head attention empowers the model to enhance its
spatial perception, subsequently elevating segmentation accuracy.

Figure 2. The structure of multi-head attention and scaled dot-product attention.
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3. Proposed Method

3.1. Overall Architecture

As shown in Figure 3, MDAU-Net maintains the U-shaped architecture and retains
U-Net’s decoder path. In contrast to U-Net, MDAU-Net has four key improvements.

Figure 3. The structure of MDAU-Net.

Firstly, we redesigned the encoder structure. In the original U-Net, the basic block
utilizes the ConvBlock structure depicted in Figure 3. However, in MDAU-Net, we incor-
porated residual connections into the basic block, resulting in the residual encoder. This
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modification bolstered the preservation of original features and supplied additional initial
information for the segmentation task.

Subsequently, to amplify information flow within the network and promote feature
reuse, we substituted U-Net’s bottleneck layer with a cascaded adaptive feature extraction
unit (CAE).

Additionally, we introduced a double-flow linear pooling enhancement unit (DLE)
in the jump connection segment to narrow the semantic gap between deep and shallow
features through a “progressive” feature fusion approach. This refinement aided the
network in achieving more precise target area localization.

Finally, we designed a cross-level information interaction mechanism (CII) utilizing
bidirectional residual connections to address the issue of forgetting a priori knowledge
during the training process.

In Algorithm 1, we provide a pseudocode as an initial description of MDAU-Net, with
a comprehensive exposition of the network’s structure to follow in subsequent sections.

Algorithm 1: MDAU-Net
Data: Dataset X, mask L, module parameters
Result: Segmentation result Y

1 for i = 1 to N do
2 Preprocessing and enhancement of image Xi.
3 for j = 1 to 4 do
4 Encode Xi as Eij using ResBlock and MaxPooling.
5 Obtain the feature map Eij for each encoder layer.
6 end
7 Adaptive feature extraction by CAE module, obtain Ci.
8 for k = 1 to 4 do
9 Calculate the DLE by Eij and Di(k−1), obtain the feature map Tik.

10 Decode Ci as Dik using bilinear interpolation and ConvBlock.
11 Obtain the feature map Dik for each decoder layer.
12 Obtain the segmentation result Yi of image Xi as Yi = Di4.
13 end

14 end
15 Output the segmentation result Y = [Y1, Y2, . . . , YN ].

3.2. Residual Encoder

The residual structure [22], denoted as ResBlock and introduced as a solution to the
gradient vanishing problem, is illustrated in Figure 3. In the encoder path, the repetitive
downsampling operation often leads to information loss. Therefore, this study employed
a sequence of consecutive residual blocks in lieu of the initial convolutional layer. This
approach enhanced the network’s capacity to preserve and extract input features effectively.
Furthermore, the integration of residual blocks served to mitigate to some degree the
gradient vanishing challenge arising from the network’s increased depth.

3.3. Cascaded Adaptive Feature Extraction Unit

A single convolutional operation hampers the effective utilization of valuable features
in deep networks. In line with the concept of dense connectivity [23], we redefined the
bottleneck layer and introduced the cascaded adaptive feature extraction unit (CAE) to facil-
itate feature reuse and enhance the propagation of useful features throughout the network.
Figure 4 illustrates the structure of the CAE unit, which consisted of two convolutional
units (Conv_Unit1 and Conv_Unit2), multi-head attention, and atrous spatial pyramid
pooling (ASPP). These submodules were interconnected through dense short connections,
enabling each module to extract semantic information from the preceding layer or layers,
thereby promoting feature reuse and transfer. Additionally, this connectivity aided in the
network’s convergence.
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Figure 4. The structure of the cascaded adaptive feature extraction unit (CAE).

Among these submodules, Conv_Unit1 played an essential role in initially enhancing
the network’s feature representation. Multi-head attention enabled the model to adaptively
extract crucial semantic features, focusing on valuable features relevant to liver tumors
while reducing the impact of redundant features or background noise. This allowed the
model to make more precise determinations regarding organ and lesion locations. ASPP
facilitated the acquisition of multi-scale features with diverse receptive fields, enabling
the network to capture a richer array of semantic information. Finally, Conv_Unit2 was
utilized to further fine-tune the multi-scale features generated by ASPP.

3.4. Double-Flow Linear Pooling Enhancement Unit

U-Net utilizes jump connections to combine shallow and deep semantic features.
Nonetheless, the straightforward fusion method is susceptible to generating semantic gaps
due to feature disparities. In order to tackle this issue, we optimized the jump connections
and introduced the double-flow linear pooling enhancement unit (DLE). As illustrated in
Figure 5, the DLE unit employed double-flow paths to establish cross-channel dependencies
and gather a broader range of contextual information.

Figure 5. The structure of the double-flow linear pooling enhancement unit (DLE).

For the input feature map Fin ∈ R
H×W×C, we applied deep convolution with a

3 × 3 convolution kernel and an expansion ratio of 2 to process the input feature map,
resulting in a new feature map Fin

′ ∈ R
H×W×. This operation, as opposed to standard

convolution, captured feature map information across a larger range of sensory fields
without introducing any additional parameters.

Fin
′ = DwConvrate=2

k=3 (Fin) (4)

where DwConvrate=2
k=3 denotes deep convolution with a kernel size of 3 × 3 and an expansion

ratio = 2.
Subsequently, we conducted max pooling and average pooling on Fin

′ to extract
more comprehensive channel information and generate feature maps Fap ∈ R

1×1×C and
Fmp ∈ R

1×1×C, respectively.

Fap = Avgpool
(

Fin
′)

Fmp = Maxpool
(

Fin
′) (5)
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Finally, we employed the softmax function to normalize the weights of both Fap and
Fmp along the channel dimension. The outcome is two new attention views obtained by
multiplying these weight matrices with Fin

′. These two views are concatenated along the
channel dimension, resulting in a concatenated feature map with dimensions H × W × 2C.
Following this, dimensionality reduction is executed using the linear function Wμ, and the
outcome is input into the decoder. The precise methodology is as follows:

Fout = Wμ

(
Concatenate

(
Fin

′ × σ
(

Fap; Fmp
)))

(6)

where σ(·) signifies the sigmoid function, Fout represents the output feature map resulting
from channel-wise concatenation, and the linear function Wμ is implemented through a
1 × 1 convolution operation. This convolution operation serves the purpose of reducing
the channel dimensions of the feature map, which aids in the subsequent feature fusion
process.

The double-flow linear pooling enhancement unit integrates shallow and deep features
in a “progressive” manner. It simultaneously feeds the generated contextual information
and the original encoder features into the decoder. In addition to diminishing the semantic
information gap between different pathways, the DLE unit strengthens information ex-
change between the encoder and decoder pathways, leading to enhanced model stability.
Moreover, the features extracted by this unit have a beneficial impact on the localization of
target regions. Furthermore, the deep convolution and pooling operations partially reduce
both the parameter count and computational load.

3.5. Cross-Level Information Interaction

While extracting detailed features of the liver and tumor, shallow a priori knowledge
like organ boundaries and texture is often neglected. To address this concern, we introduced
a cross-level information interaction mechanism based on bidirectional residual connections.
This mechanism enhanced the network’s capability to learn and represent features by
modeling both the encoder and decoder. As depicted by the blue arrows in Figure 6, the
cross-level information interaction mechanism comprised shallow forward residuals and
deep reverse residuals, detailed below.

Figure 6. The structure of the cross-level information interaction mechanism (CII).

Suppose xi ∈ R
H×W×C

denotes the shallow forward residual input originating from
layer i of the encoder, and fi−1 ∈ R

H
2 ×W

2 × C
2 represents the deep reverse residual input

received from layer i − 1 of the decoder.
First, an upsampling operation is conducted on fi−1 to bring its resolution in line

with that of xi for subsequent operations. This upsampling is achieved through bilinear
interpolation.

fi−1
′ = upsample( fi−1) (7)

Then, xi and fi−1
′ are summed element-wise and directed into the DLE unit for feature

extraction. The features obtained are combined with xi and subsequently reduced in
dimensionality using linear mapping to produce the ultimate output yb.

yb =
(
Concatenate

(
DLE

(
xi + fi−1

′), xi
))

G (8)
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where DLE denotes the double-flow linear pooling enhancement unit, and G denotes the
linear mapping function, which is implemented by 1 × 1 convolution.

The cross-level information interaction mechanism, founded on bidirectional residuals,
achieves the fusion of contextual information across various layers. It effectively addresses
the problem of forgetting a priori knowledge during training and expedites feature fusion
within the network, serving as an automatic learning mechanism.

4. Results

4.1. Implementation Details

MDAU-Net was implemented with the Tensorflow2.0 framework, and we used a Tesla
V100 to accelerate the calculations. We employed the Adam optimizer during the training
process, which is widely selected in medical image segmentation tasks. Considering the
computing resources, we set the batch size to eight. The initial learning rate was set to
1 × 10−4, and when the loss did not decrease after two epochs, we updated the next learning
rate to one-tenth of the current one. All experiments and models were trained using the
same parameters.

4.1.1. Dataset

The segmentation datasets used in this paper were Liver Tumour Segmentation (LiTS)
and Segmentation of the Liver Competition 2007 (SLiver07).

LiTS is the public dataset of the MICCAI 2017 Liver Tumor Segmentation Challenge,
which contains 131 training sets and 70 test sets. Both of them contain patients’ contrast-
enhanced 3D abdominal CT scans with a resolution of 512 × 512. The in-plane resolution is
0.55~1.0 mm. The training dataset was labeled by experienced clinicians, but the testing
dataset was not. Nevertheless, due to the large scale of the dataset and the high quality of
the CT scans, it is currently a wildly used dataset in liver and tumor segmentation tasks.

SLiver07 is an earlier dataset that originated from the Segmentation of the Liver
Competition 2007 (SLIVER07). It contains 20 training sets and 10 testing sets, which
comprise clinical CT scans. The size of the images is 512 × 512, with an in-plane resolution
of 0.56~0.8 mm. The training sets are labeled, while the 10 testing sets of CT scans are not,
and both sets only contain liver information.

Since the testing sets of the two datasets were unlabeled, we only used the training
set for all experiments. In detail, we used these two datasets for liver segmentation
experiments, though only LiTS was selected to conduct tumor segmentation, as Sliver07
does not contain tumor information.

4.1.2. Data Preprocessing and Enhancement

For both LiTS and SLiver07, the training sets were further randomly partitioned into
training and test subsets in an 8:2 ratio. This division was instrumental in evaluating the
model’s performance and generalization capacity. During the experimental data prepara-
tion phase, all original CT images underwent adjustment so that the Hounsfield values
(HU values) fell within the range of [−200, 200]. This ensured that the images retained
maximum liver volume while mitigating the noise interference stemming from other organs
and background factors. Subsequently, the images were resampled, and their resolution
was downsized from 512 × 512 to 256 × 256 to reduce computational overhead. Finally,
normalization, slicing, and histogram equalization operations were performed sequentially.

Figure 7 shows some comparison images randomly selected from LiTS before and
after preprocessing, where (1) to (3) are the original CT images without processing, and
(4) to (6) are the images after a series of preprocessing operations. Obviously, the prepro-
cessed images provided clearer boundary contours between abdominal organs, such as
the liver. The contrast with the background was significantly enhanced, accompanied by
more complete local details, which helped the network to capture more adequate feature
information.
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Compared to other semantic segmentation datasets, our dataset was small in size and
originated from a small sample pool, so the data were enhanced by panning and rotating
before the experiment to improve the diversity of the dataset.

Figure 7. Comparison before and after data preprocessing.

4.1.3. Loss Function

During computer-aided diagnosis or clinical processes, achieving high recall is a
critical performance indicator for models. The presence of unbalanced data in medical
datasets makes a network easily fall into the local optimum. This, in turn, adversely impacts
segmentation performance, often leading to a high precision but low recall. In order to
balance the differences between categories among the training samples, Tversky loss was
experimentally selected as the loss function to calculate the similarity between the predicted
labels and the ground truth, with the following equation:

T(α, β) =
∑n

i=1 p0ig0i

∑n
i=1 p0ig0i + α∑n

i=1 p0ig1i + β∑n
i=1 p1ig0i

(9)

where p0i denotes the probability that the ith voxel is a tumor; p1i denotes the probability
that the ith voxel is not a tumor; g0i = 1 denotes a lesion voxel; g0i = 0 denotes a normal
voxel; and g1i the opposite. α and β are two hyperparameters, set to α + β = 1, reducing
the effect of positive and negative sample imbalance on model performance by adjusting
the values of α and β. When α = β = 0.5, Tversky loss [24] simplifies to the Dice coefficient
while equating to the balanced F score (F1 score).

4.1.4. Evaluation Metrics

To evaluate the model performance and generalization ability more objectively and
comprehensively, we selected five evaluation metrics for the experiments:

1. Dice coefficient (Dice)

Dice =
2 × |P ⋂

G|
|P|+ |G| (10)

2. Precision

Pre =
TP

TP + FP
(11)

3. Recall

Recall =
TP

TP + FN
(12)

4. Volumetric overlap error (VOE)

VOE = 1 − P
⋂

G
P

⋃
G

(13)
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5. Relative volume error (RVD)

RVD =
|P| − |G|

|G| (14)

where TP is true positive, indicating that the liver region was correctly segmented; TN is
true negative, which indicates that other organ regions were correctly segmented as the
background; FP is false positive, which means that other organ regions were incorrectly
segmented as the liver; FN is false negative, implying that the liver regions were incorrectly
segmented as the background; P indicates the target pixel of the predicted label; and G
represents the target pixel of the ground truth.

4.2. Loss Function Comparison Experiment

The imbalanced distribution of target and background poses a significant challenge
in the domain of liver and liver tumor segmentation. This imbalance not only diminishes
models’ accuracy and generalization but also tends to favor high precision at the expense
of low recall. To address this issue algorithmically, experiments were conducted to refocus
the model on segmenting challenging samples by rebalancing the class distribution. We
evaluated multiple common binary loss functions in the segmentation field, including Tver-
sky loss, binary cross-entropy loss (BCE loss), Dice loss [25], and focal loss [26], on the LiTS
dataset. The goal was to identify a loss function that was well-suited to our segmentation
task and illustrate how it could alleviate the impact of imbalanced sample distribution on
model performance, showcasing its superiority in enhancing model effectiveness compared
to other loss functions.

The results are presented in Table 1. When the model employed Tversky loss, it
achieved the best performance in Dice, Recall, and VOE, with scores of 0.9433, 0.9451, and
0.1053, respectively. In the case of BCE loss, the RVD exhibited the most favorable effect at
0.0189. However, when focal loss was utilized, the model’s accuracy reached its highest
point at 0.9662, but this came at the cost of a noticeable trade-off between precision and
recall, resulting in a pronounced impact on class distribution. In comparison to the other
three sets of loss functions, Tversky loss stood out with the most substantial optimization
effect on model performance and a superior ability to balance positive and negative samples
within the dataset. The gap between precision and recall steadily narrowed as both metrics
improved, so this was selected as the experimental loss function.

Table 1. Loss function comparison test on LiTS.

Loss Dice Precision Recall VOE RVD

Dice loss 0.9420 0.9490 0.9393 0.1076 0.0205
Focal loss 0.9044 0.9662 0.9116 0.1745 0.1872

Tversky loss 0.9433 0.9515 0.9451 0.1053 0.0383
BCE loss 0.9328 0.9486 0.9396 0.1239 0.0189

Bold text in the table represents the optimal results.

4.3. Validity Experiment of Cross-Level Information Interaction

In MDAU-Net, the cross-level information interaction mechanism, based on bidirec-
tional residual connections, is frequently utilized in conjunction with the double-flow linear
pooling enhancement unit. To demonstrate its effectiveness, we used U-Net with DLE
as the baseline and assessed the segmentation performance by sequentially introducing
residual pathways. We categorized the experiments into four groups. The first group
served as the baseline, while the second and third groups were comparative experiments
involving the addition of reverse and forward residual connections, respectively. The
fourth group combined both forward and reverse residual connections. Table 2 displays the
segmentation results for each group. Notably, performance was weakest when no residual
connections were added. However, the introduction of either forward or reverse residuals
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led to varying degrees of performance improvement, with forward residuals demonstrating
a more substantial positive impact on the network than reverse residuals. When both sets
of residual connections were simultaneously incorporated, all evaluation metrics surpassed
those of the first three groups. Compared to the baseline experiments, improvements of
0.0137, 0.0032, 0.0389, 0.0432, and 0.0313 were observed. Figure 8a presents the radar chart
for this experiment, where the addition of two sets of residuals resulted in the largest cov-
erage area on the coordinate axes, confirming that the cross-level information interaction
mechanism based on bidirectional residual connections effectively mitigated knowledge
forgetting issues and enhanced the network’s learning capabilities.

Table 2. The performance of validity experiments on the LiTS dataset.

Method Dice Precision Recall VOE RVD

Baseline 0.9067 0.9392 0.9019 0.1694 0.0759
Baseline + reverse residual 0.9080 0.9399 0.9054 0.1674 0.0872
Baseline + forward residual 0.9145 0.9403 0.9366 0.1398 0.0478

Baseline + bidirectional residual 0.9204 0.9424 0.9408 0.1262 0.0446

Bold text in the table represents the optimal results.

Figure 8. This image shows the radar chart results from the validity experiment in Section 4.3 and the
ablation experiment in Section 4.4: (a) radar chart of validity experiments, (b) radar chart of ablation
experiments.

4.4. Ablation Results

To evaluate the effectiveness of various modules, we designed eight ablation exper-
iments using the LiTS dataset. We chose U-Net with CII as the baseline to conduct the
experiments. The first set was the baseline experiment. Sets 2 through 4 involved adding
DLE, ResBlock, and CAE, respectively, on the basis of Experiment 1, which we used to
verify the effect of each module on the baseline. Sets 5 to 7 added different combinations
of modules onto the baseline to explore the dependencies among them. To verify the
performance of the proposed method (MDAU-Net), set 8 added all modules to the first set
to conduct training.

The results of the ablation experiments are displayed in Table 3 and Figure 8b. As
depicted in Table 3, in the third set of experiments, the RVD attained a value of 0.0293,
demonstrating that the inclusion of the residual encoder effectively preserved shallow
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features, thereby enhancing accuracy in organ boundary contour segmentation. In the
fourth set of experiments, the Dice coefficient reached a value of 0.9447, indicating that
valuable information was efficiently multiplexed within the cascaded adaptive feature
extraction unit (CAE), resulting in increased similarity between the segmentation results
and the ground truth. The results from other experimental sets showed that the addition
of the ResBlock, CAE module, and DLE module each had a distinct positive impact on
performance. Additionally, the radar plot in Figure 8b illustrates that MDAU-Net (red
contour) achieved comparable Dice and RVD values while exhibiting superior accuracy,
recall, and reduced error between predictions and ground truth.

Table 3. The performance of ablation experiments on LiTS.

Method Dice Precision Recall VOE RVD

Baseline 0.8481 0.8879 0.8745 0.2536 0.2698
Baseline + DLE 0.9204 0.9424 0.9408 0.1262 0.0446

Baseline + ResBlock 0.9375 0.9409 0.9437 0.1161 0.0293
Baseline + CAE 0.9447 0.9422 0.9445 0.1064 0.0339

Baseline + DLE + CAE 0.9371 0.9437 0.9436 0.1062 0.0412
Baseline + DAE + ResBlock 0.9407 0.9425 0.9431 0.1056 0.0395
Baseline + ResBlock + CAE 0.9419 0.9354 0.9443 0.1070 0.0407

MDAU-Net 0.9433 0.9515 0.9451 0.1053 0.0383

Bold text in the table represents the optimal results.

5. Discussion

5.1. Quantitative Analysis of Liver Segmentation

To verify the effectiveness of MDAU-Net, we tested the method on the LiTS and
SLiver07 datasets and compared it with other widely used segmentation methods.

Quantitative Analysis of Liver Segmentation on LiTS. The results of the liver segmenta-
tion on the LiTS dataset are shown in Table 4. The Dice, Precision, Recall, VOE, and RVD of
MDAU-Net were 0.9433, 0.9515, 0.9451, 0.1053, and 0.0383, which were increased by 0.0952,
0.0636, 0.0706, 0.1483, and 0.2159, respectively, compared with the baseline U-Net values.
Meanwhile, MDAU-Net had a significantly better balance between accuracy and recall, and
the performance was outstanding in liver organ segmentation when compared to previous
networks. Figure 9a shows the radar plots of the quantitative analysis of different models
using LiTS. The red line represents MDAU-Net, which has the largest area covered by
metrics on the axes, so that it can be more intuitively observed that its performance was
better than the other comparison models.

Table 4. Liver semantic segmentation results of different models on LiTS.

Method Dice Precision Recall VOE RVD

U-Net 0.8481 0.8879 0.8745 0.2536 0.2698
RU-Net [27] 0.8614 0.8902 0.8807 0.2415 0.2501

ResUNet [28] 0.9220 0.9263 0.9450 0.1427 0.0599
Attention U-net [29] 0.9197 0.9189 0.9236 0.1463 0.0575

UNet++ [10] 0.9106 0.9173 0.9075 0.1591 0.0818
SAR-U-Net [30] 0.9378 0.9504 0.9326 0.1142 0.0736

ResBCU-Net [31] 0.9359 0.9428 0.9302 0.1810 0.0587
RMS-UNet [32] 0.9171 0.9227 0.9157 0.1492 0.0646
MD-UNET [33] 0.9338 0.9433 0.9331 0.1224 0.0604

MDAU-Net (our model) 0.9433 0.9515 0.9451 0.1053 0.0383

Bold text in the table represents the optimal results.

Figure 10 displays the visualized results of the liver segmentation comparison test
in this section. In these figures, the green lines represent the actual labels of the CT
images, while the red lines indicate the prediction results. Additionally, we zoomed
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in on specific areas for easier observation. It can be inferred that due to the relatively
simple structure of the jump connection between ResUNet and SAR-U-Net codecs, there
was ineffective fusion of deep and shallow features, resulting in less precise image detail
processing and a noticeable loss of edge information. Moreover, U-Net and UNet++
exhibited a limited utilization of a priori knowledge, such as shallow features, leading
to difficulties in distinguishing between similar tissues and more prominent instances
of mis-segmentation, where background organs were mistakenly segmented as the liver.
In contrast, the visual segmentation results of MDAU-Net displayed the most complete
segmentation and label curves, effectively fitting both continuous and truncated regions,
with no significant instances of mis-segmentation or over-segmentation in detail processing.

To provide further insights into the test results of each model on the LiTS dataset and
to assess the distinctions between the predictions of different models and the ground-truth
labels, we utilized the confusion matrix. The results are presented in Figure 11, revealing
that U-Net, U-Net++, and ResUNet exhibited difficulties in accurately recognizing the liver
region, often misclassifying it as background. In contrast, MDAU-Net demonstrated a more
balanced discrimination between the liver and background compared to other methods,
with an extremely low probability of mis-segmentation and superior overall segmentation
quality.

Figure 9. This image shows the radar chart results from the liver segmentation in Section 5.1 on
LiTS/Sliver07: (a) radar chart from LiTS, (b) radar chart from Sliver07.

Quantitative Analysis of Liver Segmentation on SLiver07. We opted to retrain MDAU-
Net using the SLiver07 dataset to further assess its model performance. The experimental
outcomes are detailed in Table 5, while Figure 9b presents corresponding radar plots of
the experimental data. As indicated in the table, MDAU-Net achieved evaluation scores
of 0.9706, 0.9743, 0.9757, 0.0569, and −0.0095 for various metrics. These scores represent
improvements of 0.1138, 0.0137, 0.0169, 0.0932, and 0.1524 compared to the baseline U-Net,
and they surpassed the performance of other methods to varying degrees. In the radar plot,
MDAU-Net is depicted by a red outline, clearly demonstrating that it covers a wider area,
indicative of its overall superiority compared to other examined methods.
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Figure 10. Visualization of results of liver segmentation using different methods on LiTS.

Figure 11. Confusion matrix from liver segmentation in Section 5.1 on LiTS.

The visualized segmentation results for this set of experiments are presented in
Figure 12. In these figures, the green lines represent the true labels, while the red lines
depict the predicted results. To highlight the differences in segmentation outcomes, we mag-
nified specific local areas. It is evident that U-Net and UNet++ exhibited more pronounced
instances of mis-segmentation in the liver slices, with significant disparities between the
segmentation results and the real labels in other slices. While ResUNet and SAR-U-Net
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produced improved segmentation results in the liver region compared to the former two
methods, they still missed some detailed information in challenging segmentation areas.
Conversely, MDAU-Net demonstrated the most complete overlap between the segmenta-
tion curves and the real labels, while also processing details such as the liver contour edge
more comprehensively. This resulted in improved segmentation outcomes for liver slices of
varying shapes and sizes compared to other methods.

Table 5. Liver semantic segmentation results for different models on SLiver07.

Method Dice Precision Recall VOE RVD

U-Net 0.8568 0.9606 0.9588 0.1501 0.1619
RU-Net [27] 0.9032 0.9617 0.9546 0.1012 0.0523

ResUNet [28] 0.9697 0.9693 0.9740 0.0591 0.0184
Attention U-net [29] 0.9617 0.9501 0.9749 0.0733 −0.0254

UNet++ [10] 0.9703 0.9696 0.9515 0.0574 −0.0117
SAR-U-Net [30] 0.9655 0.9672 0.9746 0.0664 −0.0184

ResBCU-Net [31] 0.9658 0.9647 0.9723 0.0610 −0.0229
RMS-UNet [32] 0.9673 0.9601 0.9755 0.0591 −0.0238
MD-UNET [33] 0.9679 0.9732 0.9746 0.0601 −0.0162

MDAU-Net (our model) 0.9706 0.9743 0.9757 0.0569 −0.0095

Bold text in the table represents the optimal results.

Figure 12. Visualization of results of liver segmentation using different methods on SLiver07.

Figure 13 presents the confusion matrix illustrating the segmentation results of each
model on the SLiver07 dataset. It is evident that MDAU-Net exhibited a more balanced
segmentation ability for both the liver and background regions, achieving superior segmen-
tation results compared to other methods.

5.2. Quantitative Analysis of Liver Tumor Segmentation

On the LiTS dataset, we conducted a further comparison of MDAU-Net’s performance
in tumor segmentation tasks with other methods, and the results are presented in Table 6.
When combined with the radar plot depicted in Figure 14, it is evident that MDAU-Net
outperformed other methods in terms of Dice, VOE, and RVD, achieving values of 0.8387,
0.2699, and −0.0743, respectively. These values were 0.213, 0.1898, and 0.1929 higher
than those obtained with UNet, indicating an overall superior segmentation performance
compared to the other methods.
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Figure 13. Confusion matrix from liver segmentation in Section 5.1 on SLiver07.

Table 6. Tumor segmentation results of different models on LiTS.

Method Dice Precision Recall VOE RVD

U-Net 0.6257 0.6013 0.6128 0.4597 −0.2672
RU-Net [27] 0.6528 0.6233 0.6657 0.3926 −0.2519

ResUNet [28] 0.8254 0.8027 0.8550 0.2874 −0.0798
Attention U-net [29] 0.6683 0.6620 0.6807 0.3819 −0.0818

UNet++ [10] 0.7397 0.9340 0.7599 0.3995 −0.1930
SAR-U-Net [30] 0.8096 0.8317 0.8101 0.3495 −0.0770

ResBCU-Net [31] 0.6818 0.6243 0.7935 0.4588 −0.2278
RMS-UNet [32] 0.6712 0.6258 0.7829 0.4031 −0.2517
MD-UNET [33] 0.7838 0.7289 0.8593 0.3447 −0.1596

MDAU-Net (our model) 0.8387 0.8211 0.8736 0.2699 −0.0743

Bold text in the table represents the optimal results.

The visualization of the tumor segmentation results is presented in Figure 15. It is
apparent that UNet and UNet++ exhibited insufficient segmentation and diagnostic errors
when dealing with lesions characterized by blurred boundaries and small sizes. On the
other hand, ResUNet and SAR-U-Net faced challenges in distinguishing between similar
tissues, leading to suboptimal segmentation results. In contrast, MDAU-Net excelled in
effectively localizing lesion tissues and accurately segmenting border regions, particularly
for non-contiguous and small-sized lesions, demonstrating significantly improved perfor-
mance. This underscores the effectiveness of the proposed method in addressing the issue
of useful information loss, reducing the semantic gap between different pathways and
achieving segmentation results with clear boundaries between lesion regions and normal
tissues. Consequently, the proposed method holds substantial clinical value.
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The confusion matrix illustrating the results of liver tumor segmentation on the
LiTS dataset is displayed in Figure 16. Overall, all of these models demonstrated a high
level of segmentation accuracy for non-diseased regions. In contrast, the segmentation
results obtained by MDAU-Net were notably superior, with only a very small number
of samples misclassified as non-diseased regions. Consequently, the likelihood of false-
negative segmentation results is minimal, leading to more balanced segmentation outcomes.

Figure 14. This image shows the radar chart results from liver tumor segmentation in Section 5.2
on LiTS.

Figure 15. Visualization of results of liver tumor segmentation using different methods on LiTS.
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Figure 16. Confusion matrix from liver tumor segmentation in Section 5.2 on LiTS.

6. Conclusions

Owing to the exceptional achievements of U-Net in medical image processing, it has
gained widespread adoption in liver and liver tumor segmentation tasks. Nonetheless, its
straightforward network architecture hinders the comprehensive utilization of valuable
features, leading to reduced feature mobility within the network. Moreover, the presence
of a semantic gap impedes the effective fusion of shallow and deep features, consequently
impacting the segmentation performance.

To address these issues, we proposed MDAU-Net, a novel segmentation network.
MDAU-Net introduces a double-flow linear pooling enhancement unit within the jump
connection segment, effectively narrowing the semantic divide and facilitating the fusion of
shallow and deep features at each layer. Additionally, it incorporates a cascaded adaptive
feature extraction unit as a bottleneck layer, which combines attention mechanisms with
dense connectivity to enhance the network’s capacity for exploring deep semantic informa-
tion and improving feature mobility. Furthermore, a cross-level information interaction
mechanism, based on bidirectional residuals, was introduced in the jump connection to
mitigate the problem of a priori knowledge loss during training. Finally, we redesigned
the encoder to incorporate the residual structure, not only enhancing the network’s ability
to retain and extract original features but also mitigating the gradient vanishing problem.
Through experiments conducted on the LiTS and Sliver07 datasets, we confirmed that
MDAU-Net consistently delivered outstanding performance across various datasets. It
excelled not only in accurately segmenting the target region but also in handling intri-
cate details such as edges with remarkable precision, demonstrating strong generalization
capabilities.
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Abstract: Brain tissue segmentation is an important component of the clinical diagnosis of brain
diseases using multi-modal magnetic resonance imaging (MR). Brain tissue segmentation has been
developed by many unsupervised methods in the literature. The most commonly used unsupervised
methods are K-Means, Expectation-Maximization, and Fuzzy Clustering. Fuzzy clustering methods
offer considerable benefits compared with the aforementioned methods as they are capable of
handling brain images that are complex, largely uncertain, and imprecise. However, this approach
suffers from the intrinsic noise and intensity inhomogeneity (IIH) in the data resulting from the
acquisition process. To resolve these issues, we propose a fuzzy consensus clustering algorithm that
defines a membership function resulting from a voting schema to cluster the pixels. In particular,
we first pre-process the MRI data and employ several segmentation techniques based on traditional
fuzzy sets and intuitionistic sets. Then, we adopted a voting schema to fuse the results of the
applied clustering methods. Finally, to evaluate the proposed method, we used the well-known
performance measures (boundary measure, overlap measure, and volume measure) on two publicly
available datasets (OASIS and IBSR18). The experimental results show the superior performance of
the proposed method in comparison with the recent state of the art. The performance of the proposed
method is also presented using a real-world Autism Spectrum Disorder Detection problem with
better accuracy compared to other existing methods.

Keywords: brain tissue segmentation; consensus clustering; segmentation; magnetic resonance image

1. Introduction

Segmenting brain tissue is the process of subdividing the image of the brain into major
components such as Cerebrospinal Fluid (CSF), Gray Matter (GM), and White Matter (WM).
The step of brain tissue segmentation is fundamental in diagnosing and monitoring a wide
range of neurological diseases. Several researchers have strived to develop automatic brain
tissue segmentation in the last two decades [1–4].

Brain tissue segmentation has been developed by many unsupervised methods in
the literature. The most commonly used unsupervised methods are: K-Means [5–7],
Expectation-Maximization [8], and Fuzzy Clustering [9,10]. Fuzzy clustering methods offer
considerable benefits compared with the aforementioned methods as they are capable of
handling brain images that are complex, largely uncertain, and imprecise.

Even thoug, traditional Fuzzy C-Means (FCM) showcases outstanding results on brain
image segmentation, it has some limitation such as being sensitive to noise due to the use
of the Euclidean distance metric and neighbourhood information ignorance. The FCM
computes the distance between cluster center and voxels using a Euclidean distance mea-
sure. Euclidean distance is very sensitive to noise which results in the deterioration of
segmentation results. In the literature, we found many variants of FCM methods that
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are developed to address the aforementioned shortcomings. To address the noise sensi-
tivity, researchers added the spatial information into the FCM objective function [11,12].
The addition of a spatial function to an objective function helps to reduce the impact of
noise and also helps to enhance performance. The spatial information may be local or
global [13]. On the other hand, to address the limitations of Euclidean distance, many
researchers developed a kernel version of FCM and named it Kernel FCM (KFCM) [14,15].
KFCM adopts kernel function as a distance measure. The kernel function transfers the
input data to higher dimensional kernel space and makes the clustering task easier. The
aforementioned FCM variant methods are based on a traditional fuzzy set. In a fuzzy set,
the non-membership value is always the complement of the membership value. However,
in real time, this assumption fails due to hesitation. The hesitation arises due to uncertainty
in defining the membership function. To handle this hesitation, Atanassov [16] developed
an advanced fuzzy set called Intuitionistic Fuzzy Set (IFS). In IFS, the non-membership
value is computed using the fuzzy complement generator functions. In recent times, re-
searchers have given more attention in developing IFS-based clustering methods [17–20].
Chaira [18] developed an Intuitionistic Fuzzy C-Means (IFCM) where the intuitionistic
fuzzy entropy is added to the conventional FCM objective function. The intuitionistic fuzzy
set handles the uncertainty which originates while defining a membership function by
considering the hesitation degree. To handle noise and uncertainty during segmentation,
Verma et al. [21] considered both the pixel and local neighborhood information. The main
benefit of this method is that it is non-parametric.

Recently, researchers have come to realize that a single clustering method might fail
to produce good results with complex data. Hence, they are concentrating on develop-
ing consensus clustering methods [22,23]. Consensus clustering is also known as cluster
ensemble, and its main aim is to find a single partition of data with overlapping clusters.
In the literature, it has been widely agreed that consensus clustering can generate robust
results [24–27]. Motivated by the advantages of consensus clustering, in this paper we are
proposing a brain tissue segmentation method based on consensus clustering. The pro-
posed method consists of two steps: Pre-processing and Segmentation. In pre-processing,
the brain images are pre-processed by employing registration, skull stripping, and bias
field correction. In the segmentation step, initially the brain images are segmented using
four different clustering methods. The two clustering methods are based on a traditional
fuzzy set and the other two are based on an intuitionistic set. In the traditional fuzzy set
category, Robust Spatial Kernel FCM (RSKFCM) [28] and Generalized Spatial Kernel FCM
(GSKFCM) [29] are employed. On the other hand, in the intuitionistic fuzzy set category,
two variants of Modified Intuitionistic Fuzzy C-Means [20] are employed. Furthermore,
the results of four individual clustering methods are combined using a voting schema.
The proposed approach is evaluated on two publicly available MRI datasets: OASIS and
IBSR18 Dataset, and the results are compared using the results with state-of-art methods.
The primary contributions of this paper are as follows:

• Proposed a consensus clustering method for MRI brain tissue segmentation.
• The results of four variants of fuzzy clustering methods are combined to achieve better

results.
• To check the efficacy of the proposed method, we conducted experiments on two

standard brain segmentation datasets.

The remainder of the paper is as follows: Section 2 presents the methodology of the
proposed method. We then introduce the datasets and the evaluation metrics alongside
the implementation details and discussions on the performance of the proposed method in
Section 3. Finally, the conclusion of the paper is presented in Section 4.

2. Methodology

This section presets the methodology of the proposed method. The proposed consen-
sus clustering method comprises two steps: Pre-procesing and Segmentation.
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2.1. Pre-Processing

We perform three pre-processing steps, namely Registration, Bias Field correction, and
Skull Stripping. Registration is the process of spatially aligning two or more images of the
same content taken from a different view and/or at a different time, and alignment of the
multi-modal image of the same patient is required. Bias Field refers to a low-frequency
signal which corrupts the MRI images due to inhomogeneities in the magnetic field of
the MRI machines. Bias field leads to intensity inhomogeneity, and in turn, it affects the
segmentation accuracy. Hence, the bias field needs to be corrected before performing
the segmentation. Skull Stripping is the process of removing non-brain tissues such as
fat, skull, and neck. These non-brain tissues have an intensity that overlaps with the
intensity of the other brain tissues. Thus, the brain tissues have to be extracted before the
brain segmentation. There are many skull stripping methods such as Brain Extraction Tool
(BET) [30], Brain Surface Extraction (BSE) [31], AFNI (“Analysis of Functional NeuroImages”
(AFNI) software package publicly available at https://afni.nimh.nih.gov/ (accessed on 19
April 2022)), BridgeBurner [32], GCUT [33], and ROBEX [34]. Among all these methods,
ROBEX provides significantly improved performance [34].

All the aforementioned steps are optional and depend on the image data used for
the study. Hence, in this paper, different pre-processing steps are performed for differ-
ent datasets. The pre-processed brain images are segmented using consensus clustering.
The following subsection presents a detailed description regarding segmentation.

2.2. Segmentation

The proposed consensus clustering method consists of a combination of traditional
fuzzy sets and intuitionistic sets to not only increase the robustness of the noise but also
use the neighborhood information when forming the clusters. To do so, we use the Robust
Spatial Kernel FCM (RSKFCM) [28] and Generalized Spatial Kernel FCM (GSKFCM) [29]
methods alongside the two variants of the Modified Intuitionistic Fuzzy C-Means [20]
technique. Finally, we fuse the results of the clustering methods using a voting schema.
The next subsections explain the employed clustering methods and the voting schema
in detail.

2.2.1. Robust Spatial Kernel FCM (RSKFCM)

Robust Spatial Kernel Fuzzy C-Means (RSKFCM) [28] is the variant of conventional
Fuzzy C-Means (FCM). RSKFCM addresses the noise sensitivity and neighborhood in-
formation ignorance limitations of FCM. RSKFCM injects the neighborhood information
into the FCM objective function and uses the Gaussian Kernel function instead of the
Euclidean metric.

The main aim of the RSKFCM is to minimize the objective function shown in Equation (1)

J =
c

∑
i=1

n

∑
j=1

wm
ij ‖Φ(xj)− Φ(vi)‖2 (1)

where c is the number of clusters, n is the number of voxels, m is a fuzzifier value, which
controls the fuzziness of the resulting partition, wij is the RSKFCM membership degree
of xj in ith cluster, vi is the ith cluster center, and Φ is an implicit nonlinear map which is
computed as:

‖Φ(xj)− Φ(vi)‖2 = K(xj, xj) + K(vj, vj)− 2K(xj, vi) (2)

where K is the inner product of kernel function, i.e., K(x, y) = Φ(x)TΦ(y). In this paper,
we have adopted the Gaussian kernel function which is defined as:

K(x, y) = exp
(
−‖x − y‖2/

σ2

)
(3)
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In Gaussian kernel, K(x, x) = 1 and K(v, v) = 1, hence the kernel function becomes:

‖Φ(xj)− Φ(vi)‖2 = 2(1 − K(xj, vi)) (4)

Substituting Equation (4) in Equation (1), the objective function becomes:

J = 2
c

∑
i=1

n

∑
j=1

wm
ij (1 − K(xj, vi)) (5)

The RSKFCM membership function wij is the combination of the kernel membership
function uij, and the neighbourhood function sij and it is computed as.

wij =
up

ijs
q
ij

c
∑

k=1
up

kjs
q
kj

(6)

where p and q are parameters to control the relative importance of the kernel membership
and the neighbourhood membership functions.

The kernel and neighbourhood membership functions are computed using
Equations (7) and (8)

uij =

(
1 − K

(
xj, vi

))−1/(m−1)

c
∑

k=1

(
1 − K

(
xj, vk

))−1/(m−1)
; (7)

sij = ∑
k∈Nk(xj)

uik (8)

where Nk(xj) represents neighbourhood voxels of xj. This neighbourhood function repre-
sents the probability that the voxel xj belongs to the ith cluster.

Similar to FCM, RSKFCM also works in an iterative process to update the membership
and cluster center values. The cluster centers are updated using Equation (9)

vi =

n
∑

j=1
wm

ij K(xj, vi)xj

n
∑

j=1
wm

ij K(xj, vi)
(9)

RSKFCM is an iterative process, and it stops when the stopping criteria is satisfied,
i.e., the difference of successive iteration’s objective function value is less than the user-
specified stopping criteria value.

2.2.2. Generalized Spatial Kernel FCM (GSKFCM)

The generalized Spatial Kernel FCM (GSKFCM) [29] is another variant of the conven-
tional FCM. Even though RSKFCM overcomes the limitations of the FCM, the performance
is not good because it injects neighborhood information only into the objective function.
However, the distance function plays a vital role in computing the membership value. Thus,
the addition of neighborhood information can increase the performance. The RSKFCM
also assumes all features have equal importance. However, in a real-world problem, all the
features may not be equally important. GSKFCM overcomes these limitations by injecting
the weighted neighbourhood information into the distance function and employing the
Gaussian kernel as the distance metric.
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The aim of the GSKFCM is to minimize the objective function shown in Equation (10).

J = 2
c

∑
i=1

n

∑
j=1

zm
ij d2

new
(
xj, vi

)
(10)

where zij is the GSKFCM membership function, and it is computed as:

zij =
1

c
∑

k=1

(
d2

new(xj ,vi)
d2

new(xj ,vk)

) 1
(m−1)

(11)

where dnew is the GSKFCM distance function which incorporates the neighbourhood
function into the distance function, and it is computed as:

d2
new

(
xj, vi

)
= d2(xj, vi

)
f
(

pij
)

(12)

where, d2(xj, vi
)

is the Gaussian Kernel distance function shown in Equation (4), and
f (pij) =

1
pij

is the neighbourhood function.
The GSKFCM considers the neighbourhood information and computes the mem-

bership value associated with each voxel as the weighted sum of the traditional FCM
membership value and the membership value of the Nk neighbour points. The neighbour-
hood function (pij) is defined as:

pij =
Nk

∑
k=0

h
(
xj, xk

)
g(uik) (13)

where Nk is the number of neighbourhood voxels, g(uik) = uik is the membership function
(Equation (7)), h(xj, xk) is the distance function which is computed as:

h
(
xj, xk

)
=

(
Nk

∑
l=0

d2(xj, xk
)

d2
(
xj, xl

)
)−1

(14)

Substituting Equation (14) in Equation (13), the neighbourhood function becomes:

pij =
Nk

∑
k=0

g(uik)

(
Nk

∑
l=0

d2(xj, xk
)

d2
(
xj, xl

)
)−1

(15)

Substituting Equation (12) in Equation (11), the membership function zij becomes,

zij =

⎛
⎜⎝ c

∑
k=1

⎛
⎝ d2(xj, vi

)
f
(

pij
)
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(
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(16)

=
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where

(
c
∑

k=1

(
d2(xj ,vi)
d2(xj ,vk)

) 1
m−1

)−1

= uij. Then the membership function zij becomes

zij =
uij f

1
1−m

(
pij

)
c
∑

k=1
ujk f

1
1−m

(
pjk

) (18)

Similar to FCM and RSKFCM, GSKFCM operates as an iterative process by updating
membership and cluster center value. The cluster centers are updated using Equation (19)

vi =

n
∑

j=1
zm

ij K
(
xj, vi

)
xj

n
∑

j=1
zm

ij K
(
xj, vi

) (19)

GSKFCM decides the label based on the maximum membership value.

2.2.3. Modified Intuitionistic Fuzzy C-Means (MIFCM)

Modified Intuitionistic Fuzzy C-Means (MIFCM) [20] is the variant of the conventional
Intuitionistic Fuzzy C-Means (IFCM) [18], and it is based on an intuitionistic fuzzy set.
In MIFCM, the input data is clustered by optimizing the following objective function shown
in Equation (20)

J =
n

∑
j=1

c

∑
i=1

βm
ij dH(xj, vi) (20)

where xj represents jth voxel, vi refers to ith cluster center, m refers to the fuzzification
value, βij refers to the MIFCM membership value of jth voxel to ith cluster, and dH(xj, vi)
is the modified Hausdorff distance between jth voxel to ith cluster center.

Similar to Fuzzy C-Means, MIFCM optimizes the objective function iteratively by
updating the membership and cluster centers. The MIFCM membership value is updated
using equation

βij = μij + πij (21)

where μij is the membership value and πij is the hesitation value. The membership value
μij is computed as follows:

μij =
1

c
∑

k=1

(
dH(xj ,vi)
dH(xj ,vk)

) 2
m−1

(22)

The hesitation value πij is the combination of the membership and the non-membership
value, and it is computed as:

πij = 1 − μij − ηij (23)

where ηij is the non-membership value. To compute the non- membership value, Sugeno’s
and Yager’s intuitionistic fuzzy complement generators are used and the value is computed
using Equations (24) and (25), respectively.

ηij =
1 − μij

1 + αμij
(24)

ηij = (1 − (μij)
α)

1
α (25)

where α > 0 is constant.
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In this paper, we employed both Sugeno’s and Yager’s complement generators.
MIFCM using Sugeno’s function is named MIFCM_S and similarly MIFCM using Yager’s
function is named MIFCM_Y. Furthermore, cluster centers are updated using Equation (26).

vi =

n
∑

j=1
βm

ij xj

n
∑

j=1
βm

ij

(26)

MIFCM is an iterative process, and it stops when the convergence criteria are satisfied
(i.e., the difference between the objective function value of successive iterations is less than
the user-specified stopping criteria value).

2.2.4. Consensus Clustering Using Voting Schema

In this section, the segmentation results are combined using voting schema. Let n be
the number of voxels presented X = {x1, x2, x3, . . . . . . , xn} and t be the set of clustering
algorithms considered for clustering the n voxels, i.e., Π = {π1, π2., , , , πt}. Each clustering
algorithm πi maps xi to c clusters. The problem of consensus clustering is to find a new
π∗ that best summarizes the clustering ensemble. In the proposed work, the input
brain images voxels are segmented using the above-discussed four clustering algorithms.
After convergence of each algorithm, each voxel is assigned to its corresponding cluster
based on the membership value. Let U1, U2, U3, and U4 represent the membership matrix
of RSKFCM, GSKFCM, MIFCM_S, and MIFCM_Y, respectively. From these membership
matrices, a label for each pixel is computed. The pixel xj is assigned a label of a cluster
for which it has maximum membership value. Let P1, P2, P3, and P4 be the label matrix
created for RSKFCM, GSKFCM, MIFCM_S, and MIFCM_Y, respectively. From these label
matrices, consensus results are produced using a voting method. The pixel xj is assigned

to a cluster based on the maximum number of cluster labels, i.e., label = argmaxi

(
P(i)
(l)

)
,

where l = {1, 2, 3, 4} and 1 ≤ i ≤ c. Algorithm 1 presents the individual steps involved in
the proposed method.

Algorithm 1: Consensus Clustering using voting scheme
Data: Input image X = {x1, . . . , xj, . . . , xn}, Stopping criteria (ε), m, number of

clusters C
Result: Segmentation results, Cluster centers

1 Obtain membership matrix for each clustering algorithm
2 Construct label matrix for each algorithm i.e P1, P2, P3 and P4
3 The pixel xj is assigned to a cluster based on maximum number of cluster label,

i.e., label = argmaxi

(
P(i)
(l)

)
, where l = {1, 2, 3, 4} and 1 ≤ i ≤ c.

4 Update the cluster centers by considering new cluster assignments

3. Experimental Results

This section presents the dataset used for experimentation, the metrics used to evaluate
the proposed method, and the experimental setup followed by results and discussion.

3.1. Datasets

To assess the proposed method, we carried out experiments on two publicly available
standard datasets.

3.1.1. OASIS

The Open Access Series of Imaging Studies (OASIS), is a publicly available standard
MRI dataset (See the “Open Access Series of Imaging Studies” (OASIS) project’s web site at
https://www.oasis-brains.org/ (accessed on 19 April 2022)). This dataset consists of 416
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cross-sectional data from subjects aged between 18 and 96. The images in the dataset are of
1.25 mm thickness and of 256 × 256 × 128 resolution.

3.1.2. IBSR18

The Internet Brain Segmentation Repository (IBSR18) (See the “Internet Brain Segmenta-
tion Repository” (IBSR) project’s web site at https://www.nitrc.org/projects/ibsr/ (accessed
on 19 April 2022)) was created by the Center for Morphometic Analysis at the Massachusetts
General Hospital. IBSR18 contains 18 T1 weighted MR brain images and their corresponding
segmentation ground truth images. The images have 1.55 mm thickness with a resolution
of 256 × 256 × 128. All the images are bias field corrected using the Autoseg method de-
veloped by the University of North Carolina at Chapel Hill (See the “AutoSeg” repository
https://www.nitrc.org/projects/autoseg/ (accessed on 19 April 2022)).

3.2. Evaluation Metrics

Usually, the segmentation results are evaluated for CSF, GM, and WM tissues using
the following three evaluation metrics: overlap measure, boundary measure, and volume
measure. In this paper, we evaluate our proposed method using all three measures.

Dice similarity Coefficient (DC): Dice similarity coefficient [35] is used to estimate the
spatial overlap between the ground truth and the segmentation results, using the following
equation.

DC =
2 ∗ |Seg_Im ∩ GT_Im|
|Seg_Im|+ |GT_Im| (27)

where Seg_Im is the segmentation result of the proposed method, and GT_Im is the ground
truth. Higher DC represents more accurate segmentation.

Hausdorff Distance (HD): The Hausdorff distance [36] is used as the boundary mea-
sure, and it is calculated between the ground truth points ϕ and the segmented points ϕ̂
using the following equation:

HD = max
ϕ̂∈Seg_Im

min
ϕ∈GT_Im

|ϕ̂ − ϕ| (28)

The original Hausdorff distance is affected by outliers [37]. Thus, to reduce the influ-
ence of outliers, we used the 95th percentile of the Hausdorff distance. In the following,
therefore, HD refers to the 95th percentile of the Hausdorff distance, and lower HD repre-
sents a more accurate result.

Absolute Volume Difference (AVD): Absolute Volume Difference is a volume measure
used to compute volume difference between the ground truth and the obtained results. It
is computed as follows:

AVD =
|Seg_Im| − |GT_Im|

|GT_Im| (29)

Lower AVD indicates a more accurate segmentation.

3.3. Experimental Setup

In this paper, we set the fuzzifier m value as two, stopping criterion ε to 0.0001, and
initialized cluster centers randomly. We used voxel intensity as a feature. We let the window
size Nk vary in {3, 5, 7}. From the experiments, it is found that when K = 3, performance is
better. Therefore, we set K = 3 in all the experiments. In addition, to set the value of α, we
varied α from 0.1 to 1. From the experiments, it is found that when α = 0.9 performance
is better, and this value was used in all the experiments. To assess the performance of the
proposed method, we used 10-fold cross validation. The proposed model was implemented
and experimented in MatLab 2016a.
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3.4. Results

This section presents the results on the OASIS and IBSR18 datasets. The performance
of the proposed method is compared with state-of-the-art methods. In addition, the per-
formance is also compared with the latest version of standard brain segmentation tools
such as FSL[38], SPM12 [39] and FreeSurfer [40]. The following methods are considered for
comparison:

• HMRF-EM [8]: This method combines hidden Markov random field (HMRF) with an
EM algorithm for MRI image segmentation. The main advantage of this method is
it derives how the spatial information is encoded through the mutual influences of
neighboring sites.

• FAST-PVE [41]: This method uses Markov random field(MRF) for brain tissue seg-
mentation. To increase the speed, this method uses fast iterated conditional modes to
solve MRFs.

• MSSEG [42]: This method deal with images in the presence of WM lesions. This
approach integrates a robust partial volume tissue segmentation with WM outlier
rejection and filling, combining intensity and probabilistic and morphological prior
maps.

• R-FCM [43]: This method models the intensity inhomogeneities as a gain field that
causes image intensities to smoothly and slowly vary through the image space. It
iteratively adapts to the intensity inhomogeneities and is completely automated.

• SFCM [44]: This method generalizes the objective function of a conventional FCM by
incorporating a spatial penalty on the membership function.

• FANTASM [45]: This method is the extension of an adaptive FCM. In this method,
an additional constraint is placed on the membership functions that force them to be
spatially smooth.

• PVC [31]: This method uses a partial volume model for MRI brain tissue segmenta-
tion. First, it classifies nonbrain tissue using a combination of anisotropic diffusion
filtering, edge detection, and mathematical morphology. Further, the local estimates
are computed by fitting a partial volume tissue measurement model to histograms of
neighborhoods about each estimate point. Voxels in the intensity-normalized image
are then classified into six tissue types using a maximum a posteriori classifier.

• SPM5 [46]: This method is based on a mixture of Gaussians. In addition, it is extended
to incorporate a smooth intensity variation and nonlinear registration with tissue
probability maps.

• GAMIXTURE [47]: This method employs finite mixture models (FMMs) for brain
tissue segmentation. To deal with FMM complex optimization, this method employs a
global optimization algorithm that uses blended crossover and a new permutation
operator.

• ANN [48]: This method is based on a self-organizing map (SOM). Initially, the feature
vector is extracted from the intensity of the pixel and its n nearest neighbors. Further,
to improve the robustness, statistical transformation is applied to the extracted feature
vector. Finally, each pixel is classified using SOM.

• KNN [49]: This method uses K-NN for brain tissue segmentation.
• BrainSuit09 [50]: This is an automatic brain image analysis tool. The tool provides a

sequence of low-level operations in a single package that can produce accurate brain
segmentation in clinical time.

• SVPASEG [51]: This method uses local image models for brain tissue segmentation.
This model combines the local models for tissue intensities and Markov Random
Field (MRF) into a global probabilistic image model. Finally, the parameters for the
local intensity models are obtained without supervision by maximizing the weighted
likelihood of a certain finite mixture model.

• EGC-SOM [52]: This method uses self-organizing maps (SOM) for brain tissue seg-
mentation. Initially, first- and second-order features are extracted using overlapping
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windows. Further, evolutionary computing is used for feature selection. Finally, map
units are grouped using SOM.

• RF-CRF [53]: This method uses a conditional random field with a random forest for
brain tissue segmentation. This method uses intensities, gradients, probability maps,
and locations as features.

3.4.1. Results on OASIS Dataset

The OASIS dataset contains the images which are already skull stripped. Bias field
correction was performed using the ROBEX tool [34]. Figure 1 shows the qualitative
segmentation results obtained using the proposed method. We compared the results of
the proposed method with the three state-of-the-art methods, i.e., HMRF-EM [8], FAST-
PVE [41], and MSSEG [42]. All three methods’ codes are available on the authors’ websites.
The comparison of their results is presented in Table 1. We notice that the proposed
model has better performance with regard to CSF, GM, and WM when compared to the
other methods.

Figure 1. Segmentation results on OASIS dataset: first column, original image; second column,
ground truth; and third column, segmentation result fused on ground truth.

Table 1. Results comparison with state-of-the-art methods on OASIS dataset (Mean ± std).

Method
CSF GM WM

DC HD AVD DC HD AVD DC HD AVD

HMRF-EM [8] 61.47 ± 2.32 7.17 ± 1.62 12.51 ± 8.57 79.65 ± 4.26 5.14 ± 1.62 4.11 ± 8.04 83.82 ± 4.02 5.09 ± 1.31 3.33 ± 8.64
FAST-PVE [41] 54.08 ± 3.61 7.17 ± 1.51 12.51 ± 7.28 78.97 ± 2.24 5.14 ± 0.92 4.11 ± 6.34 85.11 ± 2.61 5.09 ± 1.11 3.33 ± 6.24

FSL [38] 79.72 ± 3.64 4.78 ± 1.92 9.36 ± 5.32 87.84 ± 2.37 5.33 ± 0.81 5.37 ± 6.57 88.51 ± 2.31 5.13 ± 1.34 8.18 ± 4.95
SPM12 [39] 80.46 ± 4.02 6.71 ± 2.01 20.77 ± 6.04 89.52 ± 1.52 3.91 ± 0.76 3.67 ± 4.82 88.11 ± 2.42 4.54 ± 0.95 2.7 ± 5.24

FreeSurfer [40] 84.33 ± 3.96 4.4 ± 2.04 4.33 ± 4.06 91.47 ± 2.44 4.18 ± 0.59 2.63 ± 4.91 90.48 ± 1.31 3.8 ± 0.59 2.77 ± 5.64
MSSEG [42] 89.95 ± 1.62 4.18 ± 1.62 4.71 ± 1.62 91.24 ± 1.62 4.31 ± 1.62 2.87 ± 1.62 89.58 ± 1.62 4.39 ± 1.62 2.91 ± 1.62

RSKFCM [28] 90.06 ± 2.79 4.06 ± 1.61 4.31 ± 4.52 92.31 ± 2.61 4.21 ± 0.46 2.31 ± 3.42 90.51 ± 1.52 4.31 ± 0.42 2.81 ± 5.29
GSKFCM [29] 91.23 ± 2.82 4.08 ± 1.53 4.28 ± 3.26 92.51 ± 2.32 4.13 ± 0.42 2.11 ± 3.61 90.62 ± 1.61 4.28 ± 0.68 2.71 ± 5.41
MIFCM_S [20] 89.21 ± 3.02 4.23 ± 1.42 4.51 ± 3.14 89.81 ± 2.41 4.41 ± 0.31 2.97 ± 3.59 87.28 ± 1.71 4.59 ± 0.82 3.01 ± 5.16
MIFCM_Y [20] 92.65 ± 3.06 3.96 ± 1.46 3.91 ± 3.02 93.64 ± 2.51 4.23 ± 0.32 2.16 ± 3.42 92.61 ± 1.68 4.31 ± 0.84 2.17 ± 5.24

Proposed Method (consensus clustering) 93.64 ± 2.15 3.16 ± 1.31 3.85 ± 2.06 94.71 ± 2.30 4.01 ± 0.21 2.06 ± 2.96 93.17 ± 1.32 4.26 ± 0.81 2.07 ± 4.21

3.4.2. Results on IBSR18 Dataset

The images in the IBSR18 are already bias field corrected. Hence, we have not applied
any bias field correction technique. We conducted the experiments by removing the skull
using a ground truth mask. Figure 2 shows the qualitative segmentation results obtained
using the proposed method. The main limitation of the IBSR18 dataset is that it considers
sulcal CSF as GM. The authors in [54] compared 10 existing methods without considering
the sulcal CSF. Following [55,56], in our study we did not removed the sulcal CSF. We
have compared the results of the proposed method with state-of-the-art methods. As all
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the considered methods have used DC alone as an evaluation metric, Table 2 shows the
results only on the DC of the IBSR18 dataset. From this comparison, it is clear that the
proposed model has better performance concerning CSF, GM, and WM when compared to
the other methods.

Figure 2. Segmentation results on IBSR18 dataset: first column, original image; second column,
ground truth; and third column, segmentation result fused on ground truth.

Table 2. Result comparison with state-of-the-art methods on IBSR18 dataset only in terms of DC.

Method
GM WM CSF

mean std mean std mean std

R-FCM [43] 65.00 0.05 75.00 0.05 NA NA
NL-FCM [43] 72.00 0.05 74.00 0.05 NA NA

FCM [43] 74.00 0.05 72.00 0.05 NA NA
HMRF-EM [8] 74.60 0.04 89.60 0.02 12.60 0.05

SFCM [44] 70.60 0.06 86.60 0.03 16.60 0.07
FANTASM [45] 71.60 0.06 88.60 0.03 11.60 0.06

PVC [31] 70.60 0.08 83.60 0.07 13.60 0.06
SPM5 [46] 68.60 0.07 86.60 0.02 10.60 0.05

GAMIXTURE [47] 78.60 0.08 87.60 0.02 15.60 0.09
ANN [48] 70.60 0.07 87.60 0.03 11.60 0.06
KNN [49] 79.60 0.03 86.60 0.03 16.60 0.07

BrainSuit09 [50] 72.00 0.09 83.00 0.08 NA NA
SVPASEG [51] 81.60 0.03 88.60 0.02 16.60 0.07

SPM8 [39] 81.60 0.02 88.60 0.01 17.60 0.08
EGC-SOM [52] 73.00 0.05 76.00 0.04 NA NA
HFS-SOM [52] 60.00 0.09 60.00 0.08 NA NA
FAST-PVE [41] 78.00 0.08 86.00 0.04 NA NA

FAST-PVE(S-ICM) [41] 78.00 0.08 86.00 0.04 NA NA
RF-CRF [53] 96.10 0.01 92.00 0.02 92.00 0.03
RF-CRF1 [53] 94.00 0.01 89.00 0.02 88.00 0.03

FSL [38] 78.13 0.04 85.94 0.13 75.02 0.04
FreeSurfer [40] 79.62 0.06 86.17 0.12 76.42 0.06

SPM12 [39] 82.30 0.04 89.82 0.02 78.62 0.14
RSKFCM [28] 96.68 0.09 93.55 0.10 93.41 0.08
GSKFCM [29] 96.72 0.03 93.58 0.02 93.43 0.02
MIFCM_S [20] 96.74 0.41 93.62 0.43 93.86 0.71
MIFCM_Y [20] 96.82 0.15 93.64 0.15 94.02 0.15

Proposed Method (consensus clustering) 97.31 0.01 94.50 0.04 95.68 0.02

3.5. Autism Spectrum Disorder Detection Using Proposed Method

Additionally, the proposed consensus clustering method has been evaluated on a
practical autism spectrum disorder (ASD) detection problem. We used publicly available
Autism Brain Imaging Data Exchange (ABIDE) data for this study. The ABIDE dataset
contains 1112 subjects, 571 of them normal, and 531 of them with Autism Spectrum Dis-
orders. We used 1054 of the 1112 subjects for this study, and the rest were rejected for
improper segmentation using voxel-based morphometry (VBM). In this study, we employ
a feature extraction method based on the VBM [57]. VBM is a fast and automatic method
for determining the difference in gray matter structure between normal and and ASD
patient brains [58]. In our VBM analysis, unified segmentation, smoothing, and statistical
analysis were performed as preprocessing steps. In the unified segmentation step, tissue
segmentation, bias correction, and image registration were combined in a single generative
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model [46]. The segmented and registered gray matter images were then smoothed by
convolving with an isotropic Gaussian kernel. Here, a 10 mm full-width at half-maximum
kernel was employed. A two-sample t-test was performed on the smoothed images, and
gray matter volume was used as the covariate. This VBM analysis revealed significant
gray matter volume increases in the normal persons in comparison with the ASD patients.
The voxel location of significant regions were used as a mask. All segmented gray matter
images were used to extract gray matter tissue probability values using a mask. A total
of 989 features were obtained. and these were used as an input to the proposed method.
Table 3 presents the performance comparison for Autism Spectrum Disorder Detection.
The results of the proposed method are compared with traditional K-Means and variants
of FCM methods. It is observed in Table 3 that the proposed method outperforms other
methods.

Table 3. Performance comparison for Autism Spectrum Disorder Detection.

Method Accuracy Precision Recall

K-Means 52.28 ± 2.35 0.531 ± 0.098 0.542 ± 0.077
FCM 52.36 ± 2.05 0.534 ± 0.081 0.546 ± 0.079

RSKFCM [28] 54.06 ± 1.21 0.548 ± 0.074 0.556 ± 0.068
GSKFCM [29] 54.61 ± 1.61 0.550 ± 0.061 0.557 ± 0.073
MIFCM_S [20] 55.08 ± 1.34 0.551 ± 0.067 0.559 ± 0.085
MIFCM_Y [20] 55.18 ± 1.27 0.556 ± 0.058 0.560 ± 0.054

Proposed Method (consensus clustering) 56.84 ± 1.09 0.565 ± 0.047 0.570 ± 0.049

3.6. Discussion

Brain images are very complex, largely uncertain, and imprecise. The fuzzy clustering
based methods are capable of handling the aforementioned challenges.In this paper, we
have combined the results from four variants of FCM clustering methods. The RSKFCM
and GSKFCM are proven to be less sensitive to noise due to the use of kernel distance and
the addition of neighborhood information. The MIFCM_S and MIFCM_Y are based on an
intuitionistic fuzzy set which considers non-membership value along with membership
value. Thus, in comparison to RSKFCM and GSKFCM, MIFCM methods handled the
uncertainty better and achieved better results. Since we combined the advantages of all
four clustering methods, our proposed consensus clustering method achieved better results
compared to state-of-the-art methods.

On the OASIS dataset, the proposed method outperforms other methods in com-
parison. The OASIS dataset contains skull stripped T1 weighted MRI images. The main
challenge in the OASIS dataset is the presence of WM lesions. The presence of WM lesions
affects the overall segmentation accuracy of the proposed method. On the IBSR18 dataset,
the proposed method outperforms all other methods in comparison. The images in the
IBSR18 dataset are affected by acquisition artifacts which have direct impact on the WM
tissue segmentation. On the other hand, lack of sulcal CSF labelling in the ground truth
affects the GM and the CSF tissue segmentation results. Additionally, the proposed consen-
sus clustering method has been evaluated on a practical autism spectrum disorder (ASD)
detection problem. The proposed method outperforms other clustering algorithms. Even
though the proposed consensus clustering algorithm is capable of handling noise and can
exploit the spatial information in the image, it fails to capture the variations within the
neighbourhood voxels. In addition, the time complexity of the proposed algorithm is more
compared to individual clustering algorithms.

4. Conclusions

In this paper, a new approach for MRI Brain tissue segmentation is presented. The
proposed method is based on the consensus clustering method. In consensus clustering,
the results of four variants of fuzzy clustering methods are combined to achieve better
results. The results of the proposed methods are evaluated using three performance metrics,
i.e., DC, HD, and AVD. The competence of the proposed method is validated using two
publicly available datasets: OASIS and IBSR18. From experimentation, it has turned out
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that our proposed method obtains the best result compared to other contemporary methods
on the OASIS and IBSR18 datasets. Additionally, the proposed consensus clustering method
has been evaluated on a practical autism spectrum disorder (ASD) detection problem.
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Abstract: Three-dimensional bone shape reconstruction is a fundamental step for any subject-specific
musculo-skeletal model. Typically, medical images are processed to reconstruct bone surfaces via
slice-by-slice contour identification. Freeware software packages are available, but commercial
ones must be used for the necessary certification in clinics. The commercial software packages
also imply expensive hardware and demanding training, but offer valuable tools. The aim of the
present work is to report the performance of five commercial software packages (Mimics®, AmiraTM,
D2PTM, SimplewareTM, and Segment 3D PrintTM), particularly the time to import and to create the
model, the number of triangles of the mesh, and the STL file size. DICOM files of three different
computed tomography scans from five different human anatomical areas were utilized for bone
shape reconstruction by using each of these packages. The same operator and the same hosting
hardware were used for these analyses. The computational time was found to be different between
the packages analyzed, probably because of the pre-processing implied in this operation. The longer
“time-to-import” observed in one software is likely due to the volume rendering during uploading. A
similar number of triangles per megabyte (approximately 20 thousand) was observed for the five
commercial packages. The present work showed the good performance of these software packages,
with the main features being better than those analyzed previously in freeware packages.

Keywords: DICOM; image segmentation; bone models; STL file; musculo-skeletal modeling; additive
manufacturing; 3D modeling

1. Introduction

Three-dimensional (3D) reconstruction of bone models is fundamental for musculo-
skeletal biomechanics, particularly for subject-specific modeling [1–4]. Exact 3D bone
morphology is becoming essential in orthopedics for the custom design and surgical plan-
ning of joint replacements [5–8]. In this context, also the recent large progress in 3D printing
is contributing to the huge number of exploitations in orthopedics and traumatology, since
this additive technology enables the cheap manufacturing of custom-made prostheses and
implants, along with relevant cutting jigs, designed over the exact dimension, shape, and
alignment of bone and joint defects starting from patient-specific anatomy [9–15].

The full process from medical images to final implants also allows physical replica of
patient anatomy, valuable for pre-operative planning, surgical team training, and physician-
to-patient communication, in addition, of course, to musculo-skeletal and finite element
modeling [16–18]. Typically, medical images from computed tomography (CT) are pro-
cessed to be segmented, i.e., to reconstruct bone surface mesh via slice-by-slice bone contour
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identification [19–22]. Image segmentation is a long and critical process, which implies
manual, automatic, or semi-automatic tracking of the silhouette contours of the bony struc-
tures, and, therefore, requires anatomical knowledge, computer skills, and awareness of
the scopes [15,23,24]. Many dedicated software packages are offered on the market, from
freeware tools with basic functions [25–27], running more likely on fairly performing com-
puters, to expensive software packages with more effective segmentation algorithms and
features [26,28,29], likely running on powerful computers. The optimal image segmentation
software should support the user in carefully defining the bone models, and eventually
providing a file to be exported in standard stereo-lithography (STL) format, with a suitable
number of triangles, a uniform mesh, and a minimum overall size. The reconstruction of
3D bone models requires extensive work; a good compromise should be found for each
application, between the automation of the segmentation process and the quality of the
final results [25,30–32].

The current commercial software packages for image segmentation claim high per-
formance and valuable technical tools, but require robust hardware, demanding training,
and careful maintenance, and thus these result in expensive licenses. Hence, cheap and
easy-to-use software tools [33] are still pursued and utilized. The performance of a number
of freeware software programs was previously analyzed and compared while processing
fifteen different human bones from five different anatomical areas; a number of valuable
features and fair quality of the reconstructed bone models were found [25]. However, large
differences in the number of triangles of the output meshes and in the file size were found,
with the triangles per megabyte (MByte) ratio ranging from around 4 to 20 thousand [25].
Distance map analysis amongst outputs from these different free software packages re-
vealed that root-mean-square deviations ranged from 0.13 to 2.21 mm when averaged over
the five anatomical areas [25].

However, the major concern of these freeware software packages is the lack of certifi-
cation as medical diagnostic devices, i.e., the official recognition to be used as appropriate
preoperative software for implant design and surgical planning in the standard clinical
practice [34]. Hence, the aim of the present work is to report on the performance of five
commercial image segmentation packages. For a possible reasonable comparison, also the
same exact CT scans of bony parts that we previously examined with freeware software
packages [25] were used. From the presented original combination of these two analyses,
advantages and disadvantages of commercial and freeware software packages for bone
segmentation from CT scans can be established.

2. Methods

2.1. CT Scan Collection

Medical images in Digital Imaging and Communications in Medicine (DICOM) format
from three different subjects were taken from a previous work [25]. In detail, for each of
them, a number of anatomical complexes of the upper and the lower limb, i.e., the shoulder,
elbow, and wrist for the former, and the knee and ankle for the latter, were analyzed.
These fifteen scans were from CT (‘Brilliance 16-slice scanner’, Philips Medical Systems;
Best, The Netherlands), with matrix size 512 × 512, voxel size 0.29 × 0.29 × 0.8 mm, layer
thickness 0.5 mm, and field of view and data collection protocol set according to the
specific anatomical complex to be analyzed. These technical parameters and the size of the
anatomical complexes under analysis resulted in the following numbers of images, for each
of the three subjects: 365, 256, and 321 for the shoulder; 353, 299, and 282 for the elbow; 239,
212, and 319 for the wrist; 204, 299, and 241 for the knee; 290, 481, and 315 for the ankle.

2.2. Segmentation Software Packages

Each dataset was analyzed with five commercial software packages for medial im-
age segmentation (Table 1), i.e., all those available in the local area where the present
analysis was performed: (1) MimicsTM Innovation Suite (v. 24.0, Materialise Inc., Leu-
ven, Belgium), (2) AmiraTM (v. 2019.4, Thermo Fisher Scientific Inc., Waltham, MA,
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USA), (3) D2PTM (DICOM-to-PRINT, v. 1.0.2.2055, 3D Systems Inc., Rock Hill, SC, USA),
(4) SimplewareTM (v. 2021.06, Synopsys Inc., Mountain View, CA, USA), and (5) Segment
3D PrintTM (v. 3.3 R 9056, Medviso AB, Lund, Sweden). Relevant technical requirements
for each software program are reported in Table 1.

Table 1. Technical requirements for each software package analyzed (* for best performance, multiple
hard drive configuration—3 or more HDDs or SSDs—in RAID 5 mode is recommended, as reported
in relevant user manual).

Mimics
(v. 24.0)

Amira
(v. 2019.4)

D2P
(v. 1.0.2.2055)

Simpleware
(v. 2021.06)

Segment 3D Print
(v. 3.3 R 9056)

Recommended
Processor

Intel Core i7 or
equivalent

Intel64/AMD64
architecture Intel Core i7 Intel Core i7 or

equivalent

Any processor
supporting CUDA-
enabled graphics

Minimum RAM
[GB] 4 2 16 16 16

Minimum HDD
space [GB] 5 Not reported * 500 100 5

Supported
Operating System

Windows 10
Pro/Enterprise

version 1803, 1809,
1903, 1909, 2009

(64-bit) or
Windows Server

2019 Standard
version 10.0,

Windows 7/8/10
(64-bit)

Linux x86_64
(64-bit): CentOS 7

Mac OS X High
Sierra (10.13) and
Mac OS X Mojave

(10.14)

Windows 7 or 10
(64 bit)

Windows
10/Windows
Server 2016
Linux *:

- RHEL 7.x
and 8.x

- CentOS 7.x
and 8.x

Windows 10
(64 bit)

HDD = Hard Disk Drive; SSD = Solid-State Drive; RDP = Remote Desktop Protocol; CUDA = Compute Unified
Device Architecture; RAID = Redundant Array of Independent Disks.

2.3. Medical Image Segmentation Process

All analyses were executed on the same computer (platform Intel® Xeon W-2123 CPU
@ 3.60GHz, 64 bit, 32 GB RAM; graphics card: NVIDIA GeForce RTX 2070 SUPER) and
operating system (Windows 10, Microsoft Co., Redmond, WA, USA).

The overall operational segmentation principle was very similar over each software
package (Figure 1): importing the DICOM files in the three anatomical projections, followed
by image segmentation using the most suitable tools offered by the software, including
thresholding and minor possible manual corrections to remove isolated voxel areas. The
masks defined by image segmentation embedded all bones of the overall joints. Although
editing after image segmentation was allowed in all five software packages, no addi-
tional shaping or meshing tools were used. By means of built-in functions to convert the
segmented masks into surface meshes, the 3D models of the bones were generated and
exported in STL format files, all in binary code and in little-endian mode.

A radiographer, with 4 years of experience in the radiological department of an
orthopedic center and 4 years of experience in 3D bone model segmentation, performed
all reconstructions, using the same computer to remove possible bias; this was the same
radiographer who performed a similar analysis in a previous study [25]. The necessary
technical support for using the selected five software packages was provided by relevant
computer scientists. All the present 3D bone reconstructions with the five packages were
concentrated over a period of time of one month.
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Figure 1. A diagram for an automatic/semi-automatic workflow for the segmentation process:
present exemplary screenshots obtained during this process using D2P software; a very similar
workflow was followed for the other four software packages.
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2.4. Data Collection and Processing

During the image segmentation phase, the following parameters were collected for
each of the software programs utilized: DICOM time to import, time to create the model,
number of model triangles, model file size, and number of model triangles per megabyte.
These are reported in terms of mean ± standard deviation over the five anatomical com-
plexes and the three subjects, along with range values (min–max).

Furthermore, the Pearson product–moment correlation coefficient (R) was also used
to derive correlations between the mean number of triangles and the mean file size for the
models obtained using the commercial software packages analyzed in the present study and
also for those previously obtained with freeware software packages [25]. Corresponding
p-values are reported for assessing significance, this being accepted at p < 0.05.

3. Results

The software features considered in the present analysis are those reported in Table 2.

Table 2. Main features of the five software packages analyzed. The results are means ± standard
deviation over the fifteen models analyzed (five anatomical areas, each from three subjects), along
with range values (min–max). For the sake of comparison, the table format is similar to that reported
in the previous work [25] (with the exception of information related to basic two-dimensional and 3D
features, which is not reported here).

Mimics

(v.24.0)

Amira

(v. 2019.4)

D2P

(v. 1.0.2.2055)

Simpleware

(v. 2021.06)

Segment 3D Print

(v3.3 R 9056)

Time to import [s]
1.4 ± 0.5

(1–2)
2.4 ± 1.5

(1–5)
2.1 ± 0.3

(2–3)
2.5 ± 0.7

(1–4)
3.7 ± 1.1

(2–6)

Time to create the

model [s]

5.8 ± 3.9
(2–14)

2.1 ± 0.4
(2–3)

11.1 ± 4.3
(4–19)

5.2 ± 2.4
(3–10)

23.9 ± 13.3
(9–55)

Number of triangles
849,995 ± 633,670

(203,616–2,219,446)
1,782,831.6 ± 1,145,476

(532,574–3,843,000)
1,752,240 ± 1,120,912
(526,460–3,764,380)

1,796,269 ± 1,132,502
(568,436–3,834,908)

1,816,860 ± 1,107,694
(576,532–4,200,338)

File size [megabytes]
76.0 ± 48.8
(23.9–163)

84.8 ± 54.5
(25.3–183)

83.4 ± 53.3
(25.1–179)

85.5 ± 53.9
(27.1–182)

86.5 ± 52.7
(27.4–200)

Number of triangles

per MByte

10,433.4 ± 2111.5
(6650–13616)

21,019.2 ± 51.2
(20,973–21,165)

21,004.8 ± 32.0
(20,971–21,077)

21,003.1 ± 48.2
(20,889–21,088)

21,005.5 ± 31.1
(20,972–21,079)

Additional features were analyzed, but because these were found to be available
exactly in each package, these are not reported in Table 2 but rather listed here below:
unlimited number of image slices; multiplanar visualization and representation; correspon-
dence amongst the coronal, axial, and sagittal orientations; crop and zoom; contrast and
brightness adjustments; separation of the regions of interest; linear, angular, and volumetric
measures; simultaneous planar images and 3D rendering; export of images and mesh data;
export in STL file format.

The computational import time of the DICOM files was found to be within the range
of 1–6 s considering all analyzed software packages. The longer “time-to-import” found
for the Segment 3D Print software (3.7 ± 1.1 s) is likely due to the simultaneous creation of
3D volume rendering during the uploading process. Marked differences were observed
in the time to create the model, this ranging from 2.1 ± 0.4 s in Amira to 23.9 ± 13.3 s in
Segment 3D Print, on average.

Operability was satisfactory for each of the five software packages; these were efficient
enough to obtain final results for all 15 anatomical models in a few hours (Figure 2). By
keeping their own default settings in each of the five software packages, Mimics showed
the smallest final number of triangles on average over the 15 models, i.e., around half
that of the other software packages, which resulted eventually in the smallest and most
consistent file size in terms of standard deviation (Table 2). At the end, a very similar
ratio of triangles per MByte was observed, approximately 20 thousand, apart from Mimics,
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where this value was halved. In addition, the corresponding standard deviations reported
in % of the mean values reveal a value of approximately 20% for Mimics, and less than 1%
in the other software packages.

 

Figure 2. Superimposition of the resulting meshes from the five commercial software packages
investigated; this is shown for each of the 15 DICOM files (three subjects for each of the five different
anatomical areas). The STL models shown here for rough comparison were imported into Mimics for
the present representation.

58



Appl. Sci. 2022, 12, 6097

4. Discussion

For the first time, the main features of five commercial software packages (Mimics®,
AmiraTM, D2PTM, SimplewareTM, and Segment 3D PrintTM) for the generation of STL
bone models were investigated. Relevant performance in bone model reconstruction was
analyzed by the same operator, using a single computer workstation, and compared accu-
rately in fifteen different CT scans, from five anatomical areas with distinct morphological
complexity, by the same operator and using the same computer hardware to avoid possible
bias. Amongst the scope, there was also the quantitative comparison of specific features
with those from four freeware software packages (3DSlicer, ITK-SNAP, InVesalius, and
VuePACS3D—the latter being accessible free-of-charge in our radiological unit), analyzed
recently by the same authors [25]. To our knowledge, these nine software packages are
amongst the most popular for medical imaging segmentation of the musculo-skeletal sys-
tem [22,27,28,35]. To make rational and objective comparisons, both the CT scans and the
operator were the same in the two studies, and manual intervention was limited as much
as possible also in the present analysis. Additionally, all software packages were used on
the same computer to avoid the situation wherein segmentation performance is affected by
the hardware specifications.

The present work did not seek to investigate either the segmentation algorithms, tools,
and features of these commercial software packages, clearly very different from one another,
or the degree of automation in 3D model reconstruction, but rather to assess only the main
quantitative features and the gross results for comparison. Therefore, apart from a few
basic final refinements, only the standard segmentation tools, such as thresholding, were
used in each software package for bone shape reconstruction.

The present work obviously has limitations. To limit the cost of the present exercise,
access to these commercial software packages was sought in the geographical area of the
authors; five amongst the most popular were found and tested with no additional charges.
Clearly, many other software packages are available on the market, but it was not possible
to further enlarge this exercise, also because the condition of a single operator and a single
computer was pursued. In this respect, the operator could not become very familiar with
each software package in a short time; therefore, local users, already familiar with these,
provided some support, only that necessary to obtain the final results. Threshold values for
optimal mask visualization in bone segmentation were set by the operator in each software
program, according to the specific density of each bone under analysis but generally in
the range of 130–226 Hounsfield unit values, as in the previous work [25]. Of course,
these commercial software packages feature many additional tools for manual editing and
refinements, particularly with regard to the final number and the density of mesh triangles,
but these were not exploited, to maintain the comparison of the initial basic performance.
Finally, given the scope of this work, there was no need to distinguish between the different
bones within a model, so all bones in each scan were segmented as a single object.

Our findings compare well with recent similar studies in the literature in terms of
tested scan resolution, threshold, and accuracy of 3D bone model reconstruction [23,36].
With respect to similar previous studies where features and reconstruction techniques from
different software packages are investigated and compared [22,27,28,35], the present work
offers quantitative objective outcomes also in terms of the number of triangles, file size,
and relevant ratio. In addition, the present analysis was not biased by single anatomical
areas or limited scans, but involved full morphological reconstructions from five different
anatomical areas with different complexity, overall from fifteen different subjects.

With respect to the freeware software analysis by the present authors [25], the segmen-
tation thresholds and reconstruction algorithms were of course very different. In terms of
the mean number of triangles, the four freeware programs were within the range of the com-
mercial software packages, with Mimics® as the minimum (around 850,000) and Segment
3D PrintTM as the maximum (around 1,750,000). The mean file size was found compatible
with these differences, as expressed well in the triangles-per-MByte ratio (Table 2), which,
apart from MimicsTM, was approximately 20 thousand in the present commercial software
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packages and in the free 3D SlicerTM (Brigham and Women’s Hospital, Boston, MA, USA)
and InVesaliusTM (Renato Archer Information Technology Center, Campinas, Brazil) of
the previous paper; in ITK-SNAPTM (PICSL University of Pennsylvania, Philadelphia, PA,
USA) and VuePACS3D (CarestreamTM, Rochester, NY, USA), this ratio was, respectively,
5.7 and 3.9 thousand, relatively closer to MimicsTM. However, the ability to export the
models both in American Standard Code for Information Interchange (ASCII) and binary
STL files gives the option of more readable data for debugging and coding, or less space
to store the same amount of data, respectively. Furthermore, it is very interesting to note
(Figure 3) that for both the commercial and freeware software packages providing binary
code for STL export, there is an overall linear trend between the file size and the number of
triangles of the output mesh.

Figure 3. Graphical representation in terms of mean number of triangles and mean file size of the
output meshes over the 15 anatomical models. Results obtained in the present study with commercial
software are superimposed to the corresponding results previously obtained by these authors with
freeware software on the same models [25]. Corresponding linear regression lines are superimposed
for comparison.

Although this behavior is detectable in both the software types, only for the commercial
ones is this statistically significant, the correlation coefficient being 0.98, with an associated
p-value equal to 0.004. However, despite the features and the good performance of the
freeware software packages for 3D bone model reconstruction reported recently by these
authors [25], these software packages cannot currently be used worldwide in clinical
practice because of the required certification as medical devices, according to the national
regulations [34].

5. Conclusions

The present analysis has assessed five commercial software packages and found
that the main features are better than those of freeware software packages, as expected.
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Clearly, only the basic features of these commercial packages were evaluated in the present
analysis, whereas their ancillary utility would be a matter for future studies. However,
these features shall be assessed also together with other aspects, such as license conditions,
costs, accessibility, ease-of-use, etc. Moreover, the intended use of the final 3D bone
models should be considered, e.g., whether they are for finite element or musculo-skeletal
modeling, prosthesis or custom jig design, clinical research, or medical education. Future
relevant work shall compare the results obtained from traditional manual or semi-automatic
segmentation tools with modern automatic segmentation software packages, as performed
recently for other software packages [37,38].
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Abstract: Liver cancer contributes to the increasing mortality rate in the world. Therefore, early
detection may lead to a decrease in morbidity and increase the chance of survival rate. This research
offers a computer-aided diagnosis system, which uses computed tomography scans to categorize
hepatic tumors as benign or malignant. The 3D segmented liver from the LiTS17 dataset is passed
through a Convolutional Neural Network (CNN) to detect and classify the existing tumors as benign
or malignant. In this work, we propose a novel light CNN with eight layers and just one conventional
layer to classify the segmented liver. This proposed model is utilized in two different tracks; the first
track uses deep learning classification and achieves a 95.6% accuracy. Meanwhile, the second track
uses the automatically extracted features together with a Support Vector Machine (SVM) classifier
and achieves 100% accuracy. The proposed network is light, fast, reliable, and accurate. It can be
exploited by an oncological specialist, which will make the diagnosis a simple task. Furthermore, the
proposed network achieves high accuracy without the curation of images, which will reduce time
and cost.

Keywords: computed tomography; hepatic tissue; ResNet50; CAD

1. Introduction

Liver cancer (LC) is a well-known condition across the world. It is among the most
frequent types of cancer that may affect humans [1]. It is a lethal disease spreading around
the globe, particularly in underdeveloped nations [2]. The liver is the body’s biggest
internal organ. Hepatic cancer detection is difficult given the heterogeneous nature of liver
tissues. The mortality rate of primary liver cancer can be reduced if it is detected earlier.
For detecting the damaged region in liver images, multiple classification algorithms have
been implemented [3]. The liver is both required for living and susceptible to a variety
of diseases. CT examinations may be utilized to plan and deliver radiation treatment
to tumors, as well as to assist biopsies and other less invasive procedures. Manual CT
image segmentation and classification is a time-consuming and inefficient method, which is
unfeasible for vast amounts of data. Manual interaction is not required with fully automatic
and unsupervised approaches [4]. The computer-aided diagnosis of live tumors in CT
images requires automatic tumor detection and segmentation. In low-contrast images, the
low-level images are too faint to identify, making it a difficult process [5]. Tumor detection
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and segmentation are critical pre-treatment measures in the computer-aided diagnosis
of liver tumors [6,7]. In the liver, there are several different forms of tumors. The visual
appearance of various tumors varies, and their visual appearance varies once the contrast
medium is administered. Computer-aided diagnosis might be difficult when it comes to
segmenting the liver from CT scan images accurately. Automatic liver segmentation is the
initial and most important stage in the diagnosing process [8,9].

Radiologists face a difficult problem in identifying and classifying liver tumors. The
liver parenchyma must be separated from the abdomen, and the liver cells with the least
alteration must be classified as malignant or benign tumors. Owing to its excellent cross-
sectional view, outstanding spatial resolution, quick interpretation, and strong signal-
to-noise ratio (SNR), CT images remain one of the top modalities of choice. Magnetic
Resonance Imaging (MRI), Positron emission tomography (PET), and Ultra Sound (US) are
the other major Liver-imaging modalities. CT examinations may be performed for proper
planning and managing tumor treatments, including guiding biopsies and other easily
established processes. For huge amounts of data, manual segmentation and Computed
Axial Tomography (CAT) image categorization are demanding and time-consuming opera-
tions. Computer-aided diagnosis (CAD) systems are a type of medical imaging that acts
as a second opinion for doctors when interpreting images. Upon creating the final output,
the CAD systems are interactive/semi-automated and include the results of the medical
practitioner. This contrasts with a fully automated system, wherein the computer software
makes all choices. CAD systems have a critical role in the early diagnosis of liver disease,
lowering the fatality rate from liver cancer [10]. The utilization of CT images to identify the
liver disease is prevalent. Given the various intensities, it might be challenging for even
competent radiologists to remark on the type, category, and level of the tumor immediately
from the CT image. Designing and developing computer-assisted imaging techniques to
aid physicians/doctors in enhancing their diagnoses has become increasingly significant
in recent years [11]. The diagnosis and treatment strategy are determined by classifying
the lesion type and time based on CT images, which demands professional knowledge
and expertise to categorize. Once the workload is severe, fatigue is common, and even
competent senior specialists have trouble preventing a misdiagnosis. Deep learning may
overcome the limitations of conventional machine learning, for instance, the time required
to retrieve image features and conduct dimensionality reduction manually, giving high-
dimensional image features. It is critical to use deep learning to aid doctors in diagnosis.
The poor accuracy of tumor classification, the limited capability of feature extraction, and
the sparse dataset remain challenges in the current medical image classification task [12].

In 2018, Amita Das et al. [13] developed a Watershed Gaussian Deep Learning al-
gorithm for classifying three forms of liver cancer, including hepatocellular carcinoma,
hemangioma, and metastatic carcinoma, utilizing 225 images. The watershed algorithm
was utilized to segregate the liver, Gaussian Mixture Models (GMM) were utilized to
detect the lesion region, and retrieved characteristics were fed into a Deep Neural Net-
work (DNN). They were able to obtain 97.72% specificity, 100% sensitivity, and 98.38%
testing accuracy. Consequently, Koichiro Yasaka et al. [14] trained a Convolutional Neu-
ral Network (CNN) to distinguish liver lesions into five categories utilizing 1068 images
taken in 2013 from 460 patients and enhanced them by a factor of 52. Note that three
max-pooling layers, six convolutional layers, and three fully connected layers made up
the CNN. They had a median accuracy of 84% and a 92% Area Under the Curve (AUC).
Moreover, Kakkar et al. [15] utilized the LiTS dataset to segment the liver, utilizing the
Morphological Snake method, and predicted the liver centroid utilizing an Artificial Neural
Network (ANN). They obtained a 98.11% accuracy, 88% Dice Index, and 87.71% F1-score
utilizing the LiTS dataset. Furthermore, Rania Ghoniem [16] employed SegNet-UNet-BCO
and LeNet5-BCO combinations to segment and categorize liver lesions in 2020, combining
bio-inspired concepts with deep learning models. The models were trained to utilize the
Radiopaedia and LiTS datasets, and the LiTS dataset yielded a 97.6% F1-score, 98.2% speci-
ficity, 97% Dice Index, 96.4% Jaccard Index, and 98.5% accuracy. To identify liver tumors
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automatically, Muhammad Suhaib Aslam et al. [17] utilized the ResUNet, a hybrid UNet
and ResNet framework. Relying on the publicly accessible 3D-IRCADb01 dataset, they
were able to attain a 99% accuracy and a 95% F1-score. In addition, Jiarong Zhou et al. [18]
presented a multi-scale and multimodal structure in 2021, utilizing a hierarchical CNN
to automatically detect and categorize focal liver lesions. Following binary class discrim-
ination, the model produced six classes. They attained an average accuracy of 82.5% in
discriminating malignant and benign tumors utilizing 3D ResNet-18 and 73.4% in solving
the six classes issue. Consequently, Yasmeen Al-Saeed et al. [19] presented a comprehensive
framework for separating cancerous and non-cancerous lesions in 2022. The framework is
divided into three phases: liver segmentation, tumor segmentation, and lesion classification
with an SVM classifier. They employed a combination of textual and statistical elements
to analyze the LiTS17, MICCAI-Silver07, and 3Dircadb liver datasets. The LiTS17 dataset
obtained 95.57% accuracy, 96.23% sensitivity, 95.83% specificity, and 98.2% AUC, while
the 3Dircadb dataset achieved 96.88% accuracy, 97.32% sensitivity, 97.65% specificity, and
98.64% AUC. Mubasher Hussain et al. [20] introduced a revolutionary, fully automated
system for liver tumor classification, which employs computer vision and machine learning.
A Gabor filter was employed to denoise the images, and the Correlation-based Feature
Selection (CFS) approach was employed to maximize the features. On a 17 × 17 Region of
Interest (ROI), they obtained 97.48% accuracy using Random Forest and 97.08% accuracy
utilizing Random Trees.

According to the literature review, the subject of medical imaging is becoming more
important as the demand for a precise and efficient diagnosis in a short amount of time
grows. The liver serves a variety of activities, including vascular, metabolic, secretory, and
excretory. CT is a medical imaging method that doctors can use to examine pathological
abnormalities in the liver. The fundamental issue with liver segmentation from CT images
is the poor contrast between the intensities of the liver and adjacent organs. In addition,
the liver might appear in several dimensions, making identification and segmentation
even more challenging [21]. The categorization of CT images is a time-consuming and
difficult operation, which is impracticable when dealing with enormous amounts of data.
Manual interaction is not required with fully automatic and unsupervised approaches.
Our suggested study method gives an efficient liver CT scan image classification that will
be useful in medical datasets, particularly in feature selection and classification. Man-
ually detecting liver tumors is time-consuming and tiresome; however, CAD is critical
in automatically recognizing liver abnormalities. In this section, we assess and review
recent breakthroughs in CT-based detection of liver tumors, with a focus on deep learning
techniques that leverage the LiTS dataset. In CT images, the liver is segmented from the
rest of the abdomen, utilizing a 3D technique and morphological processing. The tumor is
extracted from the segmented liver area using CNN. A lot of research studies have been
done to categorize liver tumor disease. Patients diagnosed with a liver tumor early on will
have a better chance of being treated quickly [22]. The remainder of the article is arranged
as follows: Section 2 outlines the suggested method’s technique. The experimental results
and comparisons with a few selected approaches are shown in Section 3, and the study is
concluded in Section 4.

2. Materials and Methods

The method that has been utilized in this paper is shown in Figure 1. The process starts
from the segmented CT liver volume, which is resized to be compatible with the input layer
of the proposed CNN and the existing ResNet50. The features are extracted automatically
and then passed to a support vector machine classifier to discriminate between two classes
of benign and malignant liver tumors.
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Figure 1. The proposed method.

2.1. Dataset

The dataset was created as a consequence of liver tumor segmentation, which was held
in connection with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017
and the International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI) 2017. The liver images from a 3D CT image have been segmented
and released. In the axial direction, pixel sizes range from 0.56 mm to 1.0 mm, and in the
z-direction, they range from 0.45 mm to 6.0 mm. The number of slices per CT scan varies
from 42 to 1026, and all slices were resized to 150 pixels in size. The segmented data are
published in [23] and are not labeled. The data are diagnosed by the radiologist, and the
following table describes the label for each case. Table 1 shows the diagnosis of the human
radiologist for each volume.

Table 1. The diagnosis of liver CT volumes by Radiologist Diagnosis.

Volume#
Radiologist

Label
Volume#

Radiologist
Label

Volume#
Radiologist

Label
Volume#

Radiologist
Label

Volume#
Radiologist

Label

1 malignant 27 malignant 53 malignant 79 malignant 105 benign
2 malignant 28 malignant 54 Normal 80 malignant 106 benign
3 malignant 29 malignant 55 malignant 81 malignant 107 malignant
4 malignant 30 malignant 56 malignant 82 benign 108 malignant
5 malignant 31 malignant 57 benign 83 malignant 109 malignant
6 benign 32 malignant 58 benign 84 malignant 110 benign
7 malignant 33 Normal 59 malignant 85 benign 111 malignant
8 malignant 34 malignant 60 benign 86 benign 112 benign
9 malignant 35 benign 61 malignant 87 malignant 113 benign

10 malignant 36 malignant 62 benign 88 benign 114 malignant
11 malignant 37 benign 63 benign 89 malignant 115 malignant
12 malignant 38 malignant 64 benign 90 benign 116 malignant
13 benign 39 Normal 65 malignant 91 benign 117 benign
14 malignant 40 malignant 66 benign 92 malignant 118 malignant
15 malignant 41 malignant 67 malignant 93 malignant 119 malignant
16 benign 42 benign 68 malignant 94 malignant 120 malignant
17 malignant 43 benign 69 malignant 95 malignant 121 benign
18 malignant 44 benign 70 malignant 96 malignant 122 benign
19 malignant 45 benign 71 malignant 97 malignant 123 benign
20 malignant 46 malignant 72 benign 98 benign 124 malignant
21 malignant 47 malignant 73 benign 99 malignant 125 malignant
22 malignant 48 benign 74 malignant 100 malignant 126 malignant
23 malignant 49 malignant 75 malignant 101 malignant 127 benign
24 malignant 50 malignant 76 malignant 102 malignant 128 benign
25 benign 51 benign 77 benign 103 malignant 129 malignant
26 Normal 52 malignant 78 malignant 104 benign 130 malignant
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The number of benign cases is 39, the number of malignant cases is 85, whereas
6 cases are diagnosed with no lesions, which means they are normal. The normal cases are
excluded from the dataset because they are not sufficient for classification. The proposed
method is just designed based on benign and malignant cases.

Figure 2 describes the malignant liver slice, the segmented liver, and the 3D view
of the liver. On the other hand, Figure 3 represents the benign case of the liver and its
corresponding segment with its 3D view.

 
 

(a) (b) (c) 

Figure 2. (a) liver slice; (b) segmented liver; (c) 3D view of malignant liver.

  
 

(a) (b) (c) 

Figure 3. (a) liver slice; (b) segmented liver; (c) 3D view of benign liver.

The benign segmented liver is augmented with a scale [0.9–1] rotated [2◦–5◦]. The
data are also translated in the x direction with [1–2], y direction of [1–1.5], and z direction of
[0.9–1.2]. The resultant beginning images after augmentation are 75 images. Table 2 shows
the number of images before and after augmentation.

Table 2. The number of images after and before augmentation.

Benign Malignant Total

Number of volume images before augmentation 39 85 124
Number of volume images after augmentation 78 85 163

2.2. Deep Learning

It is known that deep learning models need large data sets to train. Many scholars have
used transfer learning to tune a pre-trained model to perform a certain task to overcome
this issue. In this work, two pre-trained neural networks have been used, namely ResNet50
and Resnet101 [24–28], as shown in Figure 4, respectively. The ImageNet dataset was
utilized for training these two architectures. ResNet is a deep convolutional neural network
model with shortcut connections that bypass one or more layers. The number of output
feature maps in this type of network is similar to the number of filters in the layer. The
number of filters doubles as the size of the feature map is lowered. Down sampling is
performed in a convolution layer with a stride of two, and then batch normalization and
the ReLU function are applied.
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Figure 4. ResNet50 General Structure.

Further details of both networks’ architectures are explained in Figure 4. The first
convolutional layer in both networks will output a feature map of size 112 × 112 × 64
after applying 64 distinct filters of size 7 × 7 × 3 over the input of size 224 × 224. The
input feature map is then processed, utilizing a max-pooling layer with a filter of 3 × 3,
resulting in a feature map of 56 × 56 × 64. Furthermore, the second convolutional layer
contains three building blocks, where each block contains three convolutional layers. As a
result, there are nine sub-convolutional layers in the second convolutional layer. The third
convolutional layer is made up of four blocks, each of which has three sub-convolutional
layers. Thus, there are 12 sub-convolutional layers in the third convolutional layer. In terms
of the fourth convolutional layer, ResNet50 comprises six blocks.

LiverNet

The proposed LiverNet model is light, and consists of eight layers. It consists of an
input layer with size 223 × 223 × 147 × 1, a 3D convolutional layer with kernel size of
5 × 5 × 5 with six filters, and a stride by two. The output of the first layer is inserted into
a 3D average pool layer of size 2 × 2 × 2, along with stride by two. This layer plays a
crucial role in decreasing data variances and maintaining the most critical elements. Finally,
the ReLU activation function receives the output from the previous layers, and the active
output is sent into a 10-neuron fully connected layer. Afterwards, the result is sent to a
fully connected layer with two neurons equivalent to the number of planned classes. The
suggested network flow chart is illustrated in Figure 5.

Figure 5. The structure of the proposed network.

The fully connected layer is usually terminated with a softmax layer, which imple-
ments a softmax function to its input and whose equation corresponds to the equitation [29]:

f (xi) =
exp(xi)

∑j exp
(
xj

) , (1)
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in which x denotes the input vector of size K, j = 1: K, and xi resembles the ith individual
input. The Softmax function defines a range of values for the output, allowing it to be read
as a probability. It is frequently employed in multivariant classifications. Moreover, the
softmax layers are responsible for computing the probability of each class, whereas the
classification layer is in charge of obtaining the classification results. Next, the proposed
network is built using MATLAB® 2021b, and it is trained and tested using a PC with CPU
Core i5-11 GEN processor, 8 GB RAM, and 1000 GB total storage. Table 3 shows the layer’s
information for the suggested CNN architecture.

Table 3. Layers information for the proposed LiverNet.

Layer Information

Input Layer Size [223 × 223 × 147]

Conv_1

Number of Filters 6
Kernel size 5 × 5 × 5

Stride 2 × 2 × 2
Padding 0

Pooling Layer

Type Average Pooling
Kernel size 2 × 2 × 2

Stride 2 × 2 × 2
Padding 0

Activation Layer ReLU

Fully-connected Layer 10 neurons

Fully-connected Layer 2 neurons

Softmax Layer

Classification Layer

2.3. Classification

The classification is performed in this article by two tracks; the first one is deep
learning, and the other one is a hybrid system. The deep learning approach is utilized by
passing the resize images to the pretrained ResNet50 using transfer learning to discriminate
between benign and malignant classes. On the other hand, the proposed network is
exploited as well for classifying the available images into malignant and benign.

The hybrid approach is utilized in this paper by using the deep learning structures
as feature extractors instead of applying various image processing techniques to extract
the features manually. This approach is applied two times; the first one uses ResNet50,
and the other one uses the proposed Liver Network. The two extracted features from
the last fully connected layer in each network are passed to the Gaussian Support Vector
Machine classifier independently. The results are compared between the hybrid system,
which is built based on extracted features from a pretrained ResNet50 structure, and those
constructed mainly on the extracted features from the proposed LiverNet. On the top
of that, the corresponding results section clarified the differences between benign and
malignant classification based on deep learning approaches.

3. Results and Discussion

The data are divided into 70% training data. Meanwhile, the rest resembles testing.
The transfer learning strategy is employed here to be suitable for two classes. The maximum
accuracy obtained using ResNet50 is 83.7%. After taking 123 min in the training stages,
Figure 6 illustrates the confusion matrix for ResNet50.
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Figure 6. Test Confusion matrix of ResNet50.

The number and percentage of correct classifications by the pre-trained network
are shown in the first two diagonal cells of Figure 6. For instance, 23 occurrences were
categorized as benign appropriately. This represents 46.9% of the total of 49 occurrences. In
the same way, 18 occurrences were accurately labeled as malignant, in which 36.7% of all
cases fell into this category.

Eight of the malignant cases were misclassified as benign, accounting for 16.3% of the
total 46 cases in the study. Likewise, 0 benign biopsies were wrongly labeled as malignant,
accounting for 0% of the total data.

From 31 benign predictions, 74.2% were found to be correct, meanwhile 25.8% were
revealed to be wrong. Of 18 malignant predictions, 100% were correct, and 0% were wrong.
Of 23 benign cases, 100% were revealed to be correctly predicted as benign, while 0% were
predicted as malignant. Of 26 malignant cases, 69.2% were correctly classified as malignant,
while 30.8% were categorized as benign. In total, 83.7% of the predictions were revealed to
be correct, while 16.3% of them were wrong. The pertained network is very badly sensitive
to malignant cases. Almost 31% of the malignant cases were diagnosed as benign, which is
not acceptable in medical field applications. Figure 7 shows the ROC curve for this case.
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Figure 7. AROC curve using ResNet50.

The proposed net obtained a high accuracy when compared with ResNet50, and
Figure 8 shows the confusion matrix of the LiverNet. Here, the accuracy reached 95.9%.

Figure 8. Test Confusion matrix of LiverNet.
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The number and percentage of correct classifications by the suggested network are shown in
the first two diagonal cells of Figure 7. A total of 23 occurrences, for example, were accurately
categorized as benign. This represents 46.9% of the total of 49 occurrences. In the same approach,
24 occurrences were accurately labeled as malignant. This was the case in 49% of all occurrences.

Two of the malignant instances were mistakenly categorized as benign, accounting for
4.1% of the total 49 cases in the study.

From 23 benign predictions, it was revealed that 100% were correct. Meanwhile, from
24 malignant predictions, 100% were found to be correct. Moreover, from 23 benign cases,
100% were correctly predicted as benign, meanwhile, from 24 malignant cases, 92.3% were
correctly classified as malignant and were discovered to be 7.7% wrong. In total, 95.9% of
the predictions were found to be correct, meanwhile 4.1% were shown to be wrong. The
proposed network performance was better than the pre-trained CNN. Figure 9 illustrates
the ROC curve of classification using LiverNet.

Figure 9. AROC curve using LiverNet.

The number of convolutional layers in LiverNet is one, which makes it fast in training
and testing. Table 4 shows the time required for training and test phases for both the
existing CNN and the proposed one.

Table 4. Comparison for training and testing time for both ResNet50 and LiverNet.

Net Work Train Test

ResNet50 123 min 32 s
Proposed model 89 min 22 s

In the next stage ResNet50 and LiverNet are employed as feature extractors In both
networks, the two features are retrieved from the final fully connected layer. Finally, the
labeled data are classified using gaussian SVM.

The model is built utilizing a Gaussian SVM classifier to distinguish between malignant
and benign tumors. Figure 10 describes the confusion matrix of the Gaussian SVM using
3D graphical features of ResNet50. Here, the total accuracy reached 97%.
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Figure 10. Test Confusion matrix of SVM with features from ResNet50.

The first two diagonal cells in Figure 7 reflect the number and percentage of correct
classifications in ResNet50 utilizing a Gaussian SVM with 3D graphical features. The
benign classification for the 22 cases was valid, representing 45.8% of the total 48 cases. In
the same approach, 25 cases were accurately identified as malignant, which was 52.1% of
the total number of cases.

One of the benign occurrences was mistakenly labeled as malignant, accounting for
2.1% of the total 48 cases in the study. From 22 benign predictions, it was stated that 100%
were correct; meanwhile, from 26 malignant predictions, 96.2% were revealed to be correct.
Furthermore, from 23 benign cases, 95.7% of them were correctly predicted as benign,
meanwhile, from 25 malignant cases, 100% were correctly categorized as malignant. In
total, 97.9% of the predictions were revealed to be correct, while 2.1% of them were wrong.
Figure 11 represents the ROC curve of the hybrid system using a pretrained CNN.
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Figure 11. AROC curve of SVM with features from ResNet50.

The first two diagonal cells in Figure 12 reflect the number and percentage of correct
classifications utilizing the suggested net’s gaussian SVM with 3D graphical features. For
example, the benign classification for the 23 occurrences was correct, representing 47.9% of
the total 48 occurrences. In the same approach, 25 occurrences were accurately identified as
malignant, which was 52.1% of the total number of cases.

Figure 12. Test Confusion matrix of SVM with features from LiverNet.
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Of 23 benign cases, 100% of them were correctly predicted as benign, meanwhile, from
25 malignant cases, 100% were found to be correctly categorized as malignant. Overall,
100% of the predictions were correct. Figure 13 shows the ROC curve of the hybrid system
using LiverNet features.

Figure 13. AROC of hybrid system with features from LiverNet.

The evaluation criteria that have been used in this paper are clear in the corresponding
equations [30]. Table 5 describes the results in the deep learning track and hybrid track for
both ResNet50 and the proposed LiverNet. The following equations are used to calculate
the performance of the classifier [30].

Sensitivity =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

Accuracy =
TP

TP + TN + FP + FN
(5)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.

Table 5. Comparison between deep learning and the proposed hybrid model.

Method Sensitivity Precision Specificity Accuracy

Deep Learning
ResNet50 100 74.2 69.2 83.7

LiverNet 100 92 92.3 95.9

Hybrid Model
ResNet50 95.7 100 100 97.9

LiverNet 100 100 100 100

The high performance of the proposed net is clear as a feature extractor. Furthermore,
Figure 14 below illustrates the high performance of the proposed approach in obtaining an
accurate diagnosis of liver tumors.
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Figure 14. Accuracy, Precision, Specificity, and Sensitivity of different approaches.

The proposed method is compared with literature that has used the LiTs17 dataset.
The performance of the approach achieved the highest amongst all. Table 6 shows the
comparison between this study and literature with regards to the area under the curve
(AUC), specificity, sensitivity, and accuracy.

Table 6. Comparison of the current study with the state of the art.

Accuracy Sensitivity Specificity AROC

Kakkar et al. [15] 98.11 - - -
Rania Ghoniem [16] 98.5 - 98.2 -

Yasmeen Al-Saeed et al. [19] 95.5 96.23 95.83 0.98
The Proposed Model 100 100 100 1

This paper shows the high level of confidence obtained using LiverNet as an auto-
mated feature extractor besides utilizing the benefits of machine learning to discriminate
between benign and malignant liver tumors.

4. Conclusions

Patients with liver cancer have a high mortality rate attributed to the late detection
of the disease. Computer-aided diagnosis systems based on a variety of medical imaging
techniques can help recognize liver cancer at an early stage. With the help of both con-
ventional machine learning and deep learning classifiers, a variety of methods have been
employed to identify liver cancer. The findings of this study suggest that using CNN to
automatically extract features together with SVM classifier greatly improves classification
performance. Furthermore, the findings suggest that employing our suggested hybrid
model can greatly reduce the processing time, which is 22 s, when contrasted to ResNet50,
which takes 32 s. All performance metrics accuracy, specificity, precision, and sensitivity
reached 100%. Our approach can accurately and effectively recognize tumors, even in
low-contrast CT images with respect to all quantitative assessments. Lastly, we can draw
the following conclusions: (1) Deep learning model performance is extremely intriguing for
use in medical equipment; the experimental result demonstrates significant improvement.
Moreover, the suggested technique is unaffected by discrepancies in texture and intensity
across demographics, imaging devices, patients, and settings; (2) the classifier distinguishes
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the tumor with comparatively high precision; (3) segmentation of very small tumors is
incredibly challenging, with the system being hyper-sensitive to contemplating local noise
artifacts as potential tumors.

The lack of large publicly available datasets forces CAD systems to use the available
small private datasets generated from hospitals and scanning facilities. This implies that
additional datasets should be made available for research and classification purposes. In
the future, this work can be further extended using a large clinical dataset besides applying
image processing techniques to enhance the visualization of images. Using a huge dataset,
a reliable and trusted system can be built and employed in clinics.
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Abstract: Accurate automated localization of cephalometric landmarks in skull X-ray images is the
basis for planning orthodontic treatments, predicting skull growth, or diagnosing face discrepancies.
Such diagnoses require as many landmarks as possible to be detected on cephalograms. Today’s
best methods are adapted to detect just 19 landmarks accurately in images varying not too much.
This paper describes the development of the SCN-EXT convolutional neural network (CNN), which
is designed to localize 72 landmarks in strongly varying images. The proposed method is based
on the SpatialConfiguration-Net network, which is upgraded by adding replications of the simpler
local appearance and spatial configuration components. The CNN capacity can be increased without
increasing the number of free parameters simultaneously by such modification of an architecture.
The successfulness of our approach was confirmed experimentally on two datasets. The SCN-EXT
method was, with respect to its effectiveness, around 4% behind the state-of-the-art on the small ISBI
database with 250 testing images and 19 cephalometric landmarks. On the other hand, our method
surpassed the state-of-the-art on the demanding AUDAX database with 4695 highly variable testing
images and 72 landmarks statistically significantly by around 3%. Increasing the CNN capacity
as proposed is especially important for a small learning set and limited computer resources. Our
algorithm is already utilized in orthodontic clinical practice.

Keywords: detection of cephalometric landmarks; skull X-ray images; convolutional neural networks;
deep learning; SpatialConfiguration-Net architecture; AUDAX database

1. Introduction

Cephalometry has been used for many years for the diagnosis of malformations, surgi-
cal planning and evaluation, and growth studies. This discipline relies on the identification
of craniofacial landmarks [1,2]. Cephalometric analysis, or cephalometrics, is the clinical
application of cephalometry to the field of orthodontics. Cephalometrics has been used
in orthodontic diagnosis to evaluate the pretreatment dental and facial relationship of a
patient, to evaluate changes during treatment, and to assess tooth movement and facial
growth at the end of treatment [3]. The first important step in cephalometric analysis is
accurate detection of cephalometric landmarks on the cephalogram, i.e., an X-ray image
of the craniofacial area (shortly, a skull image). In the cephalometric assessment, certain
carefully defined points should be located on the radiographs, and linear and angular
measurements are then made from these points [3]. Only accurate measurements and
calculations represent diagnostic aids for orthodontists.

There exist lateral and frontal cephalograms. Lateral cephalograms provide a lateral
view of the skull, while the frontal cephalograms present an antero-posterior view of the
skull. The lateral cephalograms will be utilized in this study. Figure 1 depicts sample
lateral cephalograms, captured in a natural head position, which enables the repeatability
of image capture and comparison of different cephalometric analyses.

Early attempts for computerized detection of cephalometric landmarks were found
around the year 2000. Several (prototype) methods for automatic landmark identification
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from skull X-ray images (cephalograms) have emerged, based on heuristic features and
rigid rules. These methods were highly dependent on the quality of the input images,
and were adapted for a small number of landmarks [1] (the number of landmarks is
meant here as the number of different types of landmarks we are looking for in each
image). More mature methods, as well as learning-based approaches, emerged after
2010 [4,5]. Lindner et al. [5,6] proposed an efficient detection method based on Haar-
like features and random forests (RFs). An RF was trained for each landmark in order
to predict the more probable position of that landmark. Each tree in the RF voted for
the likely new position. The RF regression-voting mechanism was integrated into the
constrained local model framework that optimized a statistical shape model and total
votes over all landmark positions. This detection system was adapted for the detection
of 19 cephalometric landmarks. A similar method with RF and Haar-like appearance
features was proposed by Ibragimov et al. in [4,5,7]. The difference was that a matching
of the appearance shape model in a target image was sought by using a game-theoretic
optimization framework. The fitted model determined the optimal landmark positions.

Recently, successful methods have emerged based on convolutional neural networks
(CNN) and deep learning. We expose the four best, which are comparable in effectiveness.
Chen et al., in a conference article [8], proposed the CNN-based architecture that consists
of the pretrained VGG-19 net as a feature extraction module, an attentive feature pyramid
fusion (AFPF) module, and a prediction module. They fused features from different levels
in order to obtain high-resolution and semantically enhanced features in the AFPF module.
A self-attention mechanism was utilized to learn corresponding weights for the fusion for
different landmarks. Finally, a combination of heat maps and offset maps was employed in
the prediction module to perform a pixel-wise regression-voting. The next conference paper
is from Li et al. [9], who modeled landmarks as a graph and employed two global-to-local
cascaded graph convolutional networks (GCNs) to reposition the landmarks towards the
target locations. The graph signals of the landmarks were built by combining local image
features and graph shape features. The authors state that their method is able to exploit the
structural knowledge effectively and allow rich information exchange between landmarks
for accurate coordinate estimation. The first GCN estimated a global transformation of
the landmarks, while the second GCN determined local offsets to adjust the landmark
coordinates further. Payer et al., in a journal article [10], introduced a CNN architecture that
learns to split the localization task into two simpler sub-problems, thus reducing the overall
need for large training datasets. Their fully convolutional SpatialConfiguration-Net (SCN)
utilized one component to obtain locally accurate but ambiguous candidate predictions,
while the other component improved robustness to ambiguities by incorporating the spatial
configuration of landmarks. Since our research is based on this method, we will provide
details about the SCN in the next sections. Lastly, we expose the method by Song et al. [11].
The authors proposed the usage of an individual model for each landmark, where each
model was trained by the ResNet50 architecture. These constructed models were applied
to smaller patches extracted from the cephalometric image. The method assumed that
each patch that was passed into the model must contain the landmark that was being
detected by this model. To ensure this, each testing image was aligned to every training
image by using a translational registration. Landmarks from the training image with the
best fit after registration were considered as centers for the extracted patches. The results
obtained on the database of public cephalograms with 19 landmarks were comparable
to other state-of-the-art methods. However, this method does not scale well to a larger
number of cephalometric landmarks and training images.

In order for cephalometric analysis to be meaningful and useful as a diagnostic tool, it
is necessary to detect as many cephalometric landmarks on the cephalogram as accurately
as possible. Usage of lateral cephalograms predominates today in the field of orthodontics;
therefore, we also focused on this type of cephalograms in our research (similar to the
related works summarized above). The identified shortcomings of early related works
indicated that these methods were adapted for a small number of cephalometric landmarks
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and for a small number of high-quality input images. State-of-the-art methods [8–10] are
practically invariant to brightness/contrast variations, or to situations during cephalograms’
capture, respectively. Additionally, an addition of new landmarks that we would like
to detect with these methods is relatively simple, as we only need to supplement the
learning set and retrain the CNNs (and possibly add some channels). Although state-of-
the-art methods have proven to be very effective in locating cephalometric landmarks,
it should be noted that these methods have been validated on only 19 landmarks and
on just some hundred testing images. Thus, a research question arises as to whether the
CNN architectures of these methods have sufficient capacity to localize a larger number of
landmarks effectively on a larger set of testing images captured with different X-ray devices.
We are tackling a real-world problem from the field of orthodontics in this research; namely,
we are developing a detection method as an enhancement of the state-of-the-art, which will
be able to detect a large number of cephalometric landmarks (in our study 72) on highly
variable testing images. It is understood by variability that testing images are of different
sizes (and different spatial resolutions), and that they were captured by using different
X-ray devices in different orthodontic clinics (most likely with different device settings).
On the other hand, this research also solves one of the concrete problems of the industry
(e.g., the AUDAX company). Virtually every orthodontic software includes a module
for detecting cephalometric landmarks. A greater number of very precisely localized
landmarks of course means better usability of such software. For accurate cephalometric
analyses, we need to localize as many landmarks as possible, as only in this way can
we diagnose discrepancies or patients’ face disharmony, predict skull growth, or plan
treatments.

In this study, we will adapt the architecture of the state-of-the-art SCN network in
order to detect 72 cephalometric landmarks on highly variable X-ray images. The aim is, on
the one hand, to increase the capacity of the CNN (i.e., the ability to learn several different
transformation functions), while maintaining approximately the same number of free
parameters (degrees of freedom—DoF) as the basic SCN network has. The latter is achieved
by expanding the local appearance and spatial configuration components of the SCN
network, and not by a raw increase of filters’ sizes and numbers of channels. Maintaining
DoF while increasing network capacity is important, especially for a small learning set and
limited computer resources, which is often the case in healthcare. This, in turn, means a
better ability to train such an NN and prevent overfitting. The effectiveness of our proposed
SCN-EXT method was confirmed experimentally by detecting 72 cephalometric landmarks
on a challenging private database of 4695 cephalograms.

The contribution of this research work is summarized in

1. The development of a sophisticated landmark detection algorithm, where this algo-
rithm is built on the state-of-the-art SpatialConfiguration-Net neural network.

2. Introduction of the most effective algorithm for the detection of 72 cephalometric
landmarks on the lateral skull X-ray images.

3. The first study that assesses the effectiveness of the state-of-the-art cephalometric
landmark detection algorithms on a large number of landmarks and on a large number
of testing images.

This article is structured as follows. A short overview of cephalometric landmarks’
classification and employed evaluation databases is given in Section 2. A novel cephalo-
metric landmark detection algorithm based on the SpatialConfiguration-Net architecture
is described in detail in Section 3. Some considerations about the proposed method im-
plementation and CNN training are clarified in Section 4. This section also introduces
the evaluation metrics used in our experiments. Section 5 presents some of the results
obtained on the public and private databases, followed by Section 6, which emphasizes
certain aspects of our detection method. Section 7 concludes this paper briefly with some
hints about future work.
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2. Experimental Methods

2.1. Cephalometric Landmarks

There are two well-known classifications of cephalometric landmarks [3], namely,
(1) based on the origin, we distinguish between (i) anatomic and (ii) derived or constructed
cephalometric landmarks, and (2) based on the structures involved, we differentiate be-
tween (a) hard tissue and (b) soft tissue cephalometric landmarks. Anatomic landmarks
represent the actual anatomic structures of the skull (e.g., nasion, point A, point B, ANS,
PNS, etc.), while derived or constructed landmarks are obtained secondarily from anatomic
structures in a lateral cephalogram (e.g., gnathion, anterior point of occlusion, etc.). On
the other hand, the hard tissue cephalometric landmarks represent the actual hard tissue
structures of the skull, such as the nasal bone, frontal bone, maxillary bone, etc., while
soft tissue landmarks, as their name suggests, are located on the soft tissues (e.g., on the
forehead, nose, lips, etc.) [3]. Examples of hard tissue cephalometric landmarks are na-
sion, temporale, sella, menton, and gonion, while examples of soft tissues landmarks are
subnasale, subspinale, stomion, soft tissue pogonion, and soft tissue gnathion [3].

2.2. Evaluation Databases

Two different databases were used to evaluate the effectiveness of the detection meth-
ods in this study, namely, the ISBI public image database with 19 annotated cephalometric
landmarks on each image, and the AUDAX private image database with 72 landmarks
per image.

2.2.1. ISBI Public Database

Wang et al. [5] released a public database of 400 cehpalometric images, where 19 of
the more common landmarks were annotated on each image. A list of all the annotated
landmarks is presented in Table 1. Radiographs were collected from 400 patients ranging
from 6 to 60 years old. All cephalograms were captured by the same X-ray device. Every
image was annotated manually by two experienced medical doctors. A ground truth was
determined as an average of the annotations of both doctors. The images have the same
dimension of 1935 × 2400 pixels with 10 pixel/mm spatial resolution.

Table 1. A list of 19 cephalometric landmarks annotated in the ISBI public database. A description of
the landmarks and their significance can be found in [3].

−1i—Lower incisal incisior +1i—Upper incisal incisior ANS—Anterior Nasal Spine Ar—Articulare
Gn—Gnathion Go—Gonion Li’—Lower lip Ls’—Upper lip
Me—Menton N—Nasion Or—Orbitale Pg—Pogonion

Pg’—Point Soft Pogonion PNS—Posterior Nasal Spine Po—Porion S—Sella Turcica
Sn’—Subnasale SS—Subspinale (Point A) SM—Supramentale (Point B)

This database is divided into three sets. The first 300 out of 400 images are from the
2015 Automatic Cephalometric X-Ray Landmark Detection Challenge [4]. These 300 images
were split into a training set (150 images) and testing set 1 (the remaining 150 images). The
2016 Automatic Cephalometric X-Ray Landmark Detection Challenge brought another 100
images to this public database. These 100 images are denoted as testing set 2. Figure 1a
depicts a sample annotated image from this public database. Landmarks are actually pixels,
but they are depicted as white circles in this image.
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(a) (b)

Figure 1. Sample annotated cephalograms from (a) the ISBI public database [5], with 19 landmarks,
and (b) the AUDAX private database, with 72 landmarks (white circles).

2.2.2. AUDAX Private Database

A private database was constructed during an industrial project between our research
group and the Slovenian company AUDAX (https://audaxceph.com (accessed on 13 April
2022)), which is specialized for the development of orthodontic software. This database
consists of 4695 unique skull X-ray images. We assumed that each radiograph belongs to
a different subject. Information about the image spatial resolution and about the subject
in the image (e.g., gender, age, health status) was not provided by AUDAX. The size of
images ranged from 355 × 480 pixels (min size) to 4417 × 5963 pixels (max size). There
are 287 unique image sizes in this database. On this basis, we concluded that the images
were captured with just as many different X-ray devices. The five most common sizes of
radiographs were as follows: 2808 × 2148 pixels (1598 images), 1000 × 900 pixels (419),
2685 × 2232 pixels (310), 1804 × 2148 pixels (309), and 1000 × 765 pixels (222). An average
image size was 1740 × 2012 pixels.

Seventy-two cephalometric landmarks were annotated on each image by a single
experienced orthodontist. A list of all annotated landmarks is gathered in Table 2. Most
landmarks are anatomic landmarks, while the rest were constructed relative to anatomic
landmarks, or were defined as intersections of particular lines and/or planes, where
lines/planes were defined by specific anatomic landmarks or skull structures. An example
of a constructed landmark is RT-abo, which is lying on a silhouette, halfway between the
landmarks articulare (Ar) and gonion (Go). Based on their expertise, AUDAX classified
landmarks into five classes with respect to their importance in cephalometric analyses.
The 38 most important landmarks (class 5) are highlighted in Table 2. On the other hand,
AUDAX also classified the landmarks into five classes with respect to the difficulty of their
determination. The six most difficult to determine landmarks (class 5) are underlined in
Table 2. All 72 denoted landmarks were used as the ground truth in our research. Figure 1b
depicts a sample image from this private database, with 72 annotated cephalometric
landmarks.

The K-fold validation technique was employed by utilizing data from this database to
verify the detection methods. The K parameter was set to 3, thus dividing the private database
randomly into 3 folds of the same size (i.e., each fold consists of 1565 unique images).
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Table 2. A list of 72 cephalometric landmarks annotated in the AUDAX private database. All
19 landmarks from the ISBI public database are also annotated in this database (denoted encircled).
The 6 most difficult to determine landmarks are underlined, while the 38 most important landmarks
for the cephalometric analyses are bolded. A description of the landmarks and their significance can
be found in [3].

−1a–Apex of lower incisor −1i—Lower incisal incisor
−6a—Apex of lower 1st

molar
−6c—Cusp of lower 1st

molar
−6d—Distal side of lower 1st

molar +1a—Apex of upper incisor +1i—Upper incisal incisor
+6a—Apex of upper 1st

molar
+6c—Cusp of upper 1st

molar
+6d—Distal side of upper 1st

molar +St’—Upper Stomion A—Point A

A’—Point Soft A ANS—Anterior Nasal Spine
APocc—Anterior point of

occlusion
Ar—Articulare

B—Point B B’—Point Soft B Ba—Basion Ci–Clinoidale
Co—Condylion Col’—Columella Cp—Condylion posterior Cs—Condylion superior

D—Point D DC—Point DC ER—End Ramus FMN—frontomaxillary nasal
suture

Gl’—Glabella Gn—Gnathion Gn’—Point Soft Gnathion Go—Gonion

Hy—Hyoid Ir—Point Ir L1—L1 Li’—Lower lip

LLi—Lower Lip inside Ls’—Upper lip Me—Menton Me’—Point Soft Menton

N—Nasion N’—Soft Nasion NC—Nasal crown Or—Orbitale

Pg—Pogonion Pg’—Point Soft Pogonion PM—Suprapogonion Pn’—Pronasale

PNS—Posterior Nasal Spine Po—Porion
PPocc—Posterior point of

occlusion
Pt—Pterygoid point

R1–R1 R3–R3 Rh—Rhinion RO—Orbital roof of orbital
cavity

RT-abo—aboRamalTangent S—Sella Turcica Se—Entry of Sella SE—Sphenoethmoidal point
Si—Floor of Sella Sn’—Subnasale SOr—Supraorbitale Sp—Dorsum of Sella

−St’—Lower Stomion Te—Temporale tGo—Constructed Gonion
(tangent)

Th’—Throat

U1—U1 ULi—Upper lip inside W—Walker point ZyO—Zy Orbit Ridge

3. Computational Methods

3.1. SpatialConfiguration-Net: A Summary

Our proposed landmark detection approach is based on the SpatialConfiguration-Net
(SCN) neural network introduced in [10]. The SCN network is a fully convolutional NN
and consists of two components, namely (i) local appearance and (ii) spatial configuration
components. Both components generate a multidimensional heat map h:

h(x) ∈ R
H×W×N , (1)

where x is a location vector within the heat map, H and W are the height and width of
the heat map (also the size of the input image), and N denotes the number of heat map
channels (also the number of targeted landmarks). A location of the n-th landmark is
predicted as the location of the global maxima in the n-th heat map channel.

The local appearance component is a multi-scale pyramid style network that employs
a series of convolutions and downsamplings to extract feature maps. These feature maps
are then upsampled and integrated across different scales. An output of this component
is the multidimensional or multichannel heat map h of dimension of H × W × N. Every
channel of h can, therefore, be treated as a separate 2D heat map (H × W) that estimates
the location of a selected landmark (i.e., N channels for N landmarks).

The spatial configuration component downsamples, by a large factor, the heat map
estimated by the local appearance component. It processes this heat map with another
series of convolutions with larger kernels, and produces the new multichannel heat map,
which is upsampled appropriately at the end. Afterwards, the heat maps from the spatial
configuration component, hSC, and from the local appearance component, hLA, are merged
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into a new multidimensional heat map h by using the Hadamard product (i.e., element-wise
product) as:

h(x) = hLA(x) ◦ hSC(x). (2)

Figure 2 visualizes the above described procedure.

Figure 2. A rough block diagram of the SpatialConfiguration-Net. Depicted are ground plan views
of maps (i.e., a single 2D map/channel is shown for a selected landmark).

The local appearance component was designed to learn an accurate landmark position
based on local information. On the other hand, the spatial configuration component
is aimed to discriminate between possible landmark locations using a larger or global
context. An element-wise multiplication of both heat maps is an essential part of the SCN
architecture. The latter enables the local appearance component to make multiple estimates
for a landmark location across the image, while the spatial configuration component is
allowed to selected between these estimates. The local appearance component can, thus, be
focused on accurate position estimation without a global discrimination knowledge, while
the spatial configuration component does not need to have an accurate landmark’s position
information, but it is focused on the global discrimination of the landmark’s position.

3.2. Proposed SCN-EXT Method

The aim of this research is to develop an effective deep-learning-based method for
detecting a large number of cephalometric landmarks from skull X-ray images. State-of-the-
art cephalometric landmark detection methods such as [8–11] have proven very effective
on a small number of landmarks. Our goal, however, is to upgrade the state-of-the-art
appropriately, also for more challenging kinds of detection.

A substantial increase in the number of targeted landmarks requires, typically, an
increase in a (convolutional) neural network’s capacity. A trivial solution of increasing
the number of filters for each convolution layer proved to have two drawbacks. First,
doubling the number of filters squares the number of free parameters for most layers. Con-
sequently, the memory requirements grow quadratically. Second, increasing the number of
parameters typically makes the learning of an NN with the same training set and similar
hyperparameters either unstable or prone to overfitting [12].

The considerable inflation of free parameters is particularly acute for the SCN network,
as we have found through experimentation that this network learning has become very
unstable. It should also be noted that an exhaustive fine-tuning of the initialization constants
for particular SCN layers were carried out. It is expected that an additional fine-tuning of the
SCN network would be required by larger expansion of the free parameters. However, the
SCN network performed with high accuracy when detecting 19 cephalometric landmarks
on testing images from the ISBI public database (see Section 2.2).

We wanted to take advantage of the high detection effectiveness of the SCN network,
but, at the same time, we wanted to avoid re-evaluating (i.e., fine-tuning) the initialization
constants if the SCN network capacity was increased significantly. Therefore, we propose
the following SCN network extension, denoted as SCN-EXT, which increases the capacity
of the NN by adding a series of new, but with the same hyperparameters, basic building
blocks of the SCN network.
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We constructed the SCN-EXT network by introducing J repetitions of the local appear-
ance component into the SCN network, where each of these components was connected
with an input image. Figure 3 depicts the basic elements and outputs of the SCN-EXT
network. An output of the local appearance component is a multichannel heat map (di-
mensions of H × W × N), which is passed on to the input of the new spatial configuration
component. We must, therefore, integrate J spatial configuration components into the
SCN-EXT network, i.e., one for each local appearance component. The spatial configuration
component also returns as an output of the matrix of dimension H × W × N (i.e., spatial
configuration map). Subsequently, combining the outputs of all J repetitions of a particular
component follows. The J outputs of the local appearance components are summed simply
into the final local appearance heat map. Similarly, the spatial configuration components’
outputs are combined (see Figure 3). Finally, identical to the original SCN network, both
the final local appearance and the final spatial configuration heat maps are merged, by
using the Hadamard product, into a prediction map, which is then utilized for predicting
landmarks’ locations. The described procedure for constructing the prediction map h is
written formally as:

h(x) =

(
J

∑
j=0

hLA
j (x)

)
◦

(
J

∑
j=0

hSC
j (x)

)
, (3)

where hLA
j and hSC

j denote heat maps of the j-th local appearance and the j-th spatial
configuration component, respectively. It should be emphasized once again that, in the
SCN-EXT network, we employed the basic components with the same hyperparameters
from the SCN network (i.e., components were initialized with the recommended settings
from [10]).

Figure 3. A rough block diagram of the proposed extended SpatialConfiguration-Net (SCN-EXT).

By adding J − 1 new local appearance and spatial configuration components, the
proposed SCN-EXT network is able to learn J2 − 1 functions more than the original SCN
network. Each such component (i.e., neural network) has independent training parameters,
and can, thus, learn a subset of the targeted landmarks. On the other hand, compared to
the base SCN network, the number of free parameters in SCN-EXT grows linearly with the
number of components used.

Landmarks in a training set are not separated into groups (e.g., with respect to an
individual anatomical feature or with respect to the neighboring position), so a benefit of
utilizing several components in the SCN-EXT is that they can optimize for self-determined
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and overlapping groups of landmarks. Each component (neural network) needs to estimate
only a fraction of all the targeted landmarks, and multiple networks can cooperate on the
same landmark.

An idea in our solution is similar to the so-called grouped convolutions, where the
channels in a single convolution layer are grouped together. Each group of channels is
processed by a separate set of convolution kernels without overlap between the groups.
This has a similar advantage as our proposed approach: a moderate increase of free
parameters despite a greater increase of convolutional filters. Increasing the capacity of
the CNN network considerably, i.e., the ability to learn several new functions, by a small
increase of the number of degrees of freedom (DoF), thus provides more stable learning by
using the same training set.

4. Implementation Details and Evaluation Metrics

4.1. Implementation Details and CNN Training

First of all, we will describe image preprocessing and the preparation of training data,
followed by an explanation about the training procedure.

Initially, each image was zero-padded along its shorter axis to make it square shaped.
Afterwards, it was resampled to a size of 512 × 512 pixels. A variability in the training set
was increased by an augmentation. The training images were augmented “on the fly” by
random rotations (±5◦), uniform scaling with a scaling factor selected randomly between
0.6 and 1.2, and intensity changes with a random factor from an interval [0.75, 1.3].

The ground truth heat maps were generated as instructed in [10]. Gaussian kernels
were placed at known landmark positions. The Gaussian kernel values were multiplied by
a constant γ = 100 to reduce training instabilities. The standard deviations of the kernels
were the training parameters, where they were regularized by using L2-regularization with
a weight of 20.

All our own implemented neural networks were trained by using the Adam optimiza-
tion algorithm [13], with an initial learning rate of 1 × 10−4. The learning rate was reduced
by a factor of 0.5 every 50 epochs without loss improvement on the validation set. The
training was limited to a maximum of 150 epochs.

Our software was implemented by using the Python programming language. The
constructed and implemented deep neural networks were trained by using the TensorFlow
software library. Originally, version 1.15 was employed, but later the code was ported to
2.x libraries (at the end, the models were trained in the 2.4 version library).

All experiments were conducted on a computer system with an AMD Ryzen Thread-
ripper 2920X 12-Core processor, an NVidia Quadro GV100 graphical card with 32 GB of
VRAM and 64 GB of physical RAM, and Samsung EVO 970 NVMe 1TB storage.

4.2. Evaluation Metrics

Evaluation metrics and the protocol prescribed for the ISBI public database [4,5] were
employed to validate the cephalometric landmark detection methods in this study. The
validation was based on the radial error (RE), calculated as the Euclidean distance d()
between the estimated, EST, and ground-truth landmark location, GT (i.e., the 2D point).
A basic metric mean radial error (MRE) is derived from this error, where the MRE is
calculated as the average of radial errors over L observed landmarks, which is written
formally as

MRE =
1
L

L

∑
i=1

d(ESTi, GTi), (4)

where ESTi in GTi denote the estimated and ground-truth locations for the i-th landmark.
It should be stressed that L denotes the number of landmarks, and does not necessarily
represent the number of different types of landmarks observed in each X-ray image (this is
denoted as N in this article).
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Two additional statistics of radial error were calculated besides the mean (and the
standard deviation) in this research, namely, the median and the 90th percentile of radial
error. All the mentioned measures can be estimated per landmark type, per image, or even
per all landmark types and all images (i.e., over all landmarks in all images in the database).
These metrics are presented either in pixels or in mm if the spatial resolutions of the images
are known.

The next metric that has been introduced for the ISBI database is the successful
detection rate (SDR), which evaluates the precision (i.e., the positive predictive value) of
landmark detection with respect to the radial error. The metric SDR is assessed typically in
respect to the radial error up to 2 mm (Class 1), 2.5 mm (Class 2), 3 mm (Class 3), and 4 mm
(Class 4) from the ground-truth landmark position. It should be noted that we were unable
to determine this metric for the AUDAX private database, because the spatial resolution
information was not known for this database.

5. Results

First, we will describe the experiment by which we fine-tuned the SCN-EXT network
architecture, and afterwards, we will present the results obtained by the detection of
cephalometric landmarks on the ISBI and AUDAX databases.

5.1. SCN and SCN-EXT Architecture Determination

Our research is based on the SCN neural network. The implementation of this network
is, to the best of our knowledge, not publicly available; therefore, based on the available
information, we recreated the SCN network ourselves. We tested our own implemented
SCN on the public ISBI database by using the (hyper)parameters reported in [10]. The SCN
network had the following architecture. The local appearance component had 4 layers and
128 filters with 3 × 3 kernels. The spatial configuration component used a downsampling
factor of 16 and included 128 filters of 11 × 11. In total, this network had around 7.90
million (M) trainable parameters. The SCN network with the described architecture was
referred to in the sequel as “our implementation of the method”.

Our proposed SCN-EXT solution is a generalization of the SCN architecture, with J-
times repetition of local appearance and spatial configuration components (see Section 3.2).
We determined the most acceptable SCN-EXT architecture by using the following simple
experiment. This experiment was conducted on the AUDAX private database, whereas
folds 2 and 3 formed the training set, while fold 1 was utilized as the testing set. According
to the presented theory in Section 3, we integrated J repetitions of both components of the
SCN network into the SCN-EXT network. If we had employed our fine-tuned SCN for this
purpose, then the memory requirements would have become so high (even at small values
of J) that this problem could not be solved with today’s available hardware. Therefore, we
utilized the following simplified SCN architecture for this experiment: (i) local appearance
component: 4 layers and 32 filters with 5 × 5 kernels; and (ii) spatial configuration compo-
nent: a downsampling factor equal to 16 and 32 filters with 11 × 11 kernels. Afterwards,
the SCN-EXT networks were constructed by changing the number of repetitions of SCN
network components, whereas parameter J was varied between 1 and 10 with step 1. It
should be stressed that for J = 1, we are dealing with the original SCN network.

The results obtained by using different SCN-EXT architectures are summarized in
Table 3. The number of repetitions (J) of the SCN architecture components is written next to
the method name. For comparison, we also added in this table the results of the fine-tuned
SCN architecture (see the first line). Three metrics are shown based on the radial error. All
metrics were evaluated across all 72 cephalometric landmarks and across all 1565 testing
images. The values are given in pixels, where a lower value indicates the more effective
method. We added a number of trainable parameters in the last column. Marked in bold
is the SCN-EXT architecture, i.e., SCN-EXT (J = 6), which was used in all subsequent
experiments. We chose this network because it is a good compromise between effectiveness
and training time. At the same time, this network is similar to the fine-tuned SCN with
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respect to the DoF (see the “trainable” column). As both networks have similar DoFs, in
fact the SCN-EXT network (J = 6) has even 1 M lower DoF, all differences in the results can
be attributed to changes in the CNN architecture, and not to a raw increase of the DoF (as
in the case if we would utilize SCN-EXT with J = 9).

Table 3. Effectiveness of different SCN-EXT architectures on cephalometric landmark detection on
fold 1 of the AUDAX private database. The column MRE denotes the mean and standard deviation
of the radial error, while columns PCTL50 and PCTL90 denote the 50th (i.e., median value) and 90th
percentile of the radial error, respectively. All values are in pixels (“px”). The column “trainable”
presents the number of trainable parameters in millions.

Method MRE (px) PCTL50 (px) PCTL90 (px) Trainable

SCN † 11.56 6.70 24.91 7.90 M

SCN-EXT, J = 1 12.35 7.21 26.44 1.15 M
. . ., J = 2 11.80 6.90 25.25 2.29 M
. . ., J = 3 11.57 6.75 24.72 3.44 M
. . ., J = 4 11.56 6.73 24.68 4.58 M
. . ., J = 5 11.54 6.69 24.57 5.73 M
. . . , J = 6 11.36 6.66 24.31 6.88 M
. . ., J = 7 11.42 6.67 24.30 8.02 M
. . ., J = 8 11.35 6.54 24.20 9.17 M
. . ., J = 9 11.26 6.57 24.05 10.31 M

. . ., J = 10 11.48 6.60 24.48 11.46 M
†—Our implementation of the method.

5.2. ISBI Public Database

Initially, the effectiveness of our proposed SCN-EXT method, designed primarily for
cephalometric landmark detection, was assessed on the ISBI public database. We used the
prescribed methodology and established metrics [5]. The mean and standard deviation of
the radial error were calculated over all 19 cephalometric landmarks and over all testing
images. In addition, the successful detection rate (SDR) metric was evaluated for the
four prescribed classes. The results for testing set 1 are gathered in Table 4, while Table 5
summarizes the obtained results for testing set 2.

Table 4. Effectiveness of cephalometric landmark detection methods on the public ISBI database:
testing set 1. The column MRE denotes the mean and standard deviation of the radial error, while the
SDR columns denote the successful detection rate (in %) for the four specified classes.

Method MRE (mm)
SDR (%)

2 mm
SDR (%)
2.5 mm

SDR (%)
3 mm

SDR (%)
4 mm

Li et al. [9] 1.04 ± N/A 88.49 93.12 95.72 98.42
SCN [10] † 1.08 ± 1.08 87.30 91.40 94.25 97.33

Song et al. [11] 1.08 ± N/A 86.40 91.70 94.80 97.80
SCN-EXT 1.13 ± 1.11 85.61 90.60 93.96 97.44

Chen et al. [8] 1.17 ± N/A 86.67 92.67 95.54 98.53
Chen et al. [8] † 1.30 ± 2.07 83.65 90.70 94.81 97.86
Lindner et al. [5] 1.67 ± 1.48 73.68 80.21 85.19 91.47

SCN [10] ‡ N/A 73.33 78.76 83.24 89.75
Ibragimov et al. [5] N/A 71.72 77.4 81.93 88.04

N/A—Data not available. †—Our implementation of the method. ‡—Results reported just for the merged testing
set 1 and 2.

The effectiveness of the state-of-the-art methods were added to the tables as well. Im-
plementations of these methods were not publicly available; therefore, we just summarized
the results published by the authors of the methods. We reimplemented only two state-of-
the-art methods successfully. The remaining methods were either basically too ineffective
(e.g., methods [6,7]), or it was very difficult to scale them to the problem of 72 cephalometric
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landmarks’ detection (e.g., method [11]), or method descriptions were not comprehensive
enough to be able to reproduce them accurately (e.g., method [9]). Additionally, the results
of our methods’ implementations are presented in the tables, where they are marked by †
next to the method name.

The methods in both tables are arranged according to the decreasing value of the MRE
metric. Let us emphasize that a lower MRE value indicates a higher detection effectiveness
of the method, which means that the better methods are at the top of the tables.

Table 5. Effectiveness of the cephalometric landmark detection methods on the public ISBI database:
testing set 2. See Table 4 for denotations.

Method MRE (mm)
SDR (%)

2 mm
SDR (%)
2.5 mm

SDR (%)
3 mm

SDR (%)
4 mm

SCN [10] † 1.41 ± 1.40 74.84 81.42 86.89 94.47
Li et al. [9] 1.43 ± N/A 76.57 83.68 88.21 94.31
SCN-EXT 1.47 ± 1.44 74.53 82.21 87.21 93.68

Chen et al. [8] 1.48 ± N/A 75.05 82.84 88.53 95.05
Chen et al. [8] † 1.65 ± 2.22 71.79 80.32 86.21 93.84
Song et al. [11] 1.54 ± N/A 74.00 81.30 87.50 94.30

Lindner et al. [5] 1.92 ± 1.24 66.11 72.00 77.63 87.42
SCN [10] ‡ N/A 73.33 78.76 83.24 89.75

Ibragimov et al. [5] N/A 62.74 70.47 76.53 85.11

N/A—Data not available. †—Our implementation of the method. ‡—Results reported just for the merged testing
set 1 and 2.

5.3. AUDAX Private Database

The effectiveness of our proposed SCN-EXT method was also assessed on the AUDAX
private database. On this database, we applied the threefold validation technique, where
there were 1565 images in each fold and 72 cephalometric landmarks in each image. The
results obtained on the individual folds were merged, and, afterwards, summarized with
various statistics calculated over all images and over all cephalometric landmarks. We
calculated the mean radial error and the 50th and 90th percentiles of the radial error. The
spatial resolution for the AUDAX database is not known; therefore, all results are given
in pixels. The calculated metrics are gathered in Table 6. In addition to our proposed
SCN-EXT detection method, this table also presents the results of our implementations
of two state-of-the-art methods. The methods in the table are arranged according to the
decreasing value of the MRE metric. Based on publicly available information, we also
reimplemented the method by Li et al. [9], but, with the calculated MRE of about 34 pixels
and the median radial error around 25 pixels, we found that our attempt was completely
unsuccessful.

The effectiveness of the methods in Table 6 was also assessed with the nonparametric
Friedman’s statistical test [14] at a 0.05 significance level. The calculated p-value was equal
to 0, which indicates that not all the methods’ medians are equal. The proposed SCN-EXT
method had the lowest mean rank of 1.88, followed by the SCN method with the mean rank
of 1.94, and the method of Chen et al. [8] had the highest mean rank of 2.18. Let us evoke
that the lower mean rank correlates with the lower radial error, and, consequently, with the
higher effectiveness of the method. Subsequently, we conducted a multiple comparison test
of mean ranks, i.e., a pairwise comparison of methods. This analysis pointed out that all
three compared methods have significantly different mean ranks. On this basis, we argue
that our proposed approach has proven overall to be the most effective detection method
on the challenging AUDAX database.
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Table 6. Effectiveness of the better cephalometric landmark detection methods on the private
AUDAX database. The column MRE denotes the mean and standard deviation of the radial error,
while columns PCTL50 and PCTL90 denote the 50th (i.e., median value) and 90th percentiles of the
radial error, respectively. All values are in pixels.

Method MRE (px) PCTL50 (px) PCTL90 (px)

SCN-EXT 11.26 ± 17.51 6.52 24.13
SCN [10] † 11.57 ± 18.71 6.70 25.10

Chen et al. [8] † 12.19 ± 15.02 8.36 25.00
†—Our implementation of the method.

In the sequel, we extracted the metrics from the obtained results only for those 19
landmarks that are also annotated in the public ISBI database. The mean and standard
deviation of the radial error was calculated for each landmark and each compared method
separately over all images (i.e., 4695 images). These metrics are accumulated in Table 7.
The effectiveness of the methods was then assessed by Friedman’s statistical test (0.05
significance level), and by a multiple comparison test of mean ranks. In the table next to
the MRE value, we wrote in parentheses the order of methods with respect to the mean
rank (value 1 indicates the most effective and value 3 the least effective method), where
we denoted by an asterisk whether the differences in results are statistically significant.
Our proposed method proved to be the most accurate by 15 landmarks and the second
best by 4 landmarks, which is notably better than the compared methods. Improvements
were statistically significant for six landmarks. Finally, we calculated the MRE over all 19
landmarks (see the row “all landmarks” in the table). The effectiveness of our proposed
detection method was statistically significantly higher by at least 3% than for the compared
methods. The SCN method was shown to be the second most effective, followed by the
method by Chen et al. [8].

Table 7. Effectiveness of the compared methods on the AUDAX database. Considered are only
landmarks from the ISBI database. The mean and standard deviation of the radial error are presented
in pixels. A number and * in () denote the method’s rank and statistically significant difference. Better

results are marked in bold.

Landmark SCN-EXT (px) SCN [10] † (px) Chen et al. [8] † (px)

−1i–Lower incisal incisior 5.06 ± 7.34(1) 5.09 ± 7.48(2) 7.45 ± 7.72(3)

+1i–Upper incisal incisior 4.55 ± 6.72(1) 4.55 ± 6.83(2) 8.33 ± 7.77(3)

ANS–Anterior Nasal Spine 8.96 ± 10.88(1,∗) 9.35 ± 11.55(2) 12.16 ± 19.39(3)

Ar–Articulare 8.07 ± 9.38(1,∗) 8.44 ± 9.69(2) 9.56 ± 8.14(3)

Gn–Gnathion 7.11 ± 6.08(1,∗) 7.29 ± 6.22(2) 8.04 ± 6.17(3)

Go–Gonion 9.40 ± 8.50(2) 11.05 ± 10.15(3) 8.81 ± 7.11(1)

Li’–Lower lip 4.51 ± 6.77(1) 4.66 ± 12.77(2) 7.01 ± 6.80(3)

Ls’–Upper lip 4.49 ± 6.30(1) 4.63 ± 8.68(2) 7.16 ± 6.50(3)

Me–Menton 6.77 ± 6.52(1,∗) 6.94 ± 6.63(2) 7.86 ± 6.17(3)

N–Nasion 7.31 ± 10.21(2) 7.29 ± 10.24(1) 9.12 ± 10.09(3)

Or–Orbitale 12.22 ± 14.29(2) 12.15 ± 14.20(1) 12.62 ± 11.92(3)

Pg–Pogonion 7.17 ± 9.34(1) 7.24 ± 9.49(2) 9.62 ± 8.98(3)

Pg’–Point Soft Pogonion 9.02 ± 15.80(1) 9.30 ± 31.05(2) 9.88 ± 10.73(3)

PNS–Posterior Nasal Spine 9.14 ± 7.64(1) 9.31 ± 7.87(2) 11.65 ± 8.61(3)

Po–Porion 13.44 ± 15.34(1) 13.89 ± 16.21(2) 14.89 ± 12.43(3)

S–Sella Turcica 4.85 ± 3.58(1,∗) 4.99 ± 3.76(2) 5.20 ± 3.60(3)

Sn’–Subnasale 5.68 ± 5.35(1,∗) 5.84 ± 6.77(2) 8.02 ± 6.12(3)

SS–Subspinale (Point A) 11.02 ± 12.70(1) 11.28 ± 13.41(2) 14.16 ± 12.37(3)

SM–Supramentale (Point B) 12.88 ± 17.02(2) 12.92 ± 16.90(1) 14.08 ± 15.03(3)

All landmarks 7.98 ± 10.57(1,∗) 8.22 ± 12.82(2) 9.77 ± 10.29(3)

†—Our implementation of the method.
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We gathered in Tables 8 and 9 the ten most accurately and the ten least accurately
detected cephalometric landmarks by using our proposed SCN-EXT method. Among the
ten best detected landmarks, there are as many as six landmarks (in Table 8 they are circled),
which are also annotated in the ISBI database. The Th’ point from the soft tissue of the
throat was detected with the largest MRE error, which differs significantly from others
(see Table 9). The reason is that the throat is not fully visible on all cephalograms and,
therefore, an expert annotated the Th’ point very inconsistently (i.e., Th’ was annotated
only approximately). If the Th’ point was excluded from the metric calculation, the MRE
for the SCN-EXT method decreased by about 0.7 pixels to 10.57 ± 13.93 pixels (see also
Table 6). Similarly, the median radial error decreased to 6.44 pixels (previously 6.52) and
the 90th percentile of the radial error to 23.21 pixels (previously 24.13).

Table 8. Ten cephalometric landmarks from the AUDAX database detected most accurately by the
SCN-EXT method. For denotations, see Tables 2 and 6.

Landmark MRE (px) PCTL50 (px) PCTL90 (px)

Ls’–Upper lip 4.49 ± 6.30 3.14 8.49
Li’–Lower lip 4.51 ± 6.77 3.30 8.53

+1i–Upper incisal incisor 4.55 ± 6.72 3.00 8.30
Pn’–Pronasale 4.61 ± 7.13 3.46 9.20
S–Sella Turcica 4.85 ± 3.58 3.97 9.67

APocc–Anterior point of
occlusion 4.95 ± 5.27 3.66 9.60

Si–Floor of Sella 4.97 ± 4.61 3.90 9.97
−1i–Lower incisal incisor 5.06 ± 7.34 3.55 9.90

B’–Point Soft B 5.22 ± 6.69 3.64 10.06
Sn’–Subnasale 5.68 ± 5.35 4.41 11.58

Table 9. Ten cephalometric landmarks from the AUDAX database detected least accurately by the
SCN-EXT method. For denotations, see Table 6.

Landmark MRE (px) PCTL50 (px) PCTL90 (px)

SOr–Supraorbitale 15.81 ± 20.29 7.99 43.83
ZyO–Zy Orbit Ridge 16.90 ± 15.79 11.84 38.37

Te–Temporale 17.03 ± 18.05 12.39 35.41
Ir–Point Ir 17.09 ± 17.22 12.15 37.25

R1–R1 17.25 ± 14.82 13.25 35.61
Gn’–Point Soft Gnathion 18.59 ± 22.10 10.95 46.41

Gl’–Glabella 19.21 ± 20.64 11.91 46.66
R3–R3 19.58 ± 16.82 14.69 41.66

Rh–Rhinion 24.08 ± 33.69 10.49 81.31
Th’–Throat 60.15 ± 76.76 28.97 177.48

6. Discussion

In this study, we upgraded the state-of-the-art SCN neural network to the SCN-EXT
network by adding the J repetitions of both the local appearance (LA) component and the
spatial configuration (SC) component into the original SCN architecture. All J replicates
of each component were summed up simply, and both sums were, finally, combined by
using the Hadamard product. By modifying the architecture in this way, we increased
the capacity, as the new SCN-EXT network is able to learn J2 − 1 more transformation
functions than the basic SCN network. It is completely trivial that if we add J copies of
LA and SC components, then the capacity of such a modified network will, of course,
increase compared to the capacity of the original SCN network (if the same LA and SC
components are utilized). However, the contribution of our approach is that by J-times
repeating and merging the simpler LA and SC components, we can maintain approximately
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the same DoF of the new SCN-EXT network as has the original SCN network with the
more complex LA and SC components, while we simultaneously increase the capacity and
learning ability of the SCN-EXT, respectively. The latter is especially acute if processing
and memory resources are limited; namely, training the large models (i.e., with large DoF)
requires powerful computing units, a large learning set, and a large primary memory.

This research was focused on the problem of detecting many cephalometric landmarks
on diverse lateral skull X-ray images. The SCN-EXT network was designed primarily
for this purpose. We have shown experimentally (see the Section 5) that the SCN-EXT
network components learn well to predict landmark locations. In our current solution,
we do not supervise a training by forcing individual components to learn how to localize
a specific subset of landmarks. The latter would be achieved, for example, by adding
the L1 regularization term for sparsity into the training, which could be one of the future
research guidelines.

The final architecture of the SCN-EXT network was determined according to the
capacity and DoF of the original SCN network. The SCN network was fine-tuned to detect
19 cephalometric landmarks in the ISBI public database. The LA and SC components
utilized there were used as the basis in our work. The goal on the private AUDAX database
was to localize 72 cephalometric landmarks; therefore, we modified the architecture of
the SCN network only slightly, namely, such that the LA and SC components were able
to process inputs with 72 channels. The SCN network that aimed for a detection of 19
cephalometric landmarks (ISBI database) had 6.20 M trainable parameters, while the
DoF increased to 7.90 M in the case of detecting 72 landmarks (AUDAX database). The
SCN-EXT architecture was determined by a simple experiment on the AUDAX database
(see Section 5.1). We varied the number of replicates, J, of the LA and SC components,
and monitored the MRE by cephalometric landmarks’ detection. Much simpler LA and
SC components were applied than in the original SCN. Finally, we chose the SCN-EXT
architecture with J = 6 repetitions of both components with respect to the hypotheses set
out in this study. The SCN-EXT network had 6.88 M trainable parameters when detecting
72 landmarks (AUDAX database), while the DoF decreased to 4.16 M if this architecture
was adapted for the ISBI database (i.e., reducing the number of channels). It can be noticed
easily that the SCN-EXT network had, on both databases, much fewer trainable parameters
than the original SCN.

In order to compare the results of our proposed SCN-EXT method with the results
of related works, we reimplemented the SCN method and the method by Chen et al. [8]
successfully. We also implemented the method by Li et al. [9], but the results, obtained with
our implementation of this method, differed greatly from those reported (see the previous
section). We deduced that a reason for the failure to reproduce the method is as follows: the
method by Li et al. [9] models each landmark as a graph node. Each node is associated with
the landmarks’ positions and a feature vector that is extracted from a processed image at
that position. The feature vector processing is conducted by using the HRNet18 backbone
convolutional network. This method consists of two stages. The first stage estimates a
global perspective transformation to align the mean positions of landmarks, constructed
from the training data with the specific image. Afterwards, the second stage refines local
landmark locations. The estimated global perspective transformation did not improve the
landmarks’ locations regularly, but, rather, it distorted them. A network that predicted nine
free parameters of the perspective transformation matrix was described in [9] explicitly.
However, DeTone et al. argued in [15] that such approach is unreliable and difficult
to train perspective transformations. Therefore, they suggested applying the four-point
estimation approach instead. It is unclear, though, how this four-point estimation would be
applied for the landmark detection. The reason for the ineffectiveness of this method was,
consequently, sought in the poorly estimated perspective transformations. As mentioned
in the Introduction, the method by Song et al. [11] does not scale well to a larger number of
cephalometric landmarks and training images. The authors validated their approach on the
ISBI public database (i.e., on 19 landmarks and 150 testing images). They reported that a
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registration of a single testing image to training images was completed in approximately 20
min. In the AUDAX database, there were 3130 training images per one fold. We estimated
that registration in this case would require about 20 times more processing time, i.e., about
400 min per one testing image. In total, this would mean 3 folds × 1565 images × 400
min per image = 1,878,000 min, or around 1304 days, to carry out the registration. The
latter, of course, is not acceptable, so we have not implemented this method. The remaining
methods from Table 4 were around 40% behind the SCN method in terms of effectiveness,
and were, therefore, not included in the comparison on the private AUDAX database.

First, let us analyze the results on the ISBI public database. The effectiveness of the pro-
posed SCN-EXT method is comparable to the effectiveness of state-of-the-art cephalometric
landmark detection methods. The SCN-EXT is, on testing set 1, less effective by about
8.65% than the best method by the authors Li et al. [9], and on testing set 2 by about 4.26%
than the best SCN method (see Tables 4 and 5). We were unable to reproduce the results
of [9], because important implementation details are missing in this method’s presentation.
Undoubtedly, one of the reasons for the lower effectiveness of our SCN-EXT method is that
the architecture was established by using the AUDAX database (and not the ISBI data on
which the method was actually applied). It should be noted that the DoF of the SCN-EXT
method was almost one-third smaller than the DoF of the SCN method. It can also be seen
on testing set 2 that the SCN and SCN-EXT methods have very similar SDR metrics. A great
similarity between the methods was also perceived on testing set 1. A reason for the higher
MRE of the SCN-EXT method is, therefore, attributed to those landmarks for which the SDR
was >4 mm (i.e., incorrectly detected landmarks were detected more erroneously than in
the SCN method). Finally, let us emphasize that the ISBI database is a small database with
a small learning set (150 images), and with only 250 testing images divided into two sets.

Let us continue with an analysis of the results on the AUDAX private database. This
database is very challenging, as it contains 4695 (testing) images, divided into 3 folds,
in 287 very different sizes. A goal was to localize 72 cephalometric landmarks in each
image. Spatial image resolution data were not available. To the best of our knowledge,
this is the first such public or private database with a large number of X-ray images and
a larger number of landmarks on which the cephalometric landmark detection methods
have been verified. Taking into account all 72 cephalometric landmarks, our proposed
SCN-EXT method proved to be superior compared to other state-of-the-art methods. It
was more effective than the second-ranked SCN method by about 2.68% (see Table 6). The
differences and rankings were confirmed statistically significantly by the nonparametric
Friedman’s test, and by the multiple comparison test of mean ranks. If we took into
consideration from the set of all cephalometric landmarks only those 19 landmarks that
were also annotated in the ISBI public database, then the SCN-EXT method this time
again proved to be statistically significantly the best method. It surpassed the second-
best SCN method by about 2.92% (see Table 7). A similar conclusion was drawn if we
compared methods at the level of an individual cephalometric landmark. In this case, the
SCN-EXT method was demonstrated to be the more effective method on 15 out of the
19 landmarks, and the second best on 4 landmarks. Afterwards, we arranged the detection
effectiveness for the mentioned 19 landmarks with respect to the detection effectiveness
for all 72 landmarks on the AUDAX database, where only our SCN-EXT method was
observed. It was discovered that as many as 6 landmarks ranked among the top ten
(even in the top three, see Table 8), 10 landmarks among the top twenty, and 15 landmarks
among the top thirty-five most accurately detected cephalometric landmarks. The less
accurately localized were the landmarks point A, orbitale, point B, and porion, as the least
accurately detected landmark in 52nd place. On this basis, we argue that the ISBI database
consists of 19 relatively easier to detect cephalometric landmarks. On the other hand, the
AUDAX database can be said to contain at least 33 cephalometric landmarks, which are
more difficult to localize than landmarks in the ISBI database. The latter makes the AUDAX
database much more demanding than the ISBI database.
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Figure 4 depicts the qualitative result of cephalometric landmarks’ detection by using
our proposed SCN-EXT method on the AUDAX private database. Seventy-two estimated
(denoted by a red x) and ground-truth (blue circle) cephalometric landmarks are superim-
posed on the skull X-ray image. The predicted and correct location of the landmarks are
connected by the green line, where the following applies: the shorter the line, the lower
the radial error. It can be noticed that, with the exception of the point on the throat, all the
remaining cephalometric landmarks were localized extremely accurately.

Figure 4. Sample detection result, superimposed on the X-ray image from the AUDAX private
database. Cephalometric landmarks were determined by the proposed SCN-EXT method. Estimated
landmarks are denoted by a red x, while ground-truth locations are superimposed as blue circles.

The rater’s annotations were also analyzed on the AUDAX database. We wanted to
find out the positions of which landmarks varied the most on the skull, and, whether the
results obtained with our SCN-EXT method were consistent with these findings; accord-
ingly, if the position of the landmark varied slightly on the skull and whether this made
our method more accurate, and vice versa. Just a few findings are presented in the sequel,
as this analysis is not the main goal of our research. We thus conducted a statistical analysis
of skull shapes on the AUDAX database. Seventy-two annotated cephalometric landmarks
from all 4695 images were utilized as an input. The aim of this analysis was to determine
how the locations of cephalometric landmarks differ (vary, deviate) in the population (i.e.,
among patients), and how this influenced landmark detection effectiveness. We carried
out a so-called generalized Procrustes analysis [16,17]. In each image, the locations of
cephalometric landmarks were compensated by translation, scaling, and rotation (i.e., by a
rigid transformation), resulting in a mean skull shape (and corresponding mean landmarks’
locations) in the Procrustes space. Subsequently, we fitted the Procrustes mean model to
the annotated cephalometric landmarks in each image by using an approach from [18],
followed by the calculation of the radial error between the fitted model landmarks and the
ground-truth landmarks. This error was summarized for each cephalometric landmark
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over all images with various statistics (i.e., mean, standard deviation, median, and the
75th percentile). It was discovered that the following 10 cephalometric landmarks have
the lowest variability, namely, the landmarks PNS, APocc, W, S, Se, Ci, LLi, +St’, −St’, and
PPocc (see Table 2 for denotations). The ten landmarks with the higher deviation from the
Procrustes mean model are the landmarks Go, B, N’, Gn’, tGo, Ba, Gl’, Rh, Hy, and Th’,
which is the overall highest variability landmark. Both lists remained the same regardless
of any statistics (e.g., mean, median, etc.) used in the comparison.

Finally, we evaluated the influence of variability on the cephalometric landmark de-
tection. We calculated the correlation between the landmark variability and detection
effectiveness by using the SCN-EXT method. For both quantities, we used data regarding
the points order, once in respect to the variability, the second in respect to the detection
effectiveness. There was a positive correlation between the two quantities (the correlation
coefficient equaled 0.505 with a p value 5.99 × 10−6). To sum up, the less the landmark
varied, the more accurately it was detected, and vice versa. These findings are also con-
sistent with the importance of landmarks for cephalometric analyses as defined by the
AUDAX company (see Table 2). With the exception of the Gl’ landmark, all the remaining
nine poorly localized landmarks (see Table 9) are less important for the cephalometric
analyses. Similarly, all 10 accurately localized landmarks (see Table 8) are more important
for the cephalometric analyses.

The landmark on the throat soft tissue, Th’, with the MRE error of more than 60
pixels, was detected the least accurately. This MRE is almost 2.5 times higher than for the
second-least accurately detected landmark, Rh. For the cephalometric analyses conducted
by the AUDAX company, the landmark Th’ defines just a point where a face profile ends at
the bottom. The landmark Th’ has no other meaning in these analyses, and, consequently, it
was annotated very carelessly. Figure 5 depicts three examples of Th’ landmark annotation
and localization by the SCN-EXT method. It can be noticed that Th’ was annotated on three
completely different parts of the throat (see blue circles). Accordingly, this means a poorer
ability to learn this landmark and a higher radial error (see the green lines). To illustrate, if
we omitted the Th’ landmark from the statistics, then the MRE for the SCN-EXT method
decreases from 11.26 pixels (see Table 6) to 10.57 pixels, or decreases by 6.13%.

Figure 5. The worst-detected landmark Th’ by using the SCN-EXT method: three examples from the
AUDAX database. Estimated landmarks are denoted by a red x, while ground-truth locations are
superimposed as blue circles.

The CNN training was computationally demanding. The hardware utilized in this
study was presented in Section 4.1. On the ISBI database, the training to detect 19 cephalo-
metric landmarks took about 72 min for 150 epochs, or about 29 s per epoch (on GPU).
The trained network conducted an inference in around 0.76 s per image on the CPU or in
around 0.08 s per image on the GPU. On the AUDAX database, however, the training on
GPU took about 2480 min for 150 epochs, or about 992 s per epoch. The trained network
localized 72 cephalometric landmarks in around 1.02 s per image on the CPU or in around
0.14 s per image on the GPU.
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7. Conclusions

By developing a new method for localizing cephalometric landmarks, we solved a
concrete problem from industry in this research. The existing methods have been adapted
and tested to detect only 19 landmarks; however, in our work we have addressed the
problem of detecting 72 cephalometric landmarks based on industry needs. A large number
of accurately detected landmarks on skull X-ray images is a prerequisite for any quality
cephalometric analysis. In this study, we upgraded the SpatialConfiguration-Net neural
network (SCN), which is one of the state-of-the-art methods for localizing cephalometric
landmarks in X-ray images. The SCN architecture was modified by the integration of
several repetitions of simpler local appearance and spatial configuration components, with
which we increased the capacity of such a modified network (i.e., the SCN-EXT network)
with virtually unchanged degrees of freedom (DoF) compared to the original SCN network
with the more complex components. Primarily, the SCN-EXT network was designed for
localizing a large number of cephalometric landmarks in diverse skull X-ray images.

On the small ISBI public database with 250 testing images, captured by the same X-ray
device and with 19 cephalometric landmarks, our, albeit non-tuned SCN-EXT method, was,
in terms of effectiveness, just slightly behind the state-of-the-art methods. On the other
hand, our fine-tuned SCN-EXT method was statistically significantly the most accurate
method on the much more demanding AUDAX database with 4695 highly variable testing
images (various X-ray devices!) and with 72 cephalometric landmarks. The improvement
of the proposed method was statistically significant, even if we considered out of all 72
cephalometric landmarks only those 19 landmarks that are also in the ISBI database. We
also confirmed that the detection accuracy was correlated positively with the importance
of landmarks for cephalometric analyses.

An aim of this research was indeed to develop a state-of-the-art cephalometric land-
mark detection method, but not at the expense of a raw increase of neural network capacity
by increasing DoF (e.g., by the addition of more filters, etc.). The presented results in this
study were, namely, obtained by using the SCN-EXT network, which had 13% (on the
AUDAX database) or 33% (on the ISBI database) fewer free parameters than the original
SCN network. Maintaining DoF while increasing network capacity is important, especially
for a small learning set and limited computer resources.

Possible improvements to our approach are seen in the use of a more sophisticated
augmentation of learning set and in the use of transfer learning. We expect, reasonably,
also an improvement in the case if we integrate J = 9 or more repetitions of the local
appearance and spatial configuration components to the SCN-EXT network, which would
indeed increase DoF greatly. For the sake of a fair comparison with the state-of-the-art
methods, we have not conducted any of the abovementioned in this study, so these may
provide guidelines for future research.

In addition to lateral skull X-ray images, we also have an option of capturing frontal
skull X-ray images. This is complementary information that allows complementary cephalo-
metric analyses. One of the future research directions will, therefore, be focused on adapting
our method for also localizing cephalometric landmarks on the frontal skull X-ray images.

Finally, let us mention that our detection algorithm is already employed in a clinical
practice as a part of a bigger software product. Accurately determined landmarks on the
skull X-ray images represent the input for every cephalometric analysis. Automatic local-
ization of 72 cephalometric landmarks undoubtedly disburdens the orthodontist greatly, as
manual detection of landmarks means routine and time-consuming work. Nevertheless,
he should be aware that, similar to other software tools in clinical practice, our algorithm
also does not work 100% accurately. Our trained model is well suited to support and aid
manual cephalometric landmarks’ annotation, but is not suited for fully automated systems.
Manual validation is recommended, and manual correction may be required, based on
final application requirements. For this reason, the orthodontist should be able to inspect,
and possibly correct, the locations of automatically detected landmarks. Such functionality
is, of course, built into the abovementioned software product. The user experiences of
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orthodontists with our algorithm are very positive. We conclude with one of the orthodon-
tist’s responses: “I conducted the first analysis. I have not used automated tracing for 3
years, but I saw that it is very improved. Landmarks are set at 99% ideally. Very good”.
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Abstract: This study aims at developing a clinically oriented automated diagnostic tool for distin-
guishing malignant melanocytic lesions from benign melanocytic nevi in diverse image databases.
Due to the presence of artifacts, smooth lesion boundaries, and subtlety in diagnostic features, the
accuracy of such systems gets hampered. Thus, the proposed framework improves the accuracy
of melanoma detection by combining the clinical aspects of dermoscopy. Two methods have been
adopted for achieving the aforementioned objective. Firstly, artifact removal and lesion localization
are performed. In the second step, various clinically significant features such as shape, color, tex-
ture, and pigment network are detected. Features are further reduced by checking their individual
significance (i.e., hypothesis testing). These reduced feature vectors are then classified using SVM
classifier. Features specific to the domain have been used for this design as opposed to features
of the abstract images. The domain knowledge of an expert gets enhanced by this methodology.
The proposed approach is implemented on a multi-source dataset (PH2 + ISBI 2016 and 2017) of
515 annotated images, thereby resulting in sensitivity, specificity and accuracy of 83.8%, 88.3%, and
86%, respectively. The experimental results are promising, and can be applied to detect asymmetry,
pigment network, colors, and texture of the lesions.

Keywords: color; classification; dermoscopy; hair shafts; melanoma; segmentation; shape; texture;
pigment network

1. Introduction

1.1. Motivation

Melanoma is one of the worst forms of skin cancer resulting in increased morbidity
and huge medical expenditure almost up to $3.3 billion [1]. Although, simple observation
aids in detection of the changes in the melanocytic nevi, the deadly disease can spread
to other parts of the body by metastasizing. Skin tumor thickness mainly determines
the spread of the disease. Melanoma prognosis is inversely proportional to the tumor
thickness, since the survival rate relies on the tumor thickness. The greater the thickness,
the lesser the survival rate. However, to measure the spread and thickness of the tumor
biopsy is required, which is a painful experience to the patient. Additionally, careful
observation of the melanoma characteristics can be performed, as the lesion is visible on
the skin. However, it is further liable to metastasize and spread to lymph nodes thus
incrementing the level of malignancy. According to the Fitzpatrick Skin classification there
are six skin types [2]. The type I and type II are more prone to melanoma compared to
the other skin types. Melanocytes produce a pigment termed as melanin, which gives the
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natural color to the skin. There are two kinds of melanin, eumelanin and pheomelanin
present in the dark skinned and lighter skinned population respectively. Eumelanin is
insoluble and thus the skin darkening effects produced by eumelanin last relatively longer
compared to the skin-reddening effects produced by pheomelanin. A Dermoscope aids
the dermatologists in the primitive analysis of melanocytic skin lesions [2]. Owing to a
dearth of experience and differences in visual perceptions, the prognosis of melanoma is
still subjective, in spite of the availability of well-established medical methods. This fosters
the need for an objective evaluation tool. Computer Aided Diagnostic (CAD), tools were
introduced for dermoscopic images to provide quantitative and target assessment of the
skin lesion to help clinicians in demonstrative and prognostic undertakings. Due to the
inter and intra-observer variabilities, determination of melanoma is innately subjective.
Thus, a CAD tool institutively eliminates the subjectivity in the diagnosis and prognosis of
melanoma, and aids in early detection of melanoma in situ, thereby improving the accuracy
of detection and reducing the mortality rate. This paper describes a clinical framework
that can significantly identify the lesion properties and provide a diagnosis. The system
incorporates the knowledge of an experienced dermatologist to co-relate the features
extracted with their histopathological relevance. Additionally, it further incorporates
certain statistical features to achieve promising results.

1.2. Related Work

The literature reports numerous studies for designing CAD systems used for the diag-
nosis of melanoma. Based on the features used for the prediction of the lesion, approaches
for the diagnosis of melanoma have been broadly classified into three types: (i) methods
inspired by the dermoscopic criteria (ABCD), that take into account the global and local
lesion features [3–5]; (ii) methods based on the characteristic properties of images [6–8];
and (iii) combination of the aforementioned methods. These methods can be used to either
develop a cumulative score [9] or can be used to develop trained models that make predic-
tions. The proposed approach in this paper, belongs to the third category. Nevertheless, the
literature also indicates a few approaches that combine the two categories [10,11]. Celebi
et al. [10] used color, texture and presence of blue-white veil for classification of skin lesions.
However, the lesions were segmented manually, to separate issue of feature extraction from
automated border detection. The smooth boundary between the lesion and surrounding
skin, poses difficulties in automated border detection. Abuzaghleh et al. [11] classified the
lesions using abstract image features and two dermoscopic features. However, the method
is computationally complex due extraction of large feature sets. The method proposed
in [5] concentrates mainly on the clinical aspects of color in dermoscopic images and texture
features, while missing out the important role of shape features. Several studies also report
the use of complex deep learning architecture for segmentation and classification [12,13].
However, these methods need to tackle the vanishing gradient and degradation problem.

1.3. Problem Statement

Based on the literature, a clinical framework for the diagnosis of melanoma should
encompass the requirements mentioned below.

1. Provide automated localization of the lesions.
2. The features extracted need to hold clinical significance.
3. Result in a balance between sensitivity and specificity for distinguishing the lesion classes.

The aforementioned issues are addressed in this work.

1.4. Contributions

The proposed system describes the development of a clinically inspired framework for
diagnosis of melanocytic lesions, such that the system is informative from the perspective
of a dermatologist. In contrast to the methods proposed in literature [3–14], the proposed
system considers lesion specific properties in order to distinguish benign and malignant
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melanocytic lesions. Additionally, rather than extracting abstract image features, algorithms
are developed for the extraction of melanocytic specific features.

1.5. Summary

The manuscript has been organized in the following manner: section two provides
the technical depths pertaining to the methodologies developed for the extraction of hair
shafts, segmentation of lesion masks, dermoscopic feature extraction and classification.
The section three reports the quantitative results obtained. The manuscript concludes
with the discussion and conclusion section that provide key aspects with respect to the
methodologies developed and future research perspectives.

2. Methods

This section describes the proposed framework. The proposed framework’s overview
is illustrated in Figure 1.

Figure 1. Overview of the proposed system.

Initially, preprocessing of the dermoscopic images is performed for eliminating ar-
tifacts viz., dark corners, ruler markings, hair and dark frames. For the elimination of
dark corners, masks of circular shape are created with a radius and centroid co-ordinates
computed as given in (1).

Radius =
max(r, c)

2
, Centroid =

( r
2

,
c
2

)
(1)

where, r, c correspond to the rows and columns of the dermoscopic image. The Figure 2
illustrates the circular mask created for the corresponding dermoscopic image Figure 2A.

 
(A) (B) 

Figure 2. Mask created (A) Dermoscopic Image (B) Mask for image (A).
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The hair masks are multiplied with the initial contour prior to curve deformation to
eliminate the dark corners.

2.1. Detection and Removal of Hair

Numerous techniques have been proposed for the detection and exclusion of
hair [11,15–18]. These techniques have been designed assuming that hair color is much
darker than the skin and lesion. Additionally, the properties of dermoscopic hair shaft
were not considered to detect the dermoscopic hair. Owing to the localization of melanin
in the upper and lower epidermis, most skin lesions are either brown or black in color.
Therefore, consideration of color variation between hair and surrounding skin could be
erroneous leading to an overlap between the attributes of the lesion and hair. This signifies
that, for a hair detection algorithm, a need exists for the inclusion of attributes specific to
dermoscopic hair.

Geometric deformable models and their success depends on the initial conditions and
speed function evolution. As the color of melanin is dependent on the extent of localization
in the skin, the attribute of color is vital in the creation of this framework [19–22]. Therefore,
the approach of segmentation has been adopted in this study by giving consideration to
the chroma component as opposed to the RGB channels used in conventional systems.
The Figure 3 illustrates the results of dermoscopic hair detection, for the corresponding
dermoscopic images of Figure 3A and Figure 3B, the hair masks obtained are Figure 3C
and Figure 3D, and the Figure 3E and Figure 3F, corresponds to dermoscopic images after
hair inpainting.

 
(A) (B) 

 
(C) (D) 

 
(E) (F) 

Figure 3. Hair shaft detection and exclusion method (A,B) dermoscopic images, (C,D) hair shafts
detected, and (E,F) dermoscopic images after inpainting.
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The Figure 4 illustrates the process of segmentation. Figure 4D illustrates the seg-
mented border obtained by the proposed approach and the boundary of the ground truth.

 

(A) 

(B) 

(C) 

(D) 

Figure 4. Illustration of the proposed segmentation approach: (A) original Images, (B) chroma
component, (C) segmented images, (D) boundary of ground truth and segmented region overlapped
on the original images (yellow corresponds to ground truth, white corresponds to segmented output.

105



Appl. Sci. 2022, 12, 4243

2.2. Extraction and Classification of Features
2.2.1. Color Features

The role of color in dermoscopy is inevitable. The most important chromophore of the
skin is melanin. Lesions which are benign exhibit one or two colors. Since the malignant
lesions are localized within the deeper structures of the skin, they tend to exhibit three
or more colors. To study the color properties of the lesions, six groups of features were
computed namely, color asymmetry, color similarity index, color entropy and statistical
color features (i.e., color co-relation coefficient, principal component analysis and color
entropy). The statistical color features are derived specifically for two categories: (i) region
of interest (ROI) (ii) between ROI and non-ROI (NROI). The color features are delineated
as follows:

The color asymmetry and color similarity index draw their inspiration from the ABCD
rule of dermoscopy. The color asymmetry is quantified by the difference between the
opposite halves of the lesion along x-axis (Cx1, Cx2) and y-axis (Cy1, Cy2). The perceived
color difference ΔE is calculated in the CIE L*a*b color space as given in (9). The four
halves are divided as indicated in Figure 5. Correspondingly, four asymmetry indices are
computed as given in (2).

Cx1 = ΔE1 − ΔE3

Cxz = ΔE2 − ΔE4

Cy1 = ΔE1 − ΔE2

Cy2 = ΔE3 − ΔE4

(2)

 
(A) (B) 

Figure 5. Color asymmetry calculation: (A) dermoscopic image; (B) the four halves of ROI.

A set of four color asymmetry indices were computed.
Color similarity index indicates the presence of six suspicious colors in a lesion (light-

brown (LB), dark-brown (DB), black (K), white (W), red (R) and blue-gray (BG)). The color
similarity index is computed by computation of the Euclidean distance between the lesion
RGB values and corresponding six suspicious colors. The color of the lesion pixels is used
to determine the color similarity index and hence the lesion masks are used for computing
the color similarity index. The color similarity index and Euclidean distance are inversely
related as given in (3).

Euclidean Distance ∝
1

Color Similarity
(3)

The Algorithm 1 summarizes the steps used for calculating the color similarity score.
The threshold Th is determined from the RGB values of two opposite colors [9]. The two
opposite colors are black and white. Further, a score of 1 is assigned if more than two
percent of the lesion area has suspicious color.
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Algorithm 1. Color Similarity Index Calculation

Input : I(x, y) = [R(x, y), G(x, y), B(x, y)]
Output : Score
Lesion ROI : M(x, y) ∈ I(x, y)
S = [R̂S, ĜS, B̂S] : suspicious color
output : score
score = 0
Th = 0.5 [ (Rw − Rk)̂2 + (Gw − Gk)̂2 + (Bw − Bk)̂2 ]̂0.5
C = 0
f or each pixel (R̂M_i, ĜM_i, B̂M_i) in M do
D = [ (R̂M_i − R̂S)̂2 + (ĜM_i − ĜS)̂2 + (B̂M_i − B̂S)̂2 ]̂0.5
i f D <= Th
C ++
i f C >= 0.2 ∗ (sum(M))
score = 1
return score

The color variance is computed considering the red, green, blue and gray-scale values
for the lesion along with the entire image, thus resulting in computation of eight features
(VR, VG, VB, and VK). The degree of randomness quantified by color entropy (E) is
computed similarly for the red and blue values of the lesion and entire image, leading
to computation of four features (ER and EB). The correlation co-efficient signifying the
direction and degree of closeness of intra and inter linear relations between the RGB
channels and grayscale images resulted in computation of twelve features (CRG, CGB,
CBR, CRK, CGK, and CBK). Along with these, the lesion RGB values are projected on the
three principal components (PC). Therefore, a total of 37 color features were computed.

2.2.2. Texture Features

According to the opinion of expert dermatologists malignant melanocytic lesions are
characterized by coarse texture with a contrast which is inhomogeneous and irregular
patterns. Since Tamura’s et al. [23] texture features are based on the visual perception, a set
of three texture features, namely coarseness (T1), contrast (T2) and directionality (T3) were
computed. A larger value of coarseness specifies a greater degree of roughness. Coarseness
is calculated as the average of the best size that gives the maximum difference between
the non-overlapping neighborhoods in horizontal and vertical directions. Directionality is
computed by taking the gradient of the neighboring pixels given by (4).

ΔG =
|ΔH|+ |ΔV|

2
(4)

where, ΔG is the edge strength, (|ΔH|) and (|ΔV|) indicate the horizontal and vertical
change in direction. Further, the contrast is calculated as the statistical distribution of pixel
gray values.

2.2.3. Shape Features

The computation of the shape symmetry index is performed using the lesion mark.
The lesion centroid is positioned at the centroid of the image by using the difference in
centroid positions method showcased in (5). This is carried out since the lesions are not
aligned with the center of the image.

Δ{x, y} = {(CI(x)− CL(x)) , (CI(y)− CL(y))} (5)

CI(x, y) and CL(x, y) indicate the image and lesion centroids respectively. The image
is divided into two halves with respect to x-axis and y-axis as illustrated in Figure 6 to
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determine the asymmetry along x and y axis. The maximum possible asymmetry index of
the lesion AI is given in (6).

AI = max
{

Ax = x1 ˆx2 , Ay = y1 ˆy2 ,
}

/2 (6)

where, x1 and x2 are the two halves with respect to the x-axis and y1 and y2 are the
two halves with respect to the y-axis. Since, asymmetry quantifies malignancy the pro-
posed method takes into account the maximum possible asymmetry to minimize the
classification error.

(A) (B) (C) (D)

Figure 6. AI calculation: (A) dermoscopic image, (B) left half of the image, (C) right half of the image,
(D) asymmetric region over y-axis.

A multi-scale method termed as fractal dimension (FD) is used to quantify border
irregularity. It is computed by dividing the image in small grids of size r × r as given in
(7) [9].

log
1

N(r)
= f d × log(r)− log(λ) (7)

N(r) gives the contour length, λ indicates the scaling constant. The circularity of the
lesion is measured using the metric of Compactness (8) [24].

CI =
PL

2

4πAL
(8)

PL indicates the perimeter of the lesion and AL indicates the area of the lesion.

2.2.4. Detection of the Pigment Network

Pigment network is a honeycomb-like structure characterized by linear strokes and
directional shapes. The presence of pigment network histopathologically, indicates the
melanin presence in keratinocytes and melanocytes at the dermal and epidermal junc-
tion [25]. Additionally, the lines in the pigment network have diverse orientation. Thus,
the proposed approach for detection of pigment network is similar to the hair detection
method proposed in Section 2.1 with a few additional steps and change in Gabor parameter
f . The green channel is used for processing due to relatively greater contrast. A second
order derivative Laplacian operator [3 × 3 mask] is used for enhancing the finer details
in the image after median filtering. The enhanced image is convolved with the 2D Gabor
filter defined in (3). The empirically determined values for σx and σy are same. However,
the value of thickness parameter t is set to 3.3, since the lines of the pigment network are
comparably thinner than the hair shafts.

For post processing the Adaptive Histogram Equalization (AHE) is followed by deter-
mination of the threshold to extract the pigment network efficiently. The threshold is com-
puted by fitting a fourth degree polynomial as given in (9) to the contrast enhanced image.

n = mc4 + ac3 + bc2 + dc + e (9)

m, a, b, d and e are three different points to fit a curve with c distinct co-ordinates.
The pigment network mask serves to calculate the five distinct features ( f1, f2, f3, f4, f5)
as given in [25]. The Figure 6 illustrates the pigment network detection process. A com-
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parison of the proposed pigment network detection method with the method proposed
by Barata et al. [15] is illustrated in Figure 7. It can be observed by from Figure 8B,C that,
the proposed method accurately identifies honeycomb-like pigment network structures in
comparison to the method in [15]. An overview of the features extracted is summarized in
Table 1.

(A) (B) (C)

Figure 7. Detection of pigment network: (A) dermoscopic image, (B) pigment network mask detected,
(C) corresponding mask ((A) overlaid on (B)).

(A) (B) (C)

Figure 8. Comparison of pigment network detection: (A) dermoscopic images with pigment network
marked, (B) pigment network masks detected by Barata et al. [15], (C) pigment network masks
detected by the proposed method.

Table 1. Overview of the features extracted.

Feature Type Description (Number)

Shape Shape Asymmetry Index (1), Compactness Index (1), and Fractal Dimensions (1)

Color Color Asymmetry Index (4), Color similarity score (6), Color variation (8), color entropy (4), color
co-relation (12), and PCA (3),

Texture Coarseness (1), Contrast (1), and Directionality (1)

Dermoscopic Structure Pigment Network (5)

2.2.5. Classification and Diagnosis

The features selected from the groups of fshape, fcolor, ftexture, fPN are concatenated to
benefit from the complimentary information captured by the feature types. The classifica-
tion of the observations into two classes classifier (benign and malignant) C yielding the
largest probability P(G) which is performed using a probabilistic SVM, as given in (10).

C = max
(

Pshape(G), Pcolor(G), Ptexture(G), PPN(G),
)

(10)
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Pshape(G), Pcolor(G), Ptexture(G), PPN(G) indicates the cumulative probabilities of shape,
color, texture and pigment network features. The features are concatenated and used to
train a single SVM classifier. Platt’s method is used for the computation of posterior
probabilities [26,27]. Linear kernel is used to map the scores.

3. Results

3.1. Dataset and Evaluation Metrics

A multi-source dataset of 515 images which was taken from PH2 [28], ISBI 2016 and
ISBI 2017 [29,30], has been used for experimentation in this article. The dataset consists of
304 benign and 211 melanoma lesions with annotated ground truths. In the initial stage,
pre-processing of the images is performed for the removal of dermoscopic hair and dark
corners. The algorithms have been implemented using MATLAB 2016®. Three metrics viz.,
Sensitivity (SE), Specificity (SP) and Accuracy (ACC) have been used for the detection of
ROI and lesion classification. In addition to this the overlap error (between the ground
truth and segmented mask) is also computed for evaluation of lesion segmentation. The
null hypothesis testing has been performed using the Wilcoxon Rank Sum statistics which
is a non-parametric test. The null hypothesis is stated below:

H0. The extracted features for benign and malignant lesions have equal medians.

The testing of the null hypothesis against the alternative hypothesis is performed. The
alternate hypothesis states that the features extracted do not have equal medians and hence
are statistically significant at 5% significance level. Among the 48 p-values, 34 p-values
satisfied the alternative hypothesis and hence were used for classification. A hold-out set
of 25% is used for testing. The classification metrics are computed by repeating the training
and test procedures ten times by stratifying the training and test sets.

3.2. Evaluation of Hair Detection and Lesion Segmentation: Results

Hair detection and exclusion is performed prior to lesion segmentation to eliminate
the artifacts thereby increasing the accuracy of segmentation. A positive effect of pre-
processing (hair detection + black frame removal) on the segmentation accuracy for the
combined dataset can be observed from the Figure 9. The overlap error after applying hair
detection algorithm prior to segmentation was 0.07, and the overlap error obtained without
applying hair detection algorithm prior to segmentation was 0.15. This proves that hair
detection improved the accuracy of segmentation.

 
Figure 9. Effect of pre-processing on segmentation accuracy.

The proposed segmentation method resulted in sensitivity, specificity, accuracy and
overlap error of 92.5%, 96.7%, 95.7%, and 8.2%, respectively, for the combined datasets. The
overlap segmentation error for modified Chan-Vese (proposed method) and Chan-Vese for
combined dataset is illustrated in Figure 10. The Overlap Error (OE) is calculated as given
in (11).

OE =
Area(G ⊕ S)

Area (G)
(11)
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where G is the ground truth and S is the segmented binary image.

 
Figure 10. Overlap segmentation error for Modified Chan-Vese and Chan-Vese Algorithm.

3.3. Evaluation of Features Extracted and Lesion Classification: Results

Various experiments were conducted to deduce the classifier with a major goal to
assess the best subset of features and compare the performance of training the SVM
with single set of features against training with concatenation of features. The Figure 11
illustrates the plot of features for combined dataset versus the p-values. A good score
has a p-values less than or equal to 0.05 (p ≤ 0.05) whereas p > 0.05 is considered a bad
score. It is seen from Figure 11, that the shape and pigment network features have good
scores. However, the performance scores for color asymmetry index (x2, x3, x4), indicates
comparably lower scores. Insignificant p-values for color similarity index for colors red,
light brown and dark brown can be observed. This justifies the fact that presence of red
is due to vascularization of blood vessels, irrespective of the lesion class and shades of
brown are common to both the lesion types (benign and malignant). Regarding texture
features, T2 (contrast) performed comparably poor then T1 and T3. Similarly, the role of
statistical color features for ROI and NROI can be interpreted from Figure 11. The Table 2
provides the mean and standard deviation values of the features with significant p-values
for combined datasets.

Table 2. Mean and standard deviation values of the features with significant p-values.

F Mean SD F Mean SD

AI 0.69 0.94 VRI 1509.015 1368.13

CI 2.63 3.21 VGI 1834.916 1303.59

FD 26.31 9.30 PC1 2910.31 1911.63

T1 39.80 17.70 PC2 116.10 100.96

T3 13.42 12.77 PC3 11.62 7.95

Cx1 13.57 12.89 ER 6.54 0.65

W 0.10 0.31 EB 6.62 0.44

K 0.24 0.42 ERI 6.19 0.75

BG 0.94 0.21 EBI 6.80 0.47

CRG 0.01 0.14 F1 7361.83 22,929.7

CGB 0.94 0.05 F2 0.08 0.17

CBR 0.95 0.09 F3 0.52 0.39

CRK 0.85 0.10 F4 0.06 0.43

CGK 0.99 0.05 F5 0.14 0.16

CBK 0.94 0.06

CRGI 0.93 0.05
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Table 2. Cont.

F Mean SD F Mean SD

CBRI 0.86 0.10

VR 1032.02 832.46

VG 1032.52 702.47

VK 974.10 652.87
Note: F—Feature, SD—Standard deviation, AI—Asymmetry Index, CI—Compactness Index, FD—Fractal dimen-
sions, T1—Coarseness, T3-Directionality, Cx1—Color symmetry index, W—white, K—Black, BG—Blue Gray,
CRG—Color Variation between Red and Green, CGB—Color Variation between Green and Blue, CBR—Color
Variation between Blue and Red, CRK—Color Variation between Red and Grey, CGK—Color Variation between
Green and Grey, CBK—Color Variation between Blue and Grey, CRGI—Color Variation between Red and Green
for entire image, CBRI—Color Variation between Blue and Red for entire image VR—Color Variation for Red,
VG—Color Variation for Green, VK—Color Variation for grey, VRI—Color Variation for Red for entire image,
VGI—Color Variation for Green for entire image, PC1, PC2, PC3—Three Principal components, ER-Entropy
for red, EB—Entropy for Blue, ERI—Entropy for Red for entire image, EBI—Entropy for Blue for entire image,
F1–F5—Pigment network features.

(A) 

 

(B) 

Figure 11. Plot of features extracted versus the p-values: (A) lesion specific features, (B) statistical
color features (CRG, CGB, CBR, CGK, and CBK indicate correlation between red (R), green (G), blue
(B), gray values (K)), V indicates color variance, and E indicates entropy).

Based on the p-values the feature set was reduced from 48 to 34 features. The role of
single and combined features in lesion diagnosis is given in Table 3. It can be inferred from
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the Table 3 that, the role of color features is significantly pre-dominant for lesion diagnosis,
followed by pigment network features. Interestingly, the best overall results were obtained
for a combination of the features. Table 4, shows the results of applying the proposed
framework on diverse datasets, correspondingly the plot of ROC for the same is illustrated
in Figure 12. It can be observed from the Table 4, acceptable results were obtained for
diverse datasets, with PH2 dataset yielding the greatest accuracy. The generalization ability
of the features extracted is tested by training on ISBI dataset and testing on PH2 dataset
and vice-versa, the results are depicted in Table 5.

Table 3. Contribution of features for lesion diagnosis (PH2 Dataset).

Set-Up SE (%) SP (%) ACC (%)

Fshape 90.4 82.7 83.5

Fcolor 88.8 92.8 91.9

Ftexture 78.7 85.4 84.4

FPN 88.7 84.2 86.5

Fcombined 95.6 95.1 95.3

Table 4. Classifier Performance for different datasets.

Dataset SE (%) SP (%) ACC (%)

PH2 95.6 95.1 95.3

ISBI 2016 + 2017 83.4 93.7 85.4

Combined 83.8 88.3 86

(a) (b) (c)

Figure 12. ROC curves (a) For PH2 data (b) For ISBI data (c) For Combined datasets.

Table 5. Classifier performance depicting the classifier generalization ability.

Dataset SE (%) SP (%) ACC (%)

ISBI on PH2 80.5 81.5 80.7

PH2 on ISBI 90 75 81.2

4. Discussion

The major objective of this study is the development of an automated computer
aided melanoma diagnostic system using clinical aspects of dermoscopy on a diverse
dataset. In this regard, the diagnosis system was built using a sequence of algorithms for
pre-processing, ROI extraction, feature extraction and classification. Since these steps are
sequential in nature, the accuracy of classification mainly relies on the efficiency of the
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preceding steps. The hair detection algorithm considers the dermoscopic knowledge of hair
shafts thereby neglecting a overlap of the attributes of lesion and hair. Such an algorithm
prevents loss of lesion specific information and efficiently eliminates the light and dark hair
that subsequently aids in improving the lesion segmentation accuracy. Border irregularity
is a major indication of malignancy of melanocytic lesions. Thus, while localizing the ROI
appropriate care has to be taken to prevent the loss of lesion border details. Geometric
deformable models incorporating color information have provided promising segmentation
accuracy even in the presence of background noise and poor contrast. The segmentation
process was followed by extraction of a set of 48 features specific to shape, color, texture
and pigment network from the segmented ROI’s to facilitate identification of benign and
malignant lesions. The non-parametric Wilcoxon Rank Sum statistics was used to obtain
the p-values for the features extracted with the goal of finding the best features.

Of late, deep learning techniques have been extensively used in skin lesion classifi-
cation [12,13,31]. In spite of the fact that these architectures have increase the accuracy
of classification using large data for learning, the optimization of network parameters
for reducing computational complexity is unexplored. A quantitative comparison of the
proposed method and the state of art methods reported above may be tenuous due to the
diversity of the datasets involved, however a comparative analysis of the studies carried
out using the same datasets is given in Table 6. Sensitivity indicates the accurate rate of
classification of melanoma lesions. Specificity indicates the accurate rate of classification of
benign lesions, whereas accuracy gives a cumulative score of classification of benign and
malignant lesions. In [5], the sensitivity was higher in contrast to specificity, since the main
focus was on color feature of the lesions. An imbalance in sensitivity and specificity was ob-
tained by Yu et al. [31], by employing a deep learning-based architecture. A methodological
approach to detect pigmented skin lesions was proposed in [32]. Pennisi et al. [33], have
used standard color, shape and texture feature for classification after applying Delaunay Tri-
angulation based segmentation acc Nonetheless, the comparison provides us with relevant
information about the significance of the proposed method. Nonetheless, the proposed
method employs domain specific features, thereby improving the accuracy in classification
of benign and malignant lesions. However, the study did not consider the thickness feature
of the lesion due to lack of third dimensional image data and ground truth. The thickness
feature would be an important parameter to rate the stage of malignancy once, the lesion
malignancy has been detected by the classification model. Another limitation of the study
if the processing time, since it approximately takes 90 s, on an average system of 8 GB RAM,
and clock frequency of 1.60 GHz to provide the diagnosis once, the dermoscopic image is
given as the input to the system The trained system can be employed in a clinical scenario,
by using a dermoscopic based image capturing system, since a dermo scope would enhance
the resolution of the lesions that would aid in better analysis, rather than a normal image
capturing device.

Table 6. Comparative analysis of lesion classification methods with the state-of art.

Dataset Ref. SE (%) SP (%) ACC (%)

PH2

Barata et al. [5] 100 88.2 -

Pennisi et al. [33] 93.5 87.1

Proposed 95.6 95.1 95.3

ISBI 2016 + 2017
Yu et al. [31] 54.7 93.1 85

Proposed 83.4 93.7 85.4

5. Conclusions

This paper presents the development of a clinically oriented framework for melanoma
diagnosis. On the basis of the color characteristics of the lesion, the regions are segmented.
It can be observed from the Table 4 that the role of color is evident in melanoma detection
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relative to other features. However, the color features could be severely affected due
to variations in image acquisition modalities. Hence, while acquiring real-time images,
appropriate illumination correction techniques should be employed to eliminate the effects
of non-uniform illuminations.

The experimental results are promising and can be applied to detect asymmetry, pig-
ment network, colors and texture of the lesions. Finally, the detected criteria are combined
to develop a cumulative model which exhibits sensitivity, specificity and accuracy of 83.8%,
88.3%, and 86%, respectively.
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Abstract: Mammography is a first-line imaging examination approach used for early breast tumor
screening. Computational techniques based on deep-learning methods, such as convolutional neural
network (CNN), are routinely used as classifiers for rapid automatic breast tumor screening in
mammography examination. Classifying multiple feature maps on two-dimensional (2D) digital
images, a multilayer CNN has multiple convolutional-pooling layers and fully connected networks,
which can increase the screening accuracy and reduce the error rate. However, this multilayer
architecture presents some limitations, such as high computational complexity, large-scale training
dataset requirements, and poor suitability for real-time clinical applications. Hence, this study
designs an optimal multilayer architecture for a CNN-based classifier for automatic breast tumor
screening, consisting of three convolutional layers, two pooling layers, a flattening layer, and a
classification layer. In the first convolutional layer, the proposed classifier performs the fractional-
order convolutional process to enhance the image and remove unwanted noise for obtaining the
desired object’s edges; in the second and third convolutional-pooling layers, two kernel convolutional
and pooling operations are used to ensure the continuous enhancement and sharpening of the
feature patterns for further extracting of the desired features at different scales and different levels.
Moreover, there is a reduction of the dimensions of the feature patterns. In the classification layer,
a multilayer network with an adaptive moment estimation algorithm is used to refine a classifier’s
network parameters for mammography classification by separating tumor-free feature patterns from
tumor feature patterns. Images can be selected from a curated breast imaging subset of a digital
database for screening mammography (CBIS-DDSM), and K-fold cross-validations are performed.
The experimental results indicate promising performance for automatic breast tumor screening in
terms of recall (%), precision (%), accuracy (%), F1 score, and Youden’s index.

Keywords: convolutional neural network (CNN); fractional-order cconvolutional operation; adaptive
moment estimation algorithm

1. Introduction

As per statistics provided in 2020 by Taiwan’s Ministry of Health and Welfare,
cancer (malignant tumors) is the primary cause of death among Taiwanese people. In
recent years, breast cancer (BC) in females is among the top four cancers (first place)
and is one of the diseases that most definitely cannot be ignored. The age at which
women possibly develop BC is between 45 and 69 years. As per latest figures on the
cause of death from the Ministry of Health and Welfare and cancer registration data
from the National Health Agency [1], the standardized incidence and mortality rates
of female BC are 69.1 and 12.0 (per 100,000 people), respectively. Each year, more than
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10,000 women are diagnosed with BC and more than 2000 women die from it. This
is about 31 women being diagnosed with BC every day and six women losing their
precious lives because of BC. BC is a malignant tumor that grows from epithelial cells
or lobules of the breast, thus resulting in excessive tissue accumulation or hyperplasia.
Ductal carcinoma and lobular carcinoma are common types of BC. When proliferating
cells mutate or lose control, they can invade or destroy other adjacent tissues and
organs, transfer to other organs via the blood or the lymphatic system, and cause breast
pain. Symptoms include irregular lumps (partial) on breasts, sunken skin, orange peel
skin, redness, ulceration, abnormal secretions, venous vasodilation, and swollen lymph
nodes under the arms. For clinical testing, visual inspection or palpation helps identify
the existence and location of the tumor (hard mass). However, it is not immediately
clear whether the tumor is benign or malignant or whether metastasis is happening.
Either additional diagnostic tools or instruments must be used for verification. As per
statistics, there is improved chance of tumors on the right side of the breast. The most
common location is the upper right corner of the breast, accounting for about 26% of all
occurrences. As per the size of the tumor and severity of lymph node (sentinel lymph
node) metastasis, BC can be divided into four stages. If the abnormality is quickly
detected, the survival rate is higher, and the treatment is more effective. Hence, the
early symptoms of BC are traceable, whereas the survival rate of BC, if detected early,
can be larger than 90%.

Accordingly, in recent years, artificial intelligence (AI) methods and the collection of
data for big data (BD) are playing increasingly important roles for automatic tumor screen-
ing, such as liver, lung, and breast cancers. AI methods include models based on machine
learning, deep learning, and broad learning [2–9]. For example, in Taiwan, data collection
for BD includes medical images of relevant major diseases that major medical centers
have been actively collecting both locally and abroad in recent years (since 2018). These
medical images comprise fifteen categories, including X-ray images, angiography, magnetic
resonance imaging (MRI), and computer tomography (CT). Additionally, a database such
as CBIS-DDSM (Curated Breast Imaging Subset of Digital Database for Screening Mam-
mography), is a database containing approximately 2500 enrolled subjects, employed for
the studies of the mammographic classification of breast lesions. This classification consists
of normal cases, benign cases, malignant cases, and pathology information [10], which
provides ground truth validation that makes the DDSM applicable in the development
and validation of the decision support systems. The region of interest (ROI) and patho-
logical information can be gathered continuously in the current database. Coupled with
the improvement of information communication, digital data processing, AI methods, and
machine vision models, software and hardware equipment can process the large amount of
digital data [11–13]. However, a decision support system with computer-aided diagnosis
and detection algorithms for breast tumor screening in mammography are needed. Cur-
rently, regarding AI algorithms, the multilayer machine vision recognition model that is
composed of convolutional neural networks (CNNs) is the most commonly used model. It
can be used for digital image processing, such as feature enhancement, feature extraction,
data simplification, and pattern recognition task [2–9,13–15]. Hence, this study uses breast
mammogram images to establish a two-dimensional (2D) fractional order-based CNN
classifier that can automatically perform breast tumor screening tasks in clinical applica-
tions. We expect that a set of automatic screening tools suitable for clinical usage that takes
in mammogram images can be developed to achieve the rapid identification of whether
a tumor is malignant or benign. When any breast tumor is suspected, the results of the
rapid screening can be used as a basis of reference for subsequent fine needle aspiration
cytology/biopsy examinations. Hence, this assistive tool solves the problem of insufficient
human resources for manual screening, which can potentially lead to additional problems
in the medical diagnosis process. Solving this procedural congestion allows clinicians to
focus more on follow-up medical strategies.
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The 2D CNNs may comprise several convolutional-pooling layers and a fully con-
nected network in the classification layer, such as back-propagation neural networks and
Bayesian networks, which combine the image enhancement, feature extraction, and clas-
sification tasks to form an individual scheme [16,17] which achieves promising accuracy
for image classification in breast tumor screening. These CNNs are usually greater than
10 convolutional-pooling layers which perform the above mentioned image preprocess-
ing and postprocessing tasks and then increase the identification accuracy. Hence, this
multilayer design may gradually replace machine-learning (ML) methods [18,19], which
perform image segmentation and feature extraction as an image preprocess for mammo-
grams and breast MRIs and then use the fixed features obtained to train a classifier. Both
CNN and ML-based image segmentation [20] can learn the specific features or knowledge
representations to automatically identify the boundaries of ROI and then detect the breast
lesions. Traditional ML methods have fewer parameters that can easily be optimized by
the gradient descent optimization or back-propagation algorithms through training with
small-to-medium-sized datasets [21,22]. Through a series of convolutional and pooling
processes, the multilayer CNN can enhance and extract the desired object at different scales
and different levels from low-level features (extract object’s edge) to high-level information
(extract object’s shape) for detecting nonlinear features, which can increase nonlinearity
and obtain feature representation. Then, the pooling process with maximum pooling
(MP) is used to reduce the sizes of feature maps for obtaining abstract features. Thus,
in contrast to the traditional machine-learning method, CNN-based methods can learn
to extract the feature patterns from the raw data and improve the classification accuracy
significantly. However, small- or medium-sized datasets are insufficient to train a deep-
learning-based CNN. For example, from the existing literature [23–26], such as AlexNet
(eight-layer CNN) [25] and ZFnet [26], it can be observed that the deep-learning-based
CNN requires several convolutional-pooling layers and fully connected layers for the
large-scale image classification (ImageNet image database [27,28]). This CNN can learn to
optimize features during the training stage, process large inputs with sparsely connected
weights, adapt to different sizes of 2D images, and reduce error rates. Furthermore, this
approach demonstrates greater computational efficiency compared with the traditional
fully connected multilayer perceptron (MLP) networks. Despite its many advantages,
however, a deep-learning-based CNN presents several drawbacks and limitations, such as
the number of convolutional-pooling layers’ determination, the number of convolutional
windows and pooling windows, the sizes of convolutional window assignment (3 × 3,
5 × 5, 7 × 7, 9 × 9, 11 × 11), the high computational complexity and large-scale dataset
requirement for training the CNN-based classifier, and the poor suitability for real-time
applications. Additionally, multi-convolutional-pooling processes with different sizes of
convolution masks will result in a very large information loss for feature extraction, and
this will result in increased complexity levels. The multilayer CNN must be performed
with a graphics processing unit (GPU) to speed up the training and classification tasks by
making use of a large amount of training and testing data.

Therefore, to simplify the image processing and classification tasks, this study aimed
to design a suitable number of convolutional-pooling layers and a classification layer that
is capable of increasing the identification accuracy of image classification, to facilitate
automatic breast tumor screening. As observed from Figure 1, we utilized a multilayer
classifier, consisting of a fractional-order convolutional layer, two convolutional-pooling
layers, a flattening layer, and a multilayer classifier in the classification layer. In the first
convolutional layer, a 2D spatial convolutional process with two 3 × 3 fractional-order
convolutional masks was used to perform the enhancement task and to remove unwanted
noise from the original mammography image, to distinguish the edges and shapes of the
object. In the second and third convolutional layers, sixteen 3 × 3 kernel convolutional
windows were used to subsequently enhance and sharpen the feature patterns twice; hence,
the tumor contour could easily be highlighted and distinguished for feature pattern extrac-
tion. Consequently, two MP processes were used to reduce the dimensions of the feature
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patterns, which conducted network training to avoid failing in overfitting problems [29,30].
In the classification layer, a multilayer classifier with an input layer, two hidden layers, and
an output layer is implemented to perform the pattern recognition task, which separates
tumor-free feature patterns from tumor feature patterns. To reduce the error rates, an
adaptive moment estimation method (ADAM) can compute the adaptive learning rates for
updating network parameters by storing an exponentially decaying average of past squared
gradients [31,32], which combines two stochastic gradient descent approaches, including
adaptive gradients and root mean square propagation. Its optimization algorithm uses
randomly selected training data subsets to compute the gradient, instead of using the entire
dataset. The momentum term can speed up the gradient descent by converging faster. The
ADAM algorithm has a simple implementation, computation efficiency, and fewer memory
requirements, and is appropriate for operations with large datasets and parameters for
training the multilayer CNN models. A total of 78 subjects is selected from the MIAS
(Mammographic Image Analysis Society) Digital Mammogram Database (United Kingdom
National Breast Screening Program) for experimental analysis. The clinical information
was confirmed and agreed upon by expert radiologists for biomarkers, such as image size,
image category, background tissue, class of abnormality, and severity of abnormality [33,34];
the image database included a total of 156 mammography images (including right and left
images), including 94 normality cases and 62 abnormalities involving benign and malignant
cases. The ROIs were extracted by a 100 × 100 bounding box, and then the 932 feature
patterns were extracted by using the proposed convolutional-pooling processes including
564 abnormalities and 368 tumor-free patterns. By making use of cross-validation, the
dataset was randomly divided into two halves: 50% of the dataset was used for training
the classifier, and 50% of the dataset was used for evaluating the classifier’s performance.
Thus, tenfold cross-validation is used to verify the performances of the proposed multilayer
deep-learning-based CNN with the proposed convolutional-pooling layers in terms of
recall (%), precision (%), accuracy (%), F1 score, and Youden’s index [35,36]. Therefore, the
optimal architecture of multilayer CNN can be determined, and may potentially be applied
to establish a classifier for automatic breast tumor screening in clinical applications.

Figure 1. Architecture of the proposed multilayer CNN for automatic breast tumor screening.

The remainder of this study is organized as follows: Section 2 describes the methodol-
ogy, including the design of the multilayer deep-learning-based CNN, the adaptive moment
estimation method, the classifier’s performance evaluations, and the computer assistive
system. Sections 3 and 4 present the experimental setup, testing of different multilayer
CNN models and determination of the suitable CNN architecture, testing of the first convo-
lutional layer for image enhancement, determination of the mask types, feasibility tests,
and experiment results for clinical applications, and the conclusions, respectively.
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2. Materials and Methods

2.1. Design of the Multilayer Deep-Learning-Based CNN

Multilayer deep-learning-based CNN includes the multiple convolutional layers,
pooling layers, and pattern recognition layers (classification layers). It is a multilayer
model for image classification that combines multiple functions, such as image feature
enhancement, feature extraction, parameter simplification, and pattern recognition. In
recent years, deep-learning and broad-learning technologies have been applied for medical
image processing, segmentation, and classification [3–9,13–15]. Compared with traditional
MLP networks, CNN can process feature enhancement and extraction at the front end
of the network; therein lies its advantage in processing 2D medical images. However,
image processing generates a considerable number of parameters, increasing the amount of
computations and the time required for computing. With pooling processes, the number of
features is reduced in the middle of the network to reduce the computational time. Finally,
the image classification layer assists with screening tasks using a pattern to separate the
normality from abnormalities. This study uses the multilayer CNN model to develop an
automatic breast tumor screening based on 2D mammogram images, as shown in Figure 1.
This automatic screening process includes: (1) Region of interest (ROI) extraction; (2) feature
enhancement and extraction; and (3) rapid screening of breast tumors. Each function is
described as follows:

ROI extraction: In this study, we use digital data in the mammogram X-ray image
database (161 female patients, 322 images) [33,34] provided by the MIAS. The biomarkers
of MIAS database clearly mark the positions and tumor sizes [33]. The statistical results
of probability distribution of tumor locations, in accordance with the MIAS database’s
biomarkers, are shown in Figure 2a. Looking at the distribution probability of tumor
locations, the most frequent location of tumors is the right and the upper outer quadrant
of the breast. Given a 2D image with 4320 pixels × 2600 pixels, we define the priority
for automatically extracting ROI with a specific bounding box based on the distribution
probability. Areas with greater probability are first in line for ROI extraction, and the
priority order is stored in the work queue. The priority order is shown in Figure 2b. ROI
image extraction and tumor detection is performed as per the priority order.

Figure 2. ROI block cutting and priority extraction. (a) The statistics of the prevalence of malignant
and benign tumors; (b) priority of ROI block for automatic ROI extraction.

• Feature enhancement and extraction: A multilayer 2D convolution operation is used
to magnify the texture of what might be tumor tissue and edge information (usually
two or more layers are used), as shown in Figure 2a. Each layer uses a 3 × 3 sliding
window to perform the operation of the convolutional weight. First, a 2D fractional
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convolution operation is performed to magnify the tumor characteristics. Then, by
combining multilayer convolutional weight calculations, the contour of the tumor
is gradually strengthened, noise is removed, and the image is sharpened. These
effects help strengthen the target area and retain non-characteristic information. This
study applies the 2D spatial fractional-order convolutional processes in the fractional
convolutional layer, selects the appropriate fractional order parameters, and performs
convolution in the x and y directions, thus yielding a combination of 2D weight values
in space, the general formula being [35–38]:

Cv Ixy = conv(Ixy, M(i, j), v)T (1)

Cv
x Ixy =

h−1
2

∑
i=− h−1

2

h−1
2

∑
j=− h−1

2

Mx(i, j)I(x + i, y + j) (2)

Cv
y Ixy =

h−1
2

∑
j=− h−1

2

h−1
2

∑
i=− h−1

2

My(j, i)I(x + j, y + i) (3)

where h = 3 is the dimension of the convolution window, v is a fractional parameter
and v ∈ (0, 1), and I(x, y) ∈ [0, 255] is the pixel value at point (x, y) in a 2D image.
Each fractional-order convolutional mask multiplies each element, M(i, j) or M(j, i), by
the corresponding input pixel values, I(x, y), and then obtains an enhanced feature
pattern containing spatial features in the x-axis and y-axis directions. These 2D spatial
convolutional processes act as two low-pass frequency filters [39] and then remove
the high-spatial-frequency components from a breast mammogram. In this study, the
image dimension is n × n, x = 1, 2, 3, . . . , n, and y = 1, 2, 3, . . . , n. Mx and My are
3 × 3 convolutional windows that can be written as follows [35–38]:

Mx =
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2 0
0 −v 0
0 1 0

⎤
⎦, My = MT
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2 −v 1
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⎤
⎦ (4)

where v ∈ (0, 1) is the fractional-order parameter. A sliding stride = 1 is selected for
spatial domain-based convolution operations in the horizontal and vertical directions.
The results of the convolution operation of (1) and (2) are combined and normalized,
and the approximate formula is written below:
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(5)

These multilayer convolutional layers are also called the perception layers of the CNN
network for feature enhancement and extraction. After feature extraction, the 2 × 2 sliding
window is used to perform maximum pooling (MP), as shown in the general formula (6):

MP
∣∣∣ n

2 × n
2
= max

M2×2
(

∣∣∣∣∇v Ixy

∣∣∣∣|n×n ) (6)

After MP, the number of feature patterns is reduced to 25% of the total number of
original feature images. This reduction in the dimensions of the feature patterns can
overcome the overfitting problem for training a multilayer classifier.

• Rapid screening of breast tumors: Breast tumors can be identified at the image classi-
fication layer, which includes the flattening process (FP) and a multilayer classifier,
as seen in Figure 1. The FP can convert a 2D feature matrix into a 1D feature vector,
which is then fed as the input vector of the classifier for further pattern recognition.
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After two MP treatments, the FP treatment may be written as shown in the general
formula (7):

X
∣∣∣1×( n

4 )
2 = FP(MP

∣∣∣ n
4 × n

4
) (7)

where X is the 1D feature vector of the multilayer classifier used as input. In this study,
the multilayer classifier includes an input layer, two hidden layers (i.e., the first and
second hidden layers), and an output layer.

In two hidden layers, the Gaussian error linear unit (GeLU) function [40–42] is used as
the activation function in each hidden node. This activation function performs a nonlinear
conversion, as shown in Figure 3, which can be expressed as follows:

GeLU(xi) = 0.5xi(1 + tanh(

√
2
π
(xi + 0.4472xi

3))), i = 1, 2, 3 (8)

where xi is the 1D feature vector used as input, i = 1, 2, 3, . . . , n, X = [x1, x2, x3, . . . , xn].
The training of the multilayer classifier uses the back-propagation algorithm to adjust the
connecting weighted parameters of the classifier and set the loss function as the convergent
condition for terminating the training stage. For multi-class classification, multiple classes
of binary cross-entropy functions [7,43–45] are shown in Equation (9):

L = − 1
K

m

∑
j=1

K

∑
k=1

tj,k log2(yj,k) + (1 − tj,k) log2(1 − yj,k), j = 1, 2, 3 (9)

Y = GeLU(XW) (10)

where tj,k is the target value (desired class), T = [t1,k, t2,k, t3,k, . . . , tm,k] for multiple classes;
yj,k is the outputted prediction value, Y = [y1,k, y2,k, y3,k, . . . , ym,k]; and m is the number
of classifications. This study sets m = 2, either normal or abnormal, coding as Y = [1, 0]
and Y = [0, 1], respectively, k = 1, 2, 3, . . . , K, is the number of training data, and W is the
weighted parameter matrix of the classifier with a fully connecting network.

Figure 3. GeLU activation function in each hidden node.

2.2. Adaptive Moment Estimation Method

In the classification layer, the network connecting weighted parameters are adjusted
by using BPA to minimize the loss function. The smaller the cross-entropy value, the
smaller the classification error rate, and the higher the accuracy that can be obtained.
The adjustment formula of weight parameters of the classifier uses the adaptive moment
estimation (ADAM) optimization method, as follows [31,46]:

w(p + 1) = w(p) + η
m̂(p)√
v̂(p) + δ

(11)
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where m̂(p) = m(p)
1−β1

and v̂(p) = v(p)
1−β2

are adjustment parameters; η is the learning rate of
the classifier; δ is the smoothing value; β1 = 0.900 and β2 = 0.999 are the attenuation rates of
each iteration; p = 1, 2, 3, . . . , pmax; and pmax is the maximum number of iterations. Each
iteration computation adjusts the weighted parameters of the classifier within a limited
range with the parameters of Equation (11), as shown in Equations (12) and (13) [31,46]:

m(p) = β1m(p − 1) + (1 − β2)
∂L
∂w

(12)

v(p) = β1v(p − 1) + (1 − β2)(
∂L
∂w

)
2

(13)

With the above-mentioned formulas, the best parameters can be quickly obtained
using matrix operations and the loss function (9) can be minimized.

The proposed multilayer classifier used in this study is a fully connecting network. The
number of nodes in the hidden layer in the middle of the network is set as per the graph’s
data type and complexity. Optimization algorithms are used to adjust the connecting
weighted parameters of the classifier to minimize the loss function. The input ROI image
size used in this study is 100 pixels × 100 pixels. There is one fractional-order convolutional
layer, two convolutional layers, two maximum pooling layers, a flattening layer, and a fully
connected multilayer classifier. The relevant information about the proposed multilayer
CNN is shown in Table 1.

Table 1. Relevant information about the proposed multilayer CNN.

Layer Function Manner Feature Pattern

Input Feature Pattern ROI Extraction with 100 × 100 Bounding Box 2D, 100 pixels × 100 pixels
1st Convolutional Layer 3 × 3 Fractional-Order Convolutional Window, Stride = 1 2D, 100 pixels × 100 pixels
2nd Convolutional Layer 3 × 3 Kernel Convolution Window, Stride = 1 2D, 100 pixels × 100 pixels

2nd Pooling Layer 2 × 2 Maximum Pooling Layer, Stride = 2 2D, 50 pixels × 50 pixels
3rd Convolutional Layer 3 × 3 Kernel Convolution Window, Stride = 1 2D, 50 pixels × 50 pixels

3rd Pooling Layer 2 × 2 Maximum Pooling Layer, Stride = 2 2D, 25 pixels × 25 pixels
Flattening Layer Flattening Process 1D, 1 × 625 feature vector

Classification Layer

Multilayer Classifier: 625 input nodes, 168 hidden nodes
64 hidden nodes, 2 output nodes (for normality and

abnormality)
1 × 625 Feature Vector Feeding

into Multi-Layer Classifier
Algorithm: ADAM Algorithm

2.3. Classifier’s Performance Evaluations

This study uses the cross-validation ten times to evaluate the performance of the
proposed multilayer CNN-based classifier. Each time, the dataset is divided into the two
groups of normal and abnormal feature patterns. The dataset is then randomly divided
into two halves: 50% training dataset and 50% testing dataset. Repeat the procedure
ten folds to confirm the performances of the proposed classifier, such as the evaluation
indicators shown in the formulas for precision (%), recall (%), F1 score, and accuracy
(%) [35,36,47] in Table 2. For each fold cross-validation, the multilayer CNN-based classifier
will produce a confusion matrix comprising four parameters, including TP (True Positive),
FP (False Positive), TN (True Negative), and FN (False Negative). These parameters help
to determine the indexes for evaluating the performances of the proposed classifier. The
precision (%) indicator represents the rate that a TP can be correctly identified among all
TPs (positive samples). Generally, a model must be larger than 80% to be recognized as a
good classifier. The recall (%) indicator is defined as TP/(TP + FN). The F1 Score (∈ [0,1]) is
the harmonic mean of precision (%) and recall (%) indexes. Its index combines the two in a
single evaluation index. The higher the value of the F1 score and the closer it is to 1, the
better the classifier is at prediction.
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Table 2. Formulas for the evaluation criteria of the proposed classifier, including precision (%), recall
(%), accuracy (%), and F1 score.

Actual Total Precision (%)

Predicted
TP FP TP + FP
FN TN FN + TN (TP)/(TP + FP)

Total TP + FN FP + TN
Recall (%) (TP)/(TP + FN)
F1 Score (2TP)/(2TP + FP + FN)

Accuracy (%):
(TP + TN)/(TP + FP + TN + FN)

2.4. Computer Assistive System for Automatic Breast Tumor Screening

This study uses the LabVIEW 2019 (NITM) software to develop a computer assis-
tive system for automatic breast tumor screening, integrating: (1) ROI image extraction,
(2) feature enhancement and extraction, and (3) breast tumor screening classifier and other
functions. Algorithms for functions (1) and (2) are developed using the MATLAB Script
tool. The multilayer CNN algorithm and the interface shown in Figure 4 are written by
Python software. The interface works as follows:

• Zone 1©: Sets the source path of breast mammography images;
• Zone 2©: Loads and displays the selected mammography images;
• Zone 3©: As per the priority order, extract ROI images and perform automatic tu-

mor screening. In this study, six areas at which tumors are most possibly identified
are designated. The CAS automatically prioritizes the ROI cutting feature patterns
(100 pixels × 100 pixels), as seen in Figure 2, and then screens those areas. The block
marked 3© can show the output of the classifier, the identification result, and the clas-
sification information. The red and green circles show the normality and abnormality.
The output value of the classifier must be >0.5 to have a high degree of confidence that
there is a suspected breast tumor.

Figure 4. The human machine interface for automatic breast tumor screening: Zone 1©: Sets the
source path of images, Zone 2©: Loads and displays the images, Zone 3©: Extract ROI images and
perform automatic tumor screening.

The human machine interface designed in this study can be used in clinical applica-
tions when switched to manual mode. The user can manually select six ROI blocks and
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screenshots and then save these images in a temporary database. When the number of
screenshots reaches the set number (i.e., default of six ROIs), the multilayer CNN classifier
performs the classification task as per the priority order of the queue and returns the
identification results. The clinician then receives messages to confirm the existence of a
possible tumor.

2.5. Experimental Setup

In the MIAS database, the most common image size was 4320 pixels × 2600 pixels.
Thus, in this study, the dimensions 4320 pixels × 2600 pixels were selected for breast tumor
screening [33,34]. The vertical and horizontal resolutions of each image were identical at
600 dpi, with a bit depth of 24 bits. A total of 156 mammography images (78 subjects), in-
cluding 62 images with malignant (M) or benign (B) tumors and 94 images without tumors,
were obtained. Given a specific bounding box measuring 100 pixels × 100 pixels, feature
patterns were screenshots from the 156 images. In total, 932 feature patterns, including
564 tumors and 368 tumor-free screenshots, were obtained. In each classifier’s training
stage, 282 tumor and 184 tumor-free screenshots (50% feature patterns) were randomly
selected to train the multilayer CNN classifier. The remaining 50% of the feature patterns
were used to evaluate the classifier’s performance for each cross-validation. This study
used the relevant data, as shown in Table 1, to establish a multilayer CNN-based classifier.
We designed a fractional-order convolutional layer, two general convolutional layers, and
two MP processing layers for feature enhancement and extraction. The convolutional layer
had 16 kernel convolutional windows. In the kernel window, the sliding window moved
the number of columns and rows in steps of 1 (stride = 1) at each point of the convolution
operation. The padding parameter was set to 1 to maintain the feature pattern after the
convolutional operation. During the pooling process, the MP window moved with a stride
of 2 (stride = 2) each time. During each feature enhancement, and extraction process,
the possible tumor features and contours were gradually enhanced by the convolutional-
pooling processes; hence, it can be observed that the multilayer CNN-based classifier can
improve the accuracy of pattern recognition based on these enhanced features. Tenfold
cross-validation was performed using precision (%), recall (%), F1 score, and accuracy (%)
as indicators [35,36,48] to evaluate the prediction performance of the proposed classifier.
Figure 5 shows the visualization of the confusion matrix; for example, the classifier used
466 images for rapid screening, and the results show 178 TPs, 13 FPs, 269 TNs, and
6 FNs. The precision (%), recall (%), F1 score, and accuracy (%) can be calculated from the
confusion matrix.

Figure 5. Output confusion matrix of the multilayer CNN-based classifier.
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3. Experimental Results

This study compares the training time, accuracy, training curve, and prediction per-
formance of multilayer CNN-based classifiers using different numbers of convolutional
layers and pooling layers, different types of convolutional windows, and different sizes of
convolutional window dimensions, as seen in Table 3. The comparison items are briefly
described as follows:

• The number of convolutional layers and pooling layers: This study increases the num-
ber of convolutional layers and pooling layers from 1 to 5 and the sizes of convolution
windows from 3 × 3 to 11 × 11. The processing windows for the pooling layers are
set to 2 × 2, and the second to fifth convolutional layers have 16 kernel convolution
windows to perform feature enhancement and extraction.

• The first convolution windows: This study selects three types of convolutional win-
dows, including fractional-order (v ∈ (0, 1)), Sobel (first order, v = 1), and His-
teq [35,36,38,47,49,50] windows to pre-enhance the feature pattern.

Table 3. Different convolutional layer models of the multilayer CNN-based classifier (Models #1–#5).

Model
1st

Convolution
Window

2nd
Convolution

Window

3rd
Convolution

Window

4th
Convolution

Window

5th
Convolution

Window
Stride Padding

1 3 × 3, 2 - - - - 1 1
2 3 × 3, 2 5 × 5, 16 - - - 1 1
3 3 × 3, 2 5 × 5, 16 7 × 7, 16 - - 1 1
4 3 × 3, 2 5 × 5, 16 7 × 7, 16 9 × 9, 16 - 1 1
5 3 × 3, 2 5 × 5, 16 7 × 7, 16 9 × 9, 16 11 × 11, 16 1 1

In general, a multilayer CNN may have dozens of layers of convolutional layers. As
shown in Table 3, this study designs five different multilayer models of convolutional
layers and convolutional window sizes. It compares the training time and accuracy
of five models to confirm the feasibility of the CNN model constructed in this study.
Moreover, we establish three models for feature enhancement and extraction, as seen
in Table 4, by combining different kernel convolutional windows and dimensions
(3 × 3 and 5 × 5) and comparing the performance of these different models. These tests
will help determine the best model for clinical applications in automatic breast tumor
screening. In addition, we also use a multi-core personal computer (Intel® Q370, Intel®

Core™ i7 8700, DDR4 2400 MHz 8G*3) as a development platform to implement the
multilayer CNN-based classifier suggested in this study and use the graphics processing
unit (GPU) (NVIDIA® GeForce® RTX™ 2080 Ti, 1755 MHz, 11 GB GDDR6) to speed up
the time it takes for digital image processing. The feasibility study was validated as
described in detail in the subsequent sections.

Table 4. Comparisons of average training CPU time and average accuracy (%) for five different
CNN models.

Model 1 2 3 4 5

Training CPU Time (min) <30 <240 <7 <10 <180
Average Accuracy (%) 90.99% 90.34% 95.92% 95.28% 95.71%

3.1. Testing of Different Multilayer CNN Models and Determination of the Most Suitable Architecture

As shown in Table 3, this study designs five models comprising 1–5 convolutional
layers. The first layer is a fractional-order convolutional layer with two 3 × 3 convolutional
windows; it is used to perform the 2D spatial convolution operations. The second to
fifth convolutional layers use 16 kernel convolutional windows with different sizes of
convolutional windows (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11) [51] and 16 MP windows for
feature enhancement and extraction. Finally, a fully connected network with two hidden
layers using the adaptive moment estimation optimization method [46,48] adjusts the
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connecting weighted parameters with Equations (11)–(13) such that the predetermined
classification is obtained. This study uses the same training dataset, specifically, 466 feature
patterns (282 tumor and 184 tumor-free screenshots), to train and test the five different
CNN models. We randomly generate initial parameters and train each model at least five
times, thus recording the required training time and classification accuracy rate to compare
the average training CPU time (min) and average accuracy (%) of models, as seen in Table 4.
The testing results indicate that the three-layer convolutional layer model (Model #3 shown
in Table 3) has an average training CPU time of lower than 7 min and an average accuracy
(%) of larger than 95% with 466 untrained feature patterns. While the average accuracy
(%) of the four- and five-layer models can reach larger than 95%, these two models require
more training CPU time. Therefore, Model #3 is the most suitable model for developing an
automatic breast tumor screening classifier in clinical applications.

3.2. Testing of the First Convolutional Layer and Determination of the Window Type

As seen in Table 5, three types of convolution windows in the first convolutional layer,
including fractional-order windows, Sobel windows, and Histeq windows, are used per-
form the 2D spatial convolutions [35,36,47,49–52]. Figure 6a shows the original image and
image enhancement results of these three types of convolution windows. Figure 6b shows
the pixel grayscale value distribution map after the image is magnified. Compared with the
original image grayscale value (0–255) distribution map, the convolution result of the first
derivative-based Sobel convolution window [49] has a smoothing effect and is anti-noise
but requires a considerable amount of calculations while performing convolutions; more-
over, this window type produces a thicker edge contour, which results in lower accuracy in
identifying the position of the target object. We can use a second-order-based convolutional
window for feature enhancement, but this window is fairly susceptible to noise and thus
unsuitable for obtaining the edge contour of the target; this type of window is generally
used for binarization applications. The Histeq convolution (histogram regularization) [50]
yields a histogram of the number of times each grayscale value appears. This histogram
can describe the statistical information of the grayscale values of the image and allows the
direct observation of the characteristics of the image, such as its brightness and contrast.
It is primarily used for image segmentation and adjustment of grayscale values in the
image. As shown in Figure 6b, the non-zero value of the histogram has a wide and uniform
distribution, which indicates that the contrast of the image is high. The pixel value of the
image may be readjusted to a value between 0 and 255 by using linear, piecewise linear,
and nonlinear transformation functions [53]. These transformation functions are primarily
used to magnify the contrast of the original image. The overall grayscale value distribution
map shifts to the right, and the contrast of the image increases, thereby minimizing the
effort required to highlight the outline of the malignant tumor, as shown in Figure 6a.
However, this method is susceptible to factors such as illumination, viewing angle, and
noise. The Histeq (histogram normalization) function [50] can automatically determine
the grayscale transformation function and yield an output image with a uniform his-
togram. It is primarily used for contrast adjustments over a small range but could amplify
background noise.

Table 5. Different convolutional layer models for feature enhancement and extraction (Models #1–#3).

Model
1st Convolutional

Window and
Window Size

2nd Convolutional
Window and
Window Size

3rd Convolutional
Window and
Window Size

Stride/
Padding

Maximum
Pooling
Window

Stride

1 Fractional Order, 3 × 3, 2 3 × 3or 5 × 5, 16 3 × 3 or 5 × 5, 16 1/1 2 × 2, 16 2

2 Sobel (First Order), 3 × 3, 2 3 × 3 or 5 × 5, 16 3 × 3 or 5 × 5, 16 1/1 2 × 2, 16 2

3 Histeq, 3 × 3, 2 3 × 3 or 5 × 5, 16 3 × 3 or 5 × 5, 16 1/1 2 × 2, 16 2
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Figure 6. (a) The original image (malignant tumor) and the enhanced image of the three convolutions,
(b) The original image and the pixel greyscale distribution map after image enhancement.

When fractional-order spatial convolution is conducted in 2D space, the overall
grayscale value distribution moves to the right, which increases the contrast of the
image and filters out noise. Thus, it shows better performance than the Sobel convolu-
tional operation. Therefore, in the first convolutional layer, this study selects a 3 × 3
fractional-order convolution window for the first convolutional layer. In addition, the
literature [35,36] proposes that setting the fractional-order parameter v = 0.30–0.40,
which is also used for feature enhancement in X-ray images, could yield promising
results. Thus, our study selects the parameter v = 0.35. After 2D spatial convolution
and normalization operations, the contour of the sharpened target can be obtained by
using Equations (1)–(5). Strengthening the target’s features, retaining non-characteristic
information, and removing noise are helpful for the subsequent second- and third-layer
feature extraction operations and further pattern recognition.

3.3. Multilayer CNN-Based Classifier Testing and Validation

This study uses Model #1, as shown in Table 5, which adopts three convolutional layers,
and the same completely connected classification layer to develop four models, as shown
in Table 6. The convolutional window sizes of the second and third layers are combinations
of (3 × 3, 3 × 3), (3 × 3, 5 × 5), (5 × 5, 3 × 3), and (5 × 5, 5 × 5) [51]. The image dataset is
divided into two groups of equal size. The four models use 466 trained and 466 untrained
feature patterns to test and confirm the performance of the classifier. A total of 1000 epochs
are set for the training classifier, with the trained and untrained feature patterns. Figure 7
shows (a) the training performance of the classifier and (b) the training history curve of the
classification performance validation; in (b), the solid blue line represents the results of the
training performance test and the solid orange line indicates the results of classification
performance validation. As the number of epoch training increases, the classifier’s output
accuracy (%) gradually increases. The four classifier models require an average of lower
than 240 s (lower than 4 min) CPU time to complete the training and testing tasks, as
seen in Table 6. Then, the trained and untrained feature patterns are randomly selected,
and the accuracy (%) of the four classifier models is tested by performing 10-fold cross-
validation (Kf = 10). Table 7 shows the overall cross-validation results. Figure 7a indicates
that the accuracy (%) of Models #2 and #3 can be improved over 600 epochs of training.
By comparison, the accuracy of Models #1 and #4 can be improved over 200–400 epochs,
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after which it converges, and the accuracy (%) of classification approaches the maximum.
The training convergence curve of the classifier is shown in Figure 7b. The accuracy (%)
of the four models may reach larger than 95%. To shorten the classifier’s design cycle
and reduce the memory requirements for storing classifier parameters, we recommend
using the architectures of Models #1 and #4 to establish and implement the multilayer
CNN-based classifiers.

Table 6. Comparisons of the training CPU time for different models of multilayer CNN-based classifier.

Model
1st

Convolutional
Layer

2nd
Convolutional

Layer

2nd
Pooling

Layer

3rd
Convolutional

Layer

3rd
Pooling

Layer

Classification
Layer (Fully
Connecting
Network)

Average
Training

Time
(s)

1

3 × 3, 2

3 × 3, 16

2 × 2, 16

3 × 3, 16

2 × 2, 16

625 input nodes,
168 1st hidden nodes,
64 2nd hidden nodes,

2 output nodes

<280

2 3 × 3, 16 5 × 5, 16 <220

3 5 × 5, 16 3 × 3, 16 <240

4 5 × 5, 16 5 × 5, 16 <330

Figure 7. Training history curves of the multilayer CNN-based classifier. (a) Training performance
test and classification performance validation as seen classification accuracy versus the training epoch
and (b) classifier training convergence curve as a loss function versus the training epoch.
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Table 7. Cross-validation results for different multilayer CNN models (Kf = 10).

Model

Test Fold
1 2 3 4 5 6 7 8 9 10

Average
Accuracy

1 96.14 97.43 98.07 97.96 98.93 98.07 96.35 95.60 96.89 98.28 97.37

2 97.42 98.93 98.28 97.64 99.14 97.21 97.85 98.28 99.14 97.42 98.13

3 96.14 97.64 98.50 98.71 99.14 97.85 97.64 95.06 97.21 99.57 97.75

4 98.93 98.71 96.14 97.32 99.36 98.18 91.74 90.34 97.64 90.02 95.84

Considering the experimental results listed in Table 6, the architecture of Model #1 is
selected to establish the screening classifier. After training is completed, 466 untrained feature
patterns, including 184 abnormal and 282 normal patterns, are randomly selected from the
dataset to validate the performance of the classifier. The experimental results of the clas-
sifier produce a visual confusion matrix. The testing result of the abnormal pattern yields
TP = 178 and FP = 6, while that of the normal pattern yields TN = 269 and FN = 13; these
values can be used as variables in Table 2 to compute the four evaluation indices of the
classifier. In this study, precision (%) = 96.74%, recall (%) = 93.19%, F1 score = 0.9493, and
accuracy (%) = 95.92%. Precision (%) is the standard for predicting TP, and recall (%) is the true
accuracy of TP. Both indicators may be greater than 80%. Recall (%) is also called the positive
predictive value (PPV), which is the so-called TP in the detection case. The general PPV index
is larger than 80%, which means the proposed classifier has promising predictive performance.
The F1 score fuses the indicators of precision (%) and recall (%), and F1 score larger than 0.9000
generally indicates a good classification model. Youden’s index (YI) is a fusion evaluation index
of sensitivity (Sens) and specificity (Spec) [54], which reflects the performance of the classifier
for detecting abnormalities. The larger the YI, the better the performance of the classifier for
detection and validation and the greater its authenticity. The testing results show YI = 91.01%
(Sens = 93.19%, Spec = 97.82%). Given that all evaluation indicators considered in this work
exceed 90%, Model #1 indeed has an architecture that supports good classification accuracy
and performance, as seen in the tenfold cross-validation (Kf = 10) for averages of precision
(%), recall (%), accuracy (%), and F1 score in Table 8. Hence, we suggest Model #1 to carry
out a multilayer CNN-based classifier for automatic breast tumor screening. In addition, as
seen in Table 9, we also set 4, 8, 16, and 32 Kernel convolutional windows and 4, 8, 16, and
32 maximum pooling windows in second and third convolutional-pooling layers, respectively,
for establishing four models (Models #1–1 to #1–4). With the tenfold cross-validation, trained
feature patterns are randomly selected, the average training CPU time of Models #1–1 and
#1–2 is less than Model #1–3 with 16 Kernel convolutional windows and 16 maximum pooling
windows. It can be seen that Model #1–4 comprises 32 Kernel convolutional windows and
32 maximum pooling windows will increase the average training CPU time and complex
computational processes at each cross-validation. With the tenfold cross-validation, untrained
feature patterns are also randomly selected, as seen in Tables 10–13, the proposed architecture
of multilayer classifier (Model #1–3) has promising classification accuracy and performance in
terms of average precision (%), average recall (%), average accuracy (%), and average F1 score.
Additionally, the proposed CNN architecture with different convolutional windows in the first
convolutional layer, including fractional-order, Sobel (first-order), and Histeq convolutional
windows, is used to test the performance of breast tumor screening model. Through the tenfold
cross-validation, the CNN classifier with a fractional-order convolutional window in the first
convolutional layer, as Model #1 in Table 14, has better classification accuracy (larger than 95%)
than Model #2 (larger than 85%) and Model #3 (larger than 90%).
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Table 8. Experimental results of K-fold cross-validation (Kf = 10) for the proposed deep-learning-
based CNN.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 95.00 96.48 95.60 0.9574
2 94.38 95.92 95.20 0.9514
3 94.82 91.80 93.80 0.9389
4 95.02 96.50 95.60 0.9575
5 96.51 91.68 95.40 0.9577
6 94.09 94.84 94.40 0.9447
7 92.80 97.61 95.00 0.9515
8 92.77 95.85 94.40 0.9429
9 96.46 95.70 96.00 0.9608
10 95.19 95.54 95.00 0.9536

Average 95.19 95.19 95.04 0.9516

Table 9. Comparisons of the training CPU time for multilayer CNN-based classifiers with different
numbers of Kernel convolutional windows and maximum pooling windows in second and third
convolutional-pooling layers.

Model
1st

Convolutional
Layer

2nd
Convolutional

Layer

2nd
Pooling

Layer

3rd
Convolutional

Layer

3rd
Pooling

Layer

Classification
Layer (Fully
Connecting
Network)

Average
Training

Time
(s)

1–1

3 × 3, 2

3 × 3, 4 2 × 2, 4 3 × 3, 4 2 × 2, 4
625 input nodes,

168 1st hidden nodes,
64 2nd hidden nodes,

2 output nodes

<150

1–2 3 × 3, 8 2 × 2, 8 3 × 3, 8 2 × 2, 8 <240

1–3 3 × 3, 16 2 × 2, 16 3 × 3, 16 2 × 2, 16 <280

1–4 3 × 3, 32 2 × 2, 32 3 × 3, 32 2 × 2, 32 <330

Table 10. Experimental results of K-fold cross-validation (Kf = 10) for Model #1–1 with 4 Kernel
convolutional windows and 4 maximum pooling windows in each convolutional-pooling layer.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 85.30 84.70 87.80 0.8640
2 87.10 93.00 91.20 0.9000
3 82.80 93.40 89.00 0.8760
4 86.10 91.50 93.20 0.9200
5 84.00 92.00 89.20 0.8780
6 93.20 84.80 91.08 0.8880
7 91.20 95.70 95.40 0.9480
8 90.10 94.80 93.60 0.9260
9 92.40 86.70 91.40 0.8950
10 97.20 99.10 98.40 0.9810

Average 88.94 91.57 92.30 0.9076

Table 11. Experimental results of K-fold cross-validation (Kf = 10) for Model #1–2 with 8 Kernel
convolutional windows and 8 maximum pooling windows in each convolutional-pooling layer.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 96.60 95.70 96.80 0.9620
2 94.80 95.60 96.00 0.9530
3 96.10 93.00 95.40 0.9450
4 88.30 96.20 93.00 0.9210
5 90.10 95.30 93.60 0.9260
6 92.10 93.40 93.80 0.9270
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Table 11. Cont.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

7 93.40 93.80 94.70 0.9360
8 92.30 93.00 93.80 0.9270
9 94.10 97.60 96.40 0.9580
10 90.30 96.70 94.20 0.9340

Average 92.81 95.03 94.77 0.9389

Table 12. Experimental results of K-fold cross-validation (Kf = 10) for Model #1–3 with 16 Kernel
convolutional windows and 16 maximum pooling windows in each convolutional-pooling layer.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 96.70 96.20 97.00 0.9640
2 97.60 95.30 96.60 0.9570
3 95.10 93.40 95.40 0.9420
4 97.10 94.00 96.20 0.9540
5 97.20 97.10 97.60 0.9680
6 93.00 94.00 94.40 0.9340
7 95.60 92.40 95.00 0.9400
8 98.00 97.20 98.10 0.9760
9 96.50 95.70 96.00 0.9610
10 95.20 95.50 95.00 0.9540

Average 96.30 95.04 95.93 0.9553

Table 13. Experimental results of K-fold cross-validation (Kf = 10) for Model #1–4 with 32 Kernel
convolutional windows and 32 maximum pooling windows in each convolutional-pooling layer.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 96.70 96.20 97.00 0.9640
2 99.00 96.20 99.00 0.9760
3 90.80 93.40 93.20 0.9210
4 95.60 93.40 95.40 0.9230
5 99.50 97.60 98.80 0.9860
6 95.30 95.70 96.20 0.9550
7 66.00 95.60 77.20 0.7800
8 96.70 98.60 98.00 0.9770
9 97.40 91.50 95.40 0.9440
10 99.00 94.80 97.40 0.9690

Average 93.60 95.30 94.60 0.9395

Table 14. Comparisons of average accuracy (%) for the CNN-based classifier with different convolu-
tional windows in first to third convolutional layers.

Model
First

Convolutional Window
Second and Third

Convolutional Window
Second and Third
Pooling Window

Classification
Layer

Average
Accuracy

1 Fractional-Order
Convolutional Window (2)

Kernel convolution
Window (16)

Maximum Pooling
Window (16)

One Input Layer,
Two Hidden Layers,
One Output Layer

>95%

2 Sobel (First-Order)
Convolutional Window (2)

Kernel convolution
Window (16)

Maximum Pooling
Window (16) >85%

3 Histeq
Convolutional Window (2)

Kernel convolution
Window (16)

Maximum Pooling
Window (16) >90%

Figure 8 shows the left breast mammogram image of a patient (File Name #mdb31-
5ll [33,34]). In this case study, the right breast mammogram image (File Name
#mdb316rl) is normal (background tissue: Dense-glandular (D)), the left breast has a
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benign tumor (B), the center coordinates of the tumor are (1900, 317), the background
tissue is D, and the circumscribed masses are labeled (CIRC) [33,34]. In this study,
using the automatic screening system developed [55], as per the pre-selected priority
order of screening ( 1©→ 6©), the sequence of ROI blocks is shown in Figure 8, and the
automatic screening results show four TP ( 1©, 2©, 3©, and 6©) and two TNs ( 4©and 5©). In
this case, the large tumor spans four ROI blocks 1©– 3©and 6©. Therefore, the screening
results show TP for identifying a possible breast tumor, the reliability of the classifier
output judged to be abnormal is larger than 0.50, and the abnormality is flagged by a
red message. The screening system can be switched to manual mode. Similar to the
automatic screening results, the four ROI blocks 1©– 3©and 6©can be manually circled,
screenshotted, and stored in the queue in the order of manual screenshots. The clas-
sifier automatically performs image recognition in sequence, and the corresponding
recognition results and messages are returned so that the clinician can confirm the
possible tumor conditions.

Figure 8. Human–machine interface of the computer assistive system and its automatic screening results.

3.4. Discussion

This study designs a mammography classification method incorporating a multilayer
CNN-based classifier for automatic breast tumor screening in clinical applications. The pro-
posed classifier algorithm is implemented in the LabVIEW 2019 (NITM) software, MATLAB
Script tools, and open-source Tensorflow platform (Version 1.9.0) [28] and integrated into a
computer assistive system with the automatic and manual feature extraction and breast
tumor screening modes. The fractional-order convolutional layer and two convolutional-
pooling layers allow the image enhancement and sharpening of the possible tumor edges,
contours, and shapes via one fractional-order and two kernel convolutional processes in
the feature patterns. Through a series of convolution and pooling processes at different
scales and different dimensions, the classifier can obtain nonlinearity feature representation
from low-level features to high-level information [29]. Then, with the specific bounding
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boxes (automatic or manual mode) for ROI extraction, enhanced feature patterns can then
be distinguished for further breast tumor screening by the multilayer classifier in the clas-
sification layer. A gradient-descent optimization method, namely, the ADAM algorithm,
is used in the back-propagation process to adjust the network weighted parameters in
the classification layer. With K-fold (Kf = 10) cross-validation, the 466 randomly selected
untrained feature patterns for each test fold, the proposed multilayer CNN-based classifier,
has high recall (%), precision (%), accuracy (%), and F1 scores for screening abnormalities
in both right and left breasts. Experimental results show that the proposed multilayer
CNN model offers image enhancement, feature extraction, automatic screening capability,
and higher average accuracy (larger than 95%) for separating the normal condition from
the possible tumor classes. It has been observed from previous literature [3–7,10,56] that
multilayer CNNs comprised several convolutional-pooling layers and a fully connecting
network to establish a classifier for automatic breast tumor screening, and could also be
applied for CT, MRI, chest X-ray, and ultrasound image processes, such as image classi-
fication and segmentation in clinical applications [19,23,28,35,36,51,55]. The combination
of a cascade of deep learning and a fully connecting networks is also carried out by a
multilayer CNN-based classifier, and a decision scheme [56]. For the screened suspicious
region on mammograms, the cascade of the deep-learning method had 98% sensitivity and
90% specificity on the SuReMapp (Suspicious Region Detection on Mammogram from PP)
dataset [56], and 94% sensitivity and 91% specificity on the mini-MIAS dataset [56]. This
CNN-based multilayer classifier could extract multi-scale feature patterns, and increase the
depth and width feature patterns by using multi-convolutional-pooling processes, which
had an overall increase in accuracy. However, excessive multi-convolutional processes
would completely lead to a loss of the internal data about the position and the orientation
of the desired object, and an excessive multi-pooling processing would lose valuable infor-
mation relating to the spatial relationships between features; thus, many processes were
required to perform with GPU hardware for complex computational processes. Hence, the
proposed optimal multilayer CNN architecture contained 2D spatial information in the
fractional-order convolutional layer (with two fractional-order convolutional windows),
and continuously enhanced the features with two-round convolutional-pooling processes
(with 16 Kernel convolutional windows and 16 maximum pooling windows), which could
extract the desired features at different scales and different levels. Thus, in comparison with
the other deep-learning methods, the proposed multilayer classifier exhibited promising
results for the desired medical diagnostic purpose. Hence, we have some advantages for
the proposed CNN-based classifier, as follows:

• The ROI extraction, image enhancement, and feature classification tasks are integrated
into one learning model;

• The fractional-order convolutional process with fractional-order parameter, v = 0.30–0.40,
is used to extract the tumor edges in the first convolutional layer; subsequently, two kernel
convolution processes are used to extract the tumor shapes;

• The ADAM algorithm is easy to implement and operate with large datasets and
parameter adjustment;

• The proposed CNN-based classifier has better classification accuracy than the CNN
architecture with Sobel and Histeq convolutional windows in the first convolutional layer.

4. Conclusions

The proposed CNN architecture had better learning ability for complex feature pat-
terns in massive-sized training datasets, and also had more promising classifier perfor-
mance than traditional CNN-based classifiers and a cascade of deep-learning-based classi-
fiers. Through experimental test and validation, we suggested optimal architecture for a
simplified and established multilayer CNN-based classifier, which consisted of a fractional-
order convolutional layer, two Kernel convolutional-pooling layers, and a classification
layer. Hence, this optimal CNN-based classifier could replace manual screening for tasks
requiring specific expertise and experience for medical image examination, which could
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also raise its indication in clinical applications with CBIS-DDSM and SuReMapp dataset for
the proposed training classifier. Additionally, in real-world applications, clinical mammog-
raphy with biomarkers are continuously obtained, the new feature patterns can be extracted
and added to the current database to further train the CNN-based classifier, which can keep
its intended medical purpose and can also be used as a computer-aided decision-making
tool and software in a medical device tool.
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Abbreviations

CNN Convolutional Neural Network
CBIS-DDSM Curated Breast Imaging Subset of a Digital Database for Screening Mammography
BC Breast Cancer
AI Artificial Intelligence
BD Big Data
MRI Magnetic Resonance Imaging
CT Computer Tomography
ROI Region of Interest
2D Two-Dimensional
1D One-Dimensional
ML Machine Learning
MP Maximum-Pooling
FP Flattening Process
MLP Multilayer Perceptron
GPU Graphics Processing Unit
ADAM Adaptive Moment Estimation Method
GeLU GeLU
MIAS Mammographic Image Analysis Society
SuReMapp Suspicious Region Detection on Mammogram from PP
TP True Positive
FP False Positive
TN True Negative
FN False Negative
PPV Positive Predictive Value
YI Youden’s Index
Sens Sensitivity
Spec Specificity
B Benign
M Malignant
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Abstract: In medical image processing, magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) modalities are widely used to extract soft and hard tissue information, respectively.
However, with the help of a single modality, it is very challenging to extract the required pathological
features to identify suspicious tissue details. Several medical image fusion methods have attempted
to combine complementary information from MRI and CT to address the issue mentioned earlier
over the past few decades. However, existing methods have their advantages and drawbacks. In
this work, we propose a new multimodal medical image fusion approach based on variational mode
decomposition (VMD) and local energy maxima (LEM). With the help of VMD, we decompose
source images into several intrinsic mode functions (IMFs) to effectively extract edge details by
avoiding boundary distortions. LEM is employed to carefully combine the IMFs based on the local
information, which plays a crucial role in the fused image quality by preserving the appropriate
spatial information. The proposed method’s performance is evaluated using various subjective and
objective measures. The experimental analysis shows that the proposed method gives promising
results compared to other existing and well-received fusion methods.

Keywords: MRI; CT; Image fusion; intrinsic mode functions (IMFs); LEM; VMD

1. Introduction

Medical image analysis plays a crucial role in clinical assessment. However, the
success rate of the diagnosis depends upon the visual quality and the information present
in medical images [1]. In real-world medical imaging, denoising [2,3] or texture information
processing [4,5] is a necessary preprocessing step to improve the fused image’s visual
quality further.

Nowadays, several imaging modalities are available to capture specific medical in-
formation of a given organ [6–8]. X-ray, MRI, CT, positron emission tomography (PET),
and single-photon emission computed tomography (SPECT) of a human brain displayed
in Figure 1 are crucial medical imaging modalities among them. For example, the magnetic
resonance imaging (MRI) modality captures the anatomical information of the soft tissue.
In contrast, computed tomography (CT) significantly provides hard tissue information
such as bones structures and tumors [8]. Moreover, for clinical needs, the information
provided by a single modality may not be sufficient, especially during the diagnosis of dis-
eases [9]. The image fusion mechanism can effectively address this problem, enhancing the
information by combining the complementary details provided by two or more modalities
into a single image.
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Figure 1. Illustration of the classification of different medical brain imaging modalities.

Image fusion can be categorized into spatial and transform domain techniques [10].
In spatial domain methods, the fusion takes place between the pixels of the source images
directly. The maximum, minimum, average, weighted average and PCA are examples of
the spatial domain fusion methods, which are easy to implement and computationally
efficient. Direct pixel-based fusion methods use a weighted pixel of input images to form a
fused image [11]. The activity level of the pixels determines these weights. In the literature,
various machine learning methods such as neural networks and support vector machines
(SVM) are also used to select the pixels with the highest activity [12,13]. In [14], an iterative
block-level fusion method is proposed. First, the source images are decomposed into small
square blocks, and PCA is computed on those blocks. Next, weights are found using
the average of the PCA components. Finally, a maximum average mutual information
fusion rule is employed for the final blending of input images. In [15], a pixel-level image
fusion method is proposed using PCA. Here, the first PCA components from both the
input images are multiplied individually, and those weighted images are added for fusion.
However, these methods might exhibit spatial color, information loss, and brightness
distortions [16,17].

Image fusion methods based on the transform domain techniques are receiving much
consideration [18]. Pyramid [19], wavelet [20], and multi-resolution singular value de-
composition (MSVD) are examples of traditional methods [21] in this category. However,
transform domain fusion methods have a few drawbacks [18]. For example, most pyramid
methods suffer from blocking artifacts and a loss of source information, even producing
artifacts around edges [22]. Wavelets suffer shift sensitivity, poor directionality, an absence
of phase information, poor performance at edges and texture regions, and produce artifacts
around edges because of the shift-variant nature [22]. Despite the reliable quantification
results, MSVD fusion methods might result in poor visual quality [23].

To address the issues mentioned above, other transform domain fusion techniques
such as À Trous wavelet transform (ATWT), curvelet transform (CVT), and ridgelet trans-
form are suggested in [24]. These methods provide better results concerning the visual
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aspect, preserving spatial and spectral information. Nevertheless, these techniques suffer
from artifacts around the edges in the fused image [25].

In [26], a new pixel-level image fusion approach using convolutional sparsity-based
morphological component analysis (CS-MCA) is introduced. This method achieves sparse
representation by combining MCA and sparse convolutional representation into the unified
optimization method. This approach might suffer from a spatial consistency problem,
resulting in the degradation of spatial details [27]. An NSST-based fusion scheme is
proposed in [28].This approach used a blend of NSST with weighted local energy (WLE) and
a weighted sum of eight- neighborhood-based modified Laplacian (WSEML) to integrate
MRI and CT images. However, this method is a non-adaptive approach. A summary of
different types of image fusion methods, their advantages and drawbacks are tabulated in
Table 1.

Table 1. Brief summary of the image fusion methods.

Image Fusion Types Fusion Methods Advantages Drawbacks

Spatial domain

Average, minimum, maximum,
morphological operators [11],

Principal Component Analysis (PCA)
[14], Independent Component

Analysis (ICA) [29]

Easy to implement.
Computationally

efficient

Reduces the contrast, produces
brightness or color distortions.

May give desirable results for a
few fusion datasets.

Tr
an

sf
or

m
do

m
ai

n

Py
ra

m
id

al
m

et
ho

ds Contrast Pyramid [30],
Ratio of the low-pass pyramid [31],

Laplacian [19]

Provides spectral
information

May produce artifacts around
edges. Suffer from
blocking artifacts

W
av

el
et

tr
an

sf
or

m Discrete wavelet transform
(DWT) [15],

Shift invariant discrete wavelet
transform (SIDWT) [32],

Dual-tree complex wavelet transform
(DcxDWT) [20]

Provides directional
information

May produce artifacts around
edges because of shift

variant nature.
Computationally expensive and

demands large memory.

M
ul

ti
sc

al
e

ge
om

et
ri

c
an

al
ys

is
(M

G
A

)

Curvelet [24],
Contourlet [33],

Shearlet [34],
Nonsubsampled Shearlet transform

(NSST) [28]

Provides the edges and
texture region

Loss in texture parts, high memory
requirement, demands high

run time.

An adaptive transform-domain fusion technique might provide a better solution
to the challenges mentioned above. In these fusion approaches, the basis function of
the transform technique depends on the source image’s characteristics. With the help of
adaptive wavelets, the image’s crucial features can be highlighted, which helps in the fusion
process. Hence, adaptive wavelets turned out to be a preferable representation compared to
standard wavelets. Similar works based on VMD decomposition-based techniques can be
found in [35,36]. However, this paper proposes a new adaptive multimodal image fusion
strategy based on the combination of variational mode decomposition (VMD) and local
energy maxima (LEM) to address the challenges mentioned above. The highlights of the
proposed method are as follows:

1. VMD is an adaptive decomposition scheme that decomposes the images as band-
limited sub-bands called intrinsic mode functions (IMFs) without introducing boundary
distortions and mode-mixing problems. Indeed, the band-limited sub-bands characterize
the edge and line features of source images. This decomposition technique can effectively
extract the image features from the other transform methods such as wavelet transform
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(WT), bi-dimensional empirical mode decomposition (BEMD), and empirical wavelet
transform (EWT);

2. The LEM fusion rule extracts the local information from decomposed modes
corresponding to two source images pixel by pixel using a windowing operation (3 × 3)
and then measures the maximum information value. Hence, using the LEM fusion rule,
we can preserve the required complementary visual, edge, and texture information in
the IMFs;

3. The proposed approach aims to preserve the information and details of both MRI
and CT images into the fused image using VMD and LEM. From visual perception and
objective assessment of the fusion results, it is evident that our new image fusion method
accomplishes good performance over other existing fusion methods.

The remainder of the paper is arranged as follows: The proposed framework and
its mathematical representation are presented in Section 2. The detailed analysis of the
simulation results and necessary discussion is presented in Section 3. A final note on the
proposed method and future directions is given in Section 4.

2. Proposed Methodology

Our proposed work aims to integrate the details of the soft tissue and dense bone
structure provided by MRI and CT medical imaging technologies into a unique image. For
this, we have proposed a multimodal medical image fusion based on a blend of VMD and
LEM, as shown in Figure 2.

Figure 2. Proposed MRI-CT medical image fusion scheme.

The main steps involved in our fusion methodology are:

A. VMD-based image decomposition;
B. A fusion strategy depending on the LEM;
C. Synthesizing the fused image.

A. VMD-Based Image Decomposition
The traditional decomposition approaches, such as wavelets [37,38], BEMD [39], and

EWT [40], suffer from various problems such as boundary distortions and mode-mixing.
With these issues, we may fail to achieve an appropriate fusion result. To address these
problems, we employed VMD [41], a robust adaptive decomposition approach, highlighting
meaningful details in the form of sub-images.

The VMD finds applications in image denoising [42] and texture decomposition [43].
VMD is a non-stationary and adaptive signal processing technique. Unlike EMD and its
variants, VMD is not a recursive analysis approach, and it decomposes the signal/image
into bandlimited sub-bands based on its frequency content. This work uses VMD to obtain
distinct and significant IMFs from the source images (MRI and CT). The derived IMFs
reduce mode-mixing and boundary distortions, which are the major concerns in the above
mentioned transform domain methods. With this VMD decomposition, we can extract
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prominent edge information. Initially, we decomposed the input images into six IMFs,
which are illustrated in Figure 3.

 
Figure 3. IMFs obtained after VMD decomposition: (a) MRI image, (b) and (c–g) are approximation and detail images of (a),
respectively. (h) CT image, (i) and (j–n) are approximation and detail images of (h), respectively.

From Figure 3, it can be observed that the first IMF ((b) and (i)) captures prominent
information from the source images, whereas the remaining IMFs encompass the line and
edge information. We can note from Figure 3 that as the mode number increases, the visual
details are not significant.

Mathematical Details of VMD:
The main goal of VMD is to subdivide an input signal () into a specific number of

sub-bands (IMFs or Modes) (bl), and each sub-band is bandlimited to specific frequencies
in the spectral domain (Fourier domain) by maintaining sparsity. Each of the sub-bands
is bandlimited to its center frequencies. VMD involves the following steps to get the
bandlimited sub-bands [41]:

1. For each sub-band, its analytical counterpart needs to be computed using Hilbert
transform to get the one-sided frequency spectrum;

2. An exponential is used to mix with each mode to shift its frequency spectrum to
the baseband;

3. Finally, the bandwidth of the mode estimates using the squared L2-norm of the
gradient. The constrained variational problem can be represented as below.

min
{bl},{ωl}

{
∑
l
‖∂t

[(
δ(t) + j

πt

)
∗ bl(t)

]
e−jωl t‖2

2

}
{bl} and {w l}

(1)

where lth indicates the lth sub-band and its center frequency, respectively. δ(t) represents
the Dirac distribution, ∗ is the symbol of the convolution.

The constrained problem in Equation (1) is solved using the quadratic penalty term
and Lagrangian multipliers λ to make it an unconstrained problem given in Equation (2).

L({bl}, {ωl}, λ) = α∑
l
‖∂t

[(
δ(t) +

j
πt

)
∗ bl(t)

]
e−iωl t‖2

2 + ‖x(t)− ∑
l

bl(t)‖2
2 +

〈
λ, x(t)− ∑

l
bl(t)

〉
(2)

where L represents augmented Lagrange matrix function, α is the penalty factor parameter,
λ indicates the Lagrange multiplier, and x(t) is the input signal.

Now the solution of Equation (1) can be computed as the saddle point of Equation (2)
using the method called an alternating direction method of multipliers (ADMM).

Equation (3) can be further solved using an alternating direction method of multipliers
(ADMM) [41]. Finally, the estimate of the lth sub-band is computed as [44]:
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b̂l
n+1(ω) = (x̂(ω)− ∑

j �=l
b̂j(ω) +

λ̂(ω)

2
)

1

1 + 2α(ω − ωl)
2 (3)

Similarly, the center frequency is updated as:

ωn+1
l =

∞∫
0

ω
∣∣∣b̂l(ω)

∣∣∣2
dω

∞∫
0

∣∣∣b̂l(ω)
∣∣∣2

dω

(4)

In this work, we used the two-dimensional (2D)-VMD [45] method to decompose the
MRI and CT images. As stated above, 2D-VMD is a helpful method in extracting useful
information such as edges and curves from the source images. Furthermore, VMD is a
reliable method to deal with noisy images. Therefore, it can improve the quality of the
fusion process even without employing additional preprocessing techniques.

B. Fusion Strategy Depending on LEM
As discussed before, the VMD adaptively decomposes the input images into ban-

dlimited sub-bands called IMFs. Indeed, these IMFs characterize the image features of
source images. To highlight and extract relevant features in the fused image, we require
appropriate fusion rules. As discussed in Section 1, many fusion rules [46], such as minima,
maxima, averaging, and PCA, have been widely explored for this purpose over the past
few years. Among them, minima and maxima cause brightness distortions, averaging
rule blurs the fused image, and PCA degrades the spectral information [15]. Furthermore,
the fusion rules mentioned above may produce low spatial resolution issues [47]. The
LEM-based [47] fusion rule is adopted to tackle the issues discussed above in this work.

We have demonstrated the influence of these fusion rules visually in Figure 4 and
quantitatively in Table 2. As shown in Figure 4, the VMD with LEM fusion rule achieves
visually satisfying results compared to VMD with other fusion rules. Similarly, as shown
in Table 2, the fusion metric values calculated over 10 data sets proved the efficacy of the
chosen LEM fusion rule.

Figure 4. Visual quality analysis of various fusion rules on MRI-CT image pair. (a) MRI image, (b) CT
image, (c) VMD-AVG, (d) VMD-MAX, (e) VMD-MIN (f) VMD-LEM.
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Table 2. Average quantitative analysis of various fusion rules on 10 pairs of MRI-CT images.

Metrics
Methods

VMD-AVG VMD-MAX VMD-MIN VMD-LEM

EI 48.439 58.322 36.487 71.751

MI 4.384 4.376 3.486 4.391

VIFF 0.335 0.397 0.063 0.428

QAB/F
P 0.307 0.356 0.198 0.443

SSIM 0.599 0.232 0.563 0.621

AG 4.845 5.714 3.735 6.973

RMSE 0.0296 0.005 0.036 0.020

PSNR 15.926 14.553 15.869 18.580

The technical details of the LEM fusion rule are discussed as follows. The principal
idea behind using LEM is to extract and preserve vital information with the help of local
information constraints from both the images pixel by pixel [47]. The entire process of LEM
is described in Algorithm 1.

Algorithm 1

Let us consider the IMFs of the first image as IMFsi
A, and the sec ond image as IMFsi

B. The
local information LEα(x, y) of IMFsi

α(α = A, B) is evaluated using the following steps.
Input : Decomposed modes of images IMFsi

A, IMFsi
B.

Output : Enhanced decomposition modes Fi
IMFsA,B (x, y).

Step 1 : Calculate the local information LEMα(x, y) of individual modes IMFsi
α(α = A, B)

LEMα(x, y) =
w

∑
i=1

w

∑
j=1

[
IMFsi

α(x + i, y + j)
]2 × Wk(i, j) (5)

where, Wk is given by:

Wk =

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦

Step 2 : Choose the maximum value in the local information LEMα(x, y)

Lα(x, y) = max{LEMα(x + i, y + j)|1 ≤ i, j ≤ 3} (6)

Step 3: Calculate the binary decision weight maps

X1(x, y) =
{

1, if LA(x, y) >LB(x, y)
0, otherwise

(7)

X2(x, y) =
{

1, if LB(x, y) >LA(x, y)
0, otherwise

(8)

Step 4 : Obtain the enhanced decomposition modes Fi
IMFsA,B (x, y)

Fi
IMFsA,B = X1(x, y)× IMFsi

A(x, y) + X2(x, y)× IMFsi
B(x, y) (9)

C. Synthesizing the Fused Image
We linearly combine all the enhanced IMFs obtained from each LEM fusion rule to

construct the fused image. The whole process of the proposed fusion framework is given
in Algorithm 2.
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Algorithm 2

Input: Image A (MRI), Image B (CT).
Output: The fused image F.
Step 1: Image decomposition using VMD:
Employ VMD on the source images (A and B) to obtain IMFS which are represented as

VMD(A) =
{

IMFs1
A, IMFs2

A . . . IMFsi
A

}
., i = (1, 2, . . . N);

VMD(B) =
{

IMFs1
B, IMFs2

B . . . IMFsi
B

}
., i = (1, 2, . . . N)

(10)

Step 2: LEM-based image fusion:
(a) Estimate the local information LEMα(x, y) from each sub − band IMFsi

α(α = A, B) using
Equation (5).
(b) Consider the maximum value Lα(x, y) of LEMα(x, y) by Equation (6).
(c) Evaluate the binary decision weight maps X1(x, y), X2(x, y) with Equations (7) and (8).
(d) Fuse the decomposed modes Fi

IMFsA,B (x, y) using Equation (9).
Step 3: Reconstruct the fused image by summing all the fused sub-bands obtained from Step 2.

F =
N

∑
i=1

Fi
α(x, y) , i = 1, . . . N (11)

D. Image Fusion Evaluation Metrics
In this paper, we used a few state-of-the-art image fusion metrics to estimate the

information contribution of each source image in the fusion process. They are edge intensity
(EI) [48], mutual information (MI) [49], visual information fidelity (VIF) [50,51], edge-
based similarity measure (QAB/F

P ) [52], structural similarity index measure (SSIM) [51,53],
average gradient (AG) [54], root mean square error (RMSE) [15], peak signal-to-noise ratio
(PSNR) [13,42]. EI represents the difference of luminance along the gradient direction in
images. MI is used to measure the relative information between the source and the fused
images. VIF estimates the visual information fidelity between the fused and source images
depending on the Gaussian mixture model. The edge-based similarity (QAB/F

P ) measure
will be useful to provide the edge details in the fused image. RMSE computes a difference
measure between the reference image and fused image. In this work, the maximum value
of RMSE of MRI-fused images and CT-fused images is considered. Similarly, PSNR is also
computed. Except for RMSE, the higher values of all these metrics imply better fusion. In
the case of the RMSE, the lowest value yields a better result.

3. Results and Discussion

This section presents the experimental setup, results and analysis of the proposed
method. First, we explain the experimental setup and methods, followed by data analysis
using both qualitative and quantitative methods. Finally, we compare the proposed method
with the existing literature for a fair assessment.

The experiments are conducted on a PC with Intel(R) Core (TM) i5-5200U CPU@2.20GHz
and RAM 8GB using MATLAB2018b. We have considered a whole-brain atlas website
(http://www.med.harvard.edu/AANLIB/home.html, accessed on 1 September 2021) to
conduct our experiments. For this purpose, 23 MRI-CT medical image data sets are
taken from this database. All these data sets are registered with a resolution of 256 × 256.
Image registration [55] is a necessary step prior to image fusion. It is defined as the process
of mapping the input images with the help of a reference image. Such mapping aims to
match the corresponding images based on specific features to assist in the image fusion
process. The database contains various cross-sectional multimodal medical images, such as
MRI (T1 and T2 weighted), CT, single-photon emission computed tomography (SPECT),
and positron emission tomography (PET).

Furthermore, it has a wide range of brain images ranging from healthy to different
brain diseases, including cerebrovascular, neoplastic, degenerative, and infectious diseases.
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We have considered 23 pairs of MRI-CT from fatal stroke (cerebrovascular disease) to
validate our proposed approach (Supplementary Materials). Interested readers can find
more details of this database in [56].

The efficacy of any image fusion algorithm can be verified using subjective (qualita-
tive) and objective (quantitative) analysis. In Section 3.1, we first verified the subjective
performance of various fusion algorithms and then performed objective analysis using
fusion metrics in Section 3.2.

3.1. Subjective Assessment

Visual results of various MRI and CT fusion methods are shown in Figures 5–7.
A good MRI- and CT-fused image should contain both the soft tissue information and
dense structure information of the MRI and CT images. We can draw the following
observations by examining the visual quality of the four sets of MRI-CT fusion results
using various methods.

Figure 5. Visual quality analysis of various fusion algorithms for MRI-CT (set-7). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.
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Figure 6. Visual quality analysis of various fusion algorithms for MRI-CT (set-11). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.

Figure 7. Visual quality analysis of various fusion algorithms for MRI-CT (set-15). (a) MRI image,
(b) CT image, (c) ASR, (d) CVT, (e) DTCWT, (f) MSVD, (g) CSMCA, (h) NSST, (i) proposed method.
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1. Compared to all the other methods, our proposed algorithm provides a brighter
outer region representing the CT image’s dense structure;

2. From Figures 5–7, it can be seen that the fused images of methods (c)–(g) are
yielding poor contrast;

3. Though the method (h) in all the Figures 5–7 provides better contrast details; still, it
is suffering from artifacts, especially in the CT region.

From Figures 5–7, it can be noticed that the ASR method transfers both the CT and
MRI information partially with low contrast. Next, coming to the CVT contains more MRI
details than the CT. In the DTCWT method, we can find a few fusion artifacts in and around
the CT region. Similarly, we can observe information fusion loss in the MSVD method.
Compared with the methods mentioned above, CSMCA gives better visual quality, but
the overall contrast of the image is reduced. The fused images with the NSST method are
visually degraded due to both the fusion loss and artifacts. Overall, our proposed method
retains the necessary information from the MRI and CT with minimum fusion losses. The
comparison results of the MRI-CT fusion using various methods, including the proposed
method on the 23 pairs of fatal stroke images, are shown in Figures 8 and 9.

 
Figure 8. The results of various methods on first 10 pairs of MRI-T images (fatal stroke).
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Figure 9. The results of various methods on next 13 pairs of MRI-CT images (fatal stroke).

3.2. Objective Assessment

Here, we assess the fused image quality objectively using fusion metrics. Tables 3–5
demonstrate the objective assessment of the three fatal-stroke images proposed and other
existing approaches (sets: 7, 11, and 15) subjectively analyzed earlier. In addition, we
have presented the average objective metric scores of all the 23 sets (fatal-stroke)in Table 6.
Fusion metrics except for RMSE with the first highest values are highlighted in bold
font, and the second-highest values are underlined. The first-lowest value of the RMSE
is indicated in bold, and the second-lowest value is underlined. A number within the
bracket at the end of the quantitative metric scores represents the rank of the fusion
algorithm. In these Tables, the ranking scheme is considered for better quantitative analysis
of fusion algorithms.

Table 3. Quantitative analysis of various fusion methods for MRI-CT (set-7).

Metrics
Methods

ASR CVT DTCWT MSVD CSMCA NSST Proposed Method

EI 85.184 91.417 (1) 88.853 77.183 87.219 81.907 90.390 (2)

MI 3.948 (2) 3.548 3.656 3.490 3.811 3.703 4.079 (1)

VIFF 0.321 0.290 0.280 0.344 (2) 0.319 0.267 0.406 (1)

QAB/F
P 0.535 0.478 0.500 0.427 0.536 (2) 0.373 0.538 (1)

SSIM 0.563 0.376 0.499 0.548 0.629 (2) 0.520 0.697 (1)

AG 8.561 9.140 (1) 8.933 8.332 8.674 8.368 9.008 (2)

RMSE 0.034 0.034 0.034 0.034 0.035 0.027 (2) 0.020

PSNR 16.328 16.749 17.166 13.28 17.393 (2) 13.976 21.342 (1)
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Table 4. Quantitative analysis of the various fusion methods for MRI-CT (set-11).

Metrics
Methods

ASR CVT DTCWT MSVD CSMCA NSST Proposed Method

EI 67.026 79.944 (2) 75.086 64.169 70.435 75.318 80.087 (1)

MI 4.279 3.904 4.030 4.227 4.346 (1) 4.116 4.339 (2)

VIFF 0.272 0.254 0.249 0.286 0.297 (2) 0.241 0.356 (1)

QAB/F
P 0.472 0.421 0.435 0.392 0.481 (1) 0.421 0.480 (2)

SSIM 0.593 0.276 0.413 0.301 0.537 0.600 (1) 0.599 (2)

AG 6.662 7.887 (2) 7.421 6.812 6.877 7.471 7.980 (1)

RMSE 0.029 0.029 0.029 0.028 0.029 0.024 (2) 0.021 (1)

PSNR 16.857 17.171 17.720 15.804 17.892 (1) 13.981 17.794 (2)

Table 5. Quantitative analysis of the state-of-the-art methods for MRI-CT (set-15) dataset.

Metrics
Methods

ASR CVT DTCWT MSVD CSMCA NSST Proposed Method

EI 51.347 63.877 58.355 49.732 51.899 65.474 (2) 65.802 (1)

MI 4.186 3.878 3.995 4.090 4.284 (2) 4.214 4.549 (1)

VIFF 0.356 0.362 0.365 0.348 0.412 (2) 0.340 0.484 (1)

QAB/F
P 0.465 (2) 0.418 0.431 0.380 0.461 0.446 0.478 (1)

SSIM 0.674 (2) 0.338 0.507 0.417 0.663 0.590 0.694 (1)

AG 5.065 6.231 5.719 5.197 5.045 6.349 (1) 6.326 (2)

RMSE 0.028 0.029 0.029 0.026 0.028 0.022 (2) 0.018 (1)

PSNR 17.396 17.268 17.649 16.392 18.644 (1) 14.096 18.024 (2)

Table 6. Average quantitative analysis of the proposed method (23 pairs of MRI-CT) and other state-of-the-art methods.

Metrics
Methods

ASR CVT DTCWT MSVD CSMCA NSST Proposed Method

EI 57.800 64.531 61.820 50.850 58.592 62.404 64.582

MI 3.666 3.360 3.446 3.694 3.657 3.740 3.830

VIFF 0.376 0.362 0.358 0.365 0.401 0.364 0.498

QAB/F
P 0.541 0.483 0.500 0.399 0.531 0.439 0.542

SSIM 0.651 0.350 0.503 0.614 0.634 0.586 0.657

RMSE 0.029 0.029 0.029 0.029 0.029 0.022 0.020

AG 5.772 6.390 6.148 5.427 5.771 6.217 6.412

PSNR 16.803 16.972 17.242 16.000 17.757 16.021 20.291

Comprehensively, the proposed framework is the only approach that occupies the
first two ranks for all eight metrics among all the seven methods. It indicates that our
method has robust performance (i.e., stable and promising performance) than other existing
techniques. Specifically, our approach always remains in the first position on VIFF and
RMSE for all four data sets, as shown in Tables 3–5.

Average quantitative analysis of the proposed and other state-of-the-art methods
calculated over 23 pairs of MRI-CT (fatal stroke) are presented in Table 6. The proposed
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method occupied the first position by overperforming other fusion algorithms when
average values are considered in fusion metrics.

In general, the consistent performance of any image fusion algorithm in quantitative
results is mainly due to the good visual quality of fused images, fusion gain, and less
fusion loss and fusion artifacts. We have already seen from the visual result analysis that
the proposed method can transfer the source image information into the fused image with
less fusion loss and artifacts compared to the other fusion algorithms. It is also evident
from the fusion metrics that our method is giving a stable performance.

Hence, we can conclude that the proposed method is promising, stable, and efficient
from qualitative and quantitative comparative analysis.

4. Conclusions and Future Scope

We proposed a multi-modal medical image fusion framework with VMD and LEM
to fuse MRI and CT medical images in this work. By using an adaptive decomposition
technique VMD, significant IMFs are derived from the source images. This decomposi-
tion process can preserve some details of source images. However, these details are not
sufficient to fulfill the clinical needs of radiologists. Hence, we used a LEM fusion rule
to preserve complementary information from IMFs, an essential criterion during medical
image diagnosis. All the experiments are evaluated on the Whole Brain Atlas benchmark
data sets to analyze the efficacy of the proposed methodology. The experimental results
reveal that the proposed framework attained better visual perception. Even objective
assessment in terms of average EI (64.582), MI (3.830), VIFF (0.498), QAB/F

P (0.542), SSIM
(0.6574), RMSE (0.020), AG (6.41), and PSNR (20.291) demonstrated quantitative fusion
performance better than the existing multi-modal fusion approaches. In the future, we
wish to conduct experiments with extensive data that contain images of MRI and CT with
different disease information. Additionally, we consider extending this work to both 2D
and 3D image clinical applications. Furthermore, we would like to verify the effectiveness
of the proposed method for other image fusion applications such as digital photography,
remote sensing, battlefield monitoring, and military.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app112210975/s1. The qualitative (Figures S1–S23) and quantitative results (Tables S1–S23)
of all the 23 pairs of images used in this work are given in the supplementary material.
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Abstract: Brain signals can be measured using multiple imaging modalities, such as magnetic
resonance imaging (MRI)-based techniques. Different modalities convey distinct yet complementary
information; thus, their joint analyses can provide valuable insight into how the brain functions
in both healthy and diseased conditions. Data-driven approaches have proven most useful for
multimodal fusion as they minimize assumptions imposed on the data, and there are a number of
methods that have been developed to uncover relationships across modalities. However, none of
these methods, to the best of our knowledge, can discover “one-to-many associations”, meaning
one component from one modality is linked with more than one component from another modality.
However, such “one-to-many associations” are likely to exist, since the same brain region can be
involved in multiple neurological processes. Additionally, most existing data fusion methods require
the signal subspace order to be identical for all modalities—a severe restriction for real-world data of
different modalities. Here, we propose a new fusion technique—the consecutive independence and
correlation transform (C-ICT) model—which successively performs independent component analysis
and independent vector analysis and is uniquely flexible in terms of the number of datasets, signal
subspace order, and the opportunity to find “one-to-many associations”. We apply C-ICT to fuse
diffusion MRI, structural MRI, and functional MRI datasets collected from healthy controls (HCs)
and patients with schizophrenia (SZs). We identify six interpretable triplets of components, each of
which consists of three associated components from the three modalities. Besides, components from
these triplets that show significant group differences between the HCs and SZs are identified, which
could be seen as putative biomarkers in schizophrenia.

Keywords: independent component analysis; independent vector analysis; multimodal data fusion;
brain imaging

1. Introduction

Imaging and electrophysiological techniques that effectively quantify brain functions
and structures facilitate our understanding of human brain function in healthy popula-
tions and those suffering from neuropsychiatric diseases such as schizophrenia [1–4]. For
example, the magnetic resonance imaging (MRI)-based methods diffusion MRI (dMRI) [5],
structural MRI (sMRI) [6], and functional MRI (fMRI) [7] are three brain-imaging modalities
that convey information about structural connectivity, regional brain volume, and func-
tional activity/connectivity, respectively. DMRI estimates white matter (WM) connectivity
based on the differential diffusion rates of water molecules in different brain tissues. SMRI

Appl. Sci. 2021, 11, 8382. https://doi.org/10.3390/app11188382 https://www.mdpi.com/journal/applsci
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provides information about the morphology of brain tissues including WM, grey matter
(GM), and cerebrospinal fluid (CSF). FMRI detects neuronal activations by measuring the
blood oxygenation level-dependent response in the brain. Each of these three imaging
techniques reveals different yet complementary information about brain structures or activ-
ities. Because of the intrinsic relationships between the structure and activity of the brain,
multiple associations between these modalities are expected. This motivates the increasing
popularity of collecting data from the same subjects using multiple modalities [8,9]. A joint
analysis of such multimodal data should be useful for finding multiple associations across
modalities, revealing the mechanisms of brain functions and potentially improving the
predictive power to diagnose diseases compared with unimodal analyses. Data fusion is
concerned with the simultaneous analyses of such joint datasets to obtain a global view of
a problem under study or a system under observation by leveraging the information that
is available across multiple datasets so that further analyses (e.g., detection, classification)
can be improved [10–12].

However, since the relationships between different modalities are largely unknown,
data-driven methods are particularly attractive. In this regard, data-driven methods based
on blind source separation (BSS) have proven to be particularly useful for data fusion due
to their ability to decompose the observed data into a set of latent variables, also known
as components, through a simple generative model [13–16]. The components obtained
from different datasets separately or jointly through the BSS techniques could be used
to reveal potential relationships between different datasets. For example, components
obtained from the datasets of sMRI and fMRI through the BSS techniques show locations
and intensities of separated source signals in the brain (i.e., spatial maps) and allow us to
find how the brain activities (fMRI) are related to the brain structures (sMRI). Importantly,
due to the existence of systematic noise and interference in the real-world data, performing
data fusion in the signal subspace with proper numbers of components (i.e., orders of
signal subspace) effectively reduces the noise and interference and thus enables a better
generalization ability.

Among various BSS techniques, independent component analysis (ICA) [17] and canon-
ical correlation analysis (CCA) [18,19], as well as their extensions to multiple datasets—
independent vector analysis (IVA) [20,21] and multi-set CCA (mCCA) [22,23]—have proven
to be especially useful for data fusion. With a linear mixing model and the assumption
of statistical independence, ICA decomposes observations into maximally independent
components (ICs). IVA generalizes ICA to multiple data sets and utilizes the statistical
dependence across different data sets to achieve a powerful solution for data fusion [20,24].
CCA and mCCA, on the other hand, make use of second-order statistics (correlation), and
it can be shown that IVA generalizes both [21].

A number of models based on ICA, IVA, CCA, and mCCA have been developed
for data fusion, such as joint ICA (jICA) [25], mCCA + jICA [26], and transposed IVA
(tIVA) [15,27]. JICA concatenates all the datasets together and then performs ICA on the
joint dataset for data fusion. The jICA model assumes a common mixing matrix and order
as well as equal contributions across all datasets—a set of strong constraints, especially for
more than two modalities. For mCCA + jICA, the use of mCCA in the first stage relaxes the
strong assumptions of identical mixing matrices; however, a common order for the different
modalities is still needed. TIVA also requires a common order in different modalities and
a significantly large number of subjects for enough statistical power, which in a large
number of cases is not feasible in current experimental settings. Collectively, none of these
methods are flexible in terms of dealing with different orders and finding “one-to-many
associations” in real-world data. However, firstly, due to the disparate measurements in
different modalities, the order of the signal subspace is very likely to be different between
modalities [28,29]. Secondly, one component in one modality might be associated with
multiple components in other modalities because of the intrinsic relationships between
modalities. For instance, the same WM connects multiple regions of the GM; thus, “one-to-
many associations” between dMRI and sMRI datasets are expected. Besides, the fusion of
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more than two modalities of brain imaging data is expected to further facilitate exploiting
joint information beyond pair-wise associations; nonetheless, most data fusion methods
have been implemented to find multiple associations between only two modalities [26].
Therefore, a new framework for multi-modal data fusion is needed that is fully flexible in
terms of the number of datasets combined, allowing for different orders across modalities
and the discovery of “one-to-many associations”.

In this study, we propose a fully flexible data fusion framework, consecutive indepen-
dence and correlation transform (C-ICT), to jointly analyze more than two datasets. By
successively performing ICA and IVA, C-ICT exploits the strengths of ICA and IVA for the
joint analysis of multimodal data. First, ICA is performed on individual datasets separately
to obtain maximally independent components and corresponding subject profile matri-
ces (first-level mixing matrices). Second, meaningful ICs and the corresponding subject
profiles are selected for further analysis. Third, IVA with a multivariate Gaussian model
(IVA-G) [30] is performed on the subject profile matrices of different datasets to obtain the
source component vectors (SCVs) and the second-level mixing matrices. SCVs that show
significant pair-wise correlations are chosen for further analysis. Finally, we trace back to
the ICs in the first stage based on subject profiles with the highest contribution to the corre-
lated SCVs and identify them as associated components across different modalities. Thus,
C-ICT is fully flexible in terms of the number of datasets combined, the numbers of orders
of the signal subspace for each dataset, and the discovery of “one-to-many associations”,
and builds on the related concept we introduced in [28] for only two datasets.

We apply this new method to the fusion of data from three brain-imaging modalities
(dMRI, sMRI, and resting-state fMRI) to search for possible multiple associations across
these datasets. The data were collected from 86 healthy controls (HCs) and 76 patients
with schizophrenia (SZs). Due to the intrinsic differences of these three data modalities,
the choice of different orders for the three datasets is critical, which is accommodated by
C-ICT. Importantly, prior to the IVA stage, we implemented an additional step to remove
artifact components, as these might have contaminated the inherent associations across
the modalities—a step which we note to be critical to the success of the method. It is
shown that C-ICT successfully discovers multiple associations among the three modalities,
including “one-to-many associations”. First, multiple associations successfully discovered
in this study are consistent with existing structure–function networks. Second, among the
three modalities in each triplet, dMRI and sMRI components show stronger associations
than other modality pairs (dMRI and fMRI; sMRI and fMRI), which is consistent with the
fact that the GM structure and WM structure are more intrinsically related than other pairs.
These results demonstrate that our proposed C-ICT method is a flexible and powerful tool
to find associative relationships across related data of different modalities.

2. Materials and Methods

2.1. Human Brain Data
2.1.1. Data Acquisition

The data used in this study were dMRI, sMRI, and resting-state fMRI data from the
Center of Biomedical Research Excellence (COBRE), available from the Collaborative Infor-
matics and Neuroimaging Suite data exchange repository [31,32] (coins.trendscenter.org/,
accessed on 8 October 2018). All the three datasets include the same 86 HCs (average
age: 36.6 ± 12.1 years) and 76 SZs (average age: 36.9 ± 13.5 years). All patients completed
the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID [33]) for diagnostic
confirmation (consensus was reached by two research psychiatrists using the SCID-DSM-
IV-TR, patient version) and evaluation for co-morbidities [34]. The battery of cognitive
performance tests used was the MATRICS (Measurement and Treatment Research to Im-
prove Cognition in Schizophrenia) Cognitive Battery, including seven cognitive domains:
speed of processing, attention/vigilance, working memory, verbal learning, visual learning,
reasoning, and problem solving, and social cognition. We performed two-sample t-tests on
these cognitive scores from the HC and SZ subjects. Compared with healthy controls, SZs
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had a significantly lower cognitive performance on all domains, supporting the findings
that patients diagnosed with schizophrenia have an abnormal cognitive function.

DMRI data were collected along the anterior commissure–posterior commissure (AC–
PC) line throughout the whole brain with a field of view (FOV) of 256 × 256 mm2, a
128 × 128 matrix, 72 slices with a slice thickness of 2 mm (2 mm isotropic resolution),
a number of excitations (NEX) of 1, echo time (TE) of 84 ms, and repetition time (TR)
of 9000 ms. A multiple-channel radio-frequency (RF) coil was used, with GeneRalized
Autocalibrating Partial Parallel Acquisition (GRAPPA) (X2), with 30 gradient directions
with a b of 800 s/mm2. The b = 0 experiment was repeated five times [35] and equally
interspersed between the 30 gradient directions. The total scan time was about 6 min. This
procedure was repeated twice to increase the signal-to-noise ratio (SNR).

For the sMRI data collection, the echo planar imaging (EPI) slices were collected in a
sequential ascending order on a Siemens 3 T TIM Trio scanner using a 12-channel head coil.
A sagittal gradient echo scout image through the mid-line was obtained to prescribe oblique
axial image slices that were parallel to the AC–PC line. To minimize the susceptibility
artifact in the orbitofrontal area, oblique slices were used [36]. High-resolution T1-weighted
images were acquired with a five-echo multi-echo magnetization-prepared rapid gradient-
echo (MP-RAGE) sequence (TE = 1.64, 3.5, 5.36, 7.22, 9.08 ms, TR = 2.53 s, TI (inversion
time) = 1.2 s, flip angle = 7◦, NEX = 1, slice thickness = 1 mm, FOV = 256 mm, resolution =
256 × 256) for region of interest analyses and spatial normalization.

The resting-state fMRI data were acquired using a conventional single-shot, gradient
echo echo-planar pulse sequence with lipid suppression (TE = 29 ms; TR = 2000 ms; flip an-
gle = 75◦; FOV = 240 mm; matrix size = 64× 64; 33 slices; voxel size: 3.75 × 3.75 × 4.55 mm3).
The first image of each run was removed to eliminate T1 equilibrium effects [37].The par-
ticipants were instructed to keep their eyes open during the scan and stare passively at a
central fixation cross for about 5 min.

2.1.2. Data Preprocessing and Feature Extraction

Neuroimaging data are usually high-dimensional, with each modality having different
properties and dimensions. For example, sMRI data contain spatial information with a high
spatial resolution but contain no temporal information. FMRI data convey both temporal
information and spatial information, but with a lower spatial resolution. To jointly analyze
different datasets in a common subspace, it is important to reduce data of each modality
down to a single feature for each subject, a multivariate lower-dimensional representation
of the data, and collect the features from all subjects together in a single dataset [13,15]. Such
a reduction enables the datasets from all modalities to share a common dimension—i.e.,
the number of subjects—which provides a natural connection across different data types.

The dMRI data we used were preprocessed using the FMRIB Software Library
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, accessed on 8 October 2018). We carried out
the preprocessing steps as follows: (1) we identified and removed excessive motion or
vibration artifacts through a quality check with any gradient directions; (2) we corrected
motion and eddy currents; (3) we corrected gradient directions for any image rotation
caused by the previous motion correction step; and (4) we calculated the diffusion tensor
and then derived the scalar measure—fractional anisotropy (FA)—from the tensor. The FA,
a measurement of WM integrity, was calculated as the fraction of total diffusion that can be
attributed to anisotropic diffusion. A higher value of FA corresponds to more consistent
diffusion orientation and thus more integrity of WM [38]. The FA maps were smoothed
with an 8 mm full-width half-maximum (FWHM) Gaussian filter and then used as the
feature for dMRI data.

Using the unified segmentation method in Statistical Parametric Mapping (SPM8)
(http://www.fil.ion.ucl.ac.uk/spm, accessed on 8 October 2018), the sMRI data were
(1) normalized to the Montreal Neurological Institute (MNI) space; (2) resliced to 3 × 3 ×
3 mm3; and (3) segmented into GM, WM, and CSF images. The segmented GM images
were then smoothed with an 8 mm FWHM Gaussian filter. We further detected subject
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outliers using the spatial Pearson correlation with a template image to ensure that all
images of subjects were properly segmented [39]. The GM images were used as the feature
for sMRI data.

The fMRI data were preprocessed using an automated analysis pipeline [40] carried
out in SPM8. The pipeline consisted of (1) aligning all the images with the first image
as the reference using INRIalign approach [41] to correct minor motions of the subject;
(2) correcting for time differences between the slices using the middle slice as the reference;
and (3) spatial normalization to MNI space, including reslicing to 3 × 3 × 3 mm3, resulting
in 53 × 63 × 46 voxels. We then regressed out six motion parameters, WM, and CSF
signals to further denoise the data. Data were then spatially smoothed with an 8 mm
FWHM Gaussian filter. We estimated the fractional amplitude of low-frequency fluctuation
(fALFF) [42], which is an effective approach to represent brain activity with high sensitivity
and specificity that has been used in a large array of studies [43–48]. The fALFF is calculated
as the ratio of the power spectrum of low frequency (0.0–0.08 Hz) to that of the whole
detectable frequency range (0–0.25 Hz) [49]. The fALFF maps were then used as the feature
for fMRI in this study.

For each modality, based on its own extracted feature, a two-dimensional matrix—
feature dataset—was formed by concatenating the features across all subjects. These
feature datasets from different modalities have a common dimension—the number of
subjects—thus enabling the discovery of associations among different modalities through
the variations across subjects.

2.2. Background
2.2.1. ICA

ICA is a statistical method that seeks to recover latent sources from a set of observed
data with the assumption that the latent sources are statistically independent of one
another [50]. Since it places few assumptions on data, ICA has been widely used in brain
imaging studies [51–54].

Given a feature dataset X ∈ R
M×V comprised of M subjects and V samples (e.g.,

voxels), the generative model for noiseless ICA can be written as

X = AS, (1)

where A ∈ R
M×M is a full rank square mixing matrix and S ∈ R

M×V is the latent sources.
The goal of ICA is to estimate a demixing matrix W ∈ R

M×M such that the estimated
source matrix Ŝ can be computed as

Ŝ = WX. (2)

This can be achieved by minimizing the following cost function:

JICA(W) =
M

∑
m=1

H(ŝm)− log |det(W)|, (3)

where H(·) is the differential entropy, ŝm denotes the mth row of Ŝ, and det(W) is the
determinant of W [21]. Since both A and S are unknown, the solution of ICA decomposition
is subject to permutation and scaling ambiguities. The scaling ambiguity can be resolved
by normalizing the estimated ICs to have unit variance, as this is not information we can
retain. Hence, the inverse of W can be considered to be an estimate of mixing matrix
A, subject to permutation ambiguity, which is fortunately not a serious problem in most
applications. The columns of the estimated mixing matrix Â—i.e., the inverse of W—
contain the weights for the estimated sources across subjects. We refer to these columns
as the subject covariations or profiles and they can be used to explore the associations
between different modalities.
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2.2.2. IVA

IVA extends ICA to multiple datasets by exploiting the additional information from
the statistical dependence across multiple datasets [21]. Given K datasets, each containing
M observations and V samples, X[k], the generative model for IVA assumes that each
dataset is a linear mixture of M independent sources,

X[k] = A[k]S[k], 1 ≤ k ≤ K, (4)

where A[k] ∈ R
M×M denotes the kth mixing matrix and S[k] ∈ R

M×V denotes the set of
independent sources. IVA jointly estimates K demixing matrices, W[k], to compute the
estimated sources of each dataset,

Ŝ[k] = W[k]X[k], 1 ≤ k ≤ K, (5)

by minimizing the cost function given as

JIVA(W) =
M

∑
m=1

[
K

∑
k=1

H
(

ŝ[k]m

)
− I(ŝm)

]
−

K

∑
k=1

log
∣∣∣det W[k]

∣∣∣, (6)

where H
(

ŝ[k]m

)
denotes the entropy of the mth source estimate for the kth dataset [21].

I(ŝm) denotes the mutual information within the mth source component vector (SCV),
defined as ŝm = [ŝ[1]m , ŝ[2]m , . . . , ŝ[K]m ]T ∈ R

K×V , where ŝ[k]m ∈ R
V is the mth source from the kth

dataset and the mth SCV is formed by concatenating the mth component from all the K
datasets [24]. Thus, the maximization of the mutual information within the SCV enables
IVA to exploit dependence across datasets. The estimated mixing matrix for the kth dataset
is calculated as Â[k] = (W[k])−1. The cth column of Â[k] contains the weights for the cth
row of the Ŝ[k] (cth source) across different rows of X[k]. Since the cth source is a part of the
cth SCV, the cth column of Â[k] can be used to identify which observation makes the highest
contribution to the cth SCV; i.e., which observation makes the highest contribution to the
dependence across different modalities. These identified observations from K modalities
enable the discovery of associations across different modalities.

2.3. C-ICT Framework

As a hybrid model based on ICA and IVA-G, C-ICT factors and fuses multimodal
data. By assuming that each underlying SCV has a multivariate Gaussian distribution,
IVA-G takes into account only second-order statistics and thus maximizes correlation across
different datasets. Due to its strong identifiability condition, IVA-G has been demonstrated
to have superior performance to mCCA at identifying the correlation structure [21,24,30,55].
C-ICT exploits the advantages of ICA and IVA-G by independently decomposing each
dataset and then fusing the subject covariations together to identify the associations among
the modalities. Let X[k] ∈ R

M×Vk , k = 1, 2, . . . , K be feature datasets from K modalities,
where M is the number of subjects, common across datasets, Vk is the number of voxels
from the kth dataset, and the mth row of each feature dataset X[k] represents the feature
of the mth subject. A generative framework of C-ICT is shown in Figure 1. Briefly, C-
ICT consists of the following steps: (1) ICA is used to estimate ICs and corresponding
subject covariations for each dataset; (2) artifact components and corresponding subject
covariations are eliminated; (3) IVA-G is used to explore the associations between subject
covariations between modalities; and (4) associated subject covariations are used to identify
associated ICs.
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Figure 1. Flowchart of C-ICT. (a) Perform ICA on each dataset separately to obtain subject covariation
matrices and ICs. (b) Eliminate subject covariations corresponding to artifact components. (c) Apply
IVA-G on the reduced subject covariation matrices to obtain SCVs and the second-level mixing
matrices. SCVs that show significant pair-wise correlation are chosen for further analysis. (d) Subject
covariations with the highest contribution to the correlated SCVs chosen above are identified and
their corresponding ICs are identified as the associated components across K modalities. The first
SCV is highlighted for clarity. The same color of the bars in the different matrices denotes the same
index in the corresponding rows and columns.

2.3.1. C-ICT Step 1: ICA

In the first stage, ICA is separately performed on each feature dataset to obtain maxi-
mally independent estimated source estimates, S[k], and corresponding subject covariation
matrices A[k], k = 1, 2, . . . , K, as shown in Figure 1a. The original ICA model assumes that
the number of observations (subjects) is the same as the number of underlying sources. In
practice, usually the number of observations is greater than the number of latent sources.
Therefore, directly performing ICA on the original feature matrix might result in over-
fitting due to the effects of additive noise. So, it is desirable to reduce the dimensionality of
the data to a lower-dimensional signal subspace and then perform ICA on the extracted
signal subspace. Principal component analysis (PCA), a popular dimensionality reduction
technique, is used to represent most of the variability across subjects. Let Nk be the order
of the signal subspace—i.e., the number of estimated components—for the kth dataset.
We first perform PCA on X[k] to obtain dimension reduced matrices, Y[k] ∈ R

Nk×Vk , using
the following:

Y[k] = VT [k]
X[k], (7)

where VT [k] ∈ R
Nk×M is the dimension reduction matrix. The ICA model applied to Y[k]

can be written as
Y[k] = A∗ [k]S[k], (8)

where A∗ [k] ∈ R
Nk×Nk denotes the mixing matrix in the ICA model that is in the dimension

reduced space. To obtain the back-reconstructed mixing matrix A[k] ∈ R
M×Nk for the

original mixture X[k], we combine Equations (4), (7) and (8) to obtain the following equation:

A∗ [k] =
(

V[k]
)T

A[k], (9)
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which is equivalent to

A[k] =
(

V[k]
)+T

A∗ [k]. (10)

where (·)+T denotes the transpose of the Moore–Penrose pseudo-inverse of a matrix. Note
that this C-ICT framework allows for different orders for each dataset—an important
feature for multimodal data fusion—as shown in Figure 2.
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Figure 2. Cumulative explained variance accounting for different PCs from the FA, GM, and fALFF
datasets. For each dataset, the black point on the curve indicates the variance explained by the
number of PCs we selected.

Applying ICA to each dataset, k, results in a unique source matrix S[k] ∈ R
Nk×Vk and

estimated mixing matrix A[k] ∈ R
M×Nk for each modality. Note again that the column

of A[k], denoted by a
[k]
j , j = 1, 2, . . . , Nk, represents the weights of the corresponding

source S
[k]
j for each subject and enables the determination of possible connections between

different modalities.

2.3.2. C-ICT Step 2: Artifact Elimination

We incorporated the “Artifact Elimination” step as part of the pipeline for C-ICT. In
the second stage of C-ICT, artifact components are identified and eliminated, as shown in
Figure 1b. This is feasible because physiological signals and artifact-related signals have
independent causes and ICA has the capability to separate these statistically independent
components; i.e., source signals of different origins. ICA has already been shown to be
successful in separating real physiological source signals and artifact source signals such as
those caused by motion [54,56,57]. In this study, we take advantage of this feature of ICA to
eliminate the artifact components and avoid the contamination of the inherent associations
between different modalities. In doing so, we obtain the reduced first-level mixing matrices
A

[k]
R ∈ R

M×Lk , Lk ≤ Nk.

2.3.3. C-ICT Step 3: IVA

In the third stage, the second-level mixing matrices and SCVs, each of which comprises
K second-level components that correspond to K modalities, are estimated by performing
IVA-G on the transposed reduced first-level mixing matrices, as shown in Figure 1c. Let
B[k] = (A

[k]
R )T ∈ R

Lk×M be X[k] to be decomposed in the IVA generative model (4). The
order of the subspace D is chosen to be min(Lk). Let F[1], F[2], . . . , F[K],∈ R

Lk×D denote
the estimated second-level mixing matrices and U[1], U[2], . . . , U[K] denote the estimated
independent source matrices. The estimated sources are formed into SCVs U1, U2, . . . , UD,
and each ∈ R

K×M.
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Among the estimated SCVs, we calculate all pairwise Pearson correlation coefficients
ρ within each SCV. We then calculate the corresponding p-values; i.e., the probability (pρ)
of obtaining a correlation as large as the observed value when the true correlation is zero.
The correlation value ρ is considered significant if the p value is less than 0.05. If the K
components within the jth SCV have significant pair-wise correlation coefficients (i.e., the
p-values are all less than 0.05), then this jth SCV is referred to as a “significantly correlated
SCV”. All significantly correlated SCVs are used in the next steps. The number of these
SCVs is denoted by C.

2.3.4. C-ICT Step 4: Tracing Back to Components

In the last stage, for each significantly correlated SCV, we identify K subject profiles
with the highest contribution to that SCV from the K modalities, as shown in Figure 1c,
and trace back to their corresponding ICs, as shown in Figure 1d. These ICs are defined as
components that are associated across K modalities. The kth second-level source component
in the cth SCV represents a linear combination of all rows of B[k]; i.e., a linear combination
of all columns of F[k], where c = 1, 2, . . . , C. In other words, the kth second-level component
in the cth SCV is a linear combination of all subject covariations from the kth modalities,
weighted by the coefficients in the cth column of the second-level mixing matrix F[k]. The
cth column of the estimated second-level mixing matrices, F[k], represents the weights of
the subject covariations for the cth SCV. We identify the indices i[k] of the largest absolute
value of the coefficient in the cth column of F[k] for the kth modality, respectively, implying
the i[k]th row of F[k] has the highest contribution to the cth SCV. Then, the i[1], i[2], . . . , i[K]th
ICs that correspond to the i[k]th subject covariations obtained above are identified to be the
cth associated ICs across K modalities.

Note that the back-reconstructed subject profiles are no longer necessarily orthogonal
to each other from the same modality, so one subject profile might be dependent on multiple
subject profiles from another modality. This enables C-ICT to be able to discover such
“one-to-many associations” in this context; i.e., one IC from one modality may be associated
with multiple ICs from another modality, which is a great advantage for the multimodal
fusion method. The identification of “one-to-many associations” is illustrated in Figure 3.
After identifying the associated subject profiles among K modalities, the ICs corresponding
to these subject profiles are identified as associated among the K modalities; thus, the
“one-to-many associations” are identified.

Profiles with the 
highest contribution 
to the SCV

U[1]AR
T [1]

AR
T [K]

AR
T [2]

F[1]

F[2]

F[K]

U[2]

U[K]

Profiles with the 
highest contribution 
to the SCV

Ui

Uj

Figure 3. Identification of “one-to-many associations”. In the first modality, the indices of the largest
absolute value of the coefficient in the ith column and the jth column of F[1] are the same, meaning
that the same subject profile (marked in red) makes the highest contribution to the ith SCV and the
jth SCV. This subject profile from the first modality is associated with the two subject profiles from
the second modality and two subject profiles from the Kth modality.

3. Implementation and Results

3.1. Implementation

To exclude non-brain voxels, we performed masking on the FA, GM, and fALFF
data separately using the Group ICA of fMRI Toolbox (GIFT) [58]. A matrix of the FA
dataset with dimensions of 162 × 49,277 (number of subjects × number of dMRI voxels)
was constructed for the dMRI dataset. A matrix of the GM dataset with dimensions
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of 162 × 60,636 (number of subjects × number of sMRI voxels) was constructed for the
sMRI dataset. A matrix of the fALFF dataset with dimensions of 162 × 69,519 (number
of subjects × number of fMRI voxels) was constructed for the fMRI dataset. Then, we
implemented the proposed framework C-ICT to fuse the three datasets to explore the
multiple associations across the dMRI, sMRI, and fMRI modalities.

3.1.1. Order Selection

We performed PCA on each dataset separately and calculated the cumulative ex-
plained variance (shown in Figure 2). From Figure 2, we can see that the variance retained
for the FA and GM datasets follows a similar pattern, which differs from that of the fALFF
dataset. For this reason, the criteria for order selection were similar for the FA and GM
datasets. We used 98% as the threshold for the variance retained for the FA and GM
datasets in order to balance the retention of the most signal while minimizing the effects of
noise. As a result, the orders used for FA and GM datasets were 20 and 35, respectively.

Using a similar threshold for the variance retained with the fALFF dataset would
result in an order of 145. Model order that is greater than 100 has been found to decrease the
stability of ICA [59]. Therefore, using a variance retained threshold is not an appropriate
way to determine the order for the fALFF dataset as was done for the FA and GM datasets.
Instead, we determined the order for the fALFF dataset by investigating the effect of
different orders on the estimated ICs [12,60–62]. We performed ICA to estimate ICs starting
at an order of 20 and increasing the order with increments of 5 until the order reached 70.
These limits were selected to cover a large range of potential, yet still reasonable, values for
the order. As we increased the order from 20 to 40, we observed increasing numbers of
meaningful neuroanatomical and functional components. However, when increasing the
order beyond 40, we found that components of interest became split into multiple spatial
maps and the number of the noise components increased. For this reason, we selected an
order of 40 for the fALFF dataset, resulting in over 70% retained variance.

3.1.2. Algorithm Choice

Infomax [63] is a widely used ICA algorithm, particularly in the field of biomedical
imaging. It assumes that the underlying source component has a super-Gaussian distribu-
tion, which is a good model-match for the brain imaging signals [64]. Therefore, we used
Infomax for the C-ICT model in this study.

Since ICA is an iterative algorithm, the optimization of ICA yields different solutions
depending on the initialization. Therefore, we performed ICA for 30 independent runs
with different random initializations and selected the most consistent run using a metric
called cross inter-symbol interference (cross-ISI) [65]. Similarly, IVA-G is also an iterative
algorithm, so we performed IVA-G 50 times independently and used cross-ISI to select the
most consistent run.

3.1.3. Artifact Elimination

After the ICA step, we obtained 20, 35, and 40 ICs for the FA, GM, and fALFF datasets,
respectively. For dMRI, we used the ICBM-DTI-81 white-matter labels atlas and JHU
white-matter tractography atlas [66–68], provided in FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki/,
accessed on 10 November 2019) to identify the WM tracts. For sMRI and fMRI, each IC
was transformed into Z-scores to obtain the zero mean and unit variance, and the voxels
with a Z-score greater than the threshold 2 (|Z| ≥ 2) were converted from MNI coordinates
to Talairach coordinates and entered into a database to assign anatomical and functional
labels for the left and right hemispheres.

To remove artifacts caused by body movements such as breathing and heart beat-
ing, we eliminated ICs from the brain ventricles or areas where large blood vessels are
located [69,70]. We also eliminated ICs that were spread across wide regions of the brain
or at the edges of brain images to remove motion-related signals [57,71]. More specifically,
for the FA, we removed the ICs with spotty, diffusely distributed patterns over most of
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the brain, which represented noise. For the sMRI, we removed the sinus susceptibility
noise and WM components [72]. For the fMRI, we removed ICs that were located beyond
the area of GM; e.g., ventricles, skull, and surrounding tissue, WM, frontal/sagittal sinus
susceptibility noise, CSF, and motion artifacts with ring patterns [72–77]. As a result, 10, 27,
and 17 ICs were retained for FA, GM, and fALFF datasets, respectively. Their correspond-
ing subject covariations were formed into three reduced subject covariation matrices with
sizes of 10 × 162 (FA), 17 × 162 (fALFF), and 27 × 162 (GM), which were then used in the
IVA step. The spatial maps of the retained components were converted to Z-scores and
thresholded at |Z| ≥ 2 (Figures 4–6).

3.1.4. Group Differences

After identifying the associated ICs by performing the C-ICT on the three modalities,
we performed a two-sample t-test on the corresponding subject covariations to identify
ICs that showed a statistically significant difference between the two groups (HC vs. SZ;
p < 0.05), which are referred to as biomarkers of schizophrenia. Associated IC triplets that
showed significant group differences in all dMRI, sMRI and fMRI modalities are referred
to as associated biomarkers of disease.

3.2. Fusion Results

Following the explained procedure, we discovered six IC linked triplets (Figure 7).
The identified brain regions of each identified fALFF IC are summarized in Supplementary
Table S1. Within each of the six triplets, three ICs that corresponded to three modalities
(dMRI, sMRI and fMRI) were linked, representing a multimodal brain network with three
nodes (WM, structural GM, and functional GM).

We found that the structure–structure associations were generally stronger than the
structure–function associations (dMRI–sMRI: |ρ| = 0.48± 0.26; dMRI–fMRI: |ρ| = 0.32 ± 0.11;
sMRI–fMRI: |ρ| = 0.33 ± 0.13; see Table 1). We also examined group differences (HC vs.
SZ) for each IC on its corresponding subject covariation and found that more ICs showed
significant group differences in sMRI than the other two modalities (5 in sMRI; 2 in dMRI; 1
in fMRI; p < 0.05; two-sample t-test; see Figure 7). Interestingly, for all these ICs in both the
dMRI and the sMRI data that showed significant group differences, the SZ group showed
less activation, suggesting both a reduced volume of the GM and reduced integrity of the
WM in patients with SZ. For the ICs in fMRI that showed significant group differences,
the SZ group had higher activation, perhaps suggesting less neural efficiency in patients
with SZ.

IC 12IC 9IC 8IC 7IC 6

IC 5IC 4IC 3IC 2IC 1

−6−6−6

−5

−7−5

−8−10−9 −10−7

6 6 65 7

9 10 87 10

Figure 4. Spatial maps of 10 retained ICs from the FA dataset. These results reflect the IC results of
SZ and HC groups combined. The brain maps are visualized at |Z| ≥ 2, with positive Z values in red
color and negative Z values in blue.
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Figure 5. Spatial maps of 27 retained ICs from the GM dataset. These results reflect the IC results of
SZ and HC groups combined. The brain maps are visualized at |Z| ≥ 2, with positive Z values in red
color and negative Z values in blue.
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Figure 6. Spatial maps of 17 retained ICs from the fALFF dataset. These results reflect the IC results
of SZ and HC groups combined. The brain maps are visualized at |Z| ≥ 2, with positive Z values in
red color and negative Z values in blue.

We also note that one IC can be found in more than one triplet, meaning that one
IC from one modality is associated with many ICs from other modalities. For instance,
the IC (corticospinal tract and superior longitudinal fasciculus (CST-SLF)) from dMRI is
not only associated with the uncus and inferior temporal gyrus (Uncus–ITG) from sMRI
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and superior frontal gyrus and middle frontal gyrus (SFG-MFG) from fMRI, but is also
associated with the precuneus and paracentral lobule (Precuneus–PCL) from sMRI and
superior temporal gyrus (STG) from fMRI, as shown in Figure 7 (green frame). Another
shared IC between triplets is the postcentral gyrus and precentral gyrus (POG–PCG) from
sMRI, which is not only associated with anterior thalamic radiation and the anterior corona
radiata (ATR–ACR) from dMRI and thalamus from fMRI, but also associated with superior
corona radiation and the corticospinal tract (SCR–CST) from dMRI and culmen from fMRI,
as shown in Figure 7 (blue frame).

IC 7 p = 0.044
CST-SLF

IC 12
Precuneus-PCL

IC 10
STG

IC 20 p = 0.017
MOG-FG

IC 3
Cuneus-MOG

IC 24 p = 0.021
SFG-MFG

IC 30 p = 0.004
Uncus-ITG

IC 22 p = 0.0002
POG-PCG

STG: superior temporal gyrus 
PCL: paracentral lobule

CST: corticospinal tract
SLF: superior longitudinal fasciculus 
ITG: inferior temporal gyrus
SFG: superior frontal gyrus
MFG: middle frontal gyrus

ATR: anterior thalamic radiation
ACR: anterior corona radiata
POG: postcentral gyrus
PCG: precentral gyrus

MOG: middle occipital gyrus 
FG: fusiform gyrus

dMRI sMRI fMRI
p: p-value from the two-sample t-test

SCR: superior corona radiation
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Figure 7. Summary of the six IC linked triplets. The spatial maps of all ICs were converted to
Z-scores and thresholded by |Z| ≥ 2. Each row shows the three associated ICs from dMRI, sMRI,
and fMRI, respectively. The abbreviations of brain regions identified by ICs are shown above the
spatial maps. If one IC shows a statistically significant activation between HCs and SZs (p < 0.05;
t-test), the p value would be shown above the map, where the red color indicates higher activation in
HCs than patients and the blue color indicates lower activation in HCs than patients. Note that the
IC 7 (green frame) from dMRI is associated with two ICs from sMRI and two ICs from fMRI. IC 22
(blue frame) from sMRI is associated with two ICs from dMRI and two ICs from fMRI.
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Table 1. The absolute values of the pair-wise Pearson correlation coefficients |ρ| corresponding to the associated triplets and
the values of pρ.

Triplet # dMRI–sMRI dMRI–fMRI sMRI–fMRI

1 |ρ| = 0.80, pρ = 4× 10−37 |ρ| = 0.27, pρ = 5.6× 10−4 |ρ| = 0.49, pρ = 3.6× 10−1

2 |ρ| = 0.67, pρ = 4.2× 10−22 |ρ| = 0.43, pρ = 1.2× 10−8 |ρ| = 0.38, pρ = 1.9× 10−4

3 |ρ| = 0.62, pρ = 1.8× 10−18 |ρ| = 0.32, pρ = 3.8× 10−5 |ρ| = 0.21, pρ = 4× 10−3

4 |ρ| = 0.43, pρ = 1.6× 10−8 |ρ| = 0.21, pρ = 7.7× 10−3 |ρ| = 0.2, pρ = 1.2× 10−2

5 |ρ| = 0.18, pρ = 2.6× 10−2 |ρ| = 0.21, pρ = 6.9× 10−3 |ρ| = 0.43, pρ = 8.4× 10−9

6 |ρ| = 0.18, pρ = 2× 10−2 |ρ| = 0.46, pρ = 1.1× 10−9 |ρ| = 0.25, pρ = 1.2× 10−3

4. Discussion

In this study, we propose a new data fusion framework, C-ICT, to uncover relation-
ships across multiple brain imaging modalities to reveal the underlying mechanisms of
brain function as well as their dysfunction in diseases such as schizophrenia. Specifically, C-
ICT uses ICA to extract independent brain networks from each modality and then explores
possible associations across the modalities using IVA.

Compared with other existing data fusion frameworks, C-ICT is flexible in many ways.
First, unlike jICA, mCCA + jICA, tIVA, and parallel ICA [15,25–27,78], C-ICT allows for
different orders from the different datasets. Datasets of different modalities are different
in nature and might also have different levels of signal-to-noise ratios (SNRs). Therefore,
different orders would be expected for each modality. Second, C-ICT has no constraint
on the number of datasets, like parallel ICA. This freedom is important because a greater
number of data modalities can be collected from the same subjects. Thus, a framework that
is capable of jointly analyzing all modalities at the same time can provide valuable insight
into both the structural and functional aspects of networks responsible for brain functions.
Third, C-ICT is unique in that it is able to discover “one-to-many associations” between
datasets—a feature not available for any other data fusion method. This is possible for
C-ICT because one IC with the highest contribution to one SCV might also have the highest
contribution to other SCVs. The finding of such “one-to-many associations” suggests
that one brain region can be recruited by multiple other regions for the performance of
complex functions—an important neurobiological mechanism that is also supported by
other studies [79–81]. In addition to being highly flexible, another advantage of the C-ICT
framework is a critical step that eliminates ICs that might originate from artifacts such as
heartbeats, respiratory movement, and non-brain signals. In doing so, we have observed
more interpretable triplets of components, where each of the ICs from the three modalities
are associated with each other, and stronger associations between modalities within each
triplet, when compared with an implementation that skips this step.

We have applied the C-ICT framework to brain imaging data that measure structural
and functional aspects of both the WM and GM through dMRI, sMRI, and fMRI in both
HCs and SZs. As shown in the results, C-ICT uncovered six IC triplets. Importantly, within
each triplet, the three associated components are observed to be all closely functionally
related, thus validating our approach.

The first triplet includes anterior thalamic radiation and anterior corona radiata (ATR–
ACR), postcentral gyrus and precentral gyrus (POG–PCG), and thalamus from dMRI, sMRI,
and fMRI, respectively. The ATR is a WM bundle that connects the thalamus with the
prefrontal cortex [82]. The thalamus is a hub that relays sensory information to the cerebral
cortex [83]. The ACR carries somatotopically arranged motor fibers away from the cerebral
cortex. The POG is where the primary somatosensory cortex is located, and PCG is where
the primary motor cortex is located. This triplet represents a multimodal brain network
that involves nodes that are all related to sensory–motor functions.

The second triplet includes the corpus callosum, superior temporal gyrus (STG),
and paracentral lobule and postcentral gyrus (PCL–POG) from dMRI, sMRI, and fMRI,
respectively. The corpus callosum is an important fiber bundle that connects the left and
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right brain hemispheres and allows communications of sensory, motor, and cognitive
information between the two hemispheres. The STG is a cortical area responsible for
auditory processing, multisensory integration, and spoken word recognition. The PCL is
important for motor functions, while the POG is the location of the primary somatosensory
cortex, which is responsible for the sense of touch. Thus, this triplet primarily focuses on
sensory functions.

The third triplet includes the corticospinal tract and superior longitudinal fasciculus
(CST–SLF), uncus and inferior temporal gyrus (Uncus–ITG), and superior frontal gyrus
and middle frontal gyrus (SFG–MFG) from dMRI, sMRI, and fMRI, respectively. The CST is
a fiber tract that originates from the motor-related cerebral cortex to the motor neurons and
interneurons in the spinal cord and controls body movement. The SLF is a fiber tract that
connects frontal, occipital, parietal, and temporal lobes including the premotor cortex, thus
playing a role in regulating cognitive functions and motor behavior. The ITG is the anterior
region of the temporal lobe, which is important for object cognition and memory. SFG and
MFG occupy a large proportion of the frontal area that is also involved in cognition and
motor functions. The three ICs within this triplet all show significant group differences
between the HCs and SZs, suggesting that the structural and functional changes in these
brain cognition and motor networks might be related to the cognitive dysfunction and
motor deficits in SZs, thus revealing a multimodal neuroimaging biomarker of SZ.

The fourth triplet includes the superior longitudinal fasciculus (SLF), middle occipital
gyrus and fusiform gyrus (MOG–FG), and cuneus and middle occipital gyrus (Cuneus–
MOG) from dMRI, sMRI, and fMRI, respectively. The FG a large gyrus that spans across
the temporal and occipital lobes. Both MOG and FG are involved in visual processing and
cognition. Besides, the SLF is a fiber tract that connects to brain regions that are involved
in cognitive function. Thus, this triplet might primarily process visual cognition such as
object and facial recognition.

The fifth triplet includes CST–SLF, Precuneus–PCL, and STG from dMRI, sMRI, and
fMRI, respectively. While both the structural components are involved in motor functions,
the functional component is involved in sensory processing, representing a sensory–motor
network across the three modalities. The sixth triplet includes SCR–CST, POG–PCG, and
culmen from dMRI, sMRI, and fMRI, respectively. The three components are all related to
motor function.

As we can see from the description of the six triplets, all triplets represent networks
that are involved, at least partially, in motor functions, and many are related to cognitive
functions. Importantly, we also find that the same IC appears in more than one triplet.
Specifically, CST–SLF is in both triplet 3 (CST–SLF, Uncus–ITG, and SFG–MFG) and triplet 5
(CST–SLF, Precuneus–PCL, STG), and POG–PCG is in both triplet 1 (ATR–ACR, POG–PCG,
and thalamus) and triplet 6 (SCR–CST, POG–PCG, and culmen), suggesting dual functions
of one brain region in multiple multimodal brain networks.

Additionally, exploring the differences of ICs within the six triplets between HCs and
SZs might provide information about potential biomarkers of schizophrenia. By using
a two-sample t-test, we find that the ATR–ACR and CST–SLF from dMRI have stronger
activation in HCs than in SZs, implying the WM in these regions is less integrated in
SZs than in HCs. For sMRI, we find POG–PCG, STG, Uncus–ITG, and MOG–FG are less
activated in SZs than in HCs, meaning that SZs have a reduced average GM volume in
these areas. Furthermore, we find that SFG–MFG from fMRI has a stronger activation in
SZs than HCs. Most of these regions has been reported to be associated with abnormalities
and negative symptoms in SZs. SZs have been shown to have significantly lower FA values
than HCs in the ATR [82,84–86], ACR [87], CST [88], and SLF regions [89]. In addition, the
GM volume in the POG [90], PCG [91], STG [92], uncus [93], ITG [94,95], MOG [96], and
FG [97] has been shown to be significantly decreased in SZs compared to in HCs.

171



Appl. Sci. 2021, 11, 8382

5. Conclusions

It is increasingly common for multimodal data to be collected from the same subjects.
This provides the motivation for the development of multimodal data fusion techniques,
which have become important for the understanding of human brain imaging. In this
paper, we proposed a novel multimodal data fusion framework, C-ICT, to explore multiple
associations across different data modalities. We applied C-ICT to discover underlying
relationships between dMRI, sMRI, and fMRI datasets from HCs and SZs. We have shown
that C-ICT reveals multiple associations across the three modalities and provides potential
biomarkers for schizophrenia, demonstrating that C-ICT is a flexible and informative
method for the fusion of medical imaging data from different modalities. The success of
C-ICT in this paper motivates its application to other modalities and domains. Besides
the fusion of dMRI, sMRI, and fMRI data, C-ICT can be also used to fuse other types of
multimodal data, such as magnetoencephalography (MEG) or genetic data. Moreover, this
approach is not limited to the fusion of three data modalities but can be used for the fusion
of many more modalities, thus enabling the discovery of more comprehensive associations
across modalities in brain imaging studies as well as in other related areas.
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