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1. Introduction

In the ever-evolving landscape of marine, oceanic, and climate change monitoring, the
intersection of cutting-edge artificial intelligence (AI), machine learning (ML), and data
analytics has emerged as a pivotal catalyst for transformative advancements. Within this ar-
ticle compilation, we embark on a journey through a diverse array of innovative AI-driven
applications, each meticulously crafted to address the critical challenges inherent in under-
standing and managing our world’s aquatic realms and climate dynamics. This exploration
delves into the current status quo of marine and climate monitoring, the evolutionary
processes driving us forward, and the mechanisms that underpin these advancements.

The selection of articles underscores the pivotal role of AI-driven solutions in tack-
ling environmental challenges. These encompass a spectrum of tasks, from predicting
sea-surface temperature (SST) to detecting Sargassum aggregations and addressing water
eutrophication. AI’s impact extends across these applications, with a significant role in
unraveling the intricacies of cloud behavior—a vital component in addressing climate
uncertainties. Moreover, AI offers predictive capabilities with regard to chlorophyll-a dis-
tribution and enhances our understanding of oceanic light models and thermal variations
beneath the ocean’s surface. These advancements are of utmost importance for understand-
ing the biogeochemical cycle, the evolving dynamics of our oceans, and their implications
for climate change at both regional and global scales. Additionally, AI and data analytics
are being leveraged to enhance the precision of near-surface humidity data, effectively
addressing critical climate research needs. Lastly, ML algorithms are being proposed to
correct errors in satellite-derived sea-surface salinity data, promising increased accuracy
and deeper insights into ocean salinity patterns. These technologies enable us to gain
a more comprehensive understanding and effectively manage our natural resources.

These featured applications collectively serve as a testament to the profound signifi-
cance of AI, ML, and data analytics in advancing our comprehension and stewardship of
marine, oceanic, and climate dynamics. They emphasize the transformative potential of AI
in reshaping our approach to environmental monitoring and bolster strategies for conserva-
tion. This represents a significant stride toward implementing more efficient solutions that
can account for the intricate complexities inherent in data products and the climate system,
addressing both present and forthcoming challenges associated with climate change.

2. Articles

A total of eleven papers are featured in this Special Issue. Refer to Table 1 for a concise
overview of the article titles, authors, and keywords.

These research papers delve into various subjects and investigate efforts that harness
the potential of artificial intelligence to enhance our understanding of marine and oceanic
environments while tackling the complex challenges posed by climate change. These
papers can be categorized into several core themes as previously outlined:

1
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AI-Enhanced Sea-Surface Temperature Prediction: Researchers have been working
on innovative AI/ML techniques to improve SST predictions, which have significant
implications for various fields, including climate research, ecological preservation, and
economic progress. These advancements include the use of graph memory neural networks
(GMNNs) to encode irregular SST data effectively [1] and long-term and short-term memory
neural networks (LSTMs) for SST prediction [2].

Table 1. Overview of the papers featured in the Special Issue entitled “AI for Marine, Ocean, and
Climate Change Monitoring” in Remote Sensing.

Title Authors Keywords

A Graph Memory Neural Network for Sea Surface
Temperature Prediction

Shuchen Liang
Anming Zhao
Mengjiao Qin

Linshu Hu
Sensen Wu

Zhenhong Du
Renyi Liu

sea surface temperature
spatiotemporal prediction

deep learning
graph neural network

Prediction of Sea Surface Temperature in the East China
Sea Based on LSTM Neural Network

Xiaoyan Jia
Qiyan Ji
Lei Han
Yu Liu

Guoqing Han
Xiayan Lin

long short-term memory (LSTM)
sea surface temperature (SST)

East China Sea

Detection of Sargassum from Sentinel Satellite Sensors
Using Deep Learning Approach

Marine Laval
Abdelbadie Belmouhcine

Luc Courtrai
Jacques Descloitres

Adán Salazar-Garibay
Léa Schamberger
Audrey Minghelli
Thierry Thibaut
René Dorville

Camille Mazoyer
Pascal Zongo

Cristèle Chevalier

ocean color
Sargassum

MODIS
MSI

OLCI
Sentinel-2
Sentinel-3

convolutional neural network
deep learning

End-to-End Neural Interpolation of Satellite-Derived
Sea Surface Suspended Sediment Concentrations

Jean-Marie Vient
Ronan Fablet

Frédéric Jourdin
Christophe Delacourt

Interpolation
data-driven model

neural networks
variational data assimilation

missing data
suspended particulate matter
observing system experiment

Bay of Biscay

AICCA: AI-Driven Cloud Classification Atlas

Takuya Kurihana
Elisabeth

Moyer
Ian T. Foster

cloud classification
MODIS

artificial intelligence
deep learning

machine learning

Applying Deep Learning in the Prediction of
Chlorophyll-a in the East China Sea

Haobin Cen
Jiahan Jiang

Guoqing Han
Xiayan Lin

Yu Liu
Xiaoyan Jia

Qiyan Ji
Bo Li

LSTM
chlorophyll-a

East China Sea

2
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Table 1. Cont.

Title Authors Keywords

Vertically Resolved Global Ocean Light Models Using
Machine Learning

Pannimpullath Remanan Renosh
Jie Zhang

Raphaëlle Sauzède
Hervé Claustre

BGC-Argo
ED380
ED412
ED490

global ocean
light models

neural network
PAR

Spatiotemporal Prediction of Monthly Sea Subsurface
Temperature Fields Using a 3D U-Net-Based Model

Nengli Sun
Zeming Zhou

Qian Li
Xuan Zhou

sea temperature prediction
reconstructed sea subsurface

temperature data
3D U-Net

Deep Learning to Near-Surface Humidity Retrieval from
Multi-Sensor Remote Sensing Data over the China Seas

Rongwang Zhang
Weihao Guo

Xin Wang

near-surface humidity
remote sensing
deep learning

China Seas

An Algorithm to Bias-Correct and Transform Arctic
SMAP-Derived Skin Salinities into Bulk

Surface Salinities

David Trossman
Eric Bayler

Salinity
SMAP

skin-effect
bias

air-sea
Arctic
ocean

machine-learning

Super-Resolving Ocean Dynamics from Space with
Computer Vision Algorithms

Bruno Buongiorno Nardelli
Davide Cavaliere

Elodie Charles
Daniele Ciani

earth observations
ocean dynamics

satellite altimetry
sea surface temperature

artificial intelligence
machine learning

deep learning
neural networks

Satellite-Based AI Monitoring for Environmental Challenges: Satellite-based moni-
toring is crucial for addressing environmental challenges such as Sargassum aggregations
and suspended sediment dynamics. Novel deep learning models have been developed to
detect Sargassum aggregations with higher accuracy compared to traditional index-based
techniques [3]. Additionally, end-to-end deep learning schemes like 4DVarNet have been
employed to improve the interpolation of sea-surface sediment concentration fields from
satellite data [4].

Advancements in Cloud Classification and Climate Uncertainty Reduction Using AI:
Understanding cloud behavior and reducing uncertainties in climate projections is vital.
Researchers have introduced novel AI-driven techniques for cloud classification based
on convolutional autoencoders [5]. These techniques aim to reduce the dimensionality of
satellite cloud observations and provide valuable insights into cloud patterns, helping to
address climate uncertainties.

AI-Driven Ocean Chlorophyll-a Concentration Modeling for Eutrophication Mitiga-
tion: Predicting ocean chlorophyll-a concentrations is critical for mitigating issues like
water eutrophication. AI methods, particularly neural networks, have been utilized to
predict chlorophyll-a distribution in marine environments, with a focus on the East China
Sea [6].

ML Advances Oceanic Light Models for Comprehensive Global Biogeochemical In-
sights: Authors developed SOCA-light, a machine learning model, predicting oceanic

3
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light profiles globally using BGC-Argo data. The study highlights the model’s accuracy,
addresses data gaps, and suggests versatile applications for improving biogeochemical
databases [7].

Harnessing AI for Subsurface Ocean Temperature and Oceanic Impact: Researchers
have explored the prediction of subsurface ocean temperature (SSbT), an essential indicator
of the ocean’s thermal state. A 3D U-Net model has been employed to predict SSbT,
enhancing our understanding of ocean temperature variations [8].

Data Analytics for Near-Surface Humidity Monitoring and Climate Implications:
Near-surface humidity monitoring is crucial for climate research. AI-driven approaches
like Ensemble Mean of Target deep neural networks (EMTnets) have been introduced to
improve the accuracy of near-surface humidity data [9]. These methods have implications
for understanding the impact of global warming on humidity levels.

Machine Learning for Sea-Surface Salinity Correction in Subpolar and Arctic Oceans:
The correction of errors in satellite-derived sea-surface salinity (SSS) data, particularly in
subpolar and Arctic Oceans, has been addressed using ML algorithms [10]. These correc-
tions aim to improve the accuracy of salinity measurements and enhance our understanding
of ocean salinity patterns.

Surface Ocean Dynamics and Climate Regulation with Advanced Data Analysis:
Researchers have introduced innovative neural network architectures to improve the
reconstruction of absolute dynamic topography from satellite altimeter data [11]. These ad-
vancements offer insights into surface ocean dynamics and their role in climate regulation.

3. Conclusions

In this collective reprint, multiple studies and models are presented, each addressing
different aspects of marine, ocean, and climate data analysis and prediction. These investi-
gations utilize a range of methodologies, including deep learning, neural networks, and
data assimilation, with the aim of enhancing our understanding of various phenomena
such as sea-surface temperature, Sargassum detection, cloud classification, chlorophyll-a
concentration, subsurface ocean temperature, skin salinity, and ocean dynamic topography.
Overall, these studies demonstrate the potential of AI/ML and deep learning techniques
to enhance the accuracy and efficiency of data analysis, while also acknowledging the
imperative for continued research and advancements in areas such as model input data, in-
terpretation, and the refinement of more sophisticated network architectures. These papers
contribute significantly to advancing our comprehension and the effective management of
crucial environmental factors that impact our planet.
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A Graph Memory Neural Network for Sea Surface
Temperature Prediction
Shuchen Liang 1,2, Anming Zhao 1,2, Mengjiao Qin 1,2, Linshu Hu 1,2,* , Sensen Wu 1,2 , Zhenhong Du 1,2

and Renyi Liu 1,2
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Hangzhou 310058, China
* Correspondence: hulinshu1010@zju.edu.cn

Abstract: Sea surface temperature (SST) is a key factor in the marine environment, and its accurate
forecasting is important for climatic research, ecological preservation, and economic progression.
Existing methods mostly rely on convolutional networks, which encounter difficulties in encoding
irregular data. In this paper, allowing for comprehensive encoding of irregular data containing land
and islands, we construct a graph structure to represent SST data and propose a graph memory
neural network (GMNN). The GMNN includes a graph encoder built upon the iterative graph neural
network (GNN) idea to extract spatial relationships within SST data. It not only considers node
but also edge information, thereby adequately characterizing spatial correlations. Then, a long
short-term memory (LSTM) network is used to capture temporal dynamics in the SST variation
process. We choose the data from the Northwest Pacific Ocean to validate GMNN’s effectiveness for
SST prediction in different partitions, time scales, and prediction steps. The results show that our
model has better performance for both complete and incomplete sea areas compared to other models.

Keywords: sea surface temperature; spatiotemporal prediction; deep learning; graph neural network

1. Introduction

Sea surface temperature (SST) is a crucial variable in marine environments [1]. Changes
in SST can greatly impact the climate. Persistent anomalies in SST, characterized by
unusually warm or cold conditions, may give rise to phenomena such as El Niño and
La Niña [2,3]. Additionally, SST serves to guide marine activities by analyzing its influence
on fish migration, which in turn informs fishery distribution and policy formulation [4,5].
It also plays an important role in forecasting marine disasters such as storm surges and red
tides [6,7]. Thus, it is evident that accurate prediction of SST has great significance for the
marine economy, ecology, and disaster forecasting.

Existing SST prediction methods can be divided into two major categories: numer-
ical methods and data-driven methods. Numerical methods are based on a series of
physicochemical parameters, constructing complex equations according to the principles of
dynamics and thermodynamics [8–10]. However, they demand substantial computational
resources and accurate parameter selection for precise results. Data-driven methods, on
the other hand, learn patterns directly from the data [11] and have evolved from tradi-
tional statistical approaches to machine learning and deep learning techniques. Markov,
canonical correlation analysis (CCA), and other statistical approaches are widely used
to predict SST [12–14], but these models may lack accuracy when dealing with complex
nonlinear problems due to their weak nonlinear fitting ability [15]. Therefore, machine
learning approaches capable of addressing nonlinear problems are garnering attention in
SST prediction research. For example, researchers use support vector machine (SVM) and
artificial neural networks (ANN) and achieve promising results [16–18].

6
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Machine learning methods require manual feature engineering which can be time-
consuming, with their accuracy dependent on the quality of features. Furthermore, deep
learning methods automatically extract useful features from big data and can achieve higher
accuracy than traditional machine learning methods. As a result, deep learning techniques
are becoming increasingly popular for SST prediction. Recurrent neural networks (RNN),
including long short-term memory (LSTM) and gated recurrent unit (GRU) variants, excel
in processing sequences, making them suitable for time series prediction tasks. Zhang
et al. [19] pioneered the use of deep learning in SST prediction by developing an FC-
LSTM model, which combined an LSTM layer with a fully connected layer. This approach
outperformed support vector regression (SVR) and multilayer perceptron (MLP) in terms
of prediction accuracy.

In fact, SST is a variable with spatiotemporal properties, showing dynamic and non-
linear characteristics. However, previous works overlook the spatial features of SST, which
limits the prediction accuracy of SST [20]. To fully consider spatial information, researchers
generally adopt two approaches. The first one is to use spatial data, such as latitude,
longitude, and regional features, as input for the model [21,22]. The second approach is
to employ convolutional neural networks (CNN) to extract spatial features at different
scales, and integrates them with time series prediction models to form a comprehensive
spatiotemporal forecasting method [23–25].

Among methods based on convolutional idea, ConvLSTM and its variant, ConvGRU,
proposed by Shi et al. [26] in 2015 for precipitation forecasting are widely applied in
SST prediction tasks [21,27–29], owing to their effectiveness in capturing spatiotemporal
correlations. These methods treat SST data as regular images, but in actual research, areas
containing land or islands may lack valid data. Standard matrix convolution kernels cannot
directly extract information from these locations, and filling in missing values may impact
the prediction accuracy at the land-sea boundaries [30].

In recent years, graph neural networks (GNN) have succeeded in areas such as traffic
flow prediction, weather forecasting, and disease risk assessment [31]. Graph structures
are well-suited for irregular data, and GNNs’ message-passing mechanisms [32] capture
adjacency relationships better than CNN, effectively extracting data features. Therefore,
in SST prediction, researchers start to explore how to learn SST’s spatial relationships
based on graph structures [30,33–35]. Among them, most methods use graph convolutional
networks (GCN) to update and aggregate the representations of nodes along with their
neighboring nodes.

In this study, we propose a graph memory neural network (GMNN) for SST prediction
based on GNN idea. First, we develop an SST graph representation using distance threshold
and Pearson correlation coefficient to fully express spatial information in irregular regions.
An innovation of our model lies in adequately expressing spatial information for these
incomplete areas using graph representations. Next, we design a graph encoder using
iterative GNN to encode spatial relationships that take into account not only node but also
edge features.

Finally, a GMNN model consisting of a graph encoder, a temporal encoder, and a
decoder is constructed, offering a novel perspective for SST prediction. We validate the
effectiveness of our model through diverse experiments in the Northwest Pacific region,
considering different partitions, time scales, and prediction steps.

The remainder of this paper is organized as follows. Section 2 shows the data used
in the study. Section 3 describes the details of the proposed method. Section 4 presents
the experimental results. Section 4 provides the discussion of the results. Finally, Section 5
offers the conclusion of the paper.

2. Materials
2.1. Datasets

As shown in Figure 1, the study area is the Northwest Pacific, from 0◦ to 60◦N and
100◦ to 180◦E. The Northwest Pacific Ocean exhibits an intricate array of climate features,
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including tropical, subtropical, and temperate climates. The marine environment in this
area is influenced by various natural factors, such as monsoons, ocean currents, and
typhoons. Due to its diverse climate conditions and complex oceanic processes, this region
is representative in SST prediction research.
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Figure 1. Study area and heat map of SST on 1 January 1993.

The SST data used in this study is from the optimum interpolation sea surface tem-
perature (OISST) v2.1 product, produced by the United States National Oceanic and At-
mospheric Administration (NOAA), with a spatial resolution of 1/4◦ latitude by 1/4◦

longitude. The time scale of the predictions is daily, weekly, and monthly. The OISST for
the study area covers temporal range from 1 January 1993 to 31 December 2020.

More information can be found at the following link: https://psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html, accessed on 11 May 2023.

2.2. Pre-Processing

The data has a spatial resolution of 0.25◦, with a corresponding grid size of 320 × 240
(8◦ × 6◦) for the study area. Considering model parameter size, hardware and software
environments, as well as the limited accuracy at large scales, we divide the study area
into 8 × 6 subregions, each with a 40 × 40 (10◦ × 10◦) grid. Subregions without ocean are
excluded, leaving 41 subregions as experimental data, numbered sequentially (Figure 2).
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Figure 2. Division of the study area.

Among the 41 subregions, 19 of them (1, 2, 3, 9, 10, 11, 17, 18, 19, 25, 26, 27, 28, 32, 33,
37, 38, 39, and 40) contain land or islands, forming incomplete sea areas. Therefore, the
constructed subregion samples are representative.

Then, we divide the datasets into daily, weekly, and monthly mean. We allocate 60%
of the data for training, 20% for testing, and 20% for validation to prevent overfitting. The
specific time ranges for each set are presented in Table 1.
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Table 1. Datasets.

Temporal
Resolution Dataset Time Range

Daily Mean
Training Set 1 January 1993~31 December 2010

Validation Set 1 January 2011~31 December 2015
Testing Set 1 January 2016~31 December 2020

Weekly Mean
Training Set 3 January 1993~26 December 2010

Validation Set 2 January 2011~27 December 2015
Testing Set 3 January 2016~27 December 2020

Monthly Mean
Training Set January 1993~December 2010

Validation Set January 2011~December 2015
Testing Set January 2016~December 2020

3. Methods

The complete framework of the graph memory neural network (GMNN) is presented
in Figure 3. Initially, historical SST data are preprocessed and transformed into a series of
time-sorted graphs with fixed time intervals. These graphs encompass temporal, spatial,
and attribute features as the model input. Next, a neural network is constructed for the
graph sequence, featuring an encoder with both graph and temporal encoder modules to
learn spatial and temporal patterns. The graph encoder is composed of multiple iterative
GNN layers, each aggregating and updating the graph’s nodes and edges to extract spatial
features. The temporal encoder employs LSTM to capture temporal dynamics. Finally, by
integrating the multi-output strategy and a fully connected layer decoder, the extracted
spatiotemporal features are transformed into future SST prediction results.
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3.1. Graph Representation

In research with defined coordinate systems, locations are represented by longitude
and latitude pairs. For SST data, each point at the sea surface defined by a coordinate pair
generates an SST record at each time step. Records from different locations form a spatially
correlated snapshot, and a series of snapshots over time create a temporally connected
sequence. An SST image sequence of length T can be denoted as S = (S1, S2, . . . , ST).

In the study area with land and islands, some locations lack SST observations, leading
to empty pixels. Consequently, each image in the time series contains N valid pixels, where
N ≤ row ∗ col, row and col represent the number of rows and columns in the image,
respectively.

To express the connectivity between pixels, we construct edges for each valid pixel
based on distance threshold and Pearson correlation coefficient.

As shown in Equation (1), eij represents the connectivity between points i and j based
on distance threshold, where 1 means connected and 0 means unconnected. dij represents
the Euclidean distance between points i and j, with dmin being the set distance threshold.
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When dij is greater than dmin, the spatial association between points i and j is considered
weak, and no edge is formed between them.

eij =

{
1, i f dij ≤ dmin
0, otherwise

(1)

Figure 4 demonstrates the effect of edge construction based on distance threshold.
Thicker solid lines represent edges with a distance threshold dmin of 1, while thinner solid
lines correspond to edges with a dmin of

√
2.
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The Pearson correlation coefficient (PCC) measures the linear relationship between
two variables. Its value lies between −1 and 1, with larger absolute values indicating
stronger correlations. The formula for the PCC, r, is shown in Equation (2).

rij =
∑T

t=1
(

It − I
)(

Jt − J
)

√
∑T

t=1
(

It − I
)2
√

∑T
t=1
(

Jt − J
)2

(2)

For SST prediction, I and J represent the SST value sets for points i and j on the sea
surface, each containing T samples corresponding to the time series length. It and Jt denote
the SST values at time t, and I and J are the average SST values of the two sets.

Equation (3) shows the edge construction based on the Pearson correlation coefficient,
where eij represents the connectivity between points i and j based on Pearson correla-
tion coefficient threshold, where 1 means connected and 0 means unconnected. rmin is
the threshold.

eij =

{
1, i f

∣∣rij
∣∣ > rmin

0, otherwise
(3)

The distance threshold and Pearson correlation coefficient evaluate the spatial rela-
tionship between any two points on the graph from the perspectives of position relation
and attribute correlation. By combining these two factors, we create an edge construction
method, as shown in Equation (4).

eij =

{
1, i f dij ≤ dmin and

∣∣rij
∣∣ > rmin

0, otherwise
(4)

Figure 5 illustrates the edge construction process for a node in an SST image. The
left image shows the edge connections when dmin =

√
5 grid (grid equals 1/4◦). Next, we

calculate the Pearson correlation coefficient between the connected nodes, as depicted in
the middle image. Solid lines represent calculations exceeding rmin, while dashed lines
represent calculations less than or equal to rmin. By removing the dashed lines, we achieve
the final result in the right image.
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The values of dmin and rmin in our study are 1.5 grid and 0.8 grid, respectively. By
applying the edge construction method to each node, we obtain the node and edge repre-
sentation of SST data.

The SST image sequence S = (S1, S2, . . . , ST) is converted into a graph sequence
G = (G1, G2, . . . , GT). Each graph G in the sequence is represented as a collection of
nodes V and edges E connecting them, denoted as G = (V, E), where vi ∈ V represents
node i, and eij =

(
vi, vj

)
∈ E represents the edge from i to j.

Compared to the pixel image representation, the graph representation offers greater
flexibility, as it directly omits points corresponding to missing values.

3.2. Graph Encoder

GNN is a neural network that learns target objects by propagating neighbor informa-
tion based on graph structures [36]. Compared to CNN, GNN excels at handling irregular
data and is better suited for tasks with strong interdependencies [37,38], making them
applicable for encoding SST variation process.

To incorporate features of nodes, edges, and their relationships, we adopt the multi-
stage aggregation-update framework by Sanchez-Gonzalez et al. [39] and design a GNN
module consisting of edge update, edge aggregation, and node update, as shown in
Figure 6.
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Figure 6. GNN module. hl
e represents the hidden state of node e at layer l.

Here, ϕ is the aggregation function, designed to transfer edge states to nodes, thereby
extracting more neighborhood information. f is the update function, responsible for further
updating the aggregated representations.

Then, we embed the GNN module into the model to form a graph encoder. Figure 7
displays its structure. The features shown are for a node and its neighborhood in the graph
Gt at time t.
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Figure 7. Graph encoder. The feature indicated in the graph is an example of a certain node and its
neighborhood in the graph Gt at time t. The static image encoder encodes all nodes and edges in the
graph in the same way.

For graph Gt, the node feature matrix is X ∈ Rn×3, with xi ∈ R3 as the feature vector
for node vi. The edge feature matrix is Y ∈ Rm×2, and yij ∈ R2 is the feature vector for edge
eij. Here, n is the number of nodes in Gt, and m denotes the number of edges. Node features
have three dimensions, SST, longitude, and latitude. Edge features have two dimensions:
direction and length, length represents the shortest path between two edges, and direction
is a measure of its angle to the North. The hidden state of vi at layer l is hl

vi
∈ R1, and the

hidden state of eij at layer l is hl
eij
∈ R2. Thus, the initial value is h0

vi
= xi and h0

eij
= yij.

• Edge update: As shown in Equation (5), we gather the current edge state and the states
of its adjacent nodes, and pass them through the edge update function f e to obtain
the updated result. This output will be used in the edge aggregation and the next
iteration. The f e is a multilayer perceptron and a ReLU activation function to capture
nonlinear features.

hl+1
eij

= f e
(

hl
eij

, hl
vi

, hl
vj

)
(5)

• Edge aggregation: Next, as shown in Equation (6), we use the function ϕe to aggregate
the updated edge states of all connected edges for each node. Common aggregation
methods include sum, mean, and max. Considering that for a point on the sea surface,
heat changes manifest as a convergence or dissipation process, we choose the sum
aggregation method.

h
l+1
ei

= ϕe→v
vj∈N(vi)

(
hl+1

eij

)
(6)

• Node update: Finally, we gather the previous aggregation outputs and their current
states and put them into the update function f v. Similar to f e, f v is also a combination
of a multilayer perceptron and a ReLU activation function.

hl+1
vi

= f v
(

h
l+1
ei

, hl
vi

)
(7)

The three stages described above constitute a single iteration. By stacking multiple
GNN layers and performing iterative updates, information can propagate within the graph,
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enabling the model to learn more abstract and complex features. In this study, we set the
iteration times to 3.

3.3. Temporal Encoder

Figure 8 shows the structure and encoding process of the temporal encoder. A sequence
of graphs with extracted spatial features is obtained after the graph encoder, which contains
updated node and edge states. Then, we use the node state sequence as the input for the
LSTM layer, and the encoded hidden state ht is acquired after temporal feature extraction.
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Figure 8. Temporal encoder. Xt, ht and Ct represent the input, output and memory cell state at
the current timestep t, respectively. f t, it and Ot represent forget gate, input gate and output
gate, respectively.

The LSTM layer contains multiple LSTM units, which have the ability to selectively
remember important information while filtering out noise [40]. This ability is attributed
to the gating mechanism, which includes forget gate f t, input gate it, and output gate
Ot, helps control gradients and addresses the vanishing and exploding gradient problems
in RNNs.

3.4. Decoder and Loss Function

After the graph and temporal encoders, we obtain the node state ht. In this study, we
aim to predict multi-step future SST values based on historical observations. Accordingly,
we apply a direct multi-output prediction strategy to convert ht into a prediction sequence
with a length equal to the prediction steps. The prediction steps are consistent with the time
scale of the input data, for example, the time scale of the input data is daily, the prediction
for each step is one day.

Then, we use the mean squared error (MSE) as the loss function in this study, as shown
in Equation (8). T denotes the total prediction steps, yt represents the actual value at time t,
and ŷt is the predicted value.

Lsup =
∑T

t=1(yt − ŷt)
2

T
(8)
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4. Experiments
4.1. Metrics

SST prediction is inherently a regression task. To accurately assess the performance
of each model, we consider two perspectives: the deviation between predictions and
observations, and data fitting. We choose three evaluation metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and R-squared. For a sequence of length T,
with yt as the observations at time t and ŷt as the predictions, and y as the average of
observations, the formulas for each metric are provided below.

RMSE =

√
∑T

t=1(yt − ŷt)
2

T
(9)

MAE =
∑T

t=1|yt − ŷt|
T

(10)

R2 =
∑T

t=1(ŷt − y)2

∑T
t=1(yt − y)2 (11)

4.2. Compared Models

To evaluate the performance of GMNN, we selected three types of comparison models:

• FC-LSTM and FC-GRU: They are time series prediction models, which integrate
LSTM or GRU layers with fully connected layers for feature extraction and improved
representation capability.

• ConvLSTM: This is a spatiotemporal model utilizing CNN idea with LSTM, which
incorporates convolution operations into input data and hidden states, allowing for
the capture of spatial information and complex spatiotemporal features.

• GCN-LSTM: This is a spatiotemporal model employing GNN idea, which combines
graph convolutional networks (GCN) with LSTM for graph sequence prediction, effec-
tively extracting features from nodes and their multi-order neighbors and integrating
them into the LSTM layer for temporal information processing.

4.3. Results of Different Subregions

To verify the generalization ability of GMNN in different regions, we select several
subregions in the daily mean dataset and predict the SST for the next 1, 3, and 7 days.

GMNN is applicable to both complete and incomplete sea areas (with land or islands).
In contrast, ConvLSTM based on CNN idea, is suitable only for complete sea areas, the
missing values in incomplete sea areas must be filled using interpolation, which introduces
noise and can affect model accuracy. Therefore, we select data from three incomplete sea
area subregions (No. 1, 2, and 3) and three complete sea area subregions (No. 4, 5, and 6) at
the same latitude for comparison (Figure 2). The models for incomplete sea area subregions
include FC-LSTM, FC-GRU, and GCN-LSTM. For complete sea area subregions, FC-LSTM,
FC-GRU, ConvLSTM, and GCN-LSTM are used.

4.3.1. Results of Incomplete Sea Areas

We analyze the effectiveness of our model in incomplete sea areas, taking subregion 1
as an example. The constructed graph in this region contains 1245 nodes. Table 2 shows
the experiment results.
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Table 2. Daily prediction results on the incomplete sea area dataset (subregion 1).

Method Metric
Daily

1 3 7

FC-LSTM
RMSE 0.084 0.184 0.311
MAE 0.020 0.071 0.160

R-squared 0.993 0.952 0.911

FC-GRU
RMSE 0.084 0.186 0.312
MAE 0.209 0.074 0.163

R-squared 0.994 0.933 0.909

GCN-LSTM
RMSE 0.081 0.178 0.292
MAE 0.019 0.070 0.153

R-squared 0.996 0.965 0.924

GMNN
RMSE 0.080 0.177 0.288
MAE 0.019 0.070 0.152

R-squared 0.999 0.968 0.924

The two worst-performing models are FC-LSTM and FC-GRU, with the maximum
RMSE, MAE and the minimum R- squared (Table 2), indicating that ignoring spatial corre-
lation can significantly affect prediction accuracy. There is little difference between these
two models and FC-GRU’s is slightly worse than FC-LSTM’s when predicting the future 3
and 7 days. This suggests that in this study, using LSTM for time feature extraction is more
suitable. Both graph-based models exhibit good performance, with GMNN performing
the best in all metrics. For instance, in terms of RMSE for seven-day prediction, GMNN’s
0.288 is 7.7% lower than FC-LSTM and 1.6% lower than GCN-LSTM. This indicates that the
iterative GNN idea can effectively capture the spatial information of SST data.

To visually compare the results, we take the node with longitude 109.875◦E and
latitude 0.125◦N in subregion 1 as an example. The predictions and observations of each
model were compared using a line chart for a 7-step prediction, as shown in Figure 9.

It can be seen that the main difference in the prediction results of each model lies in
the degree of fitting to the peak values. Therefore, we select four peak areas, a, b, c, and d
for detailed analysis. Among them, a and c are steep peak areas, while b is a gentle peak
area, and d is a low peak area.

FC-GRU predicts well in b and d, but has the worst performance among all models in
the steep peak areas a and c. FC-LSTM performs slightly better than FC-GRU in the steep
peak areas, but its fitting degree in the low peak area is low. GCN-LSTM’s predictions can
already fit the observations well, but there is still room for improvement in the steep peak
areas. GMNN has the best overall prediction accuracy, showing a high degree of fitting
in these peak areas with different characteristics. Especially in the steep peak areas, the
performance is significantly better than the other compared models.

4.3.2. Results of Complete Sea Areas

Similarly, we analyze the effectiveness of GMNN in complete sea areas using the
example of subregion 4 which contains 1600 nodes. The results are shown in Table 3.

FC-LSTM and FC-GR performed the worst. ConvLSTM which uses CNN idea, exhibits
good performance in complete sea areas where data can be expressed in pixel form, and
its prediction accuracy is slightly better than that of the GCN-LSTM model, which uses
graph idea. Among prediction models, GMNN is better than other models in the metrics.
GMNN’s RMSE value for seven-day prediction decreased by 5.5% compared to FC-LSTM,
0.9% compared to ConvLSTM, and 2.0% compared to GCN-LSTM.
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Table 3. Daily prediction results on the complete sea area dataset (subregion 4).

Method Metric
Daily

1 3 7

FC-LSTM
RMSE 0.078 0.164 0.252
MAE 0.019 0.069 0.134

R-squared 0.979 0.948 0.807

FC-GRU
RMSE 0.076 0.169 0.252
MAE 0.019 0.070 0.134

R-squared 0.979 0.949 0.798

ConvLSTM
RMSE 0.079 0.154 0.241
MAE 0.018 0.062 0.127

R-squared 0.982 0.940 0.834

GCN-LSTM
RMSE 0.075 0.156 0.243
MAE 0.018 0.062 0.129

R-squared 0.982 0.939 0.834

GMNN
RMSE 0.073 0.154 0.238
MAE 0.018 0.062 0.127

R-squared 0.983 0.956 0.855

As shown in Figure 10, a comparison chart of the seven-day predictions and obser-
vations is created for node located at 130.125◦E and 0.125◦N in subregion 4. We analyze
two high peaks (a, d) and two low peaks (b, c) in detail. The performance of FC-LSTM
and FC-GRU is quite similar, with poor predictions for the highest and lowest points in all
four areas. ConvLSTM and GCN-LSTM show significant improvement in the prediction of
areas a, b, and d, with ConvLSTM showing better fitting. GMNN performs well in all four
areas with excellent prediction ability.
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Figure 10. Line charts of observations and predictions in seven-day of different models on the
complete sea area dataset (subregion 4): (a) FC-LSTM; (b) FC-GRU; (c) GonvLSTM; (d) GCN-LSTM;
(e) GMNN.

The results prove that GMNN has excellent prediction ability in both complete and
incomplete sea areas.

4.4. Results of Different Time Scales

To verify the accuracy and stability of GMNN for different time scales and prediction
steps, we conduct comparison experiments for future 1 step, 3 steps, and 7 steps on three
types of datasets: daily, weekly, and monthly mean, using the example of subregion 5. The
results are presented in Figure 11. The y-axis of each metric is standardized across different
time scales for comparison.
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Figure 11. Comparison of prediction results at different time scales and prediction steps: (a) Daily
Mean RMSE; (b) Daily Mean MAE; (c) Daily Mean R-squared; (d) Weekly Mean RMSE; (e) Weekly
Mean MAE; (f) Weekly Mean R-squared; (g) Monthly Mean RMSE; (h) Monthly Mean MAE;
(i) Monthly Mean R-squared.

From the perspective of fixed time scales, as the prediction step increases, the perfor-
mance of each model declines, with RMSE and MAE increasing and R-squared decreasing.
Taking daily predictions as an example, the R-squared, RMSE, and MAE for predicting
one day ahead are 0.994, 0.078, and 0.018, respectively. When predicting three days ahead,
R-squared decreased by 0.037, while RMSE and MAE both increased by more than double.
When predicting seven days ahead, R-squared continued to decrease by 0.047, with RMSE
and MAE increasing by 0.62 and 1.10 times, respectively. This suggests that multi-step
prediction incurs greater errors than single-step prediction. With an increasing number
of prediction steps, more relationships need to be learned, and models become more chal-
lenged in capturing the changing trends and periodicity of time series, which results in
increased errors.

From the perspective of fixed prediction steps, as the time scale increases, the perfor-
mance of each model also declines. Taking RMSE as an example, on a daily scale, the RMSE
is 0.078, 0.170, and 0.275, when predicting the future 1, 3, and 7 step. On a weekly scale, the
RMSE increases by 0.67 times, 0.50 times, and 0.46 times when predicting 1, 3, and 7 steps
in the future. On a monthly scale, compared with the weekly scale, the RMSE increases by
0.33 times, 0.34 times, and 0.13 times when predicting 1, 3, and 7 steps in the future. The
reasons for this phenomenon are mainly twofold. First, the time series of daily, weekly,
and monthly mean datasets used in this study contain 10,227, 1461, and 336 time steps,
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respectively, which means that the data available for training are sparser at larger time
scales, and affect the prediction accuracy. Second, from daily to weekly to monthly, the
smoothness of the SST changes gradually decreases, and the changing trend and periodicity
of the time series become less obvious, making it difficult to capture the nonlinear features,
resulting in a decrease in prediction accuracy.

As shown in Figure 11, GMNN has better prediction accuracy than the comparison
models at different time scales and prediction steps. In order to more clearly show the
performance improvement, we use FC-LSTM as the baseline and calculate the percentage
of RMSE reduction of GMNN relative to the baseline under different time scales and
prediction steps (Figure 12), which serves as the performance improvement ratio.
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At the same time scale, changes in the prediction step do not result in significant
changes in the improvement ratio. However, when the time scale changes to the monthly
scale at the same prediction step, the improvement ratio increases significantly. This
suggests that GMNN can capture hidden spatiotemporal features on large scales.

5. Discussion
5.1. Model Comparison

Through experiments in different partitions, time scales, and prediction steps, we
find that our GMNN is better than other comparison models, which can be categorized
into time series models (FC-LSTM, FC-GRU), convolution-based model (ConvLSTM), and
graph-based model (GCN-LSTM). The results provide insights into the applicability and
effectiveness of different ideas for SST prediction tasks.

The inferior performance of time series models suggests the impact of neglecting
spatial information on prediction accuracy. Convolution-based models and graph-based
models differ in their learning styles and applicable structures. In terms of learning styles,
CNN extracts feature by sliding convolution kernels, thus exhibiting strong capabilities in
extracting multi-scale local spatial features [41]. GNN focus more on adjacency relation-
ships, with their message-passing mechanism providing better abilities for tasks with strong
object interrelations. As SST is influenced by ocean currents, winds, and heat exchange
processes in nearby regions, graph-based models can well represent temperature variation
processes. Regarding applicable structures, CNN is based on traditional grid structures
and is suitable for regular datasets. Therefore, convolution-based model (ConvLSTM)
demonstrates excellent forecasting performance in experiments with complete sea area
datasets. Graph-based models, on the other hand, are not restricted by data regularity,
offering greater flexibility.
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Both being graph-based methods, the iterative GNN used in this study and the GCN
adopted by the comparison model GCN-LSTM differ in the information they emphasize.
GCN primarily focuses on node information, with its convolution operation aggregat-
ing features of nodes and their adjacent counterparts [42,43]. Although GCN considers
node information and adjacency relationships, edge attributes are typically not directly
incorporated into calculations. In contrast, the iterative GNN takes both node and edge
information into account through its designed aggregation and update functions. As a re-
sult, in comparative experiments, GMNN consistently achieves better prediction outcomes
than GCN-LSTM.

5.2. Error Distribution

To clearly show the prediction performance and error distribution of our model,
we use the future seven-day prediction results of GMNN and select 12 subregions with
observations, predictions, and errors on 26 February 2016 for analysis. Among them,
two regions are selected within every 10◦ latitude range, corresponding to incomplete
and complete sea areas, respectively. The experiment results of the 12 regions are shown
in Figure S1.

When comparing the error between two regions at the same latitude, there is no
significant difference in the prediction accuracy of the model between incomplete and
complete sea areas, indicating a good prediction performance in both types of regions.

Comparing the errors of regions at different latitudes, the regions with latitudes be-
tween 30◦N and 50◦N have the largest errors, followed by the regions between 20◦N and
30◦N and between 50◦N and 60◦N, while the regions between 0◦–20◦N have relatively
smaller errors. The complexity of the meteorological and oceanic environment is the main
reason for the differences in the prediction performance among these regions. Regions
between 30◦ and 50◦N belong to the North Temperate Zone and are influenced by subtrop-
ical high-pressure zones, westerlies, monsoons, and continental climates. They are also
affected by multiple ocean currents such as the Kuroshio Current, the Oyashio Current, and
the North Pacific Warm Current, resulting in complex spatiotemporal characteristics and
making predictions difficult. In contrast, regions between 0◦ and 20◦N are mainly affected
by tropical and subtropical climates, with relatively simple spatiotemporal characteristics
and thus easier to predict. Regions between 20◦ and 30◦N and between 50◦ 60◦N have
moderate environmental complexity and prediction difficulty.

6. Conclusions

In this paper, we propose a GMNN to predict future SST. The model uses a graph
representation method based on distance threshold and Pearson correlation coefficient to
transform SST data into a graph structure, thus overcoming the limitations of convolution-
based methods in encoding irregular data that includes land or islands. We also design a
graph encoder based on iterative GNN, incorporating edge information to fully express the
heat transfer process at the sea surface. To validate the effectiveness of GMNN, we choose
time series prediction models (FC-LSTM, FC-GRU), convolution-based model (ConvLSTM),
and graph-based model without considering edge information (GCN-LSTM) as comparison.
We conduct experiments of these models in incomplete and complete sea area partitions,
daily, weekly and monthly time scales, as well as 1-step, 3-step, and 7-step prediction steps,
and our model exhibits superior prediction ability compared to the others, reflecting its
accuracy and stability.

In addition, we find that with increasing time scales and prediction steps, the predic-
tion accuracy decreases. GMNN shows a higher performance improvement at the monthly
time scale than at the daily and weekly time scales. Error analysis reveals that GMNN has
larger prediction errors for areas with greater temperature variations. The errors also have
a certain correlation with latitude, with higher errors for the region of 30–50◦N due to the
complex ocean and meteorological environment, and lower errors for the region of 0–20◦N
with relatively stable temperature changes.
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However, there are still some limitations in our work. Although we use SST as
the input for prediction, in the future, other factors will be considered and collected for
systematic analysis so as to explore the impact of these factors on SST prediction. Moreover,
the study area in this case was the Northwest Pacific. To generalize the ability of our
model, we will select different ocean basins with various dynamic features and make
improvements in subsequent studies to explore large-scale SST prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15143539/s1, Figure S1: GMNN prediction results for SST on
26 February 2016, in 12 subregions: (a) Subregion 3; (b) Subregion 4; (c) Subregion 11; (d) Subregion 15;
(e) Subregion 18; (f) Subregion 22; (g) Subregion 27; (h) Subregion 30; (i) Subregion 32; (j) Subregion
36; (k) Subregion 40; (l) Subregion 41.
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Abstract: Sea surface temperature (SST) is an important physical factor in the interaction between
the ocean and the atmosphere. Accurate monitoring and prediction of the temporal and spatial
distribution of SST are of great significance in dealing with climate change, disaster prevention,
disaster reduction, and marine ecological protection. This study establishes a prediction model of
sea surface temperature for the next five days in the East China Sea using long-term and short-term
memory neural networks (LSTM). It investigates the influence of different parameters on prediction
accuracy. The sensitivity experiment results show that, based on the same training data, the length
of the input data of the LSTM model can improve the model’s prediction performance to a certain
extent. However, no obvious positive correlation is observed between the increase in the input data
length and the improvement of the model’s prediction accuracy. On the contrary, the LSTM model’s
performance decreases with the prediction length increase. Furthermore, the single-point prediction
results of the LSTM model for the estuary of the Yangtze River, Kuroshio, and the Pacific Ocean are
accurate. In particular, the prediction results of the point in the Pacific Ocean are the most accurate
at the selected four points, with an RMSE of 0.0698 ◦C and an R2 of 99.95%. At the same time, the
model in the Pacific region is migrated to the East China Sea. The model was found to have good
mobility and can well represent the long-term and seasonal trends of SST in the East China Sea.

Keywords: long short-term memory (LSTM); sea surface temperature (SST); East China Sea

1. Introduction

Sea surface temperature (SST) plays a vital role in the energy balance of the earth’s
surface and the exchange of energy, momentum, and moisture between the ocean and
atmosphere [1,2]. It could affect the precipitation distribution, leading to extreme weather
events, such as droughts and floods [3,4]. The variation of SST would also affect biological
processes, such as the distribution and reproduction of marine organisms; it can also
impact marine ecosystems [5–10]. The accurate prediction of SST is of great significance in
marine disaster prevention and mitigation, ecological protection, and response to global
climate change.

The East China Sea (ECS) is a marginal sea of the Northwest Pacific [11]. It is located
east of the China mainland, south of the Yellow Sea, and north of the South China Sea,
with an area of about 770,000 km2. The SST of ECS is affected by the East Asian monsoon
system, with an annual average water temperature between 20 ◦C and 24 ◦C and an annual
temperature difference between 7 ◦C and 9 ◦C. In addition to being affected by the monsoon
climate, the SST of the ECS is also affected by the tidal system and the complex circulation
in the ECS, such as the Kuroshio Current, the Taiwan Warm Current, the Zhejiang-Fujian
Coastal Current, and the Tsushima Warm Current [12]. The change of SST is extremely
complex. Moreover, the ECS is also one of the most important areas for marine heat wave
disasters [13]. The prediction of SST is of great significance to the local hydrology and
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ecological environment. It also provides an important basis for predicting and warning of
marine heat wave disasters in the ECS under climate warming.

Currently, the SST prediction methods are mainly divided into two categories. One is
to use ocean numerical models. For example, Gao et al. [13] used the Finite-Volume Coastal
Ocean Model (FVCOM) to study marine heatwaves in the East China Sea and the South
Yellow Sea. Tiwari et al. [14] used the Regional Ocean Modeling System (ROMS) to study
the sea surface temperature of the Indian Ocean. Gao et al. [15] used the HYbrid Coordinate
Ocean Model (HYCOM) to simulate the sea surface temperature of the tropical and North
Pacific basins. These oceanic numerical models had been established through kinetic and
thermal equations and obtained the numerical solution with initial conditions and boundary
conditions [16]. In terms of improving the accuracy of numerical models, the higher
the accuracy, the more complex the numerical model and the higher the computational
cost, which leads to the need for a large number of computing resources and relevant
professional personnel to carry out the operational SST prediction work [17]. The second is
adopting a data-driven approach, including traditional statistical methods and the latest
machine learning methods. Traditional statistical methods, such as the Markov model [18],
regression model [19], and empirical canonical correlation analysis, etc., [20], can reflect
the changing law of data to a certain extent based on specific observation data and have
the characteristics of a small calculation amount, but they are difficult to improve the
prediction accuracy [21]. In recent years, machine learning methods have gradually become
popular with the increased SST data and the rapid advance in computer technology. The
current popular machine learning methods include decision trees [22], random forests [23],
artificial neural networks [24], and support vector machines, etc., [25]. The machine
learning method is done to discover the law of data changes from a large amount of
observation data. Compared with the traditional statistical method, the prediction accuracy
is significantly improved. It also has the advantages of low computational cost and easy
parameterization to other geographic locations. Furthermore, the demand for this method
for marine professional knowledge is not as high as that of marine numerical prediction.

Among the popular machine learning methods, neural network models are widely
used because of their flexibility and powerful modeling ability [26,27]. Tang et al. [28–30]
applied the neural network method to the prediction of SST for the first time. They used
a feed-forward neural network to predict the average sea surface temperature anomalies
in the Niño region, showing that the neural network is excellent in capturing nonlinear
relationships. Then, Wu et al. [31] established a nonlinear sea surface temperature anomalies
prediction model using the multilayer back propagation (BP) neural network method
combined with empirical mode decomposition (EMD), which proved that its correlation
skills are enhanced by 0.10–0.14 compared with the linear regression model. Gupta and
Malmgren [32] made a comparative study on the prediction ability of various methods
relying on specific training algorithms, regression, and artificial neural networks, and
showing that the RMSEP value of the neural network was 1.3 ◦C, which was better than
other algorithms. Tripathi et al. [33] used an artificial neural network to predict sea surface
temperature anomalies in a small area of the Indian Ocean and found that the model could
predict sea surface temperature anomalies with considerable accuracy. Furthermore, Patil
and De [34,35], Mohongo and Deo et al. [36] also used the neural network to predict SST,
showing that the neural network has a certain improvement compared with traditional
statistical methods. Aparna et al. [37] proposed a neural network consisting of three layers,
an input layer, a linear layer, and an output layer to predict the SST of the next day at a
specific location, and found that the error of the prediction is within ±0.5 ◦C. However,
most use traditional neural networks, which have a relatively simple structure and limited
learning ability. Thus, they cannot describe the complex features in the data well. At the
same time, they also have shortcomings, such as low training efficiency and the inability
to fully use a large amount of SST data to train prediction models [38], which are being
replaced by neural networks with deeper layers.
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As a typical representative of the deep neural network in long-term sequence, the long
short-term memory neural network (LSTM) model has a lower computational cost and
less requirement for marine expertise than the numerical model. Compared with a shallow
neural network, the LSTM model has a more complex structure to extract data change rules
better. Compared with the Recurrent Neural Network (RNN), which deals with time-series
data, it can prevent the gradient disappearance and explosion in the backpropagation
process [39]. The reason is that, under the action of the gating mechanism, LSTM can
better capture long-time series data. Therefore, it is widely used in time series forecasting
problems. Zhang et al. [40] used daily, weekly, and monthly SST data to forecast the Bohai
Sea one day, three days, one week, and one month in advance. The results show that
the LSTM model captures time-series information better than the traditional multilayer
feed-forward network. To the best of our knowledge, they are the first to apply LSTM
networks to SST prediction. Sarkar [41] also applied the LSTM model to SST prediction and
found that the correlation coefficient (r) between the predicted value and the actual value
is close to 1. Kim et al. [42] used the LSTM model to predict the SST in the coastal areas
of South Korea and found that the RMSE of the LSTM model one day in advance is about
0.4 ◦C. Their prediction results are of great significance for the prevention of aquaculture.
Li [43] used the LSTM model to predict the SST in the sea area where El Niño or La Niña
occurred, and the correlation coefficient between the predicted value and the actual value
reached 94%, which provided a noteworthy method for the monitoring and prediction of
El Niño or La Niña. Of course, there are also many scholars who use the LSTM model
with other methods to predict SST. For example, Xiao et al. [44,45], respectively, applied
the LSTM-AdaBoost and ConvLSTM models to SST prediction in ECS and found that the
LSTM-AdaBoost and ConvLSTM models have good application prospects for medium- and
short-term SST prediction. Wei et al. [46] used a self-organizing mapping (SOM) algorithm
to divide the entire China Sea and its adjacent areas into 130 small areas. Then, they built
an LSTM model for each area to predict its SST and found that, one month in advance,
the root mean square error (RMSE) of the prediction is 0.5 ◦C. Sun et al. [47] combined
the graph convolutional neural network (GCN) with the LSTM neural network to create
a time-series graph network (TSGN) to predict SST and found that the RMSE predicted
3 days in advance is 0.47 ◦C. Zhang et al. [48] used the gated recurrent unit (GRU) model
to predict the SST in the Bohai Sea and found that it can effectively fit the actual SST, with a
correlation coefficient of 0.98. However, the above studies did not explore the impact of
input and prediction lengths on the accuracy of LSTM models and the model’s mobility.

This paper discusses the impact of input lengths and prediction lengths of SST on
the prediction performance of the LSTM model and the application of the single-point
prediction model of SST in a small area, which provides a reference for the operational
prediction of SST, marine pasture, aquaculture, and other industries greatly affected by sea
surface temperature, especially for some aquaculture industries with simple equipment in
ECS. The specific content of the experiment is as follows: (1) A set of sensitivity experiments
on input and prediction lengths are designed, and the influence of input and prediction
lengths on the prediction results of the LSTM model is analyzed through the results of
sensitivity experiments. (2) Through a training model at a specific location to predict the
SST of ECS, experiments show that more than 95% of the RMSE values predicted by this
method 5 days in advance are within 0.4 ◦C. Compared with the experimental results
shown by the model proposed by Zhang et al. [40], which combines the SOM algorithm
with the LSTM model, the TSGCN model proposed by Sun et al. [41], and Xiao et al. [47]
applied ConvLSTM to prediction of SST, the RMSE value of this experiment decreased by
0.1, 0.07, 0.25, respectively.

The remainder of this paper is structured as follows. Section 2 describes the satellite
data and the LSTM model used in this study. Section 3 presents the experimental results
and a detailed discussion. Section 4 gives the conclusion.
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2. Materials and Methods

There are many sources of observation data. Compared with buoy data, high-resolution
satellite data is easier to obtain. In this section, we introduce the data sources and LSTM
method in detail. The details are as follows:

2.1. Materials

The high-resolution satellite remote sensing sea surface temperature data used in this
study is Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). OSTIA is the
operational sea temperature and sea ice analysis system [49]. Based on the data provided
by Group for high resolution sea surface temperature (GHRSST), it is a daily 1/20◦ grid
SST product made by the UK Met Office using AATSR data, SEVIRI data, AVHRR data,
AMSR data, TMI data, and in situ measurements. All satellite SST data are adjusted for
bias errors based on a combination of AATSR SST data and in situ SST measurements from
drifting buoys. The product is generated by using an optimal algorithm, and its RMSE
is less than 0.6 ◦C [50]. The spatial range of SST data used in this study is (22◦N–33◦N,
120◦E–131◦E), and the time range is 2010–2020, of which the SST data from 2010–2019 is
the training data and validation data, and SST data in 2020 is the test data.

2.2. Methods
2.2.1. LSTM Neural Network

LSTM is a special form of RNN, proposed by Hochreiter and Schmidhuber in 1997 [51].
LSTM overcomes, to some extent, the most direct gradient disappearance or explosion
problem caused by a traditional RNN due to an excessive number of layers in the time
dimension. The main reason is that LSTM network introduces a unit state and uses a gating
mechanism to save and control information flow. The cell structure is shown in Figure 1.
Its first gate is the forget gate, which determines how much of the cell state Ct−1 at the
previous moment is retained to the current moment Ct. The second gate is the input gate,
which determines how much of the network input Xt at the current moment is saved to
the cell state Ct. The third gate is the output gate, which controls how much of the unit
state Ct is exported to the current output value ht of the LSTM. The gating mechanism and
the update computation of the cell state are as follows:
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Forgotten gate:
ft = σ(W f .[ht−1, xt] + b f ) (1)

Input gate:
it = σ(Wi.[ht−1, xt] + bi) (2)

C′t = tanh(Wc.[ht−1, xt] + bc) (3)

Ct = ft ∗ Ct−1 + it ∗ C′t (4)
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Output gate:
ot = σ(Wo.[ht−1, xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where ht−1 represents the output value of the hidden layer at the previous moment, and xt
is the current input value. σ and tanh are activation functions, and σ represents the sigmoid
function. ft, it, and ot denote forgetting gate values, enter threshold values, and output gate
values. W f , Wi, Wc, and Wo are weight matrices. b f , bi, bc, and bo are the corresponding
offset terms. Ct−1, C′t, and Ct represents the cell state at the previous time, the candidate
state, and the cell state at the current time.

2.2.2. Model Building

This study constructed a 4-layer LSTM model based on Keras, including an input layer,
two LSTM layers, and a dense layer, as shown in Figure 2. During the training process
of the LSTM model, parameters, such as weight vector W and bias vector b, are updated
by error back propagation. The updating methods mainly include stochastic gradient
descent [52], AdaGrad, RMSProp [53], adaptive momentum estimation algorithms, and so
on. Among them, the Adam optimization algorithm is an effective stochastic optimization
algorithm based on gradient learning. The algorithm integrates the advantages of AdaGrad
and RMSProp algorithm, has an adaptive learning rate for different parameters, and
occupies fewer storage resources. Compared with other stochastic optimization algorithms,
the Adam algorithm performs better in practical applications [54]. Therefore, the Adam
optimization algorithm is adopted in this study.
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Suppose the time series of SST is expressed as X = Xt , t = 1, 2, 3 · · · n, where Xt is the
SST at time t. Given the window length of the neural network, this parameter indicates that
SST at the next moment, which is described Pt+L, is predicted using the historical SST with
the time length of L, which is represented as Xt, Xt+1 · · ·Xt+L−1. The prediction steps of
SST are as follows:

(1) Network initialization. Weights vector W and bias vector b are randomly initialized.
The initial learning rate and the maximum number of iterations are set to 0.0001 and
100, respectively, where EarlyStopping is used in the number of iterations.
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(2) Data standardization. The missing values in the data are filled with the surround-
ing values, and the MinmaxScaler function is imported from the sklearn library to
standardize the dataset X to (−1, 1) to obtain the standardized dataset X.

(3) The division of dataset X. The standardized dataset X is set according to the window
length L and the number of days of prediction, in which the training set and the
validation set are divided into 85% and 15%, respectively.

(4) Error calculation. The error between the output of the output layer and the satellite
data and the loss function are calculated using MSE.

(5) Update of weights and thresholds. Using the Adam gradient optimization algorithm,
update the weights W and biases b according to the loss function.

(6) Repeat steps (3) to (5). The training ends when the training times reach the maximum
number of iterations, or the value of the loss function does not change for three
consecutive iterations.

2.2.3. Evaluation Indicators

To evaluate the prediction performance of SST, the predicted SST is compared with
OSTIA data using the coefficient of determination (R2), root mean square error (RMSE),
and absolute error (AE). The formula is as follows:

R2 = 1− ∑m
i=1
(
ssto − sstp

)2

∑m
i=1
(
ssto − ssto

)2 (7)

RMSE =

√
1
m ∑m

i=1

(
ssto − sstp

)2 (8)

AE =
∣∣ssto − sstp

∣∣ (9)

Improve rate =
AEmax − AEmin

AEmax
(10)

where ssto and sstp are OSTIA value and predicted value of SST, and m is the total number
of samples. The smaller the RMSE and AE, the more accurate the prediction, and the closer
R2 value is to 1, the higher the fit between the predicted and true values. AEmax is the
maximum value of each column of AE, AEmin is the minimum value of each column of AE.

3. Results

SST of the ECS varies greatly from nearshore to far sea, and the ocean current also
greatly impacts the sea surface temperature change in this area. Therefore, according to the
above reasons, the four points, L1 (31.5◦N, 122◦E), L2 (25.5◦N, 122.5◦E), L3 (24.5◦N,128◦E),
and L4 (30.5◦N, 129.2◦E) as shown in Figure 3, are selected to analyze the sea surface
temperature predicted by the LSTM model. The reasons for selecting these four points are
as follows: (1) The seasonal variation in the Yangtze River estuary area is very obvious,
and SST varies greatly, with a minimum value of approximately 7 ◦C and a maximum
value of approximately 30 ◦C. Therefore, L1 is selected near the Yangtze River estuary;
(2) The Kuroshio is a powerful western boundary warm current in the northwestern Pacific
Ocean. It has obvious characteristics, such as fast speed, narrow flow width, large flow,
high temperature, and high salinity [55,56], which have an important impact on China’s
climate. Therefore, to analyze the change of SST in the Kuroshio area, L2 and L3 with
different water depths on both sides of the Kuroshio are selected to represent Kuroshio;
(3) Compared with the other three points, the water depth value of L4 is larger than 7000 m.
Thus, L3 is selected at the position shown in Figure 3.
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Figure 3. Location diagram of different points. The black dots represent the selected positions. MZCC,
TWWC, YSWC, TWC, and KC represent the Min-Zhe Costal Current (Min is Fujian province, Zhe is
Zhejiang Province), the Taiwan Warm Current, the Yellow Sea Warm Current, the Tsushima Warm
Current, and the Kuroshio, respectively. Besides the blue line is the cold current, and the red line is
the warm current and the unit of colorbar is meters.

3.1. The Effect of Different Parameter Settings on LSTM Prediction Performance

The prediction performance of the LSTM model is affected by parameter settings. For
example, learning rate, the number of network layers, the input length, and the prediction
length will all affect the prediction effect. However, this subsection mainly explores the
influence of input length and prediction length on the prediction performance of LSTM
models through RMSE, AE, and R2.

3.1.1. The Impact of Input Length on LSTM Prediction Performance

In order to verify the influence of input length on the prediction results of the model,
under the condition that hyperparameters, such as the learning rate, the number of hidden
layers, and the number of neurons, do not change, the prediction length is controlled to
5, and the input length is set to 2, 5, 10, and 15 days, respectively, to discuss the impact of
input length changes. The influence of input length on the prediction of the LSTM model is
shown in Tables 1–3, where the bold font is the extremum value of each column. It is worth
noting that, compared with other input lengths, when the input length is 2, the RMSE and
AE at the four positions are the maximum value and R2 is the minimum. Then, with the
increase of the input length, the RMSE and AE decreases significantly and R2 increases
compared with the input length of 2. Especially when the input length is 5, the RMSE and
AE values of L2 and L3 positions are the smallest, and when the input length is 15, the
RMSE values of L1 and L4 positions are the smallest. Moreover, R2 also becomes larger at
the corresponding positions above. This proves that if the input length is too small, the
LSTM model cannot capture the change law of the SST data well. Increasing the input
length can improve the prediction performance of the LSTM model to a certain extent.
However, no obvious positive correlation is seen between them. In fact, the improvement
of the prediction performance of the LSTM model is not only related to the input length,
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but also related to the predicted position. The selection of appropriate input length should
consider related factors, such as the predicted position.

Table 1. RMSE (◦C) variation of different input lengths at different positions, where the bold font is
the minimum value of each column.

Length of Input
Location

L1 L2 L3 L4

2 0.3465 0.2698 0.1786 0.3331
5 0.2741 0.0568 0.0458 0.0769
10 0.2730 0.0917 0.0707 0.0764
15 0.2461 0.0995 0.1005 0.0698

Table 2. R2 variation of different input lengths at different positions, where the bold font is the
maximum value of each column.

Length of Input
Location

L1 L2 L3 L4

2 0.9976 0.9830 0.9949 0.9884
5 0.9985 0.9992 0.9996 0.9993
10 0.9985 0.9980 0.9992 0.9994
15 0.9988 0.9977 0.9984 0.9995

Table 3. AE (◦C) variation of different input lengths at different positions, where the bold font is the
minimum value of each column.

Length of Input
Location L1 L2 L3 L4

Max Mean Max Mean Max Mean Max Mean
2 1.3978 0.2454 0.9512 0.1979 0.7163 0.1356 1.1755 0.2471
5 1.1656 0.1968 0.2773 0.0406 0.1893 0.0328 0.3873 0.0574
10 1.0081 0.2003 0.5757 0.0634 0.2271 0.0540 0.3401 0.0551
15 0.8816 0.1833 0.5338 0.0724 0.3605 0.0773 0.3624 0.0500

Improve Rate 36.93% 25.31% 70.85% 79.48% 73.57% 75.81% 71.07% 79.77%

3.1.2. The Impact of Prediction Lengths on LSTM Prediction Performance

Similarly, to explore the influence of the prediction length on the prediction results
of the model, when the other hyperparameters mentioned above remain unchanged, the
input length is controlled to 15 in combination with Tables 1 and 2. The main reason is that,
when the input length is set to 5, the input length may be short, and the data change law
may not be well displayed. Furthermore, L1 has the largest difference in the extremum
among the four positions, so the change law of the SST data is the most difficult to capture.
When the input length is 15, the RMSE is the smallest and R2 is the largest in L1, and the
LSTM model has the best prediction effect. To sum up, this paper believes that it is better
to set the input length to 15. Figure 4 shows the RMSE and R2 values for 5 prediction steps,
where the different colors of the lines represent each specific location. We can see that when
the prediction length is 1, the RMSE value is the minimum value at any position, and the
R2 value is the maximum value. When the prediction length is 5, the RMSE at any position
is the maximum value, and the R2 is the minimum value, that is, the minimum value of
RMSE and the maximum value of R2 are obtained almost at the same time. Meanwhile, it
also shows that the prediction performance of the LSTM model decreases gradually with
the increase of prediction length.
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3.2. Analysis of Prediction Results at Different Points

In order to analyze the variation trend of the LSTM model prediction results and error
over time at different locations, Figures 5 and 6 are drawn. Meanwhile, to explore the
accuracy of the LSTM model for extreme value prediction, we selected the region with the
largest SST in a year, as shown in the gray rectangle in Figure 5. According to (a)–(d) of
Figure 5, we found that the prediction results of the LSTM model for L1, L2, L3, and L4
are slightly different from OSTIA, and cyclical trends are represented accurately. However,
from Figure 5e–g, it is found that the LSTM model is not very accurate in predicting
extremum. In Figure 5h, it is found that LSTM is quite accurate for predicting extremum.
The reason is that the RMSE value here is particularly small. That is, except that the RMSE
value is particularly small, the LSTM model cannot predict the extremum well in most
cases. According to Figure 6, it is found that the difference between the prediction results
of the LSTM model and the OSTIA data changes greatly at the L1 position. The maximum
value of the difference between the two is 0.7 ◦C and the minimum value is −0.9 ◦C. At the
L4 position, their differences are relatively small and stable, and most of the differences
are −0.1 ◦C. Furthermore, the maximum value of RMSE at L1 position is 0.2461 ◦C, and
the minimum value of RMSE at L4 position is 0.0698 ◦C. The large difference between L1
and L4 is mainly because L1 is located at the estuary of the Yangtze River. The seasonal
variation of SST at the estuary of the Yangtze River is more obvious, so that the LSTM
model cannot capture the SST law of L1 position well. Moreover, the RMSE value of the L4
position is smaller than that of the L3 position, which may be due to the lower water depth
of the L3 position than that of the L4 position.
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Figure 5. OSTIA data and LSTM predictions at different points, where the green line is the prediction
result of LSTM, the yellow line is the OSTIA data, and the gray rectangle is the area where the
maximum SST is located in 2020. (a–d) are in a comparison chart of the LSTM prediction results and
OSTIA data in 2020. (e–h) are the values of the region where the maximum SST is located in 2020.
The abscissa is the SST in degrees Celsius, and the ordinate is the number of days.
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3.3. Migration Analysis

This subsection mainly describes the feasibility of applying the L4 position trained
model to the prediction of SST in ECS from the following two aspects: (1) Study its migration
from the spatial distributions of RMSE and AE of each month as shown in Figures 7–9.
(2) Due to the obvious seasonal variation of SST, the spatial distributions of RMSE and AE
of four seasons are described to verify its migration as shown in Figures 10 and 11.
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3.3.1. Migration Analysis for Monthly Changes

Given that the RMSE value of the L4 position in Figure 5 is the smallest, the LSTM
model trained at the L4 position is selected to predict the SST of the whole study area
in 2020 to prove whether the LSTM network has the characteristics of migration. The
spatial distribution of SST in 2020 predicted by the LSTM model is shown in Figure 7. The
characteristics of SST, such as the Kuroshio, the Min-Zhe coastal current, and the Yangtze
River Diluting Water, are clearly displayed in the forecast map and show obvious seasonal
changes. For the quality evaluation of LSTM prediction results, the methods of AE and
RMSE are used. Figure 8 presents the AE between the prediction results of the model and
the OSTIA satellite data in 2020. We can see that the error between the prediction results
and OSTIA are mostly less than 0.4 ◦C, and the AE of the Yangtze River estuary and its
northern part and Min-Zhe coastal currents is relatively large in April, May, June, July, and
December. Figure 9 shows that most of the RMSE values in 2020 are less than 0.5 ◦C. In
April, maximum RMSE is found around the Kuroshio and TWC area, that is, the dispersion
of error in this region is relatively large. In August, the error dispersion in the northern
part of the Yangtze River estuary is relatively high. In general, the areas with higher error
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dispersion in a year are located in the Yangtze River estuary and its north, the Kuroshio,
and the Min-Zhe coastal current.
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3.3.2. Mobility Analysis of Seasonal Changes

Figure 10 is drawn for the seasonal AE in spring, summer, autumn, and winter to
analyze whether the migration of the LSTM model in ECS can show the characteristics of
seasonal changes well. AE between the predicted results of the LSTM model and OSTIA,
shown in Figure 10, is within 0.4 ◦C, and the maximum value of AE decreases by 0.2 ◦C
compared with Figure 8. Among the four seasons, AE of spring is the largest, and AE of
autumn and winter is smaller. Moreover, the extremum of AE of the four seasons is mainly
concentrated in the area of the Yangtze River Estuary and the Min-Zhe coastal current.
Through the analysis of the dispersion degree of the error in Figure 11, the RMSE of the
Kuroshio in spring is larger than that in other seasons, which means that the dispersion
degree of errors in this area is large. In summer, the dispersion degree of error is large
in the north of the Yangtze River Estuary. Through the analysis of AE and RMSE of each

40



Remote Sens. 2022, 14, 3300

month and four seasons, the maximum value of AE and RMSE are 0.4 ◦C in four seasons,
which is 0.2 ◦C lower than each month. However, most AE and RMSE values are relatively
small, which are less than 0.4 ◦C and 0.5 ◦C, respectively. Therefore, the long-term and
seasonal change law can be well represented by the migration of the LSTM model.

4. Conclusions

The past research at home and abroad has used many related SST prediction methods,
such as numerical simulation, BP neural network, etc. In this study, the LSTM neural
network is applied to the SST prediction, and its feasibility is discussed. The most important
findings of this study are as follows:

(1) The input and prediction lengths will affect the prediction performance of the LSTM
model. The increase of the input length can improve the prediction performance of the
LSTM model to a certain extent, but no obvious positive correlation is seen between
them. Meanwhile, the prediction performance of the LSTM model decreases with the
increase of the prediction length, and an obvious negative correlation is seen between
them. The effect is the best when the prediction length is 1 and the worst when it is 5.

(2) The prediction results of the LSTM model for a single site are quite accurate, but the
extremum cannot be well displayed. Furthermore, affected by the seasonal variation
of the Yangtze River Estuary, the prediction result of the Yangtze River Estuary site is
the worst compared with other regions.

(3) By analyzing the AE and RMSE of the prediction results of the LSTM model, most
of the error is found to be less than 0.4 ◦C and 0.5 ◦C, respectively, and the LSTM
model has a very successful migration in the East China Sea. In addition, the AE and
RMSE of the seasonal and monthly average have prominent spatial characteristics.
The places with larger error are distributed in the Yangtze River estuary and its north,
the Kuroshio, and the Min-Zhe coastal current.

Using the LSTM neural network to predict SST is a new prediction method, which
has achieved good results in the experiment of SST prediction. Therefore, it can be a
better tool and method to predict the change in SST. However, the interpretability of deep
learning remains a hot issue in the computer field. Explaining the LSTM network’s physical
mechanism more effectively for predicting SST still needs further experimental research.
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Abstract: Since 2011, the proliferation of brown macro-algae of the genus Sargassum has considerably
increased in the North Tropical Atlantic Sea, all the way from the Gulf of Guinea to the Caribbean Sea
and the Gulf of Mexico. The large amount of Sargassum aggregations in that area cause major beaching
events, which have a significant impact on the local economy and the environment and are starting to
present a real threat to public health. In such a context, it is crucial to collect spatial and temporal data
of Sargassum aggregations to understand their dynamics and predict stranding. Lately, indexes based
on satellite imagery such as the Maximum Chlorophyll Index (MCI) or the Alternative Floating Algae
Index (AFAI), have been developed and used to detect these Sargassum aggregations. However, their
accuracy is questionable as they tend to detect various non-Sargassum features. To overcome false
positive detection biases encountered by the index-thresholding methods, we developed two new
deep learning models specific for Sargassum detection based on an encoder–decoder convolutional
neural network (CNN). One was tuned to spectral bands from the multispectral instrument (MSI)
onboard Sentinel-2 satellites and the other to the Ocean and Land Colour Instrument (OLCI) onboard
Sentinel-3 satellites. This specific new approach outperformed previous generalist deep learning
models, such as ErisNet, UNet, and SegNet, in the detection of Sargassum from satellite images
with the same training, with an F1-score of 0.88 using MSI images, and 0.76 using OLCI images.
Indeed, the proposed CNN considered neighbor pixels, unlike ErisNet, and had fewer reduction
levels than UNet and SegNet, allowing filiform objects such as Sargassum aggregations to be detected.
Using both spectral and spatial features, it also yielded a better detection performance compared to
algal index-based techniques. The CNN method proposed here recognizes new small aggregations
that were previously undetected, provides more complete structures, and has a lower false-positive
detection rate.

Keywords: ocean color; Sargassum; MODIS; MSI; OLCI; Sentinel-2; Sentinel-3; convolutional neural
network; deep learning

1. Introduction

The brown macro-algae, Sargassum, from the genus Sargassum C. Agardh (Phaeo-
phyceae, Fucales) is a type of algae commonly found in the Sargasso Sea (North Atlantic
Ocean). However, since 2011, these Sargassum have started proliferating outside the Sar-
gasso Sea, expanding to the Gulf of Guinea, the Caribbean Sea, and the Gulf of Mexico,
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forming the Great Atlantic Sargassum Belt [1]. Three morphotypes of the same taxon are
currently recognized within the Great Atlantic Sargassum Belt [2–4]: Sargassum natans I Parr,
S. natans VIII Parra, and S. fluitans III Parr. Sargassum aggregate and form windrows or mats
up to a length of hundred meters [5]. The significant amount of Sargassum aggregations
in the area causes sizeable beaching events on the coast [6,7], consequently impacting the
local economy [8,9], the environment [10–12] and causing major sanitary issues due to the
emanation of harmful gas during the decomposition [13–15].

In order to predict and thus anticipate beaching events, it is crucial to collect spatio-
temporal data about Sargassum aggregations. Several algal indexes were developed to
detect Sargassum from satellite imagery, such as the Maximum Chlorophyll Index (MCI) [16]
or the Floating Algae Index (FAI) [17]. Recently, the FAI was improved by the Alternative
Floating Algae Index, AFAI [18], which is less sensitive to clouds. Using the MCI, Gower
et al. [19] initiated the detection of Sargassum aggregations in the Gulf of Mexico using
satellite images from the medium-resolution imaging spectrometer (MERIS) on board
ESA’s Envisat satellite and the moderate-resolution imaging spectro-radiometer (MODIS)
on board NASA’s Terra and Aqua satellites. It was then extended to the Ocean and Land
Colour Instrument (OLCI) [20] on board Copernicus’s Sentinel-3 satellites. The AFAI
proved to be performant on MODIS [18] or the multispectral instrument (MSI) [5,7,21,22]
on board Copernicus’s Sentinel-2 satellites. These indexes can also be used to determine
the coverage of Sargassum per pixel [18] and then the biomass quantity of Sargassum as
empirically defined by Wang and Hu [23].

However, the standard index-based detection (ID) method, from for example MCI or
AFAI, cannot discards all radiometric noise and other non-Sargassum factors (i.e., residual
clouds and cloud shadow, land, coastal water, surface waves, and sunglint [18,24]), which
interfere with the detection of low-coverage Sargassum. The standard method is based on
the calculation of the background index and the use of a threshold on the difference between
local and background indexes to determine whether a pixel contains Sargassum (above the
threshold) or not (under the threshold). However, the background calculation itself relies on
the accurate screening of clouds, cloud shadows, coastal areas, land and sunglint [18,21] that
may yield false positive values. Finally, uncertainties in the calculation of the background
index may induce non-significant positive values. As a result, the lowest index values
are not significant enough to ensure the presence of Sargassum and must be discarded,
inevitably yielding false negatives. In order to retain most Sargassum while rejecting most
false detections, the threshold applied on indexes must be optimally determined [18,19].
While some false detections can be removed by mathematical morphology post-treatments
(e.g., erosion-dilation [18,25–28]) false detections remain, linked to residual clouds, cloud
shadows, sunglint and turbidity. Another limitation encountered by the ID method is
the high cloud cover in some images, because in such cases the background index, hence
the index, cannot be accurately estimated. Wang and Hu [18,21] estimated false positive
detections for their retrieval to be 20% of the total Sargassum pixels for MODIS and 6%
for MSI. Recently, a machine learning model revealed a higher rate, namely 50%, of false
positive detections by the ID method applied to MODIS images [24]. The remaining false
positive detections cannot be discriminated on their sole index value, since their index
distribution overlaps with that of true Sargassum. The ID method also produces false
negative detections (i.e., Sargassum pixels not detected); it has been estimated to be 7% for
MODIS [18] and 20% for MSI [21]. Therefore, the ID method has two important limitations:
the need for complex pre-processing and the unavoidable yield of false detections (false
positive and false negative).

An alternative to the ID method can be neural networks. Indeed, in the last few
years neural networks have made significant progress in computer vision and are widely
used in several domains, including imagery in oceanology [29–33]. Furthermore, they
have already been successfully used for other macro-algae detections as an alternative to
the ID method [34–36]. Sargassum in near-shore water and Sargassum stranding on the
Atlantic coast have also been investigated using classic classifier algorithms (random forest,
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K-means) and deep neural networks (UNet, AlexNet, VGG . . . ) on the Mexican-Caribbean
and Caribbean coasts using smartphone camera pictures [37,38] and fixed cameras [39]. On
coastal and off-shore waters, machine learning has also been used for Sargassum detection
from satellite images, e.g., random forest for false detection extractions [24] or a combination
of several indexes [40] to improve Sargassum detection in the Atlantic Ocean. In the Yellow
Sea, next to China and Korea, Sargassum detection was also studied with several machine
learning models (i.e., fine tree, support vector machine, etc.) [41,42].

Among neural network methods, deep neural networks, such as convolutional neural
networks (CNN), are efficient for image processing in object segmentation and classi-
fication [43–47]. Contrary to the previous machine learning algorithms, these types of
neural networks could improve open sea Sargassum detection in the Atlantic Ocean by
automatically learning the relationship between the reflectance and the spatial context of
Sargassum aggregations. Arellano-Verdejo et al. [48] proposed a first deep learning method
for Sargassum detection on the Mexican Caribbean coast, ErisNet, i.e., a pixel classifier
with convolutional and recurrent layers, applied to a selection of MODIS spectral bands.
ErisNet weakly takes into account neighbor pixels, thus it does not learn the structure
of the Sargassum aggregations composed of several pixels. Recently, Wang and Hu [49]
used the UNet model [47] using FAI and RGB images from high resolution satellite data
such as MSI, Operational Land Imager, WorldView-II, and PlanetScope/Dove to segment
Sargassum in off-shore waters of the Lesser Antilles and the Gulf of Mexico. UNet is a CNN
using an encoder-decoder style network and this architecture allows Sargassum aggregation
structures to be learnt. However, the spectral information can be reduced by using only
three spectral bands when the information provided by other available spectral bands
might be used.

To avoid all those problems and increase the performance of detection compared
to previous methods, we propose two new specialized models for Sargassum detection
based on deep neural learning in the Caribbean and Atlantic areas. Those models used all
the available spectral bands provided by a sensor contrary to ID methods and UNet [49].
Furthermore, deep neural networks, and, more specifically, CNN, have a higher abstraction
level than simple machine learning algorithms, and are better structured to take into account
neighbor pixels at a higher scale. Thus, the CNN models are based on an encoder–decoder
architecture, contrary to ErisNet. MSI and OLCI sensors were chosen due to the difference
of their spatial and spectral resolutions, but CNNs can be applied to other similar sensors.

This paper is organized as follows: first, the satellite data, the study area, the previ-
ous detection methods and our CNN architecture, training and validation methods are
presented in Section 2. Second, the performance of our CNN models is quantitatively
analyzed in Section 3. Third, the Sargassum detection obtained using our CNN models and
ID methods are compared from the literature images in Section 4. Finally, a conclusion is
proposed in Section 5.

2. Materials and Methods
2.1. Satellite Data

This study used images from several satellite sensors with different spatial resolutions
to detect Sargassum from space: MSI onboard Sentinel-2, OLCI onboard Sentinel-3 and
MODIS onboard Terra satellites.

The Sentinel-2 and Sentinel-3 missions are carried out by the European Union’s Coper-
nicus Earth Observation programme, and each mission is currently composed of a constel-
lation of two satellites.

The Sentinel-2A and Sentinel-2B satellites were launched in 2015 and 2017, respec-
tively. These satellites carry the multi-spectral instrument (MSI), which acquires data in
13 multispectral bands in the visible, near-infrared, and short-wave infrared ranges of the
solar spectrum (0.44 µm to 2.19 µm), with a high spatial resolution (10 m, 20 m, and 60 m,
depending on the bands). In this study, images have a resolution of 20 m. Each MSI sensor
has a revisit period of five days.
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Onboard the two Sentinel-3 satellites (Sentinel-3A and Sentinel-3B, launched in 2016
and 2018, respectively), the Ocean Land Color Instrument (OLCI) has similar spectral bands
than the MERIS sensor (2002–2012). OLCI images are composed of 21 spectral bands from
the visible to the near infrared (from 0.4 µm to 1.02 µm), with a spatial resolution of 300 m.
Each OLCI sensor has a revisit period of two days.

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flies on
board the Terra and Aqua satellites launched by NASA in 1999 and 2002 respectively.
MODIS images have 36 spectral bands (0.4 µm to 14.4 µm) at three spatial resolutions
(250 m, 500 m, and 1 km). Each MODIS sensor has a revisit period of one to two days. Only
the MODIS/Terra sensor was used in this study because the overpass time is closer to the
Sentinel satellites than MODIS/Aqua.

2.2. Study Area and Data Set

The west coast of the Atlantic is particularly prone to massive arrivals of Sargassum
aggregations from the Atlantic Ocean since 2011 [1,50]. The study area is located in
the Lesser Antilles, in the East Caribbean Sea and the Mexican coast (Figure 1), from
2018 to 2022.
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This study focused on two products: level-2A MSI products and Level-2 OLCI prod-
ucts from Copernicus Open Access Hub [51]. All images were corrected for Rayleigh
scattering, gaseous absorption, and aerosols and have their corresponding ground truth.
Images of each spectral band were normalized using their mean and standard deviations.
Then, those images were divided into two types of datasets: a learning dataset and a
focus dataset.

The learning dataset targeted CNN learning (training, validation, and test) and the
quantitative validation process for our proposed CNNs. This dataset was composed
of 14 images of size 10,980 × 10,980 pixels from MSI (Table S1) and 16 images of size
4865 × 4091 pixels from OLCI images (Table S2) from 2017 to 2022 distributed across all
the study areas (Lesser Antilles and the Mexican Caribbean coast). All spectral bands were
used as inputs to the model. To increase the learning dataset and avoid overfitting, we
generated more images by randomly applying a horizontal flip, a vertical flip, or a rotation
of 90 or 270 degrees. Additionally, a random color augmentation was applied only to OLCI
images because they have more significant pixel variations than MSI images, due to the
variation in the sunlight intensity from east to west. Indeed, at most, three spectral bands
were picked randomly and adjusted by random values selected from [−0.1,0.1]. Sargassum
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represented, on average, only 1% of the pixels of an image. Thus, 128 × 128 sub-images
centered on random positions were taken while conserving the proportion of Sargassum
in the original images. We ensured that 66% of the sub-images had no Sargassum to
provide a representative sample of different backgrounds. Therefore, the dataset comprised
75,000 sub-images from MSI and 50,000 sub-images from OLCI. The learning dataset was
split into three subsets: a training set including 80% of the total image number, a validation
set comprising 10% of the images, and a test set containing the remaining images. The test
set was only used to evaluate the model’s performance.

A focus dataset was then built in order to: (1) quantitatively evaluate the CNN models
performance; and (2) discuss the performance compared to the ID method images published
and validated in the literature. That dataset was composed of complete images, (not sub-
images) from MSI and OLCI sensors, detailed in Table 1. It contained four images of level-1
files from the literature (Table 1): MODIS and MSI images from Descloitres et al. [22] and
OLCI images from Schamberger et al. [52]. The data also included our CNN images from
the OLCI sensor at the same dates and locations and from the MSI sensor only at the same
dates and locations as those of Descloitres et al. [22]. In addition, the dataset contained a
supplemental image from MSI on 6 August 2022 in the Martinique area.

Table 1. Images of the focus dataset used to evaluate the performance of our CNNs compared to
images from the literature, with a summary of their characteristics: location, acquisition date and
time, satellite, and sensor. The ‘Source’ column indicates the source of each image: a reference for
images taken from the literature, and ‘us’ for images processed with our own CNN method.

Location Date Time (UTC) Satellite-Sensor Source

Grenadines
(Caribbean)

29 January 2019

14:35 Terra-MODIS [22]

14:37 Sentinel-2B-MSI
tiles: PQU- PQV-PRU-PRV [22], us

13:38 Sentinel-3-OLCI us

Lesser Antilles
9 May 2020 13:56 Sentinel-3-OLCI

[52], us
8 July 2017 13:55 Sentinel-3-OLCI

Martinique 6 August 2022 14:37 Sentinel-2-MSI
tile PRB us

2.3. Three Sargassum Detection Methods
2.3.1. Standard Index-Thresholding Method

Currently, the satellites cannot detect the differences between the three morphotypes
of Sargassum living in sympatry. Therefore, they are studied as a whole. Two indexes
were essentially used in this study: the Maximum Chlorophyll Index (MCI) [16] and the
Alternative Floating Algae Index (AFAI) [18]. Furthermore, the Floating Algae Index
(FAI) [17], the Normalized Difference Vegetative Index (NDVI) [53], and the InfraRed Color
(IRC) were also used for the ground truth computation (Section 2.3.3).

The NDVI takes advantage of the red edge of the vegetation spectral reflectance. It
measures the normalized difference between near-infrared (λ2) and red range (λ1):

NDVI =
R(λ 2)− R(λ 1)

R(λ 2) + R(λ 1)
(1)

This index is often used to study vegetation ecology [54–56]. Floating algae have also
been investigated using NDVI [57,58]. MCI, FAI and AFAI indexes were calculated using
Equation (2), based on wavelengths summarized in Table 2. The MCI is an index based on
radiance around 705 nm, more accurately, the MERIS and OLCI spectral bands located at
709 nm. MCI reveals high chlorophyll concentrations; it was first used to detect phytoplank-
ton bloom using the MERIS sensor [16]. That index also showed its efficiency on Sargassum
observations in the Atlantic Ocean using MERIS, MODIS and OLCI sensors [19,20]. The
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FAI was developed for floating algae in the open ocean and firstly tested with the MODIS
instrument to detect the benthic macroalgae Ulva prolifera in the Yellow Sea and pelagic
Sargassum in the North Atlantic Ocean [17]. Later, Wang and Hu [18] improved it with the
AFAI, an index more efficient in the presence of clouds. It was developed for the MODIS
sensor to detect Sargassum and extended to the MSI sensor [22].

Index = R(λ 2) − R(λ 1) − [R(λ 3) − R(λ 1)] ×
λ2 − λ1

λ3 − λ1
(2)

Table 2. Wavelength parameters of Equations (1) and (2) for NDVI, MCI, FAI and AFAI indexes for
OLCI, MSI and MODIS.

Index Sensor λ1 (nm) λ2 (nm) λ3 (nm)

NDVI
OLCI 665 865 -
MSI 665 833 -

MCI OLCI 1 681 709 754

FAI
MODIS 2 645 859 1240

MSI 3 655 855 1609

AFAI
MODIS 4 667 748 869

MSI 5 665 740 865
1 [20]; 2 [17]; 3 [21]; 4 [18]; 5 [22].

While MCI, FAI and AFAI can be directly used for Sargassum detection, additional
processing is required to improve the detection. Indeed, while Equation (2) guarantees
that the Index increases with the presence of Sargassum, it also increases with the value
of the Index for Sargassum-free surrounding water, the so-called background Index. This
background Index depends on local non-Sargassum factors, such as water spectral reflectance,
potential residual sunglint contamination, and the presence of aerosols. Then, a local Index
deviation (δIndex), i.e., the difference between the background and the local Index, is used to
discriminate between pixels with and without Sargassum thanks to a threshold. This latter
is optimally determined [18,19], but also depends on the author’s objective and specific
datasets; for example, the threshold used on OLCI images by Schamberger et al. [52] is
0.0030, while the one used on MODIS images by Descloitres et al. [22] is 0.00017 [18].

Finally, the amount of Sargassum may be determined with the fractional coverage (FC),
it is defined as the ratio between the surface area of Sargassum within one pixel and the
total surface of that pixel [22]. The FC is deduced thanks to the linearity of Equation (2),
which ensures that the local δIndex is proportional to the FC of Sargassum within a sensor
pixel [18,22]:

δIndex(FC) = K × FC (3)

In this study we used K = 0.0874 for MODIS, K = 0.0824 for MSI [22] and K = 0.0579
for OLCI [59].

The biomass quantity of Sargassum can be estimated using a linear relationship be-
tween the fractional coverage, the pixel area and a calibration constant defined empirically
by Wang and Hu [23].

2.3.2. Convolutional Neural Network (CNN) for Sargassum Retrieval
State of the Art

In this study, we used three other CNNs to compare with our method, including two
CNNs already used for Sargassum extraction in the Atlantic and Caribbean areas since 2019.

These are the ErisNet model from Arellano-Verdejo et al. [48] and the UNet of Ron-
neberger et al. [47], adapted by Wang and Hu [49] for Sargassum, and by Yan et al. [60], for
harmful cyanobacterial algal blooms detection.
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ErisNet [48] contains nine convolutional layers and two recurrent layers, allowing
the model to keep a history of previous predictions. The network learns using a balanced
number of Sargassum and background pixels during the training. However, during infer-
ence, it takes all pixels and predicts for each of them whether they belong to Sargassum or
not. ErisNet is a pixel classifier that processes pixels as 1D input, unlike UNet and SegNet,
which are image segmenters and treat the image as 2D input.

The encoder–decoder style network UNet [47] was used by Wang and Hu [49] for
Sargassum retrieval. It was initialized with the weights of a VGG16 [61] trained on ImageNet.
UNet contains four convolutional layers and performs four down-samplings in the encoder
and four up-samplings in the decoder. The UNet encoder groups pixels of the same types
together, whereas the decoder magnifies the output of the encoder. Each decoded map is
concatenated with the same-sized encoded map. UNet was also applied by Yan et al. [60]
on sentinel-2 MSI images of Chaohu Lake in China to identify harmful cyanobacterial algal
blooms (CyanoHABs). They compared the segmentation with three FAI-based automatic
CyanoHABs extraction methods: gradient mode, fixed threshold, and the Otsu method,
and showed that the accuracy of UNet was better.

SegNet [43] is another encoder-decoder-style segmentation network powerful for
image segmentation. Like UNet, SegNet has reduction layers connected to enlargement
layers to reconstruct pixels. In addition, it uses neighboring pixels, having the same
distribution during the reduction, in the upsampling reconstruction. UNet and SegNet can
process small images (here from 128 × 128) in a single pass.

We built these three models using descriptions found in the literature (parameters
summarized in Table 3), and trained them with the same dataset as our own models.

Table 3. Summary of the layer, block and total parameter numbers for ErisNet, UNet, SegNet and
our proposed Networks for MSI and OLCI. More detailed tables of the structure of our proposed
Networks are available in Supplementary Materials for MSI (Table S3) and OLCI (Table S4).

ErisNet UNet SegNet Our Proposed Network

MSI OLCI

Layers 44 83 91 32 75
Blocks 7 10 10 9 18
Total

Parameters 455,554 13,400,578 29,449,350 226,762 973,145

Model Description for MSI and OLCI

We proposed two convolutional neural networks (CNN) with an encoder–decoder
architecture (parameters summarized in Table 3), one targeting Sargassum semantic seg-
mentation and taking Sentinel-2/MSI images as input, while the other focused on Sentinel-
3/OLCI images and returning the δMCI (post-processed without clouds, land, and coasts).
Indeed, with the ID method, OLCI images have more diffuse Sargassum aggregations
than MSI. Thus, it was more relevant to train the CNN on the δMCI than on semantic
segmentation. For MSI and OLCI images, input channels were composed of all the image
spectral bands listed in Tables S1 and S2. The code of the two models was written using
Pytorch [62].

For the CNN with MSI images, the encoder reduces the image scale, and the decoder
performs a semantic segmentation. Indeed, we made only a single reduction because
Sargassum aggregations have a width of one to three pixels. Hence, too much reduction is
useless since target objects are thin. The encoder is composed of residual blocks issued from
ResNet [63]. Figure 2 shows the architecture of the network; each residual block conserves
its input by adding it to its output. Since there is only a need to segment Sargassum, a
weighted binary cross-entropy loss function (WBCEWithLogitsLoss) was used. This loss
is appropriate for binary problems and helped to deal with the unbalanced problem of
Sargassum because the ratio of Sargassum pixels to the background pixels was meager. Let
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yi,j be a pixel of the ground truth segmentation, ŷi,j be the output of the network, which
corresponds to the logits (log-odds function) of the semantic segmentation, and N × M be
the resolution. The weighted BCEWithLogitsLoss is defined by Equation (4):

WBCEWithLogitsLoss(y, ŷ) = − 1
N×M ∑i,j

[
w1 × yi,j × log

(
σ
(

ŷi,j

))
+ w2 ×

(
1− yi,j × log

(
1− σ

(
ŷi,j

)))]
(4)

where σ(x) = 1
1+e−x is the sigmoid function, w1 is the weight of the foreground, w2 is the

weight of the background.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

is appropriate for binary problems and helped to deal with the unbalanced problem of 
Sargassum because the ratio of Sargassum pixels to the background pixels was meager. Let 
yi,j be a pixel of the ground truth segmentation, yො i,j be the output of the network, which 
corresponds to the logits (log-odds function) of the semantic segmentation, and N × M be 
the resolution. The weighted BCEWithLogitsLoss is defined by Equation (4): 

WBCEWithLogitsLoss(y, yො) = - 1
N × MΣi,j[w1 × yi,j × log(σ(yො i,j)) + w2 × (1 - yi,j) × log(1 - σ(yො i,j))]  (4)

where σ(x) = 1
1 + e-x is the sigmoid function, w1 is the weight of the foreground, w2 is the 

weight of the background. 

 
Figure 2. The neural network architecture for semantic segmentation on MSI; blue layers are convo-
lutions, green ones represent batch normalizations, ReLU is in red, and the orange layers correspond 
to max pooling/unpooling layers. 

Regarding OLCI, the segmentation map is substituted with the δMCI. The architec-
ture of the network is similar to the one of MSI, except that it adds one reduction level and 
more channels in the residual blocks. The network contains 128, 256, and 512 blocks 
against 32 and 64 for MSI (Figure 3). Furthermore, a soft attention block (Attention UNet; 
[64]) is added to each reduction level. These blocks allow the connection between outputs 
of unpooling layers and inputs of reduction layers corresponding to the same scale. The 
goal is to use the distribution of the same scale-reduction input. 

 
Figure 3. The neural network architecture for OLCI images; blue layers are convolutions, green ones 
represent batch normalizations, ReLU is in red, and yellow layers correspond to max pooling/un-
pooling layers. Gray blocks represent soft attention. 

Because the task is a regression, the mean squared error (squared L2 norm) was used 
as a loss (MSELoss). This loss function compares the output δMCI image with the refer-
ence one. Let δMCIij be a pixel of the reference masked δMCI, δMCI෣ i,j be a pixel of the 
network’s output filter, and N × M be the resolution. The MSELoss is written as follows: 

MSELoss(δMCI, δMCI෣ ) = - 1
N × MΣi,j(δMCIi,j  െ  δMCI෣ i,j)

2
 (5)

  

Figure 2. The neural network architecture for semantic segmentation on MSI; blue layers are convo-
lutions, green ones represent batch normalizations, ReLU is in red, and the orange layers correspond
to max pooling/unpooling layers.

Regarding OLCI, the segmentation map is substituted with the δMCI. The architecture
of the network is similar to the one of MSI, except that it adds one reduction level and more
channels in the residual blocks. The network contains 128, 256, and 512 blocks against
32 and 64 for MSI (Figure 3). Furthermore, a soft attention block (Attention UNet; [64])
is added to each reduction level. These blocks allow the connection between outputs of
unpooling layers and inputs of reduction layers corresponding to the same scale. The goal
is to use the distribution of the same scale-reduction input.
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Figure 3. The neural network architecture for OLCI images; blue layers are convolutions, green
ones represent batch normalizations, ReLU is in red, and yellow layers correspond to max pool-
ing/unpooling layers. Gray blocks represent soft attention.

Because the task is a regression, the mean squared error (squared L2 norm) was used
as a loss (MSELoss). This loss function compares the output δMCI image with the reference
one. Let δMCIij be a pixel of the reference masked δMCI,
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i,j)
2
 (5) 

  

) = − 1
N × M

Σi,j(δMCIi,j −

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

is appropriate for binary problems and helped to deal with the unbalanced problem of 

Sargassum because the ratio of Sargassum pixels to the background pixels was meager. Let 

y
i,j

 be a pixel of the ground truth segmentation, ŷ
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Training Process

For the training process, we used the training and the validation subsets from the
learning dataset described in Section 2.2. The training lasted for 1000 epochs and was done
using a batch size of 92 and a stochastic gradient descent (SGD) with a learning rate of
10−3 and a momentum of 0.9. Finally, the model giving the best F1-score on the validation
set was saved. This validation was done every ten epochs.
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2.3.3. Visual Analysis to Establish the Ground Truth

The ground truth was determined for each image of the learning set (i.e., training,
validation and test datasets) and the focus dataset described in Section 2.2. In the absence
of in situ observations of the Sargassum distribution, the ground truth was provided by an
“expert” who manually annotated Sargassum aggregations using different standard indexes
(i.e., FAI, AFAI, NDVI, MCI, IRC; Table 1) as indicators from level-2 OLCI and MSI images.
These indexes were chosen due to their different response to Sargassum signals, and the
sensor used.

The ground truth of the MSI was a binary mask: 1 for pixels containing Sargassum and
0 for Sargassum-free pixels. For OLCI, the ground truth for the training process (training and
validation datasets) was obtained using a binary mask built manually using several indexes
to identify Sargassum, then applied to the δMCI (Figure 4). For the model evaluation,
we only compared OLCI detections to the binary ground truth (i.e., the accuracy of the
retrieved δMCI values was not evaluated).
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2.4. Performance Evaluation
2.4.1. Performance Metrics Using the Ground Truth

Three types of metrics were used to evaluate the performance of the ID or CNN
methods by comparing the test dataset to the ground truth: the recall, the precision, and the
F1-score. The latter was calculated from the two other metrics (the recall and the precision).
These metrics depend on three parameters: true positive (TP), false positive (FP) and false
negative (FN). TP, FP and FN were determined using the ground truth and Sargassum pixels
detected by the retrieval technique. TPs are Sargassum pixels successfully recognized by
the retrieval technique. FPs are Sargassum pixels only identified by the retrieval technique
but not present in the ground truth. Finally, FNs are Sargassum pixels not detected by the
retrieval method and present in the ground truth.

The recall metric is the ratio of the number of TP detections and the number of
Sargassum pixels of the ground truth (Equation (6)). The precision metric is the ratio of the
number of TP detections and the number of pixels detected as Sargassum (Equation (7)). To
evaluate the model’s performance, these two metrics were combined to form the F1-score
metric (Equation (8)). The better the performance; the closer the F1-score is to 1. Sargassum
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detection was considered a “true” detection when its distance from an annotation on the
ground truth is below three pixels.

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1_score = 2 × Recall × Precision
Recall + Precision

(8)

2.4.2. Comparison of CNN and ID Approaches

Another evaluation was performed on the focus dataset (described in Section 2.2) based
on the comparison of CNN with ID method images in order to estimate their respective
performance. During this analysis, we no longer took into account the ground truth, which
was not without errors, due to a degree of subjectivity present in the process of annotating
Sargassum aggregations, especially for aggregation edges and low-FC aggregations. Indeed,
the ground truth can introduce biases during the model performance evaluation with the
performance metrics (Section 2.4.1).

Before the evaluation, a threshold set to 0.01 was applied to the δMCI of the CNN on
OLCI images in order to optimally discard δMCI not linked to Sargassum aggregations.

To compare Sargassum aggregations obtained using CNN and ID approaches, the
aggregations were extracted with a polygon function from Matlab (bwlabel function).
Sargassum aggregation features such as their area, major axis size (i.e., length), minor axis
size (i.e., width) and major/minor axis ratio (i.e., length/width ratio) were then measured.

To study the accuracy of the aggregations extracted by the CNN, the main aggregations
detected by the ID method were compared. The main ID-detected aggregations were
selected to: (1) have a length/width ratio higher than three [49]; and (2) to be in the 90th
percentile of the length distribution. Thus, these main aggregations were larger than 3000 m
and 140 m length for OLCI and MSI, respectively. In addition, Sargassum aggregations near
coasts were discarded because of the FC high values in such areas due to the turbidity and
shallow water [7,24,65,66]. The distance was set to 15 km away from coasts for OLCI and
200 m for MSI images.

3. Results
3.1. Model Performances on the Test Dataset

The model performance metrics (precision, F1-score) were calculated. They were
both relatively high for MSI and OLCI. Sargassum pixels were accurately detected, and
there were few false positive detections. Consequently, the F1-score is significant for the
two proposed CNNs (Table 4), with an F1-score higher for MSI (88% of Sargassum pixels
accurately detected versus 76% for OLCI). The lower F1-score of OLCI can be explained by
a lower precision (79% versus 94% for MSI). OLCI has sparser aggregations than the ground
truth. As a result, it detects more Sargassum pixels and has a lower precision than MSI.

Table 4. Recall, precision and F1-score of each method (indexes and Neural Networks) for Sentinel-
2/MSI and Sentinel-3/OLCI. For Neural Network these metrics are calculated from the test data set
(from the learning set of Tables S1 and S2).

Sentinel-2/MSI Sentinel-3/OLCI

Recall Precision F1-Score Recall Precision F1-Score

NDVI 0.835 0.085 0.154 0.910 0.105 0.188
FAI(MSI)/MCI(OLCI) 0.587 0.120 0.200 0.619 0.167 0.320

ErisNet 0.958 0.179 0.302 0.896 0.314 0.465
UNet 0.618 0.818 0.704 0.961 0.452 0.615

SegNet 0.599 0.840 0.699 0.931 0.493 0.645
Our network 0.819 0.942 0.876 0.735 0.785 0.760
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3.2. Comparison with the ID Method

The performance metrics were also calculated for the three indexes (NDVI and AFAI
for MSI or MCI for OLCI; Table 4). The indexes are very sensitive to land contamination,
which can bias their performance. The land was therefore masked out before computing
the indexes. The recall was better than with the CNN, especially for the NDVI. This is not
surprising because these indexes were used to create the ground truth. However, their
precision was low, below 17%, leading to a low F1-score (lower than CNNs) for all of them.
Indeed, regarding the ID method, many false detections occurred around clouds, and many
isolated detections seemed not to be Sargassum aggregations.

3.3. Comparison with Existing Networks

For comparison purposes, the other networks (ErisNet, UNet, SegNet) were trained in
the same conditions as the proposed CNN models. Note that the precision and the recall
were computed using a zero threshold, and all non-zero outputs were considered positive.

Compared to other CNN models, ErisNet network had the lowest F1-score (0.30).
Sargassum pixels were well detected (recall around 90% for OLCI and MSI). However, it
had a substantial number of false positive detections (a precision of 18% and 31% for MSI
and OLCI, respectively, (Table 4)) around cloud edges and in the open ocean; the network
principle can explain this. ErisNet is not a segmentation network like the other, in the sense
that it processes pixels independently as 1D inputs and learns one background pixel for one
Sargassum pixel. It does not leverage information in all background pixels since Sargassum
pixels represent just a tiny portion of all pixels. On the contrary, segmentation networks
(UNet, SegNet, and ours) consider the neighboring pixels.

Among encoder–decoder networks, our proposed network had the highest F1-score
with 0.88 versus ~0.70 for UNet and SegNet on MSI images, and 0.76 versus ~0.62 for
OLCI images (Table 4). On MSI images, our proposed network had fewer false positive
and false negative detections than SegNet and UNet, with a recall of 0.82 versus ~0.60,
and a precision of 0.94 versus ~0.83. Regarding OLCI images, SegNet and UNet were
more efficient at detecting Sargassum pixels (recall around ~0.94 for both SegNet and UNet,
versus 0.74 for our proposed CNN). However, the proposed approach had significantly
fewer false positive detections (precision of 0.79 versus ~0.47 for SegNet and UNet), which
resulted in a higher F1-score. Indeed, the multiple levels of reduction in UNet and SegNet
makes the detection of filiform objects such as Sargassum aggregations difficult.

3.4. Results with the Focus Image Dataset

The performance metrics were also computed for images of the focus dataset to
evaluate their validity. For Sentinel-3, the two images tested had a F1-score of 0.72 and
0.79 (Table 5), i.e., a score around the value of the corresponding tested CNN (0.76; Table 4).
For Sentinel-2, the F1-score was 0.90, 0.88, 0.87 and 0.81, respectively, for the PQV, PRU,
and PRV tiles of 29 January 2019 and the PRB tiles of 6 August 2022. For those tiles, the
F1-score was in the same range as the one found during the performance evaluation of the
corresponding model (0.88; Table 4). Only the PQU tile was out of range, with an F1-score
of 0.65. The results shown proved the consistency of our technique.

Table 5. Recall, Precision and F1-score from our models for some images of the focus dataset. Note
that the results from 29 January 2019 images (MSI) are biased due to the use of their presence in the
training set.

Satellite-Sensor Date Tile Recall Precision F1-Score

Sentinel-3-OLCI 29 January 2019 - 0.566 0.970 0.715
8 July 2017 - 0.851 0.739 0.791

Sentinel-2B-MSI
29 January 2019

PQU 0.495 0.951 0.651
PQV 0.833 0.980 0.900
PRU 0.786 0.999 0.880
PRV 0.832 0.904 0.867

6 August 2022 PRB 0.817 0.896 0.854
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4. Discussion

The focus dataset was used here to discuss the CNN images in relation to the ID
method. First, the main aggregations were analyzed to verify the reliability of CNN.
Thereafter, we compare all Sargassum pixels of the CNN with the ID method to explain
their differences and evaluate the suspected false positive and false negative detections.
Finally, we compared OLCI and MSI images from the CNN method.

4.1. The CNN Reliability on Sargassum Aggregations

The main Sargassum aggregations of the ID method were detected by our proposed
CNN on OLCI images (Figure 5a) and MSI images (Figure 6a). The CNN detected more
than 70% of the FC of main aggregations detected by the ID method (70% for OLCI and
80% for MSI). This corresponds, respectively, to 90% and 48% of Sargassum pixels belonging
to the main aggregations of OLCI and MSI images. Note that the main aggregations are
also composed of low FC. In that respect, the CNNs are robust for main aggregations.Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22 
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Figure 5. (a) Sargassum detections from OLCI with the CNN and ID methods: detected by both
methods (blue), detected by the CNN but not by the ID method (green), and detected by the ID
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ods (blue), detected by the CNN but not by the ID method (green) and detected by the ID method 
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Below this threshold the image is too contaminated by a large number of isolated pixels without 
spatial consistency (discussed in Section 4.2), which start to be visible below this threshold; and (b–
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Figure 6. (a) Sargassum detections from MSI with the CNN and ID methods: detected by both
methods (blue), detected by the CNN but not by the ID method (green) and detected by the ID
method but not the CNN (red). Only FCs above 1.16 × 10−2 are represented in (a), in order to clarify
the figure. Below this threshold the image is too contaminated by a large number of isolated pixels
without spatial consistency (discussed in Section 4.2), which start to be visible below this threshold;
and (b–e) sub-images from (a) with a color scale for all IDs. FC, cloud (dark gray) and land masks
(light gray) come from Descloitres et al. [22]. MSI image, PRV tile from 29 January 2019.
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In addition to the main aggregations, the whole FC distribution for all Sargassum
pixels was similar for the ID and the CNN methods from Sentinel-3 images (ranging
from 7.8 × 10−6 for low FC to 0.7 for high FC; Figure 7a). A slight and rather constant
discrepancy (around 1 to 0.5% of pixels) can be observed.
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Regarding MSI, the proportion of common detection depends on the FC (Figure 7b),
35% of the FC detected by the ID method was also detected by CNN. Indeed, only few
IDs were detected by the CNN with low FC (Figure 8). Less than 10% of pixels by the
ID method were detected as Sargassum pixels by the CNN under a Sargassum coverage of
0.006 (2.4 m2/pixel). However, this proportion increased with the FC. This detection ability
follows a Gompertz curve represented by Equation (9) and shown in Figure 8. About 90%
of FC pixels above 0.026 (10.4 m2/pixel) were detected. This curve allows the expected
accuracy of Sargassum detections to be predicted using the CNN method as a function
of FC.

Y = c + (d − c) × exp(− exp(b × (FC − e))) (9)

where b = −170, c = 4.6, d = 97 and e = 1.25 × 10−2.
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points distribution and predicts the CNN detections accuracy. The red plain line represents the FC
threshold from at least the CNN detects 90% of the IDs, and the red dotted line is the FC threshold
used in Figure 6a.

Nonetheless, a large amount of low FC detections (with an FC under 0.006) with the
ID method can either be associated with “true” or “false” detections [21,48] and it may be
difficult to estimate the “true” Sargassum detection missed by the CNN. Going forward, the
CNN can be improved on low index pixels to increase its performance on false positive
and true positive pixels of this particular class.

4.2. Less False Detections Which Improve Sargassum Coverage Estimation

In the comparison between the two methods, some pixels from the ID method were
not detected by the CNN. On MSI images, we only focused on Sargassum pixels associated
with a FC above 0.026 (see Section 4.1). As presented before, those Sargassum pixels seemed
to be accurately recognized by the CNN, with more than 90% detections common to the
CNN and ID. However, for a few FC classes in that range, the CNN method seemed to
underperform compared to the ID. (Figure 8). We focused on these ID extra detections for
the MSI, whereas we analyzed all extra detections from the OLCI. Regarding OLCI, on
the two OLCI images analyzed, (respectively, for 8 July 2017 and 9 May 2020) about 35%
(respectively, 23% and 46%) of the total pixels of the ID method, which correspond to 50%
(respectively, 45% and 55%) of the total FC were not detected by the CNN.

As we can easily identify through visual inspection, a large part of those non-detections
in OLCI and MSI images should be attributed to false detections from ID methods, which
the CNN discards. For instance, haloed false detections around land masses are present on
MODIS images using the ID method (Figure 9), and to a lesser extent, on OLCI (Figure 5c)
and MSI images (Figure 6c). The ID method also yields very small unrealistic isolated
detections, unexpected aggregations in cloudy areas (Figures 5d–g and 6c,e), or artifact
patterns linked to the index (satellite swath edges, radiometric noises, isolated detections on
satellite image edges) (Figures 5b and 6d). In addition, on OLCI images, the high detection
rate for the FC classes closest to one by the ID method (Figure 7a) was poorly recognized
by the CNN (only 33% of the class pixels). These extra ID pixels are associated with
turbid water that the ID method used here as an undiscarded reference [59]. All the false
detection origins presented here are also confirmed by different authors [7,23,24], namely
the extra-detection rate in OLCI images is close to the false detection rate observed by
Podlejski et al. [24] using the ID method on MODIS images. Such estimations confirm that a
large part of the extra-detections is linked to false detection and leads to an overestimation
of the coverage of Sargassum (FC) by 50%. On MSI images, extra ID detections above
a FC of 0.026 are mainly, as for OLCI, false detections obtained by the ID method and
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discarded by the CNN. Hence, ID methods for the 0.026 FC threshold seem to induce
an overestimation of 14% of the FC for that range. Furthermore, the overestimation can
increase by considering the false detections from lower FC pixels (below 0.026).
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Therefore, our proposed CNNs discarded false positive detections through an under-
standing of the spatial context and features (e.g., shape) of Sargassum aggregations [24,36,42],
leading to a more accurate estimation to the Sargassum coverage than the ID method.

4.3. Better Estimation of the Aggregation Shape

The CNN generated Sargassum pixels not detected by the ID method, which constituted
85% and 56% of Sargassum pixels of the CNN dataset for OLCI and MSI, respectively.
These extra detections were mainly located in the continuation or along the edges of
Sargassum aggregations, thus forming bigger aggregations than the ID method. In most
cases, these bigger aggregations also included several smaller ID-detected aggregations
(Figures 5b–d,f and 6b). The last part of CNN extra detections represented Sargassum
aggregations not found by the ID method (Figures 5c,d and 6b). The coverage of all CNN
extra detections on OLCI were confirmed by the ones found by the ID method on MODIS
(Figure 9).

Regarding OLCI images, the CNN method detected four times fewer aggregations
than the ID method (around 3000 for the CNN against 11,000 for the ID method). Indeed, the
CNN identified larger and longer aggregations that were erroneously detected as several
aggregations (Figure 5b–d,f). For instance, on July 8, 2017 (Figure 5a), CNN Sargassum
aggregations measured, on average 9 km length, versus 2 km for the ID method and
covered 50 km2 (CNN) versus 2 km2 (ID). Furthermore, in the case of a blocked signal, such
as tiny clouds, the CNN was able to reconnect aggregations with each other and reconstruct

59



Remote Sens. 2023, 15, 1104

the whole aggregations (Figure 5d,e; lower part). However, this only worked with small
clouds (Figure 5d,e; upper part).

Considering MSI images, similarly to OLCI, the CNN detected fewer aggregations
than the ID method: ~60,000 versus ~200,000. The CNN aggregations were slightly bigger
than the ID-detected aggregations, 5600 m2 and 3600 m2, respectively.

As a result, using our proposed CNNs, the aggregations’ shape was more realistic and
less discontinuous; more like those observed from satellites of better resolution [49] or from
in situ observations [5].

4.4. Complementarity of MSI and OLCI Images

Sargassum features retrieved by the CNN method using MSI and OLCI differed. The
highest-resolution sensor (MSI) had more detailed Sargassum aggregations with a shape
clearly defined, close to in situ observations [5]. Moreover, it detected Sargassum aggrega-
tions near the coasts and small aggregations not present in the OLCI images (Figure 10c,d).
For instance, in Figure 10a,b, within 1.5 km from the coasts of Barbados Island, around 210
MSI Sargassum pixels on the OLCI grid were detected (3200 MSI Sargassum pixels), whereas
only 80 Sargassum pixels are detected using OLCI.
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Figure 10. (a) Sargassum detections from CNN with OLCI; (b) proportion of MSI Sargassum pixels
inside 1 OLCI pixel; and (c,d) Superposition of Sargassum detections from CNN with MSI (red) and
with OLCI (color scale); (c,d) sub-images from (a,b). MSI image, PRV tile and OLCI image from
29 January 2019 at 14:37 and 13:38 respectively.

On the other hand, overall, OLCI has a higher percentage of Sargassum pixels than MSI.
For instance, in Figure 8, 38% of OLCI pixels are Sargassum versus 27% for MSI extrapolated
on OLCI pixels (corresponding to 1.89% MSI Sargassum pixels). Hence, on average, the
CNN detected larger aggregations using OLCI than using MSI (see Section 4.3). Moreover,
most MSI detections coincided with higher Sargassum signals from the OLCI (Figure S1).
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When visually comparing the Sargassum aggregations detected from OLCI images
with the CNN and MODIS images with the ID method (Figure 9), we retrieved overall the
same Sargassum aggregations, with a slight shift due to the difference of 1 h between the
two sensor acquisition times. The CNN conserved the same proportion of Sargassum pixels
as MODIS, for instance in Figure 9, 15.7% for the CNN method versus 15.3% for the ID
method are Sargassum pixels.

OLCI and MSI sensors are complementary. The high resolution MSI sensor detects
smaller Sargassum aggregations, aggregations nearer to the coasts, and morphology of
aggregations with better accuracy. On the other hand, OLCI provides daily data and detects
pixels with lower FC.

5. Conclusions

The increase in the number of methods and the improvement of the quality of Sargas-
sum detection by satellite is crucial for the prediction, and therefore, the management of the
future standing of the algae along the coasts. The coupling between satellite detections,
ground truth, and modeling remains the best way to understand the dynamics of Sargassum
along the Great Sargassum Atlantic Belt.

In this study, we proposed a new encoder–decoder to detect floating pelagic Sargassum.
The proposed CNNs were trained using two types of satellite images (OLCI, MSI) with dif-
ferent resolutions. This new model appeared to be more efficient than existing CNNs, such
as ErisNet, UNet and SegNet, for Sargassum detection, with fewer false positive detections
and more accurate Sargassum detections. Indeed, the consideration of neighboring pixels
avoided some of the false detections made by ErisNet, and fewer reductions improved the
performance of UNet.

Our proposed CNNs detected the same large Sargassum aggregations detected by the
ID method, but with a more accurate estimation of the Sargassum coverage. Indeed, with
the use of all the spectral bands in the images and the Sargassum spatial context, the CNN
more efficiently discarded false positive detections as it detected more realistic Sargassum
aggregations. The Sargassum fractional coverage corresponding to the discarded false
positive detections was estimated to be 50% for OLCI, and 14% of high FC for MSI.

Furthermore, the CNNs need fewer supplementary post- and pre-treatments than the
ID method, and once the model is trained, the use of indexes is not required anymore.

Finally, the study also considered satellite scale characteristics. With MSI, our proposed
CNN provided more detailed and distinct aggregations than with OLCI, and was able to
detect Sargassum aggregations in coastal water with higher confidence thanks to the higher
resolution of MSI. The combination of a regional-scale sensor (MSI) and a large-scale sensor
(OLCI) may be relevant for the Antilles area, which contains a mix of islands and open sea.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15041104/s1, Table S1: Sentinel-2 MSI images used for the
CNN training between 2018 and 2022; Table S2: Sentinel-3 OLCI images of the Lesser Antilles used
for the CNN training between 2017 and 2022; Table S3: Detail of our proposed network architecture
for MSI images; Table S4: Detail of our proposed network architecture for OLCI images; Figure S1:
Distribution of δMCI computed by the CNN.
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Abstract: The characterization of suspended sediment dynamics in the coastal ocean provides key
information for both scientific studies and operational challenges regarding, among others, turbid-
ity, water transparency and the development of micro-organisms using photosynthesis, which is
critical to primary production. Due to the complex interplay between natural and anthropogenic
forcings, the understanding and monitoring of the dynamics of suspended sediments remain highly
challenging. Numerical models still lack the capabilities to account for the variability depicted by
in situ and satellite-derived datasets. Through the ever increasing availability of both in situ and
satellite-derived observation data, data-driven schemes have naturally become relevant approaches
to complement model-driven ones. Our previous work has stressed this potential within an observing
system simulation experiment. Here, we further explore their application to the interpolation of sea
surface sediment concentration fields from real gappy satellite-derived observation datasets. We
demonstrate that end-to-end deep learning schemes—namely 4DVarNet, which relies on variational
data assimilation formulation—apply to the considered real dataset where the training phase cannot
rely on gap-free references but only on the available gappy data. 4DVarNet significantly outperforms
other data-driven schemes such as optimal interpolation and DINEOF with a relative gain greater
than 20% in terms of RMSLE and improves the high spatial resolution of patterns in the reconstruction
process. Interestingly, 4DVarNet also shows a better agreement between the interpolation perfor-
mance assessed for an OSSE and for real data. This result emphasizes the relevance of OSSE settings
for future development calibration phases before the applications to real datasets.

Keywords: interpolation; data-driven models; neural networks; variational data assimilation; missing
data; suspended particulate matter; observing system experiment; Bay of Biscay

1. Introduction

Marine sediment fluxes result from a combination of natural and anthropogenic forcing
factors [1,2]. The main source of sediment load comes from land, and the resuspension
of sediments occurs under the effect of waves, tides and the oceanic general circulation,
but also from fish trawling and maritime development, such as harbor sediment dredging
and dumping, aggregate extraction, submarine cable installation, offshore wind farm
exploitation, oil and gas activities, etc. [3]. Besides these latter anthropogenic stresses,
additional ones are expected in the foreseeable future through climate change, involving
sea-level and waves’ rise, modifying the remobilization and transport in the coastal zone
and the sediment inputs from the continent by the modification in the drainage basins
hydraulic regime due to modified rainfall [4].

Tracking suspended particles in shelf seas is of interest for coastal management and
marine ecosystem monitoring. Yet, the assessment of sediment fluxes, especially near the
bottom of the ocean, is a key issue in the investigation of coastal morphological evolution,
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habitat changes and pollutant dispersion and behavior [5–7]. As the turbidity induced by
fine sediment suspensions, especially near the surface of the ocean, impacts the primary
production by narrowing the thickness of the euphotic zone [8], the quantification of the
suspended sediment concentrations and fluxes, at the scale of the continental shelf, is also
a critical aspect to fulfill the boundary conditions of their fine mesh-grid coastal hydro-
dynamic models [9] used for impact studies. However the quantification of suspended
sediment fluxes is generally a difficult task due to the complexity of the hydrodynamic
and morpho-dynamic processes in play. In absolute terms, assessing the overall sediment
dynamics requires understanding of transport processes of mineral particles in the water
column as well as their behavior in the seabed, with resuspension capacities and consolida-
tion within the sediment, oftentimes under the influence of biota, impacting flocculation
processes in the water column and the biochemical behavior in the sediment [10].

In this context, deterministic (physics-based) numerical models are usually computa-
tionally intensive and inaccurate when assessing sediment fluxes from their continental
source to the shelf edge [11,12]. Data-driven methods have emerged as appealing ap-
proaches to benefit the available datasets coming from observations and model simula-
tions [13–16]. Recent advances especially bridge data assimilation formulation and machine
learning paradigms [17,18]. These schemes are particularly relevant to addressing the irreg-
ular space–time sampling of satellite-derived sea surface dynamics. Following our previous
study within an OSSE (Observing System Simulation Experiment) setting [19], we aim at
evaluating whether such learning-based schemes apply to real satellite-derived datasets.
Then, in this article, in the same way we designed real data experiments. They are typically
called OSE (Observing System Experiment). Our contribution is two-fold: (i) we develop
a novel application of 4DVarNet schemes [18] for satellite-derived sea surface suspended
sediment concentrations (SSSC); (ii) we propose an evaluation framework based on real
MODIS satellite image series to benchmark data-driven and learning-based schemes for the
reconstruction of satellite-derived SSSC fields. We further assess how OSSE benchmarking
experiments based on hydrosedimentary numerical simulations [20] inform performance
metrics for real datasets in the OSE experiments.

The remainder is organized as follows. Section 2 details the considered datasets.
Section 3 details the processes defined to interpolate observation data, which are the
Optimal Interpolation and the new 4DVarNet scheme. Section 4 shows the global and
specific performance for each method. And finally Section 5 compares OSSE and OSE
configurations and characterizes the limits of the 4DVarNet interpolator.

2. Data

The area of study, presented in the first subsection, is located in the Bay of Biscay.
The main geophysical parameter of study is the sea surface suspended sediment concentra-
tion (SSSC), which relates to the sediment dynamics. Two sets of SSSC data were used. We
present the datasets considered in this study, namely numerical simulation data (Section 2.2)
and real satellite-derived MODIS data (Section 2.3). These two sets of data have been used
to perform two different kind of experiments carried out in parallel: the simulated data
are dedicated to OSSE (Observing System Simulation Experiment) while the real data are
dedicated to OSE (Observing System Experiment). Later, Sections 4 and 5 will compare the
results obtained by these two different kinds of experiments.

2.1. Area of Interest

The study area encompasses a major part of the northern region of the Bay of Biscay
(BoB), located on the west coast of France (North-East Atlantic). In this area the bathymetry
extends from the shallow waters of the coast to the great depths of the abyssal plain.
The continental shelf is wide (Figure 1). The shelf break, dotted with canyons, crosses the
area like a transverse line from its north-west corner to the south-east one. The bottom
sedimentology of the BoB can be divided into three main seafloor patterns: a large muddy
area located in the middle of the shelf and referred to as the “Grande Vasière” (e.g., [21],

66



Remote Sens. 2022, 14, 4024

coastal areas characterized by rocky and sandy seabeds, and the shelf break with a pre-
dominance of rocks. The water column experiences a variety of physical forcings and
processes: tides, internal waves (especially from the shelf break), trapped waves, density
gradients and seasonal winds driven circulations (with winter storms notably), mixing
and stratification, eddies, fronts, filaments, upwelling/downwelling and discharges from
rivers [22]. Concerning the latter, the Gironde and Loire rivers are the main sources of water
and sediment suspended loads [23]. Their estuaries are located at the northern latitudes
of 45.6◦ and 47.2◦ respectively. The particle dynamics in the surface layers of this oceanic
area is driven by the hydrodynamics superimposed with biologic cycles, which notably are
well characterised by phytoplankton blooms appearing along the Armorican shelf break,
especially in spring.

Figure 1. (Left) Bathymetry of the Bay of Biscay. Black lines represent isobaths 40, 70, 100, and 130 m.
The thick white line (corresponding to the 180 m isobath) approximately delimits the shelf edge.
Stars are validation points in [21] (Middle) Mean spatial distribution of SSSC (in mg/L) from the
MARS-MUSTANG hydrosedimentary model. (Right) Mean spatial distribution of SSSC (in mg/L)
from MODIS observations.

2.2. MARS Model Simulations (for OSSE)

The simulations dataset comes from a hydro-sedimentary model called MARS-
MUSTANG [21]. MARS is the hydrodynamic module. MUSTANG is the sedimentary
module. MARS computes the general circulation according to meteo forcings from meteo
models ARPEGE and WaveWatchIII (atmospheric pressure, wind and waves), and den-
sity gradients bring by boundary conditions upon climatological dataset. MUSTANG
computes sediment resuspension and settling through erosion and deposition laws fol-
lowed with advection-dispersion and settling velocity equations, in connection with a
dynamic seabed sediment layer model, initiated with a nature of seabed chart based on
in situ measurements [21]. The main output of this couple model is values of suspended
sediment concentrations in the whole water column, from its surface to depths. Since
MARS-MUSTANG is designed to model the fate of terrigenous sediments only, the sus-
pended sediment obtained is of mineral (or inorganic) origin, and should appropriately
be termed Suspended Particulate Inorganic Matter (SPIM). In particular, SPIM does not
include detrital particles because MARS-MUSTANG is not a biological model of primary
production with a detrital compartment. Such information on the nature of particles mod-
elled here is necessary when MARS-MUSTANG results are compared with satellite images
that “mixes up” more components: especially SPIM and detritus (see following Section 2.3).

Only surface values of suspended sediment concentrations obtained with MARS-
MUSTANG will be exploited. In Section 4 (Results), these concentrations will be called
using the general term SSSC (surface suspended sediment concentration). For information,
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these SSSC values were already exploited by our team in order to obtain the present OSSE
results in a previous article [19]. This latter article also provides condensed information on
the validation of the MARS-MUSTANG simulations with the satellite data, which shows
consistent behavior. In particular, the corresponding configuration of the model takes into
account the discharges from the two main rivers (Gironde and Loire) and also the Vilaine
river (the estuary of which is located slightly north of the Loire one). Figure 1 Middle
displays the mean SSSC obtained with the model at the ocean surface and well shows that
higher SSSC occurs preferably in the vicinity of the coast. This is due to wave exposure
and tidal range in combination with the higher terrigenous sediment loads. Above the
abyssal plain, suspended sediments are nearly absent. The threshold of 0.1 mg/L is well
correlated with the isobath of 180 m corresponding to the shelf edge. The Figure exhibits
area where SSSC values are greater than 10 mg/L near estuaries of the main rivers (Gironde,
Loire, Vilaine).

The model is configured with a spatial mesh grid resolution of 2.5 km over a wider
area than our area of interest, extending from latitude 41◦N to 55◦N, and longitude 18◦W
to 9◦30′E [21]. Outputs from MARS-MUSTANG were then extracted in our area of interest,
for our present OSSE experiments, and lead to images having a size corresponding to a
spatial grid of 128 × 128. In terms of time data frame, the overall sea surface field values
extracted from the MARS simulations represent a time series of 1430 daily images spanning
from 1 January 2007 to 8 December 2010. The MARS-MUSTANG model and simulations
will simply be referred to as MARS hereafter for short.

2.3. MODIS Real Satellite Data (for OSE)

Our satellite-derived dataset is based on the MODIS sensor images acquired on board
both Aqua and Terra satellites. The MODIS sensor is part of the 1991 NASA-initiated Earth
observation system. It aims at monitoring, among others, the ocean dynamics. Here we
exploit the Level-2 geophysical variable called Non-Algal Particles (NAP) that is processed
using Francis Gohin et al. bio-optical algorithm [24] applied to the MODIS normalized
remote-sensing reflectances. All clouds and cloud shadows in raw satellite images were
flagged with a low detection threshold so as to remove all questionable signals. Also,
atmospheric over-corrections are taken into account using the reflectance at 412 nm [24].
Their algorithm was specifically calibrated for the Bay of Biscay using dedicated in situ
measurements from 20 field cruises that took place over the shelf, and which represent a
total amount of about 1000 in situ data points (see Table 1 and Figure 2 of [24]). The NAP
concentration (in mg/L) is computed as the difference between the total suspended mat-
ter concentration (deduced from the remote-sensing radiances at 550 and 670 nm) and
the phytoplankton biomass (derived from their Chlorophyll-a specific algorithm). All
products (NAP and Chlorophyll-a) were validated according to additional in situ mea-
surements [25,26]. In particular products accuracy have been extensively validated against
coastal in situ measurements from 15 stations located along the French Atlantic coast and
3 stations along the Mediterranean coast, all stations recording the turbidity every 15 days
between 1 January 2003 and 31 December 2009. The results show a confidence of 95%
(see Figure 13 of [27] in French language) between yearly mean and percentile 90 of the
turbidity (in NTU) recorded at all stations and the total suspended matter measured by
the MODIS sensor (converted in NTU according to [28]). Part of those results can also be
found in English language in [29], including VIIRS (Visible Infrared Imaging Radiometer
Suite) and OLCI (Ocean Land color Instrument) satellite sensors, along with MODIS.

For a fine comparison between satellite images and outputs from the MARS model,
one should know that the NAP particles observed by the satellite comprise not only mineral
particles (labeled as SPIM, see the previous Section 2.2) but also detrital particles, yielding
to (e.g., [30]):

NAP = SPIM + det, (1)

where det represents the amount of detrital particles. For instance, Figure 1 Right displays
the mean SSSC obtained with the satellite (based on the NAP algorithm) at the ocean
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surface. In particular, it shows that, contrary to the MARS model, there is a weak but
significant SSSC mean signal (of the order of 1 mg/L) above the abyssal plain. This signal
obviously corresponds to the detrital particles linked to the open sea primary production.
Nonetheless, for simplification purposes, in Section 4 (Results) the suspended matter will
be called using the general term SSSC (Surface Suspended Sediment Concentration).

In the OSE experiments, our dataset is comprised of daily MODIS images spanning
from 1 January 2003 to 31 December 2009. During that period, the mean cloud cover
amounted to about 75% of the whole oceanic surface of the imaged area. Each MODIS
image has a 1 km spatial resolution, which leads to a 256 × 256 grid for our case-study
region. The area extends from latitude 45◦17′N to 47◦50′N, and longitude 4◦55′W to 1◦5′W.
In terms of validation, as mentioned in Section 2.1, this area covers the main part of the Bay
of Biscay (BoB) which experiences various physical and biological forcings. This bay is a
well-known fine testing ground in terms of spatial and temporal variability of the turbidity
(e.g., [31]).

3. Methods

This section details the proposed space–time interpolation of satellite-derived SSSC
fields based on 4DVarNet scheme [32] in Section 3.1, along with the considered evaluation
framework, in Section 3.2, performance metrics in Section 3.3 and benchmarked approaches
in Section 3.4.

3.1. 4DVarNet Scheme

Deep learning schemes have rapidly become the state-of-the-art approaches for a
wide range of pattern recognition and image processing applications, including in geo-
science [33]. This also includes neural network approaches dedicated to interpolation
issues. Recent studies [17,19,32,34] have stressed the relevance of end-to-end deep learn-
ing architectures to address space–time interpolation issues with large missing data rates.
Especially, 4DVarNet schemes, which rely on variational data assimilation formulation,
have been shown to significantly outperform zero-filling learning-based strategies for
interpolation problems [35]. Applications to sea surface height mapping from satellite
altimetry [32,34] further support their relevance over other data-driven approaches to better
retrieve fine-scale patterns. This study presents an application of 4DVarNet schemes to SSC
interpolation. We provide below a short introduction to 4DVarNet schemes. We refer the
reader to [18,35] for a detailed presentation.

4DVarNet framework relies on the formulation of the interpolation problem as a
variational minimization issue:

x̂ = arg min
x
‖y− x‖2

Ω + λ‖x−Φ(x)‖2. (2)

Ω refers to the space–time subdomain where observation y are sampled. Let us point
out that we consider a matrix formulation where x and y refer to the space–time process,
represented by 2D + t tensors. Operator Φ states the space–time prior to state x. Φ may
refer to the flow operator when considering a dynamical ODE or PDE prior. Φ can also
derive from a covariance-based prior as in the optimal interpolation framework. Here,
following [32], we consider a state-of-the-art neural architecture, namely a UNet [36], such
that Φ can be regarded as a projection operator. λ states the relative importance of the
observation term of the prior in the minimization problem.

Given minimization problem (2), the 4DVarNet framework implements a trainable iter-
ative gradient-based solver with a predefined number of iterations. As sketched by Figure 2,
it delivers an end-to-end architecture which exploits as inputs gappy observation data and
as outputs a gap-free state. The trainable solver combines the evaluation of the gradient
of variational cost (2) using automatic differentiation tools embedded in deep learning
framework with a recurrent network, namely a convolutional LSTM. A more detailed
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description of 4DVarNet schemes including experiments with different parameterizations
of operator Φ and of the trainable solver can be found in [32].

Figure 2. Workflow of the proposed framework for the reconstruction NAP field with the 4DVarNet.
A given observation dataset catalogue is provide for the learning phase of the model. The interpolator
Φ is trained and optimised by the solver. Then the model is able to reconstruct the irregularly sampled
time series input into the reconstructed data.

Regarding learning issues, we consider here training losses evaluated on gappy data, as
no gap-free reference data are available. For the trainable solver, we consider a convolution
LSTM-based solver with a 35-dimensional hidden state.

3.2. Training and Evaluation Framework

For training and evaluation purposes, the whole set of data is divided in two parts.
All the available data except those of the year 2011 are dedicated to the training while the
year 2011 is reserved for the evaluation.

In OSSEs, the “nature run” (or model simulation) provides the reference gap-free field
used as ground truth to asses the performance of the interpolation. This helps in evaluating
the performance of the associated interpolation methods. For OSEs with real satellite data,
no such gap-free reference field is available. We exploit a random sampling strategy as
follows. For the considered dataset, we randomly sample a binary mask applied to the
real satellite observation patterns. As such, we withhold some observed data from the
input data provided to the interpolation methods and use them as reference data to assess
reconstruction performance metrics. We may emphasize that this dataset is not an actual
groundtruthed dataset as real satellite data are noisy. Available in situ datasets are too
scarce to provide a relevant alternative. In the reported experiments, we subsample 50% of
available satellite-derived observations for dates at which at least 500 observation points
are available (i.e., 3% of the total pixels located above the ocean). We exploit two random
strategies: the “pixel-wise” strategy randomly samples 50% of the observed pixels; the
“patch-wise” strategy randomly samples H ×W patches, width W and height H being
randomly sampled according to a uniform distribution between 0 and 100. We report in
(Figure 3) examples of randomly sampled patterns. Contrary to the “pixel-wise” strategy,
the patch-wise one better matches the expected independence between the training and
test datasets.
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Figure 3. Different sampling strategy for validation by using missing observations: (a) True observa-
tion from MODIS L2 image dataset (b) Random points sampling strategy for observation sampling
(c) Patch sampling strategy for observation sampling.

3.3. Performance Metrics

In terms of performance metrics, we exploit the explained variance (R-score) and
the global root mean square error (RMSE) applied to the log10 of concentration values.
The latter leads in fact to the RMSLE (root mean square log error) of concentrations, which
can be expressed as follows:

RMSLE =

√
1
n

n

∑
i=1

(
log10(CPred

i )− log10(CObs
i )

)2
, (3)

where CPred
i are predicted values of SSSC concentrations and CObs

i are the observed values,
i stands for the index of evaluated data, n refers to the amount of available observations
points. RMSLE and R-Score in all the following Tables are evaluated with a total amount of
points of the order of 106. We also evaluate these metrics for the gradient of the log10 of
SSSC fields. This validation of results with the standard RMSE on log10 values (i.e., RMSLE)
has been chosen for two main reasons:

• First, the statistical distribution of particle concentrations typically follows a lognormal
probability distribution [37] so that log10 values follow a Gaussian distribution. Then,
providing bias is negligible (all biases in all experiments were found equal or inferior
to 0.01 in absolute values), the RMSE is comparable to a standard deviation and then
completely characterizes the statistical distribution;

• Second, the evaluation on log10 of concentrations emphasizes the validation of low
concentrations, which are important in the determination of water transparency, which
is a main goal in our studies.

3.4. Reference Methods for Comparison

For benchmarking purposes, we consider two state-of-the-art approaches, an optimal
interpolation [38,39] and DINEOF scheme [40]. The Optimal Interpolation (OI), also re-
ferred to as kriging, is a method widely applied in ocean remote sensing and geoscience.
Numerous operational satellite-derived products in earth science rely on OI. We refer
the reader to [41] for a detailed review. In our experiments, we implement an OI with
a Gaussian covariance model empirically tuned through cross-validation experiments.
DINEOF (Data Interpolating Empirical Orthogonal Functions) is an EOF-based technique
for the reconstruction of gap-free fields from irregularly-sampled observations. It has been
successfully applied to satellite-derived sea surface products [42], including sea surface
turbidity [19,43]. DINEOF iterates a projection–reconstruction step using the EOF basis,
while observed variables are kept unchanged after each iteration. Here, we select the first
56 EOF modes to account for 9̃7% of the Variance of the considered datasets and apply a
10-iteration DINEOF. We may point out that the proposed 4DVarNet framework can be
regarded as a generalization of DINEOF with a state-dependent covariance model and a
gradient-based solver instead of the fixed-point solver implemented by DINEOF [32].
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4. Results

We report below the synthesis of the considered numerical experiments. First, a global
analysis of all benchmarking experiments is reported in Section 4.1. From these results,
Section 4.2 focuses on the comparison between OSSE and OSE performance metrics and
Section 4.3 on the performance of our specifically proposed 4DVarNet method.

4.1. Global Performance

Tables 1 and 2 summarize the performance metrics evaluated with all configurations
and interpolation methods. The 4DvarNet method clearly outperformed the other methods
tested here for all scores and experiments. For instance, in OSE, when real satellite data are
used, 4DvarNet improves R-scores by about 30% w.r.t. OI and 23% w.r.t. DINEOF (slightly
depending on the chosen subsampling strategy). We effectively note that reported perfor-
mance metrics are consistent for the two random sampling strategies used to compute these
metrics for the real satellite-derived datasets. The slightly better performance observed
with the pixel-wise strategy relates to a lower independence between the input data and
the evaluation dataset. A greater stability between the metrics computed according to
these two strategies then indicates better generalization properties as exhibited for the
4DVarNet scheme. In OSSE, when simulated data are used, the improvement in R-score
with 4DVarNet appears much lower (about 6% w.r.t. OI and 5% w.r.t. DINEOF) but its final
R-score is much higher (nearly 97% for OSSE instead of nearly 90% for OSEs). Globally
speaking, it appears that R-scores related to OSSE are pretty different to those related to
OSEs. This simply reflects the different content in terms of data and data errors between
simulated and real satellite images (see the discussion about this subject in Section 5.1.
Finally, it is interesting to note the really poor performance of the standard OI method when
applied to real data. Indeed, we can see that the correlation between interpolated and real
satellite values only amounts to about 60%. Concerning the RMSLE values, Table 2 clearly
shows consistent RMSLE values with regard to the R-scores. In particular, OI appears to
have low accuracy when applied to real data (around 0.32) and 4DVarNet proved to have
the highest accuracy with either simulated or real data (around 0.16 with real data and 0.10
with simulated ones).

Table 1. R-score performance in % for the considered methods and validation configurations. OSE
refers to the real data (MODIS) interpolating process. The sub-sampling strategy is described in
Section 3.2. OSSE dataset refers to the previous work [19] based on the MARS results.

Experiment Dataset Sub-Sampling OI DINEOF 4DVarNet

OSE MODIS Random 60.5 76.4 89.5
OSE MODIS Patch 56.5 73.8 87.3

OSSE MARS - 90.4 91.3 96.6

Table 2. RMSLE performance in log10[mg/L] for the considered methods and validation configu-
rations. OSE refers to the real data (MODIS) interpolating process. The sub-sampling strategy is
described in Section 3.2. OSSE dataset refers to the previous work [19] based on the MARS results.

Experiment Dataset Sub-Sampling OI DINEOF 4DVarNet

OSE MODIS Random 0.304 0.237 0.156
OSE MODIS Patch 0.346 0.253 0.168

OSSE MARS - 0.176 0.167 0.104

4.2. OSSE versus OSE Comparison

Table 3 allows a further analysis on how performance metrics for simulation datasets
(OSSE) inform the interpolation performance for real satellite-derived datasets (OSE).
The minus signs in front of all values show that, when applied to real satellite data,
the accuracy of all tested interpolation methods worsens. Of all interpolation methods,
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OI loses accuracy the most. This could be due to a misrepresentation of the satellite data
noise using this method (see Section 5.1). Concerning the other methods, we point out
that OSEs involve an additional complexity at two levels for the training procedure: the
reference data are noisy, the reference dataset is gappy. This explains why we also report a
lower performance for these methods for OSE settings compared with the OSSE baseline.
However, both DINEOF and 4DVarNet lose less accuracy (around 50%) than OI (between
73% and 97%). Thus, OSSE performance metrics provide a sensible assessment of the
performance for the real satellite-derived dataset. This is less true for OI, the performance
of which is degraded by either 73% or 97% depending on the applied subsampling strategy
(Random or Patch). The latter likely relates to the spatial correlation length of the considered
covariance model, such that the interpolation capability degrades at a distance greater than
the correlation length.

Table 3. Evolution of accuracy, from OSSE to OSE, in the form of a performance rate according to the
formula 1 − RMSLE(OSE)/RMSLE(OSSE) expressed in percentage, using the RMSLE reported in
Table 2.

Sub-Sampling OI DINEOF 4DVarNet

Random −73% −42% −50%
Patch −97% −51% −62%

4.3. 4DVarNet Performance

We further analyze the clear improvement reported for 4DVarNet. Table 4 reports the
relative performance gains with regard to OI and DINEOF. When dealing with real data, it
shows a great improvement of around 50% over OI and a little less, 34%, over DINEOF.
These two values quantifying the improvement also appear to be almost insensitive to
the subsampling strategy used (Random or Patch). The OSSE is able to quantify a similar
amount of improvement over the two methods (OI and DINEOF) with a value of around
40%, but does not see much difference between OI and DINEOF (41% and 38% respectively).
This discrepancy between OSSE and OSEs could be due to a different representation of the
satellite data noise using OI and DINEOF methods (see Section 5.1).

Table 4. Evolution of accuracy, from OI or DINEOF to 4DVarNet, in the form of a performance rate
according to the formula 1 − RMSLE(4DVarNet)/RMSLE(·) expressed in percentage, when using the
RMSLE reported in Table 2.

Experiment Dataset Sub-Sampling OI DINEOF

OSE MODIS Random 49% 34%
OSE MODIS Patch 51% 34%

OSSE MARS - 41% 38%

The evaluation of the interpolation metrics for the gradient of the SSSC fields in Table 5
supports the hypothesis that the improvement obtained with 4DVarNet relates to a better
reconstruction of fine-scale patterns. Previous work with similar 4DVar based architecture
shows a significant improvement of a high resolution spatial pattern [44]. Surprisingly,
the metrics are much better for the OSE. We interpret this aspect as a consequence of
the lower spatial variability observed in numerical simulations compared with satellite-
derived data, as supported by Figure 4. The mean gradient norm of 4DVarNet nicely
recovers the main front structures of the true field compared with the other approaches.
More specifically, these gradient fields depict a clearly visible contour offshore. This
contour broadly follows the 50 m isobath, which borders the “Grande Vasière”. The OI
clearly overestimates the spatial gradient and does not succeed in capturing the finer
scale. Though not as bad, DINEOF (based on EOF decomposition) may be limited by the
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explained variance rate at 97% of the selected EOF components. Besides, for real satellite-
derived data, the mean gradient field involves local artifacts. By contrast, 4DVarNet
retrieves mean gradient fields which are close to the reference in coastal areas without an
overestimation pattern. We can also note a spatial smoothing, which may partially relate to
the observation noise of real satellite-derived measurements.

Table 5. Gradient norm reconstruction performance R-score evaluation for different methods and
validation configurations in %. OSSE dataset refers to the previous work ([19]) based on the
MARS/MUSTANG results in an OSSE application. MODIS dataset refers to the real data inter-
polating process, with learning based only on observations. The sub-sampling strategy is described
in Section 3.2.

Experiment Dataset Sub-Sampling OI DINEOF 4DVarNet

OSE MODIS Random 58.3 72.5 88.9
OSE MODIS Patch 56.6 67.4 91.2

OSSE MARS - 16.0 40.6 63.7

Figure 4. Reconstruction norm of SSSC gradient fields for the OSE (MODIS) and OSSE (MARS)
application for the whole validation period: (a) OSE configuration (b) OSSE configuration.

5. Discussion

This study presents and evaluates a novel learning-based interpolation approach
referred to as 4DVarNet for the space–time interpolation of satellite-derived sea surface
suspended sediment concentrations. Numerical experiments on real and synthetic dataset
support the relevance of this scheme compared with state-of-the-art approaches. We
further discuss below our main contribution, namely the extent to which OSSEs can inform
performance metrics for real datasets (Section 5.1), the relevance of neural network schemes
for operational applications (Section 5.2) and the ability to retrieve fine-scale patterns
(Section 5.3).

5.1. From OSSE to OSE

A first aim of this study was to compare the performance of interpolation methods
when applied to simulated data (through OSSE) and real satellite data (through OSE).
At first, the comparison shows that all the methods lost accuracy by a significant amount
(more than 40%) when applied to real data. The observation noise in real satellite data may
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be the driving factor for this pattern. Indeed, in our OSSE, simulated data involve a simple
(white) Gaussian noise evenly distributed throughout the whole dataset. By contrast, errors
in real satellite data are expected to be much more complex. OI and DINEOF methods
may be more impacted as they explicitly or implicitly hypothesize Gaussian noise models.
In this retrospect, numerous studies have stressed the ability of neural network approaches
to address denoising problems with non-Gaussian noise patterns [33,45].

Beyond the observation noise, other effects may support the difference in performance
between OSSE and OSE. For instance, due to the random subsampling strategy, OSSEs
involve a slightly lower missing data rate and the reference training data is noise-free. We
may also note that we consider a 16-year training time series for OSEs compared with a
4-year one for OSSEs such that the pixel-wise number of training data is the same between
OSSEs and OSEs. We may, however, expect a greater intrinsic variability over 16 years
which may in turn result in a more complex interpolation problem. We could account for
these different aspects in the design of OSSE under the hypothesis that we are provided
with longer numerical simulations.

Nevertheless, the numerical simulations used in the OSSEs cannot reveal all the
complexity of real satellite data. The hydrosedimentary model does not take into account
all the processes we observe in a satellite image. This is of course a major and typically
well known drawback of OSSE (e.g., [46]). Here, for instance, a typical discrepancy we can
see between the model and a satellite image relates to the biogenic detritus, which follows
the dynamics of the oceanic primary production, and which is obviously not modelled
by the MARS model (see Equation (1) and the discussion about the difference between
SPIM and NAP in Sections 2.2 and 2.3). Detrital particles can be well observed by satellite
remote sensing of ocean color, especially beyond the shelf break (i.e., above the abyssal
plain) where the MARS model always shows concentrations (off the shelf) close to zero.
Coccolith-derived turbidity is especially amongst the most intense signals detected by a
satellite in these areas [47]. Hence, in an OSE, interpolation methods have to address not
only the dynamics of purely mineral SPIM particles but also dynamical patterns of detrital
particles driven by the primary production.

Finally, we must not forget that the resulting errors in the OSE are biased in the sense
that the results are compared with already noisy satellite data, contrary to the OSSE where
results are compared with a “true ocean” (the modelled ocean) assumed to be a strict exact
solution. Therefore, OSE validation errors are significantly larger than those of the OSSE.
However, given these different aspects, the worsening of the interpolation performance of
4DVarNet from the OSSE to the OSE remains fairly limited. This supports the relevance of
OSSEs as an initial testbed for the development and evaluation of interpolation algorithms,
especially to rank new schemes with respect to previously benchmarked ones within a
fully-controlled environment.

5.2. Comparison of Interpolation Methods

Our numerical experiments clearly stress that state-of-the-art data-driven interpolation
methods can significantly improve the retrieval of operational gap-free satellite-derived
products, which are often based on OI schemes. Both 4DVarNet and DINEOF can account
for more complex covariance than the one used by the OI, including anisotropic ones (see
in particular [48], for they developed an anisotropic OI method for that case). We believe,
however, that a key issue of OI for our case study is its poorer ability to deal with the noise
patterns of real satellite-derived observations.

DINEOF performs much better than OI, particularly with real satellite data. This is
what our present article demonstrates with the results obtained with the OSE experiments
(using real data) compared with what was expected (similar performance between OI and
DINEOF) after the OSSE experiments (using simulated data). Furthermore, it has been well
demonstrated [17] that DINEOF is well suited for complex areas comprising at the same
time coastal and open sea domains. Given that DINEOF is quite simple to implement and
does not require strong expertise, this method should definitely be considered as a baseline
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scheme for routine operational ocean color products similar to those studied in this article.
For instance, at a higher spatial resolution, it has recently been applied by the HIGHROC
consortium to deliver Sentinel 2 ocean color L4 products corresponding to the CMEMS
product OCEANcolor_IBI_BGC_HR_L4_NRT_009_210 (https://doi.org/10.48670/moi-00
108, accessed on 12 July 2022) for the IBI area.

4DVarNet further stresses the greater potential of physics-informed learning schemes,
which combine some physics-aware representation (here, a variational data assimilation
formulation) with the computational efficiency of deep learning. Our results are in line
with recent studies dedicated to other satellite-derived products, such as ocean color [49]
and satellite altimetry [35]. Compared with [49], 4DVarNet involves an additional model-
ing flexibility through the learning of a trainable gradient-solver for the variational cost.
This also opens the floor to interpolation schemes using multi-source input data through
additional trainable observation operators [18]. As such, this work will likely serve as a
baseline for future work aiming at further improving the space–time reconstruction of
SSSC dynamics.

5.3. Retrieval of Fine-Scale Turbidity Patterns from Satellite Data

Given the irregular sampling of satellite-derived observations, the retrieval of fine-
scale patterns is a critical issue for fulfilling operational needs such as the identification
of specific areas where waters are highly transparent, which threatens Navy submarines
over possible airborne visual detection. Our experiments stress significant differences
in the ability of data-driven approaches to retrieve fine-scale patterns. By construction,
OI schemes with Gaussian covariance models cannot reconstruct scales smaller than the
a priori correlation distance. DINEOF schemes also relate to covariance-based models,
but result in more complex covariance models learnt from data. This may actually improve
the reconstruction of space–time dynamics. 4DVarNet schemes may be regarded as moving
a step further with non-linear quadratic priors through operator Φ in (2), rather than linear-
quadratic ones. We regard the combination of such a prior and of a trainable solver as the
key features which support the improvement reported for the proposed 4DVarNet schemes.

In our experiments, we exploit RMSE metrics computed for the norm of the gradient
of SSSC fields to assess the retrieval of the fine-scale patters. We may note that OSSE scores
in Table 5 are significantly lower than the OSE ones, which may be surprising. Numerical
simulations involve lower gradient values, whereas real satellite data depict much sharper
spatial gradients as illustrated in Figure 4. Given the spatial grid resolution of the MARS
model (2.5 km), we expect numerical simulations to resolve spatial scales from 20 km.
By contrast, the spatial resolution of MODIS satellite observations is close to 1 km. Besides,
as mentioned in Section 5.1, numerical simulations do not include all the processes in
play in real satellite observations such as the turbulent behavior in detrital NAP processes.
Overall, this results in lower mean gradient norm values for the OSSE, which in turn leads
to a lower R-score as this score is normalized by the mean gradient norm. Despite these
differences, OSSE and OSE metrics share the same ranking of the benchmarked methods
for gradient-related scores. Future developments of hydrosedimentary simulations may
improve the ability to reproduce the actual variability of SSSC fields.

Contrary to OI and DINEOF approaches, the proposed 4DVarNet scheme leads to
better gradient-based metrics when considering the patch-based random sampling strategy.
A similar behavior is observed when applying this method (4DVarNet) to sea surface
satellite heights and sea surface temperatures from satellites [44]. In our case, this likely
relates to a larger number of training examples with truly observed pixel-level gradients
as, by construction, the pixel-level random sampling increases the likelihood that two
neighboring pixels are not observed. This further highlights the ability of 4DVarNet
schemes to exploit fine-scale patterns in real observation datasets. It also suggests further
exploring these random sampling strategies in future work to make the most of available
gappy observation datasets.
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6. Conclusions

This study presented a novel end-to-end neural scheme for the space–time interpola-
tion of remote sensed sea surface suspended sediment fields, referred to as 4DVarNet. We
assessed its reconstruction performance for both real and simulation-based datasets. We
reported a clear improvement with respect to the state-of-the-art schemes, namely OI and
DINEOF, in terms of global interpolation error of the retrieval of SSSC gradients. To our
knowledge, this study is among the few which demonstrate the readiness of end-to-end
neural schemes for the processing of L4 gap-free satellite products.

Besides its integration in operational processing pipelines for satellite-derived prod-
ucts, future work could further exploit the variational formulation that 4DVarNet relies
on. Through new forcing terms in this variational formulation, it provides a well-posed
basis towards the exploitation of forcing variables, for instance associated with wave and
barotropic current processes, to further improve the reconstruction of SSSC fields. Similarly,
the proposed scheme naturally extends to short-term forecasting applications, which are
also of key interest. Overall, we expect this study to serve as a basis for the development of
physics-informed deep learning frameworks for ocean remote sensing.
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Abbreviations
The following abbreviations are used in this manuscript:

ARPEGE Action de Recherche Petite Echelle Grande Echelle
BoB Bay of Biscay
CMEMS Copernicus Marine Environment Monitoring Service
DINEOF Data INterpolating Empirical Orthogonal function
EOF Empirical Orthogonal function
HIGHROC HIGH spatial and temporal Resolution Ocean color products and services
IBI Iberian-Biscay-Ireland
LSTM Long Short Term Memory
MARS Model for Applications at Regional Scales
MODIS Moderate-Resolution Imaging Spectroradiometer
MUSTANG MUd and Sand TrAnsport modelliNG
NAP Non-Algal Particles
NN Neural Network
NTU Nephelometric Turbidity Unit
OI Optimal Interpolation
OLCI Ocean and Land color Instrument
OSE Observing System Experiment (real data)
OSSE Observing System Simulation Experiment (simulated data)
RMSE Root Mean Square Error
RMSLE Root Mean Square Logarithm Error
SPIM Suspended Particulate Inorganic Matter
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SSSC (sea) Surface Suspended Sediment Concentration
VIIRS Visible Infrared Imaging Radiometer Suite
4DVar Four-Dimensional Variational data assimilation (model-driven)
4DVarNet Four-Dimensional Variational (neural) Network data assimilation (data-driven)
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Abstract: Clouds play an important role in the Earth’s energy budget, and their behavior is one of the
largest uncertainties in future climate projections. Satellite observations should help in understanding
cloud responses, but decades and petabytes of multispectral cloud imagery have to date received only
limited use. This study describes a new analysis approach that reduces the dimensionality of satellite
cloud observations by grouping them via a novel automated, unsupervised cloud classification
technique based on a convolutional autoencoder, an artificial intelligence (AI) method good at
identifying patterns in spatial data. Our technique combines a rotation-invariant autoencoder and
hierarchical agglomerative clustering to generate cloud clusters that capture meaningful distinctions
among cloud textures, using only raw multispectral imagery as input. Cloud classes are therefore
defined based on spectral properties and spatial textures without reliance on location, time/season,
derived physical properties, or pre-designated class definitions. We use this approach to generate a
unique new cloud dataset, the AI-driven cloud classification atlas (AICCA), which clusters 22 years of
ocean images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua
and Terra instruments—198 million patches, each roughly 100 km × 100 km (128 × 128 pixels)—into
42 AI-generated cloud classes, a number determined via a newly-developed stability protocol that
we use to maximize richness of information while ensuring stable groupings of patches. AICCA
thereby translates 801 TB of satellite images into 54.2 GB of class labels and cloud top and optical
properties, a reduction by a factor of 15,000. The 42 AICCA classes produce meaningful spatio-
temporal and physical distinctions and capture a greater variety of cloud types than do the nine
International Satellite Cloud Climatology Project (ISCCP) categories—for example, multiple textures
in the stratocumulus decks along the West coasts of North and South America. We conclude that our
methodology has explanatory power, capturing regionally unique cloud classes and providing rich
but tractable information for global analysis. AICCA delivers the information from multi-spectral
images in a compact form, enables data-driven diagnosis of patterns of cloud organization, provides
insight into cloud evolution on timescales of hours to decades, and helps democratize climate research
by facilitating access to core data.

Keywords: cloud classification; MODIS; artificial intelligence; deep learning; machine learning

1. Introduction

Over the past several decades, advancements in satellite-borne remote sensing in-
struments have produced petabytes of global multispectral imagery that capture cloud
structure, size distributions, and radiative properties at a near-daily cadence. While under-
standing trends in cloud behavior is arguably the principal challenge in climate science,
these enormous datasets are underutilized because climate scientists cannot in practice
manually examine them to analyze spatial-temporal patterns. Instead, some kind of au-
tomated algorithm is needed to identify physically relevant cloud types. However, the
diversity of cloud morphologies and textures, and their multi-scale properties, makes
classifying them into meaningful groupings a difficult task.
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Existing classification schemes are necessarily simplistic. The most standard classifica-
tion, the ISCCP (International Satellite Cloud Climatology Project) schema, simply defines
a grid of nine global classes based on low, medium, or high values of cloud altitude (cloud
top pressure) and optical thickness [1–3]. Because this classification is typically applied
pixel by pixel, it cannot capture spatial structures and can produce an incoherent spatial
distribution of cloud types in cloud imagery. The World Meteorological Organization’s
International Cloud Atlas [4], a more complex cloud classification framework, defines 28
different classes (of which 10 are considered ‘basic types’) with a complex coding procedure
that depends on subjective judgments, such as whether a cloud has yet “become fibrous
or striated.” The schema is subjective and difficult to automate, and furthermore does not
capture the full diversity of important cloud types. For example, it does not distinguish
between open- and closed-cell stratocumulus clouds, placing them both in “stratocumulus,”
though the two have different circulation patterns, rain rates, and radiative effects [5].
Because the human eye serves as a sensitive tool for pattern classification, human observers
can in principle group clouds into a larger set of types based on texture and shape as well as
altitude and thickness. In practice, however, it has been difficult to devise a set of artificial
cloud categories that encompass all cloud observations and can be applied consistently by
human labelers.

These issues motivate the application of artificial intelligence (AI)-based algorithms for
cloud classification. In the last several years, a number of studies have sought to develop
AI-based cloud classification by using supervised learning [6–10]. In these approaches, ML
models are trained to classify cloud images based on a training set to which humans have
assigned labels. However, the difficulty of generating meaningful and consistent labels is a
constant problem, and supervised learning approaches tend to succeed best when used on
limited datasets containing classic examples of well-known textures. For example, Rasp
et al. [7] classified just four particular patterns of stratocumulus defined and manually
labeled by Stevens et al. [11]. Supervised methods cannot discover unknown cloud types
that may be relevant to climate change research.

To serve the needs of climate research free from assumptions that may limit novel
discoveries, the more appropriate choice is unsupervised learning, in which unknown pat-
terns in data are learned without requiring predefined labels. The first demonstrations of
unsupervised methods applied to cloud images were made in the 1990s [12,13]. Even with
the primitive neural networks then available, Tian et al. [13] showed that cloud images from
the GOES-8 satellite could be sorted automatically into ten clusters that reproduced the ten
‘basic’ WMO classes with 65–75% accuracy. In 2019, Denby [14] and Kurihana et al. [15]
leveraged advances in deep neural network (DNN) methods to prototype unsupervised
cloud classification algorithms that used convolutional neural networks (CNNs, DNNs with
convolutional layers) and produced cloud classes from the resulting compact representa-
tions via hierarchical agglomerative clustering (HAC) [16]. Both works used only 12 classes
and neither was rotation-invariant, but both successfully produced reasonable-seeming
classifications—for Denby [14], from near-infrared images from the GOES satellite in the
tropical Atlantic, and for Kurihana et al. [15], from global multispectral images from the
Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Aqua
and Terra satellites). Kurihana et al. [15] were the first to use an autoencoder [17], a class
of unsupervised DNNs widely used for dimensionality reduction, for cloud classification,
and Kurihana et al. [18] extended the work by adding a more complex loss function to the
autoencoder to produce rotation-invariant cloud clustering (RICC). Kurihana et al. [18]
also developed a formal evaluation protocol to ensure that the resulting cloud classes were
physically meaningful.

The work described here builds on these previous results to generate a standardized
science product: an AI-driven Cloud Classification Atlas (AICCA) of global-scale unsuper-
vised classification of MODIS satellite imagery into 42 cloud classes. We first describe and
apply the protocol that we have developed to determine this optimal number of clusters
when applying RICC to the MODIS dataset. (The first author calculated this number before
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being informed of its occurrence in an unrelated context [19]). We demonstrate that the
resulting classes are coherent geographically, temporally, and in altitude-optical depth
space. Finally, we describe a workflow that allows us to apply the RICC42 algorithm to the
full two decades of MODIS imagery to provide a publicly available dataset. The result is an
automated, unsupervised classification process that discovers classes based on both cloud
morphology and physical properties to yield unbiased cloud classes free from artificial
assumptions that capture the diversity of global cloud types. AICCA is intended to support
studies of the response of clouds to forcing on timescales from hours to decades and to
allow data-driven diagnosis of cloud organization and behavior and their evolution over
time as CO2 and temperatures increase.

We describe this dataset as follows: Section 2 describes the MODIS imagery, infor-
mation used, and structure of output data. Section 3 describes the algorithm used for
classification, including the training procedure on one million randomly selected ocean-
cloud patches (Section 3.2). Section 4 evaluates the stability of the clustering step, and
Section 5 describes the characteristics of the resulting cloud clusters: their distribution
geographically, seasonally, and in altitude-optical depth space.

2. AICCA: Data and Outputs

The dataset described in this article, AICCA42 (or simply AICCA), provides AI-
generated cloud class labels for all 128 × 128 pixels (∼100 km by 100 km) ocean cloud
patches sampled by MODIS instruments over their 22 years of operation. (An ocean cloud
patch is defined as a patch with only ocean pixels and at least 30% cloud pixels). The cloud
labels are generated by the rotation-invariant cloud clustering (RICC) method of Kurihana
et al. [18]. In general, clusters produced by RICC may vary according to (1) the patches
used to train RICC, (2) the number of clusters chosen, and (3) the patches to which the
trained RICC is applied to generate centroids. We therefore define AICCA42 as the dataset
produced by training RICC on a subset of the data described in Section 2.1, clustered
into 42 classes with a set of reference centroids based on OC-PatchesHAC, as defined in
Section 4.4.

The labeled output is provided in two ways: per patch, which provides the finest
granularity of labels and associated physical properties, and resampled to 1◦ × 1◦ grid cells,
which supplies information in a daily global grid format that is familiar to climate scientists.

2.1. MODIS Data

The MODIS instruments hosted on NASA’s Aqua and Terra satellites have been
collecting visible to mid-infrared radiance data in 36 spectral bands from 2002 (Aqua) [20]
and 2000 (Terra) [21] through 2021. The instruments collect data over an approximately
2330 km by 2030 km swath every five minutes, with a spatial resolution of 1 km. AICCA
is based on the MODIS Level 1B calibrated radiance product (MOD02). (Note that, while
NASA uses the prefixes MOD and MYD to distinguish between Terra and Aqua, respectively,
for simplicity, we use MOD to refer to both throughout this article). We limit the dataset to the
six spectral bands most relevant for derivation of physical properties: bands 6, 7, and 20 relate to
cloud optical properties, and bands 28, 29, and 31 relate to the separation of high and low clouds
and the detection of the cloud phase. For the Aqua instrument, we use band 5 as an alternative
to band 6 due to a known stripe noise issue in Aqua band 6 [22]. (See also Kurihana et al. [18]
for more details). The total number of swath images per band is (12 swath/h) × (12 h/day) ×
(365 day/year) × (20 + 22 years, for Aqua and Terra, respectively) ≈ 2.2 million.

MODIS multispectral data are processed by NASA to yield a variety of derived
products, several of which we employ for post-processing or analysis. We take latitude
and longitude from the MOD03 geolocation fields to regrid the AICCA patches, and use
selected derived physical properties from the MOD06 product to evaluate the cloud classes:
four physical parameters related to cloud optical properties and cloud top properties.
Note that we employ the MOD06 variables only as a diagnostic, to evaluate associations
between AICCA clusters and cloud physical properties. They are not included in our RICC
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training data, which are thus free from any assumptions made by the producers of MOD06
variables. The data used in generating AICCA, listed in Table 1, have an aggregate size of
801 terabytes. All MODIS products are accessible via the NASA Level-1 and Atmosphere
Archive and Distribution System (LAADS), grouped into per-swath files.

Table 1. MODIS products used to create the AICCA dataset. Each product name MOD0X in the first
column refers to both the Aqua (MYD0X) and Terra (MOD0X) products. Source: NASA Earthdata.

Product Description Band Primary Use Process

MOD02 Shortwave infrared (1.230–1.250 µm) 5 Land/cloud/aerosol properties




Section 3.1

Shortwave infrared (1.628–1.652 µm) 6 Land/cloud/aerosol properties
Shortwave infrared (2.105–2.155 µm) 7 Land/cloud/aerosol properties
Longwave thermal infrared (3.660–3.840 µm) 20 Surface/cloud temperature
Longwave thermal infrared (7.175–7.475 µm) 28 Cirrus clouds water vapor
Longwave thermal infrared (8.400–8.700 µm) 29 Cloud properties
Longwave thermal infrared (10.780–11.280 µm) 31 Surface/cloud temperature

MOD03 Geolocation fields Latitude and Longitude


 Section 3.1MOD06 Cloud mask Cloud pixel detection

Land/Water Background detection
Cloud optical thickness Thickness of cloud





Section 3.3Cloud top pressure Pressure at cloud top
Cloud phase infrared Cloud particle phase
Cloud effective radius Radius of cloud droplet

2.2. AICCA Patch-Level Data

The AICCA dataset uses all patches from Aqua and Terra MODIS image data dur-
ing 2000–2021, subject to the constraints that they (1) are disjoint in space and/or time;
(2) include no non-ocean pixels, and 3) each includes at least 30% cloud pixels. The re-
sulting set comprises about 198,676,800 individual 128 × 128 pixel (∼100 km by 100 km)
ocean-cloud patches, for each of which AICCA42 provides the following information (and
see Table 2):

• Source is either Aqua or Terra;
• Swath, Location, and Timestamp locate the patch in time and space;
• Training indicates whether the patch was used for training;
• Label is an integer in the range 1..42, generated by the rotation-invariant cloud cluster-

ing system configured for 42 clusters, RICC42 (see Section 4 for the stability protocol
used to select this number of clusters);

• COT_patch, CTP_patch, and CER_patch, the mean and standard deviation, across all
pixels in the patch, for three MOD06 physical values: cloud optical thickness (COT),
cloud top pressure (CTP), and cloud effective radius (CER); and

• CPI_patch, cloud phase information (CPI), four numbers representing the number
of the 128 × 128 pixels in the patch that are estimated as clear-sky, liquid, ice, or
undefined, respectively.

The resulting 146 bytes per patch represents a 16,159 × reduction in size relative to
the raw multispectral imagery.

The additional information shown in Table 2 to assist users in understanding individ-
ual patches is extracted from MOD06 by using the patch’s geolocation index and timestamp
(Location and Timestamp in Table 2) to locate the patch’s data in the appropriate MOD06
file. These mean values summarize the patch’s average physical characteristics; the stan-
dard deviations provide some indication as to the existence of multiple clouds (especially
low- and high-altitude clouds). We do not use the MOD06 multilayered cloud flag.

Output is provided as NetCDF [23] files that combine patches from each MODIS
swath into a single file. While AICCA contains no raw satellite data, it includes for each
patch an identifier for the source MODIS swath and a geolocation index; thus, users can
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easily link AICCA results with the original MOD02 satellite imagery and other MODIS
products. The complete OC-Patches set contains around (20 + 22 years) × (365 days/year)
× (26,000 patches) ×146 B ≈ 54.2 gigabytes.

Table 2. Information provided in AICCA for each 128 × 128 pixel ocean-cloud patch: metadata that
locate the patch in space and time, and indicate whether the patch was used to train RICC; a cloud
class label computed by RICC; and a set of diagnostic quantities obtained by aggregating MODIS
data over all pixels in the patch. A quotation mark indicates a repetition.

Variables Description Values Type

Swath Identifier for source MODIS swath 1 float32
Location Geolocation index for the upper left corner of patch 2 float32

Timestamp Time of observation 1 float32
Training Whether patch used for training 1 binary

Label Class label assigned by RICC: integer in range 1..k∗ 1 int32

COT_patch Mean and standard deviation of pixel values in patch 2 float32
CTP_patch " " "
CER_patch " " "
CPI_patch Number of pixels in patch in {clear-sky, liquid, ice, undefined} 4 int32

2.3. AICCA Grid Cell-Level Data

In addition to providing per-patch data, we follow common practice in climate datasets
by also providing data organized on a per-latitude/longitude grid cell basis. The second
element of the AICCA42 dataset spatially aggregates the patch-level class label and diag-
nostic values at a resolution of 1◦ × 1◦, a total of 181 × 360 grid cells over the globe. For
each grid cell, AICCA42 provides the information listed in Table 3, a total of 32 bytes:

• Source is either Aqua or Terra;
• Cell gives a latitude and longitude for the grid cell;
• Timestamp locates the grid cell in time;
• Label_1deg represents the most frequent class label in the grid cell (an integer in the

range 1..42); and
• COT_1deg, CTP_1deg, CER_1deg, and CPI_1deg aggregate values for four diagnostic

variables, as described in Section 2.3.

The aggregation process uses values from individual days from the Aqua and Terra
satellites, a reasonable choice since the swaths taken by each satellite’s MODIS instrument
generally do not overlap in a daily period. Since a single 2330 km by 2030 km MODIS
swath extends across multiple 1 degree by 1 degree grid cells, we extract the latitude and
longitude at the center of each OC-Patch by using MOD03, and aggregate the information
listed in Table 2 to each 1◦ × 1◦ grid cell (i.e., the area extending from −0.5◦ to +0.5◦ from
the grid cell center). To assign a class label to each grid cell on each day, we use the class
of the single ocean-cloud patch with the largest overlap with the grid cell. To provide
physical properties for each grid cell, we implement one simplification to reduce the use of
computing memory: instead of averaging pixel values within each grid cell, we identify all
ocean-cloud patches that overlap with the cell, and simply average those patches’ mean
COT, CTP, and CER values. To assign a cloud particle phase (clear–sky, liquid, ice, or
undefined), we use the most frequent phase in the overlapping patches. Grid cells with no
clouds are labeled as a missing value.

In some cases, especially at high latitudes, swaths may overlap within a single day.
When this occurs, patches with different timestamps will overlap a given grid cell on the
same day. In these cases, we discard one timestamp, to avoid inconsistent values between
grid cells. That is, when accumulating the most frequent label and aggregating values
on the overlapping cell, we use only those patches with a timestamp close to that of the
neighboring grid cells. This neighboring selection mitigates the problem of inconsistent
values between nearly grid cells due only to timing. Finally, we accumulate the aggregated
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grid-cell values to create the daily files. Given the MODIS orbital coverage, the complete
OC-Gridcell set contains around (20 + 22 years) × (365 days/year) × (65,160 grid cells) ×
32 B ≈ 29.8 gigabytes.

Table 3. AICCA information for each 1◦ × 1◦ grid cell: a cloud class label computed by RICC and
diagnostic quantities obtained by aggregating MODIS data over all patch pixels for that grid cell.

Variables Description Values Type

Cell (lat, long) for grid cell 2 float32
Timestamp Time of observation 1 float32

Label Most frequent class label in grid cell 1 int32

COT_1deg Mean of pixel values in grid cell 1 float32
CTP_1deg " " "
CER_1deg " " "
CPI_1deg Most frequent particle phase in grid cell 1 int32

3. Constructing AICCA

The AICCA production workflow, shown in Figure 1, consists of four principal stages:
(1) download, archive, and prepare MODIS satellite data; (2) train the RICC unsupervised
learning algorithm, and cluster cloud patterns and textures; (3) evaluate the reasonableness
of the resulting clusters and determine an optimal cluster number; and (4) assign clusters
produced by RICC to other MODIS data unseen during RICC training. We describe each
stage in turn. The RICC code and Jupyter notebook [24] used in the analysis are available
online [25], and the trained RI autoencoder used for this study is archived at the Data and
Learning Hub for science (DLHub) [26], a scalable and low-latency model repository to
share and publish machine learning models to facilitate reuse and reproduction.

3.1. Stage 1: Download, Archive, and Prepare MODIS Data

Download and archive. As noted in Section 2.1, we use subsets of three MODIS products
in this work, a total of 801 terabytes for 2000–2021. In order to employ high-performance
computing resources at Argonne National Laboratory for AI model training and inference,
we copied all files to Argonne storage. Transferring the files from NASA archives is rapid
for the subset that are accessible on a Globus endpoint at the NASA Center for Climate
Simulation, which can be transferred via the automated Globus transfer system [27]. The
remaining files were transferred from NASA LAADS via the more labor-intensive option
of wget commands, which we accelerated by using the funcX [28] distributed function-as-
a-service platform to trigger concurrent downloads on multiple machines.

Prepare. The next step involves preparing the patches used for ML model training and infer-
ence. We extract from each swath multiple 128 pixel by 128 pixel (roughly 100 km× 100 km)
non-overlapping patches, for a total of ∼331 million patches. We then eliminate those
patches that include any non-ocean pixels as indicated by the MOD06 land/water indicator,
since, in these cases, radiances depend in part on underlying topography and reflectance.
(Note that even ocean-only pixels may involve surface-related artifacts in cases when the
ocean is covered in sea ice). We also eliminate those with less than 30% cloud pixels, as
indicated by the MOD06 cloud mask. The result is a set of 198,676,800 ocean-cloud patches,
which we refer to in the following as OC-Patches. For each ocean-cloud patch, we take
from the MOD02 product six bands (out of 36 total) for use in training and testing the
rotation-invariant (RI) autoencoder. We also extract the MOD04 and MOD06 data used for
location and cluster evaluation, as described in Section 2. For an in-depth discussion of
data selection, see Kurihana et al. [18].

We also construct a training set OC-PatchesAE by selecting one million patches at
random from the entirety of OC-Patches. Because we do not expect our unsupervised RI
autoencoder to be robust to the MODIS data used for training, we collect the 1M patches
that they are not overly imbalanced among seasons or locations.
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Figure 1. The AICCA production workflow comprises four principal stages. (1) Download/Archive
and Prepare MODIS data: Download calibrated and retrieved MODIS products from the NASA
Level-1 and Atmosphere Archive and Distribution System (LAADS), using FuncX and Globus for
rapid and reliable retrieval of 801 terabytes of three different MODIS products between 2000–2021.
Store downloaded data at Argonne National Laboratory. Select six near-infrared to thermal bands
related to clouds and subdivide each swath into non-overlapping 128 × 128 pixel patches by six
bands. Select patches with >30% cloud pixels over ocean regions, and apply a circular mask for
optimal training of our rotation-invariant autoencoder, yielding OC-Patches. (2) Train RICC: Train
an autoencoder on 1 M randomly selected patches to generate latent representations, and cluster
those latent representations to determine cluster centroids [18]. (3) Evaluate clusters: Apply five
protocols to evaluate whether the clusters produced are meaningful and useful. (4) Assign clusters:
Use trained autoencoder and centroids to assign cloud labels to unseen data. We use the Parsl parallel
Python library to scale the inference process to hundreds of CPU nodes plus a single GPU, and to
generate the AICCA dataset in NetCDF format. We then calculate physical properties and other
metadata information for each patch and for each 1◦ × 1◦ grid cell.

3.2. Stage 2: Train the RICC Autoencoder and Cluster Cloud Patterns

In this stage, we first train the RI autoencoder and then define cloud categories by
clustering the compact latent representations produced by the trained autoencoder.

Train RICC. The goal of training is to produce an RI autoencoder capable of generating
latent representations (a lower-dimensional embedding as the intermediate layer of the
autoencoder) that explicitly capture the variety of input textures among ocean clouds and
also map to differences in physical properties. We introduce general principles briefly
here; see Kurihana et al. [18] for further details of the RI autoencoder architecture and
training protocol.

An autoencoder [17,29] is a widely used unsupervised learning method that leverages
dimensionality reduction as a preprocessing tool prior to image processing tasks such as
clustering, regression, anomaly detection, and inpainting. An autoencoder comprises an
encoder, used to map input images into a compact lower-dimensional latent representation,
followed by a decoder, used to map that representation to output images. During training,
a loss function minimizes the difference between input and output. The resulting latent
representation in the trained autoencoder both (1) retains only relevant features for the tar-
get application in input images, and (2) maps images that are similar (from the perspective
of the target application) to nearby locations in latent space.
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The loss function minimizes the difference between an original and a restored image
based on a distance metric during autoencoder training. The most commonly used metric
is a simple `2 distance between the autoencoder’s input and output:

L(θ) = ∑
x∈S
||x− Dθ(Eθ(x))||22, (1)

where S is a set of training inputs; θ is the encoder and decoder parameters, for which
values are to be set via training; and x and Dθ(Eθ(x)) are an input in S and its output
(i.e., the restored version of x), respectively. However, optimizing with Equation (1) is
inadequate for our purposes because it tends to generate different representations for
an image x and the rotated image R(x), as shown in Figure 2, with the result that the
two images end up in different clusters. Since any particular physically driven cloud
pattern can occur in different orientations, we want an autoencoder that assigns cloud
types to images consistently, regardless of orientation. Other ML techniques that com-
bine dimensionality reduction with clustering algorithms have not addressed the issue of
rotation–invariance within their training process. For example, while non-negative matrix
factorization (NMF) [30] can approximate input data into a low-dimensional matrix—i.e.,
produce a dimensionally reduced representation similar to an autoencoder—that can be
used for clustering, applications of NMF are not invariant to image orientation.

We have addressed this problem in prior work by defining a rotation-invariant loss
function [18] that generates similar latent representations, agnostic to orientation, for similar
morphological clouds (Figure 2b). This RI autoencoder, motivated by the shifted transform
invariant autoencoder of Matsuo et al. [31], uses a loss function L that combines both
a rotation-invariant loss, Linv, to learn the rotation invariance needed to map different
orientations of identical input images into a uniform orientation, and a restoration loss,
Lres, to learn the spatial structure needed to restore structural patterns in inputs with high
fidelity. The two loss terms are combined as follows, with values for the scalar weights λinv
and λres chosen as described below:

L = λinvLinv + λresLres, (2)

The rotation-invariant loss function Linv computes, for each image in a minibatch, the
difference between the restored original and the 72 images obtained by applying a setR
of 72 scalar rotation operators, each of which rotates an input by a different number of
degrees in the set {0, 5, ..., 355}:

Linv(θ) =
1
N ∑

x∈S
∑

R∈R
||Dθ(Eθ(x))− Dθ(Eθ(R(x)))||22. (3)

Thus, minimizing Equation (3) yields values for θ that produce similar latent represen-
tations for an image, regardless of its orientation.

The restoration loss, Lres(θ), learns the spatial substructure in images by computing
the sum of minimum differences over the minibatch:

Lres(θ) = ∑
x∈S

min
R∈R
||R(x)− Dθ(Eθ(x))||22. (4)

Thus, minimizing Equation (4) results in values for θ that preserve spatial structure
in inputs.

Our RI autoencoder training protocol [18], which sweeps over (λinv, λres) values,
identifies (λinv, λres) = (32, 80) as the coefficients for the two loss terms that best bal-
ance the transform-invariant and restoration loss terms. We note that the specific values
of the two coefficients, not just their relative values, matter. For example, the values
(λinv, λres) = (32, 80) give better results than (λinv, λres) = (3.2, 8.0).
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Figure 2. Illustration of the learning process when training (a) a conventional autoencoder with
Equation (1) vs. (b) a rotation-invariant autoencoder with Equation (2). Because a conventional
autoencoder reflects orientation in the latent representation, two input images that are identical in
texture but different in orientation are assigned to different clusters, A and B. The rotation-invariant
autoencoder produces a latent representation that is agnostic to orientation, allowing clustering to
group both together.

The neural network architecture is the other factor needed to achieve rotation in-
variance: Following the heuristic approach of deep convolutional neural networks, we
designed an encoder and decoder that stack five blocks of convolutions, each with three
convolutional layers activated by leaky ReLU [32], and with batch normalization [33]
applied at the final convolutional layer in each block before activation. We train our RI
autoencoder on our one million training patches for 100 epochs by using stochastic gradient
descent with a learning rate of 10−2 on 32 NVIDIA V100 GPUs in the Argonne National
Laboratory ThetaGPU cluster.

Cluster Cloud Patterns. Once we have applied the trained autoencoder to a set of
patches to obtain latent representations, we can then cluster those latent representations to
identify the centroids that will define our cloud clusters. We use hierarchical agglomerative
clustering (HAC) [16] for this purpose, and select Ward’s method [34] for the linkage metric,
so that HAC minimizes the variance of square distances as it merges clusters from bottom
to top. We have shown in previous work [35] that HAC clustering results outperform those
obtained with other common clustering algorithms.

Given N data points, a naive HAC approach requires O(N2) memory to store the
distance matrix used when calculating the linkage metric to construct the tree structure [36]
—which would be impractical for the one million patches in OC-PatchesAE. Thus, we
use a smaller set of patches, OC-PatchesHAC, comprising 74911 ocean-cloud patches from
the year 2003 (the first year in which both Terra and Aqua satellites ran for the entire
year concurrently) for the clustering phase. We apply our trained encoder to compute
latent representations for each patch in OC-PatchesHAC and then run HAC to group those
latent representations into k∗ clusters, in the process identifying k∗ cluster centroids and
assigning each patch in OC-PatchesHAC a cluster label, 1..k∗. The sequential scikit-learn [37]
implementation of HAC that we use in this work takes around 10 hours to cluster the
74911 OC-PatchesHAC patches on a single core. While we could use a parallelizable HAC
algorithm [38–40] to increase the quantity of data clustered, this would not address the
intrinsic limitation of our clustering process given the 801 terabytes of MODIS data.

3.3. Stage 3: Evaluate Clusters Generated by RICC

A challenge when employing unsupervised learning is to determine how to evaluate
results. While a supervised classification problem involves a perfect ground truth against
which to output can be compared, an unsupervised learning system produces outputs
whose utility must be more creatively evaluated. Therefore, we defined in previous work a
series of evaluation protocols to determine whether the cloud classes derived from a set of
cloud images are meaningful and useful [18]. We seek cloud clusters that: (1) are physically
reasonable (i.e., embody scientifically relevant distinctions); (2) capture information on spatial
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distributions, such as textures, rather than only mean properties; (3) are separable (i.e., are
cohesive, and separated from other clusters, in latent space); (4) are rotationally invariant
(i.e., insensitive to image orientation); and (5) are stable (i.e., produce similar or identical
clusters when different subsets of the data are used). We summarize in Table 4 these criteria
and the quantitative and qualitative tests that we have developed to validate them.

Table 4. Our five evaluation criteria protocol, as described in Kurihana et al. [18], and protocols for
meeting them. In that work, we used the first four criteria to demonstrate that our quantitative and
qualitative evaluation protocols can distinguish useful from non-useful autoencoders, even when
common ML metrics such as `2 loss show insignificant differences. In the current work, we describe
a protocol to ensure meeting the last criterion, stability.

Criterion Test Requirement

Physically reasonable Cloud physics Non-random distribution; median inter-cluster correlation < 0.6

Spatial distribution

Spatial coherence Spatially coherent clusters

Smoothing Low adjusted mutual information (AMI) score

Scrambling Low AMI score

Separable Separable clusters No crowding structure

Rotationally invariant Multi-cluster AMI score closer to 1.0

Stable

Significance of cluster stability Ratio of Rand Index G/R ≥ 1.01

Similarity of clusterings Higher Adjusted Rand Index (ARI)

Similarity of intra-cluster textures Lower weighted average mean square distance

Clusters capture seasonal cycle Minimal seasonal texture difference

In our previous work [18], we showed that an analysis using RICC to separate cloud
images into 12 clusters satisfies the first four of these criteria. In this work, we describe how
we evaluate the last criterion, stability. Specifically, we evaluate the extent to which RICC
clusters cloud textures and physical properties in a way that is stable against variations
in the specific cloud patches considered, and that groups homogeneous textures within
each cluster. We describe this process in Section 4 in the context of how we estimate the
optimal number of clusters for this dataset when maximizing stability and similarity in
clustering. For the remaining criteria, the clusters necessarily remain rotationally invariant,
and we present in Section 5 results further validating that the algorithm, when applied to a
global dataset, produces clusters that show physically reasonable distinctions, are spatially
coherent, and involve distinct textures (i.e., learn spatial information).

3.4. Stage 4: Assign Cluster Labels to Patches

We have so far trained our RI autoencoder on the 1 million patches in OC-PatchesAE
and applied HAC to the 74,911 patches in OC-PatchesHAC to obtain a set of k∗ cluster
centroids, µ = {µ1, . . . , µk∗}, where k∗ is the number of clusters defined in Section 3.3. We
next want to assign a cluster label to each of the 198 million patches in OC-Patches. We
do this by identifying for each patch xi the cluster centroid µk with the smallest Euclidean
distance to its latent representation, z(xi). We use Euclidean distance as our metric because
our HAC algorithm uses Ward’s method with Euclidean distance. That is, we calculate the
cluster label assignment ck,i for the i-th patch as:

ck,i = arg min
k={1,...,k∗}

||z(xi)− µk||2. (5)

This label prediction or inference process is easily parallelized. We use the Parsl parallel
Python library [41], which enables scalable execution on many processors via simple
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Python decorators, for this purpose. We observe an execution time of 533 seconds per day
of MODIS imagery (∼13,000 patches) on 256 cores of the Argonne Theta supercomputer.

4. Evaluating Cluster Stability

Cluster stability is an important property for a cloud classification algorithm [15]. A
clustering method is said to be stable for a dataset, D, and a number of clusters, k, if it
produces similar or identical clusters when applied to different subsets of D. As noted in
Table 4, we define four tests to evaluate this criterion:

1. We measure clustering similarity by generating clusterings for different subsets of the
same dataset, and calculating the average distance between those clusterings.

2. We measure clustering similarity significance by comparing each clustering similarity
score to that obtained when our clustering method is applied to data from a uniform
random distribution.

3. We measure intra-cluster texture similarity by calculating the average distance between
latent representations in each cluster.

4. We measure seasonal stability by comparing intra-cluster texture similarity for patches
from January and July.

We are concerned not only to determine whether our clustering method, RICC, gen-
erates clusters that are stable, but also to identify the optimal number of clusters, k∗, to
use for AICCA. In determining that number, we must consider all four tests just listed:
we want a high clustering similarity, a high significance (certainly greater than 1), a low
intra-cluster similarity score, and low intra-seasonal texture differences.

For all of our stability tests, we work with D = {OC-Patches from 2003 to 2021, inclu-
sive}. |D| ≈ 180 M. (We do not consider data from 2000–2002 because Terra and Aqua
were not operating at the same time for an entire year-long observation during that period).
We create a holdout subset H with number of patches NH = 14,000, and create 30 random
subsets Si with NR = 56,000 by sampling without replacement from D \ H. This procedure
ensures that the different Si are mutually exclusive and that there is no intersection between
our holdout set H and the random subsets. The ratio NH : NR of 20 : 80 is standard practice.
We then create our 30 test datasets as H ∪ Si for ∀i ∈ {1, . . . , 30}.

In the remainder of this section, we describe four stability tests, whose results are
shown in Figures 3 and 4. These tests lead us to choose 42 as the optimal number of clusters.
We also conduct additional evaluations of whether the result of using RICC with 42 clusters
creates cloud classes that have reasonable texture and physical properties, when compared
to similar exercises with suboptimal numbers of clusters.

4.1. Stability Test 1: Clustering Similarity

We measure clustering similarity by first generating clusterings for different subsets
of the target dataset and then calculating the average pairwise distance between those
clusterings. This approach is documented as Algorithm A1 in Appendix A.2. As described
above, we work with sets H ∪ Si, i ∈ 1..30, to generate 30 different clustering assignments
via a trained RICC. We compute the adjusted Rand index, ARI (Appendix A.1), as a measure
of pairwise distance between pairs of clusterings. We average among the 30 clusterings
generated by the models {RICCi

k, i ∈ 1..30} to determine the mean clustering similarity for
that specific cluster number k, and then calculate the ARI for all (30

2 ) = 435 combinations of
those 30 clusterings to determine the mean ARI score G. See Appendix A.2 for details.
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Figure 3. Plots for the first three stability criteria metrics of Table 4, each as a function of the number of
clusters. (a) Clustering similarity: Adjusted Rand Index (ARI) as a measure of similarity of clusterings
generated by RICC models trained on different subsets of patches. (b) Clustering similarity significance:
The blue line represents the ratio of the mean Rand Index based on RICC applied to our holdout
patches {x | x ∈ H} (G) to the mean Rand Index from HAC applied to random uniform distributions
(R). The red dashed line is G/R ≥ 1.01, indicating that the stability of cluster label assignments
produced from RICC is ≥1% better than results of simply clustering random uniform data. (c) Intra-
cluster texture similarity: The blue line shows the weighted average of the mean squared Euclidean
distance between pairs of patches within each cluster. Lower values suggest more homogeneous
textures and physical features within each cluster. The use of three similarity tests allows for achieving
both stability and maximality criteria when grouping clusters.
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Figure 4. Seasonal stability test comparing the intra-seasonal variance of textures within each cluster
as a function of the number of clusters. Each of 9 · k colored dots for each value of k gives the average
squared distance (left y-axis) between July and January patches as described in the text; the color
indicates cluster density, a measure of cluster size. The black line shows the mean WASD (right
y-axis) from nine trials as described in text. The blue line shows a smoothed WASD curve obtained
by applying a Savitzky–Golay filter with a degree six polynomial. The minimum WASD value in
40 ≤ k∗ ≤ 48 occurs at k = 42, motivating our choice for AICCA.
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The optimal number of clusters k∗ should have G > 0, and a higher score indicates
that patches are more stably grouped into the same clusters. Figure 3a shows that the
mean ARI drops from 0.48 at eight clusters to 0.32 at 48 clusters, and then continues to
decline to below 0.3 after 68 clusters. Although the ARI score of 0.32 with 48 clusters
is far from the perfect score of 1, previous literature [42] on the relative association of
ARI scores and supervised learning measures for multiclass datasets reports that an ARI
of 0.29 corresponds to 63.13% in the classification correct percentage rate (COR) in the
configuration of supervised learning, and that an ARI of 0.46 corresponds to 62.4% in COR.
In addition, visual inspection suggests that the clusters produced by the RICC stably group
similar cloud patterns.

4.2. Stability Test 2: Significance of Similarities

Having determined how cluster similarity scores vary with the number of clusters,
we next turn to the question of whether these values are significant. Following Von
Luxburg [43], we compare cluster similarity scores, as shown in Algorithm A2 in Ap-
pendix A.3, against those obtained when the same method is applied to data generated
not by our trained autoencoder but from a random uniform distribution clustered with
the same HAC method. We then compute the mean clustering similarity score G from
our patches and R from the data from the random uniform distribution for each k for all
435 combinations, though here we use the Rand index (as described in Appendix A.1)
rather than ARI, as we are not comparing scores across k. We can then compare how the
ratio between those two values varies with number of clusters. A ratio > 1 indicates that
cluster assignments are more stably grouped than would be expected by chance; a value of
1 indicates that there is no benefit to adding extra clusters.

We expect the ratio G/R to be more than 1 if RICC cluster assignments are more
stable than than those obtained on the null reference distribution. We set a threshold of
G/R ≥ 1.01, meaning that the results obtained with RICC should be 1% or more better than
those with the null distribution. Figure 3b shows the significance of the stability values
G/R as a function of the number of clusters k. The significance curve drops to 1.01 at 50
clusters, indicating an optimal cluster number k∗ < 50.

4.3. Stability Test 3: Intra-Cluster Texture Similarity

A stable clustering should group patches with similar textures within the same cluster.
To determine whether a clustering has this property, we examine how the average distance
between latent representations within each cluster changes when we apply RICC to create
different numbers of clusters. The mean distance between pairs of latent representations in
a cluster relates to their similarity of texture, as our RI autoencoder learns texture features
and encodes those features in latent representations. Specifically, we calculate the mean
squared Euclidean distance between the latent representations computed for patches in
our holdout set H.

For a clustering with k clusters, let nc be the number of elements in cluster c, and
y1 .. ync be the patches in that cluster. As cluster sizes can vary, we weight each clus-
ter’s mean distance by wc = nc/ ∑k

i=1 ni, to obtain a weighted average mean squared
Euclidean distance:

dk =
k

∑
c=1

(
wc

m

∑
i=1

m

∑
j>i

||z(yi)− z(yj)||22
m
2 (m− 1)

)
where m = min(nc, Np), (6)

where z represents the latent representations generated by our RI autoencoder, and Np is
the maximum number of patches to consider in the distance calculation—a limitation used
to accelerate calculations. We set Np = 200 for our tests. Note that, when the total number
of clusters is large, some individual clusters may have a size less than this limit.

We calculate Equation (6) for k from 8 to 256 for each of our 30 clusterings of test
subsets {RICC1

k(H), . . . , RICC30
k (H)}, and then compute the mean value across clusterings.

The resultant weighted average distance decreases monotonically with the cluster number k:
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see Figure 4c, as does the metric G/R from test 2, but the trends have opposite implications:
lower values are worse in test 2 but better in test 3. A lower distance value indicates
that cloud texture and physical properties are more homogeneous within a given cluster,
meaning the resultant AICCA dataset provides a more consistent cloud diagnostic. The
implication is that the optimal number of clusters k∗ will be approximately the largest
number that satisfies our criterion in test 2.

In Figure 4c, the distance metric sharply decreases from 8 to 36 clusters, but the slope
then flattens and values are almost unchanged between 40–48 clusters. That is, the pairwise
similarity of latent representations drastically increases between 8 and 36 clusters but
becomes less different among the range between 40–48 clusters. Selection of a k value from
within this range would not change the result significantly. Since test 2 provides an upper
bound of k∗ < 50, the results of test 3 suggest that the optimal number of clusters lies in
40 ≤ k∗ ≤ 48.

To summarize: We observe that, as G/R decreases, ARI also declines, and that our
G/R threshold requires k∗ < 50. We observe that a cluster number in the range 40 ≤ k ≤ 48
satisfies all four stability criteria. We have validated that these choices also satisfy criteria
1–4 in Table 4.

4.4. Stability Test 4: Seasonal Variation of Textures within Clusters

The results of the three tests above indicate that choices in the range 40 ≤ k∗ ≤ 48 will
yield clusters that not only are stably assigned but also group similar cloud texture patterns.
Our final test investigates whether clusters produced via RICC show similar patterns
regardless of season: we compare intra-cluster texture similarity between OC-Patches
from January and July. If differences are small, the number of clusters used is sufficient to
accommodate the large seasonal changes in cloud morphology.

We use RICC with the autoencoder trained on OC-PatchesAE and cluster centroids
based on OC-PatchesHAC, for different numbers of clusters k, as before. For each k, we
then apply the trained RICCk model to the patches in OC-PatchesHAC to assign a label
c ∈ {1, .., k} to each patch, and for each c, extract the latent representations for ms

c randomly
selected July patches and mw

c randomly selected January patches with that label (with ms
c

and mw
c being at most 100 in these analyses, but less if a particular cluster has fewer January

or July patches, respectively), compute an intra-cluster texture similarity score for each set
of July and January patches, and (as in Section 4.3) weight each cluster mean by the actual
ms

c or mw
c so that we can consider texture similarities from many clusters without results

being dominated by trivial clusters that we observe to group fewer similar patches due to
undersampling. We then sum the scores to obtain the overall weighted averaged squared
distance (WASD) for k clusters. In summary:

WASDk =
k

∑
c=1

(
wc

ms
c

∑
i=1

mw
c

∑
j=1

||z(ys
i )− z(yw

j )||22
ms

c ·mw
c

)
(7)

where wc and z are as defined in Section 4.3 and ys = {ys
1 .. ys

ms
c
} and yw = {yw

1 .. yw
mw

c
} are the

January and July patches in cluster c, respectively.
We expand the analysis to account for two additional potential sources of bias. Because

the specific days used in OC-PatchesHAC may affect our results, we assemble two additional
versions of OC-PatchesHAC, selecting two days without replacement from each season
in 2003, as before. The resulting OC-PatchesHAC-2 and OC-PatchesHAC-3 have 77,235 and
76,143 patches, respectively. Similarly, to account for any effect of the random selection
of the ms summer and mw winter patches, we repeat the analysis of Equation (7) three
times for each of OC-PatchesHAC, OC-PatchesHAC-2, and OC-PatchesHAC-3. In this way, we
obtain a total of 9 · k mean squared distance values and nine WASD values for each k in the
range 8 to 256. These are shown as the dots in Figure 4. The WASD curve (black) decreases
with increasing cluster number k, implying as expected that higher cluster numbers allow
for better capturing of seasonal changes. Because a smoothed version of the WASD curve
(blue) has a minimum of k = 42 over the range 40 ≤ k ≤ 48, we choose 42 clusters as the
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optimum number and use this value in the inference step of Section 3.4. Given that the
WMO cloud classes define approximately 28 subcategories, the 42 AICCA clusters should
not overwhelm users who use AICCA to investigate cloud transitions.

4.5. Sanity Check: Comparison of RICCs with Different Number of Clusters to ISCCP Classes

As a final step, to confirm the utility of the choice of 42 classes, we consider whether
and how RICC clusters associate with the nine ISCCP classes. We compare and contrast the
frequencies of co-occurrence of (a) RICC clusters and (b) ISCCP classes, and evaluate how
this relationship varies with cluster number used, considering not only the selected k = 42
but also k = 10, 64, and 256.

Recall that each of the nine ISCCP classes is defined by a distinct range of cloud optical
thickness (COT) and cloud top pressure (CTP) values [3]: high, medium, and low clouds,
and thin, medium, and thick clouds. To compare RICC clusters with ISCCP classes, we
calculate the relative frequency of occurrence (RFO) of RICC clusters across the same two-
dimensional COT–CTP space, a standard approach to evaluating unsupervised learning
algorithms [44–46]. For this evaluation, we use the cluster assignments obtained with
RICC when trained on OC-PatchesAE and OC-PatchesHAC to produce the AICCA dataset,
as described in Section 3. We take the Terra satellite ocean-cloud patches for January and
July 2003, and for each cluster, use the mean and standard deviation of the COT and CTP
values for its patches to define a rectangular region for that cluster within two-dimensional
COT-CTP space that extends for one standard deviation on either side of the mean. We
then calculate the number of clusters that are associated with each of the nine ISCCP classes
by counting the number of clusters that overlap with that region of COT-CTP space and
dividing this number by the total number of cluster-class overlaps for all clusters and
classes. Note that the latter number will typically be greater than the number of clusters
because a single cluster can extend over multiple ISCPP classes.

This analysis shows a similar proportionality between RICC unsupervised learning
clusters and ISCCP observation-based classes. Table 5 compares the resulting proportions
of RICC clusters (for each value of cluster number k) with the simple mapping of all
patches to ISCCP classes based on their COT and CTP values (top line). In all cases, the
Stratocumulus (Sc) class is the largest single category, and medium-thickness clouds (Sc,
As, Cs) predominate at each altitude level.

Stratocumulus (Sc) account for approximately 30% of RICC cluster overlaps, while the
proportion of cloud observations in this category is over 50%. Similarly, for all k values,
relatively few RICC clusters are assigned to high clouds, as expected since these make up
only ~15% of total cloud occurrences. The thin and medium ISCCP classes (Cu, Sc, Ac,
As), which account for 78.4% of cloud occurrence in the MODIS dataset, are represented by
a similar proportion of RICC cluster overlaps: 74.45%, 70.44%, and 71.40% for k = 42, 64,
and 256 clusters, respectively. There is no physical reason that cluster overlaps and cloud
occurrence frequencies need be exactly the same: if, for example, all low medium-thickness
clouds were identical in texture, we would expect that they would be assigned to a single
cluster. However, the similarity of proportions suggests that AICCA captures physically
meaningful distinctions among cloud types.

4.6. Discussion of Stability Protocol Results

We have used the stability protocol described in this section to determine the number
of clusters that both achieves a stable grouping of patches and maximizes the richness of
the information contained in our clusters. Recall that Von Luxburg’s normalized stability
protocol [43] simply minimizes an instability metric to determine the number of clusters
that maximize stability. In contrast, we combine four tests—adjusted cluster similarity,
normalized stability, weighted intra-cluster distance, and seasonal texture differences—to
address the stability criterion. We used these tests to evaluate whether the cloud clusters
produced by our unsupervised learning approach can provide meaningful insights for
climate science applications.
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This use of multiple similarity tests is essential to achieving our goal of both stability
and maximality when grouping clusters. The clustering similarity test gives a mean score of
scaled values calculated by ARI as a measurement of the degree of stability in OC-Patches.
While this value is easy to understand when the resulting mean ARI is close to 1 (i.e.,
OC-Patches are always clustered into the same cluster group), ARI when applied to real
world data could result in a value that is close to neither 0 nor 1 [42].

Table 5. ISCCP: Relative frequencies of occurrence based on mean COT and CTP values for
OC-Patches from January and July, 2003. AICCA: Relative frequencies of occurrence of RICC clusters
over each of the nine ISCCP cloud classes [3], as determined by counting the number of clusters
that overlap (as determined by the mean, plus or minus one standard deviation, of COT and CTP
values for patches within each cluster) with each class, divided by the total number of cluster-class
overlaps. We allow double counts if a cluster overlaps more than one ISCCP class. Results are given
for k=10, 42, 64, and 256 clusters, and for just January patches, just July patches, and both January
and July patches. The AICCA values that are closest to the frequencies from MODIS column are in
boldface. Recall that MODIS values are based on frequencies of patches over COT-CTP space, while
the AICCA values are based on frequencies of clusters over COT-CTP space. Note that frequencies in
each line add to 100, modulo rounding. We observe that the AICCA cluster frequencies are roughly
proportional to the ISCCP category frequencies, although they consistently underestimate the Sc class
(by 20%) and overestimate Cu and As classes.

Height Low Medium High

Thickness Thin Med Thick Thin Med Thick Thin Med Thick

Dataset Month k Cu Sc St Ac As Ns Ci Cs Dc

ISCCP Jan & July 2003 5.29 53.94 2.93 3.65 15.50 2.12 3.39 10.52 2.60

AICCAk

Jan 2003

10 11.42 25.71 8.57 5.71 22.85 8.57 2.85 8.57 5.71
42 12.50 29.16 4.16 10.00 25.00 5.00 2.50 8.33 3.33
64 10.38 34.41 3.24 7.79 26.62 3.24 0.64 9.74 3.89

256 9.06 32.90 4.45 8.90 25.27 5.08 3.65 8.58 2.06

July 2003

10 13.33 23.33 3.33 6.66 16.66 3.33 6.66 16.66 10.00
42 10.30 30.92 4.12 7.21 20.61 4.12 3.09 13.40 6.18
64 10.20 30.61 1.36 10.20 19.04 2.72 5.44 14.28 6.12

256 9.31 32.16 2.46 8.78 21.61 1.93 5.97 13.53 4.21

Jan & July 2003

10 12.50 25.00 6.25 3.12 18.75 3.12 9.37 15.62 6.25
42 10.67 32.03 2.91 7.76 24.27 2.91 2.91 11.65 4.85
64 8.80 29.55 3.77 8.17 23.89 5.03 5.03 11.94 3.77

256 8.42 31.57 3.63 7.93 23.47 3.96 5.45 11.73 3.80

The significance of similarities test enables us to find the number of clusters after which
there is reduced merit, from the perspective of stability against the null reference distribu-
tion, in adding more clusters. Normalized stability thus provides statistical support for
eliminating certain cluster numbers, especially when the first test produces an ARI value
that is close to neither 0 nor 1.

We introduce the similarity of intra-cluster textures test because common approaches
to estimating an optimal number of clusters, such as the elbow method [47], silhouette
method [48], and gap statistics [49], seek to determine the minimum number of clusters
needed to characterize a dataset, which is not our goal. In our application, achieving a
minimum number of clusters might result in the merging of sub-clusters with unique tex-
tures and slightly different physical properties. By minimizing the intra-cluster difference
shown in Figure 4c until the slope of the curve of distance becomes small, the third test
causes the lower bound on the optimal number of clusters to increase to 40 ≤ k∗, avoiding
oversimplifications.
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Finally, the seasonal stability test provides a further validation of our choice of k∗. A
too-small number of clusters is likely to result in dissimilar July or January patches being
mapped to the same cluster. We see in Figure 4 a local minimum in weighted average
intracluster seasonal difference.

A disadvantage of our stability protocol is that, unlike other heuristic approaches [43,49],
it does not always determine a unique optimal number of clusters. Indeed, our stability
protocol in Section 4 concludes that 40 ≤ k∗ ≤ 48. Determining a single optimal number in
the range sandwiched by the results of the four tests ultimately requires a subjective choice,
based for example on the structure of cloud clusters in OC-PatchesHAC. In this study, we chose
42 as the number in the range 40 ≤ k∗ ≤ 48 that minimizes the seasonal variation of textures
within clusters: see Section 4.4—although we note that a different selection of OC-Patches in
OC-PatchesHAC could motivate a different value.

5. Results

Having determined in Section 4 an optimal number of clusters, k∗, we then validate
the scientific utility of AICCA42 by evaluating the relationship between cloud class labels
and their physical properties and spatial patterns. We have previously verified that the
cloud clusters produced by RICC are physically reasonable using a limited subset of the
MODIS data [18]. This section provides a similar analysis on a far more complete dataset of
589500 Terra ocean-cloud patches for January 2003 and July 2003. The goal is to confirm that
AICCA42 diagnoses meaningful physical properties for use in climate science applications.

5.1. Seasonal Variability of Cloud Cluster Regimes

Because the Earth is not symmetric, its clouds show strong seasonal variability not
only in any given location but in the global mean. In this section, we show that the physical
properties of AICCA42 clusters are reasonable and remain stable even if the dataset is
restricted to a single month. This analysis builds on those in Sections 4.4 and 4.5. In
Section 4.4, we used intra-cluster seasonal differences as a criterion for choosing an optimal
k of 42. In Section 4.5, we showed that RICC distributed those clusters in the COT-CTP
space that defines established ISCCP classifications roughly in accordance with actual
frequencies of cloud occurrence. We now plot the cluster distribution in COT-CTP space,
and show that it is indeed reasonably constant across seasons (Figure 5). Note that, in
assigning cluster labels, we sort the clusters first on CTP and then on the global occurrence
of the clusters within each 50 hPa pressure bin.

As expected based on prior results, Figure 5 shows that most AICCA42 clusters fall
in the low cloud range (680–1100 hPa cloud top pressure) with low to medium optical
thickness (2–20): Compare to Table 5. These results are broadly consistent with those of Jin
et al. [50], who performed a simple clustering analysis with the joint histogram of optical
thickness and cloud top pressure, though they obtained relatively more clusters associated
with high clouds (four of their 11 clusters, vs. five of 42 in this work). The distribution of
clusters is largely unchanged even when only January or July data are used in clustering.
For example, the cumulus (Cu: left bottom) and stratocumulus (Sc: center bottom) regimes
comprise 30 clusters in the full-year analysis, 30 in July only, and 32 in January only.

Using 42 clusters clearly allows RICC to capture richer cloud information than in
the limited set of nine ISCCP cloud classes. In our previous work [18], we found that 12
clusters were insufficient to achieve a clear separation between high and low clouds. In this
work, the clusters from our cloud fields can distinguish the full range of physical properties
here (from high to low CTP and thick to thin COT), though thin clouds are included only
because our cloud clusters defined by means and error bars (i.e., standard deviation of the
cloud parameter) cover more than one ISCCP class. The choice of a cluster number of 42
produces a reasonable trade-off.
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5.2. Comparing AICCA42 and ISCCP Classifications

We now investigate further how AICCA42 distributes clusters in COT-CTP space, and
compare to observed occurrence frequencies. A limitation of the ISCCP cloud classification
scheme is that the stratocumulus clouds whose behavior is of the greatest concern to climate
scientists, and which comprise 54% of the MODIS dataset (Table 5), are lumped into a
single ISCCP class (Figure 6a–c). A major motivation for AICCA42 is to provide greater
interpretive detail for understanding these low, marine clouds.
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Figure 5. Distributions of cluster properties for AICCA42 in COT–CTP space, where COT is cloud
optical thickness (dimensionless) and CTP cloud top pressure (hPa). We show January and July 2003
(left), January only (center), and July only (right). Dots indicate mean values for each cluster and error
bars the standard deviation of cluster properties. Data point colors indicate the relative frequency of
occurrence (RFO) of each individual cluster in the dataset. Note that, in assigning cluster labels, we
sort the clusters first on CTP and then on the global occurrence of the clusters within each 50 hPa
pressure bin. Thus, small cluster numbers (e.g., #1) represent high-altitude cloud, and within a similar
CTP range (e.g., 500 hPa–550 hPa), smaller numbers represent the more dominant patterns within the
bin. For clarity, we show only the 21 clusters with the highest RFOs. For comparison, dashed lines
divide the COT-CTP space into the nine regions corresponding to ISCCP cloud classes. AICCA42

captures a greater variety of cloud types than do the ISCCP categories, with most of the clusters at
low altitude (high CTP). January and July panels are similar, indicating that AICCA42 adequately
captures seasonal variation in cloud properties.

As shown in previous sections, AICCA42 does provide a richer sampling of the stra-
tocumulus (Sc) regime. AICCA42 allocates 71% of cluster centers to the stratocumulus
regime (Figure 5; 30 of 42 classes), or 32% of their relative occurrence frequency inclusive of
overlaps (Table 5; see Section 4.5 for description of methodology). While Table 5 provided
only mean values for each ISCCP class, Figure 6d shows the full distributions. As we
would hope, AICCA42 partitions cloud information more finely at low cloud altitudes and
moderate cloud thickness (Sc), while still sampling every part of COT-CPT space.

5.3. Separation of Ice and Liquid Phases

We showed in previous work that RICC-generated clusters can differentiate between
clouds that are dominated by ice vs. liquid phase. (See Figure 10 in Kurihana et al. [18]).
We extend this analysis here and demonstrate that the same discrimination occurs in the
larger AICCA42 dataset. Figure 7 shows for each cloud class the average percentage of
cloud pixels that are identified as an ice phase in the MOD06 cloud properties. As expected,
cloud classes centered at high altitude (low CTP) are predominantly ice, those at middle
altitudes are mixed, and those at low altitude are predominantly liquid. The lowest classes
have <3% ice labels, and note that MOD06 cloud properties themselves have some error
rate. The gradient in ice content across mid-level clouds, the region of transition from
liquid to ice, also matches physical expectations. Note that while our ice phase ratio metric
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predominantly captures mixed-phase clouds, in which ice and liquid coexist in a single
meteorological event (for our purposes, a patch), it is also affected by cases where a cluster
contains a mix of pure-ice and pure-liquid clouds.

In summary, the AICCA42 classes are sufficiently homogeneous to provide meaningful
interpretation. These results support the physical reasonableness of the AICCA dataset.
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Figure 6. Heatmaps of the relative frequency of occurrence in COT-CTP space for (a) observed
patches from both January and July, (b) values only from January, (c) values only from July, and
(d) cluster counts inclusive of overlap from AICCA42. Distributions are smoothed; resolution is 0.5 for
COT and 10 hPa for CTP. Panels for observed frequencies (a–c) and cluster density (d) are expected
to have different values. For example, in (a), a heatmap value of 0.1% indicates 5895 patches fall in a
given histogram bin. In (d), a heatmap value of 71% indicates that 30 of 42 clusters overlap with that
histogram bin over the range of one standard deviation. The data used here are those used throughout
Section 5: all ocean-cloud patches from January and July 2003 from the Terra instrument. White
dashed lines show the boundaries of the nine ISCCP cloud classes [3,51]: Cirrus (Ci), Cirrostratus
(Cs), Deep convection (Dc), Altocumulus (Ac), Altostratus (As), Nimbostratus (Ns), Cumulus (Cu),
Stratocumulus (Sc), and Stratus (St). AICCA42 clusters cover all nine ISCCP classes, with the largest
representation in the Stratocumulus (Sc) category where occurrence also peaks.
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Figure 7. Test of whether AICCA42 captures expected variations in cloud microphysics, i.e., the
ice and liquid fractions for individual cloud classes. The figure is constructed in the same way as
Figure 5, but with each color marker now showing the cluster’s mean ice phase ratio, defined as the
mean within-cluster percentage of cloud pixels denoted as ice phase. We omit all pixels labeled as
“undetermined” in MOD06; many of these are internally mixed phase but the proportions cannot
be determined. AICCA42 cloud classes are sufficiently restricted that they capture the expected
microphysics, with higher ice fractions in higher-altitude clouds.

5.4. Case Studies: Spatial Distribution of Cloud Textures and Associated Cluster Labels

To provide a visual example of the power of AICCA42 classes in interpreting cloud
processes, we examine two case studies involving swaths of MODIS imagery, both domi-
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nated by marine stratocumulus, off the west coast of South America: see Figure 8a. Note
that the swath labeled B is from January and that labeled C from July.
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Figure 8. (a) Geographical location of two example MODIS swaths (B and C) off the west coast
of South America, both from the Terra instrument but at different times; (b) Swath B, 133 ocean-
cloud patches between 18◦ S to 3◦ N, 76◦ S to 104◦ S, observed on 15 January 2003, with each patch
represented by a dot with color indicating its associated class label in the range 1..42; (c) Swath C,
147 ocean-cloud patches between 44◦ S to 23◦ S, 72◦ S to 103◦ S, observed on 20 July 2003, similarly
labeled. Note that not all clusters appear in each swath. Histograms in (b,c) show the distribution of
cloud class labels; note there is little overlap; (d) MODIS true color images [52] for all ocean-cloud
patches labeled in (b,c), grouped by cluster number. Note the visual similarity of cloud textures
within each cluster. AICCA42 produces spatially coherent cluster assignments, groups visually
similar textures, provides rich detail by subdividing stratocumulus clouds into multiple classes, and
identifies subtle spatial and/or temporal differences.
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The two example swaths show the richness and diversity of stratocumulus patterns.
The more equatorial swath B (Figure 8b) shows regions of both open- and closed-cell
stratocumulus clouds, and sharp transition regions. The mid-latitude summertime swath C
(Figure 8c) is dominated by open-cell stratocumulus clouds, with broad transitional regions
and only small patches of classic closed-cell.

AICCA42 cluster labels capture important aspects of these distributions. As usual,
we label only patches with >30% cloud pixels; each such patch is marked with a dot
in Figure 8b,c, with the color denoting the cluster label. The cloud classes assigned are
geographically contiguous and reflect clear visual distinctions in cloud texture (Figure 8d).
They also capture important and subtle distinctions. Each swath contains 12–14 unique
classes, but only four are shared between both. That is, cloud classes of otherwise similar
visual appearance are strongly differentiated in space and/or time. Open-cell stratocumulus
in swath B is assigned to classes #32 and #36, but that in swath C largely to #25, #34, and #42.
Similarly, closed-cell stratocumulus in swath B is assigned to classes #30, #31, #33, and #35,
none of which are present in swath C. Instead, the smaller areas of closed-cell stratocumulus
in swath C are labeled as class #24. These results suggest that real-world stratocumulus
cloud textures involve subtle but important spatial and/or temporal distinctions and that
AICCA42 is capturing those distinctions.

5.5. Use Case: Geographic Distribution of Cluster Label Occurrence

In this last study, we examine the geographic distribution of AICCA42 cluster labels.
Using the same dataset as in the other part of this section, we show in Figure 9 mean
incidences for each of the 42 cloud types in the dataset used throughout Section 5, gridded
on a 1◦ global grid We see strong geographic distinctions among cluster labels, with some
occurring only in the tropics and others only at high latitudes. Some show even finer
geographic restrictions. For example, cloud classes #1–#3 are localized primarily in the
West Pacific warm pool, all likely associated with tropical deep convection, though ranging
in altitude (232–367 hPa CTP) and thickness (24–6 COT). (Classes are numbered in order of
their mean altitude; see Section 5.1 for details). By contrast, the stratocumulus cloud labels
discussed for Figure 8 show different distributions. Those most clearly associated with
classic closed-cell stratocumulus—#30, #33, and #35—are as expected primarily localized to
small areas on the west coasts of continents. The most predominant open-cell Sc cloud labels
in Figure 8—#25, #32, and #36—are more widely distributed but with strong latitudinal
dependence. The six clusters just described are all low in altitude (mean CTP of 803–901 hPa)
and moderate in thickness (mean COT of 8.4–13.6 thickness for the closed-cell classes and
5.7–7.1 for the open-cell). All would therefore be labeled as Sc in the ISCCP classification;
AICCA42 reveals their striking differences. Note that, because our example dataset includes
both January and July 2003, these graphs include both summer and wintertime occurrences.
When displayed as an animation of monthly means, the geographic distinctions become
even sharper, with patterns migrating seasonally with the sun’s position.

To highlight the texture distinctions in the Sc cloud classes just discussed, we show
in Figure 10 the true color images [52] corresponding to the 20 patches closest to the
OC-PatchesHAC centroid for each of the six clusters. Patches shown for each cluster are
visually similar, and the different clusters have distinct differences in not only cloud pixel
density but also spatial arrangement, even within the broad open cell (top row, #25, #32, and
#36) and closed cell (#30, #33, and #35) categories. These distinctions show that AICCA42 is
separating stratocumulus clouds by texture as well as by mean properties across the patch.

The strong localization of some cloud classes near the poles raises concern that they
may be affected by the presence of sea ice. We have restricted analysis to ocean clouds to
avoid the complications of surface effects—the ocean provides a dark and homogeneous
background—but parts of the high-latitudes ocean are covered in wintertime ice. Because
two of the MODIS bands used in our cloud clustering system, bands 6 (1.6 µm) and
7 (2.12 µm), are also used by the MODIS snow and ice detection algorithm [53], the
resulting AICCA dataset can inadvertently include some surface information in the latent
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representation. To check for contamination, we use a MODIS cloud product that describes
the presence of a snow and ice background for each pixel (MOD06). Only one cloud class
may experience significant interference: #12, which forms in local winter. (Sea ice makes
up 16/31% of its labeled pixels in January/July). The other polar cloud classes appear in
local summer. Sea ice effects therefore do not appear to drive the labeling of geographically
distinct cloud classes that appear in polar oceans.

These results suggest that AICCA42 identifies real and important differences between
cloud types and can help climate scientists understand the drivers of distinct cloud patterns
and regimes.
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Figure 9. An example application of AICCA. We plot the relative frequency of occurrence (RFO) for
each of the 42 AICCA42 clusters, using all data from January and July, 2003. Land is in grey, and
areas where RFO < 1.0% are in white. Surtitles show global mean RFO, cloud optical thickness (COT),
and cloud top pressure (CTP) for the given cluster. Clusters show striking geographic distinctions,
and those with roughly similar spatial patterns have different mean physical properties, suggesting
meaningful physical distinctions. The 99 percentile of RFO values (RFO ≥ 1 %) of #30 is 29.85 % and
the value of #35 is 36.58 %.
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Cluster 25 Cluster 32 Cluster 36

Cluster 30 Cluster 33 Cluster 35

Figure 10. Selected MODIS true color images [52] for the six clusters that dominate open-cell (upper
row: #25, #32, and #36) and closed-cell (lower row: #30, #33, and #35) stratocumulus clouds in Figure 9.
Surtitles show the cluster numbers. We show the 20 patches closest to OC-PatchesHAC centroids. Note
how AICCA discriminates between textures (e.g., compare the fine-scale detail of #32 to the more
coarsely aggregated #36) even for patches of similar mean cloud properties.

6. Conclusions

We have introduced an AI-driven cloud classification atlas, AICCA42 that provides the
first global-scale unsupervised classification of clouds in MODIS satellite imagery. AICCA42
provides a compact form of the information available in multi-spectral satellite images,
reducing 801 TB of MODIS products to 54.2 gigabytes of cloud labels and, for diagnostic
purposes, four cloud properties from MOD06 (cloud optical thickness, cloud top pressure,
cloud phase, and cloud effective radius). We have described the complete workflow used
to generate the dataset, the five criteria used to assess its success (physically reasonable,
spatial distributions, separable, rationally invariant, and stable), and the novel protocol
developed to determine the optimal number of clusters that meets the stability requirement.

The new stability protocol is needed because our goal differs from the norm in cluster-
ing studies, which generally seek to determine the minimum number of clusters needed
to characterize a dataset. Instead, we seek to maximize the richness of information cap-
tured by determining the maximum number of clusters that remain stable to changes in the
training set. The protocol of four tests suggests an optimal cluster number of k∗ = 42, and
our seasonal stability sanity check confirms that this number is sufficient to capture the
full seasonal diversity of global cloud textures. The resulting atlas of cloud classes greatly
enhances the richness of information provided over the traditional 9-class ISCCP scheme,
especially for climate-critical cloud types: for example, 30 of the AICCA42 classes are
devoted to stratocumulus, whose behavior is a key uncertainty in climate projections [54].

Preliminary analysis of the AICCA42 atlas suggests its power for science. Its cloud
classes meaningfully group physical properties such as altitude or optical thickness, and
also capture distinct textures and patterns. Cloud classes show strikingly different ge-
ographical distributions, with distributions evolving seasonally. Some classes can be
matched to known cloud processes: deep convection in the West Pacific warm pool, for
example, or marine stratocumulus decks that form off the west coast of continents. In other
cases, cloud classes capture distinctions not previously appreciated, and can lead to new
lines of scientific inquiry. We conclude that (1) our methodology has explanatory power, in
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that it captures regionally unique cloud classes, and (2) 42 clusters is a useful number for a
global analysis.

The AICCA approach also opens up possibilities in other areas. For example, increas-
ing computing power means the spatial scale of climate simulations has shrunk to the
point where their output can resolve complex cloud textures [55]. Unsupervised cloud
classification can help in assessing whether models capture those textures correctly. More
broadly, advances in remote sensing instrumentation mean that many fields have seen
large increases in data volume. We have shown here that AI-based methods using a
convolutional autoencoder can effectively identify novel patterns in spatial data. Unsuper-
vised learning offers the possibility of unlocking large satellite datasets and making them
tractable for analysis.
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Appendix A

Appendix A.1. Rand Index and Adjusted Version for Chance

We describe the Rand index used in Section 4. Let U = {U1, . . . , Ur} and V =
{V1, . . . , Vc} be two clustering partitions of a set of N objects O = {o1, . . . , oNP}, such that⋃r

i=1 Ui =
⋃c

j=1 Vj = O, and Ui ∪ Ui′ = ∅ as well as Vj ∪ Vj′ = ∅ for 1 ≤ i ≤ r and

1 ≤ j ≤ c. We count how many of the (N
2 ) possible pairings of elements in O are in the

same or different clusters in U and V:

• P11: number of element pairs that are in the same clusters in both U and V;
• P10: number of element pairs that are in different clusters in U, but in the same cluster

in V;
• P01: number of element pairs that are in the same cluster in U, but in different clusters

in V; and
• P00: number of element pairs that are in different clusters in both U and V.

The Rand index then computes the fraction of correct cluster assignments:

RandI(U, V) =
P11 + P00

P11 + P10 + P01 + P00
=

P11 + P00

(N
2 )

(A1)
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It has value 1 if all pairs of labels are grouped correctly and 0 if none are correct. The metric
is independent of the absolute values of the labels: that is, it allows for permutations.

To illustrate how the Rand index works, consider the two clusterings: A = {d1}, {d2, d3}
and B = {d1, d2}, {d3} of the dataset D = {d1, d2, d3}. Here, N = 3, and there are (3

2) = 3
possible pairings of the three dataset elements: (d1, d2), (d1, d3), (d2, d3). Thus: P11 = 0, as
no pair is in the same cluster in both A and B; P10 = 1, as d1 and d2 are in different clusters
in A but the same cluster in B; P01 = 1, as d2 and d3 are in different clusters in A but the
same cluster in B; and P00 = 1, as d1 and d3 are in different clusters in both A and B. Hence,
the Rand index by Equation (A1) of A and B is (0 + 1)/3 = 0.33.

A difficulty with the Rand index is that its value tends to increase with the number of
clusters, hindering comparisons across different numbers of clusters. In order to permit
comparisons of Rand index values across different numbers of clusters, the adjusted Rand
index (ARI) [56] corrects for co-occurrences due to chance:

ARI(U, V) =
(N

2 )(P11 + P00)− [(P11 + P10)(P11 + P01) + (P01 + P00)(P10 + P00)]

(N
2 )

2 − [(P11 + P10)(P11 + P01) + (P01 + P00)(P10 + P00)]
, (A2)

where the Pxy are as defined above.

Appendix A.2. Clustering Similarity Test

We present as Algorithm A1 our implementation of the clustering similarity test. As
described in Section 4.1, we use as the input dataset D all ocean-cloud patches from
2003–2021, inclusive. We define a holdout set, H, for evaluation (line 1), and use as our
“perturbed versions” N subsets selected without replacement from D \ H (line 3). Then,
for each number of clusters, k, in the range 8 ≤ k ≤ kmax, we: train RICC on each subset
(line 8); apply the trained RICC to generate a clustering for the holdout set (line 6); use
the adjusted Rand index, ARI, to evaluate pairwise distances between those clusterings
(line 10); and average among the 30 clusterings generated by the RICC models {RICCi

k,
i ∈ 1..30} to determine the mean clustering similarity for that specific cluster number k.
Finally, we calculate the ARI for all (30

2 ) = 435 combinations of those 30 clusterings and
determine the mean ARI score G8..Gkmax (line 12).

Algorithm A1 Pseudocode for the clustering similarity test described in Section 4.1.

Input: D: { OC-Patches for 2003–2021, inclusive }
Output: G8, . . . , Gkmax : Clustering similarity scores for cluster counts from 8 to kmax.

1: H := {x | x ∈ D} where |H| = NH . Select holdout set to be used for evaluation
2: for i from 1 to N do
3: Select a subset Si :=

{
x | x ∈ D \ H \⋃ i−1

j=1 Sj
}

with |Si| = NR

4: for k from 8 to kmax do
5: RICC i

k ← Train RICC with k clusters on Si ∪ H
6: C i

k ← RICC i
k(H) . Determine cluster assignments in H with RICC i

k
7: end for
8: end for
9: for k from 8 to kmax do

10: Gk =
1

(N
2 )

∑
(i,j)∈(N

2 )

ARI
(

C i
k , C j

k

)
. Mean similarities for RICC clusters

11: end for
12: Return clustering similarity scores {G8, . . . , Gkmax}

Appendix A.3. Stability Significance Test

Algorithm A2 implements the stability significance test described in Section 4.2. For
each k in the range 8..kmax, we first compute clusterings (line 9) as in the clustering similarity
test of Appendix A.2 and then compute the mean Rand index score (see Appendix A.1)
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G8..Gkmax (line 15). To produce random label assignments, we first prepare 30 datasets that
are sampled from random uniform distributions U ∈ [−2σ, 2σ] (line 6). We then apply
HAC to the random data to generate random labels (line 11), from which we also calculate
the Rand Index for 435 combinations, giving the mean scores R8..Rkmax (line 16). Finally, we
compare how the ratio Gk

Rk
varies with number of clusters, k (line 19).

Algorithm A2 Pseudocode for the stability significance test described in Section 4.2.

Input: D: { OC-Patches for 2003–2021, inclusive }, trained rotation-invariant autoencoder AE
Output: {G8

R8
, . . . , Gkmax

Rkmax
}: cluster similarity significance scores

1: H := {x | x ∈ D} where |H| = NH . Select holdout set to be used for evaluation
2: z = {AE(x) : x ∈ H} . Use trained autoencoder to compute latent representations

3: σ =
√

1
NH

NH

∑
j=1

(
zj − z

)2
. Calculate standard deviation σ for latent representations

4: for i from 1 to N do
5: Select a subset Si :=

{
x | x ∈ D \ H \⋃ i−1

j=1 Sj
}

with |Si| = NR

6: Sample Ui :=
{

u | u ∈ U [−2σ, 2σ]
}

with |Ui| = NH , U a random uniform distribution.
7: for k from 8 to kmax do
8: RICC i

k ← Train RICC on Si ∪ H
9: RICC i

k(H)← Determine cluster assignments in H
10: HAC i

k ← Train HAC on Ui
11: HAC i

k(Ui)← Determine cluster assignments in Ui
12: end for
13: end for
14: for k from 8 to kmax do . Calculate averages of cluster similarities

15: Gk =
1

(N
2 )

∑
(i,j)∈(N

2 )

[
RandI

(
RICC i

k(H), RICC j
k(H)

)]
. Mean similarities for RICC clusters

16: Rk =
1

(N
2 )

∑
(i,j)∈(N

2 )

[
RandI

(
HAC i

k(Ui), HAC
j
k(Uj)

)]
. Mean similarities for random clusters

17: Calculate Gk
Rk

, ratio of stability between RICC and random samples
18: end for
19: Return cluster similarities significance scores, {G8

R8
, . . . , Gkmax

Rkmax
}
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Abstract: The ocean chlorophyll-a (Chl-a) concentration is an important variable in the marine
environment, the abnormal distribution of which is closely related to the hazards of red tides. Thus,
the accurate prediction of its concentration in the East China Sea (ECS) is greatly important for
preventing water eutrophication and protecting the coastal ecological environment. Processed by
two different pre-processing methods, 10-year (2011–2020) satellite-observed chlorophyll-a data and
logarithmic data were used as the long short-term memory (LSTM) neural network training datasets
in this study. The 2021 data were used for comparison to prediction results. The past 15 days’ data
were used to predict the concentration of chlorophyll-a for the five following days. Results showed
that the predictions obtained by both pre-processing methods could simulate the seasonal distribution
of the Chl-a concentration in the ECS effectively. Moreover, the prediction performance of the model
driven by the original values was better in the medium- and low-concentration regions. However, in
the high-concentration region, the prediction of extreme concentrations by the two data-driven LSTM
models showed underestimation, considering that the prediction performance of the model driven by
the original values was better. Results of sensitivity experiments showed that the prediction accuracy
of the model decreased considerably when the backward prediction time step increased. In this study,
the neural network was driven only by chlorophyll-a, whose concentration in the ECS was forecasted,
and the effect of other relevant marine elements on Chl-a was not considered, which is the current
weakness of this study.

Keywords: LSTM; chlorophyll-a; East China Sea

1. Introduction

In marine ecosystems, marine phytoplankton chlorophyll-a (Chl-a) can effectively
reflect the biomass of marine primary producers and the photosynthetic carbon seques-
tration capacity of marine primary productivity [1–5], which are fundamental to marine
ecosystems. The prediction of the marine chlorophyll-a concentration and the analysis
of its spatial and temporal changes are not only useful for the study of marine primary
productivity, but also important for the study of carbon cycling in the ocean–atmosphere
system [6,7], red tide hazard monitoring [8–10], environmental monitoring [11], ocean
currents (such as upwelling and coastal currents) [12,13], as well as fishery management
and the estimation of aquaculture production [14].

The chlorophyll-a concentration is influenced by many factors, such as climatic fac-
tors, namely light, temperature, precipitation, and wind speed [15,16], and geographical
factors [17,18]. In addition, in the early period, a relative paucity of data relating to the
Chl-a concentration was observed, leading to a high level of uncertainty in its prediction.
The prediction methods could be broadly categorized into two methods. The first is the
statistical method, which was first proposed by Vollenweider [19], who used statistical
models to predict the issue of eutrophication. Kiyofuji et al. [20] developed a statistical
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spatiotemporal model to predict the distribution of chlorophyll-a in the Sea of Japan on the
basis of SeaWiFS data. Although the model was able to predict its distribution effectively
during summer and early autumn, this traditional statistical method could only solve
the average concentration of a particular element and could not simulate the effect of
relevant factors on chlorophyll-a. The second method is based on ecological dynamics,
the properties of water bodies, and establishing a theoretical analysis model to predict the
concentration of chlorophyll-a [21–23]. Using data collected monthly, Liu et al. [24] used
multivariate statistical methods to simulate the effects of multiple chemical variables on
chlorophyll-a in Lake Qilu. This method considers the interactions between elements in
nature and includes many parameters, thereby causing difficulty in accurate modeling or
parameterization due to the diversity of water quality variables in the ocean.

The research on remote sensing monitoring of chlorophyll-a and remote sensing
inversion has become increasingly sophisticated with the development of satellite remote
sensing technology. Moreover, a large amount of water quality data can be obtained as the
access to information becomes more diverse. A new trend in recent years has been the use of
machine learning methods for water quality variable prediction. Machine learning methods
can capture the characteristics of the input data to explore the potential relationships
between variables, and narrow the difference between predictions and observations by
updating the parameters in the model. The most widely used machine learning methods
at present include artificial neural networks (ANN, [25–29]), support vector machine
(SVM, [30–32]), decision tree (DT), random forest (RF, [32–35]), and regression, etc. Deep
learning (DL) is a special type of machine learning [36]. Zhang et al. [37] proposed a new
prediction approach for algal blooms on the basis of deep learning to represent and predict
highly dynamic and complex phenomena. Most current studies use independent deep
learning models for chlorophyll-a concentration prediction. Several deep learning models,
such as the recurrent neural network (RNN) and its variant, the long short-term memory
neural network (LSTM), are commonly used in time-series forecasting. Both approaches
have good performance in dealing with time-series information problems. Compared with
the traditional RNN, LSTM does not have the problem of gradient disappearance in the
process of training long-term sequences. Therefore, the LSTM model can effectively predict
the chlorophyll-a concentration [38–40]. Yossof et al. [41] used an LSTM model and a
convolutional neural network (CNN) model to predict harmful algal blooms on the western
coast of Sabah. The results show that the LSTM model outperforms the CNN model in
terms of prediction accuracy. Barzegar et al. [42] first built a coupled CNN–LSTM model to
predict water quality variables in Small Prespa Lake, Greece, and the results showed that
the hybrid CNN–LSTM model was better than the independent model in predicting the
chlorophyll-a concentration.

The Eastern China Sea (ECS) area is under the influence of the East Asian monsoon;
the chlorophyll-a concentration in the ECS has evident seasonal variation characteristics
and is influenced by land runoff, mainly from the Yangtze River [43–45]. The distribution
of it in the East China Sea is also influenced by the Kuroshio, with high-temperature and
high-salt seawater [46,47]. The Eastern China Sea area has a long coastline, of which
the Zhejiang coast is one of the famous upwelling areas in China, and it has important
fishing grounds, such as the Zhoushan and Yushan fishing grounds [48]. With the rapid
development of coastal cities in recent years, the frequency of red tides in the ECS has
increased substantially [14,49], not only polluting the marine environment of this region
but also severely damaging the fishery resources, leading to huge economic losses [50].
Therefore, accurate prediction of the chlorophyll-a concentration in this area is important
for the prevention of eutrophication and the protection of the offshore ecosystem.

Machine learning methods have been applied to research on forecasting ocean ele-
ments, such as storm surges [51], harmful algal blooms (HAB), and sea surface temperature
(SST) in the ECS. Xu et al. [52] used the SVM model to predict the occurrence of red tides in
Haizhou Bay in the ECS. Xiao et al. [53,54] used a combined LSTM–AdaBoost model and a
convolutional LSTM (ConvLSTM) model to predict the SST field in the ECS, respectively.
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The results showed that the LSTM–AdaBoost and ConvLSTM models have good promise
in accurately predicting the short- and medium-term SST fields.

At present, no research has used machine learning to predict the chlorophyll-a con-
centration in the East China Sea area. Thus, this study first uses the LSTM neural network
to predict the concentration in this region. The specific objectives of this research are
(1) comparing the effects of different processing methods for chlorophyll-a data on the
forecast result; and (2) evaluating the prediction results of the LSTM neural network in
the ECS on the basis of the previous step by using the optimal processing method for
chlorophyll-a data.

The rest of this paper is organized as follows, Section 2 describes the satellite data and
LSTM neural network used in this study, Section 3 presents the experimental results and
detailed discussion, and Section 4 draws the conclusions obtained from this study.

2. Materials and Methods
2.1. Materials

This study uses the ocean color data product (OCEANCOLOUR_GLO_BGC_L4_MY_009
_104) provided by the Copernicus Marine Environment Monitoring Service (CMEMS,
http://www.copernicus.eu/ (accessed on 11 July 2022)). This product integrates data from
SeaWiFS, MODIS-Aqua, MODIS-Terra, MERIS, VIIRS-SNPP, OLCI-S3A&S3B, and other
satellites. The time resolution is 1 day, the spatial resolution is 4 km × 4 km, and the time
span is from September 1997 to the present. The spatial range of chlorophyll-a data used in
our study is 22◦N–33◦N, 120◦E–131◦E, and the time range is from 2011 to 2021, of which
the data from 2011 to 2020 are used as the training dataset, and the chlorophyll-a data from
2021 are used as the test dataset.

2.2. Methods
2.2.1. LSTM Neural Network

LSTM was proposed by Hochreiter and Schmidhuber in 1997 [55] as a variant neural
network of RNN for long-time-series training. It can effectively solve the gradient disap-
pearance problem, which easily occurs in the training process of the traditional RNN. The
internal network structure of the LSTM unit is more complex than that of the traditional
RNN. The information in the current unit is processed by the input gate, forgetting gate,
and output gate, and then the historical unit information is selected to be either “forgotten”
or “remembered”.

The two most important states in the LSTM cell structure are the cell state c(t) and
the hidden state h(t). The cell state transmits information through different gates, thereby
enhancing the dependency among long-time-series information; the cell structure is shown
in Figure 1.

First, the function of the forget gate ft is to select which information needs to be
discarded in the current state of the cell. ft is calculated as follows:

ft = σ
(

W f hht−1 + W f xxt + b f

)
(1)

where σ(·) represents the sigmoid activation function, W f h and W f x represent the corre-
sponding weight parameters, xt represents the input at moment t, ht−1 represents the
hidden state of the cell at moment t− 1, and b f is the bias term.

Second, the function of the input gate it is to remember the candidate cell state
selectively, thereby updating the cell state at the current moment, and a new cell state C̃t is
generated by the following calculation formula:

it = σ(Wihht−1 + Wixxt + bi) (2)

C̃t = tanh(Wchht−1 + Wcxxt + bc) (3)

Ct = ft × Ct−1 + it × C̃t (4)
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where σ(·) represents the sigmoid activation function; Wih, Wix, Wch, and Wcx represent the
corresponding weight parameters, xt represents the input at moment t, ht−1 represents the
hidden state of the cell at moment t− 1, C̃t represents the candidate state at the current
moment, and bi and bc are bias terms.
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Then, the output gate ot is used to determine the output component of the cell state
through the sigmoid function, whereas the cell state is processed through tanh and multi-
plied with the output gate ot to obtain the new hidden state ht; the calculation formula is
as follows:

σt = σ(Wohht−1 + Woxxt + bo) (5)

ht = ot × tanh(ct) (6)

where σ(·) represents the sigmoid activation function, Woh and Wox represent the corre-
sponding weight parameters, xt represents the input at moment t, and bo represents the
bias term.

2.2.2. Architecture of the LSTM Model for Chl-a Forecasts

In this study, a regional chlorophyll-a concentration prediction model is established
on the basis of the LSTM neural network, including an input layer, three LSTM layers, a
dropout layer, and a dense layer, as shown in Figure 2. Dropout is a method to control the
complexity of the model. In each training batch, a certain number of hidden nodes are set
to 0 to reduce the interaction between hidden nodes, thereby preventing the model from
overfitting [56,57]. During training, we use tanh as the activation function to generate the
output of hidden neurons. Adam optimization is a stochastic gradient descent method
based on the adaptive estimation of first- and second-order moments; compared with other
stochastic optimization algorithms, the Adam algorithm has more advantages in practical
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applications [58]. Therefore, in this study, we adopt the Adam optimization algorithm to
minimize the error between predicted and observed values.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 18 
 

 

ℎ௧ = 𝑜௧ ൈ tanh(𝑐௧), (6)

where 𝜎(⋅) represents the sigmoid activation function, 𝑊௢௛ and 𝑊௢௫ represent the cor-
responding weight parameters, 𝑥௧ represents the input at moment 𝑡, and 𝑏௢ represents 
the bias term. 

2.2.2. Architecture of the LSTM Model for Chl-a Forecasts 
In this study, a regional chlorophyll-a concentration prediction model is established 

on the basis of the LSTM neural network, including an input layer, three LSTM layers, a 
dropout layer, and a dense layer, as shown in Figure 2. Dropout is a method to control the 
complexity of the model. In each training batch, a certain number of hidden nodes are set 
to 0 to reduce the interaction between hidden nodes, thereby preventing the model from 
overfitting [56,57]. During training, we use tanh as the activation function to generate the 
output of hidden neurons. Adam optimization is a stochastic gradient descent method 
based on the adaptive estimation of first- and second-order moments; compared with 
other stochastic optimization algorithms, the Adam algorithm has more advantages in 
practical applications [58]. Therefore, in this study, we adopt the Adam optimization al-
gorithm to minimize the error between predicted and observed values. 

 
Figure 2. Architecture of the LSTM model for Chl-a forecasts. 

2.2.3. Data Pre-Processing 
To investigate the effect of different input data on the prediction results of the LSTM 

model, one group used the original data as input to the model, and the other group used 
the logarithmic data as input to the LSTM model. Both groups used the data of the previ-
ous 15 days to predict the value of the next 5 days. Data from 2011 to 2020 were used to 
generate the corresponding training and validation datasets, where the ratio of the data 
volume of the training dataset to the validation dataset was 4:1. Data from 2021 were used 
as a test dataset to make predictions for chlorophyll-a, which was excluded from the 
model training to ensure relative independence between the training and test datasets. To 
explore the influence of input length on the prediction results of the LSTM model, under 
the condition that hyperparameters, such as the number of hidden layers, the neurons, 
and the learning rate, do not change, the prediction length was controlled to 1 day, and 
the input length was set to 7, 10, and 15 days, respectively. Similarly, to explore the influ-
ence of the prediction length on the prediction results of the model when the other 

Figure 2. Architecture of the LSTM model for Chl-a forecasts.

2.2.3. Data Pre-Processing

To investigate the effect of different input data on the prediction results of the LSTM
model, one group used the original data as input to the model, and the other group used
the logarithmic data as input to the LSTM model. Both groups used the data of the previous
15 days to predict the value of the next 5 days. Data from 2011 to 2020 were used to generate
the corresponding training and validation datasets, where the ratio of the data volume of
the training dataset to the validation dataset was 4:1. Data from 2021 were used as a test
dataset to make predictions for chlorophyll-a, which was excluded from the model training
to ensure relative independence between the training and test datasets. To explore the
influence of input length on the prediction results of the LSTM model, under the condition
that hyperparameters, such as the number of hidden layers, the neurons, and the learning
rate, do not change, the prediction length was controlled to 1 day, and the input length was
set to 7, 10, and 15 days, respectively. Similarly, to explore the influence of the prediction
length on the prediction results of the model when the other hyperparameters remain
unchanged, the input length was controlled to 15 days, and the prediction length was set
to 1, 3, and 5 days, respectively. The training dataset used in the training model needed
to be standardized. In the process of standardizing the data, we used the MinmaxScaler
function imported from the sklearn library to scale the data of the training dataset to (−1, 1)
to obtain the standardized training dataset.

2.2.4. Evaluation Functions

To compare the performance of the different methods further, the following indicators
were used in this study to evaluate model performance: root mean square error (RMSE),
standard deviation (STD), coefficient of determination (R2), and absolute error (AE). The
formulas are shown below.

RMSE =

√
1
n ∑n

t=1(Yt − yt)
2 (7)

S =

√
∑n

t=1(xt − x)2

n− 1
(8)
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R2 = 1− ∑n
t=1(Yt − yt)√

∑n
t=1
(
Yt −Y

)2
(9)

AE = |Yt − yt| (10)

where Y represents the satellite-observed value, Y represents the average of the satellite-
observed values, y represents the model-predicted value, and y represents the average of
the model-predicted chlorophyll-a values. x represents the value from satellite observations
or model forecasts, and x represents the average of the values from satellite observations
or model forecasts. Small RMSE and AE values indicate the high forecast accuracy of
the model. The closer the value of S to the STD of the observed values, the better the
prediction performance of the model. The closer the value of R2 to 1, the higher the fitness
between the predicted and observed values.

3. Results

The chlorophyll-a concentration in the East China Sea varies widely from nearshore to
offshore due to the influence of surface runoff. It also has substantial seasonal variations
due to environmental factors, such as monsoons and ocean currents. Therefore, this study
selected four points, marked as L1 (32.1◦N, 122.2◦E), L2 (28.0◦N, 123.4◦E), L3 (30.8◦N,
124.9◦E), and L4 (23.8◦N, 126.9◦E), as shown in Figure 3, to analyze the chlorophyll-a
concentration predicted by the LSTM model. L1 was selected because the annual mean of
the chlorophyll-a concentration at this location is higher, as well as the standard deviation
of the concentration. L2 and L3 were selected because these points are located in the
median area of the annual mean chlorophyll-a concentration; the coefficient of chlorophyll-
a variation is higher at L2. L4 was selected because the concentration in location L4 is lower
in the distant sea area.
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Figure 3. (a) Spatial distribution of annual mean Chl-a concentration from 2021 satellite observations
in ECS. (b) Spatial distribution of the standard deviation of the Chl-a concentration from 2021 satellite-
observed data in ECS. (c) Spatial distribution of the coefficient of variation in the Chl-a concentration
from 2021 satellite-observed data in ECS. L1, L2, L3, L4 are the four different points selected.

3.1. LSTM Prediction Results under Different Data Pre-Processing Methods

First, this study discussed the effect of chlorophyll-a data obtained from different
data pre-processing methods on the prediction performance of the LSTM model. Original
and logarithmic data of the past 15 days were used as the inputs to the neural network to
predict the chlorophyll-a concentration for the following one day.

Figure 4 shows the variation in concentration predicted by the LSTM model at different
locations and the real concentration observed by a satellite over time. The red line indicates
the data from satellite observations, the blue line is the concentration predicted when using
the original data as input to the neural network, and the green line is the concentration

114



Remote Sens. 2022, 14, 5461

predicted when using the logarithmic data as input to the neural network. Figure 4a–d show
that both data processing methods can accurately predict the variations in the chlorophyll-a
concentration. In terms of the prediction of the extremum, when using logarithmic data
as input to the neural network, the predicted extremum of the concentration is smaller
than the satellite observations; when using original data as the input to the neural network,
the extremum of the concentration is better predicted in the regions with medium and
low concentrations (Figure 4b–d). In addition, both LSTM models can better predict
the concentration of chlorophyll-a at times when its value changes gently. In the region
with a higher concentration (Figure 4a), the predicted values of both models severely
underestimate the extremum of it in the two time periods when the concentrations reach
their peak (Figure 4a). Figure 4b shows that a similar underestimation occurs around
April 1 and during the chlorophyll-a peak at the end of October, when logarithmic data are
used as input to the neural network. According to Figure 4d, the predicted values obtained
when using logarithmic data as input to the model are underestimated most of the time.
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According to Figure 5, it can be seen that, most of the time, the error between the
observed and predicted value of the two LSTM models is small. However, the neural
network does not predict the concentrations well when transient and drastic changes in
concentrations occur. Moreover, the time points at which the errors are larger are mostly
concentrated at times when the concentrations undergo dramatic changes. It can be seen
from Figure 5d that when using logarithmic data as input data in the LSTM model, the
predicted values of chlorophyll-a are underestimated most of the time.
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The chlorophyll-a distribution in the East China Sea area has substantial seasonal
variation. Figure 6 shows the seasonal distribution of the values from satellite observations
and the predicted values of the two LSTM models using the two different data processing
methods. The predicted results of both neural networks can accurately simulate the
seasonal variation, but the predicted values are lower than the observed values when using
logarithmic data as the input in the high-value nearshore region. The seasonal distribution
of the predicted values has better accuracy on the nearshore and offshore when the original
data are used as input. Figure 7 shows that when using the original data as the input,
the AE between the predicted values and the observed values is small. The inaccuracies
are mainly concentrated in the high- and medium-concentration regions; they are mostly
less than 0.5 mg/m3. When using the logarithmic data as input, the AE is relatively large,
especially in the high-value nearshore region and on the offshore, where the concentration
is low; the error between predicted and observed values is small.
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Figure 6. Spatial distribution of satellite-observed values and predicted values from LSTM models
using two different data processing methods for four seasons. March to May represents Spring,
June to August represents Summer, September to November represents Autumn, and December to
February represents Winter. (a–d) represent the distribution of the data from satellite observations,
in the order of spring, summer, autumn, and winter. (e–h) represent the distribution of the values
predicted by the LSTM model using the original values as input, and (i–l) represent the distribution
of the values predicted by the LSTM model using the logarithmic values as input.
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Figure 8 shows that the spatial distribution of RMSE for concentrations predicted
by the two different LSTM models has high agreement overall. Figure 8c shows that the
RMSE of the prediction results using the original data as input is larger in most high and
median regions of the nearshore compared with that using logarithmic data as input. In
this study, the RMSEs for the prediction results of the two models were divided by the
values of their average, and the spatial distribution of this result was drawn, as shown
in Figure 9. The predicted results using the original data are larger in most areas of the
median region compared with those using logarithmic data as input, whereas the opposite
is true in most areas of the low-value region in the distant ocean.

Figure 10 shows that, in terms of STD, the forecast results at three locations (i.e.,
high-value area (L1), medium-value area with a small coefficient of variation (L2), and
low-value area (L4)) have better prediction performance when using the original data as
input to the neural network, whereas the correlation coefficients between the observed
values and the predicted results of the two different models at the four positions do not
differ considerably. Although the correlation coefficient values between the observed
values and the predictions using the two different models are close in L1, their correlation
coefficient values are low (only 0.64); combined with R2 in Table 1, the LSTM model is
prone to errors when predicting the concentration of chlorophyll-a in high-value areas.
In L3, although the difference in the RMSE and correlation coefficients of the observed
values and the predictions of the two models is relatively small, the prediction performance
using the logarithmic data as input is better in terms of R2 in the medium area with a
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large coefficient of variation. The predictions of the two different LSTM models in the
four different locations, except L3, indicate that the neural network using the original
data as input has better prediction performance for the three other points based on R2.
Therefore, we use the original data as the input of the neural network for further work in
the subsequent sections.
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3.2. LSTM Prediction Results with Different Input and Output Lengths

Table 2 shows that the neural network has the best prediction performance when
forecasting 1 day at four different locations, after which the prediction performance of the
neural network decreases as the number of forecast days increases.

According to Table 3, in terms of RMSE and STD, the prediction performance of
the neural network in the region with a high concentration (L1) and that with a medium
concentration and low coefficient of variation (L2) was optimal when the input length was
15 days. In the medium-concentration area with a large coefficient of variation (L3) and the
low-concentration area (L4), the RMSE and STD were close when the input length was 15
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and 7 days. In addition, the prediction performance of the neural network with the input
length of 7 days was slightly better than that with the input length of 15 days. In terms of
correlation coefficient, the predicted results in the region of high concentration (L1) and
that in the region of medium concentration with a small coefficient of variation correlated
best with observations when the input length was 15 days. Moreover, in the region of
medium concentration with a large coefficient of variation (L3) and in the region of low
concentration (L4), the predictions correlated best with observations when the input length
was 7 days. In terms of R2, the high-concentration area (L1) and medium-concentration
area (L2, L3) had the optimal prediction performance when the input length was 15 days; by
contrast, in the low-concentration area (L4), the model had the best prediction performance
when the input length was 7 days.
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Table 1. Values of R2 for the four points. ori indicates results using the original data as input, log
indicates results using logarithmic data as input, and obs indicates the observed value.

L1 L2 L3 L4

R2 ori: 0.4133 ori: 0.6806 ori: 0.6732 ori: 0.6482

log: 0.3936 log: 0.66273 log: 0.7337 log: 0.5681
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Table 2. Values of RMSE, STD, COR, and R2 at the four points for different output lengths. Here, 1d
indicates the forecast results for one day backward, 3d indicates the forecast results for three days
backward, and 5d indicates the forecast results for five days backward.

L1 L2 L3 L4

RMSE
1d: 3.5012 1d: 0.8304 1d: 0.4779 1d: 0.0223
3d: 4.6445 3d: 1.2453 3d: 0.6867 3d: 0.0303
5d: 4.6475 5d: 1.4237 5d: 0.7653 5d: 0.0320

STD
1d: 2.9369 1d: 1.3581 1d: 0.8796 1d: 0.0324
3d: 1.6825 3d: 1.0272 3d: 0.7922 3d: 0.0312
5d: 1.2218 5d: 0.8789 5d: 0.7349 5d: 0.0300

COR
1d: 0.6431 1d: 0.8306 1d: 0.8368 1d: 0.8116
3d: 0.1495 3d: 0.5510 3d: 0.6755 3d: 0.6366
5d: 0.1051 5d: 0.3504 5d: 0.5661 5d: 0.5841

R2
1d: 0.4133 1d: 0.6806 1d: 0.6732 1d: 0.6482
3d: −0.0330 3d: 0.2820 3d: 0.3252 3d: 0.3553
5d: −0.0356 5d: 0.0619 5d: 0.1599 5d: 0.2802

Table 3. Values of RMSE, STD, COR, and R2 at four points for different input lengths. Here, 15d
indicates the results using data of the first 15 days to predict, 10d indicates the results using data of
the first 10 days, and 7d indicates the results using data of the first seven days.

L1 L2 L3 L4

RMSE
15d: 3.5012 15d: 0.8304 15d: 0.4799 15d: 0.0223
10d: 3.5972 10d: 0.8702 10d: 0.4845 10d: 0.0292
7d: 3.5265 7d: 0.8530 7d: 0.4796 7d: 0.0217

STD
15d: 2.9369 15d: 1.3581 15d: 0.8796 15d: 0.0324
10d: 3.2444 10d: 1.3997 10d: 0.9039 10d: 0.0263
7d: 3.0379 7d: 1.3791 7d: 0.8783 7d: 0.0369

COR
15d: 0.6431 15d: 0.8306 15d: 0.8368 15d: 0.8116
10d: 0.6235 10d: 0.8169 10d: 0.8591 10d: 0.8313
7d: 0.6372 7d: 0.8228 7d: 0.8613 7d: 0.8316

R2
15d: 0.4133 15d: 0.6806 15d: 0.6732 15d: 0.6482
10d: 0.3807 10d: 0.6492 10d: 0.6640 10d: 0.3955
7d: 0.4048 7d: 0.6629 7d: 0.6708 7d: 0.6663

4. Conclusions

The difference between nearshore and offshore chlorophyll-a concentrations can be
large, with high and low values of concentration often varying by several orders of mag-
nitude; thus, most of the relevant studies initially processed the concentration values
logarithmically. To explore whether different input data affect the prediction performance
of the LSTM neural network, this study uses two different data pre-processing methods,
using the data of the previous 15 days as input to the neural network and intelligently
estimating the concentration of the next 5 days. In the nearshore with a high concentration,
the predicted results of the neural network that is driven by original data are closer to the
actual satellite observational values, and the predicted results of the neural network that is
driven by logarithmic data are smaller than the observed values. The error is mainly in
the nearshore with high and median concentrations; the AE between the concentrations
predicted by original data and the observed values was small, i.e., less than 0.5 mg/m3,
in most areas. By contrast, the AE between the results predicted using the logarithmical
data and the observed values was larger, especially in some high-concentration regions
of the nearshore areas, where the AE was as high as 1 mg/m3. Analysis of the RMSE
and R2 of the prediction results from different LSTM models indicated that the prediction
performance of the model driven by the original data was improved in the region with
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a high concentration, the region with a medium concentration and a large coefficient of
variation, and the region with a low concentration. Moreover, the prediction performance
of the LSTM model driven by logarithmic data was improved in the region with a medium
concentration and low coefficient of variation. With all the factors considered, the prediction
results are improved when the original data are used as input to the LSTM model.

In addition, different inputs and forecast lengths affect the prediction performance of
the LSTM model. As the forecast length increases, the prediction accuracy of the neural
network decreases remarkably. The prediction accuracy starts to decrease by the third day
of forecasting downwards, and the best prediction accuracy is achieved at the forecast
length of 1 day. Increasing the input length can increase the prediction performance of the
neural network to a certain extent, and the optimal result is obtained when the input length
is 15 days in the high- and medium-concentration regions. Furthermore, the optimal result
is obtained at a 7-day input length in the low-concentration region.

5. Discussion

Previous studies on the prediction of chlorophyll-a concentrations used several meth-
ods, such as statistical models and ANNs. In this study, we established an intelligent
forecast model for chlorophyll-a in the East China Sea on the basis of the LSTM algorithm
and discussed its forecast performance. It is a novel prediction method and has achieved
good results. However, this study only used chlorophyll-a as the input to drive the neural
network, whereas, in the real ocean, many factors, such as temperature, precipitation, and
wind speed, may affect the concentration. Therefore, in future studies, we will attempt
to consider multiple variables to drive the LSTM neural network to improve the predic-
tion performance of the model for the prediction of the chlorophyll-a concentration in the
ECS further.
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Abstract: The vertical distribution of light and its spectral composition are critical factors influencing
numerous physical, chemical, and biological processes within the oceanic water column. In this study,
we present vertically resolved models of downwelling irradiance (ED) at three different wavelengths
and photosynthetically available radiation (PAR) on a global scale. These models rely on the SOCA
(Satellite Ocean Color merged with Argo data to infer bio-optical properties to depth) methodology,
which is based on an artificial neural network (ANN). The new light models are trained with light
profiles (ED/PAR) acquired from BioGeoChemical-Argo (BGC-Argo) floats. The model inputs consist
of surface ocean color radiometry data (i.e., Rrs, PAR, and kd(490)) derived by satellite and extracted
from the GlobColour database, temperature and salinity profiles originating from BGC-Argo, as
well as temporal components (day of the year and local time in cyclic transformation). The model
outputs correspond to ED profiles at the three wavelengths of the BGC-Argo measurements (i.e., 380,
412, and 490 nm) and PAR profiles. We assessed the retrieval of light profiles by these light models
using three different datasets: BGC-Argo profiles that were not used for the training (i.e., 20% of
the initial database); data from four independent BGC-Argo floats that were used neither for the
training nor for the 20% validation dataset; and the SeaBASS database (in situ data collected from
various oceanic cruises). The light models show satisfactory predictions when thus compared with
real measurements. From the 20% validation database, the light models retrieve light variables with
high accuracies (root mean squared error (RMSE)) of 76.42 µmol quanta m−2 s−1 for PAR and 0.04,
0.08, and 0.09 W m−2 nm−1 for ED380, ED412, and ED490, respectively. This corresponds to a median
absolute percent error (MAPE) that ranges from 37% for ED490 and PAR to 39% for ED380 and ED412.
The estimated accuracy metrics across these three validation datasets are consistent and demonstrate
the robustness and suitability of these light models for diverse global ocean applications.

Keywords: BGC-Argo; ED380; ED412; ED490; global ocean; light models; neural network; PAR

1. Introduction

Incoming solar radiation, 40% of which originates from the visible part of the spectrum,
stands as the main source of energy for the entire Earth system. In the ocean, this radiation
propagates and attenuates from the surface to the depths. The characterization of this
propagation critically depends on accurate estimation of the downwelling irradiance,
ED (W m−2), over various depths. This estimation serves as the core for understanding
numerous surface and sub-surface oceanic processes, as well as for the quantification of
key oceanic variables.

More specifically, knowledge of ED at different depths is crucial for the quantification
of various photo-dependent processes, such as oceanic phytoplankton photosynthesis [1,2],
which relies on photosynthetically available radiation (PAR) as an indication of the integra-
tion of irradiance over the visible domain (400–700 nm). Additionally, knowledge of ED
is essential for determining the heating rate of the upper ocean [3,4], involving the entire
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spectrum from UV to infrared, and also for the photo-production or destruction of organic
molecules [5], often driven by the energetic UV part of the spectrum.

The derivative of the ED with respect to depth, known as the diffuse attenuation
coefficient, kd (m−1), is a reliable parameter that can be related to specific optically signifi-
cant substances, such as chlorophyll-a concentration (Chla), the proxy for phytoplankton
biomass [6,7] or colored dissolved organic matter (CDOM) [8], the proxy for dissolved
organic carbon (DOC) [9].

For the computation of remote sensing reflectance (Rrs), in situ measurements of ED
and upwelling irradiance (LU), which measure the radiant flux per unit area per unit solid
angle (W m−2sr−1), are essential. Rrs, linked to the concentration of optically significant
substances and accessible from satellite observations, is an apparent optical property (AOP)
of fundamental importance in ocean-color-related science. Notably, ocean color products,
including Rrs, as well as ocean surface heat flux, are labeled as essential oceanic variables
within the framework of the Global Ocean Observation System (GOOS) program.

Most of the irradiance (multi- or hyper-spectral, PAR) profiles acquired so far essen-
tially result from the deployment of irradiance profilers from ships. These measurements
(and the subsequent derivation of kd), along with the concurrent measurements of key
biogeochemical variables (e.g., Chla) [10–12], have contributed to the establishment of
reference databases. These databases have become the key for assessing the bio-optical and
trophic status of oceanic environments [12,13] as well as supporting validation activities
for satellite ocean color radiometric products [14].

The implementation of the BioGeoChemical(BGC)-Argo program, of which irradiance
is one of the six core variables, has opened up a revolutionary way to acquire numerous
irradiance profiles and develop internally consistent databases [15,16]. In particular, long
time series are now available in highly remote oceanic areas as well as for the severe
conditions encountered in high-latitude environments in winter. Apart from radiometric
quantities, BGC-Argo also allows measurement of the profiles of bio-optical variables
such as Chla and particle backscattering (bbp, a proxy for the particulate organic carbon
(POC)). As a consequence, BGC-Argo alleviates the seasonal and regional limits and biases
observed in former bio-optical databases established through ship-based observation alone,
thus filling observational gaps.

To clearly distinguish the bio-optical and biogeochemical characteristics of the upper
water column, a precise determination of light parameters, particularly kd, is essential. A
variety of models, including numerical, analytical, and empirical approaches, are currently
used to derive the vertical propagation of irradiance within the water column. Some
of these models [17–21] primarily rely on the use of inherent optical properties (IOPs)
and AOPs to derive subsurface light fields. Others [22] combine a clear-sky irradiance
model [23] and a spectral bio-optical relationship linking Chla to kd(λ) [11], which is applied
to vertical Chla profiles to propagate surface irradiance into the water column beneath.
These models have been widely used for a variety of applications aiming to understand
and quantify bio-optical or biogeochemical processes at a regional or global scale, par-
ticularly benefiting from ocean color radiometry measured by satellites. However, these
models remain complex, and, more importantly, their inputs are not readily available for
immediate use.

The unique, readily and openly accessible bio-optical database based on BGC-Argo
measurements (e.g., [24]) has proven to be a pivotal starting point for refining bio-optical
studies (e.g., [25]), as well as for the development of novel approaches. Among these,
ref. [26] reports the development of a neural network method aimed at predicting the
vertical distribution of bbp for any geolocation in the open ocean. This neural network,
named SOCA (Satellite Ocean Color merged with Argo data to infer bio-optical properties
to depth), was trained and validated using the BGC-Argo database of temperature, salinity,
and bbp profiles. The SOCA method for bbp estimation at depth requires satellite ocean
color data combined with vertical profiles of temperature and salinity as inputs. The
original method of [26] has been further refined (e.g., by including satellite altimetry data as
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additional predictors) and adapted for the estimation of both bbp and Chla. Currently, this
refined approach is presented as a standard three-dimensional gridded product delivered
by the European Copernicus Marine Service [27]. SOCA-derived profiles of biogeochemical
quantities, along with their uncertainties, offer a basis for valuable tools for overcoming
existing observational gaps. These new products can potentially support a wide range of
scientific activities, including ocean modeling.

The SOCA models have served as a proof of concept by successfully deriving, first, the
bbp, and then another bio-optical property measured from BGC-Argo floats (i.e., Chla). This
achievement has boosted confidence in the methodology’s effectiveness and its adaptability
to various properties measured by the BGC-Argo floats. Building on this foundation estab-
lished by the SOCA models, our study aims to introduce a similar approach, specifically
tailored for retrieving vertically resolved light fields in the ocean. Referred to as SOCA-light,
this model has been developed to estimate irradiance profiles at any geolocation in the open
ocean (bathymetric depth greater than 1500 m). It relies on a unique database of PAR and
ED profiles acquired by BGC-Argo floats over the last decade. This manuscript presents
the development of SOCA-light, its validation, and explores its potential applications. This
model represents a significant advancement in bio-optical studies, opening a new pathway
for oceanographic research.

The manuscript is organized as follows: Section 2 introduces the data and methods
used for the development and validation of the light models. The following section exam-
ines the performance of these models across several datasets, including BGC-Argo datasets
as well as historical ones used to establish and validate numerous models. In this section,
we additionally assess the capability of the light model to predict bio-optical products from
the irradiance profile. In Section 4, the final section, we address the drawbacks, benefits,
and future prospects of SOCA-light models.

2. Materials and Methods
2.1. Data
2.1.1. BGC-Argo Data

BGC-Argo floats [16] equipped with multi-spectral ocean color radiometers (Satlantic
OCR-504, Satlantic Inc., Halifax, NS, Canada) measuring ED at 3 different wavelengths,
i.e., 380, 412 and 490 nm, W m−2 nm−1, and PAR, µmol quanta m−2 s−1, were used for
the present study. From among the synthetic BGC-Argo individual profiles available at
the Coriolis Global Data Assembly Center (GDAC) [28], only radiometric measurements
qualified in delayed-mode (DM) using the quality control and calibration procedures
proposed by [29] were kept for the model development. These procedures identify and
correct radiometric profiles for any sensor drift or temperature dependence. The correc-
tion relies on the acquisition of at least one night profile per year (for the assessment of
sensor temperature dependence) and daily dark measurements when the float drifts at the
1000 dbar parking depth (for the assessment of sensor drift). Concurrently with radiometric
profiles, DM-qualified profiles of pressure (P), temperature (T), and salinity (S), were also
used for the present study. The P, T, and S profiles with a number of qualified measurements
less than 5 in the upper 50 m and less than 15 in the upper 250 m were discarded from the
present analysis. The geographical locations of all profiles (P, T, S, and PAR) used for the
development and validation of the SOCA-light model for PAR are shown in Figure 1.
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Figure 1. Geographical distribution of BGC-Argo profiles used for the development and validation
of the SOCA-light model for photosynthetically available radiation (PAR) profiles. The details of the
geographical distributions of profiles for other light variables (ED) are provided in Figures S1–S3 in
Supplementary Information.

2.1.2. Satellite Ocean Color Data

For the neural network development and validation, and the extraction of monthly
climatological light fields, we used satellite-based level-3 (L3) ocean color products of fully
normalized remote sensing reflectance (Rrs), PAR, and kd(490) from GlobColour products.
While (Rrs and kd(490) data were available from the Copernicus-GlobColour product,
PAR (not similarly available) was directly downloaded from the GlobColour website
(http://hermes.acri.fr, accessed on 17 February 2023). These global L3 products [30], which
have a spatial resolution of 4 km, correspond to daily composites obtained from merged L3
Ocean Color outputs from different sensors, which ensures data continuity, improves spatial
and temporal coverage, and reduces data noise [31]. The kd(490) product of GlobColour
was computed from the corresponding merged Chla (CHL-OC5) product [32], using the
following empirical equation [33].

kd(490) = 0.0166 + 0.077298× CHL-OC50.67155 (1)

2.1.3. SeaBASS Data

The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS) [34,35] is a high-
quality in situ database of optical measurements, essential for satellite-data product val-
idation and algorithm development. These data have been collected since 1998 using a
variety of instrument packages (profilers, buoys, and hand-held instruments) from different
manufacturers and operated on a variety of platforms, including ships and moorings. For
our study, we specifically extracted profiles of ED at 380 nm (ED380), 412 nm (ED412),
490 nm (ED490), and PAR from the SeaBASS database. These profiles were collocated with
ocean color and hydrological data from the ARMOR3D product (see below for details)
(Figure 2). These extracted profiles were used to provide an independent assessment of the
SOCA-light models developed in this study.
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Figure 2. Geographical distribution of independent light-variable profiles (PAR, ED380, ED412, and
ED490) available for validation from the SeaBASS database. Red circles represent locations of PAR
profiles, blue circles correspond to ED380 profiles, green circles to ED412 profiles, and orange circles
to ED490 profiles.

2.1.4. ARMOR3D Data

In this study, we used the ARMOR3D product [36,37], which provides temperature and
salinity profiles at a resolution of 0.25◦ × 0.25◦, encompassing 50 vertical levels within the
upper 5500 m water column. This product additionally includes mixed layer depth (MLD)
information. This ARMOR3D product [38] is available from the Copernicus Marine Service
and was used in this study for (1) validation purposes; as temperature and salinity profiles
were not available in the SeaBASS database, we used the ARMOR3D product collocated
with light profiles, and (2) producing three-dimensional (3D) monthly climatological light
fields; ARMOR3D monthly climatological temperature and salinity fields were used as
inputs of the SOCA-light model.

2.1.5. Selection of the Database

BGC-Argo profiles, together with satellite products measuring ocean color, made up
the initial database for neural network training and validation. The ocean color matchup
was built by selecting the nearest available measurement both in time (within ±5 days)
and space (within a 5 × 5 pixel area) relative to the float location and sampling time.
Based on the monthly distribution of light profile acquisitions (Figure 3A), it appears that
this database does not present any temporal bias in terms of the number of profiles per
month globally. However, a seasonal geographical bias exists as fewer profiles exist for the
northern and southern hemispheres during their respective winter months. This is due to
the reduced number of matchups available because of increased cloud coverage during the
winter. The present study uses all profiles sampled between 8 and 18 local hours. On an
hourly basis, 97% of the profiles were sampled between 10 and 13 local hours (Figure 3).
From this initial database, separate databases were created for each of the four models (i.e.,
PAR, ED380, ED412, and ED490).
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Figure 3. The temporal distribution (monthly (A) and hourly (B)) of PAR profiles used for this study.

The databases thus constituted were used for SOCA-light development, with 80% of
profiles being used for model training and the remaining 20% for model validation. These
training and validation databases were randomly selected. In parallel, the data from four
floats with World Meteorological Organization (WMO) numbers 6901472, 6901493, 6901523,
and 6901773 were kept aside for independent validation; i.e., these floats were not part of
the training and validation processes. These four floats acquired multi-year measurements
in four different oceanic areas considered to cover a large range of hydrological and bio-
optical conditions typically representative of open ocean waters.

2.2. Methods
2.2.1. General Features of SOCA Models

Sauzède et al., (2016) [26] developed a machine-learning-based approach to extend
surface bio-optical properties, such as the particulate backscattering coefficient (bbp), to
depth. This method, known as SOCA, relies on combining satellite ocean color observations
with vertical physical information of the water column to infer the vertical distribution
of the bio-optical variable bbp. To train the SOCA neural network, concurrent profiles of
BGC-Argo hydrological properties are matched with satellite ocean color data as inputs,
while the corresponding BGC-Argo bbp profiles are used as targeted outputs. This original
SOCA method has been further refined by, for instance, including Rrs instead of satellite
bbp and Chla, using satellite altimetry products as additional predictors (to account for
possible mesoscale influence) and adapting the method for the estimation of both bbp and
Chla. In this way, ocean color and hydrological products with different temporal scales
(weekly fields and monthly climatologies) are used as inputs to these SOCA models, and
the derived outputs are delivered as operational standard products by the Copernicus
Marine Service [27].

2.2.2. The SOCA-Light Models

For this study, we developed a SOCA-type model based on a neural network, and
more specifically, a multilayer perceptron (MLP). The MLP is a robust modeling tool used
for supervised learning, employing multiple inputs and a known output value to train
the model [39–41]. As a feedforward neural network, information flows unidirectionally
from the MLP’s input layer to its output layer, passing through one or more intermedi-
ate layers, also called hidden layers. Each layer is constructed from neurons, which are
fundamental transfer functions that generate outputs when inputs are applied. Each con-
nection between neurons has its own weight. The backpropagation algorithm then adjusts
the weights of the neurons in each layer to minimize the loss function using a first-order
gradient-based optimizer.
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The SOCA-light models are largely derived from the generic SOCA methodology
described in [26,27]. They consist of four models capable of predicting the vertical profiles
of PAR, ED380, ED412, and ED490 at a given geolocation, using as inputs the data from
matchups with satellite ocean color products and the vertical profiles of T and S. For SOCA-
light, we have slightly modified the input variables used for other SOCA models (i.e., for
Chla and bbp) through the selection of key variables that depict the vertical propagation
of light in the water column (i.e., first optical depth (Zpd)). In this way, while other SOCA
models (Chla and bbp) have used sea-level anomaly (SLA) as input to infer mesoscale
processes that may impact the vertical distribution of phytoplankton biomass, in SOCA-
light models we have removed SLA from the key variables. The four SOCA-light neural
networks were trained using a database of concurrent profiles of temperature, salinity,
and light variables (ED380, ED412, ED490, and PAR) collected by BGC-Argo floats and
collocated with satellite-derived products. A schematic representation of all the SOCA-light
models is shown in Figure 4.

Figure 4. Schematic representation of the SOCA-light multilayer perceptron.

There are three main input components used for this model:

• Surface components: These encompass satellite-based surface estimates of Rrs at five
different wavelengths (i.e., 412, 443, 490, 555, and 670 nm) and PAR.

• Vertical components: These rely on the first principal component analysis of salinity
and temperature profiles. The principal components were selected on the basis of
cumulative explained variance values less than or equal to 0.998. For temperature, this
criterion is satisfied by five principal components, and for salinity, by four principal
components. The mixed layer depth (MLD) was derived from density calculated
from pressure, temperature and salinity profiles with a density differential threshold
criterion of 0.03 kg m−3 with reference to the density at 10 m [42]. The Zpd was derived
from the satellite-derived kd(490) using Equation (2).

Zpd =
1

kd(490)
(2)

• Temporal components: The temporal components are the day of the year (DOY)
and the local time (LT) of the sampling profile. These components follow periodic
evolution within certain time windows (0 to 365 days for DOY; 0 to 24 h for LT). The
cyclic transformations (sine and cosine) of radian-transformed DOY and LT were used
as temporal components (Equation (3) and (4)):

DOYrad =
DOY× π

182.625
(3)
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LTrad =
LT × π

12
(4)

The SOCA-light model outputs are the four light variables (PAR, ED380, ED412, and
ED490) at 51 vertical levels from the surface to 250 m depth at every 5 m interval. The
use of an ensemble of MLPs proved effective in improving the robustness and reliability
of predictions compared to the use of a single MLP [43]. For this reason, as a first step,
several MLPs were created, each with a unique architecture incorporating the hyperbolic
tangent (tanh) as the activation function and adaptive moment estimation (ADAM) [44]
as the solver. The ADAM solver streamlines the conclusion of iterations upon reaching
model convergence, speeding up the process. At the same time, we identify the optimal
number of epochs to ensure effective learning and prevent overfitting.The key distinction
among these models lies in the varying number of neurons distributed across each hidden
layer, with the intention of capturing diverse patterns and representations inherent in the
data. We chose two hidden layers from the considered options of one, two, and three
hidden layers for these light models. Notably, models with two hidden layers consistently
outperformed, with the number of neurons in the second hidden layer always being fewer
than or equal to that in the first hidden layer. The models were trained by changing the
neuron numbers between 5 and 150 with an increment of one (altogether 10,585 iterations).
The second step was then to select, from all these iterations, an ensemble of the 10 best
MLPs based on minimum statistical metrics obtained from training and validation datasets
(root mean square error (RMSE) and the median absolute percent error (MAPE)). Through
this selection, the ensemble model aimed to capture diverse representations while ensuring
the sound performance and consistency of individual MLPs.

2.2.3. Statistical Analyses

The performance of the model was evaluated by comparison between the modeled
variable values (Y-axis) and the actual values used as references (X-axis). Two statistical
criteria were used: the RMSE as well as the MAPE that were computed as in the equations
below (Equations (5) and (6)):

RMSE =

√
∑n

i=1(Obsi − Predi)2

n
(5)

MAPE(%) = median
[ |Obsi − Predi|

Obsi

]
× 100 (6)

where n, Obs, and Pred correspond to the number of points, the observed value, and the
predicted value, respectively.

3. Results
3.1. Validation of SOCA-Light Models

A rigorous set of validation protocols was adopted to assess the accuracy of the
four light models. In this way, the model results were validated against the validation
database (Section 3.1.1), then against the four independent BGC-Argo floats from four
distinct oceanic basins (Section 3.1.2), as well as against the independent SeaBASS database
(Section 3.1.3). Finally, proxies derived from SOCA-light products were further used to
evaluate the prediction capability of the model (Section 3.1.4).

3.1.1. Validation of SOCA-Light Models Using 20% of the Global Database

The SOCA-light models were validated using 20% of the dataset randomly extracted
from the BGC-Argo database, originating from a large diversity of oceanic regions. The
comparison between modeled SOCA-light variables and BGC-Argo measurements (PAR,
ED380, ED412, and ED490) is presented in Figure 5. Overall, there is a very good agreement
between the predicted and the measured light variables. The density scatterplot reveals a
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close clustering of points along the identity line over more than five orders of magnitude.
Statistical metrics extracted from linear regression between the modeled and observed
PAR values reveal slope, r2, RMSE and MAPE values of 1.01, 0.96, 76.42 µmol quanta
m−2 s−1, and 37.41%, respectively (Figure 5A). The validation for the three ED models
shows satisfactory performances. The modeled ED380 profiles exhibit RMSE and MAPE
values of 0.04 W m−2 nm−1, and 39.01%, respectively, when compared with their measured
counterparts (Figure 5B). Similarly, the MAPE values for ED412 and ED490 were 39.47%
and 37.05%, respectively (Figure 5C,D).

Figure 5. Scatterplots between light variables (PAR, ED380, ED412, and ED490) modeled by the
SOCA-light models versus their corresponding BGC-Argo measurements: PAR (A); ED380 (B);
ED412 (C); ED490 (D). This validation was performed using 20% of profiles randomly selected from
the total database. The color code scales the probability density function (PDF). The identity line is
represented by the 1:1 black dotted line.

3.1.2. Validation of SOCA-Light Models Using Four Independent BGC-Argo Floats from
Different Oceanic Regions

An independent validation was performed using four BGC-Argo floats from dis-
tinct oceanic regions, namely the North Atlantic Subtropical Gyre (NASTG), the Eastern
Mediterranean Sea (EMS), the Southern Ocean (SO), and the North Atlantic Subpolar Gyre
(NASPG). The profiles for each region originated from a single float with a unique WMO,
none of which were included in the training and validation databases. The validation
results for each oceanic region are presented in Figure 6.

The scatterplot of PAR derived by the model shows strong agreement with PAR
measured by the BGC-Argo floats for all four regions (Figure 6A). Statistical error estimators
computed between modeled and observed PAR profiles for all four regions together show
slope, r2, RMSE, and MAPE values of 1.03, 0.96, 72.86 µmol quanta m−2 s−1, and 30.50%,
respectively. These statistical error estimators of PAR are comparable with the statistics
obtained on 20% of the validation database (Figure 5A). For ED380 (Figure 6B), the slope, r2,
RMSE, and MAPE values are 1.04, 0.97, 0.034 W m−2 nm−1, and 40.99%, respectively. For
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ED412 (Figure 6C), the same statistical metrics yield values of 1.03, 0.97, 0.070 W m−2 nm−1,
and 36.67%, respectively. Finally, for ED490 (Figure 6D), the metrics take values of 1.03,
0.95, 0.087 W m−2 nm−1, and 29.86%, respectively.

Figure 6. Scatterplots illustrating the comparison between SOCA-light modeled variables (PAR,
ED380, ED412, and ED490) and their corresponding BGC-Argo measurements collected by the four
independent floats. The subplots display: PAR (A), ED380 (B), ED412 (C), ED490 (D). Each color
represents a specific float: blue for NASTG, purple for EMS, brown for NASPG, orange for SO. The
identity line is represented by the 1:1 black dotted line.

North Atlantic Subtropical Gyre

The NASTG is an oligotrophic environment characterized by low surface nutrients,
low Chla, and the presence of a permanent deep chlorophyll maximum (DCM), generally
found below 100 m [45,46]. The multi-year time series (more than 6 years of measurement)
of the vertical distribution of light variables (PAR, ED380, ED412, and ED490) measured by
the NASTG BGC-Argo float (WMO = 6901472) and modeled by SOCA-light are presented
in Figure 7 for a direct comparison. Overall, the SOCA-light models clearly reproduce, in a
smoother way, the seasonal and vertical trends revealed by the float measurements. The
SOCA-light models capture even subtle changes in the general trends of light variables,
as evidenced by the less pronounced light penetration observed and reproduced by the
model at the end of 2015. As well as reproducing the trends satisfactorily, the magnitude
of the signals is retrieved well by the models for the four variables. The statistical metrics
between the modeled and the observed PAR profiles show (Figure S4) slope, r2, RMSE,
and MAPE values of 0.99, 0.98, 73.09 µmol quanta m−2 s−1, and 21.50%, respectively. For
ED380, these metrics are, respectively, 0.96, 0.98, 0.04 W m−2 nm−1, and 28.72%. For ED412,
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they are 0.95, 0.98, 0.08 W m−2 nm−1, and 26.66%. Finally, for ED490, they are 0.98, 0.98,
0.09 W m−2 nm−1, and 21.53%.

Figure 7. Time series of the vertical distribution of the four light variables in the North Atlantic
Subtropical Gyre (NASTG), as measured by BGC-Argo float with WMO 6901472 (left column)
and modeled by SOCA-light (right column). The variables in each subplot are indicated by text
in the corresponding subplots. The black stars indicate the depth at which instantaneous PAR
value = 15 µmol quanta m−2 s−1.

Eastern Mediterranean Sea

The EMS is also a permanent oligotrophic system at temperate latitudes. The float
selected (WMO = 6901773) measured all four light variables (PAR, ED380, ED412, and
ED490) for nearly four years (Figure S5). Again, the multi-year vertical sections of these
variables from this region show very good agreement between the measured and modeled
values. The modeled variables exhibited seasonal fluctuations in their magnitude across
different years, similar to those observed. The surface incoming solar radiation shows
larger seasonal variability than the variability observed in the subtropical oligotrophic
regime (NASTG, Figure 7), yet it is well captured by the model. As for the NASTG, the
models reproduce light variables with much less noise compared to their corresponding
BGC-Argo measurements. The statistical metrics between the modeled and the measured
variables from the EMS for all four light variables are highly comparable with the global
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20% validation metrics (Figure S6). The statistical metrics between the modeled and the
observed PAR profiles display slope, r2, RMSE, and MAPE values of 1.02, 0.98, 63.20 µmol
quanta m−2 s−1 and 21.42%, respectively. For ED380, these metrics were, respectively, 1.08,
0.98, 0.03 W m−2 nm−1, and 39.89%. For ED412, they were 1.06, 0.98, 0.06 W m−2 nm−1,
and 29.04%. Lastly, for ED490, they were 1.01, 0.98, 0.08 W m−2 nm−1, and 22.78%. All the
derived error estimators show comparable values (some even better, such as the RMSE and
MAPE) with those obtained for the 20% global validation database. These results depict
the robustness of the SOCA-light models for deriving light variables over several years
of observation.

Southern Ocean

Over four years, the BGC-Argo float (WMO = 6901493) traveling eastwards (from 5◦E
to 83◦E) and between 40◦S and 50◦S in the SO underwent the typical bio-physical conditions
prevailing in the area. Overall, it captured four phytoplankton blooms and was regularly
trapped or influenced by mesoscale features or fronts. The multi-year time series of the
vertical distribution of light variables (PAR, ED380, ED412, and ED490) measured by this
float and the SOCA-light modeled light variables are presented and compared in Figure 8.
The gaps in the time series during the southern-hemisphere winter months are due to the
unavailability of ocean color matchups resulting from cloud coverage during this period.
In general, as for the NASTG and EMS, the SOCA-light models reproduce the seasonal and
vertical trends of the float measurements in a smoother way. In addition to reproducing
the seasonal trends, the magnitude of the retrieved light variables is in order with the
measurements for the four light variables. The statistical metrics between the modeled and
measured PAR profiles (Figure S7) show slope, r2, RMSE, and MAPE values of 0.99, 0.91,
88.63 (µmol quanta m−2 s−1), and 54.37%, respectively. For ED380, these metrics were 1.03,
0.95, 0.04 (W m−2 nm−1), and 51.52%. For ED412, they were 1.03, 0.93, 0.08 (W m−2 nm−1),
and 54.33%. Finally, for ED490, the metrics were 0.99, 0.91, 0.10 (W m−2 nm−1), and 51.47%.
The statistical estimators from the SO, namely the RMSE and MAPE, are slightly larger
than the global 20% validation metrics. These uncertainties could possibly originate from
the highly dynamic nature of the area associated with the ocean color matchups of the
closest pixel of the temporal (±5 days) and spatial (5 × 5 pixels) matchups. They may
also be attributed to the higher level of this dataset’s independence, thus providing a more
rigorous test of the model’s generalization capabilities. Indeed, a higher level of errors can
be expected in a highly variable environment such as the SO. Nevertheless, the fact that
errors from this dataset are only marginally greater than those from the 20% validation
dataset suggests the model’s robustness without signs of overfitting.

North Atlantic Subpolar Gyre

The data acquired by the float (WMO = 6901523) over its two years of exploration
are representative of the diversity of the North Atlantic Subpolar Gyre conditions. In
particular, it encountered intense convection periods (>1000 m) as well as intense spring
phytoplankton blooms. Due to a lack of ocean color matchups, the NASPG region expe-
rienced similar problems as the SO region in obtaining SOCA-light variables during the
winter. The two-year time series of the vertical distribution of light variables (PAR, ED380,
ED412, and ED490) measured by this float and modeled by SOCA-light are presented and
compared in Figure S8. Essentially, the SOCA-light models reproduce the seasonal trends
in float measurements in a smoother way. The statistical metrics between the modeled
and the observed PAR profiles manifest slope, r2, RMSE, and MAPE values of 1.08, 0.93,
64.83 µmol quanta m−2 s−1, and 58.79%, respectively (Figure S9). For ED380, these metrics
were subsequently 1.02, 0.96, 0.02 W m−2 nm−1, and 50.82%. For ED412, they were 1.02,
0.95, 0.04 W m−2 nm−1, and 51.75%. Finally, for ED490, these metrics were 1.09, 0.92, 0.06
W m−2 nm−1, and 57.63%. Similarly to the SO float, the statistical estimators, mainly the
RMSE and MAPE, from the NASPG float are slightly larger than the global 20% validation
metrics. This could mainly be due to the uncertainties associated with the retrieval of ocean
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color matchups from the closest pixel of the temporal (±5 days) and spatial (5 × 5 pixels)
matchups in such a highly dynamic high-latitude environment, which seems less the
case for low and temperate latitudes (see Figures 7 and S5 and the associated metrics in
Figures S4 and S6).

Figure 8. Time series of the vertical distribution of the four light variables in the Southern Ocean (SO)
measured by BGC-Argo float WMO 6901493 (left column) and modeled by SOCA-light (right column).
The variables in each subplot are specified by text in the corresponding subplots. The black stars indicate
the depth at which instantaneous PAR value = 15 µmol quanta m−2 s−1.

3.1.3. Validation of SOCA Light Models with the Independent Global SeaBASS Database

As well as validating SOCA-light models against a 20% subset of the BGC-Argo
dataset or against the data of selected BGC-Argo floats not included in either the initial
training or the 20% validation procedures, validation against datasets not acquired by
BGC-Argo offered an informative complementary exercise. For this purpose, we used the
global SeaBASS light database whose measurements originate from various cruises and
field campaigns. It should be noted that, contrary to the BGC-Argo light measurements
performed under any sky conditions, measurements from ships, which are more operator-
dependent, are essentially conducted under a clear sky.

The input matchups were taken from the weekly binned files of ARMOR3D and
GlobColour data that corresponded to each SeaBASS in situ station. The physical variables
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(temperature, salinity, and MLD) were extracted from the macro-pixel (0.25◦ × 0.25◦)
nearest the in situ station and ocean color matchups from the mean of the 3 × 3 micro-
pixels (4 km × 4 km) box centered at each in situ station. It should be noted that only
a restricted number of stations from the original SeaBASS database were used for this
validation exercise, as more than 90% of the stations (including coastal stations with
bathymetric depths less than 1500 m) lacked a corresponding satellite ocean color matchup,
mainly due to the contamination of signals, probably by clouds or sea ice.

The scatterplots of the light variables derived by the SOCA-light models compared
with those measured in situ within the SeaBASS database are presented in Figure 9. The
same metrics are reported as those in the other validation exercises based on float data
(Sections 3.1.1 and 3.1.2). Figure 9 shows that the retrieval by SOCA-light systematically
underestimates the SeaBASS measurements for each light variable. This bias is the same
over the whole water column as the slopes between the modeled light and corresponding
measurements are close to one (Figure 9). The fact that the SeaBASS database is essentially
populated by data obtained under clear-sky conditions at a given time could explain this
bias. By way of contrast, the weekly matchups of GlobColour products used as input
for the SOCA-light models likely do not correspond to clear-sky conditions over such an
extended temporal window.

The scatterplot of PAR produced by the model exhibits notable consistency with PAR
measured in situ by SeaBASS data (Figure 9A). Statistical error metrics were extracted
from linear regression between the modeled and observed PAR profiles, showing slope,
r2, RMSE, and MAPE values of 1.00, 0.88, 101.25 µmol quanta m−2 s−1, and 65.48%,
respectively. For ED380, these metrics were 1.00, 0.82, 0.11 (W m−2 nm−1), and 76.30%
(Figure 9B). For ED412, they were 1.00, 0.81, 0.18 W m−2 nm−1, and 76.07% (Figure 9C).
Finally, for ED490, they were 0.99, 0.85, 0.21 W m−2 nm−1, and 62.32% (Figure 9D). These
four light models (PAR, ED380, ED412, and ED490) were validated independently, and the
extracted error metrics are quite satisfactory, even if these statistical estimators are slightly
larger compared with the error metrics of both the global 20% validation database and
four independent BGC-Argo floats. These larger error estimators could be because of the
uncertainty associated with the physical and ocean color data considered as inputs (as well
as the nature of the data in SeaBASS, essentially acquired under clear-sky conditions).

3.1.4. Additional Validation with iPAR_15

An alternative to validating the SOCA-light model results against light data from
various databases (previous sections), that also allows gauging the model’s prediction
capabilities, is to quantify and assess the quality of model-derived products that are
essential for certain applications. This is the case for the depth of iPAR_15 (Z_iPAR_15) [47],
a variable that corresponds to the depth at which the instantaneous PAR, iPAR, equals
15 µmol quanta m−2 s−1. This quantity is required for the correction of non-photochemical
quenching (NPQ) that affects the chlorophyll-a fluorescence profiles. NPQ is a photo-
physiological mechanism whereby the signal of chlorophyll-a fluorescence is depressed
under high irradiances (maximal at noon). The method proposed by [47] and further
improved by [48] uses Z_iPAR_15 as a depth threshold under which no NPQ is expected.
In a way, Z_iPAR_15 can be considered as a proxy for water clarity with high values
corresponding to the clearest waters, where the NPQ effect can be observed at the deepest
depths. The present study extracted Z_iPAR_15 from PAR measured by the BGC-Argo
floats and PAR derived using the SOCA-light PAR model for the validation database of
20% of the global database and for the four independent floats (Figure 10). Overall, the
results are satisfactory with respect to the retrieval of Z_iPAR_15 by the SOCA-light PAR
model. Furthermore, the range of values of Z_iPAR_15 for the four floats (Figure 10B) is
equivalent to that for the 20% validation database (Figure 10A). This demonstrates that
the four floats cover the entire range of trophic status currently detected by the BGC-Argo
database throughout the global ocean.
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Figure 9. Scatterplots between light variables (PAR, ED380, ED412, and ED490) derived using
SOCA-light models and SeaBASS in situ measurements. The subplots display: PAR (A), ED380 (B),
ED412 (C), ED490 (D). The color code scales the PDF. The identity line is represented by the 1:1 black
dotted line.

To illustrate a potential application of the SOCA-light models, we extracted global
3D multi-year monthly averaged climatologies of light variables at local noon at a 5 m
resolution from the surface to 250 m depth. The inputs used to generate the climatolo-
gies were multi-year monthly averaged GlobColour data and ARMOR3D physical data.
The satellite data were averaged (0.25◦ × 0.25◦) at the same spatial resolution as the
physical ARMOR3D data. As an example, the extracted Z_iPAR_15 from these seasonal
climatology fields is presented in Figure 11, and shows well-characterized latitudinal and
seasonal variations.
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Figure 10. Comparisons of Z_iPAR_15 derived by the SOCA-light PAR model versus Z_iPAR_15
estimated by BGC-Argo float measurements for the 20% validation database (A) and for the
4 independent floats (B).

Figure 11. Seasonal climatology of Z_iPAR_15 derived at local noon using the SOCA-light PAR
model applied to monthly climatological fields of inputs: Z_iPAR_15 averaged for the months of
December, January, and February in (A); March, April, and May in (B); June, July, and August in (C);
September, October, and November in (D).
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4. Discussion and Conclusions

Knowledge about the irradiance vertical distribution is essential for improved under-
standing and quantification of many oceanic processes in the upper water column. Over
time, a variety of bio-optical models has been developed to better predict light fields, partic-
ularly at the ocean surface. These models have drawn from various complex relationships,
spanning from purely empirical to fully analytical algorithms. They have served as fun-
damental building blocks for various biogeochemical applications, including the retrieval
of IOPs [49,50], biogeochemical quantities such as Chla [51–53], and POC [54], as well as
the quantification of the oceanic heating rate [3,4] and the modeling of oceanic primary
production [1,2]. These models serve as the foundation for bio-optical oceanography and
satellite ocean color science.

The development of bio-optical models has, however, been constrained by the limited
availability of in situ data, either for model construction (for empirical models) or model
validation (in the case of analytical models). Substantial gaps in the acquisition of bio-
optical data have resulted in limited coverage and sparse datasets, especially in remote
open ocean areas. Additionally, the databases containing these measurements often exhibit
heterogeneity in terms of acquisition modes, involving different platforms and sensors.
These variations lead to consistency and interoperability issues, increasing the uncertainties
of models relying on these data.

More recently, the prospect of developing more accurate bio-optical models for irradi-
ance vertical distribution has emerged for two main reasons. The first one relates to the
massive availability of the various oceanic properties, including optically significant sub-
stances and light variables. This availability is largely due to the extensive data-collection
capacity of BGC-Argo, which has contributed to a rich and dense database of ED and PAR
profiles. Importantly, in addition to being publicly and openly accessible, this database
offers the advantage of being homogeneous and interoperable thanks to the development
of dedicated methods to ensure its qualification [29,55,56]. Moreover, this database has
proven instrumental in validating bio-optical models [57,58] and models based on Chla
for estimating PAR [22]. The second reason is due to the increasing adoption of machine
learning techniques that take advantage of data availability, which results in a strong
improvement in the predictive capability of these purely empirical approaches. Pioneering
work by [26] showed that global 3D reconstruction of the bbp could be performed thanks to
the development of the first SOCA model. More recently, subsets of irradiance data (ED380,
ED412, and ED490) acquired by BGC-Argo floats have been used to predict PAR either
through statistical approaches [59] or the use of neural networks [60].

The present study represents, to our best knowledge, the first attempt to develop a
predictive model for the vertical profiles of light, encompassing both PAR and irradiance
at three different wavelengths, thanks to the application of machine learning using the
extensive BGC-Argo light database. This model rests on the initial SOCA methodology,
which has been carefully refined to accommodate the specificity of light-related variables.
While the model exhibits significant accuracy and potential, it does have some limitations
that should be acknowledged. Certainly, the prediction of light profiles becomes challenging
in the absence of Rrs data (e.g., due to cloud coverage), a situation particularly critical
in high-latitude environments during the winter. Moreover, the majority of SOCA-light
training involved local noon data (97% of profiles gathered between 10 and 13 h local
time), suggesting a potential decrease in accuracy for predictions at other times of the
day. Nevertheless, as more data from BGC-Argo become available at various times, this
limitation could be easily addressed in the near future. In the meantime, it is recommended
to preferentially use SOCA-light around noon local time.

The predictive power of SOCA-light appears to be robust (Figures 5, 6, 9 and 10).
Until now, efforts to characterize vertical light profiles in oceanic waters have relied on
various approaches, involving numerical models [17–21] and a combination of analytical,
semi-analytical, and empirical relationships [11,20,22,33]. However, these models heavily
rely on specific parameters, including AOPs, IOPs, and Chla resolved over the vertical
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dimension. The incorporation of these precise vertically resolved inputs presents challenges
when attempting to compare such models with SOCA-light ones. The lack of these crucial
input data poses a well-acknowledged challenge in the field of oceanography, especially
within the marine optics and ocean color remote sensing communities. Consequently, this
data gap potentially translates into more uncertainty over depths. The machine learning
approaches proposed here potentially circumvent this weakness. Furthermore, assuming
the model inputs are at the right resolution, SOCA-light can easily extract 3D global ocean
light maps at any temporal resolution (daily, weekly, and monthly).

Due to their solidity and versatility, SOCA-light models offer great potential for
supporting many applications for which light profiles are key variables but are unfor-
tunately not measured. For instance, several applications for improving the BGC-Argo
database can already be envisioned. At present, light profiles are not acquired from all
BGC-Argo floats. Indeed, less than 45% of the ≈118,000 chlorophyll-a fluorescence profiles
so far acquired have concurrent light measurements. Yet, light profiles are required for a
more accurate estimation of Chla from chlorophyll-a fluorescence measured from floats.
First, the correction of NPQ fluorescence is more accurate with the use of instantaneous
PAR profiles [47,48] compared to former methods which do not rely on light [61]. Sec-
ondly, as the relation between Chla and chlorophyll-a fluorescence varies regionally and
seasonally, methods have been proposed that rely on concurrent profiles of ED490 and
chlorophyll-a fluorescence to estimate the slope correction to apply to the fluorescence
profile in order to retrieve more accurate Chla [6]. The estimation of this slope correction
relies on a bio-optical relationship linking kd(490) (derived from the ED490 profile) to
Chla [11]. Having the whole BGC-Argo fleet delivering light profiles (either measured
or modeled) would guarantee an overall more consistent and interoperable Chla dataset.
Similar methods would allow the derivation of profiles of CDOM absorption at 412 nm
from profiles of CDOM fluorescence, calibrated chlorophyll-a fluorescence (slope correction
applied), and irradiance (ED412) [8]. Therefore, the potential of SOCA-light already appears
enormous when simply considering its possible applications in relation to the BGC-Argo
database alone.

Recently, floats have begun to acquire hyperspectral radiometric measurements [62,63].
New perspectives that consequently open up include refinements in the characterization of
optically active substances, such as CDOM or phytoplankton community structure at large
scale [63]. The SOCA-light method presented here has the potential to accommodate any
increase in the spectral domain and resolution once sufficient data have been acquired to
support training. The availability of such modeled data could represent a new step towards
a better understanding of various components of biogeochemical cycles at a global scale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15245663/s1, Figure S1: Geographical distribution of BGC-Argo
profiles used for the development and validation of the SOCA-light model for ED380, Figure S2:
Geographical distribution of BGC-Argo profiles used for the development and validation of the
SOCA-light model for ED412, Figure S3: Geographical distribution of BGC-Argo profiles used
for the development and validation of the SOCA-light model for ED490, Figure S4: Scatter-plots
between light variables (PAR, ED380, ED412, and ED490) modeled by SOCA light models versus their
corresponding BGC-Argo measurements from NASTG. PAR (A); ED380 (B); ED412 (C); ED490 (D),
Figure S5: Time series of the vertical distribution of the four light variables in the Easter Mediterranean
Sea (EMS) measured by BGC-Argo float WMO 6901773 (left column) and modeled by SOCA-light
(right column). The variables in each subplot are indicated by text in the corresponding subplots.
The black stars indicate the depth at which instantaneous PAR value =15 µmol quanta m−2 s−1,
Figure S6: Scatter-plots between light variables (PAR, ED380, ED412, and ED490) modeled by SOCA
light models versus their corresponding BGC-Argo measurements from EMS. PAR (A); ED380 (B);
ED412 (C); ED490 (D), Figure S7: Scatter-plots between light variables (PAR, ED380, ED412, and
ED490) modeled by SOCA light models versus their corresponding BGC-Argo measurements from
SO. PAR (A); ED380 (B); ED412 (C); ED490 (D), Figure S8: Time series of the vertical distribution
of the four light variables in the North Atlantic Subpolar Gyre (NASPG) measured by BGC-Argo
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float WMO 6901523 (left column) and modeled by SOCA-light (right column). The variables in
each subplot are specified by text in the corresponding subplots. The black stars indicate the depth
at which instantaneous PAR value =15 µmol quanta m−2 s−1, Figure S9: Scatter-plots between
light variables (PAR, ED380, ED412, and ED490) modeled by SOCA light models versus their
corresponding BGC-Argo measurements from NASPG. PAR (A); ED380 (B); ED412 (C); ED490 (D). All
of the models and functions (Jupyter Notebook) are open source and can be accessed via our GitHub
page: https://github.com/renoshpr/SOCA-LIGHT-MODELS, (accessed on 10 November 2023).
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The following abbreviations are used in this manuscript:
ADAM Adaptive moment estimation
ANN Artificial neural network
AOP Apparent optical property
ARMOR3D A 3D multi-observations T, S, U, V product of the ocean
bbp Particulate backscattering coefficient
BGC-Argo BioGeoChemical Argo
CDOM Colored dissolved organic matter
Chla Chlorophyll-a concentration
CMEMS Copernicus Marine Environment Monitoring System
DCM Deep chlorophyll maxima
DOC Dissolved organic carbon
DOY Day of the year
ED Downwelling irradiance
EMS Eastern Mediterranean Sea
GOOS Global Ocean Observing System
IOP Inherent optical property
kd Diffuse attenuation coefficient
LT Local time
LU Upwelling radiance
MAPE Median absolute percent error
MLD Mixed layer depth
MLP Multilayer perceptron
NASPG North Atlantic Subpolar Gyre
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NASTG North Atlantic Subtropical Gyre
NN Neural network
PAR Photosynthetically available radiation
PDF Probability density function
POC Particulate organic carbon
RMSE Root mean squared error
Rrs Remote sensing reflectance
SeaBASS SeaWiFS Bio-Optical Archive and Storage System
SLA Sea-level anomaly
SO Southern Ocean
SOCA Satellite Ocean Color merged with Argo data
tanh Hyperbolic tangent
WMO World Meteorological Organization
Z_iPAR_15 The depth at which instantaneous PAR value =15 µmol quanta m−2 s−1
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Abstract: The ability to monitor and predict sea temperature is crucial for determining the likelihood
that ocean-related events will occur. However, most studies have focused on predicting sea surface
temperature, and less attention has been paid to predicting sea subsurface temperature (SSbT), which
can reflect the thermal state of the entire ocean. In this study, we use a 3D U-Net model to predict
the SSbT in the upper 400 m of the Pacific Ocean and its adjacent oceans for lead times of 12 months.
Two reconstructed SSbT products are added to the training set to solve the problem of insufficient
observation data. Experimental results indicate that this method can predict the ocean temperature
more accurately than previous methods in most depth layers. The root mean square error and mean
absolute error of the predicted SSbT fields for all lead times are within 0.5–0.7 ◦C and 0.3–0.45 ◦C,
respectively, while the average correlation coefficient scores of the predicted SSbT profiles are above
0.96 for almost all lead times. In addition, a case study qualitatively demonstrates that the 3D U-Net
model can predict realistic SSbT variations in the study area and, thus, facilitate understanding of
future changes in the thermal state of the subsurface ocean.

Keywords: sea temperature prediction; reconstructed sea subsurface temperature data; 3D U-Net

1. Introduction

In oceanographic investigations, the sea temperature is a crucial measure that can
indicate the thermal state of seawater [1]. Its variation strongly correlates with the global
climate and meteorological events [2–5] and can affect the marine ecological environment,
underwater acoustic communication, and commercial fisheries [6–8]. Therefore, sea tem-
perature prediction is crucial for assisting in the early assessment of the likelihood of
associated events. Two categories can be used to group the methods for predicting sea
temperature. The first group is based on dynamical models to simulate atmosphere–ocean
variables with physical constraints and then make forecasts [9–11]. The second group
attempts to capture the relationships between past observations and future sea temperature
through data analysis. This group includes statistical model-based approaches [12,13] and
machine learning-based approaches [14–17]. In the last two decades, machine learning-
based approaches have been increasingly adopted to predict sea temperature due to lower
computational costs and higher flexibility in comparison with numerical model-based ap-
proaches [18,19]. For example, to estimate the time series of sea surface temperature (SST)
in isolated locations, Zhang et al. [17] used long short-term memory (LSTM). The gated
recurrent unit model, which has less trainable parameters compared with LSTM, was used
by Zhang et al. [20] for SST time series prediction. Yang et al. [21] used a fully connected
LSTM (FC-LSTM) layer and a convolution layer to predict the SST of an area of nearby
points to incorporate the temporal and spatial information. However, the abovementioned
models cannot capture the spatial linkage of the sea temperature values in a large region,
thus limiting their prediction performance. Researchers have paid close attention to the per-
formance of the convolutional LSTM (ConvLSTM) model in precipitation nowcasting [22].
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This model replaces the matrix operations of the FC-LSTM with convolutions, making it a
powerful tool that can extract expressive spatial feature maps of input images and model
their time evolution. The ConvLSTM model has been used in some studies to successfully
estimate sea temperature [23–25].

Sea subsurface temperature (SSbT), which is a 3D sea temperature field, is essential
for understanding the mechanisms and processes in the ocean as a whole [26] and is thus
preferred in oceanographic studies [27]. A review of previous studies revealed that the
prediction of the SSbT has not been investigated as extensively as that of the SST. Liu
et al. [28] employed LSTM to predict the mean seawater temperature at various depths
at each observation point for the following month. To predict the SSbT for 3-day and
5-day lead times at an observation point, Patil and Iiyama [29] first used a ConvLSTM
network to extract the spatiotemporal information of the past SST around this point and
then used a multilayer perceptron to analyze the past observed SSbT profiles at this point.
The results of the prediction were then produced by combining the outputs of these two
networks. Zhang et al. [25] used a multilayer ConvLSTM (M-ConvLSTM) model to predict
the mean SSbT field of the upcoming month in a subarea of the Pacific Ocean in terms of
the spatiotemporal prediction of the SSbT in a region rather than at specific points. To solve
the extraction problem of 3D spatial correlation of the SSbT field, a 4D convolutional neural
network (CNN) was designed by Zuo et al. [30] for SSbT horizontal and profile prediction
of the next day, respectively, in which a 4D convolution operation was implemented by
linearly adding the results of several 3D convolution operations. Although deep learning
(DL) has significantly improved SSbT prediction, there are still few studies that perform
SSbT field prediction for lead times greater than 1 month, which limits their usefulness
as a reference for longer-term ocean-related studies. Moreover, an insufficient amount of
monthly observation data limits the generalization ability of the network during training.

This study investigates the DL-based long-term SSbT field prediction. Utilizing the
SSbT fields from the previous 12 months as the input, a 3D U-Net-based model was con-
structed to perform the prediction of the monthly SSbT fields, mostly in the Pacific Ocean,
for lead times up to 12 months. This model is capable of extracting the spatiotemporal
features of historical SSbT fields and mapping them into future SSbT fields. In addition,
two SSbT products that have been recreated based on objective analysis have been added to
the training dataset to address the issue of insufficient monthly mean observation data. The
rest of this manuscript is organized as follows. Section 2 briefly introduces some related
works about SSbT prediction. Section 3 describes the data used in this study. The suggested
approach is illustrated in Section 4. Section 5 presents the experimental findings. Finally,
Section 6 provides the conclusions of this study.

2. Related Works

Liu et al. [28] considers the spatiotemporal SSbT field prediction as a combination of
the independent time series prediction of each observation point in a 3D grid region. They
first use a matrix fusion approach to capture the features of the closeness and period in the
temperature time series and then leverage LSTM to conduct the temperature prediction
for the next month. This method is evaluated at different depth levels of three regions, in-
cluding the Coral Sea, the equatorial Pacific Ocean, and the South China Sea. Experimental
results show that the optimal parameters of the fusion matrix are different for different
depth levels. Comparable or even better overall performance is achieved by using this
method compared to support vector regression and a multilayer perceptron. However, the
spatiotemporal relationship between observation points is ignored in the modeling process,
which limits the prediction performance.

Instead of using a DL model to predict the temperature of each depth layer separately,
Patil and Iiyama [29] investigate the DL-based SSbT profile prediction for 3-day and 5-day
lead times at a specific location in the eastern Indian Ocean. In their developed model, a
ConvLSTM network is first adopted to extract the spatiotemporal features of the past SST
around this location. Then, a multilayer perceptron is used to extract the patterns of the
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past observed SSbT profiles at this location. Finally, these two types of features are fused by
another multilayer perceptron to generate the prediction result. Experimental results show
that compared with using SST only, the prediction accuracy can be significantly improved
by incorporating the past SSbT profiles into the model. In addition, it is found that the
proposed model produces higher prediction errors for the intermediate depth levels from
100 m to 300 m compared to other depth levels.

To model the spatiotemporal relationship of the sea temperature in the whole 3D grid
region, Zhang et al. [25] and Zuo et al. [30] propose the M-ConvLSTM model and 4D-CNN
model, respectively. Zhang et al. [25] focus on predicting the mean SSbT field of the next
month based on monthly mean SSbT fields of the previous 28 months. The input SSbT field
at each time step is considered as a multi-channel image. The M-ConvLSTM model, which
consists of multiple ConvLSTM layers, is used to transmit and update the inner states along
the time direction of the input sequence of SSbT fields. The prediction result is generated at
the last time step. The M-ConvLSTM model achieves improvements over the FC-LSTM
model [21] for SST prediction. The coefficient of determination for most depth layers
exceeds 0.95. Zuo et al. [30] develop a 4D-CNN-based model to perform SSbT horizontal
and profile prediction of the next day, respectively. The 4-D convolution module is the
core part of this model. When conducting SSbT horizontal prediction, they first divide the
SSbT fields into several temporal sequences of horizontal fields according to depth levels.
Then, different 3D convolutional layers are applied to the temporal sequences of different
depths, and their outputs are added up to enrich feature representation. As for the SSbT
profile prediction, the SSbT fields are divided into several temporal sequences of profiles
along the latitude, and then the 4-D convolution module is used to extract their features.
Experiments show that this model achieves competitive performance when predicting the
sea temperature for different depth levels, locations and seasonal thermocline. This method
requires a lot of parameters and computation when there are many depth levels for SSbT
horizontal prediction or many latitudes for SSbT profile prediction.

3. Data

The study area, which includes the Pacific Ocean, the eastern Indian Ocean, and the
western Atlantic Ocean, is located between latitudes 59.5◦S and 59.5◦N and longitudes
95.5◦E and 25.5◦W, as shown in Figure 1.
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The SSbT data used in this investigation are monthly mean sea temperature in the
upper 400 m over the study area. The depth levels are 0, 10, 20, 30, 50, 75, 100, 150, 200, 250,
300, and 400 m. The amount of data available for neural network training is insufficient
since accurate SSbT observations with full spatial and temporal coverage are only available
after the early 1980s. Therefore, the reconstructed historical SSbT products provided by
the Institute of Atmospheric Physics (IAP) [27] and the Research Data Archive (RDA) at
the National Center for Atmospheric Research [31] are added to the training set to increase
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the sample size and avoid the overfitting problem in the training process. As for SSbT
observations, the SST data are from the National Oceanic and Atmospheric Administration
(NOAA) Optimum Interpolation SST V2 (OISST V2) dataset [32], and data of seawater
temperature at depths of 10 to 400 m are from the Global Ocean Data Assimilation System
(GODAS) at the National Centers for Environmental Prediction (NCEP) [33]. To make the
GODAS data consistent with the reconstructed products, bilinear interpolation (a widely
accepted and often used interpolation algorithm that can resample the grid products to
a new resolution [34,35]) was utilized to adjust the horizontal spatial (latitude–longitude)
resolution from 0.333◦ × 1◦ to 1◦ × 1◦. In addition, if one product does not have the data
for one selected depth level, the sea temperature fields at close levels would be linearly
interpolated to this level. After the data processing was complete, spatiotemporal sequences
were produced for each type of monthly SSbT product using a 24-month sliding window
with a sliding step of 1 month.

Regarding the division of these generated sequences, all reconstructed SSbT sequences
and most of the observation sequences were used for training, and the remaining obser-
vation sequences were used for validation and testing. In addition, we prevented time
overlap between the target SSbT fields in the training, validation, and test set sequences.
For details, see Table 1.

Table 1. Organization of the built dataset.

Subset Product Period Number of
Sequences

Training
IAP January 1956–December 2007

1623RDA January 1945–December 2007
OISST V2 and GODAS January 1982–December 2007

Validation OISST V2 and GODAS January 2008–December 2012 60

Test OISST V2 and GODAS January 2013–May 2022 102

4. Method

When modeling, the shape of the input data or feature map tensors is (T, H, W, C).
Here, T, H, W, and C refer to the time, height, width, and channel dimensions, respectively.
Specifically, for the input sequence of SSbT fields for the previous 12 months, T is 12
(number of timesteps), H is 120 (latitude grid size), W is 240 (longitude grid size), and C is
12 (number of depth levels).

The created model, which is shown in Figure 2, is an end-to-end trainable model-based
on the 3D U-Net model [36], which was designed initially for volumetric segmentation. It
is composed of multiple 3D convolutional layers, each of which is followed by a rectified
linear unit activation function, except for the final convolutional layer. This model, like
U-Net, has a downsampling path, a symmetrical upsampling path, and skip connections.

In the downsampling path, the temporal and spatial sizes of the input sequence are
progressively halved by using two 3D convolutional layers with strides of 2, each of which
is followed by two 3D convolutional layers, and spatiotemporal features with different
representation levels are extracted. Two transposed 3D convolutional layers, each of which
is followed by two more 3D convolutional layers, are used in the upsampling process
to gradually restore the high-level features to their original size. Furthermore, low-level
features are received from the downsampling path through skip connections, delivering
detailed information to generate more comprehensive representations. To speed up model
training, batch normalization (BN) [37] is performed after the second-to-last convolutional
layer. The predicted monthly SSbT fields are output through the final convolutional layer
with a kernel size of 1 × 1 × 1.
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The root mean square error (RMSE) is utilized as the loss function to guide the training
of the developed model in this study, which is defined as
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t+m is the corresponding ground truth value.

5. Experiments
5.1. Experimental Settings

A seasonal naïve model that copies the input SSbT fields from the past 12 months
unaltered to its outputs (assuming the interannual variation of SSbT is zero), M-ConvLSTM
model [25], and a simple 3D-CNN (S3D-CNN) [38] are three baselines against which the 3D
U-Net model is compared. The temperature values are normalized by dividing by 30 before
being input into the models. All the DL-based models are trained using the RMSE loss
function defined in Section 4 for a fair comparison. The learning rate is set at 0.0001, and
the batch size is 4. When the validation loss does not decrease for 12 epochs, the training
process is terminated to prevent overfitting. The training plots of the 3D U-Net model are
shown in Figure 3. These DL-based models are implemented using TensorFlow [39] and
run on a TITAN RTX GPU (24 GB).
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A correlation coefficient (CC) is adopted to evaluate the consistency between the
observed SSbT profile s and the predicted SSbT profile ŝ at the (i, j) observation point,
which is defined as

CCi,j =
Cov(ŝ, s)√

Var(ŝ) ·Var(s)
(4)

The average CC of all observation points of the predicted SSbT field can be calculated as
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5.3. Results

We compared the prediction performance of the model between training on observation-
only data and training on observation and reconstruction data. The results are shown in
Table 2, in which 12-month average RMSE, MAE, and CC are adopted as indicators. Using
additional reconstruction data resulted in relative improvements of 7.5% and 9.3% in terms
of RMSE and MAE, while the CC value increased from 0.9506 to 0.9616. This proves that
the reconstructed historical data can help improve the overall performance of the model
for SSbT prediction.

Table 2. The effect of adding reconstruction data during model training.

Dataset RMSE MAE CC

Observation data 0.6857 0.4227 0.9506
Reconstructed data + observation data 0.6343 0.3832 0.9616
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The verification of depth levels for lead times of 1, 3, 6, 9, and 12 months is shown in
Figure 4. For all depth levels, the 3D U-Net model’s temperature prediction error increased
with growing lead times. The prediction performance of the model varied at different
depths. In general, the prediction error of SST and 50–150 m SSbT is larger than that at
other depths. Relatively large prediction error obtained at 0 m may be due to the presence
of more erratic elements, such as solar radiation and sea surface winds. To investigate the
reasons for the large prediction error at the depth of 50–150 m, we calculated the average
root-mean-square (RMS) values of the temperature inter-annual variations for different
depth levels, as shown in Figure 5a. It can be seen that the subsurface temperature inter-
annual variability peaks in the range 50–150 m, which is consistent with the findings in [40],
making it difficult to accurately model the temporal variations at these depth levels. In
addition, the vertical temperature gradients for different depth levels was computed. As
shown in Figure 5b, the vertical temperature gradients are higher at the depth of 50–150 m
than those at other depth levels, which also causes a significant prediction error.
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We then examined the prediction performance of this method for SSbT in different
geographical parts of the study area, including north temperate (between 35.5◦N–59.5◦N),
north subtropics (between 23.5◦N–35.5◦N), tropics (between 23.5◦N–23.5◦S), south sub-
tropics (between 23.5◦S–35.5◦S), and south temperate (between 35.5◦S–59.5◦S). First, the
prediction performance for different depth levels over these regions were examined. For
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simplicity and intuition, six depth levels at appropriate intervals were selected within
0–400 m, including 0, 20, 50, 100, 200, and 400 m. The 12-month average RMSE values
are shown in Table 3. The SST prediction error in tropics is lower than in other regions.
However, the highest RMSE values are obtained for the prediction of temperature at depths
of 50, 100, and 200 m over this region. The changes in prediction error with depth in north
temperate, north subtropics and tropics are generally consistent with the trend of the whole
study area (shown in Figure 4), while the prediction error in south subtropics and south
temperate increases with depth. Beyond that, the overall prediction performance for all
12 depth levels in the upper 400 m over the six regions was evaluated using 12-month
average RMSE, MAE, and CC as indicators. As shown in Table 4, the RMSE and MAE
values are higher in tropics than in other regions, in which the error produced in middle
layers contributes a lot. It seems that the prediction performance for SSbT in the Southern
Hemisphere is better than that in the Northern Hemisphere, and the prediction error in
subtropical zones is lower than that in temperate zones. It is noteworthy that the CC values
of the predicted SSbT profiles in subtropical and tropical zones are above 0.99, while those
of north temperate and south temperate are around 0.91. This indicates that the predicted
SSbT profiles in temperate zones has poorer consistency with the observations compared
to that in other regions.

Table 3. RMSE values of the predicted SSbT for selected depth levels over different geographical
zones.

Depth North
Temperate

North
Subtropics Tropics South

Subtropics
South

Temperate

0 0.7323 0.6200 0.5363 0.5468 0.5876
20 0.7194 0.5811 0.6003 0.4648 0.5256
50 0.7754 0.6334 0.9259 0.4568 0.5182

100 0.6494 0.6109 1.0686 0.4424 0.5179
200 0.5163 0.4657 0.6488 0.4376 0.4540
400 0.4180 0.4123 0.3924 0.3407 0.3147

Table 4. Evaluation of the overall prediction performance for the SSbT fields in different geographical
zones.

Region RMSE MAE CC

North temperate 0.6391 0.3330 0.9177
North subtropics 0.5565 0.3718 0.9935

Tropics 0.7345 0.4454 0.9960
South subtropics 0.4492 0.3130 0.9955
South temperate 0.4893 0.3499 0.9081

For lead times of 1–12 months, the SSbT prediction performance of different methods
was examined at depths of 0, 20, 50, 100, 200, and 400 m. As shown in Figure 6, the
prediction error of the seasonal naïve model for a specific depth is positively correlated with
the inter-annual variation of temperature at that depth. Three DL models outperformed
the seasonal naïve model for most of the selected depths. However, they are worse than the
seasonal naïve model for 400 m where the inter-annual variation of temperature at 400 m is
much smaller compared to those at other depth levels. This is probably because redundant
layers in these DL models cause a loss of input information. The use of residual blocks [41]
may alleviate this problem. In comparison to the M-ConvLSTM model, it was found that
the S3D-CNN and 3D U-Net models had reduced RMSE values for all the chosen depth
levels at all lead times, demonstrating their potential in modeling spatiotemporal data
with seasonal periodicity. In addition, the designed 3D U-Net model is superior to the
M-ConvLSTM and S3D-CNN models for these depth levels.
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Figure 6. RMSE curves of the compared methods against lead times of 1–12 months for selected
depth levels.

For all 12 depth levels, the total prediction performance of the comparative approaches
was assessed. The results are displayed in Figure 7. It can be seen that the 3D U-Net
model has a lower prediction error than the other methods for all lead times. The CC
values obtained by the four approaches fall between 0.94 and 0.97, demonstrating that the
projected SSbT profiles of the four methods are consistent with the observed SSbT profiles.
It is noteworthy that although the seasonal naïve model achieved the highest prediction
error, it performs even better than the 3D U-Net model in terms of CC. This indicates that
there is still room for improvement in retaining spatial information in the vertical direction
of input SSbT fields.
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Figure 7. Evaluation of the overall prediction performance of different models.

A case study was then conducted to qualitatively assess the 3D U-Net model’s per-
formance in terms of prediction. The SSbT fields observed in the past 12 months from
February 2020 to January 2021 were input into the model, and the prediction results for the
next 12 months from February 2021 to January 2022 were obtained. Figure 8a–d show the
prediction results for the lead times of 3, 6, 9, and 12 months together with the associated
ground truth SSbT fields for the selected depths of 0, 100, 200, and 400 m. Maps of the
relative error between the predictions and observations are also displayed. The SST shows
an obvious seasonal variation, and the prediction results of the network well reflect this
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temporal characteristic. The distribution of the predicted sea temperature is comparable
to that of the ground truth observations in the other three depth layers. In addition, the
relative error in most regions is less than 10%. However, large relative error of more than
20% is found in temperate zones, mainly at the boundary of the study area and the regions
close to the land. This may be due to the lack of utilization of temperature outside the study
area and the complexity of SSbT variations in coastal seas. In general, the 3D U-Net model
can predict realistic SSbT variations in the study area.
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6. Conclusions

This study attempts to predict the SSbT over the Pacific Ocean and its surround-
ing oceans in the upcoming 12 months. We designed a 3D U-Net model to extract the
spatiotemporal correlation of the input SSbT fields in the past 12 months and map them
to the prediction results. The issue of insufficient training data was resolved using the
reconstructed SSbT data. The experimental results indicate that after using additional
reconstruction data, relative improvements of 7.5% and 9.3% are achieved in terms of
RMSE and MAE, and a higher average CC value is obtained. The prediction of 50–150 m
SSbT is more difficult than that at other depths, possibly because the inter-annual variations
and vertical temperature gradients at these layers are larger than those at other layers. In
addition, the SSbT prediction performance of the 3D U-Net model varies across different
geographical parts of the study area. For the prediction of SST, the model has the lowest
prediction error in tropics, while for the prediction of mesosphere temperature, the model
has the largest prediction error in the tropical region. The overall prediction performance
for SSbT in the Southern Hemisphere is better than that in the Northern Hemisphere, and
the model performance in subtropical zones are better than that in temperate zones. The
prediction error of this method is lower at most depth levels compared with that of other
methods. It achieves better overall and longer-term prediction performance. The RMSE
and MAE of the predicted SSbT fields for all lead times are in the range 0.5–0.7 ◦C and
0.3–0.45 ◦C, respectively, and the average CC scores of the predicted SSbT profiles exceed
0.96 for almost all lead times. A prediction case starting from January 2021 over the study
area demonstrates that the 3D U-Net model is capable of simulating the temporal variations
of the SSbT fields, and its predictions were in line with the observations, which can facilitate
understanding of future changes in the thermal state of the subsurface ocean.

However, there is still a problem of input information loss in the 3D U-Net model,
which makes its prediction accuracy for 400 m and the CC values of the predicted sea
temperature profiles inferior to those of the seasonal naïve model. In the future, we will try
to address this problem and incorporate more oceanic parameters such as ocean currents
into the network to further improve the SSbT prediction performance.
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Abstract: Near-surface humidity (Qa) is a key parameter that modulates oceanic evaporation and
influences the global water cycle. Remote sensing observations act as feasible sources for long-term
and large-scale Qa monitoring. However, existing satellite Qa retrieval models are subject to apparent
uncertainties due to model errors and insufficient training data. Based on in situ observations
collected over the China Seas over the last two decades, a deep learning approach named Ensemble
Mean of Target deep neural networks (EMTnet) is proposed to improve the satellite Qa retrieval
over the China Seas for the first time. The EMTnet model outperforms five representative existing
models by nearly eliminating the mean bias and significantly reducing the root-mean-square error
in satellite Qa retrieval. According to its target deep neural network selection process, the EMTnet
model can obtain more objective learning results when the observational data are divergent. The
EMTnet model was subsequently applied to produce 30-year monthly gridded Qa data over the
China Seas. It indicates that the climbing rate of Qa over the China Seas under the background of
global warming is probably underestimated by current products.

Keywords: near-surface humidity; remote sensing; deep learning; China Seas

1. Introduction

As the primary source of global evaporation and precipitation, the ocean plays an
important role in the transportation and redistribution of water resources on Earth [1–3].
On this basis, the near-surface humidity (Qa) over global oceans is crucial, as it modulates
oceanic evaporation and influences the global water cycle [4–6]. Nevertheless, there are non-
negligible uncertainties in Qa estimates in satellite-derived products [7,8] and reanalysis
products [9,10]. The imperfection of Qa data quality has been reported as one of the leading
error sources of uncertainties in freshwater exchanges across the air–sea interface and in
global water budgets [11–14]. Even in coupled general circulation models, the performance
of Qa is highly related to simulations of oceanic evaporation [15]. Accurate estimates of Qa
are thus necessary for studies on the global water cycle, air–sea interactions, and climate
change [16].

The measurements of Qa can be generally divided into two approaches: in situ ob-
servations and remote sensing observations. The former are direct measurements of Qa
and have relatively high credibility, but these observations are subject to poor continuity in
time and space. The latter have the advantage of long-term and large-scale Qa monitoring.
Still, remote sensing is an indirect approach that requires a relevant retrieval model to
convert satellite measurements into Qa. With the development of space-borne technology
and microwave radiometers, the last several decades have experienced the prosperity of
investigations in model development for satellite Qa retrieval. Considering that a large
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portion of the total column precipitable water (TPW) is confined in the atmospheric surface
layer, pioneering work by [17,18] (hereafter L86) linked the TPW to Qa in light of the
Qa–W relation. It was reported that the Qa–W relationship has excellent performance with
training data on a monthly scale [18] and can also work well with synoptic-scale data [19].
Considering the decoupling of the atmospheric boundary layer from the upper troposphere,
Ref. [20] proposed replacing the TPW data in the Qa–W relation with the precipitable water
constrained in the lowest 500 m, which can be derived from brightness temperature (TB)
measurements. To reduce the propagation of uncertainties within input data, Ref. [21]
established a direct linear regression between Qa and TB. Under the scheme of the Qa–W
relation, Ref. [22] developed an empirical orthogonal function method for satellite Qa
retrieval. A neural network combining TPW and sea surface temperature (SST) was first
developed to estimate Qa by [23]. Subsequently, estimates of Qa with multichannel TBs
as input data by multivariate linear regression [24–27] or nonlinear regression [16,28,29]
prevailed in the last two decades.

The models above were primarily designed for global oceans. However, Ref. [28]
reported that satellite Qa retrieval differed in regions of the tropics and high latitudes, and a
high-latitude enhancement was considered in their model. It indicates that attention should
be given to different regional features of satellite Qa retrieval. The China Seas, consisting of
the Bohai Sea, Yellow Sea (YS), East China Sea (ECS), and South China Sea (SCS), are the
largest marginal group of seas in the northwestern Pacific and are strongly influenced by
complex continental environments. Previous investigations have pointed out that the Qa
data in this region suffer from significant uncertainties and are the leading error source of
air–sea heat fluxes [30,31].

In recent years, machine learning, especially deep learning, has been widely used to
provide new insights into traditional and/or emerging research in earth science [32–36].
With the accumulation of high-quality in situ observations of Qa over the China Seas in
the last two decades, the main objective of this study is to develop a deep-learning-based
model to improve the satellite Qa retrieval over the China Seas. The data and methods are
introduced in Section 2. The main results are presented in Section 3. Section 4 discusses
the interpretability of the deep-learning-based model. Finally, Section 5 draws the main
conclusion of this study.

2. Data and Methods
2.1. In Situ Observations

In situ observation information from this study is listed in Table 1. There are
20 observational stations in the coastal and open oceans (Figure 1a), including 18 buoys,
1 offshore platform, and 1 flux tower on an island. Compared to ship observations, these
fixed-point observations usually have more stable data quality performance. The data
collected in coastal areas are valuable touchstones to validate the performance of remote
sensing observations, including Qa, surface wind, and sea surface temperature. The data
span from 1998 to 2018, and the sampling intervals vary from 1 min to 30 min. All the raw
data were processed with quality control procedures as suggested by [31,37,38]. For all
stations, the Qa and surface wind data were adjusted to standard heights of 2 m and 10 m,
respectively, according to the COARE 3.0 algorithm [39].
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Table 1. Information on in situ observations collected in this study. The station names with prefixes
“DH” and “HH” are located in the ECS and the YS, respectively. The remaining 13 stations are located
in the SCS. The data span from 1998 to 2018 and the sampling intervals vary from 1 min to 30 min.

Name Location Ocean Depth Type Sampling
Interval Period

Maoming 111.66◦E, 20.75◦N ~100 m buoy 1 min 26 May 2010–28 September 2011

Shantou 117.34◦E, 22.33◦N ~100 m buoy 1 min 16 October 2010–16 May 2011

Bohe 111.32◦E, 21.46◦N ~15 m offshore
platform 10 min

26 November 2009–15 May 2010
4 January 2011–28 April 2011
13 March 2012–3 June 2012

Xisha flux tower 112.33◦E, 16.83◦N island tower 1~10 min 26 April 2008–6 October 2008
19 July 2013–31 January 2017

Xisha buoy 112.33◦E, 16.86◦N ~1000 m buoy 10 min 19 September 2009–7 April 2013
14 May 2018–12 June 2018

Kexue 1 110.26◦E, 6.41◦N ~1300 m buoy 15 min 7 May 1998–20 June 1998

Shiyan 3 117.40◦E, 20.60◦N ~1000 m buoy 15 min 6 May 1998–23 June 1998

SCS1 115.60◦E, 8.10◦N ~3000 m buoy 15 min 19 April 1998–29 April 1998

SCS3 114.41◦E, 12.98◦N ~4500 m buoy 15 min 8 June 1998–16 June 1998

SCS3+ 114.00◦E, 13.00◦N ~4000 m buoy 15 min 13 April 1998–29 May 1998

QF301 115.59◦E, 22.28◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

QF302 114.00◦E, 21.50◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

QF303 112.83◦E, 21.12◦N ~100 m buoy 30 min 1 March 2011–31 May 2011

DH06 123.13◦E, 30.72◦N <100 m buoy 30 min 29 March 2012–30 December 2013

DH10 122.00◦E, 31.37◦N <100 m buoy 30 min 1 September 2013–2 December 2015

DH11 122.82◦E, 31.00◦N <100 m buoy 30 min 1 January 2014–30 December 2016

DH20 122.75◦E, 29.75◦N <100 m buoy 30 min 6 November 2014–1 November 2016

HH07 122.58◦E, 37.01◦N <100 m buoy 30 min 29 March 2012–31 December 2013

HH09 120.27◦E, 35.90◦N <100 m buoy 30 min 1 January 2014–31 December 2016

HH19 119.60◦E, 35.42◦N <100 m buoy 30 min 6 November 2014–31 December 2016

The basic characteristics of in situ observations of Qa are examined to check their
representativeness, considering many missing data and the uneven sampling in time and
space. As shown in Figure 1b–d, Qa varies from 5.5 to 24.0, 1.5 to 24.5, and 0.8 to 24.8 g/kg
in the SCS, ECS, and YS. Qa’s mean values plus/minus one standard deviation (STD) are
16.6 ± 4.1, 10.1 ± 5.5, and 8.5 ± 5.7 g/kg in the SCS, ECS, and YS. For the probability
density distributions (PDDs) of Qa, a left-skewed distribution in the SCS and right-skewed
distributions in the ECS and YS can be observed. These lower limits, mean values, and
PDDs of Qa in the three seas coincide well with the latitudes they locate in, as Qa usually
decreases from low to high latitudes. With the data in the three seas considered as a whole,
Qa presents a fairly even distribution in the range of 2~22 g/kg, which varies basically
around a steady density across each bin (Figure 1e). The highly uniform PDD of Qa shows
an acceptable representativeness of in situ observations collected here. Therefore, it is
expected that the analyses based on those data could be relatively objective and with
high significance.
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Figure 1. (a) Geographical distribution of observational stations. Shading denotes the ocean depth.
(b–d) The PDDs of in situ observations of Qa over the SCS, ECS, and YS. (e) The mean results for all data.
The range, mean value, and STD of the data in each panel are shown in blue text with unit of g/kg.

2.2. Remote Sensing Data

Remote sensing observations of TPW, wind speed (U), cloud liquid water (CLW), and
SST from various satellite microwave radiometers are utilized in this study. The sensors
include the Special Sensor Microwave Imager (SSM/I), the Special Sensor Microwave
Imager Sounder (SSMIS), the Advanced Microwave Scanning Radiometer series (AMSR-
E and AMSR-2), the WindSat Polarimetric Radiometer, the Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), and the Global Precipitation Measurement
Microwave Imager (GMI). For SSM/I and SSMIS, the instruments are referred to by satellite
number starting with F08. Here, F15 from SSMI/I and F16 to F18 from SSMIS are employed
because of their relatively long time coverage. Detailed descriptions for each sensor can be
found at the Remote Sensing Systems (RSS; www.remss.com, accessed on 30 June 2022).
Due to the satellite swath width and orbit seam, banded gaps exist in the ascending and
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descending daily maps of satellited-derived variables. To facilitate the matching of satellite
data and in situ data, the products incorporating both the ascending and descending data
by using 3-day running average are utilized, which can achieve more homogeneous spatial
distributions for these variables. Note that there exist differences in data from various
sensors (Figure 2), and uncertainties in results may be caused by a single data source.
Consequently, multi-sensor inputs from SSM/I F15, SSMIS F16, SSMIS F17, SSMIS F18,
AMSR-E, AMSR-2, WindSat, TMI, and GMI are utilized in the following study.
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Figure 2. Comparison of 3-day running averaged TPW data on 1 June 2014, from various types of
sensors. (a–f) Sensors SSM/I F15, SSMIS F18, WindSat, AMSR, TMI, and GMI, respectively. Red dots
are stations located in coastal areas. Note that different sensors have different scopes of data coverage
in coastal areas.

TB data from six channels are used for the models listed in Table 2 that directly retrieve
Qa from multichannel TBs. These channels are 19 H, 19 V, 22 V, and 37 V GHz from SSMIS
F17 and 52 V GHz from Advanced Microwave Sounding Unit-A (AMSU-A), where H
and V denote the horizontal and vertical polarizations, respectively. As underscored by
RSS, TBs from the SSMIS are produced using uniform processing techniques. They are
intercalibrated by considering the differences in sensor frequencies, channel resolutions,
instrument operation, and other radiometer characteristics [40]. The AMSU-A is a multi-
channel microwave radiometer that performs atmospheric sounding of temperature and
moisture by passively recording atmospheric microwave radiation at multiple wavelengths.
Detailed descriptions of how TBs from the AMSU-A are processed can be found in [41,42].
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The collocating strategy between satellite data and in situ observations for each station is
as follows:

(i) For variables TPW, U, and CLW, which are already in daily values, first, average the
high-frequency in situ observations to daily values with the local standard time adjusted
to Coordinated Universal Time and then apply a 3-day running average. Second, locate
the 0.25◦ × 0.25◦ box in the satellite data where the corresponding observational station
lies. Subsequently, the mean value of the four corners of that box is used as a proxy for
satellite data. Attempts such as extending the search area to 1◦ × 1◦ box and/or applying
an inverse-distance-weighted average present similar results.

(ii) For TBs with ascending and descending measurements per day, temporal and
spatial windows of 90 min and 50 km following Yu and Jin (2018) are used. If multiple
points of satellite data meet the criterion, the average of those points is taken. If no satellite
data match the in situ observations, a missing value is set.

Table 2. Summary of the methods of surface humidity retrieval validated in this study. Here, the W
denotes the parameter TPW in the main text.

Algorithm Equation RMSE (g/kg)

Liu et al. (1986) [18]
Qa = C1×W +C2×W2 +C3×W3 +C4×W4 +C5×W5,
where C1 = 0.006088244, C2 = 0.1897219, C3 = 0.1891893,

C4 = −0.07549036, and C5 = 0.006088244.
0.40 in tropics and 0.80 in globe

Jones et al. (1999) [23]
Qa = C0 + C1 × SST + C2 × SST2 + C3 ×W1 + C4 ×W2,
where C0 = 2.1052, C1 = −0.0551, C2 = 0.0138, C3 = 0.2435,

and C4 = −0.0019.
0.77 ± 0.39

Bentamy et al. (2003) [24]
Qa = C0 + C1T19V + C2T19H + C3T22V + C4T37V , where
C0 = −55.9227, C1 = 0.4035, C2 = −0.2944, C3 = 0.3511,

and C4 = −0.2395.
1.40

Jackson et al. (2006) [25]
Qa = C0 + C1T52V + C2T19V + C3T19H + C4T37V , where

C0 = −105.117, C1 = 0.31743, C2 = 0.62754, C3 = −0.12056,
and C4 = −0.33940.

0.83

Yu and Jin (2018) [28]

Qa = a0 + a1T19v + a2T22v + a3T37v + a4T52v + b1T19v
2 + b2T22v

2

+b3T37v
2 + b4T52v

2 ,

where a0 = 1423.34, a1 = 0.46967, a2 = 0.43401,
a3 = −0.92292, a4 = −11.494, b1 = −0.00071, b2 = −0.00072,

b3 = 0.00155, and b4 = 0.02336 for the global model,
a0 = −127.10, a1 = −0.21113, a2 = 0.71712, a3 = −0.78268,
a4 = 1.1918, b1 = 0.00062, b2 = −0.00139, b3 = 0.00153, and

b4 = −0.00222 for the high-latitude model.

0.82

2.3. Reanalysis Data

Two reanalysis products are employed to make comparisons with the Qa data derived
from the model proposed in this study. They are the European Centre for Medium Range
Weather Forecast (ECWMF) fifth generation (ERA5) reanalysis product [43] and the Na-
tional Centers for Environmental Prediction/Department of Energy Global Reanalysis 2
(NCEP2) product [44]. Both products are the latest versions of their corresponding series
and improvements have been made in their data assimilations and model physics. Monthly
Qa data from 1990 to 2019 are extracted from the two reanalyses and are interpolated onto
1◦ × 1◦ grid maps.

2.4. Existing Satellite Qa Retrieval Models

Five representative satellite Qa retrieval models are employed to intercompare with
the deep-learning-based model proposed in this study. Table 2 summarizes the basic
information of these five models. The L86 model uses a fifth-order polynomial regression
approach to estimate Qa with TPW data. The model reported in [23] (hereafter J99) uses
a nonlinear neural network approach to estimate Qa with TPW and SST. The models
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reported in [24] (hereafter B03) and [25] (hereafter J06) use multivariate linear regression to
estimate Qa with multichannel TBs. Recently, the model reported in [28] (hereafter Y18)
uses multivariate nonlinear regression to estimate Qa with multichannel TBs and considers
enhancement in high latitudes.

2.5. Ensemble Mean of Target Deep Neural Network Development

A model named Ensemble Mean of Target deep neural networks (EMTnet) was pro-
posed to improve the satellite Qa retrieval over the China Seas (Figure 3). The tool to build
and perform the EMTnet model is TensorFlow (https://tensorflow.org/, accessed on 30
June 2022), an open-source machine learning library. The EMTnet model is generated
from a large number of deep neural networks (DNNs). Each DNN is based on the error
backpropagation (BP) algorithm [45] and consists of an input layer, three hidden layers,
and an output layer. The BP algorithm takes advantage of the gradient descent and error
backpropagation methods to adjust the connection weights of corresponding neurons to
achieve its nonlinear learning ability. The EMTnet model works via the following steps:
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Figure 3. Architecture of the EMTnet. Each DNN_n (n = 1, 2, 3, . . . ) uses 75% randomly sampled
data from all in situ observations as training data, while the remaining 25% are used as testing data.

(i) Four satellite-derived variables, TPW, CLW, U, and SST, are put in the input layer
of each DNN. Note that different combinations of input variables can lead to different
learning abilities of the EMTnet model, which are discussed in Section 4. Attempts using
pure multichannel TBs or the mix of level-3 variables and multichannel TBs show similar
or even slightly worse results.

(ii) Normalize these four input variables to the range between 0 and 1 according to
their maximum and minimum values. It is known that the DNNs are quite sensitive to the
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magnitude difference in various input variables. Therefore, normalizing the input variables
in advance can lead to better computational efficiency and results.

(iii) Determine the specific configuration of each DNN. The EMTnet model does not
necessarily use the DNN approach. We have also tried other machine learning approaches
such as the support vector machine (SVM) and the random forest (RF). It is found that the
results of SVM and RF were comparable with those of the DNN, or sometimes slightly
worse. The DNN approach is eventually employed to build the EMTnet model considering
its better abilities in big data processing efficiency and nonlinear learning ability. Critical
parameters are eventually determined through a number of tests to make the DNNs suitable
for the learning task here. For instance, three hidden layers, each with ten neurons, are used.
The number of iterations is set to 5000, and the learning rate is set to 0.005. In addition, the
activation function is essential in forming nonlinear learning abilities for the DNNs. Three
widely used activation functions, sigmoid, rectified linear units (ReLU), and hyperbolic
tangent function (tanh), have been tested and compared. These activation functions have
some defects, for example, the neuronal death for the ReLU activation function and a
vanishing gradient for the sigmoid activation function. Activation function tanh is free of
neuronal death, and the vanishing gradient problem has been alleviated to some extent. In
addition, tanh has a faster convergence speed and a lower number of iterations. Preliminary
tests show that the sigmoid and tanh activation functions perform better than the ReLU
activation function in this study. Further inspections find that the accuracy of the result
using the tanh activation function is 2~4% higher than that using the sigmoid activation
function. Therefore, the tanh activation function is employed in this study. Note the current
hyper-parameter tuning for each DNN is not unique. It only aims to make each DNN
suitable for the learning task here. For those who are interested in the EMTnet model, they
can adjust these hyper-parameter tunings according to specific tasks.

(iv) A total of 75% of Qa observations are randomly sampled as training data, while
the remaining 25% are used as independent testing data. As for traditional DNN training
and testing, this operation is usually conducted once. However, it is found that samplings
of different training and testing data can result in different uncertainty levels for the DNNs.
To reduce the uncertainty of learning results caused by man-made operations in setting
training and testing data, the Ensemble Mean approach is adopted. The EMTnet model
trains n different DNNs with randomly sampled n sets of training and testing data to
produce an ensemble of DNNs. In this study, the n is set to 1000. For each DNN, the
testing data are used to compute the mean bias and root-mean-square error (RMSE). The
sum of absolute values of mean bias and RMSE, that is, the absolute error, is taken as the
uncertainty of each DNN.

According to the PDD of uncertainties constructed by the DNN ensemble, the top
10% DNNs with uncertainties falling into the highest density intervals are selected as
target DNNs. The Ensemble Mean of Target DNNs is then used to produce the EMTnet
model outputs.

3. Results
3.1. EMTnet Model Validation

The Qa predictions from the EMTnet model and five existing models are intercom-
pared with respect to Qa observations. Three representative stations from the three China
seas are selected according to their data quality, continuity, and integrity to facilitate the
intercomparison. They are the Xisha Tower station in the SCS, the DH11 station in the ECS,
and the HH09 station in the YS. A whole year of data from 2016 is used for each station to
reduce the possible seasonal dependence of the results.

Figure 4 shows the scatter diagram between the Qa predictions and observations and
the corresponding correlation coefficient (CC), mean bias, and RMSE for each model in
each sea. The CCs all exceed the 99% confidence level, varying from 0.59–0.91, 0.89 to 0.98,
and 0.92 to 0.98 in the SCS, ECS, and YS, respectively. Among them, the EMTnet model
has the highest CCs at each station. The mean biases and RMSEs present a large spread
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in different models and stations. In the SCS, the EMTnet model slightly overestimates
Qa by 0.06 g/kg, while the rest of the models underestimate Qa from 1.07 (L86 model) to
7.33 (Y18 model) g/kg. In the ECS, except for the EMTnet model and the L86 model which
overestimate Qa by 0.13 and 0.78 g/kg, all the models underestimate Qa by 0.41 (B03 model)
to 4.12 (J06 model) g/kg. In the YS, except for the J99 and B03 models which underesti-
mate Qa by 3.22 and 1.37 g/kg, all the models overestimate Qa by 0.06 (EMTnet model) to
4.32 (J06 model) g/kg. The RMSEs of these models in the SCS, ECS, and YS are varying from
1.10 (EMTnet model) to 2.72 (Y18 model) g/kg, 1.17 (EMTnet model) to 3.36 (Y18 model) g/kg,
and 1.22 (EMTnet model) to 3.08 (J99 model) g/kg.
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Figure 4. Comparisons between Qa predictions (ordinate) and observations (abscissa). (a–f) The
results for the Xisha buoy station in the SCS using the EMTnet model and five existing models
summarized in Table 2. (g–l) and (m–r) The same as (a–f) but for the DH11 station in the ECS and the
HH09 station in the YS, respectively. Bars on the rightmost side show the mean results of the three
stations for each model. The units of mean bias and RMSE are g/kg.

The absolute values of the mean bias and RMSEs from the three seas are averaged
for each model to compare their overall uncertainty level. The mean biases plus/minus
RMSEs are 0.08 ± 1.16, 0.72 ± 1.77, 4.35 ± 2.56, 1.64 ± 2.09, 5.26 ± 2.49, and 3.39 ± 2.61 for
the EMTnet, L86, J99, B03, J06, and Y18 models. Quantitatively, the EMTnet model has the
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lowest mean bias and RMSE on average. The EMTnet model also shows the least mean
absolute percentage error (MAPE) at each station.

3.2. EMTnet Model Application

All the Qa observations collected here are subsequently used to fully train the EMTnet
model. Qa predictions of the L86 model, which has the best performance among these five
existing models, are used as a reference here. It is noted that both the EMTnet model and the
L86 model take TPW as an input variable, which confirms the good relationship between
TPW and Qa over the China Seas. Figure 5a compares the Qa predictions of the EMTnet
model and the L86 model in the form of the Qa–W relation. The dots determined by Qa and
TPW data cluster around the classical curve of the L86 model. The data density distribution
shows that the majority of the data coincide well with the L86 model. Compared to the
medians of Qa observations, however, biases of the L86 model occur primarily under
moderate Qa values. For example, in the range of 10~20 g/kg, the L86 model overestimates
Qa from 0.44 to 1.98 g/kg, while the biases of the EMTnet model are almost negligible.
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Figure 5. Comparisons of the EMTnet model and the L86 model. (a) The scatter diagram of Qa

(ordinate) and TPW (abscissa), while the bars show the model biases. In (a), the red dot denotes the
data density in each 0.5 cm bin of TPW and 0.5 g/kg bin of Qa with units of ‰. The blue square and
error bar are the median and one STD of Qa observations in each 0.5 cm bin of TPW. (b,c) The PDDs
of the mean bias and RMSE in 1000 sets of DNN computations. Black and green lines and bars are
the results of the L86 model and the EMTnet model. The units of mean bias and RMSE are g/kg.

Figure 5b,c depict the PDDs of the mean biases and RMSEs of the EMTnet model and
the L86 model according to the 1000 samples of testing data used in the EMTnet model.
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The mean biases of the L86 model are concentrated from 0.60 to 0.80 (87% data). The mean
biases of the EMTnet model have two peaks, which are around 0.10 to 0.30 g/kg and −0.10
to −0.30 g/kg. On average, the mean biases of the L86 model and the EMTnet model
are 0.72 ± 0.06 and −0.02 ± 0.19 g/kg. The RMSEs of the L86 and EMTnet models are
concentrated from 2.45 to 2.65 (94% data) and 1.55 to 1.70 (95% data) g/kg, which are on
average 2.56 ± 0.05 g/kg and 1.64 ± 0.04 g/kg. Thus, the EMTnet model reduces the mean
bias and RMSE of the L86 model by approximately 0.70 and 0.90 g/kg, respectively. The
mean bias for the EMTnet model in satellite Qa retrieval is almost zero, reducing the RMSE
of the L86 model by 36%.

Monthly gridded Qa data over the China Seas were produced with satellite multi-
sensor inputs by applying the fully trained EMTnet model. Both the input and output
data are on 0.25◦ × 25◦ gridded maps and span from 1990 to 2019. Figure 6a–d show
the climatologies of Qa from two satellite Qa retrieval models (EMTnet and L86) and two
reanalyses (ERA5 and NCEP2). Except for some differences in detail, apparent gradients
from south to north in the mean state and seasonal variation in Qa can be observed in all
four data sources, which is higher in the south and lower in the north. Here, the intensity
of seasonal variations is defined by the standard deviation from January to December.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

of the mean bias and RMSE in 1000 sets of DNN computations. Black and green lines and bars are 

the results of the L86 model and the EMTnet model. The units of mean bias and RMSE are g/kg. 

Figure 5b,c depict the PDDs of the mean biases and RMSEs of the EMTnet model and 

the L86 model according to the 1000 samples of testing data used in the EMTnet model. 

The mean biases of the L86 model are concentrated from 0.60 to 0.80 (87% data). The mean 

biases of the EMTnet model have two peaks, which are around 0.10 to 0.30 g/kg and −0.10 

to −0.30 g/kg. On average, the mean biases of the L86 model and the EMTnet model are 

0.72 ± 0.06 and −0.02 ± 0.19 g/kg. The RMSEs of the L86 and EMTnet models are concen-

trated from 2.45 to 2.65 (94% data) and 1.55 to 1.70 (95% data) g/kg, which are on average 

2.56 ± 0.05 g/kg and 1.64 ± 0.04 g/kg. Thus, the EMTnet model reduces the mean bias and 

RMSE of the L86 model by approximately 0.70 and 0.90 g/kg, respectively. The mean bias 

for the EMTnet model in satellite Qa retrieval is almost zero, reducing the RMSE of the L86 

model by 36%. 

Monthly gridded Qa data over the China Seas were produced with satellite multi-

sensor inputs by applying the fully trained EMTnet model. Both the input and output data 

are on 0.25° × 25° gridded maps and span from 1990 to 2019. Figure 6a–d show the clima-

tologies of Qa from two satellite Qa retrieval models (EMTnet and L86) and two reanalyses 

(ERA5 and NCEP2). Except for some differences in detail, apparent gradients from south 

to north in the mean state and seasonal variation in Qa can be observed in all four data 

sources, which is higher in the south and lower in the north. Here, the intensity of seasonal 

variations is defined by the standard deviation from January to December. 

 

Figure 6. (a–d) Climatology of Qa distributions (shading) over the China Seas from the EMTnet, L86,
ERA5, and NCEP2. Contours denote the intensity of seasonal variation, which is defined by one
standard deviation from January to December on each grid. (e) The time series of Qa anomalies over
the China Seas. (f,g) The same as (e) but for the southern (SCS) and northern (ECS and YS) sections
of the China Seas. The time series in (e–g) have been applied to 13-point running average operations.
The values in parentheses denote the long-term trend of Qa during the period from 1990 to 2019 with
unit of g/kg per decade. The units are g/kg.
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The atmosphere’s capacity to hold water vapor will increase in a warming climate
according to the Clausius–Clapeyron relation [46]. The long-term trend of Qa over the
China Seas is depicted in Figure 6e–g. With the global warming in recent decades, the
four data sources show consistent upward trends of Qa (Figure 6e). However, the L86 model,
ERA5, and NCEP2 have relatively lower climbing rates of Qa, which are 0.08, 0.11, and
0.10 g/kg per decade, compared to the results of the EMTnet model (0.23 g/kg per decade). It
is found that the long-term trends of Qa are probably underestimated in both the southern
(the SCS) and northern (the ECS and YS) sections, especially for the latter. In the southern
section, the long-term trends of Qa are 0.22, 0.20 0.18, and 0.13 g/kg per decade in the EMTnet
model, L86 model, ERA5, and NCEP2 (Figure 6f). Except for NCEP2, all the data show quite
similar climbing rates of Qa. In contrast, the long-term trends of Qa show larger spread in
the northern section, which are 0.21, −0.04, 0.04, and 0.07 g/kg per decade in the EMTnet
model, L86 model, ERA5, and NCEP2 (Figure 6g). Therefore, the possible underestimation of
upward trends of Qa in the L86 model, ERA5, and NCEP2 can be mainly attributed to their
too-weak trends of Qa variations in the northern section.

4. Discussions

The interpretability of deep learning is of great significance for its development and
application. The EMTnet model and the L86 model, which take TPW as an input variable,
are the top two best performing models investigated here. The possible reasons why the
EMTnet model can further improve the satellite Qa retrieval compared to the L86 model are
discussed. Taking the result of the L86 model as a reference, eight sensitivity experiments
(Exp1 to Exp8) are designed to examine whether the improvement of the EMTnet model is
due to the model itself or the additional training data such as CLW, U, and SST compared
to the L86 model. All the sensitivity experiments employ TPW as a fixed variable and
adopt the eight combinations of CLW, U, and SST to construct their training data. Note
that Exp1, including the full CLW, U, and SST information, is the result shown in Figure 5.
The statistical results for Exp1 to Exp8 are shown in Table 3. As revealed in Table 3, all
the experiments show improvements in satellite Qa retrieval compared to the L86 model.
They reduce the mean biases and RMSEs to varying extents. If only TPW data are used as
training data as in the L86 model, the absolute error is reduced by 23% (Exp8). Taking into
account CLW, U, and SST, the absolute errors are reduced by 35% (Exp5), 24% (Exp6), and
42% (Exp7). The three pairwise combinations of CLW, U, and SST are considered in Exp2
to Exp4. The reductions in absolute error in Exp2 to Exp4 are 42%, 47% and 48%.

Table 3. The mean bias and RMSE of each sensitivity experiment with EMTnet model. “Reference”
refers to the result of the L86 model. In the nomenclature of Exp1 to Exp7, postfixes C, U, and S
denote parameters CLW, U, and SST considered in the corresponding experiment, respectively. In
Exp8, the postfix “none” means no additional information is considered. The percent change means
the ratio of changes in absolute error compared to the reference value. The units of mean bias, RMSE,
and absolute error are g/kg.

Reference Exp1_CUS Exp2_CU Exp3_CS Exp4_US Exp5_C Exp6_U Exp7_S Exp8_None

Bias 0.72 −0.02 0.08 0.13 −0.05 −0.31 −0.22 −0.08 −0.18
RMSE 2.56 1.64 1.81 1.62 1.64 1.81 2.28 1.83 2.36

Absolute
error 3.28 1.66 1.89 1.75 1.69 2.12 2.50 1.91 2.54

Percent
change - −49% −42% −47% −48% −35% −24% −42% −23%

The results of Exp2 to Exp7 suggest that factors CLW, U, and SST are helpful to
improve the deep learning for satellite Qu retrieval. If these three factors are superimposed
together, a most significant improvement of 49% (Exp1) can be archived. The abilities
of CLW, U, and SST in improving satellite Qa retrieval are probably due to their roles in
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reflecting the environmental information. In the following, examples of the Qa–W relation
under different CLW, U, and SST conditions are shown in Figures 7–9, respectively.
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Figure 7. Scatter diagram of Qa (ordinate) and TPW (abscissa) for data under conditions of CLW (a)
below and (b) above 50 µm. The black line denotes the L86 model. The red dot denotes the data
density in each 0.5 cm bin of TPW and 0.5 g/kg bin of Qa with units of ‰. The blue square and error
bar are the median and one STD of Qa in each bin of 0.5 cm of TPW, respectively. The bar plot is
the probability density distribution of CLW, with red bars representing the data range used in the
corresponding panel.

The CLW is a measure of the total liquid water contained in a cloud in a vertical
column of the atmosphere. As a component of TPW, the content of CLW will undoubtedly
have an impact on the determination of the Qa–W relation. However, none of the existing
models for satellite Qa retrieval incorporate cloud information. Figure 7 shows the Qa–W
relation under two conditions, one under CLW less than 50 µm (46% data) and the other
greater than 100 µm (54% data). Note that the criterion of 50 µm here is only determined by
the PDD of CLW, which ensures the data balance in both cases. Under a relatively low CLW
(Figure 7a), the reference curve of the L86 model passes through most of the medians of Qa
observations, presenting high consistency with observations. Under a relatively high CLW
(Figure 7b), however, the reference curve of the L86 model is nearly above all the medians of
the Qa observations. This result indicates that a relatively high CLW condition can interfere
with the determination of the Qa–W relation and lead to evident overestimations in satellite
Qa retrieval if no CLW information is considered.
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The surface wind plays a vital role in reflecting the weather conditions near the sea
surface and influencing the Qa variations. Consequently, the surface wind is expected to be
a potential factor that may improve the skill of satellite Qa retrieval, which has not been
considered in existing models. Figure 8 shows the Qa–W relation with U less than 10 m/s
(90% data) and greater than 10 m/s (10% data). It can be observed that the reference curve
of the L86 model fits the Qa observations well under lower to moderate U (Figure 8a). In
contrast, the L86 model overestimates Qa in almost all ranges of Qa under relatively high
U (Figure 8b). The different performances of the L86 model here imply that the Qa–W
relation is sensitive to surface wind conditions. One possible reason is that the water vapor
distributions in the vertical column of the atmosphere are relatively stable under relatively
weak U, which is conducive to the estimation of Qa from TPW. As a portion of water vapor
can be carried away by horizontal advection under relatively high U, the observed Qa will
be smaller than the model-predicted Qa.

SST is an important variable that reflects information on the marine environment and
underlying atmospheric surface. For example, under a relatively warm SST (Figure 9b), the
predictions of the L86 model are more consistent with the observations. In contrast, Qa is
overestimated in the range of Qa from 10 to 20 g/kg under rather cold SSTs (Figure 9a). A
colder SST means weaker sea surface evaporation, which might lead to less actual moisture
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than predicted values. Therefore, it is suggested that attention should be given to the Qa–W
relation under different SST conditions.
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5. Conclusions

Previous satellite Qa retrieval models suffer significant uncertainties due to factors
such as model errors, scarce in situ observations, environmental interference, and so on.
In this study, a deep learning approach, the EMTnet model, is proposed to improve the
satellite Qa retrieval over the China Seas. The EMTnet model is based on multiple DNNs,
and the ensemble mean of target DNNs is used to produce output predictions, which can
obtain more objective learning results when the observational data are quite divergent.
The Qa predictions from the EMTnet model outperform five existing models by nearly
eliminating the mean bias and significantly reducing the RMSE. Compared to the L86
model, which has the best performance among five existing models, the outperformance
of the EMTnet model can be attributed to two aspects. Firstly, if only TPW data are used
as training data as in the L86 model, the EMTnet model reduces the absolute error by
23% (Table 3). This level of improvement can be attributed to the EMTnet model itself.
Secondly, if CLW, U, and SST are added, the EMTnet model reduces the absolute error by
49% (Table 3). The approximately doubled increase in absolute error reduction benefits
from the good interpretability of CLW, U, and SST on the determination of the Qa–W
relation. Note that the in situ observations are with uneven distribution in time and space,
which could cause errors to the performance of the EMTnet model to a certain extent. The
further development of the EMTnet model needs more in situ observations.
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The fully trained EMTnet model has been applied to learn from remote sensing data
to produce a 30-year monthly gridded Qa data over the China Seas. It is found that
current products perform well in depicting the mean state and seasonal variations in Qa.
However, they show much weaker upward trends of Qa in the context of global warming,
which are less than half of the EMTnet model result. As a locally well-trained and well-
validated model, the different perspectives on the long-term variations in Qa suggested
by the EMTnet model may help to provide new understandings for humidity-related
multi-disciplinary research over the China Seas. In addition, the EMTnet model is capable
of merging Qa observations from other regions as training data, which is to be applied to
more oceans globally.
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Abstract: An algorithmic approach, based on satellite-derived sea-surface (“skin”) salinities (SSS),
is proposed to correct for errors in SSS retrievals and convert these skin salinities into comparable
in-situ (“bulk”) salinities for the top-5 m of the subpolar and Arctic Oceans. In preparation for
routine assimilation into operational ocean forecast models, Soil Moisture Active Passive (SMAP)
satellite Level-2 SSS observations are transformed using Argo float data from the top-5 m of the
ocean to address the mismatch between the skin depth of satellite L-band SSS measurements (∼1 cm)
and the thickness of top model layers (typically at least 1 m). Separate from the challenge of Argo
float availability in most of the subpolar and Arctic Oceans, satellite-derived SSS products for these
regions currently are not suitable for assimilation for a myriad of other reasons, including erroneous
ancillary air-sea forcing/flux products. In the subpolar and Arctic Oceans, the root-mean-square
error (RMSE) between the SMAP SSS product and several in-situ salinity observational data sets for
the top-5 m is greater than 1.5 pss (Practical Salinity Scale), which can be larger than their temporal
variability. Thus, we train a machine-learning algorithm (called a Generalized Additive Model) on
in-situ salinities from the top-5 m and an independent air-sea forcing/flux product to convert the
SMAP SSS into bulk-salinities, correct biases, and quantify their standard errors. The RMSE between
these corrected bulk-salinities and in-situ measurements is less than 1 pss in open ocean regions.
Barring persistently problematic data near coasts and ice-pack edges, the corrected bulk-salinity data
are in better agreement with in-situ data than their SMAP SSS equivalent.

Keywords: salinity; SMAP; skin-effect; bias; air-sea; Arctic; ocean; machine-learning

1. Introduction

In this paper, we present an algorithm to bias-correct and convert sea-surface salinity
(SSS) fields from L-band passive microwave satellite retrievals at northern high latitudes
into surface salinity fields that can be assimilated by ocean modeling systems. Satellite
L-band passive microwave observations (Section 2.1) have demonstrated information po-
tential for nearly global depiction of SSS. Satellite SSS derived from NASA’s Aquarius
mission and Argo products are generally consistent to about 60◦N/S, particularly when
compared over coarser resolutions [1]. The collected satellite observations from the Eu-
ropean Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (greater
than 10 years) and National Aeronautics and Space Administration (NASA) Soil Moisture
Active Passive (SMAP) mission (greater than 5 years) have been summarized and shown
to generally agree with in-situ observations [2]. However, monitoring SSS in the Arctic is
more challenging. There are many challenges associated with using SMAP-derived SSS
observations to monitor Arctic freshwater changes [3], including its accuracy in the colder
waters at such high latitudes and utility to monitor variations in the vicinity of ice and/or
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coasts. The sources of these accuracy problems include systematic errors in the ancillary
wind fields or the wind roughness model that are used in the surface roughness correction,
ancillary sea surface temperature (SST) fields, and ancillary sea-ice products that are used
in sea-ice contamination correction, all of which are used in the SSS retrievals. Adding
to these challenges, temporally-varying SSS drift-like behavior exists in the SMOS data,
which, at least partially, accounts for the inability of SMOS to characterize the annual cycle
of SSS in the subpolar North Atlantic Ocean [4]. Because SMAP data suffer from fewer
problems than SMOS data in the northern high latitudes and a previous study has achieved
an improved surface salinity product based on SMOS data [5], we demonstrate the utility
of our algorithmic approach using SMAP data.

One difficulty with assimilating SSS into ocean models is the mismatch between the
depth levels that L-band satellites observe (top centimeter of the ocean) and the resolution
of the top ocean model layer (typically at least one meter). This mismatch can be seen
in the in-situ salinity data collected during multiple observational campaigns (e.g., [6]),
including two NASA-sponsored Salinity Processes in the Upper-ocean Regional Study
(SPURS) campaigns [7,8]: SPURS-1 in the subtropical North Atlantic Ocean and SPURS-2
in the eastern equatorial Pacific Ocean, with a planned third campaign in the Arctic Ocean.
We examine whether differences can be reconciled between the “skin” (satellite-derived
from the top centimeter) salinity and “bulk” (in-situ at 1–5 m) salinity at high latitudes
using an algorithmic approach. If there is a difference in salinity between the top-centimeter
and top-meter, or so, of the ocean due to evaporation, precipitation, runoff, ice melt, or
freezing/brine rejection effects, then a correction is needed in order to assimilate the satellite
SSS observations. Under evaporation, a theory [9] argues for the existence of a salty, cool,
sea surface skin layer; however, this theory was revisited after the creation of an air-sea
exchange data set [10]. The latter study found that the cooler and saltier skin layer is always
statically unstable, and that cooling controls the tendency to overturn, after which it takes
90 times longer to reestablish the skin salinity than the skin temperature. The skin-effect
from this theory depends on several air-sea forcing/flux fields, and SSS retrievals depend
on some of the same fields using ancillary data. The availability of in-situ and air-sea
forcing/flux data sets is, therefore, crucial to the conversion of skin salinity to bulk salinity
for use in ocean data assimilation models. The in-situ data are available from several
campaigns at high latitudes (Section 2.2), but remain sparse.

Cold-induced biases in satellite-derived skin SSS observations, however, present a
problem at high latitudes for data-assimilating ocean models. Due to the strong dependency
of density on salinity in the polar regions, SSS can have a significantly higher impact than
SST on constraining the modeled circulation of the Arctic Ocean, notably the waters that
overlie the warm, salty Atlantic water mass transiting the Norwegian Sea into the Arctic
Ocean. Placing upstream constraints on this Atlantic water can significantly impact on the
heat imported to the base of the mixed layer along the shelf-basin slopes in the Eastern
Arctic, which subsequently impacts the mixed-layer salinity and sea-ice melting in this
region [11,12]. Subsequent sea-ice melt, in turn, can influence the Arctic Ocean’s salinity [13],
which, when exported to the subpolar North Atlantic Ocean, can have consequences for
the Atlantic Meridional Overturning Circulation (AMOC) [14–17]. Several theories have
been developed to explain the complicated relationships between the sea-ice state, the
ocean’s salinity, and the circulation in the Arctic context [18–23]. Thus, if SSS can be better
constrained in ocean models, then there is the potential to unravel and understand the
relationships between sea ice and ocean properties in the Arctic Ocean.

In this study, our primary objectives are to: (1) assess associated biases in a SMAP-
derived SSS product relative to in-situ observations in the top-5 m, (2) characterize the
statistics of SMAP-derived SSS observations, and (3) assess whether an algorithm to correct
for biases and convert the SMAP-derived (skin) salinities to near-surface (bulk) salinities
improves their agreement with in-situ observations, thereby permitting ocean data assimi-
lation systems to exploit northern high-latitude SMAP-derived skin SSS. Currently, SMOS
and SMAP observations can be adjusted to correlate with Argo float salinity observations in
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the top-5 m; but, because there are no Argo floats in the Arctic Ocean, we need an alternative
method to effectively correct for both satellite measurement biases, particularly in colder
waters, and skin-induced effects that are inconsistent with the model’s top-layer thickness.
(We refer to the resulting bulk surface salinity product as “corrected” hereafter.) To achieve
this objective, we first identify potential issues with Arctic SSS, characterizing the statistics
of SMAP SSS and how those data compare with in-situ observations for 2015 through 2019.
We then demonstrate the utility of our algorithm for the corrected bulk surface salinity by
comparing the root-mean-square error (RMSE) of the algorithm’s estimates, relative to the
in-situ observations, with the RMSE of the SMAP SSS product, relative to the same in-situ
observations. Finally, we characterize the statistics of the algorithm’s corrected bulk salinity
product derived from SMAP SSS data. The same exercises can be conducted using a SMOS
data product. In demonstrating that our algorithm improves the validity of SMAP data,
we note that the algorithm can easily be extended to SMOS data. We highlight differences
between the original SMAP product and the corrected bulk salinity product derived from
SMAP data.

2. Data and Methods
2.1. Satellite Data

Satellite passive microwave retrievals of ocean salinity exploit the L-Band (1.41 GHz),
with SMOS employing a synthetic aperture interferometer and SMAP using a scanning
radiometer. Because of the different instrumentation, they have different strengths and
weaknesses. For example, SMOS retrievals are known to be challenged near land and
the ice-pack edge due to greater off-viewing-angle sea-ice contamination of the salinity
signal [24]. SMOS spatial resolution depends on incident angle, spanning from about
40 km near nadir to about 60 km near 55-degrees incident angle [25], whereas SMAP has
a fixed incident angle of 40 degrees, with spatial resolution around 40 km [26]. Higher
SSS accuracy can be achieved through spatial averaging. Global coverage from SMOS is
approximately 3 days, with suborbital repeats being 23 days and the exact repeat period
being 149 days [25]. Global coverage from SMAP is exactly 8-days, with nominal global
coverage also every 3 days [26]. The 3-day periods mostly have a single data value for each
data set so we choose to average over longer periods for each gridded file. Higher SSS
accuracy can be achieved through spatial averaging.

In processing the Level-2 SMAP SSS data [27], we perform the following steps. First,
we reduce latitude/longitude coordinates in numerical precision to a single digit after the
decimal place. This decreases the required computation time and is inconsequential because
a resolution of less than tens of kilometers in the horizontal with the raw Level-2 SSS data
are not possible without a downscaling technique. This reduced numerical precision allows
us to save memory and effectively bin the data. Next, the SMAP data were gridded at
50 km by 50 km resolution by averaging the values over 8 days (chosen because this is
the satellite’s repeat interval) and aggregating all of the data over 50 km by 50 km boxes.
Then, for each grid point, the 8-day averages of SMAP SSS had their trends and seasonal
cycles removed over their respective time periods, by using a Generalized Additive Model
(GAM—Section 2.4) to fit SSS with a smooth function of time. The residual time series at
each grid point had a variance and skewness computed. Lastly, we calculate two statistics
from SSS data to examine their spatial distributions relative to marginal ice zones. We
compute an anomalously large SSS value statistic at each point on the grid by counting
the number of times where the median SSS is exceeded by more than three times the SSS
standard deviation. We do not show the same for anomalously small SSS values because
the distribution of SSS values tend to be negatively skewed (i.e., the distribution’s tail is
longer towards smaller SSS values). We also compute mixing length scales according to an
established theory [28]. For these mixing length scales, we supplement SMAP data with
a gridded product for horizontal spatial gradients of SSS, which comes from the Level-3
daily Earth & Space Research SMOS data.
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We compare Level-2 SMAP data with in-situ data, described in the following subsec-
tion, from the top-5 m north of 55◦N. We do this by searching for data points from SMAP
that were within 50 km and 3.5 days of each in-situ observation’s horizontal location and
sampled time. These selected points, spatio-temporally local to the in-situ data, are used as
training data for the statistical model described below.

2.2. In-Situ Data

In-situ data provide evidence that skin-salinity values from satellites should be con-
verted into bulk-salinity values in multiple regions around the world. Observations from
the SPURS-2 campaign demonstrate that precipitation (or other freshwater flux) into the sea
surface have an influence on the skin salinity within the top half-meter of the water column,
finer than the vertical resolution of most ocean models. Whether this skin-to-bulk salinity
conversion is necessary at high latitudes is currently unknown. However, an additional
issue that may be more important at high-latitudes is the error associated with retrieval
algorithms for satellite-derived SSS due to low signal-to-noise ratios in cold brightness
temperature environments [5].

In order to determine whether the skin-effect and/or biases in satellite-derived high-
latitude SSS need to be corrected, we need to use in-situ data in the top-5 m of the water
column in subpolar and Arctic Ocean locations. We make use of multiple in-situ data sets,
including the salinity and pressure observations from Saildrone [29], Oceans Melting Green-
land (OMG) [30], ship-based CTD hydrographic transects, and NOAA’s National Centers
for Environmental Information (NCEI) Surface Underway Marine Database (SUMD; “Un-
derway” hereafter). The Saildrone sent to the Arctic in 2019 is a wind-powered, unmanned
surface water vehicle. The data the Saildrone collect are transmitted via satellite and are
available to both researchers and the public. The Underway data comprises uniformly,
quality-controlled in-situ sea-surface measurements from thermosalinographs, involving
more than 450 ships and unmanned surface vehicles. These data are so extensive that, even
when we include all data sets available over the length of the SMOS Arctic time series, the
number of data points in the Underway database are orders of magnitude larger than any
other data sets used here. The OMG data comprise both CTD and Airborne eXpendable
CTD (AXCTD) (CTD probes dropped from aircraft) data collected during the summer
months, 2015 to the present, with about 250 probes being dropped each year. Ninety-two
ship-based CTD hydrographic transect data sets are used here. The OMG and ship-based
CTD hydrographic transect data are subsampled such that we only use data within 5 m of
the sea surface.

2.3. OAFlux Air-Sea Forcing/Flux Data

We supplement the in-situ salinity data with air-sea forcing/flux fields from the OAFlux
product [31,32]. To get the wind stress, data from six Special Sensor Microwave/Imager
(SSM/I) sensors, two Special Sensor Microwave Imager/Sounder (SSMIS) sensors, Ad-
vanced Microwave Scanning Radiometer for EOS (AMSR-E), WindSat, QuikSCAT, and
Advanced Scatterometer (ASCAT-A) were used [33]. The footprint resolution various across
the SSM/I sensors is finer with higher frequencies (along × cross-track): 69 km × 43 km at
19 GHz, 50 km× 40 km at 22 GHz, 37 km× 28 km at 37 GHz, and 15 km× 13 km at 85 GHz.
One-hundred twenty-six buoy time series were used to calibrate different SSM/I sensors
due to known issues with drift. The footprint resolution of the conically scanning SSMIS
varies from 14 km× 13 km at 183 GHz to 70 km× 42 km at 19 GHz; for ASMR-E varies from
75 km × 43 km at 6.9 GHz to 6 km × 4 km at 89 GHz; and for WindSat is 40 km × 60 km
at 6.8 GHz, 25 km × 38 km at 10.7 GHz, 15 km × 13 km at 18.7 GHz, 12 km × 20 km at
23.8 GHz, and 8 km × 13 km at 37 GHz. The elliptical footprint size of the antenna for
QuikSCAT is about 24 km × 31 km at inner beam. For ASCAT, an operational product at
spatial resolutions of 25–34 or 50 km can be generated on a nodal grid of 12.5 or 25 km.
Rain-contaminated retrievals of wind from microwave sensors were discarded because
of known problems under rainy conditions. Surface winds from the European Centre for
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Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) interim project [34] and the
Climate Forecast System Reanalysis (CFSR) from the National Centers for Environmental
Prediction (NCEP) [35] were used to as background data in the synthesis. Sensible and latent
heat fluxes were similarly derived using satellite observations (the advanced microwave
sounding unit A (AMSU-A) and the Special Sensor Microwave Imager) and reanalyses
where and when satellite observations were not available [36], except surface fluxes were
computed from the COARE bulk flux algorithm [37]. Evaporation is directly proportional
to the latent heat flux and scaled by the inverse product of the density of sea water and the
latent heat of vaporization. To get the surface humidity and temperature fields, brightness
temperature observations from four vertically polarized channels at 19, 22, and 37 GHz from
SSM/I and SSMIS and 52 GHz from AMSU-A were used and related to buoy observations
of surface humidity and temperature at 2–3 m above the sea surface [38,39]. The surface hu-
midity and temperature fields were height-adjusted to 2 m using the COARE algorithm [37].
Sea surface temperatures, derived from the global operational NOAA product at 25 km
based on AMSR-E and the advanced very high resolution radiometer (AVHRR) [40], were
used as constraints for the synthesis of surface humidity and temperature.

The theory of the least-variance linear statistical estimation [41,42] was the basis for
the methodology of the OAFlux objective synthesis, using all of the above data constraints.
This approach allows the formulation of a least squares estimator (i.e., the cost function) to
include both data from different sources and a priori information. For the optimization of
each of the turbulence flux fields, a conjugate-gradient method was used [31]. The 25 km
resolution of the OAFlux product was chosen as a compromise between being able to
satisfy the cost function and the data coverage.

2.4. Generalized Additive Model

We use a machine-learning-based approach to convert the satellite skin salinity ob-
servations to bulk near-surface salinity that match the salinities measured with in-situ
instruments while accounting for high-latitude retrieval biases. The significance of partic-
ular terms in the regression equation used will yield evidence of whether the skin-effect
and/or biases need to be corrected. Our algorithm of choice is a Generalized Additive
Model (GAM) [43]. This machine-learning-based approach, in particular, has a history
rooted in statistical regression techniques (e.g., [44]). Ultimately, predictions are made
by using predictors (described below) as inputs, just as other statistical regression-based
approaches would do. One primary difference between a general linear-regression tech-
nique and a GAM is that the latter aims to achieve a balance between the bias and variance
of its predictions through a regularization term. This regularization term prevents the
machine-learning method from over-fitting to a particular training data set, permitting the
approach to be applied to other data sets for prediction purposes. To guarantee that the
machine-learning model does not over-fit to the training data, a cross-validation is applied
by excluding some of the observations from the training data set, predicting those data,
verifying that those predictions are accurate, and then repeating this procedure for different
subsets of the training data set.

Instead of estimating the bulk surface salinity, we use a GAM to estimate the bulk
surface salinity bias plus skin effect in the satellite-derived SSS data,

∆SSSbulk = f0 + f1(t) + f2(∆SSS) + f3(SSSskin) (1)

+h(SSSskin, SST, λ, winv, Qsens, Qlat, E, qhum, ∆SSS),

where Table 1 describes what each term means.
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Table 1. Descriptions of each term in Equation (1).

Term Description

fi(·) Smoother functions for i = 0 . . . 3

h(·) Tensor product of pairwise variables

SSSskin Satellite-derived SSS from Dsat

t Julian day relative to January 1 of 1970

z Depth of the in-situ observations

λ
= 6(1 + (16(Qsens + Qlat(1 + Sβcp/(αLe)
+0.99× 5.67× 10−8(SST + 273.16)4)gαρcpν3w4

inv/k2)3/4)1/3

an empirical coefficient as in [10]

Qsens Sensible heat flux from OAFlux [31]

Qlat Latent heat flux from OAFlux [31]

SSTbulk Sea-surface temperature in Celsius from OAFlux [31]

Le Latent heat of evaporation calculated using TEOS-10 [45]

α Thermal expansion coefficient calculated using TEOS-10 [45]

β Haline contraction coefficient calculated using TEOS-10 [45]

cp Specific heat of seawater calculated using TEOS-10 [45]

ν = 1.4× 10−6 is the kinematic viscosity of seawater

p Pressure

k
= 0.5715(1 + 0.003SSTbulk−
1.025× 10−5SST2

bulk + 6.53× 10−4 p + 0.00029SSSbulk)
thermal conductivity of seawater [46] (in W m−1 K−1)

g = 9.806 m s−2 is the acceleration due to gravity

τ wind stress from OAFlux [32]

ρ in-situ density calculated using TEOS-10 [45]

winv = (τ/ρ)−1/2 is a function of the inverse wind stress

E Evaporation from OAFlux [31]

qhum Near-surface humidity from OAFlux [31]

∆SSS
= fcSSSskinλEwinv
bias correction, with proportionality constant fc [10];
fc is determined with the GAM

The Julian day, t, is the most important term to include for the satellite-derived SSS
data because it aligns satellite observations with when the in-situ observations were taken.
∆SSS is important to include in the GAM because it at least partially corrects for the skin
effect seen in the satellite data; the remaining terms correct for biases. The correlation
between ∆SSS from the co-located SMAP-derived SSS and the in-situ salinity observations
in the top-5 m is 0.37, which is significant to the 95% level. However, the skin-effect
correction associated with including ∆SSS in our algorithm reduces the RMSE by less
than 10%. The majority of the decrease in RMSE between our algorithmically-calculated
bulk salinities and the in-situ observations in the top-5 m can be explained by the other
GAM terms, which are associated with bias-correction. The equivalent correlation for the
co-located Barcelona Expert Center SMOS-derived SSS [47,48] is higher (0.46), suggesting
that the GAM will be different for different data products.
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We derive the corrected bulk surface salinities with the following order of operations.
At each location and time, we predict the bulk surface salinity biases, ∆SSSbulk(x, y, t). We
then average these biases over the entire time satellite data period to get ∆SSSbulk(x, y) =
∆SSSbulk(x, y, t). We then add this temporally-averaged bias correction term to the satellite-
derived SSS to get SSSbulk(x, y, t) = SSSsat(x, y, t) + ∆SSSbulk(x, y). The order of these
operations is important because t explains some variability that isn’t simply related to the
seasonal cycle and/or trend. The RMSE between the BEC SMOS SSSskin and the in-situ
data in the top-5 m is larger than that between the SMAP SSSskin and the in-situ data in the
top-5 m.

An important, but subtle, detail is that both winv and λ depend upon SSSbulk and we
will not know SSSbulk everywhere when using the GAM for prediction. If we assume that
we know SSSbulk to calculate winv and λ, then our GAM can explain 100% of the deviance
(with a RMSE of about 0.04%), but SSSbulk is what we aim to predict. If we assume that
we know SSSbulk, then we would only be able to calculate SSSbulk at the points where
we have in-situ data, so we use SSSskin to calculate winv and λ employing TEOS-10. We
then estimate the values of SSSbulk with the GAM. We could then iterate by recalculating
winv and λ using the predicted values of SSSbulk and subsequently estimate new values
for SSSbulk, reducing the RMSE with respect to in-situ data, but the time variability of the
resulting SSSbulk is not realistic. Thus, we use a single iteration. It is important to include a
minimal number of tensor product terms in g(·) because the data close to the coast have
large biases, due to land contamination, making the GAM over-fit to the data, resulting in
large bias estimates in most locations outside of the training data.

While ocean state estimate outputs suggest that the difference between sea-surface
height and ocean-bottom pressure anomalies could be a good proxy for SSS in many
locations within the Arctic [49], operational use of coinciding Level-2 sea-surface height
and ocean-bottom pressure data with Level-2 SSS data would be limited. Further, sea-
surface heights and ocean-bottom pressures decrease the RMSE of the GAM by less than
0.1%; thus, we use the GAM specified in Equation (1).

3. Results

We first assess the biases in the satellite-derived SSS products relative to in-situ ob-
servations in the top-5 m. Next, we characterize the statistics (mean, standard deviation,
seasonal cycle magnitude, skewness, horizontal gradient trends, large anomaly counts,
and mixing lengths) of high-latitude satellite-derived SSS observations. Then we use our
algorithm to convert the SMAP-derived (skin) salinities to near-surface (bulk) salinities
that can be used for data assimilation and characterize the statistics of the skin-effect and
bias-corrected surface salinities. We lastly co-locate in-situ observations and the skin-effect
and bias-corrected surface salinities to examine whether our algorithm improves the fidelity
of the satellite-derived SSS.

3.1. Satellite SSS and In-Situ Salinity Comparisons

We sample the satellite-derived SSS within 50 km and 3.5 days of all publicly available
in-situ observations [50] of the top-5 m north of 55◦N. The number of match-up observa-
tions for SMAP data is fewer than that for SMOS; so, for the SMAP observations, there are
less data for training the GAM. For example, there are no Marine Mammals Exploring the
Oceans Pole to Pole (MEOP) Conductivity, Temperature, and Depth (CTD) [51,52] observa-
tions in the top-5 m within 50 km and 3.5 days of SMAP data (Figure 1). There are very
few ship-based CTD hydrography and OMG observations that can be compared with the
SMAP data. The number of co-located SMAP-derived SSS data points with in-situ salinity
observations in the top-5 m are: 2929 observations with ship-based CTD hydrography,
1,710,428 observations with Saildrone, 8,640,999 observations with Underway, and 3219
observations with OMG. For the available ship-based CTD hydrography and Saildrone
match-ups with the SMAP data, their disagreement is smaller than in the comparison
between OMG and SMAP data. As shown in Figure 1, the Underway data comparisons
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with SMAP data have at least two distinct clusters of salinities, one around 32 pss in the
North Pacific Ocean and the other around 35 pss in the North Atlantic Ocean. There may
be a third cluster of points in the North Sea at salinities between 26–28 pss in the Underway
data but much saltier in the SMAP data.

a) SMAP SSS
vs OMG salinity

b) SMAP SSS
vs ShipCTDs salinity

c) SMAP SSS
vs Underway salinity

d) SMAP SSS
vs Saildrone salinity
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Figure 1. SMAP Level-2 skin SSS for April 2015 to December 2020 (abscissa) sampled within
50 km and 3.5 days of all in-situ observations in the top-5 m versus the bulk SSS from
in-situ observations in the top-5 m (ordinate) from the Oceans Melting Greenland (OMG—
panel a), ship-based CTD hydrography (panel b), Underway (panel c), and Saildrone
(panel d) campaigns. The darker the shade of blue, the greater the number of points in
the scatterplots; outliers are shown with single black dots. Additionally shown next to
each scatterplot are the locations where the comparisons between the SMAP SSS product
and the in-situ observations are made (pink dots, regions circled); the dashed black line
indicates where 55◦N is.

We next compare the SMAP data with the aggregated data from all in-situ data
campaigns and inspect whether there is any depth-structure to the biases. The Underway
data comparisons are very representative of the scatter between the satellite and in-situ
data sets (Figure 2a) because they comprise most of the in-situ data. While the differences
between the SMAP-derived SSS relative to the in-situ data have many more outliers in the
top two meters, there is no statistically distinguishable depth-structure to the differences
between the data sets (Figure 2b). The SMAP product has an overall 4.63% (1.54 pss) RMSE
relative to the aggregate in-situ data, which is fairly consistent with a similar comparison
with in-situ data north of 65◦N tabulated in a previous study [53]. This value is relatively
small compared to an overall 6.88% (2.29 pss) RMSE between SMOS, different from the
product compared in the same previous study, and the aggregate in-situ data. Our values
contrast with the ones the previous study reported because of differences in our domains,
our versions of the SMAP and SMOS products, and our in-situ data.
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Figure 2. Comparison to in-situ salinity observations in the top-5 m (ordinate, panels a and
c): (abscissa, panel a) SMAP-derived SSS and (abscissa, panel c) corrected bulk surface
salinity field with a Generalized Additive Model—GAM, see Equation (1)) using Level-2
SMAP-derived SSS and OAFlux data. The darker the shade of blue, the greater the number
of points in the scatterplots; outliers are shown with single black dots. Additionally shown
are boxplots of the SSS minus in-situ observations (panel b) and corrected bulk surface
salinity minus in-situ observations (panel d), each as a function of binned depths in the
top-5 m. The first depth bin is for 0–1 m, the second depth bin is for 1–2 m, . . . , and the
deepest depth bin is for 4–5 m.

After applying our algorithm (Equation (1)) to the satellite and air-sea flux/forcing
data sampled at the in-situ data locations and times, we can directly compare the in-situ
data with the converted skin-to-bulk salinity data for each satellite data product separately.
When trained on 75% of the in-situ data and predicted on the remaining 25%, the RMSE of
the skin-to-bulk converted SMAP product relative to the in situ data are reduced to 2.43%
(0.81 pss), explaining 71.6% of the deviance. We tested our GAM by training it on 50% of
the in-situ data as well, with nearly identical results because the same portion of the phase
space with salinity and air-sea forcing/flux factors gets spanned with this training data. We
achieved this result by balancing the need to reduce the RMSE relative to random subsets
of the in-situ salinity data with the need to not over-fit the GAM. It is possible to achieve a
smaller RMSE using more combinations of predictors, but this increases the generalized
cross-validation score, suggesting that the algorithm is less capable of estimating bulk
surface salinities outside of the in-situ data set. In our final product, there is slightly more
variability as a function of depth for our skin-effect and bias-corrected bulk surface salinities
(Figure 2d) than for the SMAP-derived SSS (Figure 2b) in comparison with in-situ data over
the top-5 m. However, there is no statistically significant depth-structure to the remaining
bias in the skin-effect and bias-corrected bulk surface salinities (Figure 2d). As with the
comparison of the satellite observations to in-situ observations (Figure 2a), the converted
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bulk surface salinity comparisons with in-situ observations (Figure 2c) display the clusters
of salinities and generally lie along the one-to-one line. If we, instead, train a single GAM
using an indicator function on the skin salinity term for SMOS, versus SMAP data, the
RMSE is larger, but comparable (2.50% or 0.83 pss). Although not shown, applying the
same Figure 2 analysis to the SMOS converted bulk surface salinities produces generally
the same descriptions.

3.2. Temporal Statistics of Arctic SSS

Before comparing the in-situ near-surface (bulk) salinities with the satellite-derived
(skin) salinities, we present the temporal statistics of the satellite-derived SSS from the
SMAP product. When the BEC SMOS data are included, by eye the figures are identical.
The SSS is, on average, typically between 33–35 pss, but can be lower to the east of Svalbard
(Figure 3a). In regions with lower SSS, the SSS standard deviations (Figure 3b), after
detrending and removing the seasonal cycle (Figure 3d), can be as high as 4–5 pss. The
standard deviations of SSS tend to get smaller with distance from the perennial, sea-ice-
covered regions. The same is true for the SSS skewness (Figure 3c), except the skewness
values tend to be negative, indicating a long, relatively fresh SSS tail closer to sea ice and
far northern coasts. These large, negative skewnesses could be due to ice melt and/or run-
off, unless precipitation events affect SSS more at high northern latitudes than elsewhere.
However, these skewnesses are impacted by SSS biases because the skewness is a function
of the average SSS. Additionally, the SMAP SSS uncertainties in the Level-2 JPL product,
which are estimated errors in the retrievals, are largest in high-latitude regions (Figure 4a).
At high northern latitudes, these uncertainties reach 1.5 pss, with standard deviations
and seasonal cycle magnitudes at about 0.5 pss (Figure 4b,d). The SMAP SSS uncertainty
skewness is most negative in regions affected by ice melt (Figure 4c). While the SMAP SSS
uncertainties are smaller than their biases in many locations in the high-latitude oceans, it
is likely that the SMAP SSS uncertainties are too small to represent the true uncertainties in
high-latitude regions. Our algorithm quantifies the functional uncertainty associated with
our model specification, which are standard errors from the GAM, can then be added to
the SMAP SSS uncertainties.

Before presenting the bulk surface salinities after conversion and some bias correction,
we present an apparent relationship between SSS and sea-ice melting/refreezing to explain
the spatial patterns in SSS statistics (Figure 3). Greater temporal fluctuations in SSS near
sea ice (Figure 3b–d) can be explained by retreating sea ice leaving relatively fresh water
behind as well as by more frequent absence of sea-ice cover resulting from greater salinity
values, which have a colder freezing temperature. The seasonal cycle of SSS is largest near
the perennial sea-ice edges (Figure 3d), but that has been removed to calculate the standard
deviation and skewness. The trend in SSS is a mixture of increasing and decreasing salinity,
with no large-scale pattern trend that is significant to the 95% level (not shown). However,
anomalously large SSS, found by counting the number of 8-day averages where the average
SSS is exceeded by more than three times the SSS standard deviation (see Section 2.1), align
close with the marginal ice zones (Figure 5a). Further, although surface forcing dominates
eddy stirring, theoretical estimates [28] suggest that the regions with statistically significant
horizontal SSS gradients or anomalously high SSS values always occur where the mixing
lengths are small (Figure 5b). The fact that mixing lengths are smaller in marginal ice zones
is consistent with previously published theory [54]. These results suggest that the biases in
satellite-derived SSS in marginal ice zones are not random and may even provide valuable
constraints on ocean-sea ice data assimilation systems; this further motivates our skin effect
and bias-correction procedure.
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Figure 3. Statistics for SMAP Level-2 sea-surface salinity (SSS) product for the period April
2015 to December 2020: (a) SSS average, (b) SSS standard deviation, (c) SSS skewness, and
(d) SSS seasonal cycle amplitude. The standard deviation and skewness are computed after
the removal of the seasonal cycle and trend. The maps synthesize the SMAP data without
interpolation, but average all data over each nearest 50 km by 50 km grid point and over
each 8-day time period. Overlaid on top are geographical coordinates indicating where the
0◦ and 180◦ meridians, as well as the 55◦N and 80◦N latitudes are.
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Figure 4. Statistics for SMAP Level-2 sea-surface salinity (SSS) product uncertainty for
the period April 2015 to December 2020: (a) SSS uncertainty average, (b) SSS uncertainty
standard deviation, (c) SSS uncertainty skewness, and (d) SSS uncertainty seasonal cycle
amplitude. The standard deviation and skewness are computed after the removal of the
seasonal cycle and trend. The maps synthesize the SMAP data without interpolation,
but averages all data over each nearest 50 km by 50 km grid point and over each 8-day
time period.
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Figure 5. High-latitude satellite sea-surface salinity (SSS) anomalies and trends shown in
heat-map colors: (a) anomalously high SMAP Level-2 SSS product sea-surface salinity (SSS)
for the period April 2015 to December 2020, computed by counting the number of 8-day
averages where the average SSS is exceeded by more than three times the SSS standard
deviation; and (b) the mixing length scales calculated as the ratio of the temporal standard
deviations from Level-2 SMAP SSS data (April 2015 to December 2020) to the horizontal
spatial gradients of SSS from the Level-3 daily Earth & Space Research SMOS product
(January 2011 to December 2020). The cyan (green) contours in each panel indicate the
minimum (maximum) sea ice extent over all winters between 2015–2019. Overlaid on top
are geographical coordinates indicating where the 0◦ and 180◦ meridians, as well as the
55◦N and 80◦N latitudes are.

In Figure 6, we repeat the temporal statistic calculations (Figure 3) using the SMAP
data that has been corrected with our algorithmic approach for the skin effect and biases.
Figure 6a–d are fairly similar maps to those in Figure 3a–d, but there are some important
differences. The average corrected bulk surface salinity values are fresher in the North
Pacific, Bering Sea, Chukchi Sea, Davis Strait, Hudson Bay, and coastal Greenland regions
and saltier in the subpolar North Atlantic Ocean, Norwegian Sea, and Barents Sea regions
(Figures 3a and 6a). The fresher corrected bulk surface salinity values near the Greenland
coasts are in better agreement with the in-situ data from the OMG campaign than the
satellite-derived SSS values. The corrected bulk surface salinity standard deviations and
skewnesses have large magnitudes only for narrow bands near the perennial sea ice and the
coasts (Figure 6b,c), as opposed to a larger area over the marginal ice zones (Figure 3b,c).
Relative to the satellite-derived SSS seasonal cycle amplitudes (Figure 3d), there are large
corrected surface salinity seasonal cycle amplitudes for a greater proportion of the marginal
ice zones on the Siberian Shelf (Figure 6d). The algorithm we apply to calculate the corrected
bulk surface salinities improves their agreement with in-situ data, but we need additional
tests to determine whether the corrected bulk surface salinities are more realistic than the
satellite-derived SSS.
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Figure 6. Statistics for SMAP Level-2 sea-surface salinity (SSS) product, corrected for the
skin effect and bias (April 2015 to December 2019 due to the time range of the available
OAFlux data): (a) SSS average, (b) SSS standard deviation, (c) SSS skewness, and (d) SSS
seasonal cycle amplitude. The standard deviation and skewness are computed after the
removal of the seasonal cycle and trend. The product synthesizes the products without
interpolation, but averages all data over each nearest 50 km by 50 km grid point and over
each 8-day time period, the same as for the statistics shown in Figure 3. Overlaid on top
are geographical coordinates indicating where the 0◦ and 180◦ meridians, as well as the
55◦N and 80◦N latitudes are.

One test of how realistic the corrected bulk surface salinities are is to repeat the in-
situ data comparisons shown in Figure 1. Because we only correct the time-mean bias at
each horizontal location, it is possible that the instantaneous disagreements between the
corrected bulk surface salinities and the near-surface in-situ data are about the same or
worse; however, the skin-effect and bias corrections do not degrade the accuracy of the
salinities relative to the in-situ data (Figure 7). The disagreements between the corrected
bulk surface salinity product from SMAP and each of these in-situ data sets are typically
less than 2 pss (<1 pss overall RMSE), with negligible bias overall, but disagreements
near the coasts, where there is freshening from ice sheet melt, can be much greater. For
example, there remains a 2 pss bias in the corrected bulk surface salinity product from
SMAP SSS data relative to the OMG data (not shown). These biases are well within the
uncertainties associated with the SMAP SSS product (∼1.5 pss; Figure 4a) plus with the
uncertainties associated with our algorithm (1–2 pss; not shown). After skin-effect and
bias-correction, the corrected bulk surface salinities show three distinct clusters of salinities
relative to the Underway data: (1) between 26–27 pss, (2) around 32 pss, and (3) around
35 pss. Overall, the corrected bulk surface salinities are improved relative to the Saildrone
and Underway in-situ data sets, which comprise the shallowest data relative to any other
data sets, but near-coastal satellite data points, where there is potential land contamination,
should be removed.
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Figure 7. Comparison of in-situ and Level-2 SMAP SSS observations (sampled within 50 km
and 3.5 days of in-situ bulk surface salinity observations) for the period of April 2015 to
December 2019 (abscissa = SMAP, ordinate = in-situ): Level-2 SMAP (panels a,c) and
skin-effect and bias-corrected Level-2 SMAP (panels b,d) data; Saildrone (panels a,b) and
Underway (panels c,d). The darker the shade of blue, the greater the number of points in
the scatterplots; outliers are shown with single black dots.

4. Discussion

One motivation for developing our algorithm is to convert skin salinities to bulk
salinities to allow for data assimilation of satellite-derived salinity data in regions without
Argo data, but the more important alteration of the satellite-derived SSS for assimilation
purposes is its inaccuracy at high-latitudes. Our algorithm includes terms for multiple
air-sea forcing/flux fields, including the wind stress, bulk SST, and the implicit exclusion
of regions covered by sea-ice, by making use of the OAFlux product. One interpretation of
our results is that these fields provide corrections to the equivalent ancillary fields used in
SMAP-derived SSS retrievals. However, an alternative interpretation of our results is that
the relevant terms in the Yu (2010) [10] theory and/or additional terms in our algorithm,
together, are proxies for inaccuracies in the SMAP-derived SSS retrievals. Each of these
interpretations are supported by the facts that: (1) relative to available in situ data, our
algorithm reduces the RMSE of the corrected SMAP salinities, and (2) in order to minimize
the RMSE, compared with other possible GAM term combinations, our algorithm requires
the same terms for both SMAP and SMOS data.

Where they overlap, the spatial distributions of high-latitude surface salinity statistics
from our algorithm are consistent with those presented in other observational product
comparison studies [4,53,55–57]. Each of these products are within the ∼2.0–3.5 pss uncer-
tainties we find in high-latitude regions, after skin-effect and bias-correction. The spatial
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patterns are also consistent with previously presented products of surface salinity. Like
our product, other Aquarius-based products, SMOS-based products, and the World Ocean
Atlas suggest there is more fresh surface water near the Pacific and saltier surface water
near the Atlantic [53,56]. Additionally, like our product, these other products suggests
there are larger seasonal cycles in surface salinity closer to the Pacific than to the Atlantic.
In subpolar regions, the seasonal cycle magnitudes of SSS are small (<1 pss), as shown
in previous studies [4,57], especially in comparison with the seasonal cycles both other
observational products and our algorithmically-derived product suggest near the Arctic
Eurasian and Canadian coasts. The primary differences we find with our algorithmically-
derived product in the spatial distribution of the surface salinity statistics are in the relative
magnitudes of the standard deviations versus seasonal cycles in these Arctic coastal regions.
This is conceivably a result of the temporal resolution of the OAFlux product. However, in
these coastal regions and in other locations in the marginal ice zone, a seasonal cycle cannot
be accurately estimated due to the seasonal aliasing of the satellite-derived SSS so estimates
of the seasonal cycle magnitudes and higher-order statistics that rely on extraction of the
seasonal cycle (e.g., standard deviations) are not reliable in these places.

5. Conclusions

This study presented a method to convert satellite skin salinity observations to bulk
salinity for assimilation into modeling systems. The temporal statistics in a satellite-derived
data set of SSS reveal likely influence from sea-ice melt in marginal ice zones. Trends
were not detectable over the 5-year period of the data record. Data collected from the
SPURS-1 campaign (not shown here) suggested that there could be non-constant structure
to salinity profiles, even within the upper-50 centimeters of the water column. Point-by-
point comparisons of the satellite SSS with several different sources of in-situ observations
in the top-5 m for northern high-latitude regions demonstrated that different geographic
regions have different clusters of salinity values and that the satellite-derived data do not
agree well enough with the in-situ data for data assimilation purposes. The disagreements
between the satellite and in-situ data exceed 1.5 pss, which can be greater than the temporal
variability in the satellite data. We presented an algorithm, based on machine learning and
trained on the in-situ salinity data and air-sea flux/forcing data, to convert skin-salinities
to bulk-salinities. This algorithm for corrected bulk surface salinities cut the disagreement
with the in-situ data down by at least half from the comparison between the satellite and
in-situ data. The algorithm can reduce the disagreement to a level of less than 1 pss and
can produce uncertainties that are simply propagated along with the Level-2 product
uncertainties.

The algorithm to convert skin salinities to bulk salinities and correct for biases can be
improved and used in multiple applications. First, we can repeat the application of our
algorithm with an improved SMAP product after the removal of sea-ice contamination [58]
as well as using a SMOS product. We also expect the upcoming SPURS-3 (Salinity and
Stratification at the Sea Ice Edge or SASSIE) campaign to enhance the accuracy of our
algorithm by making available a greater amount of variance data in the near-surface
salinity field. Future air-sea forcing/flux data potentially will be provided in the future
by using an observing system called FluxSat that could reduce air-sea flux observational
errors by 50% [59]. Our algorithm can be applied to different depth ranges for the in-situ
data, as well as in the Antarctic region, depending upon the resolution and domain of
the modeling system assimilating the corrected bulk salinities. Both OAFlux and in-situ
data would be required for these domains as well, with no additional requirements. The
assimilation of bulk salinities can potentially constrain the salinity field at high latitudes,
allowing models to evaluate the sensitivities of the surface salinity field to other model
processes and parameters. A more realistic surface salinity field in the Arctic could enable
better simulation/representation of sea-ice formation/melt, allowing coupled ocean-sea
ice-atmosphere models to improve their representation of heat and moisture fluxes. Our
algorithm and potential refinements allow for the possibility of these studies and more.
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Future observing system evaluation (OSE) studies need to demonstrate improvements in
representing upper-ocean hydrography and sea-ice properties to conclude that corrected
bulk salinity data have value for assimilation purposes.

Author Contributions: Conceptualization, D.T. and E.B.; methodology, D.T.; software, D.T.; valida-
tion, D.T.; formal analysis, D.T.; investigation, D.T.; resources, E.B.; data curation, E.B.; writing—
original draft preparation, D.T.; writing—review and editing, D.T. and E.B.; visualization, D.T.;
supervision, E.B.; project administration, E.B.; funding acquisition, E.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the NOAA/NESDIS Center for Satellite Applications and
Research (STAR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Sea ice extent: https://nsidc.org/data/G10017/versions/1, accessed
on 19 March 2021 (U.S. National Ice Center. 2020. U.S. National Ice Center Daily Marginal Ice
Zone Products, Version 1. [northern]. Boulder, Colorado USA. NSIDC: National Snow and Ice
Data Center. https://doi.org/10.7265/ggcq-1m67.) Underway: https://www.ncei.noaa.gov/access/
surface-underway-marine-database/, accessed on 6 January 2021 (Wang, Zhankun; NOAA Na-
tional Centers for Environmental Information (2017). Quality-controlled sea surface marine phys-
ical, meteorological and other in-situ measurements from the NCEI Surface Underway Marine
Database (NCEI-SUMD). [sea surface salinity]. NOAA National Centers for Environmental Infor-
mation. Dataset at https://www.ncei.noaa.gov/archive/accession/NCEI-SUMD.). OMG: https:
//podaac.jpl.nasa.gov/dataset/OMG_L2_AXCTD, accessed on 26 February 2021 (OMG. 2019. OMG
AXCTD Profiles. Ver. 1. PO.DAAC, CA, USA. Datase at https://doi.org/10.5067/OMGEV-AXCT1)
and https://podaac.jpl.nasa.gov/dataset/OMG_L2_CTD, accessed on 26 February 2021 (OMG.
2020. OMG CTD Conductivity Temperature Depth. Ver. 1. PO.DAAC, CA, USA. Dataset at https:
//doi.org/10.5067/OMGEV-CTDS1). WOCE/CLIVAR/GO-SHIP: https://cchdo.ucsd.edu/search?
bbox=-180,55,180,90, accessed on 1 March 2021 ([Cutter, G., Thierry, V., Jeansson, E., Gary, S. F., Lee, C.,
Ivanov, V., Ashik, I., Schauer, U., Kadko, D., Gobat, J., King, B. A., Holliday, N. P., Olsen, A., MacDon-
ald, A., Mecking, S., Bullister, J. L., Baringer, M. O., Kieke, D., Yashayaev, I., Griffiths, C. R., Skagseth,
ø., Fernández Rios, A., Beszczynska-Möller, A., McGrath, G., Read, J. F.]. [2021]. [CTD] data from
cruise [33RR20180918, 35A320170715, 58GS20160802, 74EQ20160607, 316N20150906, RUB320150819,
06AQ20150817, 33HQ20150809, 33RO20150525, 58GS20150410, 74JC20140606, 316N20130914, 33RO20
130803, 58GS20130717, 06M220130509, 18HU20130507, 740H20130506, 58HJ20120807, 74E320120731,
29AH20120622, 06AQ20120614, 18MF20120601, 45CE20120105, 316N20111002, 06MT20110624, 74E320
110511, 18HU20110506, 45CE20110103], [NetCDF]. Accessed from CCHDO [https://cchdo.ucsd.
edu/search?bbox=-180,55,180,90]. [n/a].). Saildrone Arctic: https://podaac.jpl.nasa.gov/dataset/
SAILDRONE_ARCTIC, accessed on 20 November 2020 (Saildrone. 2020. Saildrone Arctic NOPP-
MISST Field Campaign Products. Ver. 1.0. PO.DAAC, CA, USA. Dataset at https://doi.org/10.5
067/SDRON-NOPP0). MEOP SEaOS: http://www.meop.net/database/meop-databases/density-
of-data.html, accessed on 16 November 2020. OAFlux: https://oaflux.whoi.edu/data-access/, ac-
cessed in 16 November 2020. ESR SMOS SSS gradient: https://salinitydata.org/files/data/daily/
Salinity/SMOS/locean_debiasedSSS_09days_v5/, accessed on 10 March 2020. JPL Level-2 SMAP
SSS: https://podaac.jpl.nasa.gov/dataset/SMAP_JPL_L2B_SSS_CAP_V5, accessed on 15 April 2021
(JPL. 2020. JPL CAP SMAP Sea Surface Salinity Products. Ver. 5.0. PO.DAAC, CA, USA. Dataset
at https://doi.org/10.5067/SMP50-2TOCS). The data used to generate our figures are available at
https://doi.org/10.5281/zenodo.6353521.

Acknowledgments: The authors thank NOAA STAR IT for their support, and the reviewers of this
manuscript for their suggestions. The scientific results and conclusions, as well as any views or
opinions expressed herein, are those of the authors and do not necessarily reflect those of NOAA or
the Department of Commerce.

Conflicts of Interest: The authors declare no conflict of interest.

194



Remote Sens. 2022, 14, 1418

References
1. Lee, T. Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales. Geophys. Res. Lett.

2016, 43, 3857–3864. [CrossRef]
2. Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea

surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019).
Remote Sens. Environ. 2020, 242, 111769. [CrossRef]

3. Tang, W.; Yueh, S.; Yang, D.; Fore, A.; Hayashi, A.; Lee, T.; Fournier, S.; Holt, B. The potential and challenges of using soil moisture
active passive (SMAP) sea surface salinity to monitor Arctic ocean freshwater changes. Remote Sens. 2018, 10, 869. [CrossRef]

4. Yu, L. Variability and uncertainty of satellite sea surface salinity in the subpolar North Atlantic (2010–2019). Remote Sens. 2020, 12,
2092. [CrossRef]

5. Supply, A.; Boutina, J.; Vergely, J.-L.; Kolodziejczyk, N.; Reverdin, G.; Reul, N.; Tarasenko, A. New insights into SMOS sea surface
salinity retrievals in the Arctic Ocean. Remote Sens. Environ. 2020, 249, 112027. [CrossRef]

6. Dong, S.; Volkov, D.; Goni, G.; Lumpkin, R.; Foltz, G.R. Near-surface salinity and temperature structure observed with dual-sensor
drifters in the subtropical South Pacific. J. Geophys. Res. Oceans 2017, 122, 5952–5969. [CrossRef]

7. Anderson, J.E.; Riser, S.C. Near-surface variability of temperature and salinity in the near-tropical ocean: Observations from
profiling floats. J. Geophys. Res. Oceans 2014, 119, 7433–7448. [CrossRef]

8. Bingham, F.M.; Tsontos, V.; de Charon, A.; Lauter, C.J.; Taylor, L. The SPURS-2 eastern tropical Pacific field campaign data
collection. Oceanography 2019, 32, 142–149. [CrossRef]

9. Saunders, P. The temperature at the ocean-air interface. J. Atmos. Sci. 1967, 24, 267–273. [CrossRef]
10. Yu, L. On sea surface salinity skin effect induced by evaporation and implications for remote sensing of ocean salinity. J. Phys.

Oceanogr. 2010, 40, 85–102. [CrossRef]
11. Polyakov, I.V.; Pnyushkov, A.V.; Alkire, M.B.; Ashik, I.M.; Baumann, T.M.; Carmack, E.C.; Coszczko, I.; Guthrie, J.; Ivanov, V.V.;

Kanzow, T.; et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 2017, 356,
285–291. [CrossRef] [PubMed]

12. Polyakov, I.V.; Rippeth, T.P.; Fer, I.; Alkire, M.B.; Baumann, T.M.; Carmack, E.C.; Ingvaldsen, R.; Ivanov, V.V.; Janout, M.; Lind, S.;
et al. Weakening of cold halocline layer exposes sea ice to oceanic heat in the eastern Arctic Ocean. J. Clim. 2020, 33, 8107–8123.
[CrossRef]

13. Davis, P.E.D.; Lique, C.; Johnson, H.L.; Guthrie, J.D. Competing effects of elevated vertical mixing and increased freshwater input
on the stratification and sea ice cover in a changing Arctic Ocean. J. Phys. Oceanogr. 2016, 46, 1531–1553. [CrossRef]

14. Halloran, P.R.; Hall, I.R.; Menary, M.; Reynolds, D.J.; Scourse, J.D.; Screen, J.A.; Bozzo, A.; Dunstone, N.; Phipps, S.; Schurer, A.P.;
et al. Natural drivers of multidecadal Arctic sea ice variability over the last millennium. Nat. Sci. Rep. 2020, 10, 688. [CrossRef]
[PubMed]

15. Jahn, A.; Holland, M.M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning
circulation in CCSM4-CMIP5 simulations. Geophys. Res. Lett. 2013, 40, 1206–1211. [CrossRef]

16. Liu, W.; Fedorov, A.; Sévellec, F. The mechanisms of the Atlantic meridional overturning circulation slowdown induced by arctic
sea ice decline. J. Clim. 2019, 32, 977–996. [CrossRef]

17. Stouffer, R.J.; Yin, J.; Gregory, J.M.; Dixon, K.W.; Spelman, M.J.; Hurlin, W.; Weaver, A.J.; Eby, M.; Flato, G.M.; Hasumi, H.; et al.
Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 2006, 19,
1365–1387. [CrossRef]

18. Doddridge, E.W.; Meneghello, G.; Marshall, J.; Scott, J.; Lique, C. A three-way balance in the Beaufort Gyre: The ice-ocean
governor, wind stress, and eddy diffusivity. J. Geophys. Res. Ocean. 2019, 124, 3107–3124. [CrossRef]

19. Haine, T.W.N. A conceptual model of polar overturning circulations. J. Phys. Oceanogr. 2021, 51, 727–744. [CrossRef]
20. Jensen, M.F.; Nilsson, J.; Nisancioglu, K.H. The interaction between sea ice and salinity-dominated ocean circulation: Implications

for halocline stability and rapid changes of sea ice cover. Clim. Dyn. 2021, 47, 3301–3317. [CrossRef]
21. Meneghello, G.; Marshall, J.C.; Timmermans, M.-L.; Scott, J. Observations of seasonal upwelling and downwelling in the Beaufort

Sea mediated by sea ice. J. Phys. Oceanogr. 2018, 48, 795–805. [CrossRef]
22. Proshutinsky, A.; Krishfield, R.; Timmermans, M.-L.; Toole, J.; Carmack, E.; McLaughlin, F.; Williams, W.J.; Zimmermann, S.;

Itoh, M.; Shimada, K. Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res. 2009, 114,
C00A10. [CrossRef]
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Abstract: Surface ocean dynamics play a key role in the Earth system, contributing to regulate its
climate and affecting the marine ecosystem functioning. Dynamical processes occur and interact
in the upper ocean at multiple scales, down to, or even less than, few kilometres. These scales are
not adequately resolved by present observing systems, and, in the last decades, global monitoring
of surface currents has been based on the application of geostrophic balance to absolute dynamic
topography maps obtained through the statistical interpolation of along-track satellite altimeter data.
Due to the cross-track distance and repetitiveness of satellite acquisitions, the effective resolution of
interpolated data is limited to several tens of kilometres. At the kilometre scale, sea surface tempera-
ture pattern evolution is dominated by advection, providing indirect information on upper ocean
currents. Computer vision techniques are perfect candidates to infer this dynamical information from
the combination of altimeter data, surface temperature images and observing-system geometry. Here,
we exploit one class of image processing techniques, super-resolution, to develop an original neural-
network architecture specifically designed to improve absolute dynamic topography reconstruction.
Our model is first trained on synthetic observations built from a numerical general-circulation model
and then tested on real satellite products. Provided concurrent clear-sky thermal observations are
available, it proves able to compensate for altimeter sampling/interpolation limitations by learning
from primitive equation data. The algorithm can be adapted to learn directly from future surface
topography, and eventual surface currents, high-resolution satellite observations.

Keywords: earth observations; ocean dynamics; satellite altimetry; sea surface temperature; artificial
intelligence; machine learning; deep learning; neural networks

1. Introduction

In the last decade, technological progress has opened new prospects for the appli-
cation of deep-learning techniques in a wide range of fields. This revolutionary change
originated from the concurrent increase of computational power at widely affordable costs
and impressive growth of openly available data. Computer vision is one specific branch of
artificial intelligence (AI) that is driving significant improvements thanks to the possibility
to design and implement complex model architectures based on deep convolutional neural
networks (CNN). Computer vision originally aimed to emulate the human capability to
immediately discriminate objects and features in a picture or video, as well as to extrapo-
late/predict relevant information from partial or degraded input, either for recreational,
medical, security or other commercial uses, e.g., for automated focusing on specific subjects
in consumer and professional cameras, for semantic/instance segmentation and anomaly
detection in medical imagery or in support of self-driving automated vehicles.

The Earth system research community is increasingly exploring and developing AI
technologies to solve complex data processing and analysis problems and go beyond
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the present limitations of numerical models (see also [1]). Indeed, to discover the laws
governing Earth system processes and better predict their evolution over several spatial and
temporal scales, a combination of precise observations and theoretical/numerical models is
needed [2]. In fact, even considering the significant increase in the number of acquisitions
by remote sensing platforms and autonomous instruments, it will never be possible to
describe and predict the state of the Earth system at all scales (or even of just one of its
subsystems, such as the ocean) only through observed data. Satellite observations over the
ocean, for example, only measure surface properties, with distinct temporal sampling and
coverage depending on the sensor and mission. Conversely, information on the vertical
distribution of properties along the water column can only be provided through in situ
sensors that clearly lack the ability to simultaneously provide large spatial coverage and
high space-time resolution. Empirical/statistical methodologies and historical data are
thus often used to interpolate or reconstruct approximated 2D or 3D descriptions of ocean
dynamics from a limited number of observed state variables, with poor to no physically
driven constraints (e.g., [3]). On the other hand, full descriptions of the ocean state evolution
(over a predefined set of scales) can be obtained through numerical models, still requiring
a prior knowledge/guess of the initial state and of the forcings over time, as well as the
parameterization of sub-grid physics. Due to the uncertainties in the initial conditions and
parameterizations and the non-linearity of the dynamics, model predictions easily drift
away from what is seen in the observations, unless observations are ingested within the
simulation itself through data assimilation (DA), e.g., [4]. At present, DA is mostly based
on probabilistic approaches, and it is also not rigorously tractable due to the huge number
of variables and nonlinear processes involved, as well as the difficulty in simultaneously
and properly characterizing model and observation errors.

Despite some scepticism due to the generally limited interpretability and explainabil-
ity of complex neural networks, deep learning methods are perfect candidates to cope
with the high-dimensional spaces, multiple processes, non-linear relations and noisy data
involved in Earth system observations and models [5]. While it is beyond our scope to
provide a comprehensive list of the ever-growing applications of AI algorithms to Earth
system science, it is worth citing some of the most relevant objectives, which span from
hybrid modelling approaches, such as the development of new sub-grid-scale parame-
terizations [6,7] and the improvement of DA techniques to be used in classical numerical
circulation models [8,9], to the downscaling of low resolution models [10], to supervised
learning approaches for data augmentation, filtering, interpolation or prediction [11–18],
to the detection of dynamical features [19], to the set-up of neural networks for partial
differential equation solution/identification and modelling of latent dynamics, e.g., [20–24].
Indeed, whenever sufficient information is available, physically informed neural network
models can be designed to explicitly include physical constraints, for example, by building
custom loss-functions that enforce the structure of the network to obey a known governing
equation (through automatic differentiation), and/or by exploiting the similarities between
residual networks and the numerical schemes used to integrate the ordinary differential
equations that govern dynamical systems. However, sometimes sequential observations can
merely resolve the large-scale dynamics, as high-resolution spatial snapshots are available
only episodically and provide only limited information to describe (and directly learn) the
evolution of small-scale processes. In those cases, alternative approaches can be tested to
improve the dynamical reconstruction and eventually recover high-resolution information
from existing data.

Actually, many advanced computer vision algorithms can be adapted to geoscientific
analysis, making the most of past efforts dedicated to addressing similar problems. One
such example is given by a specific class of techniques, known as super-resolution (SR),
that aims to recover high-resolution (HR) details from low-resolution images [25]. In
the single-image super-resolution algorithms, deep convolutional neural networks are
optimized to identify the features of an image by looking at its different channels and
learning how to recover the original features from their degraded versions. This is done
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by combining the translation invariance and locality properties of convolutional layers
with the impressive learning properties of deep architectures coupled with non-linear
activations. In computer vision applications, this problem is inherently ill-posed since
multiple HR images could correspond to a single LR image, and the performance of
the models is highly dependent on the extensiveness of the catalogue of images it was
trained with. State-of-the-art super-resolution algorithms do achieve impressive results
in the processing of blurred/low-resolution photographs, though, and some attempts to
adapt them to Earth observation problems have already been carried out: DeepSD (Deep
Statistical Downscaling), a stacked SR-CNN algorithm based on the early three-layer model
by [26], has been applied to downscale Earth system model simulations, and CNN models
have been tested for sea surface temperature (SST) and wind field downscaling, with
positive results [27,28]).

Here, we aim to recover high-resolution sea surface dynamical features by combining
low-resolution ocean absolute dynamic topography (ADT) fields based on satellite altimetry
(resolving O(100 km) wavelengths) and high-resolution SST acquired by thermal imaging
spaceborne radiometers (between O(1 km) and O(10 km) depending on the sensor). This
represents a different problem with respect to simple model output downscaling or single
variable super-resolution, as we want to combine the information provided by channels at
both original and degraded resolution in a multi-channel image, taking advantage of the
physical relations among the variables we include in the different channels. In fact, even
if it only implies a weak constraint, our strategy includes physical considerations in the
choice of the predictor variables, building upon the role of surface water mass advection in
the local evolution of the SST [29], but we also aim to exploit the repetitiveness of satellite
observing system geometries. We thus consider also the temporal SST variation and the
ADT mapping error as additional predictors.

High-resolution observations of ocean dynamic topography through imaging sen-
sors (thus ‘natively’ 2D), however, will not be available before the launch of the joint
NASA/CNES/CSA ASC/UK Space Agency surface water and ocean topography (SWOT)
mission, expected by the end of 2022, while more direct observations of surface currents
could be provided by ESA Earth Explorer 10 Harmony mission only after 2027–2028, if
present phase A, namely the design consolidation and feasibility studies, proves success-
ful [30], or even later by SEASTAR ESA Earth Explorer 11 candidate mission [31]. As such,
we rely here on an observing system simulation experiment (OSSE). In practice, we use
the output of an ocean general circulation numerical model to simulate both predictor and
target variables, considering that, in the future, our network can be trained directly with
remotely sensed data. After training with OSSE data, our model can be applied to real
altimeter-derived ADT and SST data in the test/prediction phase. In practice, learning first
from primitive equation simulations and known observing-system geometry and succes-
sively testing over true observation-based products can also be interpreted as a means to
assimilate model physics in our data-driven reconstruction. Presently, core estimates of
ocean surface currents are obtained by measuring absolute dynamic topography (i.e., the
surface height referenced to an empirical geoid) through radar altimeters installed on a
constellation of polar-orbiting satellite platforms. Sea level observations are acquired by
altimeters along a discrete number of tracks, and surface geostrophic currents are obtained
by first interpolating the ADT onto a regular 2D grid [32] and then computing ADT gradi-
ents (geostrophy implies velocities are perpendicular to the pressure gradients associated
with sea surface level differences, with an inverse dependence on the Coriolis parameter).
ADT-interpolated products reach an effective resolution of O(100 km) at mid-latitudes [33],
but recent studies [34,35] also revealed that many unresolved structures are aliased into
larger structures and that the gridded altimetry products contain an unrealistic number of
large mesoscale eddies. Hence, even for large scale eddies, having a typical wavelength
larger than 100 km, the standard altimetry may be biased, with such large-scale bias mainly
occurring in cyclonic eddies.
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Altimeter-derived ADT maps can thus be thought of as a deformed view of true
surface elevation, obtained through a transformation that combines the satellite observa-
tion geometry and the space-time surface elevation evolution effectively captured by the
interpolation algorithm. Our objective is to set up a neural network that is able to learn
the inverse mapping from our limited input ADT to the true sea surface elevation. To
do that, we explicitly include as tentative predictors the low-resolution ADT field, the
SST field and its temporal derivative, ∂SST/∂t, as well as the formal interpolation error
(∆ADT) that is associated with the input ADT product (retrieved as part of the optimal
interpolation algorithm), and we set the high-resolution ADT as our target. In fact, at the
large scale, SST responds to air-sea fluxes and related upper layer mixing with the deeper
oceanic layers, but when getting close to the mesoscale and sub-mesoscale dynamical range
(namely at scales between a few kms and a few tens of km, over day-to-weeks timescales), a
significant contribution to the local SST variations is given by horizontal advection (though
vertical advection is also expected to play a significant role, especially at the sub-mesoscale,
e.g., [36]). SST products obtained from thermal images provide synoptic high-resolution
data up to (nominal) 1 km spatial resolution over wide portions of the ocean surface [37,38].
Even if their effective spatial resolution rarely exceeds a few kilometres to tens of kilometres,
they allow an almost continuous monitoring of SST changes at daily intervals and longer
timescales. As such, several past attempts to improve surface current retrieval have been
based on the use of the sequential information provided by SST products, either through
maximum cross-correlation techniques [39] or by directly considering tracers’ advection
equation [40–43].

Our work exploits the data prepared for an OSSE that was originally designed for
different objectives in the framework of the European Space Agency ocean CIRculation from
ocean COLour observations (CIRCOL) project [44]. They consist of one year of synthetic,
daily ADT and surface geostrophic currents data over the Mediterranean Basin. Full details
explaining how we simulate the observing system geometry are reported in Section 2,
where all pre-processing steps to prepare our training and test datasets are described. It
must be stressed that for this OSSE, SST data have been assumed to be void-free and
error-free, which is clearly not true, especially when looking at kilometre-scale features; so
our work must be considered as a first exploratory step that will need to be significantly
expanded for eventual operational applications.

2. Materials and Methods
2.1. Primitive Equation Model Data

The Mediterranean Forecasting System (MFS) is a hydrodynamic model for the
Mediterranean Basin and the Atlantic Ocean off the Strait of Gibraltar [45]. Monthly
to 15-minute instantaneous outputs of 3D horizontal currents and sea surface height (SSH),
as well as monthly to hourly estimates of 3D temperature and salinity fields are available via
the Copernicus Marine Service web portal (Product ID: MEDSEA-ANALYSIS-FORECAST-
PHY-006-013). For the present study, we relied on daily outputs of SSH and SST, extracting
information within the boundaries of the Mediterranean Basin (30 to 46◦ N and −6 to
37◦ E). These fields are provided on a 1/24◦ regular grid and 125 unequally spaced vertical
levels. The simulations are based on the NEMO model (Nucleus for European Modelling
of the Ocean) used in combination with Wave Watch-III for the wave component. The MFS
simulations also account for data-assimilation of 2D satellite-derived SST, salinity vertical
profiles, as well as along-track sea-level anomaly observations.

2.2. Satellite Absolute Dynamic Topography

The sea surface geostrophic currents were obtained from the Copernicus Marine
Service and are derived from optimally interpolated absolute dynamic topography data
merging observations from a constellation of radar altimeters. Such a constellation is com-
posed of four to six altimeters in the 2008–2019 temporal range [32]. The geostrophic cur-
rents are provided as daily fields with nominal 1/8◦ horizontal resolution. The 2008–2019
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time series was extracted. The corresponding Copernicus Marine Service product and
dataset ID are SEALEVEL_MED_PHY_L4_REP_OBSERVATIONS_008_051/dataset-duacs-
rep-medsea-merged-allsat-phy-l4, respectively (accessed on 1 March 2021 and now in-
cluded as part of the SEALEVEL_EUR_PHY_L4_MY_008_068/cmems_obs-sl_eur_phy-
ssh_my_allsat-l4-duacs-0.125deg_P1D dataset).

2.3. Satellite Sea Surface Temperature Data

Remotely sensed SST data are taken from the European Copernicus Marine Service
(https://marine.copernicus.eu/access-data, last accessed 14 January 2022). They are Level-
4 (L4) products, which means they provide gap-free estimates on a regular grid and are
operationally produced and freely distributed in near-real time. We have used here 11 years
(2008–2019) of the ultra-high-spatial-resolution (UHR) Mediterranean dataset, reaching a
nominal 0.01◦ × 0.01◦ resolution (Product ID: SST_MED_SST_L4_NRT_OBSERVATIONS_
010_004_c_V2). This SST dataset is retrieved by first combining the night-time images
collected by multi-platform infrared sensors, after specific quality control and cloudy pixel
removal, and by successively running a two-step optimal interpolation algorithm [37].
Before using satellite SST L4 data to build our predictor tensor, we had to map them
on the same grid used for the model training. To obtain a consistent prediction, we
preliminary assessed the effective spatial scales resolved by the model SST, and eventually
filtered the UHR to remove scales that have never been seen by the network. This was
achieved by applying a low-pass Lanczos 2D filter (with window size = 9 and cutoff = 1/8)
directly to the UHR data before remapping on the final 1/24◦ grid (through a basic bilinear
interpolation). As discussed in the Results section, this pre-processing has the drawback
of further smoothing the SST field in areas not covered by concurrent infrared satellite
measurements due to cloud contamination or other coverage issues.

2.4. Sea Surface Drifter Data

In situ measurements of sea surface currents were obtained from autonomous La-
grangian drifting buoys that are passively transported by the ocean surface currents [46,47].
During the drifting buoy evolution, the data on the position are interpolated at uniform
intervals (~30 minutes) relying on the kriging interpolation method developed by [47]. The
velocities are finally computed via a finite-difference method of the interpolated positions
and provided with six-hourly temporal resolution. The data covering the period of our
study have originally been provided by the Italian Institute of Oceanography and Exper-
imental Geophysics (OGS) for the purposes of the ESA-CIRCOL project. The timeseries
are accessible via http://doi.org/10.6092/7a8499bc-c5ee-472c-b8b5-03523d1e73e9, last
accessed 14 January 2022); buoy-derived surface current values are only retained if the
buoy is equipped with a drogue: a device that guarantees the buoy evolution to be driven
by the ocean currents rather than by surface winds [48].

2.5. Simulating Altimeter-like ADT Maps

One year (2017) of synthetic altimeter-derived ADT maps was obtained from the
outputs of the Copernicus Marine Service MFS hydrodynamic simulation, using the data
unification and altimeter combination system (DUACS) mapping method. The different
steps are detailed below. Firstly, sea level anomaly (SLA) was computed from model
outputs by means of Equation (1):

SLA = SSH − (MDT − 0.344) (1)

where the mean dynamic topography (MDT) is provided as a static field together with the
model outputs. A 0.344 constant (expressed in m) allows us to adjust the SLA values in the
Mediterranean Sea to guarantee that the spatio–temporal average of SLA is zero during
2017. The large-scale, high-frequency variability, usually removed by applying a dynamic
atmospheric correction (DAC) [49] is filtered out of these synthetic data by applying a Loess
filter. The SLA is then sampled along the actual tracks of a synthetic constellation composed

202



Remote Sens. 2022, 14, 1159

of four radar altimeters: Jason-3, Sentinel-3A, SARAL/Altika and Cryosat-2 missions. This
step is achieved by running the SWOT simulator software [50], which allows us to account
for the actual orbits, errors and noise that characterize each mission. The chosen four-
satellite constellation is representative of the constellation ingested in Copernicus Marine
Service processing during 2017. Such along-track synthetic measurements are then ingested
by the DUACS processing chain to produce L4 SLA maps. The optimal interpolation (OI)
scheme follows the DUACS DT2018 (Delayed Time) configuration for the Mediterranean
area, described in [32]. The reconstructed small-scale maps are then recombined with the
filtered large-scale maps. Such data are provided on a daily basis and over a regular 1/8◦

grid (more details available in [44]).

2.6. Preparation of Training and Test Datasets for Deep Convolutional Learning

The OSSE data were simulated starting from year one of the primitive equation model
daily output described above. The original input images cover the entire Mediterranean
domain at 1/24◦ spatial resolution, leading to an individual image size of 380 × 1000
pixels. We randomly chose 40 dates (~11% of the total) to be kept aside as independent
test data, and we successively resampled the original images, extracting much smaller tiles
(76 × 100), which were later used as input to the network training. Despite the random
holdout strategy being a standard, different choices of the test dataset could also be done.
However, the test on OSSE prediction only serves here to assess the relative performance of
the different network architectures, not its absolute performance, which is not relevant per
se, when looking at simulated input data. The tiles are then extracted by going through a
double loop on latitude and longitude, imposing a spatial overlap of 50%, so that a total
of 42,250 samples is finally available for the training. The dimension of the tiles has been
chosen to simplify the pre-processing and reduce the memory required by the training
steps. In fact, all tiles are normalized before entering the network. In the case of the SST,
ADT and ∂SST/∂t, they are first transformed into anomalies estimated with respect to the
tile spatial mean and are successively scaled by dividing the anomalies by the maximum
value (in absolute value) recorded throughout the series. The ∆ADT only goes through
the normalization step. As the tiles cover an area of approximately 300 km × 400 km, the
anomaly computation is indeed serving as a high-pass filter, removing the background
variability associated with basin scale processes and seasonal variations (e.g., steric and
thermal variations driven by large-scale, air–sea interactions), which are not relevant to
reveal the impact of mesoscale processes on SST evolution related to horizontal advection.
This filtering is consistent with the tests described in [44]. After the test/prediction, the
tiles are merged together to compute a weighted average on overlapping areas.

2.7. Deep Convolutional Models Learning Strategy and Configuration

All deep convolutional models considered in this work (Section 3) have been written
in Python using the open-source library Keras. They are trained adopting an early stopping
rule to avoid overfitting and minimize the generalization error. In practice, the original
training dataset is randomly split into a proper training set (85% of data) and a validation
set (15%) (not to be confused with the fully independent test dataset described above, which
is never seen during the training) based on which both training (hindcast) and validation
losses are updated during the network optimization. The validation loss, in particular, is
used as an estimate of the generalization error, and early stopping consists in terminating
the iterative learning as soon as its values start to increase. As the estimations can be rather
noisy, early stopping admits a “patience” parameter, which defines the number of epochs
to be completed before the loss function minimum can be considered such. Here we have
set the patience equal to 20 for the SRCNN model (whose computations are very fast but
require many more epochs to converge) and reduced it to five for all deeper models. The
adaptive moment estimator, Adam, is applied for the stochastic optimization of models’
parameters [51], with the learning rates (lr) and numerical stability constants (ε) kept as in
the original implementations of the baseline networks (i.e., lr = 3 × 10−4 and ε = 10−7 for

203



Remote Sens. 2022, 14, 1159

SRCNN; lr = 10−4 and ε = 10−8 for the other networks). The latter values are also adopted
for dADR-SR. Within the dADR-SR model, we have also tested the implementation of a
DropBlock strategy [52] to improve the network regularization with minimal performance
differences.

2.8. Automatic Eddy Detection

The angular momentum for eddy detection and tracking algorithm (AMEDA) is freely
available software for the detection and tracking of oceanic eddies from 2D gridded fields of
surface currents and/or sea surface height [53]. It is based on the computation of eddy local
normalized angular momentum (LNAM) and on the observations of closed streamlines
around the LNAM extrema. The algorithm was successfully applied to remotely sensed 2D
fields and model outputs, e.g., [35,53,54], and enables the determination of eddies’ contour
and trajectories as well as eddy merger/splitting events. In this study, AMEDA was used
to identify eddy shapes seen by standard altimetry products (described in Section 2.2) and
the fields obtained from the combination of satellite altimetry ADT and high-resolution
satellite SSTs. We relied on the AMEDA default configuration, accounting for the expected
perturbation lengths in the Mediterranean area (i.e., considering the typical Mediterranean
Rossby deformation radii).

3. Results
3.1. Testing Single-Image, Super-Resolution Configurations and Designing a Multi-Scale
Adaptive Model

A large variety of neural network architectures have been proposed to achieve single-
image super-resolution, even considering only those dealing with input–output images
of the same size [25]. Comparing all of them is clearly beyond the scope of our work,
which is rather to demonstrate whether the super-resolution class of techniques can be
efficiently used for quantitatively accurate dynamical retrievals based on multiple variables
and observation types. As such, we have implemented here four different models, three of
them basically reproducing already published (baseline) networks, and a third one that
includes elements from different models but represents an original network architecture.
All models are trained considering the mean-squared error as the reference loss function.

The first model is the Super-Resolution Convolutional Neural Network (SRCNN)
proposed by [26]. It consists of three 2D convolutional layers: the first one includes
128 filters with a 9 × 9 kernel size, the second one with 64 filters and a 3 × 3 kernel
size and the third one with a single 5 × 5 filter. The first two layers include a nonlinear
activation (rectified linear unit, ReLU), and zero-padding is applied in every layer to keep
the original image size end-to-end (Figure 1A). Each layer represents a specific operation in
the conceptual explanation of the SRCNN given by [26]: overlapping patches extraction
from the low-resolution image (where the patches have the same size as the kernel) and
representation into a high-dimensional vector (feature mapping, with vector dimensions
equal to the number of filters); non-linear mapping of each high-dimensional vector onto
another high-dimensional vector comprising a second set of high-resolution feature maps;
these are directly linked to the final image in the third step (reconstruction). We applied
SRCNN in four different configurations, namely considering SST, ∂SST/∂t, ADT and ∆ADT
in input (all together) and alternately removing either ∂SST/∂t, ∆ADT or both ∂SST/∂t and
∆ADT from the predictor variables. After training the networks (see details in Section 2),
we used the fully independent test data to assess the accuracy of the prediction over the
entire Mediterranean Basin, comparing the root-mean-squared differences (RMSD) between
the altimeter-like ADT and the “true” ADT, as well as those between the super-resolved
ADT field and our simulated “ground truth”. SCRNN gave us some first indications
(Figure 1B–E): overall, we could not find an improvement in the ADT reconstruction by
incorporating all predictors, but what appeared to be actually detrimental was the inclusion
of the ADT interpolation error. In fact, excluding ∆ADT from the input already improves
the accuracy of the simple SRCNN’s reconstruction. Conversely, including ∂SST/∂t always
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appeared beneficial. Even if our initial hypothesis on the relevance of the information on
the observing geometry (as provided by the ADT interpolation error) seemed wrong, we
must stress that the features that dominate the patterns of ∆ADT are much larger than the
scales of the dynamical features we want to super-resolve, and SRCNN is plausibly a too
shallow/simple network to deal with such different scales due to a very limited ability
to learn complex interdependencies between channels (it actually contains only around
110k trainable parameters). Thus, we are still confident that a properly defined network
architecture would be able to exploit the information on where the altimeter-like ADT field
is expected to be more accurate and where it deserves stronger corrections. As such, we
decided to test all successive (and gradually more complex) network architectures with
both the configuration with the four predictors and the one without the ADT error.
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Figure 1. Super-Resolution Convolutional Neural Network (SRCNN) adapted to the reconstruction
of absolute dynamic topography from multiple channel inputs. (A) SRCNN network architecture.
(B–E) Relative performance of the SRCNN reconstructions, assessed on the independent test data
as the difference between the RMSD between the altimeter-like and original model output and the
RMSD between the super-resolved absolute dynamic topography (ADT) and the original model
ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the
models trained/tested considering: (B) the full set of predictor variables; (C) removing ∂SST⁄∂t from
the predictors; (D) removing ∆ADT from the predictors; (E) removing both ∂SST⁄∂t and ∆ADT. ADT
and related RMSD values are expressed in m.

The second network we have implemented is the baseline Enhanced Deep Residual
network for Super-Resolution (EDSR) proposed by [55]. EDSR was designed to exploit
the possibility to significantly deepen the networks (i.e., to increase the number of layers)
opened by residual learning frameworks. Instead of learning fully unreferenced functions,
residual networks (ResNet) define the layers as residual functions (actually they are based
on residual blocks, including different convolutional and batch normalization layers, and
activation functions, where the residual is referenced to the block input) and have been
proven much easier to optimize than conventional networks, allowing users to train con-
siderably deeper networks and obtain significantly better accuracies [56]. EDSR simplified
the network architecture with respect to models based on original ResNet by reducing
the number of parameters employed in each residual block (Figure 2A). In its baseline
formulation, it includes a first 2D convolutional layer made up of 64 filters with 3 × 3
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kernel size, followed by 16 residual blocks, increasing the number of trainable parameters
to approximately 1.2 M, one order of magnitude higher than SRCNN. The first layer out-
put and the output of the last residual block in the sequence are also summed up (skip
connection) before entering the output convolutional layer (including a single 3 × 3 filter),
which connects to the target image. Residual blocks include two convolutional layers with
the number of filters equal to the input channels (64) and a 3 × 3 kernel size. These two
layers are connected through a non-linear activation (ReLU). The outputs of the second
convolutional layer within the residual block are summed to the input channels to obtain
the residual, after applying them a fixed scaling factor of 0.1. Notably, the scaling strategy
applied within the EDSR residual block was formerly proven to stabilize the training of
complex networks, allowing users to safely increase the number of filters [57].
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Figure 2. Enhanced Deep Super-Resolution (EDSR) baseline model tested for the reconstruction of
high-resolution absolute dynamic topography from multiple channel inputs. (A) EDSR network
architecture. EDSR is based on a specific residual block design. (B,C) Relative performance of the
EDSR reconstructions, assessed on the independent test data as the difference between the RMSD
between the altimeter-like and original model output and the RMSD between the super-resolved
ADT and the original model ADT (red indicates smaller RMSD from model predictions). The
panels show the performance of the models trained/tested considering: (B) EDSR and the full set of
predictor variables; (C) EDSR removing ∆ADT from the predictors. ADT and related RMSD values
are expressed in m.

The minimum of the loss function reached during the model training was around
~4.5 × 10−3 for SRCNN, whatever the configuration, with small differences between
hindcast and validation. The same numbers would indicate a much better performance
of ESDR, with validation loss values of around 1.8 × 10−3 for the configuration excluding
the ADT error from the predictors and values close to 1.6 × 10−3 for the full predictors
set. The minimum hindcast loss got close to 1.1 × 10−3 in both EDSR configurations.
However, the test run on the independent data clearly indicated that the improvement
only occurred in some parts of the domain, while worse reconstructions can be obtained
in dynamically relevant areas, both including the ADT error or not in the predictor list
(Figure 2B,C). Not too surprisingly, in the first case, higher RMSD are found along some of
the repeated altimeter tracks, well visible as diamond/rhomboid shapes (Figure 2B), which
again indicates that the network is not able to efficiently exploit the information on the
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ADT interpolation error. In the latter, though, higher errors in the reconstruction are found
also in some areas that are well known for being dynamically very active (e.g., offshore the
Algerian coast, Figure 2C).

The third network considered is the Adaptive Deep Residual Network for Super-
Resolution (ADR-SR) proposed by [58]. ADR-SR represents an interesting evolution of
the EDSR. Its main improvement consists in substituting the learned feature fixed scaling
applied within the EDSR residual block with an adaptive scaling, obtained by introducing
a squeeze-and-excitation (SE) module [59]. Within the adaptive residual block (ARB),
channel-wise feature responses are adaptively recalibrated through an SE module before
summing them to the block input, allowing the network to more efficiently model complex
interdependencies between the learned feature channels (Figure 3A). Conceptually, we
might thus expect it to drive a substantial advance with respect to simpler networks.
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Figure 3. Adaptive Super-Resolution (ADR-SR) baseline model tested for the reconstruction of
high-resolution absolute dynamic topography from multiple channel inputs. (A) ADR-SR network.
ADR-SR is based on the inclusion of a squeeze-and-excitation module within its residual block design.
(B,C) Relative performance of the ADR-SR reconstructions, assessed on the independent test data
as the difference between the RMSD between the altimeter-like and original model output and the
RMSD between the super-resolved ADT and the original model ADT (red indicates smaller RMSD
from model predictions). The panels show the performance of the models trained/tested considering:
(B) ADR-SR and the full set of predictor variables; (C) ADR-SR removing ∆ADT from the predictors.
ADT and related RMSD values are expressed in m.

The SE module first reduces all 2D feature channels into 1D values through global
average pooling (squeeze). The excitation operation then consists in learning a weight
vector, built through a self-gating mechanism that takes the output of the global average
pooling as input and provides per-channel modulation weights. The self-gating consists in
a bottleneck with two, fully connected layers (including non-linear activations), the first
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one reducing the dimensionality by a predefined factor (and including a ReLU activation),
and the second one increasing it back to the number of channels in the input to the module
(followed by a sigmoid activation). These weights are successively used to suppress or
enhance individual channel features (feature recalibration) before summation to get the
residuals. With respect to baseline EDSR, ADR-SR increases the number of filters within
each block from 64 to 192 but limits the number of feature channels in input to the residual
block from 64 to 32. The ADR-SR network implemented here employs 16 residual blocks
and finally includes slightly less than 1.8M trainable parameters.

ADR-SR performance assessed on the test dataset significantly improved with respect
to that of the other networks, and, for the first time, including the information on the
low-resolution ADT interpolation error leads to a tangible reduction of the RMSD over
most of the basin (Figure 3B,C). Still, a lower accuracy is found close to some of the altimeter
repeated tracks (visible as diamond shapes), which might be due to the limited ability
either of ADR-SR and of the previously tested networks to correctly handle the information
provided at different spatial scales by the input predictor variables. This specifically reflects
the larger scale of ADT mapping error patterns with respect to the geophysical variables.

To overcome this issue, we have developed here a novel deep convolutional architec-
ture, which combines the successful developments of previously tested super-resolution
models with the dilated-convolution-based multi-scale information learning inception mod-
ule proposed by [60]. Dilated convolution allows users to extract information at different
scales and significantly expands the network’s receptive field even without enlarging the
kernel size [61]. Choosing a dilation rate, r, r-adjacent pixels are skipped by the convo-
lution kernel, so that related weights refer to samples taken at tuneable distances. In the
inception module designed by [60], the channels input to each module first pass through
three parallel dilated convolution layers with kernel size 3 × 3 and dilation factor of 1,
2 and 3, respectively. Then, all convolution outputs are concatenated and passed to the
successive layers.

We have named the new model “dilated Adaptive Deep Residual Network for Super-
Resolution (dADR-SR)”. Its architecture is depicted in Figure 4. In the first step, dADR-SR
input channels are passed to three parallel convolutional layers, each one with ten filters
and a 3 × 3 kernel size, but with an increasing dilation factor of 1, 3 and 5, respectively. The
output of the three convolutional layers is then concatenated into a single multiscale feature
tensor, which represents the input to a sequence of multiscale adaptive residual blocks.
Indeed, within each residual block, the same multiscale parallel feature extraction is carried
out, thus defining a multiscale adaptive residual block (M-ARB). To avoid excessively
increasing the number of parameters to train, the number of residual blocks is here kept to
12 (four fewer than in the EDSR/ADR-SR baseline), and the number of filters included in
the two sets of convolutional layers inside each M-ARB is chosen as 120 and 10, respectively.
Within the M-ARB, after concatenating the learned multiscale features, a SE module is
included (with a predefined dimensionality reduction factor of 10 instead of 16, so that the
bottleneck in dADR-SR is shaped 30-3-30, instead of 32-2-32). The final number of trainable
parameters in the dADR-SR model is slightly below 1.6 M.
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Figure 4. The dilated Adaptive Super-Resolution (dADR-SR) model developed to reconstruct high-
resolution absolute dynamic topography from multiple channel inputs. (A) The dADR-SR network
architecture; dADR-SR is based on the inclusion of dilated, convolution-based learning inception
modules in the core layers of ADR-SR. (B,C) Relative performance of the dADR-SR reconstructions,
assessed on the independent test data as the difference between the RMSD between the altimeter-like
and original model output and the RMSD between the super-resolved ADT and the original model
ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the
models trained/tested considering: (B) dADR-DR and the full set of predictor variables; (C) dADR-SR
removing ∆ADT from the predictors. ADT and related RMSD values are expressed in m.

The dADR-SR model outperforms any of the previous networks when tested on the
independent dataset, displaying a marked reduction of the RMSD over the entire basin
(Figure 5), with only extremely few and very small spots showing a minimal degradation
(Figure 4B,C). The information captured at the different scales by including all predictors
thus further enhances the accuracy of the reconstruction with respect to the model that
does not consider the low-resolution ADT interpolation error.
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Figure 5. The dADR-SR model performance compared to simulated standard altimetry. (A) RMSD
between the altimeter-like and original model output and (B) RMSD between the super-resolved
absolute dynamic topography (ADT) obtained with dADR-SR (using full predictors set) and the
original model ADT. ADT and related RMSD values are expressed in m.

3.2. Applying Dilated Adaptive Residual Super-Resolution Trained on Simulated Data to Real
Satellite Observations

Our successive analysis is aimed to verify to what extent we can use the features
learned from observing system simulations based on primitive equation modelling to im-
prove present-day, data-driven reconstructions, but also to identify eventual limitations of
the present OSSE set up and issues related to real observation-based products. We have thus
applied the model trained on OSSE data to predict high-resolution ADT starting from prop-
erly pre-processed, satellite-altimeter-based, low-resolution ADT and high-resolution SST
products (e.g., Figure 6). For both variables, we have actually taken optimally interpolated
data (also known as Level 4 (L4), see Section 2), covering the 2008–2019 period. Assessing
the accuracy of the observation-based, super-resolved maps is not trivial, as large-coverage,
high-resolution observations of the surface topography/currents are not presently available.
As such we followed a double approach: on the one hand, we performed a qualitative
analysis of the reconstructed patterns, looking at areas of intense mesoscale activity visible
in the satellite SST L4 data and comparing the (sub)mesoscale eddies identified by the
AMEDA automatic detection algorithm in original and super-resolved data; on the other
hand, we built a match-up database with the surface current estimates provided by surface
drifters (see Section 2) and used it to compute the statistics of the differences with respect
to the geostrophic currents estimated from standard altimeter ADT and super-resolved
ADT field.

The dADR-SR model reveals impressive potential to resolve mesoscale turbulent
features that are generally smeared out, often misplaced or even totally missed by standard
altimetry, when clear-sky thermal data are present. Figure 7 presents a wonderful example
of such a turbulent field, with many mesoscale eddies, dipoles and current meanderings
well visible, especially in the western Mediterranean Basin, detaching from the Algerian
current towards the centre of the basin along the North Balearic front and Liguro-Provençal
current. Surface geostrophic currents estimated from the dADR-SR ADT (Figure 6B) not
only appear much sharper than those depicted by low-resolution altimetric data (Figure 6A)
but prove also able to reconstruct dynamical features that were completely absent in the
standard product (Figure 7).

Specifically, dADR-SR recovers the strong cyclonic eddies associated with two
mushroom-like dipoles along the Algerian coast, marked with the letters “A” and “B”
in the zoomed panels of Figure 7, displaying much more consistent shapes and intensities.
The cyclonic circulation in (B) is actually described as two eddies by the AMEDA eddy
contours estimated from the super-resolved field, which is much more consistent with the
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SST patterns, while a single and almost rectangular shape is found in standard altimeter
estimates. Consistency is not meant here as a perfect alignment between the SST gradi-
ents and the geostrophic currents—which is not at all to be expected in non-stationary
current fields—but to the impossibility of having so many isotherms being crossed by very
large-scale currents, considering the well-developed structures found in the SST field, even
assuming a strong chaotic stirring. The dADR-SR prediction also recovers much more
reliable patterns associated with the weaker meanders and smaller-scale recirculations
in the centre of the sub-basin (C and D) and also the highly asymmetric, strong dipole
visible east of Menorca Island (E). Remarkably, it is also capable of identifying the winding
north-eastward current close to Corsica (F) that is seen as a rather straight and uniform
flow in low-resolution altimetry and completely missed by corresponding AMEDA, while
being detected as a small dipole in super-resolved AMEDA contours.
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Figure 6. The dADR-SR prediction from real satellite-derived absolute dynamic topography (ADT)
and sea surface temperature data (SST) for one example date (17-07-2016). (A) Original altimeter-
based surface geostrophic currents (obtained from the ADT gradients); (B) super-resolved surface
geostrophic currents; (C) satellite SST field. The cyan box in (C) identifies the area plotted in Figure 7.

The situation looks very different when the original thermal-infrared data are masked
by clouds, because in these cases SST data interpolation leads to much smoother SST
structures and gradients than what is observed in clear-sky conditions. This filtering
unfortunately reflects on the structures retrieved by the dADR-SR model as well, evi-
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dently dumping surface current intensities and also eventually clearing out several of the
mesoscale features.
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Figure 7. Dynamical structures reconstructed by dADR-SR prediction from real satellite-derived
absolute dynamic topography (ADT) and sea surface temperature data (SST) (zoomed from Figure 6).
(A) Original altimeter-based surface geostrophic currents; (B) super-resolved surface geostrophic
currents; (C,D) satellite SST field with overplot of the eddy contours identified through AMEDA de-
tection algorithm (red = cyclonic, blue = anticyclonic, black dots stand for automatically detected eddy
centres) applied to original altimeter currents (C) and to super-resolved field (D). A–F letters serve to
more easily locate the dynamical features that are recovered by dADR-SR and missed/misplaced by
standard altimetry products (discussed in the text).

One such example is given in Figure 8, which shows the interpolated SST and the
associated nominal interpolation error on the 1st of July 2014 and the same fields taken
three days apart. During these three days, clouds gradually moved into the southwestern
Mediterranean from Morocco, completely hiding the sea surface to the satellite infrared
radiometers on the second date (Figure 8B,E). The corresponding SST field, presenting very
clear and distinct structures on the first day, is dramatically blurred by the interpolation
in data-void areas (Figure 9). Similar to the example presented in Figure 7, the dADR-
SR reconstruction is able to recover much more consistent surface current patterns in
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the presence of clear-sky thermal observations, e.g., aligning the currents to the true
shape/position of the jet found close to 6◦E (Figure 9G) along the Algerian coast. This jet is
actually feeding a mushroom-like mesoscale structure whose cyclonic eddy is much better
retrieved in the super-resolved image and significantly misplaced by the standard product
(Figure 9E). Likewise, SR fields also reconstruct the small-scale features observed in the
Almeria–Oran front region (i.e., to the north of the SST front found around the Greenwich
meridian), which is seen as a unique and quite large cyclone in altimetry maps (consistent
with what was noticed by [35]). Notably, however, the geostrophic current field based
on altimetry only suffers minor evolutions after three days (Figure 9F), while dADR-SR
actually appears to have smeared out most of the features observed previously. Current
intensities are also significantly and unrealistically reduced on the 3rd of July, especially in
the intense, anticyclonic meander observed along the Algerian coast at 6◦E (Figure 9H).
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Figure 8. Impact of cloud cover on satellite SST interpolated data. Interpolated field; (A,B), related
nominal interpolation error; (C,D), MODIS Terra pseudo-true colour images; (E,F) from NASA
Worldview (https://worldview.earthdata.nasa.gov, last accessed on 14 January 2022). On the first
date, clear-sky conditions (E) lead to extremely clear and distinct SST patterns and low interpolation
errors in all the Mediterranean (A,C). Three days later, clouds arriving from Morocco (F) prevent the
reconstruction of small-scale dynamical features in the SST field and lead to increased interpolation
errors (B,D). The thin cyan box identifies the area zoomed in Figure 9.
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Figure 9. Impact of the smoothing introduced by SST data interpolation on the dynamical re-
construction (zoomed from Figure 8). (A,B) original altimeter-based surface geostrophic currents;
(C,D) super-resolved surface geostrophic currents; (E–H) SST L4 field with overplot of the eddy
contours identified through AMEDA detection algorithm (red = cyclonic, blue = anticyclonic, black
dots stand for automatically detected eddy centres) applied to original altimeter currents (E,F) and to
super-resolved field (G,H). Current vectors are overplot in (A–D) plots.

Several similar cases can be picked up by looking at the entire time series, but our qual-
itative understanding of the power and limitations of the model and observations analysed
in this first work are fully confirmed also by the successive quantitative assessment. This
latter exercise was carried out by matching the independent estimates of surface currents
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obtained from in situ drifting floats with co-located/concurrent data-driven modelling
and altimeter data. Actually, the error associated with the super-resolved and standard
altimetric estimates (assessed here as the absolute value of the difference with respect to
drifter data) does not display a unique behaviour along the individual drifters’ trajecto-
ries, with alternating improvements and degradations of the current velocity components,
which do not present marked geographical characterization (Figure 10). Overall, though,
SR fields seem to provide slightly more accurate values in some (mostly offshore) areas of
the western basin, while, on average, they seem to perform worse in the easternmost part
of the Levantine basin (close to Israel/Lebanon coasts).
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respect to altimetry.

4. Discussion

While our findings could be of general interest to a broad range of scientists, we expect
them to stimulate further investigations and suggest new ways to efficiently combine Earth
system data from multiple sensors and models. In fact, the adaptation and development of
AI and deep-learning tools for Earth observation encompasses an ever-growing number of
potential applications. We have tested here a novel approach that not only allows users to
take advantage of neural network techniques for the combination of multi-sensor, remotely
sensed data, but proposes an innovative way to merge satellite observations and numerical
models, building an observation-based product that implicitly includes knowledge of
the physics of the system in a way different from classical statistical interpolation or
data assimilation.
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We performed an observing system simulation experiment to test the applicability of
computer vision algorithms (originally designed for single image super resolution) for the
improved estimation of ocean absolute dynamic topography. Usually, OSSEs provide a
controlled testing environment, targeted to better tune observing system design or to set
up the retrieval algorithms for future satellite missions. Indeed, one interesting aspect of
the experiment carried out here is that, while it will hopefully be possible in the future to
train our super-resolution model directly from observations (as soon as SWOT, Harmony
or SEASTAR measurements become available), it is already possible to apply it to super-
resolve present altimeter products, provided the area and period under study are effectively
covered by cloud-free/noise-free infrared images.

In fact, we have identified a number of issues and aspects that will need further
investigation and new developments. First of all, a dedicated effort would be needed to
take into account the limitations of present, satellite-based SST L4 data, which are obtained
through spatio-temporal statistical interpolation of eventually cloud-contaminated infrared
images and thus provide uneven spatial spectral information (depending on the persistence
of cloud cover and interpolation strategy adopted) [41]. One possible strategy to expand the
applicability of algorithms based on super-resolution would thus be to also fully simulate
SST interpolation and related error in an improved OSSE. This could be achieved by adding
realistic data voids to model data and implementing the same algorithm used operationally
for SST interpolation. The interpolated SST and related formal interpolation error could
then be included as predictors rather than the original model SST. As an alternative, one
could test the applicability of the model to non-interpolated SST data (also known as
Level 3), starting already from the training phase. Moreover, this approach requires a
specific OSSE and dedicated tests.

One additional aspect that deserves to be mentioned is that we carried out our tests in
the Mediterranean Sea, which is likely one of the most complex areas in terms of upper
ocean dynamics (though cloud coverage is less critical than elsewhere) [62]. This is due
to the small Rossby radius of deformation (i.e., the scale at which buoyancy and rotation
effects are comparable, which set the characteristic size of dominant flow instabilities) and
the occurrence of intense, small-scale air–sea interactions (modulated by highly variable
orography) that drive complex coastal dynamics that can significantly affect the source/sink
terms in the upper-ocean-temperature-evolution equation. This may undermine our work-
ing hypothesis that small scale changes are substantially dominated by advection. It would
thus be interesting to train (or even only to test) our model in other areas where intense
mesoscale activity is observed (e.g., western boundary currents, Antarctic Circumpolar
Current, etc.), eventually starting from different numerical simulations. Additionally, we
plan to further improve the network architecture by implementing and testing the latest
modules and ideas emerging from computer vision research (e.g., convolutional block
attention module (CBAM)), [63]. Major advances might then come from the design of
network architectures that admit the explicit use of sequences of ADT and SST data as
predictors, which could then allow users to define physically informed loss functions (e.g.,
by enforcing some approximate potential vorticity/tracer conservation) to jointly improve
the reconstruction of both current and tracer evolution over time.
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