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Preface

In recent decades, human activities, along with climatic variabilities, have adversely impacted

socioeconomic and environmental conditions, leading to a growing drought susceptibility, mainly

in arid and semiarid parts of the world. Droughts are associated with the dynamic nature of

human–environment interactions in ecosystems at different scales and dimensions, resulting in a

wide range of issues such as soil and air quality deterioration, vegetation degradation, water scarcity,

human migration, urban water supply issues, and a reduction in hydropower production. Thus,

concerted efforts are required to bring all emergent concerns and their related processes together

into a unified framework to serve as a roadmap for research and management. This Special

Issue features studies on understanding the climate system’s vulnerability, droughts relationships

with large-scale climate patterns, underlying effects of droughts, and land–atmosphere feedback

using observations or modeling studies, targeted field campaigns, or long-term measurements

ranging from local to regional spatial scales. The papers published in the Special Issue offer

a comprehensive exploration, ranging from hydro-meteorological, atmospheric feedbacks and

socio-economic implications. Notably, publications pivot around forecasting drought events using

data-driven approaches and provide applications on how earth observation datasets can used for

drought monitoring, comprehensive evaluations of drought characteristics and associated drivers,

watershed warmings, drought vulnerability for agricultural systems, and groundwater droughts. We

hope this collection of diverse papers provides useful information and encourages additional research

that contributes to understanding the land–atmospheric feedback of the earth system.

Jinping Liu, Quoc Bao Pham, Arfan Arshad, and Masoud Jafari Shalamzari

Editors
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Extremeness Comparison of Regional Drought Events in
Yunnan Province, Southwest China: Based on Different
Drought Characteristics and Joint Return Periods
Ruxin Zhao 1,2, Siquan Yang 1,2,*, Hongquan Sun 1,2, Lei Zhou 3 , Ming Li 1,4, Lisong Xing 1 and Rong Tian 3

1 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China;
ruxinzhao@ninhm.ac.cn (R.Z.); sunhq@ninhm.ac.cn (H.S.); bqt2200204047@student.cumtb.edu.cn (M.L.);
xinglisong22@mails.ucas.ac.cn (L.X.)

2 Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management
of China, Beijing 100085, China

3 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 102616, China; zhoulei@bucea.edu.cn (L.Z.); 2108570022093@stu.bucea.edu.cn (R.T.)

4 College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing),
Beijing 100083, China

* Correspondence: ysq_74@163.com

Abstract: Droughts frequently occur in Yunnan province, the southwest of China, which leads to
crop loss, ecosystem degradation, and difficulties in drinking water for people. In order to assess
and compare the extremeness for different drought events, this study quantified it by utilizing
the joint return period of drought multi-characteristics. Three characteristics at the regional scale:
drought duration, severity, and affected areas were obtained by a simple regional drought process
methodology, and their relationship was considered based on three types of Archimedean Copulas.
Standard Precipitation Evapotranspiration Index at a six-month time scale was selected as the optimal
drought index based on actual drought impact data. Results showed that drought events in Yunnan
province were mostly short drought duration, low severity, and high drought-affected areas. By
comparing the historical reported droughts’ loss, the return periods of drought events calculated by
the combination of duration and severity and drought-affected area are much more suitable to reflect
the real drought situations than those calculated by one- or two-dimensional drought characteristics,
especially for extreme drought events. On average, the drought in Yunnan province was almost
shown a return period of ~10 yr. The frequency of droughts in Yunnan province has gradually
increased due to climate change, and droughts with ~100 yr or even larger return periods occurred in
2009–2010 and 2011–2013.

Keywords: drought duration-severity-affected area; joint return period; Copula; regional drought
event; Yunnan province

1. Introduction

Drought is the main natural disaster that causes global grain production reduction.
It also causes ecological disasters such as forest fires and vegetation degradation, as well
as basic livelihood problems such as water storage for people in ecologically fragile areas.
What’s more, it has caused millions of deaths throughout human history [1]. Human
activities’ impact on the global climate has resulted in an increase in severe drought events,
and changes in climatic parameters are expected to escalate the severity of droughts. Being
influenced by climate change, it is projected that the severity, duration, and affected area of
drought may increase continuously in the future [2,3].

Droughts are generalized water deficit phenomenon that can be characterized quanti-
tatively by different indices. Reasonably, the precipitation anomaly percentage (Pa) (Henry,
1906) [4] was initiated and used widely to assess the degree of drought for several decades.
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After the Standardized Precipitation Index (SPI) was developed by McKee et al. [5], it
was demonstrated to be suitable for drought comparison at different spatial and temporal
scales. In addition to precipitation factors, temperature, evapotranspiration, vegetation,
soil moisture, etc., are also significant factors reflecting drought. Thus, drought indices
considering multiple factors were developed one after another, such as Relative Moisture
Index (MI) [6], Palmer Drought Severity Index (PDSI) [7], Standard Precipitation Evap-
otranspiration Index (SPEI) [8], Multivariate Standard Drought Index (MSDI) [9]. With
the development of remote sensing technology, drought indices based on remotely sensed
data are mushrooming [10,11]. These drought indices have been developed for drought
monitoring throughout the world or regions [12,13]. However, the applicability of the
indices varies across regions for reflecting the real drought impact [14]. Therefore, it is
necessary to assess drought events for one designated study area based on the optimal
drought index, which shows a higher link with actual drought impact [15].

To a certain extent, the drought index only reflects the severity of the drought. To
properly evaluate or compare any changes in drought events, additional characteristics
of droughts are required. Due to the need to incorporate these characteristics into any
modeling, an analysis based on drought frequency alone is not enough if it is not quan-
titatively related to other information such as duration, severity, and areal extent [16].
Assessing the risk of drought events by integrating different drought characteristics is
relevant. The Copula joint probability function can establish a dependence model for
multidimensional random variables and is widely used in the study of multidimensional
drought characteristics. Due to the dynamic nature of the spatial and temporal evolution of
drought impact areas, previous research often used the run theory to identify the drought
duration and severity at the site scale and then conducted bivariate drought return period
analysis using the Copula [17–19]. Although site-based drought return period analysis can
provide useful local information, these results seem to embed with high uncertainty in
drought management or drought risk assessment in a wide area. During the development
progress for one drought event, the timing and location of the drought both influence its
consequences. Droughts are considered regional when the spatial extent exceeds a certain
threshold [20], so it is crucial to include the affected area of drought with duration and
severity in the drought risk studies [21–23].

Droughts can occur in both arid and humid areas across the world. Despite being
located in the humid climate zone, the region of Southwest China has frequently been
hit by exceptional and sustained droughts in recent years, with the summer of 2006, the
autumn of 2009 to the spring of 2010, the summer of 2011, and the winter of 2019 to
the spring of 2020 [24–26]. As one of the five regions that make up Southwest China,
Yunnan Province (YP) suffered from frequent and the most severe drought disaster since
2006 [22,27,28]. The drought disaster record in YP indicated that the crop area affected
by droughts reached a total of 308,349 km2 during 1972–2020 [26]. Wang and Yuan [29]
indicate that anthropogenic climate change increased the risk of hot and dry extremes in
2019 over YP by 123–157% and 13–23%, respectively. Many researchers have paid attention
to the drought evolution in YP. For instance, Li et al. [30] analyzed the drought trend and
drought coverage area at various timescales over YP, and the results showed that droughts
in YP occurred frequently, and the change point was detected in 2002. Wang et al. [31]
used Copulas to analyze the joint return period of drought events by considering two-
dimensional drought characteristics: duration and severity. Due to the impact of climate
change, extreme events occur frequently in different regions, and it is particularly important
to combine multiple characteristics to evaluate the extremity of drought events. However,
the joint return period of three-dimensional drought characteristics that include the drought
duration, severity, and affected area has been few explorations in YP.

Therefore, this study addresses the spatiotemporal variations of drought duration,
severity, and affected areas, using the regional drought characteristics extraction method,
and discusses the drought extremeness of YP based on the return periods analysis. The
objectives of this study are (1) to select the optimal drought index for the assessment of

2
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drought events in YP, (2) to identify the spatiotemporal characteristics of drought events
and verify by the actual records of drought events, and (3) to discuss the joint return periods
of droughts using Copulas, as well as the differences of return period combining drought
characteristics in different dimensions.

2. Materials and Methods
2.1. Study Area

YP is located in Southwestern China, covered with a total area of 3.94 × 105 km2.
The main types of land use in the province are forest land, grassland, and cultivated land,
which account for 57%, 23%, and 18%, respectively (Figure 1). This region is the river
source or the upstream of many major rivers, such as the Nujiang River, Lancang River,
Red River, Yangtze River, and Pearl River. Precipitation is spatially and temporally uneven
across the region (ranging from 560 to 2300 mm) due to the influences of the monsoons
and complex terrain and is primarily concentrated from May to October [32]. Therefore,
droughts occur more frequently and severely in winter, spring, or early summer in YP and
have a serious impact on agricultural production and human life [30,33]. For example, the
severe drought in northern and central YP from November 2002 to early May 2003 affected
10.53 million people and 0.86 million hectares of crops, which led to a direct economic
loss of 1.98 billion yuan [34]. The drought from November 2009 to May 2010 resulted
in 24.98 million people affected, with 2.96 million hectares of crops affected and direct
economic losses of 27.33 billion yuan [35].
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2.2. Data

Three types of data were used in this study: meteorological and remotely sensed data
used for the calculation of drought indices, actual drought impact data used for the optimal
drought index selection, and drought event records used for the verification of whether the
theoretical drought events extracted in this study are consistent with the drought events
that actual occurred.

Meteorological data includes daily observations of precipitation and temperature at
101 stations from 1961 to 2020 (Figure 1), which were obtained from the China Meteorologi-
cal Data Sharing Service System (http://data.cma.cn, accessed on 1 May 2022). Remotely
sensed data mainly comes from Moderate Resolution Imaging Spectroradiometer (MODIS)
productions to extract Land Surface Temperature (such as LST) and Normalized Difference
Vegetation Index (NDVI). The included MODIS11A2 and MODIS13A2 productions ranging

3
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from 2002 to 2020 with 1 km spatial resolution, 8 and 16 days respective synthesis periods
were used in this study. The data were obtained from the Land Processes Distributed Active
Archive Center (LPDAAC) of NASA (https://ladsweb.modaps.eosdis.nasa.gov/, accessed
on 20 September 2022).

The actual drought impact data were obtained from the drought statistics reporting
system in China. In general, drought impact data are collected after the event has ended;
and no data are collected if there is no drought event. Once the drought emergency
response levels are triggered, the statistical frequency of drought impact data will increase,
such as in the range of 3 weeks or even every day [15]. Six types of drought impact data
during the period of 2003–2017 were available and used in this study (listed in Table 1).
Considering that these impact data were reported by administrative units, this study will
select the optimal drought index by calculating the correlation coefficient based on the sum
of drought impact data and mean of drought indices in the sixteen cities (Figure 1) in YP
during 2003–2017.

Table 1. Six types of drought impact data used in this study.

Impact Type Abbreviation Unit

Crop area affected by light drought CA_LD 103 ha
Crop area affected by severe drought CA_SD 103 ha
Crop area affected by extreme drought CA_ED 103 ha
Water shortage and moisture shortage area of paddy fields WMA_P 103 ha
Water shortage and moisture shortage area of dryland WMA_D 103 ha
Population with drinking water difficulties due to drought P_D 104 persons

The drought event records data were obtained from the China Meteorological Disaster
Yearbook (https://data.cnki.net/yearBook/single?id=N2023020114, accessed on 15 August
2022) and the literature of Zhang et al. [36], which were available from 1949 to 2020 and
used to verify whether the theoretical drought events extracted in this study are consistent
with the drought events that actual occurred.

2.3. Methods
2.3.1. Alternative Drought Indices

Drought indices are an effective way to quantify drought phenomena, but there are
a variety of drought indices currently available, as mentioned above. In view of this, this
study selected six commonly used drought indices (Table 2) as candidates. Then, the rank
correlations (Equation (1)) between the values of the indices and the actual drought impact
data were calculated to find the optimal one for drought analysis in YP. Until this section;
we finished part I of Figure 2.

Rc = 1− 6∑ d2
i

n(n2 − 1)
(1)

where di is the rank difference between the drought index and drought impact data series.
The drought index series is the mean of the drought index at each station within one city.
The drought impact data series is the sum of drought impact data at different counties
within one city. n is the length of the used data series.

4
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drought and drought characteristics extraction, Part III: Joint return periods based on different
drought characteristics).

Table 2. The drought indices candidates used in this study.

Drought Index Time Scales References

Percentage of precipitation anomaly (Pa) monthly [4]
Standardized precipitation index (SPI) 1, 3, 6, 12-month [5]
Standardized precipitation and
evapotranspiration index (SPEI) 1, 3, 6, 12-month [8]

Days without continuous rain (CDD)
maximum days without
continuous effective rain

in one month
[37]

Relative moisture index (MI) monthly [6]
Vegetation Supply Water Index (VSWI) monthly [38]

2.3.2. Regional Drought and Drought Characteristics Extraction

The occurrence of drought events is not limited to a single point, and the duration (D),
severity (S), and affected area (A) are the main characteristics generally used to describe
regional drought events from the temporal and spatial perspective. Previous research
usually extracted D and S by the run theory method at a single site scale [31,39]. A
is difficult to synthesize simultaneously with D and S to describe a drought event at a
regional scale.

In order to obtain these three drought characteristics simultaneously, we referenced
a regional drought process assessment methodology from Liao et al. [40]. Firstly, we
determined the regional average drought index (Im) and drought impact area (Am) for
each month:

Im =
1
n

k

∑
i=1

Indexopt−i, i f Indexopt−i ≤ drought threshold (2)

Am =
k
n
× 1 (3)

where k means the number of stations with optimal drought index under the threshold and
n is the total number of stations in the study region. The drought threshold value is given
as −0.5 in this study.
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Secondly, based on the run theory, the Im series was used to extract the regional D
and S based on a threshold value (−0.5). D is the sum month when Im less than −0.5 for a
drought spell, and S is the cumulative sum of the difference between the Im value and its
threshold value in the drought spell. If a certain two drought events were adjacent to each
other for only one month, the two events would be combined as a single event (Figure 3).
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Finally, the drought-affected area (A) for a drought event during the drought duration
is calculated as follows, and until this section, we finished part II of Figure 2.

A =
∑D

m=1 Am

D
(4)

2.3.3. Framework of Copula-Based Joint Return Period

The joint return period of different drought characteristics is defined as the average
time elapsing between two successive realizations of the drought events and can be used to
compare the comprehensive risk of drought events. To a certain extent, the larger return
period corresponds to the more extreme drought event, the higher the risk of damage it
may cause.

The joint return period is calculated as the inverse of exceedance probability of different
variables, and the Copulas functions are usually used for this calculation due to their
flexibility in modeling the dependence structure among random variables based on their
marginal distributions [19,31,41]. After obtaining the appropriate Copula joint distributions,
we can proceed with the analysis of drought return periods (as shown in part III of Figure 2).

Copula is defined as the multivariate distribution function of multidimensional ran-
dom variables (x1, x2, . . . , xm). It could be served to connect m-dimensional marginal
distributions (F(x1), F(x2), . . . , F(xm)) to form a multivariate distribution function on [0, 1]:

F(x1, x2, . . . , xm) = C(F1(x1), F2(x2), . . . , Fm(xm)) = C(u1, u2, . . . , um) (5)

where C is the cumulative distribution function (CDF) of Copula, and Fm(xm) is the marginal
distribution for random variable xm, i.e., the marginal distribution.
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The formula for the return period of one drought characteristic is expressed as:

Tone−d =
E(L)

P(X ≥ x)
=

E(L)
1− Fx(x)

(6)

where E(L) is the expectation of the average drought interval and P(X ≥ x) is the CDF of a
given value x. FX is the marginal distribution of variable X.

The joint return period of two or three drought characteristics is expressed as:

Ttwo−d =
E(L)

P(X ≥ x ∩Y ≥ y)
=

E(L)
1− Fx(x)− Fy(y) + CXY(Fx(x), Fy(y))

(7)

Tthree−d =
E(L)

P(X≥x∩Y≥y∩Z≥z) =

E(L)
1−Fx(x)−Fy(y)−Fz(z)+CXY(Fx(x),Fy(y))+CXZ(Fx(x),Fz(z))+CZY(Fz(z),Fy(y))−CXYZ(Fx(x),Fy(y),Fz(z))

(8)

where CXY is the optimal Copula describing the joint distribution of random variables X
and Y. CXYZ is the optimal Copula describing the joint distribution of random variables X,
Y, and Z.

• Marginal distribution

Before the establishment of the joint distribution, the optimal marginal distribution of
random variables should first be identified. Six distribution functions (Table 3) were used
to fit and optimize the marginal distribution for each of the three drought characteristics
(D, S, and A). Kolmogorov–Smirnov (K–S) method [42] was used to test the theoretical
distribution and empirical distribution in order to determine the optimal one.

Table 3. Alternative marginal distribution functions for a one-dimensional variable.

Distribution Formula Parameters

Exponential (EXP) F(x) = 1− e−
x
θ , x ≥ ξ θ

Weibull (WBL) F(x) = 1− e−(
x
b )

a
, x > 0 a, b

Gamma (GAM) F(x) = β−α

Γ(α)

∫ x
0 tα−1e−

t
β dt, x > 0 α, β

Log-normal (LOGN) F(x) =
∫ x

0
1

xσy
√

2π
e
− (lnx−µy )2

2σ2
y dx, x > 0 µy, σy

Normal (NOR) F(x) =
∫ x
−∞

1
σ
√

2π
e−

(x−µ)2

2σ2 dx, −∞ < x < ∞ µ, σ

Logistic (LOGC) F(x) =
(

1 + e−
x−m

a

)−1
, −∞ < x < ∞ m, a

• Copula functions

In this study, three common Archimedean Copula functions: Clayton Copula, Gumbel-
Hougaard Copula, and Frank Copula, were used. Details are shown in Table 4, where d in
the formulas denotes the variable dimensionality. The parameter estimation of the Copula
function is performed by the method of great likelihood estimation. The optimal Copula
function is tested by using the Akaike information criteria (AIC) and Bayesian Information
Criterions (BIC) based on the joint empirical and theoretical probability of the random
variables [43]. The smaller the statistic value of AIC and BIC, the better the corresponding
Copula function fitting.
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Table 4. Basic information of commonly used Archimedean Copula functions.

Copula Type Formula Parameter Value Range

Clayton Cθ =
( d

∑
i=1

u−θ
i − d + 1)

−1
θ θ > 0

Gumbel-Hougaard Cθ = exp



−

[
d
∑

i=1

(
−lnui)

θ

] 1
θ





θ ≥ 1

Frank Cθ = − 1
θ ln[1 + ∏d

i=1(e−θui−1)
(e−θ−1)d−1

]
θ ∈ R

3. Results
3.1. Optimal Drought Index Selection

The rank correlation coefficients between drought indices and drought impact data
in 16 cities of YP are shown in Figure 4. It can be seen that SPI, SPEI, Pa, MI, and VSWI
drought indices show a negative correlation with drought impact data, and CDD shows a
positive relationship. This phenomenon is consistent in 13 out of 16 cities in YP, while the
three cities of Nujiang, Dehong, and Xishuangbanna are not consistent. The topography
of YP is complex, with an area of 1000–3500 m accounting for more than 90% of the total
area, showing large change in elevation. For example, the area of Nujiang with elevation
above 2000–3500 m accounts for ~66% (weaker correlation results shown in Nujiang), and
the area of Baoshan with elevation below 2000 m accounts for ~66% (higher correlation
results shown in Baoshan); agricultural drought in high altitude areas is not easily assessed
by drought index. The proverb says that the weather varies within 10 miles of YP, which is
the main result of topographic influence, and coupled with the different drought resistance
for different cities, synthetically leading to different drought impacts in adjacent cities even
under the influence of the same drought degree.

It is worth noting that for drought indices at longer time scales such as SPI, SPEI
indices at 3-, 6-, and 12-month time scales, and VSWI, their negative correlation with
drought impact data is more significant with the time scale increasing. While for the
drought impact data of CA_ED and WMA_P, the VSWI shows a weaker correlation in the
16 cities compared with SPI and SPEI. For drought indices at shorter time scales, such as SPI
and SPEI at a one-month time scale, CDD, Pa, and MI indices, the correlations are weaker,
which indicates that using the current month drought index does not fully reflect the actual
cumulative damage effect by drought. Although a remotely sensed-based drought index
VSWI could indicate a drought situation at a relatively high spatial resolution, sometimes
the lower values of VSWI are usually not only affected by drought but may also be affected
by a combination of other factors, such as pest disease, forest fire, and human logging.
Moreover, the remotely sensed data still have the problem of missing data due to the
weather; this will result in drought events not being fully identified.

Based on the coefficient of variation (Cv) of the rank correlation coefficients for 16 cities
(Table 5), we could see that the absolute Cv values of SPI and SPEI indices at a 6-month time
scale (SPI6 and SPEI6) for different drought impact data are smaller than other drought
indices, especially for the drought impact of CA_ED, CA_SD, P_D, and WMA_P (the
Cv values are −0.53, −0.54, −0.48, −0.84, and −0.55, −0.55, −0.48, −0.75, respectively),
indicating that SPI6 and SPEI6 can generally reflect the drought spatial distribution in YP.
We initially suggested to select SPI6 or SPEI6 as the appropriate index to assess the drought
situations in YP. Considering that the SPI index has only precipitation data as input, while
the SPEI index takes into account the effect of temperature. Therefore, the following study
will analyze the drought return period based on SPEI6.
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of YP.

Table 5. The coefficient of variation of different drought indices for different drought impact data.

SPI1 SPI3 SPI6 SPI12 SPEI1 SPEI3 SPEI6 SPEI12 CDD Pa MI VSWI

CA_ED −1.55 −0.55 −0.53 −0.64 −1.41 −0.59 −0.55 −0.64 1.68 −1.29 −1.94 −0.75
CA_LD −1.68 −0.60 −0.64 −0.79 −1.35 −0.55 −0.63 −0.79 0.39 −0.60 −1.39 −0.55
CA_SD −1.71 −0.60 −0.54 −0.69 −1.48 −0.56 −0.55 −0.70 0.80 −0.76 −1.69 −0.64

P_D −1.44 −0.53 −0.48 −0.53 −1.29 −0.51 −0.48 −0.55 0.92 −0.87 −1.64 −0.57
WMA_D −2.05 −0.57 −0.79 −0.89 −1.47 −0.57 −0.72 −0.91 0.87 −0.90 −1.86 −0.73
WMA_P −2.28 −0.86 −0.84 −0.91 −1.85 −0.82 −0.75 −0.91 16.74 −2.64 −4.15 −0.91

3.2. Drought Events and Drought Characteristics in YP

Based on the method in Section 2.3.2, we extracted 41 drought events in YP during
1961–2020 (Table A1). Averagely, a drought event in YP generally lasts 5 months; cumulative
S is almost 4.2, A is about 60% of the total stations, and drought starts mostly in February
or December and ceases in March (Figure 5d). Since the turning point of climate change in
China is thought to have occurred around 1990 [44], we compared the difference of drought
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characteristics before and after No. 20 drought event (~the year of 1990). Before 1990, the
average D of drought in YP was 4 months, with an average S of 2.7 and an average A of 59%;
while after 1990, the average D increased to 6 months, the average S increased to 5.6, and
the average A was 61% (Figure 5a–c), this is main caused by the drought No. 35 and No. 36,
which shows higher D and S than other events. However, the affected areas of these two
droughts do not stand out among other events. This well illustrates the multidimensional
spatiotemporal nature of drought events. Therefore, in order to facilitate comparison and
assessment of the extremeness of a drought event among multiple events, it is necessary to
analyze a drought event by jointing different drought characteristics.
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Figure 5. Changes of different drought characteristics in 41 drought events ((a): Drought duration,
(b): drought severity, (c): drought affected area, (d): drought onset and ending time).

3.3. Optimal Marginal Distribution and Joint Distribution for Different Drought Characteristics

The statistical results of the K–S test of marginal distributions for drought character-
istics D, S, and A are shown in Table 6. We can see that the marginal distribution to fit
the one-dimensional drought characteristic was not unique, so the optimal distribution
based on the minimum statistical value of K–S (D) was selected. The optimal marginal
distributions for D, S, and A in YP were WBL, LOGN, and LOGN, respectively (Table 6).

Table 6. The optimal marginal distributions for one-dimensional drought characteristics.

Distribution Parameter D S A

EXP
θ 0.193 0.237 0.016

K–S(D) 0.147 * 0.132 * 0.521
Pass or not Yes Yes No

WBL

a 1.149 0.947 6.932
b 5.467 4.093 64.098

K–S(D) 0.105 * 0.128 * 0.094 *
Pass or not Yes Yes Yes

GAM

α 1.433 1.016 45.05
β 0.277 0.241 0.749

K–S(D) 0.112 * 0.135 * 0.086 *
Pass or not Yes Yes Yes
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Table 6. Cont.

Distribution Parameter D S A

LOGN

µy 1.255 0.871 4.085
σy 0.882 1.061 0.148

K–S(D) 0.114 * 0.107 * 0.082 *
Pass or not Yes Yes Yes

NOR

µ 5.171 4.212 60.132
σ 5.240 5.349 9.035

K–S(D) 0.204 * 0.244 0.096 *
Pass or not Yes No Yes

LOGC

m 4.346 3.237 59.754
a 2.334 2.236 5.276

K–S(D) 0.185 * 0.227 0.091 *
Pass or not Yes No Yes

Note: * means that p-values of K–S test larger than the significant level of 0.05 and the variable is obeyed the
corresponding distribution. The optimal marginal distribution is selected when the corresponding value of K–S(D)
is minimal.

For the joint distribution of multidimensional drought characteristics, the statistical
results are shown in Table 7. Based on the minimum statistical values of AIC and BIC, the
optimal joint distributions for D and S, D and A, S and A, and D and S and A in YP were
Frank, Frank, Gumbel-Hougaard, and Frank Copula, respectively (Table 7).

Table 7. The optimal joint distributions for multidimensional drought characteristics.

Copulas
Drought

Characteristics’
Combination

Parameter AIC BIC Accepted

Clayton

D and S 14.067 −52.444 −50.730
D and A 1.734 −8.546 −6.832
S and A 2.357 −4.118 −2.405

D and S and A 1.600 −56.428 −54.715

Frank

D and S 29.904 −120.319 −118.605 Yes
D and A 4.513 −16.367 −14.653 Yes
S and A 5.226 −23.823 −22.109

D and S and A 6.636 −73.887 −72.173 Yes

Gumbel-
Hougaard

D and S 5.546 −99.423 −97.710
D and A 1.600 −14.207 −12.493
S and A 1.897 −26.404 −24.690 Yes

D and S and A 2.069 −72.625 −70.911

3.4. Return Period of Drought Events in YP

According to the optimal distribution for different dimensional drought characteristics
(Tables 6 and 7) and Equations (6)–(8), we calculated the return periods (RP) for the 41
drought events. We can see that from Figure 6, although the fluctuation of RP assessed
by one-dimensional drought characteristics is consistent with those assessed by three-
dimensional characteristics, the results based on D are different from those based on S or A,
and the assessment results for specific events are significantly different. For drought events
with relatively small RPs, the assessment results based on three-dimensional drought
characteristics are similar to those considering only one-dimensional characteristics. For
example, the four drought events (No. 12–15) that occurred during 1982–1985, which lasted
1–3 months, with severity between 0.52 and 1.82, and affected areas less than 60%, all of
which were lower than the average drought characteristics of YP.
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Since the significant correlation between D and S, the drought RPs assessed based on
D or S are very close, but the results of RPs based on A differ significantly from D or S. For
example, the No. 4 (March 1969–July 1969) drought event’s RP assessed only by A was
117 yr, while the RPs of these two drought events of No. 35 (May 2009–November 2010) and
No. 36 (July 2011–November 2013) were only 19 yr and 27 yr. However, the actual impacts
of the latter two drought events were more severe according to the relevant records of the
China Water and Drought Disaster Bulletin. As for extreme drought events, only using one-
dimensional drought characteristics to assess the RP has a large discrepancy for each other;
and for the common drought events, the RP based on three-dimensional characteristics was
larger than those based on one-dimensional. This indicates that there is an overestimation
or underestimation of the extremeness of a drought event if the characteristics are not
fully considered.

When considering a combination of two drought characteristics to assess the RP for a
given drought, we found that the assessment results were more consistent with the results
by considering three-dimensional drought characteristics for the drought events where the
magnitude of drought characteristics was small (Figure 7). For example, the RPs assessed
by two-dimensional drought characteristics for the No. 11 to No. 25 drought events were
more consistent with the results assessed by three-dimensional characteristics, but there
were still differences for certain drought events with larger drought features. The No. 4
drought event lasted for 5 months, with a severity of 5.78 and a drought-affected area of
82.77%. The RP of this event was 7 yr assessed based on the combination of D and S, but
after considering the drought-affected area, the RPs based on D and A, and S and A were
assessed to be 119 yr.

Similarly, the D, S, and A of the No. 40 drought event (April 2019–March 2020) were
12 months, 13.06, and 75.91%. Although A was smaller than the No. 4 drought event, it
was larger in D, and S. The RP assessed by D and S was 32 yr, while the RPs assessed by
D and A, and S and A was 101 yr and 49 yr, respectively, which were larger than the RP
assessed by D and S and A. This suggested that drought characteristic A was an important
factor for assessing the extremeness of one drought event since it is associated with the
impact degree of drought disaster, such as cropland areas affected by different severity
of drought, population with drinking water difficulties due to drought. As we can see
that when we combined other drought characteristics with variable A, the RP assessed by
two-dimensional characteristics for the 41 drought events was most consistent with RP
assessed by three-dimensional characteristics, especially for the common drought events
(No. 11–25). The RP assessed by D and A were all higher than RP assessed by three-
dimensional characteristics. If RP assessed by D and S or D and A was used to assess the
extremeness of the No. 36 drought event, the result was higher than 1000 yr; it might be
overestimated since the A was the same as the event of No. 35.
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The above joint RP analysis indicates that extreme drought events do not imply that all
features are large in magnitude; it is possible that they are the combined result of multiple
features with different magnitudes. The identified drought events also show that it is rare
for different drought characteristics to reach the maximum magnitude at the same time. In
a word, a comprehensive assessment of the extremeness of a drought event using the joint
RP based on spatial and temporal multidimensional characteristics is more reasonable.
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3.5. Case Validation

In order to prove the credibility of the RP assessed by three-dimensional drought
characteristics, we verified the results based on the actual drought-affected area, grain loss
rate, and the textual description of the drought events in YP.

The change of RPs was consistent with the grain loss rate, and the correlation coeffi-
cient was 0.74, which indicates that RP could reflect the real damage caused by droughts,
especially by the extreme drought in 2009–2010, 2011–2013, and 2019–2020 (Figure A1).
There were night years the crop area affected by drought exceeded 1 million hectares since
1961, which were all reflected in the theoretical drought events extracted in this study
(Table 8). With the exception of the drought event in 2005, for which the RP was less than
10 yr, the RPs of all other high-impact drought events were greater than 10 yr, and the actual
textual description of drought events is also consistent with the expression of RP size.

For the three drought events (No. 4, 35, 36) with more controversial RP results (in
Figures 6 and 7), No. 4 was recorded as few major drought spells since 1949; it was more
reasonable to assess this event with RP of 40 yr rather than 10 yr or 100 yr (RPs assessed by
one- or two-dimensional characters).

The No. 35 drought occurred during 2009–2010 and was recorded as the most harmful
extreme drought since meteorological records began. Not only did the textual material
show how serious this drought was at that time, but the research published afterward may
also indicate the severity of the drought’s impact on society. The ratio of actual drought-
affected area to total sown area was 44%, which were highest during 1972–2020. Therefore,
the RP of 96 yr was reasonable to describe the extremeness of this drought event.

The No. 36 drought extracted from this study showed that the drought event lasted
for nearly three years (July 2011–November 2013). The actual drought process had inter-
ruptions during the three years, so the final impact extent was not as severe as the drought
in 2010, but the actual drought-affected area exceeded 1 million hectares each year, which
indicates the cumulative damage effect formed by the three-year drought. Similar to the
drought in 2009–2010, the RP of No. 36 drought in 2011–2013 should also be on the century
scale rather than the millennium scale.
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Table 8. Comparison of drought record information and theoretical drought event in this study.

No. Year Drought-Affected
Crop Area/104 ha

Records of Actual Drought in Statistical
Yearbook of YP

Theoretical Drought Event
Extracted in This Study (RP)

1 1963 102.67 The droughts in YP in 1963 and 1969 were
described as few major drought years since

1949 [45]

December 1962–September
1963 (16 yr)

2 1969 — March 1969–July 1969 (40 yr)

3 1979 121.27

In 1979, following the winter drought of the
previous year, YP continued to receive low

precipitation and experienced a rare drought in
its history [45]

December 1978–August 1979
(17 yr)

4 2005 205.33 This year was the worst drought disaster year
in nearly 50 years May 2005–October 2005 (6 yr)

5 2009 103.67 This drought was the longest-lasting, most
extensive, and most harmful mega-drought

since meteorological records began

May 2009–November 2010
(96 yr)

6 2010 283.85

7 2011 123.05
YP suffered from persistent drought, with
25 counties breaking historical records of

least precipitation
July 2011–November 2013

(248 yr)
8 2012 107.27 Drought in YP continued to worsen and finally

affected tens of millions of people9 2013 117.74

10 2019 138.12
The impacted scope, intensity, and duration of
drought disasters in Yunnan in 2019 ranked the
second severity of drought disaster since 2010

April 2019–March 2020 (32 yr)

4. Discussion
4.1. Uncertainty of Regional Drought Event Identification

It is necessary and challenging to effectively and accurately identify regional drought
events. The development of regional drought identification methods has been ongoing
for nearly 20 years. Ren et al. [20] provide a systematic review of methods for identifying
regional extreme drought events, with a representative example of Andreadis et al. [46]
and Lloyd-Hughes [21], who used spatial clustering methods to extract drought patches
and propose a severity-area-duration method (abbreviated as SAD). Zhang et al. [47] used
the precipitation data from 22 meteorological stations and the SAD methods to identify
drought events with D, S, and A in YP during 1961–2018. This study took 101 meteorological
stations as the basis; we referenced the method proposed by Liao et al. [40], simplified and
combined it with the run theory to identify 41 regional drought events in YP from 1961 to
2020. And the extremeness of theoretical drought events is basically consistent with the
result of Zhang et al. [47] and the historical actual drought records (Table 8). In order to
reflect the three-dimensional dynamic evolution process of drought, quantitative analysis
of the whole process of drought events from the time–longitude–latitude has become a hot
topic [48].

The results of regional drought event identification have uncertainties due to the
optimal drought index selected, drought threshold, spatial and temporal resolutions of the
data used, the weight for each station when to calculate the regional drought index, and
the methods adopted, etc. In future work, we will use grid data with higher resolution and
set up tests with different drought thresholds to systematically analyze the joint RP risk of
drought in YP.

4.2. Comparison of Joint Return Period Based on SPI and SPEI

The correlation results in Section 3.1 show that the SPI6 could also reflect the change
of drought impact; this study wanted to detect the differences between SPI6 and SPEI6 in
the assessment of drought RPs in YP.

14
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For one-dimensional drought characteristics, it was found that the RPs of drought
events with shorter duration, less severe, or less affected areas (such as events of E1, E3, and
E5 in Figure 8) were similar for SPI6 and SPEI6; however, with the magnitude of drought
characteristics increase, the SPI6-based RPs were higher than those of SPEI6 (such as the
events of E2, E4, and E6 in Figure 8).
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Figure 8. Comparison of the return period of one-dimensional drought characteristics based on SPI
and SPEI ((a): return period based on D, (b): return period based on S, (c): return period based on A).

The RPs’ difference is more obvious when considering two-dimensional drought
characters. As the drought characteristics magnitude increases, the SPI6-based RP is higher
than that of SPEI6 (the solid line is always away from the dotted line with the same color).
For example, for drought events with D ≥ 7 and S ≥ 7, the RP is about 10 yr for both SPI-
and SPEI-based evaluations (Figure 9a). E (20,15) in Figure 8a means a drought event with
D ≥ 20 and S ≥ 15. The SPEI6-based RP of this event is shown to be 200 yr, while it is
greater than 200 years based on SPI6. The same phenomenon is also observed in the joint
RPs of D and A (Figure 9b) and S and A (Figure 9c).
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Figure 9. The return periods (with different colors) of two-dimensional drought characteristics based
on SPI6 (the dotted line) and SPEI6 (the solid line) ((a): the return period based on D and S, (b): the
return period based on D and A, (c): the return period based on S and A).

Figure 10 shows the RP surfaces (5 yr, 10 yr, 50 yr, and 100 yr) with three-dimensional
drought characters. Similarly, we can see that if a drought event is evaluated by SPI6, the
RP is higher than that by SPEI6. For example, the RP of the drought event (D > 4 ∩ S
> 2.74 ∩ A > 57%) in Figure 10a is on the 5 yr surface of SPI6, while it is inside the 5 yr
surface of SPEI6, which indicates that this event is less than 5 yr return period assessed by
SPEI6. The same result is also reflected in the comparison of the 10 yr return period surface
(Figure 10b). However, for the cases with larger RPs (Figure 10c,d), instead of showing a
complete surface like 5 yr and 10 yr return periods, 50 yr and 100 yr RPs show depressions
on the sides, and top of the surface, but the red surface is still surrounded by the blue.
This means that the magnitude of drought characteristics of drought events with 50 yr
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or 100 yr RP assessed by SPI6 are less than SPEI6. For the occurrence of depressions in
RP surface, it also reflects that the correlation structure between drought characteristics
may change under extreme conditions: drought events with high RPs showing longer D,
less S, and larger A, or higher S, shorter D, and larger A is recorded in YP. However, the
drought events with large magnitude for D, S, and A have a more irregular RP surface,
which indirectly indicates the rare frequency of such events.

4.3. Effect of Global Warming on Drought in YP

The frequency of extreme events has changed under the background of global warm-
ing, with events previously considered to be extreme becoming more frequent and will
probably no longer be classified as extreme events [49–51]. Southwestern China has also
been particularly affected by serious droughts; this was especially true in 2009 and 2010.
The regional circulation patterns are strongly affected by the high-elevation Himalayas
Mountains, which block the flows of air masses, and the large variation in landform condi-
tions combine to increase the drought frequency [52]. Researchers have also analyzed that
anthropogenic climate change increased the drought risk in the region of Southwestern
China [53]. Global warming is the main feature of climate change. Since 1961, YP has shown
a significant increasing warming tendency (p < 0.01) either at seasonal or annual scale [30].
Meanwhile, the interval time between the end of one drought event and the beginning of
the next drought event in YP showed a decreasing trend (Figure 11a). This suggests that
YP is more and more prone to occur drought, and it is confirmed by the decreasing trend
change in the cumulative anomaly of RP of the 41 drought events (Figure 11b).
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5. Conclusions

In this study, several drought indices were first compared with the drought impact
dataset, and the optimal one was selected. Then we explored the spatial and temporal
dynamics risk of drought events in YP by considering D, S, and A. There were 41 drought
events identified during 1961–2020 in YP. Different types of RP for droughts were estimated
based on Copulas and compared with each other. The main findings can be summarized
as follows.

(1) The drought indices on a shorter time scale can only characterize the degree of water
shortage in the current month; the longer time scale drought indices can better reflect
the actual drought-impacted situation in YP, especially SPEI and SPI at more than
six-month time scale.

(2) Drought is more likely to occur in YP during the winter and spring. The fluctuations of
drought characteristics magnitude have been relatively stable over the study periods,
except for the years 2009–2013. For the 41 drought events, the optimal marginal
distribution functions for D, S, and A were WBL, LOGN, and LOGN distribution,
respectively. Frank Copula function is suitably used to construct the joint distribution
of D and S, D and A, and D and S and A, and Gumbel Copula is the optimal joint
distribution function for S and A.

(3) The joint RP analysis showed that the 41 events during 1961–2020 differed in different
combinations of D, S, and A. When assessing the RP based on one-dimensional
drought characteristics only, the D-based and S-based RPs’ fluctuation was similar
and differed with A-based RP. When assessing the joint RP based on two-dimensional
drought characteristics, the D and A-based and S and A-based assessment results
show consistent fluctuations. For drought events with large differences in drought
characteristics, it is more reasonable to utilize joint RP based on D and S and A for
their extremeness assessment.

(4) The interval between drought events in YP has gradually decreased, and the risk of
drought has gradually increased since 1961. Compared with other drought events,
the extremeness of two droughts during 2009.05–2010.11 and 2011.07–2013.11 was
highest with RP larger than 100 yr.
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Appendix A

Table A1. Theoretical drought events identified in this study.

No. Drought Events D/Month S A/%

1 01/1961~02/1961 2 1.41 64.85
2 12/1962~09/1963 10 8.01 67.33
3 04/1966~04/1966 1 0.54 47.52
4 03/1969~07/1969 5 5.78 82.77
5 02/1970~03/1970 2 1.36 60.89
6 10/1972~10/1972 1 0.66 61.39
7 02/1975~03/1975 2 1.42 66.83
8 09/1975~11/1975 3 1.62 50.83
9 06/1977~08/1977 3 1.43 44.22
10 12/1978~08/1979 9 8.12 72.61
11 04/1980~09/1980 6 4.02 57.59
12 12/1981~01/1982 2 1.44 53.47
13 08/1982~10/1982 3 1.74 52.15
14 07/1983~07/1983 1 0.52 49.50
15 12/1984~02/1985 3 1.82 59.41
16 03/1986~06/1986 4 1.83 46.29
17 05/1987~10/1987 6 4.59 64.85
18 03/1988-03/1988 1 0.53 58.42
19 06/1988~12/1988 7 4.89 60.54
20 08/1989~01/1990 6 3.68 54.62
21 12/1990~01/1991 2 1.29 56.93
22 06/1992-12/1992 7 5.79 64.36
23 07/1993~07/1993 1 0.57 53.47
24 01/1997~01/1997 1 0.53 54.46
25 03/1998~03/1998 1 0.53 51.49
26 12/1998~06/1999 7 6.17 68.03
27 02/2001~04/2001 3 2.22 63.37
28 02/2003~04/2003 3 1.87 60.73
29 08/2003~30/2004 8 7.69 74.63
30 11/2004~11/2004 1 0.52 49.50
31 02/2005~02/2005 1 0.50 49.50
32 05/2005~10/2005 6 3.98 57.92
33 02/2006~04/2006 3 2.01 67.00
34 08/2006~01/2007 6 3.49 50.99
35 05/2009~11/2010 19 19.54 73.58
36 07/2011~11/2013 29 28.49 75.35
37 04/2014~12/2014 9 6.74 61.50
38 06/2015~10/2015 5 4.37 64.36
39 01/2018~04/2018 4 2.48 52.23
40 04/2019~03/2020 12 13.06 75.91
41 06/2020~12/2020 7 5.44 64.07
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Abstract: Groundwater droughts can explain developments and changes in groundwater from a
climatological perspective. The North China Plain (NCP) is a typical underground funnel area.
Therefore, groundwater drought studies in the NCP can provide better understanding of the local
hydrogeological characteristics from new perspectives. In this paper, the GRACE groundwater
drought index (GGDI) was used to evaluate groundwater drought events in the NCP. Additionally,
a new method was proposed in this study for investigating groundwater drought events at the
spatiotemporal scale. On this basis, the centroid theory was used to construct an appropriate
groundwater drought migration model for the NCP. The results showed that (1) the groundwater
drought frequency in the NCP was 24.54%. In addition, the most severe groundwater drought events
in the study occurred in March 2020. (2) In total, 49 groundwater drought events occurred in the NCP
over the 2003–2020 period. The most intense groundwater drought event occurred over the June 2018–
December 2020 period (DE.49), covering the entire study area. DE.29 was the second most intense
groundwater drought event over the August 2012–September 2013 period (14 months), resulting in a
maximum arid area of 75.57% of the entire study area. (3) The migration of the groundwater drought
events was in the southwest–northeast and northeast–southwest directions, which was consistent
with the terrain inclination, while most of the groundwater drought centroids were concentrated
in Area II. The groundwater drought event identification method and the groundwater drought
migration model were effective and reliable for assessing groundwater drought events in the NCP and
provided a better understanding of developments and changes in groundwater droughts, which is of
great practical significance and theoretical value for the rational development and use of groundwater
resources, as well as for guiding industrial and agricultural activities.

Keywords: groundwater drought; GGDI; drought event; centroid migration; North China Plain

1. Introduction

Groundwater is an important water source for human beings and has accompanied
the development of human civilization. In arid and semi-arid regions, the development of
human society depends on depleted groundwater resources [1]. However, the development
of human society has disrupted the natural cycle of groundwater, causing the depletion of
aquifers around the world at an alarming rate [2–4]. The UN World Water Development
Report 2022 focused on groundwater issues, with the conference theme of “Groundwa-
ter: making the invisible visible” [5], the same theme as that of World Water Day 2022,
highlighting groundwater problems. Climate change is a new challenge facing human
civilization. The fifth assessment report of the Intergovernmental Panel on Climate Change
(IPCC) highlighted a potential increase in the frequency of extreme climate events [6]. In
addition, several studies have demonstrated significant increases in the temperatures of
arid regions worldwide over the past 100 years, resulting in drought areas almost doubling,
which may potentially continue to expand and cause the further intensification of drought
degree [7–9]. Measures to combat climate warming are required urgently [10,11].
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There is still no clear and unified definition of the groundwater drought concept.
Indeed, scholars have interpreted groundwater droughts differently according to different
assessment methods. The “groundwater drought” term was first proposed by Rutulis [12]
to distinguish between droughts that occur in groundwater aquifers and other drought
types (e.g., meteorological, hydrological, and agricultural droughts). He defined a ground-
water drought as a significant natural drop in groundwater levels, causing substantial
aquifer dewatering, thus resulting in severe water supply problems and emphasizing natu-
ral conditions, non-human interference, and the transmission of meteorological droughts to
groundwater droughts. Groundwater droughts under natural conditions are often cyclical
and caused by reduced groundwater recharge and storage over periods of time, while
other drought types are due to insufficient precipitation [13]. However, groundwater
droughts can also be caused by anthropogenic factors, such as groundwater extraction
rates that are greater than recharge and groundwater storage amounts, which thus intensi-
fies groundwater droughts to a certain extent. In either case, groundwater droughts are
characterized by low groundwater levels and low groundwater abstraction rates (or even
dry wells). Therefore, groundwater droughts may be defined as a lack of groundwater
recharge or the lack of groundwater in terms of reserves or groundwater heads over a
specific period of time [13]. However, groundwater droughts cannot only be evaluated
from the perspectives of natural and human factors. In fact, Marchant and Bloomfield [14]
defined a groundwater drought as a decrease in groundwater level below the normal level
or a reduction in spring flow. Van Lanen and Peter [13] believed that groundwater droughts
occur in three consecutive phases: temporal decreases in groundwater recharge, followed
by decreases in groundwater levels and decreases in discharge rates. Indeed, the emergence
of groundwater droughts can first affect groundwater ecosystems and then spread to other
ecosystems. In addition, a groundwater drought is a type of drought that occurs following
a meteorological drought that has caused hydrological and agricultural drought events [6].
Drought propagates into groundwater systems through mechanisms such as pooling in
river catchments, hysteresis, and the prolongation of drought signals [15]. In the absence of
long-term precipitation deficiency, variations in groundwater drought characteristics could
be affected by anthropogenic warming activities [16]. Therefore, the occurrence of ground-
water droughts is an indicator of the significant impacts of natural and/or anthropogenic
factors on the water cycle (e.g., severe climatic influences and groundwater overuse).

At present, the most commonly used methods for evaluating groundwater droughts
are the standardized precipitation index (SPI) [17], the standardized groundwater level
index (SGI) [18,19], the standardized water level index (SWI) [20], and the GRACE ground-
water drought index (GGDI) [21,22]. In addition, other methods have also been used in
some studies to assess groundwater droughts, such as the groundwater drought index
(GWI) [23], the groundwater resource index (GRI) [24], and the groundwater recharge
drought index (GRDI) [25]. Among them, the GGDI has been extensively used to as-
sess groundwater droughts because it is based on remote sensing data, which are highly
available, thereby overcoming the limitations of spatiotemporal groundwater drought
monitoring [26,27].

Some previous studies have assessed the temporal and spatial evolution of drought
events separately, resulting in inaccurate descriptions of the evolution process of drought
events [28]. Therefore, the evolution of drought dynamics at the spatiotemporal scale has at-
tracted considerable attention from some scholars. Zhou et al. [29] proposed a new method
for studying meteorological drought migration based on topological spatial relationships to
accurately describe the spatiotemporal dynamic behavior of droughts. Guo et al. [30] used
an improved three-dimensional clustering algorithm (longitude–latitude–time and space)
to identify drought episodes and described the characteristics of drought events according
to several indicators, including drought duration, severity, intensity, area, centroid, and
trajectory. Herrera-Estrada et al. [31] used Lagrangian methods to monitor worldwide
spatiotemporal drought events over the 1979–2009 period, analyzing their characteristics
and behaviors. Wen et al. [28] proposed a new 3D drought structure extraction method
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to assess the long-term spatiotemporal distribution patterns of droughts during their de-
velopment. Han et al. [32] constructed an agricultural drought migration model using the
migration of drought centroids to describe the spatiotemporal evolution of agricultural
droughts. Understanding the spatiotemporal variations in groundwater droughts is of
great significance for the comprehensive assessment of groundwater droughts. However,
other studies on groundwater drought events have been carried out from the perspective
of time [12,33,34]. Therefore, it is necessary to assess groundwater drought events at both
the temporal and spatial scales.

The North China Plain (NCP) is one of three plains in China. Indeed, it has attracted
much attention because of its relevant political and economic characteristics, its importance
in food production, and its severe water shortage. The large groundwater funnel in this area
makes it an interesting area for hydrogeological studies, thus contributing to sustainable
groundwater development [35]. However, in recent years, relevant departments have
implemented certain measures in the NCP, such as groundwater overexploitation controls,
the South-to-North Water Diversion, and ecological water replenishment, to prevent the
continuous decrease in the groundwater level in the NCP, especially in urban areas [36].
However, although these measures have resulted in slight increases in groundwater levels,
the magnitude of the groundwater level drop created by long-term groundwater depletion
is still huge [37]. In the context of climate change, groundwater drought research in
the NCP needs to consider climate change aspects and discuss groundwater changes
from a climatological perspective. Although groundwater management policies have been
effective in slightly increasing groundwater levels in the NCP, the effects of climate warming
on groundwater droughts are still unclear. In addition, the spatiotemporal variations in
groundwater drought events in the NCP need to be assessed. Indeed, Wang et al. [34]
used GGDI to evaluate groundwater drought events in the NCP over the 2003–2015 period,
identifying the time of the most severe groundwater drought events in the region and
analyzing the influence of teleconnection factors on groundwater drought events. The
results demonstrated the significant impact of ENSO on groundwater drought events in the
NCP. Meanwhile, Zhang et al. [38] studied groundwater drought trends in the NCP using
the GWI and singular spectrum analysis. However, they assessed the spatial heterogeneity
of groundwater drought events in a fixed time without analyzing temporal variations
in the groundwater drought events. Therefore, further studies on the spatiotemporal
changes in groundwater drought events in the NCP may provide a better understanding of
the evolution characteristics of groundwater droughts, which is crucial for ensuring the
sustainable use of groundwater resources.

The main purpose of this study was (1) to quantitatively assess groundwater drought
events in the NCP using the GGDI, (2) propose a new method for investigating the spa-
tiotemporal patterns of groundwater drought events in the NCP from 2003 to 2020, and
(3) construct a specific groundwater drought migration model to analyze the characteristics
of groundwater drought migration in the NCP. Therefore, this study interpreted develop-
ments and changes in groundwater from the perspective of climatology and examined the
spatial and temporal evolution of groundwater drought events from a new perspective,
which is of great practical significance and theoretical value for the rational exploitation of
groundwater resources and the guidance of industrial and agricultural production.

2. Materials and Methods
2.1. Study Area

The NCP (113◦10′–119◦25′ E; 34◦52′–40◦29′ N) is one of the three major plains in China
(Figure 1). It is located in the southern part of the Taihang Mountains and the northern part
of the Yellow River, covering a total area of about 13.9 × 104 km2 [39]. The geomorpho-
logical features of the NCP can be divided into three main areas, namely, the piedmont
alluvial–pluvial inclined plain (Area I), the central and alluvial lacustrine plain (Area II),
and the eastern alluvial marine plain (Area III). According to the type of groundwater, the
pre-mountain plain in North China can be divided into carbonate rock karst water, bedrock
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fracture water, and loose rock pore water. The available groundwater is mainly stored in
loose pore space, and the regional flow direction is northwest to southeast. Locally, due
to the formation of landing funnels by groundwater overexploitation, the groundwater
dynamic field has changed and groundwater no longer flows in one direction, forming
a seepage field from the edge of the landing funnels to the center of each funnel [40].
Groundwater in the NCP circulates mainly in the quaternary pores of underground aquifer
rock series. According to burial conditions, circulation characteristics, and retention time,
groundwater in the NCP can be divided into two types, namely, shallow and deep ground-
water. The shallow groundwater level varies from 50 to 210 m, while the depth of the deep
groundwater level ranges from 100 m in Area I to 600 m in Area III. On the other hand, the
aquifer lithology in the study area consisted of gravel, medium-coarse sand, and medium-
fine sand in Area I, medium-fine sand, fine sand, and silty sand in Area II, and silty fine
sand and silty sand in Area III [41]. The NCP has a semi-arid and semi-humid continental
monsoon climate, with an average annual rainfall of about 500–600 mm, occurring mainly
between July and September [42]. In addition, the evaporation rates increase with air
temperature and decrease with latitude. Indeed, the uneven spatiotemporal distributions
of precipitation and evaporation have directly impacted groundwater resources in the
NCP [37].
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The exploitation of groundwater in the North China Plain began in the mid-20th
century, and the addition of human activities has led to significant variability in ground-
water systems. Humans have influenced the evolution of groundwater systems through
groundwater extraction, river management, sewage discharge and management, and the
construction of water conservancy. In recent decades, groundwater extraction in the North
China Plain has intensified, and the form of the groundwater cycle has been greatly altered.
According to statistics, until the 1960s, the smaller scale of groundwater extraction left the
groundwater cycle in its natural state, with precipitation as its main source of recharge
and evaporation as its main mode of discharge. After the turn of the century, precipita-
tion remained the main factor in maintaining the dynamic balance of groundwater, but
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groundwater was subjected to higher intensity extraction, resulting in the thickening of the
bale zone in the pre-mountain plain area, an increase in the depth of groundwater burial,
and a serious lag in the infiltration of precipitation for recharge. In parts of the eastern
plain, although the infiltration of precipitation for recharge has increased, changes in the
substrata due to urbanization have hindered the infiltration of precipitation and the main
mode of groundwater discharge has changed from evaporation to artificial extraction. Deep
groundwater in the North China Plain is buried deeper, circulation is slower, and it is a
non-renewable resource. In its natural state, the recharge of the deep groundwater mainly
comes from runoff and vertical infiltration from alluvial fans and hidden carbonate karst
water in front of the mountains.

2.2. Data Collection
2.2.1. Gravity Recovery and Climate Experiment (GRACE)

According to their different inversion principles, the GRACE gravity satellite inversion
methods can be divided into two categories, namely, the spherical harmonic coefficient and
Mascon methods. Terrestrial water storage change data, provided by the latest RL06Mascon
data product released by the University of Texas Space Research Center (http://www2.csr.
utexas.edu/grace/RL06_mascons.html, accessed 28 October 2021 ), were used in this study
to invert terrestrial water storage anomalies. The data covered the April 2002-September
2021 period, with a monthly scale and a spatial resolution of 0.25◦ × 0.25◦. Some missing
data were handled using an efficient and widely used linear interpolation method [29,43].
The data from January 2003 to December 2020 were selected as the basic data after inverting
the groundwater storage change data to calculate the GWI.

2.2.2. Global Land Data Assimilation System (GLDAS)

The global land data assimilation system (GLDAS), jointly developed by the National
Aeronautics and Space Administration and the National Oceanic and Atmospheric Ad-
ministration, can use data assimilation technology to merge satellite data and ground
observation data and generate surface state quantities and flux [44]. In total, four data prod-
ucts were launched based on the four land surface models, namely, VIC, CLM, CLSM, and
Noah. Indeed, the Noah10_M 2.1 (https://disc.sci.gsfc.nasa.gov/data-holdings, accessed
on 19 November 2021.) data product provides consistent data with the same spatial resolu-
tion as the GRACE RL06Mascon. Therefore, the Noah10_M 2.1 data product, covering the
April 2003–September 2021 period, was used to invert the GRACE groundwater storage
change data.

2.3. Methods
2.3.1. GGDI

The GRACE satellite data were first used to invert the terrestrial water storage anoma-
lies (TWSAs) and then the GLDAS hydrological model was used to invert the surface
water storage anomalies (SWSAs), soil moisture storage anomalies (SMSAs), snow water
equivalent anomalies (SWEAs), and canopy water storage anomalies (CWSAs). Afterward,
the GGDI was calculated according to Thomas et al. [21], as follows:

GWSA = TWSA− SWSA− SMSA− SWEA− CWSA, (1)

Ci =
1
ni

∑ni
1 GWSAi, (2)

where Ci is the mean GWSA of the ith month (i = 1, 2, 3, ..., 12) and n is the number of the
ith month in the data column.

To remove any seasonal effects on the final results, Ci was deducted from each month’s
GWSA using the following formula:

GSD = GWSA− Ci, (3)
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where GSD is the net groundwater storage deviation.
In addition, to reflect drought conditions, the normalized net groundwater storage

deviation (GGDI) was calculated using the following formula:

GGDI =
GSD− xGSD

SGSD
, (4)

where xGSD is the mean value of GSD and SGSD is the standard deviation of GSD.

2.3.2. Groundwater Drought Event Identification

In previous studies, most groundwater drought events have been determined from
a temporal perspective. This study proposed a new method for identifying groundwater
drought events from spatial and temporal perspectives, using the following steps:

(1) Drought grid identification

The study area was divided into 221 grids, with grid cells of 0.25 × 0.25. When the
center of gravity of the grid was within the study area, the grid was considered to belong
to the study area (Figure 2a). When the GGDI of the grid was less than −0.5, the grid was
considered to belong to the drought area [29].
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(2) Identification of the spatial continuity of drought events

Overlapping drought grid points were observed in certain months, which showed the
same drought event (a, c, and d in Figure 2b). Therefore, a drought event was considered
absent when the drought area was smaller than the minimum drought area (A0) (b and e
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in Figure 2b) [45]. Indeed, A0 was equal to 1.6% of the total surface of the study area [46],
representing four grids in this study.

(3) Identification of the temporal continuity of drought events

After identifying the arid areas, the temporal continuity of the drought events was
determined. Indeed, a temporal drought event was considered continuous, i.e., belonging
to the same drought event, when the overlapping area between the arid areas of two
adjacent months was greater than or equal to A0 (Figure 2c,d).

(4) Identification of the spatiotemporal continuity of drought events

The drought events m (DE-m) and n (DE-n) in month t were merged into a single
drought event in month t + 1. The merged event was called DE-n since the DE-m grid in
the merged drought event was smaller than that of the DE-n grid. The original drought
events m and n were two sub-events of the merged drought event n, denoted by (n-1) and
(n-2), respectively. (Figure 2e,f).

As shown in Figure 2g, DE-(n-1) and DE-(n-2) belonged to DE-n, even though DE-n
was divided into several spatially disconnected drought events in the next month (Figure 2h)
and the overlapping DE-(n-1), DE-(n-2), and DE-n grids were not less than A0.

2.3.3. Construction of the Drought Migration Model (DMM)

A centroid refers to a hypothetical point where mass is considered to be concentrated
within a material system. Centroids were considered in this study to analyze the spatiotemporal
migration characteristics of groundwater drought events. The specific steps were as follows:

(1) Determination of groundwater drought events

Previous studies have shown that only drought events that last for longer than
3 months can reflect the characteristics of drought migration [32]. Therefore, only drought
events with a duration greater than or equal to 3 months were considered for the construc-
tion of the DMM.

(2) Determination of the locations of groundwater drought centroids

The coordinates of the groundwater drought centroids were determined using the
following equations [32]:

(X, Y) =

{
X = ∑n

i=1 PiXi/∑n
i=1 Pi

Y = ∑n
i=1 PiYi/∑n

i=1 Pi
, (5)

where X and Y are the longitude and latitude of the groundwater drought centroid, re-
spectively, i represents the ith groundwater drought grid, n denotes the total number of
grids contained in the groundwater drought area, Xi and Yi are the longitude and latitude
of the ith groundwater drought grid, respectively, and Pi denotes the GGDI of the ith
groundwater drought grid.

(3) Connecting the groundwater drought centroids

The trajectory, direction, speed, and other characteristics of groundwater drought
migration were determined by connecting the groundwater drought centroids in chrono-
logical order.

(4) Calculation of the groundwater drought intensities

Centroids can not only represent the spatiotemporal characteristics of points but they
can also be used as indicators to measure monthly drought intensity. According to previous
studies, the centroid of the GGDI (Sam), representing a drought intensity of DE. (Sa) in
month m, can be calculated using the following equations [32]:

Sam = −1
k

k

∑
i=1

(GGDIi − S0), (6)
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where k denotes the drought grid number of DE.a in month m and S0 denotes the ground-
water drought threshold (−0.5), and

Sa =
n

∑
m=1

Sam, (7)

where n denotes the total number of groundwater drought months in DE.a.

3. Results
3.1. GRACE Data Validation

The reliability and authenticity of the GLDAS-based SWSA, SMSA, SWEA, and CWSA
data have been confirmed in previous studies; thus, they could be combined with the
GRACE data to invert the groundwater storage data [47–49]. The GLDAS data were used
in this study to validate the GRACE data. The GRACE- and GLDAS-based storage changes
showed significant positive correlation coefficients (p < 0.01) in each geomorphic area of
the NCP (p < 0.01). The obtained Pearson correlation coefficients ranged from 0.322 to 0.552
(Table 1).

Table 1. The correlations between the GRACE and GLDAS data in the geomorphic areas of the NCP.

Area Pearson Correlation Coefficient

Area I 0.322 **
Area II 0.552 **
Area III 0.487 **

NCP 0.527 **
** Significant correlation at the p < 0.01 level.

The GLDAS- and GRACE-based water storage in the NCP ranged from 13.06 to
6.81 mm and 13.76 to 41.18 mm, respectively, indicating relatively large values. These
results could be explained by the fact that the GRACE-based land water storage included
both surface water and groundwater, while that of the GLDAS excluded groundwater
storage. The GRACE uncertainties in the NCP and its sub-areas were calculated according
to the method proposed by Landerer and Swenson [50] (Table 2). The results showed
decreasing trends in the GRACE-based water storage in the NCP and its sub-areas (Table 3).
According to the specific situation of the NCP, these decreasing trends could have been
due to the ecological restoration projects implemented by the government increasing the
consumption of soil water in the study area, as well as groundwater overexploitation.
The temporal trends in the GRACE- and GLDAS-water storage in sub-areas of the NCP
are shown in Figure 3, indicating consistent changes in water storage from 2003 to 2013.
However, gradual increases in the differences between the GRACE- and GLDAS-water
storage trends were observed after 2013. Indeed, Area II exhibited the largest mean
difference (−19.36), followed by Area I and Area III, with mean differences of −14.80 and
−9.30, respectively. These findings suggested increased rates of decline in groundwater
storage in the NCP after 2013. According to the obtained results, Area II exhibited the
highest decline rate, followed by Area I and Area III. This finding was consistent with those
reported by Zhang et al. [38]. In summary, the obtained GRACE data for the NCP were
reliable and could be used to effectively investigate groundwater drought events in this
study area.

Table 2. The GRACE uncertainties in the NCP and its sub-areas.

Area Uncertainty (mm/month)

Area I 11.51
Area II 15.11
Area III 7.96

NCP 13.44
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Table 3. A comparison of the GRACE and GLDAS data from the North China Plain and its various
geomorphic areas.

Area Decline Rate (mm/Month)

Area I 0.0578
Area II 0.0620
Area III 0.0452

NCP 0.0590
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3.2. Quantitative Assessment of Groundwater Drought Events

The obtained quantitative evaluation results of groundwater drought events in the
NCP and its geomorphic sub-areas using the GGDI are shown in Figure 4. The groundwater
drought trends in the geomorphic sub-areas were consistent with those observed across the
entire NCP, showing gradually decreasing trends. In addition, the most severe groundwater
drought event in all areas was observed in March 2020. Indeed, the GGDI values for the
NCP and its geomorphic sub-areas in March 2020 were −3.02, −2.76, −3.07, and −3.10,
respectively. The groundwater drought frequency in the entire NCP was 24.54%, with mild,
moderate, severe, and extreme groundwater drought frequencies of 8.33, 8.80, 3.70, and
3.70%, respectively. The groundwater drought frequency in Area I was 26.39%, with mild,
moderate, severe, and extreme groundwater drought frequencies of 10.65, 9.72, 3.24, and
2.78%, respectively. The groundwater drought frequency in Area II was 24.54%, with mild,
moderate, severe, and extreme groundwater drought frequencies of 7.87, 7.41, 5.09, and
4.17%, respectively. The groundwater drought frequency in Area III was 23.61%, with mild,
moderate, severe, and extreme groundwater drought frequencies of 9.72, 6.02, 4.63, and
3.24%, respectively. The highest frequency of groundwater drought events was observed
in Area I, followed by Area II and Area III. However, unlike Area I and Area III, which
exhibited mainly mild and moderate drought events, Area II mainly experienced severe
and extreme groundwater drought events.
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3.3. Groundwater Drought Event Identification

According to the identification principles reported in Section 2.3, groundwater drought
events in the NCP from 2003 to 2021 were identified using GGDI. The results showed that
a total of 49 drought events occurred in this region. The duration of each drought event is
shown in Figure 5.
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In total, 49 groundwater drought events occurred in the NCP, with the shortest and
longest duration of 1 month and 31 months, respectively. In addition, there were 23, 13,
and 2 drought events with a duration of 1, 2, and 3 months, accounting for 46.94, 26.53,
and 4.08% of the total groundwater drought events, respectively. Whereas 3, 2, 2, and
1 groundwater drought events lasted 4, 5, 7, and 8 months, accounting for 6.12, 4.08,
4.08, and 2.04% of the total groundwater drought events, respectively. In addition, 2 and
1 drought events lasted 14 and 31 months, accounting for 4.08 and 2.04% of the total
groundwater drought events, respectively.

3.4. Characteristics of the Groundwater Drought Centroid Migration

Based on the DMM construction principles, 11 groundwater drought events from
2003 to 2020 were selected in this study to investigate the groundwater drought centroid
migration characteristics in the NCP. The characteristics of these drought events are reported
in Table 4.
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Table 4. Characteristics of 11 groundwater drought events.

Drought
Event

Occurrence
Time

Drought
Duration
(Months)

Monthly
Average

Minimum
GGDI

Monthly
Maximum

Drought Grid
Number

Drought
Intensity

1 2003.01–2003.04 4 −1.14 14 1.84
7 2005.06–2005.12 7 −1.57 8 4.41
9 2006.02–2006.06 5 −1.55 8 3.08
24 2011.10–2012.04 7 −0.87 155 0.88
29 2012.08–2013.09 14 −2.47 167 11.53
41 2014.08–2014.11 4 −1.03 67 1.24
43 2015.01–2015.05 5 −1.25 203 2.50
45 2015.12–2016.03 4 −1.29 213 2.17
46 2016.05–2017.06 14 −1.42 216 6.67
48 2017.09–2018.04 8 −0.96 9 2.36
49 2018.06–2020.12 31 −3.12 221 38.17

According to Table 4, DE.49 exhibited the highest intensity, longest duration, lowest
monthly average minimum GGDI, and highest drought grid number, with 38.17, 31 months,
−3.12, and 221, respectively. Therefore, this event was the most serious groundwater
drought event over the considered period, followed by DE.29, with drought duration,
monthly minimum GGDI, and drought intensity of 14 months,−247, and 11.53, respectively.
DE.46 showed the third highest groundwater drought intensity, with the same groundwater
drought duration as DE.29 (14 months) and a maximum number of groundwater drought
grids of 216, which was second only to DE.49. In addition, it can be seen from Table 4 that
DE.24, DE.41, and DE.1 were the groundwater drought events with the lowest drought
intensities among the 11 drought events. The drought duration, monthly average minimum
GGDI, monthly maximum drought grid number, and groundwater drought intensity of
DE.24 were 7 months, −0.87, 155, and 0.88, respectively, making it the least severe event
among the 11 groundwater drought events. DE.1 and DE.41 lasted for 4 months in the study
area, showing monthly average minimum GGDI values of −1.14 and −1.03, respectively.
In addition, DE.1 and DE.41 exhibited monthly maximum grid numbers of 14 and 67 and
drought intensities of 1.84 and 1.24, respectively.

In this study, the drought centroid of each drought event was obtained based on the
calculation method of the above-mentioned drought centroid. In addition, the migration
trajectory of each groundwater drought event was determined by connecting them in
chronological order (Figure 6). According to the obtained results, the migration direction of
the 11 drought events was mainly southwest –northeast. In contrast, only DE.41 exhibited
a southeast–northwest direction. Because the drought migration in the DMM was on
a monthly scale, the longer the distance between the drought centroids of two adjacent
months, the higher the drought migration rate. Figure 6a shows that the maximum drought
migration rate (1.62×108 km/month) of all drought events occurred in the fourth to fifth
months of DE.49, resulting in the largest overall migration distance. The mid-month
drought centroid was more concentrated. In addition, DE.1 exhibited the smallest drought
migration distance, followed by DE.48. It can also be seen from Figure 6 that the centroid
migration of the 11 drought events was mostly concentrated in Area II. The drought
centroids of DE.7, DE.9, DE.29, and DE.49 were in Area II and Area III, while that of DE.48
was concentrated in Area I.
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In order to reveal the developments and changes in the drought events more intuitively,
the three drought events with the highest drought intensities among the 11 drought events,
namely DE.49, DE.29, and DE.46, were visualized. The drought centroids of these three
drought events were first connected in a monthly series, then their drought intensities
were represented by spheres. The larger the sphere, the more serious the groundwater
drought event.

(1) DE.49

DE.49 occurred from June 2018 to December 2020, lasting 31 months. It was the longest
drought event with the highest monthly drought intensity. According to Figures 6 and 7, the
highest drought intensities of DE.49 were observed mainly in the central part of the NCP
(Area II) over the last 10 months (from March 2020 to December 2020) of the entire drought
event. The intensity of the entire drought event showed four obvious peaks in the 5th, 15th,
22nd, and 27th months. The highest drought intensity was observed in the 22nd month
(2.62), followed by those in the 27th (2.31), 15th (1.91), and 5th (1.81) months. In addition,
the lowest DE.49 drought intensity (0.31) was observed in the 7th month, followed by that
in the 4th month (0.51). The entire DE.49 period showed slightly different drought grid
numbers and drought intensities, without exhibiting any apparent correlations between
them. The number of drought grids fluctuated greatly in the first 9 months, then remained
basically at a high value before substantially decreasing in the 21st month. The results
showed three minimum drought grid numbers over the DE.49 drought event, which were
71, 159, and 196 in the 4th, 7th, and 21st months, respectively.
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(2) DE.29

DE.29 occurred from August 2012 to September 2013, lasting 14 months. According
to Figures 6 and 8, the highest monthly groundwater drought intensities were observed
mainly in the Bohai Bay area of the NCP in the 4–9th months. The drought intensity
of the entire drought event experienced two obvious peaks of 1.97 and 0.75 in the 4th
and 12th months, respectively. However, the lowest groundwater drought intensity (0.33)
was observed in the 14th month, followed by that in the 10th month (0.37). In addition,
the results showed that DE.29 had slightly different monthly groundwater drought grid
numbers and intensities. The highest drought grid numbers were observed in the 3rd
and 13th months, without presenting high drought intensities. The groundwater drought
grid number in the month with the highest groundwater drought intensity was 10, while
that in the month with the second highest groundwater drought intensity was 18. It can
be seen that small and large groundwater drought areas exhibited high and low drought
intensities, respectively.

(3) DE.46

DE.46 occurred from May 2016 to June 2017, lasting 14 months. It can be seen from
Figures 6 and 9 that the highest monthly drought intensities were observed in the central
part of the NCP (Area II). In addition, the highest groundwater drought intensities were
0.62, 0.72, and 0.92 in the 4th, 8th, and 12th months, respectively. Meanwhile, the lowest
drought intensities were 0.17 and 0.20 in the 6 and 10th months, respectively. On the other
hand, the highest DE.46 groundwater drought grid number was 216 in the 9th and 12th
months, while the lowest DE.46 groundwater drought grid number was 16 in the 6th month.
The obtained results showed that the lowest drought intensity was associated with the
lowest drought grid number.
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4. Discussion

According to the results of our drought event assessment of the NCP over the 2003–2020
period, the most intense groundwater drought event occurred in the June 2018–December
2020 period (DE.49), followed by that in the August 2012–September 2013 period (DE.29).
Wang et al. (2020) assessed drought events in the NCP from 2003 to 2015 and their results
showed that the most severe groundwater drought event in the NCP occurred over the
August 2013–September 2014 period, while the results of this study showed that the most
severe groundwater drought event occurred over the July 2003–July 2006 period. In addi-
tion, the occurrence times of DE.29 were inconsistent with those reported by Wang et al. [27],
which could have been due to two main reasons. The first reason was related to the differ-
ence in the scales of the study areas. Indeed, Wang et al. [27] considered the entire Henan
Province and Shandong Province in their groundwater drought assessment of the NCP,

35



Atmosphere 2023, 14, 961

while only some parts of Henan Province and Shandong Province were considered in the
current study. According to the results of Wang et al. [27], the groundwater drought events
in the Henan and Shandong regions were more severe than those in other regions during
the August 2013–September 2014 period. However, these regions were not considered in
the present study. In fact, Wang et al. [27] assessed the severity of GGDI-based groundwater
drought events using the average intensity observed across the entire study area, which also
explained the different results obtained. The second reason was related to the identification
scale of the groundwater drought events. Indeed, the groundwater drought events in the
NCP were assessed from a spatiotemporal perspective in this study, while Wang et al. [27]
only assessed temporal variations in the groundwater drought events, which explained the
different conclusions obtained.

The NCP is one of the largest groundwater funnels in the world. The Chinese govern-
ment is committed to improving the local hydrogeological conditions by implementing
several appropriate policies. The South-to-North Water Diversion Project is a large-scale
water conservancy project established by the Chinese government to alleviate pressure on
water resources in North China. Indeed, the Central South–North Water Diversion Project
opened to the North China Plain in December 2014 [51]. In addition, relevant departments
have implemented water-saving pressure mining policies and carried out ecological water
replenishment, which has played an important role in raising the groundwater level in
the NCP [38]. However, the results of this study revealed that 7 of the 49 groundwater
drought events in the NCP occurred after the implementation of the South-to-North Wa-
ter Diversion Project and 5 of the 11 droughts that lasted over 3 months occurred after
the implementation of the Central South–North Water Diversion Project. Although these
measures have raised the groundwater level in the NCP [34,38], the groundwater drought
events caused by long-term groundwater overexploitation cannot be mitigated in the short
term. Indeed, continuous improvements to water replenishment and water-saving pressure
mining measures can enhance groundwater resilience to climate warming. A study by
Yang Huifeng et al. showed that groundwater levels in the urban areas of the North China
Plain rose significantly after the South–North Water Diversion was opened but water levels
in agricultural areas still showed a continuous decline [37] and those agricultural areas in
the North China Plain accounted for a large proportion of the GGDI and dominated the
regional average. Therefore, although a small recovery in groundwater levels has occurred
in some areas of the North China Plain, according to reported studies, no immediate effects
on groundwater droughts caused by long-term groundwater overexploitation have been
observed, and only by continuously improving water replenishment measures and contin-
uing to carry out water conservation and suppression work will the groundwater systems
be able to withstand the test of climate warming.

In this study, a new method for identifying groundwater drought events was proposed
from a spatiotemporal perspective to improve our understanding of groundwater droughts.
Indeed, the constructed drought migration model may have a beneficial effect on our
understanding of the developments and changes in groundwater droughts. The results of
our drought migration assessment showed that the centroids of the drought events were
mostly concentrated in the deep funnel area [32], indicating that the center of gravity of
a groundwater drought is in the deep funnel area. The groundwater drought migration
was in the southwest–northeast and northeast–southwest directions, which was the same
direction as the slope of the terrain in the study area. There is still an academic gap in our
knowledge of the mechanisms of drought migration characteristics. Therefore, we could
not explain this phenomenon. Indeed, migration mechanisms may play a crucial role in the
prediction and early warning of groundwater drought events. Therefore, future studies
should assess the migration mechanisms of groundwater drought events.

5. Conclusions

This paper used GGDI to quantitatively assess groundwater drought events in the
North China Plain, proposed a spatiotemporal groundwater drought event identification
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method, introduced the center of mass theory, constructed a groundwater drought cen-
ter of gravity migration model, analyzed the migration characteristics of groundwater
drought events in the North China Plain, and conducted a visual mapping study of the
three groundwater drought events with the greatest drought intensities. The following
conclusions were drawn from this study.

(1) The validation results of the GRACE data showed significant Pearson correlation
coefficients (p < 0.01) between the changes in the GRACE- and GLDAS-based water
storage in the NCP and its geomorphological areas, ranging from 0.322 to 0.552.
Therefore, the GRACE-based results were reliable and could be used to effectively
investigate groundwater drought events in the NCP.

(2) The groundwater drought frequencies in the NCP, Area I, Area II, and Area III over
the 2003–2020 period were 24.54, 26.39, 24.54, and 23.61%, respectively. Although
Area I showed a higher groundwater drought frequency than the other sub-areas,
mild and moderate groundwater drought events were the most prevalent. In addition,
Area II showed a high frequency of moderate groundwater drought events, but its
severe and extreme groundwater drought frequencies were relatively higher than
those in the other sub-areas.

(3) According to the new identification principle for groundwater drought events,
49 groundwater drought events were identified in the NCP over the 2003–2020 pe-
riod. The maximum duration of drought was 31 months and the minimum was
1 month. Drought events with a drought duration of 1 month were the most frequent,
accounting for 46.94% of the total number of drought events, followed by those with
a drought duration of 2 months, accounting for 26.53% of the total. Drought events
with a drought duration of 8 or 31 months were the least frequent, both accounting
for 2.04% of the total. The obtained results indicated that DE.49 was the most severe
groundwater drought event, with a drought intensity, duration, and grid number
of 38.17, 31 months, and 221, respectively. Meanwhile, DE.29 was the second most
intense groundwater drought event, with a drought intensity, duration, and grid
number of 11.53, 14 months, and 167, respectively.

(4) A total of 11 groundwater drought events were selected from the 49 drought events to
construct a drought migration model. The migration direction of 10 of the groundwa-
ter drought events was southwest–northeast, which was in line with the slope of the
NCP. However, only DE.41 exhibited a southeast–northwest migration direction. The
centroids of the groundwater drought events were mostly concentrated in Area II. The
three groundwater drought events with the highest drought intensities were DE.49,
DE.29, and DE.46. According to the obtained results, the highest drought intensities of
DE.49 were observed mainly in the March 2020–December 2020 period, in which the
drought center of gravity was concentrated in Area II, whereas the highest groundwa-
ter intensities of DE.29 were concentrated over the 4th–9th month period, in which
the drought center of gravity was concentrated in the northeastern coastal area of the
NCP. The lowest drought intensities of DE.46 were in the September 2016-November
2016 period, showing a drought center of gravity in Area II. On the other hand, the
results indicated a lack of correlation between the drought intensities and drought
grid numbers of DE.49, DE.29, and DE.46.

In summary, the principles for identifying groundwater drought events proposed in
this study could reveal regional groundwater drought changes from both temporal and
spatial perspectives. In addition, the groundwater drought migration model proposed
based on these principles could use the center of gravity and migration direction of ground-
water drought events to capture their migration characteristics. The principles for defining
groundwater drought events, as well as the groundwater drought migration model, were
not only applicable to the NCP but could also be used in other regions, thus providing an
in-depth understanding of groundwater development laws and promoting the sustainable
use of groundwater resources. However, due to the constraints of research time and data,
this paper did not conduct a more in-depth study of groundwater drought migration
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mechanisms or the causes of such migration characteristics. However, the study of ground-
water drought migration mechanisms is important to fully grasp groundwater drought
development patterns. Therefore, this would be a good direction for future research.
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Abstract: To increase the accuracy of drought prediction, this study proposes a drought forecasting
method based on the Informer model. Taking the Yellow River Basin as an example, the forecasting
accuracies of the Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory
(LSTM), and Informer models on multiple timescales of the Standardized Precipitation Evapotran-
spiration Index (SPEI) were compared and analyzed. The results indicate that, with an increasing
timescale, the forecasting accuracies of the ARIMA, LSTM, and Informer models improved grad-
ually, reaching the best accuracy on the 24-month timescale. However, the predicted values of
ARIMA, as well as those of LSTM, were significantly different from the true SPEI values on the
1-month timescale. The Informer model was more accurate than the ARIMA and LSTM models on
all timescales, indicating that Informer can widely capture the information of the input series over
time and is more effective in long-term prediction problems. Furthermore, Informer can significantly
enhance the precision of SPEI prediction. The predicted values of the Informer model were closer to
the true SPEI values, and the forecasted SPEI trends complied with the actual trends. The Informer
model can model different timescales adaptively and, therefore, better capture relevance on different
timecales. The NSE values of the Informer model for the four meteorological stations on SPEI24 were
0.968, 0.974, 0.972, and 0.986.

Keywords: drought forecasting; SPEI; Informer; Yellow River Basin; multi-timescale

1. Introduction

From a global perspective, anthropogenic climate change, carbon emissions, defor-
estation, and urbanization have increased the frequency of drought [1]. The World Me-
teorological Organization (WMO) classifies drought according to the affected domain as
meteorological, agricultural, hydrological, and socio-economic. In the world, few natu-
ral hazards are as devastating as drought [2]. The frequent and persistent occurrence of
drought can lead to substantial losses in the socio-economic sphere, particularly in agri-
culture, and it can cause various detrimental ecological and environmental impacts, such
as water scarcity, desertification, and frequent occurrences of sand and dust storms [3].
Drought prediction is a crucial field in addressing climate change and effectively managing
water resources. Drought, characterized by prolonged water scarcity, has severe impacts on
global ecosystems, agriculture, economies, and societies. The ability to accurately forecast
drought events and their spatiotemporal patterns is of paramount importance for taking
proactive measures and minimizing adverse impacts [4–7]. Conducting a series of stud-
ies on drought monitoring, assessment, and prediction has become a hot issue of great
global concern and is of great practical significance [8]. Monitoring drought and issuing
timely warnings are essential precursors for disaster mitigation and prevention. Accurately
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predicting the occurrence of drought offers useful resources for risk management and
pre-warning, helping to reduce disaster damage to the greatest extent possible [3].

The use of a drought index is crucial for the quantitative assessment of drought severity
and impacts [9]. Several meteorological drought indexes have been developed over the
last few decades, such as SPI [10], SPEI [11], PDSI [12], and SMDI [13], which are utilized
extensively at distinct spatial scales on global, regional, national, and different basins [14].
Vicente Serrano et al. [15] proposed SPEI, which builds on the algorithms used in both SPI
and PDSI [16] and incorporates multi-scale features to evaluate the effects of temperature
variations on drought conditions [3]. At present, there are two potential evapotranspiration
models commonly used in the SPEI calculation process in China, which are Thornthwaite
and Penman–Monteith. The occurrence and evolution of drought usually form a multi-
timescale process, and the selection of different scales of SPEI is important for drought
research. So, this study selected the timescales of SPEI at 1 month (SPEI1), 3 months (SPEI3),
6 months (SPEI6), 9 months (SPEI9), 12 months (SPEI12), and 24 months (SPEI24).

At present, drought prediction methods can be classified into two types: numerical
prediction and statistical prediction. Numerical prediction [17,18] builds on meteorologi-
cal principles to predict drought conditions by solving atmospheric dynamics equations.
The effectiveness of the numerical prediction method relies on the precision of model
parameters, the stability of driving variables, and the support of a lot of meteorological
statistics [2,3]. Statistical prediction uses mathematical modeling techniques, such as regres-
sion prediction and grey system prediction, to model meteorological data [18]. However,
the statistical prediction method has difficulty in accurately predicting future drought
conditions during meteorological leaps and bounds [18]. With the rapid development of
artificial intelligence [19], some new intelligent drought prediction models have emerged
and become the mainstream methods for drought prediction. Hu et al. [20] adopted the
LSTM model for SPEI spatiotemporal prediction on multiple timescales, and the results
suggested that the forecasting efficiency of LSTM gradually improved as the SPEI timescale
increased. Xu et al. [3] introduced a hybrid model that combines ARIMA and LSTM for
drought prediction based on the deep learning method, and the results suggested that
the hybrid model predicts SPEI with high precision on long timescales and with lower
precision on short timescales. Zhang et al. [21] utilized two integration methods, Bag-
ging and Boosting, which integrate multiple single models into a more powerful model
with predictions on different timescales. Through a comparison of the forecasting results
of various models with actual observations, the study found that the models based on
the integration methods have higher accuracy and stability relative to the single models.
Xu et al. [22] combined Complementary Ensemble Empirical Mode Decomposition (CEEMD)
and ARIMA, and they showed that the CEEMD-ARIMA model was applicable to drought
prediction; the model could also identify multiple modalities of drought variability on
diverse timescales [23], improving the comprehensiveness and accuracy of the prediction.

Currently, most of the machine learning methods widely applied for drought predic-
tion on multiple timescales are mostly based on recurrent neural networks, which can solve
the sequence prediction problem better than other deterministic and traditional models [24].
For these problems, some new methods have been proposed, such as the Transformer [25]
model and the Informer [26] model, which can handle long series data and increase the
precision of prediction.

The Informer model used in this paper is an effective improvement to the Transformer
model. A sequence-to-sequence model proposed by a Google team in 2017, Transformer
adopts a self-attentive mechanism to handle sequential information as a whole and can
avoid the recursion of information while enabling attention to be paid to local information
with strong relevance [27]. Informer is essentially an improvement on Transformer. By
modifying the structure of Transformer and the probabilistic sparsification of the original
self-attentive mechanism, Informer speeds up the computation speed of Transformer and
effectively improves the precision of sequence prediction.
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The accuracy of SPEI prediction on short timescales is still low in existing studies.
Thus, this paper adopts the multi-layer Transformer structure of the Informer model; adopts
a novel position encoding method introduced to capture the long-term and short-term
dependencies in time series; and incorporates an attention mechanism, which effectively im-
proves the accuracy of short-timescale SPEI prediction. In this article, a drought prediction
model is constructed using the Informer algorithm, it is validated with four meteorological
stations in the Yellow River Basin, and it is verified with the LSTM and ARIMA models to
demonstrate the higher precision of the model’s prediction.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin is a major watershed in China and is known as the Mother
River (Figure 1). It is a major agricultural and economic region of China. The Yellow
River Basin is located at 90°33′−122°25′ E and 24°30′−35°45′ N, with a mainly temperate
monsoon climate [8]. The temperature difference throughout the year is extremely large [19].
However, environmental problems, such as severe land sanding and water shortage, also
exist in the basin.

Figure 1. Study area.

2.2. Data Source

The meteorological data in this paper were obtained from the monthly value dataset of
the terrestrial climate information from the China Meteorological Data Network
(https://www.data.cma.cn/ accessed on 6 April 2022), and they include precipitation
(mm), maximum temperature (◦C), minimum temperature (◦C), average temperature (◦C),
wind speed (m·s−1), sunshine hours (h), latitude (◦), longitude (◦), and altitude (m) for the
period of 1960–2019. This study selected 4 meteorological stations in the Yellow River Basin
to apply validation. Table 1 shows the information of the 4 representative stations.

Table 1. Profile about representative meteorological stations.

Station ID Station Name Longitude (◦E) Latitude (◦N) Altitude (m)

53420 Hangjinhouqi 107.12 40.85 1024
53821 Huanxian 107.3 36.57 1255.6
54827 Taian 117.15 36.17 129.8
56043 Maqin 100.23 34.48 3719

2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index

This study uses the Penman–Monteith model to estimate potential evapotranspiration
by calculating multi-scale SPEI values for four meteorological stations located within the
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study area for the period of 1960 to 2019 [15], which allows for the determination of the
influence of precipitation, temperature, and evapotranspiration on drought in an integrated
manner and has the advantages of multiple timescales and clarity of the mechanism. The
procedures for calculating SPEI_PM are as follows [16]:

(1) The Penman–Monteith model is utilized to generate the reference crop evapotran-
spiration ET0, which is determined using the following equation:

ET0 =
0.408 ∆ (Rn − G) + γ

900
T + 273

U2 (es − ea)

∆ + γ (1 + 0.34 U2)
(1)

where ET0 indicates the evaporation from the reference crop (mm/d); ∆ is the saturated
hydraulic pressure curve slope (kPa/◦C) [6]; γ is the moisture constant (kPa/◦C); Rn means
solar net radiation (MJ·m−2·d−1); G is the thermal flux of the soil (MJ·m−2·d−1) [11]; T is
the mean temperature for the calculation period (◦C); U2 is the mean speed of the wind at a
height of 2 m above the ground; es is the pressure of saturated water (kPa); and ea is the
real water pressure (kPa) [15].

(2) The monthly values of the difference between precipitation and evaporation
is calculated.

Di = Pi − E T0 (2)

where Di indicates the difference between precipitation and evapotranspiration; Pi repre-
sents the precipitation amount per month; ET0 is the monthly actual evaporation volume [15].

(3) The data series of Di is normalized. Di is fit with the cumulative probability
distribution function F(x), and the corresponding SPEI value for each Di [15] is calculated,
making the data fit the probability distribution.

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(3)

where F(x) is the probability distribution function, and the other parameters are as follows:

α =
(a0 − 2 a1)β

τ(1 + 1/β)τ(1− 1/β)
(4)

β =
2 a1 − a0

6 a1 − a0 − 6 a2
(5)

γ = a0 − α(1 + 1/β)τ(1− 1/β) (6)

where τ is the factorial function; a0, a1, and a2 are the weighted moment of the probability
of data series Di [15].

The probability of exceeding a certain value of Di can be written as P = 1− F(x).
Then, SPEI can be written as a function of P as follows:

SPEI =





w− g0 + g1w + g2w2

1 + e2w + d1w2 + e3w3 , with w =
√
−2 ln P, for P ≤ 0.5

−w +
g0 + g1w + g2w2

1 + e2w + e1w2 + e3w3 , with w =
√
−2 ln(1− P), for P > 0.5

(7)

where w =
√
−2 ln(1− P). The other parameters in Equation (7) are e1 = 1.432788,

e2 = 0.189269, e3 = 0.001308, g0 = 2.515517, g1 = 0.802853, and g2 = 0.010328. Referring
to the national standard meteorological drought grade (GB/T20481-2017) stipulated by the
drought grading standard, the drought categories classified according to the SPEI values
are shown in Table 2.

44



Atmosphere 2023, 14, 951

Table 2. Drought classification based on SPEI.

Level Type SPEI

1 No drought SPEI ≥ −0.5
2 Mild drought −1.0 ≤ SPEI < −0.5
3 Moderate drought −1.5 ≤ SPEI < −1.0
4 Severe drought −2.0 ≤ SPEI < −1.5
5 Extreme drought SPEI ≤ −2.0

2.3.2. Informer

Informer is considered a supervised learning model built on the attention mechanism,
which, as a whole, consists of two components: an encoder and a decoder [26]. Informer
is a Transformer-based time series prediction model that better captures the long-term
dependencies of time series by adding processing steps, such as position encoding, the
block attention mechanism, and adaptive length sequence sampling, where the encoder is
used to obtain a long-term dependence on the robustness of the original input sequence
and the decoder can further implement sequence prediction. The structure of the Informer
model is illustrated in Figure 2. The left encoder primarily receives longer sequence inputs
and incorporates sparse self-attention [27], an alternative to the conventional self-attention
mechanism [28]. The trapezoidal component refers to the extracted operation of self-
attention, which can dramatically reduce the size of the network, while the stacking of
multiple layers further enhances the model’s robustness again [28]. The right decoder takes
the input of the long-term sequence, padding the target elements to zero, by which an
attention-weighted constituent of the feature graph is measured; then, these elements are
output in a rapidly generated format [29].

Figure 2. Informer model structure.

Informer Model Inputs

The input data at time t are as follows:

xt = {xt
1, · · · , xt

Lx
| xt

i ∈ Rdx} (8)

and the output is the corresponding sequence of predictions.

yt = {yt
1, · · · , yt

Ly
| yt

i ∈ Rdy} (9)

where Lx and Ly are the input length and output length, respectively; dx and dy are the
feature dimensions.
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For time series prediction problems, the sequence of the data is particularly important.
To keep the order structure of the series data from being lost after they are input to the
model, Informer encodes the location information PE(pos, 2j) and PE(pos, 2j+1) for each set of
input data, and the specific formulae are implemented as follows:

PE(pos, 2j) = sin
pos

(2L)2j/dmodel
(10)

PE(pos, 2j+1) = cos
pos

(2L)2j/dmodel
(11)

where pos is the position (sequence order). The index j =1, 2, · · · , dmodel/2, indicates the
dimension. dmodel represents the dimensionality of the characteristics represented by the
input, and L is the input sequence.

Self-Attention Mechanism of Informer Model

In probability form, the A(qi, K, V) of the attention coefficient for the i-th Query is
as follows:

A(qi, K, V) = ∑
j

k(qi, k j)

∑l k(qi, kl)
Vj = Ep(kj |qi)

[
Vj
]

(12)

where p(k j | qi) =
(
k(qi, k j)

)
/(∑l k(qi, kl)), and k(qi, k j) selects the asymmetric exponen-

tial kernel exp
(
(qi kT

j )/
√

d
)

[23].
To measure the sparsity of Query, Informer uses Kullback–Leibler divergence. Ignor-

ing the constant, the sparsity measure formula for the i-th Query is equated as follows:

M(Qi, K) = ln
LK

∑
j=1

exp
(

qikT
√

d

)
− 1

LK

LK

∑
j=1

qikT
j√
d

(13)

where the first is the logarithmic sum expansion (LSE) of qi on all the keys, and the second
is their arithmetic average [26].

According to the proposed measurement, the formula of ProbSparse self-attention can
be written as follows:

A(Q, K, V) = Softmax
(

Q̄KT√
d

)
V (14)

where Q̄ is a sparse matrix of the same size as q, which only contains Top− u queries under
the sparsity measurement M(q, M) [26].

Encoder for Informer Model

The aim of the encoder is to capture the long-range dependency of the robustness
of the long sequence of inputs [26]. A sketch of the encoder is shown in Figure 3. The
procedure of the distillation operation from layer j-th to layer (j + 1)-th is as follows:

Xt
j+1 = MaxPool

(
ELU

(
Convld

([
Xt

j

]
AB

)))
(15)

where [Xt
j ]AB represents the attention module, which includes the multi-head ProbSparse

self-attention and basic operations. Concld represents one-dimensional convolution opera-
tions on a time series, which is performed by using ELU as the activity functions [30].

The self-attention distillation mechanism proposed by Informer enables each decoder
layer to reduce the input sequence length by half, which dramatically saves the memory
spending and computational time of the encoder [26].
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Figure 3. The single stack in Informer’s encoder.

Decoder for Informer Model

The standard decoder structure is used in part of the decoder, proposed by VASWANI
in 2017 [27], which is composed of two identical multi-head attention layers. The decoder
Xt

de is supplied with the following vectors:

Xt
de = Concat(Xt

token , Xt
0) ∈ R(Ltoken+Ly)×dmodel (16)

where Xt
token ∈ RLtoken×dmodel is the start token; Xt

0 ∈ RLy×dmodel is a placeholder for the target
sequence [30].

ProbSparse self-attention adopts blocked multi-headed attention, fully connected layer
output dimensions to determine uni/multivariate predictions, and a generative structure
to shorten the prediction decoding time.

2.3.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture for
handling sequential data; it was developed as an improvement over traditional RNN [31],
and it effectively resolves the problem of prolonged dependence by using three gating
mechanisms and a memory unit. By contrast with the ordinary RNN, LSTM incorporates a
memory cell to determine whether the information is available [32]. The cell state is the key
of LSTM. To protect and control the state of a memory cell, three control gates are placed
in a memory cell, called the input gate, forget gate, and output gate [33]. Each control
gate consists of a neural network layer containing a sigmoid function and a dot product
operation [34]. The LSTM memory cell structure is illustrated in Figure 4.

Figure 4. The structure of the LSTM memory cell.
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2.3.4. Autoregressive Integrated Moving Average

ARIMA is the combination of AR, MA, and Difference (Diff), which converts unsteady
time series into a steady-state series by performing one or more differences and then fitting
it with ARIMA [35]. Its composition is as follows:

ARIMA(p, d, q) = AR(p) + Diff(d) + MA(q) (17)

where AR(p) represents the autoregressive model; Diff(d) indicates the difference model;
MA(q) indicates the moving-average model; p, d, and q are the parameters corresponding
to the three models. The ARIMA model prediction equation for C(t) is as follows:

C(t) = ϕ0 +
p

∑
i=1

ϕi Ct−i + εt +
q

∑
i=1

γi εt−i (18)

where C(t) represents the reconstructed component time series formed after the SE al-
gorithm; εt represents the current period random error disturbance; ϕi and γi represent
model parameters; p denotes the quantity of autoregressive terms; d indicates the variance
number in a steady time series; q denotes the amount of terms in the moving average [36].

2.3.5. Evaluation Metrics

To estimate the efficiency of the contrasting model more reasonably, NSE, RMSE, and
MAE were used in this paper to perform an evaluation. The formula used to calculate
above metrics is shown below.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ỹi)2 (19)

NSE = 1− ∑N
i=1 (yi − ỹi)

2

∑N
i=1 (yi − ȳ)2

(20)

MAE =
1
N

N

∑
i=1
|yi − ỹi| (21)

where yi indicates the true value; ỹ indicates the forecasted value; ȳ represents the average
value of yi; and N indicates an amount of the total data for yi.

3. Results
3.1. SPEI Values on Different Timescales

The 1−, 3−, 6−, 12−, and 24−month timescale SPEI values of Hangjinhouqi, Huanxian,
Taian, and Maqin were calculated using monthly meteorological data. The results are shown
in Figure 5. Combined with the Mann−Kendall trend test (Table 3), it can be observed that
the SPEI1, SPEI3, SPEI6, SPEI12, and SPEI24 of the four stations show a decreasing trend. In
particular, the following show a significant decreasing trend: SPEI9, SPEI12, and SPEI24 of
the Hangjinhouqi site; SPEI3, SPEI6, SPEI12, and SPEI24 of the Huanxian site; SPEI9, SPEI12,
and SPEI24 of the Taian site; and SPEI24 of the Maqin site. The four stations show a high
frequency of extreme droughts. In the past decade, the temperature of the Yellow River Basin
has been increasing, and the runoff of the main and tributary streams has been decreasing
since 1960 [8], which has caused the SPEI values to decrease.
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Figure 5. Observed SPEI values on different timescales of the example stations.
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Table 3. Mann–Kendall trend test for SPEI.

Example Stations SPEI Series p Value Trend

Hangjinhouqi SPEI1 0.00055 decreasing
SPEI3 1.31 × 10−6 decreasing
SPEI6 5.973 × 10−14 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Huanxian SPEI1 1.349 × 10−7 decreasing
SPEI3 0 decreasing
SPEI6 0 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Taian SPEI1 5.975 × 10−5 decreasing
SPEI3 1.372 × 10−10 decreasing
SPEI6 2.22 × 10−16 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Maqin SPEI1 3.162 × 10−5 decreasing
SPEI3 1.086 × 10−9 decreasing
SPEI6 6.443 × 10−13 decreasing
SPEI9 2.44 × 10−15 decreasing

SPEI12 2.22 × 10−16 decreasing
SPEI24 0 decreasing

3.2. Analysis of Model Prediction Results

Using multi-scale SPEI data from 1960–2007 as training data, the SPEI values of the
four meteorological battle sites on multiple timescales were predicted using the LSTM,
ARIMA, and Informer models for 2008–2020. A comparison of the prediction performance
of the three models and the prediction evaluation indexes are shown in Figures 6–9 and
Table 4. It is suggested that the Informer model accurately fit the predicted values to the
true values compared to the ARIMA and LSTM models, and it effectively captured the
variations in the SPEI values.

The predicted values of ARIMA, as well as those of LSTM, for the four meteorological
stations were significantly different from the true SPEI values on the 1-month timescale.
In particular, LSTM lost prediction ability in predicting SPEI1 for Hangjinhouqi. The
differences between the predicted and actual values of ARIMA and LSTM decreased when
predicting SPEI3, SPEI6, SPEI9, SPEI12, and SPEI24. In this study, the data of SPEI1 changed
relatively fast and fluctuated more, which required more complex modeling methods to
predict, and, therefore, the prediction was the worst on this timescale.

The Informer model predictions were more similar to the true SPEI values, and the
predicted SPEI trends were consistent with the actual trends. In Figures 6–9, the Informer
model shows better prediction results on SPEI3, SPEI6, SPEI9, SPEI12, and SPEI24. The
Informer model is able to handle long sequences, and it performs better when dealing with
long-term dependencies. It can model different timescales adaptively and, therefore, better
capture relevance on different timescales. As a result, Informer has good performance in
predicting SPEI for each meteorological station.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer
models at Hangjinhouqi: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale;
(d) 9−month timescale; (e) 12−month timescale; (f) 24−month timescale.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer models
at Huanxian: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer
models at Taian: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer models
at Maqin: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.
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Table 4. The statistical criteria of the ARIMA, LSTM, and Informer models.

Example Stations SPEI Series Model MAE RMSE NSE

Hangjinhouqi SPEI1 ARIMA 0.800 1.027 0.022
LSTM 0.799 1.021 0.032

Informer 0.531 0.688 0.561
SPEI3 ARIMA 0.633 0.827 0.371

LSTM 0.635 0.824 0.375
Informer 0.388 0.521 0.434

SPEI6 ARIMA 0.455 0.655 0.573
LSTM 0.452 0.642 0.590

Informer 0.277 0.416 0.828
SPEI9 ARIMA 0.279 0.397 0.821

LSTM 0.291 0.402 0.817
Informer 0.271 0.382 0.835

SPEI12 ARIMA 0.166 0.279 0.910
LSTM 0.187 0.296 0.899

Informer 0.182 0.287 0.905
SPEI24 ARIMA 0.124 0.201 0.940

LSTM 0.145 0.214 0.932
Informer 0.123 0.190 0.968

Huanxian SPEI1 ARIMA 0.804 1.006 −0.049
LSTM 0.804 1.003 −0.042

Informer 0.666 0.842 0.264
SPEI3 ARIMA 0.628 0.826 0.250

LSTM 0.617 0.812 0.276
Informer 0.271 0.402 0.822

SPEI6 ARIMA 0.423 0.594 0.580
LSTM 0.415 0.581 0.598

Informer 0.211 0.271 0.912
SPEI9 ARIMA 0.243 0.354 0.842

LSTM 0.254 0.361 0.836
Informer 0.191 0.286 0.896

SPEI12 ARIMA 0.166 0.255 0.915
LSTM 0.176 0.272 0.904

Informer 0.096 0.133 0.977
SPEI24 ARIMA 0.109 0.177 0.945

LSTM 0.127 0.193 0.936
Informer 0.086 0.123 0.974

Taian SPEI1 ARIMA 0.844 1.007 −0.013
LSTM 0.835 0.994 0.014

Informer 0.507 0.672 0.548
SPEI3 ARIMA 0.0.619 0.791 0.289

LSTM 0.620 0.792 0.288
Informer 0.508 0.699 0.445

SPEI6 ARIMA 0.401 0.552 0.575
LSTM 0.413 0.554 0.573

Informer 0.391 0.542 0.591
SPEI9 ARIMA 0.270 0.387 0.789

LSTM 0.277 0.397 0.777
Informer 0.201 0.283 0.887

SPEI12 ARIMA 0.193 0.295 0.876
LSTM 0.202 0.316 0.858

Informer 0.133 0.192 0.948
SPEI24 ARIMA 0.137 0.202 0.909

LSTM 0.148 0.216 0.897
Informer 0.131 0.192 0.972
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Table 4. Cont.

Example Stations SPEI Series Model MAE RMSE NSE

Maqin SPEI1 ARIMA 0.846 1.052 −0.047
LSTM 0.857 1.059 −0.061

Informer 0.543 0.738 0.484
SPEI3 ARIMA 0.592 0.753 0.418

LSTM 0.635 0.788 0.363
Informer 0.245 0.335 0.884

SPEI6 ARIMA 0.389 0.555 0.655
LSTM 0.382 0.550 0.661

Informer 0.162 0.329 0.879
SPEI9 ARIMA 0.231 0.334 0.858

LSTM 0.235 0.338 0.855
Informer 0.124 0.193 0.952

SPEI12 ARIMA 0.162 0.247 0.920
LSTM 0.172 0.261 0.911

Informer 0.101 0.145 0.972
SPEI24 ARIMA 0.102 0.159 0.959

LSTM 0.117 0.169 0.954
Informer 0.064 0.092 0.986

As the timescale becomes smaller, the prediction abilities of the Informer, ARIMA,
and LSTM models decrease, but Informer still performs better than ARIMA and LSTM,
indicating that Informer can widely capture the information of the input series over time
and is more effective in long-term prediction problems. In this paper, to assess the prediction
performance of the ARIMA, LSTM, and Informer models, three evaluation metrics, MAE,
RMSE, and NSE, are utilized (Table 4). The MAE values of ARIMA and LSTM are both
above 0.7 at SPEI1 and below 0.2 at SPEI24. The MAE and RMSE values tend to decrease
with an increasing timescale, while the values of NSE show the reverse trend. These
trends suggest that the prediction accuracy of the ARIMA, LSTM, and Informer models
improves with increasing timescales. The prediction performance of the Informer model is
superior to that of the ARIMA and LSTM models on different timescales, indicating that the
Informer model can significantly enhance the prediction accuracy of SPEI. The NSE values
of the Informer model for the four meteorological stations on SPEI24 are 0.968, 0.974, 0.972,
and 0.986. On all timescales, the Informer model is superior to the ARIMA and LSTM
models in evaluating metric data for prediction results.

Informer solves the problem of the dependencies between the output and input being
not well captured due to long distances when predicting long time series. Moreover,
the Informer model optimizes the temporal and spatial sophistication of the attention
mechanism in the Transformer model so that Informer can obtain higher prediction accuracy.
From the analysis, it is obvious that the LSTM and ARIMA models have lower prediction
accuracies due to their own structural limitations.

4. Discussion

Drought forecasting is crucial for mitigating risks and preparing measures to alleviate
its impact [37]. In this paper, we used the newest time series prediction model, namely,
Informer, to predict the drought in the Yellow River Basin, and we compared the prediction
results with those of the ARIMA and LSTM models, which showed that the Informer model
exhibits superior prediction accuracy compared to both the ARIMA and LSTM models
on multiple timescales. Because the data of SPEI1 changed relatively fast and fluctuated
more, the predicted values of ARIMA, as well as those of LSTM, for the four meteorological
stations were significantly different from the true SPEI values on the 1-month timescale,
which is consistent with the conclusion reached by Xu et al. [22]. In particular, LSTM lost
prediction ability in predicting SPEI1 for Hangjinhouqi. As the timescale increased, the data
series tended to be smooth, and the prediction accuracy of ARIMA and LSTM gradually
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improved. Xu et al. [2] found that the prediction accuracy was related to the timescale based
on the ARIMA-SVR model for multi-scale SPI prediction, and the prediction precision
gradually improved with an increasing timescale. Hinge et al. [37] found that the hybrid
WPT-MLR model has the potential to be employed for drought warnings in the study
region, but the prediction accuracy decreased as the timescale increased. The predicted
values of the Informer model were closer to the measured SPEI values, and the predicted
SPEI trends aligned with the actual trends. The Informer model can model different
timescales adaptively and, therefore, better capture relevance on different timescales. The
NSE values of the Informer model for the four meteorological stations on SPEI24 were
0.968, 0.974, 0.972, and 0.986.

The Informer model provides various advantages for capturing long-term dependen-
cies in time series data using a self-attentive mechanism [38], which enables the prediction
of droughts over a longer term. In addition, the Informer model adopts the adaptive length
idea, which can automatically adapt to different timescales and data features with high
flexibility and adaptability [39]. The Informer model is also able to process multiple time
series in parallel using the multi-headed self-attentive mechanism, which improves the
training and prediction efficiency of the model, and there is no need to manually perform
feature engineering, which can automatically extract important features in time series with
better generalizability and interpretability. Applying Informer to drought prediction in
the Yellow River Basin can improve the accuracy and reliability of drought prediction [40],
which, in turn, can improve the efficiency and quality of water resources management and
agricultural production [24].

Although the Informer model in this study outperforms that in existing studies in
the accuracy of small-scale SPEI prediction, the fit of small-scale prediction results is still
not as good as that of a large timescale. In the future, the predictive capability of Informer
for different timescales can be improved by combining it with the multi-scale method. In
addition, multi-source data and deep learning techniques can be brought in to build deep
drought prediction models to better predict the evolution and trends of drought [41]. These
measures are expected to improve the timescale of Informer’s performance in drought
prediction and further refine its role in practical applications.

There are some aspects of the Informer model that can still be improved to further
enhance prediction precision. Future improvements of the Informer model for drought pre-
diction in the Yellow River Basin include adding multi-scale mechanisms to better capture
multiple patterns and periodicity in the time series; integrating domain knowledge, such
as meteorological and hydrological data, to improve prediction accuracy and interpretabil-
ity; combining other traditional time series models, such as LSTM and GRU, to build a
powerful integrated model; and integrating multiple target prediction problems to deal
with multiple indicators and factors in drought prediction to improve prediction accuracy
and comprehensiveness. The next steps in research on using the Informer model to predict
small-scale SPEI drought could include exploring the use of additional data sources to
improve prediction accuracy, such as combining meteorological or remote sensing data.
In addition, further investigation into the model’s limitations on larger timescales could
be carried out to improve its performance. Other areas of future research could include
expanding the model’s application to other meteorological forecasting domains, studying
prediction uncertainty, and improving the model’s overall reliability and accuracy.

5. Conclusions

In this paper, multi-scale SPEI was calculated using meteorological station monitoring
data in the Yellow River Basin; the SPEI values were predicted using the Informer, ARIMA,
and LSTM models; and the following conclusions were obtained from a comparative
analysis of the prediction results:

(1) Because the data of SPEI1 changed relatively fast and fluctuated, the predicted values
of ARIMA, as well as those of LSTM, for the four meteorological stations were significantly
different from the true SPEI values on the 1-month timescale. The differences between the
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predicted and actual values of ARIMA and LSTM decreased when predicting SPEI3, SPEI6,
SPEI9, SPEI12, and SPEI24. The Informer model showed better prediction results on SPEI3,
SPEI6, SPEI9, SPEI12, and SPEI24. This indicates that the Informer model is able to handle
long sequences and performs better when dealing with long-term dependencies.

(2) The predicted values of the Informer model were closer to the measured SPEI
values, and the predicted SPEI trends were consistent with the actual trends. The Informer
model can model different timescales adaptively and, therefore, better capture relevance
on different timescales, and it can capture sudden changes in SPEI values in a timely and
effective manner.

(3) As the timescale became smaller, the prediction ability of the Informer, ARIMA,
and LSTM models decreased, but Informer still performed better than ARIMA and LSTM,
indicating that Informer can widely capture the information of the input series over time,
that it is more effective in long-term prediction problems, and that it can be efficient in
improving the prediction precision of SPEI. As a result, Informer has good performance in
predicting SPEI for each meteorological station.

Drought prediction not only enables the assessment of drought risks but also guides
water resource management, agricultural planning, and ecosystem management and facili-
tates climate change research. The accuracy and timeliness of drought forecasts empower
decision-makers to take appropriate measures, mitigating the adverse impacts of drought
on society, economy, and the environment and ensuring sustainable development and
resource utilization goals.
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Abstract: Drought is a natural disaster with long duration and which causes great harm. Studying
the characteristics of drought evolution in Shanxi Province can grasp the regularity of drought
occurrence and provide a basis for drought prevention and resistance. This study utilizes MODIS
products to analyze and quantify the extent of drought in a specific area. The study calculates several
indices, including the Crop Water Stress Index (CWSI), Vegetation Supply Water Index (VSWI), and
Temperature Vegetation Dryness Index (TVDI), using variables such as the Normalized Difference
Vegetation Index (NDVI), Land Surface Temperature (LST), Evapotranspiration (ET), and Potential
Evapotranspiration (PET). Additionally, three drought indices are analyzed for correlation with the
self-calibrated Palmer Drought Severity Index (sc-PDSI), and the most suitable drought index is
selected through validation with typical drought events. Finally, the selected indices are used to
investigate the spatiotemporal characteristics of drought in the study area from 2001 to 2020. The
results show: (1) CWSI and sc-PDSI have a strong correlation both in terms of time and spatial
analysis. Furthermore, CWSI has been shown to be more effective in monitoring significant drought
events. (2) The multi-year mean values of CWSI range from 0.71 to 0.85, with a significant degree
of spatial heterogeneity. In the study area, the percentage of the area affected by different levels of
drought is in the following order: moderate drought > severe drought > mild drought > no drought.
(3) The trend of CWSI changes shows that the drought situation in Shanxi Province has been alleviated
from 2001 to 2020, and the overall spatial distribution indicates that the degree of drought alleviation
in the southern region is greater than that in the northern region. The turning point from drought to
wetness in the study area was in 2011, showing the overall characteristic of “dry in the north and wet
in the south”.

Keywords: Shanxi Province; MODIS data; drought index; temporal and spatial characteristics

1. Introduction

Drought is one of the natural disasters that does great harm to human beings [1–3], and
its recurring and long-lasting nature causes serious environmental, social, and economic
disasters worldwide. With global warming [4], economic losses due to drought amount
to billions of dollars and affect more than two billion people every year [5,6], which is far
more than the losses caused by other natural disasters. Sixty percent of China’s regions are
prone to drought, especially in the last three decades when droughts have become more
frequent. Shanxi Province is located in the upstream of the Yellow River in North China, a
typical arid and semi-arid region where most areas are severely affected by drought, with
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only a few areas experiencing mild droughts. In recent years, due to the rapid development
of the local economy and the fragile ecological environment, extreme weather has occurred
frequently, leading to noticeable warming and drying of the climate. Shanxi Province
has a typical Southeast Asian monsoon climate and is far from the ocean, with uneven
precipitation mainly concentrated in summer and autumn, resulting in frequent extreme
weather events. In recent years, the frequency of extreme weather events in Shanxi Province
has been increasing, with drought being particularly prominent, causing serious impacts
on agriculture, the economy, and even people’s livelihoods. Therefore, studying drought in
Shanxi Province can help us understand the patterns of drought occurrence, and provide
guidance and reference for agricultural production in drought-prone areas. It can also
provide valuable insights for the government to propose disaster prevention and mitigation
measures, playing a crucial role in safeguarding food security.

Traditional drought monitoring relies heavily on meteorological data collected from
monitoring stations, which provides high accuracy but has certain limitations. Firstly, site
data is sparse and unevenly distributed, making it challenging to obtain continuous spatial
coverage with a certain lag in data acquisition. Secondly, traditional monitoring requires a
significant amount of human and material resources, and the scope of application is small.
With the advancement of remote sensing technology [7,8], the challenges associated with
drought research have been addressed to a large extent. It is recorded that drought research
has been carried out since 1861 based on precipitation. However, due to the intricate
nature of the causes of drought and its susceptibility to human activities, researchers have
frequently used the drought index as a means of describing this phenomenon. Palmer [9,10]
developed the Palmer Drought Index (PDSI), a widely used drought index that is based on
the relationship between water supply and demand, but the selection of its parameters was
somewhat territorial. To address this issue, Wells [11] proposed the self-calibrated Palmer
Drought Severity Index (sc-PDSI), which is based on the same principles as the PDSI but
uses a self-calibration technique to standardize the parameters across different regions.
This makes the sc-PDSI a more reliable and consistent measure of drought severity that
can be used worldwide. Mckee et al. [12] proposed the Standardized Precipitation Index
(SPI), which calculates the cumulative probability density function of precipitation based
on precipitation information to access drought conditions. Carlson et al. [13] proposed
the Vegetation Supply Water Index (VSWI), a composite index of drought conditions with
a good response to drought conditions throughout the growing season. The Crop Water
Stress Index (CWSI) proposed by Jackson et al. [14] is based on the heat balance principle
and can reflect certain vegetation soil moisture conditions. Sandholt et al. [15] proposed the
Temperature Vegetation Dryness Index (TVDI) based on the relationship between surface
temperature and vegetation index. Wang Pengxin et al. [16] proposed the Vegetation
Temperature Condition Index(VTCI) based on the scatter plot of NDVI and LST with a
triangular regional distribution.

Using meteorological station data to calculate drought index is convenient, and the
data is easily accessible. However, the observation data is greatly influenced by the relo-
cation and uneven distribution of meteorological observation stations, which limits the
monitoring of drought. Therefore, drought indices based on remote sensing monitoring
data are used to quantitatively characterize the drought situation in Shanxi Province. The
MODIS is a remote sensing satellite sensor used to obtain surface information worldwide,
including vegetation coverage, land surface temperature, and other parameters. Drought
research based on MODIS products has the characteristics of global coverage, high reso-
lution, comprehensive multiple parameters, and timely data updates. CWSI, VSWI, and
TVDI are not easily affected by other non-drought factors, are easy to calculate, their data
is easily accessible, and they have been widely applied. To reveal the drought characteris-
tics of Shanxi Province, this research utilizes the evapotranspiration products, vegetation
indices, and surface temperature data provided by MODIS sensors. These data are used
to calculate CWSI, VSWI, and TVDI, respectively. The research assesses the variability of
each drought index on the drought monitoring ability of Shanxi Province from different
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perspectives, and conducts correlation analysis with the Palmer drought index to select the
most suitable index. Finally, based on the optimized drought index, the spatiotemporal
variation characteristics of drought in Shanxi Province from 2001 to 2020 were analyzed,
providing a model for agricultural production and drought prevention in the region.

2. Materials and Methods
2.1. Overview of the Study Area

Shanxi Province is located in the northwestern region of China, positioned between
34◦34′–40◦44′ N and 110◦14′–114◦33′ E, in the upper reaches of the Yellow River, with a
total area of 156,700 km2 (Figure 1). It borders Hebei to the east, Inner Mongolia to the
north, Shanxi to the west, and Henan to the south. Shanxi Province is a typical mountainous
plateau covered by loess. Its topography is characterized by high elevations in the northeast
and lower elevations in the southwest, with undulating terrain, rivers, and valleys. The
province’s landforms are complex and diverse, comprising hills, mountains, plains, and
other types of landscapes. Shanxi Province is located in the eastern mid-latitude inland
region of Asia and Europe, and belongs to the semi-arid-semi-humid region. The winters
are long and cold, with dry weather prevailing, while the summers are longer in the south
and shorter in the north, with concentrated precipitation. The province enjoys abundant
sunshine and heat resources, but its weather can be quite unpredictable and sometimes
disastrous.
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Figure 1. Study area land type zoning.

2.2. Data Sources and Research Methods

This article mainly applies RS and GIS technologies, based on MODIS digital data
and sc-PDSI data, to analyze the spatiotemporal pattern of drought in the study area,
under the premise of model verification. The technology roadmap illustrated in Figure 2 is
shown below:
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Figure 2. Technology roadmap.

2.2.1. Data Sources

The study uses evapotranspiration products, vegetation index, and surface tempera-
ture data from the MODIS sensor to calculate CWSI, VSWI, and TVDI, respectively. The
images were obtained from NASA (https://ladsweb.modaps.eosdis.nasa.gov/ accessed
on 1 October 2022).The 2001–2020 surface temperature (LST) was obtained from the NASA
MOD11A2 sensor; the Normalized Difference Vegetation Index (NDVI) from the MOD13A1
sensor [17]; and the actual evapotranspiration (ET) and potential evapotranspiration (PET)
from the MOD16A2 sensor. The sc-PDSI data from January to December of 2001–2020 are
derived from climate research (https://crudata.uea.ac.uk/ accessed on 30 October 2022);
land type data in Shanxi Province were obtained from the number of land types at 1 km
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resolution provided by the Resource and Environmental Science and Data Centre of the
Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 15 November 2022),
which can be reclassified to obtain forest, grassland, and cropland types.A description of
the relevant data is shown in Table 1:

Table 1. Data resolution and purpose used in this study.

Name of Data Temporal Resolution Usage

MOD11A2 8d Calculation of VSWI and TVDI
MOD13A1 16d Calculation of VSWI and TVDI
MOD16A2 8d Calculation of CWSI

2.2.2. Research Methods

(1) CWSI

Remote sensing methods for soil moisture estimation typically provide information
only on the soil surface, which may not accurately reflect the moisture levels at the root
level of crops. To obtain more accurate measurements, it is necessary to measure the canopy
temperature of vegetation and calculate the Crop Water Stress Index (CWSI). The CWSI is
based on the principle of energy balance and monitors drought conditions in real time by
considering soil moisture and evapotranspiration from farmland. In 1981, Idso et al. [18]
proposed the CWSI based on the empirical relationship between canopy temperature and
air vapor pressure deficit. Later, Jackson et al. [19] based their theoretical interpretation on
the canopy energy balance and proposed the calculation of the CWSI, which they defined
as [20,21]:

CWSI = 1− ET
PET

(1)

where ET is the actual evapotranspiration and PET is the potential evapotranspiration. The
value of CWSI ranges from 0 to 1, with smaller values indicating wetter conditions and
larger values indicating drier conditions.

(2) VSWI

The VSWI uses the ratio of vegetation index to surface temperature as an indicator
of the extent of vegetation exposure to drought, and provides a better understanding of
the drought condition in areas with high vegetation cover and strong vegetation transpi-
ration [22,23]. Under normal conditions when crop water supply is adequate, the crop
canopy temperature stays within a certain range. If there is a drought and the crop water
supply is insufficient, the vegetation index from satellite remote sensing will decrease and
at the same time the crop canopy temperature will increase. The VSWI drought monitoring
model uses the Normalized Difference Vegetation Index (NDVI) and Channel 4 remote
sensing bright temperature as factors, and is defined as [24]:

VSWI =
NDVI

TC
(2)

where NDVI is the Normalized Difference Vegetation Index, and Tc is the canopy temper-
ature of vegetation. Since it is difficult to obtain the canopy temperature, LST is used to
replace it. The VSWI takes on a value between 0 and 1, with smaller values indicating a
drier region, and larger values indicating a more humid region.

(3) TVDI

In their study of soil moisture, Sandholt et al. [25] found a number of contours in the
characteristic space of the normalized vegetation index and the surface temperature, based
on which the TVDI was proposed. The defining equation is [26]:

TVDI =
LST − LSTNDVI,min

LSTNDVI,max − LSTNDVI,min
(3)
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LSTNDVI,max = a1 + b1 × NDVI (4)

LSTNDVI,min = a2 + b2 × NDVI (5)

where LST refers to Land Surface Temperature, LSTNDVI,max and LSTNDVI,min represent
the minimum and maximum values of LST corresponding to a certain NDVI value. a1, a2
and b1, b2 are the fitting coefficients for dry and wet edges. TVDI has a value between 0
and 1; a smaller TVDI value indicates a more humid region, while a larger value indicates
a drier region.

(4) sc-PDSI

The Palmer Drought Severity Index (PDSI), developed by Palmer in 1956, is a widely
used measure of accumulated deviation of surface moisture supply and demand on land.
It incorporates the effects of temperature on precipitation and can accurately reflect the
impact of climate on drought. However, its applications in analyzing drought in different
spatial areas have limitations, and it may not be suitable for evaluating drought in diverse
regions. To address these limitations, the self-calibrated PDSI (sc-PDSI) has been developed.
The sc-PDSI dynamically calculates the monthly PDSI value and replaces the empirical
constant of the original location. In this article, the sc-PDSI is used to analyze its correlation
with different drought indices and to select the most suitable drought index for the study
area. The findings of this study will help to enhance the accuracy of drought monitoring
and prediction in the region.

(5) Other methods

The Pearson correlation coefficient is widely used to measure the degree of correlation
between two variables. In order to test the drought monitoring ability of different remote
sensing indices, the correlation index R between the three indices and sc-PDSI is analyzed,
which represents the difference ratio between the different indices and the Pearson correla-
tion coefficient, reflecting the dispersion degree of the drought index itself [27–29]. Overall,
the correlation analysis between drought indices and sc-PDSI can help to identify which
indices are most effective in monitoring drought conditions, and can provide valuable
information for drought management and mitigation efforts.

The Theil-sen Median method and the Mann—Kendall (MK): The Theil-sen Median
method is a robust non-parametric statistical trend calculation method [30]. This method
has high computational efficiency and is insensitive to measurement errors and outliers.
It is often used in trend analysis of long time series data. The MK trend test [31] is a non-
parametric test for analyzing trends in time series [32,33]. It is essentially a non-parametric
test that does not require the sample to follow a specific distribution and is not disturbed
by a few outliers, but also has a wide detection range, a high degree of quantification,
and a simple calculation process. Sen trend analysis and MK testing are often combined
for analysis. First, the Sen trend value is calculated, and then the MK method is used to
determine the significance of the trend. In this study, the Sen trend is used to analyze
the trend of drought intensity in Shanxi Province, and the MK method is used to test the
significance of the trend.

3. Results and Analysis
3.1. Validation of Integrated Drought Monitoring Models
3.1.1. Correlation Analysis

Using the above method, three indices are calculated. To verify the accuracy of the
three remote sensing drought indices, Pearson correlation coefficient analysis is performed
between the three indices and sc-PDSI data (Figure 3). Through statistical analysis, the
correlation coefficients of CWSI, VSWI, and TVDI are −0.54, 0.35, and −0.16, respectively.
Results show that overall CWSI and TVDI are negatively correlated with sc-PDSI, that is,
the larger the CWSI and TVDI, the smaller the sc-PDSI and the drier the study area. VSWI is
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positively correlated with sc-PDSI, that is, the larger the VSWI, the larger the PDSI and the
wetter the study area. The correlation between CWSI and sc-PDSI passed the significance
test with a p value of less than 0.05 in most regions., indicating that CWSI is more sensitive
to interannual changes in drought in the study area.
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The monitoring results of droughts may differ in different land use types due to
factors such as vegetation coverage, soil type, and terrain. Generally, urban areas are
characterized by extensive impervious surfaces, which reduce the amount of water that
can infiltrate into the soil. This can result in increased runoff and decreased soil moisture,
making urban areas more susceptible to drought. Farmland typically has lower vegetation
cover and higher evapotranspiration rates than natural land, which can result in lower
soil moisture levels and increased susceptibility to drought. Grassland typically has lower
evapotranspiration rates than forests, but higher rates than agricultural land. Overall, it is
important to understand the characteristics of different land use types in order to assess their
vulnerability to drought and develop effective drought mitigation strategies. For different
land use types (as shown in Table 2), the higher the Pearson correlation coefficient, the better
the fit and the more applicable the index. The correlation coefficients of CWSI are relatively
high for different land use types, including farmland, forest, and grassland. Among them,
the fitting degree of grassland is the highest, with a mean correlation coefficient of −0.55,
which passed the significance test with p < 0.05. This is much higher than the other two
index models. Through comprehensive analysis, it is concluded that CWSI has a greater
advantage in drought monitoring and simulation in Shanxi Province.

Table 2. Average correlation coefficient between remote sensing drought index and sc-PDSI of each
vegetation division from 2001 to 2020.

Index
Land Use Type

Farmland Forest Grassland All

CWSI −0.53 −0.54 −0.55 −0.54
VSWI 0.37 0.30 0.39 0.35
TVDI −0.10 −0.24 −0.18 −0.16
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3.1.2. Verification of Typical Drought Events

To further validate the accuracy of CWSI drought monitoring, it combines with typical
drought events for verification. According to the Statistical Yearbook of Shanxi Province,
between 1997 and 2002 Shanxi Province suffered from severe drought, which was caused
by global warming, reduced precipitation, and a sharp decrease in water coming from
rivers. From historical statistics, Shanxi Province suffers from a drought every 2.6 years,
causing serious impacts on industries, agriculture, and other aspects. During the years 2001
and 2002, Shanxi Province experienced a relatively severe drought, where the maximum
value of CWSI was 0.97 in 2001 (Figure 4a) and 0.96 in 2002 (Figure 4b); and its annual
average values of CWSI were 0.85 and 0.82, respectively, which are the maximum values
during the study period, further indicating the accuracy of CWSI in monitoring drought in
Shanxi Province.
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3.2. Drought Classification

The above correlation analysis shows that the CWSI index is more applicable in the
study area than the other two indices. Therefore, the CWSI is selected to analyze the spatial
and temporal characteristics of drought in the study area. However, before the analysis, the
drought class criteria need to be classified. For this purpose, the research uses the sc-PDSI,
and the CWSI value at the corresponding location for a one-dimensional linear regression
analysis (Figure 5). During the study period, most of the sc-PDSI in Shanxi Province range
from −3 to 1. Thus, the drought classes are classified into four levels according to the
sc-PDSI criteria for classifying drought, while sample points are selected according to the
area share of different land types in Shanxi Province; and one-dimensional linear regression
is performed to obtain the classification thresholds of CWSI corresponding to different
classes (Table 3).
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to 2020.

Table 3. Drought grading.

Drought Rating PDSI CWSI

No drought >0 0~0.56
Mild drought 0~−1 0.56~0.69

Moderate drought −1~−2 0.69~0.81
Severe drought −2~−3 0.81~0.92

3.3. Temporal Variation Characteristics of Drought

According to the interannual variation and cumulative anomaly of CWSI in Shanxi
Province (Figure 6), the fluctuation range of CWSI has been small over the years, with a
decreasing trend. The CWSI fluctuates between 0.71 and 0.85, with a multi-year average of
0.76, the maximum value in 2001 (0.85) and the minimum value in 2016 and 2018 (0.71). In
2001, the highest CWSI values are due to less rainfall, weaker actual evapotranspiration and
stronger potential evapotranspiration, which led to higher CWSI values and more severe
drought. In 2016 and 2018, the lowest CWSI values were due to abundant rainfall, lower
temperatures, weaker actual evapotranspiration and stronger potential evapotranspiration,
which led to lower CWSI values and less severe drought [34,35].

This study builds on previous research and identifies a turning point interval when the
cumulative anomaly value is considered stable, i.e., when the trend change does not pass a
significance test with p < 0.05. From the cumulative distance level values of CWSI during
2001–2020, it can be observed that the cumulative distance level values of CWSI show a
significant increasing trend from 2001 to 2011, and start to decrease after the cumulative
distance level reaches the highest value in 2011. This indicates that 2011 was a turning
point from drought to wet conditions in the study area.
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3.4. Spatial Variation Characteristics of Drought

Figure 7 displays the spatial distribution of the annual average CWSI and its correspond-
ing drought level in Shanxi Province. The average CWSI value for many years is between 0.71
and 0.85, and there is a noticeable spatial heterogeneity. The CWSI shows that the northwest is
larger than the southeast, which means that the drought in the northwest is relatively severe,
while the drought in the southeast is relatively mild. Multiple urban areas, including Datong
City, Shuozhou City, Xinzhou City, and Taiyuan City have high CWSI values, indicating that
drought is severe in these areas. In contrast, Jincheng City, Changzhi City, and other cities
have lower CWSI values, indicating slight drought conditions. According to the drought
grade map, Shanxi Province as a whole presents moderate drought, with severe drought
regions mainly concentrated in the west of Shanxi Province, namely, Shuozhou City, Xinzhou
City, and Luliang City. Moderate drought mainly concentrates in the southeast of Shanxi
Province, namely, Jinzhong City and Changzhi City; it rarely distributes in drought-free areas.
Mild drought accounts for 12% of the total area; moderate drought accounts for 62% of the
total area; severe drought accounts for 25% of the whole area. In a comprehensive analysis,
the percentages of the area occupied by drought levels in the study area in descending order:
moderate drought > severe drought > mild drought > no drought.
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According to the statistical interannual variation of the average annual Crop Water
Stress Index in each city of Shanxi Province(Figure 8), it can be observed that fluctuations
in 11 cities are not too significant, and the overall trend of each city is consistent with that
of the province. The average value of CWSI in each city in the past 20 years is ranked
from highest to lowest as follows: Shuozhou City (0.811), Datong City (0.793), Taiyuan City
(0.776), Luliang City (0.774), Xinzhou City (0.772), Jinzhong City (0.755), Yangquan City
(0.753), Linfen City (0.751), Yuncheng City (0.745), Changzhi City (0.742), and Jincheng
City (0.722). Shuozhou City has the largest average CWSI of 0.811 over the past 20 years,
indicating severe drought conditions. Jincheng City has the smallest average crop water
deficit index at 0.722, indicating a relatively lower risk of drought.. The CWSI in Shuozhou
City fluctuates between 0.72 and 0.82, with a multi-year average of 0.811, which is a severe
drought; the rest of the urban areas, Datong City and Taiyuan City, have a multi-year
average CWSI of less than 0.81, which is a moderate drought. The high CWSI in Shuozhou,
Datong, and Taiyuan is mainly due to low precipitation and high evaporation, resulting in
a relatively high risk of drought.
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3.5. Drought Change Characteristics of Different Land Use Types

Different land use types will directly affect the growth of vegetation, as well as the
change in evapotranspiration. Starting from different land use types, the characteristics of
drought change are analyzed.

The interannual variation characteristics of drought conditions in different land use
types in Shanxi Province from 2001 to 2020 are shown in Figure 9. In terms of interannual
variation in annual average CWSI, the annual average CWSI for each land use type is, in
descending order, buildings > unused land > farmland > grassland > forest. The CWSI of
buildings fluctuates between 0.76 and 0.86, with severe drought in most years; the CWSI of
other land fluctuates between 0.76 and 0.86, with moderate drought in most years; the CWSI
of farmland fluctuates between 0.72 and 0.86, with moderate drought in most years; the
CWSI of grassland fluctuates from 0.72 to 0.86, and most years it shows moderate drought;
and the CWSI of the forest fluctuates between 0.72 and 0.86, with moderate drought in
most years. Surface drought is mainly related to a number of factors, such as land cover
type, geographical location, and climatic precipitation. The vegetation cover on building
sites is generally low, and the risk of drought is high due to high temperatures and rapid
water loss caused by the heat island effect. Conversely, forests are less at risk of drought,
as they are generally located at higher altitudes, have abundant precipitation and a better
ability to hold water, and their actual evapotranspiration is higher, making them relatively
more resistant to drought. Most of the farmland is artificially vegetated and cultivated
with crops such as rice, wheat, maize, and oilseed rape. The risk of drought on cultivated
land is high because the harvesting of crops causes the annual mean ET to become smaller,
resulting in larger CWSI values.
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3.6. Temporal and Spatial Evolution of Drought in Shanxi Province

Sen slope estimates are used to calculate trend values and are usually used in con-
junction with MK non-parametric test. In this study, the spatiotemporal change analysis
method combining the Sen trend and the MK test is used to calculate the rate of change of
Shanxi Province from 2001 to 2020 image by image; the slope of change image values greater
than 0 indicated an increasing trend of the element, and less than 0 showed a decreasing
trend. The spatial trends of CWSI in Shanxi Province and the spatial distribution of its
significance are obtained as shown below (Figure 10a,b). Then, according to Table 4, the
Sen trend analysis and MK test results are overlayed to obtain a detailed drought change
map in Shanxi Province (Figure 10c).
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Table 4. Ranking of significance of drought trends.

CWSISlope
|Z|

|Z| ≤ 1.96 1.96 < |Z| ≤ 2.58 2.58 < |Z| ≤ 3.33 |Z| > 3.33

Slope ≤ −0.001 Stable and unchanged Slightly wet Wet Significantly wet
−0.001 < Slope ≤ 0.001 Stable and unchanged Stable and unchanged Stable and unchanged Stable and unchanged

Slope > 0.001 Stable and unchanged Slightly dried Dry Significantly dried

From the figure, it can be seen that the change rate of CWSI is between −0.02 and 0.01.
During the study period, the change rate of CWSI is mostly negative, indicating a decreasing
trend in drought, and the overall spatial distribution shows that the drought alleviation
degree in the south is greater than that in the north, while the drought in the north is severe.
It is evident from the figure that about 87% of the total images are significantly wetted,
while approximately 6% of the total images are wetted. Overall, the trend of wetter images
accounts for around 94% of the total images, while the trend of drier images accounts
for only about 0.1% of the total images. Therefore, a comprehensive analysis of the data
suggests that the drought trend in the study area is generally becoming wetter, indicating
that the overall drought condition in Shanxi Province has been continuously improving
from 2001 to 2020, and the degree of drought in most areas has been alleviated.

4. Discussion

In recent years, several studies have investigated the spatiotemporal characteristics of
drought in Shanxi Province using long-term meteorological observation data. However,
the accuracy of these studies is affected by the limited number of observation stations, and
their uneven distribution across the province. To overcome this limitation, the research
uses MODIS data as the basis for drought research. MODIS data has a better temporal and
spatial resolution [36] and is less affected by weather, making it widely used for calculating
drought indices [37,38]. The research results indicate that CWSI is more suitable for drought
monitoring in the study area, followed by VSWI. The MOD16 evapotranspiration data used
by CWSI is derived from the Mu [39] Improved algorithm. The CWSI algorithm takes the
transpiration of plants as the main pathway for water and energy exchange between plants
and the environment. Then, the transpiration of plants is compared with the temperature
and humidity of the surrounding environment to calculate the corresponding saturation
vapor pressure of crop surface transpiration, which is used to obtain the CWSI index. CWSI
can be used for real-time monitoring of crop water status, and to promptly detect and diag-
nose the degree of water stress that crops are subjected to, in order to take corresponding
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irrigation measures. CWSI can also combine historical data and meteorological forecast
data for drought prediction to prevent and respond to drought risks in advance. CWSI
can accurately detect the degree of crop water stress, provide highly accurate information,
better describe soil moisture information, and its results are very easy to interpret and
understand. Therefore, CWSI has a greater advantage in regional drought monitoring.
TVDI evaluates the degree of soil drought using temperature and vegetation information.
Although TVDI has some advantages in drought monitoring, its application is susceptible
to weather conditions. It can only assess the degree of surface soil drought and cannot
evaluate water evaporation. Therefore, it cannot reflect the water content inside the soil
and crops very well.

According to the research results, the long-term average of CWSI is 0.76, and most
areas in the region are considered arid. This is in good agreement with the research results
of scholars such as Ma Zice and Li Lihong, once again verifying the applicability of CWSI
in the study area. The drought is more severe in the northwestern part of the study area.
Due to the combined effects of precipitation, temperature, and other factors [40], CWSI
in Shuozhou City, located in the northwest direction, fluctuates between 0.72 and 0.82,
with a long-term average of 0.811, which belongs to the severe drought category. The
drought is relatively mild in the southeastern part of the study area. The southeastern part
has generally lower elevations, and the drought intensity in these areas is relatively low.
Overall, the monitoring results of CWSI indicate that the spatial and temporal evolution
trend of drought in the study area is generally improving. This is mainly due to the fact
that the Shanxi provincial government has taken a series of measures, such as building
reservoirs, diverting water, and implementing soil and water conservation to increase the
water resources in the region and improve the ecological environment.

In recent years, frequent droughts have occurred in Shanxi Province, causing serious
economic and social impacts and affecting people’s daily lives. Through scientific research,
we can improve our understanding of drought phenomena and provide scientific basis
for drought prevention and management in Shanxi Province. Research results can help
relevant departments in Shanxi Province grasp the patterns of recent drought occurrences,
develop more scientific and reasonable drought defense mechanisms, and adopt effective
drought response measures. At the same time, research results can also provide important
scientific support for agricultural production and water resources management in Shanxi
Province. In summary, scientific research can provide important support for drought
prevention and management, agricultural production, and water resources management in
Shanxi Province, and contribute to its economic and social development.

This study constructed three drought indices and conducted a correlation analysis
with the Palmer Drought Severity Index to select the most suitable drought index for
analyzing the characteristics of drought changes in Shanxi Province. The study used
multi-source remote sensing data for drought monitoring and simulation research, and
although the overall monitoring effect was good, there were still some limitations in this
study. Only considering ET and PET has certain limitations, and drought is an extremely
complex natural phenomenon. Therefore, it is recommended to further consider the impact
of factors such as vegetation phenology changes, temperature, precipitation, and human
activities on drought.

5. Conclusions

This article calculates three drought indices based on ET, PET, NDVI, and LST data,
respectively. The calculated results are correlated with the Palmer Drought Severity Index
and validated with typical drought events in Shanxi Province to screen for a more suitable
drought index for the study area, the CWSI. On this basis, the distribution of drought
in Shanxi Province in the past 20 years is inverted, and the spatiotemporal variation
characteristics of drought are analyzed. The following conclusions are drawn:

(1) The study has found that among the three drought indices (CWSI, VSWI, and TVDI)
studied, CWSI is more effective in reflecting drought conditions in Shanxi Province. This
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conclusion is based on the comparison of the relationship between these indices and the
sc-PDSI. The study has shown that the correlation between CWSI and sc-PDSI is stronger
than that of the other two indices, indicating that CWSI is more closely related to the actual
drought conditions in the study area. Therefore, the CWSI is a more suitable index for
monitoring and assessing drought in Shanxi Province.

(2) The temporal variation of drought in the study area: From 2001 to 2020, the average
value of CWSI varied between 0.71 and 0.85, with an overall 20-year average of 0.76. The
highest value was recorded in 2001 at 0.85, while the lowest values were observed in 2016
and 2018 at 0.71. The year 2011 was the turning point where the drought conditions started
to shift towards wetter conditions.

(3) Spatial distribution pattern of drought in the study area: From 2001 to 2020, the
overall drought in Shanxi province presented a “north dry and south wet” pattern, with
significant spatial variability. The majority of the province was located in drought-prone
areas, with the largest area experiencing moderate drought. In general, the northwest
region was slightly more severe, specifically in the western areas of Shuozhou, Xinzhou,
and Luliang. Moderate drought was mainly concentrated in the southeast of Shanxi
province, specifically in Jinzhong and Changzhi. Areas without drought were rare. The
areas of each drought level in descending order were moderate drought, severe drought,
mild drought, and no drought.

(4) Land use types have a significant impact on the growth and distribution of vegeta-
tion, as well as on the changes in evapotranspiration in a region. In general, the severity of
drought is closely related to land use type, with different land use types exhibiting different
levels of vulnerability to drought. The research results indicate that in Shanxi Province, the
drought severity of different land use types is in the following order: buildings, unused
land, farmland, grassland, and forest.

(5) The overall trend of drought in the study area is improving, with most of the area
experiencing relief from drought. Overall, the trend towards becoming wetter accounts
for about 94% of the total area, while the trend towards becoming drier accounts for about
0.1% of the total area.
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20. Çolak, Y.B.; Yazar, A.; Çolak, İ.; Akça, H.; Duraktekin, G. Evaluation of Crop Water Stress Index (CWSI) for Eggplant under

Varying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agric. Agric. Sci. Procedia 2015, 4, 372–382. [CrossRef]
21. Chen, J.; Lin, L.; Lü, G. An index of soil drought intensity and degree: An application on corn and a comparison with CWSI.

Agric. Water Manag. 2010, 97, 865–871. [CrossRef]
22. Chen, S.; Chen, Y.; Chen, J.; Zhang, Z.; Fu, Q.; Bian, J.; Cui, T.; Ma, Y. Retrieval of cotton plant water content by UAV-based

vegetation supply water index (VSWI). Int. J. Remote Sens. 2020, 41, 4389–4407. [CrossRef]
23. Zhou, L.; Zhang, J.; Wu, J.; Zhao, L.; Liu, M.; Lü, A.; Wu, Z. Comparison of remotely sensed and meteorological data-derived

drought indices in mid-eastern China. Int. J. Remote Sens. 2011, 33, 1755–1779. [CrossRef]
24. McVicar, T.R.; Jupp, D.L.B. The current and potential operational users of remote sensing to aid decisions on drought exceptional

circumstances in Australia:a review. Agric. Syst. 1998, 57, 399–468. [CrossRef]
25. Patel, N.R.; Anapashsha, R.; Kumar, S.; Saha, S.K.; Dadhwal, V.K. Assessing potential of MODIS derived temperature/vegetation

condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2008, 30, 23–39. [CrossRef]
26. Gao, Z.; Gao, W.; Chang, N.-B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI)

for drought assessment with the aid of LANDSAT TM/ETM+images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 495–503. [CrossRef]
27. Cohen, I.; Huang, Y.; Chen, J.; Benesty, J.; Benesty, J.; Chen, J.; Huang, Y.; Cohen, I.J.N. Pearson correlation coefficient. In Noise

Reduction in Speech Processing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 1–4.
28. Wang, X.; Li, B.; Chen, Y.; Guo, H.; Wang, Y.; Lian, L. Applicability Evaluation of Multisource Satellite Precipitation Data for

Hydrological Research in Arid Mountainous Areas. Remote Sens. 2020, 12, 2886. [CrossRef]
29. Sharma, T.C.; Panu, U.S. Predicting return periods of hydrological droughts using the Pearson 3 distribution: A case from rivers

in the Canadian prairies. Hydrol. Sci. J. 2015, 60, 1783–1796. [CrossRef]
30. Zhu, X.; Zhang, S.; Liu, T.; Liu, Y. Impacts of Heat and Drought on Gross Primary Productivity in China. Remote Sens. 2021,

13, 378. [CrossRef]
31. McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. R Package Kendall 2005, 602, 1–10. Available online:

http://www.stats.uwo.ca/faculty/aim (accessed on 23 April 2023).
32. Andreadis, K.M.; Lettenmaier, D.P. Trends in 20th century drought over the continental United States. Geophys. Res. Lett. 2006,

33, 10. [CrossRef]

77



Atmosphere 2023, 14, 799

33. Wu, Z.; Yu, L.; Du, Z.; Zhang, H.; Fan, X.; Lei, T. Recent changes in the drought of China from 1960 to 2014. Int. J. Climatol. 2019,
40, 3281–3296. [CrossRef]

34. Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in
agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [CrossRef] [PubMed]

35. Feldhake, C.; Glenn, D.; Edwards, W.; Peterson, D.J.N.Z.J.o.A.R. Quantifying drought for humid, temperate pastures using the
Crop Water Stress Index (CWSI). N. Z. J. Agric. Res. 1997, 40, 17–23. [CrossRef]

36. Ren, Y.; Liu, J.; Liu, S.; Wang, Z.; Liu, T.; Shalamzari, M.J.J.R.S. Effects of Climate Change on Vegetation Growth in the Yellow
River Basin from 2000 to 2019. Remote Sens. 2022, 14, 687. [CrossRef]

37. Orvos, P.I.; Homonnai, V.; Várai, A.; Bozóki, Z.; Jánosi, I.M. Global trend analysis of the MODIS drought severity index. Geosci.
Instrum. Methods Data Syst. 2015, 4, 189–196. [CrossRef]

38. Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating
MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [CrossRef]

39. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ.
2011, 115, 1781–1800. [CrossRef]

40. Li, Q.; Cao, Y.; Miao, S.; Huang, X.J.L. Spatiotemporal characteristics of drought and wet events and their impacts on agriculture
in the Yellow River Basin. Land 2022, 11, 556. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

78



Citation: Yuan, B.; Wang, S.; Guo, L.

Drought Vulnerability Assessment of

Winter Wheat Using an Improved

Entropy–Comprehensive Fuzzy

Evaluation Method: A Case Study of

Henan Province in China. Atmosphere

2023, 14, 779. https://doi.org/

10.3390/atmos14050779

Academic Editors: Jinping Liu,

Quoc Bao Pham, Arfan Arshad

and Masoud Jafari Shalamzari

Received: 22 March 2023

Revised: 23 April 2023

Accepted: 24 April 2023

Published: 25 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Drought Vulnerability Assessment of Winter Wheat Using an
Improved Entropy–Comprehensive Fuzzy Evaluation Method:
A Case Study of Henan Province in China
Binbin Yuan, Shidong Wang * and Linghui Guo

School of Surveying and Engineering Information, Henan Polytechnic University (HPU), Jiaozuo 454003, China;
ybb0403@163.com (B.Y.); guolinghui@hpu.edu.cn (L.G.)
* Correspondence: wsd0908@163.com

Abstract: The percentage precipitation anomaly was used to index the effect of drought on winter
wheat grown in Henan Province for the years 2011–2020. Of interest was the effect of drought on winter
wheat yield and the accurate assessment of the damage done to winter wheat by drought events in
order to improve the risk management of winter wheat in the context of drought hazards. The spatial
and temporal variability of winter wheat drought risk in Henan Province was determined by analysis
of climate data, winter wheat yield, cultivated area, and socio-economic data across three dimensions:
exposure or susceptibility to drought, economic–environmental sensitivity to drought, and capacity
to resist drought. A drought vulnerability assessment model, based on the entropy value method
and a comprehensive fuzzy evaluation, was developed to assess the drought vulnerability of winter
wheat in Henan Province compared with the percentage precipitation anomaly model. (1) There were
significant spatial differences in the frequency of the five drought categories devised. (2) Areas in which
there was a high frequency of mild drought events were mainly in northern and western Henan and
southwestern Henan, with the frequency ranging from 17% to 29%. (3) Areas in which there was a
high frequency of moderate drought events were mainly in northwestern, central, and southeastern
Henan. (4) Areas in which there was a high frequency of severe and extreme drought were mainly
in Anyang in northern Henan, Zhengzhou in central Henan, and Xinyang and surrounding areas in
southern Henan, with the frequency ranging from 7% to 9.70%. (5) Winter wheat drought vulnerability
shows an overall annually increasing trend. The susceptibility dimension had the greatest influence of
the three dimensions, followed by economic–environmental sensitivity and then drought resistance,
which had the least impact. The model created in this study shows the influence of drought on winter
wheat production more intuitively than a conventional fuzzy synthesis, and the results can inform
decision-making in winter wheat drought risk assessment and management.

Keywords: Henan Province; winter wheat; drought vulnerability; fuzzy integrated evaluation;
risk zoning

1. Introduction

Droughts are characterized by their duration, frequency of occurrence, and the area
affected. The Sixth Assessment Report of the IPCC states that the frequent occurrence of
extreme heat and precipitation events, in the context of global warming, has led to more
complexity in the factors that influence the occurrence of droughts, and that these events have
increased the frequency and intensity of droughts. In China, drought events have jeopardized
economic development and agricultural production. Agricultural drought is one of the main
problems faced by agricultural production in China, and studying its vulnerability is the
premise of scientific responses. As a major agricultural province, winter wheat production in
Henan Province is of great importance to national agricultural production.

Winter wheat is grown in Henan Province in the north China plain region. Winter wheat
production in the area accounts for about 25% of national wheat production, and the region
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is the main grain-producing area in China [1]. Spring droughts occur in the northern part
of Henan Province 30–40% of the time, and early summer droughts occur 40–50% of the
time; in the most severe drought years, 70% of the province is affected by drought [2]. The
delineation of drought vulnerability zones, the scientific management of drought preparation
and response, and the mitigation of drought risks, together with pressure on food producers
to increase yields and improve quality, are important national issues.

Agricultural droughts result from the interaction of agricultural activities with natural
events, with the outcome being insufficient water available for plants and animals [3,4].
Research into agricultural drought and those vulnerable to it began in the 1990s. Two major
perspectives have emerged, assessment of the vulnerability of farmers to drought at a
micro-scale and assessment of regional agricultural drought vulnerability from a macro per-
spective. For example, Li et al. [5] analyzed the relationship between drought vulnerability
and farmer behavioral response at the micro-scale using questionnaire data from farmers in
the North China Plain. Brant et al. [6] analyzed the relationship between household factors
and drought sensitivity among farmers in Brazil. Savari et al. [7] investigated the drought
vulnerability of farmers in southeastern Iran using a mathematical model developed by
Me-Bar and Valdez [8] that identified five dimensions of vulnerability (economic, socio-
cultural, psychological, technological environment, and infrastructure). Cheng [9] assessed
agricultural drought vulnerability in Xiaogan City, Hubei Province using a fuzzy analytical
hierarchy process with empirical data from a sample of farmers and created an agricultural
drought index insurance model. Xie et al. [10] used weighted composite scoring of several
factors to identify relationships between different farm household livelihoods and quantify
societal vulnerability to drought.

Examples of the macro perspective on regional agricultural drought vulnerability
include the following. Pei et al. [11] used data envelopment analysis to examine changes
in agricultural drought vulnerability in China over the past 40 years. Wang et al. [12]
selected 32 indicators, including ecological recharge, grain yield in the summer harvest,
water-saving irrigation machinery, and dry field area, to draw a graded vulnerability zone
map using principal component analysis. Li et al. [13] used game theory combined with
the weighting of 10 indicators to calculate their values for five administrative regions
in Guanzhong, Shaanxi Province, and quantified the contribution of each indicator to
agricultural drought vulnerability. Pei [14] determined the footprint of the water cycle in
Heilongjiang Province and quantified agricultural drought risk zones using an improved
standardized precipitation–evapotranspiration index (SPEI). Zarei et al. [15], based on
the relationship between the percent annual yield loss (AYL) of winter wheat (Triticum
sativum) and three commonly used drought indices, i.e., the standardized precipitation
evapotranspiration index (SPEI), reconnaissance drought index (RDI), and standardized
precipitation index (SPI), evaluated the accuracy of these indices at 1-, 3-, 6-, and 12-month
time scales. Based on natural disaster risk theory, Jia et al. [16] established a drought disaster
risk assessment model for winter wheat in Gansu Province and carried out risk zoning
for winter wheat in Gansu Province. Yan et al. [17] discussed the spatial and temporal
distribution characteristics of winter wheat drought using the Z index and analyzed the
effects of meteorological drought on winter wheat yield in Henan Province.

At present, researchers have various understandings of the concepts of drought and
drought vulnerability. There are no standard indicators that can be selected to match
the actual climate conditions in a study area, nor are there standards for creating a set of
indicators or interpreting drought indicators [18–25]. Most current research that includes
the evaluation and interpretation of drought indicators uses conventional weighted syn-
thesis methods [26,27]. However, drought is not constrained by the hard boundaries of
administrative divisions, and classifications of drought are necessarily arbitrary or fuzzy,
and a practical assessment of drought vulnerability must recognize this. The assessment of
drought vulnerability has been developed and refined in ongoing research, but it is a work
in progress.
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We take an approach based on the concept that agricultural drought affects a human–
land system and examine winter wheat farming at the scale of municipal administrative units
in Henan Province. We selected fifteen indicators that cover three dimensions of agricultural
drought: exposure, sensitivity, and resistance. The indicators were grouped into three classes
of risk factors: susceptibility, or degree of exposure, to drought in the drought-affected
area; economic sensitivity to drought in the area; and drought resistance in the area. An
overall drought vulnerability model for winter wheat in Henan Province was created using
comprehensive fuzzy evaluation, and categories of drought were established and quantified
to describe the overall drought vulnerability of winter wheat in Henan Province.

2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area

Henan Province occupies the middle and lower reaches of the Yellow River in central–
east China, between latitudes 31◦23′–36◦22′ N and longitudes 110◦21′–116◦39′ E [28], as
shown in Figure 1. The province is bordered by Anhui and Shandong to the east, Hebei
and Shanxi to the north, Shaanxi to the west, and Hubei to the south. The total area
of the province is 165,700 km2. Henan Province has a continental monsoon climate that
transitions from the northern subtropical zone to the warm temperate zone. Henan Province
experiences four distinct seasons, with simultaneous rain and heat in the summer. The
complexity and diversity of the climate combine to create frequent meteorological disaster
events. The terrain is high in the west and low in the east, with the Taihang Mountains,
Funiu Mountains, Tongbai Mountains, and Dabie Mountains circling the province at its
north, west, and south boundaries. The Yellow Huaihai Alluvial Plain is in the east–center
of the province, and the Nanyang Basin is in the southwest. The total water resource of the
province is 40.353 km3, or about 368 m3/person. This last figure is <20% of the national
average, making Henan a province with a severe water shortage [28].
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Henan Province is a major winter wheat-producing area in China. The national
crop structure adjustment and increased market demand have expanded the winter wheat-
planting area and production in the province. The published 2022 summer grain production
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data show that the total summer grain production in the province was 38.131 Gt, the planted
area was 56,838 km2, and the unit area yield was 6708.7 kg/ha. These figures show that
winter wheat production in Henan Province is of key importance to total grain production
in both the province and the country. It is therefore important to determine the spatial
distribution and patterns of change in drought vulnerability in Henan to analyze the effects
on winter wheat.

2.2. Data Sources and Processing
2.2.1. Data Sources

The datasets used in this study include the Raster data and Statistical data (Table 1).
(1) Percentage precipitation anomaly and drought frequency for 1990–2021 were derived
from monthly precipitation data from 10 meteorological observation stations in Henan
Province from 1990–2021; precipitation data were obtained from the Agro-meteorological
Big Data platform. (2) Topographic data at 30 m intervals in Henan Province were sourced
from the Geospatial Data Cloud. (3) Socio-economic data were sourced from the Henan
Provincial Statistical Yearbooks (2011–2021), including winter wheat production data,
winter wheat planted area data, average annual temperature, unit area fertilizer application,
winter wheat production value, per capita GDP, total primary industry share of GDP,
effective irrigated area, pesticide use, rural electricity consumption, total agricultural
machinery power, net farm income, and other data. Data for average annual precipitation,
surface water resources, and underground water resources were obtained from the Henan
Provincial Water Resources Bulletin (2011–2020).

Table 1. Data sources.

Data Type Data Name Years Source

Raster data Topographic data of Henan
Province at 30 m intervals 2021 Geospatial Data Cloud

Statistical data

Socio-economic data 2011, 2014, 2017, 2020 Statistical Yearbook of Henan Province
Average annual precipitation;

surface water resources;
groundwater resources

2011, 2014, 2017, 2020 Water Resources Bulletin of Henan Province

Monthly precipitation data 1991–2021 Agro-meteorological big data platform

2.2.2. Data Normalization

Data normalization is used in cases where there are many factor indicators. Nor-
malization makes the indicator data dimensionless, and the data are mapped onto the
interval [0, 1] for subsequent calculations and analysis. We classified indicators as positive
or negative, depending on their effect on drought vulnerability. Positive indicators were
positively correlated with drought vulnerability and negative indicators were negatively
correlated with drought vulnerability.

The equation for normalizing positive indicators is

Dij =
Aij −mini

maxi −mini
(1)

The equation for normalizing negative indicators is

Dij =
maxi − Aij

maxi −mini
(2)

where j is the municipality; Dij is the normalized value of indicator I for municipality j;
Aij is the value of indicator i for municipality j; and mini and maxi are the minimum and
maximum values of indicator i, respectively.
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3. Research Methodology
3.1. Drought Vulnerability Assessment Indicator System for Winter Wheat
3.1.1. Selection of Assessment Indicators

Research into drought, drought vulnerability, and drought assessment is growing,
and methods of quantifying drought factors are improving. Current methods include the
standardized precipitation index (SPI) based on precipitation variability, the percentage
precipitation anomaly, the Palmer drought severity index (PDSI) based on water demand
status, the Z index, and various drought indexes that are combined with remote sensing
and GIS data [29–32]. The percentage precipitation anomaly (Pa) is a traditional drought
monitoring index, which shows the long-term average or normal precipitation percent-
age [33]. It is a representation of drought caused by precipitation anomalies when only
precipitation is considered and is therefore widely used in drought monitoring and assess-
ment [34]. Compared to other drought indices, such as SPI, SPEI (standard precipitation
evapotranspiration index), and PDSI, the percentage of precipitation anomalies has the
advantage of requiring simple information for calculation, being easily accessible and easy
to calculate, as well as providing a better description of the degree of drought.

(1) Percentage precipitation anomaly

The difference between the precipitation in a particular year or month and the average
for the year or month is known as the percentage precipitation anomaly (Pa). It is an
important indicator of regional climate. A greater value of Pa indicates a greater deviation
from the average for the year or month and thus a greater vulnerability to agricultural
drought [28]. Pa is calculated by

PA =
P− P

P
× 100% (3)

where PA is the percentage precipitation anomaly for a given period, P is precipitation
for the period (mm), and P is average precipitation for the same period (mm), which is
calculated by

P =
1
n

n

∑
i=1

Pi (4)

where the time range n is generally chosen to be 30 d (or some number of months or years),
with n = 31 in this study; and Pi is precipitation (mm) for day, month, or year i. The Pa
(annual scale) classifications used in this paper, using the national meteorological rating
standards, are shown in Table 2.

Table 2. Drought classification based on percentage precipitation anomaly.

Class Drought Type
Percentage Precipitation Anomaly Range (%)

(Annual Scale)

1 No drought >−15
2 Light drought −15–−30
3 Moderate drought −30–−40
4 Severe drought −40–−45
5 Extreme drought <−45

(2) Frequency of drought

The frequency of drought occurrence in a given time period is the number of months
of drought at a site in the time period as a percentage of the total number of months in the
time period that is used to calculate Pa. The frequency is often used to quantify the extent
of the impact of drought in a given time period. The calculation is

Fi =
Ni
Mi
× 100% (5)
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where Fi is the total number of months or years in which a certain type of drought (light,
moderate, severe, or extreme) occurred at weather station i, and Mi is the total number of
months or years for which meteorological data was recorded at meteorological station i.

3.1.2. Indicator System

Winter wheat in Henan Province was the research object. We analyzed the spatial and
temporal drought vulnerability of winter wheat in Henan Province in terms of severity
using the percentage precipitation anomaly. Using drought vulnerability and drawing from
related studies [13–19], we identified fifteen basic indicators of winter wheat vulnerability
in Henan Province. The indicator selection process ensured the comprehensiveness, system-
atization, and operability of indicators, and selection was based on the analysis of indicator
correlation with winter wheat growth characteristics along three dimensions (susceptibility
to drought, environmental–economic sensitivity, and drought resistance). The fifteen indica-
tors were as follows: area planted with winter wheat, yield of winter wheat, average annual
temperature, average annual precipitation, fertilizer application per unit area, production
value of winter wheat, per capita GDP, urbanization rate, total primary industry share
of GDP, surface water resources, underground water resources, effective irrigation area,
pesticide use, rural electricity consumption, total agricultural machinery power, and net
farmer income. The indicator values were analyzed along the three dimensions, which
were, in turn, each analyzed in terms of their spatial distribution and growth patterns of
winter wheat in Henan Province. The fifteen indicators were weighted using the entropy
weighting method in order to classify and analyze each dimension (Table 3).

Table 3. Drought vulnerability index system for winter wheat in Henan Province.

Target Level Dimension Indicator Characteristic

Drought vulnerability

U1. Degree of susceptibility,
or exposure, of the

drought-affected area

Wheat planted area +
Wheat yield +

Average annual temperature +
Average annual precipitation −

U2. Environmental–economic
sensitivity of the

drought-affected area

Winter wheat production value +
Per capita GDP −

Urbanization rate −
Percentage of total primary industry (GDP) +

U3. Drought resistance of the
affected area

Surface water resources −
Amount of underground water resources −

Effective irrigated area −
Amount of pesticide use −

Rural electricity consumption −
Total power of agricultural machinery −

Net farmer income +

Note: + is a positive indicator, − is a negative indicator.

3.1.3. Determination of Indicator Weights

Entropy weighting uses normalized data to determine the degree of dispersion of an
indicator. A greater degree of dispersion indicates less entropy in the indicated information
and therefore a greater influence of the indicator on the outcome. We present an improved
method for weighting each indicator using entropy weighting and comprehensive fuzzy
evaluation. A comprehensive fuzzy evaluation model was created and used to predict
winter wheat in Henan Province. The results show that this method had high accuracy and
great reliability, and it provides an objective method of determining drought vulnerability.
The calculation process is as follows.

(1) Calculate Qij using the normalized data:
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Qij =
Yij

∑x
i=1 Y ij

(6)

where x is the number of samples, and Qij is the weight of sample i of indicator j.

(2) Calculate the entropy value ej for indicator j:

ej = −k
x

∑
i=1

QijlnQij (7)

k =
1

lnx
> 0 (8)

(3) Calculate the utility of indicator Ej:

Ej = 1− ej (9)

(4) Calculate the weight Wj for indicator j:

Wj =
Ej

∑z
j=1 Ej

(10)

where z is the number of indicators.

3.2. Comprehensive Fuzzy Evaluation-Based Drought Vulnerability Assessment Model for
Winter Wheat

A comprehensive fuzzy evaluation depends on the aggregation of indicators that
contain uncertainty rather than meeting strict mathematical criteria. Fuzzy mathematics
is widely used to evaluate systems, assess system effectiveness, and optimize systems.
It combines qualitative and quantitative judgments [35–37]. The technical process of the
model consisted of the following: firstly, determining the set of index factors and a total of
15 indicators according to the established drought vulnerability evaluation index system
for winter wheat in Henan Province; secondly, ranking all indicators in order of importance
by using the results of the weighting calculations; thirdly, using the fuzzy comprehensive
evaluation method to determine the membership function and evaluation set; and, lastly,
carrying out a normalization operation and comprehensive evaluation of the results.

The main steps of the comprehensive fuzzy evaluation process we used are as follows.

(1) Determine the set of evaluation factors that form the basis of the evaluation, which is
the set consisting of u1 (the susceptibility to drought of the drought-affected area), u2
(the environmental–economic sensitivity of the drought-affected environment), and u3
(the drought resistance of the affected area).

(2) Determine the set of evaluative criteria or grades, which are the various nonobjective
evaluative judgments that an evaluator may make about the factor being evaluated.
For example, the evaluative criteria we used to classify their influence on drought sus-
ceptibility, sensitivity, and resistance were v1, mild; v2, average; v3, moderate; v4, severe;
and v5, extreme.

(3) Create the fuzzy matrix Rm×n that consists of the fuzzy membership functions that
map each evaluation factor (step 1) onto the set of evaluative grades (step 2):

Rm×n =
(
rij
)
=




r11 · · · r1n
...

. . .
...

rm1 · · · rmn


 (11)

where rij is the membership degree of factor ui (i = 1, . . . , m) to the evaluative grade j (e.g., vj;
j = 1, . . . , n). Each row of R therefore represents the (sub)set of degrees of membership of
factor ui in the set of evaluative grades.
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(4) Determine the weight vector W, which consists of the set of evaluation factor weights
and represents the weight that each factor accounts for. The weight assigned to a factor
represents the importance of the factor in influencing the outcome and it therefore has
a significant effect on the final assessment. The weights of the susceptibility, sensitivity,
and resistance indicators are determined using the entropy method.

B =(a1, a1, · · · an) (12)

where ai (i = 1, . . . , m) is the weight of each evaluation factor value in the overall evaluation.

(5) A fuzzy operator is selected, and the evaluations are calculated. We used the weighted
average operator, and the comprehensive fuzzy evaluation is given by

B = W·R =(b1, b2, · · · bn) (13)

where bi is the degree of membership of the evaluated object in a fuzzy subset of the set of all vj.

(6) Analyze the comprehensive evaluation vector B. Determine the rank of the evaluation
object according to the principle of maximum subordination.

3.3. Drought Vulnerability Model Testing for Winter Wheat

A greater risk of drought indicates a greater susceptibility index, which, in turn,
indicates a greater likelihood of a reduction in winter wheat yield. To validate the winter
wheat drought vulnerability model, we compared the average yield reduction of winter
wheat due to drought in Henan Province from 2010 to 2020 with the average drought
vulnerability index calculated by the model for the same period. Crop yields can be
interpreted as trends in fluctuating yields, with technological advances and improvements
in agricultural production techniques being the main reasons for annual increases in
winter wheat yields, and uncertain conditions (mainly meteorological hazards) causing
fluctuations in yields, i.e., the climate yield of the crop. The variation in winter wheat yield
was used to represent the climate yield of winter wheat in Henan Province [38], and the
data were normalized. The relative climate yield of winter wheat is calculated by

Yw= Y−Yt (14)

where Yw is the relative climate yield of winter wheat, Y is the actual yield for the year, and Yt
is the linearly fitted yield calculated by linear fitting of the winter wheat yield for 2010–2020.

4. Results and Analysis
4.1. Assessment of the Characteristics of the Climate Drought Index for Winter Wheat in
Henan Province

The 31 d Pa from 1991 to 2021 was calculated for each meteorological station in
Henan Province using Equations (3) and (4). The frequency of drought occurrence for each
meteorological station was calculated using the drought classification based on percentage
precipitation anomaly (Table 2) using Equation (5). Pa was used to determine the type
of drought for winter wheat in Henan Province in different years and to identify the
characteristics of winter wheat drought. In order to ensure that the meteorological stations
can scientifically reflect the meteorological situation in Henan Province, this paper selects
an out-of-province meteorological station at the border of Henan Province in the eastern
part of the province where meteorological stations are lacking (Figure 2). We used the
drought frequency data from these ten meteorological stations as a basis and the inverse
distance weighting method to spatially interpolate the missing cities to obtain a raster
surface for Henan Province.

The frequency of the occurrence of light droughts varied significantly across space
(Figure 3). Areas with high frequencies of light droughts (Figure 3a) were concentrated in
northern and western Henan and southwestern Henan, where the frequency ranged from
17% to 29%. The maximum frequencies (29%) were in Anyang, Sanmenxia, and Zhumadian.
In Shangqiu, parts of Nanyang, and Xinyang, the frequency ranged from 13–17%, and parts
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of Zhengzhou and Zhoukou also had a high frequency of light droughts. Figure 3b shows
that areas with high values of moderate drought frequency were concentrated in northwest
central and southeast Henan. Zhengzhou, Luoyang, Xinyang, and parts of Zhumadian
had the highest frequencies (9.70%). In contrast, Anyang and Sanmenxia were areas of low
incidence of moderate droughts with frequency 0–1.80%. Figure 3c shows that areas with
high values for the frequency of severe and extreme droughts, with frequencies in the range
7–9.70%, were concentrated in and around Anyang, Zhengzhou, and Xinyang. The frequency
of droughts in Sanmenxia, Luoyang, Nanyang, and Zhumadian was also high, showing an
alternating distribution, but the frequency of severe and extreme droughts in other areas
was low. In general, the frequency of light and severe droughts was greater in northern and
southern Henan and less in central and eastern Henan; the frequency of medium droughts
was greater in southwestern Henan and less in eastern and northern Henan.
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4.2. Drought Susceptibility Assessment and Zoning for Winter Wheat in Henan Province
4.2.1. Susceptibility Analysis of Winter Wheat in Henan Province

The susceptibility of winter wheat to drought can be used to determine winter wheat
yield reduction due to drought damage. Winter wheat planted area, winter wheat yield,
average annual precipitation, and average annual temperature were selected as indica-
tors of susceptibility. The natural breaks method of ArcGIS software was used to map
susceptibility zonally.

There was no significant change in the distribution of high or higher susceptibility
during 2011–2020 (Figure 4). Higher susceptibility areas were concentrated mainly in
the southern and eastern regions of Henan, such as Nanyang, Zhumadian, Zhoukou,
and Shangqiu, and areas of medium susceptibility were Xinyang and Kaifeng, Xinxiang,
Anyang, and Jiyuan. Susceptibility was generally low in northern Henan. When rainfall
and acreage indicators were taken into account, in plain areas such as Zhumadian, a greater
winter wheat planted area and greater winter wheat yield indicated greater susceptibility
to extreme precipitation and warming events. Figure 4b shows a significant change in
susceptibility due to the severe drought that occurred in 2014. Yields were generally low
in northern Henan. The region has high precipitation, and when extreme precipitation or
drought events are frequent, winter wheat yields in areas of high winter wheat planting,
such as Anyang and Pingdingshan, may experience severe yield reductions.
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4.2.2. Sensitivity of Winter Wheat in Henan Province

Sensitivity represents the extent of a regional response to drought and expresses the
degree of dependence on agriculture in the region. When an agricultural drought occurs, a
greater dependence on agriculture will result in greater sensitivity and greater vulnerability
to drought.

Figure 5 shows that during the period 2011–2020, sensitivity was generally high and
showed a decreasing trend year by year. Zhengzhou had low sensitivity, as did Jiaozuo,
Luoyang, and Jiyuan, but other regions had medium or high sensitivity. The northern,
western, and southern parts of Henan are surrounded by the Taihang, Funiu, Tongbai,
and Dabie mountains around the provincial boundary and are prone to droughts, so areas
such as Xinxiang, Anyang, Sanmenxia, Xinyang, and Nanyang, which are in mountainous
and hilly areas, have a greater sensitivity than other areas. Luoyang and Jiyuan are in
hilly areas but occupy the middle and lower reaches of the Yellow River and contain
well-developed river networks, so they have the lowest sensitivity. Puyang is in the
alluvial plain of the Yellow River and has a well-developed water net system, so it has
low sensitivity. Zhengzhou is the capital city of the province and has a more developed
economy than the rest of the province such as a higher urbanization rate, a higher per capita
GDP and abundant surface and groundwater resources. Its low percentage of total primary
industry (GDP) makes it less dependent on agriculture and less sensitive to drought. The
Pingdingshan, Xuchang, Luohe, Kaifeng, Shangqiu, Zhoukou, and Zhumadian regions are
located in the plains and have a high percentage of total primary industry (GDP), i.e., they
are more dependent on agricultural development. Moreover, the value of winter wheat
production is high in these areas, but yield losses due to droughts are also high, so their
sensitivity is also high.
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4.2.3. Winter Wheat Drought Resistance

As research on drought has increased, resistance has become more closely linked to
socio-economic concerns. Generally, greater resistance to drought in a region indicates less
loss directly attributable to drought. Drought resistance is therefore inversely related to
the risk of drought, and different equations are used to normalize resistance index data.
Regions with lower resistance indexes are thus more likely to be resistant to disasters than
regions with higher resistance indexes.

Figure 6 shows that drought resistance of winter wheat was generally high in Henan
Province during 2011–2020. Drought resistance increased gradually over the period and
showed an overall pattern of large areas of similar resistance and small areas of mixed
resistance, but the resistance of plain areas was greater than that of hilly areas. Drought
resistance was greater in Zhoukou, Shangqiu, Zhumadian, and Nanyang than in Hebi,
Sanmenxia, Pingdingshan, Luohe, and Xinyang, where it was low. Zhengzhou is in a hilly
area but has a high resistance, mainly because of its more developed economy and greater
investment in agricultural irrigation facilities. In contrast, Hebi and Jiyuan are in the plain
of the lower reaches of the Yellow River and have more developed water systems, so there
is no need to greatly invest human and material resources into drought relief, which would
lower the resistance to drought.
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4.2.4. Classification of Drought Vulnerability of Winter Wheat in Henan Province

Data for the indicators shown in Table 3 were obtained, and the values of the vectors
for indicator weights at the dimension level were calculated using the entropy weighting
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method. The fuzzy relationship matrix, weight vector, and fuzzy comprehensive evaluation
were calculated using Equations (11)–(13), and the fuzzy transformation was used to predict
the winter wheat drought vulnerability index in Henan Province from 2011 to 2020. The
natural point interval method and reclassification functions of ArcGIS were used to weight
the winter wheat drought vulnerability index of Henan Province.

The comprehensive fuzzy evaluation was conducted using SPSS software using the
weighted mean type M(*,+) operator. The normalized weights of the degrees of membership
of the three factor sets were obtained: 0.38, 0.36, and 0.26, as shown in Table 4. It can
be seen from the table that the greatest weight was for susceptibility, indicating that
susceptibility of an area to drought has the greatest influence on the winter wheat drought
vulnerability index.

Table 4. Weights of drought vulnerability evaluation indicators for winter wheat in Henan Province.

Guideline Level Weight

Susceptibility to drought 0.38
Environmental–economic sensitivity 0.36

Drought resistance 0.26

Table 5 shows the calculated area for each class of drought vulnerability of winter
wheat in Henan Province between 2014 and 2017. In 2011, the cities with mild vulnerability
to winter wheat drought in Henan Province were Pingdingshan, Sanmenxia, and Jiyan; the
cities with average vulnerability were Zhengzhou, Hebi, Jiaozuo and Xuchang; the cities
with moderate vulnerability were Luohe and Luoyang; the cities with severe vulnerability
were Anyang, Xinxiang, Puyang, and Xinyang; and the cities with extreme vulnerability
were Kaifeng, Shangqiu, Zhoukou, Zhumadian, and Nanyang. In 2014, the cities with
mild vulnerability to winter wheat drought in Henan Province were Zhengzhou; cities
with average vulnerability were Pingdingshan, Jiaozuo, Puyang, Sanmenxia, and Jiyuan;
cities with moderate vulnerability were Luoyang, Hebi, Xuchang, and Luohe; cities with
severe vulnerability were Anyang, Xinxiang, Shangqiu, and Xinyang; cities with extreme
vulnerability were Kaifeng, Zhoukou, Zhumadian, and Nanyang. In 2017, the cities in
Henan Province with mild vulnerability to winter wheat drought were Puyang; those
with average vulnerability were Xinxiang, Zhumadian, and Jiyuan; those with moderate
vulnerability were Kaifeng, Pingdingshan, and Luohe; those with severe vulnerability
were Luoyang, Anyang, Hebi, Jiaozuo, Xuchang, Sanmenxia, and Xinyang; and those with
extreme vulnerability were Zhengzhou, Shangqiu, Zhoukou, and Nanyang. In 2020, cities
in Henan Province with mild vulnerability to winter wheat drought include Zhengzhou
and Jiyuan; cities with average vulnerability include Luoyang, Hebi, Xuchang, Luohe, and
Sanmenxia; cities with moderate vulnerability include Pingdingshan, Jiaozuo, and Puyang;
cities with severe vulnerability include Kaifeng, Anyang, Xinxiang, Zhoukou, Zhumadian,
and Xinyang; and cities with extreme vulnerability include Shangqiu and Nanyang.

Table 5. Winter wheat drought vulnerability by area in Henan Province (km2).

Year Areas of Mild
Vulnerability

Areas of Average
Vulnerability

Areas of Moderate
Vulnerability

Areas of Severe
Vulnerability

Areas of Extreme
Vulnerability

2011 20,309 18,774 17,847 38,849 70,521
2014 7567 28,651 24,983 64,378 59,817
2017 4271 25,263 16,765 63,262 56,739
2020 9498 35,479 16,224 67,886 37,213

The table shows that the overall area of areas at all levels of drought risk for winter
wheat in Henan Province decreased year by year during the period 2014–2017. This indi-
cates that the government is beginning to pay attention to the issue of drought vulnerability
of winter wheat. Cities in areas of extreme vulnerability, such as Kaifeng, Zhoukou, and

91



Atmosphere 2023, 14, 779

Zhumadian, gradually became cities in areas of severe vulnerability. This is shown by the
area of extreme vulnerability decreasing to 37,213 km2 in 2020 and the total area of severe
vulnerability increasing to 67,886 km2 in 2020. Cities in areas of moderate vulnerability
gradually become cities in areas of average vulnerability, with the total area of moderate
vulnerability decreasing to 16,224 km2, and the area of average vulnerability increased
to 35,479 km2; cities in areas of average vulnerability gradually become cities in areas of
mild vulnerability, with the area of mild vulnerability increasing from 4271 km2 in 2017 to
9498 km2 in 2020.

Figure 7 shows that the drought vulnerability index for winter wheat in Henan
Province showed an annually increasing trend during the period 2011–2020. The cate-
gory of vulnerability varied little, with most areas being average or moderate vulnerability.
There was a real contiguity of vulnerability classes, as shown by Pingdingshan, Xuchang,
and Luohe in central Henan and parts of Xinyang and Zhumadian in southern Henan.
Severe and extremely vulnerable areas were scattered in hilly and plain areas, with the
exception of Hebi and Puyang, and most such areas were in the hilly transition zone
from the second to the third terraces. Mild vulnerability in southern Henan was due to
the better-developed water system in the region and the warmer climate with abundant
precipitation. The higher level of vulnerability in eastern Henan was due to the large area
of winter wheat cultivation in the plains, in which vulnerability was mainly influenced by
low drought resistance due to poor farmland infrastructure. The climate of northern Henan
is drier and, although there are more natural water systems in that region, precipitation is
lower, and there has been more investment in agricultural irrigation facilities to reduce the
impact of drought on winter wheat yields.
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The distribution of winter wheat drought vulnerability classes was compared with the
distribution of the winter wheat susceptibility index, economic–environmental sensitivity
index, and drought resistance index. We found that the distribution of winter wheat
drought vulnerability classes and the distribution of the winter wheat susceptibility index
were essentially consistent. This is the same as the analysis presented in Table 4, where the
winter wheat susceptibility index has a direct effect on winter wheat drought vulnerability.
This result is almost the same as the results shown in the drought sensitivity graph for
winter wheat yield in Henan Province produced by Wu et al. [2].

4.2.5. Validation of the Drought Vulnerability Model

The standardized values of the average winter wheat yield for 2010–2020 for each
prefecture-level city in Henan Province were correlated with the average drought vulner-
ability index calculated by the drought vulnerability model and were then fitted using
linear regression (Figure 8). The correlation coefficient R2 obtained based on the improved
entropy–fuzzy evaluation method is 0.44, specifically the drought vulnerability index ex-
plains 44% of the fluctuating yield of winter wheat. In contrast, a correlation analysis
and fitting based on the traditional fuzzy integrated evaluation method yielded an R2 of
0.26. The results show that the winter wheat drought vulnerability index in this study can
effectively evaluate the drought vulnerability of winter wheat in Henan Province.
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5. Conclusions

We used climate data, winter wheat production data, wheat cultivation area data, and
socio-economic data of Henan Province to analyze the spatial and temporal variability of
winter wheat drought vulnerability in Henan Province using the Pa index. We created
a winter wheat drought vulnerability assessment model using the entropy method and
comprehensive fuzzy evaluation for three dimensions of influence on winter wheat drought
vulnerability: susceptibility to drought, economic–environmental sensitivity to drought,
and drought resistance capacity. The principal conclusions are as follows.

(1) The determination of Pa and analysis of the different degrees or levels of drought
effects on winter wheat in Henan Province showed that the frequency of occurrence
of different levels of drought varied significantly spatially. The frequency of mild
droughts ranged from 9.70% to 29%, the frequency of moderate droughts ranged
from 0 to 9.70%, and the frequency of severe or extreme droughts ranged from 3.20%
to 9.70%. Droughts have become more frequent in Henan Province over the study
period; mild and extreme droughts occurred more often in the north, while moderate
and severe droughts occurred more often in the south.

(2) The comprehensive fuzzy evaluation produced normalized weights of the suscepti-
bility, sensitivity, and resistance dimensions that were, respectively, 0.38, 0.36, and
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0.26. The susceptibility of winter wheat to drought has a large influence on the winter
wheat drought vulnerability index. Areas of high susceptibility were concentrated
in southern and eastern Henan, with susceptibility indices ranging from 0.59 to 0.80.
Areas of high economic–environmental sensitivity were concentrated in parts of east,
south, and west Henan, with sensitivity indices ranging from 0.52 to 0.70. High
sensitivity was mainly due to the greater risk of drought in mountainous areas and
the greater rate of winter wheat cultivation in the plain. Areas of higher drought
resistance for winter wheat were concentrated around Zhengzhou and Hebi, with
drought tolerance indices ranging from 0.44 to 0.62, due mainly to better conditions
for agricultural production.

(3) There were also temporal changes between 2011 and 2020. Areas in Henan Province
that were severely or extremely vulnerable showed a scattered distribution in 2011 and
2014 that became more blocked in 2017 and 2020. The distribution of winter wheat
drought vulnerability classes’ change indicated a trend towards a lower drought
vulnerability index for winter wheat in Henan Province. The vulnerability to drought
of winter wheat in Henan Province from 2011 to 2020 varied relatively little, with most
areas showing average or moderate vulnerability, mainly due to local topography
(higher elevations were more susceptible to drought), but well-developed farmland
and water conservancy facilities with a well-developed social economy increased
drought resistance, so the risk of drought remained low.

We have found that the actual drought losses are influenced by economic levels,
irrigation facilities, and other conditions, and that there are significant regional or household
differences. This provides basic theoretical support for the selection of wheat varieties,
the development of disaster prevention and mitigation measures, and the risk zoning and
control of winter wheat. The drought vulnerability model in this paper only selects some
indicators to characterize drought exposure, sensitivity, and adaptation to winter wheat,
which will result in a less precise zoning assessment. The next step is to further improve
and optimize the assessment model by taking into account the physiological characteristics
of winter wheat and specific on-farm production processes.
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Abstract: The Tarim Basin is a large inland arid basin in the arid region of northwest China and has
been experiencing significant ”warming and wetting” since 1987. As a result, the purpose of this
paper is to determine whether the climate transition phenomenon occurred in the Tarim Basin as well
as the role of atmospheric circulation in this process. We use meteorological data and atmospheric
circulation indexes to study the seasonal trends of climate change in this region from 1987 to 2020
to understand how they are affected by atmospheric circulation. The findings show that, from
1987 to 2020, the Tarim Basin experienced significant warming and wetting; with the exception of
the winter scale, all other seasonal scales exhibited a clear warming and wetting trend. From the
perspective of spatial distribution, most of the areas showed a significant warming trend, and the
warming amplitude around the basin is greater than that in the central area of the basin. However,
there are significant regional differences in precipitation change rates. Meanwhile, wavelet analysis
shows that there is a significant oscillation period of 17–20 years between climate change and the
atmospheric circulation index during 1987–2020. The correlation analysis shows that the Pacific
decadal oscillation (PDO) and El Niño-Southern Oscillation (ENSO) are the main influencing factors
of climate change in the Tarim Basin at different seasonal scales, while the teleconnection of the
Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) is low and the PDO dominates the
summer and autumn temperature changes in the Tarim Basin. The research results of this paper show
that, despite the warming and wetting trends since 1987 in the Tarim Basin, the climate type did not
change. From 1987 to 2020, the main teleconnection factors of climate change in the Tarim Basin were
PDO and ENSO.

Keywords: the Tarim Basin; climate change; spatiotemporal climate characteristics; atmospheric
circulation; climate response

1. Introduction

The Tarim Basin in China has a typical continental desert climate and is thus very
sensitive to the climate of Central Asia and to global climate change. According to current
research, the arid region of northwest China has experienced a significant increase in
temperature and humidity since 1987, mainly characterized by a significant increase in the
frequency of extreme precipitation events [1–5]. The Tarim Basin is the most important
inland basin in the arid region of northwest China and even in the whole arid region of
Central Asia. A significant increase in extreme precipitation events in this region could
destabilize the annual runoff in the Tarim River Basin. Seasonally specific climate change,
in particular, will have a significant impact on the Tarim Basin’s ecological environment,
agricultural environment, and social economy [6–8]. Therefore, given the intensification
of the “warming and wetting” phenomenon in the arid region of northwest China, the

97



Atmosphere 2023, 14, 151

question arises of how climate change is manifested on the seasonal timescale and whether
it significantly affects the Tarim Basin. In addition, the Tarim River is the major river in
the arid continental region of northwest China and is important for the development of
these areas, so the “wetting” phenomenon, especially the seasonally specific type, affects
not only the water resources of the Tarim Basin but also the development of ecological
resources. Moreover, it strongly affects the economic and agricultural development of this
region [9–13]. Therefore, it is vital to understand how seasonally specific climate change
affects the inland basins in these arid regions.

Numerous investigations, both domestic and international, have focused on the warm-
ing and wetting phenomena. For example, Shi et al. [1] reported a climate transition
occurring in northwest China in the early 21st century, and, based on meteorological
data, Chen et al. and Li et al. [14,15] confirmed that northwest China was experiencing a
significant warming and wetting phenomenon through trend analysis. In addition, Wu
et al. and Wang et al. [2,3] showed that the significant warming and wetting phenomenon
in the arid region of northwest China was caused primarily by a significant increase in
extreme precipitation events in the arid region. Similarly, by studying the intensity of
the humidification index in arid areas, Yang et al. and Zhang et al. [16,17] showed that
precipitation varied strongly in the different areas and seasons in northwest China, and
Gessner et al. [18] confirmed the result. Numerous studies of these regions thus report that
the main contributor to the warming and wetting phenomena is the significant increase
in the frequency of extreme precipitation, which strongly affects local ecosystems [19–21].
However, to date, more studies have focused on climate change on the interannual scale
in the arid region of northwest China, whereas little research has focused on seasonally
specific climate change in this region.

Previous studies have shown that atmospheric circulation plays a significant role in
climate change over different time scales. For example, the El Niño Southern Oscillation
(ENSO) can cause extreme hydrological events [4]. Numerous studies have investigated
the relationship between climate change and atmospheric circulation in arid areas, and the
results confirm that atmospheric circulation helps determine the climate in arid areas on an
inter-annual timescale [22–24]. However, at present, more studies focus on the interannual
timescale than on the seasonal timescale. And the seasonal timescale is important for
agriculture in the Tarim Basin because agriculture in this region is mainly rainfed, making
it extremely dependent on seasonal precipitation. Thus, the present study considers the
seasonal timescale not only to better analyze how atmospheric circulation affects the
seasonal climate in the Tarim Basin but also to determine what seasonal agricultural
adjustments should be made in this region.

Thus, the purpose of this study is to ascertain if the climate type in the arid Tarim
Basin of northwest China has changed since 1987 and to explain the seasonal relationship
between atmospheric circulation and climate change in this area. In addition, we investigate
the spatial characteristics of the seasonally specific warming and wetting phenomena in the
Tarim Basin by analyzing meteorological data and atmospheric circulation indexes from
1987 to 2020, and we discuss the relationship between seasonally specific climate change
and atmospheric circulation. The results reveal seasonally changing climate patterns in this
area and provide a basis for understanding how atmospheric circulation affects climate
change on a seasonal timescale. Finally, the research results of this paper show that, despite
the warming and wetting trends since 1987 in the Tarim Basin, the climate type did not
change. On the seasonal timescale, the Pacific decadal oscillation (PDO) and the El Niño-
Southern Oscillation (ENSO) are the main teleconnection factors of climate change in the
Tarim Basin during 1987–2020.

2. Materials and Methods
2.1. Study Area and Data Sources

The Tarim Basin is an important inland arid basin in the arid region of northwest
China (its geographical location is shown in Figure 1). It has a typical continental desert
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climate and is located between the Tianshan and Kunlun Mountains. It is 1100 km long
from east to west and is one of the largest inland basins in the world. The Tarim River
system is composed of four sources and one trunk. It is one of the more complicated
river systems in the inland river basin [25,26]. The Tarim River is not only the only
flowing water source for animals and plants in southern Xinjiang but also the water system
on which the local economy and industry depend for development [18]. In this work,
meteorological data is sourced from the Climatic Research Unit TS v.4.03 (CRU) database
(http://www.cru.uea.ac.uk/data/, accessed on 22 December 2022) and the data cover the
period 1987–2020. The atmospheric circulation index data are from the US National Oceanic
and Atmospheric Administration (http://www.esrl.noaa.gov/psd/enso/, accessed on
22 December 2022). The atmospheric circulation indexes considered herein are the Arctic
Oscillation (AO) index, the El Niño-Southern Oscillation (ENSO) index, the North Atlantic
Oscillation (NAO) index, and the Pacific Decadal Oscillation (PDO) index, and the data
cover the period 1987–2020.
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Figure 1. Location of the Tarim Basin.((a)—the location of the study area; (b)—the drainage systerm
and elevation of Tarim Basin; (c)—distribution of meteorological stations in The Tarim Basin).

The results of Figure 1c show that meteorological stations are mainly distributed in the
north and southwest, with an uneven spatial distribution. The CRU data sets are widely
used in meteorological and hydrological research. Although the spatial resolution of the
data set is relatively low, the spatial distribution in the area without monitoring sites is
relatively excellent. For the above reasons, this data set is finally adopted in this paper. In
this work, the meteorological data are rasterized using ArcGIS 10.8 software, following
which the monthly data are counted as seasonal data by pixel. Finally, the rasterized
seasonal data are extracted by region. The monthly atmospheric circulation indexes were
calculated and integrated into the seasonal data by using the R programming language.
The four seasons were divided according to the meteorological standard: spring ran from
March to May; summer from June to September; autumn from September to November;
and winter from December to February of the following year.
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2.2. Research Methods
2.2.1. Analysis of Change Trend

Unitary linear regression is used in this paper to examine the temporal variation trend
of meteorological element value in the study area [27,28]. It is expressed as follows:

S =
n×∑n

i=1(i× xi)·(∑n
i=1 i)×∑n

i=1(xi)

n× (∑n
i=1 i2)·(∑n

i=1 i)2 (1)

where x is the meteorological element value of each grid; n is the number of years in the
research period, and n in this study is 10 a; S reflects the change rate of meteorological
factor values over time. When S > 0 (S < 0), the meteorological factor values showed an
increase-decrease trend, and the larger/smaller the value, the more significant the growth
(reduction) rate.

2.2.2. Spatial Interpolation Method

Inverse distance weighted interpolation (IDW) is a relatively mature spatial analysis
method used in the discipline of meteorology [29,30]. In this method, the distance between
the interpolation point and the sample point is used as the weighted average weight. The
closer the sample point is to the interpolation point, the greater the weight assigned to the
sample point.

Suppose a series of discrete points are distributed on the plane. Because we know that
all of the coordinates are Xi, Yi, Zi (i = 1,2,3, . . . ,n), the distance (Di) between the discrete
point (Xi, Yi) and the grid point (X, Y) is:

Di =

√
(Xi − X)2 + (Yi −Y)2 (2)

The estimated value of grid points (X, Y) is:

Z =
∑n

i=1

(
Zi
D2

i

)

∑n
i=1

(
1

D2
i

) (3)

2.2.3. Wavelet Analysis

To calculate the real part of the wavelet, this study uses the Morlet continuous complex
wavelet as the basis function (i.e., the comr function) [31,32]. It is expressed as follows:

comr(x) =
σ2iπ·Fe × x2

Fb√
π·Fb

(4)

where Fe is the center frequency and Fb is the frequency bandwidth. The wavelet square
difference is denoted Var and can be obtained by integrating the square of the wavelet
coefficient over the time translation domain b:

Var(α) =
∫ ∞

−∞
ω f |(a, b)|2db (5)

2.2.4. Correlational Analysis

Correlation analysis is a statistical method to analyze the correlation between variables
and is widely used in hydrometeorology. Consider two time series, x and y; we use
statistical methods to calculate the correlation coefficient between the two, as follows:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2
(6)
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where r is the correlation coefficient, which ranges from −1.0 to 1.0. When r > 0 (r < 0),
the two time series are positively (or negatively) correlated. The correlation is stronger for
larger |r| [33,34].

3. Results
3.1. Temporal Characteristics of Climate Change in the Tarim Basin

This study investigates the interannual variation of temperature and rainfall in the
Tarim Basin (Figure 2). For all seasons, temperatures and precipitation rise during the
study period. The warming trend in spring is the most significant, with a warming rate of
0.443 ◦C/decade. The warming trend in winter is not significant, with a warming rate of
0.008 ◦C/decade. The autumn precipitation increases at the greatest rate (1.34 mm/decade).
The increasing rate of precipitation in winter is 0.05 mm/decade. Overall, the warming
and wetting phenomenon has been significant in the Tarim Basin over the last 30 years
in the spring, summer, and autumn but less so in the winter. This variation is consistent
with the typical continental desert climate characteristics of the Tarim Basin, which involve
significant changes in climate between the four seasons, with winters being cold and
dry [35].
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Figure 2. Temporal characteristics of seasonal climate change in the Tarim Basin. Panels show the
climate change in spring, summer, autumn, and winter, respectively.

A Morlet wavelet analysis is used to study the seasonal climate cycles in the Tarim
Basin from 1987 to 2020 (Figure 3). The results show that the temperatures and precipitation
from 1987 to 2020 in the Tarim Basin alternate between a positive phase and a negative phase
in the 17–20 year weekly period, which indicates that, from 1987 to 2020, the temperature
and precipitation in the Tarim Basin undergo seasonally periodic variations. Calculating
the wavelet square difference of temperature and precipitation for each season (results
not shown) indicates that, for each season, the temperature and precipitation oscillate
with a period of 17–20 years. This phenomenon indicates that the warming and wetting
phenomena in the Tarim Basin from 1987 to 2020 followed the same pattern, as shown
by the wavelet analysis of the various atmospheric circulation indexes (AO index, ENSO
index, NAO index, and PDO index) from 1987 to 2020. From 1987 to 2020, the atmospheric
circulation indexes also oscillate significantly with a 17–20-year period, which indicates
that the warming and wetting phenomena of the Tarim Basin are related to the atmospheric
circulation because they oscillate with the same period. However, how do atmospheric
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circulation and climate change in space in the Tarim Basin? Further research is needed to
address this question.
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from 1987 to 2020 (Different factors of climate change and atmospheric circulation are listed on the
horizontal and at different seasonal scales on the vertical).

3.2. Spatial Characteristics of Climate Change in the Tarim Basin

The warming and wetting rates of the Tarim Basin are calculated based on the rate
of change of the climate, and spatial interpolation (inverse distance weighting) is used to
analyze the spatial distribution of climate trends for each season in the Tarim Basin [27,28].
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The results in Figure 4 show that the warming trend occurred in most regions of the Tarim
Basin for all seasons; the warming amplitude around the basin is greater than that in
the central area of the basin. In spring, the temperature increased in the Tarim Basin by
0.827 ◦C/decade, which was the fastest of all seasons. In winter, the temperature increased
in the Tarim Basin by −0.088 ◦C/decade, which was the slowest of all seasons. The rate
of change in precipitation in the Tarim Basin depends on the season and location, with
significant increases in some areas and significant decreases in others. The regional rate of
change in rainfall in spring is like that in autumn. Precipitation increased significantly in
the southeastern parts of the basin, with the highest rate of change in precipitation being
5.062 mm/decade. The regional rate of change of precipitation in the summer varied the
most, decreasing from the northwest part of the basin to the southeastern parts of the
basin. The maximum rate of change was 6.965 mm/decade. The regional rate of change in
precipitation varied the least in winter, reaching −2.319 mm/decade.

3.3. Climate Change and Atmospheric Circulation in the Tarim Basin

On the interannual scale, the wavelet analysis of climate change shows that the
warming and wetting phenomena in the Tarim Basin are related to atmospheric circulation
(Figure 3). The results of this paper are consistent with those of Wu et al. and Lv et al.
at multiple scales. However, the spatial evolution of teleconnection between warm and
humid phenomena is not clear from seasonal atmospheric circulation. For this reason, we
use the monthly circulation indexes (AO index, ENSO index, NAO index, and PDO index)
that describe the atmospheric circulation from 1987 to 2020 to calculate the seasonal data
and determine if seasonal temperature and precipitation are correlated with these indexes
in the Tarim Basin. There is a remote correlation between the seasonal temperature and
the atmospheric circulation in Section 3.3.1 and a remote correlation between the seasonal
precipitation and the atmospheric circulation in Section 3.3.2.

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 14 
 

 

Basin by 0.827 ℃/decade, which was the fastest of all seasons. In winter, the temperature 
increased in the Tarim Basin by −0.088 ℃/decade, which was the slowest of all seasons. 
The rate of change in precipitation in the Tarim Basin depends on the season and loca-
tion, with significant increases in some areas and significant decreases in others. The re-
gional rate of change in rainfall in spring is like that in autumn. Precipitation increased 
significantly in the southeastern parts of the basin, with the highest rate of change in 
precipitation being 5.062 mm/decade. The regional rate of change of precipitation in the 
summer varied the most, decreasing from the northwest part of the basin to the south-
eastern parts of the basin. The maximum rate of change was 6.965 mm/decade. The re-
gional rate of change in precipitation varied the least in winter, reaching −2.319 
mm/decade. 

 
Figure 4. Cont.

103



Atmosphere 2023, 14, 151
Atmosphere 2023, 14, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Spatial variations in seasonal climate change in the Tarim Basin. (a–d) Temperature vari-
ations in spring, summer, autumn, and winter, respectively. (e–h) Precipitation variations in 
spring, summer, autumn, and winter, respectively (The black grid indicates that the trends are sta-
tistically significant at the 0.05 level). 

3.3. Climate Change and Atmospheric Circulation in the Tarim Basin 
On the interannual scale, the wavelet analysis of climate change shows that the 

warming and wetting phenomena in the Tarim Basin are related to atmospheric circula-
tion (Figure 3). The results of this paper are consistent with those of Wu et al. and Lv et al. 
at multiple scales. However, the spatial evolution of teleconnection between warm and 
humid phenomena is not clear from seasonal atmospheric circulation. For this reason, we 
use the monthly circulation indexes (AO index, ENSO index, NAO index, and PDO in-
dex) that describe the atmospheric circulation from 1987 to 2020 to calculate the seasonal 
data and determine if seasonal temperature and precipitation are correlated with these 
indexes in the Tarim Basin. There is a remote correlation between the seasonal tempera-
ture and the atmospheric circulation in Section 3.3.1 and a remote correlation between 
the seasonal precipitation and the atmospheric circulation in Section 3.3.2. 

3.3.1. The Seasonal Temperature and Atmospheric Circulation in the Tarim Basin 
In most Tarim Basin regions, seasonal temperature and atmospheric circulation in-

dexes are relatively low (α = 0.05) as shown in Figure 5. In spring, the PDO and ENSO 
indices showed a significant negative correlation with the temperature in some regions. 
In the summer (autumn), the PDO index had a significant negative correlation with Ta-
rim Basin temperature, whereas the other indexes had no statistical significance. In win-
ter, there is a significant positive correlation between the ENSO index and the southwest 
Tarim Basin. The results in Figure 5 show that the climate change in the Tarim Basin 
during 1987–2020 is related to the change of atmospheric circulation. PDO is the leading 
factor of summer and autumn climate change in the Tarim Basin, and ENSO also plays an 
important role in spring and winter climate change. 

Figure 4. Spatial variations in seasonal climate change in the Tarim Basin. (a–d) Temperature
variations in spring, summer, autumn, and winter, respectively. (e–h) Precipitation variations in
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statistically significant at the 0.05 level).

3.3.1. The Seasonal Temperature and Atmospheric Circulation in the Tarim Basin

In most Tarim Basin regions, seasonal temperature and atmospheric circulation indexes
are relatively low (α = 0.05) as shown in Figure 5. In spring, the PDO and ENSO indices
showed a significant negative correlation with the temperature in some regions. In the
summer (autumn), the PDO index had a significant negative correlation with Tarim Basin
temperature, whereas the other indexes had no statistical significance. In winter, there is a
significant positive correlation between the ENSO index and the southwest Tarim Basin.
The results in Figure 5 show that the climate change in the Tarim Basin during 1987–2020
is related to the change of atmospheric circulation. PDO is the leading factor of summer
and autumn climate change in the Tarim Basin, and ENSO also plays an important role in
spring and winter climate change.
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Figure 5. Spatial distribution of the correlation between average annual temperature and atmospheric
circulation in the Tarim Basin. Each column corresponds to a season, and each row corresponds to
an atmospheric circulation index (the black bars on the grid indicate that the trends are statistically
significant at the 0.05 level).

3.3.2. The Seasonal Precipitation and Atmospheric Circulation in the Tarim Basin

Seasonal precipitation and the corresponding atmospheric circulation indexes are
relatively low (α = 0.05) in most regions of the Tarim Basin, as shown in Figure 6. In
spring, the AO index showed a significant negative correlation with precipitation in some
regions, while the ENSO index (PDO index) showed a significant positive correlation
with precipitation in some regions. In summer, the NAO index showed a significant
positive correlation with precipitation in eastern parts of the basin, while other atmospheric
circulation indexes showed no statistical significance. In autumn, there is a significant
positive correlation between the ENSO index and precipitation in the southeast Tarim Basin.
In winter, the correlation between the atmospheric circulation index and precipitation in the
Tarim Basin is not statistically significant. The results of Figure 6 show that the influence
of atmospheric circulation on the teleconnection of the Tarim Basin is relatively small. In
this paper, it is concluded that atmospheric circulation is not the main factor affecting
precipitation in the Tarim Basin at a seasonal scale and that the main controlling factors of
precipitation seasonal variation need to be explained in combination with other factors.
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Figure 6. Spatial distribution of correlation between annual precipitation and atmospheric circulation
in the Tarim Basin. Each column in the figure corresponds to a season, and each row corresponds to
an atmospheric circulation index (The black grid indicate that the trends are statistically significant at
the 0.05 level).

4. Discussion

The Tarim Basin has a typical continental desert climate and is in the extremely arid
region of northwest China [20,21]. The Tarim Basin is the only inland basin in the arid
region of northwest China and is of great significance for research into climate change, the
ecological environment, and the social economy of the entire northwest region of China and
even the entire arid region of Central Asia [6–8,36,37]. However, our current knowledge
about the spatial distribution of the warming and wetting phenomena in the Tarim Basin
on a seasonal timescale remains poor. Most studies of this phenomenon focus on the
spatiotemporal evolution of water resources and drought in the Tarim Basin or analyze the
spatial characteristics of climate change on a long-term scale in the arid region of northwest
China [35,38,39].

4.1. Spatiotemporal Characteristics of Climate Change in the Tarim Basin

To elucidate the warming and wetting phenomenon that currently envelops the arid
region of northwest China, we analyze here its seasonally specific spatial evolution in the
Tarim Basin. The results show that the warming trend occurred in most regions of the Tarim
Basin for all seasons; the warming amplitude around the basin is greater than that in the
central area of the basin. At the same time, the wetting trend differs significantly between
different zones of the region. These results are consistent with the climate of the Tarim
Basin, namely, the significant seasonal differences in climate and the copious evaporation
led to spatial variations in the wetting trend [11,12]. This indicates that the warming and
wetting phenomenon in the arid Tarim Basin has not forced the spatiotemporal evolution of
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the climate on the seasonal scale to depart from the original climate type, which means that
this phenomenon has not significantly changed the climate type of the Tarim Basin [13,40].

In this paper, the temporal and spatial characteristics of temperatures and precipitation
on the seasonal scale are analyzed by statistical methods. The results show that the climate
types in the Tarim Basin have not changed at the seasonal scale, and the climate changes
in the Tarim Basin are still consistent with the original climate types. Based on previous
research, we conclude that the warming and wetting phenomenon in the Tarim Basin is
linked to global warming, extreme precipitation events, and seasonal agricultural activities.
A key question now is: how long will the warming and wetting phenomena continue in
the future? This is the reason why the climate type of the Tarim Basin will change in the
future. Again, this is our next research topic.

4.2. Climate Evolution in the Tarim Basin: Effect of Atmospheric Circulation

A wavelet analysis shows that the periodic characteristics of climate in the Tarim Basin
from 1987 to 2020 and atmospheric circulation are similar, which indicates that atmospheric
circulation plays a role in generating the warming and wetting phenomena in the Tarim
Basin. An analysis of the seasonal correlations between climate change and atmospheric
circulation shows that PDO and ENSO are the main influencing factors of climate change in
the Tarim Basin at different seasonal scales, while the teleconnection of AO and NAO is low.
Among them, the PDO dominates the summer and autumn temperature changes in the
Tarim Basin. However, the teleconnection effect of atmospheric circulation on precipitation
in the Tarim Basin is relatively low. These results indicate that atmospheric circulation is
not the only factor contributing to the warming and wetting phenomena in the Tarim Basin;
internal variations in climate factors can also be important. The phenomenon may also be
promoted by external stress factors other than atmospheric circulation [41,42].

Many studies have shown that atmospheric circulation is the dominant factor in cli-
mate change in northwest China [5,41,42]. However, due to the Tarim Basin’s uniqueness
in comparison to northwest China, for example, it has the Tarim River system and the
Taklimakan Desert. Therefore, the actual physical mechanism in the Tarim Basin is com-
plicated. In future studies, many factors should be considered to analyze the seasonally
specific spatiotemporal characteristics of the warming and wetting phenomena in the Tarim
Basin [43,44].

5. Conclusions

The seasonally specific spatiotemporal variations of the Tarim Basin’s climate were
studied using climate inclination rate, wavelet analysis, and correlation analysis, and the
correlations (α = 0.05) between these climate indexes and atmospheric circulation were
examined. The results lead to the following conclusions:

(1) The Tarim Basin experienced a significant, seasonally specific warming and wetting
phenomenon from 1987 to 2020. All areas of the Tarim Basin warmed significantly in
all seasons over this period, whereas the precipitation differed significantly across the
seasons. The climate of the basin and the atmospheric circulation both oscillated over
a period of 17–20 years, which indicates that the atmospheric circulation is involved
in the generation of the wetting phenomenon of the Tarim Basin. Moreover, the
spatiotemporal evolution of climate change in the Tarim Basin still follows its original
climate type, despite experiencing a warming and wetting phenomenon over the
study period. Because the two indices of temperature and precipitation were studied
by statistical methods in this paper, the research results are weak in explaining the
mechanism. In future studies, we need to consider using different indicators (such as
the Drought Index, Drought Frequency, and Normalized Difference Vegetation Index)
to explore the characteristics of climate change in the Tarim Basin at the seasonal scale.

(2) Seasonal temperature (precipitation) and the corresponding atmospheric circulation
indexes are relatively low (α = 0.05) in most regions of the Tarim Basin. PDO is the
leading factor of summer and autumn climate change in the Tarim Basin, and ENSO
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also plays an important role in spring and winter climate change. However, the
teleconnection effect of atmospheric circulation on precipitation in the Tarim Basin
is relatively low. The results show that atmospheric circulation is only one of the
dominant factors contributing to the warm and wet phenomenon in the Tarim Basin.
For example, extreme precipitation events may be the main cause of the wetting
phenomenon in the Tarim Basin. Therefore, because the actual physical mechanism
in the Tarim Basin is complicated, many internal factors need to be considered in
future research.
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Abstract: The ubiquity of soil water erosion in the Yarlung Tsangpo River Basin leads to a series of
natural hazards, including landslides, debris flows and floods. In this study, the Revised Universal
Soil Loss Equation model (RUSLE) was used to quantify potential soil water erosion, while the Height
Above Nearest Drainage model (HAND) was used to delimit potential flood hazard zones. Remote
sensing and geographic information system technologies were employed to spatialize the results,
which showed that the annual soil loss from water erosion was less than 1239 t ha−1 y−1. The total
soil loss was estimated to be over 108 × 106 tons, of which about 13 × 106 tons (12.04% of the total)
occurred from the agricultural land in the downstream valley. Soil erosion mapping was performed
using six levels of soil erosion intensity and the effects of precipitation, land use/land cover and
topography on soil erosion were revealed. Increases in precipitation and slope gradient significantly
increased the soil loss rate, while the maximum rate of soil loss occurred from densely vegetated land,
reaching 9.41 t ha−1 y−1, which was inconsistent with erosion preconceptions for this land type. This
may be due to a combination of the region’s unique climate of high intensity rainfall and steep slopes.
Flood hazard mapping showed that all regional cities were located in a flood hazard zone and that,
within the total basin area (~258 × 105 ha), 9.84% (2,537,622 ha) was in a high flood occurrence area,
with an additional 1.04% in aa vulnerable to moderate flood hazard area. Approximately 1.54% of the
area was in a low flood risk area and 4.15% was in a very low flood risk area. The results of this study
provide an initial identification of high-risk soil water erosion and flood hazard locations in the basin
and provide a foundation upon which decision-makers can develop water and soil conservation and
flood prevention policies.

Keywords: soil loss; potential flood risk; Revised Universal Soil Loss Equation (RUSLE); Height
Above Nearest Drainage (HAND)

1. Introduction

Soil erosion is an important environmental issue related to global ecology, environment,
economy and security. Soil erosion reduces soil productivity and water quality, threatens
food security and the future development of agriculture, increases sediment accumulation
and leads to the possibility of floods [1]. Severe soil erosion eventually leads to frequent
natural disasters such as siltation in rivers, lakes, weirs, ponds, floods, landslides and debris
flows [2,3]. The accumulation of sediments caused by soil erosion is an important factor
causing flood disasters. Since the 21st century, about 74% of natural disasters were related
to water disasters [4] and the frequency of global floods has increased significantly, for
example India is a region prone to chronic floods [5]. Ethiopia, one of the countries with the
highest erosion risk in the world and is also prone to flooding. Developing countries, with
more fragile soils and often very sensitive to climate change, often face more serious human
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and financial consequences and post-disaster reconstruction problems brought about by
floods and related land disasters. Therefore, the control of soil erosion and avoidance of
geological disasters caused by soil erosion is the focus of current research.

Against the background of global encouragement of preventing soil erosion and
protecting the soil environment, the Yarlung Tsangpo River Basin (YTRB) [6], as a soil
environment sensitive area and an area with strong physical freeze–thaw erosion, is located
in the southern part of the Qinghai-Tibet Plateau, with high altitude and complex terrain.
Its unique geographical features such as loose soil, high precipitation intensity and obvious
climate change lead to various forms of soil erosion that are prone to occur widely [3].
Among them, the main type of soil erosion is freeze–thaw erosion, although water erosion
cannot be ignored [7]. Therefore, quantitative evaluation of soil erosion in the Yarlung
Zangbo River Basin, identification and analysis of soil erosion sensitive areas and their
spatial and temporal patterns will bring important scientific guidance to the protection of
soil environment and the reduction of natural disasters.

At present, soil erosion research methods have been widely investigated, mainly in
the form of control simulation experiments, field fixed-point observations, remote sensing
image analysis, soil erosion model simulation and sediment element tracer methods [2,8].
At present, many scholars are conducting research on different spatial and temporal scales
based on different soil erosion models. The widely used models include the Revised Uni-
versal Soil Loss Equation (RUSLE), the US Universal Soil Loss Model (USLE), the Chinese
Soil Loss Model (CSLE), Soil and Water Assessment Tool (SWAT), etc. [9]. Compared with
the methods that rely on long-term soil survey data and parameters that are difficult to
collect and calculate, the RUSLE model has more obvious advantages in data operability,
high precision and a wide application range [10]. Combining remote sensing (RS) and
geographic information system (GIS) technologies, the RUSLE model is widely used in
complex areas of various terrain types and in the study of spatial pattern characteristics
of soil erosion at different scales [11,12]. However, the application of the model has obvi-
ous regional characteristics, so it is necessary to comprehensively consider the regional
characteristics and select a reasonable calculation method for the parameter localization
calculation.

The Relative Altitude to Nearest Neighbor Channel (HAND) model is a quantita-
tive terrain model based on the Shuttle Radar Terrain Mission-Digital Elevation Model
(SRTM-DEM) [13]. The local relative terrain with reference to the river network water
system is defined mathematically as the elevation difference between any position on the
surface and the point where it enters the river network from the hillside along the flow
of water and describes the relative height of any position on the surface compared to the
local water system [14,15]. Compared with the classic DEM method, HAND can provide
supplementary local terrain information. The flood mapping method based on HAND is
feasible and reasonable; it can highlight local terrain features and reflect the water flow
path of the hillside-valley, which is more conducive to establishing the relationship between
local topography and hydrological response [15]. Many scholars have carried out research
based on the HAND model. Zheng et al. developed a synthetic rating curve based on
flow and water level [16] and Chow et al. created an exclusion mask that can improve
the accuracy of flood mapping [17]. Liu et al. and Speckhann et al. demonstrated the
applicability of the HAND model for flood mapping over large areas [18,19]. Therefore,
this paper will use the DEM-based HAND model to draw flood hazard maps. However, it
cannot dynamically show the inundation changes in the process of flood evolution and the
influence of river network density on the accuracy of flood mapping cannot be ignored.

Soil erosion is caused by multiple factors, including rainfall intensity, soil characteris-
tics, topography, runoff, land use type, vegetation coverage and human activities [20,21].
Although precipitation and topography are the dominant factors of soil erosion, human
activities such as rapid population growth, deforestation, land plowing and overgrazing
have also been reported to accelerate soil erosion globally [22]. In terms of factors affecting
soil erosion, scholars have carried out much research mainly from two aspects: natural
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factors and human factors [23–25]. Studies have shown that climate change and human
activities have a dual impact on soil erosion, which will lead to significant changes in land
use/cover, causing drastic fluctuations in the soil erosion modulus [8].

Based on the research scale/region aspect of the RUSLE model, its feasibility has been
effectively verified in different regions and research areas at multiple scales around the
world. Global research involves areas such as Rondonia in Brazil, Ethiopia and so on [26].
However, scholars in China often conduct research on the influencing factors of soil erosion
spatio-temporal differentiation feature sets, involving various spatial scales. These include
Chengde City, Taihang Mountains, Dianchi Lake Basin, Maotiao River Basin, typical small
watersheds in the middle reaches of the Yellow River, small watersheds in sugarcane fields,
etc. [2,4,6,8,9,27–36]. The research on soil erosion in the source area of the Yarlung Tsangpo
River based on the RUSLE model usually focuses on a small watershed, such as the Maquan
River Basin [37–39] and the assessment of sudden soil erosion for the entire source area has
not yet been carried out. Studies have shown that freeze–thaw erosion is the main form of
soil erosion in this watershed. Overgrazing is common in the upper and middle reaches of
the watershed and the middle and lower reaches are the main planting areas. Long-term
grazing and farming activities will accelerate soil erosion. Furthermore, estimating the
scale and distribution of soil erosion and flood hazards at different spatio-temporal scales
should be undertaken to focus on environmental management and flood control in larger
river basins [40,41].

Although research on soil erosion has received considerable attention, the exploration
of the relationship between soil erosion and flood disasters has been neglected. In view
of this, based on the RUSLE and HAND models, this paper uses RS and GIS spatial
information analysis techniques to quantitatively analyze the spatial distribution patterns
of soil erosion and potential flood disasters in the YTRB, aiming to provide planners and
decision makers with the data to implement soil and water conservation and flood control
policies. Another aim is to provide reliable information in order to assist the area’s soil and
water conservation projects, disaster prevention tasks and ecological restoration.

2. Study Area

The YTRB is located in Tibet, SW China, between 27◦49 and 31◦16 N and 81◦57 and
7◦6 E (Figure 1). The basin lies at the northern foot of the Himalayas, with an average alti-
tude of 4500 m and an area of ~ 25.8 × 106 ha. The Yarlung Tsangpo (YT) river originates in
the Angsi Glacier in the SW of the Tibetan Plateau; it has an annual flow of 1.359 × 1011 m3

and flows for 2057 km into Assam, India [42].
The plateau valley in the upper reaches has the typical semiarid climate of a plateau

cold temperate zone, with an annual average precipitation of 300 mm. The floodplain in
the middle is approximately 1200 × 300 km in extent and there are numerous tributaries
here—including the Lhasa, Parlung Tsangpo, Nyang, Nyang Qu and Dkzhung Tsangpo as
the main five—which provide water for crop cultivation. The middle reaches, including
153,300 ha of agricultural land, with an annual precipitation of 300–600 mm, enjoy a plateau
temperate climate and constitute the most developed agricultural region in Tibet. The
downstream YT Grand Canyon is the deepest valley in the world, where the river flows
around the Namcha Barwa peak and arrives at Pasighat (India) through a large, horseshoe
bend. In this region, large altitudinal variations provide adequate hydraulic resources. The
YTRB reaches its lowest temperatures in January and its highest in June and July, with
annual average temperatures ranging from 4.3–8.3 °C. Precipitation in the basin gradually
increases from the NW to the SE, reaching 600–800 mm y−1 in the lower reaches [43].
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Figure 1. Yarlung Tsangpo river basin location, including major cities, mountains and rivers.

3. Materials and Methods
3.1. Data Sources

Weather stations are sparsely distributed in the YTRB and in their absence, widely
used interpolation methods could obscure regional-level precipitation characteristics. For
this reason, Chinese monthly precipitation data for the period 1901–2017, at a spatial
resolution of 1 km and using 0.1 mm precipitation units were used in this study. These data
were provided by the National Tibetan Plateau Data Center (http://www.data.tpdc.ac.cn
(accessed on 8 March 2022)), based on the global 0.5◦ climate dataset published by CRU
and the global high-resolution climate dataset published by WorldClim and obtained by
the Delta spatial downscaling scheme [44–48]. Soil map information (at a 1 km spatial
resolution) was extracted from the China Soil Map, which originated from data held in
the Harmonized World Soil Database (HWSD) (version 1.1) [49,50]. Imagery of 30 × 30 m
from Landsat 8 OLI was downloaded from the USGS (http://www.earthexplorer.usgs.gov
(accessed on 13 March 2022)) to generate land use/land cover (LULC) study area mapping
and 90 × 90 m SRTM3 DEM datasets from the USGS were also applied. The Chinese
Vegetation Dataset and the YTRB outer cadaster were both downloaded from the Data
Center for Resources and Environmental Sciences (RESDC) of the Chinese Academy of
Sciences (http://www.resdc.cn (accessed on 15 March 2022)).

3.2. Revised Universal Soil Loss Equation

Soil water erosion was estimated using the RUSLE model. RS technology was used
for LULC classification and GIS technology was employed to compute various factors
(Figure 2).

The RUSLE model is empirically expressed as shown in Equation (1):

A = R × K × LS × C × P (1)

where A indicates the average annual soil erosion per unit area (t ha−1 y−1); R represents
the rainfall erosivity factor (MJ mm ha−1 h−1 y−1); K denotes the soil erodibility factor
(t ha h MJ−1 ha−1 mm−1); LS stands for the combination of slope length and slope steep-
ness (dimensionless); C represents the cover management factor (dimensionless); and P
indicates the support practice factor (dimensionless).
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Figure 2. RUSLE model methodology flow chart, as used in this study.

3.2.1. Precipitation Erosivity (R) Factor

Precipitation is the direct driver of soil erosion because splashing raindrops separate
soil particles and runoff from rainfall can further wash away and carry soil, causing soil
erosion [11]. Thus, the precipitation erosion force factor reflects the ability of raindrops to
separate and transport soil particles. Primarily, the R factor consists of the multiplication
of total rainfall kinetic energy and maximum rainfall intensity for 30 consecutive minutes.
Since intensity data were not available for the YTRB, a regression equation based on
monthly precipitation data was applied [51], as shown in Equation (2):

R = ∑12
i=1 1.735 × 10(1.5 log10 (p2

i /P)−0.08188) (2)

where R indicates the precipitation erosivity factor (MJ mm ha−1 h−1 y−1); pi represents
monthly precipitation (mm month−1); and p shows annual precipitation (mm y−1). R-factor
mapping was generated with the ArcGIS (version 10.2, ESRI, Redlands, CA, USA) software
raster calculator, using Equation (2).

3.2.2. Soil Erodibility (K) Factor

Soil erodibility is a measure of the inherent sensitivity of a standard plot to precipitation
erosivity. The K factor demonstrates the inherent resistance of soil particles to the separation
and transport capacity of precipitation and runoff [11]. In this study, K-factor estimation
was carried out using the Erosion Productivity Impact Calculator (EPIC) empirical model,
as developed by Williams [52] and represented by Equation (3):

K =

{
0.2 + 0.3 exp

[
−0.0256SAN1 − SIL

100

]}(
SIL

CLA + SIL

)0.3

[
1 − 0.25C

C + exp(3.72 − 2.95C)

][
1 − 0.7SN1

SN1 + exp(−5.51 + 22.9SN1)

] (3)
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where K indicates the soil erodibility factor (t ha h MJ−1 ha−1 mm−1); SAN represents
the percentage of sand (0.1–2 mm diameter) (%); CLA represents the percentage of clay
(0.002–0.1 mm diameter) (%); SIL denotes the percentage of silt (diameter < 0.002 mm) (%);
C shows the percentage of organic carbon (%); and SN1 = 1 − SAN/100. The soil types
and respective characteristic values in the YTRB were acquired from the China Soil Map,
while K-factor mapping was generated according to Equation (3), in the spatial raster layer
(Figure 3).

Figure 3. Yarlung Tsangpo soil data. (a) soil types; (b) percentage of clay; (c) percentage of sand;
(d) percentage of silt.

3.2.3. Slope Length and Slope Steepness (LS) Factor

The LS factor consists of the ratio of soil loss per unit area of a field slope to that of the
RUSLE standard slope, with a slope length of 22.13 m and a slope steepness of 9◦, under
the same conditions [11]. The effect of topography on soil erosion is mainly reflected in the
movement and flow of sediment and water, as driven by gravity. The LS factor is made up
of the slope length (L) and slope steepness (S) factors. Slope length refers to the distance
from the initiation point of overland flow to the designated receiving channel along the
flow route, while slope steepness is the ratio of the vertical height of the slope surface to
the horizontal distance. Therefore, Equations (4) and (5) were used to calculate the LS
factor [53,54]:

LS =

(
λ

22.1

)m
×

(
0.065 + 0.045Sg + 0.0065S2

g

)
(4)

λ = [ f low accumulation ∗ cell size] ; Sg =
sin(0.01745 × θ)

0.09
(5)

where LS indicates the slope length and steepness factor; λ represents slope length (m); Sg
shows the grid slope in percentage; and θ denotes the slope (◦). According to the above
paragraph, m is taken as 0.5. SRTM-DEM imagery, with a 90 m spatial resolution, was used
to identify filled sinks, which allowed flow direction and accumulation grids to be deduced.
LS-factor mapping was computed using ArcGIS 10.2 software.
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3.2.4. Cover Management Factor

The cover management factor is the ratio of soil loss from a specific land area to that
from continuous fallow land under certain environmental conditions [42]. The C factor,
which indicates the influence of surface vegetation, land use and agricultural activities
on soil erosion, is an important factor in soil erosion assessment and can be estimated
using several methods. In this study, the authors determined C-factor values for different
vegetation types in the Chinese vegetation dataset (Figure 4), which, when combined with
previous research results (Table 1), facilitated C-factor map development.

Figure 4. Yarlung Tsangpo river basin vegetation types.

Table 1. Yarlung Tsangpo river basin vegetation types and their C values.

Vegetation Type Area (ha) Proportion (%) C Value Source

Broad-leaved forest 840,050 3.26 0.06 Xiao et al. [55]
Coniferous forest 1,654,860 6.41 0.09 Xiao et al. [55]

Tropical rain forest 268,494 1.04 0.004 Xiao et al. [55]
Shrubs 3,810,622 14.77 0.09 Xiao et al. [55]

Alpine steppe 7,920,449 30.69 0.15 Wang & Jiao [56]
Alpine meadow 8,813,183 34.15 0.15 Wang & Jiao [56]

Grassland 910,231 3.53 0.11 Wang & Jiao [56]
Savanna 22,289 0.09 0.04 Xiao et al. [55]

Farmland 341,261 1.32 0.55 Yu et al. [55]
Bare area 2347 0.01 0.55 Yu et al. [55]

Water body 174,376 0.68 1 Zhou et al. [1]
Glacier 1,043,678 4.05 1 Zhou et al. [1]

3.2.5. Support Practice Factor

The support practice factor is the ratio of soil loss to soil erosion on upslopes and
downslopes under the influence of specific support measures [11]. Large-scale P-factor
mapping was performed using the method provided by the USDA handbook for LULC
types, as classified using satellite images (Table 2) [57]. LULC mapping was generated using
supervised classification of Landsat 8 OLI imagery and applying maximum likelihood
settings in ENVI (version 5.1, Exelis Visual Information Solutions Inc., Boulder, CO, USA)
software (Figure 5). For the classification accuracy of LULC data, a 2m GF image was used
to evenly select 30 points for each of the ten land use types for verification and the results
showed that the accuracy rate was about 88%.
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Table 2. Yarlung Tsangpo river basin land use types and their P values.

Land Use Type Area (ha) Proportion (%) P

Agricultural 405,554 1.57 0.5
Degraded forest 1,282,931 4.97 0.8

Densely vegetated 2,508,603 9.72 1.0
Grassland 12,322,344 47.76 0.9

Open forest 1,516,450 5.89 0.8
Rocky areas 5,508,307 21.35 1.0
Sandy areas 932,961 3.62 1.0
Settlements 25,155 0.10 0.1
Snow areas 402,839 1.56 1.0

Water bodies 892,381 3.46 0.0

Figure 5. Yarlung Tsangpo river basin land use/land-cover map.

3.3. Using the Height above Nearest Drainage Model

The elevation from each raster cell above the nearest catchment unit can be described
using the HAND model [13], which can separate flood-prone areas from areas with lower
flood occurrence probability [17]. Topography is an influencing factor on hydrology, which
determines the water flow direction and rate; thus, in order to establish a drainage network,
it is necessary to maintain flow direction topological continuity.

The actual topography represented in SRTM data approximates the upper canopy [58]
so that, for areas covered by dense or tall vegetation, a variable degree of relief masking
occurs in SRTM data, producing depressions and pits. This causes inconsistencies between
local drainage directions calculated using topography data (LDD) and actual flow paths.
For this reason, in order to calculate a corrected LDD for this study, the original SRTM-DEM
data were filled by raising the heights of pits to those of their pour points, in a procedure
performed using ArcGIS 10.2. The contribution area grid was then determined using the D8
method proposed by Mark [59]. Then, since normalized terrain heights had been calculated
using drainage network pixel elevations, the drainage network needed to be correctly
defined by the contribution area threshold [19]. The HAND model, which was integrated
into TerraHidro software, was applied by inputting the no-sinks DEM, the D8 flow grid and
the drainage network grid (Figure 2), which allowed the HAND model nearest drainage
mapping to be generated.

4. Results
4.1. Soil Loss Assessment Using the RUSLE Model

The method of combining GIS with the RUSLE model was used to determine the
amount and spatial distribution of soil loss in the study area, including the following five
erosion risk factors: rainfall erosivity, soil erosivity, slope length and steepness, soil cover
management and soil conservation.
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High-intensity precipitation is more likely to cause severe soil erosion and flood
hazards. The R factors estimated for this study ranged from 38–4857 MJ mm ha−1 h−1 y−1,
with an average of 658 MJ mm ha−1 h−1 y−1 (Figure 6a). Actual weather station rainfall
data were used to verify the accuracy of the R-factor estimation process. Data from five
weather stations were compared with that of the Chinese Monthly Precipitation Dataset
(Table 3), with the results showing that the latter were generally lower, with relative errors
ranging between −17.88% and 5.03%.

Figure 6. The RUSLE model factor maps: (a). R factor (precipitation erosivity), including locations of
five weather stations used for verification; (b). K factor (soil erodibility); (c). LS factor (slope length
and slope steepness); (d). C factor (cover management); (e). P factor (support practices).

Table 3. Validation of R-factor estimation using the Chinese Monthly Precipitation Dataset.

Station

Average Annual Precipitation (mm) R Factor (MJ mm ha−1 h−1 y−1)

Station
Value

In This
Study

Relative
Error (%)

Station
Value

In This
Study

Relative
Error (%)

Namling 576 473 −17.88 1391 1230 −11.57
Lhoka 378 397 5.03 895 722 −19.33

Mainling 707 663 −6.22 638 698 9.40
Nyingchi 709 663 −6.49 709 721 1.69

Bomê 929 878 −5.49 992 920 −7.26

The relative errors for the R-factor estimates ranged from −19.33% to 9.40%, which
was very consistent. The YTRB is very broad and also has elevation differences of > 7000 m
(149–7782 m). These unique geographical conditions give rise to very large precipitation
differences, with rainfall increasing from upstream to downstream, reaching a maximum
of 2357 mm y−1. The 490 mm month−1 peak in the downstream monthly average occurs
in June (Figure 7). It was found that the R value was higher in areas with large rainfall
and intensity and vice versa. However, a single R value cannot satisfactorily prove the
change of rainfall distribution in the study area. Rainfall erosivity is an important factor in
assessing soil erosion risk for future land use and climate change.
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Figure 7. Spatial distribution of average monthly and annual precipitation. The bottom axis shows
the distance to the river source and the top axis shows the average annual precipitation in each
distance range. Blue (red) indicates low (high) precipitation. The lower panel indicates topography
and elevation along the river.

The K factor shows the resistance of different soil types to runoff erosion and raindrop
impact, with higher K values indicating lower resistance to soil erosion and vice versa [60].
According to the percentages of sand, silt, clay and organic carbon in different soils, the K
values in the YTRB varied from 0 to 0.049 t ha h MJ−1 ha−1 mm−1. The average K value
was 0.034 t ha h MJ−1 ha−1 mm−1 (Figure 6b). Since settlements, glaciers and water bodies
were not considered, they were assigned zero values.

The LS factor reveals the influence of topography on surface runoff and soil particle
transport and in this study, its values increased gradually from the NW of the YTRB to the
SE, with an average of 1.54 (Figure 6c). In several individual mountain areas, the values
grew gradually from the valley to the peak, generally reaching > 5 at the ridges. In the
Nyenchen Tanglha Mountains, for example, LS-factor values reached 43.78 at Namcha
Barwa inside the horseshoe bend in the SE Nyenchen Tanglha, which constituted the largest
elevation difference in the lower reaches. In such areas, the steep terrain makes the region
vulnerable to soil erosion.

Vegetation coverage and the depth of plant roots affect resistance to soil erosion.
Vegetation types in the Chinese vegetation dataset were reclassified to obtain the C factor
map; here, higher C factor values indicate a higher susceptibility to soil erosion and vice
versa. Most of the YTRB is covered by alpine steppe and alpine meadow (64.84% of the
total basin), with C-factor values here being 0.15. In contrast, values of 0.11 were observed
in grasslands on hillsides (Figure 6d), while the middle and lower YTRB reaches were
mostly covered by shrubs and coniferous forests (21.18% of the total basin), where C values
were 0.09. Values of 0.06 were noted for those hillsides where the land coverage was
characterized by broad-leaved forests. Tropical rain forests in the valley regions have
high soil and water conservation, while agricultural land in the middle and lower reaches
exhibited C-factor values of 0.55, showing that they are highly susceptible to soil erosion.

P factor values range from zero to one, where zero indicates effective manmade erosion
resistance and one indicates that there is no resistance [12]. P values of 0.9 were observed
in grassland and values of 0.5 were noted for riparian areas, where a large portion of the
land was characterized as farmland (Figure 6e). Rocky and sandy areas were found to
be widely distributed on high altitude mountains and forest coverage in the downstream
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canyons reached > 79.2%, with P values of 1. P values of 0.1 were observed for settled areas,
reflecting their good manmade erosion resistance. Manmade erosion resistance was not
considered to be a factor for water bodies, so they were assigned P factor values of zero.

4.2. Soil Erosion in the YTRB

Estimates for the annual YTRB soil erosion ranged from 0–1239 t ha−1 y−1 (Figure 8)
and these results are consistent with the soil erosion spatial distribution estimates reported
by Yang et al. The soil erosion average was estimated to be 4.21 t ha−1 y−1, which was
lower than the 5.43 t ha−1 y−1 estimated by Yang et al.; their higher figure was caused by
an overestimation of the R value [61].

Figure 8. Yarlung Tsangpo river basin soil erosion; yellow (red) indicates slight (severe) soil erosion.

In order to map soil erosion susceptibility, the YTRB water soil erosion was mapped
using six grades: slight (< 5 t ha−1 y−1), light (5–25 t ha−1 y−1), moderate (25–50 t ha−1 y−1),
intense (50–80 t ha−1 y−1), extremely intense (80–150 t ha−1 y−1) and severe (> 150 t ha−1 y−1),
as shown in Table 4. Erosion susceptibility rated as slight covered most of the study area
(20,452,950 ha or 79.46% of the total basin), occurring mainly in the plateau of the upper and
middle–upper reaches. Total soil loss in this region was estimated to be 28,272,583 t y−1,
accounting for 26.07% of the YTRB basin total. Due to the prevalence of low-intensity
precipitation in these regions, it is difficult for soil particles to be transported by surface
runoff, making local soil loss here easily sustainable.

Table 4. Yarlung Tsangpo river basin soil erosion rates and coverage.

Soil Erosion
Range (t ha−1 y−1)

Soil Erosion
Grade Area (ha) Area (%) Annual Soil

Erosion (t)
Total Soil

Erosion (%)

<5 Slight 20,452,949.71 79.46 28,272,582.80 26.07
5–25 Light 4,543,178.91 17.65 46,992,121.22 43.34
25–50 Moderate 614,943.14 2.39 20,107,953.27 18.54
50–80 Intense 86,096.40 0.33 5,149,888.65 4.75

80–150 Extremely intense 23,608.96 0.09 2,428,166.16 2.24
>150 Severe 20,770.33 0.08 5,477,968.03 5.05
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Erosion susceptibility rated as light covered 4,543,179 ha and accounted for 46,992,121 tons
of soil loss. Much of this erosion susceptibility could be attributed to large terrain fluctu-
ations, which amplify the effect of gravity on sediment. Moderate erosion susceptibility
ratings, which occurred mostly on ridges, covered 614,943 ha and the soil loss from these
areas was estimated to be 20,107,953 tons (18.54% of the total). This erosion was thought to
be due mostly to the presence of Haplic Greyzems and Dystric Podzoluvisols, which are
susceptible to soil erosion.

Farmland in the downstream valley had intense, extremely intense and severe water
soil erosion susceptibility ratings, ranging from 50 to 1239 t ha−1 y−1. In these regions,
13,056,023 tons (12.04% of the basin total) of soil erosion occurred over a land area of
130,476 ha (0.51% of the total) at a rate much greater than the sustainable soil loss rate.
These figures showed that frequent agricultural activities have seriously damaged soil
stability here, with surface runoff formed by high-intensity precipitation events upstream
taking away large amounts of loose soil, resulting in severe soil loss.

4.3. Effects of Precipitation, LULC and Topography on Soil Erosion

The relationship between precipitation and soil erosion is illustrated in Figure 9a, with
the results showing that soil loss rates were positively correlated with precipitation. The
soil loss rate varied from 0.71 to 15.69 t ha−1 y−1, with precipitation from < 200 mm to
> 2000 mm, which indicated the predominant influence of precipitation on soil erosion.
Precipitation in 60.23% of the basin ranged from 200 to 500 mm, especially in the middle-
upper reaches, which accounted for 39.83% of the soil loss total. In contrast, regions with
precipitation levels between 500 and 1000 mm (28.80% of the study area) were estimated
to be responsible for 43.18% of the soil loss total. The lowest soil loss—1.11% of the
annual total—was found in the arid plateau regions which experienced an annual average
precipitation of <200 mm.

Figure 9. (a) Soil erosion associated with different precipitation ranges; (b) soil erosion in different
land use types; and (c) soil erosion in different slope ranges. Blue, green and yellow columns represent
area percentages in various precipitation ranges, land use types and slope ranges, respectively; red
columns represent annual soil loss percentages.

Soil erosion rates and the annual soil losses associated with different land use types
are mapped in Figure 9b. Open forests and densely vegetated land in the lower reaches
had the highest soil erosion rates. The data show that although dense vegetation has a
positive effect on soil conservation, the high precipitation downstream of the study area
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leads to its high erosion (33.32% of the total). The figures also showed that 16.85% of
the soil erosion total occurred in rocky areas, which occupy 21.35% of the YTRB area.
Grasslands constitute the main grazing areas in the basin; this is the land use that directly
promotes sediment transfer and transportation and indirectly contributes to soil erosion
by exposing fresh soil through grazing, trampling and digging. Thus, the soil erosion rate
in these areas was higher than that estimated for agricultural land and as these areas are
widespread throughout the study area, covering nearly half of the basin, they were a source
of significant soil loss (40.80% of the total).

Overall, our estimates showed that 80% of the study area soil erosion occurred from
grasslands, rocky areas and densely vegetated land, strongly indicating that these are the
three land use types where soil loss protection measures should be focused. The influence
of topography on soil erosion can be seen in Figure 9c, which shows that the soil loss
rate estimate was significantly lower for flat terrain. The YTRB consists mostly of slopes
between 10 and 20◦, from which 29.45% of the soil erosion total was derived. It was also
seen that, although the area with slopes between 20 and 30◦ was found to cover less area,
its soil loss estimates were more greater, accounting for 34.21% of the total. Very steep
regions, with 30–40◦ slopes, accounted for only 9.8% of the total area, but incurred 20.10%
of the total soil loss. The significant effect of gravity on YTRB soil erosion was thus clearly
evident.

4.4. Flood Hazard Mapping Using the HAND Model

The flood-risk map created using HAND model computations can be seen in Figure 10.
In the absence of hydrological data, the model produced potential flood hazard zones
with different flood risk levels, namely: none (>100 m depth), very low (15–100 m), low
(10–15 m), moderate (5–10 m) and high (<5 m). The HAND model estimates suggested that
approximately 9.84% (2,537,622 ha) of the area is vulnerable to high flood occurrence, with
1.04% located in a moderate hazard zone, as can be seen in Table 5. Approximately 1.54%
of the area was found to have a low flood risk and 4.15% had a very low flood risk. With an
area of 21,525,909 ha, the ‘no flood risk’ zone covered most of the basin, a total of 83.43%.

Figure 10. Yarlung Tsangpo river basin flood hazard zones. Satellite images of major cities are from
Google Maps. White (red) indicates no (high) flood risk.
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Table 5. Yarlung Tsangpo river basin flood hazard zones and coverage.

Flood Hazard Zone (m) Area (ha) Area (%)

High (<5) 2,537,622.95 9.84
Moderate (5–10) 268,151.88 1.04

Low (10–15) 397,292.32 1.54
Very low (15–100) 1,071,023.77 4.15
No hazard (>100) 21,525,909.08 83.43

4.5. Soil Erosion and Flood Hazard Synergies

Examining the potential soil erosion and flood hazard zones in areas with different
slopes revealed contrasting scenarios. Most of the extreme and severe soil erosion estimates
occurred in areas with 20–30◦ slopes, as shown in Table 6, with steeper regions indicating
higher soil loss rates. Conversely, most moderate and high potential flood risk zones
occurred in the areas with slopes of 0–10◦, which only covered ~ 30% of the total basin,
as can be seen in Table 7. It was also noted that moderate and high flood hazard zones
were found to be prevalent in areas that included major basin cities and towns (including
Lhasa, the Tibetan capital), with their highly concentrated populations, buildings and
facilities. These cities are located in plain and terrace areas with slopes of 0-10◦, with little
topographic relief and are low-lying flood-prone areas within the watershed. Additionally,
the increase in surface imperviousness due to urbanization makes surface runoff higher
and increases the likelihood of flooding.

Table 6. Areas of soil erosion under different Yarlung Tsangpo river basin slope ranges.

Slope
Degree

(◦)

Slight Soil
Erosion Light Moderate Intense Extremely

Intense Severe

ha % ha % ha % ha % ha % ha %

0 118,191.55 0.46 2.85 0.00 0.52 0.00 0 0.00 0 0.00 0 0.00
0–10 7,206,708.7228.03 510,034.31 1.98 46,884.67 0.18 7264.24 0.03 2446.48 0.01 1365.86 0.01
0–20 6,982,718.3627.16 1,476,670.555.74 134,854.66 0.52 19,621.67 0.08 7166.27 0.03 5675.01 0.02
0–30 4,409,361.7617.15 1,637,668.976.37 217,520.93 0.85 28,982.35 0.11 8003.05 0.03 7963.62 0.03
0–40 1,498,273.055.83 809,853.16 3.15 172,528.87 0.67 23,121.38 0.09 4782.41 0.02 4742.85 0.02
>40 231,078.53 0.90 108,417.10 0.42 43,119.20 0.17 7098.06 0.03 1207.26 0.00 1022.98 0.00

Table 7. Flood hazard zone areas under different Yarlung Tsangpo river basin slope ranges.

Slope
Degree (◦)

No Hazard Zone VERY LOW Low Moderate High

ha % ha % ha % ha % ha %

0 340.96 0.00 1611.24 0.01 655.84 0.00 1137.51 0.00 113,926.83 0.44
0–10 4,632,904.37 17.96 1,808,157.27 7.01 217,530.54 0.84 336,071.54 1.30 801,184.48 3.11
10–20 8,060,866.55 31.24 442,714.69 1.72 28,390.06 0.11 34,933.84 0.14 82,164.17 0.32
20–30 6,046,054.18 23.43 195,204.15 0.76 14,207.27 0.06 16,594.81 0.06 46,046.45 0.18
30–40 2,402,127.25 9.31 77,187.37 0.30 6208.52 0.02 6908.68 0.03 23,181.79 0.09
>40 373,117.74 1.45 12,582.55 0.05 1137.51 0.00 1090.94 0.00 4484.20 0.02

Various scenarios present a synergy between soil erosion and flood hazard. For
example, the flood disaster areas are mainly distributed in the relatively low and gentle
areas of the study area. The process of soil erosion mainly occurs on steep hillsides
and a high slope gradient produces significant water impact forces, which in turn cause
sediments to accumulate in sinks between slopes and floodplains. In spring and autumn,
the temperature changes frequently, the freeze–thaw erosion is strong and the broken
material erodes under the action of snow (ice) meltwater or gravity and accumulates in
the gentle slope area to form an alluvial fan (alluvial skirt) [6]. Whenever a sink is filled,
the material will overtop and be stored again at the next downslope opportunity, doing
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this repeatedly until it reaches the floodplain, where its presence results in a rise in the
potential flood incidence level [62]. This indicates that the increase in sediment content in
surface runoff and flooding during soil erosion in flood season may increase the possibility
of a flood disaster. On the contrary, heavy rainfall and floods will lead to serious soil
erosion. It is obvious that soil loss and flood incidence will have a synergistic impact on
the environmental degradation of the catchment area. During the flood season, higher
sediment concentrations in surface runoff prevent surface runoff from being used efficiently;
the runoff cannot be taken from the river and is forced to discharge to the lower reaches of
the river, increasing the flood risk [63,64].

5. Conclusions

Soil erosion prevention planning and decision making require potential soil loss to
be quantified. In this study, RS and GIS technologies were employed in the RUSLE and
HAND model calculation processes to describe the scale and spatial distribution of soil
erosion and flood hazards in the YTRB. This resulted in soil erosion estimates ranging
from 0 to 1239 t ha−1 y−1, with an average of 4.21 t ha−1 y−1. Very intense and severe soil
erosion was found to occur in downstream valleys, where frequent and high precipitation
combined with agricultural land uses aggravate erosion.

Slight levels of erosion, which covered most of the basin, were spatially distributed
in the upper and middle–upper reaches, where there was low precipitation. Contrary to
previous findings, this study found that dense forests had the highest soil loss rate, which
may result from the combined effects of high precipitation and steep slopes in these regions.
It was also shown that the soil loss rate increased with slope gradient, confirming a high
correlation between soil erosion intensity and topographic relief.

Flood hazard prediction showed that approximately 17% of the YTRB was threatened
by flood hazards, with the high flood hazard rating covering 2,537,622 ha of the basin, with
an additional 268,151 ha vulnerable to moderate floods. Approximately 397,292 ha of the
basin was found to be in a low hazard zone, while 1,071,023 ha was found to be in the
very low hazard zone. The most flood-fragile areas were mostly distributed in riverside
valleys and plains and in areas with high concentrations of residents and buildings. Thus,
enhancing flood warnings and protection measures in these regions should be considered a
priority.

6. Discussion

We calculated the soil erosion intensity of the Yarlung Tsangpo River basin using the
RUSLE model, considering precipitation erodibility, different land use types, physical and
chemical properties of soil and topographic factors. In the calculation of the R factor, we
used the R factor based on monthly precipitation, pi and annual rainfall, p, due to the lack
of data on rainfall intensity. This resulted in the same R factor for high-intensity rainfall
over multiple consecutive days and scattered over a month, which is usually different from
the actual situation [65]. Additionally, due to the large scale of the study, we assigned the
same P value to the same LULC type in the calculation of the P factor. However, in areas
where human interventions are present, P factor values for the same land use types should
take into account for the effect of a slope [66–68]. At the same time, field-based soil loss
measurements are not currently available for the YTRB and so we have been unable to
verify the results of our study using field data. Therefore, it is suggested that government
and policy makers conduct field surveys in the regions identified as being susceptible to
soil erosion and establish soil loss measurement stations, so that accurate and real-time soil
loss information can be captured.
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Abstract: Urban aquifers are experiencing increasing pressures from climate change, land-use change,
and abstraction, consequently, altering groundwater levels and threatening sustainable water avail-
ability, consumption, and utilization. Sustainability in such areas requires the adaptation of ground-
water resources to these stressors. Consequently, this research made projections about future climate,
land use, and abstraction, examines how these drives will affect groundwater levels, and then pro-
poses adaptation strategies to reduce the impact on Lahore’s groundwater resources. The objectives
are achieved using an integrated modeling framework involving applications of Soil Water Assess-
ment Tool (SWAT) and MODFLOW models. The results indicated a projected rise in Tmin by ~2.03 ◦C
and Tmax by ~1.13 ◦C by 2100 under medium (RCP 4.5) and high-end (RCP 8.5) scenarios, respectively.
Future precipitation changes for mid, near and far periods are projected to be −1.0%, 25%, and 24.5%
under RCP4.5, and −17.5%, 27.5%, and 29.0% under RCP8.5, respectively. The built-up area in the
Lahore division will dominate agricultural land in the future with an expansion from 965 m2 to
3716 km2 by the year 2100 under R1S1 (R2S2) land-use change scenarios (significant at p = 5%). The
future population of the Lahore division will increase from 6.4 M to 24.6 M (28.7 M) by the year
2100 under SSP1 (SSP3) scenarios (significant at p = 5%). Groundwater level in bult-up areas will
be projected to decline from 185 m to 125 m by 2100 due to increasing groundwater abstraction
and expansion in the impermeable surface under all scenarios. In contrast, agricultural areas show
a fluctuating trend with a slight increase in groundwater level due to decreasing abstraction and
multiple recharge sources under combined scenarios. The results of this study can be a way forward
for groundwater experts and related institutions to understand the potential situation of groundwater
resources in the Lahore division and implement adaptation strategies to counteract diminishing
groundwater resources.

Keywords: groundwater sustainability; impact assessment; climate change; adaptation strategies;
land use change; abstraction; SWAT; MODFLOW
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1. Introduction

Groundwater resources in megacities of the developing world are susceptible to over-
exploitation and other stresses [1]. The multiple interactive triggers such as climate change,
population, agriculture, and industry increase pressure on groundwater resources [2–6].
These pressures alter water table elevation and its temporal variations. Established litera-
ture highlights some areas in different regions around the world where human-induced
climate change, land-use change, and abstraction are altering the groundwater attributes
up to a level at which local systems are unable to cope with their negative impacts [7–10]
and thereby affecting the sustainability of groundwater reserves.

Lahore is a metropolitan city in Pakistan where groundwater is the dominant source
for domestic, agricultural, and industrial use. Due to overexploitation, Lahore is observing
a fast groundwater level recession in certain areas [4,11,12]. Historical analysis of the
climate reveals a rise in temperature in the region [13–16]. The available literature on
water use highlights that more than 75% of users in Lahore have access to the piped water
supply system (WSS) through direct connections. The estimated abstraction by users from
sources other than the Water and Sanitation Agency (WASA) represents ~30% of the water
consumed. Historical population records in Lahore show increasing trends from 6.3 M in
1998 to over 10 M at present. The city’s extensive growth has resulted in significant urban
development [17], resulting in a rapid rise in tube wells, abstraction rates, and an increase
in water table depth with time [11].

Although the groundwater system in Lahore is part of the groundwater reservoir
of the Indus basin, exploitation has formed a depression in the local groundwater table,
expanding east and southward. Ref. [4] studied the expansion of depression zones as a
function of change in groundwater depth during five consecutive years (2007–2011). The
results reveal an alarming situation in some areas where the water table has reached more
than 38 m since 2007. The findings depict a gradual expansion in depression to the east
and south directions due to an increase in the rate of abstraction and decreasing recharge.
A study by [11] discovered the worst situation in a few areas of Lahore city where the
water table lowered to about 45 m in depth. Synthesis of the existing literature highlights a
gap between investigating studies and policy institutions and the lack of (modeling-based)
studies on the integrated impact of multiple stresses (i.e., climate, land use, and abstraction).
A handful of studies covering quality aspects of the local groundwater resources are readily
available. However, quantity aspects are not fully covered [18–20]. Ref. [18] evaluated the
impact of past climate change and abstraction on groundwater resources of Lahore with a
focus on management issues. Ref. [20] used chemical, isotopes, and numerical techniques.
They identified types and sources of recharge for the Lahore aquifer and simulated the
impact of abstraction on groundwater levels up to 2019.

There are two basic techniques to groundwater modeling, the first of which is the
volume-based approach that makes use of direct groundwater monitoring data from
observational wells [21–23], while other one used physical-based hydrological models, e.g.,
3D groundwater flow modeling [24], semi- and fully distributed hydrological models [25]
and remotely assisted simple water balance models [2,25]. Volume based methods driven by
observational data are generally more accurate, however, uneven, and sparse distribution
of monitoring wells make this approach less useful particularly for Lahore study region.
Physical-based hydrological models and remotely driven water balance approaches on
other hand can be useful for data sparse regions to monitor the groundwater changes [24,25].
For instance, physical based models include the global scale hydrological model (GHMs:
e.g., PCRaster Global Water Balance (PCR-GLOBWB)) [26], and regional scale models
(e.g., Soil Water Assessment Tool (SWAT) [27], MODFLOW [28]). SWAT and MODFLOW
applications in surrounding areas of study region have well documented in previous
studies [2,29–33]. Most of the studies have employed modeling-based methodologies with
a focus on groundwater use. However, almost all of them have focused on agricultural
areas [2,25,33–37], while ignoring the impacts of Uran areas. A few other observation-based
and quantitative studies are also part of the literature that points out the continuously
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deteriorating situation associated with management issues in Lahore city in context of
historical records [4,38,39]. The literature is sufficient for understanding the severity
of the problem for current conditions. However, future changes in groundwater levels,
particularly in the urban and peri-urban areas of Lahore City, have not yet been investigated
in the context of projected climate change and human activities. To achieve sustainability
of the groundwater levels in an urban area, we need to develop a sound knowledge of the
situation for the future. Consequently, knowledge development could help in proposing a
concise groundwater management policy to guide structural and non-structural aspects.

Therefore, this study uses an integrated modeling framework consisted of SWAT and
MODFLOW applications to investigate the groundwater changes in context of projected
changes in climate change and anthropogenic drivers, e.g., land-use change, and abstraction
on the groundwater resources in the Lahore division. We further provided a proposed
formulation of a few adaptation options to counteract diminishing groundwater resources.

2. Materials and Methods
2.1. Study Area

The study uses a modeling approach involving SWAT for hydrologic modeling and
MODFLOW for hydro-geologic modeling. Considering the different requirements of both
models, two segments of the study area were formulated. The geographical distribution of
the Ravi River basin (28,000 km2) comprises a 20% upstream area having rugged topog-
raphy. Mountains in the foothills of the Himalayas form the topography of the upstream
basin (4300 m above mean sea level (amsl)) that mostly remains covered with snow, while
80% of the basin area comprising the middle and downstream is plain. The Middle and
downstream areas of the basin are agricultural lands [14,40]. River Ravi is one of the major
tributaries of the Indus River. The river Ravi covers a total stretch of 720 km through the
basin from its origin in the Kailash Mountains and drains into the Chenab River in the
South-west area. Peek flows seasonally occur during monsoon months (July to Sept), while
the rest of the months observe low flows. The river Ravi basin has a semiarid-tropical
climate. Upstream areas receive heavier rainfall than downstream plain areas. The rainfall
season mostly shows bimodal patterns, November to January are the low rainfall months,
and July to September is heavy rainfall. The annual rainfall in the basin varies from 300 to
1200 mm, and mean temperature changes between 8 to 40 ◦C.

Lahore division lies between latitude 31◦15′ N and 31◦42′ N, longitude 74◦01′ E and
74◦39′ E and comprises of an area around 6800 km2, covers four districts such as Lahore,
Sheikhupura, Kasur, and Nankana Sahib. Geographically, the Lahore division has a plane
topography that changes from 200 to 210 m amsl and a general slope of 1:3000 towards
the south and southwest. Based on the latest census Lahore division is home to over 19.4
million population. Groundwater is the dominant source of water supply for domestic
(95%) and agriculture (39%) consumption. The Lahore division aquifer majorly comprises
unconsolidated alluvial complexes. Silt, sand, and clay in varying proportions are the
main constituents of the alluvial complex. These constituents consolidate to form a thick
sedimentary complex of more than 400 m thickness. Clay is the dominant constituent of
the alluvial complex with small quantities near the Ravi River and gradually increases with
distance from the river [41] (Figure 1).
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(observed and virtual) are shown together with the 0.5° × 0.5° grid points (a). Three zones of Lahore 
division (Urban and Agriculture), river, canals, and observation wells are shown in (b). Bore-logs 
and their locations are shown in (c). Lithological classification of Lahore division aquifer in (d), [14]. 
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January 2022), APHRODITE (APH): (http://www.chikyu.ac.jp; access date: January 2022) 

Figure 1. The geographic location of RRB. Topography is based on ASTER data. Climate stations
(observed and virtual) are shown together with the 0.5◦ × 0.5◦ grid points (a). Three zones of Lahore
division (Urban and Agriculture), river, canals, and observation wells are shown in (b). Bore-logs
and their locations are shown in (c). Lithological classification of Lahore division aquifer in (d) [14].

2.2. Climate Data Collection and Evaluation

Scanty observed data is an issue of the study area, therefore reanalysis and interpo-
lated data on three major components; Tmax, Tmin, and rainfall were downloaded from
Princeton University (PU)website: (http://hydrology.princeton.edu/data/; access date:
January 2022), APHRODITE (APH): (http://www.chikyu.ac.jp; access date: January 2022)
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and Climate change Prediction Center-National Oceanic and Atmospheric Administration
(CPCNOAA) (https://www.ncdc.noaa.gov/cdo-web/; access date: January 2022). Like-
wise, future climate data on Tmax, Tmin, and rainfall for two representative concentration
pathways (RCP4.5&8.5) scenarios and seven regional climate models (RCM) were obtained
from the CORDEX South Asia website: (http://www.cordex.org/; access date: January
2022) (Table 1). The downloaded data was performance checked. Two GCD and four RCM
with outstanding performance were shortlisted for climate change analysis and used as
input to the SWAT model. The detailed methodology and performance results are reported
in [14].

Table 1. Data required for assessment of the impact of future climate, land use, and abstraction on
groundwater resources in Lahore.

Data Type Duration Resolution Sources(s)

Meteorological Data

Observed Climate Data
Rainfall, Tmax, and Tmin 1982–2015 Daily Pakistan Meteorological Department (PMD)

Chandigarh Meteorological Station (CMS)

Gridded Climate Data
Princeton University forcing
APHRODITE dataset
Rainfall

1982–2015 0.5◦ × 0.5◦

(daily)

Princeton University
(http://hydrology.princeton.edu/data/; access date:
January 2022)
Research Institute for Humanity and Nature
(http://www.chikyu.ac.jp; access date: January 2022)

NOAA climate dataset
Tmax and Tmin 1982–2015 Daily

NOAA’s National Centers for Environmental
Information (NCEI)
(https://www.ncdc.noaa.gov/cdo-web/; access date:
January 2022)

Hydrological Data

River discharge and Canal discharge 2000–2014 Daily Punjab Irrigation Department (PID)

Regional Climate Models (RCMs) 1982–2100 Daily
(0.5◦ × 0.5◦)

CORDEX (http://www.cordex.org/; access date:
January 2022)

Spatial Data

Land use data
Soil date 2007 1 km

Ref. [40] World Map (https:
//worldmap.harvard.edu/data/geonode:DSMW_RdY;
access date: January 2022)

Digital Elevation Model (DEM) 30 m (https://earthexplorer.usgs.gov/; access date: January
2022)

Aquifer lithology and hydraulic data Groundwater division of Water and Power
Development Authority (WAPDA)

Population data
(Counts, density) 1998–2017 Pakistan Bureau of Statistics (PBS)

(http://www.pbs.gov.pk/; access date: January 2022)

2.3. Hydrological and Hydrogeological Data Collection and Processing

The daily hydrological data on river flows and canal discharge for fifteen years (2000–
2014) were obtained from the Punjab irrigation department (PID) which is passed through
quality check before use. The hydro-geological data on groundwater levels measured in
Jun and Sept every year was obtained from PID, aquifer lithology from CSIRO, hydraulic
conductivity, specific storage, and specific yield was extracted from literature [37].

2.4. Spatial Data Collection and Processing

The land use map of the Indus basin developed for 2007 was provided by [40]. This
map is one of the several inputs to the hydrological model (SWAT). Two other land use
maps, one developed by the European space agency (ESA), cover the global domain from
1990 to 2015. The other map prepared by [42] (covers the Lahore district from 1999 to
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2021 (1999, 2011, 2013, 2021, and 2035). Both maps were obtained and used for land-
use change analysis. The ASTER based digital elevation model (DEM) data with spatial
resolution of 30 m was obtained from the United States Geological Survey (USGS) website:
(https://earthexplorer.usgs.gov/; access date: January 2022). The global soil data were
obtained from the Harvard University data archive: (https://worldmap.harvard.edu/data/
geonode:DSMW_RdY; access date: January 2022). The population data of four censuses
from 1951 to 2017 was obtained from the Pakistan bureau of statistics.

2.5. Future Climate Change Projections

The three most relevant parameters of climate (Tmax, Tmin, and rainfall) were used,
because of their significance in the climate system, their most often use in climate change
studies, and their relevance to the current work. The temporal changes in Tmax, Tmin, and
rainfall in the base period (1982–2014) were calculated using PU and CPC-NOAA datasets.
Future projections (2020–2095) were made using four shortlisted RCMs under RCP4.5 and
RCP8.5 scenarios. Annual and seasonal scale projections were made where the wet season
covers months (Apr to Sept) that typically receive heavy rainfall. The dry season covers
months (Oct to Mar) that receive low or no rainfall at all. Their significance was tested
using a student t-test, and linear trends were fitted using a linear regression model [43].

2.6. Future Land Use Change Projections

Two land-use maps were used; one developed by the [44] hereafter referred to as
map-1 and the second by [45], referred to as map-2. Map-1 classifies the area into eleven
classes and map-2 into five classes. Considering the scope of the study, both maps were
reclassified into three broad categories: Agriculture, built-up, and water. The land-use
changes estimated using map-1 and map-2 were compared with each other. These land-
use changes were used to develop linear regression models and future land-use change
projections made using map-2 under two transition scenarios: R1S1-Business as usual and
R2S2-Conservation. The R2S2 somehow includes the effect of policies by the current federal
government in Pakistan, such as the construction of high-rise buildings and tree plantation
campaigns. The study area is lacking in research on land-use change projections, with the
available literature instead focusing more on historical changes. In this situation, although
land use projections are based on simplified assumptions, they are still informative for
interested individuals or institutions.

2.7. Projected Groundwater Projections

The groundwater abstraction in urban and agricultural areas of Lahore was estimated
independently. For urban areas, the population projections were made beforehand by fitting
multiple regression models on population data projected by [46] for some random years
(2025, 2050, 2075, and 2100) under SSP1 and SSP3 scenarios developed by [47]. Based on
population density, the study area was divided into different zones. Groundwater abstrac-
tion was calculated as a multiplication product of per capita water demand (m3·c−1·d−1)
and total population. For agricultural areas, the groundwater abstraction was calculated
using the water balance approach of SWAT [25]. This study assumes that seasonal abstrac-
tion is half that of annual and will remain constant during each season. Therefore, seasonal
scale analysis is not part of this study.

2.8. Hydrological Modeling Using SWAT

The Soil and Water Assessment Tool (SWAT) model was used to calculate the recharge
and abstraction. This model was developed by the USDA-ARS. It can simulate hydrological
and biogeochemical cycles and impacts of stimuli such as climate and land-use changes
on these processes at the watershed scale [48–51]. The SWAT model offers to include a
wide range of components such as weather, hydrology, soil characteristics, crop growth
characteristics, land management operations, and nutrients load and flows in the runoff.
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An insightful description of this model is available in [52]. SWAT simulates water balance
using Equation (1).

SWt = SWO + ∑t
i=1(Rday −Qsurf − Ea −Wseep ×Qgw) (1)

where:

SWt final soil water content at time t in (mm H2O)
SWo initial soil water content on day i in (mm H2O)
t time in (days)
Rday precipitation on day i in (mm)
Qsurf surface runoff on day i in (mm)
Ea evaporation on day i in (mm)
Wseep percolation and bypass flow leaving the bottom of soil strata (mm)
Qgw return flow on day i (mm)

SWAT calculates the surface runoff using the SCS curve number method. It is a function
of land use, soil characteristics, and previous soil moisture conditions. The mechanism of
the SCS curve number method has been given in Equation (2).

Qsurf =
(Rday − Is)

2

(
Rday − Ia + S

) (2)

where:

Qsurf = runoff or excess rainfall (mm).
Rday = precipitation on a given day (mm).
Ia = initial abstractions such as surface storage, interception, and infiltration prior to runoff
(mm) and
S = retention parameter (mm).

S = 25.4
(

1000
CN

− 10
)

(3)

CN = curve number a function of land characteristics, varies between 0 to 100; 0 shows
easy conversion of water to direct runoff and 100 shows difficult conversion.

SWAT Model Calibration, Validation, and Performance Evaluation

The model was manually calibrated for eight years (2000–2007) and validated for
seven years (2008–2014) at Ravi Syphon and Shahdara gauges. Sensitivity analysis of
the SWAT model parameters is required to obtain their effect on simulated components
and characterize uncertainties in those components [53]. In total, 32 parameters were
considered in the sensitivity analysis. The parameter values changed up to four levels (±10
and ±25%) to check their influence on flow and groundwater components. The three most
widely used statistical parameters: the coefficient of determination (R2), the percentage bias
(PBIAS), and the Nash-Sutcliffe efficiency (NSE), were considered in this study to evaluate
the performance of the SWAT model. An insightful description of these parameters and
performance rating for SWAT model evaluation is reported in [54].

2.9. Hydrogeologic Modeling Using MODFLOW

In this study, MODFLOW was used to simulate the impact of climate change, land-use
change, and abstraction on groundwater levels. MODFLOW is a three-dimensional finite-
difference groundwater flow model. Groundwater flow within the aquifer is simulated
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in MODFLOW using a block-centered finite-difference approach. The partial differential
equation (Equation (4)) describes the groundwater flow in each grid.

∂

∂x

(
Kxx

∂h
∂x

)
+

∂

∂y

(
Kyy

∂h
∂y

)
+

∂

∂z

(
Kzz

∂h
∂z

)
−W = Ss

∂h
∂t

(4)

In Equation (4), h is the hydraulic head (m) and an independent variable. The Kxx,
Kyy, and Kzz represent the hydraulic conductivity (m.day−1) in x, y, and z directions,
respectively. The SS shows specific storage that is a dimensionless quantity, while the
letter W represents the source or sink. It is measured in day−1. The W has two signs a
positive sign shows the recharge/injection of water into the aquifer, a negative sign means
abstraction. In this study, the groundwater flow model developed for Lahore also includes
the surrounding agricultural areas. The geographical boundaries of the model area are
presented in Figure 1. The model area was divided into uniform grids of 500 m spatial
resolution in horizontal (X, Y) directions.

Based on the lithological data available at 149 locations, a total depth of 400 m was
modeled with four layers of dominant materials. The model was calibrated and validated
for transient conditions using the wet seasons from 2003–2014 with two stress periods each
year: dry and wet having a duration of 182 and 183 days, respectively. The stress periods
were further subdivided into 10-time steps with a time step multiplier of 1.2 to characterize
the temporal variation in piezometric heads. The flow components were simulated using
four MODFLOW modules.

MODFLOW Model Calibration and Performance Evaluation

In the study, a built-in Parameter Estimation (PEST) module was used to calibrate
and validate the transient model for nine years (2003–2009). The PEST takes control of the
MODFLOW and performs iterations as many times as necessary to determine the optimum
parameter values. Annual piezometric water levels recorded by WASA were used as a
reference for calibration. The aquifer parameters: specific yield, hydraulic conductivity,
specific storage, and groundwater abstraction were adjusted for four aquifer layers in
calibration to obtain the best-simulated heads. The coefficient of determination (R2) was
used for performance evaluation.

2.10. Conceptualization of Scenarios Combination for Future Groundwater Level Projections

The study projects future climate, land use, and abstraction (population) under six
combined scenarios (RCP4.5 and RCP8.5; R1S1 and R2S2; SSP1 and SSP3). The RCP and
SSP are global-scale scenarios. These scenarios project the future evolution of climate
and socio-economic development based on multiple variables such as socio-economic,
technological, land use, energy, greenhouse gas emissions, and air pollutants. Unlike other
studies [47,55] that combine RCP and SSP scenarios based on CO2 emission projections,
we used similar assumption to combine those scenarios based on the global population
projections. Comparison of global population projections made under the SSP scenarios
and reported in [56]. Background population projections for the RCP scenarios are reported
in [57], revealing close agreements between SSP1 and RCP4.5 and SSP3 and RCP8.5 scenar-
ios. The land-use change scenarios are applicable on the local scale. They were combined
simultaneously with the climate and population scenario for the future groundwater level
projections (Table 2).

Table 2. Scenarios combinations for projected groundwater levels.

RCP Scenarios Land Use Scenarios SSP Scenarios Scenario Combinations

RCP4.5 R1S1, R2S2 SSP1 RCP4.5-R1S1-SSP1
RCP4.5-R2S2-SSP1

RCP8.5 R1S1, R2S2 SSP3 RCP8.5-R1S1-SSP3
RCP8.5-R2S2-SSP3
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3. Results and Discussion
3.1. Climate Change Projections

The mean climate will evolve in the future (2020–2095) as both the annual temperature
and rainfall will increase under RCP4.5 and RCP8.5 scenarios, as shown in Figure 2a–c.
Compared to the base period (1982–2005), the Tmax will increase by 0.38 ◦C, 0.33 ◦C, and
0.64 ◦C in near, mid, and far future, respectively, under the RCP4.5, and 0.21 ◦C, 0.96 ◦C,
and 2.04 ◦C in near, middle, and far future, respectively, under RCP8.5. Future Tmax in the
wet season (April to September) will decrease, except in the far future under RCP8.5, the
expected absolute change will be −0.36 ◦C, −0.28 ◦C, and −0.07 ◦C in near, mid, and far
future, respectively, under the RCP4.5 scenario, and −0.41 ◦C, −0.29 ◦C, and +0.45 ◦C in
near, middle, and far future, respectively, under RCP8.5. Future Tmax in the dry season
(April to September) will increase, except near futures under RCP4.5, the expected absolute
change will be −1.91 ◦C, +0.95 ◦C, and +1.36 ◦C in near, mid, and far future, respectively,
under the RCP4.5 scenario, and +0.84 ◦C, +2.21 ◦C, and +3.65 ◦C in near, middle, and
far future, respectively, under RCP8.5 (Figure 2a). The Tmin will increase. The absolute
change in future Tmin will be 0.66 ◦C, 0.94 ◦C, and 1.23 ◦C in near, mid, and far future,
respectively, under the RCP4.5, and 0.85 ◦C, 2.05 ◦C, and 3.41 ◦C in near, middle, and far
future, respectively, under RCP8.5. Future Tmin in the wet season (April to September)
will decrease, except in the far future under RCP8.5, the expected absolute change will be
+0.73 ◦C, +0.70 ◦C, and +0.86 ◦C in near, mid, and far future, respectively, under the RCP4.5
scenario, and +0.81 ◦C, +1.73 ◦C, and +2.86 ◦C in near, middle and far future, respectively,
under RCP8.5. Future Tmin in the dry season (October to March) will increase, except near
future under RCP4.5, the expected absolute change will be +0.59 ◦C, +1.19 ◦C, and +1.61 ◦C
in near, mid, and far future, respectively, under the RCP4.5 scenario, and +0.89 ◦C, +2.39 ◦C,
and +3.97 ◦C in near, middle, and far future, respectively, under RCP8.5 (Figure 2b).

Results show an increase in temperature in the future under the climate change
scenarios. A comparison of seasonal scale projections shows that the dry season will be
warmer than the wet season except for the near future, during which the Tmax will decrease
under the RCP4.5 scenario. Both Tmax and Tmin will increase while Tmin will rise more
than the Tmax. Previous studies report similar results for the study area and other parts of
the world [16,58–61]. Rising future temperatures will increase agricultural water demand
due to an increase in evapotranspiration [62–64]. All-purpose domestic and industrial
water consumption will also increase [63,65]. Consequently, rising demand will exacerbate
pressure on groundwater resources.

Compared to the base period (1982–2005), the mean annual rainfall will increase in the
future (2020–2095), except near future, under RCP4.5. Changes in rainfall in the near, mid,
and far future will be −1%, 25%, and 24% under the RCP4.5, 17%, 27%, and 29% under
RCP8.5. Future rainfall in the wet season will increase under RCP4.5 and RCP8.5 scenarios.
The dry season will become drier under both climate change scenarios (Figure 2c). A
comparison of the climate change scenarios shows agreement for the future projections,
especially in the mid and far future. Rainfall projections are in close agreement with the
previous studies [66]. Increasing future annual rainfall depicts more water availability
which can offset negative pressure on groundwater resources. Since the increase in rainfall
will be in the wet season, which is shorter in length than the dry season, dry seasons,
due to longer duration and decreasing, rainfall will further exacerbate the pressure on
groundwater resources in Lahore.
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3.2. Land Use Change Projections

This section presents an analysis of the land-use change during the base period (2000–
2014) and future period (2020–2095) under two scenarios: R1S1-Business as usual and
R2S2-conservation in Lahore. The future projections for three broad urban land-use types
are shown in Figure 3. Compared to the base period, the dominant land use (agriculture)
will decrease from 5392 km2 to 2862 km2 under R1S1 and 3247 km2 under the R2S2 scenario,
while the built-up area will expand. The expansion in built-up will be from 1184 km2 to
3716 km2 and 3329 km2 under R1S1 and R2S2, respectively. The change in agriculture and
built-up areas will be significant across the entire century (Table 3). The third land-use type,
water, will remain the same with minor changes throughout the twenty-first century. An
earlier study accomplished in the study area projected expansion in the urban area (built-
up) [67]. The future contraction in Agricultural areas and expanding built-up will have
implications for groundwater resources [6,33,68]. Besides putting pressure on groundwater,
the agricultural (cultivated) area also plays a role in replenishing groundwater resources.
Because a portion of the water received from rainfall and irrigation supplies percolates
to groundwater, with the future contraction of agricultural areas, both the demand for
irrigation and recharge will decrease [33]. The effect of the future expansion of built-up on
groundwater resources will be more severe than the decrease in the agricultural area. It is
due to a decrease in recharge and an increase in population-triggered water demand. Since
the land use projections are driven by simplified assumptions (land use change (expansion
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or contraction) will only occur on the outskirts of existing landscapes). This assumption
might overestimate land use change and its impact on groundwater resources.
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Table 3. Area under three broad land use and land cover types for the NF, MF and FF, projected
under R1S1 and R2S2 scenarios.

Year

Land Use and Land Cover Type (km2)

R1S1 R2S2

Agriculture Built-Up Water Agriculture Built-Up Water

Base
period 5392 1184 240 5392 1184 240

2020 5048 * 1528 * 240 5001 * 1575 * 240
2043 4325 * 2251 * 240 4287 * 2289 * 240
2072 3642 * 2935 * 240 3736 * 2840 * 240
2100 2860 * 3716 * 240 3247 * 3329 * 240

Note. Each future time window was tested for significance relative to the base period. The p value for all future
time windows was less than 0.05 significance level. * Shows a significant change (at 5%) in land use relative to the
base period.

3.3. SWAT Model Sensitivity Analysis

Nine parameters are found to be the most influential (Table 2). The CN2.mgt has
the most influence and LAT_TIME.hru the least while the other seven parameters fall
between the two. In terms of their relationship with simulated parameters, CANMX.hru,
TLAPS.sub, ESCO.hru, and CH_K2.rte have a direct relationship with the surface flow
components, while CN2.mgt, SOL_AWC.sol, and LAT_TIME.hru have an inverse relation-
ship (Table 2). Only ESCO.hru has a direct relationship with groundwater components.
CN2.mgt, TLAPS.sub, CH_K2.rte, and PLAPS.sub have no relationship at all with the
groundwater components. Some parameters such as GW_DELAY.gw, SOL_K.sol and
PLAPS.sub have no proper relationship with flow components. Besides their relationships,
the effects of influential parameters were also observed during sensitivity analysis (Table S1)
(supplementary material). For example, CN2.mgt and LAT_TIME.hru reduce instant peaks
and smooth the hydrograph. TLAPS.sub and SOL_K.sol affect the occurrence (onset and
withdrawal) of hydrograph peaks. Similarly, CANMX.hru and ESCO.hru affect the base
flow and discharge while PLAPS.sub influences discharge only and SOL_AWC.sol affects
soil moisture storage.
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3.4. SWAT Model Calibration and Validation—For Discharge

Figure 4a–c shows a close matchup between observed and simulated hydrographs.
Based on the statistics, the performance of the SWAT model varies from good to very good
(Table 4). The coefficient of determination (R2) has very good values; 0.77 for calibration
and 0.72 for validation at Ravi Syphon, with 0.75 for calibration and 0.81 for the validation
period at Shahdara gauge. The NSE also varies from good to very good; 0.76 for calibration
and 0.72 for validation at Ravi Syphon with 0.74 and 0.75 at Shahdara gauge. The PBIAS
only has a high value (−10.46) at Ravi Syphon for calibration, while it falls in a good range
(1.68 and 0.79) at both stations for the validation period. The statistics for calibration and
validation show that the model performance at both stations falls in a range from good to
very good. The model can be used for further hydrological analysis.
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Table 4. SWAT model performance for calibration and validation at Ravi syphon and Shahdara
gauges.

Performance Statistics Calibration Validation

Ravi Syphon gauge (upstream)

Coefficient of determination (R2) 0.77 (very good) 0.72 (good)
Nash-Sutcliffe efficiency (NSE) 0.76 (very good) 0.72 (good)

Percentage bias in volume (PBIAS) −10.46 (good) 1.68 (very good)

Shahdara gauge (downstream)

Coefficient of determination (R2) 0.75 (very good) 0.81 (very good)
Nash-Sutcliffe efficiency (NSE) 0.74 (good) 0.75 (very good)

Percentage bias in volume (PBIAS) −0.20 (very good) 0.79 (very good)

3.5. SWAT Model Calibration and Validation—For Recharge

The SWAT model was calibrated for groundwater recharge as well. The calibration
period spans five years (2003–2007) and the validation period seven years (2008–2014).
Groundwater recharge, calculated using the water table fluctuation (WTF) method, was
used as a reference. The optimized parameters are enlisted in Table 5. The performance
of calibrated SWAT model falls in the range of good to very good, with a minimum differ-
ence between annual simulated and reference groundwater recharge (Figure 4d,e). The
calibrated model mostly overestimates groundwater recharge during validation. There is a
considerable difference between the years 2009 and 2014 (25 mm and 18 mm, respectively).
For the remaining years, the model matches well with the reference groundwater recharge.
The coefficient of determination (R2) falls in a very good range for calibration (0.84) and
validation (0.82), and the NSE falls in the class of satisfactory (0.60) for both calibration
and validation periods. The PBIAS shows a very good value (2.0) for calibration and a
high value (16) for validation. The SWAT model’s satisfactory performance has also been
addressed by previous studies in the study area [2,10,25,30,69]. The success of the calibra-
tion of SWAT model depends on the choice of parameters and sensitivity [70]. Both factors
largely depend on watershed characteristics and are determined by sensitivity analysis.
Discharge in the Ravi River is controlled by a set of parameters that were determined
during sensitivity analysis. The influence of selected parameters on discharge is described
in Table S3. For the calibrated SWAT model, the CN2, CANMX, ESCO, SOL_AWC, and
SOL_K were altered, depicting the dominant control of land surface characteristics and
subsurface soil characteristics on river discharge. The calibrated CN2 value 47.63 depicts
high infiltration. Small quantities of infiltered water are stored in the soil root zone, as
indicated by low SOL_AWC (0.11). The possible reason is that much of the soil water
is removed through evaporation, as shown by ESCO (0.35), and recharged to shallow
groundwater, as depicted by GW_DELAY (19).
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Table 5. List of sensitive parameters and their calibrated values for the swat model.

Parameter Description of Parameters Parameter Range Calibrated Value Sensitivity Rank

CN2.mgt SCS runoff curve number (35, 98) 47.63 1
CANMX.hru Maximum canopy storage (mm H2O) (0, 100) 6.02 2
TLAPS.sub Temperature lapse rate (◦C/km) (−50, 50) −3.80 3
ESCO.hru Soil evaporation compensation factor (0, 1) 0.35 4

SOL_AWC.sol Available water capacity of the soil layer
(mm H2O/mm soil) (0, 1) 0.11 5

CH_K2.rte Effective hydraulic conductivity in main
channel alluvium (−0.01, 500) 9.50 6

GW_DELAY.gw Threshold depth of water in the shallow
aquifer required for return flow to occur (0, 500) 19.00 7

SOL_K.sol Saturated hydraulic conductivity (mm/h) (0, 2000) 42.22 8
PLAPS.sub Precipitation lapse rate (mm H2O/km) (−500, 500) 305.10 9

LAT_TIME.hru Horizontal flow travel time (days) (0, 180) 8.00 10

3.6. Groundwater Abstraction Projections

Groundwater abstraction in urban areas is dominated by domestic water use while
in agricultural (rural) areas by water demand for agricultural consumption. This study
considers only the dominant factors for each sector. Compared to the base period (2000–
2014), annual groundwater abstraction will decrease in the 21st century under RCP4.5 and
RCP8.5 scenarios (Figure 5). The reduction will be highest in the near future under RCP
scenarios. At an annual scale, future abstraction will decrease by −17, −7, and −13% in the
near future, mid future, and far future, respectively, under RCP4.5, and by −11, −9, and
−10% in the near future, mid future, and far future, respectively, under RCP8.5. Future
changes in abstraction will be significant under all scenarios. The groundwater abstraction
follows the same pattern of change in both wet and dry seasons under RCP4.5 and RCP8.5
scenarios. Urban area abstraction will increase in the twenty-first century under SSP1 and
SSP3 scenarios, as shown in Figure 6. Compared to the base period, groundwater abstrac-
tion will increase by 80% and 61% in the near future, by 158 and 135% in the mid future,
and by 193 and 203% in the far future under SSP1 and SSP3, respectively. Groundwater
abstraction increases during the twenty-first century, stabilizing in the far future under
SSP1, while in contrast, under SSP3, it shows a continuous increase. The projected de-
crease in groundwater abstraction in agricultural areas is associated with increasing future
rainfall that will enhance water availability for agriculture, and groundwater recharge
and pressure on groundwater resources will decrease. Unlike agricultural areas, the likely
rise in future abstraction in urban areas can be associated with increasing population.
Previous studies [2,71] suggest pressure on groundwater resources is dominated by anthro-
pogenic pumping. Rising future temperatures and expansion in the built-up area due to
imperviousness will exacerbate the pressure on groundwater resources.
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Figure 6. Annual projections of groundwater abstraction in the urban area of Lahore, under (a)
SSP1, and (b) SSP3 population scenarios for the 21st century. The shaded area in annual graphs
represents the 25th and 75th percentile, and smooth lines are twenty years moving averages. Change
in abstraction will be significant at p = 0.05.

3.7. MODFLOW Sensitivity Analysis

The study used a parameter estimation package (PEST) for model calibration and
sensitivity analysis. Sensitivity analysis of the parameters such as; specific storage, specific
yield, vertical and horizontal hydraulic conductivities, and recharge was performed to
check their influence on groundwater level. The groundwater model was most sensitive to
horizontal hydraulic conductivity, followed by recharge, specific storage, vertical hydraulic
conductivity, and specific yield.
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3.8. MODFLOW Calibration—Steady State

The study used the parameter estimation (PEST) module to calibrate the steady-state
MODFLOW model. The observed piezometric water levels for the wet season in 2003
(Dec-03) were used as reference targets. The specific yield (Sy), horizontal (Kh), and vertical
(Kv) hydraulic conductivities, specific storage (Ss), and recharge were used as calibration
parameters. The optimized hydraulic conductivity of the total formation varies from 66.53
to 89.52 mm.day-1 and vertical hydraulic conductivity from 3.47 to 6.02 mm.day-1. Specific
storage and specific yield vary from 1.09E-04 to 2.47E-04 and 0.17 to 0.22, respectively. The
calculated heads are given in Figure 7. Results depict that the plotted points are close to
the best fit line with a small degree of scattering (less than 2 m), as shown in Figure 7. The
degree of scattering varies between 2 and −2 m with an average value of −0.077 m (0.25 ft),
thereby depicting overall good agreement between simulated water levels. The coefficient
of determination is very high (R2 = 0.9869), showing a high level of correspondence between
observed and simulated water levels.
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3.9. MODFLOW Calibration—Transient

The transient model was calibrated for seven years; December 2003 to June 2009. The
horizontal and vertical hydraulic conductivities were not considered because hydraulic
conductivity is a non-time variant parameter. Therefore, recharge, specific yield, and
specific storage were optimized using the PEST model. The optimized parameters are
listed in Table S2 (supplementary material). The average values of specific storage and
yield for the total formation vary from 1.09E-06 to 2.47E-03 and 0.17 to 0.22, respectively.
The calibrated groundwater flow model performed well in simulating the water levels,
as shown in Figure 8. The simulated hydrographs showed well match with observed
hydrographs by effectively capturing the seasonal variations and overall trends in urban
and agricultural zones. The average bias of model-simulated water levels in urban zones
varies between 0.59 m and 1.23 m, and in the agriculture zones between 0.52 m and 0.81
m. The falling water levels during the calibration period show increasing pressure on
groundwater resources in urban zones.

143



Atmosphere 2022, 13, 2001

Atmosphere 2022, 13, x FOR PEER REVIEW 17 of 25 
 

 

falling water levels during the calibration period show increasing pressure on groundwa-
ter resources in urban zones. 

 
Figure 8. Calibration results of a transient GMS-MODFLOW model for groundwater levels in La-
hore across (a) urban areas, (b) peri urban areas, and (c) agriculture areas. Note: Peri-urban areas 
are referred to as areas situated on the outskirts of urban areas and comprise mixed and fragmented 
landscapes of rural and urban areas [72]. 

3.10. Groundwater Level Projections 
This section presents the future evolution of groundwater levels projected using the 

MODFLOW model for four scenarios. The simulations were performed to predict the be-
havior of groundwater resources up to the year 2100. All three factors, climate, land use, 
and abstraction, pose a combined effect on groundwater resources. Therefore, the follow-
ing sections present the results, projected under combined climate change, land-use 
change, and abstraction scenarios. Changes in groundwater levels are a measure of 
groundwater storage, and therefore, this study focuses on groundwater levels only. 
Groundwater levels of urban and agricultural zones were projected using the MODFLOW 
up to 2100, as shown in Figure 9a–c. The results elucidate that groundwater levels will 
decrease at a much faster rate in urban areas. The drawdown in urban areas will vary 
from 45 to 55 m under all scenarios by 2100. The surroundings of urban areas (peri-urban) 
will observe a drawdown of about 9 to 10 m. In agricultural zones, there will be a draw-
down of more than 2 m under the RCP4.5R1S1 scenario. 
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across (a) urban areas, (b) peri urban areas, and (c) agriculture areas. Note: Peri-urban areas are
referred to as areas situated on the outskirts of urban areas and comprise mixed and fragmented
landscapes of rural and urban areas [72].

3.10. Groundwater Level Projections

This section presents the future evolution of groundwater levels projected using the
MODFLOW model for four scenarios. The simulations were performed to predict the
behavior of groundwater resources up to the year 2100. All three factors, climate, land use,
and abstraction, pose a combined effect on groundwater resources. Therefore, the following
sections present the results, projected under combined climate change, land-use change,
and abstraction scenarios. Changes in groundwater levels are a measure of groundwater
storage, and therefore, this study focuses on groundwater levels only. Groundwater levels
of urban and agricultural zones were projected using the MODFLOW up to 2100, as shown
in Figure 9a–c. The results elucidate that groundwater levels will decrease at a much faster
rate in urban areas. The drawdown in urban areas will vary from 45 to 55 m under all
scenarios by 2100. The surroundings of urban areas (peri-urban) will observe a drawdown
of about 9 to 10 m. In agricultural zones, there will be a drawdown of more than 2 m under
the RCP4.5R1S1 scenario.

144



Atmosphere 2022, 13, 2001Atmosphere 2022, 13, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 9. Projections of groundwater levels in Lahore division, for combined climate change, land-
use change, and abstraction scenarios for the 21st century, (a) urban areas, (b) per urban areas, and 
(c) agricultural areas.  

The changes in groundwater levels for urban and peri-urban areas are significant at 
p = 0.05 under both scenarios. Changes in groundwater levels for the left and right zones 
will be insignificant. The fast decline in groundwater levels for urban areas is due to ur-
banization, causing a rise in abstraction and a fall in recharge. Unlike the increase in total 
annual precipitation under climate change scenarios, groundwater levels will decrease. 
The decrease in water levels is due to the dominant effect of land-use change and abstrac-
tion, both of which marginalize the climate change effect, causing groundwater levels to 
reduce at a much faster rate. In peri-urban areas, the rate of decline is relatively slower. 
Low population density and recharge from rainfall and irrigation water supply slows the 
rate of decline. In agricultural zones, the fluctuation in groundwater levels is apparent. 
Unlike urban and peri-urban areas, groundwater levels will increase. Besides rainfall re-
charging, the dense network of irrigation, link canals, and irrigation return flows contrib-
ute to the likely increase in water levels. 

3.11. Future Impact on Groundwater Resources 
The impact of climate change, land-use change, and abstraction on groundwater lev-

els was estimated under combined scenarios by subtracting the groundwater levels for 
the base period and future. An increase in depth was assigned a negative sign and vice 
versa. Results show that compared to the base period, the degree of impact will be much 
higher in the future, as shown in Figures 10 and 11. Unlike north and west, most areas 
will observe negative impacts under combined scenarios in the near future. 

Figure 9. Projections of groundwater levels in Lahore division, for combined climate change, land-use
change, and abstraction scenarios for the 21st century, (a) urban areas, (b) per urban areas, and (c)
agricultural areas.

The changes in groundwater levels for urban and peri-urban areas are significant
at p = 0.05 under both scenarios. Changes in groundwater levels for the left and right
zones will be insignificant. The fast decline in groundwater levels for urban areas is due to
urbanization, causing a rise in abstraction and a fall in recharge. Unlike the increase in total
annual precipitation under climate change scenarios, groundwater levels will decrease. The
decrease in water levels is due to the dominant effect of land-use change and abstraction,
both of which marginalize the climate change effect, causing groundwater levels to reduce
at a much faster rate. In peri-urban areas, the rate of decline is relatively slower. Low
population density and recharge from rainfall and irrigation water supply slows the rate of
decline. In agricultural zones, the fluctuation in groundwater levels is apparent. Unlike
urban and peri-urban areas, groundwater levels will increase. Besides rainfall recharging,
the dense network of irrigation, link canals, and irrigation return flows contribute to the
likely increase in water levels.

3.11. Future Impact on Groundwater Resources

The impact of climate change, land-use change, and abstraction on groundwater levels
was estimated under combined scenarios by subtracting the groundwater levels for the
base period and future. An increase in depth was assigned a negative sign and vice versa.
Results show that compared to the base period, the degree of impact will be much higher in
the future, as shown in Figures 10 and 11. Unlike north and west, most areas will observe
negative impacts under combined scenarios in the near future.
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In the north, the effect will change from positive to negative in the mid and far
future. Urban and southeastern areas will observe the highest negative impact due to
groundwater levels, decreasing at a much faster rate from 23 m in the near future to over
55 m in the far future. The surrounding areas being positively impacted in the base period
will observe negative impacts due to the fast-outward expansion of the depression front.
The groundwater levels in these areas are likely to decrease from 2 m in the near future
to over 23 m by 2100. The agriculture areas, already facing a negative impact due to a
decrease in groundwater levels during the base period, are likely to observe a further
increase in the magnitude of negative impact. The likely decrease in groundwater levels
in agriculture areas varies from 2 m in the near future to over 11 m in the far future. The
degree of impact will be higher under RCP8.5-R1S1-SSP3 scenarios than RCP4.5-R1S1-SSP1.
Similarly, the combined R1S1 scenario project higher changes than the R2S2 scenarios. The
areas of a high negative impact and low adaptive capacity are likely to be more vulnerable
in the future under all scenarios, as shown in Figures 10 and 11, including urban areas.
The highly vulnerable urban areas will expand outward and triple spatially in the far
future. Besides experiencing a negative impact during the base period and increasing in
the future, agricultural areas will be less vulnerable in the future, under all scenarios. The
surrounding areas of urban settlements are also likely to be less vulnerable in the future,
although margins will decrease due to their proximity to the urban area. The degree and
range of vulnerability will be higher and wider under RCP8.5-R1S1-SSP3 scenarios than
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RCP4.5-R1S1-SSP1. Similarly, the combined R1S1 scenarios project a larger change than
R2S2 scenarios.
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4. Policy Guidelines for the Adaptation of the Impact of Multiple Stresses on
Groundwater Levels

The results of this study reveal that the groundwater resources in Lahore are vulner-
able to the three dominant stressors: climate change, land-use change, and abstraction.
The main reason is the increased deficit over time due to rising water demand and a
decreasing supply (recharge) to the Lahore aquifer. The situation will become severe in
the future if current groundwater practices continue. Therefore, groundwater resources
need to be protected against the impact of climate change (SDG13), land-use change, and
abstraction to ensure the continuous supply of water in ample quantities (SDG6). Protection
means complying with the United Nations Sustainable Development Goals: SDG6 (“clean
water and sanitation”) and SDG 13 (“climate action”). The said goal can be achieved by
formulating practical adaptation measures.

The indicators used in this study can be grouped into physical and climatic. The
results also reveal that population (density) has a dominant influence on groundwater,
followed by recharge and water table depth, respectively. Irrigation supply and impervious
areas have minimum effect compared to other factors.
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The projected results show quantitively that the population (in urban areas) of Lahore
will increase many-fold in the future, ultimately increasing abstraction. At present, the
annual groundwater abstraction from the Lahore aquifer is dominated by domestic con-
sumption (52.9%) [39] and is likely to exacerbate due to the future increase in population.
An increase in population is associated with local birth rates and migration from other
parts of the country due to socioeconomic factors [73]. Expansion in built-up (urban) areas
involves many factors, defining the rate at which it overruns other land-use types [74,75].
These factors are biophysical, infrastructural, and socioeconomic. The socioeconomic
(66.67%) and infrastructural (64.10%) factors contribute equally and twice the number of
biophysical factors (33.33%) in Lahore [45]. The current study projects that built-up area
expansion will be consequent to the increase in the future population. An increase in
built-up areas depicts the contraction of other land use types, especially agriculture areas,
thus reducing the recharge from rainfall and agricultural return flows. In order to control
the rapid increase in abstraction and decrease in recharge, some workable adaptation policy
actions should be implemented, supported by the results of this study, especially those
presented in Table 6. The detailed description of adaptation options is provided in Table S3
(Supplementary material).

Table 6. Proposed adaptation options to counter the negative impacts on groundwater resources in
Lahore.

Sr. No. Improve Adaptation Options Time-Based
Effectiveness

Approximate Time to
Observe Outcome

1
A

Population control Slow 10–15 years
2 New economic zones Slow 10–20 years
3 Regulation of abstraction and zoning Fast 3–5 years

4 A/R Supplemental supply of treated sewage Fast 1–2 years

5
R

Building development laws Slow 5–10 years
6 Rainwater and storm water harvesting Fast 4–5 years
7 River ponding Fast 3–4 years

Note. A = Abstraction; R = Recharge. The time-based effectiveness of each adaption measure is defined based on
experts’ experience and judgment.

5. Assumptions, Limitations, and Future Work

Land-use change, especially in the built-up category, is identified to be posing a severe
impact on groundwater in Lahore. However, this study relies only on land use projections,
developed based on simplified assumptions (future built-up will extend only around the
existing built-up areas). Future studies can prepare future land-use change maps based on
robust methodologies and replicate the results of this study for Lahore. Our study proposes
some adaptation options that could improve the quantitative situation of groundwater
in Lahore. Further research may evaluate the potential for groundwater replenishment
of these adaptation options: river ponding, rainwater, stormwater harvesting, and reuse
of treated wastewater using modeling-based tools. Because of the lack of observation-
based data on groundwater quality, this study focuses only on the quantitative aspect of
groundwater resources without the quality component. The groundwater quantity, as well
as quality aspects, may be considered in future work and management policy formulation
as well.

6. Conclusions

This study uses a multi-model integrated approach to investigate the impacts of
climate change, land-use change, and abstraction on groundwater resources in Lahore.
Following are the conclusions.

Future annual temperatures will rise, with the Tmin increasing more than the Tmax.
The dry season will be warmer than the wet season under climate change scenarios. Future
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annual rainfall will increase, while patterns of annual and seasonal rainfall will remain the
same.

The annual rainfall will increase by 24% and 29% under RCP4.5 and RCP8.5 scenarios,
respectively, in the far future. The changes will be more apparent under the RCP8.5
compared to the RCP4.5. The built-up area will increase in the future and dominate
the agricultural area under land-use change scenarios. An increase in the built-up area
will at the expense of the agriculture area. Future annual abstraction in urban areas will
increase under shared socioeconomic scenarios. Future annual groundwater abstraction
in agricultural areas will decrease but, seasonal groundwater abstraction in the wet and
dry seasons will follow the patterns of annual groundwater abstraction under climate
change scenarios. Annual groundwater abstraction in urban areas will increase with the
highest increase under SSP3 and lowest under SSP1. Annual groundwater abstraction in
the agricultural areas will decrease. The decrease will be fast under RCP4.5 than RCP8.5
scenarios.

Future groundwater levels in urban areas will decrease fast due to an increase in ab-
straction and built-up expansion. Surrounding areas will observe a decline in groundwater
levels due to the outward expansion of the water level depression front. Groundwater levels
in urban areas will decrease by 51 m and 56 m under RCP4.5R1S1SSP1 and RCP8.5R1S1SSP1
combined scenarios, respectively, in the far future. The groundwater levels in the sur-
roundings of urban areas will decrease by 10.7 m and 11 m under RCP4.5R1S1SSP1 and
RCP8.5R1S1SSP1 combined scenarios, respectively, in the far future. Agricultural areas
will experience an insignificant change in groundwater levels due to rainfall and irrigation
under combined scenarios in the future. Seven adaptation options to offset the negative
effect of climate change and human development on groundwater resources have been
proposed based on consultation with experts. However, their actual potential has yet to be
determined.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13122001/s1, Table S1: Functional relationship of the most
influential SWAT parameters with the discharge and groundwater components, Table S2: List of
sensitive parameters with their calibrated values for GMS-MODFLOW, Table S3: Description of
proposed adaptation options to counter the negative impacts on groundwater resources in Lahore.
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Abstract: Using a dataset of 114 meteorological stations in the Yangtze River Basin from 1980–2019,
the standardized precipitation evapotranspiration index (SPEI) was calculated based on the Penman-
Monteith evapotranspiration model for multiple time scales, and the spatial and temporal evolution
characteristics and driving factors of drought in the Yangtze River Basin were analyzed by combining
spatial and temporal analysis methods as well as geodetector. The main results obtained are as
follows: (1) The climate of the Yangtze River Basin is an overall wet trend, and the trend of summer
drought is more similar to the annual scale trend. (2) Most areas in the Yangtze River Basin showed
mild drought or no drought, and there is little difference in drought condition among the Yangtze
River Basin regions. The areas with drought conditions are mainly distributed in the southwest and
east of the Yangtze River Basin. (3) There are significant seasonal differences in drought conditions
in all regions, and the drought condition is more different in autumn compared to spring, summer
and winter. (4) The average annual precipitation and elevation factors are the dominant driving
factors of drought in the Yangtze River Basin, and the double-factor interaction has a greater influence
on the drought variation in the Yangtze River Basin than the single-factor effect, indicating that
the difference of drought condition in the Yangtze River Basin is the result of the combination of
multiple factors.

Keywords: drought evolution characteristics; SPEI; space-time cube; geodetector; Yangtze River
Basin; driving factors

1. Introduction

Drought is one of the most costly natural disasters, which has a very important impact
on agricultural production [1], biodiversity [2], human health [3], hydrology [4] and other
important fields related to human production and life. Droughts can be classified into four
main types according to their causes [5]: meteorological drought, agricultural drought,
hydrological drought and socio-economic drought. The frequency of drought events has
become more frequent [6] because of the superposition of natural and anthropogenic
factors [7] such as climate change and human activities. However, due to the complexity
and variability of the many factors involved in drought, the identification and analysis of
drought events pose a huge challenge.

The Yangtze River Basin is the largest basin in China, and it straddles the Qinghai-Tibet
alpine region, the southwest tropical monsoon region and the central China subtropical
monsoon region, with complex climatic conditions. The Yangtze River Basin, as a typical
wet-semi-humid zone, has obvious alternation between wet and dry, and the Yangtze
River Basin droughts are characterized by short-term fluctuations and the coexistence of
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droughts and floods, which makes the study of drought scenarios in the Yangtze River
Basin particularly complex.

The drought index is an important method for quantitatively calculating the severity
and impact of drought [8]. Drought indices are vital to objectively quantify and compare
drought severity, duration, and extent across regions with varied climatic and hydrologic
regimes [9]. In the past decades, a series of meteorological drought indexes have been
developed, such as Standardized Precipitation Index (SPI) [10], Standardized Precipita-
tion Evapotranspiration Index (SPEI) [11], Palmer Drought Severity Index (PDSI) [12] and
Soil Moisture Deficit Index (SMDI) [13], which are widely used in different spatial scales
globally, regionally, nationally and in different river basins [14]. The SPEI was proposed
by Vicente Serrano et al. [11], which retains the core algorithms of the PDSI and SPI,
and can combine multi-scale features with the ability to assess the impact of temperature
change on drought [15]. At the same time, the temperature factor was considered, and
the concept of potential evapotranspiration was introduced [16]. The SPEI is an important
and useful tool for comparing meteorological drought [9]. Evapotranspiration is the major
component of the water cycle, so a correct estimate of this variable is fundamental [17]. At
present, there are two potential evapotranspiration models commonly used in the SPEI
calculation process in China, which are Thornthwaite and Penman-Monteith. Temperature
is the only meteorological element required in the Thornthwaite model. In contrast, the
elements involved in the calculation based on the Penman-Monteith model, in addition
to temperature, also take into account solar radiation, air pressure, wind speed, relative
humidity and the geographical location of the meteorological station site [16]. If data
permits, the Penman-Monteith model strikes a useful balance between consistency and
minimal data requirements, requiring only the addition of minimum/maximum temper-
ature and wind speed [9]. Liu et al. [18] calculated the SPEI (abbreviated as SPEI_TH
and SPEI_PM, respectively) for the Chinese region using the Thornthwaite and Penman-
Monteith models, respectively, and showed that SPEI_PM can describe the dry and wet
variation characteristics of the study area relatively more reasonably.

SPEI has been widely used in drought research. Ling et al. [19] used SPEI to an-
alyze the spatio-temporal evolution characteristics of drought in the Haihe River Basin
from 1960 to 2020, and found that the frequency of drought was on the rise, with mild
drought and moderate drought occurring frequently. Men et al. [20] analyzed the spatio-
temporal characteristics of meteorological drought in the Chaobai River Basin, and the
results showed that the variation trends of dry and wet conditions were not exactly the
same at different time scales, but they were all mainly dominated by mild and moderate
droughts. Wang et al. [21] used SPEI to analyze the effects of multi-temporal scale drought
on vegetation dynamics in Inner Mongolia from 1982 to 2015, and found that the probability
of vegetation productivity loss increased with increasing drought levels under different
drought levels. Chen et al. [14] showed that SPEI_PM performed better than SPEI_TH in
the results of drought monitoring in China, and that temperature changes in recent decades
had the greatest weight in the natural factors causing drought. Li et al. [22] found that the
SPEI_PM results for the Yangtze River Basin were better than SPI and SPEI_TH, but the
study only used SPEI_PM to analyze the annual-scale drought evolution characteristics
of the Yangtze River Basin without multi-scale analysis and analysis of drought drivers.
Tian et al. [23] divided the Yangtze River Basin according to each sub-basin and used soil
moisture data to study agricultural drought, but did not use SPEI for drought analysis.
Huang et al. [24] analyzed the temporal evolution characteristics of drought area, spatial
and temporal distribution characteristics of dry and wet scenarios, and change trends in
the Yangtze River Basin based on PDSI; however, the PDSI used in this study lacked multi-
scale characteristics and did not effectively analyze the multi-scale drought characteristics
of the Yangtze River Basin, and the study also lacked the analysis of drought drivers in
the Yangtze River Basin. However, when analyzing the conditions for the occurrence of
drought events, previous studies often simply attributed them to average or extreme tem-
peratures and precipitation, while ignoring the internal factors and exploring the patterns
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in the long-term changes of drought events, thus leading to a failure to effectively break
through the core causes of regional drought phenomenon. Therefore, understanding the
characteristics of drought and its influencing factors in the study area plays an important
role in natural disasters and the pressure of production and life in the area.

At present, most studies on droughts in the Yangtze River Basin were conducted sepa-
rately in time and space, without analyzing the characteristics and evolution of droughts
at the overall spatial and temporal scales, and without analyzing the driving factors of
droughts in the Yangtze River Basin. Exploring the distribution pattern, formation process
and impact mechanism of meteorological drought in the Yangtze River Basin using spatial
and temporal data models has important practical and realistic significance. Since the
space-time cube model can ensure the continuity of spatio-temporal data, when compared
with traditional spatio-temporal analysis, the space-time cube can show the spatio-temporal
characteristics of the data as a whole, instead of only selecting individual years for analysis
and presentation as in traditional spatio-temporal analysis. In this paper, the multi-scale
SPEI of the Yangtze River Basin was visualized and analyzed by using the space-time cube
model, and the clustering areas of the drought at each scale in the Yangtze River Basin were
obtained by combining the time series clustering method. The trend of drought conditions
in the Yangtze River Basin over the past 40 years was determined by using emerging hot
spot analysis. Finally, the drought driving factors in the Yangtze River Basin were studied
based on geodetector.

2. Materials and Methods
2.1. Study Region

The Yangtze River Basin covers a total area of 1.8 million square kilometers (Figure 1),
accounting for 18.8% of China’s territory, making it the largest basin in Asia. The Yangtze
River Basin spans the Qinghai-Tibet alpine region, the southwest tropical monsoon region
and the central China subtropical monsoon region [22]. The vegetation in the upper reaches
is dominated by alpine meadow and natural grassland, the forest vegetation in the middle
reaches is dominated, and farmland is widely distributed in the middle and lower reaches
and Sichuan Basin [23]. With rich resources, large population clusters, and rapid industrial
development [25], it plays an important role in ecological integrity and ecosystem services.

Figure 1. Study area.

2.2. Data Source

In this paper, 114 meteorological stations within the Yangtze River Basin were selected
from 1980 to 2019, and data such as mean temperature and latitude were obtained from the
China Meteorological Science Data Sharing Service (https://www.data.cma.cn/ accessed
on 2 March 2020). In order to ensure the integrity of data in time series, the missing data of
a few stations are interpolated by neighboring stations. The driving factor data (Table 1),
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provincial boundaries in the Yangtze River Basin and the boundary of the Yangtze River
Basin were obtained from the Resource and Environmental Science and Data Center of
Chinese Academy of Sciences (https://www.resdc.cn/ accessed on 26 March 2022) and
Geospatial Data Cloud (https://www.gscloud.cn/ accessed on 20 March 2022).

Table 1. Yangtze River Basin SPEI driving factors.

Category Factor

Topography Elevation (X1)
Slop (X2)

Soil type (X3)
Meteorology Average annual temperature (X4)

Average annual precipitation (X5)
Socio-economic population density (X6)

GDP (X7)
Night light (X8)

Human footprints (X9)
Traffic location Distance to water system (X10)

Distance to provincial road (X11)
Distance to railroad (X12)

2.3. Methods
2.3.1. Standardized Precipitation-Evapotranspiration Index

SPEI is the result of standardized difference between precipitation and potential
evapotranspiration [24]. In this paper, the Penman-Monteith model was selected as the
potential evapotranspiration model to calculate the multiscale SPEI values for the period
1980–2019 at 114 meteorological stations in the study area, which provided a more accurate
method for calculating the potential evapotranspiration and can better reflect the regional
dry and wet conditions [19]. The specific calculation process of SPEI_PM is as follows [11].

(1) The calculation of the reference crop evapotranspiration (ET0) was computed using
the Penman-Monteith model with the following equation.

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ET0 is the evapotranspiration of the reference crop (mm/d), ∆ is the slope of the
saturated water pressure curve (kPa/◦C), γ is the hygrometry constant (kPa/◦C), Rn is
net solar radiation (MJ·m−2·d−1), G is the heat flux of soil (MJ·m−2·d−1), T is the average
temperature during the calculation period (◦C), U2 is the average wind speed at 2 m above
the ground, es is the saturated water pressure (kPa), and ea is the actual water pressure (kPa).

(2) Calculate the difference between month-by-month precipitation and evapotranspiration.

Di = P− ET0 (2)

where Di is the difference between precipitation and evapotranspiration, P is the monthly
precipitation, ET0 is the actual monthly evapotranspiration.

(3) Normalization of Di data series. The log-logistic probability distribution F(x) is
used to fit Di, and the SPEI value corresponding to each Di value is calculated.

w =
√
−2 ln P (3)

when the cumulative probability p ≤ 0.5:

SPEI = w− c0 + c1w + c2w2

1 + d2w + d1w2 + d3w3 (4)
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when the cumulative probability p ≥ 0.5:

SPEI = −(w− c0 + c1w + c2w2

1 + d2w + d1w2 + d3w3 ) (5)

where d1 = 1.432788, d2 = 0.189269, d3 = 0.001308, c0 = 2.515517, c1 = 0.802853, c2 = 0.010328.

2.3.2. Space-Time Cube

The space-time cube model is a method to aggregate sample points into space-time
bars [26]. By creating space-time cube (Figure 2), spatio-temporal data can be visual-
ized in the form of time series analysis, integrated spatial analysis and temporal analysis
models [27]. In Figure 2, X and Y represent the spatial location of the geographic entity,
Z represents time. The bottom layer is the starting time and the top layer is the latest
time, and each cube is composed of the attribute values corresponding to that time, and
the values can be differentiated by setting different colors. Because the space-time cube
model can ensure the continuity of spatio-temporal data, the space-time cube can show
the spatio-temporal characteristics of the whole data when comparing with traditional
spatio-temporal analysis [28], instead of the traditional spatio-temporal analysis, which
can only visualize a single year, which destroys the continuity of time and ignores the
possible interactions between spatio-temporal data [29]. As a temporal variable pattern,
spatio-temporal analysis or model persistence metrics are considered worth exploring [30].
The model uses the geometric properties of the time dimension. Spatial entity is a concept
of space-time body, and the description of geographic change is simple and straightfor-
ward [14]. Three-dimensional visualization of the space-time cube makes it easy to explain
trends and patterns of big data over long time scales [31]. The spatio-temporal distribu-
tion characteristics, spatio-temporal evolution process, time series clustering analysis and
emerging hot spot analysis analysis of drought in the Yangtze River Basin were explored by
combining the thinking mode of spatio-temporal analysis, which can provide a scientific
basis for the research on spatio-temporal changes of drought for relevant departments [28].

Figure 2. Schematic diagram of the space-time cube.

2.3.3. Time Series Clustering Analysis

Time series clustering groups regions with similar trends and patterns into a common
cluster. These clusters are unlabeled and simply indicate the similarity of trends and
patterns between different regions [32,33]. It is very difficult to analyze and mine the large
amount of data and high-dimensional time series, which will affect the overall analysis
results [34]. Due to the various applications of time series cluster analysis, there are many
different TSC methods [35]. Based on the similarity of time series features, the time series
set stored in the space-time cube is divided. It can aggregate time series based on three
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conditions: having similar time values, tending to increase and decrease at the same time
and having similar repeating patterns [23] (Figure 3). In this paper, the SPEI data in the
Yangtze River Basin from 1980 to 2019 was combined with the space-time cube model for
time series clustering.

Figure 3. Schematic diagram of time series clustering.

2.3.4. Emerging Hot Spot Analysis

Emerging hot spot analysis can identify the spatio-temporal trend and patterns of
change in data [36], and analyze the hot or cold spots of a certain feature at the spatio-
temporal scale. The Getis-Ord Gi∗ statistic is calculated for each cube bar by specific
neighborhood distance and prodomain time step parameters [37]. Gi∗ statistic is the
z-score. The obtained z-score allows to know where the clustering of high- and low-valued
elements occurs in space. Mann–Kendall trend test method is used to test the trend of
hot spot analysis results [38]. The results are divided into seven categories: new hot spot,
sporadic hot spot, oscillating hot spot, new cold spot, sporadic cold spot, oscillating cold
spot and no pattern detected [26]. Finally, according to the spatial pattern characteristics of
the time series of each research unit, statistical analysis and the results of the Mann-Kendall
trend test, the research results are classified into different types of spatio-temporal patterns
for comprehensive expression according to certain classification principles [39]. In recent
years, emerging hot spot analysis has been applied to different scientific fields [40,41].

The formula for Gi∗ is as follows.

Gi∗ =
∑n

j=1 wijxj − X̄ ∑n
j=1 wij

S

√
n ∑n

j=1 w2
ij−(∑n

j=1 wij)2

n−1

(6)

where xj is the attribute value of element j, wij is the spatial weight between elements i and
j, n is the total number of elements, and

X̄ =
∑n

j=1 xj

n
(7)

S =

√
∑n

j=1 x2
j

n
− (X̄)2 (8)

2.3.5. Geodetector

Geodetector is a new statistical method for detecting spatial stratified heterogeneity
and revealing the driving factors behind it [42]. The core idea is based on the assumption
that if an independent variable has a significant effect on a dependent variable, then the spa-
tial distribution of the independent and dependent variables should have similarity [43,44].
Geodetector is good at analyzing type quantities, while sequential, ratio or interval quan-
tities can be analyzed with appropriate discretization [45]. Geodetector can also be used
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for statistical analysis [42]. The core of the theory is to detect the consistency of spatial
distribution pattern between the dependent variable and the independent variable through
spatial stratified heterogeneity, and to measure the explanatory power of the independent
variable on the dependent variable accordingly. Geodetector includes 4 detectors: factor
detector, ecological detector, interaction detector and risk detector. These detectors are
mutually perfect and supportive relationships in measuring the explanatory power of the
independent variables on the spatial distribution of the dependent variable [46].

(a) Factor detector
Detecting the spatial stratified heterogeneity of the dependent variable Y and detecting

the extent to which a factor X explains the spatial stratified heterogeneity of Y (Figure 4).
The influence of each detection factor on the drought in the Yangtze River Basin can be
calculated through factor detector, namely q. A larger q value means that the influence of a
detection factor X on the drought in the Yangtze River Basin is greater. The expression is:

q = 1− ∑L
h=1 Nhσh2

Nσ2
(9)

where h is the stratification of variable Y or factor X, h = 1, 2, 3, · · · , L. Nh and N are the
number of units in layer h and the whole area, respectively. σh2 and σ2 are the variances of
the Y values for layer h and the whole region, respectively.

Figure 4. Principle of geodetector.

(b) Interaction detector
It is used to analyze the interaction between the factors [42], that is, to assess whether

the factors X1 and X2 together increase or decrease the explanatory power of the dependent
variable Y, or whether the effects of these factors on Y are independent of each other. The
method of evaluation is to first calculate the q-values of the two factors X1 and X2 on Y:
q(X1) and q(X2), and calculate the value of q when they interact (Figure 5): q(X1

⋂
X2).

Compare q(X1), q(X2) and q(X1
⋂

X2).
Drought formation is the result of a combination of drivers [47]. Referring to existing

studies [48–51], 4 major aspects were selected from natural factors (topographic and meteo-
rological factors) and human factors (socio-economic factors and traffic factors), and a total
of 12 detection factors X were selected (Table 2). Based on the study of drought differences
in the Yangtze River Basin using the factor detector method, the strength of the two-factor
effect on drought differences was studied using the interaction detector analysis.

Table 2. Drought classification based on SPEI.

Level Type SPEI

1 No drought SPEI ≥ −0.5
2 Mild drought −1.0 ≤ SPEI < −0.5
3 Moderate drought −1.5 ≤ SPEI < −1.0
4 Severe drought −2.0 ≤ SPEI < −1.5
5 Extreme drought SPEI ≤ −2.0
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Figure 5. Interaction detector. Y is the dependent variable. X1 and X2 are evaluation factors. Overlay
the two layers X1 and X2 to get the new layer X1

⋂
X2.

3. Results and Discussion
3.1. Temporal Variation Characteristics of Drought

As shown in Figure 6, from 1980 to 2019, the annual SPEI of the Yangtze River Basin
showed a obvious form of positive and negative oscillations in the short term. The trend
line shows that the overall rate of increase is 0.01/10a, indicating a wet trend in the climate
of the Yangtze River Basin, which is consistent with the findings of Zhang et al. [52]. In the
past 40 years, the drought periods in the Yangtze River Basin were mainly concentrated in
1986–1988 and 2006–2013, among which the drought intensity was higher in 1986, 1988 and
2006, and with SPEI values of−0.75,−0.73 and−0.62, respectively, indicating Mild drought.
The wet periods were mainly concentrated in 1980–1983 and 1989–2005, among which 1983
and 1998 were relatively wet, with SPEI values reaching 0.59 and 0.68, respectively.

This paper counted the area of drought areas in each year, as shown in Figure 7. It
can be found that the percentage of drought areas in 1986, 1988 and 2006 were 0.68, 0.70
and 0.67, respectively, which indicates that the majority of areas in that time node were
in drought.

The seasons are defined according to the meteorological division method. The division
rules of different seasons and months are in the order of March to May (spring), June to
August (summer), September to November (autumn), and December to February of the
next year (winter).

Figure 6. Changes in annual mean SPEI in the Yangtze River Basin from 1980 to 2019.
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Figure 7. Percentage of drought area.

As show in Figure 8, the seasonal time scale results showed that the overall SPEI of each
seasonal scale in the Yangtze River Basin from 1980–2019 showed significant positive and
negative fluctuations compared to the annual scale. The following conclusions can be drawn
from the trend line: in spring and summer, the SPEI values showed no significant increasing
trend, with an increasing rate of 0.061/10a and 0.003/10a, respectively; in autumn and
winter, the SPEI values showed no significant decreasing trend, with decreasing rates of
0.006/10a and 0.077/10a, respectively. Compared with other seasons, the frequency of
winter drought in the Yangtze River Basin from 1980 to 2019 was higher, and the variation
trend of summer SPEI was more similar to that of the annual scale.

(a) (b)

(c) (d)

Figure 8. Variation of seasonal SPEI values in the Yangtze River Basin from 1980 to 2019. (a) Spring;
(b) summer; (c) autumn; and (d) winter.

3.2. Spatial Variation Characteristics of Drought
3.2.1. Space-Time Cube for Multi-Scale SPEI

This paper combined with space-time cube model to demonstrate the spatio-temporal
distribution of multi-scale SPEI of 114 meteorological stations in the Yangtze River Basin.
Figure 9 shows the spatio-temporal monitoring of drought in the Yangtze River Basin at
the seasonal scales of spring, summer, autumn, and winter, respectively. As a whole, most
areas of the Yangtze River Basin and most of the time show light drought or no drought.
From the perspective of time and space, there are obvious seasonal differences in drought
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conditions in the Yangtze River Basin. There is no perennial drought in the same season in
different years, but the drought conditions has gradually improved in recent years, and
summer is wetter than other seasons. From the annual scale (Figure 9e), the areas with
severe drought were mainly distributed in the southwest and east of the Yangtze River
Basin. On the whole, drought occurred at each meteorological station, and there were three
main conditions: early drought conditions were more severe and gradually improved, early
drought conditions were good but gradually deteriorated, and always in no drought or
mild drought state.

Figure 9. Space-time cube results of multi-scale SPEI in Yangtze River Basin. (a) Spring; (b) summer;
(c) autumn; and (d) winter; (e) Year.

3.2.2. Result of Time Series Clustering Analysis

In this paper, the spatio-temporal distribution of the drought in the Yangtze River
Basin in the past 40 years was clustered by the space-time cube results, and the results are
shown in Figure 10. The time series clustering results with SPEI seasonal scale and SPEI
annual scale are in Figure 10. The number of clusters in Figure 10 refers to the same color
region as one class, for example, Figure 10a is two colors, so the number of clusters is 2. As
shown in Figure 10, the number of SPEI seasonal-scale and annual-scale clusters is small,
indicating that drought conditions do not significantly differ among regions in the Yangtze
River Basin. Compared with spring, summer and winter, the number of clusters in autumn
is higher and mainly concentrated in the western part of the Yangtze River Basin, because
the Yangtze River Basin spans the eastern, central and western parts of China. There are
significant differences in precipitation and temperature in autumn in the west compared
with other regions, and therefore the differences in drought conditions become larger.
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Figure 10. Result of time series clustering analysis. (a) Spring; (b) summer; (c) autumn; and (d) winter;
(e) Year.

3.2.3. Result of Emerging Hot Spot Analysis

Combined with the space-time cube results, the emerging hot spots of multi-scale
drought in the Yangtze River Basin in recent 40 years were analyzed (Figure 11). From the
annual scale of SPEI (Figure 11e), there is an oscillating hot spot trend in the northwest and
northeast of the Yangtze River Basin, indicating that severe drought years in these regions
occur irregularly in historical years.

From the SPEI seasonal scale (Figure 11a–d), in spring, there is oscillating hot spot
trend in the west of the Yangtze River Basin, indicating that the severe drought years in
these areas occurred irregularly in historical years; in the southeast of the Yangtze River
Basin, there is oscillating cold spot trend, indicating that the drought in these areas is not
severe, but has historically occurred irregularly. In summer, there is an oscillating hot spot
trend in the west, east and southeast of the Yangtze River Basin, indicating that the severe
drought years in these areas occurred irregularly in historical years; in the central and east
of the Yangtze River Basin, there is oscillating cold spot trend, indicating that the drought
in these areas is not severe, but has historically occurred irregularly. In autumn, there is
new hot spot trend in the northwest of Yangtze River Basin, the drought was not serious
in the region previously, but in recent years, the drought is serious; there is oscillating hot
spot trend in the east and northwest of Yangtze River Basin, indicating that the severe
drought years in these areas occurred irregularly in historical years; in the west of Yangtze
River Basin, there is oscillating cold spot trend, indicating that the drought in these areas is
not severe, but has historically occurred irregularly. In winter, there is oscillating hot spot
trend in the east of Yangtze River Basin, indicating that the severe drought years in these
areas occurred irregularly in historical years; in the west of Yangtze River Basin, there is
oscillating cold spot trend, indicating that the drought in these areas is not severe, but has
historically occurred irregularly.

163



Atmosphere 2022, 13, 1986

Figure 11. Result of emerging hot spot analysis. (a) Spring; (b) summer; (c) autumn; and (d) winter;
(e) Year.

3.3. Analysis of Drought Drivers in the Yangtze River Basin
3.3.1. Factor Detector

In this paper, time cross-sectional data of 2000, 2005, 2010, and 2015 were selected
for factor detection of each impact factor (the coding meanings are shown in Table 1),
and the results are shown in Table 3. This paper selected 12 indicators that may affect
drought differences in four dimensions. The average q values of each dimension of the
indicators in each period were summed to obtain the effect intensity of different dimensions
on drought differences in the Yangtze River Basin, while each effect intensity was divided
into two equal effect levels, and it was defined as a strong effect dimension layer when
q > 0.5, otherwise it was a weak effect intensity layer. The ranking of dimensional effect
results is meteorology (0.59) > topography (0.55) > traffic location (0.19) > socio-economic
(0.16). Meteorology and topography are the strong dimensional layers, while transportation
location and socio-economics are the weak dimensional layers, which is consistent with the
actual situation and confirms that meteorology and topography play a significant role in
affecting drought differences in the Yangtze River Basin.

From the results of the q values of each influencing factor, the top three influencing
factors with q values were considered as the dominant factors. The top 3 in 2000 are
elevation (0.18), distance to railroad (0.18) and average annual temperature (0.16). The top 3
in 2005 are average annual temperature (0.32), soil type (0.30) and elevation (0.28). The top
3 in 2010 are average annual precipitation (0.43), elevation (0.19) and soil type (0.10). The
top 3 in 2015 are average annual precipitation (0.70), soil type (0.44) and average annual
temperature (0.42).
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Table 3. Factor detection results of drought differences in the Yangtze River Basin.

Factor 2000 2005 2010 2015 q (Average) q (Sum)

X1 0.18 0.28 0.19 0.41 0.27 0.56
X2 0.06 0.00 0.05 0.07 0.05
X3 0.13 0.30 0.10 0.44 0.24
X4 0.16 0.32 0.09 0.42 0.25 0.59
X5 0.01 0.20 0.43 0.70 0.34
X6 0.01 0.02 0.00 0.04 0.02 0.16
X7 0.02 0.02 0.02 0.02 0.02
X8 0.07 0.03 0.01 0.09 0.05
X9 0.05 0.09 0.00 0.15 0.07
X10 0.00 0.00 0.00 0.00 0.00 0.19
X11 0.01 0.06 0.00 0.08 0.03
X12 0.18 0.16 0.09 0.22 0.16

The results of the average q values of the influencing factors show that the average
annual precipitation (0.34), elevation (0.27), average annual temperature (0.25) and soil
type (0.24) are dominant, among which the factor with the strongest effect is the average
annual precipitation.

From the changes in the q values of the selected influencing factors in each period, the
more obvious change is the average annual precipitation, which is gradually dominating
over time; the elevation, soil type and average annual temperature show an increasing
trend and dominate in each period, which indicates that the influence of human behavioral
activities on the environment is gradually increasing.

3.3.2. Interaction Detector

The interaction detector was used to detect the drought differential influencing factors
(the coding meanings are shown in Table 2) in the Yangtze River Basin in 2000, 2005, 2010
and 2015, respectively, and the results are shown in Figure 12. According to the results of
the interaction detector, the influence of double factor interaction on drought differences
in the Yangtze River Basin is greater than that of single-factor interaction, and the types
of effects include non-linear enhancement and double factor enhancement, that is, the
drought differences in the Yangtze River Basin are the result of the combined effect of
multiple factors. In 2000, the best double factor combination is elevation and average
annual precipitation (0.32). In 2005, the best double factor combination is soil type and
average annual precipitation (0.40). In 2010, the best double factor combination is soil type
and average annual precipitation (0.52). In 2015, the six best combinations of double factor
combination effects are the combinations of average annual precipitation with elevation, soil
type, average annual temperature, population density, night light, and human footprint,
respectively, and the detection values were 0.72. It can be found that the combination
of annual average precipitation and other factors all dominate the influence of drought
variation in the Yangtze River Basin from 2010 onwards. This indicates that the difference
of drought in the Yangtze River Basin is not the result of a single factor or dimension, but
the comprehensive effect of multiple factors and systems.
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Figure 12. Interaction detector results of drought differences in the Yangtze River Basin. (a) 2000;
(b) 2005; (c) 2010; and (d) 2015.

4. Discussion

This study was based on SPEI_PM, using space-time cube, time cluster analysis and
emerging hot spot methods to analyze the spatial and temporal evolution characteristics of
drought in the Yangtze River Basin over the past 40 years and to study the drivers of the
Yangtze River Basin using geodetector.

Our analysis demonstrates that the climate of the Yangtze River Basin is an overall
wet trend and most areas in the Yangtze River Basin showed mild drought or no drought.
Similarly, Huang et al. [24] analyzed the drought characteristics of the Yangtze River Basin
based on PDSI and found that there is an overall wet trend in the Yangtze River Basin.
In addition, this paper finds the following results. (1) The areas with drought condition
are mainly distributed in the southwest and east of the Yangtze River Basin. (2) There
are significant seasonal differences in drought conditions in all regions, and the drought
condition is more different in autumn compared to spring, summer and winter. (3) The
difference of drought condition in the Yangtze River Basin is the result of the combination
of multiple factors. Currently, many scholars have been studying the analysis of drought in
the Yangtze River Basin. Li et al. [22] calculated SPI and SPEI based on month-by-month
meteorological data, and then analyzed the annual variation characteristics of drought in
the Yangtze River Basin using SPEI_PM, which did not analyze the drought characteristics
of the Yangtze River Basin from multiple time scales and did not further analyze the factors
affecting drought in the Yangtze River Basin. Tian et al. [23] studied the historical spatial
and temporal evolution of agricultural drought in the Yangtze River Basin based on long
time series CCI soil moisture data, and found that the area of agricultural drought in
the Yangtze River Basin showed a trend of increasing and then decreasing, with spring
and winter droughts dominating in the seasonal scale; however, this study was mainly
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limited to agricultural drought studies, and did not use SPEI to conduct a comprehensive
study of drought in the Yangtze River Basin and did not investigate the mechanism of
multiple factors affecting drought in the Yangtze River Basin. Huang et al. [24] explored
the spatial and temporal characteristics of drought in the Yangtze River Basin and its
evolutionary trends based on PDSI; however, the PDSI used in this study lacked multi-scale
characteristics and did not effectively analyze the multi-scale drought characteristics of the
Yangtze River Basin. Compared with the current studies on drought in the Yangtze River
Basin by other scholars [53], this study not only provided a multi-scale analysis on drought
characteristics, but also analyzed the main influencing factors and mechanisms that cause
drought changes [54].

Drought is the most severe meteorological disasters to impact human society and occur
widely and frequently in China causing considerable damage to the living environment of
humans [52]. They have become stronger in frequency [55], severity and duration under
the rapid development of the economy and society [56]. To explore the characteristics of
drought and its drivers in the Yangtze River Basin, which plays a pivotal role in reducing
natural disasters and production and livelihood stress in the study area [57], thus providing
a theoretical and decision-making basis for early warning management of meteorological
disasters in the Yangtze River Basin.

More detailed studies on drought in the Yangtze River Basin are limited by the dif-
ficulty of obtaining more accurate meteorological data. In the subsequent study, we not
only want to improve the data accuracy, but also to make a long time series prediction of
drought in the study area based on the deep learning model.

5. Conclusions

Based on the SPEI_PM drought index method, this paper analyzed the spatio-temporal
drought evolution characteristics and the driving factors of the Yangtze River Basin at
multiple time scales from 1980–2019 using space-time cube, time series clustering analysis,
emerging hot spot analysis and geodetector. The main conclusions are as follows.

In terms of temporal variation, the annual-scale SPEI values in the Yangtze River
Basin from 1980–2019 show obvious forms of positive and negative oscillations in the short
term, with an overall upward trend and an increase rate of 0.01/10a, indicating the wet
trend of the Yangtze River Basin climate. From 1980–2019, the overall trend of spring and
summer SPEI values in the Yangtze River Basin show a non-significant upward trend; the
overall trend of autumn and winter SPEI values show a non-significant downward trend.
Compared with other seasons, droughts occurred more frequently in the Yangtze River
Basin in winter from 1980–2019, and the trend of SPEI values in summer is more similar to
the trend of annual scale changes.

In terms of spatial variation, according to the results of space-time cube, it can be seen
that most areas of the Yangtze River Basin and most of the time show mild drought or no
drought, and the areas with severe annual drought are mainly distributed in the southwest
and east of the Yangtze River Basin. At the seasonal scale, summer is wetter than other
seasons, and there are obvious seasonal differences in drought conditions among regions in
the Yangtze River Basin. The time series clustering analysis results show that the number
of SPEI seasonal-scale and annual-scale clusters is small, indicating that drought conditions
do not significantly differ among regions in the Yangtze River Basin, and the drought
situation in autumn is relatively different from that in spring, summer and winter. The
method can cluster areas with similar drought conditions into one category, and the higher
the density of stations, the better the results. The results of emerging hot spot analysis can
visualize the overall spatial and temporal trends of the drought in the past 40 years, and
the trend of drought increase and decrease in the Yangtze River Basin area can be obtained,
providing a theoretical basis for drought prevention and relief in the Yangtze River Basin.

By analyzing the drivers of drought variation in the Yangtze River Basin, it can
be obtained that topography and meteorology have the greatest influence on drought,
among which the average annual precipitation and elevation factors are dominant. In the
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interaction detection, the influence of double factor interaction on drought change in the
Yangtze River Basin is greater than that of single factor, which indicates that the differences
of drought conditions in the Yangtze River Basin are the result of the combination of
multiple factors.
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Abstract: In this study, four drought monitoring indices were selected to simulate drought monitoring
in the study area and a correlation analysis was conducted using the self-calibrated Palmer Drought
Index (sc-PDSI) to screen for the most suitable drought monitoring index for the study area. Then, the
spatio-temporal variation characteristics of drought in the study area were discussed and analyzed.
The results showed that the Crop Water Stress Index (CWSI) was most suitable for drought monitoring
in the Sichuan Province. CWSI had the best monitoring in grasslands (r = 0.48), the worst monitoring
in woodlands (r = 0.43) and the highest fitting degree of overall correlation (r = 0.47). The variation of
drought time in the Sichuan Province showed an overall trend of wetting and the drought situation
was greatly alleviated. In the past 20 years, the dry years in the Sichuan Province were from 2001 to
2007, in which the driest years were 2006 and 2007; 2012–2013 was the transition interval between
drought and wet; any year from 2013 to 2020 was a wet year, showing a transition trend of “drought
first and then wet”. The spatial distribution of drought was greater in the south than in the north
and greater in the west than in the east. Panzhihua City and the southern part of the Liangshan
Prefecture were the most arid areas, while the non-arid areas were the border zone between the
western Sichuan Plateau and the Sichuan Basin. Looking at the spatial distribution of drought,
“mild drought” accounted for the largest percentage of the total area (60%), mainly concentrated
in the western Sichuan plateau. The second largest was “drought free” (33%), mostly concentrated
in the transition area between the western Sichuan Plateau and the Sichuan Basin (western Aba
Prefecture, Ya’an City, Leshan City and northern Liangshan Prefecture). The area of “moderate
drought” accounted for a relatively small proportion (6%), mainly concentrated in Panzhihua City,
the surrounding areas of Chengdu City and the southern area of the Liangshan Prefecture. The area
of severe drought accounted for the least (1%), mostly distributed in Panzhihua City and a small
part in the southern Liangshan Prefecture. The drought center ranged from 101.8◦ E to 103.6◦ E and
28.8◦ N to 29.8◦ N, with the movement trend of the drought center moving from the northeast to the
southwest to the northeast.

Keywords: Sichuan Province; drought index; MODIS data; drought monitoring

1. Introduction

The Sichuan Province lies in the transition zone between the Qinghai–Tibet Plateau
and the middle and lower reaches of the Yangtze River, with the characteristics of being
high in the west and low in the east. The western part of Sichuan Province is characterized
by a fragile plateau climate and ecological environment and the vertical zonal difference
is great, while the eastern part is characterized by an abundant monsoon climate and
precipitation. The climate and lower pad surface properties of the study areas are very
different, which is of great reference value for research. In recent years, frequent droughts
occurred in the Yangtze River Basin (especially in Sichuan and Chongqing in 2006), which
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posed a serious threat to agricultural and forestry production in this region. In order to
better cope with and study the impact of drought on the study area, it is necessary to adopt
effective monitoring methods to accurately analyze the drought situation in the study area.

The application of remote-sensing technology in drought monitoring has become
mainstream [1]. Remote-sensing technology can make up for the shortage of meteorological
station data and obtain meteorological data over a long time and a wide range [2]. At
present, the meteorological drought index is based on the data of meteorological stations at
different time scales. It uses mathematical and physical methods to calculate the drought
index, so as to monitor the drought caused by climate anomalies in specific regions and
specific periods [3]. The earliest drought indices used to characterize drought conditions
were the Vegetation Condition Index (VCI) and the Temperature Condition Index (TCI)
developed by Kogan [4,5]. Based on the Normalized Difference Vegetation Index (NDVI)
and Land Surface Temperature (LST) changes in different time series. The Palmer Drought
Severity Index (PDSI) developed by meteorologists Wayne Palmer et al. [6] put forward a
drought index based on water supply and demand. The PDSI is widely used in drought
assessment because it considers the temperature factor, can effectively reflect the impact of
climate change on droughts and, at the same time, can consider the water supply and their
relationship for regional drought assessment. However, there are differences in drought
analysis in different spaces, so it is not always suitable to assess drought in different
regions [7]. Compared with PDSI, the self-calibrating Palmer Drought Severity Index (sc-
PDSI) is a great improvement and the calculation of evapotranspiration using the FAOPM
formula has higher accuracy [7]. At the same time, sc-PDSI uses the meteorological data of
the respective stations for the calculations, giving fewer regional constraints and high spatial
comparability [8]. The application of sc-PDSI in regional drought analysis is relatively
mature [9,10]. The Standard Precipitation Evapotranspiration Index (SPEI) is the degree of
deviation between precipitation and evapotranspiration by Vicente Serrano et al. [11] to
characterize the drought of a given area. In recent years, the application of SPEI to analyze
regional drought has been increasing [12]. The Drought Severity Index (DSI) was proposed
by Mu et al. [13]. Further, Jakson et al. [14] proposed considering energy and water exchange
between the vegetation, soil and atmosphere and the related Crop Water Stress Index
(CWSI). This is a standardized index according to the variation of the degree of water deficit
in different time series compared with the standard state. Considering the comprehensive
impact of NDVI and LST on drought, Sand Holt et al. [15] proposed the Temperature
Vegetation Dryness Index (TVDI), Carlson et al. [16] proposed the Vegetation Supply Water
Index (VSWI), Wang et al. [17] proposed the Vegetation Temperature Condition Index
(VTCI). Thereafter, the development of a drought index combined with remote sensing
technology involved various meteorological and hydrological elements such as soil water
content, elevation, LST and NDVI. Liu et al. [18] used BP neural network to propose
Integrated Agricultural Drought Index (IDI).

VCI and TCI are easy to calculate and mature in application but data from long time
series are easily affected by non-drought stress factors [19]. DSI has unique advantages
for global drought monitoring but there are great differences in its regional application.
Although it is simple to calculate, it is still affected by non-drought stress factors based on
historical data [20]. Therefore, the above three indices do not have universality in drought
monitoring in agriculture and forestry. IDI has significant advantages for regional drought
simulation but cannot be widely used due to the complexity of its calculation. Most of
the previous studies considered the applicability of the index but not under the influence
of different lower pad surfaces. Therefore, the Sichuan Province, where the lower pad
surface is relatively complex, is selected as the study area. In order to better simulate
drought in the study area, CWSI, VSWI, VTCI and TVDI are selected as the fitting models
for the study area by comprehensively considering multiple drought stress factors. (The
above indices have been widely used due to their simple calculation, easy access to data,
and not being easily affected by non-drought stress factors [21,22]). The correlational
analysis is conducted using the self-calibrated Palmer Drought Severity Index (sc-PDSI) to
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comprehensively select an appropriate drought index for the study area; this will provide a
scientific basis for drought monitoring and management in the study area.

2. Data and Methods
2.1. Overview of the Study Area

The Sichuan Province is selected as the study area in this paper. The Sichuan Province
is located in southwest China and consists of two major areas: the Sichuan Basin and the
Western Sichuan Plateau. The terrain of the Sichuan Province is in the transition zone of
the first and second steps in China and the lower pad surface has various properties. It
is a key development province in southwest China and an economic and cultural center
in the region. It is also an important grain-producing area, meaning Sichuan’s ecological
environment is vulnerable to the impact of human activities. In the past 20 years, the
frequent droughts in the Sichuan Province (represented by high temperatures and drought
in 2001, 2006 and 2022) have caused great losses to agricultural production and people’s
lives in the Sichuan Province.The geographical location of Sichuan Province is shown in
Figure 1.
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Figure 1. Study area land type zoning and selection sample points.

2.2. Data Sources and Research Methods

Using MODIS data and sc-PDSI, the drought model was constructed after preprocess-
ing the data and its accuracy was verified to select a model with good fitting to analyze the
spatial and temporal pattern of drought in the study area. The framework of the study was
divided into three main parts: data preprocessing, model construction and applicability
evaluation, and drought pattern analysis, as shown in Figure 2.
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Figure 2. Flowchart of drought estimation based on MODIS remote sensing data.

2.2.1. Data Sources

ET, PET, NDVI, and LST data from 2001 to 2020 were obtained from MODIS image
data obtained from the National Aeronautics and Space Administration (NASA) (https:
//ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 April to 20 May 2022). Among them,
the MOD11C3 product contains the synthesized LST data on a monthly basis, with a
resolution of 0.05◦ × 0.05◦. MOD13A3 had monthly synthesized NDVI with a resolution of
1 km. MOD16A2 synthesized Evapotranspiration (ET) and Potential Evapotranspiration
(PET) in 8 days with a resolution of 0.5 km. Google Earth Engine (GEE) was used for data
preprocessing and clipping to output Geo-Tiff format with a resolution of 0.5 km. From 2001
to 2020 the sc-PDSI data are from the Climatic Research Unite (https://crudata.uea.ac.uk/,
accessed on 1 May 2022) with a spatial resolution of 0.5◦ × 0.5◦. The average calculated
from 2001 to 2020 is the average PDSI and sampling to 2 km. The annual mean sc-PDSI
from 2001 to 2020 was calculated and the tool “Create fishing nets” in ArcGIS10.8 was used
to create 0.5 km×0.5 km fishing nets and their annotation points in the study area. The
annotated points were used to obtain the attributes of the source data at each annotated
point through the ‘value extraction to point’ tool, and the fishing nets were resampled to
0.5 km by attributing the attributes. The Land cover types data (with a resolution of 1 km)
for the Sichuan Province were obtained from the Resource and Environmental Science
and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn, accessed on
13 May 2022.). The range of forest, grassland, cultivated land and other land types could be
obtained by reclassification.

2.2.2. Research Methods

Four remote sensing-based indices, i.e., the CWSI, VSWI, TVDI, and VTCI, were
selected to detect the drought in the study area. According to the principle of water balance,
CWSI determines the drought degree of the region according to the soil evapotranspiration
deficit. It also involves a variety of agronomic and meteorological factors with clear physical
meaning and high reliability. CWSI is defined as:

CWSI = 1 − ET/PET (1)
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where ET is the actual evapotranspiration and PET is the potential evapotranspiration.
CWSI returns a value between 0 and 1, the larger the value is, the more arid and water
scarce the region is, and vice versa.

The physical meaning of VSWI is that vegetation index and canopy temperature
remain within a certain range when plants’ water supply is normal, while an insufficient
water supply affects plant growth. In order to reduce water loss, foliar stomata will partially
close, resulting in a canopy temperature rise.

VSWI is defined as:
VSWI = NDVI/Tc (2)

where, NDVI is the normalized vegetation index, and Tc is the canopy temperature of
vegetation. Since it is difficult to obtain the canopy temperature, LST is used to replace it.
VSWI values are between 0 and 1; the smaller the value is, the more arid and water-scarce
the area is, and vice versa.

TVDI (Sandholt et al. [15]) is used in the study of soil moisture. It was found that there
were many contour lines in the feature space of TS-NDVI, based upon which the concept
of TVDI was proposed. Later, Carlson [16] found that when the vegetation coverage of
the study area is large, the scatter plot is obtained by using the LST and NDVI, obtained
from remote-sensing data, as the horizontal and vertical coordinates are triangular. The
value of TVDI was calculated from the vegetation index and the land surface temperature.
Meanwhile, Wang et al. [17] proposed VTCI based on NDVI and LST feature space. The
two are defined as:

VTCI = (LSTNDVI,max − LST)/(LSTNDVI,max − LSTNDVI,min) (3)

VTCI = (LST − LSTNDVI,min)/(LSTNDVI,max − LSTNDVI,min) (4)

LSTNDVI,max = a1 + b1×NDVI (5)

LSTNDVI,min = a2 + b2 × NDVI (6)

where, LST is the surface temperature, and LSTNDVI,min and LSTNDVI,max represent the
corresponding minimum and maximum. They correspond to “dry edge” and “wet edge”
and a1, a2 and b1, b2, are the fitting coefficients of dry and wet edges, respectively. TVDI
and VTCI are both between 0 and 1. The smaller the VTCI value is, the more arid and water
scarce the region is, and vice versa. The smaller the TVDI value, the wetter the region is,
and vice versa.

The Theil-sen Median method, also known as Sen slope estimation, is a robust non-
parametric statistical trend calculation method. This method has high computational
efficiency and is insensitive to measurement errors and outliers so it is often used in trend
analysis of long-time series data [23]. The Mann–Kendall (MK) test is a non-parametric
trend test method for time series, proposed by Mann in 1945 and further improved by
Kendall and Sneyers. It does not require the measurement values to follow a normal
distribution and is not affected by missing values and outliers so it is suitable for trend
significance tests for long time series data. The Sen slope estimation is used to calculate the
trend value, which is usually used in combination with the MK nonparametric test; that is,
the Sen trend value is calculated first and then the trend significance is determined using
the MK method.

According to the center of gravity transfer theory. the geographical center of gravity
can reflect the spatial and temporal distribution characteristics of an element. The relative
transfer distance and direction to its center of gravity can reflect the variation amplitude
and spatial difference of the geographical element in this period. It is often used to reflect
the transformation of the economy and population [22]. The application of this technique
in drought monitoring can effectively describe the spatial location of the center of gravity
shift in arid areas and provide a basis for monitoring research in arid areas.
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3. Suitability Assessment and Drought Classification
3.1. Correlation between Remote-Sensing Drought Index and Sc-PDSI

In order to verify the accuracy of spatial and temporal monitoring of the four remote-
sensing drought indices, a Pearson coefficient correlation analysis was performed between
the four indices and sc-PDSI data (Figure 3). According to the statistical analysis, the
correlation coefficients of CWSI, VSWI, TVDI and VTCI are −0.44, 0.32, −0.28 and 0.28,
respectively. On the whole, CWSI and TVDI are negatively correlated with sc-PDSI while
the other indices are positively correlated with sc-PDSI.
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Among them, only the correlation between CWSI and sc-PDSI passes the significance
test (p < 0.05) in most regions, which indicates that CWSI has a better fit to the inter-annual
variation in soil drought in the study area.

For the correlation coefficients of different land types (Figure 4), it can be seen that
CWSI has a higher fitting degree in the steppe. The mean of the correlation coefficient
of the steppe is 0.48, which passes the significance test (p < 0.05). Although the mean of
woodland is 0.43, it is still much higher than the other three indices. The comprehensive
analysis shows that CWSI has great advantages in drought monitoring and simulation in
the Sichuan Province.

3.2. Drought Classification

The above correlational analysis shows that the CWSI index has better applicability
than other indices in the study area; the CWSI was selected to analyze the spatial and
temporal characteristics of drought in the study area. First of all, the drought grade criteria
should be divided. In this study, sc-PDSI data were used to classify drought grades (Table 1).
Most sc-PDSI data from 2001 to 2020 are between −3 and 2. There are values −3 to −4
in sc-PDSI data of some years, but they are few and they do not exist after the 20-year
mean treatment. Therefore, according to the sc-PDSI criteria for drought classification, the
drought grade is divided into four classes. In addition, 120 sample points are selected
according to the area proportion of different land types in Sichuan Province (Figure 1b).
The specific number of sample points is 48 (45.56%) forestland, 20 (13.85%) arable land,
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38 (25.12%) grassland, 4 (3.23%) building land and 10 (7.86%) other land. Considering the
existence of unsuitable land types such as water area and traffic land and the highest fitting
degree of grassland, the number of selected grassland sites is increased and the above
120 sample sites are obtained through data screening of alternative sample sites. We then
perform a unary linear regression (Figure 5) to obtain the partition thresholds of CWSI
corresponding to different grades (Table 1).
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Table 1. Drought categories.

Drought Rating sc-PDSI CWSI

No drought >0 0~0.59
Mild drought −1~0 0.59~0.72

Moderate drought −2~−1 0.72~0.85
Severe drought −2~−3 0.85~0.92
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4. Spatial-Temporal Pattern Analysis of Drought in the Sichuan Province
4.1. Variation Characteristics of Drought Time

According to the statistics of CWSI and sc-PDSI index data from each year, Figure 6
shows that the fluctuation range of CWSI is between 0.53 and 0.62 and the fluctuation
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range of sc-PDSI is between −1.48 and 1.21. CWSI shows an obvious downward trend
(p < 0.05), while sc-PDSI shows an obvious upward trend (p < 0.05), indicating that CWSI
is consistent with sc-PDSI in terms of the time development trend of drought; that is, the
trend of drought in the study area slow down. Based on previous studies, the cumulative
anomaly value is determined to be stable; that is, the changing trend does not pass the
significance test p < 0.05, which is regarded as the turning interval. According to Figure 6,
the drought trend of CWSI and sc-PDSI tend to be consistent, with CWSI on the whole in
a downward trend and sc-PDSI in an upward trend (the smaller the CWSI value is, the
wetter it is, while the larger sc-PDSI value is, the wetter it is), so the drought situation has
been greatly improved. At the same time, the drought and wetness transition intervals of
the two indices are both in 2012–2013 and there are significant abrupt changes in 2006 and
2007 (drought caused by high temperatures in the study area in 2006 and 2007). Therefore,
the reliability of CWSI for drought monitoring and simulation in the study area is strong.
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4.2. Spatial Variation Characteristics of Drought

Figure 7 shows the spatial distribution of the multi-annual mean of CWSI and the
spatial distribution of the drought grade from 2001 to 2020. The available CWSI values
ranged from 0.06 to 0.91. Most of the low values of CWSI are concentrated in the central belt
of Sichuan Province; namely, the junction of the plateau and basin. The high-value areas
are concentrated in Panzhihua, Xichang, Chengdu and other cities and their surrounding
areas, as well as the hinterland of the western Sichuan Plateau. The spatial pattern of high
values in the plateau basin junction zone, low values in the two sides of the plateau basin,
and low values in the southern Sichuan plateau is generally formed. In terms of the spatial
distribution of drought classes, Panzhihua City and the Liangshan Prefecture are the most
severe drought areas in the study area, followed by Chengdu City and its surrounding
areas and the central region of the Garze Prefecture. The border areas of the plateau basin
and Luzhou, Yibin, Dazhou, Bazhong, Guang’an and part of the western Garze Prefecture
were drought-free areas. From Figure 7, it can be found that the proportion of mild drought
in the total area of the CWSI drought spatial distribution is the largest (60%), which is
mainly concentrated in the western Sichuan plateau, followed by the central area of the
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Sichuan Basin. Secondly, the percentage that is drought-free of the total area is relatively
large (33%), and mostly concentrated in the border zone between the western Sichuan
Plateau and the Sichuan Basin (western Aba Prefecture, Ya’an, Leshan City, and northern
Liangshan Prefecture). The area of moderate drought is relatively small (6%), mainly
concentrated in Panzhihua City, the surrounding areas of Chengdu City and the southern
areas of the Liangshan Prefecture. The area of severe drought is the smallest (1%) and is
mostly distributed in Panzhihua City and a small part of the southern Liangshan Prefecture.
Based on the above analysis, the percentages of drought grades in the study area are, in
descending order, mild drought > no drought > moderate drought > severe drought.
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4.3. Spatial-Temporal Evolution of Drought in the Sichuan Province

The Sen trend and Mann–Kendall method is used to obtain the variation trend of
CWSI and the spatial distribution of its significance Figure 8a,b). According to Table 2, the
spatial distribution of the trend and significance of CWSI are superimposed and analyzed
to obtain the spatial distribution of the detailed changes of drought (Figure 8).

Table 2. Category of significant variation of drought trend.

CWSI Slope Z Trend Type Trend Features

Slope > 0
2.58 < |Z| 3 Significantly dried

1.96 < |Z| 2.58 or less 2 Dry
1.65 < |Z| 1.96 or less 1 Slightly dried

Slope = 0 Z 0 Stable and unchanged

Slope < 0
1.65 < |Z| 1.96 or less −1 Slightly wet
1.96 < |Z| 2.58 or less −2 Wet

2.58 < |Z| −3 Significantly wet

According to Figure 8, it can be seen that the change rate of CWSI from 2001 to 2020
ranged from −0.0366 to 0.0208 and the overall spatial distribution show that the drought
mitigation degree in the western region was greater than in the eastern region (Figure 8a).
The areas with significant drought changes in the last 20 years are the eastern part of
the Sichuan Basin and the northern region of the Garze Prefecture and Aba Prefecture
(Figure 8b). Most of the areas with significant changes are “significantly wetter” and the
proportion of the area is the largest (46.5%) compared with other areas, followed by “stable
and unchanged” (25%), and “wet”, “slightly wet”, “slightly dried”, “dry” and “significantly
dried”. Among them, the wetting trend accounts for 79.5% of the total area while the drying
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trend accounts for only 1.5%. The comprehensive analysis shows that the trend of drought
change in the study area is overall wetting, indicating that the drought situation in the
study area is getting better overall from 2001 to 2020, and the drought level is easing in
most areas (Figure 8c).
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4.4. Analysis of the Change of the Drought Center of Gravity in the Sichuan Province

The larger the CWSI value, the greater the degree of drought in the region, so this
paper selects the CWSI of drought-prone areas (CWSI > 0.72) as the weight and calculates
the distribution of the center of gravity of drought-prone areas every 4 years.

The Gration trajectory of the center of gravity in the drought-prone areas is shown
in Figure 9. From the figure, it can be seen that the center of gravity in the drought-prone
region of CWSI is concentrated between 101.8◦ E to 103.6◦ E and 28.8◦ N to 29.8◦ N. On
the whole, the center of gravity shifts southward in latitude and westward in longitude.
In terms of spatial distribution, the center of gravity shifts from the area around Chengdu
in 2001 to Leshan in 2020. Although the drought-prone areas are not distributed in the
driest regions, the trajectory of their center of gravity shift can reveal the pattern of drought
migration. The overall migration trend of drought-prone areas is from the northeast to the
southwest, and then to the northeast.
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5. Discussion

The correlation analysis between the four indices and sc-PDSI showed that CWSI
is more suitable for drought monitoring in the study area, followed by VSWI. However,
since the VSWI index is concentrated in the range 0~0.2, they lack discriminative power
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for drought class classification, and therefore, cannot meet the adaptation requirements
of the study area. CWSI has a greater advantage in regional drought monitoring because
ET/PET reflects the energy and water exchange between vegetation, soil, and atmosphere
and can better describe soil moisture information [24,25]. NDVI/LST reflects the stress
effect of drought on vegetation and can better reflect the effect of soil water deficit on
vegetation growth [26,27]. However, it has also been suggested that the dry and wet side
fitting equations of LST-NDVI and VTCI of LST and NDVI in TVDI are more influenced by
regional differences and vegetation types, and the dry and wet side fitting is not good [28].
Therefore, the drought monitoring of TVDI and VTCI in the study area is not effective and
widely affected by regional differences.

The lowest values of CWSI are concentrated in the northwestern part of Sichuan. This
is mainly due to the low local temperature, sufficient precipitation, abundant groundwater
sources, and a high proportion of irrigated farmland [8]. Similarly, in other areas of the
study area with irrigated farmland networks, there are lower values of CWSI. The high
values of CWSI are concentrated in Panzhihua city because the subtropical climate of
Panzhihua city is controlled by subtropical high pressure, so the climate is dry and rainy,
with high variability in the subsurface layer and increased evapotranspiration, resulting in
high values of regional CWSI. Since CWSI is based on the vegetation evapotranspiration
theory, the external water supply can increase the actual evapotranspiration when the
actual evapotranspiration does not reach PET; this may lead to lower CWSI values. CWSI
is calculated based on canopy temperature. Canopy temperature is inversely proportional
to leaf stomatal closure and evapotranspiration. Stomatal closure is a result of crop water
stress, which in turn reduces the transpiration rate of the plant. A low transpiration
rate reduces plant cooling; therefore, an increase in canopy temperature is seen as an
indicator of water stress. If a meteorological drought occurs due to insufficient precipitation,
climate change-induced temperature increases will exacerbate the drought by increasing
evapotranspiration. The areas with significant changes in drought trends in Sichuan
Province (the eastern part of Sichuan Province, i.e., the Sichuan Basin area) are mostly
monsoonal in climate, and their high precipitation and evapotranspiration are highly
adaptable to CWSI, forming the advantage of CWSI in drought monitoring simulations in
Sichuan Province.

The drought in the study area is mainly concentrated in the southern part of Panzhihua
city and its surrounding areas. As a traditional industrial city, the mining of mineral
resources in the Panzhihua area has to some extent destroyed the nature of the substratum
and weakened the soil water exchange between ET/PET, thus exacerbating the drought in
the area. As a result, the drought in the region has been aggravated by human actions. It
is closely followed by the central areas of Chengdu and Garze. The drought in Chengdu
and its surrounding areas is caused by the change in the nature of the substratum due to
the combined effects of urban expansion and the urban heat island effect. However, the
drought in Garze is caused by natural factors such as climate and topography; the sparse
precipitation and long sunshine hours in the plateau region result in reduced soil moisture.
Therefore, the drought monitoring of CWSI shows the drought status. The drought-free
areas in the study area are mainly concentrated at the junction of the western Sichuan
plateau and the Sichuan basin (western Aba, Ya’an, Leshan, and northern Liangshan). The
area is dominated by forest cover with high vegetation coverage and significant elevation
differences; high precipitation results in good soil moisture retention. In general, the
CWSI results of drought monitoring in Sichuan Province show a good trend, thanks to the
emphasis on environmental protection in recent years; for example, the implementation of
the policy of “returning farmland to forest and grass” and “Sichuan Ecological Protection
Red Line”. As a result, the ecological environment in Sichuan province has been improving
and the drought has been alleviated. The center of gravity of drought areas shifted from
northeast to southwest to northeast. The specific shift is divided into two phases, 2001–2009
and 2010–2020, reflecting the trend of the center of gravity shifting from the area around
Chengdu to southwest Sichuan and then back to Chengdu. This effect is mainly due to
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the over-exploitation of mineral resources and environmental changes caused by human
activities in Panzhihua City before 2009, which formed the drought center and easily shifted
to the southwest. From 2010 to 2020, the South Asian high-pressure and subtropical high-
pressure systems were active, resulting in high temperatures in the interior. In addition,
the eastern plain of Sichuan Province is densely populated, with over-exploited resources
and a lack of water conservation projects. Due to natural and man-made causes, drought
has shifted eastward.

Different drought monitoring indices have different adaptation statuses in different
study areas. In this paper, four drought monitoring indices are constructed, their correlation
with sc-PDSI is verified, and the more appropriate CWSI index is selected as the drought
monitoring index for the study area. Although index screening is conducted based on the
lower pad surface of the study area, it is limited to four factors, ET, PET, NDVI and LST,
to analyze the degree of drought. The effects of other factors such as precipitation [29],
extreme hazards [30] and topography [31] on drought conditions are not considered.

6. Conclusions

In most areas of the Sichuan Province, woodlands and grasslands are more sensitive
to water exchange between vegetation, soil and atmosphere, which means that ET and PET
can better reflect the physical processes and thus CWSI has a greater advantage for drought
monitoring simulations. Although VSWI has a high correlation in correlation analysis,
it is difficult to classify drought classes due to its over-concentration (mostly between 0
and 0.2). The fitted equations of dry and wet edges of TVDI and VTCI are influenced by
regional differences and vegetation types, and the dry and wet edges are not well fitted on
a large scale. Therefore, CWSI is selected as the best-fitting drought monitoring index in
the study area.

The drought monitoring results show that the drought conditions in the study area
are gradually improving. From 2001 to 2011 it was relatively dry, with the most severe
years ranging from 2006 to 2007 (influenced by the high-temperature drought in Sichuan
in 2006); 2012 to 2013 was the transitional interval between dry and wet in the study area.
From 2014 to 2020, the study area showed a stable wet trend, especially in the eastern part
of the basin. This is mainly due to the improving environmental and drought conditions
in Sichuan Province as a result of China’s ecological protection policies. In the eastern
plateau, drought occurs only in the central part of the Garze Prefecture, and the drought-
intensive areas of the Sichuan Basin are concentrated in Chengdu City and its surrounding
areas. In general, Panzhihua City and the southern part of Liangshan Prefecture are the
most severely drought-stricken areas. The ratio of drought-rated areas is as follows: mild
drought > no drought > moderate drought > severe drought.

The overall drought trend in the study area is improving and the drought mitigation
trend is effective, especially in the Sichuan basin. Drought-prone areas are concentrated
in the range of 101.8◦ E–103.6◦ E and 28.8◦ N–29.8◦ N. The center of gravity of drought in
drought-prone areas tends to move to the southwest, showing a shift from northeast to
southwest to northeast.
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Abstract: Data from historical observatories and future simulations were analyzed using the repre-
sentative concentration pathway (RCP) 8.5 scenario, which covered the period from 1951 to 2100. In
order to characterize the drought, three widely used drought indicators were used: the standardized
precipitation index (SPI), the reconnaissance drought index (RDI), and the standardized precipitation
and evapotranspiration index (SPEI). The ensemble of the seven (7) GCMs that used RCA-4 was
able to capture several useful characteristics of Nigeria’s historical climatology. Future climates were
forecasted to be wetter than previous periods during the study period based on the output of drought
characteristics as determined by SPI. SPEI and RDI predicted drier weather, in contrast. SPEI and
RDI’s predictions must have been based on the effect of rising temperatures brought on by global
warming as depicted by RCP 8.5, which would then have an impact on the rate of evapotranspiration.
According to drought studies using the RCP 8.5 scenario, rising temperatures will probably cause
more severe/extreme droughts to occur more frequently. SPEI drought frequency changes in Nigeria
often range from 0.75 (2031–2060) to 1.80 (2071–2100) month/year, whereas RDI changes typically
range from 0.30 (2031–2060) to 0.60 (2071–2100) month/year. The frequency of drought incidence
has recently increased and is now harder to forecast. Since the Sendai Framework for Disaster Risk
Reduction 2015–2030 (SFDRR) and the Sustainable Development Goals (SDGs) have few more years
left to be completed, drastic efforts must be made to create climate-resilient systems that can tackle
the effects that climate change may have on the water resources and agricultural sectors.

Keywords: climate change; mitigation; drought characterization; evapotranspiration; Nigeria

1. Introduction

Nigeria has been identified as being particularly vulnerable to the effects of climate
change, which primarily appear as natural disasters such as flood or drought. Because
hydroelectric power and food production are heavily dependent on precipitation in this
area, any considerable decrease in precipitation will have a long-term dramatic impact
on people’s socioeconomic activities. Over the past 50 years, there have been significant
changes in the country’s land and water resource management policies as a result of the
precipitation declines in the 1970s and 1980s [1–4]). According to the geographical zone, the
future climate outlook is expected to have a variety of extreme characteristics in different
parts of the world [5]. Nigeria is the key stakeholder, and West Africa has been regarded as
one of the most susceptible regions [6,7]. Since the majority of Nigerians work in industries
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that are susceptible to climate change, any tilt toward dryness in the future climate may
enhance this area’s susceptibility to severe drought. Therefore, it is important to assess and
have knowledge about the expected characteristics of the region’s climate in the future in
order to improve the impact and vulnerability evaluations.

Drought has been directly or indirectly linked to water scarcity as well as many other
environmental problems. The Intergovernmental Panel on Climate Change Assessment Report
of 2021 has indicated various impact of changes in climate on global and regional water
resources [8]. Many studies have also indicated an increasing hydrological cycle as a result
of variability in the frequency and magnitude of precipitation on a regional scale [9–12].
However, it is important to recognize that this type of alteration will have a regional impact
on the frequency of drought or flood conditions. An evaluation of regional climate can
either be conducted through statistical analysis of historical data or mathematical modelling
of the physical hydrological procedures for future forecasting purposes [13].

Modeling for West African countries, or basins using global circulation models, (GCMs)
has highlighted concerns about the potential connection between precipitation and temper-
ature change [14,15]. When it comes to the timing of changes in rainfall and evapotranspi-
ration, predictions made using the Coupled Model Inter-comparison Project Phases 5 and 6
(CMIP5 and CMIP6) are out of sync [16,17], thereby crippling investment strategies [14,18].
Additionally, a review by Druyan [19] of studies based on eight GCMs and two RCMs on
Sahel precipitation during the past century indicated a lack of consensus, underscoring
the necessity for additional studies that can provide hydrological pointers for climate
change in the region. Shiru et al. [20]; Ogunrinde et al. [21]; Ajayi and Ilori [18]; Adeyeri
et al. [22]; Kumi and Abiodun [23]; Oguntunde et al. [14] and Sylla et al. [24] emphasized
both historical and future prediction changes based on GCMs in extreme climate variability
and trends over either some sub-regions in West Africa or the whole West Africa.

One of the studies [18] was based on a single global climate model (GCM), without
taking into account the biases in the projection. The indices computed in some of the
studies include the length of warm spell, string of rainy and dry days, the start and end of
precipitation, and the length of the growing season; however, it does not provide enough
information on the local drought conditions. Additionally, there are no studies specifically
on the projection of drought features based on climate change scenarios on a national
scale. Furthermore, the specific atmospheric circulation and climate of Nigeria prevent the
straightforward transfer or application of projections from other nations to the development
of mitigation mechanisms.

This study focuses on the investigation of important drought characteristics on the
long seasonal (hydrological) drought type over Nigeria. The investigations that completely
understudy drought occurrence in the country using both observatory and simulated
dataset-based climate change scenario are not readily available. Thus, studies such as
this one can support adequately organizing agricultural and water resources under global
warming conditions. Consequently, the specific aims of this study are: (i) to define drought
in Nigeria using three drought indices; and (ii) to analyze the influences of climate change
on the probable increases in drought frequency and intensity over Nigeria under the RCP
8.5 scenario.

2. Materials and Methods
2.1. Study Area

Nigeria has a total land mass area of about 930,000 km2 and is situated between
latitudes 4◦15′ and 13◦55′ N and longitudes 2◦40′ and 14◦45′ E (Figure 1). Nigeria has
only two distinct seasons (dry and wet) because it is a tropical country. The dry season is
marked by low relative humidity and higher temperatures than during the wet season due
to strong winds from the Sahara Desert. The mean annual temperature in the country is
usually around 25 ◦C. It is usually very hot in the northern region between March and June
and between February and April in the south, as the temperature may rise above 30 ◦C
during the day and drop a little during the night period. Rainfall magnitude and frequency
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in Nigeria relies primarily on the latitude. As the latitude increases, so the rainfall strength
also increases. The southern region generally sees convectional rains because of the region’s
closeness to the equatorial belt.
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2.2. Datasets and Analytical Procedure

Both observatory (NIMET) and numerical models are used in this study’s analysis.
The two datasets include minimum and maximum temperatures as well as rainfall. The
NIMET datasets were gathered at the Nigeria Meteorological Agency’s Abuja, Nigeria,
headquarters. Twenty-five stations were covered using historical NIMET datasets with a
daily temporal resolution between 1981 and 2015. The retrieved NIMET datasets underwent
a homogeneity and quality control test. The datasets for the models were developed
using a dynamic downscaling strategy. This is one of the techniques for producing a
higher resolution climatic reality from global circulation models with a lower resolution
(GCMs). In this study, the Rossby Center Regional Climate Model (RCA-4) as reported
by Nikulin et al. [25] was used to downscale seven GCMs spanning the CORDEX-African
region. The historical period, which runs from 1951 to 2005, and the future period, which
runs from 2006 to 2100, are both included in the downscaling’s output.

The RCA-4 historical simulations between 1981 and 2005 were compared with observa-
tory datasets in order to gauge the effectiveness of the model in reproducing the historical
climate of Nigeria within the study area (NIMET). The high emission scenario included in
the simulations, known as RCP 8.5, covers the period from 1951 to 2100. According to the
RCP8.5 scenario, CO2 levels will be around 950 ppm by 2100 [14].

The standardized precipitation index (SPI), standardized precipitation evapotranspira-
tion index (SPEI), and reconnaissance drought index (RDI) are the three drought indices
that have been studied. SPI is a probability-based indicator that assesses how much a
given period’s rainfall deviates from the long-term average value, which is ideally not less
than 25 to 30 years [26]. The rainfall data series was fitted using the gamma distribution.
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The greatest likelihood technique was used to determine the distribution factors and the
probability density function (PDF) of the gamma distribution can be written as follows:

f (x; α; β) =
1

βαΓ (α)
xα−1e−x/β f or x, α, β > 0 (1)

where α is the shape factor, β is the scale factor and x is the rainfall value and Γ (α) is the
gamma function.

In terms of computation, the SPI and SPEI are similar. The main modification is the
inclusion of PET data, which is a measure of evaporation demand. When PET is subtracted
from rainfall values, the climatic water balance during the time period being evaluated is
calculated [27]. Next, a three-parameter log-logistic distribution is fitted to the difference.
In this work, the Hargreaves empirical model was used to calculate the PET [28]. The SPI
and SPEI within the study region were calculated using the R programming language over
a 12-month timeline, which is crucial for hydrological drought evaluation.

The basic form of RDI, like the SPEI, is the ratio of total rainfall to PET for a particular
reference time. Because it includes the primary input and outflow of a natural water system,
the RDI may be a suitable index for assessing water availability. The DrinC (Drought Indices
Calculator) program was utilized to streamline the RDI computing process. The NIMET
and RCA-4 model datasets were used to generate the indices individually. Using monthly,
seasonal, and yearly timesteps, the initial value (ak) is displayed in aggregated form. The ak
is calculated as follows for the year i and a time basis of k (months):

a(i)k =
∑k

j=1 Pij

∑k
j=1 ETij

, i = 1 to N and j = 1 to 12 (2)

The preparation of RDIst used the assumption that ak values follow a lognormal
distribution, and RDIst is computed as follows:

RDI(i)st =
y(i) − y

σy
(3)

where y(i) is the ln a(i)k , y is mean and σy is its standard deviation.

3. Results and Discussion
3.1. Assessment of Climate Models over Nigeria

This section briefly discusses the capacity of the climate models to accurately represent
the climate of the research area. Prior to the model’s assessment, Figure 2a shows the
long-term historical average monthly distribution of Tmin and Tmax, while Figure 2b
displays that of the precipitation (PRCP) and evapotranspiration (ET) of the study area. The
performance of each model dataset in relation to the observed datasets is shown in Figure 3.
Since the correlation coefficient (r) value is more than 0.6, the performance of each of the
seven models is adequate. The observed data in Figure 4 provide as an example of how
well the models captured the important aspects of the annual seasonal cycle of the climate
parameters and the size of the cycles. For example, the highest temperatures are recorded
in both observed and model data during the months of March and November, which also
happen to be transition months between the Dry–Wet and Wet–Dry seasons, respectively
(Figure 4b). The models also correctly predicted the minimum local temperature in August,
which also happens to be the month with the most clouds (Figure 4c). The measured air
temperature does, however, exhibit some bias according to the models. For Tmin from
January to December and for Tmax from April to November, the models showed a cold bias.
Except for August, the observed Tmax curve coincided with the ensemble members of the
model datasets, and values have generally been near to the ensemble median throughout
the year. With few exceptions, the models also accurately depicted the observed annual
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seasonal rainfall cycle over Nigeria (Figure 4a). For instance, the observed rainfall pattern
peaked in July, whereas the simulated rainfall pattern shows two modal peaks in April
and August. The observed peak can be connected to the Intertropical Convergence Zone
(ITCZ) movement because Nigeria is known for having numerous climate belts, which
can produce volatility over the area between April and August, which may not have been
considered in the development of the climate models [21]. The observed rainfall values
only deviated from the ensemble members of the models in the months of May and June.
According to [14], the pattern of rainfall distribution in the West African region might either
have a single modal characteristic or a double modal characteristic. This demonstrates that
the single modal peak reported by the NIMET observation dataset and the twin modal
peaks suggested by the ensembles of RCA-4 are nonetheless consistent with the research
area’s climatology.
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Figure 4. The annual seasonal cycle of observed and modelled of (a) Precipitation (PRCP) in
mm/month; (b) Maximum Temperature (Tmax) in ◦C; and (c) Minimum Temperature (Tmin) in ◦C
over Nigeria between 1981 and 2005. Note: The light pink color indicates the range between the
maximum and minimum values; the dark pink shows the range between the 25th and 75th percentiles,
while the thick line indicates the models’ median and the dashed line shows the NIMET observation.

3.2. Future Prediction of Drought Characteristics

Figure 5a–c display predicted variations in drought frequency and intensity over
Nigeria using SPI, SPEI, and RDI. The RCA-4 ensemble median over the research area
suggests that the SPEI will see greater negative oscillations under the RCP 8.5 scenario,
especially toward the end of the twenty-first century. According to this pattern, from 2035
to 2100, Nigeria would experience an increase in the frequency and severity of droughts.
A comparable circumstance is also noticed with RDI (Figure 5c). On the other hand, as
the twenty-first century goes on, the RCA-4 ensembles median shows a relatively stable
to minimal changes in SPI for RCP8.5 scenario (Figure 5a). According to some earlier
studies [27,29], drought indices that included PET (SPEI and RDI) are preferable to rainfall-
based (SPI) indices in conditions of high temperatures. The current study’s future drought
projections are in good agreement with the findings of Oguntunde et al. [14] which state
that, under historical climatic conditions, there is a strong correlation and similar trend
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pattern between the rainfall-based index (SPI) and the PET drought indices (SPEI and RDI).
However, there are significant deviations in both the frequency and intensity of drought
under RCP 8.5, particularly from the middle to the end of the twenty-first century.
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Figure 5. Historical and projected future changes in 12-month drought intensity over Nigeria for
RCP 8.5 climate scenario. The droughts are characterized using (a) SPI; (b) SPEI; and (c) RDI.
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In Figure 6, the 12-month RDI, SPEI, and SPI drought indices for the near and
far eras are used to indicate the change in the frequency of drought. The SPEI indi-
cates 0.75 month/year during 2031–2060 (relative to the reference era, 1976–2005) and
1.80 month/year in 2071–2100 (relative to the far era), whereas the RDI indicates 0.3 month/year
in 2031–2060 and 0.6 month/year in 2071–2100, although the variations from the SPI are
negligible. Projections of the change in drought frequency based on the RDI or SPEI are
anticipated to be higher than estimates based on the SPI, indicating a higher atmospheric
water demand as a result of global warming (RCP 8.5). Under the RCP 8.5, changes in
drought frequency based on SPI are forecast to decrease during the near and far eras
whereas drought occurrence based on RDI and SPEI is projected to increase. The SPI’s
reduction in the frequency of droughts indicates that precipitation is expected to rise,
especially as the twenty-first century comes to a close.
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This shows that a good mitigation approach must be carefully considered when
assessing the danger of future droughts. With the exception of flash floods caused by an
abrupt rise in sea level, an increase in temperature of between 2 and 4 ◦C has the power to
cancel out the effects of any increase in the intensity and duration of precipitation within a
short period. In order to better understand how precipitation, evaporative demand, and
streamflow might affect drought conditions, drought indices can be used [11].

Global natural disasters have become more frequent since the turn of the century,
according to data from CRED [30], and they have in fact become the new normal. The
frequency of natural disasters has been steadily rising over the past 20 years at a significant
rate. The rate of occurrence was 360 incidents per year on average in the 2010s, compared
to 100 and 90 events on average in the 1980s and 1970s, respectively. Natural catastrophes
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are occurring more frequently than ever, and this has a tremendous impact on both the
economies and people’s way of life. Globally, the cost of major natural disasters (related to
geophysics, biology, hydrology, and climate) has been projected to be above USD 170 billion
annually for the past twelve years. Since the global average surface temperature has been
steadily rising at an alarming rate over the past five decades compared to the rate of growth
between 1961 and 1980, there has been a clear correlation between climate-related disasters
and climate change. We are starting to notice how climate change is causing an increase
in the frequency and intensity of extreme weather events (for example, severe drought
episodes), even as many studies on the impact of climate change are still in the early stages
of development.

Particularly in Nigeria, the overpopulation, changing climate, and lack of effective
river development strategies are projected to produce issues in the agricultural and water
resources sectors in the future [14]. According to earlier climate simulation studies over
West Africa, there is a high likelihood that as the current century goes on, temperatures will
rise and there will be an increase in the number of extreme climate events (such as droughts,
floods, and protracted dry spells during the rainy season) [15,31]. In a few decades, a fierce
competition for water resources is anticipated to lead to disputes between upstream and
downstream parties, underlining the necessity of sound water policy and effective drought
mitigation measures in Nigeria.

More regional climate models (RCMs) could improve the assessment of prediction
uncertainty in the future. Additionally, CORDEX’s higher resolution models will make
it possible to spatially analyze future projections, providing more helpful information on
high-risk areas within Nigeria. Other climatic scenarios, such as RCP 4.5 and 6.0, should be
taken into account.

4. Conclusions

Natural disasters have always posed a danger to society, the economy, and the environ-
ment. The frequency of incidence has recently increased and is now harder to forecast. Since
the Sendai Framework for Disaster Risk Reduction 2015–2030 (SFDRR) and the Sustainable
Development Goals (SDGs) have less than ten years left to be completed, serious efforts
must be made to create climate-resilient systems that will battle the effects that climate
change may have on the water resources and agricultural sectors. The study’s key findings
suggest that the ensemble of RCA-4 offers an accurate representation of Nigeria’s seasonal
changes in its yearly cycle climatology. The variation of drought using NIMET data is
comparable to the deviation in the drought indices derived using models from RCA-4
ensemble members. The frequency and severity of droughts will also rise as the twenty-first
century goes on due to the effects of climate change, according to RDI and SPEI under the
RCP 8.5 climatic scenario. The current analysis will help governments and stakeholders at
all levels design tactical adaptation and mitigation systems, according to its forecasts.
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Abstract: FAO Blaney-Criddle has been generally an accepted method for estimating reference crop
evapotranspiration. In this regard, it is inevitable to estimate the b-factor provided by the Food and
Agriculture Organization (FAO) of the United Nations Irrigation and Drainage Paper number 24. In
this study, five soft computing methods, namely random forest (RF), M5 model tree (M5), support
vector regression with the polynomial function (SVR-poly), support vector regression with radial
basis function kernel (SVR-rbf), and random tree (RT), were adapted to estimate the b-factor. And
Their performances were also compared. The suitable hyper-parameters for each soft computing
method were investigated. Five statistical indices were deployed to evaluate their performance, i.e.,
the coefficient of determination (r2), the mean absolute relative error (MARE), the maximum absolute
relative error (MXARE), the standard deviation of the absolute relative error (DEV), and the number
of samples with an error greater than 2% (NE > 2%). Findings reveal that SVR-rbf gave the highest
performance among five soft computing models, followed by the M5, RF, SVR-poly, and RT. The M5
also derived a new explicit equation for b estimation. SVR-rbf provided a bit lower efficacy than the
radial basis function network but outperformed the regression equations. Models’ Applicability for
estimating monthly reference evapotranspiration (ETo) was demonstrated.

Keywords: Blaney-Criddle b-Factor; machine learning; M5 model tree; random forest; random tree;
reference crop evapotranspiration; support vector regression

1. Introduction

Reference evapotranspiration (ETo) estimation is imperative information to serve
water resources planning, management, and operation [1]. The Blaney-Criddle method,
as proposed by the Food and Agricultural Organization (FAO) of the United Nations, is
a well-known temperature-based reference crop evapotranspiration. This method gives
more advantage when having limitations of the measured data than the Penman-Monteith
method, which requires many meteorological data [2–4]. Many attempts [5–9] have been
made to evaluate the efficiency of the FAO Blaney-Criddle method in estimating reference
crop evapotranspiration for many regions. The study results by Jhajharia, Ali, DebBarma,
Durbude, and Kumar [6] revealed that in humid locations, the Blaney-Criddle method
was superior to other temperature-based methods, such as Hargreaves and Thornth–Waite.
This is because it offered an approximate solution of the reference crop evapotranspiration
closest to the FAO Penman-Monteith. However, the calibration of FAO-Blaney-Criddle
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parameters by the use of meteorological data in the corresponding region is important as
they differ from location to location [10]. In addition, the Blaney-Criddle approach has
been updated to suit the environment [11,12].

For many years, soft computing methods have been applied to manage water re-
source problems and related hydrology issues, especially for predicting evapotranspi-
ration [13–15]. Tzimopoulos, Mpallas, and Papaevangelou [14] applied fuzzy logic to
establish a temperature-based approach for estimating possible evapotranspiration and
compared it to the Blaney-Criddle method. Ramanathan, Saravanan, Adityakrishna, Srini-
vas, and Selokar [13] found that artificial neural networks (ANN), wavelet neural networks
(WNN), and fuzzy logic (FL) yielded better results in estimating ET0 compared to tradi-
tional approaches, such as the Penman-Monteith method, the Blaney-Criddle method, and
the Hargreaves method. Ferreira et al. [16] indicated that clustering weather stations with
analogous hydrological characteristics and lagged time data improved the performance of
ANN and support vector machine (SVM) for estimating ET0. Yu et al. [17] pointed out the
importance of selecting input patterns by studying its sensitivity analysis and concluded
two crucial weather variables for modeling ET0, i.e., maximum and minimum tempera-
ture. Shabani et al. [18] indicated that Gaussian Process Regression (GPR) outperformed
K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Regression (SVR)
in predicting pan evaporation. They also emphasized the necessity of suitably choosing
weather variables depending on the unique weather station features. Mohammadi and
Mehdizadeh [19] revealed hybrid support vector regression with a whale optimization
algorithm outperformed a sole support vector regression in modeling reference evapo-
transpiration, which is a function of air temperatures, relative humidity, solar radiation,
sunshine duration, and wind speed. Granata and Di Nunno [20] applied recurrent neural
networks to forecast actual evapotranspiration in short term ahead. Their study revealed
that in subtropical climatic conditions of South Florida, long short-term memory (LSTM)
gave better efficiency than a nonlinear autoregressive network with exogenous inputs
(NARX), and there was no significant effect of sensible heat flux and relative humidity
on actual evapotranspiration forecasting. On the other hand, in the semi-arid climate of
Central Nevada, NARX outperformed LSTM, and there were slight effects due to relative
humidity, sensible heat flux, and forecast horizon. Our best literature reviews pointed out
the research gap in estimating the b factor of the FAO Blaney-Criddle formula using the
soft computing method since only one soft computing method, the Radial Base Function
(RBF) network, was researched.

This research article intends to investigate the applicability of soft computing methods
in estimating the b factor of the FAO Blaney-Criddle formula, which is advantageous for
hydrology and agriculture-related issues. The novelty of this research is the first attempt
to use random forest (RF), M5 model tree (M5), support vector regression (SVR) with two
kernel functions (i.e., polynomial and radial), and random tree (RT) for estimating the b factor.
Their performance was compared with the previous studies. Each model’s weaknesses and
advantages were discussed. The rest of this article is organized as follows: the next section
explains the method and data used, including FAO Blaney-Criddle b factor, soft computing
models, Weka machine learning tool, tuning hyper-parameters, data used, and statistical
model performance indices. Section 3 provides the significant finding results of the suitable
hyper-parameters for each soft computing method and their comparative performance among
five soft computing methods as conducted in the present study and the previous studies. Our
main study’s finding is concluded and recommended in the final section.
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2. Materials and Methods
2.1. FAO Blaney-Criddle B Factor

The original Blaney-Criddle equation requires information on the average daily per-
centage of total daily hours and mean daily air temperature for predicting reference crop
evapotranspiration. Its formula is expressed as follows, by [21].

ET0 = a + b[p(0.46T + 8.13)] (1)

where ET0 is reference crop evapotranspiration (mm/d); a and b are calibrated constants; p
is the average daily percentage of total annual daytime hours; and T is the average daily
air temperature (◦C). The a factor can be derived by:

a = 0.0043RHmin − (n/N)− 1.41 (2)

where RHmin is the lowest daily relative humidity (%); and n/N is the average ratio of actual
to possible sunshine hours. The p and N values can be received from tables when specifying
latitudes and months [21,22]. They can be obtained using formulas as proposed by [23,24].

For determination of the value of b factor, Doorenbos, Pruitt, and Agl [21] proposed it
in tabular form. It depends on the lowest daily relative humidity (RHmin), daytime wind
speed (Ud), and the average ratio of actual to possible sunshine hours (n/N) (see detailed
information in Table 1). The authors can simply utilize the technique of table interpolation
to obtain the b value. However, it needs seven interpolation times for getting that value,
leading to lead to considerable error [25]. To defeat such drawback, Frevert et al. [26] first
proposed a regression equation (see Equation (3)) and, later, it was improved by Allen and
Pruitt [27] (see Equation (4)). Nevertheless, it was still an error in estimating the b value
of approximately 10% compared to the tabular values. Ambas and Evanggelos [28] used
weighted least squares to estimate b factor of the FAO24 Blaney-Criddle method as shown
in Equation (5). It gave close results as compared to the previous studies. Equations (3)–(5)
still have an error in estimating the b value as compared to the tabular values. Hence, it
requires other techniques to decrease the error.

b = 0.81917 − 0.0040922(RHmin) + 1.0705
( n

N
)
+ 0.065649(Ud)− 0.0059684(RHmin)(n/N)

−0.0005967(RHmin)(Ud)
(3)

b = 0.908 − 0.00483(RHmin) + 0.7949
( n

N
)
+ 0.0768[ln(Ud + 1)]2 − 0.0038(RHmin)

( n
N
)

−0.000433(RHmin)Ud + 0.281ln(Ud + 1)In
( n

N + 1
)
− 0.00975 ln(Ud + 1)

[ln(RHmin + 1)2 In (n/N + 1)]
(4)

b = 0.88165 + 0.857596
( n

N
)
− 0.00454(RHmin) + 0.093803(Ud)− 0.00405(RHmin)

( n
N
)

−0.00087(RHmin)(Ud)
(5)

2.2. Soft Computing Models

Soft computing models refer to a data analysis of a complex system in order to discover
the relationship between system state variables, i.e., independent and dependent variables,
without explicit knowledge of the physical nature of the system [29]. In this section, four
data-driven models, e.g., random forest (RF), M5 model tree (M5), support vector regression
(SVR), and random tree (RT) are briefly explained, as follows.

2.2.1. Random Forest (RF)

The Random Forest (RF) was first introduced by Breiman [30] and has been a com-
mon modification of decision trees, which is one of the collections of techniques for data
classification and regression [31]. There are two major phases of model construction. In
the first step, RF generates a number of individual trees based on the decision tree process.
Each tree is created by randomly selecting different sampled training data sets from the
entire training data set (also known as the bagging method or bootstrap aggregation) and
sub-attributes (or features) from all attributes in the training data set. Second, the voting
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method is applied, that is, the model prediction is finally achieved by voting for the classifi-
cation problem or by using the mean value for the regression problem from the predictive
performance of each tree generated. In comparison to the M5, full-grown RF trees are not
pruned back. This is one of the key benefits of the regression of RF over the M5. As the
number of trees increases, the error of speculation still converges even without pruning
the tree, and over-fitting is not a matter of concern in light of the Strong Law of Large
Numbers [32]. The RF model was adapted based on regression models in this study.

2.2.2. M5 Model Tree (M5)

The M5 Model Tree (M5) model tree was first implemented by Quinlan [33]. It applies
a divide-and-conquer method to the creation of a relationship between independent and
dependent variables and can be applied to both qualitative (categorical) and quantitative
variables. Building M5 involves three stages. The first stage involves the development of
a decision tree by dividing the data set into subsets (or leaves). Second, the overgrown
tree is reduced, and linear regression functions substitute the plucked sub-trees to avoid
overfitting the structure or a weak generalizer. The merging of certain lower sub-trees into
one node is processed as part of the pruning approach. The smoothing procedure is finally
employed to reduce the serious discontinuities between the linear models in the leaves of
the trimmed trees, especially for models created from a small number of training samples.

2.2.3. Support Vector Regression (SVR)

Support Vector Regression (SVR) was developed by Vapnik [34] and his colleagues.
This is the adaptation of the support vector machine (SVM) for regression. The basic
idea of SVR learning is to solve the separation hyperplane that can correctly divide the
training data set and has the largest geometric interval [35,36]. Using the automated
conversion of nominal values to numerical values, SVM may be both numerical and
nominal. Normalization or standardization shall be processed for all input data prior to
the corresponding step. Unlike Support Vector Machine (SVM) for a classifier, which finds
a line that best divides training data into classes, SVR processes the best line that separates
the training data set by having a minimal error in the cost function. For this reason, an
optimization algorithm is used to consider those data instances in the training dataset that
are nearest to the minimum cost line. These instances are then referred to as support vectors,
which is the name of this technique. In the event that a line that matches the data cannot be
identified, a margin is inserted along the line to loosen the constraint. This margin helps
the overall outcome to be better, but it does offer some poor predictions to be tolerated.
Adequate determination of the complexity parameter C is important. Giving a low C value
gives a broad minimum margin, otherwise, it gives a smaller minimum margin. In several
real-world problems, it has been found that the use of a straight line is not sufficient for
separating data sets. It is also more fitting to use curves or even polygonal regions. By
converting data into higher dimensional areas, the kernel functions have been meant to
draw lines and predict.

2.2.4. Random Tree (RT)

RT is a fundamental decision tree algorithm collaborating with Quinlan C4.5 or Clas-
sification and Regression Trees (CART). It chooses a random subset of attributes for each
split from the available attributes before it is implemented with a subset size determined
by the part ratio parameter. This method constructs a decision tree and chooses the feature
to maximize the information gained using a portion of the data as training data. It is
strong and straightforward to use, producing extremely accurate forecasts [29,30]. For a
regression tree, a dataset is divided into sub-spaces, and fitting a constant is proceeded for
each sub-space [32]. Consequently, A single-tree model exhibits a low level of prediction
accuracy and a propensity to be very unstable. However, it can produce extremely accurate
results via bagging RT as a decision tree method. It is highly flexible and has quick learning.
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2.3. Weka Machine Learning Tool

WEKA (Waikato Environment for Knowledge Analysis) is a Java-based open-source
machine learning platform released under the GPL (GNU). It was subsequently established
by the University of Waikato in New Zealand. WEKA can impose pre-processing, clas-
sification, clustering, association rules, and selection of attributes for data. It also has a
graphical representation visualization tool. WEKA has four main applications: Explorer,
Experimenter, Knowledgeflow, and SimpleCLI. We can use the Explorer environment to
explore the data. If we want to conduct experiments and conduct statistical tests between
learning methods, the authors can use an experimenter. Knowledgeflow essentially sup-
ports the same features as an explorer, but it is a drag-and-drop interface that supports
progressive learning. The authors can work on the WEKA command-line interface in a
simpleCLI environment.

2.4. Tuning Hyper-Parameters

Developing a soft computing model or machine learning model considers two param-
eters, i.e., model parameters and hyper-parameters. Unlike model parameters obtained
during the training process, hyper-parameters are the pre-setting parameters by the user to
determine model structure before training the models. The control of a machine learning
model’s behavior requires hyperparameter adjustment. Therefore, our predicted model
parameters will yield less performance if our hyper-parameters aren’t properly tuned to
minimize the loss function. In general, the process for tuning hyper-parameters includes
defining a model, defining the range of possible values for all hyper-parameters, defining
a method for sampling hyper-parameter values, defining evaluative criteria to judge the
model, and defining a cross-validation method. In this experiment, a WEKA experimenter
was utilized to do a systematic trial and error, that is, varying one interesting parameter
and fixing the remained parameters, and repeating this step until covering all parameters.
The Root Relative Squared Error (RRSE) with ten-fold cross-validation, given in WEKA,
was used as a criterion for selecting the best parameter value for all 216 data sets.

2.5. Data Used

In this study, 216 data sets taken from the b factor tabular of FAO Blaney-Criddle [21]
were utilized, coincident with the study purpose. For evaluating the models’ performance
with the previous studies, the training and testing process data sets were the same as those
used in Trajkovic, Stankovic, and Todorovic [25]. They randomly selected 186 of 216 data
sets for training models and used all 216 data sets for testing models. Table 1 summarizes
the statistical analysis of relevant parameters of FAO Blaney-Criddle b for the training and
testing processes. In overall statistic values, they were very similar for both training and
testing data sets. However, when considering the Kurtosis value, it indicated all parameters
(Ud, n/N, RHmin, and b) for both training and testing datasets had platykurtic distributions.
Also, the skewness value showed that Ud, n/N, and RHmin for both training and testing
datasets were approximately symmetric (“-” sign means skewed left and “+” sign means
skewed right), while b for both training and testing datasets were moderately skewed
right. The correlation analysis was conducted to individually evaluate the strength of the
relationship between each input parameter (Ud, n/N, and RHmin) and an output parameter
(b). A low degree correlation was found for Ud (r = 0.27, and 0.26 for training and testing
stages, respectively), and a high degree correlation was obtained for the rest parameters.
The n/N gave the correlation coefficient (r) of 0.57 and 0.58 for the training and testing
stages, respectively. Additionally, RHmin provided a strong negative relationship by giving
the correlation coefficient (r) of −0.74 for both the training and testing stages, respectively.
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Table 1. Statistical evaluation of FAO Blaney-Criddle b parameters for training and testing data sets.

Statistical Values Training Testing

Ud n/N RHmin b Ud n/N RHmin b

Maximum 10.00 1.00 100.00 2.63 10.00 1.00 100.00 2.63
Minimum 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.38
Average 5.01 0.51 49.68 1.19 5.01 0.50 49.72 1.18

Standard Deviation 3.42 0.34 34.06 0.47 3.42 0.34 34.07 0.46
Kurtosis −1.27 −1.28 −1.26 −0.09 −1.27 −1.27 −1.26 0.10

Skewness −0.01 −0.05 0.01 0.62 −0.01 0.01 0.01 0.67
Correlation Coefficient (r) 0.27 0.57 −0.74 1.00 0.26 0.58 −0.74 1.00

Number of data 186 216

2.6. Statistical Model Performance Indices

Five statistical indices were deployed to evaluate model performance, i.e., the co-
efficient of determination (r2) (Equation (6)), the mean absolute relative error (MARE)
(Equation (7)), the maximum absolute relative error (MXARE) (Equation (8)), the standard
deviation of the absolute relative error (DEV) (Equation (9)), and the number of samples
with an error greater than 2% (NE > 2%). All of these statistical indices were used by
Trajkovic, Stankovic, and Todorovic [25] on this particular issue. The r2 calculates the level
of linearity of two variables and its maximum is 1.00. MARE and MXARE determine the
difference between the real and the expected b factor and should be as small as possible.
The perfect model should have an NE of zero. Finally, a Taylor diagram was proposed to
comparatively elaborate and evaluate the efficacy of the developed models. This diagram
can simultaneously show three statistic parameters, i.e., correlation, root mean square error,
and standard deviation. The equations of statistical indices are given below, where bai is
the actual b-factor, is the estimated b-factor, and n is the number of samples in a data set.

r2 =


 ∑n

i=1

(
bai − bai

)(
bei − bei

)

√
∑n

i=1 (bai − bai)
2·
√

∑n
i=1 (bei − bei)

2




2

(6)

MARE =
1
n

n

∑
i=1

∣∣∣∣
bai − bei

bai

∣∣∣∣ (7)

MXARE = max
(∣∣∣∣

bai − bei
bai

∣∣∣∣
)

for i = 1, . . . , n (8)

DEV =

√√√√∑n
i=1

[∣∣∣ bai − bei
bai

∣∣∣− MARE
]2

(n − 1)
(9)

3. Results and Discussion
3.1. Results of Tuning Hyper-Parameters

Table 2 shows the results of tuning hyper-parameters. Their explanation for each soft
computing model is as follows.
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Table 2. Summary of the optimal hyper-parameters for soft computing models.

Hyper-Parameter
RF M5 SVR-poly SVR-rbf RT

Value Sensitive Value Sensitive Value Sensitive Value Sensitive Value Sensitive

numIteration 300 yes - - - - - - - -

batchSize 100 no 100 no - - - - 100 no

numExecutionSlots 1 no - - - - - - - -

minNumInstances - - 4 yes - - - - - -

numDecimalPLaces - - 4 no - - - - 2 no

buildRegressionTree - - FALSE yes - - - - - -

complexity - - - - 0.8 yes 1.0 yes - -

exponent - - - - 1.0 yes - -

gamma - - - - - - 1.0 yes - -

minNum - - - - - - - - 1.0 yes

numFolds - - - - - - - - 0 yes

minVarianceProp - - - - - - - - 0.001 yes

RRSE 12.14 11.46 24.21 2.37 24.23

3.1.1. Random Forest (RF)

In the process of tuning hyper-parameters for RF, some default parameters were se-
lected as default in WEKA software, i.e., (1) infinite maximum tree depth, and (2) int(log
2(#predictors) + 1) function used to set the number of randomly selected attributes. How-
ever, three parameters, namely: (1) numIteration, which is the number of trees in the
random forest; (2) batchSize, which is the optimum number of instances to be processed
when predicting batch; and (3) numExecutionSlots, which is the number of threads avail-
able for execution to be used to create the collection, were investigated in our experiment.
Findings revealed that numIteration of 300, batchSize of 100 (default value), and numExe-
cutionSlots of 1 (default value) were the suitable hyper-parameters for RF with the testing
data set. All cases gave an RRSE value of 12.14. The numIteration was a sensitive parameter,
while batchSize and numExecutionSlots were not sensitive.

3.1.2. M5 Model Tree (M5)

The authors experimented tuning hyper-parameters of the M5 model tree using the
default parameters in WEKA software of unpruned to be false, and use Unsmoothed to
be false. The four parameters, i.e., batchSize, minNumInstances, numDecimalPLaces, and
buildRegressionTree were investigated. If the batch prediction is utilized, the bathcSize
option specifies the recommended number of instances to process. More or fewer instances
are conceivable, but this allows implementations to select the batch size they want. The
minimal number of instances to allow at a leaf node is specified by minNumInstances. The
number of decimal places to utilize for the model’s output is numDecimalPLaces. It can be
decided whether to construct a regression tree/rule instead of a model tree/rule using the
buildRegressionTree method.

Findings revealed that batchSize of 100 (default value), minNumInstances of 4 (default
value), and numDecimalPLaces of 4 (default value), were the suitable hyper-parameters
for M5 with the testing data set. All best cases gave an RRSE value of 11.46. By using
batchSize of 100, minNumInstances of 4, and numDecimalPLaces of 4, the authors investi-
gated the effect of selecting or not selecting a regression tree/rule. There was no need to
generate a regression tree/rule due to giving an RRSE value of 11.46 compared to creating
a regression tree/rule, which gave an RRSE value of 56.26. The minNumInstances and
buildRegressionTree were sensitive parameters, while batchSize and numDecimalPLaces
were not sensitive.

204



Atmosphere 2022, 13, 1536

3.1.3. Support Vector Regression (SVR)

For SVR, two kernel functions, namely the polynomial kernel with variable exponent
value and the radial basis function kernel with varying gamma value, were investigated.
Also, the complexity parameter (C) was varied between 0.0 and 1.0 to determine the
optimum value. The gamma parameter represents the influence of a single training reach,
with low values indicating ‘far’ and large values indicating ‘close.’ The inverse of the impact
radius of the samples chosen by the model as support vectors are gamma parameters. The
modified sequential minimal optimization (SMO) as an iterative algorithm was used to
solve the regression problem for SVR [34]. The authors found the optimal hyper-parameters
for SVR with polynomial kernel function were the complexity parameter (C) of 0.8 and the
exponent (n) of 1.0. By fixing the complexity parameter (C) value of 0.8 and varying the
exponent (n) value from 1.0 to 4.0, it was sensitive to the exponent value for SVR with a
polynomial kernel function. The best case gave an RRSE value of 24.21.

Furthermore, the optimal hyper-parameters for the radial basis function kernel were
the complexity parameter (C) of 1.0 and the gamma parameter (γ) of 1.0. By fixing the
complexity parameter (C) value of 1.0 and varying the gamma parameter (γ) value from 1.0
to 4.0, it was sensitive to the gamma parameter (γ) value for the radial basis function kernel.
Additionally, the gamma parameter (γ) value of 1.0 gave the least RRSE. For both cases,
the suitable C parameters were equal to or more than 0.8. It indicated that these data sets
required a smaller minimum margin to separate the data. From those suitable exponents of
the polynomial kernel function and gamma parameter of the radial basis function kernel
were equal to 1.0, it also manifested that these data sets are not conglomerate data sets and
do not require projecting the data into a higher-dimensional space for data separation. The
best case gave an RRSE value of 2.37.

3.1.4. Random Tree (RT)

RT was conducted to determine the suitable hyper-parameters and some default pa-
rameters were selected as suggested by WEKA software, i.e., (1) unlimited maximum depth
of the tree and (2) int(log 2(#predictors) + 1) function used to set the number of randomly
selected attributes. However, five parameters, namely batchSize, numDecimalPlaces, min-
Num, numFolds, and minVarianceProp, were investigated. The batchSize refers to the
preferred number of instances to be processed when batch predictions are made. The
numberDecimalPlaces is the number of decimal places to be utilized in model output. The
minNum means the minimum total weight of the instances in a leaf. The numFolds is
configured to determine the quantity of data used. For backfitting, one fold is utilized, and
the other is applied for building the tree. The minVarianceProp represents the smallest
variance of all data present at a node in regression trees to be divided.

Findings revealed that batchSize of 100 (default value), numDecimalPlaces of 2 (default
value), minNum of 1 (default value), numFolds of 0 (default value), and minVarianceProp
of 0.001 (default value), were the suitable hyper-parameters for RT with testing data set.
All best cases gave an RRSE value of 24.23. The minNum, numFolds, and minVarianceProp
were sensitive parameters, while batchSize and numDecimalPLaces were not sensitive.

3.2. Model’s Performance Comparison

After getting the most suitable hyper-parameters for each soft computing model, the
authors proceeded to assess their performance in estimating the FAO Blaney-Criddle b
factor. As explained earlier, to compare the model’s performance, five statistical indices
were used, i.e., the coefficient of determination (r2), the mean absolute relative error (MARE),
the maximum absolute relative error (MXARE), the standard deviation of the absolute
relative error (DEV), and the number of samples with an error greater than 2% (NE > 2%).
This evaluation was only conducted for the testing stage following the study by Trajkovic,
Stankovic, and Todorovic [25].

Table 3 shows the comparative results of statistical indices getting from the present
and previous studies’ testing stages. By ranking the model with each statistical index
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and counting the frequency for five soft computing models, it was found that SVR-rbf
outperformed the other methods, followed by RF, RT, M5, and SVR-poly. This is because
SVR-rbf has the lowest values of MARE (%), MXARE (%), NE > 2%, and DEV (%) and
the highest value of r2. By doing the same thing, SVR-rbf, RF, and RT gave better results
than the regression-based approach proposed by Frevert, Hill, and Braaten [26], Allen
and Pruitt [27], and Ambas and Evanggelos [28], while M5 and SVR-poly gave the lower
performance. However, SVR-rbf’s performance as compared to the RBF network was
comparable due to providing a bit lower performance.

Table 3. Statistical indices comparison in a testing stage for the present and previous studies.

Statistical
Indices Present Study Previous Studies

RF M5 SVR-poly SVR-rbf RT Frevert et al.
(1983)

Allen & Pruitt
(1991)

Ambas &
Evanggelos

(2010)

RBF
Network

MARE (%) 1.81 2.96 7.52 0.49 1.19 3.07 1.69 5.99 0.34
MXARE (%) 8.1 19.2 58.7 5.0 17.6 14.4 11.8 41.1 1.8

NE > 2% 80 116 171 7 25 126 64 141 0
DEV (%) 1.62 2.97 8.00 0.55 3.16 2.72 1.68 7.22 0.31

r2 0.997 0.991 0.944 1.000 0.993 0.989 0.998 0.962 1.000

Figure 1 shows the performance of eight models in the testing stage. The left-hand side
shows plotting the actual b-factor and estimated b-factor (y-axis) with the data set order (x-
axis), and a scatter plot is displayed on the right-hand side. The data set order was received
from the b factor tabular of FAO Blaney-Criddle [21] with 216 data sets. The authors could
not plot the graph herein for the RBF network due to having no raw predicted data shown
in the literature. Figure 2 presents a Taylor diagram to compare the performance of eight
models, except for the RBF network, due to the same reason mentioned. Estimating b factor
by Frevert, Hill, and Braaten [26], Allen and Pruitt [27], and Ambas and Evanggelos [28]
were calculated by Equations (3)–(5), respectively. A Taylor diagram pointed out that
SVR-rbf provided the results closest to FAO Blaney-Criddle b parameters obtained from
the table as proposed by Doorenbos, Pruitt, and Agl [21], followed by Frevert, Hill, and
Braaten [26], RF, RT, M5, Allen and Pruitt [27], Ambas and Evanggelos [28], and SVR-
poly. Using the equation proposed by Ambas and Evanggelos [28] and SVR-poly, it gave
overestimation and underestimation for the b-factor, respectively, since they have more
and less standard deviation (see Figure 2). Consequently, it indicates that these two models
gave more uncertainty in estimating the b-factor than other models. Figure 3 shows a set of
linear equations obtained from M5. It includes six rule sets.
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3.3. Models’ Applicability for Estimating Monthly Reference evapotranspiration (ETo)

The monthly climatological variables at Nis, Yugoslavia, given by Trajkovic, Stankovic,
and Todorovic [25], were used to demonstrate the model’s applicability, as shown in
Table 4. Reference evapotranspiration (ETo) in January and December is equal to zero.
That is why any climatological variables of January and December do not appear in
Table 4. Table 5 shows the results of applying the developed soft computing models
and compares their performance to a table interpolation method [25] and the regression-
based models for estimating the b-factor. Table 6 shows the difference between the b-factor
obtained from various methods and a table interpolation method. The positive value means
overestimation, and the negative value represents underestimation. The b-factor based on
the regression-based models was mainly underestimated by 1.12–6.00% compared to those
values obtained by the table interpolation method [25], except for estimating the b-factor
in June using the equation developed by Frevert et al. [26]. It gave an overestimation of
1.11%. However, most of the soft computing models overestimated by 0.57–3.92% in the
estimation of the b-factor. Some of them, for example, M5 provided underestimated by
0.3% in March, 1.57% in April, 3.02% in October, and 2.21% in November.

Table 4. The monthly climatological variables.

Months
Climatological Variables

T (◦C) RHmin (%) U2 (m/s) n/N P A

Feb. 1.8 65 1.40 0.276 0.240 −1.407
Mar. 8.3 50 1.89 0.366 0.270 −1.561
Apr. 10.5 50 1.65 0.390 0.300 −1.585
May 12.7 61 1.60 0.311 0.330 −1.459
Jun. 20.6 45 0.77 0.636 0.347 −1.853
Jul. 21.4 55 1.17 0.535 0.337 −1.709

Aug. 19.6 56 1.00 0.510 0.310 −1.679
Sep. 17.9 43 1.25 0.626 0.280 −1.851
Oct. 11.6 55 1.44 0.323 0.250 −1.497
Nov. 7.8 63 1.34 0.238 0.220 −1.377
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Table 5. The results of the soft computing models, a table interpolation method, and the regression-
based models applied for the b-factor estimation.

Months

b

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]
RBF [25] RF M5 SVR-poly SVR-rbf RT

Feb. 0.779 0.788 0.803 0.821 0.823 0.846 0.844 0.823 0.823 0.823
Mar. 0.965 0.977 0.989 1.011 1.012 1.002 1.008 1.012 1.012 1.012
Apr. 0.975 0.981 0.993 1.016 1.017 1.000 1.000 1.017 1.022 1.020
May 0.836 0.846 0.860 0.886 0.884 0.888 0.909 0.883 0.884 0.884
Jun. 1.175 1.136 1.149 1.162 1.165 1.174 1.141 1.174 1.165 1.165
Jul. 1.030 1.015 1.025 1.047 1.053 1.047 1.088 1.052 1.054 1.053

Aug. 0.998 0.982 0.994 1.017 1.022 1.035 1.038 1.021 1.022 1.020
Sep. 1.203 1.179 1.185 1.199 1.202 1.202 1.197 1.202 1.202 1.202
Oct. 0.881 0.889 0.903 0.928 0.930 0.940 0.900 0.929 0.930 0.930
Nov. 0.764 0.775 0.791 0.813 0.811 0.831 0.795 0.812 0.818 0.811

Table 6. The difference between the b-factor obtained from various methods and a table interpolation method.

Months

Difference of b-Factor

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]
RBF [25] RF M5 SVR-poly SVR-rbf RT

Feb. −0.042 −0.033 −0.018 0.000 0.002 0.025 0.023 0.002 0.002 0.002
Mar. −0.046 −0.034 −0.022 0.000 0.001 −0.009 −0.003 0.001 0.001 0.001
Apr. −0.041 −0.035 −0.023 0.000 0.001 −0.016 −0.016 0.001 0.006 0.004
May −0.050 −0.040 −0.026 0.000 −0.002 0.002 0.023 −0.003 −0.002 −0.002
Jun. 0.013 −0.026 −0.013 0.000 0.003 0.012 −0.021 0.012 0.003 0.003
Jul. −0.017 −0.032 −0.022 0.000 0.006 0.000 0.041 0.005 0.007 0.006

Aug. −0.019 −0.035 −0.023 0.000 0.005 0.018 0.021 0.004 0.005 0.003
Sep. 0.004 −0.020 −0.014 0.000 0.003 0.003 −0.002 0.003 0.003 0.003
Oct. −0.047 −0.039 −0.025 0.000 0.002 0.012 −0.028 0.001 0.002 0.002
Nov. −0.049 −0.038 −0.022 0.000 −0.002 0.018 −0.018 −0.001 0.005 −0.002

Table 7 presents the estimated monthly reference evapotranspiration (ETo). Using a table
interpolation method as a baseline, it is also pointed out that the soft computing models
outperformed the regression-based models in ETo estimation due to giving a lower percentage
of yearly difference. All three regression-based models gave underestimation by 3.2–5.1% in
estimating ETo, while all six soft computing models provided some overestimation by 0.4–
0.9%. Based on the data used in this study, the RBF network and RT models gave the highest
performance in estimating ETo due to having the lowest percentage of yearly difference.

Table 7. Estimated Monthly Reference evapotranspiration (ETo).

Months

ETo (mm/month)

Frevert et al.
(1983)

Allen &
Pruitt
(1991)

Ambas &
Evanggelos

(2010)

Table
Interpolation

[25]

RBF
[25] RF M5 SVR-poly SVR-rbf RT

Feb. 7.5 8.1 8.9 10.0 10.2 11.5 11.4 10.2 10.2 10.2
Mar. 48.1 49.3 50.6 52.7 52.8 51.8 52.4 52.8 52.8 52.8
Apr. 66.1 66.9 68.3 71.0 71.1 69.1 69.1 71.1 71.7 71.4
May 74.3 75.7 77.7 81.4 81.1 81.7 84.7 81.0 81.1 81.1
Jun. 159.8 152.7 155.0 157.4 157.9 159.6 153.5 159.6 157.9 157.9
Jul. 140.4 137.6 139.6 143.6 144.8 143.6 151.3 144.6 145.0 144.8

Aug. 112.3 109.7 111.8 115.5 116.3 118.5 119.0 116.2 116.3 116.0
Sep. 109.8 106.5 107.3 109.3 109.7 109.7 109.0 109.7 109.7 109.7
Oct. 45.6 46.4 47.9 50.5 50.7 51.7 47.5 50.6 50.7 50.7
Nov. 17.8 18.6 19.9 21.6 21.4 23.0 20.2 21.5 22.0 21.4

Yearly 781.7 771.5 786.9 813.0 816.0 820.2 818.2 817.1 817.3 816.0
Yearly

Difference
(%)

−3.9 −5.1 −3.2 0.0 0.4 0.9 0.6 0.5 0.5 0.4
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4. Conclusions

Accuracy of reference evapotranspiration (ETo) estimation is of importance for agri-
cultural water management. In this study, five soft computing models, namely RF, M5,
SVR-poly, SVR-rbf, and RT, were evaluated and compared their performance for estimating
FAO Blaney-Criddle b-factor among themselves and the previous studies conducted by
the RBF network and three regression equations (Richard G Allen et al., 1991; Frevert
et al., 1983; Ambas & Evanggelos (2010). In addition, tuning hyper-parameters for each
soft computing model were experimented with to receive its suitable architecture before
applying them. The main findings results revealed the following.

(1) Among five soft computing models, it was found that SVR-rbf gave the highest
performance in reference evapotranspiration (ETo) estimation, followed by M5, RF,
SVR-poly, and RT, respectively.

(2) The new explicit equations for FAO Blaney-Criddle b-factor estimation were proposed
herein using the M5 model. It is a rule set, including six linear equations.

(3) Compared to the RBF network [25], SVR-rbf provided a bit lower performance but
outperformed three previous regression equations.

(4) The soft computing models outperformed the regression-based models in the b-factor
estimation since they gave the lower values of MARE (%), MXARE (%), NE > 2%, and
DEV (%) and the higher value of r2.

(5) Models’ Applicability for estimating monthly reference evapotranspiration (ETo)
revealed that the soft computing models outperformed the regression-based models
in ETo estimation owing to the lower percentage of yearly difference. All three
regression-based models underestimated ETo, while all six soft computing models
slightly overestimated it.

(6) This work’s usefulness is to support a more accurate and convenient evaluation of
reference crop evapotranspiration with a temperature-based approach. It leads to
agricultural water demand estimation accuracy as necessary data for water resources
planning and management.
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Abstract: In the context of global warming, the increasing frequency of drought events has caused
negative impacts on agricultural productivity and societal activities. However, the drought occur-
rences have not been well predicted by any single model, and precipitation may show nonstationary
behavior. In this study, 60 years of monthly precipitation data from 1960 to 2019 for the Ningxia
Hui Autonomous Region were analyzed. The standard precipitation index (SPI) was used to classify
drought events. This study combined the strengths of autoregressive integrated moving average
(ARIMA) and complementary ensemble empirical mode decomposition (CEEMD) to predict drought.
First, based on the precipitation dataset, the SPI at timescales of 1, 3, 6, 9, 12, and 24 months was
calculated. Then, each of these SPI time series was predicted using the ARIMA model and the
CEEMD–ARIMA combined model. Finally, the models′ performance was compared using statis-
tical metrics, namely, root-mean-square error (RMSE), mean absolute error (MAE), Kling–Gupta
efficiency (KGE), Willmott index (WI), and Nash–Sutcliffe efficiency (NSE). The results show that
the following: (1) Compared with the ARIMA forecast value, the prediction results of the CEEMD–
ARIMA model were in good agreement with the SPI values, indicating that the combined model
outperformed the single model. (2) Two different models obtained the lowest accuracy for the
SPI1 prediction and the highest accuracy for the SPI24 prediction. (3) The CEEMD–ARIMA model
achieved higher prediction accuracy than the ARIMA model at each time scale. The most precise
model during the test phase was the CEEMD–ARIMA model at SPI24 at Xiji Station, with error
measures of MAE = 0.076, RMSE = 0.100, NSE = 0.994, KGE = 0.993, and WI = 0.999. Such findings
will be essential for government to make decisions.

Keywords: CEEMD–ARIMA combined model; ARIMA model; drought prediction; SPI

1. Introduction

Drought, which frequently occurs around the world, causes tremendous losses to
agricultural production and economic operation [1]. For instance, the 2014 California
drought was a record-breaking event that cost the United States USD 2.2 billion [2]. Drought
is one of the costliest disasters that humankind faces all over the world [3]. With climate
changes and temperature increases, droughts are becoming more and more frequent.
Quantitative studies on drought will help countries to avoid damage caused by climate
disasters in the future. Improved drought-monitoring ability has obvious significance in
city development, which could help in the creation of drought management agencies.

Droughts are generally categorized into four types: meteorological droughts, agricul-
tural droughts, hydrological droughts, and socioeconomic droughts [4]. Meteorological
drought initiates when precipitation presents with volumes below normal in a particular
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place. Such anomalies go on to affect agriculture and hydrology (agricultural and hydro-
logical droughts, respectively) [5]. This study focuses on meteorological drought. An
effective method of meteorological drought detection is to use drought indices [6]. Drought
indices can be used to quantitatively evaluate the influence range of a drought. In recent
years, a variety of indices have been used to study drought, such as the Palmer drought
severity index (PDSI) [7], standardized precipitation index (SPI) [8], reconnaissance drought
index (RDI) [9], and temperature vegetation drought index (TVDI) [10]. Among them,
the SPI is widely used in drought research at home and abroad due to its variable time
scale, and only precipitation data are used for calculation [6,11,12]. Based on these two
major advantages of the SPI—and particularly its ability to describe drought on multiple
time scales—Oliveira-Júnior et al. [13] evaluated the drought severity in northern and
northwestern Rio de Janeiro State (SRJ) regions from 1967 to 2013. Wu et al. [14] and
Xu et al. [15] used the SPI to investigate the characteristics of meteorological drought in
China. Łabędzki [16] adopted the SPI to estimate meteorological drought frequency in
the central part of Poland from 1861 to 2005. Therefore, the SPI was used in this study
due to its wide acceptability and advantages in drought research. Drought prediction
provides an early warning to decision makers in disaster management. However, it is often
notably challenging to obtain proper forecasts, because of the complexity of measuring
the precision of a time series [17,18]. In recent years, numerous models have been used
in drought forecasting, such as the autoregressive integrated moving average (ARIMA),
artificial neural network (ANN), and support-vector regression (SVR) [18–22]. Among
them, ARIMA is widely used in drought prediction because of its flexibility and richer
information on time-related changes [23]. Nevertheless, the forecasting accuracy of a single
model cannot meet the needs of drought prediction. Moreover, the precipitation data have
nonlinear and nonstationary characteristics. Therefore, hybrid models are used in drought
research to improve the prediction accuracy. Empirical mode decomposition (EMD) has ap-
parent advantages in the processing of nonlinear and nonstationary signal time–frequency
sequences. Özger et al. [24] used EMD for decomposing self-calibrated Palmer drought
severity index (sc-PDSI) time series into their sub-bands on drought prediction, but this
decomposition method has the problem of mode aliasing. As a further improvement of
EMD, ensemble empirical mode decomposition (EEMD) effectively reduces the occurrence
of mode aliasing. Libanda et al. [25] used it to understand consecutive dry days, but in
this decomposition method, Gaussian white noise was added to the original signal, and
its influence on the results could not be ignored. Therefore, since CEEMD has achieved
great results in many fields based on advantages in processing signals [26–28], and it
can effectively reduce the residual white noise and process nonlinear and nonstationary
signals, a new drought prediction method was proposed, combining the ARIMA model
and complementary ensemble empirical mode decomposition (CEEMD).

As mentioned above, with the nonlinear and nonstationary characteristics of precip-
itation data, it is important to accurately predict the occurrence of drought. The main
objectives of the present study are as follows: to (1) quantify the precipitation situation by
multi-timescale SPI, (2) develop the ARIMA model and then propose the hybrid model
by combining the strengths of ARIMA with CEEMD, and (3) evaluate the efficiency of the
ARIMA model and the CEEMD–ARIMA model according to the evaluated indices.

2. Study Area

The Ningxia Hui Autonomous Region extends from 104◦17′ E to 107◦39′ E and from
35◦14′ N to 39◦23′ N, with altitudes mostly above 1000 m (Figure 1). Helan Mountain
is located in the northwest of the province. As a natural barrier, this mountain reduces
intrusion from Tengger Desert quicksand and cold northwest winds into the Ningxia Hui
Autonomous Region. The southern part of the province is the Liupan mountainous area.
As the wettest region in Ningxia Hui Autonomous Region, it has a humid climate and
dense jungles. The area from the Helan Mountains to the Weining Plain has an arid climate,
and the area from the Weining Plain to the Liupan mountainous area has a semiarid climate.
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The Liupan mountainous area consists of jungle, wet, and pleasantly cool areas. The climate
characteristics of Ningxia vary widely from north to south on spatial and temporal scales.
The annual average temperature decreases from the north to the south in Ningxia, while
the annual precipitation shows the opposite tendency. The mean annual temperature is
between 5.3 and 9.9 ◦C, with the southern part below 7 ◦C, the central part above 7 ◦C,
and the northern part above 8 ◦C. The mean annual precipitation is between 150 mm and
600 mm, and the average annual water surface evaporation in Ningxia is 1250 mm.
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3. Materials and Methods
3.1. Data Sources

Monthly precipitation datasets from 10 meteorological stations were used in this
study. The datasets from January 1960 to December 2019 were obtained from the Ningxia
Hui Autonomous Region weather station in the National Meteorological Data Center
(http://data.cma.cn/ accessed on 13 March 2020). The elevation data were obtained from
the Geospatial Data Cloud (http://www.gscloud.cn/search accessed on 28 June 2021). Due
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to the terrain inclines from the southwest to the northeast in the Ningxia Hui Autonomous
Region, there is a large spatial difference in climate characteristics from the south to the
north. Since this paper focuses on the applicability of the combined model in drought
prediction, three meteorological stations were selected as representative stations of the
southern, northern, and central Ningxia Hui Autonomous Region. Table 1 shows the
information of three representative stations. The observed and predicted values of 10 sites
are visualized by the empirical Bayesian kriging interpolation method of ArcGIS.

Table 1. Information about meteorological stations in the sample.

Station Number Station Name Longitude/◦E Latitude/◦N Altitude/m

53519 Huinong 106.46 39.13 1092.5
53810 Tongxin 105.54 36.58 1339.3
53903 Xiji 105.43 35.58 1916.5

3.2. Research Methods
3.2.1. SPI

The SPI was developed by McKee et al. [29] to quantify precipitation on different time
scales. It can be calculated based solely on precipitation. The time scale of the SPI is variable.
Short-timescale SPI could reflect the water supply of crops. On a 1-month time scale, the
SPI can be used to reflect short-term precipitation conditions. The SPI on a 3-month time
scale can be used to analyze seasonal changes in precipitation. The calculated SPI data
for February, May, August, and November reflect winter, spring, summer, and autumn
drought conditions, respectively. The 6-month time scale SPI can be used to reflect mid-
term precipitation conditions. On a 9-month time scale, the SPI can be used to characterize
groundwater level changes over a longer period of time. The 12-month time scale SPI and
24-month time scale SPI are good indicators of long-term drought conditions [30]. The
SPIs of the 1-, 3-, 6-, 9-, 12-, and 24-month time scales are denoted as SPI1, SPI3, SPI6, SPI9,
SPI12, and SPI24, respectively. The computation procedure of SPI followed the method of
Lloyd-Hughes and Saunders [31]:

SPI = B
(

t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
(1)

where B is the positive and negative coefficient of probability density; for B = −1,

t =
√

ln 1
G(x)2 , and for B = 1, t =

√
ln 1

(1−G(x))2 , where G(x) is a cumulative probability [32].

The constants c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and
d3 = 0.001308.

The classification of drought based on SPI values is shown in Table 2 [31].

Table 2. Drought classification based on SPI.

SPI Value Category

SPI > −0.5 No drought
−1.0 < SPI ≤ −0.5 Mild drought
−1.5 < SPI ≤ −1.0 Moderate drought
−2.0 < SPI ≤ −1.5 Severe drought

SPI ≤ −2.0 Extreme drought

3.2.2. ARIMA Model

The ARIMA model developed by Box and Jenkins [33] includes three basic types:
autoregressive (AR) models, moving average (MA) models, and the combined AR and
MA (ARMA) models. AR, MA, and ARMA can be used when the data are stationary [19].
Nonstationary and nonwhite noise sequences can be predicted by the ARIMA model. First,
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a stationary time series is obtained from a nonstationary series through d-order difference.
Then, the ARMA model is used for prediction. The formula of the ARIMA (p, d, q) model is
written as follows:

Xt = ω1Xt−1 + ω2Xt−2 + · · ·+ ωpXt−p + ht − θ1ht−1 − θ2ht−2 − · · · − θqht−q (2)

where Xt is a time-series value, and ωi(i = 1, 2, · · · , p) and θj(j = 1, 2, · · · , q) are the au-
toregressive coefficient and moving average coefficient, respectively. ht is a white noise
sequence, ht ∼ N

(
0, σ2).

The modeling process of the ARIMA model is as follows:
First, each time series should go through stationary testing. In this paper, the aug-

mented Dickey–Fuller test (ADF) is used for judgment. If it is a nonstationary time series,
the d-order difference of the series is determined. Then, the value range of the model order
should be determined. The value range of P and Q is determined according to the autocor-
relation function (ACF) and partial autocorrelation function (PACF) of the data. After that,
the Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used
to determine the order of the model. The formulae of the AIC and BIC are as follows:

AIC(p, q) = Nlnσ2(p, q) + 2(p + q + 1) (3)

BIC(p, q) = Nlnσ2(p, q) + (p + q + 1)lnN (4)

where N is the number of parameters. In different combinations of p and q, the combination
corresponding to the minimum value of AIC and BIC is selected to obtain the optimal
ARIMA model. The datasets were divided by grid search and cross-validation; 80% of
the data were selected as the training set for model prediction, and 20% of the data were
selected as the test set.

3.2.3. CEEMD

As proposed by Yeh et al. [34], CEEMD has apparent advantages in the processing of
nonlinear and nonstationary signal time–frequency sequences. It can adaptively decompose
the original sequence into several intrinsic mode function (IMF) components, with different
scales that are mutually independent and a residual trend quantity. The steps are as follows:

A group of white noise includes positive noise and negative noise. P(t) is the original
sequence, with n groups of auxiliary white noise added to the positive noise sequence Y1
and negative noise sequence Y2. Now, the total number of sequences obtained is 2n,

[
Y1
Y2

]
=

[
1 1
1 −1

][
P
N

]
(5)

where N is an auxiliary sequence. The obtained sequences are decomposed by EMD to
obtain m IMF components, and each group of components is denoted as C+

ij (t) and C−ij (t)
(i = 1, . . . , n, j = 1, . . . , m). C+

ij (t) and C−ij (t) of the IMF components in each group are
averaged to obtain the IMFj value.

IMFj =
1

2n

n

∑
i=1

(
C+

ij (t) + C−ij (t)
)

(6)

Take the decomposed IMF components as the final result. The original sequence is
decomposed into:

P(t) =
m

∑
j=1

IMFj(t) + R(t) (7)

where R(t) is a residual trend quantity.
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3.2.4. CEEMD–ARIMA Combined Model

The original sequences with strong volatility are decomposed by CEEMD to obtain a
set of IMF components with low volatility, improving the predictability of the sequences
predicted by the ARIMA model. The CEEMD and ARIMA models are combined using
Python to form the CEEMD–ARIMA model. The steps are as follows:

Step 1: The SPI sequence is imported into the CEEMD for decomposition to obtain
IMF1, IMF2 . . . , IMFn, and residual trends from high frequency to low frequency.

Step 2: The sequences decomposed by CEEMD are imported into the ARIMA model.
The stationarity of each component is tested through the ARIMA model. After the order
and prediction are determined, the prediction result is obtained. The predicted results are
denoted as P1, P2, and Pn + 1.

Step 3: Finally, sum P1, P2, and . . . , Pn + 1 as the combined model’s predicted results.

P =
n+1

∑
i=1

Pi (8)

The modeling process of the CEEMD–ARIMA model is as shown in Figure 2.
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3.2.5. Evaluation Index

To evaluate the performance of the ARIMA model and the CEEMD–ARIMA model,
statistical criteria such as root-mean-square error (RMSE), mean absolute error (MAE),
Kling–Gupta efficiency (KGE), Willmott index (WI), and Nash–Sutcliffe efficiency (NSE)
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were used. A model with the lowest RMSE and MAE and the highest KGE, WI, and NSE
was selected and proposed as an appropriate model. The formulae are as follows [35–38]:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (10)

KGE = 1−
√
(CC− 1)2 + (α− 1)2 + (β− 1)2 (11)

WI =

∣∣∣∣∣1−
[

∑N
i=1(yi − ŷi)

2

∑N
i=1(|yi − y|+ |ŷi − y|)2

]∣∣∣∣∣ (12)

NSE = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (13)

where yi is the observed value, y is the average value of yi, ŷi is the forecasted value, and N
is the total data size of yi. CC, α, and β in the KGE index illustrate the correlation coeffi-
cient, the standard deviation ratio, and the average ratio of the observed and forecasted
data, respectively.

4. Results

The calculation of the SPI and the fitting of the ARIMA model were both accomplished
on the Python 3.7 platform.

4.1. SPI Values at Different Time Scales

The research applicability of the CEEMD–ARIMA model in drought is mainly through
the prediction of the SPI on the time scales of 1, 3, 6, 9, 12, and 24 months. Monthly
precipitation data from 10 meteorological stations in the Ningxia Hui Autonomous Region
during 1960–2019 were used to calculate the SPI. The calculated SPI results characterize
drought conditions, as shown in Table 2. Huinong, Tongxin, and Xiji were taken as examples
to demonstrate multiple-timescale SPIs, and the calculated SPIs of the sample stations are
shown in Figure 3. Through the Mann–Kendall trend test, the SPI12 and SPI24 sequences of
Tongxin Station and the SPI9, SPI12, and SPI24 sequences of Xiji Station have a decreasing
trend. The other sequences have no trend.

4.2. The ARIMA Modeling and Prediction

The first 80% of the calculated SPI data were used as observation training data, and
the last 20% of the data were used as prediction comparison data. That is, the data from
1960 to 2007 were used as the training set, and the data from 2008 to 2019 were used as
the test set. The stability of the 80% training data should be judged before prediction. If
the data are a stable series, then d = 0 in the ARIMA model can be used for prediction; if
not, then d 6= 0. Through the ADF test, the p-values of all SPI sequences of the sample sites
were less than 0.05 (Table 3). Therefore, all SPI sequences were stationary time series.
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Table 3. Unit root test of SPI original sequence.

Example
Stations

SPI Series ADF
Critical Value

p-Value
1% 5% 10%

Huinong

SPI1 −20.0550 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −9.6732 −3.4419 −2.8666 −2.5695 1.2610 × 10−16

SPI6 −6.9028 −3.4420 −2.8667 −2.5695 1.2693 × 10−9

SPI9 −5.3241 −3.4423 −2.8668 −2.5696 4.8806 × 10−6

SPI12 −4.7455 −3.4423 −2.8668 −2.5696 6.9075 × 10−5

SPI24 −4.1882 −3.4423 −2.8668 −2.5696 0.0007

Tongxin

SPI1 −21.6155 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −9.6077 −3.4419 −2.8666 −2.5695 1.8469 × 10−16

SPI6 −6.7922 −3.4420 −2.8667 −2.5695 2.3486 × 10−9

SPI9 −4.9104 −3.4423 −2.8668 −2.5696 3.3288 × 10−5

SPI12 −4.4071 −3.4423 −2.8668 −2.5696 0.0003
SPI24 −3.7087 −3.4423 −2.8668 −2.5696 0.0040

Xiji

SPI1 −22.0945 −3.4418 −2.8666 −2.5694 0.0000
SPI3 −10.7739 −3.4419 −2.8666 −2.5695 2.3469 × 10−19

SPI6 −7.3216 −3.4420 −2.8667 −2.5695 1.1900 × 10−10

SPI9 −4.1113 −3.4423 −2.8668 −2.5696 0.0009
SPI12 −3.4578 −3.4422 −2.8668 −2.5696 0.0091
SPI24 −3.3257 −3.4423 −2.8668 −2.5696 0.0138

Because the SPI series of the three sites were stationary time series, the ARMA model
was selected for the prediction. ACF and PACF were used to rank the ARMA model, and
p- and q-values corresponding to the minimum AIC and BIC values were selected. The
model ranking results of each sequence are shown in Table 4. The optimal model of the SPI
series at various time scales was applied to predict the SPI series of the three stations from
2008 to 2019.

Table 4. Model order based on SPI values of six time scales.

Example
Stations SPI Series Model Select AIC BIC Model Order

Estimation

Huinong

SPI1 ARMA 1826.071 1839.804 ARMA (1, 0)
SPI3 ARMA 1631.778 1650.079 ARMA (0, 2)
SPI6 ARMA 1398.692 1412.404 ARMA (1, 0)
SPI9 ARMA 1026.739 1045.006 ARMA (1, 0)
SPI12 ARMA 538.884 579.946 ARMA (5, 2)
SPI24 ARMA 64.999 87.725 ARMA (3, 0)

Tongxin

SPI1 ARMA 1937.225 1950.959 ARMA (1, 0)
SPI3 ARMA 1593.929 1612.230 ARMA (0, 2)
SPI6 ARMA 1302.638 1343.776 ARMA (5, 2)
SPI9 ARMA 957.282 970.982 ARMA (1, 0)
SPI12 ARMA 536.069 586.256 ARMA (7, 2)
SPI24 ARMA 43.954 62.136 ARMA (2, 0)

Xiji

SPI1 ARMA 2012.614 2026.347 ARMA (0, 1)
SPI3 ARMA 1628.778 1647.078 ARMA (0, 2)
SPI6 ARMA 1453.959 1472.242 ARMA (2, 0)
SPI9 ARMA 1061.371 1075.071 ARMA (1, 0)
SPI12 ARMA 575.482 616.544 ARMA (5, 2)
SPI24 ARMA 31.131 62.949 ARMA (3, 2)

4.3. The CEEMD–ARIMA Combined Model

Multiscale SPI was decomposed by CEEMD. After several parameters were modified
and compared, when the Gaussian white noise logarithm was 100, the total number of
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modes (not including the trend) was 7, and the standard deviation of the original time series
was multiplied by 0.2. CEEMD had the best decomposition effect. Seven IMF components
and one trend item were obtained by the CEEMD decomposition of the SPI3 sequence
of Xiji Station (Figure 4). The trend term represents the general trend of a sequence over
time. As shown in Figure 4, the fluctuation range of the IMF component obtained by
decomposition is smaller than that of the original sequence, and with the gradual progress
of decomposition, the fluctuation of the component tends to be smooth. Therefore, the
predictability of the subsequence obtained after decomposition is higher than that of the
original sequence.
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A stationary test was carried out for the components decomposed by CEEMD. IMF1~IMF6
were stationary time series; therefore, the ARMA model was selected for prediction. IMF7
and RES were nonstationary time series, and the ARIMA model was used for prediction
after the stationary series was obtained by data difference. AIC and BIC were used to
determine the order of the model, and the ranking results are shown in Table 5.

In this paper, the data from 1960 to 2007 were used as observation training data. There-
fore, only this part of the SPI sequence was decomposed by CEEMD and then predicted by
the ARIMA model, and the sum of the predicted results of each component was used as
the final prediction result of the SPI sequence. The prediction comparison plot includes the
actual calculated SPI values and the predicted SPI values of the CEEMD–ARIMA model
and the ARIMA model, as shown in Figures 5–7 for Huinong, Tongxin, and Xiji sample
stations, respectively.
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Table 5. Model order based on IMFs of the SPI3 sequence at Xiji Station.

SPI Series Decompose Results Model Select Model Order
Estimation

SPI3

IMF1 ARMA ARMA (1, 1)
IMF2 ARMA ARMA (2, 5)
IMF3 ARMA ARMA (4, 2)
IMF4 ARMA ARMA (4, 5)
IMF5 ARMA ARMA (4, 6)
IMF6 ARMA ARMA (2, 1)
IMF7 ARIMA ARIMA (4, 1, 1)
Res ARIMA ARIMA (3, 1, 1)

Figures 5a, 6a and 7a show that there is a big difference between the predicted value of
the ARIMA model and the actual value of SPI at the 1-month time scale, and the predicted
result of the CEEMD–ARIMA combination model at the SPI1 time scale is better than that
of the ARIMA model. The poor stationarity of the 1-month time series resulted in bad
prediction results of the ARIMA model. As the time scale increases and the data stationarity
improves, the ARIMA prediction results become closer and closer to the actual situation.
The prediction of the ARIMA model in the combined model relies on the stable basis
provided by the CEEMD. At the time scales of 1 month and 3 months, the predicted value
of the CEEMD–ARIMA model is different from the actual value. At the time scales of 6, 9,
12, and 24 months, the predicted values of the combined model are less different. According
to the comparison diagram of SPI3 and SPI6 in Figures 5–7, the prediction results of the
combined model in the extreme drought year (SPI ≤ −2) are closer to the actual situation,
indicating that the combined model is more suitable for the study of extreme drought than
the single model. With increasing time scale, the difference between the predicted value of
the model and the actual calculated value tends to decrease. The two models′ predicted
values of SPI12 and SPI24 were very close to the actual values, and the combined model
was closer than the single model.

In 2009, due to high temperature and drier weather, a severe large-scale drought
occurred in Ningxia, which spread from the central region. From the predicted values of
the combined model shown in Figures 5–7, drought first appeared near Tongxin Station,
and then around Huinong Station and Xiji Station, which is consistent with the record in
the China Meteorological Network. The combined model predicts that there would be no
drought or mild drought at Huinong Station and Tongxin Station in 2016, but drought at
Xiji Station, which is also consistent with the record. In July 2017, large-scale precipitation
occurred in Ningxia, with heavy rain in some areas. In 2019, the precipitation in the
whole region was relatively high, with annual precipitation of 341.7 mm, and the southern
mountainous region was rainy for eight consecutive months. The prediction results of
the combined model for drought in these periods were nearly consistent with the actual
situation. This indicates that the prediction of the combined model has a high consistency
with the actual situation, illustrating that the combined model is suitable for studying
drought prediction.
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The prediction results of the two models were evaluated using MAE, RMSE, NSE,
KGE, and WI. With increasing time scale, the MAE and RMSE values of the two models
decreased, while the NSE, KGE, and WI generally increased (Table 6), indicating that the
prediction accuracy of the two models gradually improved with increasing time scale,
and reached the maximum at the 24-month time scale. For example, the ARIMA model
implemented at SPI1 had a WI = 0.150, and at SPI24 had a WI = 0.911, at Huinong Station.
The evaluation index values of the two models were compared. At all time scales, the MAE
and RMSE values of the CEEMD–ARIMA model were lower than those of the ARIMA
model, and the NSE, KGE, and WI values were higher than those of the ARIMA model,
illustrating the higher prediction accuracy of the combined model, which is more suitable
for the prediction of multiscale SPI. At the 1-month time scale, the prediction accuracy of
the combined model was much higher than that of the single model, and the prediction
accuracy of SPI9, SPI12, and SPI24 was slightly higher than that of the single model. The
most precise model during the test phase was the CEEMD–ARIMA model at SPI24 at Xiji
Station with MAE = 0.076 RMSE = 0.100, NSE = 0.994, KGE = 0.993, and WI = 0.999. With
increasing time scale, the fluctuation of the SPI series tended to be flat, and the fitting
degree of the ARIMA model to the calculated SPI value was gradually improved.

Table 6. The statistical criteria of the ARIMA and CEEMD–ARIMA models.

Example
Stations

SPI
Series Model

Training Testing

MAE RMSE NSE KGE WI MAE RMSE NSE KGE WI

Huinong

SPI1
ARIMA 0.634 0.850 −31.759 −3.881 0.204 0.667 0.892 −48.453 −4.992 0.150

CEEMD–ARIMA 0.459 0.580 −0.020 0.440 0.830 0.465 0.596 −0.058 0.420 0.817

SPI3
ARIMA 0.535 0.708 −0.544 0.284 0.750 0.549 0.723 −0.663 −0.250 0.730

CEEMD–ARIMA 0.393 0.502 0.497 0.654 0.894 0.407 0.526 0.448 0.632 0.886

SPI6
ARIMA 0.429 0.609 0.363 0.643 0.867 0.440 0.618 −0.013 0.452 0.783

CEEMD–ARIMA 0.244 0.312 0.860 0.886 0.962 0.250 0.321 0.808 0.861 0.954

SPI9
ARIMA 0.304 0.434 0.711 0.816 0.934 0.315 0.460 0.384 0.671 0.850

CEEMD–ARIMA 0.143 0.188 0.927 0.893 0.981 0.150 0.199 0.906 0.876 0.977

SPI12
ARIMA 0.219 0.348 0.883 0.921 0.972 0.226 0.363 0.604 0.783 0.896

CEEMD–ARIMA 0.125 0.186 0.925 0.927 0.982 0.129 0.194 0.884 0.923 0.972

SPI24
ARIMA 0.149 0.233 0.939 0.953 0.985 0.157 0.248 0.670 0.831 0.911

CEEMD–ARIMA 0.067 0.087 0.957 0.978 0.990 0.069 0.090 0.954 0.972 0.989

Tongxin

SPI1
ARIMA 0.711 0.909 −87.660 −7.274 0.127 0.724 0.918 −100.523 −8.116 0.115

CEEMD–ARIMA 0.452 0.557 0.415 0.133 0.879 0.466 0.574 0.374 0.130 0.868

SPI3
ARIMA 0.578 0.729 −0.286 0.360 0.783 0.606 0.740 −0.395 0.133 0.758

CEEMD–ARIMA 0.343 0.416 0.787 0.377 0.952 0.349 0.424 0.750 0.369 0.944

SPI6
ARIMA 0.437 0.588 0.489 0.704 0.890 0.467 0.626 0.357 0.499 0.859

CEEMD–ARIMA 0.207 0.275 0.934 0.553 0.985 0.224 0.296 0.894 0.541 0.974

SPI9
ARIMA 0.323 0.472 0.731 0.791 0.938 0.325 0.482 0.632 0.783 0.915

CEEMD–ARIMA 0.138 0.181 0.960 0.804 0.991 0.142 0.187 0.952 0.797 0.988

SPI12
ARIMA 0.235 0.336 0.873 0.916 0.969 0.239 0.341 0.823 0.853 0.957

CEEMD–ARIMA 0.090 0.122 0.984 0.967 0.996 0.096 0.130 0.976 0.962 0.994

SPI24
ARIMA 0.159 0.247 0.937 0.956 0.985 0.172 0.253 0.921 0.944 0.980

CEEMD–ARIMA 0.062 0.079 0.996 0.975 0.999 0.065 0.083 0.992 0.972 0.998

Xiji

SPI1
ARIMA 0.782 0.961 −116.898 −10.640 0.237 0.825 1.036 −126.675 −36.326 0.224

CEEMD–ARIMA 0.570 0.706 0.269 0.205 0.846 0.584 0.739 0.256 0.182 0.831

SPI3
ARIMA 0.574 0.731 −0.313 0.370 0.774 0.649 0.820 −0.487 −0.528 0.752

CEEMD–ARIMA 0.391 0.481 0.717 0.794 0.939 0.407 0.508 0.689 0.776 0.930

SPI6
ARIMA 0.492 0.657 0.332 0.529 0.877 0.547 0.670 0.313 0.262 0.869

CEEMD–ARIMA 0.235 0.297 0.930 0.842 0.984 0.247 0.309 0.923 0.835 0.981

SPI9
ARIMA 0.346 0.490 0.711 0.768 0.936 0.412 0.576 0.696 0.482 0.933

CEEMD–ARIMA 0.211 0.279 0.948 0.934 0.988 0.221 0.291 0.940 0.923 0.985

SPI12
ARIMA 0.229 0.354 0.890 0.888 0.980 0.245 0.377 0.890 0.625 0.974

CEEMD–ARIMA 0.102 0.136 0.987 0.937 0.997 0.107 0.141 0.987 0.921 0.997

SPI24
ARIMA 0.158 0.233 0.950 0.753 0.989 0.188 0.285 0.949 0.514 0.988

CEEMD–ARIMA 0.069 0.087 0.995 0.994 0.999 0.076 0.100 0.994 0.993 0.999

The actual calculated SPI values, the ARIMA-predicted values, and the CEEMD–
ARIMA-predicted values of 10 sites in 2019 were visualized by the empirical Bayesian
kriging interpolation method in ArcGIS. The SPI at different time scales is suitable for
different analyses. In this paper, SPI3 was selected to show the drought situation of spring,
summer, autumn, and winter in the Ningxia Hui Autonomous Region, which can be used
to analyze the seasonal variation in drought. As shown in Figure 8, the prediction of the
CEEMD–ARIMA model was closer to the actual situation than that of the ARIMA model,
and the predicted results were consistent with the actual approximation. In the summer

228



Atmosphere 2022, 13, 1109

of 2019, the precipitation in southern Ningxia Hui Autonomous Region was abnormal
and excessive. The instability of precipitation data led to a big difference between the
ARIMA-predicted values and the observed SPI values. Based on the advantage of CEEMD
in nonstationary signal processing, the precision of the combined model is good, and is
consistent with actual states.
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5. Discussion

Recent studies have highlighted the superiority of EMD, EEMD, and CEEMD in
forecasting aspects [39–42]. Ali et al. [43] forecasted rainfall at a monthly time scale. They
resolved the non-stationarity challenges faced by rainfall forecasting models via CEEMD.
Their study, which used a hybrid model for forecasting rainfall, achieved a WI value of
0.966. Their findings indicated that the CEEMD effectively avoids the non-stationarity
in rainfall forecasting. Previous studies in drought prediction have used single models.
For example, using the ARIMA model, Shatanawi et al. [20] predicted 3 out of 4 actual
moderate droughts at Amman and Mafraq Stations. Similarly, Liu et al. [6] used the ARMA
model to predict SPI9; the results showed that the prediction results of ARMA model were
closer to the observed values in Longkou Station (the average relative error is 20.39%).
However, when considering the entire stations, the highest standard error was as much as
43.69%. This result showed that more emphasis should be given to studying larger areas,
which will be essential in regional drought management to make decisions. In this study,
data stability is considered, along with the applicability of the CEEMD–ARIMA model
over a large area.

The non-stationarity of data affects the drought prediction results of the model. The
prediction result of the ARIMA model for SPI1 was significantly different from the actual
situation. The ARIMA model had lower prediction accuracy at short time scales and higher
prediction accuracy at long time scales, depending on the characteristics of the ARIMA
model. As an overall linear autoregressive model, the prediction of the ARIMA model tends
to become stable gradually with increasing test set time. In this study, the data volume of
the 1-month time scale was larger than that of the 3-, 6-, 9-, 12-, and 24-month timescales,
and the data series tended to be strictly stationary (i.e., the sequence distribution structure
does not change over time). Therefore, the lowest prediction accuracy of the ARIMA
model was obtained at the 1-month time scale. With increasing time scale, the amount of
time-series data decreased, and the data series tended to be weakly stationary (i.e., the
expectation, variance, and covariance of the stochastic process were constant; that is, the
future value was related to the past value). Therefore, the fitting accuracy of the ARIMA
model gradually improves as the time scale increases. At the same time, with increasing
time scale, the SPI sequence obtains more information from the original sequence, and the
fit of the predicted value with the actual calculated value becomes increasingly better.

Some studies have compared and analyzed the signal decomposition methods of
EMD, EEMD, and CEEMD, and the analysis results show that the effects of different
decomposition methods are very good, and that CEEMD can control residual noise at a
relatively low level [34,44,45]. The large residual auxiliary noise of the defective EEMD
cannot be avoided, and influences the experimental results. However, the influence from
CEEMD can be ignored. Therefore, to stabilize the SPI sequence, in this study, CEEMD
was used to extract the local features of the original sequence at different scales. Drought
prediction based on CEEMD decomposition provides a stable premise for the ARIMA
model. Therefore, the CEEMD–ARIMA model has a high prediction accuracy. If the
data stationarity is poor, the prediction accuracy of the CEEMD–ARIMA is be reduced, as
determined by the characteristics of the ARIMA model. In this case, although the prediction
accuracy of the CEEMD–ARIMA model has a significant improvement over the single
model, as shown in Figures 5a, 6a and 7a, its predictive effect is still poor. In August 2016,
local rainstorms and short-term heavy precipitation occurred in the central and northern
parts of Ningxia, precipitation in the southern mountainous area was rare, and the whole
region presented a rare flood in the north and drought in the south. However, the combined
model predicted conditions consistent with the record, indicating that CEEMD–ARIMA is
suitable for use in drought research.

One limitation of this study is the diversity of factors that contribute to drought. In
the arid zone of central Ningxia, the average annual precipitation is only 183.1 mm, and it
is concentrated between June and August. However, with low precipitation, transpiration
is high—close to 2000 mm in arid areas. Therefore, considering the influence of evapo-
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transpiration is of great significance for accurately judging the arid zones′ drought status.
In a subsequent study on the drought situation in Ningxia Hui Autonomous Region, it
was necessary not only to judge the drought situation based on precipitation, but also to
consider the influence of evapotranspiration. This can be achieved by dividing the study
area and then selecting different drought indices to analyze the drought in each area.

6. Conclusions

In this paper, the multiscale SPI was calculated based on precipitation data from 10
stations in the Ningxia Hui Autonomous Region. Combining CEEMD in the signal process-
ing field and the ARIMA model in the machine learning field to predict the SPI, through
comparative analysis of the prediction results, the following conclusions were obtained:

(1) As an effective nonlinear and nonstationary time-series decomposition method,
CEEMD can extract the change trend of the SPI series and describe the character-
istics of drought trends under climate change. Using CEEMD to decompose the
SPI sequence of the Ningxia Hui Autonomous Region, seven IMF components and
one trend item were obtained. The fluctuation of the component quantity became
smoother than that of the original sequence, providing a basis for model prediction.

(2) The ARIMA model had the lowest prediction accuracy on the 1-month time scale
and the highest on the 24-month time scale. At the same time scales, the prediction
accuracy of the CEEMD–ARIMA model was higher than that of the ARIMA model.
According to the visual display of the forecast results of the 3-month time scale, in the
seasons of spring, summer, autumn, and winter, the drought conditions predicted by
CEEMD–ARIMA were more consistent with the actual conditions.

(3) The drought prediction of CEEMD–ARIMA was approximately consistent with the
China Meteorological Network records, indicating that the combined model is suitable
for drought prediction. The original sequence was decomposed by CEEMD, and then
the decomposed sequence was predicted by the ARIMA model. Finally, the predicted
values of each component were added together to obtain the final prediction result.
The final prediction result had high precision. According to the prediction results, the
CEEMD–ARIMA model obtains higher prediction accuracy than the ARIMA model at
multiple time scales, meaning that the combined model can better fit the SPI sequence
at different time scales.
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Abstract: This paper investigates the annual and seasonal variations in the minimum and maximum
air temperature (Tmin and Tmax) and precipitation over Kashmir valley, Northwestern Himalayas
from 1980–2019 by using the innovative trend analysis (ITA), Mann-Kendall (MK), and Sen’s slope
estimator methods. The results indicated that the annual and seasonal Tmin and Tmax are increasing
for all the six climatic stations, whereas four of them exhibit significant increasing trends at (α = 0.05).
Moreover, this increase in Tmin and Tmax was found more pronounced at higher altitude stations, i.e.,
Pahalgam (2650 m asl) and Gulmarg (2740 m asl). The annual and seasonal precipitation patterns for
all climatic stations showed downward trends. For instance, Gulmarg station exhibited a significant
downward trend for the annual, spring, and winter seasons (α = 0.05). Whereas, Qazigund showed
a significant downward trend for the annual and spring seasons (α = 0.05). The overall analysis
revealed that the increased Tmin and Tmax trends during the winter season are one of the reasons
behind the early onset of melting of snow and the corresponding spring season. Furthermore, the
observed decreased precipitation trends could result in making the region vulnerable towards drier
climatic extremes. Such changes in the region’s hydro-meteorological processes shall have severe
implications on the delicate ecological balance of the fragile environment of the Kashmir valley.

Keywords: climate change; innovative trend analysis; Jhelum basin; Kashmir Himalayas; Mann
Kendall test

1. Introduction

Climate change is a natural phenomenon, though extensive research indicates that the
anthropogenic activities in the 20th century are one of the major reasons for the temperature
increase [1–3]. Increasing air temperatures and fluctuating precipitation patterns have
gained a lot of attention in recent years because of their importance in understanding the
climate change of any region [4,5]. An average increase in air temperature of 0.74 ◦C has
been reported worldwide over the next 100 years [6]. In contrast to global predictions,
the estimations of regional climate change rates differ due to differing methodology and
datasets used to estimate future climate change [7–9].

Precipitation and temperature are considered key climatic variables affecting the spa-
tiotemporal patterns of regional water resources availability [10,11]. Numerous studies
have shown that assessing the implications of climate change on regional economic devel-
opment, agriculture, and human society requires measuring fluctuations in regional air
temperature and precipitation [12–15]. The most significant parameters in hydrometeorol-
ogy are to evaluate a region’s climate and estimate the consequences of changing climate,
which are the air temperature and precipitation [16].
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In recent years, substantial research has been carried out to quantify the climate change
consequences by identifying the precipitation and temperature trends at various spatiotem-
poral scales in order to regulate regional resources of water and related hazards [17].
Significant warming trends with a magnitude of 0.16 ◦C per decade in air temperature
were reported during the 20th century over the Tibetan Plateau [18–20]. According to [21].

According to Shrestha and Devkota (2010), in most regions of the Hind-Kush Hi-
malayan (HKH), the warming rate is higher in the winter compared to other seasons [22].
In the last few decades, annual and winter precipitation has increased over the Tibetan
Plateau and Indus basin. However, in these regions, an incoherent spatial pattern was
witnessed for long-term precipitation variability [23]. Several studies have used method-
ologies to evaluate the temperature and precipitation variations, such as Mann-Kendall
(MK) test, Sen’s slope estimator, linear regression (LR), and Spearman’s rho (SR) tests [24].
However, MK test is considered as the most common method used and has been applied in
many regions worldwide to detect the changes in the hydro-meteorological variables. The
MK test was employed by [25] to examine annual daily maximum precipitation trends and
showed a significant increase. Pingale et al. (2014) examined the spatiotemporal mean and
extreme rainfall and temperature trends using the MK test and Sen’s slope estimator and
found equally positive and negative trends for Rajasthan state urban centres [26]. Using
LR and the SR tests [27] evaluated the significant upward trends for heatwaves and air
temperatures in northwest Mexico. Gemmer et al. (2011) for observing the spatiotemporal
characteristics for trends of rainfall used the MK test and found that while some stations
showed annual trends in rainfall, monthly rainfall time series showed significant positive
and negative trends in entire China’s Zhujiang River Basin [28]. In another study, the
results of the precipitation and temperature trend analysis were used to manage the scarce
water resources of such regions for future water resource management development [29].

Few studies have been carried out in the Kashmir valley by using traditional statistical
tests for trend analysis in hydro-meteorological data. Gujree et al. (2017), using Sen’s slope
estimator and MK test analyzed the spatial variability of precipitation and temperature
extremes [30]. They showed that areas in plains exhibited an upward trend in Tmax extremes,
while in the near future the mountain areas may showcase more extreme events in Tmin
and precipitation. Shafiq et al. (2019) assessed the changing trends of precipitation and
air temperature variables using the non-parametric tests in the Kashmir valley at various
elevation zones [31]. Dad et al. (2021) examined the significance of trends and estimated
the magnitude of trends in air temperature and precipitation on annual, seasonal, and
monthly scales for all six meteorological stations positioned throughout the Kashmir valley
employed non-parametric method. Ahmad et al. (2021) used non-parametric tests to assess
the trend significance of air temperature and precipitation for the whole Kashmir valley [32].
Zaz et al. (2019) used statistical tests, such as Student’s test, cumulative deviation, MK, and
LR to examine the annual and seasonal precipitation and temperature changes in the six
meteorological stations of the Kashmir valley [33].

However, traditional trend analysis methods can only detect the monotonic trends
through pure statistical calculations and cannot identify the trends in different subcategories
of the time series [34]. The innovative trend analysis (ITA) technique had been widely
utilized to check trends predicted by existing methods and identify unseen trends in
high, medium, and low-value categories utilizing springy graphical tools [17,34]. ITA is
an intuitive and straightforward method that can be applied irrespective of distribution
assumptions to identify trends in various time series subcategories [35]. In many parts of
the world ITA has been used for investigating the hidden trends in hydro-meteorological
variables. Ay and Kisi [36] carried out ITA-based trend analysis at six different provinces
of Turkey for monthly precipitation and observed significantly upward trends at Trabzon
and Samsun regions along with other four regions that were found insignificant. Similarly,
Elouissi et al. [35] used this ITA method for assessing monthly precipitation to conduct trend
analysis for 25 stations and observed a downward trend towards the northern parts and an
upward trend towards the southern parts of the Macta watershed, Algeria. Tosunoglu and
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Kisi [37] analyzed drought variables for nine stations by means of the modified ITA and
MK tests. Moreover, the results showed that the MK test depicted trendless results for the
investigated stations, whereas the modified MK showed a significantly decreasing trend at
10% significance level. The results for the Coruh River basin in Turkey, on the other hand,
were consistent. Wu and Qian [38] assessed the 14 stations for annual and seasonal rainfall
trends using the ITA, MK, and linear regression methods at Shanxi Province, China. They
concluded that their results were good agreement across the tests and perfect covenant
among tests showing significant trends.

Kashmir valley, the north-western part of the Himalayas, showed pronounced indica-
tors of climate change. The Himalaya has complete control over the meteorological and
hydrological conditions in Kashmir’s valley. Even a little alteration in their climate has the
potential to have severe effects for people’s socioeconomic existence. Previous studies have
used monotonous statistical techniques predominantly (MK-based tests) to understand
key climatic indicators (air temperature and precipitation). However, studies have shown
that it does not significantly address the reasons behind the changing hydrological regime
of the Kashmir Valley [28–30,32,39–41]. In the present study, ITA based trend analysis
method is explored to understand the climatic variability in high, medium, and low values
of precipitation and air temperature over the last few decades in the Jhelum basin (Kashmir
valley). As previously stated, this technique has been used all around the world to uncover
hidden trends in Hydro-meteorological variables. Specifically, the present study aims to
evaluate the regional climatic variability of the Kashmir valley by analyzing the time-series
of air temperature and precipitation data between 1980 and 2019 using an ITA-based ap-
proach. It also aims to assess whether this technique is more reliable in terms of revealing
better insights on the climatic variability of the region compared to MK test and Sen’s slope
approach. The main objectives of the study include: (i) Spatio -Temporal variations for
air temperature and precipitation for Kashmir valley. (ii) Detection and quantification of
trends in air temperature and precipitation. (iii) Comparision between the different trend
analysis approaches.

2. Materials and Methods
2.1. Study Area

Kashmir Valley on the south is bordered by the Pir Panjal range and by the western
Himalayan peaks on the north side [42]. The Himalayan complex has a pervasive influence
on the valley’s geographic entity. The total area of the region is about 15,948 km2. The oval-bowl
shaped valley extends from latitudes, 32◦22′–34◦43′ N and longitudes, 73◦52′–75◦42′ E with an
elevation range of 1300–1800 masl as shown in Figure 1. It is traversed by the Jhelum river,
one of the Indus basin tributary. The weather in the Kashmir valley keeps on fluctuating
owing to elevational differences [30].

Figure 1. Location of study area (a) Indian political map; (b) Jammu & Kashmir map; (c) Kashmir
valley map.
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Summer monsoons originating in the Indian Ocean and Central Siberia’s winter air
masses are separated by the mountain ranges of the valley that act as a barrier to them [29].
Westerly troughs moving during the winter at higher altitudes enter the west and northwest
of the valley, while the greater Himalayas obstruct their influx. The climate is unpleasant
above the tops of surrounding mountains due to micro-level variations but generally warm
and temperate over the valley. With more than 105 glaciers, the Kashmir valley is an
important watershed of the upper Indus basin (UIB) [43]. Based on mean temperature
and precipitation, the Kashmir valley’s climate is characterized as sub-Mediterranean
type with four seasons, spring (March–May), summer (June–August), autumn (September–
November), and winter (December–February), [44]. The winters are usually cold and
unpleasant, and summers are scorching, while spring is usually wet and autumn is dry.
The valley’s annual temperature ranges from −10 to 35 °C. Winter precipitation is coupled
with western disturbances, dominates the rainfall pattern in the valley [45], while snowfall
occurs primarily in the winter and early spring [46,47].

2.2. Datasets

The Himalayas (Greater), valley floor (Jhelum), and the Pir Panjal divide the Kashmir
valley into three physiographic regions. Six well-distributed meteorological stations with
varying mean sea levels, namely Gulmarg station (2740 m), Pahalgam station (2600 m),
Kokarnag station (2000 m), Srinagar station (1600 m), Kupwara station (1670 m), and
Qazigund station (1650 m), were chosen to represent the entire valley for analyzing the
spatiotemporal variations in climatic variables (Table 1 and Figure 1). These six stations’
topographic setting is characterized into two groups: (1) stations located on the plains
(Qazigund, Kokarnag, Srinagar, and Kupwara) and (2) stations located in the mountainous
areas (Pahalgam and Gulmarg) [32]. The data used were collected from the IMD-Srinagar
and IMD-Pune centers for the period of 40 years (1980–2019) of six ground-based mete-
orological stations. This time series was deemed adequate for trend analysis to observe
the fluctuations in different time scales at various climatic variables in the region. In order
to understand climatic fluctuations over the region, inter and intra-annual trend analysis
was carried out. The double-mass curve analysis method was utilized to cross-examine
and check the data’s homogeneity and consistency, which might have occurred due to
instrumentation error [48].

Table 1. List of data ranges, basic geographic characteristics, and variables for those stations used in
this study.

S.No. Met Stations Latitude Longitude Resolution Time Period Variables

1 Srinagar 34.05 74.80 Monthly 1980–2019 Tmax, Tmin, Precp
2 Gulmarg 34.06 74.39 Monthly 1980–2019 Tmax, Tmin, Precp
3 Kupwara 34.53 74.27 Monthly 1980–2019 Tmax, Tmin, Precp
4 Phalgham 34.02 75.33 Monthly 1980–2019 Tmax, Tmin, Precp
5 Qazigund 33.60 75.17 Monthly 1980–2019 Tmax, Tmin, Precp
6 Kukarnagh 33.59 75.30 Monthly 1980–2019 Tmax, Tmin, Precp

In prior studies on meteorological time series data, different statistical approaches
(parametric and non-parametric) were used for determining whether the observed values
of a hydro-meteorological time series are increasing, decreasing, or trendless. However,
parametric methods with many restricted measures such as normal distribution and serially
independent data are considered more powerful than non-parametric approaches, which
is hardly true when it comes to meteorological time series data [49]. Non-parametric ap-
proaches, on the other hand, have been employed to identify trends in hydro-meteorological
time series data since they don’t need data to be distributed normally; nonetheless, this
is the necessity for data to be free of serial correlation. A pre-whitening method was
used to remove the serial correlation prior to using the MK test on the meteorological
time series data [50]. Using the pre-whitening method on time series data, on the other
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hand may compromise the uniqueness of the data and erase a trend component that is
truly present [51,52]. As a result, [53] suggested ITA technique that does not require such
preprocessing in addition to having broad applications.

The results of the ITA approach are compared with those of MK and Sen’s slope tests
to assess the approach’s trustworthiness. The annual and seasonal precipitation and air
temperature time series were analyzed using ITA method for six stations across the valley.
The monthly data were averaged for temperature and precipitation to develop the seasonal
and annual precipitation time series [49,54]. Further, the air temperature and precipitation
time series trends were analyzed at 10 percent, 5 percent, and 1 percent levels of significance
using the ITA, MK, and Sen’s slope approaches. A significance threshold of 10 percent level
was used to establish a significant trend.

2.3. MK and Sen’s Slope Tests

The non-parametric MK test is one of the robust statistical trend method for hydro-
meteorological time series to detect the monotonic trends because of outlier’s insensitivity
and normal distribution [55–57].

The MK statistics, S is known as:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(Yj −Yk) (1)

sgn(Yj −Yk) =





i f (Yj −Yk) < 0; then −1
i f (Yj −Yk) = 0; then 0
i f (Yj −Yk) > 0; then 1



 (2)

Here, Yk and Yj are successive data points of time-series with period k and j, n defines
the no. of points, sgn represents the fn. taking the values of 1, 0, and −1; if >, Yj = Yk and
Yj < Yk, respectively. +ve values of S define the upward trend, and −ve values of S denote
a decreasing trend in the hydro-meteorological time series [58]. The size of the sample for
which n > 10, the test has to be escorted through a normal distribution (σ2 = 1) and average
(µ = 0) with variance (Var) and probability (E) as presented below:

E[S] = 0 (3)

Var(S) =
n(n− 1)(2n + 5)−∑

q
p=1 tp(tp − 1)(2tp + 5)

18
(4)

where q is the taut groups signifying observations having the common value, excluding
unique rank numbers position, tp defines the no. of data points of the pth group, symbol
(∑) describes all the tied groups summation. Var(S) is the variance after manipulating
from Equation (4), the test statistics standardized value (ZMK) is evaluated by means of the
eqn. below:

ZMK =





S− 1√
VAR(S)

, i f S > 0

0, i f S = 0
S + 1√
VAR(S)

, i f S < 0

(5)

Normal distribution with variance is followed by the regular ZMK values follow a “1”
and means “0,” and is employed for calculating the variational weight. It is employed for
checking the null theory, H0. If ZMK is bigger than Zα/2, consequently, the data series shows
trends that are significant. Such a calculated estimation of ZMK is matched with the two-
tailed test table for normal distribution pertaining to α confidence level = 10%. However,
for tests that is two-tailed, the null theory (H0) is settled for zero (no) trend if the calculated
estimation of ZMK falls from—Z1-α/2 through Z1-α/2, and so, H1 is excluded. In our study,
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the meteorological time series data trends are assessed for the levels of significance of 1%,
5%, and 10%.

The non-parametric Sen’s slope estimator test is used for assessing the trend’s weight
in time series data [59,60]. The slope for n number of pairs of data-values is assessed by
means of the equation given below.

bi = median
[Yj−Yk

j−k

]
∀(k < j) (6)

where Yj and Yk defines data points at time j and k. The n number of values that are median
of bi actually depicts Sen’s slope of trend. The +ve values of bi denote an increasing trend,
while −ve values reveal the downward trend. Here, n = odd number, consequently the
slope of the trend using Sen’s method is calculated as:

Qmed = b[(n+1)/2] (7)

where, n = even number, now the trend slope using Sen’s method is estimated as:

Qmed =
1
2

(
b[n/2] + b[(n+2)/2]

)
(8)

Finally, a two-tailed test is used to verify Qmed at desired confidence interval, and the
real trend magnitude of the slope can be assessed through a non-parametric test [61].

2.4. Innovative Trend Analysis (ITA) Method

Most studies have employed the innovative trend analysis (ITA) approach in con-
junction with many further trend analysis approaches to find disparities in climatological,
meteorological, and hydrological data time series around the world due to its advantages
over other non-parametric approaches. The trustworthiness of ITA is proven, however, by
matching its results to those with the MK test results. The initial stage in this strategy is
to divide hydro-meteorological time series data into 2 equal halves and position each one
in increasing order separately. The second stage involves, the first 1/2 of the sub-series
(Xi; i = 1, 2 . . . n/2) positioned at X-axis, with the second 1/2 (Xj; j = n/2 + 1, n/2 + 2 . . . n)
is positioned at Y-axis of cartesian coordinate system, as illustrated in Figure 2. Both the
axes (vertical & horizontal) necessarily have the same range. A series of clusters can be used
to describe the domain variance of each sub-series (subgroups). This type of graph provides
a quick visual inspection of the nature of time-series trends. Each subgroup’s range can
be resolute qualitatively or numerically. Data values on the scatter plot may be collected
on the 45◦-1:1 linear line. The hydro-meteorological time series has no trend. Otherwise,
data values accumulating at the area of triangulation below or above the linear line specify
an upward trend or a downward trend within the time series, respectively [53]. On com-
puting the average difference between the Xj and Xi values at every point, the increasing
or downward longitudinal trend in the time series can be evaluated. The horizontal and
vertical distance from the linear line can be used to calculate this absolute difference. When
comparing the amplitude of two subseries’ trends, however, these average disparities
should be normalized. The first half of the time series is used to determine the trend change.
As a result, the indicator of trend is derived by dividing the mean difference between the
linear line and the time series’ first 1/2. On multiplying by ten the ITA trend indicator has
represented the scale of the Sen’s slope estimator and MK test at a 10% significance level as
shown in the equation below:

D =
1
n

n

∑
i=1

10
(
Yj −Yi

)

µ
(9)

Here, D denotes the indicator of trend, n the number for data points in each sub-
series, Yi and Yj denote the 1st and 2nd sub-series data points, respectively µ denotes the
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first subseries average. However, the +ve or −ve values of D represent an increasing or
decreasing trend, respectively. If the value of observational data in the original time-series
are found odd, at that time the initial results might be omitted earlier when dividing it into
two equal halves so as to make the recent records are fully utilized.

Figure 2. Illustration of upward, downward, and trendless portions in the ITA method.

3. Results
3.1. Spatio-Temporal Variations of Tmax, Tmin and Precipitation for Kashmir Valley Stations

Seasonal Tmax, Tmin, and precipitation time series at six stations were investigated for
spatiotemporal changes in Kashmir valley are presented in Figure 3. The average observed
monthly Tmax, Tmin, and precipitation at six dissimilar stations was combined to signify
the overall temporal distribution of Tmax, Tmin, and precipitation throughout the Kashmir
valley. Due to the northern side of the Himalayas, the valley (Kashmir) is influenced by
several climate regimes such as westerly disturbances, monsoonal effects, and orographic
fluctuations, making it a complicated region. The annual Tmax, Tmin, mean temperature
and precipitation in the valley stations were approximately 20 °C, 7.6 °C, 13.8 °C, and
723.8 mm for Srinagar, 19.3 °C, 6.4 °C, 12.8 °C and 1212.7 mm for Qazigund, 16.6 °C,
3.1 °C, 9.8 °C and 1288.9 mm for Pahalgam, 20.1 °C, 6.3 °C, 13.2 °C and 1081.2 mm for
Kupwara 18.1 °C, 4.1 °C, 11.1 °C, and 1080.2 mm for Kukarnagh 11.7 °C, 2.4 °C, 7.0 °C and
1485.1 mm for Gulmarg station for the period of forty years (1980–2019) as shown in Table 2.
Furthermore, the precipitation was mainly concentrated in the spring and winter in all
stations across the valley, with summer precipitation contributing a good portion also.
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Figure 3. Spatiotemporal distribution for annual Tmax (a,b) Tmin (c,d) and precipitation (e,f) for entire
Kashmir valley.

The mean monthly Tmax, Tmin and precipitation over the Kashmir valley are presented
in Table 2. The annual precipitation over the Kashmir valley was governed by two climatic
systems, the Indian summer monsoons (ISM) and the Western Disturbances. Over three-
quarters of precipitation (71.54%) account for Western Disturbances from October to May,
with the peak monthly precipitation occurring in Mar through May of the spring season.
However, the residual 28.46% of rainfall falls between June and September, with a cluster
of highest monthly precipitation in September Figure 3e,f, which is attributed to the
Indian Summer Monsoon (ISM). Kashmir valley is influenced by mid-latitude westerlies
considerably and is captured by the northern part represented by the two IMD stations,
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Gulmarg and Kupwara, while the south side of the valley was influenced by ISM and was
captured by three IMD stations (Kukarnagh and Pahalgam and Qazigund) [30,62].

Table 2. Tmax, Tmin, and Mean temperature and precipitation mean in Kashmir valley stations over a
multi-year period.

Stations
Name Seasons

Tmax Tmin
Mean-

Temperature Precipitation

1980–2019 1980–2019 1980–2019 1980–2019

Srinagar Annual 20.0 7.6 13.8 723.8
Spring 20.1 7.7 13.9 281.0

Summer 29.3 17.0 23.2 173.0
Autumn 21.7 6.7 14.2 93.0
Winter 8.8 −1.1 3.9 172.5

Qazigund Annual 19.3 6.4 12.8 1212.7
Spring 19.4 6.3 12.8 135.9

Summer 27.7 15.3 21.5 82.5
Autumn 21.4 5.8 13.6 43.8
Winter 8.7 −1.9 3.4 129.1

Pahalgam Annual 16.6 3.1 9.8 1288.9
Spring 16.6 2.9 9.7 463.9

Summer 25.0 11.2 18.1 300.1
Autumn 18.6 3.2 10.9 181.6
Winter 6.1 −4.9 0.6 332.6

Kupwara Annual 20.1 6.3 13.2 1081.2
Spring 19.8 6.2 13.0 442.4

Summer 29.5 15.3 22.4 207.7
Autumn 22.5 5.6 14.1 138.9
Winter 8.6 −1.9 3.3 281.4

Kukarnagh Annual 18.1 4.1 11.1 1080.2
Spring 18.4 6.4 12.4 394.3

Summer 27.0 14.9 21.0 259.3
Autumn 19.9 6.8 13.3 151.2
Winter 7.1 −2.1 2.5 267.7

Gulmarg Annual 11.7 2.4 7.0 1485.1
Spring 10.8 1.9 6.4 176.3

Summer 20.0 10.7 15.3 104.3
Autumn 13.2 3.1 8.2 63.3
Winter 2.6 −6.0 −1.7 439.6

3.2. Annual and Seasonal Tmax Variations over Time

The annual and seasonal Tmax over the Kashmir valley stations are examined us-
ing the MK test and their results are summarized in Table 3. Annual Tmax showed
significant increasing trends at Srinagar, Pahalgam, Kupwara, and Kukarnagh stations
(α = 0.01, α = 0.05) whereas Qazigund and Gulmarg stations also exhibited an increasing
trend but statistically insignificant trends. Spring Tmax showed significantly increasing
trends at Kupwara (α = 0.01), Srinagar, Qazigund, Pahalgam, and Kukarnagh stations
(α = 0.05) and Gulmarg (α = 0.1). The summer Tmax showed a decreasing trend at Srinagar,
Qazigund, Pahalgam, and Gulmarg stations, while Kupwara and Kukarnagh stations
exhibited increasing trends. Autumn Tmax showed a significantly increasing trend for
Srinagar and Pahalgam stations (α = 0.05, α = 0.1) and a significantly decreasing trend
for the Qazigund station (α = 0.05). Winter Tmax indicates a significantly increasing trend
for all the stations, Srinagar (α = 0.01) Pahalgam and Kupwara (α = 0.001) Kukarnagh
(α = 0.05) Qazigund and Gulmarg station (α = 0.1) as presented in Figure 4.
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Table 3. Summarized results for the seasonal Tmax time series using ITA method statistic D, MK test
statistic Z and Sen’s slope estimator β.

S.No. Station
Name Annual Spring Summer Autumn Winter

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

1 Srinagar 0.57 2.92 ** 0.04 0.88 2.23 * 0.05 0.04 −0.20 0.00 0.37 2.34 * 0.04 2.17 2.81 ** 0.06
2 Qazigund 0.22 1.13 0.01 0.70 2.16 * 0.04 −0.06 −0.62 0.00 −0.13 −2.11 * −0.03 1.32 1.85 + 0.04
3 Pahalgam 0.56 2.80 ** 0.04 0.94 2.21 * 0.05 −0.13 −1.00 −0.01 0.36 1.68 + 0.03 3.45 3.93 *** 0.08
4 Kupwara 0.58 3.18 ** 0.04 1.06 2.62 ** 0.07 0.20 1.06 0.02 0.15 1.06 0.02 2.04 3.30 *** 0.06
5 Kukarnagh 0.60 2.57 * 0.04 0.96 2.20 * 0.06 0.07 1.25 0.01 0.27 0.73 0.01 2.75 2.57 * 0.06
6 Gulmarg 0.25 0.85 0.01 1.55 1.71 + 0.05 −0.20 −0.83 −0.02 −0.50 −0.52 −0.01 2.44 1.78 + 0.04

*** if trend at α = 0.001 level of significance. ** if trend at α = 0.01 level of significance. * if trend at α = 0.05 level of
significance. + if trend at α = 0.1 level of significance. If the cell is blank, the significance level is greater than 0.1.

Figure 4. Using the MK approach, seasonal trends in Tmax over Kashmir Valley.

The annual and seasonal trends of Tmax based on Innovative Trend Analysis (ITA)
over the Kashmir valley stations are summed-up in Table 3 and Figure 5. The trends for the
annual Tmax showed positive values of ITA statistic D dominated statistics, showing mostly
significant increasing trends. At Srinagar, Kupwara, Kukarnagh, Pahalgam and Qazigund
stations, significantly increasing and decreasing trends for the annual Tmax data points
were observed falling above 10% range from the 1:1 line, In comparison, Gulmarg station’s
majority of temperature data points fall in +10% range showing increasing trend with few
points fall in −10% range from the 1:1 line during the period of forty years (1980–2019).
The trends for Tmax for the spring season statistics exhibited by significant (positive) values
of ITA D, which is evidence of an increasing trend, are summarized in Table 3.

Srinagar, Qazigund, Pahalgam, Kupwara, and Kukarnagh stations showed increasing
and decreasing trends for Tmax data points, falling above 10% range from 1:1 line depicting
a significantly positive trend. In comparison, Gulmarg station exhibited the increasing and
decreasing trend for Tmax data points which falls on +10% range from the 1:1 line. Summer
Tmax trends exhibited positive values of ITA statistic D increasing trend for three stations
(Srinagar, Kupwara, and Kukarnagh) and negative values for three stations (Qazigund,
Pahalgam, and Gulmarg). The combination of Tmax data points falls within the range

243



Atmosphere 2022, 13, 764

of 10% from the 1:1 line, which exhibits the decreasing trend for Srinagar and Qazigund
stations. In contrast, Kupwara Pahalgam stations showed a decreasing trend for Tmax data
points falling in the 10% range. The results suggest that Tmax trends for the autumn season
showed four stations with significant positive values (Srinagar, Pahalgam, Kupwara, and
Kukarnagh) and two stations with significant negative values (Qazigund and Gulmarg). In
autumn, most Tmax data points for Srinagar, Pahalgam, Kupwara, and Kukarnagh stations
fall on the +10% range from the 1:1 line with an increasing trend. In comparison, Qazigund
and Gulmarg showed Tmax data points falling over the −10% range with an insignificant
decreasing trend. The Tmax for the winter season showed that all the station’s ITA statistics
for D exhibit positive values with a significant increasing trend. Moreover, an increasing
and decreasing trends combination for Tmax data points that fall above the 10% range from
the 1:1 line exhibit a significantly positive trend for all the stations except Gulmarg station.
The latter exhibited that the Tmax data points falling on the +10% range of 1:1 linear line
with an upward trend.

Figure 5. ITA method results for different seasons Tmax at 6 stations.

Results depict an overall increase in the annual temperature is largely attributed to
a mean Tmax. It is clear for Figure 5 that it is reasonable to conclude that the climate in
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the Kashmir valley is fluctuating towards a system subjugated by high temperatures; as a
result, the spring and winter seasons are changing in their durations.

3.3. Annual and Seasonal Tmin Variations

Significant increasing trend based on Mann Kendall (MK) were noticed at Srinagar,
Pahalgam (α = 0.01), Qazigund (α = 0.001) and Kupwara (α = 0.05) stations whereas
Kukarnagh and Gulmarg stations displayed an increasing but insignificant trend in the
annual Tmin as summarized in Table 4. Spring Tmin exhibited a significantly increasing
trend for Kupwara, Srinagar, Pahalgam, and Kukarnagh stations (α = 0.05, α = 0.01) while
Qazigund and Gulmarg exhibited an increasing but insignificant trend. The summer Tmin
indicates a significantly increasing trend for Pahalgam Srinagar, Qazigund, Kupwara, and
Kukarnagh (α = 0.01), whereas for Gulmarg exhibited decreasing but an insignificant trend.
Autumn Tmin exhibited a significantly increasing trend for Srinagar, Pahalgam, Kupwara,
Kukarnagh, and Gulmarg (α = 0.001), with Qazigund showing decreasing but insignificant
trend. Winter Tmin exhibits a significant increasing trend for Kupwara (α = 0.001), Gulmarg
(α = 0.01), and Pahalgam (α = 0.05) while Qazigund and Kukarnagh exhibit an increasing
trend with Srinagar showing a significantly decreasing trend as presented in Figure 6.

Table 4. Summarized results for the seasonal Tmin time series using ITA method statistic D, MK test
statistic Z and Sen’s slope estimator β.

S.No. Station Name Annual Spring Summer Autumn Winter

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

1 Srinagar 0.58 2.83 ** 0.02 0.80 2.50 * 0.02 0.20 1.43 0.01 0.96 3.55 *** 0.04 −1.47 −0.15 0.00
2 Qazigund 0.14 0.85 *** 0.00 0.21 0.43 0.00 0.11 0.94 0.01 −0.59 −0.10 0.00 −1.61 0.62 0.01
3 Pahalgam 2.72 3.66 ** 0.04 1.62 2.14 * 0.03 1.27 2.91 ** 0.05 2.01 3.45 *** 0.03 −1.23 2.18 * 0.04
4 Kupwara 0.62 1.27 0.04 1.10 1.62 0.07 0.31 0.97 0.02 0.53 1.06 0.02 −0.63 −0.48 0.06
5 Kukarnagh 0.77 2.27 0.02 1.41 2.18 * 0.03 0.21 0.66 0.01 0.60 1.29 0.01 −4.44 1.20 0.03
6 Gulmarg 0.40 0.97 0.01 7.00 1.32 0.03 −0.81 −0.90 −0.02 −2.14 1.06 0.02 −1.45 2.62 ** 0.05

*** if trend at α = 0.001 level of significance. ** if trend at α = 0.01 level of significance. * if trend at α = 0.05 level of
significance. If the cell is blank, the significance level is greater than 0.1.

Figure 6. Using the MK approach, seasonal trends in Tmin over Kashmir Valley.

Annual (annual) and seasonal Tmin trends based on Innovative Trend Analysis for
Kashmir valley are summed up in Table 4 and Figure 7. The trends for annual Tmin for all
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the stations showed that the statistics for ITA D were dominated by positive values evident
of increasing trend. The combination of increasing and decreasing trends for Tmin data
points falls above the 10% range for Srinagar and Pahalgam stations. However, Qazigund,
Kupwara, Kukarnagh, and Gulmarg’s Tmin data points fall on a +10% range from the
1:1 line. The trends for spring Tmin for all the stations showed that the statistics were
significantly positive dominated. Moreover, the combination of upward and downward
trends for Tmin data points falls on the +10% range for Qazigund and Gulmarg stations. In
contrast, Srinagar, Pahalgam, Kupwara, and Kukarnagh have Tmin data points that mostly
fall >10% range from the 1:1 line. The trends for summer Tmin for all the stations showed
that the statistics for ITA D were positively dominated, which exhibits the insignificant
increasing trend except for the Gulmarg station, which exhibits a negative trend. However,
Pahalgam station exhibits a significant increasing trend, as summarized in Table 4. The
combination of increasing and decreasing trends for Tmin data points falls on +10% range
for Srinagar, Qazigund, Kupwara, and Kukarnagh stations whereas, Gulmarg station is
at −10% with Pahalgam station as exception data points falls >10% range from 1:1 line.
The trends for autumn Tmin for Srinagar, Pahalgam, Kupwara, and Kukarnagh showed
positive values, with significantly increasing trends for Srinagar and Pahalgam. Further,
the combination of increasing and decreasing Tmin data points for Qazigund, Kupwara,
Kukarnagh, and Gulmarg stations falls within the 10% range.

Figure 7. ITA method results for different seasons Tmin at six stations.
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In comparison, Srinagar and Pahalgam station’s Tmin data points fall above the 10%
range from the 1:1 line. The trends for winter Tmin for all the stations showed negative
values for ITA of D-dominated statistics. Most of them were significantly decreasing trends,
which are summarized in Table 4. The combination of increasing and decreasing for Tmin
data points for Srinagar, Qazigund, and Kupwara stations falls in the +10% range, while
Pahalgam, Kukarnagh, and Gulmarg stations Tmin data points fall above the 10% range
from 1:1 line. The overall results suggest that Tmin is in comparison with the Tmax. It may be
noted that the spring and winter seasons are warming in this region than the autumn and
summer seasons. This anomaly contributes towards a reduction in the snow depth/cover
and shrinking of glaciers.

3.4. Annual and Seasonal Precipitation Variations over Time

Table 5 represents the annual (annual) and seasonal trends using Mann Kendall (MK)
test over Kashmir valley. Annual precipitation exhibited decreasing trend but was signifi-
cant for the Gulmarg station (α = 0.05), while the rest of the stations exhibited insignificant
decreasing trends. Spring precipitation indicated a significantly decreasing trend for Gul-
marg (α = 0.01), Qazigund, Pahalgam (α = 0.05), and Kupwara (α = 0.1), while Srinagar
and Kukarnagh stations exhibited decreasing insignificant trend. Summer precipitation for
Srinagar, Kupwara, and Gulmarg stations displayed a downward trend while Qazigund,
Pahalgam, and Kukarnagh stations exhibited an increasing significant trendMeanwhile,
autumn precipitation showed an increasing trend for all stations except Kupwara, which
exhibited an insignificant decreasing trend. Winter precipitation exhibited a significantly
decreasing trend for Gulmarg (α = 0.05) while Qazigund, Pahalgam, Kupwara, and Kukar-
nagh exhibited decreasing trends except for Srinagar station, which showed an increasing
but significant trend as presented in Figure 8.

Table 5. Summarized results for the seasonal precipitation time series using ITA method statistic D,
MK test statistic Z and Sen’s slope estimator β.

S.No. Station Name Annual Spring Summer Autumn Winter

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

ITA Zmk
Sen

Slope
(β)

1 Srinagar −0.78 −0.36 −1.08 −2.09 −1.27 −2.02 −0.48 −0.34 −0.22 1.88 0.15 0.15 −0.30 0.08 0.09
2 Qazigund −1.64 −1.18 −5.59 −2.72 −2.53 * −5.31 −0.46 0.66 0.60 −2.55 0.10 0.18 −1.14 −1.55 −2.96
3 Pahalgam −0.61 −0.42 −1.29 −2.20 −2.28 * −4.73 0.26 0.77 0.70 1.27 1.26 1.65 0.23 −0.26 −0.60
4 Kupwara −1.03 −1.57 −5.57 −2.28 −1.85 + −3.71 −1.45 −1.35 −1.28 0.61 −0.17 −0.19 1.03 −0.17 −0.32
5 Kukarnagh −0.58 −0.20 −0.68 −0.90 −1.50 −2.99 −0.68 0.70 0.77 0.69 0.27 0.31 −0.44 −0.61 −1.09
6 Gulmarg −2.42 −2.34 * −12.30 −3.36 −2.64 ** −2.37 −0.90 −0.69 −0.40 0.51 0.45 0.27 −3.10 −2.41 * −5.69

** if trend at α = 0.01 level of significance. * if trend at α = 0.05 level of significance. + if trend at α = 0.1 level of
significance. If the cell is blank, the significance level is greater than 0.1.

The annual (annual) and seasonal precipitation trends results based on Innovative
Trend Analysis (ITA) for Kashmir valley stations are presented in Figure 9 and Table 5.
The annual precipitation trends for all the stations showed negative values for ITA of D
dominated statistics, with Qazigund, Kupwara, and Gulmarg stations showing significantly
decreasing trends, as summarized in Table 5. The grouping of increasing/decreasing trends
for precipitation data points falls <10% range for Qazigund and Gulmarg stations. However,
Srinagar, Kupwara, and Kukarnagh showed that the precipitation data points fall in the
−10% range, with Pahalgam station showing a majority of data points below and some on
+10% range from the 1:1 line. The trends for spring precipitation for all the stations showed
that statistics for ITA of D values were negatively dominated, while Srinagar, Qazigund,
Pahalgam, Kupwara, and Gulmarg stations were showing significant decreasing trends
as summarized in Table 5 and presented in Figure 9, while Kukarnagh station showed an
increasing trend but not significant. The increasing and decreasing trends combination for
precipitation data points falls in <10% range for Srinagar, Qazigund, Pahalgam, Kupwara,
and Gulmarg stations, with Kukarnagh station majority of data points −10% and some
points fall in +10% range from the 1:1 line. The trends for summer precipitation for all
the stations showed that negative values dominated statistics (decreasing trend), but all
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insignificant, as summarized in Table 5. The increasing and decreasing trends combination
for precipitation data points falls in −10% range for Srinagar, Qazigund, Pahalgam, Kukar-
nagh, and Gulmarg stations with Kupwara station, showing that majority of precipitation
data points ranges below from the 1:1 line and some are present on no trend line. The
trends for autumn precipitation for all the stations showed that statistics of ITA of D were
positively dominated, with Qazigund station as an exception showing negative values
(decreasing) trend but insignificant. The increasing and decreasing trends combination
for data points precipitation falls between 10% range on the 1:1 line for all observatories.
The trends for the winter precipitation of all stations showed negative values of ITA for D
dominated statistics with Pahalgam and Kupwara as exceptions showing positive (increas-
ing trend), but all insignificant except for Gulmarg station, which is showing significant
trend as summarized in Table 5. The increasing and decreasing trends combination for data
points of precipitation falling between the 10% range for all stations except Gulmarg station,
showing a majority of precipitation data points below (<) and some points are at −10%
range from the 1:1 line. The results for overall precipitation suggest drought conditions for
Kashmir valley; however, decreases in spring and winter precipitation are in agreement
with the temperature suggesting seasonal inconsistency and strong inter-station, which
results in a visible shift in precipitation pattern.

Figure 8. Using the MK approach, seasonal trends in Precipitation over Kashmir Valley.
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Figure 9. ITA method results for different seasons precipitation at 6 stations.

3.5. Comparison of ITA, MK, and Sen Slope Estimation Approach Results

On 40 years data annual and seasonal time series, MK and Sen’s slope estimator tests
have been used for assessing the reliability of the ITA method. Except for the Gulmarg
station, winter season of Tmin and precipitation, nine (09) time series on a seasonal time-
scale prove significant trends at dissimilar observatories that are sign-steady under the
above-mentioned approaches. In order to match the ITA results for all significant and
insignificant trends, scatter plots were generated in between the Zmk of the MK with
statistic D of the ITA technique and Sen’s slope estimator with statistic D of the ITA method
as depicted in Figure 10a,b. The results demonstrate 80% widely held of the scatter points
fall in between the 1st and 3rd quadrants, indicating all these methods are in general
agreement. The other 20% of the points fall in between the 2nd and 3rd quadrants, with
same sign fluctuation; nevertheless, the trends are insignificant, and their S, i.e., the scale
of Sen’s slope is minimal. The Figure 10a,b also showed a high agreement between the

249



Atmosphere 2022, 13, 764

ITA statistic D and the MK statistic Zmk and Sen’s slope estimator. As a result of this
comparison, it is evident that ITA results are consistent across all trend detection approaches,
indicating that it is a reliable and successful tool. The reason for this is its ability to assess
meteorological and hydrological data patterns from graphical representations at low to
high values. When compared to the MK test, which has various limitations such as seasonal
cycle, normality of distribution, serially independent data, and time-series length, the ITA
technique has universal applicability [38,49,53].

Figure 10. Scatter-plot results of (a) Zmk, MK test compared to D of ITA approach, (b) β, Sen’s slope
estimator, compared to D of ITA approach.

4. Discussion

The observed annual and seasonal Tmin and Tmax increase for six observational stations
in the valley (Kashmir) has profound implications on the various land system and socio-
economic processes operating in the region. These findings have substantiated the results
of many previous studies on trend analysis for hydro-meteorological data from the Kashmir
region. According to Kumar and Jain [42], Tmax in the region (Kashmir) showed a significant
increase (+0.04 to +0.05 ◦C/year) and Tmin in the region (Jammu) (+0.030 to + 0.080 ◦C/year)
had been detected when analyzed over the period 1980–2012. According to Singh et al. [63],
Western Himalayas showed an increase in air temperatures, which are in line with the
observed temperature trend for the Northwest Himalayas and the present study. [30]
analyzed station-wise spatiotemporal variation of observed temperature in the Kashmir
valley and found that Tmax and Tmin in the Valley showed an increase by 0.0350 ◦C and
0.0220 ◦C, respectively.

Shafiq, et al. [29] concluded that minimum temperatures in various topographic zones
of the Kashmir valley increased at a relatively consistent rate of around 0.020 ◦C/year,
with the peak rate of increase in the mountains (0.020 ◦C/year). Further, Zaz et al. [32],
found that the annual mean temperature has increased by 0.8 degrees Celsius over 37 years
(from 1980 to 2016), with Tmax (0.97 ◦C) increasing faster than Tmin (0.76 ◦C). The study
also found that the Pahalgam (1.13 ◦C) and Gulmarg (1.04 ◦C) being at high altitudes have
significantly increasing trends in temperature consistent with the results of the present
study. This changing temperature pattern shall have serious environmental consequences,
affecting food security and ecological sustainability in the region and water availability and
other natural resources. Moreover, in all observational stations in the valley, the annual and
seasonal precipitation patterns were found to have downward trends, consistent with the
results of the previous studies. Zaz, et al. [32] studied the long and short-term precipitation
patterns using LR, MK, Student’s t-tests, and cumulative deviation; however, the results
from the study showed that spring precipitation is decreasing. Shafiq, et al. [29] examined
the annual and season-wise precipitation in Kashmir Valley from 1980 to 2016 and found
a −5.1 mm/year decline in annual precipitation. The long-term upward trend results for
precipitation at Pahalgam and Gulmarg stations for two seasons (spring, summer), which
are also compatible with the [32]. It had been observed that the northern stations of the
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Kashmir valley (Jhelum basin) recommend a moderately stronger monsoonal influence;
meanwhile, two stations within the Kashmir valley (Jhelum basin) revealed a considerable
increase in precipitation.

An obvious shift in precipitation regime can be seen from the north to the south of
the basin, consistent with earlier research findings in this region which can be linked to
the Western disturbances’ movements (WD). The seasonal precipitation in the region is
controlled by large-scale circulations from western disturbances (WDs), and it affects the
supply and inventory of water resources of the Kashmir valley (Jhelum basin) [64]. It is
hence concluded that, in winter, precipitation gets increased, but in spring, it decreases, and
this phenomenon linked to specific variations in the WD precipitation trends. This observed
winter precipitation increase is inconsistent with observations and future projections of
the incursions of western disturbances, combined with the drying of the spring season
in the region. This also designates a less erratic future WD regime [32]. However, the
beginning of snowmelt from the Jhelum basin is expected to change as the changes in
the western disturbances become more common in the future, as projected by the climate
models. Understanding the Kashmir valley’s climatic variability is crucial for improved
management and use of the valley’s available water resources where the population is
dependent on agriculture activities. As the Himalayan hydrology is controlled by snow and
glaciers, the changing climate of the region is bound to have drastic impacts on its water re-
sources. Climate change impacts are evident in the Kashmir Himalayas. Natural calamities
such as landslides and floods posing a significant threat to the people and infrastructure
of this region which are climate change consequences [65,66]. Due to increased climatic
variability associated with the ongoing changing climate, the region has recently witnessed
one of the worst flooding disasters of the century [32,67]. Moreover, changing precipitation
patterns have already impacted the recharge of groundwater, water supply in the streams
during lean periods, and agriculture. The increase in the trends of Tmax and Tmin in the
valley, as observed in the present study, has led to the early onset of spring and snowmelt,
thus affecting the region’s ecological setup. Moreover, as observed in the present study,
decreasing trends in precipitation affect the water supply and management scenarios.

Hence assessing the trends in hydro-meteorological parameters such as Tmax, Tmin
and Precipitation have helped to understand the variability associated with the changing
climate in the fragile Kashmir valley in North-Western Himalayas [68]. It is because of the
variability of trends at different stations, further extensive research on the climate of this
region at the micro-level are needed. In order to check how climate may get changed, trend
analysis is used to assess the hydro-metrological data, which may impact river discharge
in the Kashmir Himalayas. However, the trend analysis will help us to know how river
discharge will behave under projected climate scenarios for kashmir valley under different
models like BCC-CSM2-MR, CNRM-CM6-1 and IPSL-CM6A-LR.

5. Conclusions

The present study addressed the climatic variability assessment for the Jhelum basin
(Kashmir valley) using different statistical methods. The investigation of the annual and
seasonal variations of the temperature and precipitation using the MK, Sen’s slope estimator,
and ITA approaches revealed some interesting findings related to the changing climatic
scenario in the Kashmir valley. The rising temperature in two seasons (spring and winter)
was credited for this major warming trend. Tmax was observed to be significantly increasing
at spring and winter seasons as well as annually, in almost all the stations except the
Gulmarg, which exhibited an increasing but non-significant trend. The mean annual Tmin
followed the same significant trends as Tmax, barring Kukarnagh and Gulmarg stations
which exhibited non-significant increasing trends. Tmin in the spring season also shows
a significant positive trend for all stations except Qazigund and Gulmarg stations across
the 1980–2019 time period. This rise in temperature across the valley, coupled with a
considerable surge in spring and winter temperatures, reveals that less snowfall in the
winter season results in decreased snow cover/depth. However, even at a small increase
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in temperature, a good amount of snowmelt is happening on the glaciers, clearing the
way for early springs. Furthermore, annual precipitation showed decreasing trends for
all the stations across the Kashmir valley. A significant decreasing trend in precipitation
was detected for Qazigund, Pahalgam, Kupwara stations for the spring season, whereas
for Gulmarg station, spring and winter seasons exhibited significantly decreasing trends
since 1980–2019. This changing temperature and precipitation patterns in the region might
have catastrophic implications for agriculture, hydropower, and drinking water supplies,
affecting the region’s food security and ecological sustainability.

However, understanding the climatic variability has various intrinsic uncertainties,
which may arise from the secondary source data and area characteristics, particularly in
mountainous in the Himalayan mountainous regions like Kashmir valley. Unavailability
of the long-term time series data for air temperature and precipitation hinders the more
accurate assessment of the region’s climate variability, owing to only six meteorological
stations representing 15,500 km2 area. However, the major findings from this research
confirm well with the large-scale land system changes taking place in the form of increased
melting rates of snow and glacier resources in the valley.
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Abstract: Crop yield stability and soil mineral nitrogen (Nmin) have rarely been evaluated from
a long-term perspective in the extremely arid cropland regions of China. Therefore, a nationwide
experiment aimed to optimize fertilizer application and increase productivity and nitrogen use
efficiency in gray desert soils was initiated in 1990. Eight combinations of chemical fertilizers
(CK, N, NK, NP, and NPK), straw return (NPKS), and manure amendments (NPKM and NPKM+)
were tested for 24 years on spring wheat, winter wheat, and maize. The results displayed that the
yield of three crops from balanced fertilizer treatments (NPK, NPKS, NPKM, and NPKM+) did
not differ significantly after 24 years; however, reliable yield stability due to lower coefficient of
variation (CV) and higher nitrogen harvest index (NHI) were recorded for manure amendment
treatments. Compared to NPKM, NHI was lower for the NPKM+ treatment, but crop yield and
stability did not improve, suggesting that the appropriate choice for manure amendment is important
for guaranteeing food security in extremely arid regions. Balanced fertilizer treatments resulted in
lower Nmin residual in the 300 cm soil profile, compared to unbalanced fertilizer treatments. The
NPKS treatment gave the lowest value. In the 0–100 cm soil profile, Nmin was higher in NPKM
than in the NPK treatment, suggesting that straw or manure amendment can effectively maintain
Nmin in the topsoil undercurrent cropland management in arid areas. The NPKM treatment had the
highest crop nitrogen recovery rate and the lowest nitrogen losses, further illustrating that manure
amendment has higher N retention potential. Overall, although Nmin residues are relatively high in
these regions, balanced fertilizer treatments, especially NPKM and NPKS, are the optimum strategies
in extremely arid regions.

Keywords: extremely arid regions; long-term experiment; yield stability; nitrogen harvest index; soil
mineral nitrogen; 15N-labeled urea; gray desert soil

1. Introduction

Ensuring high crop yields while maintaining yield stability and reducing environmen-
tal risks have always been challenging issues in modern agriculture [1,2]. However, due
to the intensification of global climate change [3–5], extreme meteorological conditions
frequently occur, and under such conditions, the stability of food has increasingly become
a hot issue of concern. For example, severe drought can cause plant water deficit, thereby
affecting nitrogen (N) transport and metabolism, ultimately affecting crop yield, while
excess rainfall may limit soil N retention and lead to mineral nutrients loss [2,6,7]; in
this case, the crop yield is inevitably affected. At the same time, due to the continuous
improvement of cropland management technology and the improvement of crop varieties,
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whether the traditional fertilization method can meet the current technical needs and en-
sure the continued stability of crop yield is also worth further discussion [8]. Furthermore,
the developments in energy, transportation, and livestock and poultry farming have all
significantly increased environmental N content [9,10]; for example, Liu et al. (2014) found
that nitrogen deposition in the North China Plain has markedly increased over the past
20 years, with dry and wet N deposition reaching up to 80 kg N ha−1 yr−1 in Northwest
China [11], and even 30 kg ha−1 yr−1, respectively, in extremely arid oasis areas [12,13],
which inevitably affects the N input/output balance of the cropland ecosystem.

Excessive N use is well known to cause severe environmental problems, such as
groundwater pollution and eutrophication of streams, rivers (nitrate leaching), and ter-
restrial ecosystems (NH3 volatilization) [14] and global-warming-related (NO and N2O)
gas emissions [7,15,16]. Moreover, soil acidification [17–19] and depletion of soil struc-
ture [20,21] have also been reported after the improper application of inorganic fertilizers
in the absence of organic manure inputs. Therefore, it is very important to evaluate yield
stability, migration, and distribution of mineral nitrogen (Nmin) in different croplands
from a long-term perspective under typical environmental conditions.

Over the last few decades, arid and extremely arid regions have become increasingly
important for grain production in China [21,22], leading to a continuous overuse of chemi-
cal fertilization to achieve high crop yields, which in turn has resulted in detrimental effects
on field crop production, soil quality, and nitrogen cycle [23]. For instance, Lv et al. (2016)
reported that the use of chemical fertilizers (urea, phosphorus pentoxide, and potassium
superoxide) has increased six to eight times from 1980 to 2014, and the environmental nitro-
gen from atmospheric dry and wet deposition and irrigation water can yield 33 kg N ha−1

and 13 kg N ha−1, respectively, due to the rapid development of agriculture and extensive
use of irrigation water in extremely arid oasis cropland regions [23]. Concomitantly, drip
irrigation and mulching have become prevalent since 2005 due to reduced water evapora-
tion and improved N utilization efficiency, which has led to a significant improvement in
water use efficiency of cropland in arid regions. In this case, the subsequent effects on crop
yield, yield stability, N uptake, and migration and distribution of Nmin in the soil profile
are not clearly understood. To date, only a few continuous long-term studies have been
conducted on the oasis gray desert soil of Western China [24,25], and fewer studies have
focused on the impact of chemical fertilizer, straw, and manure application on grain yield,
yield stability, and Nmin distribution in the arid zone.

The objectives of this study were (1) to determine the impact of different fertilization
treatments on maize–winter wheat–spring wheat production, biomass, and nutrient recov-
ery efficiency based on long-term experiments in an oasis cropping system; (2) to study the
concentration and distribution of NO3-N and NH4-N in the 300 cm soil profile of different
treatments after 24 years of experimentation in the extremely arid oasis cropland areas;
(3) to trace the migration dynamics of 15N-labeled urea in the 100 cm soil profile in two
different crop seasons; and (4) to determine the urea-N recovery, soil residual, and other
losses of different treatments for spring wheat and maize cropping seasons. Additionally,
the long-term experiment reported herein began in 1990 and is one of the longest-running
annual cropping system experiments in the arid regions of China. This research is based on
supporting data gathered from 1990 to 2013, which represent the early and mid-term status
of croplands in the extremely arid region of Northwestern China. Therefore, the research
on soil mineral nitrogen’s effect on crop yield stability under fertilization management is
typical and representative. Due to the long sequence, multiple parameters, a huge amount
of data, and heavy workload of data collation, the experimental data collected from 2014 to
2021 are being analyzed, and follow-up research will progressively realize the complete
time-series data for the research. All in all, this study systematically explored the effects of
typical fertilization treatments on crop yield, crop yield stability, and nitrogen migration
and distribution based on long time scales in extremely arid areas, which will provide a
scientific basis for the future food security and efficient nitrogen use of cropland in arid or
extremely arid areas.
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2. Materials and Methods
2.1. Study Site

This study was conducted at Anningqu, a long-term experimental site located near
Urumqi, capital of Xinjiang, Northwest China (43◦56′ N, 87◦28′ E). The site is a typical
oasis farmland with a maize–winter wheat–spring wheat rotation system. The mean
annual precipitation is 310 mm, 70% of which falls in winter and summer. Evaporation
is approximately 2570 mm, and mean annual temperature is 7.7 ◦C (Figure 1). Sunlight
amounts to an average of 2594 h per year. The annual frost-free period is approximately
156 d long [7]. According to the Chinese Soil Taxonomy Classification, the soil is gray
desert soil, with topsoil layer (27 cm) clay, silt, and sand fractions of 30.3%, 52.5%, and
17.2%, respectively [24].

Atmosphere 2022, 13, x FOR PEER REVIEW 3 of 14 
 

 

extremely arid areas, which will provide a scientific basis for the future food security and 
efficient nitrogen use of cropland in arid or extremely arid areas. 

2. Materials and Methods 
2.1. Study Site 

This study was conducted at Anningqu, a long-term experimental site located near 
Urumqi, capital of Xinjiang, Northwest China (43°56′ N, 87°28′ E). The site is a typical 
oasis farmland with a maize–winter wheat–spring wheat rotation system. The mean 
annual precipitation is 310 mm, 70% of which falls in winter and summer. Evaporation is 
approximately 2570 mm, and mean annual temperature is 7.7 °C (Figure 1). Sunlight 
amounts to an average of 2594 h per year. The annual frost-free period is approximately 
156 d long [7]. According to the Chinese Soil Taxonomy Classification, the soil is gray 
desert soil, with topsoil layer (27 cm) clay, silt, and sand fractions of 30.3%, 52.5%, and 
17.2%, respectively [24]. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
0

50

100

150

200

250

300

Ev
ap

or
at

io
n 

an
d 

pr
ec

ip
ita

tio
n(

m
m

)

Month

 Evaporation
 Precipitation

-20

0

20

40

60

80

100

 Temperature

Te
m

pe
ra

tu
re

 (o C
)

 
Figure 1. Average evaporation, precipitation, and ambient temperature during a long-term ex-
periment from 1990 to 2014 in a gray desert soil. 

2.2. Long-Term Experiment 
The experimental field was a wasteland before the start of the long-term experiment 

in April 1990, and thus the soil had retained its original quality. The 0–20 cm topsoil layer 
had an organic matter content of 16.7 g kg−1, total N, P, and K contents of 1.00, 0.35, and 
18.18 g kg−1 and available P (Olsen-P) and K contents of 9 and 505 mg kg−1. Soil pH (1:1 
for the ratio of water and soil) was 8.1 (Table 1). 

Table 1. Initial soil physicochemical characteristics at the experimental site in 1990. 

Soil Layer Organic 
Matter Total N Total P Total K Available P Available K pH CaCO3 

(cm) (g kg−1) (g kg−1) (g kg−1) (g kg−1) (mg kg−1) (mg kg−1) (H2O) (g kg−1) 
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Figure 1. Average evaporation, precipitation, and ambient temperature during a long-term experi-
ment from 1990 to 2014 in a gray desert soil.

2.2. Long-Term Experiment

The experimental field was a wasteland before the start of the long-term experiment
in April 1990, and thus the soil had retained its original quality. The 0–20 cm topsoil layer
had an organic matter content of 16.7 g kg−1, total N, P, and K contents of 1.00, 0.35, and
18.18 g kg−1 and available P (Olsen-P) and K contents of 9 and 505 mg kg−1. Soil pH (1:1
for the ratio of water and soil) was 8.1 (Table 1).

Table 1. Initial soil physicochemical characteristics at the experimental site in 1990.

Soil Layer Organic
Matter Total N Total P Total K Available P Available K pH CaCO3

(cm) (g kg−1) (g kg−1) (g kg−1) (g kg−1) (mg kg−1) (mg kg−1) (H2O) (g kg−1)

0–2 17.4 1.03 0.36 18.10 11 495 7.87 65.5
2–16 16.7 1.00 0.35 18.18 9 505 8.03 64.2
16–31 17 1.03 0.35 17.85 7 383 8.13 99.4
31–43 12.3 0.77 0.30 18.35 1 335 7.92 93.0
43–68 9.33 0.55 0.28 18.43 2 243 8.07 77.6
68–90 6.9 0.35 0.16 17.93 1 73 8.22 27.6
90–110 6.46 0.36 0.25 17.19 1 73 8.39 62.2

The experiments included the following eight fertilization treatments:

1. N: 240 kg N ha−1 yr−1 as urea.
2. NP: 240 kg N ha−1 yr−1 as urea and 60.3 kg P ha−1 yr−1 as calcium superphosphate
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3. NK: 240 kg N ha−1 yr−1 as urea and 48.1 kg K ha−1 yr−1 as potassium sulfate.
4. NPK: urea, calcium superphosphate, and potassium sulfate at 240 kg N, 60.3 kg P, and

48.1 kg K ha−1 yr−1.
5. NPKM: 168 kg N ha−1 yr−1 as urea, 20.1 kg P ha−1 yr−1 as calcium superphosphate, and

16.3 kg K ha−1 yr−1 as potassium sulfate as above and an additional application of farm-
yard manure (30 t ha−1) containing 2.9 t C ha−1 yr−1 and 72 kg organic N ha−1 yr−1.

6. NPKM+: 216 kg N ha−1 yr−1 as urea, 30.5 kg P ha−1 yr−1 as calcium superphosphate,
and 24.7 kg K ha−1 yr−1 as potassium sulfate and an additional application of farmyard
manure (60 t ha−1) that contained 5.9 t C ha−1 yr−1 and 144 kg organic N ha−1 yr−1.

7. NPKS: 197 kg N ha−1 yr−1 as urea, 51.1 kg P ha−1 yr−1 as calcium superphos-
phate, and 42.3 kg K ha−1 yr−1 as potassium sulfate as above and the straw return
(4.5–7 t ha−1) containing on average 1.5 t C ha−1 yr−1 and 43 kg organic N ha−1 yr−1).

8. CK: without any fertilization.

Prior to 1995, the application rates of N, P, and K were 100.9, 35.8, and 18.8 kg ha−1,
respectively, and 245, 60.3, and 48.1 kg ha−1, respectively, after 1995 to date (Table 2).
Nitrogen fertilizer was split into two applications: 60% as basal fertilizer and 40% as
topdressing in the N, NK, NP, NPK, NPKM, and NPKM+ treatment plots. Phosphorus,
potassium, and organic fertilizers were applied as basal fertilizers. Organic fertilizer
was obtained from sheep manure (see Table 2 for details). The experiment was laid in a
randomized blocks design. Each 466.5 m2 plot was isolated by cement banks buried 70 cm
deep and raised 10 cm above the soil surface to prevent leaching.

Table 2. Quantity of fertilizers from the different fertilizer treatments in the long-term experiment in
a gray desert soil.

N Fertilizer 1 P Fertilizer 2 K Fertilizer

Treatment Basal Topdressing Total Total Total

kg N ha−1 kg N ha−1 Kg ha−1 kg P2O5
ha−1 kg K2O ha−1

CK 0 0 0 0 0
N 144 96 240 0 0
NK 144 96 240 58.5
NP 144 96 240 138
NPK 144 96 240 138 58.5
NPKS 163 77 240 138 58.5
NPKM 3 173 67 240 138 58.5
NPKM+ 274 86 360 184 78

1 N fertilizer was obtained from chemical sources, straw, and manure for NPKS, NPKM and NPKM+ treatments.
2 P2O5 represents phosphorus; K2O represents potassium. 3 Manure was fresh sheep.

Spring wheat was sown in late April and harvested in August. Winter wheat was
sown in October and harvested in early June the following year. Maize was sown in late
April and harvested in August. Drip irrigation was applied both in the wheat and maize
seasons. Plastic mulching film was used only in the maize season. For the specific content,
see Lv et al. (2016) [12]. The field was irrigated five to six times during the wheat season
and four to five times during the maize season, depending on precipitation. The volume of
water used for irrigation was 2850 m3 ha−1 yr−1. Herbicides and pesticides were used to
control weeds and insect pests, respectively. Wheat and maize were harvested up to the
level of the soil surface; thus, the stubble left in the field was negligible, but roots were left
in the soil. All straw was removed from the field. Grain and straw were weighed separately
after air-drying.

2.3. 15N-Labeled Urea Experiment

The 15N experiment was conducted in mid-April 2011 and 2013 to trace the fate of
urea-N in winter wheat and summer maize. 15N-labeled treatments were as follows: N, NP,
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NK, NPK, NPKM, NPKS, and NPKM+ in the wheat cropping season, and NPK, NPKM,
NPKS, and NPKM+ in the maize cropping season. Four microplots (0.7 × 0.6 m) were
established on the northeastern side of each plot. A syringe was used to inject the urea
solution into the microplots to ensure that the crops would receive even nutrition. Metal
squares (0.35 m high) were driven 0.30 m deep into the soil to prevent surface runoff and
lateral contamination. 15N-labeled urea (abundance: 5.2%, produced by the Institute of
Chemical Industry in Shanghai, China) was applied to the soil at the same N rate. All P
and K applications and field management practices in the microplots were the same as those
in the corresponding large plots for winter wheat and summer maize. Soil samples from
the microplots were air-dried and ground to pass a 150 mm (100-mesh) screen for total N
and 15N isotope analysis. Grain, straw, and soil samples were analyzed for total N and 15N
abundance using the micro-Kjeldahl procedure and isotope ratio mass spectrometry (Nimmo
et al. 2013). Percentage of fertilizer N recovery in the grain and straw from the crops and the
soil from all the microplots at harvest was determined using Equations (1)–(3), where all 15N
was expressed as the atom% excess corrected for background abundance (0.37%).

N (kg N ha−1) derived from fertilizer treatment (Ndff) in plant = N uptake by plant × 15N atom% excess in
plant/15N atom% excess in fertilizer

(1)

Ndff in the soil (kg N ha−1) = Total N in soil × 15N atom% excess in soil/15N atom% excess in fertilizer (2)

Fertilizer N recovery (%) = Total labeled N in the aboveground biomass/labeled N applied × 100 (3)

2.4. Other Ancillary Measurements

Soil samples were collected with a 5 cm inner diameter auger tube from 0 to 100 cm depth
from all plots and microplots and separated into 20 cm depth increments at the beginning of
the experiment and after harvest of winter wheat and summer maize. Soil samples from 0
to 300 cm were collected after maize harvest in 2013 to determine the distribution of nitrate
nitrogen (NO3-N) and ammoniacal nitrogen (NH4

+-N) as Nmin in the soil profile after 24 years
of experimentation. Soil samples were stored in an ice box immediately after sampling and
transported to the laboratory for analysis. Within 12 h, all the fresh soil samples were extracted
with 0.01 M CaCl2 solution (soil-to-solution ratio of 1:10). Soil extracts were analyzed for
Nmin using continuous flow analysis (Bran and Luebbe TRAACS 2000, Hamburg, Germany).
Plants were separated into grain and straw after harvest, and biomass, grain, and straw
production were calculated. Grain and straw samples were subsequently oven-dried at 60 ◦C
in a forced-air oven and ground to pass through a 150 mm screen.

2.5. Statistical Analysis

Coefficient of variation (CV) was used to assess the range of variation and stability.
The CV of wheat and maize was calculated as follows:

CV = δsd/µave × 100% (4)

where δsd represents the standard deviation of yield, and µave represents the average value
of yield (kg ha−1).

The sustainable yield index (Isy) is typically used to assess production sustainability
(Li et al., 2011).

Isy = (Y − SD)/Ymax (5)

where Y represents mean yield (kg ha−1), SD represents the standard deviation of the
yield (kg ha−1), and Ymax represents maximum yield (kg ha−1).
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The N harvest index (NHI) is frequently used to assess N transport from the shoots and
leaves to the grain (Li et al., 2011). NHI values for wheat and maize were calculated as follows:

NHI =
Ngrain

Naboveground−biomass
(6)

where Ngrain and Naboveground-biomass are the N uptake in the grain and crop biomass in each
treatment (CK, NPK, NPKS, NPKM, and NPKM+).

All statistical analyses were performed using SPSS 16. Prior to statistical analysis,
the data (three replications) were examined for homogeneity of variance when required;
however, untransformed means and standard errors are presented in figures and tables.
Comparisons of the effects of the treatments on yield, yield stability, and Nmin were
analyzed using one-way Analysis of Variance (ANOVA). Tukey’s honestly significant
difference (HSD) test for multiple comparisons among means was employed to test for
differences among the treatment means at p < 0.05.

3. Results
3.1. Crop Yields, CV, ISY, and NHI of Wheat and Maize

Statistical analyses of grain yield of spring wheat (cropped for four years), winter
wheat (cropped for eight years), and maize (cropped for nine years) indicated that fertilizer
treatments significantly affected grain yield (Table 3). During the 23-year planting process
of the three crops, both crop yield and aboveground biomass showed a significant upward
trend (except for individual years) due to the continuous improvement of cropland man-
agement level (Figure 2). For spring wheat and winter wheat, the combined application of
N and P fertilizers (NP, NPK) led to a significant increase (p < 0.05) in biomass and yield
compared to the treatments without N and P (control, N and NK). A comparison of the
NPK and NPKS treatments for all three crops indicated that straw return did not have any
significant effect on yield in the long-term experiment (p > 0.05). The NPKM and NPKM+
treatments did not show significant differences in yield during the study period (Table 3).
Furthermore, a comparison of the CV of the treatments showed that NPKM and NPKM+
did not differ significantly in the wheat season but were significantly lower for the NPKM
treatment in the maize season (p < 0.05), illustrating overuse of manure amendment is not
conducive to the stability of crop yield in arid regions due to excess nutrients. Compared
to the NPK treatments, the NPKM treatment showed significantly lower CV values in the
winter wheat season. The NPKS treatment showed lower CV values in the maize season,
suggesting that under the condition of equal nitrogen application, appropriate manure
amendment and straw returning can better ensure the stability of crop yield. The results for
sustainable yield index Isy were similar; the NPKM and NPKS treatments resulted in lower
Isy values than those of other treatments in the wheat season, but not in the maize season,
indicating that the yield stability of the different crops under study responded differently to
different treatments in extremely arid cropland systems. A comparison of NHI for balanced
fertilizer treatments showed a significantly higher NHI value for the NPKM treatment than
those of other treatments in the wheat and maize seasons. The NHI of the NPK or NPKS
treatment did not significantly differ in the wheat season, but it did in the maize season
(p > 0.05), thus confirming that the addition of organic fertilizer is more conducive to the
accumulation of N in the grain under the extreme-drought cropland management model.
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Table 3. Mean yield, coefficient of variation (CV), sustainable yield index (Isy), and nitrogen harvest
index (NHI) of spring wheat, winter wheat, and maize and the ANOVA results showing ‘Groups’ of
treatments from 24 years’ data.

Spring Wheat 1 Winter Wheat Maize

Yield
(t ha−1) CV (%) ISY (%) NHI (%) Yield

(t ha−1) CV (%) ISY (%) NHI (%) Yield
(t ha−1) CV (%) ISY (%) NHI (%)

CK 1.1 (0.6) c 2 51.8 a 28.8 e 76.3 a 1.2 (0.5) c 43.2 a 31.5 f 81.4 b 4.5 (1.5) c 23.8 c 43.4 d 61.8 bc

N 2.1 (0.4) b 20.9 e 60.2 a 76.9 a 2.3 (0.6) b 25.8 cd 49.0 c 81.0 b 6.5 (1.3) b 35.5 b 58.9 c 60.9 c

NK 2.0 (0.4) b 17.6 e 67.8 a 72.8 b 2.4 (0.7) b 27.1 c 47.5 cd 82.4 a 6.3 (1.4) b 24.0 c 61.2 bc 66.8 a

NP 3.8 (1.2) a 32.6 d 45.5 b 70.0 b 5.2 (1.0) a 23.8 d 51.5 c 79.9 bc 7.6 (1.7) ab 20.4 d 64.9 b 63.3 b

NPK 3.6 (1.1) a 33.8 d 44.5 b 70.3 b 5.3 (1.3) a 24.0 d 51.1 c 80.6 b 7.5 (2.0) ab 25.8 c 60.3 c 58.7 d

NPKS 3.7 (1.6) a 42.9 b 35.2 d 69.2 bc 4.7 (1.7) a 35.5 b 39.6 e 80.8 b 8.0 (1.4) a 19.2 d 69.1 a 61.7 bc

NPKM 4.2 (1.6) a 37.2 c 41.3 c 78.8 a 5.7 (1.2) a 20.4 e 56.8 b 82.7 a 8.2 (2.0) a 27.1 c 63.6 b 65.8 a

NPKM+ 3.9 (1.4) a 35.0 cd 43.4 b 68.5 c 6.2 (1.2) a 19.2 e 61.5 a 79.5 c 8.2 (1.7) a 43.2 a 68.0 a 59.0 d

1 Different letters (a, b, c, and so on) in yield, CV, ISY, and NHI showed significantly different from LSD at the
0.05 level, the same as below. 2 Data within brackets represent the standard deviation of mean yield.
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Figure 2. Effect of fertilizer treatments on crop yield and aboveground biomass under long-term
fertilization in 1990–2013.

3.2. Residual Mineral N in the Soil Profile under Different Fertilization Treatments

Fertilization treatments resulted in different distribution patterns of NH4
+-N in the

300 cm soil profile after 24 years of experimentation. The CK treatment had the lowest
NH4

+-N concentration, with values in the range of 0.9–3.4 mg N kg−1; meanwhile, other
treatments showed relatively high NH4

+-N contents, especially for N and NK treatments,
with values in the range of 6.8–12.8 and 4.1–15.6 mg N kg−1, respectively, in the 300 cm
soil profile, while the NH4

+-N concentration of other treatments was basically within the
range observed for CK, N, and NK treatments. The distribution of NH4

+-N across all
treatments did not show any peaks in the soil profile. The distribution of NO3

−-N in the
soil differed from the NH4

+-N concentration profile. The NPKM+ treatment resulted in
the highest NO3

−-N concentration, with a value of 118.9 mg N kg−1 in the 20 cm soil
profile (Figure 3 shows the distribution after maize harvest), followed by a significant
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downward trend down to 150 cm into the soil profile. This was followed by the NPKM,
NPK, and NPKS treatments, with the peak NO3

−-N concentration in the 20–40 cm soil
layer. The distribution pattern in the unbalanced treatments differed and peak values of
NO3

−-N concentration are seen between 200–250 cm, suggesting the nutrients that cannot
be absorbed by the crop are more likely to migrate deep into the soil.
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−-N and NH4

+-N after the maize harvest in 2014 in the 24 years of
experimentation in a gray desert soil cropland. Bars indicate error of the mean, n = 3.

Comparing the residual Nmin in different soil layers, we found that the concentration
of Nmin in the 300 cm soil profile for the CK treatment was minimum (Figure 4). In
contrast, the highest levels of Nmin (mainly in the form of NO3

−-N) were found in the
N treatments, concentrated mainly in the 100–300 cm soil profile (Figure 4), followed by
the NPKM+ treatment, with 64.5% NO3

−-N accumulated in the 0–100 cm soil profile. NK
and NP treatments also resulted in high NO3

−-N, with 56.9% and 47.7% accumulated
in the 200–300 cm soil profile, respectively. The NPK and NPKM treatments contributed
to relatively low NO3

−-N values of 585 and 617 kg ha−1, respectively, in the 300 cm soil
profile, concentrating mainly in the 0–100 cm layer. NPKS showed the lowest NO3

−-N
(234 kg ha−1) in the 0–300 cm soil profile among all treatments. Overall, the stock of mineral
N decreased in the order N > NPKM+ > NK > NP > NPK, NPKM > NPKS, which was
expected in the unbalanced (N, NK, NP) or excessive fertilizer treatments due to P and K
limitation or excess fertilizer input.
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Figure 4. Accumulation of NO3
−-N and NH4

+-N in the 300 cm soil profile under different fertilization
treatments in 2013 (Different letters showed significantly different from LSD at the 0.05).

3.3. N Recovery, Residual N, and Other Losses in Winter Wheat and Summer Maize Seasons

The experiment with 15N-labeled urea to trace the fate of N in terms of crop uptake,
soil residual, and other losses in 2011 and 2013 showed significant differences among the
different long-term treatments (Table 4, Figure 5) (p < 0.05). In the case of winter wheat,
15N-labeled urea was applied only in the topdressing period, having missed the early stage
of wheat growth. The results showed that 15N mainly accumulated in the topsoil (0–20 cm),
while much less 15N-labeled urea reached the deeper soil profiles. However, in the maize
season, although 15N-labeled urea was mainly concentrated in the topsoil, a large amount
of 15N-labeled urea still migrated down to a depth of 100 cm, indicating that a significant
amount of N is lost by leaching in gray desert soils undercurrent fertilization and irrigation
schemes. Furthermore, the NPK and NPKM treatments showed the highest 15N crop
uptake rates, with values of 46.4% and 49.4%, respectively, in the wheat season and 28.2%
and 32.2%, respectively, in the maize season, followed by the NPKS treatment, in which
case the uptake rate was 41.6% and 25.3% in the wheat and maize season, respectively.
At the same time, NPKM showed the lowest 15N-labeled urea loss in the wheat season
and a relatively low value in the maize season, illustrating that the combination treatment
consisting of chemical fertilizer and manure is a relatively good choice for improving NUE
while reducing environmental loss of nitrogen in extremely arid croplands.
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Table 4. The fate of fertilizer N in winter wheat in different long-term treatments using 15N tracer
method in 2011–2013.

Treatment
15N

Applied
Crop Uptake Soil Residual Unaccounted for

kg ha−1 kg ha−1 % kg ha−1 % kg ha−1 %

Winter
wheat

N 96 1 8.7 ± 1.1 2 9.0 f 60.2 ± 5 62.7 a 29.2 ± 3 30.4 a

NK 96 12.8 ± 2.0 13.3 e 53.6 ± 1.4 55.8 b 31.6 ± 1.7 32.9 a

NP 96 38.9 ± 4.8 40.5 c 33.4 ± 2.2 34.8 e 25.7 ± 3.5 26.8 bc

NPK 96 44.5 ± 3.3 46.4 ab 26.1 ± 3.4 27.2 f 27.4 ± 3.3 28.5 b

NPKS 86.4 35.9 ± 1.7 41.6 c 26.8 ± 0.8 31.0 ef 25.3 ± 1.3 29.3 ab

NPKM 67 33.1 ± 1.6 49.4 a 31.3 ± 4.1 46.8 c 3.3 ± 2.6 5.0 d

NPKM+ 86 26.2 ± 2.4 30.0 d 36.6 ± 1.9 41.9 cd 24.5 ± 2.2 28.1 b

Maize
N 240 / / / / / /
NK 240 / / / / / /
NP 240 / / / / / /
NPK 240 67.8 ± 2.1 28.2 b 99.9 ± 3.2 41.6 ab 72.3 ± 2.7 30.1 c

NPKS 216 54.7 ± 2.5 25.3 c 85.8 ± 2.4 39.7 b 75.6 ± 2.9 35 b

NPKM 168 34.3 ± 2.2 32.2 a 73.1 ± 2.3 43.7 a 60.1 ± 3.0 35.8 b

NPKM+ 216 22.6 ± 1.7 10.3 d 58.4 ± 2.2 26.7 c 137 ± 4.6 62.9 a

1 The amount of fertilizer N was in topdressing period in wheat season. 2 Data are means followed by standard
deviation (n = 4).

4. Discussion
4.1. Fertilization and Crop Yield

Crop yield potential is normally defined as the yield of a crop variety grown under
optimal management conditions, where water and nutrient supply are optimum, and there
is effective control of pests and diseases [26]. Further, yield potential is also affected by
the intensity of incident solar radiation and ambient temperature [27,28]. In our long-term
study, water was supplied by irrigation because of extreme drought and high evaporation
rates; therefore, moisture was not a limiting factor for crop production. However, the
various nutrient/fertilizer treatments resulted in different crop yields. Thus, NPK, NPKM,
NPKM+, and NPKS provided long-lasting high crop productivity in the 24 years of ex-
perimentation in the selected gray desert soil area. Further, except for the first year, the
CK treatment consistently rendered the lowest productivity. Balanced fertilizer treatments
showed higher production potential than the unbalanced fertilizer application without NP,
indicating that oasis gray desert soil was rich in K but deficient in N and P.

Crop yield after balanced fertilizer treatment did not show significant differences
(p > 0.05), although the production was slightly higher in the NPKM treatment, as seen
from the 24-year average. Our results differ from those of research conducted at the Huang-
Huai-Hai Plain of China, where Cai et al. (2006) found that the NPK treatment resulted
in higher production, compared to all other treatments [29]. This can be explained by
the higher proportion of organic fertilizer input and microbial activity due to adequate
irrigation, a significant temperature difference between day and night, and alternating
freezing and thawing overall, leading to the rapid degradation of soil organic matter [23].
In addition, manure amendment treatments displayed higher yield stability (CV) and NHI
than any other treatment in both wheat and maize seasons, which is consistent with the
results of other long-term experiments in nonarid areas [1,20,28,30,31]. In addition, the
NPKS treatment showed a significantly higher CV than the NPKM and NPK treatments,
both in the spring and winter wheat seasons, but not in the summer maize season, as seen
from the 24-year data. These findings indicated that straw return is more beneficial for
yield stability in the summer maize season than in the winter or spring wheat seasons in
extremely arid cropland regions, which might be attributed to the difficulty of decomposing
straw under extreme drought and nonirrigated conditions due to its high cellulose content,
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thus affecting the wheat germination rate [30]. However, it is not clear whether straw
return application can ensure crop yield stability.

4.2. Nmin Distribution in the Soil Profile over a 24-Year Nutrient Management Period

Nitrate leaching showed that NPKM+ might lead to a large residual N in the soil
layers. This is attributed to the excessive input of manure N, which led to more mineralized
N entering the deeper soil profile. However, the results showed that the Nmin after manure
amendment treatments (NPKM+ and NPKM) accumulated mainly in the 100 cm soil profile
and a low proportion leached deeper than the 100 cm soil profile, while treatments involving
the application of chemical fertilizer (N, NK, NP, and NPK), resulted in a large amount of
mineral N leaching 100 cm below the soil, reaching even down to a depth of 300 cm due to
weak uptake by crops and high-volume irrigation in an extremely arid region. These results
further demonstrate that manure amendment is more useful in preventing the downward
migration of Nmin under extremely dry environmental conditions. The same phenomenon
was observed in our 2-year study using 15N-labeled urea. In addition, the observations
of some other studies were similar to our results [27,28,32]. The NPKS treatment showed
the lowest N residual and N loss, compared with the other treatments; this finding may
be explained by the following two reasons: first, compared with the NPK treatment, the
NPKS treatment had less chemical fertilizer input due to the inclusion of N in the straw;
second, the high carbon/nitrogen (C/N) ratio of straw holds mineral N more easily in the
soil by increasing the microbial abundance and activity [31,33,34]. Comparedwith other
nonaridcroplands [13,26,35,36], extremely arid croplands have a higher Nmin residual in
the soil profile due to the high volume of irrigation water, which increases N deposition,
and to overapplication of N fertilizers. Lv et al. reported that dry and wet N deposition in
the arid oasis area of western China can reach up to 33 kg ha−1, while NO3-N goingintothe
groundwater can be 8–17 kg N ha−1 yr−1 due to heavy irrigation [12]. The resulting input
of environmental N in extremely arid areas is not lower than in other regions, such as North
China [14]. Overall, although balanced fertilizers combined with manure and straw return
can maintain a suitable concentration of mineral N in the 0–100 cm soil profile, excessive
nitrogen input still exists in extremely arid region cropland systems due to neglect of the
environmental nitrogen input.

4.3. Fertilizer N Recovery and Loss

The combined fertilizer treatments tested herein resulted in different fertilizer N
recovery and loss rates. In gray desert croplands, unbalanced fertilization can result in high
residual N in the soil due to insufficient absorption, as seen in our study using labeled 15N.
The treatment with NPK showed a relatively lower 15N residual in the 100 cm soil profile
than either the NP or the NK treatment. This finding clearly indicates that N absorption is
higher when the supply of nutrients is balanced. Among the balanced fertilizer treatments,
NPKM showed the highest proportion of residual 15N in both wheat and maize seasons,
concomitant with other losses being significantly lower, thus illustrating that suitable
manure amendment does help to retain mineral N in the soil and reduces other losses,
due to N uptake and fixation by the abundant soil microorganisms [15,16,32,37]. Further,
the NPK and NPKS treatments did not show significant differences in 15N soil residues or
environmental losses, although there were slight variations in the different crop seasons,
suggesting that straw return to the field did not significantly improve NUE, which might
be attributed to the low efficiency of straw decomposition on account of the extremely arid
environmental conditions and high C/N ratio, which in turn may account for the different
results reported for nonarid areas [27,30,35,38]. In addition, the NPKM treatment resulted
In the highest 15N-urea recovery in both wheat and maize seasons, with NUE of 49.4% and
32.2%, respectively, indicating that manure amendment may promote N absorption from
the chemical fertilizer. Our results further demonstrate that the combined application of
organic and inorganic fertilizers is an adequate choice to improve NUE in extremely arid
cropland areas.
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5. Conclusions

High organic fertilizer input (NPKM+) was not conducive to crop yield stability or nitro-
gen harvest index from the perspective of long-term application in extremely arid cropland
regions. Crop yield under the NPKM treatment did not significantly differ from that of
the NPK or NPKS treatments, but the coefficient of variation and NHI were lower under
conditions of equal nitrogen input. Compared to the NPK treatment, the NPKM and NPKS
treatments seemed to be more conducive to the accumulation of soil mineral nitrogen in the
0–100 cm soil profile and reduce nitrogen losses due to leaching under heavy irrigation in
extremely arid regions. The highest recovery rate and the lowest unaccounted losses were
observed in the NPKM treatment, indicating that the combined application of inorganic and
organic fertilizers or straw return, such as treatments NPKM and NPKS, was commendable to
ensure the yield security and environmental safety in extremely arid regions.
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