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With the rapid advancement of technology, traditional farming is gradually transition-
ing into smart farming. Smart farming is an agricultural production system that harnesses
modern technologies such as artificial intelligence (AI), big data, and automation technol-
ogy, which assists farmers in effectively managing and optimizing the production process
through data and image analysis. The ultimate goal of smart farming is to achieve precision
agriculture and enhance efficiency and quality in agricultural production.

This Special Issue focuses on the application of visual technology and artificial intel-
ligence in smart farming. Researchers from Asia and Europe have contributed a total of
fourteen papers, including thirteen articles and one review, to this issue. The key infor-
mation for each paper is shown in Table 1. These papers encompass a broad spectrum
of technologies, such as image recognition algorithms, machine learning techniques, re-
mote sensing technology, and 3D point cloud technology. The objective is to employ these
technologies for monitoring the phenotypes of plants and animals, as well as their growth
environments. By offering theoretical and technical support, personalized agricultural
management solutions are made accessible to farmers.

Machine learning is a widely used modeling technique that leverages large quantities
of data to acquire knowledge and make predictions. It can be applied to forecast trends
in the growth environment of animals and plants. For example, Ren et al. [1] developed
a prediction model for relative soil moisture (RHs 10 cm) in the 0–10 cm soil layer using
the extreme gradient boosting (XGBoost) algorithm based on atmospheric and soil factors,
which is capable of reasonably predicting the development process of drought events.
Analyzing and predicting the growth environment of crops using data analysis methods
can provide preventive measures for potential hazards. This method is equally effective for
poultry farming.

Deep learning is a specialized machine learning field based on artificial neural net-
works. It involves learning and training through multi-layered neural networks to extract
complex features and patterns from data, enabling more precise predictions. It is particu-
larly suitable for handling complex, large-scale data and high-dimensional features and
has wide applications in the field of computer vision. Applying deep learning models to
analyze RGB images, remote sensing images, and 3D point cloud data in agriculture can
enable more accurate monitoring of phenotypes of animals and plants, facilitating precision
farming management. Jiao et al. [2] developed predictive models for the initial flowering
period of Platycladus orientalis (Chinese thuja) using recurrent neural networks (RNN),
long short-term memory networks (LSTM), and gated recurrent units (GRU). Shapely
Additive Explanation (SHAP) was used to analyze the contribution rates of meteorological
factors. The accuracy of all three models was significantly higher than that of a regression
model based on the accumulated temperature. Among them, the GRU model performed
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the best, with an average accuracy exceeding 98%. Guo et al. [3] proposed an improved
YOLOv5 object detection model, integrating the coordinate attention module and the
deformable convolution module for accurately detecting mature Zanthoxylum on a mo-
bile picking platform, addressing the issues of irregular shape and occlusion caused by
branches and leaves. Li et al. [4] proposed a lightweight wheat growth stage detection
model and a dynamic migration algorithm, which utilizes edge computing to migrate the
detection model to the wireless network edge server for processing, improving efficiency
significantly compared to the local implementation. By accurately monitoring the growth
trends of animals and plants through deep learning and computer vision technologies,
they can effectively improve production efficiency. In addition, this technology can also
be applied to classification tasks to achieve personalized management of the same type
of subjects. Zhang et al. [5] proposed a method for identifying individual dairy cattle in
large-scale dairy farms. They used the DeepOtsu model to binarize the body pattern image
for primary classification and the EfficientNet-B1 model for secondary classification, and
the overall identification accuracy reached 98.5%. Cui et al. [6] proposed an improved
CNN-LSTM model for classifying high-yield and low-yield cow udders that have under-
gone fine-grained segmentation using the SOLOv2 method, which could allocate them to
different production groups.

Table 1. The key information for each paper.

Authors Objects Models Contributions

Ren et al. [1] Soil Moisture Extreme Gradient Boosting Establish prediction models of soil
relative humidity

Jiao et al. [2] Platycladus Orientalis Gated Recurrent Unit Predict the initial flowering period
Guo et al. [3] Zanthoxylum YOLOv5 Identify mature Zanthoxylum fruits

Li et al. [4] Wheat A Lightweight CNN Identify wheat growth stages

Zhang et al. [5] Cow DeepOtsu
EfficientNet Identify individual cows

Cui et al. [6] Cow SOLOv2
CNN-LSTM Divide cow production groups

Ding et al. [7] Apple RFCA ResNet Identify apple leaf diseases

Hao et al. [8] Hens Faster R-CNN Monitor the feeding behavior
of hens

Lee et al. [9] Honey Bee BFMatcher Monitor bee mites and diseases
Yu et al. [10] Grain FcsNet Recognize grain pest species
He et al. [11] Rice Seed Multimodal Fusion Classify rice varieties

Sun et al. [12] Soybean RandLA-Net
BAAF-Net

Construct an annotated
three-dimensional model dataset

Xu et al. [13] Maize Multi-view Registration Algorithm
Iterative Nearest Point Algorithm

Realize early variety selection at the
seedling stage

Karunathilake et al. [14] Multi Objects Multi Models A review of the latest advances in
precision agriculture

Furthermore, visual technology can detect diseases based on the phenotypic informa-
tion of animals and plants, providing early warnings for farmers to reduce economic losses.
Therefore, the accuracy of model recognition is particularly important for the practical
application. Several authors in this issue have researched model improvement. Ding
et al. [7] proposed a novel model called RFCA ResNet, which incorporates multi-scale
feature extraction and a dual attention mechanism for classifying and recognizing apple
leaf diseases. Additionally, the adverse effects of imbalanced datasets on classification
accuracy were effectively minimized using the class balance technique in conjunction with
focal loss. Hao et al. [8] proposed an improved Faster R-CNN network characterized
by the fusion of a 101 layers-deep residual network (ResNet101) and Path Aggregation
Network (PAN) for monitoring the feeding behavior of hens, and the ability of the model
to extract features is greatly enhanced according to the visualization results of the feature
map output by the convolutional layer at each stage of the network. Lee et al. [9] proposed
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an image-processing method based on a keypoint detection algorithm and image-matching
algorithms for detecting small-sized honey mites attached to bees, which can result in
economic losses. Additionally, they employed Contrast Limited Adaptive Histogram
Equalization (CLAHE) based on the RGB color model to enhance image quality. Their
method demonstrated effective performance when applied to the measured 300 mm data.
Yu et al. [10] proposed a stored grain pest identification method based on a triple-attention
module (FCS), namely, frequency domain attention (FAM), channel attention (CAM), and
spatial attention (SAM) to solve pest-detection and segmentation tasks.

However, the improvement in the recognition accuracy of models relying solely on
single-image information is limited, making it difficult to capture image features and
abstract concepts in complex tasks, which leads to less accurate or complete processing
results. Some models require a large amount of annotated data for training, and the lack of
sufficient data can affect the effectiveness and generalization ability. When image processing
techniques are combined with other technologies, including multidimensional images, data
fusion, etc., it enables more precise monitoring of subjects in farming. He et al. [11]
proposed a novel decision-making method based on a multimodal fusion detection model,
and multiple models were used to predict the rice seed varieties according to 2D images and
3D point cloud datasets to calculate a comprehensive score vector. Finally, the predicted
probabilities from 2D and 3D were jointly weighted to obtain the final predicted probability,
which could combine the advantages of different data modalities and significantly improve
the final prediction results. Sun et al. [12] used multi-view stereoscopic technology (MVS)
to reconstruct the entire growth period (13 stages) of five different soybean varieties in three
dimensions, constructed a 3D dataset named Soybean-MVS with the labels of the entire
soybean growth period, and used RandLA-Net and BAAF-Net two point cloud semantic
segmentation models to verify its usability, which can provide usable basic data support for
the 3D crop model segmentation models. Xu et al. [13] proposed a reconstruction algorithm
based on 3D information for the detection of maize phenotypic traits, utilizing a multi-
view registration algorithm and iterative closest point (ICP) algorithm for the global 3D
reconstruction of maize seedling populations, which contributes to precise and intelligent
early management of maize.

The works received for this Special Issue demonstrate the feasibility of applying
artificial intelligence and visual technologies in smart farming. Karunathilake et al. [14]
provide a comprehensive overview of the recent innovations in smart farming technology,
such as drones, sensors, and automation. The agricultural environment is practically
diverse and challenging, with variations in soil conditions, climate patterns, and so on.
To develop effective models for smart farming, it is essential to create algorithms that
can generalize well across different environments. Moreover, the health and growth of
plants and animals are influenced by a range of factors, so the integration of multimodal
data and the fusion of multiple features hold great potential for improving the accuracy
of predictions and identifications in smart farming applications. Despite the potential
benefits of smart farming technology, there are challenges to promoting and popularizing
its application. The technology must not only meet practical application requirements,
but also address issues such as cost and farmer acceptance. On the one hand, hardware,
software, and maintenance costs should be affordable for small and medium-sized farmers.
On the other hand, the widespread implementation of smart farming technology requires
a strong digital infrastructure and connectivity. In many rural areas, the lack of reliable
internet and mobile networks can hinder the deployment of smart farming solutions, and
this issue may be addressed well by cloud-edge coordinated computing, achieving more
efficient computing and data processing. This Special Issue contains papers related to the
above innovative research and will hopefully stimulate further research in these areas.
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Abstract: Udder conformation traits interact with cow milk yield, and it is essential to study the udder
characteristics at different levels of production to predict milk yield for managing cows on farms.
This study aims to develop an effective method based on instance segmentation and an improved
neural network to divide cow production groups according to udders of high- and low-yielding cows.
Firstly, the SOLOv2 (Segmenting Objects by LOcations) method was utilized to finely segment the
cow udders. Secondly, feature extraction and data processing were conducted to define several cow
udder features. Finally, the improved CNN-LSTM (Convolution Neural Network-Long Short-Term
Memory) neural network was adopted to classify high- and low-yielding udders. The research
compared the improved CNN-LSTM model and the other five classifiers, and the results show that
CNN-LSTM achieved an overall accuracy of 96.44%. The proposed method indicates that the SOLOv2
and CNN-LSTM methods combined with analysis of udder traits have the potential for assigning
cows to different production groups.

Keywords: cow udder classification; udder features; instance segmentation; CNN-LSTM; udder
conformation

1. Introduction

Milk and cow products are essential foods for daily life, which provide vital proteins
required by humans [1]. Dairy is integral to China’s modern agriculture and food industry
and indispensable for a healthy China. With the improvement in quality of life, the
scale of the dairy industry, milk production, and milk consumption are increasing. Cow
breeding is the first step in the milk industry chain and is a prerequisite for obtaining
high-quality milk production. In recent years, with economic growth, cow farming in
China has gradually shifted from a traditional family-based mode to an intensive, large-
scale, and facility-based mode [2]. However, there are still areas for improvement in
farming management techniques because cows with different levels of milk production
are often managed similarly by farmers, who are unable to manage high-yielding cows
based on their characteristics, which affects milk yield and quality. Therefore, a reasonable
grouping of cows in production areas based on milk production and the formulation of
corresponding management practices for different production areas, such as forage to
concentrate ratios and exercise levels, are important to promote the development of the
milk industry in China.

Numerous studies have found a correlation between milk production and udder traits
in cows. Pawlina et al. [3] found an increase in udder and teat size and a decrease in
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udder distance from the floor between the first and third lactation in high-yielding cows.
Okkema et al. [4] found that swollen teats in cows with edematous udders reduced milk
production. Juozaitiene et al. [5] evaluated morphological indicators of cow udders and
measured an increase in milk production of 2.72–3.01 kg in cows with a pelvic shape
compared to cows with a round udder under the action of the milking machine, indicating
that milk production was associated with cow udder shape. Miseikiene et al. [6] analyzed
cows’ milk production in different lactation zones. After measuring, cows produced about
4.6 kg (42.2%) of milk in the anterior lactation area and 6.32 kg (57.8%) in the posterior
lactation area, indicating a correlation between relative udder capacity and milk production.
The research problem is whether the cow production groups could be assigned according
to udder characteristics.

Feature extraction from the udder is vital for the analysis of udder traits. Recent
domestic and foreign researches have divided udder measurement methods into two main
categories. The first category uses manual measurement methods, and the second category
uses computer vision techniques to extract cow udder traits. The first category method
usually uses tools such as a body ruler [7], aluminum foil [8], and a dynamometer [9,10]
for udder traits extraction. However, it is time-consuming. The second is the extraction
of cow feature points, which can be realized in several ways. For example, feature point
labeling is performed manually [11,12], template matching with images with standard
feature points is utilized to obtain feature points [13], and contour maps are obtained from
3D point clouds to compute feature points [14]. Finally, it calculates the cow eigenvalues
from the eigen points. Contrasted with manual measurement, it is more automatic and
effective [15]. However, the selection and number of feature points greatly impact the
calculation of feature values, so there is a certain error between those points and the true
feature values. Therefore, the aim of this study is to automate the extraction and analysis
of udder features using computer vision, deep learning, and other technologies, and to
explore the efficiency of udder features in classifying high- and low-yielding cows.

Nowadays, with the continuous innovation and development of artificial intelligence
technology, instance segmentation algorithms can achieve mask segmentation of target
objects [16–19]. The neural network can fit nonlinear relationships to analyze and predict
unknown data attributes [20] of production groups. Therefore, we discuss the importance
of instance segmentation algorithms (SOLOv2, Mask R-CNN (Region-based Convolutional
Neural Network) [21,22]), as well as neural network algorithms (CNN-LSTM, BPNN (Back
Propagation Neural Network)), for the division of high- and low-yielding cows.

Our objectives were to construct an udder segmentation model to extract targets from
the image; realize udder feature extraction, analyze high- and low-yielding udder fea-
tures, and explore the most suitable classification features; select appropriate classification
methods to explore the effectiveness of udder features in cow classification; and apply the
constructed scheme to the dairy farm to achieve the division of production groups and
provide support for zoning management.

2. Materials and Methods

2.1. Cow Video Acquisition

The data for this study were collected in February 2023 at a 1000-cow farm owned by
Jiangsu Yuhang Food Technology Co., Ltd., Yancheng, China, a large modern cow farm,
in Bailin Village, a southwest suburb of Dongtai City, Yancheng City, Jiangsu Province.
There were several passages inside the experimental site with a width of about 2.5 m and
cow living areas on both sides of the passages. The cow farming areas were divided into
high- and low-yielding areas based on agricultural experts, considering the factors of milk
production, parity, and cow condition. The reference standard for milk production is that a
cow producing more than 9000 kg of milk in a lactation (305 d) is a high-yielding cow and
the rest are low-yielding cows (excluding unproductive cows). The cows’ age ranged from
around two to eight years old (excluding unproductive cows), in height from 130 to 145 cm
and in weight from 550 to 750 kg. The bedding is sorted daily and changed monthly.
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Based on the location of the cow’s udder in the body region and the measurement
method of udder characteristics, this study used a self-designed dairy farm inspection
robot to collect images of different cows in the high- and low-production groups to reduce
cow stress and improve image quality.

The cow farm inspection robot comprises a mobile chassis, a lifting bar, an industrial
camera, a Jestson Nano, and corresponding control components. The mobile chassis refers
to a modern automobile drive and steering structure, with DC (direct current) brush motors
providing the driving force and digital servos controlling the steering. The wheels are
180 mm solid rubber wheels, of which the two rear wheels are the driving wheels to drive
the chassis movement, and the two front wheels are the driven wheels to control the chassis
steering. The mobile chassis adopts the SLAM (Simultaneous Localization and Mapping)
algorithm, which can realize laser map building and autonomous navigation. The lift rod is
a DC electric actuator with a stroke of 500 mm and a maximum height of 1160 mm. Relays
control the direction of lift rod movement, which can meet the demand for udder height
shooting. An industrial camera is mounted on top of the lift rod to capture the side udder
image of the cow, with an image size of 640 × 640 and a frame rate of 30 fps. Then, the
image is transmitted to the cloud platform via Jetson Nano. The robot body structure is
based on a modern car body and was produced using 3D printing technology. During
image acquisition, the robot inspects the passage, keeping the same distance from the cow
and moving in the direction parallel to the cow’s side, continuously captures the cow’s
udder side image, and uploads the video to the AliCloud OSS (Object Storage Service)
object storage platform for data cloud transmission and storage. The actual view of the
device on the cow farm is shown in Figure 1.

 

Figure 1. View of inspection robot in operation.

2.2. Keyframe Extraction

Since the cow images are acquired by intercepting the video taken by the inspection
robot at a specific frame rate, considering the slow movement of the cows and the inspection
robot, it may result in a certain amount of duplicate images. Therefore, this study proposes a
method to extract keyframes from the video, which segments the video sequence with shots
to obtain the distinct features of the images, and then extracts the critical information from
the video to increase the amount of information in the dataset and reduce the redundancy.

This study uses the inter-frame difference method based on local maxima to extract
keyframes, judging the changing size between adjacent images by differencing two adjacent
frames according to the average pixel intensity. Then, the image with a large change
compared to the previous image is extracted, which is the keyframe. The extracted before
and after keyframes are shown in Figure 2. Based on a reasonable threshold, cows with
different features can be obtained.
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(a) (b) 

  
(c) (d) 

Figure 2. Adjacent keyframe images and origin images: (a) the previous keyframe; (b) the next
keyframe; (c) the previous origin frame; (d) the next origin keyframe.

2.3. Image Augmentation

The randomness of cow movement and the instability of the inspection robot camera
tracking led to insufficient initially acquired datasets, category imbalance, and problems in
image quality. This study used image augmentation methods such as panning, mirroring,
brightness adjustment, and contrast transformation to increase the diversity of the dataset,
improve the image quality, meet the higher requirements of the deep learning algorithm
model for the dataset, improve the accuracy of mask extraction, and lay the foundation for
the subsequent neural network to classify the production groups.

Image augmentation is one of the data augmentation techniques used to address the
problem of insufficient data required in deep neural network training in this study. Image
augmentation can expand the dataset without collecting new samples [23]. Panning and
mirroring are image augmentation methods based on geometric transformations. Panning
is achieved by setting a threshold value to move the cow in a specific range along a random
distance horizontally or vertically, in which the pixel size of the cow does not change, but
only the filling of its background edges. Figure 3a shows where the edges after panning
are filled with zero-pixel values. Mirroring refers to flipping the cow image left and right
or up and down. This study mainly used left and right flipping to change the object’s
center position in the image to reduce the influence of the target object’s position when
taking pictures. Figure 3b shows that the cow image is flipped left and right. Luminance
and contrast are image augmentation methods based on image color channel adjustment.
The luminance adjustment can reduce the sensitivity of the model to color and reduce the
influence of the light intensity of the cow farm on the shooting by setting a reasonable
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threshold value. Figure 3c shows that the cow image is darkened after the luminance
adjustment. Adjusting the image contrast can make a particular area in the image with a
noticeable color difference more prominent. Combined with the cow’s physical signs, the
udder area will be more protuberant and facilitate feature extraction. Figure 3d shows that
the cow udder outline is more transparent. The dataset was increased from 503 images to
1307 images by image augmentation, which enhances the diversity of samples.

  
(a) (b) 

  
(c) (d) 

Figure 3. Image augmentation: (a) image after panning; (b) image after mirroring; (c) image after
adjusting brightness; (d) image after adjusting contrast.

2.4. Udder Segmentation Model

Instance segmentation combines object detection and semantic segmentation to achieve
pixel-level individual segmentation and classification. Mask R-CNN and SOLOv2 are typi-
cal two-stage and one-stage models in instance segmentation, respectively. Mask R-CNN
separates detection from segmentation and uses a top–down idea to predict the bounding
box first and then segment individuals from each bounding box. SOLOv2 is an anchor-free
instance segmentation model, which defines instance segmentation as a simultaneous
detection task and segmentation task [24]. The two-stage detection model detects first
and then segments, which has poor real-time performance, and the segmentation results
correlate with excellent or low-quality bounding box localization. The one-stage model
parallels detection with classification and has the characteristics of fast speed and high
accuracy. However, such a model is strongly influenced by the detection accuracy. If the
individuals have overlapping phenomena, the segmentation effect will be poor. Therefore,
this study compared the effects of two segmentation models applied to cow udders, and
selected a more suitable model. The parameter settings of the two segmentation models
are shown in Table 1.
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Table 1. Segmentation model parameter settings.

Instance Segmentation
Algorithms

Parameter

SOLOv2

Max_iter = 60,000
Solver.Gamma = 0.1

Solver.Warmup_Factor = 1.0/100
Solver.Warmup_Iters = 10

Base_Lr: 0.0001
Batch size = 1

Mask R-CNN

Epoches = 600
Steps per epoch = 100

First 300 Epoches, Learning rate = 0.001, layers = ‘heads’
After 300 Epoches, Learning rate = 0.0001, layers = ‘all’

Batch size = 1

2.4.1. SOLOv2

The cow images were fed into the backbone network Res-101-FPN (Resnet-101-
FeaturePyramidNetwork). Resnet ensures the correlation of gradients in the deep network
during learning and avoids network degradation due to the increasing number of layers.
FPN uses image pyramids to solve the multi-scale problem, fuses features from differ-
ent convolutional layers during feature extraction to ensure the efficiency of detection of
different-size cow udders, and obtains deeper semantic information, which in turn connects
prediction of semantic categories and the instance mask of subsequent dynamic heads.

SOLOv2 continues the design of SOLOv1 but further improves the extraction efficiency
and accuracy of the mask. Its network structure is shown in Figure 4. SOLOv2 is based on
object detection and semantic segmentation. It transforms the segmentation problem into a
location division problem by matching the target object’s category to the instance’s center.
It divides the image into a grid of s × s. If the target object falls in the center of the grid, the
grid performs semantic category prediction on the one hand and instance mask prediction
on the other. When the overlap between the center region of the object and the grid is
detected to be greater than a threshold, it is considered a positive sample, i.e., there is a
category output. Accordingly, an instance mask corresponding to this output is generated.
However, since there are often not many instances in the image so that the objects are
sparsely distributed, there will be a channel (classifier) redundancy. SOLOv2 solves the
output channel redundancy problem by decoupling the mask branch into the kernel branch
and feature branch directly into convolutional kernel learning. For the post-processing
step of repeated prediction, a matrix NMS (Non-Maximum Suppression) is proposed to
accelerate the processing speed of the mask, and the generation of the target mask is more
efficient and flexible compared with SOLOv1.

 
Figure 4. SOLOv2 network structure.
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2.4.2. Mask R-CNN

Mask R-CNN also uses Resnet-FPN as the backbone network for feature extraction.
Its network structure is shown in Figure 5. The model retains the RPN (Region Proposal
Network) in Faster R-CNN for generating region proposals. The RPN input is the feature
map generated in the feature extraction stage. To adapt to different target sizes, it generates
nine anchor boxes of three scales and three aspect ratios for each point of the feature map.
The obtained anchor boxes are processed in two ways: one is to perform foreground and
background classification, i.e., to discriminate whether there is a target object in the anchor
box and to score the likelihood; and the other is to perform regression to make the anchor
frame closer to the ground truth box. Finally, the inaccurate anchor boxes are filtered to
obtain the final RoI (Region of Interest). Then, the RoIAlign (Region of Interest Align) is
used to adjust the feature map obtained by RPN to the same size. RoIAlign removes the
quantization operation and instead uses bilinear interpolation for feature map reduction to
avoid losing the information of the original feature map in the process. The feature map
obtained by RoIAlign is input into the three-branch structure of Mask R-CNN to complete
classification, bounding box regression, and segmentation mask prediction.

 
Figure 5. Mask R-CNN network structure.

The loss function equation of Mask R-CNN is shown in Equation (1).

L = Lcls + Lbox + Lmask (1)

where Lcls represents the classification loss, Lbox represents the bounding-box loss, and
Lmask represents the mask loss.

2.4.3. Comparison of Segmentation Effects

Figure 6 shows the comparison of SOLOv2 and Mask R-CNN segmentation results in
the same environment, from which it can be seen that both algorithms segment well and
the masks are close to the natural contours of the cow udder.

2.5. Udder Feature Extraction, Cleaning and Selection
2.5.1. Udder Feature Extraction

In this study, 10 features were initially selected as neural network inputs: circum-
scribed regular rectangle width and height (max-width, max-height), minimum circum-
scribed rectangle width and height, aspect ratio (min-width, min-height, rect rate), cir-
cumcircle radius (radius), circumcircle area to contour area ratio (circle/contour), fitted
elliptical length of major axis and minor axis, and major and minor axis ratio (elliptical a,
elliptical b, elliptical rate). The feature values were extracted from the binary mask map
extracted by the segmentation model, and its schematical map is shown in Figure 7.
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(a) (b) 

Figure 6. Comparison of SOLOv2 and Mask R-CNN segmentation effects: (a) SOLOv2; (b) Mask R-CNN.

(a) (b) (c) (d) 

Figure 7. Contour feature extraction: (a) circumscribed regular rectangle contour; (b) minimum
circumscribed rectangle contour; (c) circumcircle contour; (d) fitted elliptical contour.

2.5.2. Data Cleaning of Udder Features

In the acquisition of cow udder mask features, NaN (Not a Number) values and
outliers with large deviations occurred due to the error of extracting the mask by instance
segmentation and the influence of external environmental factors such as shooting angle
and cows walking during the acquisition of cow images. In order to ensure the quality
of the data, improve the accuracy of neural network prediction, and retain valuable data,
this study conducted the mean replacement of missing values and outliers. It consisted of
reading the CSV (Comma Separated Values) file through the Pandas, performing a lookup
judgment, and applying the mean value of this feature data to replace the NaN, as shown
in Table 2, where label 0 represents the actual low-yielding cows on the dairy farm and
label 1 represents the high-yielding cows. In this study, based on the distribution of the
data, the probability that the values are distributed in (μ − 2σ, μ + 2σ) was 95.44% based on
the 2σ principle. Considering the probability of falling outside ±2σ was 4.56%, due to the
influence of environmental errors and the sufficient data samples, the mean value replaces
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the data with absolute values of errors vi > 2σ, and those with significant deviations from
the mean are excluded.

Table 2. Comparison of example data before and after cleaning: (a) original data; (b) data after
replacing null and outliers by mean values.

(a)

Max-
Width

Max-
Height Rect Rate Min-

Width
Min-

Height Radius Circle/
Contour

Elliptical
Rate Elliptical a Elliptical b Production

group

35 33 1.2381 0.3473 19.6373 20.3040 0.6562 0.4521 18.9112 41.8268 0
23 23 1.1304 23.2551 20.5718 12.4308 0.6417 0.8726 19.6495 22.5194 0
21 23 1.2381 23.2551 18.7830 11.9509 0.6474 0.7938 18.1305 22.8401 0
26 28 2.3684 31.8198 13.4350 16.1371 0.6562 0.7349 13.1578 33.0540 0
25 19 1.3333 24.0000 18.0000 12.5507 0.6830 0.7253 17.9755 24.7833 1
26 28 1.4000 29.6985 21.2132 15.1163 0.6491 0.6565 20.4981 31.2251 1
37 35 1.0167 33.8367 33.2820 18.9607 NaN 0.9455 33.3850 35.3099 1
36 38 1.0267 34.4354 33.5410 19.5209 0.7581 0.9622 34.0023 35.3373 1

(b)

Max-
Width

Max-
Height Rect Rate Min-

Width
Min-

Height Radius Circle/
Contour

Elliptical
Rate Elliptical a Elliptical b Production

group

35 33 2.0546 0.3473 19.6373 20.3040 0.3702 0.4521 18.9112 41.8268 0
23 23 1.1304 23.2551 20.5718 12.4308 0.6417 0.8726 19.6495 22.5194 0
21 23 1.2381 23.2551 18.7830 11.9509 0.6474 0.7938 18.1305 22.8401 0
26 28 1.2381 31.8198 13.4350 16.1371 0.6562 0.7349 13.1578 33.0540 0
25 32 1.3333 24.0000 18.0000 12.5507 0.6830 0.7253 17.9755 24.7833 1
26 28 1.4000 29.6985 21.2132 15.1163 0.6491 0.6565 20.4981 31.2251 1
37 35 1.0167 33.8367 33.2820 18.9607 0.7840 0.9455 33.3850 35.3099 1
36 38 1.0267 34.4354 33.5410 19.5209 0.7581 0.9622 34.0023 35.3373 1

2.5.3. Udder Feature Selection

Based on the data-cleaned cow udder trait dataset, correlation analysis was performed
on the initially selected 10 traits. In this study, the Pearson correlation coefficient was used
to analyze the correlation between the 10 features and the production group. The equation
for calculating the Pearson correlation coefficient is shown in Equation (2).

r = ∑n
i=1(xi−X)(yi−Y)√

∑n
i=1(xi−X)

2
∑n

i=1(yi−Y)
2 (2)

where r represents the Pearson correlation coefficient, xi represents the i-th value in the
sample of variable X, X represents the mean value of the sample of variable X, yi represents
the i-th value in the sample of variable Y, and Y represents the mean value in the sample of
variable Y.

Figure 8a shows the correlation heat map of the data extracted based on the SOLOv2
mask, and Figure 8b shows the correlation heat map of the data extracted based on the
Mask R-CNN mask. The color from dark to light indicates the correlation from low to high.
The analysis shows that the Pearson correlation coefficients of the circumscribed regular
rectangle width and height (max-width, max-height), the minimum circumscribed rectangle
width and height (min-width, min-height), the circumcircle radius (radius), the fitted
elliptical length of major axis and minor axis (elliptical a, elliptical b), and the production
group are 0.49/0.51, 0.52/0.47, 0.52/0.60, 0.49/0.45, 0.57/0.58, 0.47/0.43, and 0.52/0.60,
respectively, which are correlated between 0.4 and 0.6. The Pearson correlation coefficients
of the minimum circumscribed rectangle aspect ratio (rect rate), the circumscribed circle
area to contour area ratio (circle/contour), and the fitted elliptical major-to-minor axis ratio
(elliptical rate) with the production group are 0.09/0.21, 0.00/−0.16, and −0.07/−0.27,
respectively, with absolute values in the range 0.0–0.4. The absolute values of the correlation
coefficients were found to be 0–0.3 (0 is not included) for weak correlation, 0.3–0.5 (0.3 is
not included) for low correlation, 0.5–0.8 (0.5 is not included) for moderate correlation, and
0.8–1.0 (0.8 is not included) for high correlation. Therefore, to reduce the complexity of
the neural network algorithm and improve the classification accuracy and efficiency, the
weakly correlated features were excluded.
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(a) 

(b) 

Figure 8. Heat map of correlation coefficients between udder features: (a) correlation coefficients
of SOLOv2 mask map extracted data; (b) correlation coefficients of Mask R-CNN mask map
extracted data.

2.5.4. Data Distribution

The data were analyzed to obtain the data distribution of samples with different
characteristics of high- and low-yielding cows processed by the two algorithms. The
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characteristic kernel density of high- and low-yielding cows was plotted by selecting the
characteristic variables for the four different calculation methods, with the horizontal
coordinates indicating the range of values taken and the vertical coordinates indicating
the probability density of the occurrence of data points. Figure 9 shows that high-yielding
cows have greater values than low-yielding cows in the max-width, the min-width, the
radius, and the elliptical b, where the distribution is dense. A shaded variogram was used to
visualize the relationship between the two characteristic variables, and the shading indicates
the density of the data points, which can be used to visualize the distribution between the
characteristic variables and the difference in the distribution of the characteristics of high-
and low-yielding cows.

 
(a) 

 
(b) 

Figure 9. The high- and low-yielding cows are distributed in different feature variables, with the
high yield on the left and low yield on the right: (a) SOLOv2 mask feature density; (b) Mask R-CNN
mask feature density.

2.6. Production Groups Classification Model

This study focuses on improving the neural network model for the production groups
cows. The neural network is the core of deep learning, which is connected by several
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neurons. Its elemental composition is the input, hidden, and output layers. The neurons
in the hidden layer refine the input features to enhance the model training effect. The
neurons in the network adjust the weights and biases corresponding to different features
by continuous learning, constantly normalize the input of the lower layers by using the
activation function for nonlinear transformation, and connect different layers. The model
parameters are updated by backpropagating the loss function to close the predicted value
to the actual value and improve the classifier simultaneously. Finally, the neural network
classifies the udder dataset based on the weight vector.

(1) CNN-LSTM

Convolutional neural networks have superior performance, and their application
areas include image and data classification, object detection, video processing, natural
language processing, speech recognition, etc. [25,26]. LSTM is a long short-term memory
network, capable of handling sequential and textual problems [27], a variant of RNN
(Recurrent Neural Network). It combines short-term memory with long-term memory
through exquisite gate control. It solves the problem of gradient disappearance [28]. LSTM
can learn long-term dependent information and generally targets back-and-forth logic,
sequence problems with temporal concepts, and text problems. This study explored the
effect of binary classification of the high- and low-yielding cow dataset with a certain
temporal nature by improving the CNN-LSTM deep learning model. The convolution
extracts deep features of the cow mask, and then adding LSTM further processes the
output features of the convolution layer. The input layer is set as a sequence input layer
with size 7 × 1 × 1 (the dataset has seven features). The folding sequence layer converts
the sequence data into the vector, then puts it into the convolutional network with two
convolutional layers, which respectively have 16 and 32 convolutional kernels, both with
sizes 2 × 1. Furthermore, a batch normalization layer is added before the activation
function to speed up the model convergence and alleviate the gradient dispersion. The
max pooling layer is chosen (i.e., downsampling, to compress the multiple features after
convolution and filter out the unimportant features), and then the deep features are obtained
after convolution, which are sequence unfolded and input into the LSTM layer. Some
inconsequential features are discarded using the dropout layer to prevent the occurrence of
the overfitting phenomenon. Finally, the output size of the fully connected layer is 2 for two
classifications. The softmax activation function is employed to connect the classification
layer; the network model is shown in Figure 10.

Figure 10. CNN-LSTM improvement model.

(2) BPNN

A BP neural network is a multilayer feedforward network using a backpropagation
algorithm, and its basic idea is gradient descent. The BP neural network includes two
processes: forward propagation of signals and backward propagation of errors. The sample
data are input into the neural network through the input layer, and the hidden layer
calculates the prediction result to complete the forward propagation. Then, according
to the error between the prediction result and the actual result, the chain rule is used to
calculate the error of each layer and to calculate the gradient according to the error to
update the weights and biases of each layer to complete the backward propagation. The
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neural network has a strong nonlinear mapping ability and can establish relationships
between various udder characteristics and the production area. Therefore, based on the
idea of the BP neural network, this study improved the primary BP neural network to
make it suitable for classifying production groups. The neural network structure diagram is
shown in Figure 11. There are seven feature values for the input data, and thus seven nodes
were selected for the input layer. In order to ensure the low complexity of the network
parameters and better map the relationship between the features and the production
area, two hidden layers with six nodes were constructed. Due to the small number of
classification samples, Bayesian regularization was selected as the training function to
improve the model’s generalization ability. The activation function of the hidden layer uses
tansig; the equation is as in Equation (3) and the activation function of the output layer
uses softmax to achieve classification; the equation is as in Equation (4). The number of
nodes in the output layer was two with the same classification category.

tansig = 2
1+e−2x − 1 (3)

where x represents the output value of the node.

so f tmax = ezi

ΣC
c=1ezc (4)

where zi represents the i-th node’s output value, and C represents the number of output nodes.

Figure 11. BP neural network structure.

2.7. Classification Assessment Indicators

In the classification task, classification results were classified into four categories: true
positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). In this
study, accuracy, precision, recall, and F1-score metrics were chosen to assess the model
classification performance.

The accuracy indicates the accuracy of the model prediction, i.e., the proportion of
correctly predicted samples to the overall samples, and is calculated as in Equation (5).

Accuracy = ncorrect
ntotal

= TP+TN
TP+FP+FN+TN (5)
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The precision reflects the ability of the model to discriminate negative samples, which
is the proportion of samples predicted to be positives out of samples that are true positives,
is calculated as in Equation (6).

Precision = TP
TP+FP (6)

The recall reflects the ability of the model to identify positive samples, which is the
proportion of true positives predicted to be positives and is calculated as in Equation (7).

Recall = TP
TP+FN (7)

The F1-score is the summed average of precision and recall, calculated as in Equation (8).

F1 = 2×Presion×Recall
Presion+Recall (8)

2.8. Experimental Design and Setup
2.8.1. Experimental Environment

The software platforms used in this study are Labelme 5.1.1 (MIT, Cambridge, MA,
USA) for image annotation, PyCharm 2022.1 Community Edition (JetBrains, Prague,
Czech Republic) and Python 3.7 (Centrum voor Wiskunde en Informatica Amsterdam,
The Netherlands) for image augmentation and feature extraction, IBM SPSS Statistics
26 (IBM Corp, Armonk, NY, USA) for correlation analysis, and Matlab 2021b for neural
network construction.

The deep learning network was GPU parallel-accelerated by CUDA 11.6, and cuDNN
8.8.1 was used as the acceleration library for deep convolutional neural networks. SOLOv2
was built based on Detectron2 and AdelaiDet, which are deep learning frameworks. Mask
R-CNN was built based on the TensorFlow and Keras frameworks.

The hardware platform for this study was 11th Gen Intel® Core(TM) i5-11400H @ 2.70
GHz, 16 G RAM, and NVIDIA GeForce RTX 3050 Laptop GPU.

2.8.2. Instance Segmentation Dataset

After crucial frame extraction and image augmentation, 1093 cow udder images were
gained, and of these 449 images were of high-yielding cows and 644 images of low-yielding
cows. The training set and test set were divided according to the ratio of 7:3 to obtain
766 images in the training set and 327 images in the test set.

2.8.3. Classification Dataset

Two datasets, both of size 1307, were constructed by extracting the mask features of
SOLOv2 and Mask R-CNN segmentation separately and randomly dividing the training
and test sets according to the ratio of 7:3.

2.9. Cow Farm Management
2.9.1. Animal Welfare

The average weight of cows in this cattle farm was 660 kg, and the average age was 5.
Their living conditions were good. In terms of diet, based on the physiological differences
between high- and low-yielding cows, high-yielding cows have a high feed intake and high
cow metabolism compared to low-yielding cows, and therefore need to be supplied with
more feed and drinking water for the maintenance of physiological needs and metabolism,
with high-yielding cows having up to 90 ± 10 kg of daily feed intake. According to the
weather one must provide a reasonable amount of feeding water, when the weather is hot in
summer, the water should be increased by five to six times; in terms of living environment,
to ensure the cleanliness and comfort of the cows’ living environment, milking aisles are
cleaned up two times a day, lying feces are cleaned up three times a day, lying beds are
tidied up at least one time a day, and the depth of plowing is more than 15 centimeters.
This fully guarantees animal welfare.
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2.9.2. Practice and Production

Based on the results of our classification result, high- and low-yielding cows can be
categorized for zonal management. In actual management, feeding management is mainly
focused on high-yielding cows to improve milk production. Compared with low-yielding
cows, high-yielding cows have many unique physiological characteristics. Firstly, high-
yielding cows have high nutrient requirements and high daily feed intake. Secondly, their
basal metabolic rate is higher, and their respiratory and heart rate are higher than those of
low-yielding cows. Therefore, when feeding, attention was given to the structure of the
diet with a moderate forage to concentrate ratio, adopting a scientific feeding method, and
controlling the amount and frequency of feeding. At the same time, cows were provided
with a suitable barn environment and were cleaned regularly. Our classification of high-
and low-yielding cows provides support for zoning and fine management of dairy farms
and provides a boost to improve cow production.

3. Results and Discussions

3.1. Segmentation Model Evaluation
3.1.1. Loss Function

The loss functions of optimal models of SOLOv2 and Mask R-CNN are shown below,
and both types of algorithms use weights that have been trained on the MSCOCO (Mi-
crosoft Common Objects in Context) dataset as pre-training weights. Utilizing the weights
attained from training on the large-scale dataset to initialize the network model allows
transferring the learned generic features to the new task, thus improving the performance
and generalization of the model. As shown in Figure 12, both algorithms converge after a
small number of iterations, taking low loss values.

 
Figure 12. Segmentation model loss function.
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3.1.2. Segmentation Accuracy

This study first exploits the idea of segmentation and then classification for dividing
production groups. In the instance segmentation stage, the two-stage and one-stage seg-
mentation models Mask R-CNN and SOLOv2, respectively, were compared. The mAP
(mean Average Precision), AP50 (Average Precision), and AP75 were used as metrics to
measure the performance of the two algorithms. As can be seen from Table 3, SOLOv2
outperformed Mask R-CNN in all three metrics, and mAP was 7.12% higher than Mask
R-CNN. Extended analysis of the AP50 index in Table 3 shows that SOLOv2 and Mask
R-CNN were 98.87% and 95.03%, respectively, implying that the vast majority of extracted
masks of both algorithms was above 50% of the actual cow udder IoU (Intersection over
Union) ratio, which can achieve complete cow udder segmentation more accurately. Since
SOLOv2 outperformed Mask R-CNN for object edge segmentation, SOLOv2 performed
better for targets with distinct edge features such as cow udders.

Table 3. Segmentation model accuracy.

Instance Segmentation Algorithms mAP AP50 AP75

SOLOv2 74.09% 98.87% 92.49%
Mask R-CNN 66.97% 95.03% 70.48%

Since the metrics selected cannot fully evaluate the performance of the segmentation
model, this study extracted features from the mask maps segmented by both algorithms.
The features were input into the classification algorithm to further analyze the performance
of the segmentation model through the classification effect.

3.2. Classification Model Evaluation
3.2.1. Effect of Neural Network Model on Test Results

Based on the cow udder mask features datasets, two neural network models were im-
proved in this study. The first one was because the udder mask feature dispersion had certain
temporal nature characteristics. A variant LSTM of the recurrent neural network was intro-
duced and convolutional layer and max pooling layer were added to optimize the network and
boost the model performance. The second model was employed that improves the basic BP
neural network, builds two hidden layers, and uses a backpropagation algorithm to reduce the
prediction error. As can be seen from Table 4, the accuracy of the testing sets of the two neural
network models is relatively ideal, and the accuracy of CNN-LSTM is superior to BPNN no
matter whether for the dataset segmented by SOLOv2 or in the dataset segmented by Mask
R-CNN. This is because the CNN-LSTM neural network, compared with the BP neural net-
work, has added convolution layers and increased the number of neurons, making the network
structure more complex. Additionally, the performance of CNN-LSTM and BPNN on the
dataset segmented by SOLOv2 is superior to that of Mask R-CNN, with the highest accuracy
of 96.44% (SOLOv2 + CNN − LSTM), which further indicates that the segmentation effect of
SOLOv2 is better than that of Mask R-CNN. The loss function curves corresponding to the two
segmentation models based on the CNN-LSTM neural network are shown in Figure 13, and
the cross-entropy loss functions corresponding to the two segmentation models based on the
BPNN neural network are shown in Figure 14.

Table 4. Improvement of neural network evaluation metrics.

Classification
Algorithms

Instance Segmentation
Algorithms

Accuracy Precision Recall F1 Score

CNN-LSTM
SOLOv2 96.44% 98.00% 96.47% 97.23%

Mask R-CNN 90.49% 92.40% 91.88% 92.14%

BPNN
SOLOv2 93.13% 88.65% 91.91% 90.25%

Mask R-CNN 90.19% 87.70% 90.68% 89.17%
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(a) 

 
(b) 

Figure 13. Improved neural network loss function: (a) SOLOv2; (b) Mask R-CNN.

 
(a) 

 
( ) 

Figure 14. Cross-entropy loss functions: (a) SOLOv2; (b) Mask R-CNN.

3.2.2. Comparison of Test Results

In this study, four commonly used machine learning algorithms, namely naive Bayes,
K-nearest neighbor, support vector machine, and random forest, were used to classify
production groups and compare the effect with neural network classification. Performance
metrics are shown in Table 5. The confusion matrix is shown in Figure 15. After analysis and
comparison, K-nearest neighbor and random forest performed better among the four algo-
rithms, with the accuracy of SOLOv2 reaching 92.62%/92.74% and Mask R-CNN reaching
85.93%/89.77%. However, both are lower than the two types of neural networks, reflecting
the unique advantages of neural networks in multi-feature classification problems.

Table 5. Evaluation metrics of the machine learning algorithm.

Classification
Algorithms

Instance Segmentation
Algorithms

Accuracy Precision Recall F1 Score

Naive Bayes SOLOv2 75.72% 79.28% 84.66% 81.88%
Mask R-CNN 76.35% 75.69% 84.62% 79.90%

K-Nearest Neighbor SOLOv2 92.62% 94.82% 93.70% 94.62%
Mask R-CNN 85.93% 86.79% 89.61% 88.18%

Support Vector
Machines

SOLOv2 68.45% 67.02% 100% 80.25%
Mask R-CNN 66.16% 61.97% 100% 76.52%

Random Forest SOLOv2 92.74% 91.37% 97.55% 94.36%
Mask R-CNN 89.77% 89.22% 92.86% 91.00%
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(a) (b) 

Figure 15. Confusion matrix obtained from 4 classification models: (a) input is the feature data
extracted by SOLOv2 mask; (b) input is the feature data extracted by Mask R-CNN mask.
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In this study, we introduced a method to divide high- and low-yielding cows already in
their own pens according to their production levels based on the SOLOv2 and CNN-LSTM
models. The main objectives were to investigate the potential of instance segmentation to
extract the cow udders and establish a classification model for high- and low-production
groups based on neural network. The segmentation effect of SOLOv2 and Mask R-CNN
was evaluated; features that can well characterize cow udder traits were explored; and
the effectiveness of the improved CNN-LSTM classifier for high- and low-yielding area
division was verified.

The technology in the study allows for adjustments to be made to cows after they
have been grouped. For example, if some cows in the high-yielding group have entered
the low-yielding threshold, for large farms with many cows, it is labor-intensive to rely
on manual labor to identify which cows need to be adjusted to the low-yielding group
on a regular basis, whereas the technology in the study can be used to realize automatic
and convenient identification and adjustment. Meanwhile, cows in the low-yielding group
whose milk production capacity has been improved through effective management can
also be adjusted to the high-yielding group by identification. This will help farmers to
make a decision.

The technology used in this study has certain value and significance compared with
grouping high- and low-yielding cows directly according to their actual milk production.
Firstly, if the cows are divided by 305 d milk production, the statistical time is long, and it
cannot divide the cows quickly and conveniently. In this study, the technology can directly
realize the grouping of cows by obtaining cow images and recognizing cow udders under
the condition of unknown milk production. Secondly, when the actual milk production
is recorded manually, the workload is larger. However, the technology in the study does
not need a large amount of data when classifying new cows, which reduces the labor cost
and can directly obtain the grouping results. Thirdly, for some cows in the high-yielding
group that enter the threshold of the low-yielding group, the techniques in this study allow
for quick batch screening and then adjusting cows from the high-yielding group to the
low-yielding group.

We compared our technique with several similar studies, and found that there were
a few limitations of our technique’s employment. A previous study [29] used multiple
cameras simultaneously to obtain the depth maps of the cow’s body in different directions,
artificially labeled the different body parts of the cow, and classified body parts by pixels.
The method can alleviate cow fences occlusions to a certain extent, which may seriously
influence cow udders segmentation and classification results. The problem of cow fence
occlusions also appeared in our research and should be well-handled in the follow-up work.

The environment of a cow barn is complex and weather causes vast variations in illu-
mination, which greatly challenged the subsequent image processing procedure. Thus, the
results and reliability of image-processing-based methods may decrease significantly when
the conditions covered by training samples are insufficient. Bobbo et al. [30] compared mul-
tiple machine learning methods to predict udder health status based on somatic cell counts
in dairy cows. Another study [31] utilized ultrasound echotexture analysis of the mammary
gland and a deep learning algorithm to predict milk yield. Methodology in [32] proposed a
Rfine mask two-stage instance segmentation, a combination of the convolutional neural
network ConvNeXt and ECA modules. Inspired by these studies, division of high- and low-
production groups by fusing multimodal data should be considered, such as physical and
chemical data, visible light data, and ultrasound images. Moreover, attention modules can
be integrated into CNN-LSTM to deal with small-target and multi-scale-target problems.

4. Conclusions

Based on the relationship between udder properties and milk production, this study
proposed a method to divide production groups by segmentation first and then classi-
fication. In the segmentation stage, a self-designed inspection robot acquired the video
of the cow’s udder. Then, for the problem of many duplicated images but low diversity,
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keyframe extraction and image augmentation were used to expand the dataset. After
image preprocessing, to compare the performance of one-stage and two-stage segmentation
models in this task, SOLOv2 and Mask R-CNN were selected to segment the images and
extract the binary mask images. In the classification stage, 10 feature values were extracted
from the mask images. Afterward, the data were cleaned, and features were selected to
make the classification model training more efficient and accurate. The results show that
the segmentation effect of SOLOv2 was better than Mask R-CNN with mAP up to 74.09%,
and the classification effect of CNN-LSTM was better than BPNN. The segmentation using
SOLOv2 and classification using CNN-LSTM obtained a production groups’ classification
accuracy of up to 96.44%, indicating that the proposed method based on the segmentation
model and the neural network has effective results in cow production groups.
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Abstract: Economic and ecosystem issues associated with beekeeping may stem from bee mites rather
than other bee diseases. The honey mites that stick to bees are small and possess a reddish-brown color,
rendering it difficult to distinguish them with the naked eye. Objective and rapid technologies to detect
bee mites are required. Image processing considerably improves detection performance. Therefore,
this study proposes an image-processing method that can increase the detection performance of
bee mites. A keypoint detection algorithm was implemented to identify keypoint location and
frequencies in images of bees and bee mites. These parameters were analyzed to determine the
rational measurement distance and image-processing. The change in the number of keypoints was
analyzed by applying five-color model conversion, histogram normalization, and two-histogram
equalization. The performance of the keypoints was verified by matching images with infested
bees and mites. Among 30 given cases of image processing, the method applying normalization
and equalization in the RGB color model image produced consistent quality data and was the most
valid keypoint. Optimal image processing worked effectively in the measured 300 mm data in the
range 300–1100 mm. The results of this study show that diverse image-processing techniques help
to enhance the quality of bee mite detection significantly. This approach can be used in conjunction
with an object detection deep-learning algorithm to monitor bee mites and diseases.

Keywords: bee mite; image processing; keypoint detection; image matching

1. Introduction

Honeybee is a pollinating insect that maintains the ecosystem. Honeybees possess
the ability to produce honey, wax, and royal jelly for beekeeping. However, beekeeping
is experiencing a dual crisis of earning-shock and colony collapse disorder due to climate
change, pests, and disease [1,2].

Among pests, Varroa destructor is the most severe, and may lead to several economic
disadvantages compared to other diseases [3]. Bee mites can parasitize larvae and bees,
and this may further result in growth decline, wing deformity, abdominal reduction, and
death [4]. Methods for detecting bee mites include sugar testing, brood testing, and floor
testing, but they have limitations in providing objective, quantitative indicators. Bee mite
management is one of the main tasks of beekeeping managers, and research exists to
prevent and control it [5,6].

Managing pest inspection in the beehive state is required by beekeeping farmers.
Typically, checking by humans involves observation with the naked eye and nonobjective
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knowledge. Bee mites have a small size of 1.1 mm × 1.6 mm and are reddish brown. Their
color is similar to that of the bee pattern. Hence, their identification is difficult, and a distinct
deviation may be present, depending on the skill of the beekeepers. This has led to the need
for rapid and objective detection methods.

Considerable visual information can be distinguished during beekeeping. A few exam-
ples include honey, bees, queen bees, bee larvae, diseases, and pests. Visual data have been
extensively used in computer science analyses. Each class is classified into an image using
deep learning. Object detection algorithms are fast and non-destructive approaches to
detect bee mites in beecomb images.

Computer vision is the field of computing that uses image data. Computer vision systems
have been widely used in machinery, medicine, and agriculture. In precision agriculture,
a weak classifier model has been developed using object detection [7]. In a recent study, a
banana disease detection model was built using a neural network and transfer learning [8].

Several efforts have been made to achieve more precise beekeeping using computer
vision systems. Ngo et al. developed a monitoring system that possessed the ability to
count the number of bees at the entrance [9]. Bjerge et al. constructed a measurement
system at the entrance to a hive and attempted to monitor bee mites using near-infrared
and deep learning [10].

Artificial intelligence used for object detection learns from object keypoints, which
are regarded the most important values during image matching, detection, and tracking.
Increasing the number of enhanced keypoints helps improve the detection performance.

The keypoint detection algorithm is primarily affected by the measurement environ-
ment, even for the same object. The inference performance was changed using a detector.
Thus, a keypoint detector must be selected based on its speed and accuracy [11]. Image
matching was based on the keypoints of each object. It can connect to similar keypoints.
The matching quality is affected by keypoint frequency and location.

This study aims to develop an image processing method in order to improve the quality of
bee mite detection. A beecomb measurement system must be developed for image acquisition.
A keypoint detector was used to estimate the keypoints. The frequencies and locations
of the keypoints were analyzed using a rational image processing method. The image
processing methods implemented are color model conversion, histogram normalization,
and equalization. The combination of image processing generated 30 analysis cases.

2. Materials and Methods

2.1. Materials and Location

Eight beehives were used for image data measurements at the apiary of the National
Institute of Agricultural Sciences in Jeollabuk-do, Republic of Korea, and at a beekeeping
farm in Gangwon-do. The honey bee is a Western honey bee (Apis mellifera) that is adaptable
to the environment and yields high productivity. In another study, two common species of
bee mites, Varroa jacobsoni and Varroa destructor, were measured, which possess dimensions
of 1.0630 × 1.5068 mm and 1.1673 × 1.7089 mm, respectively [12]. The observed bee mite
had a size of 1.2 × 1.7 mm. Therefore, it was assumed to be Varroa destructor (Figure 1).

2.2. RGB Image Acquisition System and Measurement Method

An image acquisition system must be established to define an optimal image-processing
method to detect bees and bee mites. Image data were acquired for bees and bee mites in
beecombs in a manner similar to that for human inspection.

The image acquisition system was built using a camera, a laptop, and a beecomb
supporter (Figure 1). The supporter can directly control this angle. A CMOS-type Blackfly-
SGigE camera (FLIR, Wilsonville, OR, USA), with a resolution of 2048 × 1536 pixels, was
used in this study.
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Figure 1. (a): image acquisition systems and (b): image of bees and bee mites (red circles: bee mites).

The measurement software was developed in Python 3.7. An acquisition area was
set for the entire beecomb, which was the same as that visually inspected by humans.
The numbers of shots required varied depending on the distance from the camera to the
beecomb. The images were measured at five shooting distances at 200-mm intervals from
300 mm to 1100 mm, and the number of measurements per distance is shown in Table 1.
The number of image measurements was set to measure one side of the beecomb.

Table 1. Number of image measurements according to imaging distance for measuring the entire
beecomb area.

Imaging Distance 300 mm 500 mm 700 mm 900 mm 1100 mm

Number of image
measurement (ea) 9 6 4 2 1

Image acquisition of the beecomb with bees and bee mites was performed in apiary.
After adjusting the distance between the camera and the beecomb, the angle and position of
the camera and supporter were set. The camera and support angle were fixed at 15 degrees
in order to prevent light saturation. The aperture and exposure time were manually adjusted
in response to changes in environmental factors, such as changing sunlight and weather.

2.3. Bee and Bee Mite Image Dataset

An image was selected and a region of interest was extracted from the measured RGB
image data (Figure 2). The selected image contained bee mites, and the region of interest
was infested with bees (parasitized by Varroa destructor). A total 65 images were extracted
at five measurement distances, with 13 images at each level, and 65 images were used in
the analysis (Figure 3).

 

Figure 2. Region of Interest (RoI) cropping: (a) original image with the green box meant the extracted
area and (b) cropped image after the extraction.
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Figure 3. Infested bee with parasitic mite according to measurement distance.

2.4. Optimal Image Processing

To determine the optimal image processing method for detecting bee mites, an analysis
based on keypoints and image matching must be performed after image processing. Various
image processing methods, such as color model conversion, histogram normalization, and
equalization, have been applied to improve the matching rate of bee mites in beekeeping
images. There were a total of 30 image processing combinations, and these were applied to
the image of the extracted infected bees (i.e., bees parasitized by a bee mite). The image
processing methods are shown in Sections 2.4.1 and 2.4.2.

2.4.1. Color Model Conversion

To identify the characteristics of the infected bees that did not appear in the color
model of the existing image, five color model conversions were performed. The color
models RGB, HSV, Lab, YCrCb, and Gray were representative color models classified
according to the mixing method, brightness component, and color-difference component.

According to previous research, RGB is more suitable for neural network learning
compared to the one-dimensional value according to the H values of RGB and HSV [13].
A color model refers to 3D array data for expressing colors, and each dimension has a com-
ponent value for implementing the color. The three dimensions of the RGB model represent
the components red, green, and blue, and the HSV model represents the components hue,
saturation, and brightness. The YCrCb model consists of brightness and color difference
information (Cr and Cb), and the Lab model consists of brightness, red-green, and yellow-
blue components. The HSV, YCrCb, and Lab had a common component that represented
brightness. The gray color model represents one-dimensional array data. Therefore, gray
represents only the intensity of a pixel.

The cvtColor function of OpenCV was used for the color model conversion. The color
model conversion equations are as follows (OpenCV, 2022): color model conversion was
performed based on a floating-point number with a value between 0 and 1, substituted
from the RGB model data. After the model-change formula was applied, it was redefined
as 8-bit data, with values ranging from 0 to 255. In the case of HSV, YCrCb, and Gray, they
were converted at once in a specific way corresponding to the coefficients defined, as in
Equations (1), (3) and (4). The Lab case was converted to the color model XYZ, as shown in
Equation (2):

V = max(R, G, B) S =

{
V−min(R,G,B)

V
0

}
if V �= 0
otherwise

(1)

H = {
60(G − B) / (V − min(R, G, B))

120 + 60(B − R)/(V − min(R, G, B))
240 + 60(R − B)/(V − min(R, G, B))

0

}
if V = R
if V = G
if V = B
if R = G = B⎡

⎣X
Y
Z

⎤
⎦ =

⎡
⎣0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎤
⎦
⎡
⎣R

G
B

⎤
⎦ (2)
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X =
X
Xn

, where Xn = 0.950456

Z =
Z
Zn

, where Zn = 1.088754

L =

{
116 ∗ Y

1
3 − 16

903.3 ∗ Y

}
for Y > 0.008856
for Y ≤ 0.008856

a = 500(f(X) − f(Y)) + 128

b = 200(f(X) − f(Z)) + 128

f(t) = { t1/3

7.787t + 16/116
} for t > 0.008856

for t ≤ 0.008856

Y = 0.299R + 0.587G + 0.114B (3)

Cr = (R − Y)0.713 + 128

Cb = (B − Y)0.564 + 128

Gray = 0.299R + 0.587G + 0.114B (4)

R = PixelofintensityRchannel

G = PixelofintensityGchannel

B = PixelofintensityBchannel

2.4.2. Histogram Normalization and Equalization

An image acquisition experiment was performed outdoors according to the same condi-
tion as that of a visual inspection by a beekeeper. In outdoor image acquisition experiments,
the intensity of sunlight changed depending on factors such as measurement time, clouds,
and weather. Sunlight variations caused deviations in the measurement data. In other
words, measurement errors, such as sunlight, deviation of appropriate exposure time,
and aperture value, may occur. Histogram calibration may reduce further deviations due
to changes in light intensity. Histogram normalization and equalization was one of the
methods used to calibrate the intensity of each component. Both histogram correction
methods could normalize data and enhance contours and contrast.

The minimum–max normalization was calculated using Equation (5). In the Equaliza-
tion method, there were various algorithms, such as Global Histogram Equalization (GHE),
Local Histogram Equalization (LHE), and Dynamic Histogram Equalization (DHE) [14].
Histogram equalization was performed using the cumulative distribution in Equation (6).
Global Histogram Equalization and Contrast-Limited Adaptive Histogram Equalization
(CLAHE), which are calculated by dividing the image into a grid, were selected for the
equalization method.
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In this study, normalization (not applied, applied) and equalization (not applied,
GHE, and CLAHE) were applied to color-converted images for a detailed comparison
of the effects of histogram correction. The color image consisted of three channels. The
normalized channels differed for each color model. In the HSV, YCrCb, and Lab color
models, normalization was applied to brightness components, and the RGB and the Gray
color models were applied to all components:

Inormalization =

(
Ioriginal − Minoriginal

)
∗ 255(

Maxoriginal − Minoriginal

) (5)

Inormalization: Normalized image
Ioriginal: Original image
Maxoriginal: Maximum pixel value of original image
Minoriginal: Minimum pixel value of original image

H′(v) = round
(

cdf(v)− cdfmin

(M ∗ N)− cdfmin
∗ (L − 1)

)
(6)

H′(v): Equalized Histogram
v: Value of pixel
round(v): Rounds Function
cdf(v): Histogram cumulative function
cdfmin: Minimum cumulative value, usually 1
M ∗ N: Resolusion of image,(M: Width, N: Height)
L: Range of pixel value, 256

2.5. Keypoint Detection Algorithm of Bees and Bee Pests

A keypoint is the point at which an object can be distinguished locally. This is used as
a matching point for object matching, detection, and tracking. In addition, as an essential
factor, the keypoint must be derived in order to recognize an object or structure using a
computer. Therefore, as recognition points for objects such as honeybees and bee mites, the
frequency and the location accuracy of keypoints can be used to evaluate the quality of the
images to which image processing was applied.

The keypoint detection algorithm should be selected according to the data characteris-
tics, and both its speed and its accuracy may vary depending on the analysis hardware [11].
There were research to identify bee pollen with RGB image and the vector of locally ag-
gregated descriptors encoded by the Scale-Invariant Feature Transform (SIFT) keypoint
detection algorithm [15]. Oriented FAST and Rotated BRIEF (ORB) are keypoint detection
algorithms based on the Features from Accelerated Segment Test (FAST) that is applied
to real-time systems and the Binary Robust Independent Elementary Features (BRIEF)
with rotation invariance [16]. The keypoints of each patch were detected using FAST, and
efficient points were calculated among the detected keypoints based on the BRIEF descrip-
tor. Among four keypoint detection algorithms (BRISK, SIFT, SURF, and ORB), the ORB
algorithm showed the best performance in terms of evaluation of feature point frequency,
calculation efficiency, matching efficiency, and detection speed [17]. As the distortion of an
image varies depending on the type of camera or lens, distortion correction is necessary.
A comparison of the detection and matching performance of SIFT, SURF, and ORB for
distortion based on data with 30% salt-and-pepper noise compared to the original showed
that the ORB algorithm was the best [18]. Thus, the ORB algorithm was applied to data
with minimal image-warping distortion.
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2.6. Performance of Keypoint

This study aimed to investigate the optimal measurement distance and image-processing
method for honeybee and bee mite recognition. The keypoint detection performance was
based on frequency and location accuracy analysis for each image processing step.

2.6.1. Analysis of Keypoint Location and Frequency

The keypoints detected through the ORB are composed of an object that stores key-
point information and an object that stores descriptor information. The stored keypoint
information was stored, and it had the following values: pt, size, angle, response, octave,
and class_id. (here, pt denotes the location of a feature point). Therefore, by contrasting the
values of pt, the regions of bees, and bee mites, it is possible to determine the frequency of
keypoints that would actually be used for object matching.

The location information of the bee mites in the images is labeled in a boxed JSON format.
Bee mite region information can also be used to extract the mite area within an image.

The pt component of the keypoint was obtained from both the original and each
processed image. The pt components of the extracted keypoints were compared with the
coordinates of the bee mites, and the number of valid keypoints for bee mite identification
for each image processing step was calculated.

2.6.2. Image Matching Algorithm

Image matching algorithms could match detected keypoints in two images. Matching
performance was affected by the quality of the keypoints in the image. Image matching
was performed to verify the performance of the detected bee and honeybee keypoints and
to compare the changes according to the image processing method.

The BFMatcher function in OpenCV was used for image matching. The BFMatcher
is an algorithm that uses a brute-force match to compute all matchable keypoints in or-
der to produce good results. The matching parameters for the brute-force operations were
NORM_HAMMING, which uses the Hamming distance, and CrossCheck, which deter-
mines whether the matching results in both directions are the same. The image matching
result is represented as Dmatch with four components: queryIdx, trainIdx, imgIdx, and
distance. QueryIdx and trainIdx were the indices of the keypoints that are detected in
the images used for matching. The imgIdx is the component that is used when matching
multiple images, and the distance is the matching value between the keypoint vectors.
A small matching distance indicates a high similarity. The components of the matching
results are sorted in order of decreasing distance to select the top-matching objects with
high matching similarity.

In this study, image matching was implemented based on the original image, and
an image with histogram normalization and equalization. The top ten matching objects
were selected based on the distance component to compare the matching performance.
The selected matching objects are checked for anomalous matches. An abnormal match is
observed when different points on an object are matched.

The overall process of applying image processing, keypoint detection, and image
matching to 150 conditions under five measurement distance conditions and 30 image
processing combinations is shown in the flowchart in Figure 4.
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Figure 4. Flowchart of optimal image processing for feature point detection according to color and
image correction.

3. Results and Discussion

3.1. Color Model Conversion and Histogram Analysis of Bee and Bee Mite Image

To identify the optimal color model for detecting honeybee and bee mite keypoints,
RGB images were converted into four color models (Gray, HSV, Lab, and YCrCb). The image
and histogram analyses of the original RGB image and the converted color models are
shown in Figure 5. The average intensity of the 13 images for each color model was used
for histogram analysis.

The measured image data exhibited values in the range 0–255. The RGB color model
analysis showed that values 0–2 were not present in the R and G channels, and values
0–1 were not present in the B channel. In addition, the values 197–255 for G and those for
181–255 for B were not present. In the HSV color model, values 179–255 in the H channel,
224–255 in the S channel, and 0–3 in the V channel were not present.

In the LAB, the distribution was skewed toward values between 120 and 135 in
channels A and B, with no values between 0 and 1 and 200 and 255 in channel L; 0 and
105 and 159 and 255 in channel A; and 0 and 78 and 166 and 255 in channel B. YCrCb had
a distribution in which the frequencies of the Cr and Cb channels were clustered around
values between 120 and 135, with 0–2 and 192–255 for the Y channel; 0–98 and 155–255 for
the Cr channel; and 0–99 and 173–255 for the Cb channel. The single-channel color model,
gray, had no values between 0 and 2 and 192 and 255.

The distribution of the color values tended to be skewed toward some specific values
rather than the full range, and some values were empty. Therefore, normalization was
required to ensure that the color component values were evenly distributed over the range
of 0–255.
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Figure 5. Average histogram of each channel by color models: (a) RGB, (b) HSV, (c) Lab, (d) YCrCb,
and (e) Gray.

3.2. Histogram Normalization and Equalization for Bee and Bee Mite Image

Honeybee and bee mite images were subjected to histogram normalization and equal-
ization. After image processing, each beekeeping image was converted into 30 images,
including the original image. As shown in Figure 6, when histogram normalization was
applied, the pixel values were distributed in the range 0–255 and the contrast was improved.

 

Figure 6. Histogram equalization processing image: (a) original, (b) GHE, (c) CLAHE, (d) normalized
image, (e) normalized GHE, and (f) normalized CLAHE.
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The normalization algorithm required the maximum and minimum values of the data
(Equation (1)). If the measured data possessed values in the range 0–255, the normalization
algorithm might not work correctly. Figure 7 shows the normal and abnormal operations
of histogram normalization. If the values at either end of the distribution are 0 or 255,
the normalization algorithm will not work properly, and contrast improvement cannot
be expected.

 

Figure 7. (a) Normal operation and (b) abnormal operation of histogram normalization processing.
When values existed between 0 and 255, as in (b), histogram normalization did not work properly.

As shown in Figure 8, histogram equalization resulted in a relative improvement in
the contrast compared to the original. The equalization of the entire basis and CLAHE
yielded different results. The CLAHE method divides an image into grids and equalizes
each grid. This enhances the unique color of bees and cells. However, global equalization
is applied according to the entire image, which further improves the overall brightness.

 

Figure 8. Histogram equalization processing image: (a) original, (b) CLAHE, and (c) GHE. The red
boxes in each image represented bees infected with bee mite.

3.3. Detection of Keypoints in Bee and Bee Mite Image

The ORB was applied to the beekeeping images in 150 different cases to detect the
keypoints. The results showed that most keypoints were detected at a shooting distance of
300 mm. The number of keypoints tended to decrease as the shooting distance increased
(Figure 9). These results suggest that resolution-dependent measurement distances should
be considered when recognizing bees using images.
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Figure 9. Number of average keypoints of bees for each imaging distance in original and each color
model image.

The numbers of keypoints detected were compared using a color model. The average
number of detected keypoints in RGB and Gray were 152 and 155, and the mean error rate
and standard deviation were 1.03% and 1.39%, respectively. Similar performance results
were obtained, but the Gray model required a color model conversion from the original
data.

In the case of the YCrCb and Lab color models, up to four features were detected in
the images that were measured at a distance of 300 mm, with average detection frequency
of one and two. Therefore, it is not ideal to use the color models Lab and YCrCb to analyze
bees and bee mites.

The HSV color model detected the most keypoints at all measurement distances.
However, for HSV, the detected keypoints were often not located in the bee or bee mite
zones (Figure 10b). An increase in non-object keypoints may result in a decrease in the
matching rate of the bee mites. The keypoints for object recognition must be used accurately
as matching points, otherwise inaccurate recognition may occur. Based on the comparison
of the keypoint detection of five different color models (RGB, HSV, Lab, YCrCb, and Gray),
we determined that the RGB color model was suitable for beekeeping monitoring.

The average keypoint detection performance increased by 44%, from 278 to 398, using
the normalization algorithm (Table 2). Among the GHE and CLAHE methods used for
equalization, a higher number of keypoints was detected using GHE. However, the GHE-
detected keypoints were not specific to bees and bee mites (Figure 10). Therefore, CLAHE
is more suitable than GHE as an image-processing method for bee-monitoring data.

Table 2. Average number of keypoints of the RGB image according to imaging distance and image
processing.

300 mm 500 mm 700 mm 900 mm 1100 mm

Original 67 21 2 1 0
Normalization 276 50 30 12 1

GHE 456 93 50 31 1
CLAHE 502 105 34 24 1

Normalization and GHE 456 93 50 31 1
Normalization and CLAHE 758 129 66 37 2
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Figure 10. Keypoint detection images for original images of four color models (RGB (a1), HSV (b1),
Lab (c1), Gray (d1)), GHE processed image (a2–d2), and CLAHE processed image (a3–d3).

Based on the original data, an average of two keypoints was detected at a shooting
distance of 700 mm, an average of one keypoint at 900 mm, and zero keypoints at 1100 mm.
Compared with the 300-mm image data, the number of keypoints detected at a distance of
500 mm was reduced by 69%, from 67 to 21. For images with measurement distances of 700,
900, and 1100 mm, the detection performance decreased by 97%, 99%, and 100%, respectively,
compared to the 300-mm image. In particular, the images measured at a distance of 1100 mm
with only one or two keypoints were detected even after image processing. Images measured
at distances greater than 1100 mm were not available for analysis.

The keypoint detection performances were compared by applying 30 image-processing
methods. Histogram normalization and equalization can help improve the image contrast
and subsequently increase the number of keypoints. However, normalization may or may not
be applicable depending on the histogram distribution, and, thus, equalization should also
be applied. Consequently, the optimal image processing conditions were the application of
histogram normalization and histogram equalization (CLAHE) to the RGB color model.
The RGB color model can be effective for analysis because it can represent the reddish
brown of bee mite more effectively than other color models.

3.4. Validation and Histogram Analysis Based on Optimal Image Processing

To verify the performance of the optimal image-processing conditions, the frequency
of the keypoints was analyzed. Performance was validated using a bee image that was cap-
tured at a distance of 300 mm. When normalization was applied, the distribution of pixels
was split between 0 and 255 and the number of keypoints increased by 399% (Figure 11b).
Equalization improved the number of keypoints by 269% over the normalized data by
spreading out the distributions concentrated on a few values (Figure 11c). By integrating
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an RGB color model, normalization, and equalization (CLAHE) to bee and bee mite images,
the quality was enhanced considerably. The processed images contained more keypoints.
This image-processing method improved the recognition rate of honeybees and mites.
Image processing methods that affect an image locally were more effective than methods
that affect the entire image. Image processing to homogenize an image to distinguish
objects sharpened the image. Objects in images with increased sharpness have more points
that are distinct (darker or lighter) from their surroundings, and the frequency of feature
points may increase.

Figure 11. Histogram distribution change original image (a), after histogram normalization (b),
and normalization with CLAHE (c). Red, green, and blue lines represent the red, green, and blue
conponent of the RGB channels, respectively.

3.5. Analyzing Frequency of Keypoints in Bee Mite

The average values of the numbers of keypoints in the original and processed images
are shown in Figure 12. When image processing was applied to the data that were measured
at a distance of 300 mm, the number of keypoints was the highest, with an average of 31 in
the bee mite area. This was approximately 340% higher than the frequency before image
processing was applied. Through optimal image processing, 500 mm, 700 mm, and 900 mm
data showed an increase of 380%, 1733%, and 2400% in keypoints, respectively, for bee
mites. The data measured at a distance of 1100 mm did not detect any keypoints in the mite
area. Among beekeeping objects, such as bees, queens, and workers, the bee mite belongs
to the small scale. Therefore, the increase in keypoints of bee mites was noteworthy. This
may be a clue to solving the problem of simultaneous recognition of small and large objects.
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Figure 12. Number of average keypoints of bee mites for each image measurement distance in original
image and image processed with histogram normalization and histogram equalization (CLAHE). The
numbers above the bars were the average of keypoints.

3.6. Bee Mite Image Matching Results—-Comparison of Top Ten Matching Objects

We checked whether the optimal image processing method could improve bee mite
detection performance. The image matching with the coordinates of the bee mite was used
for verification.

Image matching was used for the bee mite region. If the matching point was not
correct, it was judged as an abnormal match (Figure 13).

 

Figure 13. Normal and abnormal matching points in image matching between bee (left) and bee mite
(right): (a) source image and (b) matching result. Each line connects the matched keypoints. The
lines provide a visual representation of the normal and abnormal match between the bee mite on the
bee and the bee mite image.
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The original data measured at a distance of 300 mm could not generate 10 matching
objects, in accordance with the image. Abnormal matches were 3.7 (50%) based on an
average of 7.4 matching objects. Given image processing, the top ten matching objects
were generated from all images. For the processed images, an average of 3.7 (38%) abnor-
mal matches were obtained in the top ten matching objects. Thus, through optimal image
processing, the matching performance could be improved by 12% based on images with a
measurement distance of 300 mm (Figure 14).

Figure 14. Normal matching result of bee mite of image data measured at distances of 300 and
500 mm.

For the data measured at a distance of 500 mm, cases were present that produced
fewer than 10 matching objects for each image. On average, 1.5 (64%) of the abnormal
matchings were found in the 2.3 matching objects. Even with image processing, an image
with a distance of 500 mm generated fewer than ten matching objects. Image processing
increased the average number of matching objects to 4.9 but resulted in abnormal matching
of 4.6 (94.4%). In other words, for a beecomb RGB image in a case where the measurement
distance is longer than 500 mm, the bee mite-matching performance may be degraded.

For the images that were measured at distances greater than 700 mm, the object
matching algorithm did not work regardless of the image processing. Given a camera with
a resolution of 2048 × 1536, bee mite RGB data measured at a distance greater than 700 mm
could not be used for image matching.

4. Conclusions

Bee mites cause more economic damage than other honeybee pests and diseases. Bee
mites are small and reddish-brown in color, making it difficult to distinguish them from
bees when attached to them. This has generated the need for technology that can objectively
and quickly test for Varroa mite outbreaks. Image-based analytics, such as object detection,
possess the potential to recognize bee mites. However, their small size and protective color
may be a problem for computer vision systems.

Therefore, in this study, we applied image processing, keypoint detection, and image
matching algorithms to images of bees and bee mites to improve the matching rate of bee
mites. The frequency and location of the keypoints were analyzed and the quality of the
matched objects was evaluated accordingly.

The analysis results for 30 combinations of image processing methods, including color
model conversion, histogram normalization, histogram equalization, and five measurement
distances, are as follows: applying normalization and equalization (CLAHE) based on
the RGB color model to bee and bee mite images resulted in better keypoint detection by
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reinforcing the image quality. The effectiveness of the optimal image processing method
was observed through the data that were measured at 300 mm of the 300–1100 mm measure-
ment distance, with improved keypoint detection and matching performance. Regardless
of image processing, it was difficult to match images to bee mites at the measurement
distance of 700 mm or more. At measurement distances of 500 mm, image matching of bee
mite images was possible, but with a high mismatch rate.

The improved matching quality can lead to improved detection performance of deep
learning-based algorithms. The optimal image processing method and measurement
distance for identifying bee mites can be used to simultaneously detect beekeeping objects
with different sizes and shapes. The results of this study can be used as basic supporting
data for recognizing bee mites, which are small objects, and bees, which are relatively
large objects. In future research, we would like to apply this image processing condition
to deep learning-based object detection to develop a model for identifying bee mites and
beekeeping objects, such as bee, larva, cell, egg.
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Abstract: The study of plant phenotypes based on 3D models has become an important research
direction for automatic plant phenotype acquisition. Building a labeled three-dimensional dataset
of the whole growth period can help the development of 3D crop plant models in point cloud
segmentation. Therefore, the demand for 3D whole plant growth period model datasets with organ-
level markers is growing rapidly. In this study, five different soybean varieties were selected, and
three-dimensional reconstruction was carried out for the whole growth period (13 stages) of soybean
using multiple-view stereo technology (MVS). Leaves, main stems, and stems of the obtained three-
dimensional model were manually labeled. Finally, two-point cloud semantic segmentation models,
RandLA-Net and BAAF-Net, were used for training. In this paper, 102 soybean stereoscopic plant
models were obtained. A dataset with original point clouds was constructed and the subsequent
analysis confirmed that the number of plant point clouds was consistent with corresponding real
plant development. At the same time, a 3D dataset named Soybean-MVS with labels for the whole
soybean growth period was constructed. The test result of mAccs at 88.52% and 87.45% verified the
availability of this dataset. In order to further promote the study of point cloud segmentation and
phenotype acquisition of soybean plants, this paper proposed an annotated three-dimensional model
dataset for the whole growth period of soybean for 3D plant organ segmentation. The release of
the dataset can provide an important basis for proposing an updated, highly accurate, and efficient
3D crop model segmentation algorithm. In the future, this dataset will provide important and
usable basic data support for the development of three-dimensional point cloud segmentation and
phenotype automatic acquisition technology of soybeans.

Keywords: 3D reconstruction; the whole growth period; soybean; point cloud segmentation; dataset

1. Introduction

With the continuous development of plant phenomics, three-dimensional plant phe-
notypic analysis has become a challenging research topic. Using deep learning for point
cloud segmentation is the foundation of crop phenotype measurement and breeding. The
common point cloud datasets used for training are scarce and difficult to obtain, and there
is no commonly used basic data for organ instance segmentation for phenotype extraction.
In addition, due to the complex structure of plants, the data annotation work needs consid-
erable manual processing. A well-labeled dataset is essential for the segmentation of plant
point clouds using deep learning. In order to obtain a well-labeled dataset, it should have
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the following characteristics: complete plant structure, high precision, and the ability to
cover multiple varieties and growth periods. Consequently, building a labeled crop plant
point cloud dataset of the entire growth period is a key step toward achieving accurate
crop point cloud segmentation using deep learning.

Although the lack of well-labeled 3D plant datasets limits the further progress of
plant point cloud segmentation [1], many scholars have made significant advancements in
building plant point cloud segmentation datasets in recent years. Zhou et al. [2] manually
segmented the 3D point cloud data of soybean plants and gave each point a real label.
This was used as the training set for point cloud segmentation and real ground data for
evaluating segmentation accuracy using machine learning methods. Li et al. [3] used
the MVS-Pheno platform to obtain multi-view images and point clouds of corn plants in
the study of organ-level point cloud automatic segmentation of corn branches based on
high-throughput data acquisition and deep learning. At the same time, the research team
developed a data annotation tool kit specifically for corn plants, called Label3DMatch, and
annotated the data to ultimately build a training dataset. Conn et al. [4] planted tomatoes,
tobacco, and sorghum under the five growth conditions of ambient light, shade, high
temperature, strong light, and drought, and performed 3D laser scanning (311 tomato
scans, 105 tobacco scans, and 141 sorghum scans) on the plant stem structure during
20–30 days’ development. A 3D plant dataset was constructed after summarizing the
species, conditions, and time points. Li et al. [5] used this original dataset and manually
marked the semantic labels belonging to stems and leaves using the semantic segmenta-
tion editor (SSE) tool and established a well-labeled point cloud dataset for plant stem
leaf semantic segmentation and leaf instance segmentation. Hideaki et al. [6] proposed a
3D phenotype platform that can measure plant growth and environmental information
in a small indoor environment to obtain plant image datasets. In addition, annotation
tools were introduced, which can manually, but effectively, create leaf tags in plant im-
ages on a pixel-by-pixel basis. Barth et al. [7] rendered a composite dataset containing
10,500 images through Blender. The scene used had 42 program-generated plant models
and random plant parameters. These parameters were based on 21 empirically measured
plant characteristics at 115 locations on 15 plant stems. The fruit model was obtained
through 3D scanning and the plant part textures were collected through photos as a refer-
ence dataset for modeling and evaluating the segmentation performance. David et al. [8]
established a large, diverse, and well-labeled wheat image dataset, called the Global Wheat
Head Detection (GWHD) dataset. It contained 4700 high-resolution RGB images from
multiple countries and 190,000 wheat head markers at different growth stages, with a wide
range of genotypes. Wang et al. [9] constructed a lettuce point cloud dataset consisting of
620 real and synthetic point clouds fused together for 3D instance segmentation network
training. Lai et al. [10] first used the SfM-MVS method to obtain point clouds of these plant
population scenes, which were then annotated similarly to the S3DIS dataset to obtain data
that could be trained and tested. In order to provide important and available basic data
support for the development of three-dimensional point cloud segmentation and pheno-
type automatic acquisition technology of soybeans, this study uses the multiple-view stereo
technology to construct 102 soybean three-dimensional plant models by taking advantage
of its low cost, fast speed and high precision. At the same time, it is manually labeled to
construct the dataset for point cloud segmentation. Compared with other datasets, this
dataset contains three-dimensional information on soybean plants during the whole growth
period, which has certain advantages in model accuracy and quantity.

There are several key binocular stereovision spatial positioning technologies involving
image acquisition, camera calibration, image preprocessing, edge feature extraction, and
stereo matching. Multi-vision is based on binocular vision, adding one or more cameras as
a measuring assistant so that multiple pairs of images from different angles of the same
object can be obtained. For the 3D reconstruction of a single plant, this method is more
suitable for low sunlight conditions in the laboratory (Duan et al. [11]; Hui et al. [12]). This
method can also be used for 3D reconstruction in the field such as studying overall crop
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canopy volumes (Biskup et al. [13]; Shafiekhani et al. [14]). Compared with other methods,
the multiple-view stereo method requires relatively simple equipment, and the model
can be established quickly and effectively, with minimum human-computer interaction
required. Although the reconstruction speed is average and the requirements for the
reconstruction of environmental factors are high, the reconstruction accuracy is high, it
is easy to use, and the required equipment price is relatively low. Zhu et al. [15] built a
soybean digital image acquisition platform based on the principle of constructing a multi-
perspective stereovision system with digital cameras covering different angles, effectively
improving the problem of mutual occlusion between soybean leaves. The morphological
sequence images of target plants for 3D reconstruction were then obtained. Nguyen
et al. [16] described a field 3D reconstruction system for plant phenotype acquisition. The
system used synchronous, multi-view, high-resolution color digital images to create real 3D
crop reconstructions and successfully obtained the plant canopy geometric characteristic
parameters. Lu et al. [17] developed an MCP-based SfM system using multiple-view stereo
technology and studied the appropriate 3D reconstruction method and the optimal shooting
angle range. Choudhury et al. [18] devised the 3DPhenoMV method. Plant images captured
from multiple side views were used as the algorithm input, and a 3D model of the plant
was reconstructed using multiple side views and camera parameters. Miller et al. [19] used
low-cost hand-held cameras and SfM-MVS to reconstruct a spatially accurate 3D model
of a single tree. Shi et al. [20] adopted the multi-view method, allowing information from
two-dimensional (2D) images to be integrated into the three-dimensional (3D) plant point
cloud model, and evaluated the performance of 2D and multi-view methods on tomato
seedlings. Lee et al. [21] proposed an image-based 3D plant reconstruction system based on
multiple UAVs to simultaneously obtain two images from different views of plants during
growth and reconstruct 3D crop models with moving structures, based on multiple view
stereo algorithms and metric structures. Sunvittayakul et al. [22] developed a platform
for acquiring 3D cassava root crown (CRC) models using close-range photogrammetry
for phenotypic analysis. This novel method is low cost, and it is easy to set up the 3D
acquisition requiring only a background sheet, a reference object, and a camera and is
suitable for field experiments in remote areas. Wu et al. [23] developed a small branch
phenotype analysis platform, MVS-Pheno V2, based on multi-view 3D reconstruction,
which focused on low plant branches and realized high-throughput 3D data collection.

In this study, the multiple view stereo method (MVS) was used to reconstruct soybean
plants. A soybean image acquisition platform was constructed to obtain multi-angle images
of soybean plants at different growth stages. Based on the silhouette contour principle, the
model was established by contour approximation, vertex analysis, and triangulation, and
3D point cloud and original soybean datasets were constructed. Meanwhile, the obtained
3D models of soybean were manually labeled using CloudCompare v2.6.3 software. An
annotated 3D dataset called Soybean-MVS, including 102 models, was established. Due
to the inherent changes in the appearance and shape of natural objects, the segmentation
of plant parts was a challenge. In this paper, to verify the availability of this dataset,
RandLA-Net and BAAF-Net point cloud semantic segmentation networks were used to
train and test the Soybean-MVS dataset.

2. Materials and Methods

2.1. Method Process

In 2018 and 2019, we cultivated high-quality soybean plants including DN251, DN252,
DN253, HN48, and HN51 varieties. An original 3D soybean dataset and labeled 3D soy-
bean plant dataset were constructed for the whole soybean growth period, consisting of
the first trifoliolate stage (V1), second trifoliolate stage (V2), third trifoliolate stage (V3),
fourth trifoliolate stage (V4), fifth trifoliolate stage (V5), initial flowering stage (R1), full
bloom stage (R2), initial pod stage (R3), full pod stage (R4) initial seed stage (R5), full seed
stage (R6), initial maturity stage (R7), and full maturity stage (R8). Among them, V repre-
sents the vegetative growth stage and R represents the reproductive growth stage. Table 1
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shows the basic characteristics of experimental soybean materials, including soybean vari-
eties, growing days, planting methods, and active accumulated temperature greater than
10 ◦C. The research process of this paper mainly involved 3D reconstructions based on the
multiple view stereo method, manually labeling data to build datasets, and training and
evaluating datasets through point cloud segmentation. Figure 1 details the overall process
of building a soybean 3D dataset for point cloud segmentation.

Table 1. Basic characteristics of soybean materials. This shows the basic attribute information
of soybean materials selected for this experiment, including soybean varieties, childbearing days,
accumulated temperature and planting methods.

Variety Childbearing Days >10 ◦C Accumulated Temperature Planting Method

DN 251 125 2600 ◦C potted planting
DN 252 124 2500 ◦C potted planting
DN 253 115 2350 ◦C potted planting
HN 48 118 2350 ◦C potted planting
HN 51 126 2600 ◦C potted planting

Figure 1. The process of building a soybean 3D dataset for point cloud segmentation. The process
mainly includes three parts: 3D reconstruction, building the dataset, and point cloud segmentation.
3D reconstruction includes: (A) original image acquisition; (B) image preprocessing; (C) generation
of 3D model skeleton; (D) generation of 3D model texture. Building the dataset includes: (E) data
annotation; (F) construction of annotated dataset. Point cloud segmentation includes: (G) point cloud
segmentation network selection; (H) result of point cloud segmentation.

2.2. Image Acquisition

This study prepared the image acquisition of 3D reconstruction in the room. The
tools used to collect plant images included: (1) photo studio, (2) Canon EOS 600D SLR
(Canon (China) Co. Ltd., Beijing, China) digital camera and camera rack, (3) rotary table,
(4) calibration pad, and (5) white light absorbing cloth. A light source was added around
the plant to guarantee the required basic environment needed for 3D reconstruction, based
on the multiple view stereo method. The pot was about 90 cm from the camera. During
the image acquisition for each pot of plants, we placed the plant pots on the rotary table,
positioned a dot calibration pad at the plant roots, lowered the camera height, manually
operated the rotary table, took a photo every 10◦~25◦ (this study determined 24◦ according
to the black dot on the calibration pad), and collected 15 photos after a circle of rotation.
Then, according to the height of the plant, we adjusted the camera height three times on
average, from low to high, and repeated the process. Finally, 60 photos were obtained by
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taking four sets of circular rotation shots at different angles. According to the soybean
growth, image acquisition was conducted at each growth stage (Figure 2). The final number
of images of different varieties of soybean plants is shown in Appendix A Table A1.

 
(a) (b) 

Figure 2. Soybean 3D reconstruction image acquisition. (a) Soybean image acquisition platform.
(b) Schematic diagram of soybean plant 3D reconstruction image acquisition. The 3D reconstruc-
tion was carried out in a laboratory with no wind and sufficient light, using multiple-view stereo
technology (MVS).

2.3. Three-Dimensional Reconstruction

This study obtained a large number of corresponding soybean plant images (about 60)
from multiple perspectives. In addition, this study preprocessed basic image operations
such as noise removal and distortion correction based on Python. At the same time, in the
process of three-dimensional modeling, it is necessary to connect and combine images from
different directions. Therefore, the relationship between the spatial positions of various
images is particularly important. This study adopted the auxiliary camera calibration
method of the calibration device, using a calibration pad to determine the problem of image
overlap, and to determine the shooting direction of various multi-angle images. The model
was established using the “contour extraction”, “vertex calculation”, and “visual shell
generation” steps of the silhouette contour method. Silhouette contour is the contour line of
the image projected on the imaging plane, which is an important clue to understanding the
geometric shape of the object. When a space object is observed from multiple perspectives
by perspective projection, a silhouette line of the object can be obtained in the corresponding
screen of each perspective. Here the silhouette line and the corresponding perspective
projection center together determine a cone of general shape in three-dimensional space,
and the object to be observed is located inside this cone. By analogy, increasing the number
of viewing angles of the target object from different directions can make the shape of each
corresponding cone approach the surface of the object, so as to carry out three-dimensional
visualization of the shape features of the target object.

Firstly, we masked the multi-angle images, selected the position of the soybean plants
in each image, and purified all the background and calibration pad areas unrelated to the
soybean plants, leaving only the complete soybean plant information. Then, according
to the partial information of the target object in each multi-angle image, we obtained
several approximate polygonal contours, numbered each approximate contour, calculated
three vertices from the polygon contour, and recorded the information of each vertex. A
triangular grid was used to divide the complete surface to outline the surface fine joints.
The above is the realization of the “contour extraction” and “vertex calculation and visual
shell generation” steps of the silhouette contour method. At that point, only the soybean
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plant skeleton had been generated. In addition, further optimization operations such as
volume optimization and surface refinement were required to obtain the final soybean
plant surface morphology model. Finally, according to the corresponding orientation
information characteristics of the three-dimensional surface contour soybean plant model
obtained above, combined with the orientation information of different multi-angle images,
texture mapping of its surface was performed, so that the model had more visual features
and better described the characteristics of actual objects. Following three-dimensional
reconstruction, 102 original models were obtained and named according to the year, date,
and variety.

2.4. Data Annotation

The data annotation work in this study was completed using the open-source software
CloudCompare v2.6.3. The acquired soybean 3D plant model (.obj format file) was imported
into CloudCompare software, the leaves, main stems, and stems were manually segmented
and marked on the soybean plants, and each point cloud was given a real label. At the same
time, each segmented and marked organ was sampled points on a mesh. The number of
sampling points was fixed at 50,000. The labeled point cloud information included xyzRGB
information and was stored in .txt format. The soybean plant leaves, main stems, and
stems were marked, as shown in Figure 3 (using 20180612_HN48 as an example). Finally, a
labeled soybean 3D point cloud dataset named Soybean-MVS was constructed, including
102 3D models, of which 89 models were used as the training set and 13 models were used
as the test set.

Figure 3. Manually mark leaves, main stems, and stems of soybean plants. The organs of the soybean
plants were manually labeled.

2.5. Point Cloud Segmentation Network

For the semantic segmentation of the soybean-MVS 3D point cloud dataset, this
study selected two deep learning-based point cloud segmentation network architectures,
(1) RandLA-Net [24]; (2) BAAF-Net [25] to test its availability. Appendix A Table A2
shows the hardware, software, and super parameter configuration of the deep learning
model. Figure 4 shows the architecture of the two-point cloud segmentation semantic
models. We have already submitted the data and computer programs used for the analysis,
which will allow the results of our experiments to be reproduced by anyone. The link
addresses are https://github.com/18545155636/BAAF-Net.git (accessed on 1 January 2023)
and https://github.com/18545155636/randla-net.git (accessed on 1 January 2023). The
following briefly describes the key methods of these architectures for encoding 3D point
cloud local geometry. Please refer to the original text for the default structure and other
details of the architecture.

50



Agriculture 2023, 13, 1321

(a) 

 
(b) 

Figure 4. Point cloud semantic segmentation architecture. (a) RandLA-Net semantic segmentation
architecture diagram. (b) BAAF-Net semantic segmentation architecture diagram. The dataset was
trained and tested on two networks.

2.5.1. RandLA-Net

RandLA-Net is an effective and portable network that can identify the semantics of
each point and apply it to large-scale point clouds. It uses the local feature aggregation
module (LFA) to gradually improve the receptivity of each 3D point, which can effectively
save the geometric details of the point cloud. The local feature aggregation module involves
three main steps:

The first step is local spatial encoding (LocSE). The coordinates and features of a point
(center point) in the point cloud P and K points adjacent to the point are taken as input. It
consists of three parts: (1) Finding neighboring points, (2) relative point position encoding,
and (3) point feature augmentation. A new adjacent feature of the center point is output,
which encodes the local geometric feature of the center point. This module can significantly
learn the local geometric features of point clouds, which will eventually play a beneficial
role in learning the complex local structure information of the entire network. The second
step is known as attention pooling. The LocSE output is used as the input of this step. This
includes two parts: (1) computing attention scores and (2) weighted summation. Then,
the feature vectors generated by the center point aggregated local features are output. The
third step is called the divided residential block. It consists of multiple LocSE and attention
pooling layers plus a skip connection.

RandLA-Net regards each point as the center point and each point aggregates the
information of the surrounding points to itself. According to the principle that the points
sampled in the whole point cloud by random sampling should conform to a normal
distribution, random sampling is directly adopted. By employing this, the sampling speed
can be greatly accelerated.
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2.5.2. BAAF-Net

BAAF-Net uses a bilateral structure to increase the local context information of a point,
while adaptively fusing multi-resolution features, to propose a new point cloud semantic
segmentation network, involving the following two steps:

The first step is the bilateral context module. This consists of multiple bilateral context
blocks (BCBs). A BCB is composed of bilateral augmentation and mixed local aggregation.
During bilateral augmentation, the neighborhood information is aggregated around a point
to the point to obtain the local context information in the geometric and feature spaces, but
this is insufficient to express the domain information. Then, the local geometric context
information is adjusted through the local semantic context information, which in turn is
adjusted through the enhanced local geometric context information. Finally, MLP is used
to further process the enhanced local geometric, and local semantic, context information
and stack them together to obtain the enhanced local context information. The mixed
local aggregation process uses the maximum pooling method, that is, the maximum K
values of each feature are calculated as the value of the feature of point i. Then, the mean
point of the local neighborhood of the point is learned through MLP, and the feature of
the point is taken as the feature of point i. Lastly, the above two aggregated features
are spliced to obtain the final feature of point i. The bilateral context module is used to
combine bilateral context modules and continuously output the downsampled points to
BCB, which is also the corresponding encoder part. The second step is the Adaptive Fusion
Module. This part corresponds to the decoder. The encoder will output feature maps with
different resolutions. The output of each layer is gradually upsampled to obtain full-size
feature maps. The previous layer’s feature maps need to be fused each time upsampling is
performed. Then, the full-size feature maps sampled on these multiple scales need to be
fused. To obtain different-sized important information, the full-size feature map is inputted
into MLP to obtain the point level information, which is then normalized using Sofmax.
Finally, the integrated feature map for semantic segmentation is obtained by fusing the
normalized point level information and the full-size feature map after upsampling.

BAAF-Net enhances its local context by making full use of geometric and semantic
features in bilateral structures. It fully explains the uniqueness of points from multiple
resolutions and represents feature maps at the point level according to adaptive fusion
methods for accurate semantic segmentation.

2.6. Evaluation Index

In this study, the average value of the IoU scores of three categories (mIoU) and the
average accuracy (mAcc) were used to evaluate the success of each architecture. The number
of true positives, true negatives, false positives, and false negatives in each category were
expressed as TP, TN, FP, and FN, respectively. Then, the intersection over union (IoU) of
each semantic class, the total accuracy (Acc) of each plant, the mean score of IoU (mIoU),
and the mean accuracy (mAcc) were defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

IoU =
TP

TP + FP + FN
, (2)

mAcc =
1
n

n

∑
i=1

Acc, (3)

mIoU =
1
k

k

∑
i=1

IoU, (4)

where n represents the total number of datasets in the test set (13 data) and k represents the
total number of categories.
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3. Results

3.1. Soybean-MVS Dataset
3.1.1. Original 3D Dataset

This paper tracked and recorded the entire growth period of five varieties of soybean
and created a 3D reconstruction of the soybean plants during each period. A total of 102
3D virtual soybean plants were obtained and a 3D point cloud dataset of original soybean
plants was constructed. Appendix A Table A3 details the point cloud of the original soybean
3D plant dataset. Figure 5 shows the point cloud information map of the original soybean
three-dimensional plant dataset. Figure 5a displays the comparison results of the total point
cloud cover of stage V and stage R using a t-test. It can be seen that there was a significant
difference between the point cloud covers of stage R and stage V, with the stage R point
cloud cover being significantly larger than that of stage V. Figure 5b shows the comparison
results of the reconstructed point cloud cover in 2018 and 2019 using a t-test. It can be
seen that the reconstructed model had almost the same point cloud cover over two years.
Figure 5c is the comparison map of the point cloud cover of soybean plants at different
development stages following an ANOVA variance test, among which the point cloud
cover of soybean plants at the R5 stage is the greatest, indicating that soybean plants grow
the most vigorously during the R5 stage and reach the peak stage of their development.
The two control graphs show that the more complex the soybean plant, the greater the
model point cloud cover. Figure 5d is the comparison map of point cloud cover of different
soybean varieties after an ANOVA variance test, and the difference in point cloud cover
among different varieties is not found to be significant.

 
(a) (b) 

 
(c) (d) 

Figure 5. Point cloud information map of original soybean 3D plant dataset. (a) Comparison chart of
total point cloud amount of stage V and stage R. (b) Comparison chart of reconstructed point cloud
amount in 2018 and 2019. (c) Comparison chart of point cloud amount in different development
stages. (d) Comparison chart of point cloud amounts of various varieties.
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3.1.2. Labeled 3D Dataset

This study annotated the original dataset. In order to homogenize the point cloud,
this study conducted network point collection for each labeled organ, and the number of
sampled point clouds was controlled at 50,000. A labeled soybean 3D point cloud dataset
was constructed. Figure 6 compares the point amount of the original 3D dataset and the
sampled point cloud amount of the labeled 3D dataset, taking the DN252 soybean plant
as an example. The leaves, main stems, and stems of three soybean plant organs were
manually marked. Table 2 shows the number of organs of different types of soybean plants
after labeling.

 
Number of points: 4671 

 
Number of sampled point clouds: 700,000 

(a) (b) 

 
Number of points: 37,823 

 
Number of sampled point clouds: 4,700,000 

(c) (d) 

Figure 6. Comparison between the amount of points in the original 3D dataset and the amount
of sampled point clouds in the labeled 3D dataset. (a,c) Point volume of the original dataset.
(b,d) Sampled point cloud volume of labeled dataset.

Table 2. Number of organ markers in different soybean plants. The number of leaves, the number of
main stems, and the number of stems were compared by counting the organs of labeled soybean plants.

Leaf Main Stem Stem

DN251 756 22 182
DN252 813 22 188
DN253 718 20 165
HN48 649 21 161
HN51 437 17 125

Finally, 89 labeled models were divided into a training set, and 13 labeled models were
divided into a test set. The point cloud amount distribution of each organ in the training
set and test set is shown in Table 3.

Table 3. Point cloud amount distribution of each organ in the training set and test set (%). The
proportion of cloud cover of different organ points in the training set and the test set was calculated.

Leaf Main Stem Stem

Soybean-MVS training models 78.08 2.72 19.20
Soybean-MVS test models 79.13 2.36 18.51
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3.2. Point Cloud Segmentation

The test results of 20 models in the Soybean-MVS dataset on the RandLA-Net and
BAAF-Net models are shown in Table 4.

Table 4. Point cloud segmentation test results (%). The results of the dataset on two models, including
IoU, mIoU, and mAcc.

RandLA-Net BAAF-Net

IoU
leaf 88.58 88.83

main stem 57.03 27.25
stem 45.54 48.23

mIoU 63.72 54.77

mAcc 88.52 87.45

Figure 7 shows the Acc of the same soybean plant (DN251) at different growth stages
after RandLA-Net and BAAF-Net network tests. Overall, the mAcc tested by the two
networks was high. For the different complex stages of soybean plant growth, the segmen-
tation accuracy was high and there was no significant difference. Among them, the Acc
value in the R5 period was the highest, which may be because the soybean plants are the
most vigorous and the leaves are the most luxuriant during the R5 period. The effect of the
two networks on the leaf segmentation was better than on the main stems and stems. At
the R8 stage, because the soybean plant was leafless, the Acc value was lowest.

Figure 7. Acc results of soybean plants tested in the RandLA-Net network and BAAF-Net network during
the whole growth period. This shows a comparison of the Acc results of the test set on the two models.

Figure 8 shows the label data, label data visualization results, RandLA-Net test vi-
sualization results, and BAAF-Net test visualization results of the DN251 soybean plants.
From the results, both networks separated soybean plant leaves, main stems, and stems,
but there were still identification errors in some details. Figure 9 highlights an example of a
false prediction with a red ellipse. In terms of leaves, both networks performed well, which
may be due to the regular leaf shape and a large amount of training, and they were all
segmented. However, Figure 9a,b show that the two networks recognized stems as leaves
when recognizing the petiole. In terms of the main stem, BAAF-Net performed worse than
RandLA-Net. Figure 9c,d show that some main stem components were identified as stems.
This may be due to the small amount of main stem training and the similar morphology of
main stems and stems. In terms of the stem, Figure 9e,f show that both network test results
identified the stems as part as leaves. In addition, Figure 9g,h show that RandLA-Net
identified the connection between main stems and stems as a leaf, while the BAAF-Net
performed well.
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Figure 8. Soybean plant annotation data, RandLA Net, and BAAF Net visualization results in
different stages. By contrast, this shows the overall segmentation effect of the two models.

RandLA-Net BAAF-Net 

 
(a) (b) 

 
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Example of error prediction. (a,b) Examples of false prediction of the petiole. (c,d) Examples of
main stem error prediction. (e,f) Examples of stem error prediction. (g,h) Examples of error prediction at
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the connection of main stem and stem. (a,c,e,g) The RandLA-Net test results. (b,d,f,h) BAAF-Net test
results. By contrast, this shows the local segmentation difference between the two models.

4. Discussion

This paper explored the growth of soybean plants based on 3D reconstruction technol-
ogy. Figure 10 shows the full soybean plant growth period, using the three-dimensional
model of DN251 soybean plants constructed in this study as an example. The original three-
dimensional soybean plant whole growth period dataset and the labeled three-dimensional
plant soybean whole growth period dataset constructed in this study can provide an impor-
tant basis for solving and tackling issues raised by breeders, producers, and consumers. For
example, research on crop phenotypic measurement and other issues requires the effective
phenotypic analysis of plant growth and morphological changes throughout the growth
period. Considering this, we propose the use of point cloud segmentation.

Figure 10. The life of soybean.

First of all, this paper chose the multiple-view stereo method to reconstruct the entire
growth period of soybean plants. This method obtains detailed information about plants
through crop images and extracts the phenotypic parameters of crops through related
algorithms. Cao et al. [26] developed a 3D imaging acquisition system to collect plant
images from different angles to reconstruct 3D plant models. However, only 20 images
were collected in that study to meet the minimum image overlap requirements for 3D
model reconstruction. In our study, 60 soybean plant images from different perspectives
were collected at four different heights during image acquisition, so the 3D model obtained
after 3D reconstruction was more accurate. At the same time, a three-dimensional dataset
of the whole growth period of the original soybean was established. By comparing the
original point cloud amount of the V and R stages, the relationship between the point
cloud amount of the three-dimensional soybean plant model and the growth period was
analyzed, which confirmed that the number of plant point clouds was consistent with
corresponding real plant development. This provides an important basis for more accurate
three-dimensional reconstruction of crops in the whole growth period in the future.

Secondly, training point cloud segmentation models usually require a large amount of
tag data, the cost of which is very high, particularly in intensive prediction tasks such as
semantic segmentation. In addition, the plant phenotype dataset also faces the additional
challenges of severe occlusion and different lighting conditions, which makes obtaining
annotations more time-consuming (Rawat et al. [27]). Gong et al. [28] used a structured light
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3D scanning platform, based on a special turntable, to obtain the 3D point cloud data of
rice panicles, and then used the open-source software LabelMe to mark point by point and
create a rice panicle point cloud dataset. Boogaard et al. [29] manually marked cucumber
plants twice with CloudCompare and constructed annotated dataset A and annotated
dataset B. Dutagaci et al. [30] obtained 11 3D point cloud models of Rosa through X-ray
tomography and manually annotated them, creating a labeled dataset to evaluate 3D plant
organ segmentation methods, called the ROSE-X dataset. However, these datasets do not
emphasize the importance of three-dimensional data of the entire growth period of plants
and the amount of data is relatively small, which lacks integrity for subsequent studies
such as the phenotypic measurement of whole plant growth periods. In our study, Soybean-
MVS, a labeled three-dimensional dataset of the whole growth period of soybean, was
constructed, which fully meets the data volume requirements of in-depth learning point
cloud segmentation training and evaluation and ensures the integrity of the dataset used
for the point cloud segmentation research. This not only provides a basis for measuring
plant phenotype, bionic species, and other issues, but may also provide a basis for exploring
the natural laws of plant growth.

Thirdly, in the process of labeling the dataset in our paper, since the soybean plant main
stem and stem information are relatively similar, and a soybean plant only has one main
stem, the number is much lower than leaf and stem, leading to a low segmentation accuracy
of the main stems. There is a situation where the points on the petiole were classified
as leaves. However, the visualization results show that each point cloud segmentation
network model still segmented most of the points on the main stems. Therefore, the
Soybean-MVS dataset can ensure the effectiveness of the point cloud segmentation task.

Finally, the Soybean-MVS dataset is universal. The universality of datasets is crucial
to empirical research evaluation for at least three reasons: (1) providing a basis for mea-
suring progress by copying and comparing results; (2) revealing the shortcomings of the
latest technology, thus paving the way for novel methods and research directions; (3) the
method can be developed without first collecting and tagging data (Schunck et al. [31]).
Furthermore, data with high universality can meet the requirements of different point cloud
segmentation models and obtain a highly reliable segmentation model. Turgut et al. [32]
evaluated their performance on real rose shrubs based on the ROSE-X and synthetic model
datasets and adjusted six-point cloud-based deep learning architectures (PointNet, etc.) to
subdivide the structure of a rosebush model. In our paper, RandLA-Net and BAAF-Net
were used for testing (also applicable to other 3D point cloud classification and segmenta-
tion models based on depth learning). In the future, we will continue to expand and adjust
the Soybean-MVS dataset and apply it to other point cloud segmentation network models,
to further improve it.

5. Conclusions

In order to provide important and usable basic data support for the development of
three-dimensional point cloud segmentation and phenotype automatic acquisition technol-
ogy of soybeans, this paper adopted the multiple-view stereo technology and obtained
60 photos in each group through four different height circular rotation shots. Three-
dimensional plant reconstruction was carried out using the profile contour method to
construct the original three-dimensional soybean plant dataset of the whole growth period.
It was concluded that the number of point clouds was consistent with the actual plant
development. The leaf, mainstem and stem in the obtained data and sample points were
manually annotated on a mesh. A soybean three-dimensional plant dataset named Soybean-
MVS was constructed for point cloud semantic segmentation. Finally, RandLA-Net and
BAAF-Net models were used to evaluate the dataset, and the mAcc of the test results were
88.52% and 87.45%, respectively. The usability of the Soybean-MVS labeled 3D plant dataset
was verified. The publication of this dataset provides an important basis for proposing an
updated, high-precision, and efficient 3D crop model segmentation algorithm. In the future,
we will constantly update and supplement the dataset, and apply it to more point cloud
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segmentation models to make it more universal. At the same time, the automatic acquisition
and breeding of soybean phenotype will be further explored on the basis of this dataset.
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Appendix A

Table A1. Image collection quantity of soybean plants of different varieties in different stages.

V1 V2 V3 V4 V5 R1 R2 R3 R4 R5 R6 R7 R8

2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
DN251 0 60 0 60 60 60 60 60 0 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60
DN252 0 60 0 60 60 60 60 60 0 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60
DN253 0 60 0 60 60 60 60 60 0 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60
HN48 0 60 0 60 60 60 60 60 0 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60
HN51 0 60 0 60 60 60 60 60 0 60 60 60 60 60 60 60 0 60 60 60 60 60 60 60 60 60

Notes: In this study, five kinds of soybeans, DN251, DN252, DN253, HN48 and HN51, were planted in the pot
farm of Northeast Agricultural University in 2018 and 2019, and images were collected during the whole growth
period of soybeans. Table 1 shows the specific number of images collected.

Table A2. Hardware, software, and hyperparameter configuration of deep learning models.

Catalogue Content

CPU Core i9-12900kf
RAM 64 GB
GPU NVIDIA 3090 (24 GB)

operating system Ubuntu 18.04
Cuda 11.3

Cudnn 8.4
Data Annotation CloudCompare

Deep learning framework Tensorflow 2.6.0
Anaconda Anaconda 5.2

Momentum 0.9
threshold 0.5
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Table A3. Original information of 3D soybean plant model.

Variety Date of Reconstruction Stage Points

DN251 12 June 2018 V3 66,528
DN252 12 June 2018 V3 85,871
DN253 12 June 2018 V3 5164
HN48 12 June 2018 V3 63,915
HN51 12 June 2018 V3 5390
DN251 19 June 2018 V4 78,211
DN252 19 June 2018 V4 7482
DN253 19 June 2018 V4 6581
HN48 19 June 2018 V4 5776
HN51 19 June 2018 V4 6734
DN251 26 June 2018 R1 10,752
DN252 26 June 2018 R1 140,986
DN253 26 June 2018 R1 11,535
HN48 26 June 2018 R1 9371
DN251 4 July 2018 R2 14,842
DN252 4 July 2018 R2 21,367
HN48 4 July 2018 R2 18,757
HN51 4 July 2018 R2 12,300
DN251 11 July 2018 R3 25,306
DN252 11 July 2018 R3 24,316
DN253 11 July 2018 R3 26,733
HN48 11 July 2018 R3 22,995
HN51 11 July 2018 R3 271,221
DN251 26 July 2018 R5 99,451
DN252 26 July 2018 R5 37,704
DN253 26 July 2018 R5 51,456
HN48 26 July 2018 R5 61,301
HN51 26 July 2018 R5 808,638
DN251 17 August 2018 R6 35,193
DN252 17 August 2018 R6 37,896
DN251 8 September 2018 R7 24,864
DN252 8 September 2018 R7 19,805
DN253 8 September 2018 R7 19,145
HN48 8 September 2018 R7 35,983
HN51 8 September 2018 R7 33,647
DN251 3 October 2018 R8 5574
DN252 3 October 2018 R8 8662
DN253 3 October 2018 R8 11,313
HN48 3 October 2018 R8 11,220
HN51 3 October 2018 R8 9366
DN251 29 May 2019 V1 9415
DN252 29 May 2019 V1 10,233
DN253 29 May 2019 V1 7014
HN48 29 May 2019 V1 8766
HN51 29 May 2019 V1 6541
DN251 3 June 2019 V2 6113
DN252 3 June 2019 V2 4671
DN253 3 June 2019 V2 4860
HN48 3 June 2019 V2 4947
HN51 3 June 2019 V2 4269
DN251 8 June 2019 V3 8322
DN252 8 June 2019 V3 5228
DN253 8 June 2019 V3 5161
HN48 8 June 2019 V3 7974
HN51 8 June 2019 V3 5777
DN251 12 June 2019 V4 7890
DN252 12 June 2019 V4 5612
DN253 12 June 2019 V4 88,756
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Table A3. Cont.

Variety Date of Reconstruction Stage Points

HN48 12 June 2019 V4 113,444
HN51 12 June 2019 V4 5956
DN251 18 June 2019 V5 9132
DN252 18 June 2019 V5 7669
DN253 18 June 2019 V5 9416
HN48 18 June 2019 V5 10,604
HN51 18 June 2019 V5 100,902
DN251 24 June 2019 R1 149,372
DN252 24 June 2019 R1 9728
DN253 24 June 2019 R1 135,007
HN48 24 June 2019 R1 160,789
HN51 24 June 2019 R1 7672
DN251 27 June 2019 R2 13,951
DN252 27 June 2019 R2 171,706
DN253 27 June 2019 R2 176,975
HN48 27 June 2019 R2 242,936
HN51 27 June 2019 R2 11,597
DN251 5 July 2019 R3 19,569
DN252 5 July 2019 R3 20,336
DN253 5 July 2019 R3 286,872
HN48 5 July 2019 R3 22,544
HN51 5 July 2019 R3 17,661
DN251 13 July 2019 R4 29,729
DN252 13 July 2019 R4 26,609
DN253 13 July 2019 R4 28,611
HN48 13 July 2019 R4 35,583
HN51 13 July 2019 R4 26,426
DN251 22 July 2019 R5 37,823
DN252 22 July 2019 R5 50,636
DN253 22 July 2019 R5 54,806
HN48 22 July 2019 R5 56,830
DN251 6 August 2019 R6 54,325
DN252 6 August 2019 R6 712,682
DN253 6 August 2019 R6 632,552
HN48 6 August 2019 R6 603,497
DN251 26 August 2019 R7 45,556
DN252 26 August 2019 R7 45,332
DN253 26 August 2019 R7 44,100
HN48 26 August 2019 R7 27,986
DN251 21 September 2019 R8 9990
DN252 21 September 2019 R8 8426
DN253 21 September 2019 R8 9317
HN48 21 September 2019 R8 7229
HN51 21 September 2019 R8 9964
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Abstract: Image datasets acquired from orchards are commonly characterized by intricate back-
grounds and an imbalanced distribution of disease categories, resulting in suboptimal recognition
outcomes when attempting to identify apple leaf diseases. In this regard, we propose a novel apple
leaf disease recognition model, named RFCA ResNet, equipped with a dual attention mechanism
and multi-scale feature extraction capacity, to more effectively tackle these issues. The dual attention
mechanism incorporated into RFCA ResNet is a potent tool for mitigating the detrimental effects of
complex backdrops on recognition outcomes. Additionally, by utilizing the class balance technique
in conjunction with focal loss, the adverse effects of an unbalanced dataset on classification accuracy
can be effectively minimized. The RFB module enables us to expand the receptive field and achieve
multi-scale feature extraction, both of which are critical for the superior performance of RFCA ResNet.
Experimental results demonstrate that RFCA ResNet significantly outperforms the standard CNN
network model, exhibiting marked improvements of 89.61%, 56.66%, 72.76%, and 58.77% in terms of
accuracy rate, precision rate, recall rate, and F1 score, respectively. It is better than other approaches,
performs well in generalization, and has some theoretical relevance and practical value.

Keywords: dual attention mechanism; multi-scale feature extraction; RFCA ResNet; classification

1. Introduction

China is the world’s leading apple grower and occupies a significant position in
the global apple market [1]. However, apple production is vulnerable to climate, pests,
and diseases, which can cause negative impacts on both the quantity and quality of the
fruit, as well as substantial financial losses [2]. In the early stages of apple disease, most
affected areas appear on the leaves, and visual observation is the primary method used
to identify these diseases. However, identifying the specific type of disease is challenging,
and misdiagnosis is common. Therefore, it is crucial to swiftly and accurately recognize the
various types and complexities of apple diseases.

In agriculture, computer vision has been widely utilized [3–8], particularly in the field
of plant disease detection [9]. This technology is a critical factor in productive agriculture
and economic growth. With advancements in machine learning, image processing tech-
niques can now be used to solve problems using morphological features such as color,
intensity, and size. Zhang Chuanlei et al. [10] initially employed image processing to
convert the color space of images, conduct background removal, and employ the region-
growing algorithm to segregate lesions. The evolutionary algorithm and correlation feature
selection method were then utilized to screen essential features, to improve the model’s
accuracy. Finally, the support vector machine (SVM) was used for automatic identifica-
tion, and the method accurately identified apple mosaic, rust, and other diseases with
an accuracy rate of over 90%. Nuruzzaman et al. [11] compared the results of machine
learning algorithms such as the random forest classifier, support vector machine, and
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logistic regression on 1200 potato images. Ultimately, the logistic regression algorithm
produced the best result. Similarly, Chakraborty et al. [12] employed the Otsu threshold
technique and histogram equalization to segregate diseased apple leaf sections, and then
utilized a multiclass SVM to detect these sections, with an accuracy rate of 96%.

The application of machine learning technologies in practical agricultural settings has
been challenging due to various constraints, such as the requirement for high-precision
image acquisition equipment, homogeneous illumination, and simple image backgrounds.
Recently, convolutional neural networks (CNNs) have emerged as a promising technique
for directly learning important features from data, with good performance on large datasets
and high adaptability. Consequently, CNNs have increasingly been applied to plant disease
recognition and identification with impressive results [13–18].

To overcome the issue of overfitting, Jiang Peng et al. [19] constructed datasets for five
common leaf diseases, including apple brown spots, by enhancing and annotating the data.
They utilized the VGG [20] network as the basic framework and introduced the Inception
module to extract multi-scale lesions, along with the feature pyramid’s context and fusion
features to enhance recognition performance. The model obtained a recognition accuracy of
78.8% mAP. Similarly, Liu Aoyu et al. [21] addressed the inadequacies of manual diagnosis
of corn diseases by constructing and training the ResNet50 network on the PlantVillage
dataset. They added data augmentation operations to the collected corn dataset and
incorporated the focal loss function to handle difficult-to-classify samples, resulting in an
average accuracy of 98.60%. Thapa Ranjita et al. [22] introduced the Plant Pathology 2021
Challenge dataset, which comprised images captured from various distances, angles, and
lighting conditions, to represent real-world scenarios of disease symptoms on cultivated
apple leaves. The dataset featured a complex background and an uneven distribution of
categories. The authors performed a multiclass classification task using ResNet34, and
the experimental results revealed that the performance was poor for the combination of
diseases such as apple scab and frog eye leaf spot, while the combination of snow apple
rust and gray spot, as well as the combination of snow apple rust and other diseases,
exhibited high accuracy. The corresponding rate scores were all above 0.75. Yan Qian et
al. [23] replaced the fully connected layer with the batch norm layer and the global average
pooling layer, and pre-trained the VGG16 network to recognize three apple leaf diseases:
scab, frost spot, and cedar rust. The model’s overall accuracy was 99.01%. Sardogan et
al. [24] employed Inceptionv2 to differentiate between healthy and diseased apple leaves in
images with complex backgrounds. They first used the Faster R-CNN method to locate and
mark various items and regions on the image and then achieved a typical accuracy rate of
84.5%. Finally, Li Xiaopeng et al. [25] combined convolution and transformer to extract both
global and local disease features. They utilized the self-attention mechanism and visual
transformer to direct the convolutional network to focus on effective features and applied
separable convolution and global average pooling operations to reduce model complexity.
Their approach achieved equivalent identification accuracy to the Swin Tiny [26] model,
while being lighter in weight.

In real-world scenarios, the datasets collected for plant disease classification are often
imbalanced due to a low incidence rate of a specific disease or the presence of multiple
diseases simultaneously. However, using the conventional approach of classifying plant
diseases as mainstream, through a convolutional neural network and cross-entropy loss
function, does not yield satisfactory results on such datasets. In this research, we aim to
enhance the detection ability of convolutional neural networks on an unbalanced plant
disease dataset with complex backgrounds. Our primary contributions are:

• Extraction of multi-scale lesion features based on the RFB module and adjusting the
convolution kernel size to improve recognition accuracy.

• Construction of the RFCA ResNet network, which utilizes ResNet18 as the backbone
network, using focal loss in combination with the class balance approach to enhance
the detection performance on the imbalanced dataset.
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• Building a dual attention mechanism that incorporates both the coordinate atten-
tion mechanism and the frequency attention mechanism to improve lesion feature
extraction capabilities.

• Comparison and evaluation of our proposed approach with the conventional cross-
entropy loss function-based classification method, which has theoretical importance
and practical relevance in real-world applications.

The remainder of this research paper is structured as follows. Section 2 provides a
detailed description of the network structure and loss function. In Section 3, we introduce
the dataset source, preprocessing method, experimental apparatus, experimental design,
and evaluation indexes. The experimental results are presented and analyzed in Section 4.
In Section 5, we discuss and evaluate our work. Finally, we conclude the research in
Section 6 and provide directions for future work.

2. Methods

2.1. RFCA ResNet Design

The apple leaf disease dataset used in this research has a complex visual background,
which was collected under different lighting conditions and at different times. Due to
the dispersed and varying sizes of the disease spots and the uneven number of photos in
each category, model identification is challenging. Therefore, the aim of this research is to
design a model, with relatively low computational complexity, that can accurately classify
datasets with an uneven number of categories. To achieve this, we designed a convolutional
neural network model based on a dual attention mechanism, utilizing the ResNet topology
model. To limit computation and network complexity, we chose an 18-layer ResNet as the
fundamental network. As using a single-sized convolution kernel may result in the loss
of extracted feature information, we replaced the first convolutional layer in the ResNet
with the RFB module, which can improve the recognition of lesions of various sizes on
leaves by adjusting the receptive field’s size using parallel expansion convolution kernels
of various sizes. The attention mechanism helps the model focus on relevant information
while ignoring irrelevant information. Therefore, to enhance the ability to retrieve lesion
features, we included the intended attention module in each residual structure. The precise
structure of the RFCA ResNet model is shown in Figure 1. The model mainly comprises the
FCCA attention mechanism module and the enhanced ResNet18, designed to accurately
classify complex datasets with an uneven number of categories while having relatively low
computational complexity.

In the task of identifying plant diseases, some categories of images may have a very
low probability of occurrence, or there may be multiple diseases coexisting on the leaves,
resulting in certain categories having a significantly higher number of images than others.
This can lead to overfitting of the network during training, where the model becomes
biased towards the categories with a higher number of images. To address this issue, we
employ focal loss in combination with the class balance approach in our model, to update
the network parameters and mitigate the effects of the imbalanced dataset. The following
are the specific steps in the implementation:

First, the probability of predicting each category is calculated:

pi = o(zi =
1

1 + ezi
) (1)

where zi denotes the predicted output of the i category, and o represents the sigmoid function.
Next, the loss function is computed using focal loss in combination with the class

balance approach. This is achieved by adjusting the standard focal loss function to include
a weight factor for each category based on its proportion in the training dataset. The class
balance loss function can be expressed as:

LCBFL = − 1
N

N

∑
i=1

αi(1 − pi)
γ log(pi) (2)

67



Agriculture 2023, 13, 940

where N is the number of samples in the batch, αi is the weight factor for the i-th category,
calculated using the class balance approach, pi is the predicted probability of the i-th
category, and γ is the focusing parameter. The class balance weight factor for each category
is computed as the inverse of its frequency in the training dataset, raised to a power β. Thus,
categories with low frequency will have a higher weight factor to balance their influence
on the training process.

Figure 1. Overall framework of RFCA ResNet.

Incorporating class balance with focal loss helps to mitigate the negative effects of
imbalanced categories during training and improves the model’s ability to accurately
classify plant disease images.

2.2. Topology Fusion

As the number of layers in deep convolutional neural networks increases, the problem
of gradient vanishing becomes more pronounced, leading to a decrease in network perfor-
mance. The ResNet series of networks address this issue by utilizing residual structures
that enable the stacking of layers without a loss in performance. The ResNet architecture is
widely used in classification tasks due to its effectiveness.

The residual structure adds the input to the output of a layer through a shortcut
connection, resulting in a straightforward addition operation that speeds up training
without increasing model complexity or the number of required parameters. The precise
calculation procedure for the residual is shown in Equation (3):

xi+1 = xi + H(xi, ωi) (3)

where xi represents the input of the i-th layer, ωi represents the parameters of the i-th layer,
H(xi, ωi) represents the output of the i-th layer convolution operation, and xi+1 represents
the residual mapping of the input.

By stacking residual structures, ResNet increases the effectiveness of network training
without degradation. To improve the network’s ability to extract feature information and
enhance the receptive field, the RFB module borrows the structure of the Inception module
and adds dilated convolution to the original foundation. The RFB module can extract
feature information of different scales by using convolution kernels of different sizes in
parallel, making it suitable for the characteristics of lesion features in this experimental
dataset. The RFB module’s structure is illustrated in Figure 2.
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Figure 2. Adjusted RFB module structure.

We present the mathematical reasoning for the receptive field block (RFB) module as
follows: Let the input feature map be denoted by x, with dimensions H × W × C, where
H, W, and C represent the height, width, and number of channels, respectively. The
output feature map is denoted by Y, with dimensions H × W × N, where N is the output
dimension. The RFB module consists of three parallel branches.

For the first branch, a 3 × 3 convolution operation, with kernel size K1, is performed.
The output feature map of this branch, denoted as F1, can be expressed as:

F1 = Conv(x, K1) (4)

where Conv denotes a 3 × 3 convolution operation.
The second branch includes two consecutive operations: a 3 × 3 convolution with

kernel size K2, followed by a 3 × 3 dilated convolution with kernel size K2 and dilation
rate of 2, to capture multi-scale contextual information. The output feature map of this
branch, denoted as F2, can be expressed as:

F2 = Conv(Conv(x, K2), K2) (5)

where Conv denotes the convolution operation.
In the third branch, three consecutive operations are performed: two successive 3 × 3

convolutions with kernel size K3, followed by a 3 × 3 dilated convolution with kernel size
K3 and dilation rate of 3, to capture multi-scale context information. The output feature
map of this branch, denoted as F3, can be expressed as:

F3 = Conv(Conv(Conv(x, K3), K3), K3) (6)

where Conv denotes the convolution operation.
After computing the feature maps for all three branches, a 1× 1 convolution is applied

to adjust the number of channels. The feature maps are then concatenated along the channel
dimension to obtain the final output feature map Y:

Y = Concat(F1, F2, F3) (7)

where Concat represents the concatenation operation along the channel dimension.
To leverage the benefits of each module, we replace the ResNet’s convolutional layer

with the RFB convolution module to extract low-level feature information. This replacement
allows our fused network to accomplish multi-scale extraction of image feature information
more effectively than ResNet. As a result, our model’s generalization performance and
feature discriminability are significantly improved.

2.3. FCCA Attention Module

Images of apple leaf diseases captured in natural settings often feature non-uniformly
arranged leaves and complex backgrounds. Accurately identifying these diseases requires
incorporating coordinated information on apple disease features present in the image.
Existing channel attention approaches do not leverage global pooling to express adequate
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information. To address this, we propose integrating coordinate attention with frequency
attention to creating a dual attention mechanism, as shown in Figure 3.

Figure 3. Module structure of FCCA attention mechanism.

The FCCA attention module utilizes input feature maps to simultaneously compute
frequency and coordinate attention, employing two softmax multiplications and one addi-
tional operation. The mathematical operation of this module can be expressed as shown in
Equation (4):

FCCA(x) = CA(x) + FA(x) (8)

where FCCA(x) denotes the feature map obtained through the dual attention module,
FA(x) denotes the frequency feature map, and CA(x) represents the coordinate position
feature map.

The FCCA attention module expands the amount of feature information introduced
through channels and captures feature information across channels, effectively enhancing
the attention of feature channel and position information. This results in increased accuracy
in identifying apple leaf diseases.

2.3.1. Coordinate Attention Module

In recent times, several researchers have utilized the SE module proposed by Hu, Jie
et al. [27] in their research. This module initially employs global pooling to compress the
global spatial information before learning the significance of each channel in the channel
dimension. However, it overlooks the importance of position pairs in creating a spatial
map. CBAM [28] attempts to incorporate location information using global pooling, but it
only considers local range information and cannot establish long-distance relationships.
On the other hand, the coordinate attention module provided by Hou Q et al. [29] is a
lightweight and effective method, that enhances the expressiveness of learned features
by integrating spatial coordinate information into attention maps and capturing the long-
distance dependencies of input feature maps.

As illustrated in Figure 4, the process of generating coordinate attention involves two
crucial steps: embedding coordinate information and generating attention.

Figure 4. Structure of the coordinate attention mechanism module.

To generate coordinated attention, one-dimensional average pooling is utilized to
encode position information in the horizontal and vertical spatial directions and to generate
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long-distance dependencies, as global pooling can result in the loss of position information.
Specifically, size average pooling kernels of sizes (H, 1) and (1, W) are employed to encode
the channels in the two directions, respectively. Thus, the output feature map for the c-th
channel and height h is given by:

zh
c (h) =

1
W

W

∑
i=0

xc(h, i), (9)

where zh
c represents the output of the c-th channel in the overall height directions, xc represents

the input of the c-th channel, and W represents the width of the c-th channel input.
The output feature map for the c-th channel and width w is given by:

zw
c (w) =

1
H

H

∑
i=0

xc(i, w), (10)

where zw
c represents the output of the c-th channel in the overall width directions, xc represents

the input of the c-th channel, and H represents the height of the c-th channel input.
To create an attention map, the horizontal and vertical feature maps are transformed

using a shared 1×1 convolution kernel. The resulting attention map is then split along the
spatial axis and the number of channels is adjusted to match the number of input channels
using two 1×1 convolutions. The sigmoid function is applied to normalize the weight, and
the coordinated attention module (CA) is expressed as:

f = δ(F(
[
zh, zw

]
)), (11)

gh = o(Fh( f h)), (12)

gw = o(Fw( f w)), (13)

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j), (14)

where [·, ·] denotes the concatenation operation along the spatial dimension, δ is a non-
linear activation function, f h ∈ R

C/r×H and f w ∈ R
C/r×W , o is the sigmoid function, and

xc(i, j) represents the output of the c-th channel at position (i, j) in the input image.

2.3.2. Frequency Attention Module

In order to enhance the feature representation ability, the channel attention module is
utilized to focus on channels that contain important information by assigning weights to
each channel. Typically, the channel relationship is extracted using global average pooling,
and the weighted attention map is obtained by applying a fully connected layer and a
sigmoid function, which can be expressed as:

Attnchannel = o( f c(gap(X))) (15)

where o is the sigmoid function, f c denotes a fully connected layer, and gap is global
average pooling.

Qin Z et al. [30] demonstrated that global average pooling is a special case of discrete
cosine transform (DCT), which can result in limited diversity in the features obtained and
insufficient representation of information between different channels. To address this issue,
they proposed a multi-spectral channel attention (MSCA) module, which first divides the
input feature map into multiple groups and applies a two-dimensional DCT (2DDCT)
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operation to each group. The resulting frequency feature set is then weighted and fused
using a fully connected layer and a sigmoid function, as follows:

X = [X0, X1, · · ·, Xn−1] (16)

Freq = cat([2DDCT(X0), 2DDCT(X1), · · ·, 2DDCT(Xn−1)]) (17)

Attn f ca = o( f c(Freq)) · X (18)

where X ∈ R
C×H×W , o is the sigmoid function, f c denotes a fully connected layer, Freq

represents the frequency feature set of input features after 2DDCT operation, and n is a
constant indicating that the input features are divided into several parts.

3. Experiments

3.1. Dataset Source

This research employed a publicly available dataset, plant-pathology-fpgv8 [22],
sourced from the Kaggle website. The dataset comprises 18,632 high-quality photographs
classified into 12 categories based on the complexity and diversity of the leaf diseases.
Figure 5 depicts the twelve categories in the dataset, and their corresponding names and
counts are presented in Table 1.

Table 1. Category name and quantity of apple leaf disease dataset.

Categories
Number of

Original Pictures
Number of Pictures
after Enhancement

Complex 1441 8356
Frog eye leaf spot 2862 16,794

Frog eye leaf spot complex 148 864
Healthy 4161 23,938

Powdery mildew 1065 6142
Powdery mildew complex 78 446

Rust 1674 9660
Rust complex 87 488

Rust frog eye leaf spot 108 626
Scab 4343 25,136

Scab frog eye leaf spot 617 3606
Scab frog eye leaf spot complex 180 1006

The dataset used in this research exhibits a background of complex disease leaves, a
high number of images depicting a single disease, a limited number of images displaying
multiple diseases, and an unequal distribution of categories, as illustrated in Figure 5 and
Table 1. These characteristics pose significant challenges to accurate disease identification
and increase the likelihood of model overfitting.
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Complex

Frog eye leaf spot

Frog eye leaf spot complex

Powdery mildew complex

Powdery mildew

Healthy

Rust

Rust complex

Rust frog eye leaf spot

Scab frog eye leaf spot complex

Scab frog eye leaf spot

Scab

Figure 5. Apple leaf disease dataset category.

3.2. Image Preprocessing and Enhancement

If the pixels of the dataset’s images are excessively large and the number of samples is
small, both the training infrastructure and the classification network will face significant
challenges. The original dataset contains images with resolutions of 4000 × 2760 and
4000 × 3000 pixels. To increase the training set’s size and diversity, we cropped the images
to 512 × 512 and performed the following three operations: (1) applied color dithering to
the image to change saturation, brightness, contrast, and sharpness; (2) randomly rotated
the image angle; and (3) added Gaussian noise. Figure 6 shows the exact results of these
operations. On the one hand, this process can expand the dataset’s diversity and the
model’s ability to generalize. On the other hand, changing the image’s saturation can help
to emphasize the lesion. Table 1 shows the number of distinct categories in the dataset.

Random color dithering Random rotation Add Gaussian noise randomly

Figure 6. Image display after data enhancement.

3.3. Equipment

All experiments were conducted on a host CPU with 10 cores, to ensure fairness.
Table 2 presents the network model’s architecture and other configuration options.

73



Agriculture 2023, 13, 940

Table 2. Training environment parameter configuration.

Hardware Software

CPU: NVIDIA GeForce RTX 3060 Windows 11
RAM: 16GB DDR5 Cuda11.1 + Cudnn

CPU:12th Gen Intel Core i5-12600KF Pytorch1.8.1 + Python 3.8

3.4. Experiment Settings

In this experiment, the original dataset was partitioned into three sets, namely the
training set, the validation set, and the test set, using a Python script. The training and
validation sets were divided in an 8:1 ratio, with the test set alone consisting of 1868 images.

For the purpose of network training and validation, the images were cropped to 224
× 224 pixels using the center cropping approach, while images of size 512 × 512 pixels
were used for testing during the testing phase. To facilitate training, all image data were
standardized using Equation (15):

Xout =
Xin − x̄

σ
(19)

where Xout represents the normalized output result, Xin represents the original image input
data, x represents the mean values of Xin, which are (0.485, 0.456, 0.406), and σ represents
the standard deviations, which are (0.229, 0.224, 0.225).

During training, the focal loss function, in combination with the class balance approach,
was employed, and the network parameters were optimized using the AdamW optimizer.
A batch size of eight was used, with an initial learning rate set at 3 × e−4. The cosine
annealing strategy was utilized, and the model was trained for 100 epochs. Finally, the
predictions were tested, and the optimal training parameters were recorded. It is worth
noting that all experiments were executed on a host CPU containing 10 cores, to ensure
fairness, and the framework of the network model and other configuration options can be
found in Table 2.

3.5. Evaluation Indexes

In evaluating the performance of the classification model on the apple leaf diseases
dataset, it is important to note that the dataset has imbalanced data, rendering the accuracy
performance index insufficient. To address this limitation, this study employs additional
evaluation metrics, such as precision rate, recall rate, and F1 score. The precision rate
measures the proportion of properly predicted samples, while the recall rate relates to
the proportion of projected positive samples among real positive samples. The F1 score
considers both the recall and precision rates, thereby achieving a balanced and optimal
outcome. Prior to computing these metrics, one must understand the concept of a confusion
matrix, which consists of four components: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), as depicted in Figure 7.

Accuracy =
TP + TN

TP + FP + TN + FN
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2 × Precision × Recall

Precision + Recall
(23)
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Figure 7. Confusion matrix.

4. Results

The experimental design comprises four distinct sections. Firstly, the impact of varying
learning rates on the network model’s accuracy is compared. Secondly, the effectiveness of
employing data augmentation techniques in identifying apple leaf diseases is evaluated.
Thirdly, a comparison is made between the performance of the proposed network model
and classical network models. Lastly, an ablation experiment is conducted utilizing the
RFCA ResNet network model.

4.1. Comparative Experiments with Different Learning Rates

To investigate the effect of learning rates on image recognition, we employ the control
variable method. The initial learning rate is set to 0.01, 0.001, 0.0001, 0.0002, 0.0003, and
0.0004, in order to ensure experiment comparability and increase recognition accuracy. The
experiment uses the RFCA ResNet model and trains and tests the original dataset. The
learning rate decay strategy, batch size, and training epoch all follow the same guidelines.
Table 3 presents the specific training parameters and test results. The highest test accuracy,
of 89.61%, is achieved when the learning rate is set to 3 × e−4.

Table 3. Parameter configuration and test accuracy of different learning rates.

Learning Rate Batch Size Epoch Training Time Test Accuracy

0.01 8 100 7 h 57 m 30 s 88.49%
0.001 8 100 8 h 1 m 12 s 89.08%

0.0001 8 100 7 h 52 m 18 s 89.03%
0.0002 8 100 7 h 29 m 5 s 89.13%
0.0003 8 100 7 h 28 m 36 s 89.61%
0.0004 8 100 7 h 56 m 50 s 89.45%

The graph of the model accuracy corresponding to the test learning rate is presented
in Figure 8. The results indicate that the model converges slowly and the curve is volatile
when the learning rate is high. When the learning rate is set to the e−4 level, the curve has
iterated nearly 30 epochs and stabilized at an accuracy rate of about 85%.

Figure 8. Accuracy of test set under different learning rates.
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4.2. Impact of Data Augmentation Methods on Models

A comparative experiment was conducted on the RFCA ResNet network model
to verify the effectiveness of the data augmentation strategy in improving the model’s
accuracy. The recognition accuracy and overall training time on the apple disease test
set are presented in Table 4. The results indicate that the model can converge faster and
achieve better recognition performance during the same training epoch when the data
augmentation strategy is employed, as illustrated in Figure 9.

Table 4. Performance index results without and after enhancement.

Strategy Accuracy Precision Recall F1 Score

Without
enhancement 89.61% 56.66% 72.76% 58.77%

Enhanced 90.58% 55.75% 67.23% 59.44%

Figure 9. Accuracy of the test set without enhancement and after enhancement.

According to the results presented in Table 4, we observe an improvement of 0.97 and
0.67 percentage points in precision and F1 score, although this requires sacrificing precision
and recall for each class. In addition, as shown in Figure 9, the performance of the model
converges faster after adopting the data augmentation strategy.

First, the improvements in accuracy and F1 score mean that our method outperforms
the state of the art in overall performance. However, sacrificing precision and recall may
result in less accurate predictions for some classes. These differences may originate from
the imbalance of the dataset and the effect of the adopted data augmentation strategies on
different classes to different degrees.

Second, the fast convergence of the model performance demonstrates that our method
can utilize limited training data more efficiently, by using data augmentation strategies.
This is of great significance for improving model performance under limited resources,
especially in large-scale datasets or real-time application scenarios.

4.3. Comparative Experiments of Different Network Models

To demonstrate the superior performance of the RFCA ResNet network model, we
conducted a comparative experiment with a commonly used CNN model. As presented
in Table 5, RFCA ResNet achieved an average classification accuracy rate, precision rate,
recall rate, and F1 score of 89.61%, 56.66%, 72.76%, and 58.77%, respectively, outperforming
other CNN methods. Moreover, as depicted in Figure 10, while the loss of the Res2Net net-
work remained nearly constant, the proposed RFCA ResNet achieved faster convergence,
indicating that the Res2Net network may not be suitable for this dataset, and the method
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suggested in our research is more generalizable. The Densenet121 method connects all
channels for feature reuse, which impacts the model’s classification accuracy, making it
simpler for the model to maintain background noise information in complex contexts. In
contrast, the Shufflenet, RegNet, Res2Net, and ConvNeXt neural network architectures may
face difficulties in capturing fine-grained details in complex images, potentially hindering
their ability to learn sufficiently representative features for all possible variations in apple
leaves and complex backgrounds. Therefore, without additional modifications or prepro-
cessing techniques, these networks may not be the most suitable choice for recognizing
apple leaves with complex backgrounds.

Table 5. Evaluation index results of different network model training test sets.

Model Batch Size Epoch Params Size Accuracy Precision Recall F1 score

ResNet34 [31] 8 100 81.22 M 87.58% 49.79% 55.32% 50.22%
ResNet50 [31] 8 100 89.77 M 88.38% 50.54% 60.28% 51.74%

MobilNetV3L [32] 8 100 16.09 M 86.94% 48.29% 52.21% 48.76%
MobilNetV3S [32] 8 100 5.84 M 86.83% 52.90% 66.49% 54.64%
DenseNet121 [33] 8 100 6.54 M 87.79% 49.90% 60.94% 51.04%

RegNet [34] 8 100 8.85 M 83.62% 43.68% 51.24% 44.06%
ShuffleNet [35] 8 100 4.83 M 86.35% 46.13% 48.80% 44.81%

Res2Net [36] 8 100 33.92 M 81.58% 40.93% 40.32% 40.29%
ConvNeXt [37] 8 100 334.02 M 85.70% 45.13% 52.88% 44.69%
RFCA ResNet 8 100 46.38 M 89.61% 56.66% 72.76% 58.77%

Figure 10. Loss curve of the test set on the training set, and accuracy curve of the test set.

To compare the performance of different models, we plotted the precision–recall (P–R)
curve for each model. This approach provides a better evaluation of the performance of
each model. Figure 11 shows the P–R curves for each model, represented by different
colors. The area covered by the blue curve is the largest, indicating the model has the best
classification performance.

4.4. Ablation Experiment

To assess the effectiveness of various modifications made to the ResNet18 network
model in improving its performance, we utilized accuracy, precision, recall, and F1 score as
evaluation metrics, and the original dataset was used for training and testing. In particular,
we replaced the first convolutional layer in the original network when using only the
RFB module, incorporated it into the residual module when using only the attention
method, and changed the cross-entropy loss function when replacing it with the focal loss
in combination with the class balance approach alone. Table 6 presents a comparison of the
performance evaluation indicators of the network when adding RFB, class balance with
focal loss, embedding the attention module, not adding any module, and the RFCA ResNet
model. Additionally, Figure 12 displays the loss changes of the RFCA ResNet network on
the training set and the test accuracy change curve of the set.
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Figure 11. P–R curves of different models.

4.5. Ablation Experiment

To assess the effectiveness of various modifications made to the ResNet18 network
model in improving its performance, we utilized accuracy, precision, recall, and F1 score as
evaluation metrics, and the original dataset was used for training and testing. In particular,
we replaced the first convolutional layer in the original network when using only the
RFB module, incorporated it into the residual module when using only the attention
method, and changed the cross-entropy loss function when replacing it with the focal loss
in combination with the class balance approach alone. Table 6 presents a comparison of the
performance evaluation indicators of the network when adding RFB, class balance with
focal loss, embedding the attention module, not adding any module, and the RFCA ResNet
model. Additionally, Figure 12 displays the loss changes of the RFCA ResNet network on
the training set and the test accuracy change curve of the set.

Table 6. Results of ablation experiment performance evaluation index.

Model RFB Attention
Class

Balance Loss
Accuracy Precision Recall F1 Score

ResNet18

- - - 87.95% 40.82% 55.83% 48.60%
� - - 89.07% 51.67% 56.18% 50.59%
- � - 88.65% 50.99% 63.64% 52.21%
- - � 88.44% 52.70% 62.64% 54.40%

RFCA ResNet � � � 89.61% 56.66% 72.76% 58.77%

- indicates absence of the template, while � indicates presence of the template.

Figure 12. Loss curve of test set on training set, and accuracy curve of test set.

To improve the performance of the ResNet18 network model, a series of enhancements
were incorporated. Table 6 presents the evaluation indicators of accuracy, precision, recall,
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and F1 score, using the original dataset for both training and testing. The first convolutional
layer in the original network was replaced with the RFB module when only the RFB module
was used, while the FCCA module was incorporated into the residual module when only
the attention method was utilized. When focal loss was used in combination with the class
balance approach alone, the cross-entropy loss function was modified. The results showed
that adding the attention mechanism to ResNet18 increased the accuracy, precision, recall,
and F1 score by 0.7, 10.17, 7.81, and 3.61 percentage points, respectively. The RFB structure
was found to broaden the model’s receptive field, extract feature information at various
scales, and improve its capacity for information representation. This resulted in an increase
in accuracy of 1.12 percentage points and in F1 score of 1.99 percentage points. Altering
the loss function to account for the effect of an unbalanced dataset on model performance
improved all parts of the model’s performance evaluation indicators. Finally, the accuracy
and F1 score of the RFFA ResNet model on the apple leaf disease dataset were found to
be 89.16% and 58.77%, respectively, which were 1.83 and 9.31 percentage points higher
than ResNet18. This was achieved by replacing the RFB module, embedding the attention
mechanism, and using focal loss in combination with the class balance strategy. Figure 12
shows that the recognition accuracy of the model on the test set was initially unstable but
tended to stabilize and perform well afterward, when the focal loss in combination with
the class balance approach was employed as the loss function. The training loss value
decreased as more iterations were completed after adding the aforementioned modules to
ResNet18, and the accuracy rate on the test set increased. This demonstrated the enhanced
model’s strong generalization capabilities and the value of the several enhancements made
to ResNet18 in this research.

5. Discussion

In our research, we propose a novel method for the classification and identification of
apple leaf diseases based on a dual attention mechanism and multi-scale feature extraction.
Our method is evaluated on a dataset that exhibits common challenges in plant disease
classification, including complex backgrounds and class imbalance.

Owing to their effectiveness, attention mechanisms have been widely employed in
the field of plant disease recognition. Zhu et al. [38] combined the convolutional block
attention module (CBAM) and EfficientNet-B4 to construct the EfficientNet-B4-CBAM
model, which improved the ability to express regional information of camellia oleifera
fruit and achieved a final model accuracy rate of 97.02%. Lin et al. [39] employed a naive
metric few-shot learning network as a baseline learning method, and embedded attention
modules of channel, space, and mixed attention types. The experimental results revealed
that the incorporation of these attention modules led to varying degrees of improvement in
accuracy. In this research, we introduced the FCCA module and evaluated its impact on the
baseline accuracy through ablation experiments (refer to Table 6). Our findings indicated
that the inclusion of the FCCA module enhanced the baseline accuracy by 0.7%. However,
as disease complexity increases, the limitations of attention mechanisms can hinder their
effectiveness, necessitating the exploration of models with enhanced feature extraction
capabilities. To address this issue, we adopted a multi-scale feature extraction approach
inspired by GoogleNet and ResNet, replacing the low-level feature extraction module of
ResNet with the RFB module. Our experimental results demonstrated that our approach
improved accuracy by 1.12%, making it an innovative and superior method for feature
extraction.

In addition, in existing studies on plant disease identification, datasets almost always
exhibit a balanced distribution, while studies on datasets exhibiting long-tailed distribu-
tions are rare. To address this problem, Hsiao et al. [40] proposed the MTSbag method,
which combines MTS with a bagging-based ensemble learning method to enhance the
ability of traditional MTS to deal with imbalanced data. Min et al. [41] developed a data
augmentation technique that utilizes an image-to-image translation model to address the
issue of category number bias by generating additional diseased leaf images to supplement
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the insufficient dataset. In this research, we adopted focal loss and class balancing strategies
to optimize the model’s handling of imbalanced data. With these optimization strategies,
our method exhibits significant advantages in handling imbalanced data. Data augmenta-
tion is a common method to improve the generalization ability of models. In this paper,
we improved the model’s accuracy and F1 score by adding Gaussian noise and random
rotation, but at the expense of precision and recall. We believe that these evaluation metrics
may not fully reflect the model’s performance in real-world applications. Future research
can design more comprehensive evaluation methods to explore the model’s performance
in different scenarios and further optimize the model and data augmentation strategies.

In summary, our proposed method for crop disease recognition in complex back-
grounds has significant advantages. We adopt a multi-scale feature extraction and attention
mechanism, as well as focal loss and class balancing methods to deal with unbalanced data,
achieve significant performance improvement, and provide a new approach and method
for plant disease recognition.

6. Conclusions

We proposed a novel apple leaf disease classification and recognition method based
on multi-scale feature extraction and a dual attention mechanism. Current apple orchard
disease diagnosis relies heavily on manual inspection, which consumes significant human
and material resources. These factors inspired us to explore deep learning methods for
the classification of apple leaf diseases. In our experiments, we evaluated various metrics,
including accuracy, precision, F1 score, and recall, and analyzed the following four aspects:

First, we investigated the impact of different learning rates on the network model’s
accuracy. We found that the highest accuracy, reaching 89.61%, was achieved when the
learning rate was 0.0003. In contrast, the accuracy decreased to 88.49% when the learning
rate was 0.01. This highlights the importance of selecting an appropriate learning rate
during model training.

Second, we studied the effects of data augmentation. By applying random rotation,
color balance, and Gaussian noise to the training data, we found that data augmentation
could improve the model’s performance in terms of accuracy and F1 score by 0.97% and
0.67%, respectively. However, the performance in precision and recall dropped by 0.91%
and 5.53%, respectively. Specifically, before using data augmentation techniques, the
model’s accuracy, precision, recall, and F1 score were 89.61%, 56.66%, 72.76%, and 58.77%,
respectively. After applying data augmentation, these metrics changed to 90.58%, 55.75%,
67.23%, and 59.44%, respectively.

Third, we compared the performance of our proposed network model with traditional
network models. We found that our model outperformed conventional convolutional neu-
ral networks in all considered metrics, including accuracy, precision, F1 score, and recall.

Last, we conducted ablation experiments using the RFCA ResNet network model.
We found that each component in our proposed method played a crucial role in the
model’s performance. Specifically, employing multi-scale feature extraction modules and
dual attention mechanisms improved the model’s performance, while using the focal loss
function and class balancing methods addressed imbalanced data issues. Moreover, the
RFCA ResNet network model enhanced the model’s robustness.

In summary, we have proposed a method that incorporates multi-scale feature ex-
traction modules and dual attention mechanisms, and applied the focal loss function and
class balancing methods to handle imbalanced data for diagnosing apple leaf diseases.
Our experimental results have demonstrated that this approach significantly improves
the model’s performance, outperforming traditional convolutional neural networks. Our
research findings have important implications for apple leaf disease diagnosis. However,
the model’s parameters and computational complexity currently prevent it from being
deployed on mobile devices. In the future, we plan to adopt lightweight methods, such as
knowledge distillation, to reduce the model’s parameter size and computational complexity
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while considering resource limitations and processing capabilities on mobile devices, in
order to achieve better performance and user experience in mobile deployment.
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Abstract: As one of the physical quantities concerned in agricultural production, soil moisture can
effectively guide field irrigation and evaluate the distribution of water resources for crop growth in
various regions. However, the spatial variability of soil moisture is dramatic, and its time series data
are highly noisy, nonlinear, and nonstationary, and thus hard to predict accurately. In this study, taking
Jiangsu Province in China as an example, the data of 70 meteorological and soil moisture automatic
observation stations from 2014 to 2022 were used to establish prediction models of 0–10 cm soil relative
humidity (RHs10cm) via the extreme gradient boosting (XGBoost) algorithm. Before constructing the
model, according to the measured soil physical characteristics, the soil moisture observation data
were divided into three categories: sandy soil, loam soil, and clay soil. Based on the impacts of various
factors on the soil water budget balance, 14 predictors were chosen for constructing the model, among
which atmospheric and soil factors accounted for 10 and 4, respectively. Considering the differences in
soil physical characteristics and the lagged effects of environmental impacts, the best influence times
of the predictors for different soil types were determined through correlation analysis to improve the
rationality of the model construction. To better evaluate the importance of soil factors, two sets of
models (Model_soil&atmo and Model_atmo) were designed by taking soil factors as optional predictors
put into the XGBoost model. Meanwhile, the contributions of predictors to the prediction results
were analyzed with Shapley additive explanation (SHAP). Six prediction effect indicators, as well as
a typical drought process that happened in 2022, were analyzed to evaluate the prediction accuracy.
The results show that the time with the highest correlations between environmental predictors and
RHs10cm varied but was similar between soil types. Among these predictors, the contribution rates of
maximum air temperature (Tamax), cumulative precipitation (Psum), and air relative humidity (RHa)
in atmospheric factors, which functioned as a critical factor affecting the variation in soil moisture,
are relatively high in both models. In addition, adding soil factors could improve the accuracy of soil
moisture prediction. To a certain extent, the XGBoost model performed better when compared with
artificial neural networks (ANNs), random forests (RFs), and support vector machines (SVMs). The
values of the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE),
mean absolute relative error (MARE), Nash–Sutcliffe efficiency coefficient (NSE), and accuracy (ACC)
of Model_soil&atmo were 0.69, 11.11, 4.87, 0.12, 0.50, and 88%, respectively. This study verified that
the XGBoost model is applicable to the prediction of soil moisture at the provincial level, as it could
reasonably predict the development processes of the typical drought event.

Keywords: soil moisture; prediction; XGBoost algorithm; SHAP

1. Introduction

Soil moisture is a critical climate variable that regulates climate change by facilitating
the exchange and distribution of water and energy in land–air interaction. Additionally,
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soil moisture plays a significant role in agricultural production, as deficits or overflows of
soil moisture during critical periods can impact crop growth and yields [1]. Integrating
information on available soil moisture and crop water demands can help the development
of timely and appropriate irrigation schedules [2], which is particularly important in areas
with poor water conditions.

The variations and differences in soil moisture across regions are determined by its
budget balance, which is influenced by several factors. Soil moisture is sourced from
atmospheric precipitation and artificial irrigation, and its expenditure depends on physical
processes such as evapotranspiration and runoff, which are influenced by local weather
conditions, soil characteristics, land cover, and other factors [3]. Usually, soil moisture
can be expressed using physical variables such as relative humidity, weight water content,
and volume water content. Among these variables, relative humidity, calculated as the
percentage of soil water content and field capacity, can comprehensively reflect the soil
moisture status and surface hydrological processes [4,5]. Consequently, soil relative humid-
ity is an essential reference in irrigation, enabling an analysis of soil moisture differences
between regions. Soil moisture prediction based on relative humidity can enhance the
defense against waterlogging and drought in farmland.

Numerous studies have investigated soil moisture prediction using various methods.
Traditional approaches include the water balance method [6–8], statistical empirical for-
mula method [9], time series method [10,11], and physical models based on hydrological
processes [12]. These methods typically consider the soil water budget balance principle,
relationships between soil water and environmental factors, change characteristics of soil
water over time, and land–air interaction. They use model building or time series analysis
to forecast soil moisture. With advances in information technology, various applications of
machine learning (ML) in agricultural production have been widely developed, including
predictions of the crop growth period, yield, and soil moisture [13–16]. ML technologies
such as artificial neural networks (ANNs) [17], support vector machines (SVMs) [18], and
gradient boosting regression trees (GBRTs) [19] offer a novel perspective for soil moisture
prediction due to their advantages of having a low computational cost, strong self-learning
ability, high prediction accuracy, and wide suitability [20–22]. For instance, a GA-BP neural
network regression model was tested to perform well in predicting the soil moisture of high
side slopes [23]. A proposed novel encoder–decoder model with residual learning played
an excellent role in solving the nonlinear problem of soil moisture prediction, which was
tested using data from 13 FLUXNET sites with varying plant function types and climatic
characteristics [24].

In the research of soil moisture prediction based on machine learning, besides finding
suitable prediction models [25], selecting the appropriate input factors for the prediction
model is crucial. Many studies have selected meteorological factors directly related to soil
moisture, such as precipitation, transpiration, sunshine, and surface temperature [26]. For
instance, Xu et al. (2010) developed and tested an integrated soil moisture prediction model
based on artificial neural networks (ANNs) with meteorological data in the semi-arid region
of eastern China, and the model performed well at basin scales [27]. Li et al. (2018) applied
the adaptive genetic ANN method to improve the quality of soil moisture prediction using
atmospheric forcing data, which include air temperature, relative humidity, wind speed,
radiation, and precipitation, as well as soil forcing data, such as soil temperature at 5
cm depth and lagged soil moisture at 0–10 cm [28]. Moreover, with the advancement of
remote sensing technology, remote sensing monitoring indexes based on multi-source data,
including optical, thermal infrared, microwave, and other data, have also been widely used
for soil moisture monitoring and prediction [29–31].

However, current research on soil moisture prediction has some limitations, including
discontinuity in remote sensing images, an inadequate use of data from automatic observa-
tion stations, and unclear influencing factors of soil moisture [24,32]. Therefore, this study
utilized the soil moisture data and corresponding meteorological data from 70 automatic
stations in Jiangsu Province, determined the optimal influence times of the input factors
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for prediction models using a correlation analysis method, and applied extreme gradient
boosting (XGBoost) to establish two sets of soil relative humidity prediction models (i.e.,
Model_soil&atmo and Model_atmo). To better interpret the influences of the input factors on
these two models and evaluate their performance, Shapley additive explanation (SHAP)
was applied, and six metrics were utilized as the predicting effect indicators to compare
the models’ (e.g., ANN, RF, and SVM) prediction accuracy. Furthermore, a typical drought
development process in August 2022 in Jiangsu Province was analyzed in depth. This
study aimed to establish a provincial-level and understandable soil moisture prediction
model by applying a machine learning algorithm, which could provide a case study for
other regions.

2. Materials and Methods

2.1. Study Area

Jiangsu Province (see Figure 1) is located on the east coast of China, in the mid-latitude
zone, with a geographical location between 30◦46′–35◦07′ N and 116◦22′–121◦55′ E. It
lies in the climate transition zone between the subtropical and warm temperate zones
and belongs to the East Asian monsoon climate zone. The average annual temperature,
precipitation, and sunshine hours in Jiangsu Province are between 13.6–16.1 ◦C, 704–1250
mm, and 1816–2503 h, respectively [33]. The terrain is generally flat, with the Taihu Plain,
Yanjiang, and Lixia River areas being low-lying and having dense water networks. The
low mountains and hills account for only 14.33% and are mainly distributed in the west
and north regions. There are various soil types in Jiangsu, including zonal soils such as
cinnamon, brown soil, yellow-brown soil, and yellow soil, and non-zonal soils such as
saline soil, meadow soil, and marsh soil. With a long history of agriculture, natural soil in
Jiangsu has evolved into various types of farming soil with different soil textures under the
influence of different farming systems and utilization methods [34].

Figure 1. Overview of the study area of Jiangsu Province, China, and its geographical distribution
map of soil moisture observation stations.

2.2. Data Source

Automatic moisture observation instruments have been gradually incorporated into
the meteorological operational observation system since 2010, resulting in the availability
of high regional density and continuous soil moisture observation data across Chinese
provinces [35]. Consequently, daily 0–10 cm soil relative humidity data, measured by
70 automatic soil moisture observation stations in Jiangsu Province from 2014 to 2022, along
with meteorological data collected by automatic weather stations and soil temperature data
measured by soil temperature instruments at the corresponding 70 soil moisture station
locations, were used for predicting 0–10 cm soil relative humidity. These atmospheric and
soil observation data were obtained from the Jiangsu Meteorological Information Center.

Based on the principle of soil water budget balance and considering the influence of
various factors on the 0–10 cm soil relative humidity (RHs10cm, %), the predictive factors
were divided into two categories: atmospheric and soil factors. There are ten atmospheric
factors, including the mean air temperature (Ta, ◦C), minimum air temperature (Tamin, ◦C),
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maximum air temperature (Tamax, ◦C), air relative humidity (RHa, %), precipitation (P, mm),
sunshine hours (S, h), wind speed (W, ms−1), atmospheric pressure (Pr, hPa), water vapor
pressure (e, hPa), and potential evapotranspiration (ET0, mm). Additionally, there are
four soil factors, including the mean surface temperature (Ts, ◦C), maximum soil surface
temperature (Tsmax, ◦C), minimum soil surface temperature (Tsmin, ◦C), and 0–10 cm soil
temperature (Ts10cm, ◦C).

2.3. Data Classification

Soil textures and hydrological constants varied significantly in Jiangsu Province. Even
when weather conditions are identical, different regions may exhibit distinct soil water
dynamics due to the differences in soil physical properties [36]. Therefore, it is necessary
to consider regional soil characteristics and hydrological constants when predicting soil
moisture. To this end, according to the soil hydrological and physical characteristics
measured by 70 automatic soil moisture observation stations in Jiangsu Province, the soil
moisture observation data were classified into three categories: sandy soil, loam soil, and
clay soil. The statistics of physical parameters corresponding to the different soil types are
shown in Table 1.

Table 1. Classification results and corresponding soil physical characteristics of soil moisture obser-
vation data.

Soil Type
Soil Bulk Density

(g·cm−3)
Field Water Capacity

(%)
Withering Humidity

(%)
Samples

Sand 1.43 25.46 4.04 40,880
Loam 1.40 26.50 5.29 75,920
Clay 1.36 26.62 5.72 87,600

2.4. Methodology Description
2.4.1. Selection of Predictive Factors

Soil relative humidity changes are mainly affected by previous and current weather
conditions and the state of the soil itself. By distinguishing different soil types, we correlated
RHs10cm with the averaged or accumulated value (including precipitation and sunshine
hours) of 14 predictor factors on the same day as the soil moisture observed, and 1–10 days
in the previous period, to determine the maximum impact time of each predictor (see
Table 2). We used the time with the largest correlation coefficient of each predictor as its
maximum impact time on RHs10cm. The corresponding sample numbers for each soil type
used to take correlation analysis are shown in Table 1.

Table 2. List of predictor factors of 0–10 days prior, which are used for correlation analysis
with RHs10cm.

Names Units Descriptions Range

Sunshine hours h Accumulated sunshine hours 0–128.6

Precipitation mm Cumulative precipitation 0–595.4

Evapotranspiration mm Averaged potential evapotranspiration 0.1–10.2

Wind speed ms−1 Averaged wind speed 0–15.9

Relative humidity % Averaged mean air relative humidity 19–100

Pressure hPa
Averaged water vapor pressure 0.6–42.0

Averaged atmospheric pressure 983.5–1042.4
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Table 2. Cont.

Names Units Descriptions Range

Temperature ◦C

Averaged mean air temperature −11.1–36.0

Averaged minimum air temperature −15.6–31.9

Averaged maximum air temperature −7.2–40.9

Averaged mean soil surface temperature −7.0–45.8

Averaged minimum soil surface temperature −14.7–31.2

Averaged maximum soil surface temperature −0.9–70.2

Averaged 0–10 cm mean soil temperature −2.7–39.0

2.4.2. XGBoost Model

The XGBoost is an ensemble learning method based on boosting [37]. The boosting
technique combines multiple decision trees and aggregates their predictions to obtain a
final prediction that is more accurate than any individual tree. XGBoost is designed to
prevent over-fitting. The XGBoost model builds multiple trees sequentially, with each
subsequent tree intended to reduce the errors of the previous tree. As the training proceeds
iteratively, new trees are added to predict the error of the prior tree. Such a fitting process is
repeated several times until a stopping criterion is met, such as when the root mean square
error (RMSE) reaches an asymptotic value. The ultimate prediction of the model is the sum
of the predictions from all of the trees. The formula for the prediction at the step t and site
location i can be defined as follows [37]:

ŷt
i = ∑t

k=1 fk(xi) = ŷ(t−1)
i + ft(xi) (1)

where ft(xi) is the tree model at step t, ŷt
i and ŷ(t−1)

i are the predictions at steps t and
t − 1, and xi are the predictor variables. The parameters of the model f (xi) are selected
by optimizing the objective function, and the objective function is defined by root mean
square error.

Additionally, XGBoost offers several other advanced features [37] that can further
enhance the model’s performance. For instance, early stopping allows the training process
to be stopped early if the performance on a validation set stops improving. This advanced
feature prevents the model from overfitting to the training data and can improve its ability
to generalize to new data. Cross-validation is another useful technique that can estimate
the model’s generalization performance and help to select the optimal hyperparameters. By
incorporating these and other advanced features, XGBoost has emerged as one of the most
popular and influential machine learning models. The flow chart depicting the XGBoost
model is presented in Figure 2.

2.4.3. The Key Parameters of XGBoost Model

In this study, we focused on optimizing several crucial parameters of the XGBoost
algorithm, including the number of boost rounds, maximum depth, minimum weight in a
child, and learning rate. The number of boost rounds determines the maximum number of
boosting iterations, while the maximum depth sets the maximum depth of an individual
tree. The minimum weight in a child parameter is utilized to prevent overfitting, and the
learning rate parameter controls the model’s shrinkage at every step (i.e., a lower learning
rate indicates more steps used to achieve the optimum) (see Figure 2).

To optimize these parameters, we applied a tuning technique called grid search [38].
This approach computes the optimal values of hyperparameters by exhaustively searching
over a range of possible parameter values. We utilized third-fold cross-validation [39]
to evaluate the performance of different parameter combinations. In total, we searched
through 1500 combinations of parameter values. Ultimately, our XGBoost model achieved
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the best performance with the maximum depth, minimum weight needed in a child, and
learning rate equal to 15, 10, and 0.02, respectively. In addition, we set the maximum
number of boosting rounds to 5000 during training and used the early stop technique to
stop the training. The final number of iterations was 4218 when the loss on the validation
set no longer decreased.

 
Figure 2. The flowchart of the XGBoost model.

2.4.4. Shapley Additive Explanations (SHAPs)

SHAP is a local attribution method that is based on the use of Shapley values. The
Shapley values originate from the field of cooperative game theory and represent each
play’s average expected marginal contribution in a cooperative game after all possible
combinations of players have been considered. It can be formulated as follows [40]:

φi = ∑
S⊆F\{i}

|S|!(F − |S| − 1)!
F!

[ fx(S ∪ {i})− fx(S)] (2)

where φi is the weighted average of all marginal contributions of the predictor i, F is the total
number of features, S is the subset of predictors from all predictors except for predictor i,
and |S|!(F−|S|−1)!

F! is the weighting factor counting the number of permutations of the subset
S. fx(S) is the expected output given the predictors subset S. [ fx(S ∪ {i})− fx(S)] is the
difference made by the predictor i.

2.4.5. Model Construction and Application

This study aimed to develop a soil moisture prediction model for different soil types
using relevant atmospheric and soil factors. To achieve this, 14 most related factors were
obtained by calculating the correlation. Additionally, to account for the different impacts of
soil types, the variable Stflag was included in the model, with values of 1, 2, and 3 repre-
senting sandy, loam, and clay soils, respectively.

To further evaluate the importance of soil factors in predicting 0–10 cm soil relative
humidity, two sets of data used as the model’s independent variables were constructed
using 14 optimal predictors (including atmospheric and soil variables) and 10 optimal
predictors (including atmospheric variables only) from 70 stations in Jiangsu Province
between 2014 and 2021. Before prediction, missing values in these two data sets were com-
pleted with the mean values, and the dataset was normalized. A tri-fold cross-validation
approach [39] was employed to train, validate, and evaluate the model. The data were
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randomly divided into three sets: 80% (163,520 samples) as the model training dataset,
10% (20,440 samples) as the model validation dataset for parameter optimization, and the
remaining 10% (20,440 samples) as the model prediction evaluating dataset.

2.4.6. Model Prediction Effect Interpretation and Verification

After building the prediction model, the SHAP method was applied to obtain each
predictive factor’s positive and negative effects separately for both Model_soil&atmo and
Model_atmo. In addition, six metrics were used on the evaluating dataset to evaluate the
performance of XGBoost and other state-of-the-art predictive models, including correlation
coefficient (R), root mean square error (RMSE), mean absolute error (MAE), mean absolute
relative error (MARE), Nash–Sutcliffe efficiency coefficient (NSE), and accuracy (ACC).
These indicators are calculated as follows [41]:

R =

n
∑

i=1
(yi − yi)(ŷi − ŷi)√

n
∑

i=1
(yi − yi)

2 n
∑

i=1
(ŷi − ŷi)

2
(3)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(4)

MAE =
1
n

n

∑
i=1

|(yi − ŷi)| (5)
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1
n

n

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ (6)

NSE = 1 −

n
∑
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(yi − ŷi)

2

n
∑
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(ŷi −

n
∑

i=1
yi

n )

2 (7)

ACC = 1 − 1
n

n

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ ∗ 100% (8)

where yi is the observed value, ŷi is the predicted value, n is the number of samples, yi is
the mean of observations, and ŷi is the mean of the prediction.

To further verify the prediction capabilities of Model_soil&atmo and Model_atmo based
on XGBoost, we compared these models with three state-of-the-art machine learning
models (i.e., ANN [42], RF [43], and SVM [44]) for soil moisture prediction over 70 sites in
Jiangsu. The comparison was based on the values of these above metrics and the scatter
distributions of predicted and observed soil moisture values. Furthermore, we evaluated
the performance of Model_soil&atmo and Model_atmo during a typical drought in August
2022 in Jiangsu Province. The flow chart depicting the establishment, interpretation, and
evaluation of the prediction models for soil moisture is presented in Figure 3.
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Figure 3. Flow chart of establishing, interpreting, and evaluating soil moisture models.

3. Results

3.1. Correlation Analysis between Soil Moisture and Predictive Factors

After analyzing the correlations between 0–10 cm soil relative humidity (RHs10cm) and
various predictors for different soil types with different advance days (See Figure 4), it was
observed that, among the atmospheric factors, RHs10cm had a high positive correlation with
the mean air relative humidity (RHa) and cumulative precipitation (Psum). The correlation
coefficients were between 0.17–0.33 and 0.13–0.26, respectively, and their absolute values
gradually increased with the leading time, peaking 8–10 days prior. Additionally, RHs10cm
had a high negative correlation with the mean water vapor pressure (e) and accumulated
sunshine hours (Ssum). The absolute correlation coefficients were between 0.24–0.33 and
0.15–0.33, respectively. The absolute values also increased with the leading time, reaching
the maximum at 8 and 10 days prior, respectively. Among the soil factors, RHs10cm had a
high negative correlation with the mean maximum surface temperature (Tsmax), with its
maximum absolute value appearing 4–5 days prior. The correlations between RHs10cm and
other factors were relatively low, but all passed the significance test of p = 0.01.

Figure 4. Correlation coefficients between 0–10cm soil relative humidity and various predictive
factors of different soil types, which are (a) sandy soil, (b) loam, and (c) clay, respectively.

Overall, the correlations between RHs10cm and various predictor factors, as well as
their change rules with the days advanced, were relatively consistent among different soil
types, with the times taken to reach the maximum value being similar (see Figure 4a–c).
The variabilities of positive–negative correlation with RHs10cm were mainly reflected in the
factors of the minimum surface temperature and wind speed. Thus, a fixed optimal impact
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time was set for each predictor factor as the model input, and its corresponding differences
in the impact times between different soil types were no longer distinguished.

3.2. Interpretability of Model

We analyzed the relationships between the predictor variables and the soil moisture
using the XGBoost model and presented the results through SHAP summary plots for
each variable. In Figure 3, for each predictor variable displayed on the y-axis, each colored
point represents a value of this variable in the dataset and the SHAP values displayed on
the x-axis denoting the contributions of that predictor variable, which can be a positive or
negative effect on the prediction of soil moisture. The gradient color of each point indicates
the value of the predictor variable, ranging from low (blue) to high (red), providing a visual
representation of the relationships between the predictors and soil moisture.

From the SHAP summary chart of Model_soil&atmo in Figure 5a, we observed that
Tsmax, Ts10cm, and Tamax had a significant negative contribution to the model prediction,
considering both atmospheric and soil variables. Conversely, the effects of other factors
on the prediction results were either opposite or insignificant. Among them, Psum had
the most considerable positive contribution to the model prediction, followed by RHa.
According to the importance of each predictor, the order of the top five predictors was
Tsmax > Psum > Ts10cm > RHa > Ts.

Figure 5. SHAP summary chart of (a) Model_soil&atmo and (b) Model_atmo.

From the SHAP summary chart of Model_atmo in Figure 5b, we found that the greater
value of Tamax, e, and W had a greater negative contribution to the model prediction, con-
sidering only atmospheric variables. In contrast, other factors have opposite effects on the
prediction results, or their positive–negative characteristics were insignificant. Among them,
Psum had the most significant positive contribution to the model prediction, followed by RHa,
which was consistent with the results of Model_soil&atm. According to the importance of each
predictor, the order of the top five predictors was Psum > Tamax > RHa > e > W.

3.3. Model Prediction Evaluation
3.3.1. Analysis of Model Prediction Accuracy

To further verify the prediction capabilities of Model_soil&atmo and Model_atmo based
on XGBoost, we compared them with three other state-of-the-art machine learning models
(i.e., ANN, RF, and SVM) based on the scatter distributions of the predicted and observed
values of soil moisture, and the values of six metrics (i.e., R, RMSE, MAE, MARE, MSE,
and ACC).

The scatter distributions of the model predictions based on XGBoost and the ac-
tual observations of the 0–10 cm soil relative humidity are presented in Figure 6a1,a2.
Model_soil&atmo and Model_atmo showed an even distribution of predicted and observed
values around the 1:1 diagonal, with Model_soil&atmo exhibiting a slightly more clustered
distribution. The mean and standard deviation of Model_soil&atmo ’s predictions (79.28% and
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10.32%, respectively) were similar to those of the observations (79.30% and 15.77%, respec-
tively). Model_atmo ’s prediction results were comparable to those of Model_soil&atmo, with
only minor differences. However, overall, the prediction performance of Model_soil&atmo
was slightly better than that of Model_atmo.

Figure 6. Scatter plot of soil moisture observations and predictions of Model_soil&atmo and Model_atmo

based on (a1,a2) XGBoost, (b1,b2) ANN, (c1,c2) RF, and (d1,d2) SVM. (The 1:1 diagonal is shown
by the gray dashed line, the regression line is shown by the red solid line, and the observed and
predicted means and standard deviations are shown by the red dots and dashed boxes, respectively).

After comparing the scatter distributions of observations with model predictions based
on XGBoost, ANN, RF, and SVM (see Figure 6), it was observed that the lines between the
predicted and observed soil moisture for XGBoost were much closer to the ideal line (y = x)
than those for the other predictive models. Additionally, the prediction results of the other
models presented a relatively smaller standard deviation.

Table 3 shows the comprehensive predictive performances of XGBoost, ANN, RF, and
SVM over 70 sites in Jiangsu Province. The values of R, RMSE, MAE, MARE, NSE, and
ACC for Model_soil&atmo and Model_atmo based on XGBoost were 0.69, 11.11, 4.87, 0.12,
0.50, and 88%, as well as 0.66, 11.49, 4.96, 0.14, 0.47, and 86%, respectively. Comparing the
values of the six evaluated indexes of other LM models, it was found that models based on
XGBoost always had the lowest RMSE, MAE, and MARE, as well as the highest R, NSE,
and ACC.

In addition, for XGBoost, compared with Model_atmo having an average prediction
accuracy of 86%, Model_soil&atmo had better precision, with an average accuracy of 88%.
Notably, Model_soil&atmo’s prediction effects were always slightly better than those of
Model_atmo, which was also evident from the prediction results of other models, whether
from the scatter charts or metrics.
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Table 3. Comparison of XGBoost, ANN, RF, and SVM performances in soil moisture prediction using
two data sets as the model’s input.

ML Models R RMSE MAE MARE NSE ACC (%)

XGBoost
Model_soil&atmo 0.69 11.11 4.87 0.12 0.50 88%
Model_atmo 0.66 11.49 4.96 0.14 0.47 86%

ANN
Model_soil&atmo 0.59 12.85 6.55 0.16 0.27 84%
Model_atmo 0.56 13.19 6.71 0.17 0.23 83%

RF
Model_soil&atmo 0.64 12.08 6.07 0.15 0.36 85%
Model_atmo 0.63 12.25 6.19 0.16 0.34 84%

SVM
Model_soil&atmo 0.54 13.68 7.56 0.17 0.19 83%
Model_atmo 0.51 13.58 6.86 0.18 0.18 82%

Furthermore, the spatial distribution map of the model evaluation indexes (i.e., R
and MAE) showed that both Model_soil&atmo and Model_atmo based on XGBoost had a
high accuracy in soil moisture prediction, and their spatial distribution patterns were
very similar, with differences only at individual stations (see Figure 7). Stations with
relatively small correlation coefficients and large average absolute errors of predictions
and observations of both models were mainly concentrated along the northern area of the
Yangtze River and in the northeastern area of Jiangsu Province.

Figure 7. Spatial distribution of prediction accuracy evaluation indicators of (a) Model_soil&atmo and
(b) Model_atmo.

In addition, we found that the prediction accuracy of both models varied greatly
between sites from the spatial distribution maps. According to the statistical analysis, for
Model_soil&atmo, the R between the predicted and measured values ranged from 0.34 to
0.87, with a mean value of 0.69, and the MAE ranged from 0.12% to 14.52%, with a mean
value of 4.87%. The number of sites with R > 0.60 reached 58, accounting for more than
82%, and the number of sites with MAE < 5% reached 40, accounting for more than 57%.
For Model_atmo, the R between the predicted and measured values ranged from 0.34 to 0.85,
with an average value of 0.66, and the MAE ranged from 0.05% to 13.96%, with an average
value of 5.04%. The number of sites with R > 0.60 reached 53, accounting for more than
75%, and the number of sites with MAE < 5% reached 38, accounting for more than 50%.

3.3.2. Analysis of Typical Drought Process

During 2–23 August 2022, a third round of persistent high temperature occurred
in Jiangsu Province, with the first two rounds taking place on 16–22 June and 8–15 July,
respectively. The south of Huaihe region experienced 14–19 days of a maximum tempera-
ture ≥ 37 ◦C, with the average temperature between 32–33.7 ◦C. Compared to the same
period in a normal year, the temperature in 2022 was approximately 4 ◦C higher and the
precipitation was less than 90%. In particular, southern Jiangsu faced widespread high
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temperatures above 40 ◦C from 12–15 August, resulting in a rapid expansion of drought
across the province. By 15 August, most of the southern Huaihe Basin experienced mod-
erate or above meteorological drought, with some areas suffering from severe drought.
However, the high temperature gradually receded from 24 August, and the precipitation
gradually increased, mainly in the Huaibei and Sunan areas. As a result, the moisture
conditions across the province improved effectively, and the moisture content reached an
appropriate level.

According to the distribution of a 0–10 cm soil relative humidity on 1, 15, and 30 Au-
gust, which was interpolated from the measurement of the automatic soil moisture station
(see Figure 8a1–a3), we found on 1 August, affected by antecedent precipitation, the soil
moisture in most areas of northern Jiangsu was saturated, and the field humidity was
relatively high, while the 0–10 cm soil relative humidity in some areas of southern Jiangsu
was less than 60%. By 15th August, there was a severe soil water shortage in most of
the southern Huaihe Basin. The 0–10 cm soil relative humidity was only 40% to 50%,
which had reached moderate drought, and was even less than 40% in some regions, reach-
ing severe drought. Affected by precipitation, by 30 August, the field soil humidity in
some areas of Huaibei was relatively high, and the 0–10 cm soil relative humidity in most
southern Huaihe Basin had generally improved to more than 60%, with only sporadic
areas still suffering from the drought. Thus, it can be seen that the variation in farmland
drought perfectly corresponds with the beginning, aggravation, and extinction of the entire
high-temperature process.

 

Figure 8. Relative humidity of 10 cm soil relative humidity of (a1–a3) observations, (b1–b3)
Model_soil&atmo predictions, and (c1–c3) Model_atmo predictions on 1, 15, and 30 August 2022.

The spatial distribution patterns of the corresponding prediction results of the models
agreed with the observation results. The prediction results reflected not only the devel-
opment process of drought but also the distribution areas of different levels of farmland
drought. However, the predicted drought situation was relatively weak compared to
the observation results. Overall, the differences in the distribution pattern and numeric

96



Agriculture 2023, 13, 927

value between the predictions and observations of Model_soil&atmo were less than those of
Model_atmo (see Figure 8b1–b3 and Figure 8c1–c3, respectively).

4. Discussion

Based on the observation, soil types, and meteorological data, this study adopted XG-
Boost to predict soil moisture variations. Different atmospheric and soil factor combinations
were selected as input variables to establish two sets of prediction models (Model_soil&atmo
and Model_atmo) for RHs10cm. At the same time, the contributions of the predictive factors
were discussed using SHAP. The prediction accuracy was evaluated by comparing six
evaluated indexes with other popular ML methods and analyzing a typical drought process
in 2022.

The variation in soil moisture is a complex coupling system that exhibits high noise,
nonlinearity, and unstable random time series data [22]. Compared to traditional statistical
models, machine learning algorithms use multiple processing layers consisting of complex
structures or multiple nonlinear transformations to highly abstract data, which could
overcome the influence of white noise on the prediction accuracy and effectively improve
the simulation accuracy [25]. However, different ML methods have different applicabilities
for the same dataset. For example, in a study predicting soil moisture based on three
different datasets, machine learning techniques such as multiple linear regression (MLR),
support vector regression (SVR), and recurrent neural networks (RNNs) were compared,
and MLR was found to have a better performance than the others. Our study used
automatic soil moisture observations to compare the prediction accuracies of two models
based on XGBoost with ANN, RF, and SVM. It showed that Model_soil&atm based on
XGBoost was superior, providing the lowest RMSE (11.11), MAE (4.87), and MARE (0.12),
and highest R (0.69), NSE (0.50), and ACC (88%). Due to different research and application
purposes, the dataset applied in soil moisture prediction studies based on machine learning
algorithms is varied, including in situ sites [45], remote sensing [46], reanalysis [47], and
flux stations [24]. These datasets usually belong to diverse regions with different spatial
and temporal resolutions, so it is still challenging to make direct comparisons even if the
same method is applied.

The analysis of a typical drought process showed that the XGBoost model based on site
data had a good performance and was a feasible method for soil water content prediction,
as it could capture a reasonable spatial distribution of the soil moisture. In addition,
several advantages were considered for choosing the data observed from the automatic
observation stations. Firstly, for a specific site, the data of the automatic observation station
have lower errors than the data obtained by remote sensing instruments and reanalysis
data, where the problems of insufficient time resolution and delayed acquisition also
exist [47]. Hence, we can more accurately explore the relationship between soil moisture
and environmental parameters. Secondly, soil moisture and its related meteorological or
soil data are commonly available with the exact temporal resolution, so abundant data
could be provided for training the predictive model. It is important to note that the
predictivity of soil moisture depends on the data’s time steps and spatial resolutions due to
their different distribution and variation [24,48]. Moreover, the wideness of the application
of soil moisture prediction usually depends on its spatial representativeness. Therefore,
as more automatic weather stations are installed, the proposed model based on site data
could be helpful for the operational studies on soil moisture prediction over larger regions
and could provide information for timely and optimal irrigation scheduling. However,
considering the spatial variability of soil moisture, in-depth future research is still needed,
using situ data, remote sensing, and reanalysis data.

The appropriate selection of model input factors could promote the accuracy of the
prediction model [49]. In this research, we correlated the RHs10cm with 14 predictors
1–10 days before to determine each predictor’s maximum impact time. The selected
predictors were taken as inputs for the model, which would make the model establishment
more reasonable, but still needs to be tested in the future. In addition, the contributions of
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each predictor on the modeling results of two sets of models were discussed via SHAP. The
analysis revealed that soil factors in Model_soil&atmo played a positive role in the prediction
of soil moisture. Overall, the prediction accuracy of Model_soil&atmo was higher than that of
Model_atmo. Therefore, introducing soil factors such as Tsmax, Ts, and Ts10cm could improve
the prediction accuracy of soil moisture to some extent. For atmospheric factors, Tamax,
Psum, and RHa are crucial for improving the soil moisture prediction accuracy. These
results are consistent with the view that temperature and precipitation are the main factors
affecting the variations in soil moisture by adjusting the water budget balance [50,51].

This study aimed to predict the 0–10cm soil relative humidity, which is a crucial
parameter for drought and waterlogging prevention, as well as farmland fertilization and
irrigation. Generally, the cultivation layer of crops is 0–20 cm, and the water condition
of this layer has a good characterization of crop drought. However, compared with the
deep soil layer, the 0–10 cm soil layer is more directly affected by meteorological conditions
such as precipitation and temperature. When the temperature is high and the amount
of evapotranspiration increases, the lack of moisture in crop fields appears gradually
from top to bottom. The moisture deficit in surface soil is easily detected and can serve
as the evaluation index for preventing and controlling crop drought. In addition, there
is an excellent linear correlation between the soil relative moisture at different levels of
depth [52], and hence the surface soil moisture condition is a good indicator of deep soil
moisture conditions.

This study deeply integrated the XGBoost with meteorological data to establish a
provincial-level soil moisture prediction model, which can provide a reference for soil
moisture prediction research in other regions. The model can be used to analyze historical
soil water change rules and typical drought and flood cases during the period lacking soil
moisture observation while high-density meteorological observation is available (mainly
from the 1960s to 2010s). However, there are some deficiencies and uncertainties in this
study. For instance, only four frequently used machine learning algorithms were used in
the study. In the future, multiple machine learning algorithms or other methods [53–55]
could be used to conduct soil moisture prediction research to analyze the advantages
and disadvantages of different methods and applicable conditions. Based on the XGBoost
algorithm, the positive and negative contributions of most factors in the Model_soil&atmo and
Model_atmo for soil moisture prediction analyzed by SHAP were consistent and conformed
to the actual physical meaning. However, there were some cases where the same factor had
the opposite contribution to the prediction results, which needs further investigation.

5. Conclusions

Soil moisture is the characterization of farmland drought and flood and the basis
for irrigation schemes. The prediction of soil relative humidity was achieved based on
the XGBoost model using continuous daily atmospheric and soil observation data from
automatic stations. The methods of correlation analysis and SHAP were applied to select
model predictors and evaluate the contribution of model factors. In addition, six effect
indicators and a typical drought process were analyzed to compare the predictive accuracy
of the XGBoost model with the other three machine learning models (i.e., ANN, RF, and
SVM) to assess the predictive power of the model.

Through correlative analysis, we found that the time with the highest correlations
between environmental predictors and RHs10cm varied but was similar between soil types.
Among atmospheric factors, the mean RHa and Psum exhibited strong positive correlations
with RHs10cm, with correlation coefficients ranging from 0.17 to 0.33 and 0.13 to 0.26. The
correlation gradually increased over time, reaching the maximum 8~10 days ago. On the
other hand, the mean e and Ssum displayed strong negative correlations with RHs10cm,
with correlation coefficients ranging from −0.24 to −0.33 and from −0.15 to −0.33. Their
absolute values also gradually increased over time, peaking at the time of 8 days ago
and 10 days ago, respectively. Among the soil factors, the mean Tsmax showed a strong
negative correlation with RHs10cm, and its maximum absolute value appeared 4~5 days
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ago. Furthermore, via SHAP analysis, it showed that the contributions and impacts of
the predictors on the modeling results for Model_soil&atmo and Model_atmo were different.
According to the importance of each predictor, the orders of the top five predictors of
these two models were Tsmax > Psum > Ts10cm > RHa > Ts and Psum > Tamax > RHa > e > W,
respectively. Overall, among the predictors, the contribution rates of Tamax, Psum, and RHa
in atmospheric factors, which functioned as a critical factor affecting the variation in soil
moisture, were relatively high in both models.

The overall performances of Model_soil&atmo and Model_atmo based on XGBoost ex-
hibited lower error values when compared to ANN, RF, and SVM, thereby verifying the
prediction capabilities of the XGBoost model. The values of R, RMSE, MAE, MARE, NSE,
and ACC for Model_soil&atmo and Model_atmo based on XGBoost were 0.69, 11.11, 4.87, 0.12,
0.50, and 88%, and 0.66, 11.49, 4.96, 0.14, 0.47, and 86%, respectively. Both Model_soil&atmo
and Model_atmo using XGBoost outperformed the other machine learning models in the
scatter distribution of the predicted and measured values. In addition, by integrating the re-
sults of SHAP analysis and comparisons of Model_soil&atmo and Model_atmo, it showed that
Model_soil&atmo’s prediction effects were always slightly better than those of Model_atmo.
Hence, it is worth noting that introducing soil factors (e.g., Tsmax, Ts, and Ts10cm) can
positively improve the soil moisture prediction accuracy.

Furthermore, the XGBoost model was applicable for provincial-level soil moisture
prediction as it captured the spatial distribution characteristics of different levels of drought
and effectively predicted the dynamic change process of the “occurrence–development–
termination” of a specific drought event. Therefore, the excellent establishment of a soil
moisture prediction model based on automatic observation stations, which effectively
overcomes the temporary discontinuity of remote sensing inversion and the problem of
a low prediction accuracy, could not only effectively guide farmland irrigation but also
validly compensate for the insufficient historical observation of soil moisture stations.
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Abstract: In order to achieve accurate detection of mature Zanthoxylum in their natural environment,
a Zanthoxylum detection network based on the YOLOv5 object detection model was proposed. It
addresses the issues of irregular shape and occlusion caused by the growth of Zanthoxylum on trees
and the overlapping of Zanthoxylum branches and leaves with the fruits, which affect the accuracy
of Zanthoxylum detection. To improve the model’s generalization ability, data augmentation was
performed using different methods. To enhance the directionality of feature extraction and enable
the convolution kernel to be adjusted according to the actual shape of each Zanthoxylum cluster,
the coordinate attention module and the deformable convolution module were integrated into the
YOLOv5 network. Through ablation experiments, the impacts of the attention mechanism and
deformable convolution on the performance of YOLOv5 were compared. Comparisons were made
using the Faster R-CNN, SSD, and CenterNet algorithms. A Zanthoxylum harvesting robot vision
detection platform was built, and the visual detection system was tested. The experimental results
showed that using the improved YOLOv5 model, as compared to the original YOLOv5 network,
the average detection accuracy for Zanthoxylum in its natural environment was increased by 4.6%
and 6.9% in terms of mAP@0.5 and mAP@0.5:0.95, respectively, showing a significant advantage
over other network models. At the same time, on the test set of Zanthoxylum with occlusions, the
improved model showed increased mAP@0.5 and mAP@0.5:0.95 by 5.4% and 4.7%, respectively,
compared to the original model. The improved model was tested on a mobile picking platform, and
the results showed that the model was able to accurately identify mature Zanthoxylum in its natural
environment at a detection speed of about 89.3 frames per second. This research provides technical
support for the visual detection system of intelligent Zanthoxylum-harvesting robots.

Keywords: YOLOv5; deformable convolution; attention mechanism; visual detection system;
Zanthoxylum-harvesting robot

1. Introduction

Zanthoxylum is widely cultivated in various parts of China, with a cultivated area
of about 17.284 million mu and an annual output of over 500,000 tons. It is an important
medicinal material and food ingredient. However, manual harvesting of Zanthoxylum
is faced with the problems of low efficiency, high temperature and humidity in the work
environment, severe mosquito bites, and injuries to workers. Developing a Zanthoxylum-
harvesting robot can reduce labor intensity and improve the efficiency of harvesting [1–3].

To enhance the efficiency and quality of Zanthoxylum harvesting, researchers have
studied the mechanical harvesting of Zanthoxylum. Wan Fangxin and others designed
a comb-type Zanthoxylum harvester using the principles of brushing and air suction [4].
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Zheng Tianyun designed an electromagnetic Zanthoxylum picker [5]. During the develop-
ment of the Zanthoxylum harvester, it was intended to be lightweight and easy to operate,
with semi-automated portability [6]. Although these studies have, to some extent, im-
proved the efficiency of Zanthoxylum harvesting and reduced the labor intensity, the lack
of an automatic recognition and positioning system for Zanthoxylum makes it difficult to
achieve fully automatic harvesting [7,8]. Many scholars have proposed target detection and
localization algorithms for Zanthoxylum based on computer vision. Zhang Yongmei and
others used a combination of color analysis and image fusion algorithms to identify Zan-
thoxylum [9]. Yang Ping et al. used the K-means clustering algorithm for target extraction
of Zanthoxylum [10]. As deep learning technology advances, the application of object de-
tection algorithms in agriculture is becoming increasingly widespread [11–15]. At the same
time, many deep learning-based object detection models have emerged for agricultural
harvesting robots. For example, Xie Jiaxing et al. proposed a model called YOLOv5-litchi
that detects lychees in natural environments by using an attention mechanism and increas-
ing the small object detection layer, achieving an mAP@0.5 of 87.1% [16]. Zhipeng Cao
et al. presented a real-time mango detection model based on YOLOv4 which improved
the model detection speed by adjusting the network’s width and depth and deleting some
convolutional layers; this achieved an mAP@0.5 of 95.12% [17]. Jinhai Wang et al. utilized
the Swin Transformer and DETR models to achieve grape bunch detection [18].

Deep learning-based object detection algorithms are mainly divided into two stages:
two-stage detection and one-stage detection. Two-stage detection is based on candidate
box detection algorithms, and some of the representative algorithms include the R-CNN
seriesp [19], SPPNet [20], Fast R-CNN [21], and Faster R-CNN [22]. On the other hand,
one-stage detection is simpler compared to two-stage detection as it is based on regression
detection algorithms, directly generating the location coordinates and class probability of
the target. One-stage detection has a lower training difficulty and a faster detection speed,
and the YOLO series [23–26] is a typical representative of one-stage detection algorithms.
Currently, the YOLOv5 algorithm is mostly applied for the detection of fruits such as
apples [27], cherries [28], and tomatoes [29]; there are fewer studies on the automatic
detection of Zanthoxylum.

In summary, the feature extraction-based methods used in previous studies to identify
Zanthoxylum place high demand on the dataset, resulting in low detection accuracy when
facing complex backgrounds and lighting conditions in natural environments; significant
occlusion among Zanthoxylum branches, leaves, and fruits; and irregular shapes of each
fruit on the Zanthoxylum spike. To achieve the detection of mature Zanthoxylum and
assist the Zanthoxylum-harvesting robot in building a visual detection and positioning
system, in this paper, a red-ripe Zanthoxylum image dataset is constructed. To enhance the
directed feature extraction, the YOLOv5 model is used, and the CA (coordinate attention)
mechanism is introduced to weaken the feature extraction of complex backgrounds. To
specifically solve the problems of irregular Zanthoxylum spike shapes, complex field
backgrounds, and dense Zanthoxylum fruits, the deformable convolution is introduced to
improve the accuracy of mature Zanthoxylum recognition under natural conditions. In the
second year, we deployed the model onto the platform constructed for the Zanthoxylum-
harvesting robot for field tests in order to evaluate its effectiveness and generalizability.

2. Materials and Methods

2.1. Mature Zanthoxylum Image Collection

The images of mature Zanthoxylum were captured in Zijing Village, Shima Town,
Boshan District, Zibo City, Shandong Province, from the Zanthoxylum plantations of local
farmers. The images were collected on 25 August 2021 using a DJI motion camera, a Sony
5T camera, and a mobile phone in the natural environment.

The resolution of each collected image was 1280 × 1024 (pixels) with a 4:3 aspect ratio,
and the original images were saved in JPG format. The images should include cases with
single mother trees, multiple mother trees, Zanthoxylum branches, Zanthoxylum leaves,
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and Zanthoxylum alone. In the natural environment, Zanthoxylum often has shading and
backlighting, so when taking pictures with a camera, cases with shading and backlighting
should be included as often as possible.

The growth and distribution of ripe Zanthoxylum on the Zanthoxylum tree in its natu-
ral environment are illustrated in Figure 1,. It can be seen from the figure that under natural
conditions, the growth direction and the number of fruits in each cluster of Zanthoxylum
are often not regular. The cluster of Zanthoxylum is a discrete target with an irregular
shape. Under natural lighting conditions, shading and back-light are inevitable, making
the color characteristics of Zanthoxylum unreliable. The overlap of branches and leaves in
Zanthoxylum also results in an incomplete shape of the collected Zanthoxylum.

   
(a) (b) (c) (d) 

Figure 1. Images of Zanthoxylum peppercorn fruit under natural conditions. (a) Occlusion situation;
(b) multi-mother plant overlap; (c) backlit conditions; (d) shading conditions.

2.2. Construction of the Dataset

To construct a deep learning model for the effective detection of Zanthoxylum under
natural environmental conditions, this study only screened and removed images that were
excessively blurred due to the shooting equipment not being completely focused. A total
of 2827 images were collected at the trial site, and after screening and removal, 2368 images
remained. The images were randomly divided into a training set, a validation set, and a
test set in a 7:1:2 ratio. The dataset was annotated using the LabelImg annotation tool. The
mature Zanthoxylum plants were selected by using a mouse to create a rectangular bound-
ing box around the outer edge of the target contour, forming a quadrilateral bounding box.
This study annotated the irregularly shaped Zanthoxylum clusters, with no requirement
for the size of the quadrilateral. The area of the quadrilateral bounding box was kept as
close as possible to the area of the Zanthoxylum it contained. The blue rectangle shows the
ripe prickly ash fruit. An example of the annotated sample is shown in Figure 2.

 

Figure 2. Sample image annotation.

To enhance the robustness of the object detection model while taking into account
the tilt angle, illumination intensity, and different resolutions that may exist in the image
acquisition process of field equipment, the original images used for modeling were aug-
mented using methods such as geometric transformation, color transformation, and mixed
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transformation. Ultimately, 12,000 images were obtained. The data augmentation examples
are shown in Figure 3.

 
Figure 3. Data enhancement sample.

2.3. Network Model Construction
2.3.1. YOLOv5

YOLO is a representative of one-stage object detection algorithms which views object
detection as a regression problem and performs feature extraction, object classification, and
boundary box regression in a deep neural network, realizing end-to-end inference. It has a
fast detection speed and can detect and classify objects in an image simultaneously.

The Zanthoxylum detection method, based on deep learning YOLO, can locate Zan-
thoxylum using real-time video and return its coordinates, category, and confidence. In the
YOLO neural network, the input data are represented by an image, which is divided into
S × S grids. When the center of the Zanthoxylum falls into a grid, the grid will detect it.
Each grid detects B targets, and each target will receive 5 prediction parameters: x, y, w,
h, and confidence, where (x, y) represent the target’s coordinates and (w, h) represent the
width and height of the boundary box.

YOLOv5 has four main parts in its network structure: the input end, backbone network,
neck network, and output end. The input end represents the input image and includes
some image preprocessing, including resizing the input image to the input size of the
network and normalizing it. The backbone network of YOLOv5 uses Focus [30] as the
benchmark network, which mainly uses slicing operations to crop the input image. In
the neck portion, YOLOv5 adopts the fast spatial pyramid pooling [31] (SPPF) module for
multi-scale feature fusion, as well as the feature pyramid network (FPN) [32] and the path
aggregation network PAN [33] modules for network feature fusion and strengthening. The
output end is used to output the object detection results.

2.3.2. A YOLOv5 Model Incorporating Attention Mechanisms and
Deformable Convolutions

The introduction of attention mechanisms in deep learning networks can enhance
the interested target region. Deformable convolution kernels can be adjusted based on
the actual size and shape of the detected target, thus more effectively extracting the fea-
tures of the detected object. As the shapes and sizes of mature chili pepper fruit spikes
are irregular, to improve the detection accuracy of mature chili pepper fruit, this paper
incorporates the attention mechanism module and the deformable convolution module
into the YOLOv5 network.

Coordinate attention (CA) [34] is a kind of attention mechanism proposed by Qibin
Hou et al. in 2021. The mechanism embeds position information into channel attention. The
module decomposes channel attention into a 1D feature-decoding process in which features
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are aggregated along different directions. During this process, the long-range features are
extracted along one spatial direction, and precise position information is retained along
the other spatial direction. The resulting feature maps are then encoded and aggregated
to produce position- and direction-sensitive feature maps, thus enhancing the interest
target area [35]. The specific structure of the CA attention mechanism module is shown in
Figure 4.

Figure 4. Structure diagram of the coordinate attention mechanism.

The detection of mature Zanthoxylum is highly correlated with the region of the fruit
in the image. The model’s sensitivity to the position of mature Zanthoxylum helps to
improve detection accuracy.

In this paper, the model was required to be deployed on mobile devices. The early
stage of the network is focused on shallow features, and adding the CA module during this
stage would decrease the training and detection speed due to the high number of features
considered in this stage. Therefore, the CA module was added before the SPPF module.

Deformable convolutional networks (DCNs) [36] are novel convolutional methods
introduced by Dai et al. in 2017. The deformable convolution adds a direction offset to each
element of the convolutional kernel, allowing the kernel to adjust its shape according to the
actual object being detected and to better extract the input features. This type of convolution
captures local features more effectively, especially when the object shape changes, making
the advantages of deformable convolution more apparent. Figure 5 shows a comparison
between a conventional 3 × 3 convolutional kernel and deformable convolution.

 

(a) (b) 

Figure 5. Comparison of conventional 3 × 3 convolution and deformable convolution. (a) Normal
convolution; (b) deformable convolution.

DCN can improve the model’s ability to extract features from objects with deformation.
The offset is learned by parallel convolutional layers, and the kernel can be shifted at the
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sampling points on the input feature map. This causes the model to focus on the target area
for detection and on making the kernel shape more suitable for the target shape, rather
than being limited to a square sampling area. However, the first generation of deformable
convolution may extend beyond the target area of interest and cause performance degra-
dation, so Deformable ConvNets v2 (DCNv2) [37,38] introduced the addition of weight
to each sampling point while learning the offset. This not only enhanced the acceptance
of the input feature position, but also regulated the amplitude of the input feature, thus
increasing the model’s ability to model and learn. The following is the operation flow of
the DCNv2 module.

Initially, if a 3 × 3 convolutional kernel is adopted, the definition of the kernel is R,
and the size of the kernel is two-dimensional, as shown in Formula (1).

R = {(−1, 1), (0, 1), . . . , (0, 1), (1, 1)} (1)

DCNv2 first extracts the feature map using conventional convolution kernels, and
then takes the obtained feature map as input, applying another convolution layer to the
feature map to obtain the deformable convolution offset. The calculation formula of the
normal convolution operation’s output feature map is shown in Formula (2).

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn) (2)

In the formula, p0 is the center point of the conventional convolution kernel; pn is the
sampling point of the conventional convolution kernel; x is the input feature map; and y is
the output feature map.

The formula for calculating the output feature map using a deformable convolution
kernel is shown in Formula (3).

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn + Δpn)Δmn (3)

In this formula, Δpn represents the adjusted offset, Δmn represents the weight coef-
ficient, and the remaining variables are the same as those in the traditional convolution
operation. The deformable convolution introduces the position offset of the sampling
points on the basis of the traditional convolution, which enables the output feature map to
better represent the features of irregular targets. The offset Δpn shifts the points in region R
based on the distribution of target features, and since the offset is generated by convolving
the input feature map with another convolution layer, it is usually represented by a decimal.
Therefore, by performing bilinear interpolation on the offset, the formula of the deformable
convolution is transformed into Formula (4).

X(p) = ∑q G(q, p)·x(q) (4)

In Equation (4), q represents the position of the sample point after being offset, p
represents the integer grid point, and G (q, p) represents the integer form of the sample
point position obtained from the bilinear interpolation operation. The structure diagram of
deformable convolution is shown in Figure 6.

The model proposed in this paper needs to be deployed on mobile devices, so the
YOLOv5s model with the smallest number of parameters was selected for improvement.
Figure 7 shows the structure of the improved YOLOv5 network model. The CA attention
mechanism module was inserted before the SPPF module of the backbone network in this
model, and the deformable convolution module was introduced into the neck of the model.
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Figure 6. Deformable convolutional structure.

 
Figure 7. Improved YOLOv5 network map. Conv represents convolution, C3 represents a module
consisting of three Convs and multiple bottleneck layers, SPPF refers to a spatial pyramid pooling-fast
structure, Concat represents a feature fusion method of channel connection, Upsample represents
up-sampling, and DCNConv2 refers to the deformable convolution module.

3. Experimental Design

3.1. Model Training
3.1.1. Model Training Parameters

The platform for training and testing the model in this paper was a workstation
computer with an Intel Core (TM) i9-9820X processor, operating at a frequency of 3.3 GHz,
with 32 GB running memory and a GeForce GTX 2080ti GPU with 11 GB of memory. The
operating environment was Ubuntu18.04 LTS. The training and testing of the model were
based on the Pytorch framework, using the Python programming language and libraries
such as CUDA, Cudnn, and OPENCV for setup.

The input image size for model training was 640 pixels by 640 pixels, and the model
was trained for a total of 200 epochs. In order to evaluate the performance of the model,
the weights parameters were saved after each epoch. The learning rate was warmed up
using a warm-up method, and during this stage, the learning rate was updated through
linear interpolation followed by the use of the cosine annealing algorithm.

The loss function is a value that represents the level of agreement between the model’s
prediction and the truth. Its magnitude determines the performance of the model. During
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the model training process, factors that affect the training accuracy include the box loss
(box_loss), object confidence loss (obj_loss), and classification loss (cls_loss). The loss
function for the model in this paper is defined as shown in Equation (5).

Loss = 0.3 × box_loss + 0.4 × obj_loss + 0.3 × cls_loss (5)

The change curve of the model’s loss value during the training process is shown in
Figure 8. From the figure, it can be seen that the loss value rapidly decreased in the first
15 rounds of training. After 100 rounds of training, the loss value was basically stable; the
loss of the training set and the validation set have converged, and the gap between them is
very small. The model did not show overfitting.

Figure 8. Change curve of loss value.

3.1.2. Model Evaluation Index

In this study, we primarily evaluated the performance of the output model using
precision (P), recall (R), F1 score, mean average precision (mAP), and frame per second
(FPS). The most intuitive metric for measuring the model’s detection and classification
ability is mAP, and the higher the accuracy of the model, the higher the mAP value.
Therefore, we use the size of the mAP value as the primary evaluation criterion for the
model. The intersection over union (IOU) is the ratio of the intersection and union of
the generated candidate box and the original annotated box. mAP@0.5 indicates that the
average precision mean is calculated when the IOU threshold is set to 0.5, and mAP@0.5:0.95
indicates the average value of mAP at different IOU thresholds (from 0.5 to 0.95 with a
step of 0.05). The Zanthoxylum detection algorithm proposed in this paper is intended
for use in the visual detection system of an intelligent Zanthoxylum-picking robot, which
requires certain accuracy in terms of locating mature Zanthoxylum, so we evaluated the
model using both mAP@0.5 and mAP@0.5:0.95.

Precision, denoted as P, is the ratio of the number of accurately predicted samples to
the total number of samples, and its formula is as follows:

P =
TP

TP + FP
× 100% (6)

TP is the number of positive samples that were correctly predicted as positive, and
FP is the number of negative samples that were wrongly predicted as positive. R is the
proportion of all positive samples that were correctly predicted as positive, and is calculated
as follows:

R =
TP

TP + FN
× 100% (7)

where FN is the number of positive samples that were wrongly predicted as negative.
F1 score is a metric that balances precision and recall, and is calculated as the harmonic

mean of precision and recall. The formula is as follows:

F1 = 2 × P × R
(P + R)

(8)
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The average precision (AP) is the area under the P-R curve, with recall R as the X-axis
and precision P as the Y-axis. The mean average precision (mAP) is the average of the AP
values for each category, obtained by summing up the AP values of each category and
dividing by the total number of categories. The formula for this calculation is as follows:

AP =
∫ 1

0
P(r)dr (9)

mAP =
∑N

i=1 APi

N
(10)

where P(r) represents the expression of the function for the P-R curve, N denotes the
number of categories, and APi represents the average precision value for category i.

3.2. Test Platform Construction

The Zanthoxylum detection algorithm proposed in this paper was intended to be
applied to the visual system of a smart Zanthoxylum-picking robot. To test the practicality
and problems of the algorithm, a Zanthoxylum-picking robot platform was set up as shown
in Figure 9.

 

Figure 9. Construction of test platform.

The platform consisted of a tracked chassis and a six-axis robotic arm. The trained
detection model was embedded within an industrial control computer and mounted on a
D435i depth camera for image acquisition and the detection of ripe Zanthoxylum on trees.
The software and hardware parameters of the industrial control computer are listed in
Table 1.

Table 1. Hardware and software parameters of industrial computer.

Name Parameter

CPU I7-1165G7
Memory 16GB

GPU RTX2060-6GB
System Ubuntu18.04

Python version 3.8.13
Pytorch version 1.12.0

To verify the effectiveness and generalizability of the trained model, it was de-
ployed on the experimental platform, and a field test for Zanthoxylum detection was
conducted in Zijing Village, Shima Town, Boshan District, Zibo City, Shandong Province,
on 29 September 2022. The performance of the Zanthoxylum detection model was tested
in real-world scenarios, as shown in Figure 10.
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Figure 10. Peppercorn-picking robot test platform.

4. Results

4.1. Comparative Analysis of Algorithm Optimization Experiment and Results

Table 2 lists the different models used in this study, along with their corresponding
descriptions. The models were trained and tested using the same dataset.

Table 2. Model name and comparison description.

Number Models Explain

1 YOLOv5 YOLOv5s

2 All-DCNv2-
YOLOv5

The convolutional layers in the backbone network are
all replaced with deformable convolutions

3 CA-YOLOv5 The CA module is added to the backbone network
4 DCNv2-YOLOv5 The neck network introduced DCNv2

5 CA-DCNv2-
YOLOv5

The backbone network adds the CA, and the Neck
network introduces the DCNv2

6 Faster R-CNN A typical two-stage detection algorithm
7 SSD [39] A typical one-stage detection algorithm
8 CenterNet [40] A typical one-stage detection algorithm

4.1.1. Ablation Study

In order to demonstrate the effectiveness of the proposed CA-DCNv2-YOLOv5 model,
an ablation study was designed to verify the impact of different usage methods of the CA
and DCNv2 on the model’s performance in terms of detecting ripe Zanthoxylum.

A comparison of the changes in accuracy, recall, mAP@0.5, and mAP@0.5:0.95 during
the 200-round training processes of different improved YOLOv5 algorithms is shown in
Figure 11.

As shown in Figure 11, it can be seen that simply replacing the conventional convolu-
tion in the backbone network with deformable convolution modules had a limited ability
to improve the model’s performance, and caused relatively severe oscillation in the first
half of the model training. Additionally, as each deformable convolution module required
separate calculation of the offset, the computation of the model was increased, leading to
an increase in both the training and detection times of the model. The results of the ablation
comparison experiment are shown in Table 3.
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(a) (b) 

  
(c) (d) 

Figure 11. Evaluation index changes of different YOLO algorithms in the training process. (a) The
precision change curve; (b) the recall change curve; (c) the change curve of mAP@0.5; (d) the change
curve of mAP@0.5:0.95.

Table 3. Ablation comparison experiment results.

Number F1 Score mAP@0.5/% mAP@0.5:0.95/% Speed/(Frame/s) Model Size/(M)

1 0.86 88.9 62.6 97.1 14.5
2 0.87 88.3 63.6 82.7 14.7
3 0.89 90.4 64.8 97.1 14.8
4 0.90 91.1 66.4 95.2 14.6
5 0.91 93.5 69.5 95.2 14.7

Table 3 shows the results of the ablation study. The CA-YOLOv5 model, which incor-
porated the CA attention mechanism module, improved the mAP@0.5 and mAP@0.5:0.95
by 1.5% and 2.2%, respectively, compared to the original model. The DCNv2-YOLOv5
model, which introduced the deformable convolution modules, improved the mAP@0.5
by 2.2%, and the mAP@0.5:0.95 by 3.8%. However, simply replacing the conventional
convolution modules in the backbone network with deformable convolution modules
resulted in limited improvement to the model’s accuracy and a substantial decrease in
detection speed. The improved YOLO V5 model, which combined both improvements,
further enhanced the detection accuracy of Zanthoxylum, with a 2.9% improvement in
mAP@0.5 and a 2.9% improvement in mAP@0.5:0.95 compared to the CA-YOLOv5 model
and the DCNv2-YOLOv5 model, respectively. Compared to the original YOLOv5 object
detection model, the detection speed remained largely unchanged, with 4.6% and 6.9%
improvements in mAP@0.5 and mAP@0.5:0.95, respectively.

From the above experiments, it can be seen that the introduction of the CA attention
mechanism module and the proper replacement of the deformable convolution module
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can effectively improve the target detection accuracy for mature Zanthoxylum. However,
both combined in the CA-DCNv2-YOLOv5 model resulted in the best mAP@0.5 and
mAP@0.5:0.95.

4.1.2. Comparison of Different Models

In addition to the ablation study, typical two-stage object detection algorithms, e.g.,
Faster R-CNN, and typical one-stage object detection algorithms, e.g., SSD and CenterNet,
were trained using the dataset in this paper and tested with the same test set. The results
are shown in Table 4.

Table 4. Performance comparison of different models.

Model F1 Score mAP@0.5/% mAP@0.5:0.95/% Speed/(Frame/s)
Model

Size/(M)

CA-DCNv2-
YOLOv5 0.91 93.5 69.5 95.2 14.7

Faster
R-CNN 0.85 85.9 55.9 16.0 113.4

SSD 0.76 79.6 40.6 98.9 95.5
CenterNet 0.69 77.8 38.5 81.1 131

The F1 score of the CA-DCNv2-YOLOv5 model was 0.91, with a mAP@0.5 of 93.5%
and a mAP@0.5:0.95 of 69.5%, outperforming other network models. In terms of model size,
that of the CA-DCNv2-YOLOv5 model was 14.7 M. On the other hand, that of the Faster
R-CNN model was 113.4 M, which was close to 8 times the size of the CA-DCNv2-YOLOv5
model, and its detection speed was only one-sixth that of the CA-DCNv2-YOLOv5 model.

Comparing the four object detection algorithms, it can be seen that the CA-DCNv2-
YOLOv5 model had the smallest model size, the highest F1 score, the highest mAP and the
fastest detection speed. It achieved the best performance in detecting mature Zanthoxylum
in natural environments.

4.1.3. Comparison of Model Detection Effect

A comparison of the different models’ partial detection results can be seen in Figure 12.
It can be seen that, except for Network 5, there were different degrees of false negatives, false
positives, and repeated box selections in other models. However, the proposed Model 5
did not have these problems, and still showed good detection results for Zanthoxylum that
was severely occluded by leaves. In addition, the size and position of the detection box
were more accurate.

4.1.4. Network Attention Visualization

To demonstrate CA-DCNv2-YOLOv5’s feature extraction capabilities more intuitively,
this paper visualizes a feature heat map [41]. The results of model feature visualization are
shown in Figure 13, where red areas indicate the regions on which the network is highly
focused, with deeper colors indicating stronger levels of attention.
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(a) YOLOv5 instance detection (b) ALL-DCNv2-YOLOv5 instance detection 

  
(c) YOLOv5 instance detection (d) ALL-DCNv2-YOLOv5 instance detection 

  
(e) YOLOv5 instance detection (f) ALL-DCNv2-YOLOv5 instance detection 

(g) YOLOv5 instance detection (h) ALL-DCNv2-YOLOv5 instance detection 

Figure 12. Comparison of partial test results of different models. (a) YOLOv5 instance detection;
(b) ALL-DCNv2-YOLOv5 instance detection; (c) CA-YOLOv5 instance detection; (d) DCNv2-YOLOv5
instance detection; (e) CA-DCNv2-YOLOv5 instance detection; (f) Fsater R-CNN instance detection;
(g) m SSD instance detection; (h) Centernet instance detection.

  
(a) Original drawing 

  
(b) YOLOv5 output 

Figure 13. Cont.
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(c) CA-DCNv2-YOLOv5 Output 

Figure 13. Class activation mapping.

It can be seen from the figure that compared to the YOLOv5 model, the CA-DCNv2-
YOLOv5 model pays more attention to the local areas of the Zanthoxylum in the feature
extraction process, and relatively less attention to irrelevant information. Thus, it showed
higher accuracy in detecting mature Zanthoxylum.

4.1.5. Model Recognition Performance for Zanthoxylum under Occlusion Conditions

To further verify the detection performance of the improved CA-DCNv2-YOLOv5
model on occluded Zanthoxylum, a separate test set was constructed by manually selecting
100 images with occlusions from the test set, and both YOLOv5 model and CA-DCNv2-
YOLOv5 model were used for prediction. The prediction results are shown in Table 5.

Table 5. Comparison of the detection effect of the occluded target fruit before and after the improvement.

Models mAP@0.5/% mAP@0.5:0.95/%

YOLOv5 86.5 58.9
CA-DCNv2-YOLOv5 91.9 63.6

As shown in Table 5, the CA-DCNv2-YOLOv5 model outperformed the YOLOv5
model in the test set with occlusions, with improvements of 5.4 and 4.7 percentage points
in mAP@0.5 and mAP@0.5:0.95, respectively. These results demonstrate that the improved
YOLOv5 target detection algorithm proposed in this paper helps to increase the detection
accuracy of mature Zanthoxylum with occlusions.

4.2. Field Experiment

The feasibility and practicality of the proposed Zanthoxylum detection algorithm were
demonstrated through the collection, recognition, and location of Zanthoxylum images.
These images were obtained from different positions on trees in their natural environment
by means of a mechanical arm in different poses and the improved YOLOv5 model. The
results of the actual performance tests of the model are shown in Figure 14. The model was
able to detect and recognize mature Zanthoxylum in the field and output the coordinate
information, with an average detection time of 11.2 ms and a detection speed of 89.3 frames
per second, thus satisfying the real-time detection requirements. The recognition and
detection information can be used in real time to drive the Zanthoxylum-harvesting robot
to perform the cutting, grasping, and collection tasks. The harvesting performance of the
robot is shown in Figure 15.
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Figure 14. Detection effect of ripe prickly ash fruit in the field.

  
Figure 15. Prickly ash-picking robot work diagram.

5. Discussion

Zanthoxylum features a growth pattern in which the fruits are discrete, with an
irregular spike shape. This makes the detection of the fruit challenging due to cross-
occlusion between fruits. To address this challenge, this paper introduces a deformable
convolutional module to better adapt to the shape of the Zanthoxylum and extract more
features. At the start of the network, the feature map has a large number of features. Adding
the deformable convolutional module at this point will cause the model to learn a significant
number of irrelevant features and, thus, considerably reduce both the training speed and
the detection speed. The proposed model is deployed on a mobile device, and has a certain
requirement for detection speed. The experimental results showed that introducing the
deformable convolutional module into the neck of the model instead into the backbone
network significantly improves the detection speed. Furthermore, the introduction of a
CA attention mechanism into the backbone network increased the model’s sensitivity to
positional information. Combining this with the deformable convolution improves the
accuracy of the model in detecting mature Zanthoxylum.

Zanthoxylum undergoes a red maturation process that takes place over a period
of time, approximately two months, during August and September. During this time,
all Zanthoxylum is in the red maturation stage. Images of red mature Zanthoxylum
collected during different months are shown in Figure 16. Figure 16a shows red mature
Zanthoxylum from August, with more plump and fresh red fruit. Figure 16b shows mature
red Zanthoxylum from September, the fruits of which are relatively dry and have a deep
red color. In subsequent algorithmic improvements, the changes in color and fruit shape
during the red maturation process of Zanthoxylum should be fully considered in order to
further improve the robustness and detection accuracy of the algorithm.
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(a) Red ripe pepper fruit in August (b) September red ripe prickly ash fruit 

Figure 16. Comparison of red ripe prickly ash at different growth stages.

6. Conclusions

The visual detection system is a key module for the Zanthoxylum-harvesting robot.
In order to achieve accurate detection of mature Zanthoxylum this paper presents an
improved YOLO algorithm to detect Zanthoxylum in natural environments. The main
conclusions are as follows:

1. An improved YOLOv5 model was proposed for Zanthoxylum cluster detection in
its natural environment by adding the CA attention mechanism module into the
backbone network and introducing the deformable convolutional module into the
neck. The testing results showed that the improved model had an average accuracy
of 93.5% in mAP@0.5 and 69.5% in mAP@0.5:0.95, which improved by 4.6% and 6.9%,
respectively, compared to the original YOLOv5 model, while maintaining the basic
detection speed. In addition, the CA-DCNv2-YOLOv5 model proposed in this paper
demonstrated a significant performance advantage compared to Faster R-CNN, SSD,
and CenterNet.

2. The improved YOLOv5 network model was tested on an image dataset that in-
cluded occlusions of Zanthoxylum. The average precision scores, mAP@0.5 and
mAP@0.5:0.95, improved by 5.4% and 4.7%, respectively, compared to the original
YOLOv5 network.

3. The improved YOLOv5 network model had a detection speed of approximately
89.3 frames per second on mobile devices, meeting the real-time detection require-
ments of the Zanthoxylum-harvesting robot.
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Abstract: Rice seed variety purity, an important index for measuring rice seed quality, has a great
impact on the germination rate, yield, and quality of the final agricultural products. To classify
rice varieties more efficiently and accurately, this study proposes a multimodal l fusion detection
method based on an improved voting method. The experiment collected eight common rice seed
types. Raytrix light field cameras were used to collect 2D images and 3D point cloud datasets,
with a total of 3194 samples. The training and test sets were divided according to an 8:2 ratio. The
experiment improved the traditional voting method. First, multiple models were used to predict the
rice seed varieties. Then, the predicted probabilities were used as the late fusion input data. Next, a
comprehensive score vector was calculated based on the performance of different models. In late
fusion, the predicted probabilities from 2D and 3D were jointly weighted to obtain the final predicted
probability. Finally, the predicted value with the highest probability was selected as the final value.
In the experimental results, after late fusion of the predicted probabilities, the average accuracy rate
reached 97.4%. Compared with the single support vector machine (SVM), k-nearest neighbors (kNN),
convolutional neural network (CNN), MobileNet, and PointNet, the accuracy rates increased by 4.9%,
8.3%, 18.1%, 8.3%, and 9%, respectively. Among the eight varieties, the recognition accuracy of two
rice varieties, Hannuo35 and Yuanhan35, by applying the voting method improved most significantly,
from 73.9% and 77.7% in two dimensions to 92.4% and 96.3%, respectively. Thus, the improved
voting method can combine the advantages of different data modalities and significantly improve the
final prediction results.

Keywords: rice seed; variety classification; multimodal fusion; machine vision; point cloud

1. Introduction

As the most primitive and fundamental means of production in agricultural devel-
opment, seeds not only determine the survival rate and growth activity of seedlings but
also affect subsequent product processing. In agricultural production, with improvements
in the production capacity and product quality requirements of various crops, effectively
selecting and breeding good varieties has become a hot research topic.

Machine vision research is the process of processing visual information, usually
including the image brightness, shape, position, color, and texture. Using machine vision
to classify varieties can achieve the effect of nondestructive testing, so it has become
a good research direction in recent years. Initially, the variety detection of rice seeds
started from 2D images. In [1], an automatic rice quality evaluation system based on
an artificial neural network (ANN) and support vector machine (SVM) classifiers was
proposed. Experiments showed that the overall accuracy of the proposed ANN classifier
was 83%, while that of the SVM was 91%. In [2], rice varieties were classified according
to color, shape, and texture characteristics. Principal component analysis (PCA) was used
to reduce the dimension of the data. Using discriminant analysis (DA), the accuracy of
segregation of rice, brown rice, and white rice cultivars was 89.2%, 87.7%, and 83.1%,
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respectively. To identify and classify the desired species, a multilayer perceptron neural
network was implemented based on the most effective components. The results showed
that the network was 100% accurate in identifying and classifying all of the mentioned
rice varieties. In [3], using seven morphological features extracted from each variety of
rice, a model was created by using LR (logistic regression), MLP (multilayer perceptron),
SVM, DT (decision tree), RF (random forest), NB (naïve Bayes), and weighted k-nearest
neighbor (kNN) machine learning techniques, and the performance measurement values
were obtained. The experimental results showed that the classification accuracy rates of
the models were 93.02% (LR), 92.86% (MLP), 92.83% (SVM), 92.49% (DT), 92.39% (RF),
91.71% (NB), and 88.58% (kNN). As a branch of machine learning, neural networks are
gradually being widely used. A new method using a deep convolution neural network
(CNN) as a general feature extractor was proposed in [4]. The extracted features were
classified using an ANN, cubic SVM, quadratic SVM, kNN, boosted tree, bagged tree, and
linear discriminant analysis (LDA). Compared with a model based on simple features,
the model trained with CNN-extracted features showed better classification accuracy.
The CNN-ANN classifier showed the best performance. The classification accuracy was
98.1%, recall 98.1%, and F1-score 98.1%, in 26.8 s. In [5], the authors proposed a seed
classification system based on CNN and transfer learning, which contained models and
used advanced deep learning techniques to classify 14 common seeds. The techniques used
in that study included the decayed learning rate, model checkpointing, and hybrid weight
adjustment. The proposed model exhibited 99% recognition accuracy for 234 training and
testing images.

Compared with simple two-dimensional (2D) image recognition, the three-dimensional
(3D) information obtained from the surface of rice seeds can describe the seed appearance
more completely and accurately. However, the application of 3D computer vision in rice
seed modeling is still at the research stage, and its implementation in crop seed modeling
and nondestructive testing (NDT) is still being popularized on a small scale. In [6], a rice
variety classification method based on 3D point cloud data of the rice seed surface and a
deep learning network was proposed. The preprocessed point cloud was input into the
improved PointNet network for feature extraction and variety classification. The average
classification accuracy of the improved PointNet model for eight rice varieties was 89.4%.
In [7], a rice seed recognition platform was constructed by combining 3D laser scanning
technology and the BP neural network algorithm. Information on the rice seed surface was
collected from four angles, and three morphological characteristics and projection charac-
teristics of the main plane cross-section were obtained by feature calculation. The results
showed that for input vectors composed of nine surface morphological features in 3D, the
recognition rates of five rice varieties were 95%, 96%, 87%, 93%, and 89%, respectively.
The recognition rates for the input vectors composed of nine projective features of the rice
seed cross section were 96%, 96%, 90%, 92%, and 89%, respectively. The 3D grain character
measurement method based on CT was studied in [8]. Here, 3D rice spike images were
reconstructed by 3D reconstruction software, and grain phenotypes were analyzed. The
results show that the recognition accuracy of a random forest classifier was higher than that
of an LDA classifier and SVM classifier, and the average cognition accuracy was 95.19%.

The 2D and 3D models provide complementary information. Each pixel of an RGB
image obtains various colors by changing the three color channels of red (R), green (G), and
blue (B) and superimposing them. In 2D, the original image collected by the camera is an
RGB image. RGB images have a higher resolution than the depth images or point clouds
and contain rich textures not available in the point domain. In addition, images can cover
“blind spots” caused by reflective surfaces that depth sensors cannot perceive. In contrast,
2D images are limited in 3D detection tasks because they lack absolute object depth and
scale measures, which can be provided by 3D point clouds.

Multimodal technology helps artificial intelligence understand the external world
more accurately by cooperating with perceptual information in multiple modalities. Ac-
cording to the chronological order of fusion, the methods for merging 2D images and 3D
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point clouds can be divided into two types: early fusion and late fusion. Early fusion
fuses the features extracted from different modalities, which is also called feature fusion [9].
In [10], the authors proposed a fusion method combining RGB and depth information.
The model consisted of a two-stream CNN that can automatically fuse information from
RGB and depth using a specific encoding method before classification. Finally, the goal
of learning rich features from two domains was achieved. The authors of [11] proposed
a method for fruit leaf disease classification based on feature fusion. They used transfer
learning to adjust the extracted deep features and then fused multiple features into the final
feature through a multilevel fusion algorithm based on entropy-controlled threshold calcu-
lation. The fused features were input into a main classifier multi-SVM. The experimental
results showed that the method improved the recognition accuracy (97.8%) and sensitivity
(97.6%) of the five diseases. The authors in [12] used partial least squares (PLS) regression
to perform feature selection from the extracted deep feature set. The acquired features were
input into the ensemble baggage tree classifier to realize the automatic disease identification
of tomato, potato, and corn crops. The accuracy rate was approximately 90.1%. In [13],
they proposed a corn seed variety detection method that weighted the data at different
stages after the feature extraction of corn seed images and then fused the shallow features
with the deep features to construct multiscale fusion features. Experiments showed that the
average precision of the MFSwin Transformer model on the test set was 96.53%, which was
higher than that of the other models. Late fusion fuses the prediction scores of multiple
single modalities, also known as the score fusion [9]. The authors in [14] proposed a weed
classification method by multimodal late-fusion deep neural networks (DNNs) using a
Bayesian conditional probability-based method, or determining the priority weights to
calculate the score vector. The results showed that the method was effective in plants. The
accuracy rate on a seedling dataset was 97.31%. The study in [15] proposed a method to
estimate the ripeness of papaya fruit by combining hyperspectral and visible light images,
enabling multimodality through the late fusion of image-specific networks. Experimental
results showed that the model obtained an improved F1-score of up to 0.97. The compati-
bility of early fusion and late fusion is relatively good, and this approach can adapt to most
detection algorithms based on point clouds. However, when there is a problem with the
classification model in early fusion, the correct detection of the variety can no longer be
achieved. For late fusion, the result is fused by the classification results of multiple models,
so this approach is less affected by a single model and is more robust.

It can be seen from the previous research results that most of the research on variety
detection in the past only stayed in a single 2D or 3D, and did not combine the advantages of
the two modes. In addition, there is a lack of effective weights to predict the outcome during
late fusion. Therefore, on the basis of our predecessors, we proposed a new experimental
approach. In this study, 2D RGB images and 3D point cloud data captured by Raytrix light
field cameras were used as input data for recognition, and an improved voting method
was used to fuse the recognition results. We pursued this research goal as follows. (1) The
data of the 2D rice pictures and 3D point cloud sets were established and divided into a
training set and a validation set at a ratio of 8:2. (2) SVM, kNN, CNN, and MobileNet were
used to classify the 2D images. PointNet models were used to classify the 3D point clouds.
Finally, a voting method was used to fuse the classification results of multiple models to
obtain the final variety detection results. (3) The final classification results were evaluated
and compared with the general model classification results through visualization. For
the results of this study, we propose the following hypotheses. (1) Multimodal fusion to
achieve variety detection can achieve higher accuracy by combining the advantages of
2D and 3D. (2) The late-fusion method can improve the accuracy and robustness of the
classification process. Moreover, when the homogeneity of multiple classification models is
smaller, the accuracy of the final fusion result is higher.
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2. Materials and Methods

2.1. Point Cloud Collection System

The rice seed 3D point cloud acquisition hardware platform included a camera and
lens, a vertical lifting device, a light source and its control module, and a camera calibration
tool. There were four parts in total. The research-grade light field camera was model R42,
manufactured by the German Raytrix, with a maximum resolution of 41.5 MegaRays and
7708 × 5352 pixels. The imaging lens used in the acquisition process was a 3D light field
lens with a focal length of 50 mm and an aperture of F/2.80. The camera and lens were
composed of a light field camera and an imaging lens. The computer was equipped with a
high-performance GPU, model NVIDIA GTX 1080, for real-time light field processing. The
camera calibration tool is a calibration board evenly covered with a dot matrix with a pitch
of 2.09 mm. The point cloud acquisition hardware platform collects 3D point cloud data
on the surface of rice seeds through cameras and lenses and uses vertical lifting devices
to realize rough adjustment and fine adjustment of the height of the camera placement.
Camera calibration tools are used to perform light field camera calibration, and the light
source control module controls the environment of the experimental site. The experimental
environment for point cloud collection is shown in Figure 1.

 

Figure 1. Point cloud collection hardware platform.

The camera operation software supports RxLive4.0 software. The software can identify
the connected camera, control it, and change the camera parameters. The light field camera
can be calibrated using the camera calibration module in the software, with the function
of evaluating the calibration effect and evaluating the grade of the calibration result. The
software includes a point cloud preprocessing function, which can perform filtering, noise
reduction, sharpening, smoothing, and cropping on the point cloud. The data export
function can set various file types, file naming formats, and export file storage locations for
data export.

2.2. Dataset Preparation

In this study, eight common rice seeds in China were selected as the datasets for model
training and testing. The seeds selected for the experiment were preliminarily screened
and cleaned manually to avoid irregularities such as attached impurities and gaps from
affecting the classification results. The storage of the selected samples strictly follows
the standardized storage environment. Rice seeds were stored in a dry, low temperature,
and airtight environment to avoid being affected by the external environment. The seeds
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included in the dataset were Nanjing9108, Zhenghan10, Hannuo35, Yuanhan35, Liannuo13,
Hyou518, Huanghuazhan, and Liusha, and the representative RGB images of each category
are shown in Figure 2.

Figure 2. RGB images of the maize seed grains. (a) Nanjing9108. (b) Zhenghan10. (c) Hannuo35.
(d) Yuanhan35. (e) Huanghuazhan. (f) Hyou518. (g) Liannuo13. (h) Liusha.

The above-mentioned seeds were placed separately on the camera stage to sequentially
collect the 2D images and 3D point clouds of the front and back sides. After simple
preprocessing of the 2D image, the redundant background was cut according to the size and
shape of the seed. Establishing the 3D point cloud first requires preprocessing operations
such as denoising, smoothing, and cutting on the original data. However, the rice seed
point cloud collected at this time still contains considerable redundant data. Storing,
processing, and displaying these point cloud data would increase the burden on the
computer processing process and at the same time occupy a large amount of computer
hardware and software resources, reducing the efficiency of the operation process. However,
if the point cloud is too small, it will lose its features for classification. Therefore, this study
downsampled the point cloud to a scale of 2048 points. The final point cloud data after
processing are shown in Figure 3.

 

Figure 3. The point cloud data after processing.

In the experiment, the dataset of each rice species was divided into a training set and
a test set at a ratio of 8:2. Each seed had a corresponding 2D picture and 3D point cloud on
the front and back. There were eight varieties for a total of 3194 samples; the total size of
the training set was 2560, and the total size of the test set was 634, as shown in Table 1.
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Table 1. Rice seed dataset.

No. Cultivar Name Training Set Validation Set

1 Nanjing9108 320 79
2 Zhenghan10 320 79
3 Hannuo35 320 79
4 Yuanhan35 320 80
5 Huanghuazhan 320 80
6 Hyou518 320 78
7 Liannuo13 320 80
8 Liusha 320 79

Total 2560 634

2.3. Classification Model

For the voting method, we need to consider the possible impact of different base
models. In theory, the base model can be any model that has been trained. However, in
practical applications, if the voting method is to produce better results, two conditions need
to be met:

1. The effect between the base models cannot be too different. When a base model
performs poorly relative to other base models, the model is likely to be noisy.

2. There should be less homogeneity among the base models. For example, when the
prediction effect of the base model is similar, voting based on a tree model and a linear
model is often better than voting based on two tree models or two linear models.

Based on the above principles, this paper selected SVM, kNN, CNN, and MobileNet
as the base models for 2D classification and point net as the base model for 3D detection.

The SVM is a method of machine learning that was developed based on statistical
theory [16]. When SVM is used for classification, it can achieve better classification results
when the number of training samples is smaller. Different varieties of rice seeds have large
differences in color from the appearance point of view, so an image histogram can be used
for classification. First, the image is scaled to a uniform size, and then the image histogram
is calculated, as shown in Figure 4. The histogram can be used to obtain the number of
pixels of each brightness level of the image of each sample, and displays the distribution
of the pixels in the image. The SVM was used to process the image histogram, and the
kernel function was linear. The trained model was used to predict the test set, and the
prediction probability corresponding to each seed was saved as the input data of the final
voting method.

Figure 4. Calculated image histogram.
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In machine learning, the kNN algorithm is a widely used classification and regression
method [17]. This algorithm determines the similarity of the samples to be tested according
to the distance characteristics of the nearest neighbor samples to classify them; that is, the
category of the samples to be tested is determined by calculating the distance between
the sample to be tested and the k-nearest neighbor samples in the training set. The three
basic elements of the kNN algorithm are the distance measure, the selection of the k
value of the number of neighbors, and the classification decision rule. The histogram
calculated according to the training set is input into the kNN model with the neighbor
value k parameter of 11 for training to obtain the predicted probability.

The CNN, a type of neural network, is one of the best algorithms for image content,
and it performs very well in related operations such as image segmentation, classification,
detection, and retrieval. CNNs are structurally composed of multilayer networks, and each
layer can be regarded as a plane composed of independent neurons. The main layers include
the input layer, convolutional layer, pooling layer, fully connected layer, and classifier [18].
In this experiment, the CNN model was first normalized, and numbers between 0–255
were normalized to between 0 and 1. Then, the output was set to a convolutional layer
with 32 channels; the size of the convolution kernel was 3 × 3, and the activation function
was ReLU. Then, a pooling layer was added, with a pooled kernel size of 2 × 2. Then,
the output was set to a convolutional layer with 64 channels; the convolution kernel size
was 3 × 3, and the activation function was ReLU. Another pooling layer was added to
perform a pooling operation on a 2 × 2 area. Finally, the 2D output was converted into
one-dimensional output through the softmax function to output the model to the neuron of
the class name length, and the activation function adopted the corresponding probability
value of softmax. The specific network architecture of the CNN is shown in Figure 5.

Figure 5. CNN network structure.

Compared with the CNN, MobileNet abandons the traditional convolution and com-
bines depth-wise convolution and pointwise convolution as the basic network module [19].
We call this approach depth-wise separable convolution. It uses a very simple stacking
structure that has the advantage of improving network computing efficiency and reducing
the number of parameters. In this study, we first loaded the pretrained MobileNet model
as the backbone model and normalized the input image. Then, the output of the back-
bone model was the global average pooled and mapped to the final classification number
through the fully connected layer.

PointNet is a pioneering approach to feeding point cloud data directly into neural
networks. The framework mainly solves the problems of point cloud disorder and permuta-
tion invariance. Considering the disorder of the point cloud, PointNet does not convert the
point cloud into a multi-view or voxel grid but processes the points directly. For permuta-

127



Agriculture 2023, 13, 597

tion invariance, this method used a multilayer perceptron to extract features independently
for each point and then uses the maximum pooling layer to aggregate the information of all
points to obtain global features. In addition, the framework adds T-Net to spatially align
the input point cloud and its features by constructing a transformation matrix to solve the
problem of transformation invariance. This study used the basic PointNet network model
as the classification model, and its structure is shown in Figure 6. After inputting the point
cloud data, T-Net was first performed for affine transformation, which was specifically
expressed as multiplying the transformation matrix by 3 × 3, and then feature extraction
was performed through the convolutional layer. According to the model structure, the
number of convolution kernels of the two MLP convolutional layers (64, 64) was 64. The
convolution kernel size of the first layer of convolution was 1 × 3, and the second layer
was a 1 × 1 kernel. Then, the same feature transform was performed, and in the next MLP
(64, 128, 1024), the size of the convolution kernel was 1 × 1. After the pooling layer, three
fully connected layers were connected, and the number of output nodes was 512, 256, and
k in turn. Finally, the softmax function was used to obtain the result.

Figure 6. Basic PointNet model structure used in this article.

After the above model training was completed, the results were used to predict the
data of the test set and output the predicted probability of each sample separately as the
input data of the voting method for late fusion.

2.4. Improved Voting Method

The voting method is a commonly used technique in ensemble learning that can
improve the generalization ability of the model and reduce the associated error rate. The
traditional voting method follows the principle of the minority obeying the majority and
integrates multiple models to reduce the variance and improve model robustness. Ideally,
the forecasting performance of the voting method should be better than that of any one
of the base models. When the voting method is applied to the classification model, its
prediction result is the most frequent prediction result among all models. According to
different prediction methods, classification voting can be divided into hard voting and soft
voting. Hard voting simply counts the most common class among all model predictions as
the final result. Soft voting calculates the sum of the probability values of the prediction
results of each model and selects the class with the highest probability value as the final
result. Compared with the hard voting method, the soft voting method takes into account
the additional information of the prediction probability, enabling it to obtain more accurate
prediction results than the hard voting method.

The traditional voting method has certain limitations: it treats all models the same.
That is, for the voting method, all models contribute equally to the prediction. Vote pre-
dictions can be biased if some models are good in certain situations but poor in others.
Therefore, this study presents an improved soft voting method, which improves the process
of calculating the arithmetic mean in the traditional method. This method determines the
weights of different models according to their performance scores, combines the probabili-
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ties of the predicted result classes of each model to obtain the comprehensive score vector
of each model, and uses this vector to determine the predicted results. The late-fusion
process based on the improved voting method is shown in Figure 7.

 

Figure 7. Flowchart of the improved voting method.

The F1-score is an indicator used to measure the accuracy of a binary classification
model. It takes into account both the precision and recall of the classification model. Later,
the traditional F1-score was extended to a multicategory F1-score, which can be divided
into macro-F1 and micro-f1 according to the suitable dataset. Macro-F1 is applicable to the
classification situation where each category has equal status and the same size [20]. Since
the size of the dataset of each variety in this experiment is the same, the Macro-F1 value
can be used to determine the scoring vector of each model.

In the binary classification problem, it is assumed that the sample has two categories:
positive and negative. When the classifier prediction ends, we can divide the classification
results into the following categories:

• True positive (TP): Positive samples are successfully predicted as positive.
• True negative (TN): Negative samples are successfully predicted as negative.
• False positive (FP): Negative samples are incorrectly predicted as positive.
• False negative (FN): Positive samples are incorrectly predicted as negative.

In the binary classification problem, the calculation method of the F1-score is as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 × Precision × Recall

Precision + Recall
(3)

The F1-score can balance the two indicators of precision and recall at the same time,
so it can be used to reflect the classification performance of the model. To extend the
calculation method in the binary classification problem to the multiclassification problem,
each category can be regarded as a binary classification problem, and the precision and
recall can be calculated separately. Therefore, for each class, the distribution of its results in
the confusion matrix is as shown in Figure 8.
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Figure 8. Distribution of TP, FP, and FN in multiclassification problems.

Formulas (1) and (2) were used to calculate the respective precision, recall, and F1-
score in each category, respectively, denoted as P1, P2, . . . , Pn; R1, R2, . . . , Rn; and F11,
F12, . . . , F1n. Since the datasets of each variety have the same size, the overall Macro-F1
calculation method is as follows:

Macro − F1 =

n
∑

i=1
F1i

n
(4)

Macro-F1 calculated by each multiclassification model is used as the weight of voting
to form a scoring vector, which is recorded as S1, S2, . . . , Sn. Assuming that there are m
varieties in total, the probability of each model predicting that the result is m is M1, M2, . . . ,
Mn. Then, the final probability (Final-P) of each variety predicted by the voting method is:

Final − P =

n
∑

i=1
Mi × Si

n
(5)

The variety corresponding to the highest probability is selected as the final prediction result.

3. Results and Discussion

First, we used 2D pictures as input datasets to train SVM, kNN, CNN, and MobileNet.
For both the CNN and MobileNet, 30 epochs are allowed to pass. The accuracy and

loss changes of the training set and validation set in each epoch of the two models are
represented by line graphs, as shown in Figure 9.

Figure 9. Accuracy and loss of the training set and validation set for each epoch: (a) CNN, (b) MobileNet.
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In the early stage of training (the first ten epochs), the overall accuracy of the model
gradually increases, and the loss gradually decreases. However, the two indicators of
the CNN’s validation set fluctuate greatly, while those of MobileNet change steadily with
small fluctuations. At the twentieth epoch, the accuracy and loss of the CNN continue to
fluctuate greatly. It may be that the appearance similarity of some rice varieties is relatively
high, which affects the classification effect of the model but then gradually reduces the
fluctuation range. Both curves tend to be smooth. Compared with the CNN, the change
in MobileNet is more stable. The convergence is basically completed at the 15th epoch,
and the curve basically fluctuates over a small range only. A comparison of the two neural
networks revealed that the training process of CNN fluctuated greatly, while MobileNet
was relatively stable. After the final stabilization, the accuracy of the CNN reached 79%,
and the loss was 0.64. The accuracy of MobileNet was 89%, and the loss was 0.33. Although
the accuracy of the CNN was relatively low, this did not have a negative impact on the
final result because the prediction probabilities of multiple models need to be fused during
late fusion.

We input the 3D coordinates of the processed point cloud data into the PointNet model;
Figure 10 shows the accuracy and loss variation during the steps of the training process.
From 0 to 2000 steps, the accuracy and loss varied greatly, and the curves were very steep.
After 6000 steps, both the accuracy and loss gradually converged, basically fluctuating over
a small range only. This change showed that the result of this training was convergent,
and the final average accuracy of PointNet was 88.75%. Compared with other models, the
recognition accuracy of PointNet was not very high. The reason may be that the method of
downsampling during dataset preprocessing is not effective enough, with many important
feature points screened out in the process. Therefore, the final classification effect was
affected to a certain extent.

Figure 10. Changes in the accuracy and loss of the training set with the step size.

After all of the model training had been completed, we uniformly used the test
set for testing and calculated the accuracy of the different models for different types
of seeds, as shown in Figure 11. The four models for classifying 2D images had high
recognition accuracy for Huanghuazhan and Liusha, and the recognition accuracy reached
98% and 95%, respectively. Moreover, the recognition accuracy of the four 2D models for
Huanghuazhan was maintained over the extremely small range of 96% to 99%, indicating
that each model has a good classification effect on this variety. However, for Hannuo35
and Yuanhan35 rice seeds, the recognition accuracy for the 2D images was relatively low,
and the accuracy of the CNN for Hannuo35 was the lowest, only 52%. The reason may
be the appearance similarity of these two kinds of seeds; the currently proposed model
may not be adaptable enough to them. In the 3D point cloud recognition, the classification
accuracy for each species of seeds using the PointNet model indicates that the difference in
the recognition accuracy for the eight seeds was small, with the values remaining between
85% and 95%. The recognition accuracy for Zhenghan10 was relatively low, at 85%. Liusha
had the highest recognition accuracy, reaching 92%. Compared with the accuracy for some
varieties in 2D, which was notably low, the recognition effect for 3D was higher, and the
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values were all maintained at a high level. This shows that the point cloud data can better
distinguish the eight kinds of seeds, especially Hannuo35 and Yuanhan35, which cannot be
classified correctly in 2D. Therefore, the 3D point cloud data can be used as an effective
supplement to 2D classification results.

 

Figure 11. Accuracy of the different models for each species of rice seeds.

According to the prediction results, we can build a confusion matrix for each algorithm
separately, as shown in Figure 12. TP, FP, and FN of the model can be calculated through
this matrix, and the corresponding precision, recall, and Macro-F1 can be calculated based
on these parameters. Macro-F1 is used as the weight for late fusion. The final evaluation
index calculation results are shown in Table 2.

Figure 12. Confusion matrix. (a) SVM. (b) kNN. (c) CNN. (d) MobileNet. (e) PointNet.
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Table 2. Measures to evaluate the model performance.

Model Macro-Precision Macro-Recall Macro-F1

SVM 0.928 0.929 0.929
kNN 0.908 0.894 0.894
CNN 0.801 0.795 0.790

MobileNet 0.899 0.894 0.894
PointNet 0.892 0.889 0.890

Macro-F1 was combined as the comprehensive scoring vector of the voting method.
The SVM, kNN, CNN, MobileNet, and PointNet models predicted the probability of
each sample in the test set as the input of the voting method. The models used the
comprehensive scoring vector for weighted combination, and selected the recognition
result with the highest probability as the final prediction value of late fusion. Table 3
shows the prediction results of all kinds of rice seed varieties after the final statistic of the
improved voting method for late fusion. Using the improved voting method for late fusion,
the final accuracy was 97.4%. Finally, the prediction accuracy for all varieties was more
than 90%. Compared with the recognition accuracy of each model alone, the prediction
results after fusion by the voting method were significantly improved. The recognition
accuracy for Hyou518, Huanghuazhan, and Liusha was 100%. Although the accuracy for
Hannuo35 was lower than that of the other varieties, it also reached 92.4%. The recognition
accuracy of each variety before and after late fusion is compared in Table 3. It can be seen
from the results that the improved voting method improved the accuracy of Hannuo35
and Yuanhan35 the most, from the average accuracy of the 2D recognition of 73.9% and
77.7% to the final accuracies of 92.4% and 96.3%, respectively. For these two kinds of rice,
the classification effect of the 2D classification model is not ideal, but the classification
accuracy of PointNet was relatively high. The 2D recognition effect was poor, for which
there may be two reasons. One is that some 2D models (such as CNN and MobileNet)
have poor classification effects on these two rice species. Second, the difference between
the 2D images of these two rice species and other varieties is relatively small, so it will
cause interference, and a large number of correct prediction results cannot be obtained.
However, their differences in the 3D point cloud data were more obvious, so the 3D point
cloud features can be used to classify them. For seeds such as Zhenghan10, Liannuo13,
and Nanjing9108, PointNet’s classification effect was not ideal, and the accuracy was lower
than 89%. The reason may be that the differences in these seeds on the 3D point cloud were
not very obvious and cannot provide a reliable basis for classification. However, they can
be efficiently classified using the feature values of their 2D images.

Table 3. Accuracy comparison for identification of various rice varieties.

Varieties SVM kNN CNN MobileNet PointNet
Late

Fusion

Nanjing9108 90.1% 96.3% 75.8% 88.7% 87.4% 98.9%
Zhenghan10 96.1% 77.4% 84.1% 93.8% 85.0% 97.4%
Hannuo35 86.2% 90.3% 52.1% 67.0% 89.0% 92.4%
Yuanhan35 80.6% 91.4% 58.6% 80.0% 90.0% 96.3%

Huanghuazhan 93.2% 91.3% 94.7% 90.3% 87.5% 97.5%
Hyou518 99.1% 77.4% 90.3% 100.0% 91.3% 98.9%

Liannuo13 99.0% 99.2% 95.5% 98.9% 89.8% 98.9%
Liusha 98.5% 99.4% 84.8% 97.4% 90.0% 98.9%

Table 4 reflects the time taken by each model to predict the test separately and the
time consumed to make predictions using late fusion. Comparing the late fusion time
with the time consumption of the previous single model, it is not difficult to see that the
time complexity caused by late fusion using the improved voting method mainly depends
on the model it chooses. In other words, the more complex the model selected (such as
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PointNet), the longer it takes. However, the voting method takes only 23.62 milliseconds,
and it can be seen that it does not generate a large computational burden.

Table 4. Time-consuming comparison of various classification methods.

Model Prediction Time

SVM 18.75 s
kNN 19.98 s
CNN 10.35 s

MobileNet 20.76 s
PointNet 9792 s

Late fusion 9861.86 s

By comparing this experiment with the existing research, it can be seen that the point
cloud data obtained by using the light field camera can be used as an important basis
for 3D classification. Furthermore, past studies have only focused on a single modality
in 2D or 3D. However, the information contained in the two modalities can complement
each other to classify from multiple perspectives. In the late fusion, this study replaces the
process of calculating the average value in the traditional voting method by calculating the
comprehensive score vector of each model separately. The prediction results of each model
were weighted and fused by using the score vector. Experimental results showed that this
fusion method can not only comprehensively evaluate multiple modalities, but also correct
the prediction results of individual models with poor classification effects and error-prone
models. Finally, the classification of rice seed varieties was effectively realized.

4. Conclusions

Based on the principle of multimodal fusion, we experimentally evaluated a rice
variety classification method that used an improved voting method to perform late fusion
of 2D and 3D modalities. The experimental data came from eight common rice varieties in
China, and a Raytrix light field camera was used to collect 2D images and 3D point cloud
data. We proposed an improved late-fusion method to generate a dynamically changing
scoring vector according to the actual situation of the model, which was used to adjust the
influence on the final prediction result. After preprocessing the data by noise reduction,
filtering, and sampling, a dataset was obtained for classification. We input the dataset
into models corresponding to the modality to obtain the predicted probabilities of the
test set. The scoring vector was used to calculate the probability weighting of different
models, and the predicted value with the highest final probability was selected as the
final value. Compared with other multimodal fusion methods, this method was more
robust. Its prediction results are not easily affected by a single model, and at the same time,
it avoids possible interference from excessive model homogeneity or poor performance.
The improved voting method was used to perform late fusion on the prediction results of
the test set, and the final average accuracy reached 97.4%. Compared with a single SVM,
kNN, CNN, MobileNet, and PointNet, the accuracy was 4.9%, 8.3%, 18.1%, 8.3%, and 9.0%
higher, respectively. It can be seen that late fusion had the best effect on improving the
accuracy of CNN and late fusion improved the identification accuracy of Hannuo35 and
Yuanhan35 most obviously. The experimental results showed that the improved voting
method can combine the advantages of different modal data and significantly improve the
final prediction results.

This study provides a new perspective for the future classification of rice varieties.
In future experiments, the rice seed dataset can be further expanded to provide sufficient
data for the recognition algorithm. The preprocessing of point cloud data can be further
optimized. The selection of points during sampling is not effective enough. Some im-
portant feature points may be deleted during preprocessing, which ultimately affects the
classification results of the model. In addition, to pursue fast detection, the point cloud of
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this experimental species is half a seed, and the next step is to register the point cloud data
to obtain the complete seed data for training to obtain better classification results.
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Abstract: The application of deep learning (DL) technology to the identification of crop growth
processes will become the trend of smart agriculture. However, using DL to identify wheat growth
stages on mobile devices requires high battery energy consumption, significantly reducing the
device’s operating time. However, implementing a DL framework on a remote server may result
in low-quality service and delays in the wireless network. Thus, the DL method should be suitable
for detecting wheat growth stages and implementable on mobile devices. A lightweight DL-based
wheat growth stage detection model with low computational complexity and a computing time
delay is proposed; aiming at the shortcomings of high energy consumption and a long computing
time, a wheat growth period recognition model and dynamic migration algorithm based on deep
reinforcement learning is proposed. The experimental results show that the proposed dynamic
migration algorithm has 128.4% lower energy consumption and 121.2% higher efficiency than the
local implementation at a wireless network data transmission rate of 0–8 MB/s.

Keywords: mobile edge computing; convolutional neural network; deep reinforcement learning;
wheat growth stages detection; dynamic migration algorithm

1. Introduction

Wheat is the second-largest food crop in the world and is crucial for food security and
social stability [1]. Wheat growth monitoring refers to recording the morphological changes
in wheat during different growth and development stages [2]. It is critical on smart farms
to obtain high yields and is often performed using unmanned aerial vehicles (UAVs) and
intelligent agricultural machinery [3]. Due to technological advances in smart agriculture,
and intelligent agricultural machinery and mobile devices, deep learning (DL) models
and algorithms have been increasingly used in this field [4]. However, mobile devices
have relatively low computing power, low battery capacity, and high energy consumption.
DL-based agricultural applications require mobile computing devices with high computing
power, high battery capacity, and low energy consumption to provide longer working
hours and better service quality. Thus, an imbalance exists between the high computing
needs of smart agriculture and mobile devices with low computing power. Therefore, it
is necessary to develop a lightweight DL model capable of running on intelligent mobile
devices for wheat growth monitoring. As the use of artificial intelligence has increased,
deep reinforcement learning (DRL) has attracted extensive attention from the academic
community [5]. The data generated by users show exponential growth, promoting the
rapid development of DRL. The deep Q-learning network (DQN) is an unsupervised
learning algorithm based on reinforcement learning and a neural network [6]. It combines
the learning ability of neural networks and the decision-making ability of reinforcement
learning and can make decisions in a timely and intelligent manner according to changes
in the environment [7].

Edge computing is an ideal solution for real-time applications to upload the core
parameters or data of the DRL model to the network edge for processing [8,9]. Running

Agriculture 2023, 13, 534. https://doi.org/10.3390/agriculture13030534 https://www.mdpi.com/journal/agriculture
137



Agriculture 2023, 13, 534

a DQN on an intelligent mobile device causes high battery energy consumption, and the
model’s identification efficiency depends on the quality of the network service when it
runs on a remote server. Therefore, the server location, the power of the mobile device, and
the quality of the network service must be carefully selected to enable the use of a DQN
so that the unloading strategy of the edge nodes can be adapted to the environment. This
approach enables the use of relatively few resources to obtain optimal results and reduces
the communication and computing costs of edge computing [10,11]. Migration is used in
mobile edge computing to migrate intensive computing tasks to the wireless network edge
server for processing, alleviating the shortcomings of low computing power, poor real-time
performance, and large power consumption of intelligent devices. This technology has
attracted the attention of academia and industry [12–15], especially optimal migration
decisions and the allocation of computing resources [16,17]. Chen et al. [18] proposed a task
unloading and scheduling method based on DRL for unloading decisions with dependency
in mobile edge computing. The goal was to minimize the application’s execution time.
Experiments showed that the proposed algorithm has good convergence ability, verifying
the effectiveness and reliability of the method. Tian et al. [19] deployed a cognition model
to the edge and designed an intelligent recognition device based on computer vision and
edge computing for crop pest image recognition. Agricultural crop images were collected
in realtime, and image recognition was used to identify crop pests. Zhang et al. [20]
proposed an improved algorithm called the natural deep Q-learning network (NDQN) for
resource scheduling and decision-making in edge computing. The results showed that
the improved NDQN algorithm performed better than the local unloading and random
unloading algorithms. Gu et al. [21] designed an embedded monitoring system based on
edge computing that considered different planting conditions of crops in different regions.
They established neural networks and crop data processing algorithms and deployed them
in embedded devices. UAVs were used for crop monitoring. However, most of the above
studies designed migration algorithms for relatively large computing tasks and complex
models [22–26], whereas few studies designed migration strategies or algorithms based on
lightweight recognition models for intelligent agricultural production scenarios.

Wheat is an important grain crop and is grown extensively worldwide. Wheat growth
monitoring algorithms have high computational complexity, many parameters, and long
task execution times. They require extensive computing resources and sufficient battery
power. General migration algorithms and intelligent equipment are inadequate. This paper
proposes a lightweight wheat growth stage detection model for intelligent devices. The
wheat growth stage detection model is migrated to the wireless network edge server for
processing to reduce energy consumption and computing time and simulate the cost of
intelligent devices to make decisions by calculating the weighted sum of the battery energy
consumption and computing time delay. The DQN algorithm is used to obtain the optimal
output model because it reduces energy consumption and computing time delay in the
DL model. The proposed method enables complex computing tasks on intelligent mobile
devices in smart agriculture, and its use for the accurate identification of wheat growth
stages is demonstrated. The innovation points of this study are as follows:

1. A wheat growth stage detection model that uses depth-wise separable convolutional
layers and a residual network is designed. It has low energy consumption and
computing delay and high accuracy in distinguishing the seedling stage (SS), tillering
stage (TS), overwintering stage (OS), greening stage (GS), and jointing stage (JS). The
average recognition accuracy of the five wheat growth stages is 98.6%, whereas the
DenseNet model achieves an average accuracy of 99.2%.

2. A dynamic migration algorithm for the wheat growth detection model is designed
using the DQN. This algorithm makes optimal migration decisions by monitoring
the power consumption and network service quality of the equipment in real-time,
considering the energy consumption and delay cost caused by the migration/non-
migration, respectively. At a wireless network transmission data rate of 0–8 MB/s,
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the overall energy consumption loss of the dynamic migration algorithm is 128.4%
lower than that of the intelligent device.

In this paper, an artificial intelligence algorithm and experiment are used to identify
wheat growth stages. A decision-making method for performing edge computing and
migrating the wheat growth stage detection model to the wireless network edge server for
processing is proposed. The dynamic migration strategy of the DQN-based identification
model enables the execution of complex processes while minimizing energy consumption
and processing time. This method is suitable for deploying application systems in agri-
culture. This paper is organized as follows: Section 1 presents the introduction. Section 2
describes the materials and methods. Section 3 provides the wheat growth stage detec-
tion model, and Section 4 presents the migration algorithm. The results are described in
Section 5, and Section 6 provides the discussion.

2. Materials and Methods

2.1. Data Source

The study area for acquiring the wheat images was the Xuchang campus of Henan
Agricultural University, Changge City, Henan Province, China (113◦58′26′′ E, 34◦12′06′′ N).
The area has a northern temperate continental monsoon climate, with an average annual
temperature of 14.3 ◦C. The average annual rainfall is 711.1 mm, and the frost-free period
is 217 days. Due to the complex field environment, images of the wheat canopy at a fixed
height using a tripod were acquired. The images of the wheat varieties “Yumai49”, “week
27”, and “Xinong 509” were acquired in five growth stages (October 2019 to June 2020).
These varieties are grown in the eastern Henan Province.

In each stage, images were acquired of plots with two densities (300 and 350 plants per
square meter) and two nitrogen contents (15 kg and 0 kg of pure nitrogen per 0.0667 hectare).
Images were obtained every two days between 8 am and 15 pm using a Nikon D3100,
5/21 sensor CMOS camera with a maximum aperture of F/5.6, 14.2 megapixels, and a
maximum resolution of 4608 × 3072. A tripod was used for fixed-height photography, and
all images were collected under natural lighting conditions.

Data were obtained in the following wheat growth stages: SS (the day before the first
day of emergence to the tillering stage), TS (the day before the first day of tillering to the
overwintering stage), OS (the day before the first day of the overwintering stage to the
greening stage), GS (from the first day of the greening stage to the day before the jointing
stage), and JS (from the first day of jointing to the day before heading) (Figure 1). A total of
12,000 images were obtained in the five stages.

2.2. Data Processing

Large sample sizes result in a higher performance and generalization ability of DL
models. However, the number and quality of samples sometimes do not meet the require-
ments of optimal model training in practical applications; thus, the enhancement of sample
data is required [27]. Images are high-dimensional data. Image data are typically rotated
and translated, or other operations are performed to improve the robustness of the model,
prevent overfitting of the test set during training, and improve the model’s generaliza-
tion ability. Data enhancement is a simple and effective method to improve the detection
accuracy of convolutional neural network models. Different data sets require different
data enhancement methods. Images are typically slightly modified, which does not affect
the model’s training results and can increase the generalization ability of the model. The
following data enhancement methods were used to improve the model’s robustness.

(1) Normalization by dividing each pixel value by the standard deviation of the sample;
(2) Dislocation transformation. The x-coordinate of the image remains unchanged, and

the y-coordinate is shifted according to a specific proportion. The degree of displace-
ment is proportional to the vertical distance to the x-axis;

(3) Image scaling. Image scaling refers to resizing the image by the same amount in the
length and width directions;

139



Agriculture 2023, 13, 534

(4) Random flipping. Random flipping refers to extracting image data and performing
random flipping;

(5) Standardization. Standardization refers to an enhancement operation that the model
performs on all images before training. Each pixel value is divided by 255 to obtain a
pixel value range from 0 to 1. This method speeds up the convergence of the model.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 1. Wheat canopy images acquired in five stages: (a) seedling stage; (b) tillering stage; (c) over-
wintering stage; (d) greening stage; (e) jointing stage.
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In the experiment, 80% of the images were randomly selected as the training set, and
20% were used as the test set. All comparative experiments in this study are conducted on
this dataset. Figure 2 is an image of seedling emergence after the above image enhancement.
Table 1 shows the number of images of the training set and test set in each growth stage
of wheat.

  

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 2. Data enhancement: (a) normalization; (b) dislocation transformation; (c) image scaling;
(d) image flipping; (e) standardization.
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Table 1. Number of wheat canopy image samples.

Wheat Growth Stages Training Set/Piece Test Sets/Piece Total Sets/Piece

Seedling–tillering * 1920 480 2400

Tillering–overwintering 1920 480 2400

Overwintering–greening 1920 480 2400

Greening–jointing 1920 480 2400

Jointing–heading 1920 480 2400
* Seedling stage (SS) and tillering stage (TS).

3. Design of Wheat Growth Stage Detection Model

3.1. Framework of Wheat Growth Stage Detection Model

A lightweight recognition model based on depth-wise separable convolution [28] and
a residual network [29] are proposed for use on intelligent mobile devices. The structure
diagram of the convolutional neural network is shown in Figure 3. Conv2D, DSConv2D,
and Conv2D-d represent the normal convolution, depth-wise separable convolution, and
cavity convolution, respectively. A Relu6 activation function and a data standardization
(batch normalization (BN)) operation are inserted after each convolution unit to ensure that
the model can learn the sparse features of the wheat image and speed up its convergence. A
linear activation function is used between the normal convolution and depth-wise separable
convolution units to prevent gradient dispersion during model training. “Addition” in
Figure 3 refers to the addition of the residual network. The residual network adds the
outputs of the convolution units and uses them as the final output to achieve a greater
model depth and prevent overfitting. The parameters of the network structure are listed in
Table 2. The parameter input is the input of the current unit and the output of the upper
unit. The parameters e and s1 represent the number and step size of the convolution kernels
of the normal convolution, and the parameters O and s2 represent the number and step
size of the convolution kernels of the depth-wise separable convolution. The parameter
k is the size of the convolution kernel of the depth-wise separable convolution; it is 3 × 3
and 5 × 5. The parameter s indicates the presence of the residual network between the
convolution units. A parameter value of d = 2 indicates that the normal convolution of the
unit has been replaced by the void convolution. Softmax is the output function.

Figure 3. Structure of convolutional neural network.
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Table 2. Network parameters of the wheat growth stage detection model.

Input Basic Unite e O S1 S2 k d s

2242 × 3 Convolution32 32 1 2 3 2 false

1122 × 32 Convolution64 32 1 2 3 1 false

562 × 32 Convolution128 32 1 1 3 1 true

562 × 32 Convolution128 48 1 1 2 1 false

562 × 48 Convolution196 48 2 1 3 1 false

282 × 48 Convolution196 48 1 1 3 2 true

282 × 48 Convolution256 64 1 1 5 1 false

282 × 64 Convolution256 64 2 1 5 1 false

142 × 64 Convolution400 64 1 1 5 1 false

142 × 64 Convolution400 80 1 1 5 1 false

142 × 80 Pooling2D (pool_size = 7, strides = 2)

42 × 1024
Conv2d 1 × 1(filters = 1024)

Softmax

3.2. Parameter Settings

The learning rate represents the speed of updating the model parameters during train-
ing, and the optimizer is a gradient descent updating method implemented during iteration.
Different data sets have different learning rates and optimizer settings. Optimizing the
hyperparameters improves the model’s accuracy. The training batch represents the number
of training images input into the model at each iteration. It is generally 32 and 64 batches
in the image classification.

Canopy images of the five wheat growth stages were used: emergence, tillering,
overwintering, greening, and jointing. There were 12,000 samples, including 2400 samples
in each stage. The test set comprised 20% of the data, and the training set contained 80% of
the data for model training and learning. Table 3 lists the results of the different learning
rates, training batches, and optimizer training approaches. The optimization algorithms
are the Adam optimizer and stochastic gradient descent (SGD) method, and 32 and 64 are
used as the number of training batches. Adam-32 shows the training results of the Adam
optimizer with a batch size of 32; 0.005, 0.001, 0.0005, and 0.0001 are the test values for the
learning rate. The model achieves the highest accuracy when the learning rate is 0.001 and
the Adam-32 optimizer is used. The accuracy is higher for 32 than for 64 training batches.
Therefore, the Adam optimization algorithm with a learning rate of 0.001 and 32 batches
was selected to train the wheat growth stage detection model.

Table 3. Comparison of hyperparameters.

Learning Rate Adam-32(%) Adam-64(%) SGD-32(%) SGD-64(%)

0.005 97.8 97.3 97.2 97.8

0.001 98.6 97.9 98.0 97.5

0.0005 97.9 96.1 96.9 97.3

0.0001 97.8 97.5 97.8 97.2

4. Design of Migration Algorithm

The proposed wheat growth stage detection model has a low battery energy consump-
tion and delay. However, there is a need for intensive computing to perform intelligent
fault monitoring in smart agriculture. When there are many computing tasks, moving them
to the edge server improves crop monitoring efficiency. However, the dynamic changes
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in the computing scenarios and the wireless network quality of the service may result in
inadequate performance when tasks are executed at the edge. Therefore, intelligent mobile
devices must dynamically decide whether to offload computing tasks to the edge of the
network. When the wireless network transmission rate is high and the intelligent device
has sufficient power, it is suitable to unload the task to the edge server, resulting in high
performance. In contrast, when the wireless network transmission rate is low and the
device power is insufficient, the task cannot be moved to the edge for processing. However,
it is often impossible in real scenarios to determine whether task unloading is required due
to the dynamic changes in the computing environment and the wireless network’s quality
of service.

4.1. Design for Dynamic Migration Algorithm with a Mobile Terminal

The residual power of mobile devices is a valuable energy resource in the migration of
computing services to the mobile edge. In addition to variable factors, such as the dynamic
characteristics of the mobile device’s environment, especially the network conditions, many
factors determine the migration decision of mobile devices. The strong perception of DRL
can be used to learn the state information of the environment and modify the decision-
making so that mobile users can complete the computing task at the lowest cost. The DQN
is an unsupervised neural network learning algorithm based on reinforcement learning.
It combines the learning ability of a neural network and the decision-making ability of
reinforcement learning and makes intelligent decisions in a timely manner according to
the changing environment [30]. The proposed dynamic migration algorithm makes the
optimal decision by monitoring the power and wireless network speed of the device in real-
time, considering the energy consumption and delay cost caused by the unloading/non-
unloading decision, minimizing the calculation delay and power consumption.

ϕ(S) is used as the input of the DQN. The greedy method is used to make random
selections of an action selection to prevent the network from falling into a local mini-
mum. Figure 4 shows the flowchart of the algorithm. The DRL model considers five key
factors [14]: the environment, agent, action, status, rewards, and penalties.

Figure 4. Flowchart of the DQN algorithm.

The following equation expresses the DRL model:

yj =

{
Rjis_end = true

Rj + γmaxa′Q
(
ϕ
(
S′ j
)
, A′

j, w
)
is_end = f alse

(1)

ϕ(S) is the input of the deep Q-learning network. A greedy method is used to obtain
the Q value. It uses a random selection to prevent the network from falling into the local
optimum. The current action, A, in the state, S, is executed to obtain the feature vector
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corresponding to the new state S’ with ϕ(S′) and reward R to terminate the status, is_end.
{ϕ(S), A, R, ϕ(S′), is_end} is used as the parameters in the experience pool. The agent
obtains the experience value to learn the current Q value for yj.

4.2. Energy Consumption and Calculation Delay of Wheat Growth Stage Detection Model

A mathematical equation was established to calculate the energy consumption and
delay of the wheat growth stage detection model. The processing information of the mobile
device is represented as a quaternion, Mi= (cw,uw,dw,fs), where cw is the CPU power of the
mobile device, uw and dw are the power of the mobile device to upload and download data,
respectively, and fs is the number of floating-point operations per second. The wireless
network status is represented as a binary group, Si = (us,ds), where us represents the upload
speed, and ds represents the download speed of the wireless network. The decision space is
defined as xi = 0 and xi = 1, where “0” denotes the task is processed on the intelligent device,
and “1” denotes the task is unloaded to the edge server for processing. The delay includes
the calculation delay and communication delay, when xi = 0, Tm represents the calculation
delay of the mobile device, and when xi = 1, Tm represents the calculation delay of the edge
server. The communication delay is represented by Ts, as shown in Equations (2) and (3):

Tm =
Fl
fs

(2)

Ts =
Psize
us

+
Presult

ds
(3)

where Fl represents the floating-point number required by the mobile device’s CPU to
complete the computing tasks, and Psize and Presult represent the size of the uploaded and
received data, respectively. The energy consumption consists of the computing energy
consumption and communication energy consumption; only the energy consumption of
the mobile device is considered. The computing energy consumption and communication
energy consumption are calculated by Equations (4) and (5), respectively.

Em = cw × Fl
fs

(4)

Es = uw × Psize
us

+ dw × Presult
ds

(5)

4.3. Design of Agent

After defining the energy consumption and time delay, it is necessary to determine
the agent’s learning ability to evaluate the two parameters and decide whether to migrate
the services. The DQN evaluates the energy consumption and time delay dynamically.
The weight of the energy consumption is small if the mobile devices have more residual
power and vice versa, regardless of whether the services are migrated or not. Similarly,
time delay also has a weight parameter. Figure 5 shows the structure of the agent. During
the training of the DQN algorithm, the agent learns useful information as the environment
changes. The agent is used to simulate the decision-making and calculation processes
of intelligent devices. After the agent inputs the network and electricity status into the
neural network, it calculates the energy consumption and time delay of the decision results
and evaluates the decision quality to assess the rewards and penalties. Because the input
consists of only two parameters (the network speed and power), the agent uses a small back
propagation (BP) neural network to simulate the decision-making of intelligent devices.
Figure 5 shows that the BP neural network for decision-making has four hidden layers, and
the activation function is a leaky ReLU function. The decision-making results are obtained
by inputting the network speed and power, and the agent learns using the reinforcement
learning algorithm. The calculation of the energy consumption and time delay is expressed
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by Equations (6) and (7), which are combined into Equation (8) to optimize the time delay
and energy consumption jointly.

A(si, ai) = kt × Ti + ke × Ei (6)

Ti = min
xi

(
Fl
fs
+ xi

(
Psize
us

+
Presult

ds

))
(7)

Ei = min
xi

(
(1 − xi)× cw × Fl

fs
+ xi

(
uw × Psize

us
+ dw × Presult

ds

))
(8)

where Ti and I represent the delay and energy consumption costs after the agent has made
a decision, and A(si, ai) represents the weighted sum of the energy consumption and costs.
kt and ke are the delay and energy consumption coefficients, indicating the importance
of the delay and energy consumption. When the power is low, the energy consumption
coefficient, ke, is high, and when the network speed is high, the delay coefficient, kt, is high.

Figure 5. Agent structure.

5. Experimental Design and Results

5.1. Experimental Results of Lightweight Detection Model

The VGG16, ResNet50, InceptionV3, MobileNetV2, and DenseNet models were com-
pared with the proposed lightweight wheat growth stage model. These classic models have
achieved good results in many fields. The experimental environment and the hyperpa-
rameters were consistent for all of the models, and training was conducted locally using
the Tensorflow framework [31]. The graphics card was a GTX1050 Ti. A 0.001 learning
rate, and the Adam optimizer was used for training. The effect of the network structure on
the detection performance was compared. The accuracy rate change in each epoch during
training was recorded to compare the models’ learning abilities. Only the accuracy rate
change of the first 30 epochs is shown because all the models have a high learning ability.
The performances of the different models for detecting the wheat growth stages are listed
in Table 4.

The results indicate that the proposed model has a higher accuracy rate than the other
models in the GS. Because the GS is difficult to identify, the accuracy rate is slightly higher
than in the other growth stages. The average recognition accuracy of the five growth stages
is 98.6% for the proposed model and 99.2% for DenseNet, which achieved the highest
average accuracy.
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Table 4. Performance of different models for detecting the wheat growth stages.

Model JS (%) * ES (%) * GS (%) * TS (%) * OS (%) * Average (%)

VGG16 99.2 100 94.6 96.0 97.3 97.8

Inception 99.4 99.6 93.1 100 97.4 97.9

ResNet50 99.6 99.2 94.2 99.8 98.2 98.2

Mobile Net 99.6 100 96.0 99.4 98.0 98.6

Dense Net 99.6 100 97.9 99.8 98.6 99.2

Proposed model 99.4 98.6 98.0 99.2 97.8 98.6
* JS: jointing stage; ES: emergence stage; GS: greening stage; TS: tillering stage; OS: overwintering stage.

5.2. Experimental Results of Deep Reinforcement Learning Recognition Model and Dynamic
Migration Algorithm
5.2.1. Comparison of the Models’ Operating Speeds

The model’s operating speed is critical because it runs on a mobile terminal. A speed
test was conducted using 100 wheat growth stage images to evaluate the performances of
the models. Table 5 lists the results. The results show that the detection speed of the models
does not increase with a decrease in the parameter number but is related to the model’s
structure. This effect is the most pronounced for the VGG because it has a relatively simple
structure despite its many parameters; therefore, it has a fast detection speed. Although the
DenseNet model has few parameters, its structure is complex, resulting in a large number
of feature maps and low detection speed. The size of the proposed wheat growth stage
detection model is only 1.3 MB. Thus, it has the highest detection speed due to the low
parameter number. The parameter number of the proposed model is 58% lower, and its
detection speed is 47% higher than that of MobileNetV2.

Table 5. Operating speeds of different models.

ModelVGG16 IV3 * RT50 * MT2 * DT * Proposed Model

Time(s) 32.88 163.09 116.81 84.88 212.16 45.07

Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3

Parameter (MB)134.3 21.8 27.9 3.1 7.0 1.3
* IV3: InceptionV3; RT50: Resnet50; MT2: MobileNetV2; DT: DenseNet.

5.2.2. Impact of Learning Rate and Experience Pool on Loss

The mobile device uses a Core i5-10500 processor, 8G (DDR43000) of memory, and
no GPU acceleration. The edge computing server uses the Tencent lightweight server,
CentOS7 system, and 2G memory, and the maximum bandwidth is 5 Mbps. Different
data transmission rates were selected according to the wireless network communication
mode [32]. The TensorFlow service’s framework was used to deploy the model to the Linux
server. The loss value was utilized to evaluate the error between the real and predicted
values [33,34]. The change in the learning rate significantly affects the loss value of the DQN
algorithm. Thus, the models with learning rates of 0.01, 0.001, and 0.0001 were assessed for
200 iterations. Figure 6 shows that when the experience pool is 500, the loss value fluctuates
significantly with an increase in the epoch number when the experience pool is 500 and
stabilizes at 2000. Therefore, a value of 2000 was used to store the decision data.
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Figure 6. Impact of experience pool on loss value.

5.2.3. Energy Consumption and Delay

The gradient descent method is used to minimize the energy consumption and delay
(A(si, ai)). The values of kt and ke change with a change in the power and network
speed. When the power is sufficient, the agent’s learning strategy ensures that the delay
is minimized, and when the network’s speed is sufficient, the energy consumption is
minimized. The time delay and energy consumption coefficients, kt and ke, at different
network speeds are shown in Figure 7. When the coefficient, kt, of the network speed
exceeds 75%, the energy consumption coefficient remains unchanged, the delay coefficient
increases, and the delay is reduced.

 

Figure 7. Time delay and energy consumption factors at different power values.

Energy consumption and time delay are critical parameters of migration decisions
when mobile devices are used. The reinforcement learning algorithm continuously learns
from the energy consumption and time delay resulting from each decision to minimize these
parameters. Table 6 shows the energy consumption and delay for the different models.
The proposed model has fewer parameters, a faster running speed, and lower energy
consumption than the other detection models. The speed of performing the detection on
one image on an intelligent device is 0.43 s, and the energy consumption is 0.023 mWh.
These values are 49% lower than that of MobileNetV2 (MT2).
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Table 6. Comparison of energy consumption and delay for different models.

Model IV3 RT50 DT MT2 Proposed Method

Data (MB) 21.8 * 27.9 7.0 3.1 1.3

Delay (s) 1.63 1.16 2.12 0.84 0.43

Energy (mWh) 0.091 0.064 0.118 0.045 0.023
* IV3: InceptionV3; RT50: Resnet50; DT: DenseNet; MT2: MobileNetV2.

The energy consumption and delay of the proposed method at the mobile terminal
and edge server are listed in Table 7.

Table 7. Energy consumption and delay of the proposed method.

Proposed Model Data Layers Accuracy Delay Energy

Value 1.3 MB 21 98.6% 0.43 s 0.077 mWh

Experiments were conducted on performing and not performing decision-making to
evaluate the effect of the DQN algorithm on the intelligent migration of the convolutional
neural network model. Not performing decision-making was divided into execution on
the device (local execution) and execution in the cloud (edge execution). The average
operation times and average delay of the system were analyzed at the same power. Figure 8
shows the average running times of the model at different network speeds. The higher the
average running time, the lower the energy consumption. At a network speed of 0–2 MB/s,
the energy consumption is high, and the model decision is biased toward local execution
because the network speed is low and the transmission time is long. However, as the
network speed increases, the energy consumption is higher for local execution than for
migration to the cloud; thus, cloud execution is preferable. The energy consumption of the
intelligent migration algorithm is 128.4% lower than that of local execution at a network
speed of 0–8 MB/s.

Figure 8. Average running times.

Figure 9 shows the average delay for the different network rates. The delay of edge
execution is the highest at a network speed of 0–2 MB/s, and local execution is preferable.
As the network speed increases, the network communication delay decreases, and edge
execution becomes preferable. The average efficiency of the intelligent migration algorithm
is 121.2% higher than the local execution at a network rate of 0–8 MB/s.
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Figure 9. Average delay.

6. Discussion

Implementing a deep learning algorithm for wheat growth stage detection on mobile
devices has high energy consumption and a large time delay. A lightweight detection model
was proposed with low energy consumption and delay based on depth-wise separable
convolution and a residual wireless network. A decision-making method was proposed for
performing edge computing and migrating the wheat growth stage detection model to the
wireless network edge server for processing. The dynamic migration strategy of the DQN-
based identification model enabled the execution of complex processes while minimizing
energy consumption and processing time. The proposed method is also applicable to
other crops.

The experimental results show that the proposed model and algorithm have good
performance and are suitable for practical applications. This approach can be used to
develop a wheat growth period monitoring system. It can be implemented on mobile
devices, and the calculations are performed on the server. The TensorFlowlite open-source
framework can be used to implement this model on mobile devices. On the server side,
Docker can be used to deploy the model server to execute requests and return the result to
the mobile device.
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Abstract: Automatic plant phenotype measurement technology based on the rapid and accurate
reconstruction of maize structures at the seedling stage is essential for the early variety selection,
cultivation, and scientific management of maize. Manual measurement is time-consuming, laborious,
and error-prone. The lack of mobility of large equipment in the field make the high-throughput
detection of maize plant phenotypes challenging. Therefore, a global 3D reconstruction algorithm
was proposed for the high-throughput detection of maize phenotypic traits. First, a self-propelled
mobile platform was used to automatically collect three-dimensional point clouds of maize seedling
populations from multiple measurement points and perspectives. Second, the Harris corner detection
algorithm and singular value decomposition (SVD) were used for the pre-calibration single measure-
ment point multi-view alignment matrix. Finally, the multi-view registration algorithm and iterative
nearest point algorithm (ICP) were used for the global 3D reconstruction of the maize seedling
population. The results showed that the R2 of the plant height and maximum width measured by the
global 3D reconstruction of the seedling maize population were 0.98 and 0.99 with RMSE of 1.39 cm
and 1.45 cm and mean absolute percentage errors (MAPEs) of 1.92% and 2.29%, respectively. For the
standard sphere, the percentage of the Hausdorff distance set of reconstruction point clouds less than
0.5 cm was 55.26%, and the percentage was 76.88% for those less than 0.8 cm. The method proposed
in this study provides a reference for the global reconstruction and phenotypic measurement of
crop populations at the seedling stage, which aids in the early management of maize with precision
and intelligence.

Keywords: Kinect; crop phenotypic; point cloud processing; three-dimensional reconstruction;
singular value decomposition

1. Introduction

The term “crop phenotype” describes the physical, physiological, and biochemical
traits representing the structural and functional traits of crop cells, tissues, plants, and
populations. The accurate and intelligent administration of modern agriculture depends
critically on the phenotypic information [1,2]. Historically, crop phenotypic measurements
have been performed manually. These approaches are damaging, extremely subjective,
ineffective, and inappropriate for modern agricultural precision management [3]. Crop
phenotypic assessment tends to exhibit high-throughput, high-precision, and automation
owing to the rapid development of technologies like machine vision, agricultural robots,
and artificial intelligence [4,5]. Currently, crop phenotype measurements are primarily
based on 2D images and 3D point cloud techniques [6,7]. Nevertheless, owing to the
complex nature of the plant morphology and mutual occlusion between leaves, 2D image-
based and single-viewpoint 3D point cloud phenotyping techniques cannot accurately
assess plant phenotypic data [8]. Consequently, the creation of 3D plant models using
computer vision techniques for the precise and effective extraction of plant phenotypic
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features has steadily grown to become a prominent research area in the field of crop
phenotyping [9–13].

The 3D reconstruction approaches were divided into two categories based on active
and passive vision. Techniques for functional vision-based 3D reconstruction include time-
of-flight (TOF), laser scanning, and structured light. These techniques primarily employ
visual tools to gather object surface information and perform 3D reconstruction. Monocular
vision, binocular vision, and multi-visual vision methods are examples of passive-vision-
based 3D reconstruction techniques. These methods primarily capture image sequences
using visual sensors and subsequently achieve three-dimensional (3D) reconstruction.

The primary sensors used for 3D point cloud reconstruction are LIDAR, CT scanners,
hyperspectral imagers, depth cameras, and RGB cameras. LIDAR has a low reconstruction
efficiency, making it best suited for navigation and large-scale scene reconstruction. It can-
not be used to reconstruct 3D point cloud models for smaller plants [14,15]. The CT scanner,
which is mainly used for medical imaging, emits radiation. Environmental interference,
sluggish imaging speed, and small measurement areas affect hyperspectral imagers. Owing
to their extreme precision and low cost, vision sensors have been extensively utilized in
agriculture in recent years [16]. Researchers from home and abroad have gradually replaced
costly LIDAR in the study of the 3D reconstruction of crop phenotypes using visual sensors
such as depth and RGB cameras. Peng et al. employed the iterative nearest-point approach
for fine alignment to rebuild the 3D point cloud of tomato plants [17] based on the data
collected by the KinectV2 depth camera to calculate the coarse alignment matrix from the
end joint positions captured by the robotic arm. Using a reflecting single-frame camera
and a multi-view stereo vision algorithm, Hu et al. reconstructed the structures of green
pepper and eggplants in three dimensions [18]. He et al. employed the structure from
motion (SFM) technique to create a 3D model of a strawberry based on an SLR camera [19].
Although there have been numerous studies on the 3D point cloud model reconstruction
of crops, all of which have demonstrated high reconstruction accuracy and stable perfor-
mance, most studies only reconstruct single plants, making it impossible to achieve global
3D reconstruction of crop populations. The global 3D reconstruction and measurement of
crop populations remain challenging because of the complexity and unstructured nature of
agricultural landscapes.

In this study, we developed a self-propelled crop phenotype measurement tool based
on the ROS (Robot Operating System) mobile platform, combining the Harris corner point
detection algorithm, singular value decomposition method, multiple measurement point
alignment algorithm, and multiple filtering algorithms to achieve a global 3D reconstruction
of the maize plant population. A reference for the global reconstruction and phenotypic
assessment of maize populations at the seedling stage was provided by the methodology
proposed in this study, which aids in the precise and careful management of maize in its
early phases.

2. Materials and Methods

2.1. Experimental Data Collection

From 28 May to 27 June 2022, a maize population reconstruction experiment was
conducted as part of this study at the Nanjing Agricultural University’s Pukou Campus.
Maize seedlings were chosen as test objects. There were 16 plants in total, and the variety
chosen was Zhenzhennuo 99. The row and column spacing of a single maize plant was
80 cm and the average initial plant height was approximately 30 cm; 96 sets of maize plant
point cloud data were collected every five days. The test setup is illustrated in Figure 1.
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Figure 1. Physical picture of test scene. (a). Collection device; (b). crop plants.

2.2. Subsection Structure and Principles of Measurement Systems

The key components of the self-propelled crop phenotyping system were a Kinect-
based mobile ROS platform, motorized rotating table, control cabinet, graphics workstation,
and mobile power supply. A schematic of the hardware of the measurement system
is shown in Figure 2. The system was built using a 20 × 20 mm aluminum structure,
40 cm long, 40 cm wide, and 140 cm high. A 2.0 version of the Kinect sensor, mainly
composed of color and depth cameras, was used. The resolution of the color camera was
1920 × 1080 pixels, and that of the depth camera was 512 × 424 pixels. The measurement
distance was 0.5–4.5 m and the viewing area angle was 70 × 60◦ (horizontal × vertical).
The electric rotary table was the TBR 100 series with a table size of 102 mm, angle range
of 360◦, worm gear ratio of 180:1, using a 42 M-1.8 D-C-10 stepper motor, whole step
resolution of 0.01◦, positioning accuracy of 0.05◦, a circuit control cabinet built-in motion
control data acquisition card, driver, and switching power supply. The motion control
data acquisition card model was the NET6043-S2XE built-in 10/100 M adaptive Ethernet
card, 8-way 16-bit positive and negative 10 V range single-ended analog synchronous
acquisition, up to 40 KSPS. The 8-way analog can be synchronized with a two-axis logic
position or encoder high-speed synchronous acquisition and two-axis stepper/servo motor
control. The driver model is AQMD3610NS-A2, which supports analog signals of 0–5/10 V,
signal ports that can withstand voltages of 24 V, and standard mode voltage protection of
485. The DashgoB1 series is an intelligent mobile platform that includes navigation, map
construction, obstacle avoidance, and other features. It has an STM 32 chassis controller,
built-in LIDAR, ultrasonic radar, and wheel speed encoder. A shock absorber was mounted
on the front side of the chassis, and the bottom shell was mounted underneath the shock
absorber. For the cart to adjust to an uneven path, the bottom shell also has a stabilizer
bar inside it. The Intel(R) Xeon(R) E-2176M CPU @2.70 GHz, 32 G of memory and an
NVIDIA Quadro P600 4G graphics card comprised the graphics workstation processor. For
the Ubuntu 18.04 system, MATLAB R2019 programming was used as the programming
environment for the hardware and software of the system.
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Figure 2. Schematic diagram of hardware structure.

The algorithm for the worldwide 3D reconstruction of the population of seedling
maize is depicted in Figure 3 and works as follows:

Figure 3. Flow chart of panoramic three-dimensional reconstruction of crops in self-propelled greenhouse.

(1) The camera parameters were obtained using the Zhang Zhengyou calibration
method [20], and then, the depth images captured by the Kinect were used to create 3D
point cloud maps using a similar triangle-based transformation.

(2) Pre-calibration of the multi-view alignment matrix for a single measurement point
was performed using the singular value decomposition method and the Harris corner point
identification technique.

(3) The camera coordinate system was adjusted using the region growth method and
the random sample consensus (RANSAC) algorithm.

(4) A filtering technique was employed to eliminate point cloud noise from the non-
corn plants.
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(5) The ICP technique and coarse alignment procedure of several measurement loca-
tions were used to accomplish the global 3D reconstruction of the crop population. In this
work, the checkerboard grid, standard sphere, plant height, and maximum width were
used to calibrate the local, global, and crop group reconstruction accuracies, respectively.

2.3. Global 3D Reconstruction Method of Maize Population at Seedling Stage
2.3.1. Three-Dimensional Point Cloud Acquisition Method

Figure 4 illustrates the precise acquisition procedure used in this study to obtain the
3D point cloud data of the maize plant using the Kinect sensor. First, using the KinectV2
camera, RGB and depth images of the maize plants and infrared images at various angles of
the checkerboard grid were collected. The internal camera parameters were then collected
based on the infrared images using the Zhang Zhengyou calibration method, and the
coordinates of the camera’s center point (cx, cy) and focal length (fx, fy) were (256.00, 209.59),
(365.18, 364.49). Using identical triangles and the camera small-aperture imaging method,
the depth and RGB images of the maize plant were combined to create a 3D point cloud
map with color information. Equations (1) and (2) depict how a point m (u, v) on the depth
image and its corresponding 3D point M (X, Y, Z) relate to each other.

u = fx
X
Z

+ cx (1)

v = fy
Y
Z
+ cy (2)

Figure 4. Acquisition process of 3D point cloud (a). Plant RGB image; (b) plant depth image; (c).
plant 3D point cloud; (d). checkerboard grid infrared images; (e). similar triangle principle.

2.3.2. Single-Point Multi-View Alignment Matrix Pre-Calibration Method

In this study, the multi-view alignment matrix was pre-calibrated for a single measure-
ment point using the singular value decomposition approach. The specific pre-calibration
procedure is shown in Figure 5. The KincetV2 camera was mounted on the TBR 100 mo-
torized rotary table to capture the RGB images of the checkerboard grid at two different
viewing angles of 0◦ and 45◦ in the first stage. In the following stage, 2D points (X, Y) were
generated in accordance with the mesh grid using the Harris corner detection technique
to identify the 2D feature corner points of the RGB images of the checkerboard grid from
the two viewpoints. In the third stage, discrete differences were used to determine the
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mapping relations Fx and Fy between the 2D and 3D points, and the corresponding 3D
feature points were computed using the 2D feature points of the checkerboard grid. The
center of mass of the neighboring view feature points is determined in the fourth step using
Equations (3) and (4), and the singular value decomposition method is applied to solve the
rotation matrix R and translation matrix T of the 45◦ view transformation to the 0◦ view
(there is no need to repeat the calibration subsequently; it is sufficient to calibrate once).

Figure 5. Pre-calibration diagram of multi-view alignment matrix for single-side measurement points.

In this study, a multi-view alignment matrix for a single measurement point was
solved using the singular value decomposition method [21]. Assuming two eigen point
sets, P and Q, the rotation translation matrix between them is solved as follows:

(1) The centroid coordinates Pc (xc, yc, zc) and Qc (xc, yc, zc) of the feature point sets P
and Q are calculated according to (3) and (4).

Pc(xc, yc, zc) =
∑n

i=1 wi·Pi(xi, yi, zi)

∑n
i=1 wi

(3)

Qc(xc, yc, zc) =
∑n

i=1 wi·Qi(xi, yi, zi)

∑n
i=1 wi

(4)

where wi denotes the weight and Pi (xi, yi, zi) and Qi (xi, yi, zi) are the 3D coordinates of the
points within the point set.

(2) The covariance matrix E is calculated using (5), where E is a dn-dimensional matrix;
X, Y are dn-dimensional matrices, and W = diag(w1, w2, w3, . . . , wn).

E = XWYT =
n

∑
i

[(Pi − PC)(Qi − Qc)
T ]

∑n
i=0 wi

(5)
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Equation (6) illustrates the execution of the singular value decomposition of the matrix
E. The three matrices, U, V, and diagonal arrays, and (7) and (8) can be used to define the
rotation matrix R and translation matrix T.

E = U·Λ·VT (6)

R = V·UT (7)

T = QC − R·Pc (8)

Equation (9) is applied to convert the point clouds of the other view camera coordinate
systems to the first view camera coordinate system. R and T are the rotation and translation
matrices, respectively.

PCj+1
′ = RjPCj+1 +

1 − Rj

1 − R
T (9)

The 3D point cloud data of the j-th viewpoint world coordinate system are represented
by PCj, whereas the j-th viewpoint camera coordinate system are represented by PCj’.

2.3.3. Multi-Point 3D Point Cloud Coarse Alignment Method

This study used the ROS mobile platform to achieve the coarse alignment of 3D point
clouds from a multi-point maize plant. The first step is to locate them and the multi-survey
point positioning and navigation; the RVIZ 2D map of maize plants was created using the
DashgoB1 ROS mobile platform’s map-building feature. Next, the robot’s localization in the
generated map was accomplished using the adaptive Monte Carlo localization technique
(AMCL), which is based on particle filtering. The movement path on the map is planned
using the global path-planning algorithm to steer the chassis along the way and eventually
arrive at the desired target spot. The second step is the acquisition of single-point multi-
view 3D point cloud data; for this, we used the TBR 100 electric rotary slide and set the
multi-view acquisition interval to 45◦. Figure 6a shows the acquisition diagram. The
third phase is the local 3D reconstruction of the multi-view point cloud. Method 2.3.2 is
used to calibrate the multi-view transformation matrix. To achieve the unification of the
coordinate system and realize the local 3D reconstruction of the multi-view maize plant
point cloud, the coordinate system of the first view camera is used as the global coordinate
system. The point clouds of the other views are then aligned to the global coordinate
system. The location of the acquisition point is determined in the fourth step. In this study,
the reconstructed site area was 4 m × 4 m. Multi-point 3D point cloud data gathering is
necessary because local reconstruction cannot obtain cloud data for the entire site. The
noise level of the plant point cloud increases with the distance from Kinect, as does the
inaccuracy. This study screened the point cloud data within 2.25 m of the Kinect origin by
setting the radius of the enclosing box to 2.25 m.
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(a) (b) 

Figure 6. 3D point cloud data acquisition. (a). Multi-view 3D point cloud data acquisition; (b). multi-
measuring points 3D point cloud data acquisition.

To guarantee an adequate overlap area between the measurement points, nine mea-
surement points were evenly distributed according to the spatial distribution of the corn
plants. The horizontal distance between the consecutive measurement locations was fixed
at 1.6 m for consistency. Figure 6b depicts the locations of the measurement points and
the acquisition paths. The final step was to pre-calibrate the coarse alignment matrix of
several measurement points. A checkerboard grid was established between the adjacent
measurement sites, and the 2.3.2 algorithm was utilized to accomplish the pre-calibration of
the coarse alignment transformation matrix between the adjacent measurement points. Be-
cause the target navigation point position was established, subsequent crop reconstruction
and measurement did not require repeated calibration.

To achieve the coarse alignment of multipoint 3D point clouds, the fifth point camera
coordinate system was employed as the global coordinate system, and the point clouds under
other point camera coordinate systems were translated into the global coordinate system.

2.3.4. ICP Fine Alignment Using Overlapping Regions

Because the proportion of non-plant point clouds was too high and there were some
noise points in the original point clouds, the ICP had alignment issues [22–24]. Therefore,
point clouds must first be processed. The straight-pass filtering algorithm [25] was initially
employed in this study to segregate the point clouds of corn and non-corn plants by
utilizing 1 cm below the true height of the planters. Owing to the possibility of gray noise
(such as soil) in the point cloud after direct-pass filtering, the super green factor index ExG
was applied for additional filtering. Finally, for outlier elimination, statistical filtering using
radius filtering is performed [26,27]. The standard deviation of each point in the point
cloud with respect to its k-neighborhood (k value of 35) was computed, and the outliers
were defined as points with a standard deviation larger than a threshold of 1.5. For radius
filtering, the filter radius r and minimum number of points within the filter radius were
set to 8 mm and 5, respectively, that is, points with less than five points within the 8 mm
radius were deemed outliers.

Because of the stringent requirements of the ICP on the initial location and overlapping
area, this study presented an ICP fine registration algorithm based on overlapping area
point clouds to achieve global three-dimensional reconstruction of maize plants. The steps
involved were as follows:

Step 1: Mean downsampling processing was conducted on the point cloud to lower
the computation amount of the point cloud registration in the subsequent step.

Step 2: Using the fifth measurement point camera coordinate system as the world
coordinate system, the 2.3.3 method was used to solve the coarse alignment transformation
matrix, transform the other measurement point camera coordinate system point cloud to
the fifth measurement point camera coordinate system, and obtain the coordinates of each
measurement point (xi, yi, zi, i = 1,2,...9) after the coarse alignment transformation.
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Step 3: The first and fifth measurement points were used as examples, and the coordinates of the
center point of the measurement point were determined using ( x1+x5

2 , y1+y5
2 , z1+z5

2 ). The distance

between the measurement points was estimated using
√
(x1 − x5)2 + (y1 − y5)2 + (z1 − z5)2.

The overlapping region of the two measurement points was defined as the area where the circle with
the coordinates of the center of the measurement point is the center, and the spacing between the
measurement points was the diameter.

Step 4: Using the camera coordinate system of measurement point five as the global
coordinate system, the ICP transformation matrix between the camera coordinate system of
measurement point five and that between its neighboring measurement points was solved
using the ICP based on the point cloud of corn plants in the overlapping area.

Step 5: Using the solved fine registration transformation matrix, the camera coordinate
system of the other measuring points was transformed into a five-camera coordinate system
of the measuring points. The fine registration of the 3D point cloud of various measuring
locations was accomplished, and finally, the global 3D reconstruction of the corn seedling
population was achieved. The ICP was primarily utilized to solve the fine registration
transformation matrix.

The specific registration steps are as follows:
(1) From source point cloud P, the subset P0, P0∈P was selected.
(2) In the target point cloud Q, the matching point subset Q0 of subset P0, Q0∈Q such

that Qi -Pi = min was found.
(3) The equation f (R, T) = ∑n

i=1 ‖ Qi − RPi − T ‖2 was satisfied as the minimum
requirement by calculating the rotation matrix R and translation vector T and updating the
subset P 0’ of the source point cloud.

(4) It was determined whether the iteration ends based on d = 1
n ∑n

i=1 ‖ Qi − Pi ‖ 2.
If d is less than the specified threshold or the specified number of iterations is reached, the
algorithm terminates; otherwise, the process was returned to Step (2) to continue the iteration.

2.4. Calibration Method for Accuracy of Global Reconstruction of Maize Population at Seedling Stage
2.4.1. Calibration of the Accuracy of Plant Height and Maximum Width Measurement

The major direction of the point cloud model of the maize plant based on the Kinect
3D reconstruction deviated from the 3D coordinate axis direction under visualization. To
facilitate the subsequent measurement of the phenotypic parameters such as the plant
height and maximum width, this study used the area growth method [28], the random
sampling consistency algorithm [29], and the Harris corner point detection algorithm to
uniformly convert the point clouds from different viewpoints into a ground-based global
coordinate system.

(1) Plant height
In this study, a single corn plant was first segmented from the scene using a density-

based point cloud clustering technique. Subsequently, all the point clouds of the corn plant
were traversed, and the maximum and minimum values of the z-coordinate of the single
corn plant were determined. Finally, the absolute value of the difference was considered to
be the current corn plant height.

(2) Maximum width
To construct the matching projected point clouds, the extracted point clouds of indi-

vidual maize plants were projected onto the OXY plane [30], and the largest outer circle
of the projected point cloud in the OXY plane was calculated. The outer circle diameter
represents the maximum width of the individual corn plants.

In this study, three metrics were used to assess the global reconstruction accuracy of
crop populations. These are the root mean square error (RMSE), mean absolute percentage
error (MAPE), and coefficient of determination (R2). The following equations were used to
calculate the above-mentioned metrics:

RMSE =
1
n

√
n

∑
i=1

(Pi − Qi)
2 (10)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣Qi − Pi
Qi

∣∣∣∣× 100% (11)

R2 =

⎧⎪⎨
⎪⎩

∑n
i=1

(
Qi − Qavg

)·(Pi − Pavg
)

[
∑n

i=1
(

Pi − Pavg
)2
]0.5[

∑n
i=1

(
Qi − Qavg

)2
]0.5

⎫⎪⎬
⎪⎭ (12)

where,
Pi is the algorithm measurement of the i-th plant;
Qi is the manual measurement of the i-th plant;
Pavg is the mean value of the algorithm measurement;
Qavg is the mean value of the manual measurement;
n is the number of samples.

2.4.2. Calibration of the Accuracy of Global 3D Reconstruction of the Standard Sphere

HD(RP, GP) =
{

min
Pb∈MP

{d(Pa, Pb)}
}

(13)

where HD is the shortest distance between the generated and reconstructed point sets.
The spheres that generate the point set and reconstructed point set are denoted by GP

and RP, respectively.
Pa and Pb are the points in RP and MP, respectively.

3. Analysis and Results

To validate the efficacy of the global reconstruction algorithm presented in this study
for seedling maize populations, the accuracy was independently calibrated for neighbor-
ing viewpoint checkerboard grid feature points, multi-plant test subjects, and standard
polystyrene foam balls.

3.1. Analysis of Single Measurement Point Local Reconstruction Accuracy

The tessellation grid feature points of the nearby views were used as measurement
objects to assess the local 3D reconstruction accuracy of a single measurement point. The
singular value decomposition approach was used to produce the tessellation grid 3D
feature point matching and neighboring view alignment, and Figure 7 illustrates the 3D
feature point matching accuracy analysis. The RMSE of the related tessellation 3D feature
points was calculated as 0.18 cm, indicating that the reconstruction accuracy of the local 3D
reconstruction was high.
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Figure 7. Matching accuracy analysis of 3D feature points.

3.2. Analysis of the Accuracy of Global 3D Crop Population Reconstruction

A total of 96 seedling maize plant samples were reconstructed in global 3D for six cycles
in this experiment, and single maize point clouds were collected for quantitative analysis.
The global reconstruction phase for the maize plant population is shown in Figure 8.
Figure 9 depicts the global reconstruction findings for the same group of maize plants on
different dates in the same position. Figure 10a,b illustrate a comparative evaluation of the
algorithm’s projected maize plant height and maximum width values with actual manual
measurement values.
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 8. 3D reconstruction process of crop plants. (a). Local 3D reconstruction; (b). direct filtering;
(c). ultra-green component value denoising; (d). 3D point cloud coarse registration; (e). ICP fine
registration; (f). radius filtering and statistical filtering denoising.

 
(a) (b) (c) (d) 

Figure 9. Global 3D point cloud model reconstruction of crop plants. (a). May 28th; (b). June 7th; (c).
June 17th; (d). June 27th.

(a) (b) 

Figure 10. Comparison of artificial and algorithm measured values of crop plants. (a). Plant height;
(b). maximum width.

From Figure 10a, R2 = 0.98, RMSE = 1.39 cm, and MAPE = 1.92%, and the accuracy
of the algorithm for measuring the plant height was 98.08%. As shown in Figure 10b,
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R2 = 0.99, RMSE = 1.45 cm, MAPE = 2.29%, and the accuracy of the algorithm for measuring
the maximum plant width was 97.71%. The results in Figure 10 reveal that the algorithm
measurement error of the maximum width is greater than that of the plant height, which is
mostly due to the more involved manual measurement of the maximum width compared to
the measurement of the plant height. The overall accuracy of this seedling maize population
3D reconstruction technique is excellent, and the algorithm measurements have a significant
connection with manual measurements.

3.3. Analysis of Standard Sphere Global 3D Reconstruction Accuracy

Because of the flaws in hand measurements, a standard foam sphere was chosen as
the measurement object for further evaluation of the global 3D reconstruction accuracy.
The Hausdorff Distance set was used to quantify the global 3D reconstruction accuracy.
Figure 11a,b show the RGB images of six foam spheres and single-measurement-point local
3D reconstructions. The worldwide 3D reconstruction of conventional foam spheres with
various measurement sites is shown in Figure 11c. Figure 11d depicts the standard spheres
produced by the CloudCompare software. Figure 12 shows the Hausdorff Distance set
distribution for standard spheres with diameters of 200, 300, 350, 400, and 500 mm. The
distance sets are separated into five segments: 0 cm ≤ HD ≤ 0.2 cm, 0.2 cm < HD ≤ 0.5 cm,
0.5 cm < HD ≤ 0.8 cm, 0.8 cm < HD ≤ 1.2 cm, and HD > 1.2 cm. The average distance
set distribution of all spheres can be computed, with 55.26% of the Hausdorff Distance
sets less than 0.5 cm. Approximately 76.83% of the cloud points had a distance less than
0.8 cm and only approximately 8.73% of the point clouds had distances larger than 1.2 cm,
showing that the majority of the standard sphere reconstruction point sets vary within 0.8
cm of the original coordinate positions, and only a few point sets diverge from the original
coordinate positions.

 
(a) (b) (c) (d) 

Figure 11. Standard sphere 3D point cloud model reconstruction. (a). Standard sphere RGB image;
(b). local 3D reconstruction of the standard sphere; (c). global 3D reconstruction of the standard
sphere; (d). standard sphere generation diagram.
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 12. HD distribution ratio of standard spherical distance set. Diameters of (a). 200 mm;
(b). 300 mm; (c). 350 mm; (d). 400 mm; (e). 500 mm; (f). 600 mm.

4. Conclusions

Because most previous crop phenotype measurement methods were only for indi-
vidual plants, in this study, a self-propelled crop phenotype measurement device for
96 seedling maize plants in six cycles was designed, and a global 3D reconstruction method
for the seedling maize plant population was evaluated, with the following main findings.

(1) The RMSE of the feature points corresponding to the local reconstruction of adjacent
views was 0.18 mm, and the distance set HD between the standard sphere reconstructed
point cloud and the software generated point cloud was less than 0.5 cm for 55.26%, less
than 0.8 cm for 76.83%, and only 8.76% of the point cloud distance was greater than 1.2 cm.
This indicated that most of the point clouds did not deviate from the original coordinate
positions after alignment, and the reconstruction accuracy of this algorithm was sufficient
to meet the phenotypic measurement needs of seedling maize plants.

(2) The MAPE of the maize plant height and maximum width were 1.92% and 2.29%,
respectively, compared to real manual measurements. The RMSE values were 1.39 cm and
1.45 cm, respectively, and R2 was 0.98 and 0.99. This demonstrated the high accuracy of the
proposed seedling maize population reconstruction.

Through the 3D modeling of seedling maize populations, this study provided sup-
porting data and theoretical guidance for phenotypic characterization and the accurate
and intelligent management of maize. Because the alignment transformation matrix was
obtained using a pre-calibration method, inter-crop occlusion will not impair the recon-
struction accuracy, but it will result in missing information for some crops and will affect
crop reconstruction integrity.

The influence of ground leveling was not considered in this study, and the algorithm
was tested only on maize seedlings. The applicability and robustness of the algorithm need
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to be confirmed, and more experimental studies on various growth stages of different crops
will be undertaken at a later stage.
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Abstract: Precision dairy farming technology is widely used to improve the management efficiency
and reduce cost in large-scale dairy farms. Machine vision systems are non-contact technologies
to obtain individual and behavioral information from animals. However, the accuracy of image-
based individual identification of dairy cows is still inadequate, which limits the application of
machine vision technologies in large-scale dairy farms. There are three key problems in dairy cattle
identification based on images and biometrics: (1) the biometrics of different dairy cattle may be
similar; (2) the complex shooting environment leads to the instability of image quality; and (3) for
the end-to-end identification method, the identity of each cow corresponds to a pattern, and the
increase in the number of cows will lead to a rapid increase in the number of outputs and parameters
of the identification model. To solve the above problems, this paper proposes a cascaded dairy
individual cow identification method based on DeepOtsu and EfficientNet, which can realize a
breakthrough in dairy cow group identification accuracy and speed by binarization and cascaded
classification of dairy cow body pattern images. The specific implementation steps of the proposed
method are as follows. First, the YOLOX model was used to locate the trunk of the cow in the
side-looking walking image to obtain the body pattern image, and then, the DeepOtsu model was
used to binarize the body pattern image. After that, primary classification was carried out according
to the proportion of black pixels in the binary image; then, for each subcategory obtained by the
primary classification, the EfficientNet-B1 model was used for secondary classification to achieve
accurate and rapid identification of dairy cows. A total of 11,800 side-looking walking images of
118 cows were used to construct the dataset; and the training set, validation set, and test set were
constructed at a ratio of 5:3:2. The test results showed that the binarization segmentation accuracy
of the body pattern image is 0.932, and the overall identification accuracy of the individual cow
identification method is 0.985. The total processing time of a single image is 0.433 s. The proposed
method outperforms the end-to-end dairy individual cow identification method in terms of efficiency
and training speed. This study provides a new method for the identification of individual dairy cattle
in large-scale dairy farms.

Keywords: dairy cow; individual identification; body pattern image; binarization; cascaded classification

1. Introduction

With the improvement in people’s living standards and consumption levels, the
demand for animal protein is gradually increasing [1,2]. With limited environmental
resources and increasing labor costs, the large-scale development of farms is the key to
meeting the above needs [3]. In the management of large dairy farms, the use of manual
methods to monitor the health and production of each cow is not only time-consuming
and labor-intensive, but also subjective. Therefore, precise dairy farming technology,
which is used to monitor individual dairy cows in real time and make timely management
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decisions, is an important way to improve efficiency and reduce costs in large-scale farms.
The automatic identification of the individual identity of dairy cows is the premise and
foundation for achieving precision management.

Currently, passive radio frequency identification (RFID) technology [4], active RFID
technology [5], and other wireless technologies—such as radar [6] and wireless local area
networks [7]—are sensor-based individual identification methods commonly used on
farms. The above methods generally have high accuracy and wide applicability, but the
identification system requires cows to wear ear tags or transponders, which not only cause
stress to cows but are also prone to damage or loss [8].

In recent years, with the development of computer vision technology in dairy cow
behavior analysis and health monitoring [9–13], individual cow identification methods
based on biometrics have become a research hotspot [14,15]. Noncontact individual iden-
tification systems based on biometrics have the advantages of low cost and not inducing
stress responses in cows and can be integrated into intelligent monitoring systems for cows.
The muzzle print [16], iris [17], head contours and textures [18,19], tailhead pattern [20],
body pattern [14], and gait characteristics [21] of a cow can be used as distinguishable
cow identifiers. However, it is difficult to obtain clear images of specific areas of a cow’s
head—such as the muzzle print, iris, head texture, etc.—which requires the cow to have a
high degree of coordination, and the shooting results are easily affected by the shooting
angle and position. Gait activity and characteristics will change due to changes in the
physiological state of cows (such as lameness, estrus, etc.), resulting in the reduced accuracy
of individual identification. In addition, some scholars have tried to identify individual
cows by locating and recognizing numbers on tags worn by cows (e.g., ear tags [22] and
collar ID tags [23,24]), but the implementation of tags requires additional manpower and
material resources.

Body pattern refers to the regular distribution of black and white hair in the trunk
area of Holstein cows. The distribution area of the body pattern is wide, and the body
pattern image can be obtained by collecting side-looking, top-looking images or videos
of a cow in the walking process. Zhao et al. [14] extracted a 48 × 48 matrix from a cow’s
trunk image as the eigenvalue, and a convolutional neural network was constructed and
trained as the individual cow identification model. The dataset contained 30 cows, and
90.55% of the images were correctly identified in the test. Li et al. [20] located a cow’s
tailhead, and the contour of the black and white pattern of the tailhead was obtained by
binary image processing. Then, the feature matrix was extracted, and classification was
carried out. The dataset contained 10 cows, and the final accuracy was 99.7%. The number
of cows studied by the above methods is small, and the adaptability to large-scale farms
is unknown. Therefore, scholars have begun to build datasets containing more cows for
the individual identification of cow groups in large-scale farms. He et al. [25] preprocessed
the back images of 89 cows and constructed a milking individual cow identification model
based on the improved YOLO v3 algorithm, which achieved 95.91% identification accuracy.
Hu et al. [8] used YOLO to detect the position of cows and separated the head, body, and
legs from the detection frame of cows. The features of these three parts were extracted,
fused, and classified. It achieved 98.36% accuracy for 93 cows. Shen et al. [26] used the
YOLO model to obtain the detection box containing the cow, and the AlextNet algorithm
was fine-tuned to identify cow individuals. The constructed dataset contained 105 cows,
and the identification accuracy was 96.65%.

The output end of the individual cow identification model constructed by the method
directly corresponds to the number of cows, the increase in the number of output ends
causes an increase in identification network parameters, and the time cost for individual
identification and retraining of the network correspondingly increases. In addition, the
body patterns of different cows may be similar, which will increase the difficulty of correct
identification. At the same time, the above methods all use RGB body images as the input
of the identification model. However, the farming environment of dairy cows is complex,
and light, stains, fences, and so on will affect the quality of body pattern images. This
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means that the identification model should not only judge the classification of the target but
also eliminate interference in the image, which increases the complexity of the identification
network as well.

In view of the above problems, a cascaded dairy individual cow identification method
based on EfficientNet [27] and DeepOtsu [28] is proposed in this paper and was applied
to large-scale dairy farms. It can realize a breakthrough in dairy cow group identification
accuracy and speed by binarization and cascaded classification of dairy cow body pattern
images. The specific implementation steps of the proposed method are as follows: first,
the body pattern image is obtained by using YOLOX to locate the trunk region of the cow,
and then, the body pattern image is binarized by the DeepOtsu model. Then, primary
classification is carried out according to the proportion of black pixels in the binary image.
Then, for each subcategory obtained by primary classification, the EfficientNet model is
used for secondary classification to identify the identity of the individual cow. Compared
with the end-to-end identification method, the proposed cascaded identification method
reduces the number of outputs and parameters of the individual identification model,
which provides a new idea for the individual identification of dairy cows on large-scale
dairy farms.

In general, we proposed a cascaded method for the individual identification of dairy
cows that mainly consists of three modules: cow trunk localization, body pattern image
binarization and cascaded classification. The main contributions of this paper are as follows.

• A new method of individual cow identification was proposed. The method comprises
the following steps. First, the cow trunk region was detected to obtain a body pattern
image. Then, the pattern image was binarized to highlight the distribution characteris-
tics of the black and white patterns. Finally, the binary pattern image was classified to
identify the individual cow.

• The body pattern images of cows were classed by utilizing a cascaded classification
method. The method can reduce the number of output ends of the classification model
and improve the efficiency of the training. The identification accuracy, speed, and
training time of the proposed method were compared with those of the end-to-end
identification method, and the results showed that the proposed method is superior to
the end-to-end method.

• The body pattern image was binarized by the deep learning method. The experimental
results showed that the deep learning method can better describe the features of RGB
body pattern images, remove the interference factors in the images, and achieve better
binarization accuracy.

2. Materials and Methods

2.1. Dataset Construction
2.1.1. Video Acquisition

In this study, 118 lactating Holstein cows were filmed at Coldstream Research Dairy
Farm, University of Kentucky, USA. The cows returned to the cowshed after milking. A
straight corridor was set on the only way back to the cowshed. Two electric fences were
used on both sides as the boundary of the corridor. The width of the corridor was 2 m.
The cows passed a weighing device before entering the corridor. The weighing device has
electronically controlled doors to ensure an interval between cows when passing through
the corridor, so individuals overlapping will not happen in the video. The image acquisition
system consisted of a Nikon D5200 camera (Nikon, Tokyo, Japan) and a tripod, which was
fixed on one side of the aisle at a distance of 3.5–4 m from the corridor and a height of
1.5 m from the ground. The specific location is shown in Figure 1. The acquisition time
of the video was from 16:00 to 18:00 on sunny days from August to October 2016. The
camera used a 35 mm lens (Nikon AF-S DX 35 mm f/1.8 G) (Nikon, Tokyo, Japan), and ISO
400, autoexposure and autofocus modes were selected when acquiring images. When a
cow passed through the corridor, video shooting began, and when the cow walked to the
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right edge of the field of view, shooting ended. The cows were filmed multiple times on
different dates.

Figure 1. Diagram of the video acquisition system.

2.1.2. Video Decomposition and Processing

The collected videos were analyzed, and the overexposed videos were eliminated
to obtain side-looking walking videos of cows. The construction of the dataset mainly
comprised the following steps: (1) decomposing the video into image frames; (2) selecting
the image frames randomly and quantitatively; (3) classifying the images; (4) normalizing
the number of images; and (5) constructing and dividing the subdatasets.

(1) Decomposing the video into image frames. Video decomposition technology was used to
decompose the cow side-looking walking videos into frame-by-frame images. The reso-
lution of the cow side-looking image was 1280 pixels (horizontal) × 720 pixels (vertical).

(2) Selecting the image frames randomly and quantitatively. For each walking video,
100 side-looking walking images were randomly selected, and it was ensured that
each image contained the complete trunk of the cow.

(3) Classifying the images. The side-view walking images belonging to the same cow
were classified and placed into a folder.

(4) Normalizing the number of images. For a folder containing more than 100 images,
100 images were randomly selected as the image dataset corresponding to the cow.
The final constructed dataset contained 11,800 images of 118 cows.

(5) Constructing and dividing the subdataset. Due to the large number of samples in
the dataset, it is labor-intensive and unnecessary to annotate all the images to train
and test the model. Therefore, 10 images of each cow in the dataset were randomly
selected to construct a subdataset to train and test the trunk detection and body
pattern binarization model. The subdataset contained 1180 images of 118 cows, and
the subdataset was divided into a training set, validation set, and test set at a ratio
of 5:3:2.

2.1.3. Image Annotation

The cascaded individual cow identification method proposed in this paper needs
two annotations during training. One annotation involves labeling the trunk region when
training the trunk location model, and the other involves labeling the body pattern in
image binarization when training the body pattern binarization model. For trunk region
annotation, the Labelme image annotation tool was used. For the body pattern image
binarization annotation, the 3D drawing tool of the Windows system was used. The above
annotation process was only processed for subdatasets.
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2.1.4. Training and Test Platform

The YOLOX detection model, the DeepOtsu binarization model, and the Efficient-
Net classification model were trained and tested on the same hardware and software
platform. The CPU of the platform was an Intel (R) Xeon (R) with 8 G memory. The
graphics card of the platform was an NVIDIA Tesla K80(NVIDIA, CA, USA) with 12 G
memory. The software environment for training and testing was an Ubuntu 18.04 LTS
64-bit system. The programming language was Python 3.8. CUDA11.0 and cuDNN8.0
were used as the parallel computing architecture and GPU acceleration library for deep
neural networks, respectively.

2.2. Detection of the Trunk Area

The body pattern of a cow is mainly concentrated in the trunk area. To eliminate
the influence of an irrelevant environment, the trunk area in the side-looking walking
image of a cow was located. Existing methods for cow individual location include the
frame difference method [14], Gaussian mixture model [29], and YOLO model based on a
convolutional neural network (CNN) [25]. The frame difference method uses the difference
operation of the adjacent frame images in the video image sequence to obtain the contour
of the moving cow target. The Gaussian mixture model obtains the position of the moving
cow target by analyzing the change in the gray value of the pixel point in the video. The
above two methods need to analyze the continuous sequence of images in the video, and a
moving interference object in the background will greatly affect the detection accuracy of
the cow target. The YOLO model [30] is a one-step target detection algorithm based on a
CNN that uses convolution to extract the features of the image and directly outputs the
location and category of the target according to the features. To detect the trunk region
in this study with many external interference factors, it is more appropriate to use the
detection model based on deep learning. YOLOX was proposed by Ge et al. [31], and its
performance exceeds that of the YOLO series of algorithms. YOLOX achieves 50.0% AP on
COCO (1.8% higher than YOLOv5 and 2.5% higher than YOLOv4) [31], and the precision
of YOLOX is much higher than that of YOLOv3 (33.0% AP). Therefore, we finally decided
to use YOLOX to detect the trunk area of dairy cows.

The YOLOX model was built based on YOLOv5 and mainly included four modules:
input, backbone, neck, and prediction modules. The structure of YOLOX is shown in
Figure 2. When the image to be detected is input into the network, it is first adjusted to a size
of 416 × 416 and then sent to the backbone of the network for feature extraction, obtaining
three effective feature layers. In the neck module, a series of convolution, upsampling, and
downsampling operations and others are carried out on the three effective feature layers
to fuse different feature layers and strengthen the feature extraction process. Finally, the
prediction module performs a convolution operation on the fused feature layers to obtain
the category and position information of the detected target.

After detection, the original image was cropped according to the coordinate informa-
tion of the detection frame to obtain the body pattern image of the cow. A schematic of the
processing method is shown in Figure 2.

The training set in the subdataset was used to train the YOLOX-based trunk detection
model. After training, the images of the test set in the subdataset were put into the trained
detection model to test its performance. In this paper, AP and APIoU=0.75(AP75) in the index
of the COCO dataset were used to evaluate the accuracy of the trunk detection model.
These two indicators are defined as follows. The IoU (intersection over union) is a value
used to measure the degree of overlap between a prediction box and a groundtruth box,
and its formula is

IoU =
Sp ∩ Sg

Sp ∪ Sg
(1)

where Sp represents the area of the predicted bounding box, and Sg represents the area of
the groundtruth bounding box. IoU threshold is used to determine whether the content
in the prediction box is a positive sample. For the target detection model, the commonly
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used evaluation indices were precision P (Precision) and R (Recall), and their calculation
formulas are

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP represents the number of correctly predicted targets. FP represents the number
of falsely predicted targets, that is, the background was mistaken for a positive sample. FN
represents the number of missed targets, that is, a positive sample was mistaken as the
background. For each prediction box, a confidence value was generated, indicating the
credibility of the prediction box. Different combinations of P and R were obtained by setting
different confidence thresholds. Taking P and R as vertical and horizontal coordinates,
respectively, the PR curve could be drawn. When the IoU threshold was set to 0.75, the
area under the PR curve was APIoU =0.75 (AP75). AP was averaged over multiple IoU
values. Specifically, we used 10 IoU thresholds of 0.50:0.05:0.95. AP and AP75 would
comprehensively reflect the performance of the detection model.

 

Figure 2. Acquisition of the cow body pattern image based on YOLOX.

After testing, the trained YOLOX model was used to detect the trunk areas of the
remaining cow side-looking walking images in the dataset to obtain body pattern images
of all cows.

2.3. Binarization of Body Pattern Images

The most prominent feature in the body pattern image of the trunk region is the
distribution of black and white patterns. Therefore, in this study, the distribution of black
and white patterns was used as the basis for the classification of body pattern images, that
is, the identity of individual cows. To highlight the main feature of black and white patterns
in the image, the body pattern image was binarized to make the area where black hair is
located black and the area where white hair is located white in the image.

2.3.1. Traditional Binarization Method

In this study, due to the obvious color difference between black hair and white hair,
two traditional binarization methods—the Otsu method and the color-based binarization
method—were used to segment the cow body pattern images. The Otsu method uses
the gray characteristics of the image to divide the image into two parts—foreground and
background—and when the difference is greatest, the optimum threshold is taken. When
using this method for binarization, the image needs to be processed into a gray image first.
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In this paper, the weighted average method (Formula (4)) was used to perform grayscale
processing on the image, and then, the Otsu method was used to perform binarization.

Gray(i, j) = (R(i, j) + G(i, j) + B(i, j))/3 (4)

where R (i, j), G (i, j), and B (i, j) represent the three components of each pixel point of the
color image and Gray (i, j) represents the composite value of the three components, that is,
the gray value of each pixel point of the processed gray image.

In addition, according to the statistics of the pixel points in the region where the black
and white hairs are located in the cow trunk image, an image binarization method based
on color feature was designed, as shown in Figure 3. The method determines whether the
pixel point is assigned black (0) or white (1) according to the R, G, and B values of each
pixel point in the image. In Figure 3, R, G, and B represent the three component values of
each pixel point.

Figure 3. Binarization method based on color features.

2.3.2. DeepOtsu

There were noises from light, stains, occlusion in the background of the cow trunk
images, which will lead to wrong binarization results. For example, the reflection caused by
strong light makes the black hair area very bright, then the binarization result of this black
hair area is easily misclassified as white (value 1); the presence of stains in the white hair
area will cause the area to darken, and its binarization result is easily misclassified as black
(value 0). Therefore, it is necessary to eliminate the background noise in the image in order
to achieve better binarization effect. The binarization method based on simple features
such as color and gray distributions may not achieve satisfactory results, because these
features cannot eliminate these noises well. CNNs can automatically learn rich and useful
features from images and have good performance in image segmentation, classification,
target detection, and other tasks. Therefore, in this study, a CNN was used to solve the
binary segmentation problem of body pattern images. The DeepOtsu model was proposed
by He and Schomaker [28] and mainly solves the document enhancement and binarization
problem. Unlike the traditional method of predicting each pixel value, the author proposed
a model of learning degradation in images. The model processed the degraded images (x)
into uniform images (xu) using the CNN (Formula (5)), which are noise-free. Then, the
images were binarized (Formula (6)) using existing single methods.

xu = CNN(x) + x (5)

xb = B(xu) (6)
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where xu represents the processed uniform images, x represents the degraded images,
B represents an existing binarization method (for example, Otsu), and xb represents the
binarized image.

Because there is also background noise affecting binarization segmentation in the body
pattern image, referring to the ideas in the above paper [28], this paper uses U-Net [32] to
learn the interference factors in the image and eliminate these negative effects. U-Net is
an image segmentation algorithm with a simple convolutional neural network structure,
which is also called the encoder–decoder structure. The function of the encoder is to
extract the features of different depths of the image, which is realized by convolution and
pooling operations. The role of the decoder is to output a segmentation result based on the
feature map, which is implemented using upsampling (deconvolution) and feature map
concatenation. In the binarization task of cow body pattern images, only two categories are
employed, which does not require a very deep or complex network structure. Because the
number of images used for training is small, it is easy to cause overfitting by using a large
network. U-Net with a simpler structure is sufficient to learn the useful features in cow
body pattern images and eliminate noise from the background. The structure of U-Net is
shown in Figure 4. After segmentation, a gray image with noise removed is obtained, and
then it is processed into a binary image by the Otsu method.

 

Figure 4. Flowchart of the binarization of a cow body pattern image based on DeepOtsu.

Because the sizes of the body pattern images obtained by the detection model are
different, size normalization processing was carried out. The size of all the body pattern
images was processed to be 256 (pixels) × 256 (pixels) by using a bicubic interpolation
method. The subdataset was used to train and test the DeepOtsu model, the Accseg index
was used to evaluate the segmentation accuracy of the model, and the detection time of
a single image was used as the index to evaluate the efficiency of the model. Accseg is
calculated with Formula (7):

Accseg =
TP + TN

TP + TN + FP + FN
(7)

where TP represents the number of correctly segmented white pixels, TN represents the
number of correctly segmented black pixels, FP represents the number of incorrectly
segmented white pixels, and FN represents the number of incorrectly segmented black
pixels. In addition, the two traditional binarization methods were used to binarize the
cow body pattern images in the test set, and the accuracy index Accseg was calculated. By
comparing the accuracy of the three methods, we can determine which method is used to
binarize the cow body pattern images.
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After the completion of the comparative experiment, the remaining body trunk images
in the dataset were processed with the best binarization model to obtain the binary body
pattern images of all cows.

2.4. Cascaded Classification of Body Pattern Images

For the end-to-end dairy cow individual automatic identification system, the number
of dairy cows corresponds to the number of outputs of the individual identification model,
and the number of outputs directly affects the quantum parameter and precision of the
identification model. In theory, the more output terminals there are, the lower the efficiency
and accuracy of the network. In this paper, a cascaded classification method was proposed
to reduce the number of outputs of the individual cow identification network. The spe-
cific implementation steps are as follows. First, the image was classified according to the
proportion of black pixels in the cow body pattern image to realize primary classification.
Then, for each subcategory obtained by primary classification, classification was carried out
according to the pattern features to realize secondary classification. The cascaded classifica-
tion method can reduce the number of network parameters without reducing the accuracy,
thus improving the efficiency and accuracy of the individual cow identification network.

2.4.1. Primary Classification

As the dataset processed in this study includes 118 cows, it is reasonable to divide
the cows into four categories in primary classification. Classification is based on the B-pro
value, the proportion of black pixels in the binary body pattern image. The images of
B-pro falling in the interval [0, 0.25) were classified as category I; the images of B-pro falling
in the interval [0.25, 0.5) were classified as category II; the images of B-pro falling in the
interval [0.5, 0.75) were classified as category III; and the images of B-pro falling in the
interval [0.75, 1) were classified as category IV. The primary classification process is shown
in Figure 5.

Figure 5. Cascaded classification model.

2.4.2. Secondary Classification

The four subcategories generated by primary classification correspond to the four
different secondary classification models. According to the result of primary classification,
the image was assigned to the corresponding secondary classification model for individual
identification (as shown in Figure 5). Secondary classification was based on the distribution
characteristics of black and white patterns in images. Because the binarization process
filters out the noise unrelated to classification in the image, secondary classification is
relatively simple. The network does not need to determine which features are useful
information but only needs to learn and express the features related to classification, such
as the distribution area and the boundary trend of the black pattern. However, because the
cow is in a state of activity, the position of feature points may change for the same cow’s
body pattern image, which requires the classification model to have spatial invariance.
Therefore, we use EfficientNet to construct the four secondary classification networks.
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The basic network architecture of EfficientNet is designed by performing a neural
architecture search. EfficientNet consists of three parts. The first part contains a convolution
operation, normalization processing, and an activation function whose function is to adjust
the number of channels of the input image and to perform preliminary feature extraction.
The second part is the main feature extraction structure of EfficientNet, which contains
a stack of blocks with seven different parameters. Each block includes several mobile
inverted bottleneck Convolution (MBConv) block modules. The MBConv block structure is
designed with inverted residuals and ResNet in mind. First, a 1 × 1 convolution is used
to increase the dimension, then a 3 × 3 or 5 × 5 depthwise convolution is performed, and
an attention mechanism about the channel is added after this structure. Finally, a 1 × 1
convolution is used to reduce the dimension. The output is connected with the input side
to form a residual structure. This is the unique feature extraction structure of EfficientNet,
which completes efficient feature extraction in the process of block stacking. The third
part of the EfficientNet-B0 network is the prediction head, which contains the convolution
layer, pooling layer, and fully connected layer to obtain the final classification results.
EfficientNet uses compound scaling to obtain network structures with different depths,
widths, and input image sizes. The basic structure of EfficientNet-B0 is shown in Figure 6.
Due to the small size of the image, the secondary classification model is selected among
EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2, and we determine which model to
use based on the training results.

Figure 6. Structure of EfficientNet-B0.

2.4.3. Training and Testing Process

All body pattern images of each cow in the dataset were assigned to the training set,
validation set, and test set at a ratio of 5:3:2 to train and test the cascaded classification
model. Due to the influence of cow activity, binary segmentation error, and other factors,
the proportion of black pixels in the binary body pattern image of the same cow is vari-
able. Therefore, different binary pattern images of the same cow may be assigned to two
categories in the process of primary classification. For cows in the above situation, all the
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body pattern images of this cow were put into the training set of the corresponding two
categories during training to ensure that no matter which category the cow is assigned to, it
can be correctly identified. After primary classification, the secondary classification models
corresponding to the four categories were trained based on EfficientNet-B0, EfficientNet-B1,
and EfficientNet-B2. By comparing their training results, the network structure with higher
accuracy was selected as the secondary classification network.

After network training and structure selection, the images in the test set were used to
evaluate the performance of the cascaded classification model. The binary body pattern
images in the test set were put into the primary classification model first, and then the im-
ages were transferred into the corresponding secondary classification model for individual
identification. After cascaded classification was completed, the classification accuracy rate
Acccls was used as an index to evaluate the accuracy of the model, and the detection time
of a single image was used as an index to evaluate the efficiency of the model. Acccls is
calculated as follows:

Acccls =
true

true + f alse
(8)

where true represents the number of correctly classified samples and false represents the
number of misclassified samples.

3. Results

3.1. Analysis of Trunk Area Detection Results

The test set in the subdataset was put into the trained YOLOX model to test the
performance in cow trunk detection. The results showed that the accuracy evaluation
index AP75 value of the detection model reached 0.988, the AP value reached 0.843, and
the detection time of a single image was 0.023 s. The YOLOX algorithm can accurately
and efficiently obtain the position of the cow trunk from the side-looking walking image
of a cow. Figure 7 shows some detection results with different lighting scenes and body
patterns. The figure shows that the YOLOX model has good robustness, and that the
detection bounding box can contain the trunk area with body patterns, retain the main
features used in individual identification, and eliminate interference in the background.

 
Figure 7. Cow trunk detection results. The red rectangle in the figure represents the detection
bounding box of the trunk area, and the text in the upper left of the image represents the category
and confidence of the detection bounding box.
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3.2. Analysis of the Binarization Results of Body Pattern Images

The test set in the subdataset was put into the traditional binarization models and
trained DeepOtsu model, to test the performance in cow body pattern image binarization.
The test results of the three methods showed that the DeepOtsu method achieved the
highest binarization accuracy of 0.932, the binarization method based on color features
achieved an accuracy of 0.877, and Otsu’s method based on the gray distribution achieved
the lowest accuracy of only 0.827.

Figure 8 shows the binarization results of the three methods for the cow trunk images
with interference. The figure shows that the grayscale conversion process reduces the
redundant information of the image and filters out some useful information for binarization,
resulting in bad body pattern image binarization results. The color feature, as a simple
description method, cannot better describe the distribution of black and white body patterns
of dairy cows. Therefore, the binarization method based on color features and gray features
cannot solve the binarization problem of cow body pattern images in complex scenes.
Compared with the other two methods, the DeepOtsu model has obvious advantages and
has good robustness to complex interference situations. The DeepOtsu model can remove
reflections, stains, shadows, and occlusions in the image through the convolutional neural
network to obtain a satisfactory binary image. Therefore, this study used DeepOtsu as a
binarization method for cow body pattern images.

 
Figure 8. Comparison of three binarization methods under different conditions. In the figure, the
images in the first row represent the RGB images to be binarized; the images in the second row
represent the images binarized by the DeepOtsu model; the images in the third row represent the
images after the grayscale conversion process and Otsu binarization; and the images in the fourth
row represent images processed by color-based binarization. (a) reflect light (b) stains (c) shadow.

Figure 9 shows the segmentation results of DeepOtsu model in the presence of interfer-
ence. The main disturbances that affect the binarization accuracy of the cow body pattern
image are as follows.

• The reflection of the black hair area is caused by strong light, which makes the area
very bright, as shown in the red rectangle in Figure 9.

• The white electric fence used to limit the walking range of cows leaves a linear white
mark on the image of cow body patterns, as shown in the green rectangle in Figure 9.
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• The stain in the trunk area makes the area dark, as shown in the yellow rectangle in
Figure 9.

• Bright and dark areas are formed by the shadow on the cow, as shown in the blue
rectangle in Figure 9.

• Slight overexposure causes the overall image to be brighter, as shown in the last
column of Figure 9.

 

Figure 9. Binarization segmentation results of cow body pattern images. In the figure, the images
in the first row are the RGB body pattern images to be processed; the images in the second row are
the gray images after U-Net segmentation; the images in the third row are the binary images after
Otsu processing; and the images in the fourth row are the ground truths for comparison. The colored
rectangular box in the figure marks some areas with interference.

The segmentation results in Figure 9 show that the DeepOtsu model can eliminate
different kinds of interferences in the image and output satisfactory binary images of the
cow body pattern. By using the convolution neural network U-Net, a relatively ‘clean’
grayscale cow body pattern image was generated to obtain better binarization results. The
binarization process can eliminate the redundant information in the image so that the image
only contains the distribution characteristics of black and white patterns. For the individual
identification model, the binarization process plays a role in improving the image quality.
The binarized cow body pattern image is used as the input of the cascaded classification
model, which can make the classification network learn the useful information in the image
more quickly and accurately, reduce the complexity of the individual identification model,
and make the model adapt to more complex and changeable scenes. Although there are
still some small areas that were wrongly segmented in the image, the main features of the
black and white pattern distribution were still retained. In the classification process, these
misclassified small areas have little effect on the results.
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3.3. Analysis of Individual Identification Results of Dairy Cows
3.3.1. Training Results

The proportion values of the black pixels of the binarized cow body trunk images in
the training set were counted. According to the proportion values, images were assigned to
four categories. The number of cows in each category is shown in Table 1. Different binary
pattern images of the same cow may be assigned to two categories due to the changes in
B-pro values. Therefore, the total number of cows in the four categories is greater than 118.
The table shows that the number of cows in categories I and II is less, and the number of
cows in categories III and IV is more. Figure 10 shows partial binary cow body pattern
images in four categories.

Table 1. Primary classification results.

Index I II III IV

The number of cows 23 29 49 47

Figure 10. Binarized cow body pattern images in four categories. In the figure, the number below
each image represents the proportion of black pixels in that image.

After primary classification was completed, the training sets of different categories
were put into EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2 for training. The training
results of the four secondary classification models are shown in Table 2. The table shows
that for the four secondary classification tasks, the training accuracy of EfficientNet-B1
is better than the training accuracies of EfficientNet-B0 and EfficientNet-B2. At the same
time, the training results show that the training accuracy of EfficientNet-B2 is very poor,
which may be due to the overfitting of the network caused by the small image size and
small amount of data. The depth of the EfficientNet-B1 network is sufficient to extract deep
features from the binary cow body pattern image, so EfficientNet-B1 was selected as the
secondary classification model.

Table 2. Training accuracy of the four categories.

Model I II III IV

EfficientNet-B0 1 1 0.985 0.963
EfficientNet-B1 1 1 0.997 0.971
EfficientNet-B2 0.372 0.274 0.125 0.128
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3.3.2. Test Results

The images in the test set were put into the cascaded classification model for primary
classification and secondary classification, and the classification results and the classification
time of a single image were counted. According to the statistics, all the images were
classified correctly in primary classification. For secondary classification, the classification
results for different categories are shown in Table 3.

Table 3. Test results of secondary classification.

Index I II III IV Average

Acccls 1 1 0.991 0.949 0.985
Classification time for

a single image/s 0.389 0.408 0.412 0.412 0.405

The table shows that the classification accuracy rate of categories I and II is 1, the
classification accuracy rate of category III is the second highest, and the classification
accuracy of category IV is the lowest. The number of output ends of categories I and
II is relatively small. Figure 10 shows that the proportion values of black pixels in the
body pattern images belonging to categories I and II are relatively low, so the distribution
characteristics of black and white patterns are rich. Therefore, the accuracy of these two
categories reaches 100%. The number of cows belonging to category III is almost twice that
belonging to categories I and II, so the classification accuracy is slightly lower. However,
the distribution features of black and white patterns in the binary speckle image are still
relatively rich, so its classification accuracy is also very high. The number of cows belonging
to category IV is also relatively large. Figure 10 shows that the images in category IV have
a relatively high proportion of black pixels, and most of the images have large black areas.
The areas with distinguishable feature points are small and generally located at the bottom
or corners of the image, so the overall classification accuracy of the images in category
IV is slightly low. In addition, the reflection of the black hair area is the main reason for
the reduced binarization accuracy. Obviously, the cows belonging to category IV have
relatively more black hair area in their body pattern and more binarization errors, which
makes the corresponding classification accuracy lower. Overall, the average classification
accuracy of the four secondary-classification models is 0.985, which achieved high accuracy
in individual identification.

In addition, from the classification results of the four categories, the number of outputs
affects the accuracy of the classification model. Reducing the number of outputs of the
classification model can improve the process accuracy and speed of the individual cow
identification model, and the resulting model has better recognition ability for cows with
similar body patterns.

4. Discussion

4.1. Comparison between the Cascaded Method and End-to-End Method

To compare the cascaded identification method with the end-to-end identification
method, all RGB body pattern images of each cow in the dataset were used to construct the
training set, validation set, and test set at a ratio of 5:3:2, and the end-to-end identification
model based on EfficientNet-B1 was trained. Table 4 shows the identification accuracy and
speed of the end-to-end method and the cascaded method.

Table 4. Identification accuracies and speeds of different methods.

Index Cascaded Method End-to-End Method

Acccls 0.985 0.987
Identification time of a single

image/s 0.405 0.432
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Table 4 shows that the end-to-end individual identification method and the cascaded
individual identification method achieve the same high accuracy, which is above 0.98.
However, because the cascaded individual identification method reduces the number of
outputs of each secondary classification model, the number of parameters of the cascaded
individual identification model is less than that of the end-to-end individual identification
model, so the processing speed of the cascaded individual identification method is slightly
higher than that of the end-to-end individual identification method.

In practical applications, when a new cow joins the dairy farm, the recognition model
needs to be retrained. Therefore, this paper counts the training time of different individual
identification methods, as shown in Table 5. For the cascaded individual identification
method, only one or two secondary classification models need to be retrained when a
new cow is added (in most cases, only one model needs to be retrained). For the end-
to-end recognition method, the entire model needs to be retrained when a new cow is
added. According to the comparison of training time in Table 5, the training time of the
cascaded individual identification method is shorter than that of the end-to-end individual
identification method.

Table 5. Training times of different individual identification methods.

Index
Cascaded Method End-to-End Method

I II III IV EfficientNet-B1

Training
time/min 32 39 70 66 132

4.2. Error Analysis

In this paper, the statistics and analysis of the error individual identification results
were carried out. Figure 11 shows the two cows with the lowest individual identification
rates in the dataset, and their individual identification rates are both 0.75. After analysis,
the reasons for the low identification rate include the following two aspects: (1) The two
cows belong to category IV, meaning that the distribution area of black and white patterns
in the trunk area is very small, and fewer corresponding identification features exist. (2) The
distribution of black and white patterns is concentrated in the bottom area of the trunk,
and leg movement will change the distribution and shape of the patterns when the cow
walks, thus affecting the secondary classification accuracy. Because of the small number of
samples in the training set, these changes cannot be learned by the secondary classification
model, which is also one of the reasons for the low individual identification rate.

Figure 11. Body pattern images of two cows (a,b) with the lowest identification rate.

4.3. Comparison of the Proposed Method with Similar Studies

In order to show the advantages of the proposed method more intuitively, a compari-
son with other identification method based on body pattern images [8,20,25,26,33,34] was
conducted as illustrated in Table 6. It can be seen from Table 6 that the number of cows
in the dataset of this paper is the largest, and the identification accuracy of the proposed
method exceeds most of the references in the table. Although the accuracy in [20,33] is
higher than our proposed method in this paper, the dataset of [20] contains only 10 cows,
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and the number of cows is very small. It is needed to collect cow images from four perspec-
tives in [33], so the time and labor cost of collecting data are high. In summary, the cascaded
individual cow identification method proposed in this paper has obvious advantages over
the other publishing similar research and has the potential to be applied to large-scale
automated pastures.

Table 6. Comparison between our proposed method and some of state-of-the-art methods in term of
image source, identification accuracy, and number of cows in the datasets.

Reference Image Source
Identification

Accuracy
Number of

Cows

[8] Side view images of cow 98.36% 93
[20] Tailhead images 99.7% 10
[25] Back images of cow 95.91% 89

[33]
Back image, left side profile

image, right side profile image,
facial image

99% 51

[26] Side view images of cow 96.65 105
[34] Body pattern images (top view) 93.8 46

Our method Body pattern images (side view) 98.5 118

4.4. Future Research

Although our proposed cascaded method can achieve fast and accurate individual
identification of dairy cows, there is still room for improvement. For the binary segmenta-
tion of cow trunk images, severely overexposed images were removed when constructing
the dataset. However, in an actual production environment, overexposure occasionally
occurs. Therefore, in future studies, we can improve the robustness of the binarization
model by optimizing the algorithm network so that the cascaded dairy individual cow
identification method can adapt to more complex scenes on farms. In addition, due to
the limitation of data collection conditions, the number of cows in the dataset constructed
in this paper is relatively small, and the number of samples per cow is also relatively
small. In future studies, the data can be collected on a large-scale dairy farm with more
cows. The proposed method can be applied to farms to further verify the superiority of the
method compared with the end-to-end identification method and its potential application
on large-scale dairy farms.

5. Conclusions

In this paper, a method of cascaded individual dairy cow identification based on
DeepOtsu and EfficientNet was proposed. The body pattern images of dairy cows were
binarized and cascaded classified to address the identification difficulty caused by similar
body pattern characteristics, poor image quality, and a large number of output terminals in
dairy cow group identification. The test results of the method showed that the detection
accuracy (AP75) of the cow trunk based on YOLOX is 0.988, and the detection time of a
single image is 0.023 s; the binarization accuracy of cow body pattern images based on
DeepOtsu is 0.932, and the binarization time of a single image is 0.005 s. The classification
accuracy of the cascaded classification model is 0.985, and the classification time of a single
image is 0.405 s. The overall individual identification accuracy of the proposed method
is 0.985, and the identification time of a single image is 0.433 s. Compared with the end-
to-end individual identification method, the proposed method has obvious advantages
in identification efficiency and training speed. The proposed method provides a new
approach to dairy cattle group individual identification in large-scale dairy farms.
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Abstract: The application of a deep learning algorithm (DL) can more accurately predict the initial
flowering period of Platycladus orientalis (L.) Franco. In this research, we applied DL to establish a
nationwide long-term prediction model of the initial flowering period of P. orientalis and analyzed
the contribution rate of meteorological factors via Shapely Additive Explanation (SHAP). Based
on the daily meteorological data of major meteorological stations in China from 1963–2015 and the
observation of initial flowering data from 23 phenological stations, we established prediction models
by using recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit
(GRU). The mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient
of determination (R2) were used as training effect indicators to evaluate the prediction accuracy.
The simulation results show that the three models are applicable to the prediction of the initial
flowering of P. orientalis nationwide in China, with the average accuracy of the GRU being the highest,
followed by LSTM and the RNN, which is significantly higher than the prediction accuracy of the
regression model based on accumulated air temperature. In the interpretability analysis, the factor
contribution rates of the three models are similar, the 46 temperature type factors have the highest
contribution rate with 58.6% of temperature factors’ contribution rate being higher than 0 and average
contribution rate being 5.48 × 10−4, and the stability of the contribution rate of the factors related to
the daily minimum temperature factor has obvious fluctuations with an average standard deviation
of 8.57 × 10−3, which might be related to the plants being sensitive to low temperature stress. The
GRU model can accurately predict the change rule of the initial flowering, with an average accuracy
greater than 98%, and the simulation effect is the best, indicating that the potential application of the
GRU model is the prediction of initial flowering.

Keywords: P. orientalis; recurrent neural network; inverse distance weighting; accumulated air
temperature

1. Introduction

Flowering is one of the sensitive indicators for assessing climate change [1–6], which re-
flects changes in surface vegetation and eco-health [7]. Moreover, flowering has tremendous
economic value; plants with short flowering time displays have promoted the development
of tourism, and tourism activities characterized by flower viewing have gradually become
important cultural events, and the market is constantly expanding [8–10].

The climatic conditions have an impact on the initial flowering period of plants, and
air and soil temperature are the main factors [5,11–13]. Important progress has been made
in phenological research on flowering forecasting based on meteorological data, which has
mainly established statistical equations to predict flowering period based on the correlation
between meteorological data and phenological data [3,14,15]. In 1974, Richardson et al. [16]
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first proposed the application of the chill unit model to research on peach tree dormancy
prediction, which calculates the chill unit accumulation coinciding with the completion
of plant dormancy to evaluate the impact of low temperature in winter on flowering and
to predict the initial flowering period. In 1979, White [17] constructed a linear regression
model based on phenological data from 53 species of Montana, which support subsequent
flowering studies. In 1986, Anderson et al. [18] further obtained the ASYMCUR GDH model
that is an improved normal plant model to fit growing divide hour (GDH) responding to the
environment on the basis of the chill unit model, and carried out research on the prediction
of the tart cherry flowering period. In 1998, to avoid damage to plants caused by frost
and hazards brought by climate change, such as rising temperature, Hakkinen et al. [19]
used nearly 60 years of phenological data of birth bud observation in southern Finland
from 1896–1955 and meteorological data of light signal and air temperature to predict the
bud burst of birch trees by the light and temperature driven model. In recent years, as
data work has continued to improve, flowering forecasting has begun to focus on accurate
predictive models applied to a wide range of flowers. In 2004, Demeloabreu [20] carried out
flowering prediction for different olive varieties in multiple regions to analyze the impact
of global warming on olive production. Soil moisture is an important factor affecting spring
phenology, so Yashvir et al. [21] utilized soil moisture as a correction factor to improve
the accuracy of the original chickpea flowering prediction model in 2019. The research on
flowering period in China focuses on analyzing the mechanism of meteorological influence
on flowering. In 2019, Wu D et al. [22] conducted analysis through the forecasting model
of apple flowering in Shaanxi, which refers to prediction of flowering period at different
stations and analysis of the applicability by using the mechanistic models to simulate the
growth process of phenology. In 2021, Tan J et al. [23] conducted a fine fitting analysis of
cherry flowering and concluded that air temperature and precipitation are the main impact
factors of previous cherry period research at Wuhan University.

Current research on flowering forecasting has problems, such as the limited time and
space range of accurate predictions and uncertainty around meteorological factors affecting
flowering, and currently the demand for initial flowering periods of plants in the Chinese
flowering market covers the whole country. A solution for spatial phenology modelling
may be to model phenology using herbarium and Citizen Science records and gridded
climatic data. Recently, the flowering of Anemone nemorosa was modelled in this way
across Europe. However, this approach has some limitations related to the availability of
replicated phenological observations and spatial and taxonomic biases [24]. Hence, long-
term local monitoring data are still invaluable in phenological studies. With the in-depth
integration of artificial intelligence (AI) and meteorological big data, more scholars have
begun to pay attention to the application of machine learning (ML) in phenology [25], but
detailed research on deep learning (DL) in flowering prediction is lacking.

In our research, we demonstrate the capabilities of deep learning algorithms that have
so far been used to a limited extent in phenological research. We believe that the results
obtained in our study will find wide application and contribute to a better understanding
of the phenological response of plants to meteorological conditions. We also analyze
the contribution of each factor via Shapely Additive Explanation (SHAP) to interpret the
deep learning model. We expect to provide a scientific basis for nationwide long-term,
data-driven flowering prediction models based on our research.

2. Materials and Methods

2.1. Studied Species

P. orientalis (Cupressaceae) is also named tujia or arborvitae. Its initial flowering period
is from March to April, and its cones mature in October.

P. orientalis has good stress resistance, which can withstand various extreme environ-
mental conditions [26,27], such as drought, high temperature and low temperature stress,
etc. However, the geographical advantages of abundant rainfall and high humidity in
southern China can ensure its more healthy growth [28].
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P. orientalis is one of the most widely distributed plants produced in southern Inner
Mongolia, Jilin, Liaoning, Hebei, Shanxi, Shandong, Jiangsu, Zhejiang, Fujian, Anhui,
Jiangxi, Henan, Shaanxi, Gansu, Sichuan, Yunnan, Guizhou, Hubei, Hunan, northern
Guangdong and northern Guangxi in China [29].

2.2. Region

The research is to establish prediction models of initial flowering period of P. orientalis
in China in the Chinese region (73◦33′ E-135◦05′ E, 3◦51′ N-53◦33′ N). Due to the large area,
the distribution of meteorological elements in China is complex, mainly reflected in the
uneven distribution of air temperature, precipitation and humidity, etc.

Temperature regions are divided by accumulated temperature. In China, there are five
temperature regions of tropical, subtropical, warm temperate, mesotemperate and cold,
whose accumulated temperature value is increasing from north to south, so lower latitude
affects the growth process of plants less. There is also a special Qinghai Tibet Plateau region
influenced by high altitude of an average 4000 m [30].

According to the humidity index (HI), China can be divided into four regions, namely,
arid region (AR), semi-arid region (SAR), semi-humid region (SHR) and humid region
(HR) [31]. And HI can reflect the regional humidity, which affects the physiological process
of plants through the influence on the water potential, which is the key to the process of
plant water absorption. The partition result can be obtained in Figure 1.

Figure 1. China’s regional map of (a) administrative division, and (b) arid-humid division. Beijing,
Tianjing, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang,
Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guandong, Guangxi, Hainan, Chongqing,
Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Taiwan, Hongkong
and Macao are denoted by numbers from 1 to 34 in (a), respectively. The arid region (AR), semi-arid
region (SAR), semi-humid region (SHR) and humid region (HR) are denoted by numbers 1, 2, 3 and
4, respectively.

The analysis of the impact of China’s meteorological element conditions on the spatial
distribution of P. orientalis in the initial flowering period is regional, so we introduced China’s
administrative division to help spatial analysis. The vector diagram of the division of ad-
ministrative regions in China is derived from the National Platform for Common Geospatial
Information Services (https://www.tianditu.gov.cn (accessed on 8 September 2022)).

2.3. Materials

Phenological data are observational data that reflect periodic biological phenomena
including initial flowering period, which refers to the time of one or few flowers fully open.
To obtain enough data for DL training, we collected the initial flowering data of P. orientalis
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from the National Earth System Science Data Center (https://geodata.cn/ (accessed on 13
July 2022)) and the Earth Big Data Science Data Center of the Chinese Academy of Sciences
(https://data.casearth.cn/ (accessed on 11 August 2022)) and selected available data that
included city stations in Baoding, Beijing, Changde, Guiyang, Hohhot, Shanghai, Foshan,
Nanjing, Nanchang, Hefei, Harbin, Kunming, Guilin, Wuhan, Minqin, Shenyang, Tai’an, Xi’an,
Chongqing, Yinchuan, Changchun, Changsha and Yancheng from 1961–2015. The spatial
distribution can be obtained in Figure 2. A total of 357 valid data points were obtained.

Figure 2. Geographical distribution map of phenological stations.

The meteorological data were obtained from the China Meteorological Science Data
Sharing Network “China Ground Meteorological Data Dataset V3.0”. A total of 23 basic city
stations were selected, and we obtained the meteorological elements of average temperature
(◦C), daily minimum temperature (◦C), daily maximum temperature (◦C), daily average
ground temperature (◦C), daily average precipitation (mm), daily average sunshine hours
(h), daily average relative humidity (%), and daily average pressure (Pa) from 1 January to
30 April 1961 to 2015 in these stations.

2.4. Methods
2.4.1. Selection of Meteorological Factors

The effect of air temperature on the initial flowering period is most pronounced,
followed by sunshine and precipitation [11,21]. In ecological research, crop growth and
development need to accumulate to a certain sum of temperature, so the air temperature is
usually expressed in cumulative amount, which is referred to as the accumulated temper-
ature. According to different time scales, the action time of accumulated temperature is
varied. In the process of growth, crops respond to the temperature limit, which is the lower
limit temperature. When the temperature is lower than the lower limit temperature, the
plants will not grow and develop. The accumulated amount of temperature above the lower
limit temperature is the active accumulated temperature, and the accumulated difference
between the temperature and the lower limit temperature is the effective accumulated
temperature, which can be applied to air temperature and ground temperature.
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E f f ective accumulated temperature = ∑ (Ti − C0) (1)

Accumulated temperature = ∑ Ti (2)

Active accumulated temperature = ∑ Ti Ti ≥C0 (3)

where Ti is the daily average temperature, and C0 is the lower limit temperature.
Since the initial flowering period of Platycladus orientails is mainly in the middle of

April, we focused on the meteorological data from January to April. During data processing,
we read the meteorological data from each station and used 0 ◦C, 3 ◦C, 5 ◦C AND 10 ◦C
as the lower limit temperatures to calculate the effective accumulated temperature and
counted the accumulated temperature and average temperature from January to early April
for ten days and the average ground temperature monthly and other factors, as detailed in
Table 1.

Table 1. Table of meteorological factors affecting the initial flowering of P. orientalis.

Meteorological
Elements

Meteorological Factors
Number

of Factors

Temperature

1. The effective cumulative temperature of 0 ◦C, 3 ◦C, 5 ◦C,
10 ◦C (◦C);

2. Active temperature (◦C);
3. Accumulated temperature (◦C);
4. Accumulated temperature for ten days (◦C);
5. Average temperature for ten days (◦C);
6. Days when the minimum/maximum temperature is less

than 0 ◦C, 5 ◦C, 10 ◦C (d);
7. Days when the minimum/maximum temperature is more

than 0 ◦C, 5 ◦C, 40 ◦C (d);
8. Average monthly minimum/maximum temperature from

January to April (◦C).

46

Ground
temperature

1. Accumulate ground temperature (◦C);
2. Average monthly ground temperature from January to

April (◦C);
3. Days when the ground temperature is less than 0 ◦C (d);
4. Days when the ground temperature is more than 40 ◦C (d).

7

Precipitation

1. Cumulative precipitation (mm);
2. Average precipitation (mm);
3. Accumulated monthly precipitation from January to

April (mm);
4. Average monthly precipitation from January to April (mm).

10

Hours of
sunshine

1. Total hours of sunshine (h);
2. Monthly hours of sunshine from January to April (h). 5

Relative
humidity

1. Average relative humidity (%);
2. Average relative humidity for ten days (%). 11

Pressure 1. Average pressure for ten days (hPa). 10

Because different meteorological data have different degrees of influence [23], we
considered different time resolutions when establishing meteorological factors. For exam-
ple, we mainly deal with accumulated temperature for ten days when doing accumulated
temperature calculation through Equation (2), which is a method to calculate ten days of
the month. Therefore, each month will have three different accumulated temperatures for
ten days values, which are divided into an early value, middle value and late value.
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2.4.2. Data Processing

For the convenience of comparison between two different years, we use the data of
ordinal number from 1 January to the current date as phenological data of flowering.

With each meteorological factor as the independent variable and ordinal number as the
dependent variable, a phenological-meteorological dataset is constructed, and the dataset
is normalized to facilitate weight distribution in the deep learning model. At a ratio of 7:3,
we divided the training dataset and test dataset for model training and modelled effect
evaluation to ensure sufficient samples during training, whose distribution is the same and
not repeated, to evaluate the quality of model training.

In order to make each factor value dimensionless in the process of DL training, we
normalized the data by max–min method, which will limit each data point to 0–1.

y′ = y − min
max − min

(4)

where y′ is normalized value, y is value to be normalized, min is the minimum value of the
same value and max is the maximum value of the same value.

2.4.3. Deep Learning Model

In current prediction research, such as Southern Oscillation, local evaporation and
drought prediction, the deep learning algorithm has a better fitting ability and can improve
the spatial resolution of prediction [32,33]. Compared with other common networks such as
convolutional neural network (CNN) and artificial neural network (ANN), recurrent neural
networks have a significant role in time series processing. The initial flowering period is
predicted by three common deep learning prediction models, namely, the recurrent neural
network (RNN), long short-term memory (LSTM), and the gated recurrent unit (GRU).

• Compared with other neural networks, the RNN can predict the current input value
by combining the input values of the first N time series, that is, it has correlation in the
time series.

• LSTM can learn the long-term dependence between two variables and retain the error,
which can be maintained at a constant level when backpropagation is carried out along
the time layer [34,35]. LSTM is equipped with three gating devices to filter the input
data, namely, the input gate, forget gate and output gate. The forget gate will generate
a value between 0 and 1 according to the output and current input of the previous
time to decide whether to retain the information of the previous time [35]. The time
function of the forget gate is mainly controlled by the sigmoid activation function:

ft = σ(Wf · [ht − 1, xt] + b f ) (5)

where f is the forget gate, W is the weight matrix, b f is the offset term, and σ is the
sigmoid activation function. The closer the value of ft is to 0, the more items will
be forgotten.

• Compared with the LSTM model, the GRU simplifies the calculation steps and sub-
stantially increases the training speed, while the GRU also uses a gate device to filter
information, namely, the reset gate and update gate. In the process of training, the
input information will not be cleared by the gate device, but the necessary informa-
tion will be retained in the next cycle, and the information will be saved to avoid
the problem of gradient disappearance. Since there are only two gate structures, the
actual running time of the GRU model is substantially less than that of LSTM with
fewer network parameters, so the risk of GRU model overfitting is smaller under the
condition of ensuring accuracy.
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2.4.4. Training Effect Indicators

The mean squared error (MSE) is used as a loss function, and the mean absolute error
(MAE), mean absolute percentage error (MAPE) and coefficient of determination (R2) are
utilized as the training effect indicators to evaluate the model performance.

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (6)

MAE =
1
m

m

∑
i=1

|(yi − ŷi)| (7)

MAPE =
100%

m
×

m

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (8)

R2 = 1 − ∑m
i=1(yi − ŷi)

2

∑m
i=1(yi − yi)

2 (9)

where yi is the true value, ŷi is the predicted value, m is the number of samples, and yi is
the mean of the prediction.

MSE has high robustness, and it can effectively converge with a fixed learning rate,
so the model with MSE as the loss function can maintain the accuracy in the process of
convergence compared with the model with MAE as loss function [36]. MAE and MAPE
are commonly employed indicators to reflect the degree of deviation between the predicted
value and the true value. R2 is mainly used to judge the linear relationship between
the model prediction and the true value. Therefore, when the value of R2 is near 1, the
simulation degree of the model is accurate. The above four indicators are applied as
mathematical definitions in general statistical research, so they are highly recognized.

2.4.5. Interpretability Model Based on SHAP

Shapely Additive Explanation (SHAP) is a method which uses game theory that is
used to study the mathematical theory of contribution rate as the ideological carrier to
calculate the impact of the characteristic variables of sample data on the results of the
prediction model and then to measure the contribution of these characteristic variables.
This approach explains the CART-based complex integrated learning model [37].

The core of SHAP is to calculate the Shapley value of variables, which represents the
importance of determining the influence of various factors on the prediction.

φi = ∑
S⊆M\{i}

|S|!(|M|−|S|−1)!
|M|! [ fx(S ∪ {i})− fx(S)] (10)

where M denotes all feature sets S represents subsets of i, fx(S ∪ {i}) is the predicted value
of the characteristic variable containing only S ∪ {i} in the sample data, and has a Shapley
value of i.

As the complexity of using the Shapley value to traverse all subsets exponentially
increases, this leads to an excessively long computing time and increases the computational
burden, Lundberg and Lee proposed the Tree SHAP model based on the tree model in
machine learning combined with the Shapley value [37]. In this research, we used the Deep
SHAP model interpreter to rank the contribution of 89 meteorological factors that affect
the initial flowering of P. orientalis. The Deep SHAP model avoids heuristic selection of
linearized components but enables effective linearization from the SHAP values calculated
for each component [37]. Therefore, the contribution of different factors in each sample to
the model prediction can be achieved via Deep SHAP.
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2.4.6. Overall Process of Predicting the Initial Flowering Period in DL

Based on the phenological observation city network and the meteorological observa-
tion data of China, we built a comprehensive dataset of the initial flowering and meteo-
rology, importing the dataset into the RNN, LSTM, and GRU models as input vectors and
using MSE as the loss function. When the loss function converges, the model is considered
mature. MAE, MAPE and R2 are selected as evaluation indicators to express the prediction
effect. In order to compare the difference between the initial flowering period prediction
model based on deep learning algorithms and the traditional flowering prediction models,
we selected the multiple linear regression model based on accumulated air temperature as
the representative of the traditional initial flowering period prediction model, and com-
pared the prediction effect of this model with DL The interpretability model based on
SHAP is adopted to further analyze the interpretability and stability of the model. This
process can be obtained in Figure 3.

 

Figure 3. Flow figure of establishing DL models.

3. Results

3.1. Basic Characteristics of P. orientalis during Initial Flowering

As shown in Table 2, the flowering period of P. orientalis has obvious regional char-
acteristics: with an increase in latitude, the average initial flowering period is gradually
postponed, and the ordinal number of cities in northeast China is nearly 80 d (as a unit
representing days), higher than that of coastal cities in south China such as Foshan and
Shanghai etc., which is related to the generally high light, temperature and precipitation
resources in south China. The dispersion degree of the initial flowering period of different
stations can be obtained from the standard deviation. The standard deviation of 23 stations
is concentrated at approximately 10 d. The maximum of Kunming station is 23.93 d, and
the minimum of Harbin station is 1.50 d. Among all the data, the ordinal number of
the earliest flowering period is 5 d observed at Kunming station, and that of the latest
flowering period is 136 d at Minqin station. There are obvious interannual fluctuations and
spatial differences in the observation data of each station, and the degree of dispersion is
large with the range is 131 and normalized standard deviation is more than 0.2. Therefore,
it is necessary to establish an accurate prediction model to effectively predict the initial
flowering of P. orientalis nationwide.
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Table 2. Table of ordinal number information of P. orientalis’ initial flowering period.

Station
Average
Value (d)

Minimum
Value (d)

Maximum
Value (d)

Range (d)
Standard

Deviation (d)
Skewness Kurtosis

Baoding 95.00 76 111 35 10.29 −0.16 −0.28
Beijing 86.97 65 108 43 10.03 0.12 −0.59

Changde 59.88 38 78 40 10.06 −0.27 0.026
Guiyang 57.05 33 86 53 13.89 −0.11 −0.44
Hohhot 108.00 101 121 20 6.31 0.97 0.19

Shanghai 63.38 50 76 26 7.61 −0.04 −0.07
Foshan 48.78 32 65 33 12.27 −0.08 −1.88
Nanjing 44.90 31 55 24 7.30 −0.36 −0.69

Nanchang 55.78 25 76 51 13.43 −0.58 0.34
Hefei 63.93 41 78 37 11.11 −0.67 −0.70

Harbin 130.50 129 132 3 1.50 0.01 0.01
Kunming 40.08 5 98 93 23.96 0.93 0.95

Guilin 43.35 22 74 52 16.51 0.80 −0.33
Wuhan 88.05 52 112 60 18.94 −0.41 −1.17
Minqin 104.93 92 136 44 10.76 1.61 4.07

Shenyang 111.20 104 122 18 7.33 0.69 −2.49
Tai’an 76.25 70 86 16 6.01 1.29 1.78
Xi’an 65.86 46 81 35 8.20 −0.43 0.51

Chongqing 54.62 24 76 52 14.99 −0.39 −1.05
Yinchuan 110.21 84 123 39 12.90 −0.83 −0.67

Changchun 111.96 93 129 36 7.91 0.12 0.89
Changsha 54.00 45 63 18 9.00 0.01 0.01
Yancheng 68.09 44 80 36 8.09 −1.09 1.69

3.2. Model Training Effect

Normalized meteorological data and initial flowering data were imported into the DL
models as inputs. It can be seen from Figure 4 that with the increase in the training epoch
which represents the number of cycles in the training process, the loss functions of the
three deep learning models converge, which shows that the prediction error of the model
reaches a small value. Therefore, the training is stopped, and the flowering prediction test
is conducted.

 
Figure 4. The training process of deep learning models.
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In the test dataset, the MAE of the three models is small, and the MAPE of LSTM
and the GRU is less than 1%. The R2 values are greater than 0.99, indicating that there is a
significant linear relationship between the true value and the predicted value, which can be
obtained in Table 3.

Table 3. Table of prediction effect of DL.

Models and Indicators RNN LSTM GRU

MAE 1.50 × 10−2 5.18 × 10−4 2.16 × 10−4

MAPE 4.56 0.16 0.05
R2 0.99 0.99 0.99

Typical stations, Yancheng station, Guiyang station and Beijing station, are selected
from 23 stations, and prediction analysis is performed. Figure 5 shows that the three deep
learning models can better simulate the actual local data of the initial flowering period. The
fluctuation trend of the LSTM and GRU models is different from that of the actual extreme
years, which is mainly characterized by hysteresis, and the simulated fluctuation change is
always smaller than the actual value in the year with obvious changes.

 

Figure 5. Interannual variation figure of prediction error of (a) Yancheng city, (b) Guiyang city, and
(c) Beijing city.

3.3. Interpretability of DL Models

In Deep SHAP, a single sample will output SHAP values of different factors. We used
the data of all samples including the training dataset and test dataset, which is a matrix
of 89 meteorological factors and ordinal number of initial flowering period. Therefore, a
matrix of SHAP values of the same size can be obtained. We explore the importance of
different meteorological factors to model prediction by taking the average SHAP value of
the whole sample as the factor contribution rate and analyze the stability of different factors
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by using the change in the SHAP value of different samples in various meteorological
factors as the stability index.

Figure 6a–c shows the analysis thermodynamic diagrams of RNN, LSTM and GRU.
Its x-axis represents 89 meteorological factors, which are shown by x1-x89, and the order
of meteorological factors is from the effective accumulated temperature of 0 ◦C to early
average pressure for ten days in April. The y-axis represents 357 samples, which are
shown by A1-A357. According to SHAP, the value greater than 0 in the thermodynamic
diagrams promotes the prediction effect of the model, while the value less than 0 reduces
the prediction effect, and we used color palette to indicate whether the value is greater
than 0.

Figure 6. SHAP analysis figure of deep learning models (a). RNN contribution analysis thermody-
namic diagram; (b). LSTM contribution analysis thermodynamic diagram; (c). GRU contribution
analysis thermodynamic diagram; (d). Analysis figure of average contribution of each factor.

Therefore, Figure 6a–c can reflect the contribution rate stability of each meteorological
factor though the change of SHAP value of each factor in different samples. In the thermal
image, the meteorological factors with obvious fluctuations in the contribution rates of
different models are similar and mainly concentrated in various factors related to the
minimum temperature. The SHAP value of temperature factors is stable near the positive
value, while the SHAP value of pressure factors is stable at the negative value.

According to Figure 6d, among different deep learning models, the average factor
contribution rate is different with the range being 0.011 and normalized standard deviation
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being 0.2, but in general, temperature factors are more important to the model with 58.6%
of temperature factors values being higher than 0. Other factors are less important to the
model, and some factors have negative SHAP values, which means they have a negative
role in improving model prediction. GRU is more sensitive to input factors, so the absolute
value of the contribution rate of GRU factors is higher than that of the other two models,
while LSTM is the least sensitive to input factors, among which the absolute value of
contribution rate of RNN, LSTM and GRU are 8.22 × 10−4, 5.87 × 10−4, 3.25 × 10−3.

3.4. Comparison between DL and the Traditional Prediction Model

Non-DL flowering prediction methods usually use a few meteorological factors to
establish regression models to forecast the initial flowering period, such as a multiple
linear regression model, which is a linear regression model with multiple independent
variables [38,39]. However, the simple linear models have difficulty accurately predicting
flowering period. Chen and others have established a linear mode of multiple linear
regression and nonlinear models of polynomial regression between the cherry flowering
period and climate factors, and determined that they have a good simulation effect for the
nonlinear modes with an average error of prediction less than 1.5 d [23,40]. In the neural
network structure of deep learning, there are linear operations such as the convolution
layer and nonlinear operations such as the activation function. To test the prediction effect
of the deep learning model, we also select the multivariate linear regression model based
on the accumulated temperature as the contrast for comparison.

According to the research of most scholars [9,13,19,20,22,23,33], we use the effective
accumulated temperature (whose lower limit temperatures are 0 ◦C, 3 ◦C, 5 ◦C and 10 ◦C),
active accumulated temperature and total accumulated temperature as variable factors to
establish a multiple linear regression model:

y = 166.33x1 − 261.86x2 + 59.07x3 + 38.79x4 − 0.85x5 − 1.57x6 + 0.77 (11)

where x1, x2, x3, and x4 are the effective accumulated temperatures whose lower limit
temperature are 0 ◦C, 3 ◦C, 5 ◦C and 10 ◦C, x5 is the active accumulated temperature, and
x6 is the total accumulated temperature. The coefficient of each independent variable is its
linear relationship with y.

According to the deep learning models and multiple linear regression model, the
prediction accuracy of each model is evaluated via MAE, MAPE and R2, and the results
can be obtained from Table 4.

Table 4. Table of comparison between deep learning model and multiple linear regression.

Indicator

Model Deep Learning Model Multiple Linear
Regression ModelRNN LSTM GRU Mean

MAE 1.50 × 10−2 5.18 × 10−4 2.16 × 10−4 5.12 × 10−3 0.06
MAPE 4.56 0.16 0.053 1.59 15.45

R2 0.99 0.99 0.99 0.99 0.84

By comparison, the accuracy of the deep learning model was significantly higher than
that of the multiple linear regression model with a confidence level of 0.05. And through
the multicollinearity analysis, it can be found that in the multiple linear regression model,
there is a collinearity problem between the 0 ◦C effective accumulated temperature and the
10 ◦C effective accumulated temperature.

3.5. Spatial Distribution and Interpolation of Prediction for DL

Due to the relationship between meteorological elements and space (longitude and
latitude), we utilized all phenological data and verified the deep learning model at different
stations to show the impact of spatial factors on flowering prediction. We import all the
samples into the trained models and calculate the difference with the true value to get
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the prediction error. When the error is more than 0 d, it means that the prediction results
are ahead of the initial flowering period. The smaller the absolute error, the better the
prediction effect. According to the Figure 7, the prediction average error of the RNN
model lag behind the true value, mainly focusing on (−2d, −1d) and (−3d, −2d), while
the prediction error of LSTM and GRU are mainly focused on (−1d, 0d), but the error of
LSTM results exceeds 3d. By comparison, the prediction results of the GRU model are more
accurate and stable.

Figure 7. Spatial distribution map of (a) RNN, (b) LSTM, and (c) GRU prediction error.

Since most phenological observation stations in the dataset are concentrated in major
urban areas of China and observation data in Northwest and Southwest China are missing,
inverse distance weighting (IDW) is used for the average spatial prediction results of deep
learning models. According to Figure 8, the interpolation results of the three models show
similar characteristics. The similar characteristics are that in terms of latitude, ordinal num-
ber of initial flowering period gradually increases from low latitudes 15◦ N to high latitudes
55◦ N and present an obvious hierarchical structure, which is the layered structure of early,
middle and late initial flowering periods from south China to north. The late flowering area
mainly consists of Inner Mongolia and the three eastern provinces of Heilongjiang, Jilin
and Liaoning, the middle flowering area mainly consists of central China, and the early
flowering area mainly consists of the Yangtze River Delta, including Jiangsu, Zhejiang and
Shanghai. The early flowering area and late flowering area have obvious differences in the
initial flowering period. A possible main reason is that the late flowering area has a higher
latitude, a smaller solar altitude angle, and less radiation, so the accumulated temperature
and other resources are insufficient.

The prediction ordinal number of initial flowering period in different regions is similar
in the three DL models with an average leaner trend between prediction value and years
being −0.01, which means that the initial flowering period of P. orientalis in China will
advance by about 1.31d each year.
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Figure 8. Spatial interpolation map of (a) RNN, (b) LSTM, and (c) GRU’s average prediction.

4. Discussion

In this research, we employed deep learning to excavate the deep information relation-
ship between the initial flowering period and phenology and realized a long-term flowering
prediction model in China. The accuracy of the RNN, LSTM and GRU deep learning models
is significantly higher than that of the traditional flowering prediction models based on
multiple linear regression. Via interpretability analysis and spatial analysis, model stability
problems such as factor sensitivity and error spatial distribution are explained.

From the viewpoint of some scholars, temperature is the main influencing factor
affecting phenology [41–47], because it acts as a signal to regulate the dormancy process of
plants [48]. Therefore, the mathematical regression models are built around accumulated
air temperature, average air temperature and other factors related to temperature such as
effective accumulated air temperature, etc. However, such models may have errors in the
prediction effect over a short time and couldn’t be applied to nationwide initial flowering
period forecasts with the MAE, MAPE being higher than DL models and R2 being lower.

Due to different meteorological conditions, the flowering period presents diversity
in space [30]. In addition, because of the impact of climate change, the change of meteo-
rological conditions in China is also different over time, showing the increase of annual
temperature and precipitation [49,50]. This research achieves accurate nationwide predic-
tion of a single species in China with the error of the initial flowering period reduced to
less than 1 d, which provides more accurate data support for phenology research. With
the development of industrialization, carbon emission might be the main factor affecting
the opening process of flowers. Thus, this research provides a model basis for quantitative
research on flowering changes in future scenarios.

However, there are some uncertainties in this research. The first uncertainty pertains
to the data. We use the data of observation stations in major cities in China, with missing
data from western China, which causes serious deviations between the prediction results and
the actual value in this region. For DL, the SHAP of different models varies, and there is an
obvious difference in the contribution of the three models to some meteorological factors,
which makes it difficult to judge the correlation between such factors and the flowering period.
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5. Conclusions

We predicted and analyzed the initial flowering period of P. orientalis in China through
DL model, and the most important results of our study can be summed up as follows:

(1) The initial flowering in China mainly occurs from the beginning of February to the
end of April, and it has spatial differences, which are later in northern China than in
southern China.

(2) The DL model is suitable for nationwide flowering prediction in China, and the
average error of DL is only within 2 d.

(3) Comparing the RNN, LSTM and the GRU, we find that the GRU is more suitable for
the prediction model of initial flowering, with higher accuracy and more stable spatial
predictions.

(4) The initial flowering period of P. orientalis in China presents obvious hierarchical
characteristics, which are mainly manifested in the southern region where the flow-
ering period is the earliest. With the increase in latitude, the initial flowering period
gradually increases from south to north.

Although the variation in the contribution degree of output in the prediction of the
initial flowering period can suggest different mechanisms of meteorological disasters
affecting flowering process, our research is still insufficient.
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Abstract: The feeding behavior of laying hens is closely related to their health and welfare status.
In large-scale breeding farms, monitoring the feeding behavior of hens can effectively improve
production management. However, manual monitoring is not only time-consuming but also reduces
the welfare level of breeding staff. In order to realize automatic tracking of the feeding behavior of
laying hens in the stacked cage laying houses, a feeding behavior detection network was constructed
based on the Faster R-CNN network, which was characterized by the fusion of a 101 layers-deep
residual network (ResNet101) and Path Aggregation Network (PAN) for feature extraction, and
Intersection over Union (IoU) loss function for bounding box regression. The ablation experiments
showed that the improved Faster R-CNN model enhanced precision, recall and F1-score from 84.40%,
72.67% and 0.781 to 90.12%, 79.14%, 0.843, respectively, which could enable the accurate detection
of feeding behavior of laying hens. To understand the internal mechanism of the feeding behavior
detection model, the convolutional kernel features and the feature maps output by the convolutional
layers at each stage of the network were then visualized in an attempt to decipher the mechanisms
within the Convolutional Neural Network(CNN) and provide a theoretical basis for optimizing the
laying hens’ behavior recognition network.

Keywords: laying hens; feeding behavior; Faster R-CNN; model visualization

1. Introduction

In recent years, researchers have studied the health and welfare of animals by monitor-
ing their individual behaviors [1,2]. A laying hen’s behavioral activities can be divided into
feeding, drinking, resting, fighting, etc. Feeding is one of the most important behaviors in
the life of laying hens, and it accounts for more than 40% of total activity time [3]. In the
large-scale poultry breeding farm, abnormal feeding behavior of laying hens could reflect a
health and welfare problem in the long term. For example, the decline in feed frequency
and feed intake of some hens may indicate the possibility of disease, while the large-scale
deterioration of the feed frequency may indicate that timely feeding is needed. On the
contrary, the simultaneous and unexpected occurrence of high feed intake and low egg
production may also reflect a health problem of laying hens. Thus, monitoring the feeding
behavior of laying hens is significant in the breeding farm.

Traditionally, image processing technology is used to identify or classify poultry be-
haviors. However, it has the disadvantages of poor model generality, robustness, and
difficulty in feature extraction [4–7]. Deep learning technology can learn the character-
istics of the data itself through a large number of samples and has the advantages of
speed, accuracy, and robustness; it is widely used in image detection and segmentation
of animals. Some researchers have utilized deep learning and machine vision methods to
detect typical behaviors of livestock and poultry, such as feeding, climbing, drinking, and
excretion [8–14]. Wang et al. [15] built a laying hens behavior detection model based on
the YOLOv3 network, which could recognize the feeding, mating, standing, and fighting
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behaviors of laying hens. To identify broilers’ lameness, Nasiri et al. [16] used CNN to
extract the key points of the broiler’s body and Long Short-Term Memory (LSTM) to classify
the lameness of broilers. Fang et al. [17] employed a similar method for pose estimation
and behavior classification of broiler chickens, which could identify broiler behaviors such
as eating, standing, walking, running, resting, and preening. Geffen et al. [18] detected and
counted the laying hens in the battery cages with the Faster R-CNN network and achieved
89.6% accuracy at cage level. Fang et al. [19] constructed a laying hens behavior detection
network based on the Faster R-CNN network and knowledge-distillation technology, which
significantly improved model performance while reducing the model inference time.

Previous research has proved that CNN could realize the analysis and recognition of
image content and effectively solve the problems related to animal behaviors. However,
we lack an understanding of its internal implementation mechanism, and the outstanding
recognition performance lacks explanation. Therefore, during the model development
process, a model with better performance can only be obtained through continuous trial
and error [20].

In this research, we developed a feeding behavior detection model for stacked cage
hens based on an improved Faster R-CNN network [21]. To solve the problem of loss of
low-level features in the network, a feature extraction network based on the path aggre-
gation network was constructed, and the regression loss function was improved, which
significantly improved the performance of the feeding behavior detection network. Follow-
ing this, the convolutional kernel features and the feature maps output by the convolutional
layers at each stage of the network were visualized in an attempt to interpret the mecha-
nism within the convolutional neural network and provide a theoretical foundation for the
continuous optimization of the hens’ behavior detection network.

2. Materials and Methods

2.1. Experimental Setup

The experiment in this research was conducted in Deqingyuan Ecological Park, Yan-
qing, Beijing, China. Laying hens (Jinghong 1) were reared in a 4 layers-stacked cage
breeding house. There was a total of 9200 cages; each cage was 45 cm wide, 60 cm deep,
and 50 cm high. A nipple drinker was installed inside the cage, and a feed trough was
seated outside, with a light source located directly above the passageway. Six laying hens
were reared in a single cage, and usually, 2–4 laying hens were in the feeding position for
feeding, and the rest were drinking or resting.

The image acquisition system in this experiment consisted of three digital cameras
(XCG-CG240C, SONY, Shanghai, China) with a resolution of 1920 × 1200 pixels, three
fixed focus lenses (Ricoh FLCC0614A 2M, RICHO, Philippines), and a mobile inspection
platform. The cameras were mounted on the mobile inspection platform at an angle of
30 degrees downward horizontally and were controlled by a microcomputer (Dell OptiPlex
7080MFF, Dell Inc., Xiamen, China) to capture images of the laying hens. Figure 1 shows
the image acquisition system and the housing condition of laying hens. The inspection
platform traveled to the front of each cage to collect images of the hens. Images were
collected without adding additional light to minimize stress on the hens.

2.2. Data Collection and Labeling

Images were collected from November to December 2021. We selected 100 cages of
laying hens for image acquisition and finally selected 1000 images as the original dataset.
The data collection followed the Experimental Animal Welfare and Animal Experiment
Ethics Committee of China Agricultural University guidelines. As shown in Figure 2, due
to the difference in light intensity between hen layers, images collected from the first and
second layers were enhanced using the Retinex enhancement algorithm to improve the
image readability. After that, the original image set was labeled with the free image label
tool “Labelme”, in which hens whose heads were near or in the feeding trough were labeled
as “feeding” and the others were labeled as “resting”. In the detection work, the CNN

208



Agriculture 2022, 12, 2141

does not have scale invariance and rotation invariance due to the fixed characters of the
convolution itself. The adaptive ability of the CNN to target changes almost comes from
the diversity of data itself. The more and more comprehensive the data, the higher the
accuracy of the trained model [10]. Therefore, the dataset was expanded to 2000 images
by 90◦ random rotation, adding Gaussian noise and randomly adjusting image contrast to
improve the model’s generalization ability. Finally, the dataset contained 4268 samples of
hens labeled as “feeding” and 4836 samples of hens labeled as “resting”, and was randomly
divided into a training set, validation set, and test set (7:2:1).

Camera2

Camera1

Camera3

Mobile inspection platform

 

Figure 1. The image acquisition system and housing condition of laying hens.

 
(a) Original image 

 
(b) Enhanced image 

Figure 2. Image sample of hens.

2.3. Faster R-CNN Network

The feeding behavior detection model was constructed based on the Faster R-CNN
network in this research. As shown in Figure 3, the Faster R-CNN network can be divided
into four parts: feature extraction network, Region Proposal Network (RPN), Region of
interest (ROI) pooling network, bounding box regression and classification. The feature
extraction network is used to extract the feature maps. The features maps are then shared
with the region proposal network and the ROI pooling network, where the region proposal
network extracts the candidate bounding boxes to the ROI pooling network, and through
the ROI pooling layer, each ROI generates a fixed-size feature map; finally, regression and
classification of the bounding boxes are performed.
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Figure 3. Structure of Faster R-CNN network. FC: fully connected layer, Conv: convolution.

2.4. Construction of Feature Extraction Network Based on Path Aggregation Network

In CNN, low-level layers focus on image details such as edge shape and object position,
while deep layers will focus on strong semantic information. The object detection network
needs to be concerned about the image’s semantic information, position information, and
pixel details. Therefore, it is necessary to fully use the features extracted by each level of the
backbone network so that the input feature maps of the region proposal network get both
semantically vital information and low-level localization information. The Faster R-CNN
network achieves this through the Feature Pyramid Network (FPN), which significantly
improves the detection ability of the Faster R-CNN network for small objects. However,
in the “bottom-up” transmission architecture of FPN networks, the path from the shallow
features to the top layer is too long. As shown by the red dotted path in Figure 4, the
features extracted from the last convolutional layer of the second stage (stage 2) of the
ResNet 101 network pass through hundreds of layers to the top layer (P5). The low-level
feature information suffers severe losses through the transmission over long paths, which
makes it difficult to preserve accurate target location information in the top-level feature
map. Liu et al. [22] proposed a path aggregation network (PAN), for instance segmentation,
which significantly improved the performance of an instance segmentation network by
creating a bottom-up path augmentation, adaptive feature pooling structure and fully
connected fusion method.

In this research, the bottom-up path augmentation of the PAN was introduced into the
Faster R-CNN network. The four feature fusion layers were added after the FPN network
by lateral connection, the architecture of which is shown in Figure 4b. With the addition
of the bottom-up pathway augmentation, the low-level features extracted in the second
stage of the ResNet 101 network were transmitted to feature map P2 by a lateral connection
and subsequently passed through the feature map N2 to the top feature layer N5 (the path
shown by the green dotted line in Figure 4). It took less than ten layers to transmit the low-
level features to the top layer, which significantly shortened the information transmission
path; the low-level feature information can be better retained in the top feature map, which
is conducive to the accurate localization of the targets.
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(a) FPN backbone (b) Buttom-up path augmentation of 
PAN

Bottom-up pathway of FPN Top-down pathway of FPN

Conv 9

Conv

Conv

Conv

2 up  
1 1Conv

Conv

Conv

Figure 4. Structure of the improved feature extraction network. Conv: convolution, up: upsampling,
⊕: add.

2.5. Optimisation of the Loss Function

The regression loss and classification loss composed the loss of Faster R-CNN network.
Among them, the Faster R-CNN network utilized the smoothL1 loss as the regression loss,
as shown in Equations (1) and (2).

Lreg = λ
1

Nreg
∑

i
p∗i smoothL1(ti, t∗i ) (1)

smoothL1(ti, t∗i ) =
{

0.5(ti − t∗)2(|ti − t∗| < 1)
|ti − t∗| − 0.5(|ti − t∗| ≥ 1)

(2)

where Lreg is the regression loss of the Faster R-CNN, Nreg is the number of anchors, p∗i is
1 if the anchor is positive and is 0 if the anchor is negative, ti is a vector representing the
4 parameterized coordinates of the predicted bounding box, t∗i is that of the ground-truth
box associated with a positive anchor.

When calculating the regression loss of the network by the smoothL1 function, the
4 points of the predicted bounding boxes are treated as independent of each other, and their
respective loss values are calculated and then summed up to obtain the total regression
loss. In fact, the four points are related to each other. IoU is usually used to evaluate the
proximity between the predicted bounding boxes and the ground truth. When multiple
predicted bounding boxes get the same smoothL1 loss value, their IoU values may vary
greatly. Thus, performing regression on the 4 points in isolation is inappropriate, and the
predicted bounding boxes composed of the 4 points should be regarded as a whole for the
regression. In this research, IoU loss [23], is used to replace the smoothL1 loss in the Faster
R-CNN network. The IoU loss function is defined as:

IoUloss = − ln(IoU) (3)

IoU =
I

U
(4)

where IoU is the intersection and union ratio of the predicted bounding boxes and the
ground truth; I is the area of the intersection region of the predicted bounding boxes and
the ground truth; U is the union region of the predicted bounding boxes and the ground
truth.
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2.6. Model Training

In this research, the training work was performed on a Dell computer with an Intel(R)
Core (TM) i7—9700K, an NVIDIA GeForce GTX2080 GPU (11 GB), and 16 GB of memory.
The operating environment was Ubantu18.04, CUDA 10.2, cuDNN 8.0.1, and Python 3.7.
The model was trained for 16,000 steps, with an initial learning rate of 0.001, a momentum
of 0.9, Stochastic Gradient Descent (SGD) optimizer, and a weight decay of 0.0001. The
learning rate increased to 0.002 after 8000 steps. In order to obtain the best model, weights
were saved every 2000 steps.

3. Results

Different optimization methods of the feeding behavior detection network were tested
in this experiment: 1© Faster R-CNN network with Resnet101 and feature pyramid network
as the feature extraction network, and smoothL1 function as the regression loss function
(ResNet_fpn_smooth). 2© Faster R-CNN network with the Resnet101, path aggregation
network, and feature pyramid network as the feature extraction network, and smoothL1
function as the regression loss function (ResNet_pafpn_smooth). 3© Faster R-CNN network
with the Resnet101 and feature pyramid network as the feature extraction network, and
IoU loss as the regression loss function (ResNet_fpn_iou) 4© Faster R-CNN network with
the Resnet101, path aggregation network and feature pyramid network as the feature
extraction network, and IoU loss as the regression loss function (ResNet_pafpn_iou). The
performance of the above four recognition models was tested with the test set, and the
same image was input into each of the above four models to obtain the four sets of output
results in Figure 5; all models could accurately identify the feeding and resting behaviors
of hens.

 
(a) ResNet_fpn_smooth  

 
(b) ResNet_pafpn_smooth 

 
(c) ResNet_fpn_iou  

 
(d) ResNet_pafpn_iou   

Figure 5. Detection results of different models.

The Precision (P), recall (R), and average inference time (t) were used in this experiment
to evaluate the feeding behavior detection model performance. As shown in Table 1, the
detection precision of all models was above 80%. The accuracy, recall and F1-score of the
ResNet_fpn_smooth were 84.4%, 72.67% and 0.781, respectively, while the corresponding
values were 87.2%, 71.3% and 0.785 for the ResNet_pafpn_smooth. There was a noticeable
improvement in the precision index after adding the path aggregation network to the Faster
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R-CNN network and a slight decrease in the recall index. In addition, the inference time of
both models was similar, which indicated that the path aggregation network improved the
retention rate of low-level feature information and improved the detection precision of the
object without increasing the model complexity too much. The precision, recall and F1-score
of the ResNet_fpn_iou were 88.73%, 73.49% and 0.804, respectively, higher than that of
ResNet_fpn_smooth and ResNet_pafpn_smooth, which means that the IoU loss function
could calculate the error between the predicted and true values of the bounding box more
accurately, to obtain more accurate prediction results. Finally, the ResNet_pafpn_iou got a
precision of 90.12%, a recall of 79.14% and a F1-score of 0.843, which was the best.

Table 1. Performance comparison of different models.

Models Precision/% Recall/% F1-Score
Average Inference

Time/s

ResNet_fpn_smooth 84.40 72.67 0.781 0.143
ResNet_pafpn_smooth 87.20 71.31 0.785 0.145

ResNet_fpn_iou 88.73 73.49 0.804 0.143
ResNet_pafpn_iou 90.12 79.14 0.843 0.144

Figure 6 shows the training loss curve of the ResNet_fpn_smooth,
ResNet_pafpn_smooth, ResNet_fpn_iou, and ResNet_pafpn_iou. The training loss de-
creased to a low value within a short time after the training started, then slowly reduced
with the training process. The training loss became flat when the iteration was about
14,000 times and no longer declined. When the number of iterations reached 16,000, the train-
ing process ended, and the model converged. Based on the training loss curves in Figure 6,
ResNet_pafpn_iou achieved the lowest converged loss, which indicated the effectiveness of
the optimization process.

Lo
ss

Iterations

 ResNet_pafpn_smooth
 ResNet_fpn_iou
 ResNet_fpn_smooth
 ResNet_pafpn_iou

2000 4000 6000 8000 10,000 12,00014,000 16,000

Figure 6. Training loss curves of different models.

4. Discussion

In the CNN, each layer of the network extracts different features through the convolu-
tion kernel, and the network will integrate the extracted features to realize the interpretation
of the image content. Visualization of the CNN was first proposed by Zeiler et al. [20].
Subsequently, visualization techniques such as Class Activation Maps (CAM) [24] and
Gradient-weighted Class Activation Maps (Grad-CAM) [25] were developed.

In this research, taking ResNet101 as an example, the features relating to the convolu-
tion kernel and the feature maps generated by the convolution layer of the feeding behavior
detection network were visualized. The aim was to understand the internal mechanism of
the convolutional neural network, providing a theoretical basis for the optimization of the
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behavior recognition network of hens. The ResNet101 network consists of 101 convolution
layers and can be divided into 5 stages. In the Faster R-CNN network, the feature maps
extracted in the first stage of ResNet101 are not sent to the region proposal network. There-
fore, we only visualized the feature maps of the last convolution layers in the second to
fifth stages to analyze the differences between the extracted features of the low-level and
the top ones.

4.1. Visual Analysis of the Feature Maps

The number of feature maps output in the second, third, fourth, and fifth stages of the
ResNet101 network was 256, 512, 1024, and 2048, respectively, and all of the feature maps
were single-channel images. In this section, all the single-channel feature maps of each stage
were merged into a multi-channel image, and the 4 feature maps with the most significant
activation features were output for visualization. Figure 7 shows the visualization results.

The training process of the CNN imitates the cognitive function of the human brain.
The human visual system performs image recognition step by step, and people will first
understand the color and brightness features in the image, then the simple geometric
features such as points, lines, and edges, and after that, the slightly complex features
(high-dimensional information) such as texture in the image, finally, forming the concept of
the whole image. The CNN similarly processed the image. As shown in Figure 7, low-level
layers in the second stage mainly extracted the image’s low-level features, such as contour,
edge, and color features. It focused more on the image’s overall color and line information,
not only the contour of the hen. With the deepening of the network, the third and fourth
stages focused more on the texture of the image. In the third and fourth stages, the network
gradually focused on the contour of hens, and some key features were extracted, including
their head and cockscomb. As the network got more profound, the features extracted by
the network began to be highly abstract, and the naked eye could no longer recognize the
specific content of the extracted features. However, the convolutional neural network can
extract essential information from it, and the area of concern of the network is basically
focused on the hen’s contour, ignoring the background. The subsequent fully connected
convolution layers processed the features extracted from the high-level layer to complete
the detection and classification of the hens.

4.2. Visual Analysis of the Convolution Kernels

The convolution kernel of the CNN is responsible for extracting features from the
image. By visualizing the convolution kernel, we can more intuitively understand the
features extracted by the convolution kernel of the image and clearly understand CNN’s
internal mechanism. The gradient lifting method is used to compute the input image
when the convolution kernel of each layer in ResNet101 reaches the maximum activation
state, and the input image is the feature extracted by the convolution kernel. This section
visualized the first 36 convolution kernels of the last layer in stage 2–stage 5.

From the visualized results in Figure 8, in the second stage of the ResNet101, the
convolution kernel extracted some low-level features such as color, line, and texture features.
The combination of color and line features formed wavy and long strip textures. With
the network getting deeper, the kernels in the fourth and fifth stages extracted more
complicated texture features, spiral, circular, and various shape combinations of texture
features. The convolution kernel became more and more complex, and the extracted
features became more and more refined. A large number of complex and refined texture
features gradually depicted the contour of the detection object (hens) as the network
got deeper. In summary, the low-level layers of the network mainly extracted general
features such as edges, lines, and some simple textures, while deeper layers could extract
complex and semantically strong features (feather, eye), which were similar to the target
characteristic to be detected.
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The second stage 

 

 

The third stage 

 

 

The fourth stage 

 

 

The fifth stage 

 

 
 (a) Multi-channel (b) Single channel 

Figure 7. Feature maps from stage 2 to stage 5.
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Figure 8. Convolution kernel visualization results. (a,c,e,g) are the visualization result of the first
convolution kernels at each stage, respectively. (b,d,f,h) are the visualization results of the first 36
convolution kernels at each stage, respectively.

4.3. Limits and Future Work

It is worth noting that there were still some limitations to this study. In the detection of
the feeding behavior of laying hens, only feeding behavior and resting behavior were taken
into consideration; other behaviors, such as fighting, drinking, and egg laying, were not
considered in this research. The small cage size and the lighting conditions of the stacked
cage breeding house caused this. The drinking and laying behaviors of the hens always
occurred inside the cage, while the feeding and resting laying hens would stay close to the
front door, blocking the camera’s view. Additionally, the low illumination of the house
would result in almost no light inside the cage, which means that the camera cannot collect
valid images for the detection work. Fighting behavior is often observed during feeding
and can be obscured by the trough, making sample collection more complex. In future
work, we will attempt to use an infrared camera to capture images and select a better angle.

Furthermore, the Faster R-CNN model was a two-stage object detection network,
which was slower in detection speed than other networks studied [26,27]. Thus, a one-
stage object detection network such as SSD [28], and YOLOv4 [29] should be considered
to further improve the feeding behavior detection model. Lastly, the feeding behavior
detection model has been developed for the stacked cage laying hens, but is not suitable
for laying hens with other feeding methods. Therefore, the model can be further improved
through the collection of more data from laying hens with different feeding patterns.

5. Conclusions

In this work, an improved Faster-RCNN model was constructed to recognize the
feeding behavior of stacked caged hens based on a path aggregation network and IoU
loss function. The precision, recall and F1-score of the model were improved from 84.40%,
72.67%, 0.781 to 90.12%, 79.14% and 0.843, respectively, and the average detection time was
almost unchanged. After that, an ablation experiment was conducted to demonstrate the
effectiveness of the improvement and visualize the output feature maps of the convolution
layer and the convolution kernel features of the feeding behavior detection network,
respectively. Based on the visualization results, the convolutional neural network’s internal
mechanism was analyzed to explain the CNN ‘s performance and provide a theoretical
basis for further optimization of the detection model. In general, the developed model and
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visual analysis method in this research could provide technical support for the subsequent
monitoring of the health status and welfare status of laying hens and could also provide
a reference for the optimization of other animal detection models. In future work, we
will consider using a one-stage object detection network to optimize the feeding behavior
detection model further and detect more behaviors, such as drinking and egg laying, to
provide further technical support for poultry farm management.
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Abstract: For grain storage and protection, grain pest species recognition and population density
estimation are of great significance. With the rapid development of deep learning technology, many
studies have shown that convolutional neural networks (CNN)-based methods perform extremely
well in image classification. However, such studies on grain pest classification are still limited in
the following two aspects. Firstly, there is no high-quality dataset of primary insect pests specified
by standard ISO 6322-3 and the Chinese Technical Criterion for Grain and Oil-seeds Storage (GB/T
29890). The images of realistic storage scenes bring great challenges to the identification of grain
pests as the images have attributes of small objects, varying pest shapes and cluttered backgrounds.
Secondly, existing studies mostly use channel or spatial attention mechanisms, and as a consequence,
useful information in other domains has not been fully utilized. To address such limitations, we
collect a dataset named GP10, which consists of 1082 primary insect pest images in 10 species.
Moreover, we involve discrete wavelet transform (DWT) in a convolutional neural network to
construct a novel triple-attention network (FcsNet) combined with frequency, channel and spatial
attention modules. Next, we compare the network performance and parameters against several
state-of-the-art networks based on different attention mechanisms. We evaluate the proposed network
on our dataset GP10 and open dataset D0, achieving classification accuracy of 73.79% and 98.16%.
The proposed network obtains more than 3% accuracy gains on the challenging dataset GP10 with
parameters and computation operations slightly increased. Visualization with gradient-weighted
class activation mapping (Grad-CAM) demonstrates that FcsNet has comparative advantages in
image classification tasks.

Keywords: grain pest classification; visual attention mechanism; discrete wavelet transform; deep
learning; computer vision

1. Introduction

Grains including cereals and legumes provide food for humans and livestock. Insect
infestation is one of the leading factors affecting the quantity, quality, nutrition and market
value of stored grains. Insect infestation during storage accounts for about 6–10% of posthar-
vest grain losses, which poses serious challenges to food security in many countries [1].
In the European standards of Storage of Cereals and Pulses, ISO 6322-3 gives guidance
on controlling attacks by 23 insect and mite pests. In the Chinese Technical Criterion for
Grain and Oil-seed Storage (GB/T 29890-2013) [2], ten primary insect pests are specified
to be identified. The species of ten primary insect pests are araecerus fasciculatus (AF,
coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus boheman (BRB,
broadbean weevil), callosobruchus chinensis (CC, azuki bean weevil), plodia interpunctella
(PI, Indian meal moth), rhizopertha dominica (RD, lesser grain borer), sitophilus oryzae
(SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga cerealella (SC, angoumois
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grain moth) and tenebroides mauritanicus linne (TML, cadelle beetle). Furthermore, the
unprocessed grain can be graded into basically clear grain (≤2 insects per kg), regular
occurrence of insect grain (3–10 insects per kg), and intense occurrence of insect grain
(>10 insects per kg), according to the population density of these ten primary insect pests.
Therefore, grain insect identification and population destiny estimation are necessary for
applying proper control actions.

The popular methods of insect detection and identification are visual inspection, probe
sampling, acoustic detection, electronic nose and imaging methods [3]. Among them, the
conventional methods such as visual inspection, trap methods and probe sampling are
time-consuming and labor-intensive. Modern methods such as acoustic detection and
electronic nose are costly and unreliable in noisy and complex environments. With the
advancement of computer vision, image processing-based methods are proved to be more
suitable for identification and classification of grain insects.

Traditional image processing methods utilize color, edge, corner, key point or other
low-level features to recognize the grain pests [4–7]. For example, the United States
Department of Agriculture (USDA) used visual reference images for insect detection and
grain grading since 1997. Ridgway et al. [8] developed a non-touching method based on
machine vision to detect saw-toothed grain beetles. Wen et al. [9] proposed a hierarchical
model that combined both local features and global features to identify orchard insects.

Thanks to huge volumes of image data, convolutional neural networks (CNN) achieve
great success in image classification, object detection, image segmentation and other visual
tasks. CNN-based deep learning models such as ResNet [10] and VGGNet [11] have already
surpassed human-level accuracy in image classification. Albeit the progress has been made
in common object classifications, grain insect pest classification is still a challenging task
in the practical application. As ten primary insect pests specified in GB/T 29890-2013
occur in three groups: grain weevils, grain borers and grain moths, among each group, the
insects are difficult to distinguish. On the other hand, the attributes of different shapes,
small sizes, multi-colors and cluttered backgrounds also pose challenges on grain insect
classification. Motivated by the fact that humans and birds can find the insects in grains
effectively, we introduce frequency, channel and spatial attention mechanisms into the
image classification models.

This paper focuses on the frequency-enhanced attention mechanism, which integrates
more clues to improve the accuracy of grain insect classification. The main contributions of
this paper can be summarized as follows.

(1) We collect a challenging dataset of 10 species of stored-grain insects specified by
the standard GB/T 29890-2013.

(2) We construct a novel triple-attention network (FcsNet) combined with frequency,
channel and spatial attention modules. The frequency information of discrete wavelet
transform (DWT) and discrete cosine transform (DCT) are involved in the convolutional
neural network. FcsNet can be plugged into classic backbone networks as an efficient
add-on module.

(3) Extensive experiments and ablation studies are carried out on the proposed dataset
GP10 and open dataset D0. More insights into the frequency-enhanced attention mechanism
can be found in the visualization results of the confusion matrix and Grad-CAM.

2. Related Works

In order to process the information received visually more efficiently, people are used
to paying attention to some of the information while ignoring other visible information.
Inspired by human vision, a new method for data processing is proposed, called attention
mechanism. The attention mechanism is essential to add different weights to each part
of the input information, so that the model could pay attention to areas which are more
significantly weighted and thus improves the accuracy of model judgment.

To solve the problems caused by pests, Cheng et al. [12] established a system that
can identify agricultural pests in a complex background using a convolutional neural
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network (CNN) and residual network. This system has 98.67% accuracy for classifying the
images of 10 species of agricultural pests, which is better than the ordinary deep neural
network AlexNet [13]. Nanni et al. [14] proposed an automatic pest classification model
by combining CNN and significance methods, but these methods [12,14] do not introduce
an attention mechanism. Xie et al. [15] published a large field crop pest dataset (D0).
The dataset contains about 4500 images of 40 species of field crop pests. However, the
background of this dataset is single and the pose of pests is similar, which makes it easy to
extract pest features. Ung et al. [16] followed a residual attention network (RAN), feature
pyramid network (FPN) and a multi-branch multi-scale attention network (MMAL-Net)
to improve the accuracy of the final pest classification based on integration technology
and in accordance with the prediction results of the above three networks. However, they
used only one attention mechanism. Zhou et al. [17] proposed an efficient small-scale
convolutional neural network for pest identification, which is composed of a double fusion
with a squeeze-and-excitation-bottleneck block (DFSEB block) and a max feature expansion
block (ME block). Li et al. [18] developed a multi-scale insect detector (MSI_Detector) by
constructing a feature pyramid to extract stored-grain insect image features with different
spatial resolutions and semantic information. Shi et al. [19] proposed a multi-class stored-
grain insect object detection network based on R-FCN (Region-based fully convolutional
network) which achieves both high classification accuracy and speed.

In the development of attention in computer vision, common attention mechanisms
can be divided into spatial attention and channel attention. Spatial attention can be viewed
as an adaptive spatial region selection mechanism, and using it can directly predict the
most relevant spatial locations [20,21] or select important spatial regions [22]. Hu et al. [23]
captured long-range spatial context information by gather and excite operations, and they
designed the GENet model, which not only emphasizes on important features, but also
suppresses noise. Li et al. [24] viewed self-attention in terms of expectation maximization
(EM) and proposed EM attention. Huang et al. [25] treat the self-attention operation
as graph convolution and proposed cross-attention. Compared with the previous self-
attention-based spatial attention [22], it improves the speed and generalization capability.
Channel attention adaptively recalibrates the weight of each channel, and can be viewed
as an object selection process, thus determining to what to pay attention. Hu et al. [26]
proposed a new architecture unit based on ResNet [10], which is called a squeeze-and-
excitation network (SENet) block. They compared the performance of global average
pooling (GAP) and global maximum pooling (GMP) as squeeze operators, and finally
adopted GAP to calculate the channel attention. Gao et al. [27] proposed the global second-
order pooling (GSoP) block to address the limited ability of the SE block to capture global
information. To overcome the high model complexity, Wang et al. [28] proposed an efficient
channel attention (ECA) block. This block introduces one-dimensional convolution to
reduce the redundancy of fully connected layers and obtain more efficient results. Moreover,
Woo et al. [29] found that the combination of two kinds of attention has better performance
through ablation experiments, and proposed the convolutional block attention module
(CBAM). From another perspective, Qin et al. [30] regarded the channel representation
problem in SENet as a compression process using frequency analysis, and proposed a new
multi-spectral channel attention method (FcaNet) with the performance superior to that of
SENet. Guo et al. [31] surveyed attention models in deep neural networks and encouraged
various studies to improve deep learning results by using attention mechanisms.

3. Materials and Methods

3.1. Residual Networks

He et al. [32] proposed a residual network (ResNet) in 2015. This network solved
the network degradation problem caused by too many hidden layers in the deep neural
network (DNN) (this degradation is not caused by overfitting), abandoned the dropout
and used Batch Normalization (BN) for training acceleration. In addition, it introduced the
shortcut connection between the input and output to avoid gradient disappearance and
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explosion in the DNN training. After these problems are solved, the depth of the network
rose by several orders of magnitude.

The structure of ResNet can not only speed up the training of neural networks very
quickly and improve the accuracy of the model, but it is also easy to optimize. Therefore,
ResNet has become the basis for many research tasks, including classification, detection
and segmentation. In other words, ResNet is suitable for backbone networks.

3.2. Channel Attention Module

The channel attention mechanism was proposed by Hu et al. [26] in 2017. It can
reallocate the feature weight on the channel based on a new “feature recalibration” strategy,
which has improved effective features and suppressed invalid feature information. More-
over, Woo et al. [29] noted that the global maximum pooling (GMP) also plays a role in
channel attention, and has modified it, as shown in Figure 1. All above can be summarized
as follows:

C = Fcbam (X, θ) = σ(W2δ(W1GAP(X)) + W2δ(W1GMP(X))) (1)

where X represents the input, GAP and GMP represent the global average pooling and
global maximum pooling operations, respectively, Wi represents the weight of the full
connection layer, and the δ and σ distribution represents ReLU and Sigmoid functions.

Figure 1. Diagram of channel attention module (CAM). As illustrated, the channel attention module
utilizes both max-pooling outputs and average-pooling outputs and forward them to the fully
connected layer, which finally generates channel attention through the sigmoid function.

3.3. Spatial Attention Module

At the same time, Woo et al. [29] noted the importance of spatial attention and pro-
posed a convolutional block attention module (CBAM). They found that spatial attention
and channel attention are complementary. Unlike channel attention, the spatial attention
focuses on “where” the information part lies. In the study of spatial attention, they com-
pared the convolution kernels of different sizes and found that a larger convolution kernel
can produce better accuracy. This shows that a wider receptive field is needed in spatial
attention. As shown in Figure 2, it can be written as follows:

S = σ(Conv([GAP(X); GMP(X)])) (2)

where Conv(·) represents a convolution operation.

Figure 2. Diagram of spatial attention module (SAM). As illustrated, the spatial attention module
forwards max pooling outputs and average pooling outputs to the convolution layer and generates
spatial attention through the sigmoid function.
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3.4. Frequency Attention Module

In addition to the channel and spatial attention modules, Qin et al. [30] also proposed
a frequency domain channel attention network (FcaNet). Based on SENet, they regarded
the channel representation problem as a compression process using frequency analysis,
and analyzed GAP in the frequency domain. They mathematically proved that GAP is a
special case of characteristics in the frequency domain and proposed a new multi-spectral
channel attention method based on such discovery.

GAP is used to calculate the mean value of all spatial elements in each channel. How-
ever, different channels may have the same mean value, but have different semantics, which
leads to poor diversity of features obtained through GAP. The discrete cosine transform
(DCT) is a kind of Fourier transform and is often used to compress signals and images,
and the two-dimensional DCT contains more frequency components, including the lowest
frequency component GAP.

Specifically, it first divides the input images into several groups and then conducts
two-dimensional DCT processing for each group. Finally, similar to SENet processing, the
final weight is obtained by using the full connection layer, ReLU and Sigmoid functions.
This can be written as follows:

S = Ffca (X, θ) = σ(W2δ(W1[(DCT(Group(X)))])) (3)

where DCT represents 2D discrete cosine transform while Group represents dividing the
input into several groups.

Li et al. [33] found that the down-sampling (max-pooling, average-pooling and strided-
convolution) in deep learning often amplifies random noise and destroys the basic results
of the target. They used Discrete Wavelet Transform (DWT) to replace the down-sampling
operation in the network to improve the robustness of model classification.

DWT can decompose the one-dimensional signal s =
{

sj
}

j∈Z into low-frequency
components s1 = {s1k}k∈Z and high-frequency components d1 = {d1k}k∈Z, which can be
written as follows: {

s1k = ∑j lj−2ksj
d1k = ∑j hj−2ksj

(4)

where l = {lk}k∈Z and h = {hk}k∈Z are respectively low-pass and high-pass filters of the
orthogonal wavelet.

If expressed by vectors and matrices, the formula (4) can be written as:

s1 = Ls, d1 = Hs (5)

where L and H are, respectively:

L =

⎛
⎜⎜⎝
· · · · · · · · ·
· · · l−1 l0 l1 · · ·

· · · l−1 l0 l1 · · ·
· · · · · ·

⎞
⎟⎟⎠ (6)

H =

⎛
⎜⎜⎝
· · · · · · · · ·
· · · h−1 h0 h1 · · ·

· · · h−1 h0 h1 · · ·
· · · · · ·

⎞
⎟⎟⎠ (7)

For a 2D signal X, DWT usually performs one-dimensional DWT on each row and
column, namely:

Xll = LXLT (8)

Xlh = HXLT (9)

Xhl = LXHT (10)
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Xhh = HXHT (11)

DWT decomposes an image X into high-frequency components Xlh, Xhl and Xhh and
low-frequency component Xll. Xll is the low-resolution version of the image it keeps the
most energy and basic structure of the image. While Xlh, Xhl and Xhh represent the image
details that include edges and noise. Therefore, the DWT coefficients can be integrated into
the convolution neural network to extract useful features for object classification.

3.5. Proposed Method

In this work, we believe that channel attention, spatial attention and frequency domain
attention focus on the target area in the image from different dimensions. We speculate
that if these three attention modules are combined, the network’s overall performance will
be improved by mutual complementation. Based on the three attention modules and DWT
down-sampling operation, we proposed a novel triple-attention network (FcsNet). Figure 3
shows the schematic diagram of the network we proposed.

Figure 3. FcsNet integrated with a ResBlock in ResNet. This figure shows the exact position of our
module when integrated within a ResBlock. We apply FcsNet on the convolution outputs in each
block. Therein, the condition for DWT operation is Stride equal to 2.

To compare the network structures of ResNet and FcsNet (ours), we list their details
in Table 1, where DWT1 represents the wavelet transform substituting max-pooling op-
eration and DWT2 represents the wavelet transform substituting convolution operation
with stride 2. CAM, SAM and FAM represent channel, spatial and frequency attention
modules, respectively.

Table 1. Network structure of ResNet-50 and Fcs-ResNet-50(ours). The shapes and operations with
specific parameter settings of a residual block are shown in brackets, with the numbers of blocks
stacked. The right side shows different down-sampling performed by conv3_1, conv4_1, and conv5_1
with a stride of 2.

Layer Name Output Size ResNet-50 Fcs_ResNet-50

conv1 112 × 112 conv, 7 × 7, 64, stride 2

conv2_x 56 × 56

max pool, 3 × 3, stride 2 DWT1

⎡
⎣ conv, 1 × 1.64

conv, 3 × 3.64
conv, 1 × 1.256

⎤
⎦× 3

Conv2D
BN

⎡
⎢⎢⎣

conv, 1 × 1.64
conv, 3 × 3.64
conv, 1 × 1.256

CAM + SAM + FAM

⎤
⎥⎥⎦× 3

DWT2

Conv1 × 1
BN

conv3_x 28 × 28

⎡
⎣conv, 1 × 1.128

conv, 3 × 3.128
conv, 1 × 1.512

⎤
⎦× 4

⎡
⎢⎢⎣

conv, 1 × 1.128
conv, 3 × 3.128
conv, 1 × 1.512

CAM + SAM + FAM

⎤
⎥⎥⎦× 4

conv4_x 14 × 14

⎡
⎣ conv, 1 × 1.256

conv, 3 × 3.256
conv, 1 × 1.1024

⎤
⎦× 6

⎡
⎢⎢⎣

conv, 1 × 1.256
conv, 3 × 3.256
conv, 1 × 1.1024

CAM + SAM + FAM

⎤
⎥⎥⎦× 6
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Table 1. Cont.

Layer Name Output Size ResNet-50 Fcs_ResNet-50

conv5_x 7 × 7

⎡
⎣ conv, 1 × 1.512

conv, 3 × 3.512
conv, 1 × 1.2048

⎤
⎦× 3

⎡
⎢⎢⎣

conv, 1 × 1.512
conv, 3 × 3.512
conv, 1 × 1.2048

CAM + SAM + FAM

⎤
⎥⎥⎦× 3

1 × 1 global average pool, 10-d fc, softmax

4. Experiments and Results

In this section, firstly we explained our experiment. Secondly, in order to better com-
pare our dataset (GP10) and D0 dataset [15], we rebuilt all evaluated networks [10,26,29,30]
in the PyTorch framework, and used standard evaluation indicators to compare with the
performance of previous methods. Finally, we studied the effectiveness of our method in
the classification of grain pest images.

4.1. Datasets

We evaluated our proposed method on two datasets. We collected the first dataset
(GP10), including 1082 pictures of 10 species of stored grain pests, namely, araecerus fas-
ciculatus (AF, coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus
boheman (BRB, broad bean weevil), callosobruchus chinensis (CC, azuki bean weevil),
plodia interpunctella (PI, Indian meal moth), rhizopertha dominica (RD, lesser grain borer),
sitophilus oryzae (SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga ce-
realella (SC, angoumois grain moth) and tenebroides mauritanicus linne (TML, cadelle
beetle). Figure 4 shows some sample images of our dataset.

Figure 4. Sample images collected in GP10.

While collecting these samples, we relied on common image specimen search engines,
including iNaturalist and Bugwood Images, etc. iNaturalist is a global community contain-
ing biodiversity data, whose goal is to promote biodiversity discipline and conservation.
Bugwood Images is a funded project launched by the Center for Invasive Species and
Ecosystem Health of the University of Georgia in 1994. It provides an accessible high-
quality image archive and focuses on species related to economy, including insects, plants,
agriculture and integrated pest management, etc.

We used the English name and corresponding synonyms of each subcategory as query
keywords to search and download samples of the corresponding category. Secondly, we
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searched and learned the structural characteristics of each type of stored grain pests on
professional insect science websites to screen and verify each type of sample. Thirdly, we
cut each type of picture according to size requirement for convenient model training later.

The second dataset is D0 (4500 pictures in all), including 40 different pests. Some are
shown in Figure 5.

Figure 5. Example images in D0.

4.2. Experiment Settings

Our dataset is divided into three subsets: training set images (876 pcs), verification set
images (103 pcs) and test set images (103 pcs), subject to the ratio of 8:1:1. See Table 2 for
detailed classification. In order to obtain sufficient target features, we first expanded the
training set to 2628 images by flipping horizontally and adding Gaussian noise. To make
the experiment more normal and impartial, we first used python script to divide the three
subsets at random, with no duplicate images present in these three subsets. The same set of
division data was used in the subsequent experiments. Similarly, the same settings were
used on dataset D0.
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Table 2. Composition of the D0 dataset.

Species Abbreviations Number of Samples Train Val Test

Araecetus fasciculatus AF 115 93 11 11
Bruchus pisorum BP 110 88 11 11

Bruchus rufimanus Boheman BRB 97 79 9 9
Callosobruchus chinensis CC 83 67 8 8

Plodia interpunctella PI 129 105 12 12
Rhizopertha dominica RD 69 57 6 6

Sitophilus oryzae SO 176 142 17 17
Sitophilus zeamais SZ 83 67 8 8
Sitotroga cerealella SC 115 93 11 11

Tenebroides mauritanicus Linne TML 105 85 10 10
Total 1082 876 103 103

We processed the input images in advance. Firstly, we applied random clipping to
the training set and adjusted its size to 224 × 224. Then, we used the method of randomly
changing brightness, contrast and saturation to enhance the generalization of the model and
solve the problem of overfitting. In the verification set, firstly, we adjusted the minimum
edge of the image to 256, with the aspect ratio of the original image maintained. Then, we
used the center clipping method to cut the image size to 224 × 224. Finally, we applied the
center clipping method with the same size as the training window in the test phase. For
more convenient training, we converted the data into Tensor format and standardized the
data accordingly.

In the phase of training, we used the multi-class cross entropy as the cost function.
Then, we used the Adam optimizer with a learning rate of 10−4 to optimize the network
parameters. Next, we set the small batch to 32 and conducted 200 epochs of training.
Finally, we saved the optimal training parameters and tested their predictions.

4.3. Evaluation Metrics

Because of the imbalanced class distribution of our dataset, we employed several
comprehensive metrics for the classification task, including parameters (params), floating
point operations (FLOPs), accuracy (acc), average precision (MPre), average recall (MRec),
average F1-score (MF1), receiver operating characteristic (ROC) curve and area under the
roc curve (AUC).

FLOPs are mainly used to describe the computation of a model, which is similar to the
time complexity of an algorithm.

For the convolution kernel, we compute FLOPs as follows:

FLOPs_c = 2HW
(

CinK2 + 1
)

Cout (12)

where H, W and Cin are the respective height, width and number of channels of the input
feature map, K is the kernel width (assumed to be symmetric), and Cout is the number of
output channels.

For fully connected layers, we compute FLOPs as follows:

FLOPs_fc = (2I − 1)O (13)

where I is the input dimension and O is the output dimension.
Params is mainly used to describe the size of a model, which is similar to the spatial

complexity of an algorithm.
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The parameter number of the convolution layer is calculated as follows:

params_c = Co ×
(

k2 × Ci

)
(14)

where Co is the number of output channels, Ci is the number of input channels, and K is
the kernel width (assumed to be symmetric). If the convolution kernel has a bias term, it
will be added by one, and if not, it will not be added.

The number of parameters of the full connection layer is calculated as follows:

params_fc = (I + 1)× O = I × O + O (15)

where I is the length of the input vector and O is the length of the output vector.
Acc is the proportion of the true positive value to the total predicted value among all

classes as follows:
Acc =

TP
N

(16)

where N is the number of samples and TP is true positive. Pre is the proportion of positive
values in the total number of categories. To treat the classes as being equally important,
we computed the precision for each category, then took an average of them to obtain MPre
as follows:

Prec =
TPc

TPc + FPc
(17)

MPre =
∑C

c=1 Prec

C
(18)

where C is the number of classes. FPc and TPc stand for the false positive and the true
positive of the c − th class, respectively. Similarly, we computed Rec and MRec as follows:

Recc =
TPc

TPc + FNc
(19)

MRec =
∑C

c=1 Recc

C
(20)

where FNc stands for the false negative of the c − th class. The F1 combines the MPre and
MRec as a trade-off as follows:

MF1 = 2
MPre · MRec

MPre + MRec
(21)

In addition, the ROC (receiver operating characteristic) curve is used to compare the
classification performance of the models. The vertical axis of the ROC curve represents the
true-positive rate (TPR), and the horizontal axis represents the false-positive ratio (FPR).
The higher the TPR and the lower the FPR, the better the performance of the model. In
other words, the closer the ROC curve is to the upper left corner, the higher the model
prediction results. TPR and FPR are defined as follows:

TPR =
TP

TP + FN
(22)

FPR =
FP

TN + FP
(23)

where TP, FP, FN and TN refer to true positive, false positive, false negative and true
negative, respectively. The ROC curve is difficult to distinguish the performance gap
between models, so we choose AUC (area under the roc curve) as the evaluation metric. The
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AUC is between [0, 1], and the closer its value to 1, the better the classification performance
of the model. The AUC definition is as follows:

AUROC =
∫

TPRd(FPR) (24)

4.4. Experimental Results
4.4.1. Verification on Private Dataset

In accordance with the evaluation criteria in Section 4.3, we first compare the perfor-
mance and efficiency of the proposed model with existing attention mechanisms on the
dataset GP10 and D0, then report the results in Table 3. We observed that our method
performs best on Acc, MPre, MRec and MF1. FcsNet achieves 11.65%, 9.71%, 5.83% and
3.89% accuracy gain than ResNet, SENet, CBAM and FcaNet, respectively. This means
that our method is effective. This method can combine the attention of frequency domain,
channel and space, and use DWT for down-sampling to improve the accuracy significantly.

Table 3. The performance comparison of different networks on GP10 and D0 datasets.

Architecture Backbone Params FLOPs
GP10 D0

Acc MPre MRec MF1 Acc MPre MRec MF1

ResNet ResNet-50 23.53 M 4.12G 62.14 64.74 61.17 61.71 96.08 96.50 95.61 95.82
SENet ResNet-50 26.04 M 4.13G 64.08 69.30 64.62 63.93 97.00 97.49 96.79 97.00
CBAM ResNet-50 26.05 M 4.14G 67.96 71.37 67.16 67.45 97.47 97.76 97.28 97.40
FcaNet ResNet-50 26.04 M 4.13G 69.90 69.88 68.77 68.06 97.63 98.19 97.62 97.81

FcsNet(ours) ResNet-50 28.56 M 5.18G 73.79 74.38 72.79 71.99 98.16 98.49 98.33 98.34

Furthermore, we analyzed the complexity of this method from two aspects such as
learnable parameters (Params) and floating point operations per second (FLOPs). For
parameters, our method increased by 9.6% and 9.7%, respectively, compared with CBAM
and FcaNet. For the FLOPs, our method increased by 25.4% and 25.1%, respectively,
compared with CBAM and FcaNet.

Our method (FcsNet) achieved a confusion matrix as shown in Figure 6. It can be
found that obvious errors are caused by several similar categories which belong to the same
genus and have many common features. For example, BP and BRB belong to the same
genus of bruchus, SO and SZ belong to the same genus of sitophilus.

Figure 7 shows the prediction probability of SO and SZ. Because of the similar mor-
phology of SO and SZ, there are two prediction probabilities much bigger than the other
categories. This means these two categories are often misclassified. If the top-2 error rate is
considered, the accuracy will be greatly improved on the proposed dataset GP10. This also
confirms that the above-mentioned categories of the same genus have common featuresand
pose challenges to our research.

In order to eliminate the influence of sample imbalance, we draw the ROC curve of
each model to intuitively represent the prediction ability of each model. We also calculated
the AUC to make it clear which model performed better. This is shown in Figure 8. By
comparison, it is easy to find that, although our model is slightly inferior to FcaNet and
CBAM in the beginning, the performance of our model is slightly higher than other models
in general.
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Figure 6. Confusion matrix of the proposed method. The vertical axis is the true label, and the
horizontal axis represents the predicted label. The values in the diagonal area in the figure are the
proportion of correct predictions, and the other values are the proportions of wrong predictions. The
darker the color, the larger the proportion.

Figure 7. Comparison of SO and SZ prediction results, where (a,c) are bar charts of the prediction
probability of SO and SZ (in percentage). The horizontal axis is the class name and the vertical axis is
the probability. Examples of images for SO and SZ are shown in (b,d), respectively.
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Figure 8. ROC comparison of different models. The horizontal axis is the false positive rate, the verti-
cal axis is the true positive rate, and the lower right corner is the color and AUC value corresponding
to the model.

4.4.2. Verification on Open Dataset

In the field of pest images, the open dataset D0 of Xie et al. [15] is often used as a
standard dataset to verify proposed methods for classification. In order to further verify
the performance of the proposed method, we used this dataset as supplementary proof. We
observe that FcsNet is superior to other architectures in every comparison, which indicates
that the benefits of FcsNet are not limited to our dataset (GP10). See Table 3 for details.

Through comparison, it is not difficult to find that the accuracy on the dataset GP10
is not as high as that on D0. Based on analysis, we concluded the following two reasons.
Firstly, the images on dataset D0 have a similar background and the pest postures change
slightly. In Figure 5, we give images of some categories. Secondly, our dataset (GP10) has a
complex background and a high degree of similarity exists in appearance between different
categories. Therefore, classification on the GP10 dataset is more challenging.

4.5. Visualization with Grad-CAM

This section shows the visualization of our proposed model. Previously, it was believed
that the deep learning network was a black box and lacked some explanatory power,
for example, in classification network models (such as VGGNet [11], ResNet [10] and
MobileNet [34]), and it was unclear why the network predicted like this and where the
concerns were for each category. Zhou et al. [35] proposed a kind of category activity
mapping technology, which can draw a thermodynamic chart to show to which areas the
network pays attention, and also where the network structure needs to be changed and
retraining carried out. Moreover, Selvaraju et al. [36] upgraded and improved it based on
category activity mapping to make the existing most advanced deep model interpretable
without changing its architecture, thus avoiding the tradeoff between interpretability
and accuracy.
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Figure 9 shows the Grad-CAM [36] generated by ResNet, SENet, CBAM, FcaNet and
FcsNet based on the input images of our test set. As can be seen, FcsNet includes the focus
of other models in the focus input image, and it seems to focus more on the whole area of
the grain pests. This also confirms the effectiveness of our proposed method.

Figure 9. The Grad-CAM visualization results. We compared the visualization results from ResNet,
SENet, CBAM, FcaNet and FcsNet, and calculated the gradient CAM visualization of the final
convolution output.

5. Conclusions

In this paper, we propose a stored grain pest identification method based on a triple-
attention module (FCS), namely, frequency domain attention (FAM), channel attention
(CAM) and spatial attention (SAM). We combine the three domains and use wavelet
transform for down-sampling to achieve considerable improvement in performance while
maintaining a low overhead, and verified on our dataset (GP10) and D0, with the accuracy
rates being 73.79% and 98.16%, respectively. FcsNet has good performance and can provide
a new idea and method for the rapid detection and identification of pests. In the future,
our work will focus on using multi-domain attention mechanisms to solve pest detection
and segmentation tasks.
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Abstract: Precision agriculture employs cutting-edge technologies to increase agricultural productiv-
ity while reducing adverse impacts on the environment. Precision agriculture is a farming approach
that uses advanced technology and data analysis to maximize crop yields, cut waste, and increase
productivity. It is a potential strategy for tackling some of the major issues confronting contemporary
agriculture, such as feeding a growing world population while reducing environmental effects. This
review article examines some of the latest recent advances in precision agriculture, including the
Internet of Things (IoT) and how to make use of big data. This review article aims to provide an
overview of the recent innovations, challenges, and future prospects of precision agriculture and
smart farming. It presents an analysis of the current state of precision agriculture, including the most
recent innovations in technology, such as drones, sensors, and machine learning. The article also
discusses some of the main challenges faced by precision agriculture, including data management,
technology adoption, and cost-effectiveness.

Keywords: precision farming; smart farming; agricultural technology; Internet of Things (IoT); big
data analytics; machine learning; artificial intelligence (AI)

1. Introduction

Precision agriculture (PA) is a management strategy for addressing geographical
and temporal variabilities in agricultural fields [1–3] that involves data and contempo-
rary technologies. With a forecasted human population of between 9 and 10 billion by
2050 [3–5], precision agriculture is becoming more and more important to contemporary
agricultural research. By 2050, the amount of food produced worldwide must grow by at
least 70% [1,5–7]. This is a difficult endeavor [4] because it puts further strain on already-
scarce resources and the environment [1–3]. Therefore, precision agriculture is essential
to maximize output while using fewer inputs of all sorts in more effective ways, reducing
adverse impacts on the environment, and assuring sustainability [2,3]. Precision farming
was born with the introduction of GPSs (global positioning systems), GISs (geographic in-
formation systems), yield monitors, and other data generators in all three crucial phases of
agricultural operations in the 1990s [2,8,9]. In precision agriculture, motorized equipment
was only used for performing agricultural processes [2,10], and the problem-recognizing
and decision-making steps were authorized by humans. The technological advancement
during the Third Industrial Revolution, known as Industry 3.0 [8], led precision agriculture
to digitalization by integrating information technologies and improved automation capa-
bilities in precision farming. As a result of this digitalization, “farm practices” with manual
tools moved to “agriculture” from animal traction, then to motorized mechanization, and
now to digital equipment [2].

Precision agriculture so far mainly consists of variable rate technologies (VRTs), elec-
tronic maps, yield monitors, and guidance farming systems [2,8]. Variable rate applications
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were firstly demonstrated in northern Germany and Denmark in 1988 after global posi-
tioning systems (GPSs) were available for civil services [11]. GPS services were opened
for general use in U.S. farms in 1983 [2]. In the next decade, GPS technology facilitated
farmers to precisely locate and map their fields [10,12], empowering them to manage their
farmlands according to site-specific conditions and field variabilities. At the beginning
of the second millennium, yield monitors were developed, enabling farmers to monitor
crop yield in real-time via best matching [13]. Advancement of remote-sensing technology,
such as satellites, drones, ground-based sensors, and crews, authorized farmers to collect
high-resolution data on their fields, allowing them to make informed decisions about
crop management [3]. Precision agriculture is not only focused on crop farming but also
on other agricultural production systems: agronomics, livestock farming, aquaculture,
and agroforestry [2,3,9,14].

In the current status of precision agriculture, there are several issues, such as un-
sustainable resource utilization, long-term monoculture, intensive animal farming [8],
environmental compromises, uneven distribution of digitization [15], food safety issues,
inefficient agri-food supply chain [13,16], and lack of awareness of and inertia toward novel
changes. These issues prevent achieving efficiency, productivity, and sustainability from
agricultural production and escalate unintended impacts on ecosystems [17]. The fourth
industrial revolution, which is known as Industry 4.0, occurred in 2011 with the Internet of
Things (IoT), big data, artificial intelligence (AI), robotics, and blockchain technology [8,18].
In 2017, these advanced technologies were integrated into agriculture in order to over-
come the above-mentioned issues, transforming precision agriculture to Agriculture 4.0,
or smart farming [8,16]. With this transition, there is a growing focus on sustainability
in agriculture, with many farmers adopting precision agricultural technologies to reduce
the environmental impacts of farming and promote long-term sustainability. As a result,
agricultural-manufacturing processes and supply chains have become more autonomous
and intelligent [18], including the automation of various tasks such as planting, seeding,
harvesting, and soil sampling. This is making farming more efficient while reducing
labor costs.

Smart agriculture is an evolving field that leverages technological innovations to
transform traditional farming practices. The integration of digital technologies into agricul-
ture has opened up new opportunities and possibilities, revolutionizing the way farmers
manage their crops, resources, and operations. It is a rapidly evolving field that encom-
passes a wide array of approaches, applications, and impacts. The broader objective of
this review is to delve into the essential aspects of precision agriculture, exploring its key
components and highlighting its potential for sustainable farming practices. One of the
critical aspects of precision agriculture is data collection and acquisition planning, which
plays a fundamental role in optimizing farm management decisions. Through efficient data
gathering, farmers can make informed choices regarding crop health, resource allocation,
and yield optimization. Decision making and execution are also vital components of preci-
sion agriculture, where the integration of cutting-edge technologies is pivotal. Leveraging
machine vision technology, the Internet of Things (IoT), and artificial intelligence (AI) can
lead to enhanced precision and efficiency in agricultural processes, benefiting both farmers
and the environment. Throughout this review, successful precision agriculture proposals
and real-world implementations are analyzed to gain insights into their achievements and
challenges. By identifying future developments required in precision agriculture, we aim
to provide a comprehensive understanding of how this field can continually evolve to
support sustainable farming practices and address global food security challenges. The
amalgamation of scientific research and technological innovations holds great promise for
the future of precision agriculture and its positive impact on agriculture and society as
a whole.
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2. Precision Agriculture Approaches, Applications, and Impacts

Precision agriculture involves data-driven management decisions that improve re-
source use efficiency, resulting in reduced agricultural costs while lowering the environ-
mental impacts from agriculture [19]. Hence, data and data collection systems, decision
support tools, and data-driven equipment and input adjustments are major components
of precision agriculture [2], engaging in three key agricultural steps: diagnosis, decision
making, and performing [20], respectively. Before the integration of smart technologies,
ICT (information and communication technology) was incorporated into agricultural de-
vices and machinery to capture real data. Here, remote sensing, automated hardware and
software, telematics, drones, autonomous vehicles, GPSs, and robotic technologies were
incorporated into agricultural practices. As an example, the agro-tech company John Deere
introduced GPSs for tractors, expecting increased yield and decreased input wastage [19].
The previous status of precision agriculture before smart farming can be summarized
as follows.

2.1. Data Collection and Acquisition

Data, data collection, and decision support tools are important for the identification
and diagnosis of various aspects in agriculture. In precision agriculture, data on individual
fields and crops are gathered by observing, measuring, and sensing with different kinds of
sensors, yield and soil monitors, and remote-sensing tools, such as imaging from drones,
crews, aircraft, or satellites [1–3,13]. Thus, “sensing” is a fundamental management tool
of precision agriculture [3,13], which is observing detailed information and providing
data on climate conditions, soil conditions, fertilizer requirements, water availability, pest
and disease stresses, and other field parameters [3]. A range of sensors are used in preci-
sion agriculture. Biomass parameters are important in making decisions to monitor the
fertilization and caring for crops. Sensors for mass flow and moisture content are com-
ponents of yield monitors, together with a differential global positioning system (DGPS)
receiver. Properly calibrated yield monitors can generate accurate real-time information for
decision making, such as underperforming areas leading to site-specific crop fertilization
designs [13]. Precision livestock farming uses sensors and monitoring technology to collect
data on animal health and welfare, enabling farmers to make informed decisions about
feed, waste, and other inputs with improved efficiency and productivity. Colter position
sensors combined with ultrasonic soil surface sensors are employed in dynamic Colter
depth control systems [3].

Remote-sensing technologies, such as drones, crews, aircraft, satellites, and other
ground-based sensors, are used to collect data on crops and soil conditions [2,3]. Remote
sensing supports the identification of spatial patterns of signatures of plants that are co-
incidental with soil characteristics, as well as pest or disease stresses [11]. Imagery is one
kind of remote-sensing data that can reveal ground truthing [2,3,11]. Previously, aircraft
have been used not only for many farming imagery operations that generate data, but also
chemical- or fertilizer-spraying activities. Moreover, satellite images have been available for
farm management for many years. As an example, the US-LANDSAT satellites were avail-
able for this purpose in 1970 [2]. Unmanned aerial vehicles (UAVs) equipped with global
navigation satellite system (GNSS) technology have been recently employed for mapping,
gathering imagery data, land surveying, crop spraying, and livestock monitoring [2,3].
Geocoded sampling is a requisite component of precision agriculture and ground truthing
when spatial images are used for decision making [11]. Real-time and cost-effective remote
sensing, such as LASSIE (low-altitude stationary surveillance instrumental equipment),
are crucial in precision agriculture, as it enables continuous and automatic recoding of
real-time images of crops and soil with GIS reference [11]. This information can be used to
make informed decisions about crop management resource allocation [3].

Sensor data and other data associated with geospatial coordinates from a global
navigation satellite system (GNSS) provide information to create maps, especially yield
maps and soil maps for site-specific management decisions [2,3]. Yield maps are used
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to characterize field production quantitatively and qualitatively [21], which is crucial
to make management decisions. Analyzing variabilities depicted on maps enables the
identification of factors that influence productivity, facilitating the implementation of site-
specific field management strategies [3]. Soil maps offer valuable insights into the spatial
distribution of the physical and chemical properties within a given field [21], serving as
indispensable decision-making tools in precision agriculture [13]. This significance stems
from the fact that soil’s physical and chemical characteristics, such as water availability,
nutrient-holding capacity, bulk density, porosity, nutrient availability, and topography,
typically exert an influence on crop yield [21]. Weather and climate trends can also be
predicted using sensor data, which are important in all farming practices. Harvesting time
is an affecting factor of grain loss in paddy rice farming, which is also able to be monitored
with data observation [1].

2.2. Planning, Decision Making, and Execution

After creating decisions by analyzing gathered information, actions are performed
according to the decisions created using data-driven equipment. Most fields are not
homogenous in terms of soil and climate properties, as well as diseases [22]. Conventional
agriculture did not take this into account; therefore, rigorous use of limited resources and
excess use of chemicals and synthetic fertilizers resulted in unsustainable conventional
agricultural practices. This also drove lots of wastage, even in the amounts of resource
inputs and yield. Nonetheless, precision agriculture itself has proved that the application
of technologies to manage the spatial and temporal variabilities in agricultural fields is
possible to improve performance and environmental quality [9]. Variable rate technologies
in precision agriculture involve applying inputs such as fertilizers, water and seeds, and
crop protection chemicals (pesticides and weedicides) at varying rates, depending on the
specific needs of each area of a field [23]. In this approach, residual issues of chemicals, as
well as wastage of input resources, can be reduced. Also, net profit can be improved with
increased crop yield and reduced input costs, as farmers can use resources according to the
field requirements rather than full-coverage application in fields at uniform rates [2,24,25].

According to the identified heterogeneity of a field, amounts of water, fertilizer, her-
bicides, pesticides, and liming can be determined and applied. When considering the
irrigation practices in precision agriculture, technology-driven, more sustainable smart
irrigation systems are there to apply precise amounts of water at precise times. When
soil moisture sensor data give an estimation of a required amount of water, irrigation
systems can be diverted into variable rate irrigation to apply irrigation water until mois-
ture content returns to the ideal level [26]. Most of the time, these effective and efficient
water management systems are automatically controlled, increasing irrigation water use
efficiency (IWUE). Monteiro et al. in 2021 described the use of satellite LANDSAT data and
remote-sensing data to develop a feasible operational irrigation water model [3]. Likewise,
tillage depth can be determined via matching with variabilities of soil physical proper-
ties [27]. Chemical spraying and seeding are also performed according to variable rate
approaches. Previously, agricultural aircraft were used for chemical spraying, where a
pilot controlled the spray [23]. In the present, aircraft are employed with an auto-adjusting
ability for the application rate of chemicals based on a prescription map, whilst UAVs are
also used as fertilizer spreaders [3]. Precision seeding can control sowing depth, densities,
and distances effectively while saving seeds, time, and labor costs. Studies estimated that
precision seeding based on variable rate technologies was 10% to 30% more efficient than
conventional practices [3].

This site-specific management increases the number of correct decisions per unit area
per unit time related to net benefits [9] while supporting the conservation of agricultural
inputs and reducing costs together with environmental impacts [2,13,24]. Another man-
agement tool, grid sampling, also involves the division of fields into a grid and collecting
data at each intersection of the grid. This approach provides representative information
of the entire variation within a field [11], where such data are able to be used for site-
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specific management to optimize management practices precisely [7]. For small-scale
variabilities of soil and crop features, a local resource management (LRM) system was
developed with computer-aided farming (CAF), which translated information into variable
rate applications [11].

Thus far, humans have used digital tools to enhance diagnosis and decision making
while adding automated machines for precise performing [14]. The accelerating changes of
Industry 4.0 plus these digital technologies have granted the gradual automation of the
diagnosis and decision-making steps, limiting human involvement to only monitoring
(Figure 1) [6]. This revolution mostly targets optimal farming and variability management
in order to enhance production. However, fulfilling the food demand should not rely solely
on “more production”. At the same time, it should be consider “less wastage” of both the
inputs and outputs of agricultural production [3].

Figure 1. Three-phase cycle of an automation system and the evolution of automation of those phases
in agriculture with emerging advanced technologies.
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3. Precision Agriculture: The Next Frontier for Sustainable Farming

In the present, we are in the early stage of a new agricultural revolution with data-
intensive approaches [2,6,16], which deploy machines at each and every step in agriculture
(Figure 1), namely diagnosis, decision making, and performing. Human power is only
involved in monitoring and maintaining [20]. Apart from the gradual modification of
agricultural practices by the three previous industrial revolutions, the ongoing fourth
industrial revolution is shaping the current status of agriculture, leading to Agriculture
4.0. This new discipline is characterized by data-driven management; new tool-based
production, sustainability, professionalization; and the reduced environmental footprint of
farming with modern smart technologies [24], such as robot technology (including drones),
big data, artificial intelligence, computer vision, 5G, cloud computing, the Internet of
Things, and blockchain technology [4,5,8,16]. This makes agricultural production systems
more autonomous and intelligent [18,28]. Therefore, the following involvements can be
identified as new trends and precision agriculture (Figure 2), where new capabilities are
introduced to smart farming.

Figure 2. Different integrated technological contexts to form the fourth agricultural revolution: novel
trends in precision agriculture.

3.1. Big Data

Precision agriculture systems are highly related to data and information [5]. Gen-
erally, unstructured and vast amounts of data are used by big business industries, like
social-networking sites, to learn or predict customer behaviors accurately [4]. Similarly,
in precision agriculture, big data analytics are applied to understand data-intensive agri-
cultural processes for decision making [6], where analytic tools operate enormous data
sets [4]. These analytic tools consist of data mining, statistics, AI, predictive analytics,
neural language processing, etc. [4]. Big data science usually functions either with ML,
cloud computing, image processing, modeling and simulation, statistical analysis, NDVI

240



Agriculture 2023, 13, 1593

vegetation indices, or GIS. These conjugations can discover correlations, patterns, and
trends from large quantities of data via capturing, storing, exchanging, analyzing, and
marketing features of this high-performance informatics technology [6]. These predictions
and recommendations assist farmers with handling the upcoming outcomes, risks, and
challenges in the agricultural industry [4]. Combining the data in agricultural production
processes creates traceability of product while increasing product quality, including safety
and taste. As customers are now aware of the ecological footprint of agri-products, the
above combination supports the increase in the demand for agricultural commodities [29],
adding high market value. Recent advancements of high-resolution remote sensing and
intelligent information and communication technologies, including social media (Facebook,
Twitter, Amazon, Instagram, etc.), have contributed to big data analytics in many sectors,
as well as in many stages in farming, including decision making, weather forecasting,
weather management, disaster management, smart management of resources, disease and
pest interruption, and harvesting time predictions [4,6,30]. Moreover, big data analytics
aid in implementing real-time forecasting in precision agriculture [4]. However, data
updating, device security, correctness of data, accuracy of data, availability of data, and
security elements, such as encryption, are still barriers when combining big data with
smart farming [31]. Invalid data can lead farmers to make costly, disruptive decisions
and actions [5].

3.2. Machine Vision Technology

Precise and accurate data and information are the driving components of precision
agriculture. Recently, image analysis has become a more reliable data source than man-
ual, labor-intensive, costly data-collecting methods [22,32]. Here, machines can read and
understand the real world through pixel images and produce accurate site-specific informa-
tion [31]. Machines with ‘eyes’ in agricultural activities are called machine vision (MV). This,
also known as agro-vision or the ‘eyes’ of robots, provides non-destructive, robust, rapid,
and steady methods to monitor cultivation processes. MV systems give machines their
vision and judgement capabilities in image processing and data extraction [10]. Although
MV technologies have already been applied successfully for crop species identification,
crop stress detection, crop seed quality assessment, weed detection, disease detection, etc.,
they are still at the prototype stage. Currently, emerging deep-learning (DL) techniques in
growing machine-learning (ML) technologies are integrated with MV applications in order
to develop intelligent robots for multispectral imagery analysis and real-time analysis in
field variable rate applications [10,25]. Commercial smartphones, which are ubiquitous
among the human population, are able to be used in monitoring crop health and stress
based on MV systems [33].

3.3. Internet of Things (IoT)

The IoT refers to a network of interconnected items and technologies [16]. The IoT
is one of the most important technological advancements in precision agriculture and
smart farming [5]. IoT architecture for agriculture, such as agricultural sensors with
ICT and UAV, collects data for precision agriculture [31]. Also, the burgeoning IoT and
mobile data are the core of the fourth industrial revolution [10]. Meanwhile, advancements
in communication technologies and wireless networks (5G, LoRaWAN, NB-IoT, Sigfox,
ZigBee, and Wi-Fi) have broadened the application of the IoT in diverse fields, such as
real-time remote control and high-throughput phenotyping, while giving better coverage,
bandwidth, connection density, and end-to-end latency (Table 1) [8]. When it consolidates
in agriculture together with cloud computing, it results in smart farming [6] for various
scopes of livestock monitoring, smart greenhouses, fishery management, and weather
tracking [8]. The IoT can be widely used in all areas of precision agriculture with the
development of sensors with independent intellectual property rights and the development
of smart devices, such as intelligent tractors, UAVs, and robots that can replace high levels
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of manual labor input, performing high-quality operations while adjusting to challenging
working conditions [31].

Table 1. Main specifications of prominent wireless technologies of fifth-generation communication
paradigm: [34–38].

Sigfox LoRaWAN NB-IoT Zigbee Wi-Fi 5G

Bandwidth Low bandwidth
Low to
moderate
bandwidth

Low to
moderate
bandwidth

Low to
moderate
bandwidth

High
bandwidth

Very high
bandwidth

Maximum
Data Rate

Up to 100 bps Up to 27 kbps Up to 250 kbps Up to 250 kbps

From a few
Mbps to several
Gbps (varies
based on the
version)

High data rates
from several
hundred Mbps
to multi-Gbps

Payload
Length

Limited to
12 bytes per
message
(140 messages
per day)

Up to 51 bytes
per message
(varies
depending on
the region)

Up to
1600 bytes per
message (varies
depending on
the network
operator)

Up to 128 bytes
per message
(varies
depending on
the network
layer)

Up to several
kilobytes per
message (varies
based on the
version)

Supports large
payload sizes
ranging from
several
kilobytes to
several
megabytes

Coverage

Several
kilometers in
rural areas and
up to a few
hundred meters
in urban areas
from a Sigfox
base station

Varies from a
few kilometers
in urban area
and tens of
kilometers in
rural areas
depending on
antenna height
and line of sight

Wide area of
coverage up to
several
kilometers or
more from a
base station by
leveraging
existing cellular
infrastructure
(similar to
2G/3G cellular
networks)

Up to tens of
meters (can be
extended by
utilizing mesh
networking,
allowing
devices)

Limited to
indoor around
30–50 m or local
area
environments
(can be
extended)

A few hundred
meters to
several
kilometers from
a base station
(varies
depending on
the frequency
band and
deployment
strategy)

Cost

Relatively low
cost due to its
simple
infrastructure
requirements

Cost-effective
due to shared
infrastructure
and low-power
devices

Affordable due
to utilizing
existing cellular
infrastructure

Reasonably
priced,
especially for
small-scale
deployments

Cost-effective
for local area
networks, but
infrastructure
costs can vary

Higher
infrastructure
costs compared
to other
technologies

Advantages

Low power
consumption,
long-range
coverage,
low-cost
infrastructure

Long-range
coverage,
low power
consumption,
low-cost
infrastructure

Wide network
coverage,
secure,
supports voice
and mobility

Low power
consumption,
mesh
networking,
supports large
networks

High
bandwidth,
widespread
availability,
support for
various
applications

Very high
bandwidth,
ultra-low
latency,
massive device
connectivity,
high reliability

Disadvantages
Limited
bandwidth,
low data rate

Limited
bandwidth,
shared
spectrum,
higher latency

Higher power
consumption
compared to
other LPWAN
technologies

Limited range,
interference
from other
devices,
complex
network setup

High power
consumption,
shorter range,
limited
scalability

Higher
infrastructure
cost,
limited
coverage in
some areas,
higher power
consumption

Different IoT sensors for temperature, humidity, light intensity, pressure, CO2 lev-
els, insect infestations, foliage, sunlight intensities, and wind speed are there to collect
and receive data, which are then uploaded to cloud information support systems to man-
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age [4,13,16,28]. Those sensors can directly combine with agricultural robots, autonomous
platforms, machines, and weather stations for real-time monitoring [4]. With the IoT, UAVs
can respond promptly, leading to high-quality, high-resolution, and exceptionally reliable
observations through high-throughput 3D monitoring at different geographical areas. At
the same time, various kinds of agricultural sensor nodes, autonomous farm vehicles, and
mobile crowd sensing have been put forward based on the IoT for ground and undersurface
cognition [8]. Most IoT sensors in precision agriculture are in wireless frameworks [13] or
low-power wide-area networks [8] and, hence, can be used for on-site analysis [3], as well
as mass data transfer, without any interruptions [29,31]. Still, there are cost, operational,
technical, and data management difficulties in implementing the IoT in agricultural opera-
tions [13]. Designing low-cost, energy-efficient, wireless IoT technologies in autonomous
applications is affected by the following dependencies: data latency on power consump-
tion, data scalability on storage and processing cost, and data interoperability on cloud
compatibility to store and process various kinds of data [13].

Different IoT devices are coalesced as networks to achieve high-speed data exchang-
ing [4,30]. Therefore, the development of an IoT framework can also solve problems with
big data [31]. With more advancements, agricultural operations like protecting, controlling,
monitoring, and detecting can be extended using smart phones with the IoT [25]. As an
example, time-consuming cattle status monitoring has also benefited from the IoT, allowing
farmers to monitor the health and welfare of animals. Also, weed detection through MV
primarily consists of deep learning (DL) and image processing [16].

Edge computing enables affordable real-time data transmission in IoT precision agri-
culture, reducing data package size and alleviating strain on centralized cloud resources.
Internet and communication companies leverage their expertise to extend cloud service
capabilities to edge networks, shaping the edge computing landscape. Pioneers like Cisco
and Huawei have developed comprehensive frameworks and lightweight computing sys-
tems. The IoT connects objects through smart technologies, while research explores aerial
edge–IoT systems for improved convergence speed and task completion rates [39–42].

3.4. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL)

AI has a key role in robotics and autonomous systems (RASs). The development of
AI in the IoT has contributed continuous data streams [31]. To make agricultural data into
meaningful information in decision-making data, mining techniques are required. Various
environmental data and farming historical records in big data are analyzed using AI, which
finds patterns that are hidden in big data [29]. These discoveries are important in the pest
identification, disease detection, yield prediction, and fertilizing plans [25,31] included in
agricultural decision support systems. AI has noteworthy potential to accommodate the
reduction of food wastage, the improvement of production hygiene, and the monitoring
of machines in many stages of agriculture, such as supply chain, agricultural production
pattern, and agricultural production process including soil, crop, and water management,
as well as disease and pest control [4,8]. Then, AI has the potential to overcome problems
in conventional farming [31].

Both ML and DL are subconcepts of AI (Figure 3) [10]. With ML, a computer learns
independently to improve the performance of AI, which goes through explicit feature
extraction [6]. ML focuses on the theory, performance, and properties of learning systems
and algorithms, as it is a high-performance informatics technology for quantifying and
understanding data-intensive farming processes [6]. On the other hand, DL can solve
problems with combinations of layers and nonlinear functions [10]. To address limitations
in the practical implementation of robots, mobile terminals, and intelligent devices in
modern agriculture, the integration of machine-learning algorithms has had significant
improvement. With machine-learning models, integration into mobile detection algorithms
has paved the way for innovative and more precise detection methods, overcoming certain
limitations faced by technology adaptation in plant factories, such as limited computer
power, insufficient storage capacity, complexities within the plant factory environment, and
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precision issues related to small target detection [25,43]. Furthermore, machine-learning
techniques can mitigate the need for large network sizes and improve the operational
speeds of these systems [43]. This advancement has wide-ranging applications, including
accurate fruit and pest detection, as well as the optimization and prediction of complex
conditions in plant tissue cultures and breeding processes [25,28,44]. Notably, a study
(referenced as study 13) successfully applied machine-learning models and artificial neural
multilayer regression models to enhance the in vitro regeneration of soybeans by tracking
simple, observable traits, such as shoot regeneration frequency and shoot length.

Figure 3. Major AI applications in different practices in precision agriculture.

Also, machine-learning algorithms are employed for data validation, enabling a deeper
understanding of dynamic agricultural conditions through data collected from various
elements of modern agriculture [6,44]. Despite these advancements, challenges remain
in terms of processing speed and the development of efficient information visualization
systems for farmers when dealing with big data [6]. Nonetheless, continued research in
the fields of big data, the IoT, machine learning, and deep learning holds great potential in
overcoming these roadblocks and providing accurate predictions of the dynamic nature
of agriculture while identifying new opportunities [1]. Supervised machine-learning
techniques, such as support vector machines, decision trees, k-means, random forests,
genetic algorithms, deep learning, and fuzzy logic, are several categories of machine-
learning models (Figure 3) that play a vital role in agricultural automation, augmenting
the intelligence of other technologies, such as smartphones, unmanned aerial vehicles,
unmanned ground vehicles, satellite systems, automated machines, agricultural robots,
and big data analytics [1,28,31].

Mobile applications have significantly diverted from these AI, ML, DL, and MV
technologies [10]. ML algorithms in big data are also critically essential because this
integration can learn from data to create decisions, data-based prospects, and predictions.
Due to the intricate input data requirements of machine learning (ML) and deep learning
(DL), the initial stage of adopting ML models in precision agriculture may encounter
significant obstacles in terms of the time and cost involved in gathering the necessary data
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from commercial farms [1,6,30]. However, with the continuous advancement of IoT sensors,
AI-based autonomous machines or robots together with cloud computing, edge computing,
and blockchain can support overcoming this difficulty during the transforming, storing,
and processing of data in the creation of ML models [27,36,41]. Accordingly, ML is able to be
used to solve diverse issues in agriculture related to yield prediction, crop quality, disease
detection, weed detection, species identification, animal welfare, livestock production,
water management, and soil management [6,45]. Common principles of ML techniques
are clustering, decision trees, instance-based models, regression, artificial and deep neural
networks, ensemble learning, support vector machines, and Bayesian models [6]. A study
proved that ML was a powerful tool for analyzing data to monitor inputs and outputs
aiming to optimize plant tissue culture protocols [44].

Smart farming is technology that relies on its implementation with the use of AI and
the IoT in cyber-physical farm management [28]. According to current applications, AI has
been involved in soil management, crop management, disease management, weed control,
etc. Examples are the fuzzy-logic-based soil risk characterization decision support system
(SRCDSS), management-oriented modeling (MOM), artificial neural networks (ANNs),
CALEX, PROLOG, computer vision systems, ANN-GIS, invasive weed optimization (IWO),
and support vector machines [4]. One key application of AI is a mobile expert system
where farmers can use their smartphones for disease diagnosis, species identification, and
soil health analysis with the help of mobile apps. In addition, AI is a real-time analyzer of
satellite images when the progress of farming is tracked with satellite imagery [24]. With AI
applications, precision agriculture now has a scientific background, which helps to make
precision agriculture more formalized to perform optimal agriculture outputs [29]. In the
future, AI may be improved to deal with the dynamic nature of agricultural microclimates,
as it is now facing difficulties finding a single standard solution for that heterogeneity.
The existing experience gap between AI researchers and farmers hinders the complete
understanding of agricultural problems and solutions. To eliminate this obstacle, the
knowledge of farmers, agricultural professionals, and AI researchers should be linked.
In spite of this, accessibility and privacy protection problems when working with huge
amounts of data should be addressed to deliver more skillful AI [8,16].

3.5. Guidance Systems

Guidance systems use GPS (global positioning system) technology to provide farmers
with real-time information about their equipment locations and herd-grazing locations,
enabling them to optimize field operations such as planting, harvesting, and herding [1,12].
The limited number of satellites, poor signal strengths, and lack of reliable connectivity
were overcome by introducing a GNSS (global navigation satellite system), which then re-
placed labor-intensive, time-consuming farm operations with more effective methods, such
as VRA [11,31]. Previously, agricultural inputs were performed manually, and during Agri-
culture 3.0, they were performed mechanically using digitalized machines [2]. With rapid
commercialization, agricultural machinery services have emerged that require efficient
management to prevent overuse or underuse issues. For the understanding of agricultural
machinery, GNSS plays a crucial role in optimizing effectivity and efficiency [46]. The
new trend of GNSS-enabled devices in the fully automated steering of tractions is saving
time, labor costs, and money [2]. Precision agricultural robots require high-resolution
navigation solutions [47]. Similarly, agricultural rovers and robots are effective only when
precisely guided in their actions [45]. Some studies introduced DL propagation models in
GNSS fused with inertial navigation data sets for precision agriculture [47]. One example
is electric seeders with optical fiber detection technology that were developed and tested
successfully [3]. The new development of software-based farm management solutions
for GIS encourage the automation of data collection and analysis of supervising, storing,
decision making, and farm management.

245



Agriculture 2023, 13, 1593

3.6. Blockchain Technology

Blockchain is defined as a decentralized, distributed database that maintains a con-
tinuously growing list of ordered records or blocks, which was first used in cryptocur-
rency [15,48]. Blockchain offers data transparency, immutability, and reliability, which
improve the mutual trust between various parties in the supply chain [15]. As this technol-
ogy eliminates the obstacles of corporations, this was introduced to precision agriculture,
increasing the easiness of the integration of digital technologies into agriculture. This step
provides solutions to some technical challenges in smart farming, furnishing the remote
monitoring and controlling of farm equipment through the “IoT applied Greenhouse Moni-
toring System” [15,48]. One such challenge is an insufficient and insecure infrastructure for
data sharing. Another challenge is the delay of remote-sensing satellites in detecting the
variability of croplands. Therefore, as a solution for the above decentralization, anonymity,
and security problems in the IoT in smart farming, blockchain has been proposed, expect-
ing lightweight, distributed, decentralized, and transparent security and privacy [5,48].
Blockchain can assist with having a reliable, faster, and secure platform to monitor farm
operations, although it is still in its early stages of maturity [15,48]. As information can be
communicated securely in a distributed network [48], with the help of blockchain this can
improve the planning of schedules for various agricultural processes, such as irrigation
water sharing, energy consumption, the incorporation of machines and labors, and tasks
for robot coalitions and autonomous UAVs [15,28]. Especially in the food supply chain,
this is a crucial point because of food safety issues, as well as asymmetric and fragmented
information occurring related to the insufficient supply chain [1,8,10].

3.7. Robotics and Autonomous Systems

Most recently, autonomous farming has involved a high degree of the use of robotics,
sensors, drones, and remote sensing to perform various agricultural tasks, such as planting,
spraying, harvesting, and weeding, while reducing labor costs and improving efficient
decision making [3,45]. RASs are a combination of emerging modern technologies that have
key applications in both agricultural production processes and production patterns. Mobile
robots equipped with various sensors, actuators, and ML algorithms are key enablers to
automatically handle variability and uncertainty in farming practices [47]. Key applications
of RAS in agricultural patterns are in plant factories, 3D food printing, and biodiverse
farming, whereas autonomous farming, aerial monitoring, and automated husbandry
have become new applications in agricultural production processes [8]. However, agricul-
tural RASs are required to be improved to fulfill efficient work with accurate guidance,
autonomous navigation, and accurate detection of dynamic agricultural environments
(changing appearances, growth stages, weather conditions, object overlapping, etc.). Intelli-
gent actions, such as robot-assisted plant phenotyping, fruit counting, fruit harvesting, fruit
counting, leaf peeling, selective spraying, and 3D mapping, are demonstrated and currently
employed applications of RASs [8]. Auto-steered agricultural vehicles are also used in
many field operations [3], such as tilling, planting, chemical applications, and harvesting.
These machines, like harvesters, sprayers, tractors, planters, and mechanical weed controls,
use guidance systems either with light bars [13] or a GNSS [2,20]. These guidance systems
visualize the positions of equipment to prevent skips and overlaps, which is important in
variable rate applications.

3.8. Artificial Satellites, Unmanned Aerial Vehicles (UAVs), and Unmanned Ground
Vehicles (UGVs)

Artificial satellites, such as American Landsat satellites, the European Sentinel-2 Sys-
tem, the RapidEye constellation satellite system, the GeoEye-1 system, and WorldView-3,
for remote sensing help to generate remotely accessible data in multispectral forms [8].
The establishment of these intelligent remote-sensing satellites has provided full coverage
for collecting agricultural information [8,31,49]. More recently, ubiquitous and affordable
technologies such as drones, crews, and aircraft have allowed images to be captured closer
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to the ground and at a higher frequency, increasing detail and functionality [45]. UGVs ac-
quire high-resolution data for weed identification and control, selective pesticide spraying,
soil analysis, and crop scouting, while scouting robots accomplish specific targets [49] such
as mechanical weeding (Oz robot), spraying (GUSS autonomous sprayer), fertilizing, map-
ping, and seeding (RowBot system), as well as vineyard management (VineRobots) [4,50].
Information, including imagery data generated by satellites, UAVs, and UGVs, is the
paramount thing in precision agriculture, as it supports vegetation patch identification,
weed recognition, pest attack detection, observation of environmental stresses, and accurate
classification in VRT [18,45]. Not only that, in other agricultural disciplines, such as aqua-
culture, agroforestry, and forestry, imagery data play a considerable role because they can
cover large areas when gathering information, and these data are reproducible [20]. Data
from satellites, UAVs, and UGVs are supported by detailed ground survey data processed
with ML and DL algorithms in order to make them usable and meaningful information [18].

For example, in forestry, determining forest densities is labor-intensive and time-
consuming, although it is an important parameter when combatting climate change. Re-
cently, data of tree type distribution could be achieved over a wide area of forest with the
help of hyperspectral images and NDVI and RGB images from UAVs such as Sentinel-
2 [13,16]. Likewise, in remote sensing satellites and drones play a big role in monitoring
deforestation and obtaining accurate coverage of vegetative types and classification of
tree species and are more effective than other UAV or LiDAR data [14,34]. Although there
are limitations, drone and remotely piloted aircraft usage is dramatically increasing while
providing precise information for precision agriculture through hyperspectral sensors,
multispectral cameras, and other novel technologies [14]. This is a cost-effective, promising
method for monitoring large-scale farms or crop lands [4], as well as forest areas [14].

3.9. High-throughput Phenotyping

High-throughput phenotyping has emerged as a promising approach to enhance
precision agriculture by allowing the rapid and accurate measurement of plant traits [51]
quantitatively and qualitatively [22,52]. Accurate and high-throughput plant phenotyping
is important for accelerating crop breeding [52]. This technique uses advanced technologies
such as remote sensing [40,42], spectral imaging [41], and robotics [53] to collect large
amounts of data on plant characteristics, such as growth rate, yield, disease resistance, and
morphology [51,54,55]. By collecting and analyzing these data, farmers can gain insights
into how their crops are performing and make more informed decisions about things like
fertilization, irrigation, harvesting, and pest management [22,54]. High-throughput pheno-
typing can also help breeders to develop new crop varieties that are better adapted to local
growing conditions and can produce higher yields (Figure 4) [51]. A full range of visible
and near-infrared hyperspectral data enables ML techniques such as LSR (least squares
regression) to predict specific biochemical and physicochemical traits beyond simple vege-
tative indices [56]. ML-based precision agriculture systems have AI background [52,54],
and therefore, when detecting diseases, pests, nutrient deficiency, and weeds, stressed
responses are detected using high-quality images generated with UGV or UAV remote
sensing, hyperspectral imaging, and satellite imaging to support high-throughput pheno-
typing [57]. Ultimately, high-throughput phenotyping has the potential to revolutionize
agriculture by enabling more the precise, real-time, and efficient monitoring of farming
practices that can improve crop productivity, reduce environmental impacts, and increase
food security [54].
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Figure 4. Importance of high-throughput phenotyping in agriculture.

The traditional methods of plant breeding have limitations in terms of time, cost, and
accuracy. HTP, on the other hand, uses nondestructive and rapid methods to gather data on
a large number of plants, allowing breeders to identify traits of interest more efficiently [58].
A study by Yang et al. (2017) [59] described using high-throughput phenotyping (HTP)
and quantitative trait locus (QTL) mapping to investigate the genetic architecture of maize
plant growth. The authors collected data on various traits related to plant growth, such
as plant height, leaf area, and biomass, using HTP techniques, such as imaging and spec-
troscopy [59]. Unmanned aerial systems (UASs) have brought about a revolutionary change
in field high-throughput phenotyping by providing a platform for different sensors to col-
lect remote-sensing data in field-scale trials. These sensors include regular RGB cameras,
multispectral-imaging cameras, hyperspectral-imaging cameras, thermal-imaging sensors,
and light detection and ranging (LiDAR) sensors that enable the nondestructive estimation
of plant traits, such as yield, biomass, height, and leaf area index. This is a significant
advancement in agriculture, allowing for the high-throughput phenotyping of crops. In
comparison to ground-based sensors, UASs increase the frequency and throughput for
phenotyping, while being cost-effective and providing high-resolution images as compared
to satellite-based techniques. The phenotypic traits can be used to select crops with high
yield and strong stress resistance, such as disease and salt resistance, ultimately leading to
improved production [60].

As technology advances, the future of high-throughput phenotyping (HTP) appears
promising. Multiple HTP technologies, such as drones, sensors, and artificial intelligence,
can be integrated to facilitate more efficient and accurate phenotyping, which can aid
breeders in identifying desirable traits and making better selections. HTP can also be
used for precision agriculture, where farmers can leverage data generated using HTP
technologies to make informed decisions on inputs such as fertilizers, pesticides, and water
to increase efficiency, reduce waste, and improve yield. HTP can also play a crucial role
in climate change research by identifying crop varieties that can better adapt to changing
climate conditions, thereby ensuring food security. Lastly, HTP can be used in developing
countries to enhance food security and improve crop productivity, but it requires the
development of affordable and accessible HTP technologies that can be easily adopted by
farmers in those countries [56,58,59].

3.10. Telematics

Broadband connectivity is required when addressing challenges in the adoption, cost,
and environment of smart technologies. Inadequate connectivity leads to inefficiencies,
impacting machine downtime, human error, and real-time information availability. Limited
connectivity not only affects profitability but also hampers the adoption of real-time-reliant
precision agriculture. Producers with adequate connectivity are expected to be more effi-
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cient, highlighting the importance of connectivity in agriculture [61]. The transformative
potential of 5G and beyond mobile networks in driving business and societal change is
being recognized. Considering environmental concerns and climate change, the role of
mobile networks in fostering sustainability and innovation is questioned. Sectors like smart
agriculture, forestry, biodiversity monitoring, and water management are crucial for sus-
tainable resource utilization. Evaluating the capabilities of 5G and 6G networks, including
current and future support, is essential for identifying use cases and the requirements in
these domains [34]. As an example, a study in Thailand designed telematics-equipped
tractors to assist farmers in efficiently managing their machinery, optimizing performance
and enhancing overall productivity. In addition to improved management capabilities,
these tractors offered features such as theft prevention, effective maintenance monitoring,
and machine operation tracking [62].

4. Studies of Successful Precision Agriculture Proposals and Implementations

The article [63] reviewed advancements in automated fruit-harvesting robots for
sweet peppers and apples, highlighting the successful implementation of a sweet-pepper-
harvesting robot called ‘Harvey’, which effectively addressed detection, grasp selection,
and manipulation challenges. Similarly, the apple-harvesting robot utilized a picking
manipulator and a catching manipulator, along with machine vision and prioritization algo-
rithms, for efficient harvesting. The article emphasized interdisciplinary collaboration for
further advancements in automated harvesting systems and the importance of intelligent
systems like deep learning and crop management software for enhancing productivity and
sustainability in modern agriculture. Field trials were conducted with Harvey for sweet
peppers in Australia, while robotic picking systems for apples were tested in a Washing-
ton orchard in the U.S. [64,65]. Israel has successfully implemented autonomous robotic
technology in their crop fields, paving the way for the commercial use of AI harvesters.
Tevel Aerobotics Technologies developed an autonomous fruit-picking system that utilized
flying robots tethered to an autonomous vehicle, enabling accurate fruit picking, extended
work hours, and additional tasks like tree thinning and pruning. This system addressed
labor shortages, reduced fruit production costs by approximately 30%, provided real-time
updates to farmers via a mobile app, and aimed to tackle challenges faced by the agriculture
industry. Tevel plans to introduce its innovative solution to the global market, catering to
fruit farmers worldwide and contributing to the growing agricultural robotics sector [66].

Senapathy et al. introduced the IoTSNA-CR model from their study, which leveraged
IoT technology to classify soil nutrients and provide crop recommendations, aiming to
optimize fertilizer usage and maximize productivity for farmers. The implementation of
AI harvesters in Israel showcases the potential of artificial intelligence, machine learning,
cloud services, sensors, and automation for delivering real-time information and support
to farmers. The proposed IoTSNA-CR model incorporated IoT sensors, cloud storage,
machine-learning techniques, and an optimized algorithm (MSVM-DAG-FFO) to achieve
high accuracy in soil analysis. The model allowed farmers to maintain soil information in
the cloud, reducing costs and improving productivity. Experimental validation confirmed
the effectiveness of the model for crop prediction and soil health maintenance, emphasizing
the importance of real-time data collection and expanding data sets and regular application
use for informed decision making and soil quality enhancement [49]. The use of unmanned
aerial systems (UASs) and unmanned ground vehicles (UGVs) in precision agriculture for
inspecting insect traps in olive groves was proposed by [49], with a cooperative robot archi-
tecture using UAS and UGV systems evaluating vision-based navigation algorithms and
augmented reality tags for return and landing. The results demonstrated the feasibility of
the architecture for automating inspections and improving pest control policies. Challenges
remain in addressing real-world conditions and optimizing image capture. Future work
includes real-world scenarios and long-term mission capabilities of UAS vehicles [49].

Two studies from University Tenaga National, Malaysia, present autonomous and
robotic machineries to deal with fertilizer and pesticide spraying. The authors of [67]
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presented a low-cost agricultural robot for fertilizer and pesticide spraying, crop monitoring,
and pest detection. The prototype system operated autonomously, reducing labor costs,
although productivity slightly lagged behind human workers. An autonomous organic
fertilizer mixer was developed in [68] based on IoT technology to reduce labor costs and
enhance efficiency. The improved mixer allowed remote monitoring, updates, and alerts,
aiming to further streamline the organic fertilizer-mixing process. A harvesting robot
system for cherry tomatoes in greenhouses was developed by the Beijing Research Center
of Intelligent Equipment for Agriculture. This new harvesting robot system for cherry
tomatoes was designed featuring a railed-type vehicle, a visual servo unit, a manipulator,
and picking end-effectors. Field tests demonstrated an average picking time of 12 s per
bunch of tomatoes with a success rate of 83% [69]. Also, X. Jin et al. [70] designed a small-
sized vegetable seed electric seeder with power drive and optical fiber detection technology,
providing high efficiency and precision by monitoring sowing conditions in real-time for
different seed sizes (Table 2).

The Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring
System experiment in Portugal proposed a cooperative UAS and UGV system for olive
grove inspection that verified the feasibility and robustness of the multiple-cooperative
robot architecture in an olive inspection scenario [49]. Russian researchers Filipe et al. [7]
proposed an approach for dynamic robot coalition that combined fuzzy coalition games
and smart contracts to form a dynamic and trusted coalition. It enabled the collection
and dissemination of information from robot sensors in a shared space. Integration of the
IoT with blockchain allows the continuous tracking of food in precision agriculture tasks,
ensuring transparency and verification at each stage. Precision agriculture is a strategy that
uses advanced technologies, like sensors, remote sensing, and data analytics, to improve
agricultural management decisions and increase productivity, profitability, and sustainabil-
ity. Machine-learning models have been integrated with IoT sensors to develop intelligent
sensors for generating of big amount of data. In the study of Smolka et al. [71], a microchip
capillary electrophoresis sensor was used for soil nutrient analysis, demonstrating its gen-
eral sensitivity to ions in liquids, particularly NO3, NH4, K, and PO4. The sensor exhibited
strong linearity and detected important plant nutrients, which could contribute to future
developments in digital agriculture. Insufficient power infrastructure is one obstacle in
adapting novel technologies in agricultural fields. Researchers successfully developed an
IoT-based solar-energy-powered smart farm irrigation system in the United Arab Emirates
that harvested renewable energy for smart farm irrigation [72]. This study outcome paved
the way to developing three operation modes that are available for farmers’ use.

VRT is a major constituent in precision agriculture that deploys field maps, GPSs, and
GNSSs to establish the precision of input applications. A study of a data fusion method
for yield and soil sensor maps [21] evaluated fusion results on fields, highlighting their
usefulness in decision support for drainage, irrigation, and variable yield goals. It un-
covered hidden areas of lost yield potential using soil sensing, EC, pH, organic matter,
and topography data fusion. Researchers in Beijing, China, developed a new method
using image segmentation and pixel-level visual features to accurately classify field and
road areas in GNSS recordings of agricultural machinery, surpassing existing methods
and demonstrating a superior performance for high-frequency GNSS trajectories [46]. A
multisensor data fusion approach was used by Whattoff et al. for creating variable depth
tillage zones [27]. Variable depth tillage (VDT) reduced costs, labor, and fuel consumption.
A multisensor data fusion approach was developed to map soil properties for VDT imple-
mentation, showing the depth of tillage needed in different areas. This approach proved
useful in guiding VDT operations for efficient soil management.

One study in Germany integrated computer-aided farming, an IoT-based pH sensor,
and VRT for effective VR liming, and the lime requirement was successfully determined
in situ by establishing a buffer curve [11]. A field evaluation of a VR aerial application
was conducted in the study of Martin and Yang [23] utilizing prescription maps for aerial
glyphosate applications with variable rate nozzles. Accurate spray deposition within 20 feet
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of the target was confirmed using multispectral imagery, boosting confidence in variable
rate application and encouraging adoption. Italian authors Corbari et al. [73] explored the
integration of a satellite-driven soil–water balance model and meteorological forecasts to
enable precision smart irrigation. It discussed model performance and emphasized the
importance of using consistent data for the calibration and validation of soil hydrological
parameters [73]. The short communication of Jang et al. [22], “Spatial Dependence Analysis
as a Tool to Detect the Hidden Heterogeneity in a Kenaf Field”, presented high-throughput
phenotyping as having potential in precision agriculture. This study demonstrated its
application for revealing field heterogeneity and suggested its use for better analysis and
management in plant breeding and precision agriculture. In [57], Kim et al. emphasized
the importance of evaluating drought effects during the vegetative stages of soybean,
indicating the potential of using phenotypic traits as selection indicators for breeding
drought-resistant soybean cultivars, especially considering the escalating crop damage
caused by drought and global warming.

Another study asserted precision agricultural applications in agroforestry. Tree species
identification and classification is important when combatting climate change, as well as
monitoring ecosystem health 17. Researchers used images from SENTINEL-2 to propose
methods to determine tree type distribution in a wide forest area using UAV images [14,17].
They effectively distinguished evergreen, deciduous trees, and grassland areas, aiding in
forest planning and preparing for climate change impacts. Ma et al. [14] used a random
forest classifier with satellite images to improve texture feature separation among tree
species. The overall classification achieved 86.49% accuracy and a 0.83 Kappa coefficient,
although altitude, slope, and aspect influenced tree distribution. These outcomes were
important in species classification and biodiversity monitoring, as well as in informing
inventory estimation [14].

An evaluation of soybean wildfire prediction via hyperspectral transmission imag-
ing was performed with Python, which detected bacterial wildfire in soybean leaves
where different varieties exhibited distinct spectral signatures. This allowed the precise
detection and differentiation of healthy and diseased plants effectively with high accu-
racy (97.19% and 95.69%) in early disease detection, confirming its usefulness in soybean
plant monitoring [32].

Aasim et al. [44] focused on establishing the efficient and reproducible in vitro re-
generation of common beans through a combined approach of in vitro regeneration and
machine-learning algorithms. ML models, particularly ANN algorithms, were used for
prediction and optimization. The ML and ANN models demonstrated superior perfor-
mances, proving their efficacy in analyzing and optimizing complex conditions in plant
tissue culture protocols for breeding purposes.

A computer vision and deep-learning-enabled weed detection model for precision
agriculture was proposed in [25] integrating computer vision, DL, the IoT and a smartphone.
The proposed CVDL-WDC technique combined multiscale object detection and ELM-based
weed classification. The results showed improved outcomes over recent approaches, and
future extensions included integration with IoT and smartphones.

At the same time, a novel procedure involving machine learning and UAV-based
imagery was developed to accurately identify crops and weeds, offering potential integra-
tion into autonomous weed management systems and contributing to improved precision
agriculture practices with reduced resource consumption [45].

At Sairam Institute of Technology in India, a flood detection system based on the
IoT, big data, and a convolutional deep neural network (CDNN) was developed [30].
The CDNN algorithm demonstrated superior accuracy, achieving an impressive accu-
racy of 93.23%, a sensitivity of 91.43%, a specificity of 91.56%, a precision of 92.23%,
a recall of 90.36%, and an F-score of 91.28% with a data set of 500. The flood detec-
tion system outperformed existing methods and holds potential for further enhancement
through the integration of IoT devices and advanced algorithms, ensuring improved flood
detection capabilities.
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In order to alleviate the strain on agri-food production, the introduction of alternative
nutrient sources can be explored, particularly through the utilization of cultured meat and
3D-printed meat as substitutes for traditional animal meats, thus reducing the demand on
animal husbandry. In China, the production of lab-grown meat using muscle stem cells
necessitated edible 3D scaffolds created through electrohydrodynamic (EHD) printing,
showcasing the significant potential of prolamin scaffolds for cultivating cultured meat [74].
Similarly, the construction of 3D-printed meat analogs from plant-based proteins has been
conducted, improving the printing performance of soy protein- and gluten-based pastes
facilitated by rice protein. This study examined the rheological properties and printing
performances of edible inks made from soy protein isolate (SPI), wheat gluten (WG),
and rice protein (RP). Increasing the proportion of rice protein improved the 3D-printing
performance, holding potential for the 3D printing of plant-based foods and constructing
meat analogs simulating real meat properties [75].

Several studies have shown why the adaption rate of these studies is slow, and
one case study conducted in Chumphon Province, Thailand, by Kasetsart University
examined the adoption of smart farming technology among durian farmers, highlighting
that factors such as age, occupation, access to extension services, and farm size influenced
technology adoption, with younger farmers having larger farms being more inclined to
adopt technology, resulting in decreased labor and fertilizer expenses, which emphasized
the importance of providing continuous training and promoting extension services for
sustainable adoption [76].

Table 2. Studies of successful precision agriculture proposals and implementations.

Exploration Location Technology Used References

Usage of Smart Contracts with FCG for
Dynamic Robot Coalition Formation in
Precision Farming

St. Petersburg, Russia
IoT, agricultural robotics,
blockchain technology with
hyperledger fabric platform

[7]

A mobile lab-on-a-chip device for on-site soil
nutrient analysis

Vienna University of Technology,
Vienna, Austria

Micro-chip capillary
electrophoresis sensor device [71]

Development and test of an electric precision
seeder for small-sized vegetable seeds

Henan University of Science and
Technology, Luoyang, China

Optical fiber
detection technology [70]

Smart irrigation forecast using satellite
LANDSAT data and
meteo-hydrological modeling

Politecnico di Milano, Milan, Italy IoT sensors [73]

IoT solar-energy-powered smart farm
irrigation system

American University of Sharjah,
Sharjah, United Arab Emirates

Chip controller with built-in
WiFi connectivity, IoT [77]

Autonomous fertilizer mixer through the
Internet of Things (IoT)

University Tenaga Nasional,
Selangor Darul Ehsan, Malaysia IoT [68]

Design and development of a robot for
spraying fertilizers and pesticides
for agriculture

University Tenaga Nasional,
Selangor Darul Ehsan, Malaysia Agricultural robots [67]

25 years of Precision Agriculture in
Germany—A retrospective

Federal Research Institute for
Cultivated Plants,
Bundesallee, Braunschweig

Computer-aided farming,
IoT-based pH sensor, VRT [11]

Field Evaluation of a Variable Rate Aerial
Application System

United States Department of
Agriculture, Texas, USA

UAVs, VRT,
high-resolution camera [23]

A harvesting robot system for cherry
tomatoes in greenhouses

Beijing Research Center of
Intelligent Equipment for
Agriculture, Beijing, China

Agricultural robots [69]

Characterization of Tree Composition using
Images from SENTINEL-2: A Case Study
with Semiyang oreum

Republic of Korea SENTINEL-2 satellite, image
analysis, remote sensing, [17]
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Table 2. Cont.

Exploration Location Technology Used References

Innovation in the Breeding of Common
Beans Through a Combined Approach of
in vitro Regeneration and Machine-Learning
Algorithm Citation

Sivas, Turkey ML and ANN models [44]

3D-Printed Prolamin Scaffolds for Cell-Based
Meat Cultures Suzhou, Jiansu, China

3D-printing technology,
high-precision
microstructures for
biomedical applications

[74]

Construction of 3D-printed meat analogs
from plant-based proteins: Improving the
printing performance of soy protein- and
gluten-based pastes facilitated by rice protein

Nanchang, China 3D-printing technology [75]

Tree Species Classification Based on
Sentinel-2 Imagery and Random Forest
Classifier in the Eastern Regions of the
Qilian Mountains

Qilian Mountains, China SENTINEL-2 images [14]

Detection of flood disaster system based on
IoT, big data, and convolutional deep
neural network

Sairam Institute of
Technology, India

CDNN classifier, ANN, DL,
deep-learning neural
network (DNN)

[30]

A multisensor data fusion approach for
creating variable depth tillage zones Newbury, UK VRT [27]

A Data Fusion Method for Yield and Soil
Sensor Maps

Veris Technologies Inc.,
Kansas, USA

IoT, GPS, soil data maps, yield
data maps [21]

Computer Vision and Deep-learning-enabled
Weed Detection Model for
Precision Agriculture

Computer vision, DL,
IoT, smartphone [25]

Short Communication: Spatial Dependence
Analysis as a Tool to Detect the Hidden
Heterogeneity in a Kenaf Field

Jeju National University
kenaf-breeding field, Jeju,
Republic of Korea

LISA analysis [22]

Evaluation of Soybean Wildfire Prediction
via Hyperspectral Imaging

Kyungpook National University,
Daegu, Republic of Korea

Hyperspectral transmission
imagery, multispectral
camera, Python

[32]

Field road classification for GNSS recordings
of agricultural machinery using pixel-level
visual features

Beijing, China GNSS [46]

A New Procedure for Combining UAV-Based
Imagery and Machine Learning in Precision
Agriculture

Alma Mater Studiorum
University of Bologna,
Bologna, Italy

UAV, GIS, ML [45]

Cooperative Heterogeneous Robots for
Autonomous Insects Trap Monitoring System
in a Precision Agriculture Scenario

Campus de Santa Apolónia,
Bragança, Portugal UAV [49]

Drought Stress Restoration Frequencies of
Phenotypic Indicators in Early Vegetative
Stages of Soybean (Glycine max L.)

Rural Development
Administration,
LemnaTec, Germany

RGB images, Python [57]

Durian Farmer Adoption of Smart-Farming
Technology: A Case Study of
Chumphon Province

Kasetsart University,
Bangkok, Thailand IoT, UAV [76]

5. Barriers to Adapting New Technologies in Precision Agriculture

High-tech technologies from the fourth industrial revolution have the potential to
revolutionize the agriculture industry, enabling more efficient and sustainable practices
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while improving productivity and reducing resource wastage. The adaptation of these
intelligent, advanced technologies in precision agriculture is still in its early stages, and
as such, there exist several barriers (Table 3) that must be addressed to facilitate the
transformation of precision agriculture. However, it is essential to carefully consider the
specific requirements, challenges, and implementation considerations for each technology
in the context of the agricultural operation at hand.

A lack of interdisciplinary skills is one of the major roadblocks, as big data engineers,
data analysts, and data scientists do not have an agricultural background. On the other
hand, farmers with long experience and practical knowledge are not educated enough to
handle high technology like artificial intelligence [8]. The production and development
costs of high-tech applications and the capital for establishing them in real-world agriculture
are also high [78]. This high cost of the production and implementation of advanced
technologies may render them inaccessible to small-scale farmers, who may lack the
financial resources to invest in such technologies [79].

Furthermore, the unavailability of affordable technologies for small-scale farmers may
create a digital divide, where only large-scale, educated farmers may be able to benefit from
such technologies [20,80]. In the unequal distribution of resources in the world, it is difficult
for certain groups to reach for such new technological inventions. The implementation
of precision agriculture trends in many developing agricultural countries has become a
difficult task due to lack of necessary funds, lack of confidence in the technologies, lack of
proper infrastructure, lack of necessary resources, etc. [8,76,78,81]. Additionally, the lack of
sufficient energy in rural areas hinders the use of new technologies, even as science strives
to develop wireless power transfer methods and ambient or on-site energy-generating
methods [8]. Furthermore, low digital literacy and unequal accessibility to digital tech-
nologies in rural areas, coupled with connectivity issues, pose significant challenges in
establishing sustainable intelligent technologies in agricultural processes [20,79,82].

Limited computer power, storage capacity, and processing speed and high energy
consumption by batteries are some technical obstacles in precision agricultural adapta-
tions [43], especially when dealing with big data. In addition, collecting and analyzing
data from agricultural operations may raise concerns about data privacy and security [4].
These data are heterogenous and, when transferring and storing vast amounts, software
platforms from private companies are needed. This reveals some ownership controversies
of data [78]. Blockchain interoperability, privacy problems, data leakage, cyber terrorism,
and some nonrepudiation issues associated with big data are still difficulties in precision
agriculture [5,8,78,83], thereby causing farmers to be reluctant to share their data with
third-party service providers [4,16]. In many areas where agriculture is practiced, reli-
able internet connectivity, which is essential for collecting, transmitting, and analyzing
data, may not be readily available [7] and, thus, may affect the absorption capacities of
novel technologies [80].

The implementation of trending technologies requires technical expertise that may
be unavailable in some regions, leading to job displacement and unemployment as new
technologies increase the demand for highly skilled laborers while decreasing opportunities
for nonskilled workers. This has implications for both small-scale and family commercial
farmers [8,9,20,79]. To effectively use these technologies, farmers and service providers
may need training. However, different technologies may not be compatible with each other
or with existing agricultural machinery and equipment, which could limit the adoption
of advanced technologies in precision agriculture [2,8,84]. Furthermore, the presence of
bias and discrimination intertwined with information technology, education, risk-taking
attitudes, and western power structures constitute formidable obstacles, hindering the
equitable dissemination and advancement of smart-farming technologies, particularly
within developing nations [80,85]. This highlights the need for policies on data sharing that
cater to both the public and farming industries and are sufficient to ensure data security [20].
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Table 3. Advantages, limitations, and main applications of advanced technologies in precision
agriculture.

Advantages Limitations Main Applications

Big Data
Data-driven insights
Resource optimization
Enhanced decision making [1,78]

Robust data management
infrastructure
Data privacy and security
considerations
Challenges in integrating
heterogeneous data sources [8,78]

Crop yield forecasting
Disease and pest management
Precision agriculture
Predictive analytics
Farm management systems [1,6,8]

Machine Vision Technologies

Automated image capture and analysis
Enhanced efficiency
Reduction of reliance on manual labor
Precise monitoring of plant health

Dependence on high-quality images
Challenges in image interpretation
under varying lighting and
environmental conditions

Crop monitoring
Disease detection
Quality assessment
Plant phenotyping
Weed detection
Yield estimation [8]

IoTs (Internet of Things)

Real-time monitoring
Facilitation of data-driven decision making
Optimization of resource usage Early
detection of issues [78]

Requires reliable network
infrastructure
Data management and integration
challenges
Maintenance of hardware [8,16]

Precision agriculture
Smart irrigation systems
Livestock monitoring
Environmental sensing
Fishery management
Remote farm management [8,13,16,78]

Artificial Intelligence (AI)

Automation and predictive analytics of
decision support systems
Enhancment of crop management, disease
detection, and yield optimization [16,85]

Requires large data sets
Computational resources
Challenges in explainability and
interpretability of AI models

Crop yield prediction
Disease detection
Pest management
Image recognition
Mobile expert systems
Anomaly detection [8,85]

Machine Learning (ML)

Enables pattern recognition
Predictive modeling
Data analysis
Assists in crop disease diagnosis, yield
prediction, and recommendation
systems [6,14]

Requires labeled training data, model
training, and optimization Potential
bias in algorithmic decision
making [6,28]

Crop disease diagnosis
Yield prediction
Soil analysis
Yield optimization
Breeding optimization
Farm management systems [6,28,44]

Deep Learning

Complex pattern recognition
Analysis of large data sets
Suitable for image and signal processing
tasks, disease detection, and plant
phenotyping [25,31]

Requires substantial computational
resources
Large labeled data sets
Potential overfitting with limited
data [31,86]

Plant disease detection
Plant classification
Object recognition
Plant phenotyping
Image-based analysis [25,31,86]

Guidance Systems

Precise navigation and operation of
agricultural machinery
Reduces overlaps and optimizes resource
usage [47]

Requires accurate positioning systems
Potential dependency on external
signals
Challenges in complex terrains [78]

Precision agriculture
Automated field operations
Autonomous machinery
Variable rate application [34,47]

Blockchain Technologies

Provides transparency, traceability, and
secure data sharing in the agricultural
supply chain
Enables trust, verification, and fair
transactions

Scalability challenges
Energy consumption
Integration complexity

Supply chain management
Food traceability
Quality assurance
Fair trade [8,16]

Robotics and
Autonomous Systems

Enables automation, precision tasks, and
labor reduction
Assists in autonomous field operations,
weeding, harvesting, and data
collection [63,78]

Cost of implementation
Limited adaptability to changing field
conditions
Detection accuracy and technical
challenges in complex
environments [8,63]

Automated harvesting
Weeding
Field monitoring
Planting
Labor-intensive operations [8,34,63]

UAVs (Unmanned
Aerial Vehicles)

Remote sensing
Aerial imaging
Monitoring of large agricultural areas
Provides timely data collection
Improved field management
Cost-effective crop assessment [34,78,86]

Restricted flight regulations
Limited payload capacity Challenges
in data analysis and interpretation
Expensive and break easily [14,34]

Crop monitoring
Mapping
Aerial imaging
Precision agriculture
Disease detection [8,34,76]

Unmanned Ground Vehicles

Ground-level monitoring
Data collection
Field operations in various terrains
Assists in precision spraying, mapping,
and soil sampling

Limited mobility in challenging
environments
Dependence on stable terrain
conditions

Precision spraying
Soil sampling
Field mapping
Data collection [49,78,86]

High-Throughput Phenotyping

Facilitates rapid and non-destructive
measurement of plant traits and
characteristics
Enhances breeding programs, genetic
analysis, and crop improvement [56]

Cost of high-throughput phenotyping
platforms
Challenges in data interpretation
Standardization of measurement
protocols

Plant breeding
Crop improvement
Stress tolerance assessment
Genetic analysis
Trait selection [56,71]

Telematics

Enables real-time monitoring, tracking,
and data collection from vehicles
Enhances fleet management, route
optimization, and driver safety

Requires reliable connectivity
Potential data security concerns
Challenges in integrating with
existing vehicle systems

Fleet tracking
Logistics management
Fuel efficiency analysis
Predictive maintenance
Driver behavior monitoring [2]
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6. Future Developments Required

In recent years, the agricultural sector has recognized the potential benefits of adopting
new digital technologies. However, the slow rate of adaptation can be attributed to several
roadblocks and uncertainties associated with these advancements. Despite the challenges,
there is a growing demand for organic foods [78], leading to a shift from sustainable
agriculture to smart organic farming. To capitalize on this emerging opportunity, certain
steps need to be taken.

One crucial aspect is bridging the gap between expertise personnel and farmers. Pro-
viding better education, along with vocational training on novel technological applications,
can empower farmers to make effective use of new technologies [20,78]. Governments can
play a significant role by creating physical, economic, legal, and social infrastructure that
supports the establishment of precision agriculture. Investments in energy infrastructure
and communication infrastructure, internet connectivity, service markets, consultancy
services, and credit markets can instill trust and willingness among farmers to embrace
these technologies [2,20,81].

To further enhance precision agriculture, addressing the lack of professional agri-
cultural sensors is paramount. The design of high-quality, high-resolution, and reliable
sensors powered by the IoT that are specifically tailored for the agricultural production
environment and the monitoring of plant and animal physiological signs is essential [8].
Moreover, integrating wireless power transfer options can eliminate the need for frequent
battery replacements. However, special attention should be given to enabling underground
or underwater transmission capabilities [8]. At the same time, on-site energy generation
with renewable solar power or biogas energy can be considered comparatively to long
distance energy transfer [77]. Although capital investment is high for establishment, it is
more profitable than grid power.

Cross-technology communication is another crucial aspect that needs to be addressed.
Machine vision for animal monitoring, the development of smart phone applications for the
real-time tracking of spatial and temporal variations, and the utilization of 6G mobile net-
works are promising avenues for generating valuable data and informed decisions [34,83].
Additionally, the emergence of new agricultural systems such as smart hydroponics with
the IoT and advancements in breeding technologies with DL and ML technologies con-
tribute to the overall progress of precision agriculture.

Future advancements in precision agricultural technologies hold great promise for
the agricultural sector. Overcoming the existing roadblocks and uncertainties is essential
to unlocking the full potential of these technologies. By focusing on education, infras-
tructure development, sensor technology, communication systems, and novel agricultural
approaches, we can pave the way for a more efficient, sustainable, and productive future
in agriculture.

7. Conclusions

Precision agriculture, now part of Agriculture 4.0, harnesses the power of digitalization
for improved farming management. The integration of Industry 4.0 technologies has led to
notable trends, such as drones, GPS technology, data analytics, and artificial intelligence,
enabling informed decision making in farming practices. Despite these advancements,
achieving a fully integrated agricultural management system that comprehensively ad-
dresses the complexities of the field requires further studies and innovations. Crucially,
the development of adaptive and predictive information systems that effectively integrate
diverse data sources is essential for ensuring sustainable and intelligent precision agri-
culture. While precision agriculture offers numerous benefits, it also poses challenges for
its widespread adoption. The initial investment in technology, concerns related to data
privacy, and compatibility issues with existing farming systems can be significant barriers
for small-scale farmers. Moreover, the scalability and adaptability of these technologies to
different farming conditions may limit their applicability in certain regions. Overcoming
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these challenges necessitates the implementation of education and training programs to
equip farmers with the necessary skills to leverage these technologies effectively.

This review paper serves as a valuable resource for farmers and companies seeking
to adopt Industry 4.0 technologies in agriculture. By providing insights into IoT devices,
automation systems, data analytics, and precision-farming techniques, this paper fos-
ters awareness and understanding of the opportunities and challenges in smart farming.
Armed with this knowledge, companies can make informed decisions regarding technology
investments and strategic planning while promoting sustainable farming practices and
collaboration within the industry. By embracing Industry 4.0 technologies, farmers and
companies can enhance their agricultural operations, optimize resource utilization, and
contribute to the collective progress toward smart farming’s promising future.
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