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1. Background

Electroencephalography (EEG) is a widely recognised non-invasive method for cap-
turing brain electrophysiological activity. It stands out for its cost-effectiveness, portability,
ease of administration, and widespread availability in most hospital settings. Unlike other
neuroimaging modalities focused on anatomical structure, such as MRI, CT, and fMRI,
EEG excels in providing ultra-high time resolution, a crucial asset for in-depth insights into
brain functioning [1].

The empirical interpretation of EEG data predominantly relies on the identification of
abnormal frequency patterns in distinct biological states (e.g., wakefulness versus sleep [2])
and the spatial-temporal and morphological characteristics of paroxysmal [3] and per-
sistent discharges [4]. Reactivity to external stimuli and activation procedures, such as
intermittent photic stimulation or hyperventilation, also plays a significant role in EEG anal-
ysis [5,6]. While these practical approaches are valuable in many cases, they often fall short
of capturing the intricate, dynamic, and nonlinear interactions among various anatomical
constituents of the brain networks. These interactions frequently remain hidden within the
EEG recordings, surpassing the observational capabilities of even highly trained physicians
in the field. This oversight is supported by substantial evidence across various neurolog-
ical conditions, including epilepsy, neurodegenerative dementias, neuropsychiatric and
movement disorders, as well as normal cognitive paradigms [7].

Moreover, EEG data are inherently nonstationary and susceptible to various sources
of noise, notably frequency interference. Consequently, the effective removal of noise from
raw EEG data is imperative to extract meaningful information that accurately reflects brain
activity and states [8]. In recent years, approaches based on machine learning have attracted
considerable attention due to their exceptional capability to unveil underlying patterns
within noisy EEG recordings for various applications.

This Special Issue serves as a platform for the dissemination of original high-quality
research in EEG signal pre-processing, modelling, analysis, and their applications, with a
particular focus on the utilisation of machine learning and deep learning techniques. The
range of applications covered includes the following:

• Healthcare applications, including epilepsy (contributions 1–3) and anaesthesia (con-
tribution 4);

• Studies related to emotion (contributions 5–7);
• Research on motor imagery (contributions 8–10);
• Investigations into external stimulations (contributions 11–13);
• Research concerning mental workload (contributions 14–15);
• Studies in satisfaction (contribution 16).

Sensors 2023, 23, 9056. https://doi.org/10.3390/s23229056 https://www.mdpi.com/journal/sensors
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2. Overview of Contributions

Alreshidi et al. (contribution 14) reported a novel multimodal approach for mental
state detection in pilots using EEG signals. The innovative nature of this study lies in its
combination of advanced automated preprocessing techniques, Riemannian geometry-
based feature extraction, and ensemble learning models, which, together, provide a detailed
and accurate characterization of pilot mental states, ultimately leading to a safer and more
efficient aviation system.

Borra et al. (contribution 8) investigated the power and connectivity in the Alpha and
Beta bands of EEG recordings during planning goal-directed movement. It was suggested
that alpha and beta oscillations are functionally involved in the preparation of reaching
in different ways, with the former mediating the inhibition of the ipsilateral sensorimotor
areas and disinhibition of visual areas, and the latter coordinating disinhibition of the
contralateral sensorimotor and visuomotor areas. This study contributes to enriching
the description of the neural mechanisms underlying reaching movement preparation in
healthy subjects, leading to a better comprehension of the neurophysiological correlates.

Mockevičius et al. (contribution 12) produced a methodology for determining the
individual gamma frequency from EEG data where subjects received auditory stimulation
consisting of clicks with varying inter-click periods. This work demonstrates that the
estimation of individual gamma frequency is possible using a limited number of both the
gel and dry electrodes from responses to click-based chirp-modulated sounds.

Oikonomou et al. (contribution 13) proposed a novel framework to recognise the cog-
nitive and affective processes of the brain during neuromarketing-based stimuli using EEG
signals. More specifically, an extension of the basic Sparse Representation Classification
(SRC) scheme was proposed that utilises the graph properties of neuroimaging data. The
experimental analysis provides evidence that EEG signals could be used for predicting
consumers’ preferences in neuromarketing scenarios.

Yang et al. (contribution 2) presented novel EEG–EEG or EEG–ECG transfer learning
strategies to explore their effectiveness for the training of simple cross-domain convo-
lutional neural networks (CNNs) used in seizure prediction and sleep staging systems,
respectively. It was concluded that transfer learning from an EEG model to produce person-
alised models for a more convenient signal can both reduce the training time and increase
the accuracy; moreover, challenges such as data insufficiency, variability, and inefficiency
can be effectively overcome.

Abdel-Hamid (contribution 5) introduced a subject-dependent emotional valence
recognition method using EEG recordings. Time and frequency features were computed
from only two channels and state-of-the-art performance was achieved and validated by
a benchmark DEAP dataset. This approach would thus be highly attractive for practical
EEG-based emotion AI systems relying on wearable EEG devices.

Shi et al. (contribution 4) proposed a deep residual shrinkage network to estimate
the depth of anesthesia (DoA) from EEG signals. The proposed procedure is not merely
feasible for estimating DoA by mimicking patient state index (PSI) values but also inspired
us to develop a precise DoA-estimation system with more convincing assessments of
anesthetisation levels.

Yuvaraj et al. (contribution 6) contributed another emotion recognition approach
that uses features including statistical features, fractal dimension (FD), Hjorth parameters,
higher order spectra (HOS), and those derived using wavelet analysis. The results of
this research may lead to the possible development of an online feature extraction frame-
work, thereby enabling the development of an EEG-based emotion recognition system in
real time.

Kim et al. (contribution 16) reported a study to use EEG measures to reflect user
satisfaction in controlling a robot hand. For the moment that dominated satisfaction,
it was observed that brain activity exhibited significant differences in satisfaction not
immediately after feeding an input but during the later stage. The other indicators exhibited
independently significant patterns in event-related spectral perturbations. The results
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reveal that regardless of subjective satisfaction, objective performance evaluation might
more fully reflect user satisfaction.

As an effort in neuromarketing, Shah et al. (contribution 7) proposed an ensemble
model for predicting emotion using EEG signals to evaluate the consumer’s opinion
toward a product. Automated features were extracted by using a long short-term memory
network (LSTM) and then concatenated with handcrafted features such as power spectral
density (PSD) and discrete wavelet transform (DWT) to create a complete feature set.
This research demonstrates that brain-imaging techniques and tools can help marketers
and advertisement agencies to improve their marketing campaigns before launching the
product in the market and also during the in-market inspection of the campaign’s success
after the launch.

Jochumsen et al. (contribution 10) implemented three performance accommodation
mechanisms (PAMs) in an online motor imagery-based EEG to aid people and evaluate
their perceived control and frustration for stroke rehabilitation. Within the different types
of PAMs, game developers can exercise tremendous artistic freedom to create engaging
interactions for Brain–Computer Interface (BCI) training that either directly manipulates
the outcomes of a single action or its effect in a bigger task context.

Hu et al. (contribution 9) proposed a novel circulant singular spectrum analysis embed-
ded common spatial pattern method for learning the optimal time–frequency–spatial fea-
tures to improve the motor imagery (MI) classification accuracy using EEG data. The results
confirm that it is a promising method for improving the performance of MI-based BCIs.

Li and Iramina (contribution 11) estimated dynamic functional connectivity between
the visual cortex and all the other areas of the brain to find which of them were influenced
by visual stimuli. They found that seeing manipulable objects and seeing tools caused
similar phenomena in both time and space. There is no evidence suggesting that seeing
a manipulable object led to a similar mu rhythm change to seeing an interaction with the
same object.

Cao et al. (contribution 15) introduced a sensor fusion method to evaluate cognitive
workload based on EEG and functional near-infrared spectroscopy (fNIRS). They explored
the classification performance of the features of bivariate functional brain connectivity in
the time and frequency domains of delta, theta, and alpha bands, with the assistance of the
fNIRS oxyhemoglobin and deoxyhemoglobin indicators.

Najafi et al. (contribution 1) explored the potential of diagnosing focal and generalised
epilepsy using EEG by extracting features from discrete wavelet transform and combining
them with an RNN-LSTM classifier. The results show that the theta frequency band was
more successful than alpha and beta in the detection procedure.

Alharthi et al. (contribution 3) presented another study on epileptic disorder detection
using EEG. The proposed system uses a wavelet decomposition technique and a simple
one-dimensional convolutional neural network, along with bidirectional long-short-term
memory and attention, to receive EEG signals as input data, pass them to various layers,
and finally make a decision via a dense layer. This model can assist neurophysiologists in
detecting seizures and significantly decrease the burden, while also increasing the efficiency.

Conflicts of Interest: The authors declare no conflict of interest.
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Epileptic Disorder Detection of Seizures Using EEG Signals
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Abstract: Epilepsy is a nervous system disorder. Encephalography (EEG) is a generally utilized
clinical approach for recording electrical activity in the brain. Although there are a number of datasets
available, most of them are imbalanced due to the presence of fewer epileptic EEG signals compared
with non-epileptic EEG signals. This research aims to study the possibility of integrating local EEG
signals from an epilepsy center in King Abdulaziz University hospital into the CHB-MIT dataset by
applying a new compatibility framework for data integration. The framework comprises multiple
functions, which include dominant channel selection followed by the implementation of a novel
algorithm for reading XLtek EEG data. The resulting integrated datasets, which contain selective
channels, are tested and evaluated using a deep-learning model of 1D-CNN, Bi-LSTM, and attention.
The results achieved up to 96.87% accuracy, 96.98% precision, and 96.85% sensitivity, outperforming
the other latest systems that have a larger number of EEG channels.

Keywords: CHB-MIT dataset; deep learning; epilepsy; seizure detection; XLtek EEG

1. Introduction

Epilepsy is a neurological disorder that affects children and adults. It can be char-
acterized by sudden recurrent epileptic seizures [1]. This seizure disorder is basically a
temporary, brief disturbance in the electrical activity of a set of brain cells [2]. The excessive
electrical activity inside the networks of neurons in the brain will cause epileptic seizures [3].
These seizures result in involuntary movements that may include part of the body (partial
movement) or the whole body (generalized movement) and are sometimes accompanied by
disturbances of sensation (involving hearing, vision, and taste), cognitive functions, mood,
or may cause loss of consciousness [2]. The frequency of seizures varies from patient to
patient, ranging from less than once a year to several times a day. Active epilepsy patients
have a mortality proportion of 4–5 times greater than seizure-free people [4]. However,
effective medical therapy that is individualized for each individual patient helps to lower
the risk of mortality. Reduced mortality can be achieved by objectively quantifying both
seizures and the response to therapy [5].

The seizure detection modality uses an electroencephalogram (EEG) [6]. Signals moni-
tor the brain’s electrical activity through electrodes. An electrode is a small metal disc that
attaches to the scalp to capture the brainwave activity through the EEG channel, which,
depending upon the EEG recording system, can range from 1 channel to 256 channels.
EEG signals are in the form of sinusoidal waves with different frequencies that neurophys-
iologists use to identify brain abnormalities. One major challenge that neurologists face
is the presence of EEG signal artifacts. EEG signals overlapped with other internal and
external bio-signals cause artifacts that mimic the EEG seizure signal and thus give false
data. Some examples include eye movement, cardiogenic movement, muscle movement, or
environmental noise [7]. Table 1 illustrates the frequency bands of EEG signals with normal
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and abnormal tasks affecting each band. Neurophysiologists need to collect an extensive
amount of long-term EEG signals in order to detect seizures through visual analysis of
these signals in a time-consuming manual process.

Table 1. The frequency bands of EEG signals [8].

Frequency Bandwidth Normal Tasks Abnormal Tasks

0.1–4 Hz Delta (δ) sleep, artifacts, hyperventilation structural lesion, seizures, encephalopathy
4–8 Hz Theta (θ) drowsiness, idling encephalopathy

8–12 Hz Alpha (α) closing the eyes, inhabitation coma, seizures
12–30 Hz Beta (β) effect of medication, drowsiness drug overdose, seizures
30–70 Hz Gamma (γ) voluntary motor movement, learning and memory seizures

There is a current, urgent need to develop a generalized automatic seizure detection
system that provides precise seizure quantification, allowing neurophysiologists to ob-
jectively tailor treatment. Developing such a system is challenging because the available
datasets are mostly imbalanced; the number of non-seizure EEG signals is larger than the
number of EEG seizure signals in the datasets [9]. This imbalanced dataset issue can have a
major negative impact on classification performance [10].

This research proposes a compatibility framework to integrate local EEG data from an
epilepsy center at King Abdulaziz University hospital (KAU) with the CHB-MIT dataset [11]
to solve the problem of limited resources and imbalanced data. It also proposes an algorithm
for reading XLtek EEG data, incorporated into the proposed framework, thus allowing
researchers to analyze this type of EEG signal for which no auxiliary analytical tools are
available in the dedicated packages. Finally, a deep-learning seizure-detection model based
on selected EEG channels has been developed. The results show that the proposed method
outperforms other models that rely on using a larger number of EEG channels to detect
epileptic seizures.

The CHB-MIT dataset was chosen as it has the same type of scalp EEG recordings and
annotations as the KAU local dataset. Additionally, the CHB-MIT has recordings from all
parts of the brain that contain similar seizure types as those in the KAU dataset, such as
clonic, tonic, and atonic seizures.

The rest of the paper is organized as follows: Section 2 presents the state-of-the-art
seizure detection systems. In Section 3, the datasets that were used in the research are
described. Section 4 explains the proposed approaches. The evaluation of each approach
over the CHB-MIT benchmark EEG dataset with the KAU dataset, along with the results of
classification and effectiveness are presented in Section 5. Section 6 concludes the paper
and suggests topics for future work.

2. Related Works

Many studies concentrate on intracranial brain signals, in which electrodes are placed
inside the skull directly on the brain. Antoniades et al. [12] used convolutional neural
networks (CNN) applied with two convolutional layers on intracranial EEG data to extract
the features of interictal epileptic discharge (IED) waveforms. The system divided the data
into several 80 ms segments with 40 ms of overlap, and achieved a detection rate of 87.51%.

Birjandtalab et al. [9] employed Fourier transform with deep neural networks (DNN)
to classify the signals by applying the transform first on the obtained alpha, beta, gamma,
delta, and theta as well as on the individual windows in order to calculate the power
spectrum density that measures the signal power as a function of frequency. Then, DNN
based on multilayer perceptrons with only two hidden layers was used to classify the
signals. To avoid the overfitting problem, a few hidden layers were applied. The system
achieved an accuracy of 95%.

Seizure detection systems rely on the type of EEG data. Some of these systems detect
epileptic seizures coming from only one channel, while others can detect epileptic seizures
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from multiple channels. ChannelAtt [13] is a novel channel-aware attention framework that
adopts fully connected multi-view learning to soft-select critical views from multivariate
bio signals. This model implements a new technique that relies on global attention in the
view domain rather than the time domain. The system achieved a 96.61% accuracy rate.

Some studies performed feature learning by training the deep-learning model directly
on EEG signals. Ihsan Ullah et al. [14] used a pyramidal 1D-CNN framework to reduce
the amount of memory and the detection time. The final result used the voting approach
for post-processing. To overcome the bottleneck of the requirement of training a huge
amount of data, they performed data augmentation using overlapping windows. The
system reached 99% accuracy.

Zabihi et al. [15] developed a system that combines non-linear dynamics (NLD) and
linear discriminant analysis (LDA) for extracting the features and introduced the concept of
nullclines to extract the discriminant features. The system employs artificial neural network
(ANN) for classification. The yielded accuracy for the model was 95.11%. To mimic the
real-world clinical situation, only 25% of the dataset was used for training. The results
showed that the false negative rate was relatively high as a result of using a limited dataset
for training. The sensitivity rates are considered too low for practical clinical use.

Likewise, Avcu et al. [16] used a deep CNN algorithm on the EEG signals of 29 pe-
diatric patients from KK Women’s and Children’s Hospital, Singapore. The researchers
tried to minimize the number of channels in recorded EEG data to two channels only, Fp1
and Fp2. This data consists of 1037 min, of which only 25 min contain epileptic signals
distributed over 120 seizure onsets. As seen, the data is not balanced. To overcome this
problem, the researchers attempted to use various overlapping proportion techniques
according to the seizures’ presence or absence by applying two shifting processes. The
first one takes 5 s to create an interictal class (without overlapping). The second one takes
0.075 s to create an ictal class. These shifting processes were applied to balance the input
data to the CNN. The system achieved an accuracy of 93.3%. However, the outcome of the
data augmentation technique was not mentioned in this research.

Hu et al. [17] used long-short-term memory (LSTM) as it is efficient on both long-
term and short-term dependencies in time series data. The authors developed the model
using Bi-LSTM. The authors extracted and fed the network with seven linear features. The
system was trained and tested on the Bonn University dataset, and it had a 98.56% accuracy.
However, this reflects the accuracy of testing results, whereas the evaluation results were
not mentioned in this research.

Chandel et al. [18] proposed a patient-specific algorithm that is based on wavelet-
based features in order to detect onset-offset latency. The model operates by calculating
statistical features such as mean, entropy, and energy over the wavelet sub-bands and then
classifying the EEG signals using a linear classifier. The developed algorithm achieved
an average accuracy of 98.60%. The algorithm was tested on 14 out of 23 patients in the
dataset. Although the algorithm is patient-specific, its performance degraded significantly
for patient 7, who had a very short seizure duration compared with the remaining patients;
the number of seizures for this patient was 10, with a total duration of 94 s. This means
that the algorithm performs well if the duration of the seizure is long, but falls significantly
if the seizure is short.

Kaziha et al. [19] suggested using a model proposed in a previous study applied
to the CHB-MIT dataset and tweaked to enhance performance. The model is based on
five CNN layers, each of which is followed by a batch normalization and an average
pooling layer, respectively. Finally, the model has three dense layers to detect the signal
class. However, the performance chart of training and testing accuracy is an obvious
indicator of the overfitting of a network, which can be seen from the sensitivity score. This
is due to the imbalance of the dataset, as the number of epileptic signals is significantly
lower than the number of non-epileptic signals, and therefore requires the use of a data
augmentation scheme.
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Huang et al. [20] suggested a three-part hybrid framework. The first part extracts
the hand-crafted features and converts them into sparse categorical features, while the
second part is based on a neural network architecture with the original signals as input to
extract the deep features. Both types of extracted features are combined in the third and
final part of the model for classifying the EEG signals into seizure and non-seizure. The
model achieved a sensitivity score of 90.97%. It should be noted that the idea of the hybrid
framework may achieve higher results if it enhances the output of the first part of the
model, which are the features manually extracted from the signals. This is accomplished by
using one of the feature-importance methods. A tree-based model is implemented to infer
the importance score of each feature based on the decision rules (or ensembles of trees such
as random forest) of the model.

Jeong et al. [21] implemented an attention-based deep-neural network to detect
seizures. The model is divided into three modules; the first module extracts the spa-
tial features, while the second module extracts the spatio-temporal features. The third
module is the attention mechanism for capturing the representations that take into account
the interactions among several variables at each point in time. The accuracy of the model
is 89% and the sensitivity is 94%. However, based on the performance metrics of the
model, the percentage of false negatives (FN), that is, the number of seizure signals that
were detected as non-seizure, was low, which is reflected in the high sensitivity score. In
contrast, the overall accuracy of the model was significantly lower compared with the
sensitivity score, which means that the number of false positives (FP) was high. FP counts
the number of non-seizure signals that were detected as seizures. Consequently, the model
focused on extracting the features that would clearly distinguish the seizure class while not
taking into consideration extracting the discriminative features for the non-seizure class
as well. The overall performance of the model was affected. Table 2 summarizes all the
above-mentioned studies in this section.

Table 2. EEG-based epileptic seizure detection systems using deep-learning approaches.

Cite
Published

Year
Approach Layers Dataset Channels Accuracy Window Size

[12] 2016 CNN 2
King’s College

London Hospital
dataset

12 channels 87.51% 80 ms

[9] 2017 Deep Neural Networks 4

23 epileptic
patients from

Boston Children’s
Hospital

Ranges from 18
to 23 channels 95% 10 s

[13] 2018 Channel-aware Attention
Framework 23 CHB-MIT dataset

23 channels (in
few cases 24 or

26)
96.61% NA

[14] 2018 Pyramidal one-dimensional
CNN models 3 Bonn university

dataset 1 channel 99% 10 s

[15] 2019

Nonlinear dynamics (NLD)
with Linear Discriminant

Analysis (LDA) and
Artificial Neural Network

(ANN)

5 CHB-MIT dataset 23 95.11% 1 s

[16] 2019 Deep CNN 4

29 pediatric
patients from KK

Women’s and
Children’s
Hospital,

Singapore

2 channels 93.3% 5 s

[17] 2019 Deep Bi-LSTM Network 5 Bonn university
dataset 1 channel 98.56% NA
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Table 2. Cont.

Cite
Published

Year
Approach Layers Dataset Channels Accuracy Window Size

[18] 2019 Discrete Wavelet Transform
(DWT) + linear classifier NA CHB-MIT dataset

23 channels (in
few cases 24 or

26)
98.60% 1 s

[19] 2020 CNN 18 CHB-MIT dataset
23 channels (in
few cases 24 or

26)
96.74% 100 s

[20] 2021
Gradient-Boosted Decision

Trees (GBDT) with Deep
Neural Network (DNN)

NA CHB-MIT dataset
23 channels (in
few cases 24 or

26)
NA 20 s

[21] 2021 CNN 20 CHB-MIT dataset
23 channels (in
few cases 24 or

26)
89% NA

Most of the mentioned studies use augmentation to solve the issue of an imbalanced
dataset. This research integrates two datasets using the intersection dominant channels
between those datasets, followed by a deep-learning model to test the performance of
the method.

3. Datasets

This section explains both the datasets that were used in the study. The first is the
CHB-MIT dataset [11] that was collected from 22 subjects: 5 males aged 3–22 and 17 females
aged 1.5–19. The dataset contains 969 h of EEG recordings, while the number of seizures is
198. The number of no-seizure signals exceeds the number of seizure signals. The second
dataset is the KAU dataset that was collected from 2 male subjects aged 28 with scalp EEG
recordings where the sampling frequency is the same as the CHB-MIT dataset, at 256 Hz.
The age factor of the subjects was taken into consideration. The age of these two patients
approximates the age of subjects in the CHB-MIT dataset. Hence, the range that was selected
from both datasets was from 1–28. This is crucial as clinical and electroencephalographic
characteristics of seizures depend greatly on age [22]. Both subjects have EEG recordings
with 38 channels. One of them exhibited two seizures with a total duration of 495 s, while
the other subject exhibited four seizures with a total duration of 417 s.

4. The Proposed System

This section is divided into two parts. The first part presents the compatibility frame-
work, while the second part presents the seizure detection system.

4.1. Compatibility Framework for Data Integration

The proposed system has a number of phases, including annotating the KAU dataset,
selecting channels, and adjusting the channel montage, followed by a data preparation
phase, which includes constructing metadata and reading EEG data. The third data prepro-
cessing phase includes removing missing values, signal decomposition using the discrete
wavelet transform (DWT), and scaling. Finally, the feature learning and classification phase,
which is accomplished by a deep-learning (DL) model that classifies the EEG signals into
seizure and non-seizure classes. Figure 1 illustrates the block diagram of the proposed
system. The system is programmed by Colab, which is a Python development environment
running on Google Cloud using the TensorFlow and Keras frameworks.
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Figure 1. The proposed compatibility framework architecture.

Data Annotation of KAU Dataset: The data were annotated in collaboration with the
neurophysiologists and divided into categories: normal with open eyes, normal with closed
eyes, pre-ictal, ictal, post-ictal, inter-ictal, and artifacts. Table 3 describes these categories.

Table 3. Description Of EEG Categories For Annotated Local Dataset.

Category Description

Open eyes EEG recording for a relaxed patient in awake state with eyes open
Closed eyes EEG recording of a relaxed or sleeping patient with eyes closed

Pre-ictal EEG recording for a patient in a state prior to epileptic seizure
Ictal EEG recording for a patient during epileptic seizures

Post-ictal EEG recording for a patient in a state posterior to epileptic seizure
Inter-ictal EEG recording for a patient in seizure-free interval between seizures
Artifacts Signals recorded by EEG that might mimic seizures but generated from outside the brain

Channels Selection: In the CHB-MIT dataset, eighteen channels are selected out of
twenty-three as these eighteen channels are the common channels among all the recordings.
According to the distribution of electrode positions shown in Figure 2a, the adopted
eighteen channels are: (‘C3-P3’, ‘C4-P4’, ‘CZ-PZ’, ‘F3-C3’, ‘F4-C4’, ‘F7-T7’, ‘F8-T8’, ‘FP1-F3’,
‘FP1-F7’, ‘FP2-F4’, ‘FP2-F8’, ‘FZ-CZ’, ‘P3-O1’, ‘P4-O2’, ‘P7-O1’, ‘P8-O2’, ‘T7-P7’, ‘T8-P8’). By
comparing the KAU dataset with the CHB-MIT dataset in terms of the electrode positions,
as shown in Figure 2, it is clear that the electrode locations in the two datasets are different.
The majority of the electrodes in the CHB-MIT dataset are not present in the KAU dataset.
Consequently, work was undertaken to replace the electrode that was not present with
the nearest electrode in position as an alternative. The two datasets agree in the following
electrodes: (‘C3-P3’, ‘C4-P4’, ‘Cz-Pz’, ‘F3-C3’, ‘F4-C4’, ‘FP1-F3’, ‘FP1-F7’, ‘FP2-F4’, ‘FP2-F8’,
‘Fz-Cz’, ‘P3-O1’, ‘P4-O2’). They differ in the rest of the electrodes. To demonstrate, the
proposed system replaces the following electrodes: (‘F7-T7’ by ‘F7-T3’, ‘F8-T8’ by ‘F8-T4’,
‘P7-O1’ by ‘T5-O1’, ‘P8-O2’ by ‘T6-O2’, ‘T7-P7’ by ‘T3-T5’, ‘T8-P8’ by ‘T4-T6’).

Channels Montage: Montage refers to the arrangement of channels where the channel
is a pair of electrodes. The KAU dataset channels are arranged in a common reference
montage while the CHB-MIT dataset is bi-polar. The difference between these two types
of montage is that the common reference montage compares the signal at every electrode
position on the head to a single common reference electrode, whereas in the bi-polar
montage, the signal consists of the difference between two adjacent electrodes [23]. To
integrate both datasets, the proposed system changes the montage of the KAU dataset to
the bipolar montage.
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(a) (b) 

Figure 2. Schematic presentation of EEG electrode positions for: (a) CHB-MIT electrode positions
where the adopted electrodes are highlighted with the blue color; (b) KAU electrode positions.

Constructing Metadata: The CSV files that contain the metadata are created for each
patient. The metadata contains the file name, the recording start time, and the label
given to the recording, where a label of 1 indicates seizure and a label of 0 indicates no-
seizure. The EEG signal is divided for each seizure signal in each patient using a sliding
window technique. This technique is a standard technique that has been adopted in other
studies [24,25]. The sliding window technique with a fixed size was chosen to avoid the
network parameter bias that may occur if the input signals to the network have a different
length. The window size is n = 10 s with an overlap of k = 1 s. This technique was used in
the incidence of a seizure EEG signal. In the case of the no-seizure EEG signal, there was
no need for the overlapping. The CHB-MIT dataset constitutes about 24,000 windows of
normal EEG records (no-seizure class) and about 434 windows of epilepsy EEG records
(seizure class) for training data before the overlapping. It also constitutes about 6000
windows of normal EEG records (no-seizure class) and about 108 windows of EEG records
(seizure class) for validation data prior to the overlapping. After the overlapping, the
training data was about 24,000 windows for the no-seizure class and 4344 windows for
the seizure class, whereas the validation data became 6000 windows for the no-seizure
class and about 1086 windows for the seizure class. The window size was specifically
chosen to be 10 s based on several factors. First, Table 4 shows the average duration of
one seizure for some subjects in the dataset. It shows that subject 7 has a short average
duration of a seizure compared with the remaining subjects in the dataset, as the minimum
exposure time for seizures is 10 s on average depending on the dataset. Second, the model
architecture is based on the use of the LSTM layer, with which the longer the window
length, the more difficult the training becomes. To avoid data leakage, two points must be
considered: (1) the dataset must be divided into training, validation, and testing sets before
applying the overlapping technique; and (2) the overlapping technique must be applied to
the data used for training only.

Table 4. Seizure duration for a sample of subjects in the CHB-MIT dataset.

Subject No. Total Number of Seizures Total Seizures Duration (Seconds) Average Seizure Duration (Seconds)

1 7 449 64.14
3 7 409 58.43
5 4 280 70
7 10 94 9.4
9 6 323 53.83
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Reading EEG Data: The raw data and the metadata in CHB-MIT dataset are connected
and analyzed using the wonambi library. The collected KAU dataset contains XLtek
EEG data recorded using Natus Neuroworks. This type of EEG data consists of a set
of files with different formats, comprised of: eeg, ent, epo, erd, etc, snc, stc, vt2, and
vtc. The wonambi.ioeeg.ktlx module is used to ensure proper reading of the EEG signals.
Algorithm 1 illustrates how to read XLtek EEG data. Note that the duration of each epoch
in the proposed system is 10 s, comprising 46,080 samples.

Algorithm 1. READING XLTEK EEG DATA ALGORITHM.

Input: An EEG signal and the size of window in seconds
Output: Array of EEG data samples that constitute the epochs

1 FUNCTION get_epoch(s, min_secs = 10)
2 // Extracting signal start time, sample rate, channel names, and number of samples
3 start_time, s_rate, ch_names, n_samples ← s.return_hdr()
4 s_rate ← int(round(s_rate))
5 // Extracting the creation time for the erd file that holds the raw data
6 erd_time ← s.return_hdr() [−1][‘creation_time’]
7 // Excluding samples between the start time of recording and the actual acquisition
8 stc_erd_diff ← (erd_time–start_time). total_seconds()
9 // Computing the number of samples required from each channel
10 stride ← min_secs ∗ s_rate
11 start_index ← int(stc_erd_diff) ∗ s_rate
12 end_index ← start_index + stride
13 findings ← [ ]
14 WHILE end_index ≤ n_samples DO

15 t ← s.return_dat ([1], start_index, end_index)
16 // Excluding the epochs that may contain NaN values
17 IF ! np.any(np.isnan(t), axis = 1) THEN

18 data ← s.return_dat(range(len(ch_names)), start_index, end_index)
19 IF s_rate > 256 THEN

20 data ← decimate(data, q = 2)
21 ENDIF

22 // Converting numpy array to a pandas data frame
23 df ← pd.DataFrame(data = data.T, columns = ch_names)
24 findings.append(montage(df, model_modified_channels))
25 ENDIF

26 start_index ← start_index + stride
27 end_index ← end_index + stride
28 ENDWHILE

29 return findings
30 ENDFUNCTION

Removing Missing Values: The Not-a-Number or NaN values were found and
dropped in the proposed system because they were infrequent.

Wavelet Decomposition: The proposed system utilizes a discrete wavelet transform
(DWT) to decompose the signals. The signals are passed through high-pass and low-
pass filters. The high-pass filter will generate all the high-frequency components, which
are known as detailed coefficients. Similarly, the low-pass filter generates the wavelet
coefficients, which are of low frequency and are known as approximation coefficients.

The proposed system has a multi-level decomposition db4 which divides the wavelet
into four levels. Each level represents a specific frequency band for the EEG signals that
were previously referred to in Table 1, except for the first two frequency bands where
the first DWT level in the proposed system represents both bands. Figure 3 shows the
decomposition process of the original signal into two parts at the first level, where A1
refers to the approximation coefficients of the first level, while D1 refers to the detailed
coefficients of the first level. The decomposition process continues after the first level until
the fourth level in the same manner as the approximation coefficients only. The accepted
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coefficients in the proposed system from the DWT tree in Figure 3 are A4, D4, D3, and D2.
A4 represents the delta and theta frequency bands, D4 represents the alpha frequency band,
D3 represents the beta frequency band, and D2 represents the gamma frequency band.
These accepted coefficients include the signals that are within the frequency range of 0.5 to
60 Hz because seizures are more distinguished in that range [26]. Furthermore, it ensures
that many noises are removed, including power line noise, distinguished by a chronic
sinusoidal component at 60 Hz that can be seen in raw biomedical data recordings. The
sinusoidal element usually results from using devices that depend on alternating current
as a power source [27].

 
Figure 3. Proposed wavelet decomposition tree (db4).

Figure 4 shows the graphical representation of the EEG signal for each coefficient in
the DWT tree shown in Figure 3. As seen after four decomposition levels, the width of the
noisy signal (the approximation signal in the first level) is almost filtered compared with
the last approximation signal in the last level because all high-frequency components at
each level are taken out. So, the remaining approximation signal in the last level is a sine
wave in filtered form.

Scaling: To speed up the model training process, the proposed model utilizes a scalar
which is a z-score (standard score). The z-score is a statistical measurement which calculates
the space between a data point and the mean [28]. In the proposed system, the z-score
is performed on the batches. In this case, all the features will be transformed in such a
way that they will have the properties of a standard normal distribution. In this scenario,
the features will usually be in a bell curve. It was used because the model is based on
deep-learning architecture, where it basically involves gradient descent, which in turn
helps the TensorFlow and Keras libraries that are used when working with neural networks
to learn the weights in a faster manner.

Deep Learning Model: A deep-learning model (DL model) that consists of several
layers was used. In addition to these layers, auxiliary layers such as the activation and
max-pooling 1D layers were used. The first helps in learning the non-linearity of the
data, while the latter contributes to down-sampling the output of the convolutional layer
(reducing dimensions) by selecting the maximum value on the filter.

The DL model takes the EEG signals as an input. These signals are stored within
one of the built-in data types in Python, which is a tuple. The dimensions of the tuple
are (None ∗ 18), which indicates variable-length sequences of 18-dimensional vectors. It
should be noted that the ‘None’ dimension means the network will be able to accept inputs
from any dimension. Note that the window length is 10 s, the sample rate is 256, and
the number of channels is 18. Therefore, the number of digital samples in each channel
is 2560 samples, so the dimensions of any signal are (2560 ∗ 18), and after analyzing the
signal using DWT, its dimensions will become (x ∗ 18), where x is the concatenation of the
signal components after the decomposition procedure. Therefore, the dimensions of the
signal become (A4 + D4 + D3 + D2, 18). In contrast, the model classifies these input EEG
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signals into two classes, seizure or non-seizure as an output. Figure 5 shows the order and
the configurations of the layers in the model.

Figure 4. Approximation and detailed coefficients of the EEG signals.
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Figure 5. The deep-learning model architecture.

The loss function that is used in the proposed model is categorical cross-entropy. The
adopted optimization algorithm for the model is the Adam algorithm [29]. One of the
hyperparameters of the algorithm is the learning rate. The authors of Adam recommend
setting the learning rate differently based on the system. It is better to use a decaying
learning rate than a fixed one, which is a learning rate whose value decreases as the epoch
number increases. This means it allows one to start with a relatively high learning rate
while benefiting from lower learning rates in the final stages of training. This is useful
where a relatively high learning rate is necessary to set huge steps, whereas increasingly
smaller steps are necessary when approaching a minimum loss. The proposed model uses
a learning rate with an initial value of 0.00001, taking into account the use of a common
decay scheme, which allows learning rates to be dropped in smaller steps exponentially
every few epochs.

4.2. Seizure Detection Model

The proposed system is trained, validated, and tested on the CHB-MIT Scalp EEG
dataset. It depends on the eighteen common channels that have been previously mentioned.
The model suggested in Figure 5 is used, except each dropout layer is replaced by a batch
normalization layer. The EEG signals are inputted to the system and passed through three
CNN layers, each with different configurations as shown in Figure 5. Next are the Bi-LSTM
and attention layers, respectively. Finally, the signals pass through two dense layers that
classify the signal as seizure or non-seizure.

Convolutional Neural Network: The EEG signals are one-dimensional time series
data; hence, for its analysis, a one-dimensional CNN is proposed (1D-CNN). The 1-D
CNN automatically learns the discriminative features that represent the structure of EEG
signals [30].

The activation function for the proposed model is the Swish Rectified Linear Unit
(Swish Relu) [31]. The activation function’s purpose is to classify and learn the non-linearity
in the data. The formula for Swish Relu is as follows:

f(x) = x ∗ sigmoid(βx) (1)

where:
sigmoid(βx) = 1/(1 + e (−βx) (2)
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where β is a constant; if β is close to 0, the function will work linearly. If β is a large value,
greater than or equal to 10, the function works similarly to Relu. After performing some
experimental work, it is considered β = 1 in this study.

Max Pooling: Max-pooling 1D [32] is an operation which is usually appended to
CNNs after the individual convolutional layers to down-sample the output. Max pooling
is applied to reduce the resolution of the output of the convolutional layer, which decreases
the network parameters and subsequently decreases the computational load as well as the
overfitting. It is also helpful in selecting the higher valued frequencies as being the most
activated frequencies. The filter (window) of size 3 is applied in the proposed system.

Batch Normalization: Throughout training, the distribution of the input data varies
due to the update of the parameters. This will slow down the learning, so the learning
becomes harder with nonlinearities. This phenomenon is called internal covariate shift [33].
To solve this issue, batch normalization is used. This makes the optimization significantly
smoother, speeds up the training process, and slightly regularizes the model.

Bidirectional Long Short-Term Memory: Bidirectional LSTM (Bi-LSTM) [34] divides
the standard LSTM’s hidden neuron layer into two propagation directions: forward and
backward. Therefore, this structure of Bi-LSTM will make it capable of processing the
input in two ways: modeling from the front to the back and from the back to the front.
The Bi-LSTM has the ability to detect the contextual information in long sequences of
data and learn the importance of different events. For this purpose, the proposed system
uses Bi-LSTM. In fact, the Bi-LSTM in the proposed model will make full use of the
information before and after the states of epileptic seizure, enabling seizure events to be
properly detected. The number of units of Bi-LSTM represents the dimensionality of the
output space.

Attention: Attention [35] is the ability to highlight and use the salient parts of infor-
mation dynamically in a similar way to the human brain. This type of mechanism works
through iterative re-weighting to allow the model to utilize the most relevant components
of the input sequence, which is the EEG signal, in a flexible manner in order to give these
relevant components the highest weights. This type of mechanism was initially proposed
and is usually used to process sequences such as EEG signals. For this reason, it was used
in the proposed model. The Bi-LSTM with attention is a way to significantly enhance the
model performance.

Fully Connected Layer: The fully connected layer [36] works as a classifier and
predicts the input signal class. The proposed system has two dense layers. The first layer
consists of thirty-two units (neurons), which represent the dimensionality of the output
space. The second dense layer in the model has two units because the proposed model
classifies the EEG signals into two classes: seizure or non-seizure. The reason for using
two dense layers instead of one is that the convolution layers, in conjunction with the
Bi-LSTM and attention layers, extract the features from the EEG signals. Depending on
these features, the deep-neural network layers classify the signals. The first dense layer
acts as a feature selector to decide whether or not a feature is relevant to a class, whereas
the second dense layer acts as a classifier. Thus, the presence of two dense layers enhances
the network’s ability to better classify the extracted features.

5. The Experimental Result

This section will be divided into two parts. The first one is to evaluate the compatibility
framework for integrating local EEG data with the CHB-MIT dataset. The second one is to
evaluate the seizure detection model.
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5.1. Evaluating the Compatibility Framework

To assess the possibility of data integration, the DL model uses a set of well-known
performance metrics to measure the model’s performance: sensitivity, precision, and
accuracy. The formulas for these metrics are shown below:

Sensitivity (Recall or Sen.) = TP/(FN + TP) (3)

Precision (PRC) = TP/(TP + FP) (4)

Accuracy (ACC) = (TP + TN)/(Total Samples) (5)

where TP (True Positive) is the number of seizure signals that are detected as seizure, FN
(False Negative) is the number of seizure signals that are detected as non-seizure, TN (True
Negative) is the number of non-seizure signals that are detected as non-seizure, and FP
(False Positive) is the number of non-seizure signals that are detected as seizure.

A set of experiments were performed to demonstrate the feasibility and usefulness of
the deep-learning model for proving the concept of data integration and effectiveness of
the compatibility framework with CHB-MIT dataset standards.

Initially, a random sample of EEG signals was taken from the CHB-MIT dataset for
each experiment. Considering that the number of random EEG signals in the sample is
proportional to the number of EEG signals extracted from the KAU dataset, the impact
of KAU EEG signals can be studied by integrating them with the random sample. To
clarify, the number of EEG signals extracted from the KAU dataset was 185 signals for both
classes, and the number of random EEG signals in each sample was 750 signals. Therefore,
the number of EEG signals from the KAU dataset constituted approximately 25% of the
random sample size, which allows measuring the effectiveness of data integration. To
illustrate, the number of EEG signals in each random sample from the CHB-MIT dataset
was proportional to the number of EEG signals extracted from the KAU dataset in order to
ensure that the impact of data integration from the KAU dataset with the CHB-MIT dataset
was studied. The selection of signals in the sample was random to ensure that the effect of
integration was properly studied. Therefore, multiple experiments were conducted with
multiple random samples.

Six different experiments were performed as displayed in Table 5. Each experiment
aims to measure the DL model performance on the sample extracted from the CHB-MIT
dataset, and to merge the KAU EEG signals with a random sample also from the CHB-MIT
dataset to study the effect of the data that is attached to the CHB-MIT dataset.

Table 5. The performance of the DL model with and without data integration.

EXP No. DB Avg. Epoch ACC
Avg. Epoch Sen.

for Seizure
Avg. Epoch Sen.
for No-Seizure

Avg. Epoch PRC
for Seizure

Avg. Epoch PRC
for No-Seizure

1 CHB-MIT 79.25 64.16 93.14 89.2 75.29

2 CHB-MIT 81.93 68.43 94.41 91.54 78.03

3 CHB-MIT 75.38 54.95 94.02 89.26 70.53

Avg. CHB-MIT 78.85 62.51 93.86 90 74.62

4 CHB-MIT + KAU 77.81 66.76 88.01 84.01 76.99

5 CHB-MIT + KAU 80.90 75.34 84.66 78.09 86.03

6 CHB-MIT + KAU 81.73 62.29 94.8 87.71 79.78

Avg. CHB-MIT + KAU 80.15 68.13 89.16 83.27 80.93

For further illustration, each random sample taken from the CHB-MIT dataset con-
tained 750 random signals, which were then divided into training, validation, and testing
at 50%, 20%, and 30%, respectively, so that the number of training signals was 375 and the
number of testing signals was 225. It should be noted that the number of seizure signals
was equal to the number of non-seizure signals in the first three experiments carried out
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on the CHB-MIT dataset only. The KAU EEG datasets were then randomly subdivided
into training, validation, and testing groups. After that, these samples from KAU EEG data
were merged with three random samples from the CHB-MIT dataset.

As noted in Table 5, the values of the performance metrics for each experiment before
and after merging the random sample with the KAU EEG data are enhanced or within the
same range, proving that the integration of data with the KAU dataset using the proposed
framework is effective to combat the problem of data imbalance.

As seen, the proposed compatibility framework for creating a large and balanced
dataset by integrating the EEG signals from the KAU dataset with the CHB-MIT dataset
showed an improvement in the ability of the model to identify seizure signals with higher
accuracy. The system suggested increasing the number of epilepsy signals and measuring
the impact of integration on the performance of the model in terms of the overall accuracy of
detecting epileptic seizures before and after the integration process. The overall accuracy of
78.85% increased to 80.15%. In particular, the performance improved through the sensitivity
rate to epileptic seizures specifically; it was initially 62.51% and became 68.13%, meaning
that the number of seizure signals that were detected as non-seizure was low, as reflected
in the high sensitivity rate.

The model was trained on Google Colab using an Nvidia Tesla K80 GPU. Figure 6
shows the average values by epoch of the metrics that were previously mentioned in Table 5
for both classes of seizure and no-seizure. Through it, we note the high level of sensitivity
after data integration which measures the percentage of seizure signals that were classified
as seizure. However, we also observe from the chart that the level of precision slightly
decreased after data integration which measures the proportion of no-seizure signals that
were classified as no-seizure. The reason for this is the presence of artifact signals in the
KAU dataset, which in turn were classified as seizure signals. This problem can be solved
in future work by incorporating a tool into the model that deals with artifact signals. Finally,
we notice an increase in overall accuracy after the data integration process, despite the
decrease in precision, and the reason for this is the high sensitivity.

Figure 6. Average values of experiments before and after data integration for performance metrics.

5.2. Evaluating the Seizure Detection Model

For evaluation and testing, 20% and 30% of the CHB-MIT dataset were used, re-
spectively. The testing data constitutes about 12,000 windows of normal EEG records
(no-seizure class) and about 3004 windows of epilepsy EEG records (seizure class). The
performance was evaluated using the same performance metrics that are used to evaluate
the compatibility framework, which are sensitivity, precision, and accuracy.

A comparison of the proposed model with state-of-the-art methods trained and tested
on CHB-MIT is given in Table 6. As seen, the proposed system outperforms the previous
systems, except for one [18] study. However, when we compare the proposed system with
that study, we find that the study was only tested on 14 of the 23 patients in the dataset, but
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the proposed system was evaluated on all 23 patients. In addition, we find that although
the algorithm for that study is patient-specific, its performance deteriorated significantly for
patient 7, where the sensitivity rate reached 50%, because the duration of epileptic seizures
for this patient was very short. This means that the algorithm works well if the duration of
the seizure is long. However, if the seizure is brief, the accuracy drops dramatically. The
proposed system provides good performance in both cases, whether the duration of the
seizure is long or short, as seen through the sensitivity ratio of the proposed system, which
was tested on all patients and overcame the sensitivity of the previous model.

Table 6. Performance comparison of the proposed model with other systems on the CHB-MIT dataset.

Cite No. of Channels No. of Subjects Sen. PRC ACC Speed of Convergence

[13] 23 channels (in few
cases 24 or 26) 23 - 96.51 96.61 NA

[15] 23 25% of the dataset 91.15 - 95.11 NA

[18] 23 14 specific patients 96.43 - 98.60 NA

[19] 23 channels (in few
cases 24 or 26) 23 82.35 - 96.74 Around 60 epochs

[21] 23 channels (in few
cases 24 or 26) 23 90.97 - - NA

[20] 23 channels (in few
cases 24 or 26) 23 94 - 89 NA

The proposed model 18 channel 23 96.85 96.98 96.87 Around 130 epochs

The uniqueness of the proposed deep-learning model lies in its design topology that
suggests specific types of layers with specific configuration parameters, as in Figure 5,
where the configuration of this model makes it capable of outperforming state-of-the-
art models by combining several advantages in the network design. First, it visually
extracts the signal abnormalities from the 1D-EEG through the Conv1D, which is a visual
neural network. Second, it learns the non-linearity in the EEG signals through swish Relu.
Third, it identifies some distinct features from the higher valued frequencies as being
the most activated frequencies through max-pooling. Fourth, it learns the seizure and
no-seizure events from the contextual information before and after the states of epileptic or
non-epileptic signals in forward and backward propagation directions through Bi-LSTM.
Fifth, it improves the performance of the model significantly by combining attention
with Bi-LSTM to give the relevant components the highest weights during the iterative
re-weighting process.

Since the EEG patterns are highly subject-dependent, the main contribution of the
proposed model is to deal with dual-detection problems (seizure versus non-seizure) based
on using a small number of channels that are common for all patients, not for each patient
separately, to achieve better performances than those of systems of full channels.

A limitation of the proposed model could be the inability to detect the seizure or
no-seizure from the EEG signals with a sample rate of 512 Hz. For further improvement,
the model can be trained using the decimate() method to down-sample the signal that has
a sample rate of 512 Hz, which would enable the model to detect epileptic seizures from
signals with a sampling rate of 256 or 512 Hz.

The model was trained on Google Colab using an Nvidia Tesla K80 GPU. Figure 7
shows the performance of the model by epoch for testing according to the metrics that
were previously used in Table 6 for each class, seizure or no-seizure. We observe that the
convergence of the model occurred at the 130th epoch. Comparing Kaziha et al. [19] with
our model, our method shows a better sensitivity of 96.85% while theirs was 82.35%. One
of the main reasons is that their window size was 100 s, whereas our window size was 10 s,
which in turn takes only the exact seizure intervals.
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Figure 7. The performance metric charts of testing against the epochs.

6. Conclusions

In this research, a compatibility framework for integrating local EEG signals into the
CHB-MIT dataset is proposed. The proposed approach has multiple benefits. First, it
overcomes the problem of data imbalance faced by most of the datasets in the field due to
the low incidence of epileptic signals compared to non-epileptic signals. Second, it allows
the establishment of large datasets by integrating local EEG signals with the available
datasets required by the deep-learning models used to develop seizure detection and
prediction systems. The approach presented in this paper can also be used as a support tool
for researchers in the field to process and read local EEG signals that are of the XLtek type
for which there were no reading functions available in the analysis software packages for
such EEG types. In the end, a set of experiments carried out to examine the data integration
using the proposed framework proved its feasibility and usefulness.

In addition, an automated epilepsy detection system that is based on some chan-
nels was proposed. This system deals with dual-detection problems (seizure versus non-
seizure). The proposed system uses a wavelet decomposition technique and a simple
one-dimensional convolutional neural network, along with bidirectional long-short-term
memory and attention, to receive EEG signals as input data, pass them to various layers, and
finally make a decision via a dense layer. This model can assist neurophysiologists to detect
the seizures and significantly decrease the burden, while also increasing the efficiency.

There are several future suggestions regarding the proposed model. One such sug-
gestion is that it could be incorporated into a wearable device for patients, considering
the storage and memory requirements. Another suggestion is the possibility of deploying
the system in a central cloud environment for rapid access via mobile devices without
using specific wear-and-tear devices. The EEG signal that is considered as the input data
is small in size and the proposed model is portable, which makes it appropriate for cloud
deployment. The EEG signals are easily transferred to the cloud for processing in real-time
as it can issue a warning alarm to notify the doctors/patients if needed. The proposed
system can be used to implement expert systems for similar disorders that include EEG
brain signals.
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Abstract: Epilepsy is a chronic neurological disorder caused by abnormal neuronal activity that
is diagnosed visually by analyzing electroencephalography (EEG) signals. Background: Surgical
operations are the only option for epilepsy treatment when patients are refractory to treatment, which
highlights the role of classifying focal and generalized epilepsy syndrome. Therefore, developing
a model to be used for diagnosing focal and generalized epilepsy automatically is important. Methods:
A classification model based on longitudinal bipolar montage (LB), discrete wavelet transform
(DWT), feature extraction techniques, and statistical analysis in feature selection for RNN combined
with long short-term memory (LSTM) is proposed in this work for identifying epilepsy. Initially,
normal and epileptic LB channels were decomposed into three levels, and 15 various features were
extracted. The selected features were extracted from each segment of the signals and fed into
LSTM for the classification approach. Results: The proposed algorithm achieved a 96.1% accuracy,
a 96.8% sensitivity, and a 97.4% specificity in distinguishing normal subjects from subjects with
epilepsy. This optimal model was used to analyze the channels of subjects with focal and generalized
epilepsy for diagnosing purposes, relying on statistical parameters. Conclusions: The proposed
approach is promising, as it can be used to detect epilepsy with satisfactory classification performance
and diagnose focal and generalized epilepsy.

Keywords: electroencephalography (EEG); epilepsy; long short-term memory (LSTM); theta frequency
band; longitudinal bipolar montage (LB); signal processing; classification

1. Introduction

Epilepsy is a chronic disorder inducing subjects to experience seizures, leading to
cognitive impairments, medical and psychiatric comorbidities, social stigmatization, and,
in general, poor quality-of-life (QOL) [1]. A recent study reported that the prevalence of
lifetime epilepsy was 7.8 per 1000 individuals in Malaysia in 2021 [2]. Diagnoses of epilepsy
are basically clarified by an epileptologist based on a clinical assessment, neuro imaging,
and the visual detection of interictal epileptiform discharges (IEDs) appearing in 30% of
cases in their electroencephalography (EEG) signals [3]. EEG reveals a general overview of
neuronal activity in disparate cortical regions by representing potential differences between
certain areas of the brain and a determined reference on the head surface in timeseries
data [4]. According to [5], known epilepsy is classified into two categories based on the
clinical symptoms and the localization of manifested abnormalities in EEG. These epilepsy
categories are focal epilepsy, which involves the partial region of the brain, and generalized
epilepsy, which affects all regions of the brain. Although anti-seizure drugs (ASDs) are
vastly used to control the number of seizures, about one-third of epileptic patients in the
world are refractory to treatment, and surgical operation in which the epileptogenic foci
need to be removed is the only option. As a result, detecting the affected area linked with
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the seizure onset zone plays a pivotal role in the process of treatment [6]. The challenge to
the diagnosis phase mostly arises from the need to assess long-term EEG recordings, which
is time-consuming and prone to inaccuracy due to human error. Consequently, training
models for IED observation may be useful in the diagnosis process, especially at times
when an epileptologist is unavailable.

Literature shows that the focus in the majority of epilepsy studies is summarized
in seizure detection using machine or deep learning techniques to determine the type of
epilepsy [7]. This study is concentrated on interictal duration and in the cases in which IEDs
are not necessarily available. Diagnosing different types of epilepsy does not solely depend
on analyzing EEG signals for discovering IEDs. In this regard, machine learning techniques
are used in analyzing epileptic EEG signals. The analysis comprises the following main
steps: pre-processing, feature extraction and classification.

Feature extraction of machine learning technique is done in time, frequency, or time–
frequency domains [8]. Time–frequency methods such as flexible analytic wavelet trans-
form [9,10], short-time Fourier transform [11], discrete wavelet transform (DWT) [12],
Hilber Huang transform [13], and empirical mode decomposition [14] have been consid-
ered for diagnosing epilepsy. Automatic focal and non-focal epilepsy were detected using
entropy-based features from flexible analytic wavelet transform in [10]. Wavelets, scatter
matrices, and quadratic classifiers were, respectively, employed for feature extraction,
feature dimensionally reduction, and classification in [15] in order to classify EEG signals
to detect epileptic seizures. The study reached a 99% accuracy in distinguishing healthy
controls from subjects with epilepsy, with or without seizures. An interictal seizure-free
period has been analyzed by [16] using triggering signals of intermittent photic stimulation
(IPS) reporting frequency domain features; the theta band is the most fitting feature in
diagnosing generalized epilepsy in the visual cortex. This classification has been done with
a support vector machine (SVM) in 18 Hz IPS, reaching the best discrimination between
groups. The authors in [17] in 2017 introduced a statistical-based solution to overwhelm the
empirical or arbitrarily determination of the level of decomposition in wavelets. The study
reached an accuracy of more than 80% in detection using an SVM for two datasets: Bern
Barcelona and University of Bonn. The authors in [18] evaluated different wavelet families
using a probabilistic neural network (PNN) and an SVM. The study reported Coiflet as the
best wavelet family in diagnosing epilepsy. Literature shows that the SVM is a valuable
tool and is vastly used as a valuable classifier in a variety of clinical diagnostic research [19].

After feature extraction, feature dimensionality reduction is a vital step in analyzing
signals in cases where we want to reduce irrelevant features and determine the most effec-
tive ones with a high model performance. This can be done through various methods such
as feature selection or a combination of features, both of which rely on mathematical solu-
tions behaving as filters, wrappers, and embedded strategies [20,21]. Detecting epileptic
seizures with a focus on feature selection based on fuzzy membership was achieved in [22].
The authors in [23] conducted a comparative study to analyze discriminative features using
various feature selection techniques in epilepsy. A method for EEG feature selection was
introduced in [24] via stacked deep embedded regression with joint sparsity.

Classification steps have been taken by a variety of linear and non-linear classifiers,
such as the decision tree [25], logistic regression [26], the k-nearest neighbor, the support
vector machine [27], Naive Bayes [28], and artificial neural networks [29–31], or deep
learning [32]. Artificial intelligence encompasses a variety of areas, and one of them
is deep learning (DL). Before the rise of DL, conventional machine learning algorithms
involving feature extraction were used. Their performance was limited to the ability of
those handcrafting the features. However, in DL, the extraction of features and classification
are entirely automated. These techniques have made significant advances in many areas of
medicine, such as in the diagnosis of epileptic seizures.

The drawback of machine learning algorithms, albeit still beneficial, is that their
performance is limited to the ability of those handcrafting the features [33]. Artificial
intelligence encompasses a variety of areas, and one of its branches is deep learning. The
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priority of deep learning compared to machine learning is that the extraction of features and
classification are entirely automated. The paper cited above comprehensively revies deep
learning techniques in epilepsy studies from 2016 to 2021 using EEG and neuroimaging
techniques with a focus on seizure detection. The review represented the available epilepsy
datasets, such as Freiburg, CHB-MIT, and Bonn. It was reported that the majority of
researchers employed their own clinical dataset. With a focus on EEG and epilepsy, the
paper represented the definition of some of the high-usage deep learning models: one-
dimensional convolutional neural networks (1D-CNNs), recurrent neural networks (RNNs)
and two of its branches, long short-time memory (LSTM) and gated recurrent units (GRUs),
autoencoders (AEs), CNN-RNNs, and CNN-AEs. The paper collected 24 papers on EEG
signals in epilepsy detection using 1D-CNNs. The studies used 4–33 layers for their models
and found diagnosis accuracies ranging from 79.34% to 99.28% (with one reaching 100%)
using mostly Softmax and in some cases SVM classifiers. In 15 studies that applied an RNN
and its different branches, mainly LSTM, the accuracy reported was superior (from 84.35%
to 98.91% and one 100%) to the CNN. The papers mostly used 4 layers (minimum 3,
maximum 48 layers) for their models and mainly used using Softmax and Sigmoid, with
one study using multilayer perceptron (MLP) classifiers.

An RNN is developed to process timeseries data through cyclic connections based on
feedforward neural networks. The method has been vastly used for seizure prediction with
classification approaches. The history of input in an RNN is mapped in order to predict
each output by weighting the temporal relationships between the data at each time point.
The issue is that a vanishing gradient problem causing the given input influences hidden
and output layers, thus decaying or exploding exponentially over time [34]. One of the
popular solutions for this is to use LSTM. RNN-LSTM consists of connected subnetworks
called a memory block, which remembers inputs for a long time. The authors in [35] used
a combination of a 1D-CNN and LSTM for epileptic seizure detection. The authors in [36]
investigated the automatic detection of epilepsy by a CNN-LSTM using the University of
Bonn dataset and reached an accuracy of more than 80%. CNN-LSTM was further used
in [37] on the same dataset to detect epileptic seizures, approaching a 99.71% accuracy, with
a focus on the Tunable-Q Wavelet Transform (TQWT) in feature extraction. Using time
series data and LSTM to analyze sequenced data, the authors in [38] were able to introduce
a hybrid model by a dense convolutional network and LSTM using information transferred
from DWT to images for prediction purposes.

In the present study, a model using RNN-LSTM is proposed for distinguishing normal
subjects from subjects with epilepsy without observing IEDs. The model is further validated
by correctly diagnosing focal and generalized epilepsy. Hence, retrospective EEG data
from normal subjects and patients with focal and generalized epilepsy were used. The
data of normal subjects and focal epilepsy patients were used for classification purposes,
whereas the data of focal and generalized epilepsy patients were used for validating our
classification model. After pre-processing using DWT, a longitudinal bipolar (LB) montage
was calculated for all groups. Next, features were extracted in time and frequency domains
for further selection based on p-values of Pearson’s linear correlation coefficient. Signals
were segmented, and the network was trained by a sequence of selected features extracted
from each segment. Instead of raw signals, we used features extracted from segments as
sequenced data to feed the network. The optimal group of features and the best model
are employed to diagnose focal and generalized groups via classifying their LB channels
as epileptic or normal, as depicted in Figure 1. The findings reveal that the proposed
classification model is effective in detecting epileptic signals from normal signals and
diagnosing focal and generalized epilepsy.

26



Sensors 2022, 22, 7269

Figure 1. A flowchart of the study.

2. Materials and Methods

2.1. Dataset

In this study, two sets of data were used for two purposes: to train the classification
model (classification approach) and to validate the model (diagnosing approach). EEG data
were collected from the hospital Canselor Tuanku Muhriz (HCTM) in Cheras, Malaysia.
In the classification approach, the focus is classification between normal and epileptic
subjects. In this regard, the temporal lobe channels of 42 patients suffering from non-
lesional temporal lobe epilepsy (TLE) and the temporal lobe channels of 62 normal subjects
were used. In the diagnosing approach, i.e., distinguishing between focal and generalized
epilepsy, whole EEG channels of 50 patients with generalized epilepsy and whole EEG
channels of 42 TLE patients were used. Some generalized patients had a normal EEG and
were diagnosed as generalized epilepsy patients based on clinical symptoms. EEG was
recorded from Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5, T6, O1, and O2: a total
of 16 electrodes via the Nicolet EEG device based on the 10–20 EEG standard electrode
placement system for each case. For the measurement of EEG signals, subjects (male and
female; age: 36.90 ± 13.40) were prepared to contain a contact impedance of less than
5 kΩ and recorded at a 500 Hz sample rate, and data recording was done during a resting
state. The affected channels in the TLE cases were deemed as the epilepsy group, and the
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same channels in the normal cases were deemed as the normal group. From EEG reports
and patients’ clinical profiles, we determined that the placements of the affected channels
were identified by neurologists in the inferior, mid, and superior areas of the temporal
gyrus, i.e., in the right, left, or both hemispheres reflected in specific EEG channels under
LB montage: Fp1-F7, F7-T3, T3-T5, T5-O1, Fp2-F8, F8-T4, T4-T6, and T6-O2. The affected
channels were referred to as the channels with epilepsy localization. Therefore, the montage
was calculated for 10 s of all datasets, 51 affected channels were identified as the epilepsy
group, and 62 channels of the same regions were considered as the normal group. This
data were studied to train our network. In the final stage, the classification model was
validated by testing all LB channels from 50 generalized patients and the same 42 TLE
patients (lateralized TLE and both hemispheres affected). The classification model and all
EEG analysis were implemented via MATLAB (R2020a).

2.2. Pre-Processing

Pre-processing focused on signal preparation in the aspect of eliminating artifacts due
to muscular movement and blinking as well as swallowing manually. DWT using coif3
from the Coiflet family was applied to 10 s of raw signals for both the epileptic and the
normal groups to eliminate power line noise by three levels of signal decomposition [39].
A longitudinal bipolar montage was calculated for each group by subtracting the amounts
of potential differences between pertinent electrodes [40]. Figure 2 demonstrates the LB
montage and the calculation details. In the figure, the cross mark represents the placement
of the reference (Ref) while recording EEG signals—somewhere between the frontal lobe
and central sulcus. LB consists of 18 channels; in this study, only 16 channels in the left
and right posterior and anterior regions were calculated, and the leads Fz, Cz, and Pz
were ignored.

Figure 2. Longitudinal bipolar montage calculation separated in the left and right posterior and
anterior areas.

LB calculation is defined by replacing targeted leads, as shown by arrows in Figure 2,
with the original reference during the EEG recording. For instance, for calculating Fp1-F7
as the first LB channel, first the potential difference recorded from both leads must be
added by the amount of the original Ref. The new F7 should then be considered as the
new reference for Fp1. This means that the value of F7 must be subtracted from the value
of Fp1. In this study, due to the deficiency of the original Ref value, this amount was
considered as a common subtracted value in LB calculation. Figure 3 represents 10 s of
normal and epileptic EEG signals from one LB channel in the temporal region. Figure 4
exhibits a sample of de-noised generalized and TLE EEG data based on an LB montage.
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Figure 3. Samples of raw signals (top) and de-noised signals (down) of normal (a) and epileptic (b)
signals recorded from T4−T6. The X-axis shows the potential difference (μv).

Figure 4. Generalized epilepsy (left) and TLE (right) samples based on the LB montage.

2.3. Feature Extraction

Fifteen features in the time and frequency domains were extracted from each channel
of both the epileptic and normal group: mean, standard deviation (STD), peak-to-peak
(P2P), min, max, skewness (Skew), kurtosis (Kurt), peak-to-root sum square (P2RMS), root
sum square (RSS), power of delta frequency band (delta; 1–4 Hz), power of theta frequency
band (theta; 4–8 Hz), power of alpha frequency band (alpha; 8–14 Hz), power of beta
frequency band (beta; 14–30 Hz), and power of gamma frequency band (gamma; over
30 Hz). Figure 5 exhibits a sample of the power spectrum density for one epileptic channel
and one normal channel.
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Figure 5. A Sample of power spectral density for one normal channel (a) and one epileptic (b) channel.

2.4. Feature Selection

Pearson’s rank correlation coefficients between all pairs of variables were calculated.
The hypothesis test was considered in order to determine which correlations are signifi-
cantly different from zero. Features with p-value <0.05, i.e., theta, alpha, beta, mean, min,
skew, and kurt, were considered if they show a high classification performance. In addition,
the features with the lowest correlation (≤20%) were considered, and the features with
a high correlation (≥80%) were added separately to the group. Therefore, three groups of
five features with low correlations were considered to feed the network.

2.5. Classification Model Using RNN-LSTM

In this research, we used the RNN-LSTM architecture to identify epilepsy and diagnose
focal and generalized epilepsy. Hence, the network was implemented with five layers:
a sequence input layer, a bidirectional LSTM (BiLSTM) layer with 200 hidden units, a fully
connected layer, a SoftMax layer, and a classification output layer. Table 1 represents
the details of deep learning layers, values, and descriptions for training the network.
The network is fed based on 10-fold cross validation achieved by 80% of the data for
training and the remaining 20% was used for testing. EEG signals were segmented with
50% overlapping—1 s for each. Three groups of features were extracted from each segment.
The model was trained by each group of features. The model with the best performance
was considered as our classification model. In the next stage of the study, the classification
model was applied to all LB channels of the focal and generalized epilepsy groups. The
overall value of infections for each channel for each group was then calculated, separately.
The variance of the overall values, which shows that the channel is affected, was measured
for each channel of both groups. A high variance indicates that some channels are affected
more than others by our model. Focal and generalized epilepsy cases were encountered
when features had high and low variance; respectively. This was used as to validate our
classification model.

Table 1. Deep learning layers and network training options.

Deep learning Layers Value Description

BiLSTMLayer BiLSTM with 200 hidden units Output Mode: Last

FullyConnectedLayer 2 fully connected layers

SoftmaxLayer Softmax

ClassificationLayer Crossentropyex
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Table 1. Cont.

Training Option Value Description

ADAM - Adoptive moment estimation—Optimization Algorithm

MaxEpochs 30 30 passes through the training data in the network

MiniBatchSize 150 Leads the network to look at 150 training signals at a time

InitialLearnRate 0.01 Assists to speed up the training process

GradientThreshold 1 To stabilize the training process by preventing gradients
from becoming too large

3. Results and Discussion

3.1. Classification Approach

Figure 6a shows the significance level for the correlation tests specified as a scalar
between 0 and 1, representing a low or high correlation, respectively. Negative values
show a negative correlation among the relevant features. The figure shows the correlation
between two features in the group. As shown, there are three strong correlated group of
features surrounded by red boxes that need to be chosen individually, while the rest in these
boxes are dropped out [41]. In addition, there are seven features where p < 0.05, i.e., theta,
alpha, beta, mean, min, skew, and kurt, indicating significant features for discrimination
(Figure 6b). In addition, a high correlation between the power of frequency bands restricted
us from introducing three groups of features separated by theta, alpha, or beta. Therefore,
we will have three groups of features with theta, alpha, and beta added separately to the
mean, min, skew, and kurt.

Figure 6. Correlation coefficient among features (a), p-value for each feature in group (b).

The ability of the model performance for discrimination has been characterized by
sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive
value (NPV), referring to Equations (1)–(5), respectively. The sensitivity presents the
percentage of detecting case subjects, while specificity emphasizes the ability to detect
normal subjects. The accuracy is the amount of total detection for both patients and normal
subjects from the study population. PPV and NPV represent the proportion of subjects
with a positive test result who actually have the disease and those with a negative result
who do not have the disease, respectively.

Sensitivty =
TP

TP + FN
× 100 (1)
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Specificity =
TN

TN + FP
× 100 (2)

Accuracy =
TP + TN

TN + FP + TP + FN
× 100 (3)

PPV =
TP

TP + FP
× 100 (4)

NPV =
TN

FN + TN
× 100 (5)

where TP is true positive, representing patients that were correctly diagnosed among the
patients, TN is true negative, indicating the number of normal subjects that were correctly
diagnosed among normal subjects, FN is false negative, showing the number of subjects
wrongly diagnosed as normal among the patients, and FP is false positive, representing
the number of subjects wrongly diagnosed as patients among the normal subjects. Table 2
presents the network performance for three groups of features. It seems that the discrimi-
nation ability using the first group, highlighted in the table, is higher than the rest. Table 3
shows the details of the confusion matrix for three groups of selected features. The table
shows that the model can detect epilepsy well, but there is still some confusion in detecting
some samples. The model based on the features of Group 1 incorrectly detected three
samples as epileptic instead of normal, and it detected only one normal sample as epileptic.
Similarly, with the features of Group 3, there were significantly more false negatives than
there were false positives. In contrast, the features of Group 2 led to the opposite balance,
where the number of normal samples detected as epileptic was slightly higher. In general,
the model behaved better using the features of Group 1, with emphasis on the power of the
theta frequency band.

Table 2. The performance of the network in distinguishing normal subjects from epileptic subjects in
the training stage.

Groups of Features Acc (%) Sen (%) Spc (%) PPV (%) NPV (%)

Group 1: mean, min, skew, kurt, theta 96.1 96.8 97.4 98.4 92.7
Group 2: mean, min, skew, kurt, alpha 90.4 94.0 85.4 91.0 89.7
Group 3: mean, min, skew, kurt, beta 91.4 87.3 97.6 98.0 82.0

Table 3. The details of the confusion matrix for the three groups of features.

Predicted Classes

Group 1 Group 2 Group 3

Epileptic Normal Epileptic Normal Epileptic Normal

Actual
Classes

Epilepsy 38 1 35 6 40 1

Normal 3 62 4 59 8 55

3.2. The Diagnosing Approach

The classification model was applied to each LB channel of EEG recordings from
subjects with generalized and focal epilepsy. Figure 7 illustrates the result of the classi-
fication model for both groups by presenting the percentage of affected channels in the
left or right posterior or anterior LB montage. Regarding focal epilepsy, the majority of
the left and right posterior LB channels were diagnosed as affected in over 60% of the
study population. Moreover, in the same group, all anterior LB channels were classified
as affected in approximately 50% of the study population. In contrast, the generalized
epilepsy findings indicate that affected LB channels were affected at a slightly constant
rate in approximately 50% of its population. The average (55.59%) and variance (272.14) of
detection for focal epilepsy, and the average (44.01%) and variance (51.05) of detection for
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generalized epilepsy, validate the classification model as a promising tool for distinguishing
epileptic signals from normal signals without analyzing IEDs.

Figure 7. The result of the classification model for focal (blue) and generalized (grey) groups in
classifying each channel as affected channels. The X-axis represents LB channels categorized in the
left and right posterior and anterior areas. The Y-axis represents the percentage of affected channels
according to the population of each group.

Figure 7 appears to indicate that the temporal lobe is not the only region affected in
TLE, and the frontal area may be involved in this type of epilepsy. TLE is associated with
long-term memory dysfunction [42]. The frontal lobe is related to cognition comprising
executive skills as well as memory [43]. Evidence from neurophysiological and neuroimag-
ing literature confirms the deficiency in executive function in the frontal lobe and working
memory in TLE cases. The facts support this part of our study achievement.

Turning back to feature extraction step, the power of the theta frequency band were
more effective in the classification model compared to the alpha and beta frequencies,
albeit being accompanied with four other features (mean, min, skew, and kurt). There
is an assumption that epilepsy characteristics are related to theta band connectivity in
patients suffering from epileptic seizures [44]. A systematic review confirmed a consistent
association between the theta frequency band and idiopathic epilepsy [45]. The authors
in [46] reported an increment in theta activity during resting states in patients with major
epilepsy syndromes. A diagnostic epilepsy study worked on the spectral power of different
frequency bands in controls, patients with well controlled idiopathic generalized epilepsy,
and drug-resistant patients. The study confirmed a higher interictal EEG spectral power in
all frequency bands, and the reported frequency band were useful in diagnosing epilepsy.

Furthermore, the hippocampus has been claimed as the main structure involved
in generating theta oscillations [47]. In 2021, the authors in [48] assessed the effects of
hippocampal stimulation by inducing theta frequency, resulting in convulsion elimination.
The authors in [49] conducted a successful animal study using deep brain stimulation
(DBS) in attenuating seizures in TLE. The hypothesis was the reversal of the effects of
stimulation augmentation of the hippocampal theta oscillation. Moreover, it was reported
that epileptic seizures occur less often during waking periods or paradoxical sleep period
and in conditions when the hippocampal theta rhythm can be observed.

4. Conclusions

In this work, we defined two approaches in proposing a classification model for
detecting epilepsy. The first approach was an essential one (the classification approach),
and the second approach (the diagnosing approach) was focused on using the model to
diagnose focal and generalized epilepsy using statistics. In the classification approach,
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brain signal processing techniques were implemented for signal pre-processing. De-noising
signals and discovering affected channels were performed via DWT and LB montage
calculation, respectively. Feature extraction was performed using methods in the time
and frequency domains. Feature selection was performed using correlation coefficients.
Classification was performed using RNN-LSTM. In this approach, the first aim is to find
optimal features in distinguishing epileptic subjects from normal subjects, whereas the
second aim is to extract features from segmented EEG signals. Continuous features are fed
to the network. In the diagnosing approach, the best classification model was used for each
LB channel of focal and generalized epilepsy subjects. The variance of the overall affected
channels represented the type of epilepsy, where a high and low variance refers to focal and
generalized epilepsy, respectively. In this work, three groups of EEG data were considered:
normal subjects (non-epilepsy) and subjects with focal (TLE) and generalized epilepsy.
Affected channels were collected from subjects without epilepsy and with focal epilepsy
using the classification approach, whereas subjects with focal and generalized epilepsy
were considered in the diagnosing approach. The results show that the best classification
model was achieved through employing mean, min, skewness, kurtosis, and the power of
the theta frequency band, with 96.70% accuracy, 94.44% sensitivity, and 97.6% specificity.
Furthermore, it seems that the theta frequency band was more successful than alpha and
beta in the detection procedure. The results show a remarkable difference in variance
in the diagnosing approach via the proposed classification model. The most important
limitation here is the potential lack of IEDs in epileptic EEG signals during interictal
periods. Therefore, confident affected signals according to EEG reports were considered
as a reference for training network. Furthermore, we could not test the model for other
different types of focal lobe epilepsy due to the lack of data caused by a lower prevalence.
In our study, we used affected signals from TLE cases because TLE is significantly prevalent
in the HCTM dataset. TLE is also known as one of the most common causes of focal
epilepsy and one of the most frequent indications of epilepsy surgery. Therefore, TLE
became the only option for checking the validity of the model in the diagnosing approach.
There is a thread to validate in the classification stage. Despite the selected features that
significantly distinguished epileptic subjects from normal subjects, the validation may
become confronted with a lower variance in diagnosing focal versus generalized epilepsy
by increasing the amount of data. In future work, investigation on more data is suggested.
Moreover, it would be beneficial not to combine both hemispherical focal epilepsy in
the same diagnosing process. The model then might be needed to optimize the internal
parameters that indicate the affected hemisphere.
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Abstract: There is high demand for techniques to estimate human mental workload during some
activities for productivity enhancement or accident prevention. Most studies focus on a single
physiological sensing modality and use univariate methods to analyse multi-channel electroen-
cephalography (EEG) data. This paper proposes a new framework that relies on the features of hybrid
EEG–functional near-infrared spectroscopy (EEG–fNIRS), supported by machine-learning features
to deal with multi-level mental workload classification. Furthermore, instead of the well-used uni-
variate power spectral density (PSD) for EEG recording, we propose using bivariate functional brain
connectivity (FBC) features in the time and frequency domains of three bands: delta (0.5–4 Hz), theta
(4–7 Hz) and alpha (8–15 Hz). With the assistance of the fNIRS oxyhemoglobin and deoxyhemoglobin
(HbO and HbR) indicators, the FBC technique significantly improved classification performance at a
77% accuracy for 0-back vs. 2-back and 83% for 0-back vs. 3-back using a public dataset. Moreover,
topographic and heat-map visualisation indicated that the distinguishing regions for EEG and fNIRS
showed a difference among the 0-back, 2-back and 3-back test results. It was determined that the best
region to assist the discrimination of the mental workload for EEG and fNIRS is different. Specifically,
the posterior area performed the best for the posterior midline occipital (POz) EEG in the alpha band
and fNIRS had superiority in the right frontal region (AF8).

Keywords: sensor fusion; mental workload; n-back; artificial intelligence; feature engineering

1. Introduction

Mental workload refers to the amount of working memory required to complete a task
in a specified time. Its assessment has attracted many researchers, and workload has been
characterised by a variety of physiological sensor data. Investigation of mental workload in
neuroscience is significant for a variety of reasons. First, a person’s high cognitive workload
will affect learning capacity and cause distraction [1]. Second, since there is a limit to the
size of a cognitive workload, there is also a limit to an individual’s performance in a given
cognitive activity [2]. As a result, assessing mental workload is important for preventing
accidents in many areas [3]. Table 1 compares various popular neuroimaging modalities
for evaluating mental workloads: such as functional near-infrared spectroscopy (fNIRS),
electroencephalography (EEG)/Magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and position emission tomography (PET).

Because it has the advantages of low cost and high temporal sampling rate, EEG
has been well-accepted in the field of disease prediction [4], sleep stages [5], and brain
stimulation for different neurological workloads [6] as well as mental workload eval-
uation [7]. A substantial number of studies have reported a significant EEG spectral
correlation with workload in stereotypical frequency bands: such as delta (1–4 Hz), theta
(4–7 Hz), alpha (8–15 Hz), and beta (16–31 Hz) [8–10]. Several popular machine learning
methods have been applied using EEG features such as support vector machine (SVM) [11],
naive bayes [3] and linear discriminant analysis (LDA) [12,13]. Although those meth-
ods achieved satisfactory mental workload classification results, it was notable that most

Sensors 2022, 22, 7623. https://doi.org/10.3390/s22197623 https://www.mdpi.com/journal/sensors
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EEG-based features were extracted from a single channel that was univariate-based and
neglected association between channels. As a multivariate approach, functional brain con-
nectivity (FBC) is statistically interdependent among spatially distant neurophysiological
regions [14–16]. It has been proven that FBC reveals the underlying function of differ-
ent brain regions and their complex cortical intercommunication, which helps improve
understanding of many neurological conditions including brain-related disorders and
emotions [15–17]. Kakkos et al. [7] fed univariate spectrum power features and FBC estima-
tions from EEG into several machine-learning classifiers and achieved promising results in
two-level workload discrimination. However, the potential of FBC in multiclass workload
classification problems, particularly in combination with other sensing modalities, has not
been fully explored.

Table 1. Comparison of four neuroimaging techniques.

Specification fNIRS EEG/MEG fMRI PET

Spatial resolution 2–3 cm 5–9 cm 0.3 mm voxels 4 mm

Penetration depth Brain cortex
Brain cortex for

EEG/deep structures
for MEG

Whole head Whole head

Temporal sampling rates ≤10 Hz >1000 Hz 1–3 Hz <0.1 Hz

Range of possible tasks Enormous Limited Limited Limited

Robustness to motion Very good Limited Limited Limited

Range of possible
participants

Everyone Everyone
Limited, can be
challenging for

children/patients
Limited

Sounds Silent Silent Very noisy Silent

Portability
Yes, for portable

systems
Yes, for portable EEG

systems None None

Cost Low Low for EEG; high for
MEG High High

In recent decades, fNIRS has grown rapidly as a tool for monitoring functional brain
activity in a wide range of applications and populations. fNIRS devices detect two hemody-
namic signals, oxygenated (HbO) and deoxygenated (HbR) hemoglobin, from the cortical
surface at a spatial resolution of 2–3 cm [18–20]. One of the main reasons for the increased
interest in using fNIRS for cognitive activities is that it is resistant to motion artefacts [21],
which is usually a big problem for EEG data acquisition. Furthermore, fNIRS can be more
precise in brain activation areas due to its relatively high spatial resolution. As a result,
fNIRS overcomes some shortcomings of EEG. The importance of including both HbO and
HbR for analysis has been emphasised by a few studies because their combination provides
a more comprehensive assessment of cortical activation [22–25]. The majority of related
studies has focused on using mean values [26,27], standard deviation [27] and slope [22,25].

Some researchers explored the effectiveness of using both EEG and fNIRS information
for n-back workload classification. Liu et al. [28] employed LDA and obtained 68.1%
classification accuracy in the n-back working-memory task using a combined EEG–fNIRS
approach, but it used univariate features based on a single channel. Saadati et al. [29] used
deep neural networks and hybrid EEG–fNIRS features. It was claimed that the classification
accuracy is considerably higher than that of EEG or fNIRS alone. However, there is very
limited research on EEG brain connectivity combined with fNIRS, so the potential of using
both signals to discriminate multi-level workloads requires further exploration.

In this paper, we propose a hybrid EEG–fNIRS approach to discriminate among multi-
level mental workloads: univariate frequency and bivariate FBC features are extracted
from EEG, and biomarkers of HbO and HbR are estimated from fNIRS. Overall, combining
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EEG and fNIRS tended to provide two distinct sources of information on the brain includ-
ing electrical activity and hemodynamic responses; this combination has the benefits of
non-invasiveness, robustness to motion, availability for all possible participants, silence,
portability and cost-effectiveness. The novelty of this study is summarised in four folds:

• To the best of the authors’ knowledge, this study is the first to use combined features
of EEG-based FBC and fNIRS for workload estimation.

• This paper explores different linear and nonlinear FBC representations in the time and
frequency domains with their associated effect on classification accuracy.

• This study reports the contribution of different regions to the classification accuracy of
the two sensing modalities.

• Topographic and heat maps were used to reveal distinct areas where the greatest
change occurred at different workload levels.

2. Materials and Methods

As shown in Figure 1, the proposed framework contains four main steps: data prepro-
cessing, feature extraction, feature selection, and machine-learning classification. The detail
of each step is as follows:

Figure 1. Flowchart of the proposed framework. The pipeline contains four main steps: pre-
processing, feature extraction, feature selection and machine-learning classification.
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2.1. Dataset

This study made use of a dataset gathered by Shin et al. [30] at the Technische Uni-
versität Berlin. The dataset comprised scalp recordings—30 EEG channels and 36 fNIRS
channels—for mental workload during n-back tasks. The channels and their locations are
shown in Supplementary Figure S1. These activities were divided into four categories:
0-, 2-, and 3-back tasks, as well as rest between tasks. Twenty-six healthy, right-handed
people took part, and the dataset was divided into three sessions, each with three randomly
organized sets of 0-, 2-, and 3-back tasks, meaning that each participant completed nine
sets of n-back tasks. A single task consisted of a 2 s instruction indicating the type of task
(0-, 2-, or 3-back), a 40 s task period that consists of 20 trials, a 1 s stop period, and a 20 s
rest period (see Figure 2). Therefore, there were 26 × 3 × 9 = 702 tasks available for all
participants. All EEG and fNIRS signals were captured at the same time.

Figure 2. Layout of a set in the experiment. A single task consisted of a 2 s instruction indicating the
type of task (0-, 2-, or 3-back), a 40 s task period that consisted of 20 trials, a 1 s stop period, and a 20 s
rest period. Each participant completed nine sets of n-back tasks.

2.2. Signal Preprocessing and Feature Extraction
2.2.1. fNIRS

fNIRS data were preprocessed using the BBCI toolbox in MATLAB R2019b [31]. The
sampling rate was 10 Hz. Initially, HbR and HbO values were calculated using the modified
Beer–Lambert equation (mBLL) from the fNIRS optical density [32]. A sample of HbR
and HbO values for each participant is shown in Supplementary Figures S2 and S3. Data
augmentation was performed to create small informative segments. To reduce noise
and artefacts, fNIRS signals were passed through a third-order digital Butterworth filter
between 0 and 0.04 Hz. Additionally, baseline correction was applied to the fNIRS signals
to remove the intra-individual variance of the starting values. In this step, the segments
were normalised by subtracting the median value of the pre-stimulus baseline from the
signal in each segment [8].

It should be noted that there was a general 6 s delay between the stimulus representa-
tion and peak cortical hemodynamics. This delay was determined by the task and HbR
and HbO concentrations. Normally, the cerebral hemodynamic response does not return
to baseline until 10 s after stimulus presentation. However, agreement on an ideal time
window for analysis had yet to be reached because the best temporal length depended on
the paradigm used and participant characteristics, such as age [21]. This paper conducted
a sensitivity analysis to identify the optimal time window to produce the most accurate
mental workload estimate and a size of 5s was used. The window slides through the whole
40 s period with a 1 s step. This analysis was performed independently for each participant.

2.2.2. EEG

EEG data were also preprocessed using the BBCI toolbox in MATLAB R2019b, and
resampling was done at 200 Hz. The improved weight-adjusted second-order blind identifi-
cation (iWASOBI) method in the automatic artifact removal (AAR) toolbox in EEGLAB was
used to gain ocular artifact rejection. Initially, data augmentation was done by segmenting
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data samples into smaller but still informative segments. Then, the data were bandpass-
filtered between 1 and 45 Hz using a third-order Butterworth digital filter. The EEG epochs
were extracted from −500 to 6000 ms with respect to the onset of every stimulus. Power
spectral density (PSD) was calculated for three frequency bands of EEG recordings: delta
(0.5–4 Hz), theta (4–7 Hz), and alpha (8–15 Hz) since previous studies indicated that low-
frequency information made more contributions for measuring mental workload [7,33]. The
FBC was estimated using four methods: Pearson correlation coefficient (PCC), mutual infor-
mation (MI) in the time domain, magnitude squared coherence (MSC), and phase-locking
value (PLV) in the frequency domain. The principal details are given as follows:

The PCC was able to evaluate the linear interdependency between two signals in the
time domain and ranged from −1 to +1. The correlation coefficient between signals x and
y were

ρxy =
E
[
(x − μx)

(
y − μy

)]
σxσy

(1)

where E is the expected value; μx and μy are the mean values; and σx and σy are the
standard deviations of the x and y time series.

MSC is a linear method to estimate interconnections between two signals in the
frequency domain calculated by PSD. The MSC of signals x and y can be written as

MSCxy( f ) = C2
xy =

Sxy( f )2

|Sxx( f )| × ∣∣Syy( f )
∣∣ (2)

where Sxx( f ) and Syy( f ) are the PSDs of signals x and y, respectively; and Sxy( f ) is the
cross PSD at frequency f .

According to information theory, the MI of two random variables, x and y, shows how
one is informative for the other one. Let, P(x) and P(y) be the probability distributions of
random variables x and y, respectively. The entropy of x and y is defined as

H(x) = −∑N
j=1 P

(
xj
)

logb
(

P
(
xj
))

(3)

H(y) = −
N

∑
j=1

P
(
yj
)

logb
(

P
(
yj
))

(4)

where N defines window length. H(y|x) and H(x, y) represent conditional entropy and
joint entropy between x and y, defined respectively as

H(x, y) = −Ex
[
Ey[ logb P(x, y)]] (5)

H(y|x) = −Ex
[
Ey[ logb P(y|x)]] (6)

where E is the expected value function. The MI of two random variables x and y is
computed as follows

MI(x, y) = H(x) + H(y)− H(x, y) = H(y)− H(y|x) (7)

MI(x, y) = 0 if and only if random variables X and Y are statistically independent. Notably,
the MI is a nonlinear method in the time domain,

Phase synchronisation (PS) assumes that two oscillation systems without amplitude
synchronisation can have phase synchronisation. The phase locking value (PLV) is fre-
quently used to obtain the phase synchronisation strength [14]. The instantaneous phase of
a signal X is given by

∅x(t) = arctan
x̃(t)
x(t)

(8)
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where x̃(t) is the Hilbert transform of x(t) which is defined as

x̃(t) =
1
π

PV
∫ +∞

−∞

x(τ)
t − τ

dτ (9)

where PV refers to the Cauchy principal value. The PLV for two signals is defined as

PLV =

∣∣∣∣ 1
N ∑N−1

j=0 ej(∅x(jΔt)−∅y(jΔt))
∣∣∣∣ (10)

where Δt defines the sampling period, and N indicates the sample number of each sig-
nal [34]. The range of PLV was from 0 to 1, where 0 showed a lack of synchronisation and
1 indicated strict phase synchronisation. Notably, the PLV is a nonlinear method in the
frequency domain.

2.3. Feature Selection and Fusion

A large number of features were extracted from EEG and fNIRS. To be more specific,
considering three frequency bands (delta, theta and alpha), 28 channels and four FBC
methods, there were 3 × 28 = 84 PSD features and 3 × 28 × (28−1)/2 × 4 = 4536 FBC
features estimated from the EEG recording. According to the time window analysis of
the fNIRS signals, the top-10 best time windows were chosen. Considering the number
of channels, there were 10 × 36 = 360 features for fNIRS. The next step was to feed the
extracted features into machine learning classifiers to classify three workloads/tasks. To
avoid the overfitting problem of machine learning and compare the combined methods
fairly with the methods using a single type of feature, a statistical significance test is
used to reduce the feature number. One-way analysis of variance (ANOVA) was used
to evaluate the significance of differences in the 0-back vs. 2-back vs. 3-back features.
The p-value was the criterion for selecting the significant features. As a result, the top-10
features with the smallest p-values were individually selected from EEG-based and fNIRS-
based techniques as classifier input. Furthermore, the top-5 features from EEG (univariate
features only) and fNIRS, respectively, were combined, resulting in 10 hybrid features for
comparison purposes.

2.4. Machine-Learning Classification

The SVM was applied to achieve workload classification. It constructed an optimal
separating hyperplane in the feature space based on the structural risk minimization
principle. The selected features extracted from EEG and fNIRS were fed into the SVM with
a radial basis function (RBF) kernel. Different machine-learning algorithms were tested
and compared, such as the k-nearest neighbour (KNN), decision tree and LDA. The SVM
outperformed other methods in classification. Hence, this paper mainly used the SVM with
RBF to represent classification results. To avoid overfitting =in the case of limited data, a
five-fold cross-validation technique was employed. To be more specific, the dataset of each
condition was divided into five subsets, and then five iterations were undertaken to ensure
each subset was used for training and testing [15]. That is to say, for each iteration, 80%
of the dataset was used for training and the remaining 20% for testing. Consequently, the
classification result was calculated by averaging the accuracies from 5 iterations. Totally,
there were 3 workload levels × 3 series × 3 sessions × 26 participants = 702 samples. Before
being fed into the classifier, the features were normalised from −1 to 1 for each participant
to reduce the influence of individual differences.

3. Results

3.1. Time Interval Selection

The selection of the time interval relied on the classification performance implemented
on each participant. Figure 3A represents the mean classification accuracy for all partici-
pants using fNIRS-based features against the moving time window, and sustained growth
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was observed during the first 30 s. After a 25 s oscillation, the accuracy reached its peak
when the 45–50 s time window was used. Consequently, the 10 time-windows in the range
of 45 to 54 s were selected for the next step of feature extraction. Figure 3B illustrates the
changes in classification accuracy against the length of the time window of fNIRS and EEG.
Notably, the accuracy of using fNIRS-based features decreased along with the window-size
increment for all three classification groups. However, the EEG-based method performed
better following the window-size increment and peaks at 40 s, particularly for 0-back vs.
2-back and 0-back vs. 3-back. As a result, the final window-size selections for fNIRS
and EEG were 5 and 40 s, respectively. Furthermore, it indicated that the fused features
outperformed features from a single modality.

Figure 3. Time window analysis (A) Time interval analysis for fNIRS features; Time window-size
evaluation for EEG and fNIRS features for (B) 0-back vs. 2-back, (C) 0-back vs. 3-back, (D) 2-back
vs. 3-back.

3.2. Machine-Learning Classification Performance

To select the optimal FBC features, four different methods (MI, PCC, MSC and PLV)
were tested individually, and the nonlinear time-domain method, MI, was found to provide
the highest classification accuracy. Figure 4 shows the comparison of the four estimations in
the three bands for top-10 average classification accuracy. The error bar shows the accuracy
from each iteration of cross-validation. Therefore, MI was selected as the EEG-based FBC
feature for the following analysis.

To classify multi-level mental workload, the classification task was separated into three
groups: 0-back vs. 2-back, 0-back vs. 3-back and 2-back vs. 3-back. The performances using
EEG-based features only, fNIRS-based features only, and hybrid features were evaluated
and shown in Tables 2–4. To ensure classification fairness, each classification task used
10 features as the input. The features were selected according to the significance test and
a sample is given in Supplementary Figure S4. The EEG alpha band information had the
best performance in discriminating the three workload levels for both univariate (PSD)
and bivariate features (FBC). Meanwhile, the results also suggested that the FBC features
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performed better with an approximately 5% accuracy increment for all three sub-tasks.
When it came to fNIRS, HbR outperformed HbO, but the accuracies were both significantly
lower than for EEG-based FBC features, particularly for 0-back vs. 2-back and 0-back vs.
3-back. Other references suggested that classifiers, such as LDA, SVM and CNN, achieved
higher accuracy using HbR indicators [18,19].

Figure 4. Comparison of four FBC estimations (MI, PCC, MSC and PLV) in terms of the average of
the Top 10 classification accuracies along with maximum and minimum value.

Table 2. SVM classification accuracy of 0-back vs. 2-back using different features.

EEG fNIRS
EEG + fNIRS

PSD FBC HbO HbR

0-back vs.
2-back

Delta 66% 67%

62% 68%

72%

Theta 68% 73% 75%

Alpha 70% 74% 77%

Table 3. SVM classification accuracy of 0-back vs. 3-back using different features.

EEG fNIRS
EEG + fNIRS

PSD FBC HBO HBR

0-back vs.
3-back

Delta 65% 63%

62% 72%

74%

Theta 69% 72% 75%

Alpha 71% 77% 83%
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Table 4. SVM classification accuracy of 2-back vs. 3-back using different features.

EEG fNIRS
EEG + fNIRS

PSD FBC HBO HBR

2-back vs.
3-back

Delta 52% 60%

60% 61%

57%

Theta 56% 61% 58%

Alpha 55% 62% 59%

Overall, the fused features (EEG–fNIRS) improved classification performance. For
the 0-back vs. 2-back and 0-back vs. 3-back tasks, the hybrid method obtains the highest
accuracy with 77% (Table 2) and 83% (Table 3), which suggests, as expected, there is more
difference between 0-back and 3-back than between 0-back and 2-back. However, the
difference between 2-back and 3-back was small, as evident by a much lower accuracy.
Notably, the results suggested that the hybrid features did not have superiority in all tasks.
As shown in Table 4, the FBC features in the alpha band had the best performance (62%)
but the fused features had only 59%. Nevertheless, 2-back and 3-back were difficult to
distinguish for any features.

To further evaluate the machine learning algorithms performance, accuracy (Accu),
sensitivity (Sens) and specificity (Spec) were calculated:

Accu =
TP + TN

TP + TN + FP + FN
× 100% (11)

Sens =
TP

TP + FN
× 100% (12)

Spec =
TN

TN + FP
× 100% (13)

where TP = True Positive; FN = False Negative; TN = True Negative; and FP = False Positive.
Moreover, the receiver operating characteristic (ROC) curve, and the area under the ROC
curve (AUC) [35,36] were used to assess the goodness of classification. Specifically, the
ROC was constructed from the true positive rate (TPR = sensitivity) in the vertical axis
and the false positive rate (FPR = 1-specificity) in the horizontal axis [37]. The resulting
accuracy, sensitivity, specificity and AUC are shown in Table 5. The ROC curves for three
binary classification tasks is shown in Figure 5.

Table 5. Performance of classification for 3 binary classification tasks.

Alpha Hybrid Features Accuracy Specificity Sensitivity AUC

0-back vs. 2-back 77% 79% 76% 0.8332
0-back vs. 3-back 83% 84% 80% 0.9501
2-back vs. 3-back 59% 57% 63% 0.6721

3.3. Visualisation

To further explore the difference among the three workload levels, a distinct visualisa-
tion method was employed. A topographic map was used to represent the PSD distribution
of the EEG alpha-band (Figure 6), which provided about 70% classification accuracy for the
0-back vs. 2-back and 0-back vs. 3-back tasks. The averaged PSD distribution across all
participants, illustrated by the left column, suggested that the posterior area of 0-back had
much higher PSD than 2-back and 3-back, while other areas had similar PSD distribution. It
seemed that, during the low workload level, there was more brain activity in the alpha band
in the posterior area than during high workload. It matched the classification result, which
revealed that the posterior midline occipital (POz), left occipital (O1) and right occipital
(O2) channels contributed more than the others. The patterns of 2-back and 3-back are very
similar for the whole bran, which explains the low classification accuracy (55%) in Table 4.
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The individual PSD distribution, illustrated in the middle column of Figure 6, indicates the
difficulty of the classification to an extent. Furthermore, to validate the observation, the
right column of Figure 6 shows the accuracy of using each channel’s PSD as the input. As
expected, the posterior area can provide more than 70% accuracy for 0-back vs. 2-back and
0-back vs. 3-back tasks.

Figure 5. The receiver operating characteristic (ROC) curves for three binary classification tasks:
0-back vs. 2-back, 0-back vs. 3-back, and 2-back vs. 3-back.

The topographic map of HbR features is shown in Figure 7. Similar to EEG, the
averaged HbR distribution of 0-back is significantly different from that of 2-back and
3-back, shown in the left column. More specifically, the frontal-right area has increased
HbR following the increment of workload level while the frontal-centre and middle-left
areas have decreased HbR following the increment of workload level. All these findings
have been supported by the classification result of individual channels (Figure 7). There is
no significant difference between 2-back and 3-back in terms of the overall pattern. The
individual HbR distribution is illustrated in the middle column of Figure 7. Furthermore,
to validate the observation, the right column of Figure 7 shows the accuracy of using each
channel’s HbR as the input. It is noted that the right frontal area can provide more than
70% accuracy for the 0-back vs. 3-back task. Interestingly, the accuracy of the posterior
area (PPOz) was close to 70% for 0-back vs. 2-back and 0-back vs. 3-back tasks, which
was not easy to observe from the feature visualisation. It also matched the findings in the
EEG analysis.
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Figure 6. Topographic map of the EEG alpha-band PSD. Left: average; Middle: each participant;
Right: Accuracy using each-channel PSD as the input. The area that provides the highest accuracy
is highlighted.

To visualise the FBC features, a heat map was used as shown in Figure 8. The maps
for individual participants are illustrated in Figure 8A–C for 0-back, 2-back and 3-back
respectively. The accuracy of the three classification tasks is illustrated in Figure 8D–F for
0-back vs. 2-back, 0-back vs. 3-back, and 2-back vs. 3-back, respectively. It shows that
each participant had a similar FBC pattern estimated by MI, while the value of different
regions varied. Furthermore, it helped us to understand the differential contribution of the
various brain regions for mental workload discrimination. The functional brain connectivity
between frontal channels and Fp1 estimated by MI had a significant increase when the
workload level became higher. It was also proved in Figure 8D–F that the following pairs
left frontopolar–anterior midline frontal (Fp1:AFz), left frontopolar–left frontal (Fp1:F1), left
frontopolar–right frontopolar (Fp1:Fp2) and left frontopolar–right frontal (Fp1:F2) provided
relatively higher classification accuracy when differentiating 0-back from 2-back and 3-back.
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Figure 7. Topographic map of the fNIRS HbR features. Left: average; Middle: each participant; Right:
Accuracy using each-channel HbR feature as the input. The area that provided the highest accuracy
is highlighted.
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Figure 8. The heat map of MI FBC features and the accuracy results. (A–C) shows the MI value
for each participant in 0-back, 2-back, and 3-back task. (D–F) represents the classification accuracy
for 0-back vs. 2-back, 0-back vs.3-back and 2-back vs. 3-back, respectively, using each pair of EEG
channels as the input where the FBC value was estimated by MI.

4. Discussion

A comparative analysis of previous research and the proposed work employing EEG
and fNIRS in mental workload classification is shown in Table 6. This paper now discusses
the results in detail from three aspects: EEG vs. fNIRS, univariate vs. multivariate features,
and independent vs. hybrid feature.

Table 6. A comparative analysis of the previous research and the proposed work.

Reference Study Setting Classifier Accuracy

Liu et al. [28] 0-, 1-, 2- N-back LDA 64.4% (EEG)
55.6% (fNIRS)

68.1% (EEG+fNIRS)

Aghajani et al. [10] 0-, 1-, 2-, 3- N-back SVM 85.9% (EEG)
74.8% (fNIRS)

90.9% (EEG+fNIRS)

Nguyen et al. [38] Simulated driving
system

FLDA 73.7% (EEG)
70.5% (fNIRS)

79.2% (EEG+fNIRS)

Saadati et al. [29] N-back
DSR

Word generation
LHand vs. RHand

DNN, SVM 67.0% (EEG-DNN)
80.0% (fNIRS-DNN)

87.0% (EEG+fNIRS-DNN)
82% (EEG+fNIRS-SVM)

Chu et al. [39] Mental workload SVM, RF, DT 55.4% (EEG-RF)
69.2% (fNIRS-RF)

78.3% (EEG+fNIRS-RF)

Proposed study 0-, 2-, 3-back SVM 77% (0-back vs. 2-back)
83% (0-back vs. 3-back)
59% (2-back vs. 3-back)

Abbreviations: LDA—Linear discriminant analysis; SVM—Support Vector Machine; FLDA—Fisher Lin-
ear Discriminant Analysis; DNN—Deep Neural Network; RF—Random Forest; DT—Decision Tree;
DSR—discrimination/selection response task.
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4.1. EEG vs. fNIRS

On one hand, EEG needed a longer data length to suggest difference between different-
level workloads. To be more specific, a 40 s time window was the most suitable, while
5 s was suggested for fNIRS. That is to say, fNIRS required less response time to support
a satisfactory classification accuracy, which meant it may be more efficient in actual ap-
plication. On the other hand, the EEG-based features, especially the FBC, represented
obvious advantages over the fNIRS-based features in classification accuracy although the
FBC methods were more complicated and entailed a higher computational cost.

The best region for assisting in the discrimination of the mental workload was different
for EEG and fNIRS. Specifically, the posterior area performed the best for EEG (POz)
in the alpha band and fNIRS had superiority in the right frontal region (AF8). Some
studies suggested similar findings. Brouwer et al. [33] found the alpha power of the
midline parietal (Pz) region in EEG recordings significantly decreased with memory load,
effectively distinguishing 2-back from 0-back. Chu et al. [39] stated that the alpha-power of
O1 indicated differences between multi-level workloads. Regarding fNIRS, the prefrontal
areas were well-accepted for measuring variations in mental workload [40–42]. However,
there was limited research pointing out a determined channel that contributes the most. Our
study narrowed down the region (right frontal) to support the discrimination of workloads,
as evidenced by the topographic visualisation of the machine-learning classification results.

4.2. Univariate vs. Multivariate Features

Considering the EEG features, the bivariate FBC approaches obtained more satisfactory
accuracy compared to the univariate PSD features. The results of this study provide
evidence to support the hypothesis that the FBC not only estimated the informational
intercommunication of separate brain regions but also tracked distinct changes for different
levels of workload. There are other supporting studies for this hypothesis in the literature
on workload classification. Pei et al. [43] suggested the fusion of band power and FBC
features, which were estimated by PLV and the phase lag index (PLI), enhanced the
classification performance of workload identification. The PLI-based FBC was also used by
Kakkos et al. [7], and the study implied that using FBC emphasised its ability to serve as
a promising indicator for different workload levels. Our framework employed four FBC
estimations that illustrated connections with various properties, and MI outperformed PCC,
MSC and PLV for the highest classification accuracy. In this case, the proposed framework
deepened the use of the FBC technique in the field of mental workload discrimination.
Furthermore, it implied that, among different levels of workload, the greatest changes
occurred in nonlinear brain connectivity.

4.3. Independent vs. Hybrid Feature

The hybrid features of EEG and fNIRS outperformed the independent category of
features in classification results, achieving the highest accuracy of 77% for 0-back against
2-back and 83% for 0-back against 3-back. It meant that different methods explored distinct
information and became complementary to each other thereby improving classification
performance. The results agreed with the conclusion in the literature [29,38,39,42]. The
present paper is an advance on previous studies because it generated new knowledge about
regional information by comparing the foci of independent types of features. To an extent, it
paved the way to use an EEG–fNIRS hybrid sensor in real-world workload classifications.

5. Conclusions

In this paper, a novel solution relying on hybrid EEG–fNIRS features was proposed
to deal with multi-level mental workload classification supported by machine-learning
classifiers. To be more specific, the univariate PSD and four bivariate FBC features were
extracted from an EEG recording in three frequency bands. With the assistance of HbO
and HbR indicators from fNIRS, the fused features improved classification performance.
Moreover, topographic and heat-map visualisation indicated distinct regions for EEG and
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fNIRS that represented difference among 0-back, 2-back and 3-back. Overall, the FBC
technique based on an EEG recording proved its value in mental workload classification,
and accuracy improvement emphasised the effectiveness of the hybrid EEG–fNIRS. The
one limitation of this study was that there was a volume conduction effect in the EEG
dataset, but the high classification accuracy suggested that the functional connectivity
was effective for classifying different workloads. One potential future work would be to
use bipolar channels rather than unipolar channels or to pre-process the data to mitigate
volume conduction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22197623/s1, Figure S1: Channels and locations for the EEG
(Left) and fNIRS (Right) recordings; Figure S2: fNIRS average HbR value of each of 26 participants in
three levels of workload; Figure S3: fNIRS average HbO value of each of 26 participants in three levels
of workload; Figure S4: A sample of significant test to represent the difference among three-level
workload with the purpose of selecting limited numbers of features (p-value < 0.0001).
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Abstract: Previous studies have reported that a series of sensory–motor-related cortical areas are
affected when a healthy human is presented with images of tools. This phenomenon has been
explained as familiar tools launching a memory-retrieval process to provide a basis for using the
tools. Consequently, we postulated that this theory may also be applicable if images of tools were
replaced with images of daily objects if they are graspable (i.e., manipulable). Therefore, we designed
and ran experiments with human volunteers (participants) who were visually presented with images
of three different daily objects and recorded their electroencephalography (EEG) synchronously. Ad-
ditionally, images of these objects being grasped by human hands were presented to the participants.
Dynamic functional connectivity between the visual cortex and all the other areas of the brain was
estimated to find which of them were influenced by visual stimuli. Next, we compared our results
with those of previous studies that investigated brain response when participants looked at tools and
concluded that manipulable objects caused similar cerebral activity to tools. We also looked into mu
rhythm and found that looking at a manipulable object did not elicit a similar activity to seeing the
same object being grasped.

Keywords: EEG; functional connectivity; manipulability; object observation; phase locking value

1. Introduction

Tools play a special role among the objects that people usually come in contact with in
daily life. Neuroscientists have found confirmatory evidence that using tools can lead to
a lasting, discernible change on the perception of someone’s own body [1]. Furthermore,
looking at a tool can also initiate a series of changes in cerebral activity. Many previous
studies demonstrated that observing tools resulted in a left hemisphere advantage, while
this did not occur with other objects [2–4]. The most popular explanation for the neural
mechanism behind this phenomenon is that tools have the property of “manipulability”
and their appearance suggests an associated action or movement [5,6]. In other words, it is
reasonable to consider that the tool-associated cerebral activity is at least partly caused by
the manipulability of the presented tools. However, in past decades, most studies compared
tools with other objects—either manipulable or not (such as a chair or plane that could
not be grasped by hand). Therefore, we suspected that some daily objects that can usually
be grasped with human hands may also help with launching a similar cognitive process
because they possess an almost similar manipulability to those of tools.

The first purpose of this study is to verify the aforementioned hypothesis. Moreover,
we aimed to explore the relationship between seeing an object alone vs. seeing an object
grasped by a hand. Previous studies have reported that seeing others’ hand actions causes
a similar cerebral activity to executing the same action [7–9]. In another study, it was found
that observing tools and watching others use tools share similar cerebral activities [10].
Because we assumed that objects with manipulability would lead to similar neural circuits
to that of tools, it is necessary to investigate whether seeing objects alone and seeing other
people grasping these objects have similar electrophysiological features.
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In this study, we designed a simple experiment with visual presentation tasks and
collected electroencephalography (EEG) data from volunteer participants. By analyzing
the functional connectivity and time-frequency features, the similarities and differences
between seeing objects alone and watching others interacting with these objects is demon-
strated. Furthermore, we also discuss possible explanations for any unexpected results.

2. Materials and Methods

2.1. Experiments

Materials: Our hypothesis requires that the objects used as the stimuli need to be
manipulable but are not tools. Additionally, a previous visual–somatosensory cross-modal
study reported that objects from different categories may not lead to the same neural
activity. Therefore, we chose only three objects that often appear in daily life, are easy to
hold by hand, and do not have immediate associations with each other. Meanwhile, this
design allowed us to use the same stimuli a number of times before participants felt tired.
When creating the condition of “seeing an object being grasped” (i.e., participants saw an
interaction with an object), to control the variables as much as possible, the conception of
an interaction was analyzed first. An interaction includes three elements: subject, object,
and a solution to draw a relation between them. Therefore, two more kinds of stimuli were
added between “object” and “interaction”: in our design, we used a normal human hand
as a subject; orange, bottle, and smart phone as objects; and hand grasping as the solution,
which is one of the most common forms of manipulability in our daily life. Figure 1a shows
the images used as visual stimuli in the experiment.

Figure 1. (a) Four kinds of images used in our experiment. Condition A presented participants with
images of an orange, bottle, and smart phone (three objects). Condition B presented images of hands.
Condition C combined the three objects and hands within the images. Condition D showed whole
actions of hands grabbing objects (interactions). (b) Workflow of the trial. The images after the cross
were randomly chosen from images corresponding to the current session (e.g., orange session, bottle
session, and phone session).

Participants: A total of 20 healthy humans (including 8 females; mean age 24.05 years,
range 22–27 years) with normal or corrected-to-normal vision participated in this experi-
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ment. This study was reviewed and approved by the Department of Informatics, Faculty of
Information Science and Electrical Engineering, Kyushu University (admission No. 2021-13),
and every participant signed the informed consent form voluntarily before the experiment
began. As all volunteers were right-handed, in this paper, we do not discuss the situation
containing the left hand as a stimulus.

Stimulus presentation: Visual stimuli were presented to participants on a 17-inch
LCD display. The resolution and refresh rate were set at 1280 × 720 pixels and 60 Hz,
respectively. The distance between the eyes and display was in the range of 90–100 cm.
Two runs were executed for each participant, and each run included three sessions with
different topics: orange session, bottle session, and smart phone session. At the beginning
of each run, the sequence of the three sessions was decided randomly. In 140 trials for each
session, images containing the chosen object (five images from conditions A, C, and D) and
subject (two images from condition B) were shown randomly and repetitively (20 times
each image) after a fixed cross sign at the center of the screen and then back to a black screen,
shown after 1 s, as depicted in Figure 1b. An interval with a duration of 1000–2000 ms was
randomly placed between two trials.

2.2. Data Analysis

EEG data processing: Data from nineteen participants were included for analyses;
data for one were excluded due to an unexpected technical malfunction. The recorded
data were re-referenced to a common average, and then sent through a zero-phase-shift
frequency domain bandpass filter with the cut-off frequency set at 1 and 30 Hz. Next,
the Independent Component Analysis (ICA) completed by the Algorithm for Multiple
Unknown Signals Extraction [11] was used to remove EOG artifacts. Trials with potentials
over 100 μV were seen as abnormal and abandoned. Finally, over 97.5% of trials of each
condition remained for further analysis. The data recorded from 200 ms before stimulus
onset (as the baseline) to the end of a trial were extracted as an epoch.

Statistical test based on Monte Carlo method: Most of the statistical analysis revealed
that the data were not normally distributed; therefore, we chose one-tailed nonparametric
test methods for this research. Many researches have proven that the permutation test is
reliable for testing neural signals [12,13]. In this research, the workflow can be described
as follows:

1. For two independent sample sets, sampA and sampB, where H0 : sampA ≤ sampB,
v0 was calculated as follows:

v0 = sampA − sampB, (1)

where H0 is the null hypothesis and v0 is the test statistic.

2. sampA and sampB were put into the same group. Then, the elements of this group
were randomly divided into two sub-groups: sampA1 and sampB1, which had the
same size. The new statistic of test v1 was calculated as follows:

v1 = sampA1 − sampB1, (2)

3. Step b was repeated 10,000 times to obtain v1, v2, . . . , v10,000;

4. The v1, v2, . . . , v10,000 values were sorted in ascending manner, and the sequence
number of the first value that was greater than v0 was identified as the “location ”.
The p-value of the statistic test was calculated as follows:

p = 1 − location
10, 000

, (3)

Similarly, when it comes to a paired test, we used the bootstrap resampling approach to
obtain the confidence interval of the difference between the paired samples. The bootstrap
statistical method is also a nonparametric approach with proven validity and has been
approved in many studies [14–16]. The procedures are shown below:
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1. For two paired sample sets, sampC and sampD, where H0 : sampC ≤ sampD, we
constructed a paired sample set sampP, as follows:

sampP = sampC − sampD, (4)

2. Resampling was performed from sampP with a replacement to generate a new sample
set, sampP1; then, its mean value A1 was calculated as follows:

A1 = sampP1, (5)

3. The last step was repeated to obtain A2, A3, . . . , A10,000, which were then sorted in
ascending manner, and then, the index of the first value that was greater than zero
was identified as the index. The p-value of this test was calculated as follows:

p′ = index
10, 000

, (6)

Functional connectivity and effective phase-locking value (ePLV): We estimated the
phase-locking values (PLVs) to measure the connectivity between the data recorded near
the occipital lobe (a fusion of EEG recorded from electrodes Oz, O1, O2, POz, PO3, and
PO4) and all the other electrodes [17]. The result of the Hilbert Transform (HT) of each
epoch was used to generate analytic signals for computing the instantaneous phase at each
moment. The PLV between regions i and j at time t is estimated as follows:

PLVi,j,t =

√√√√√√
[

1
n ∑n

k=1 cos
(

θi,k,t − θj,k,t

)]2

+
[

1
n ∑n

k=1 sin
(

θi,k,t − θj,k,t

)]2, (7)

where n is the number of epochs and θ is the phase in radians obtained from HT [18]. For
each subject, one PLV time series was estimated. However, these values do not always mean
that there is a relationship between the two regions because even noise signals would have
a PLV between 0 and 1. To know which of them are significantly different from the baseline
(effective PLV, ePLV), estimated PLVs were submitted to a bootstrap-resampling-based,
paired statistical test program to eliminate false positives by testing with the PLVs during
baseline. This program works in two steps: (i) for each participant, the PLVs during the
baseline period (i.e., before the stimulus was given) were resampled to extract the mean
value according to central-limit theorem, and then (ii) paired tests between PLVs at each
moment and the mean value were conducted. The workflow can be described as follows:

For each PLV time series,

1. Values during the baseline period were extracted and were put into the baseline vector;
2. Resampling was performed from baseline with a replacement to obtain a new vector

baseline
′

with the same size;
3. The mean baseline

′
across time was calculated;

4. Steps 2–3 were repeated 10,000 times and then a grand mean value of the results in
step 3 was obtained.

After the above procedures were executed on every PLV time series, a mean value
vector was generated as the baseline, which was used as a sample set of the control group
in the following paired test. Finally, we could determine which of the PLVs represented a
meaningful functional connectivity and could be considered as ePLVs.

Event-related spectral perturbation (ERSP): Every epoch was conducted with con-
tinuous Morlet wavelet transform to unfold their frequency dimension via the Wavelet
Toolbox in MATLAB (MathWorks, Natick, MA, USA). ERSP reflects the energy changes in
EEG after providing a stimulus, which is defined as the ratio of power at the current time
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and baseline mean [19]. For each epoch, ERSP at time i of a specific frequency component j
can be calculated as follows:

ERSPi,j = 10 × log10
ui,j

baselinej
, (8)

where ui,j is the absolute value of potential at time i and frequency j, and baselinej is the
average of the one at frequency j before the stimulus was presented. To highlight the
source of ERSP variation at the sensor level, a finite difference-based spatial Laplacian
transformation was conducted via Brainstorm [20–22]. This procedure used the ERSP data
to replace the potential data in the algorithm [23].

3. Results

3.1. Functional Connectivity

It is noticed that functional connectivity estimated by EEG filtered at different bands
is totally inconsistent [24]. Therefore, the preprocessed EEG epochs were filtered into
four different bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–13 Hz, and beta: 14–30 Hz);
next, the PLVs between EEG recorded at the occipital lobe and other locations were then
calculated and the ePLVs were then screened out. The number of ePLVs varied over time.
The topography shown in Figure 2 displays the distribution of ePLVs calculated with data
from the four frequency bands at different moments. These moments were selected to show
as many connections as possible. To highlight the common and different regions that were
connected to the occipital lobe, the connections observed when participants saw images of
interactions were overlaid on top of those for participants presented with images of objects.

At the delta and alpha bands, the number of ePLVs was fewer than that of the other
bands; furthermore, across the three objects, there was a noteworthy change in the moment
that the maximum number of connections appeared. By contrast, the ePLVs estimated at
the theta band and the beta band were more credible because of the number of observed
connections, especially their stability across time and objects.

There were much more functional connections observed when the images from condi-
tion D were presented to participants. The results at the theta band suggested a common
region including the right frontal lobe (RF), the bilateral central sulcus (L/RCS), and the
right angular gyrus (RAG) whenever participants saw objects or interactions. The connec-
tion between the occipital lobe and the area covered by electrodes F5, F7, FC5, and FT7
seemed much clearer when seeing interactions than when seeing objects, and so did the
left angular gyrus (LAG). Additionally, the moment that a maximum connection number
appeared showed a regular pattern: “seeing objects being grasped by human hand” estab-
lished more connections at earlier. The above results also supported the opinion that the
theta band has advantages in observing functional connectivity [25–27].

Beta band ePLVs commonly appeared at both the central frontal lobe (CF) and RAG
(near electrode P4 or P6) at the end of a trial, robustly. Meanwhile, the difference be-
tween seeing objects and seeing interactions is uncertain; their exclusive regions varied
across objects.

In summary, the topography demonstrated that functional connectivity between the
occipital lobe and regions of RF, L/RCS, RAG, and CF were established similarly when
participants either saw images of objects or those of interactions. To make it more intuitive,
the PLV-over-time plot of the regions mentioned above is shown in Figure 3. On the
contrary, the difference is embodied in the area covered by electrodes F5, F7, FC5, and
FT7, which is believed to be Broca’s area (BA) [28–31] and the LAG. Same as before, we
demonstrated these differences in the plot of PLV over time in Figure 4. The results of
paired test suggested that these differences are significant.
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Figure 2. Functional connectivity between visual cortex and other regions. Colored electrode indicates
that connectivity between that region and the occipital lobe actually exists. Time is indicated at the
bottom right corner of each topography, as “time (ms) that most connectivity occurred when seeing
objects/time (ms) that most connectivity occurred when seeing objects being grasped”. Note that
each topography is an overlay of two graphs at two different moments. Red and blue electrodes
represent the connections that only occurred when seeing objects and when seeing objects being
grasped, respectively, while the green ones mean the two conditions share the same electrode.

3.2. Power Variations

As mentioned in the Introduction, we were expecting to find some motor-related EEG
features when participants looked at non-tool objects. Thus, our attention was turned to
power changes in the mu rhythm [32–34], and clear event-related desynchronization (ERD)
was noticed with both “seeing objects” and “seeing interactions”, as shown in Figure 5a. The
topography was drawn with EEG data filtered at 8–13 Hz and then was Laplacian spatial
filtered to highlight the changes. ERD was mainly observed at the region of the bilateral
postcentral gyrus, which may suggest the participation of the primary somatosensory
cortex [35]. Among all three objects, the most obvious ERD occurred at the area covered
by electrodes C5, CP3, and CP5 in the left hemisphere (LS), as well as the corresponding
position in the right hemisphere (RS). Figure 5b revealed its dynamic changes over time.
Although all of these plots performed clear ERD at the end, there was obvious event-related
synchronization (ERS) observed during the process when participants saw objects being
grasped. This ERS was widespread from 100 to 200 ms, especially in LS.
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Figure 3. PLVs over time. Red line shows phase locking values (PLVs) when participants were shown
objects, while the blue line shows PLVs when they were shown objects being grasped by human
hands. Shaded areas are standard error. On these shown regions, PLVs from the two conditions
varied similarly for the theta and beta bands.
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Figure 4. PLV observed at BA and LAG. Red line shows PLVs when participants were shown objects,
while the blue line shows PLVs when they were shown objects being grasped by human hands.
Shaded areas are standard error. Significant difference was noticed between seeing objects and seeing
interactions at 200 ms after presenting the stimulus to participants (α = 0.05).

Figure 5. (a) Topography of ERSP at 400 ms. Mu rhythm ERD distributed at bilateral posterior central
gyrus with a little left advantage and performed similarly in all six situations. (b) ERSP over time.
Red line shows ERSP when participants were shown objects, while the blue line shows ERSP when
they were shown objects being grasped by human hands. Shaded areas are standard error. A clear
ERS was observed only when seeing interactions, and its peak time is indicated with an arrow. The
significance of ERS was confirmed by a permutation test on the ERSP value in the two conditions at
the corresponding time (α = 0.05).
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4. Discussion

The purpose of this study was to investigate whether seeing manipulable objects
would lead to a similar phenomenon to that when seeing tools. A previous research
studied the difference between tools and “objects without manipulability” and reported
that the stage of confirming whether a presented object is able to be operated happens
in the first 250 ms after visual stimulus onset, and the conclusion leads to the activation
of the left somatosensory cortex and the bilateral premotor cortex [36]. Moreover, they
also mentioned that Brodmann areas 19 and 37 were activated in the ventral side, whether
the object was manipulable or not. In our study, we noticed the functional connectivity
peaked at 200 ms approximately between the visual cortex and RAG (BA39, border on
BA19 and BA37) and between RF (close to the premotor cortex in the right hemisphere)
and LCS (the left somatosensory cortex). However, we did not find enough evidence to
imply the participation of the left premotor cortex. Additionally, our results indicated that
RCS also joined the cognition process after seeing a manipulable object. Another study that
paid attention to the mu rhythm ERD phenomenon when seeing tools found that it can
be noticed as early as in the first 175 ms [37]. These spatial and temporal commonalities
suggested the perception of a manipulable object is similar to those of tools.

Many studies considered that the particularity of tools is derived from the action
applied to use them, which they come naturally with [38]. Therefore, we suspected that
the presentation of a manipulable object may cause a similar cerebral activity to that which
occurs upon seeing an interaction with that object. However, our experimental results
rejected this inference with the additional functional connectivity between the occipital
lobe and BA as well as between the occipital lobe and LAG when participants were shown
images of objects being grasped. Although the controversy about its location is still on-
going, a large majority of scholars believe that the mirror neuro system (MNS) exists
near Broca’s area (or BA44), the inferior parietal lobule (near the LAG), and the superior
temporal sulcus [39–42]. Hence, connectivity observed at BA and LAG can be reasonably
regarded as activity of the MNS evoked by seeing the action of grasping objects. This may
explain the different distributions of functional connectivity for seeing objects vs. seeing
interactions with objects; nevertheless, ERS in the somatosensory cortex, which can only
be noticed in the latter case, still exists. All of this evidence led us to the conclusion that
the changes observed in the cerebral cortex after seeing objects being grasped were not the
same as those that occurred after seeing only objects.

Undoubtedly, the difference in power change in the somatosensory cortex is due to
the difference in visual stimuli, which means that the ERS may be caused by the hand
contained within the image or the combination of a hand and the object. Fortunately,
we have collected EEG data from when participants were shown only a hand and both
a hand and an object. By comparing the topography in Figure 6a, we found that they
showed ERS in the left somatosensory cortex for both conditions, although the values were
not completely the same. This suggests that the hand seen in the visual stimuli partly
contributed to the ERS. We also analyzed the data from condition C and interestingly
found that it was different from that of the other three kinds of stimulus. It seems that
participants recognized the hand and object in each image as two entities. We found
that, at about 200 ms after visual stimulus onset, a positive event-related potential (ERP)
component appeared at both the PO7 and PO8 electrodes but with a right hemisphere
asymmetry. The plot in Figure 6b shows the ERP difference between the PO7 and PO8
electrodes. Evidently, two clear peaks were observed in condition C, while only one was
observed in the other two conditions. A further test with a one-way ANOVA-based multiple
comparison suggested that the laterization phenomenon in condition C was significantly
different from the others (p < 0.05).
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Figure 6. (a) Topography of 8–13 Hz ERSP when seeing human right hand and seeing interactions
using the right hand at 152, 180, and 158 ms. ERS at LS is weaker when only images of a hand are
presented to participants. (b) Plot shows a grand averaged ERP difference between electrodes PO7
and PO8. A remarkable second peak (black line) appeared when participants were presented with
images in condition C. The bar graph on the right shows mean and standard error of the difference
data in the range from 246 to 300 ms.

In summary, this study investigated the functional connectivity between the visual
cortex and the other regions after healthy participants saw daily objects that are manipula-
ble; we compared our results with those of previous studies regarding brain activity after
seeing tools. We found that seeing manipulable objects and seeing tools caused similar
phenomena in both time and space. Next, we assessed whether seeing a manipulable object
led to a similar mu rhythm change to seeing an interaction with the same object; however,
the evidence rejected our hypothesis: additional activation of Broca’s area and the left
angular gyrus, and early alpha band ERS in the somatosensory cortex were only observed
when participants saw interactions.
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Abstract: The common spatial pattern (CSP) is a popular method in feature extraction for motor
imagery (MI) electroencephalogram (EEG) classification in brain–computer interface (BCI) systems.
However, combining temporal and spectral information in the CSP-based spatial features is still
a challenging issue, which greatly affects the performance of MI-based BCI systems. Here, we propose
a novel circulant singular spectrum analysis embedded CSP (CiSSA-CSP) method for learning the
optimal time-frequency-spatial features to improve the MI classification accuracy. Specifically, raw
EEG data are first segmented into multiple time segments and spectrum-specific sub-bands are
further derived by CiSSA from each time segment in a set of non-overlapping filter bands. CSP
features extracted from all time-frequency segments contain more sufficient time-frequency-spatial
information. An experimental study was implemented on the publicly available EEG dataset (BCI
Competition III dataset IVa) and a self-collected experimental EEG dataset to validate the effectiveness
of the CiSSA-CSP method. Experimental results demonstrate that discriminative and robust features
are extracted effectively. Compared with several state-of-the-art methods, the proposed method
exhibited optimal accuracies of 96.6% and 95.2% on the public and experimental datasets, respectively,
which confirms that it is a promising method for improving the performance of MI-based BCIs.

Keywords: motor imagery; circulant singular spectrum analysis (CiSSA); common spatial patterns
(CSP); time-frequency-spatial features

1. Introduction

Brain–computer interface (BCI) systems build a direct connection between the human
brain and external devices, bypassing peripheral nerves and muscles [1]. BCIs not only
help disabled patients effectively regain or recover motor function [2], but also have many
promising applications for healthy users, such as gaming, car control [3], and fatigue
detection [4]. Among BCI systems, motor imagery (MI)-based BCIs are more flexible
than other types of BCIs because they can be driven by voluntary brain activities without
external stimulation and can be more intuitive to control [5,6]. During MI, the sensorimotor
rhythms are attenuated and then enhanced in a short time, which is known as event-related
desynchronization/synchronization (ERD/ERS) [7]. Generally, the signal process of a MI
EEG-based BCI system contains three stages: EEG signal recording, feature extraction, and
classification. Among these, feature extraction is challenging due to non-stationarity and
a low signal-to-noise ratio, which can affect the performance of MI-based BCIs [8].

To optimally extract EEG features that describe the ERD/ERS phenomenon, the
common spatial pattern (CSP) algorithm, which seeks spatial filters to extract the class-
discriminative spatial features [9], is frequently adopted due to its good performance. How-
ever, the performance of CSP is strongly affected by the frequency bands for sensorimotor
rhythm extraction and the time period for analysis in the EEG signal [10]. Combining
the spectral and temporal information in the CSP-based spatial feature is challenging.
The effectiveness of CSP depends on identifying the optimal EEG frequency bands. Be-
cause the optimal frequency band is subject-specific, a fixed and broad frequency band
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(8–30 Hz), which is commonly used, is not suitable for all cases [11]. The classification accu-
racy may be decreased due to a poorly selected filter band that does not include sufficient
spectral information [12]. To solve this issue, several extensions of CSP have been proposed
to use narrowband information from different frequency bands, such as sub-band CSP
(SBCSP) [13], filter bank CSP (FBCSP) [14], discriminative FBCSP (DFBCSP) [15], and sparse
FBCSP (SFBCSP) [16]. These methods usually adopt a finite impulse response (FIR) filter
or infinite impulse response (IIR) filter to obtain the sub-bands with different frequency
bands, which cannot remove noise and artifacts overlapping in time–frequency space with
the MI EEG signal [17]. These noise and artifacts decrease the classification accuracy of the
CSP method.

In addition to frequency band optimization, another significant but often ignored issue
in CSP is time window optimization for EEG segmentation that captures discriminative
features [12]. An appropriate time window for EEG should be preselected to cover the
significant ERD/ERS patterns when the imagery is activated and remove the unrelated time
interval when the imagery is over. Many of the previous studies [11,16,18–21] have adopted
a fixed and predefined time window (i.e., 0.5–2.5 s after the cue) for feature extraction
of MI-related EEG. However, the optimal EEG time window varies over time and across
subjects [22]. The use of a fixed time window can hardly capture discriminative temporal
features for all subjects, and hence results in poor classification performance. In recent
years, an increasing number of researchers have suggested that the optimization of the
time window can significantly improve classification accuracy. Wang et al. introduced
two Parzen window-based methods to select subject-specific time segments from 21 over-
lapping time window candidates [23]. Huang et al. [24], Miao et al. [6], and Kirar et al. [25]
introduced methods that simultaneously optimize time windows and frequency sub-bands
within the CSP to improve the performance of MI classification. Jin et al. designed a novel
time filter that acted together with the spatial filter to introduce the temporal information
in the spatial features, and discussed the effect of different lengths of time windows to
obtain the optimal time segments [26]. Therefore, it is necessary to identify optimal and
task-related frequency sub-bands and relevant time segments of EEG data to improve the
performance of MI classification.

When frequency sub-bands and the time window are optimized, the time-frequency-
spatial features from multichannel EEG recordings lead to a very high dimensional feature
space. However, the high dimension feature space may contain irrelevant features [25]
and have overfitting problems that inevitably diminish discriminative information [24].
These irrelevant and overfitting features decrease the performance of MI classification. In
order to obtain a relevant subset of features and reduce the dimensionality of the feature
space, the feature fusion method is used to obtain the optimal features. Feature fusion
usually contains feature selection and dimensionality reduction. Feature selection is the
process of finding the most effective features from the available feature set to improve
algorithm performance. In the MI classification task, commonly used feature selection meth-
ods include L1-norm [18], Fisher score [27], mutual information [28], and neighborhood
component analysis (NCA) [21]. Dimensionality reduction is a process of removing redun-
dant variables, leaving the significant variables to improve the accuracy the classification
tasks [29]. Principal component analysis (PCA) is a common and popular dimensionality
reduction method.

In order to optimize the frequency band and time window for the combination of
spectral and temporal information in the CSP-based spatial features, we propose a novel
circulant singular spectrum analysis embedded CSP (CiSSA-CSP) method for learning
the optimal time-frequency-spatial features to improve the classification accuracy of MI-
related EEG. Prior to extracting features using CSP, the raw EEG data are segmented into
multiple sub-time segments, from which spectrum-specific sub-bands are derived in a set
of non-overlapping filter bands using CiSSA. The embedded CiSSA not only introduces
additional spectral information in features, but suppresses noise and artifact overlapping in
the frequency space with the EEG signal. Instead of adopting all the time-frequency-spatial
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features for classification, we devised a feature fusion based on mutual information or
principal component analysis (PCA) to reduce redundant information and extract optimal
CSP features. Thus, the MI classification accuracy is improved by the proposed method.

2. Methods

The overall framework of the proposed CiSSA-CSP method for motor-imagery clas-
sification is illustrated in Figure 1, including time segmentation, sub-band filtering, CSP
feature extraction, and feature fusion. Specifically, the multi-channel EEG signals are
segmented into T = 4 segments with overlapping time using a sliding window. Every
time segment is bandpass filtered into B = 6 sub-bands in a set of non-overlapping filter
bands using the CiSSA method. Then, spatial features are extracted in every sub-band
across all time segments by CSP, and the feature vector Fi ∈ R2MBT is obtained. Finally, the
feature fusion method, including mutual information or PCA, is used to obtain the optimal
features, which are then fed into the SVM for MI classification. A simple linear kernel and
the constraint C = 1 is adopted for the SVM training.

Figure 1. Illustration of the CiSSA-CSP method for motor-imagery classification.
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2.1. Time Segmentation of EEG Signal

MI EEG signals have distinct temporal behavior and a transient nature [22]. CSP
features extracted from the whole time period do not carry any temporal information as
EEG signals are averaged over time to compute the covariance matrix. Therefore it is crucial
to select the optimal time window and focus on the local properties of the EEG. In order to
combine the temporal information in the CSP features, the raw EEG signals are segmented
into T segments with overlapping time using a sliding window of length 2 s, which can
discriminate different motor imagery stages.

2.2. Sub-Band Filtering Using CiSSA

In order to further combine the spectral information in the CSP features, the sub-
bands are composed using the CiSSA method to perform bandpass filtering on all time
segments. The CiSSA method is a nonparametric signal extraction method proposed
by Juan Bógalo [30]. The CiSSA is derived from the singular spectrum analysis (SSA),
which can suppress noise and artifacts with overlapping frequencies compared with the
narrowband filter methods such as FIR and IIR [17]. It can decompose the signal into
a set of reconstructed components (RCs) of known frequencies. CiSSA consists of four
steps: embedding, decomposition, diagonal averaging, and grouping. In the time-delay
embedding step, every single-channel EEG time series s = (s1, s2, . . . , sN)

T (superscript T
denotes the transpose of a vector) is mapped onto a multidimensional trajectory matrix X

using a sliding window with the window length L. In the decomposition step, the trajectory
matrix is decomposed into elementary matrices of rank 1 that are associated with different
frequencies. To do so, a related circulant matrix CL is built based on the second order
moments of the time series [30]:

CL( f ) =

⎛⎜⎜⎜⎝
c0 c1 c2 · · · cL−1

cL−1 c0 c1 · · · cL−2
...

...
...

...
...

c1 c2 c3 · · · c0

⎞⎟⎟⎟⎠ (1)

where:

cm =
L − m

L
γm +

m
L

γL−m, γm =
1

N − m

T−m

∑
t=1

stst+m, m = 0, 1, . . . , L − 1 (2)

The eigenvalues and eigenvectors of CL, respectively, are given by [31]:

λk =
L−1
∑

m=0
cm exp(i2πm k−1

L ) = f ( k−1
L )

uk = L−1/2(uk,1, uk,2, . . . , uk,L)
H , k = 1, 2, . . . , L

uk,j = exp(−i2π(j − 1) k−1
L ), j = 1, 2, . . . , L

(3)

where f (•) denotes the power spectral density of the signal. H indicates the conjugate
transpose of a matrix. The k-th eigenvalue and corresponding eigenvector is associated
with the specific frequencies given by:

fk =
k − 1

L
fs (4)

where fs is the sampling rate of EEG signals.
Then, in the diagonal averaging step [32], several time series are reconstructed from

the elementary matrices. The reconstructed time series are generally called RCs. Thus the
raw EEG signal is decomposed into several RCs of known frequency given by Equation (4).
The frequency bandwidth of each RC can be roughly expressed by [33]:
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fb = fs/L (5)

As a consequence, the frequency bandwidth of each RC is limited to fs/L. Considering
the frequency of each RC given by Equation (4), there is no frequency mixing between
different RCs.

We perform bandpass filtering on all time segments using the CiSSA method to obtain
a set of non-overlapping sub-bands ( f b1, f b2, . . . , f bB). These sub-bands are chosen from the
frequency range 6–30 Hz with bandwidth of fb = 4 Hz, i.e., f b1 = 6–10 Hz, f b2 = 10–14 Hz,
. . ., f bB = 26–30 Hz where B = 6. Then, feature extraction is performed on every sub-band
using CSP.

2.3. Feature Extraction Using Common Spatial Patterns

Consider two classes of EEG signal Xi,1 and Xi,2εRC×P recorded from the i-th trial,
where C is the number of channels, and P denotes the number of sample points. The spatial
covariance matrix ∑ of the class l (l = 1, 2) is given by:

Σl =
1
Nl

Nl

∑
i=1

Xi,lX
T
i,l

trace(Xi,lX
T
i,l)

(6)

where Nl is the number of trials in class l. CSP aims at finding linear transforms (spatial
filters) to maximize discrimination between two classes [16]. In order to achieve maximum
separability between the variance of two classes, the Rayleigh quotient J(w) is introduced:

max
w

J(w) =
wTΣ1w

wTΣ2w
s.t.

∣∣∣∣∣∣∣∣w∣∣∣∣∣∣∣∣2 = 1 (7)

where ||•||2 denotes the l2-norm and w ∈ RC is a spatial filter. The maximization of
Rayleigh quotient J(w) can be achieved by solving the generalized eigenvalue problem:
Σ1w = λΣ2w. The learned linear transforms (spatial filters) matrix W = [w1, w2, · · · , w2M]
can be obtained by collecting eigenvectors corresponding to the M largest and smallest
generalized eigenvalues, which represent maximum discrimination between two classes.
The spatial filtered EEG, which is the projection Z of EEG signal X, is then given by
Z = WTX.

The variance based CSP feature vector is then formed as F = [F1, F2, · · · , F2M], where
M = 2, Fi is given by [11]:

Fi = log(var(Zi)) (8)

where var(Zi) denotes the variance of i-th row of Z.
CSP is implemented on the segmented and filtered signals in each sub-band to calculate

the corresponding features by Equation (8). As a result, 2MBT = 96 features are extracted
from each EEG sample.

2.4. Feature Fusion

The method described above leads to a high-dimension feature set (dimension = 96)
that is highly correlated. Obviously using all features for the final decision is not very
efficient due to over-learning problems in high dimensions [13]. Therefore, dimension
fusion steps are needed to reduce the feature dimensions and improve the performance of
classification. We studied two common approaches to obtain a lower dimensionality subset
and use them for final classification, namely, mutual information for feature selection and
PCA for dimensionality reduction. We feed the reduced feature space to the support vector
machine (SVM) and investigate the performance of EEG classification.
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2.4.1. Mutual Information

The mutual information-based individual feature (MIBIF) algorithm is a feature selec-
tion method that shows good performance in the CSP-based method [34]. For the feature
vector set F = {F1, F2, . . . , Fd}, d = 2MBT, and the corresponding class label Ω = {1, 2},
the mutual information of each feature is calculated:

I(Fi; Ω) = H(Ω)− H(Ω|Fi), i = 1, 2, . . . , d (9)

where H(Ω) = −∑2
ω=1 p(ω) log2 p(ω), ω ∈ Ω, the conditional entropy is:

H(Ω|Fi) = −
2

∑
ω=1

p(ω|Fi) log2 p(ω|Fi) (10)

A higher magnitude of mutual information means more relevance between the feature
and the class. Thus, the features are ranked in descending order according to mutual
information and the top k significant features are selected.

2.4.2. PCA

PCA is a useful approach to decorrelate the features and reduce the dimensionality
of the feature space [35]. The purpose of PCA is to find the linear orthogonal transforma-
tion matrix that maximally maintains the feature variance [36]. The mean feature vector
mv = ∑n

i=1 fi/n is calculated from the feature vector set F = [f1, f2, · · · , fd], d denotes the
number of features. Then, covariance matrix CPCA for F is calculated as follows:

CPCA =
1

n − 1

d

∑
i=1

(fi − mv)(fi − mv)
T (11)

The PCA projection matrix WPCA can be obtained by calculating the eigenvectors and
eigenvalues for the covariance matrix and selecting the top k columns of eigenvectors in
descending order of eigenvalue sizes.

3. Data and Experiment

In order to better verify the validity of the proposed CiSSA-CSP method, we used
two different MI EEG datasets for analysis. The first dataset was the BCI Competition
III dataset IVa, which is publicly available and has been used in many studies [34,37].
Therefore, using this dataset, we can effectively compare our method with competing
methods. In addition, in order to verify the universal applicability of the method, the
second dataset, which was collected by ourselves, was used for analysis and validation.

3.1. Public EEG Dataset

BCI Competition III dataset IVa was recorded from five healthy subjects (subject aa,
al, av, aw, and ay). The subjects sat in a comfortable chair and performed motor imagery
(right hand and right foot) experiments. The EEG signal was recorded using 118 channels
according to the extended international 10–20 system and 140 trials for each class. Thus,
a total of 280 trials were provided for each subject. The sampling rate of the EEG data was
100 Hz. Each trial lasted 3.5 s of motor imagery and was interrupted by a time period of
1.75 to 2.25 s, in which the subject could relax, shown in Figure 2b. Seventeen EEG channels
were selected in our study, as shown in Figure 2a (FC3, FC1, FCz, FC2, FC4, C5, C3, C1,
Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4), which contain the sensorimotor area needed to
recognize the cue in the experiment [34].

3.2. Experimental EEG Dataset

The experiments were approved with a protocol (NO. 20170010) by the Institutional
Review Board of Tsinghua University and written informed consent was obtained from
the subjects. Twenty healthy subjects (subject S1, S2, . . . , S20) aged 20–29 participated in
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the experiments and abstained from psychoactive substances for at least 4 h prior to the
experiments. The experiments were carried out with the subjects sitting on a comfortable
chair in a room with normal lightness. The experimental EEG signals were recorded with
nine electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4) from the international 10–20 system,
shown in Figure 3a, using the MP160 data acquisition and analysis system (BIOPAC
Systems, Inc., Goleta, CA, USA). During each trial, as shown in Figure 3b, the subject
relaxed for 3 s, and then a visual cue was presented. Two seconds later, the subject
performed the right-hand or right-foot motor imaginary tasks for 5 s. There were 140 trials
for each class per subject, i.e., a total of 280 trials for each subject. All EEG signals were
recorded at a sampling rate of 250 Hz.

Figure 2. (a) Electrodes used in our study (yellow circles) according to the extended international
10–20 system. (b) The scheme of the experiment. A single trial of the experiment was divided into
two periods. In the first period, the subject relaxed for 1.75–2.25 s; and then the visual cues were
indicated for 3.5 s when the subject performed the motor imageries.
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Figure 3. Experiment setup. (a) Electrodes used in the experiment (yellow circles) according to the
international 10−20 system. (b) The scheme of the experiment. A single trial of the experiment was
divided into three periods. In the first period, the subject relaxed for 3 s; and then the visual cues
were indicated for 2 s for preparation. Finally, subjects performed the motor-imagery tasks (right
hand or foot) for 5 s.

4. Results and Discussion

4.1. Results and Discussion of Public EEG Dataset

The 17-channel EEG signals of all trials were segmented into T = 4 segments with
overlapping time of 1.5 s (0–2 s, 0.5–2.5 s, 1–3 s, 1.5–3.5 s). Then, every time segment
was bandpass filtered into B = 6 sub-bands without overlapping frequency using the
CiSSA method (6–10 Hz, 10–14 Hz, 14–18 Hz, 18–22 Hz, 22–26 Hz, 26–30 Hz). A total of
2M = 4 features were extracted from every sub-band by CSP and, thus, 2MBT = 96 features
were obtained. Finally, dimension reduction was conducted by mutual information or
PCA and optimal features are selected for MI classification. A 10-fold cross-validation was
implemented to evaluate the classification performance.

Table 1 shows the classification accuracy of different algorithms for five subjects
using 10-fold cross-validation. The classification performance of standard CSP is not
very good, especially for subject aa, av, and aw. The average classification accuracy of
CSP is 81.6%. We refer to classification results obtained with CiSSA filtered sub-bands
before CSP as CiSSA + CSP. Classification results indicated that CiSSA + CSP provides
improvements compared to CSP for all subjects, especially for aa, av, and aw. The average
classification accuracy of CiSSA + CSP is 92.3%, which is much higher than the accuracy
of CSP. This proves that combining spectral information in the CSP features can greatly
improve the performance of MI classification. The results corresponding to the Subtime +
CiSSA + CSP are obtained with time segmentation processing before CiSSA + CSP. With
the exception of subject aw, the classification accuracy increases with all subjects when time
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segmentation is implemented. The average accuracy of Subtime + CiSSA + CSP increases
to 94.5%, proving that combining temporal information in the CSP features can further
improve the classification accuracy of MI EEG. The results obtained with MIBIF and PCA
processing as dimensionality reduction are referred as Subtime + CiSSA + CSP + MIBIF and
Subtime + CiSSA + CSP + PCA, respectively. Note that k = 9 optimal features are selected
for all subjects to preliminary study the effects of MIBIF and PCA. When MIBIF is used
as the feature selection method, the classification accuracy decreases for subjects aa, al,
and av, and the average classification accuracy decreases to 93.6%. This indicates that nine
optimal features are not enough to carry sufficient discriminative information. Further
studies should be conducted to select suitable and optimal features. When PCA is used
for dimensionality reduction, the classification accuracy increases slightly with all subjects
except for subject aa. Subtime + CiSSA + CSP + PCA provides the best results with
an average classification accuracy of 96.4%.

Table 1. The classification accuracies of the proposed CiSSA-CSP method on BCI Competition III
dataset IVa (subject aa, al, av, aw, and ay).

Method
Classification Accuracy (%)

aa al av aw ay Average

CSP 78.6 ± 11.4 96.4 ± 3.8 69.6 ± 10.7 75.0 ± 6.3 88.6 ± 5.0 81.6 ± 7.4
CiSSA + CSP 94.3 ± 5.9 98.2 ± 3.5 78.6 ± 6.5 98.2 ± 2.5 92.4 ± 4.1 92.3 ± 4.5
Subtime + CiSSA + CSP 98.6 ± 1.8 99.3 ± 1.5 83.2 ± 6.1 97.9 ± 3.0 95.7 ± 2.8 94.9 ± 3.0
Subtime + CiSSA + CSP + MIBIF 94.3 ± 6.6 98.2 ± 1.9 79.6 ± 7.4 98.2 ± 2.5 97.9 ± 3.8 93.6 ± 4.4
Subtime + CiSSA + CSP + PCA 98.2 ± 3.0 99.3 ± 1.5 87.5 ± 7.6 100 ± 0 97.1 ± 2.8 96.4 ± 3.0

4.1.1. Discriminative Frequency Sub-Band Features

In order to understand the effect of the combination of spectral information with
CSP features, we visualized the topographical distribution of the broad band and the sub-
band EEGs. Figure 4 presents the topographical map and the filter coefficient of the most
significant spatial filter learned by the CSP method from the broad band and all sub-bands
for subject av. Only the electrodes of the sensorimotor area (inside the red dotted frame) are
presented in the topographical map. A larger absolute value of the filter coefficient means
more discriminative information [16]. It can be seen that the largest filter coefficient of the
most significant spatial filter in the broad frequency band (6–30 Hz) is only 0.44, which
leads to poor separability. The largest filter coefficients of the most significant spatial filter
in sub-bands 6–10 Hz, 10–14 Hz, 14–18 Hz, 18–22 Hz, 22–26 Hz, and 26–30 Hz are −0.46,
0.43, 0.6, 0.66, 0.59 and 0.77, respectively. This indicates better separability in Beta rhythm
sub-bands (14–18 Hz, 18–22 Hz, 22–26 Hz, and 26–30 Hz) than in Mu rhythm sub-bands
(6–10 Hz and 10–14 Hz) and broad band (6–30 Hz) for subject av. More discriminative
spectral information is combined in the Beta rhythm sub-bands features. Therefore, we
need to find more precise frequency sub-bands for MI CSP feature extraction, since these
sub-bands carry the most discriminative information and the remaining sub-bands are
irrelevant and redundant to the MI tasks. It is concluded that the combination of spectral
information in the CSP features by an effective optimization of filter band is necessary to
improve the MI classification performance.

In the study, the sub-bands of the EEG were extracted by the CiSSA. In order to com-
pare the performance of sub-band extraction and classification with other common filtering
methods, the sub-bands were extracted by FIR filtering with order 60, Butterworth IIR fil-
tering with order 7, and the wavelet decomposition (WDec) methods, and the classification
accuracies were calculated on CSP features extracted from these sub-bands. Furthermore,
the independent component analysis (ICA) method is commonly used in signal decompo-
sition and artifact removal of EEG [38]. The noise and artifacts are removed by the FastICA
method based on Negentropy [38] and then the sub-bands are extracted by FIR filtering.
Table 2 shows the classification accuracies of CSP, FIR + CSP, IIR + CSP, WDec + CSP,
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ICA + CSP, ICA + FIR + CSP, and CiSSA + CSP methods on BCI Competition III dataset
IVa. It can be seen that, compared with the standard CSP on the broad EEG band, the
classification accuracies are highly improved for sub-bands by FIR, IIR, WDec and CiSSA.
This proves that combining spectral information can greatly improve the discrimination
of CSP features. Expert for subject ay, the classification accuracies obtained by CiSSA are
higher than those obtained by FIR, IIR, and WDec for all subjects. The average classifica-
tion accuracy obtained by CiSSA is improved by 2.3%, 2.9%, and 1.9% over the average
classification accuracies obtained by FIR, IIR, and WDec, respectively. This is because the
CiSSA can suppress noise and artifacts with overlapping frequencies of sub-bands, while
the FIR, IIR, and the WDec methods are not able to separate the noise overlapping in the
frequency space, which decreases the classification performance of CSP. Figure 5 shows the
power spectrum density (PSD) of the sub-bands extracted by CiSSA, FIR, IIR, WDec, and
ICA + FIR for subject av at electrode C3. It can be seen that the PSDs of sub-bands extracted
by FIR and IIR are higher than those by CiSSA and ICA + FIR, which can suppress noise
and artifacts with overlapping frequencies. The PSDs of sub-bands extracted by WDec
contain components falling outside the frequency width of sub-bands. Although ICA can
also remove noise and artifacts with overlapping frequencies, the average classification
accuracy obtained by ICA + FIR is lower than that obtained by CiSSA. It is concluded that
the CiSSA extracts more precise frequency sub-bands for MI CSP feature extraction.

Figure 4. The topographical map and the filter coefficient of the most significant spatial filter learned
by the CSP method of each sub-band for subject av. The electrode indexes 1, 2, . . . , 17 correspond
to the electrode FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4,
respectively. Electrodes inside the red outline represent the electrode indexes 1, 2, . . . , 17.
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Table 2. The classification accuracies of FIR + CSP, IIR + CSP, WDec + CSP, ICA + CSP, ICA + FIR +
CSP, and CiSSA + CSP methods on BCI Competition III dataset IVa (subject aa, al, av, aw, and ay).

Method
Classification Accuracy (%)

aa al av aw ay Average

FIR + CSP 85.7 ± 8.8 95.4 ± 3.8 78.6 ± 8.8 97.1 ± 2.3 93.2 ± 4.6 90.0 ± 5.7
IIR + CSP 87.1 ± 9.9 93.9 ± 4.1 76.8 ± 12.3 97.9 ± 3.0 91.4 ± 4.5 89.4 ± 6.8

WDec + CSP 93.9 ± 8.4 96.8 ± 3.6 72.6 ± 10.4 97.9 ± 3.8 90.7 ± 4.2 90.4 ± 6.1
ICA + CSP 81.1 ± 6.5 95.0 ± 5.1 71.1 ± 10.0 77.5 ± 6.1 94.3 ± 3.5 83.6 ± 6.2

ICA + FIR + CSP 90.4 ± 8.1 93.6 ± 2.8 81.1 ± 7.7 94.3 ± 3.8 95.7 ± 2.3 91.0 ± 4.9
CiSSA + CSP 94.3 ± 5.9 98.2 ± 3.5 78.6 ± 6.5 98.2 ± 2.5 92.4 ± 4.1 92.3 ± 4.5

Figure 5. The power spectrum density (PSD) of the sub-bands extracted by CiSSA, FIR, IIR, WDec,
and ICA + FIR for subject av at electrode C3. The PSDs of sun-bands extracted by FIR and IIR are
higher than those by CiSSA and ICA + FIR. The PSDs of sun-bands extracted by WDec contain
components falling outside the frequency width (e.g., 6–10 Hz for sub-band1).

The bandwidth of sub-bands is 4 Hz, which is used in most of the previous
studies [8,10,12,24,39]. Table 3 shows the classification accuracies of CiSSA + CSP method
on different bandwidths on BCI Competition III dataset IVa using 10-fold cross-validation.
It can be seen that the classification accuracy attains a high value when the bandwidth is set
to be 1 or 4 Hz. However, more computing resources and time are needed for a bandwidth
of 1 Hz than for a bandwidth of 4 Hz. Therefore, the bandwidth of 4 Hz is the best choice
for sub-band extraction.

4.1.2. The Performance of Time Segmentation

To present time window segmentation performance, we made topoplots of spatial
filters for subject aa as an example, shown in Figure 6. Figure 6a shows the classification
accuracy of the feature space learned by the proposed CiSSA-CSP method using a pictorial
representation. Overall, the feature space has five time windows (the whole time window
and four sub-time windows) and six frequency sub-bands for each time window. Each
time-frequency segment contains four CSP features. It can be observed that CSP feature
index 8 (sub-band 10–14 Hz), index 12 (sub-band 14–18 Hz), and index 20 (sub-band
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22–26 Hz), which represent the most significant spatial filters learned by the CSP from
the sub-bands, attain the best classification accuracy. Features from CSP feature index 12
in all time windows are marked by a red outline. The classification accuracy of sub-time
window 0.5–2.5 s is higher than the accuracies of the whole time window of 0–3.5 s and
other sub-time windows of 0–2 s, 1–3 s, and 1.5–3.5 s. To further analyze the effect of the
proposed method in different time windows, the topographical maps of the most significant
spatial filter learned by the CSP from all time windows in sub-band 14–18 Hz (marked by
red outline in Figure 6a) are shown in Figure 6b. An evident change in ERD/ERS patterns in
the sensorimotor area is observed as the time window changes, which shows that the neural
response during motor imagery tasks changes with time. In sub-time windows 0.5–2.5 s,
spatial features are more discriminative and significant than in other sub-time windows
and the whole time window. Therefore, combining temporal information into CSP features
by time segmentation leads to more discriminatory features for MI task classification.

Table 3. The classification accuracies of CiSSA + CSP methods on different bandwidths on BCI
Competition III dataset IVa (subject aa, al, av, aw, and ay).

Bandwidth (Hz) L
Classification Accuracy (%)

aa al av aw ay Average

1 100 93.5 ± 4.1 98.2 ± 2.5 84.3 ± 7.3 91.0 ± 4.8 94.1 ± 4.7 92.2 ± 4.7
2 50 88.3 ± 6.6 97.4 ± 2.3 79.6 ± 6.7 96.4 ± 2.8 92.3 ± 6.3 90.8 ± 4.9
4 25 94.3 ± 5.9 98.2 ± 3.5 78.6 ± 6.5 98.2 ± 2.5 92.4 ± 4.1 92.3 ± 4.5
6 16 90.7 ± 6.1 97.5 ± 2.9 78.9 ± 11.0 97.1 ± 2.8 94.3 ± 4.8 91.7 ± 5.5
8 12 88.6 ± 9.3 98.6 ± 1.8 73.6 ± 9.7 92.9 ± 4.8 92.5 ± 3.9 89.2 ± 5.9

Figure 6. Performance of time segmentation for subject aa. (a) Pictorial representation of the
classification accuracy (ACC) on the feature space learned by the proposed method for subject aa.
Each time-frequency segment contains 4 CSP features. (b) The topographical maps of the most
significant spatial filter learned by the CSP from all time windows in sub-band 14–18 Hz (marked by
red outline in Figure 6a). Electrodes inside red outline in Figure 6b represent the electrodes of the
sensorimotor area.
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The performance of classification is affected by time-window length. The classification
accuracies at different time-window lengths with a window step of 0.5 s were calculated
using 10-fold cross-validation and the results are shown in Table 4. It can be seen that
the classification accuracies vary within a small range of 1.2% and the accuracy attains
a maximum value at time-window length of 2 s.

Table 4. The classification accuracies at different time-window lengths on BCI Competition III dataset
IVa (subject aa, al, av, aw, and ay).

Time-Window Length (s)
Classification Accuracy (%)

aa al av aw ay Average

1 98.3 ± 2.4 100 79.9 ± 3.8 96.1 ± 1.7 94.3 ± 2.4 93.7 ± 2.1
1.5 96.5 ± 2.5 99.6 ± 1.1 85.3 ± 5.4 97.6 ± 1.1 94.3 ± 1.5 94.7 ± 2.3
2 98.6 ± 1.8 99.3 ± 1.5 83.2 ± 6.1 97.9 ± 3.0 95.7 ± 2.8 94.9 ± 3.0

2.5 96.8 ± 2.6 99.0 ± 1.1 82.5 ± 8.0 97.9 ± 3.0 91.1 ± 5.1 93.5 ± 4.0
3 97.1 ± 2.8 99.0 ± 1.5 81.1 ± 6.1 97.5 ± 3.4 92.9 ± 6.1 93.5 ± 4.0

4.1.3. The Effect of Feature Selection by MIBIF

To have an intuitive understanding of the distribution of significant time-frequency
segments, the values of MIBIF belonging to each time-frequency segment were calculated,
as shown in Figure 7 for subject aa. It can be seen that the highest values are located in
feature indexes 8, 12, and 20, which is consistent with Figure 6. It is concluded that the
features of higher MIBIF values contain more discriminatory information for accuracy
improvement of MI EEG. In addition, the significance (MIBIF value) changes along the
time axis and frequency bands due to the non-stationarity of EEG. The most significant
features are located in some local time-frequency segments. Therefore, it is believed that
decomposing a multi-channel EEG into time-frequency segments for more precise analysis
helps to improve the classification accuracy. Figure 8 depicts distributions of the most
significant two features derived by CSP, CiSSA + CSP, Subtime + CSP, and Subtime +
CiSSA + CSP, for subject aa. It is indicated that when the spectral (CiSSA + CSP) or
temporal (Subtime + CSP) information is combined into the CSP features, more separable
feature distributions are provided in comparison with the standard CSP. The highest
discriminability of features was achieved by Subtime + CiSSA + CSP, which combines
both the spectral and temporal information. The classification accuracy of the two most
significant features derived by Subtime + CiSSA + CSP is 85.0%, 10.7% higher than the
classification accuracy obtained by standard CSP.

Figure 7. Distribution of MIBIF values in all time-frequency segments for subjects aa. Index 1, 2, . . . ,
24 in the frequency bands represent the CSP feature index.

The classification accuracy of the proposed mothed varies with the number of the fea-
tures selected by the MIBIF. To select the most suitable features, the classification accuracies
for the number of selected features by MIBIF were calculated, as shown in Figure 9 for
subject av. Figure 9 indicates that the highest classification accuracy (85.7%) is attained
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when the most significant 25 features are selected for subject av. The highest classification
accuracies and the number of selected features by MIBIF for all subjects are shown in
Table 5. The average highest classification accuracy with feature selection by MIBIF for
all subjects is 96.3%, which is a 1.4% improvement compared to the average classification
accuracy without feature selection.

Figure 8. Distributions of the most two significant features obtained by CSP, CiSSA + CSP, Subtime +
CSP and Subtime + CiSSA + CSP, for subjects aa.

Figure 9. Classification accuracy over the number of selected features by MIBIF and PCA for subjects av.

4.1.4. The Effect of Dimensionality Reduction by PCA

We note from Table 1 that the classification accuracies are increased when features are
dimensionally reduced by PCA for certain subjects (av, aw, and ay). The receiver operating
characteristic (ROC) curves related to the 57 features selected by MIBIF and five features
selected by PCA for subject aa are given in Figure 10a. It is indicated that the area under
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the PCA curve is greater than the areas under curves of selected MIBIF features and all the
original features, which means more discrimination in the selected features by PCA than
by MIBIF. Figure 10b shows the distribution of the first two features obtained by PCA for
subject aa. Note that the right-hand and -foot imagery classes are nearly linearly separable
with the top two features with PCA. The classification accuracy of the first two features
derived by PCA is 93.6%, higher than the classification accuracy derived by MIBIF (shown
in Figure 8).

Figure 10. (a) The ROC curve of the 57 features selected by MIBIF and 5 features selected by PCA for
subjects aa. (b) The distribution of the first two features obtained by PCA for subject aa. Note that the
right-hand (blue, circle) and right-foot (red, cross) imagery classes are nearly linearly separable with
only 2 features.

Similar to MIBIF, the classification accuracy also varies with the feature dimension
selected by the PCA. It is indicated by Figure 9 that the highest classification accuracy
(87.9%) is attained when the most significant 12 features derived by PCA are selected for
subject av. The classification accuracy of PCA is higher than that of MIBIF when the same
number of top significant features is selected. This is because PCA can decorrelate the
features and reduce the redundant information between features, while MIBIF extracts
features most relevant to the class. Features extracted by MIBIF may be highly correlated
and contain redundant information. Figure 11 shows the distribution of mutual information
between top 25 features selected by MIBIF and PCA for subject av. A higher value of
mutual information means more relevance between two features. It can be seen that the top
features extracted by MIBIF are highly correlated, while the features extracted by PCA are
not correlated. The highest classification accuracies and the selected feature dimension by
PCA for all subjects are shown in Table 5. The average highest classification accuracy with
dimensionality reduction by PCA for all subjects is 96.6%, 0.3% higher than the accuracy
derived by MIBIF.

Table 5. The highest classification accuracies and the selected feature dimension (k) by MIBIF and
PCA for all subjects on Competition III dataset IVa (subject aa, al, av, aw, and ay).

Subject
MIBIF PCA

Accuracy (%) Dimension (k) Accuracy (%) Dimension (k)

aa 98.6 ± 1.8 57 98.2 ± 2.5 5
al 99.6 ± 1.1 28 99.6 ± 1.1 11
av 85.7 ± 7.9 25 87.9 ± 6.8 12
aw 99.6 ± 1.1 10 100 9
ay 97.9 ± 3.8 8 97.5 ± 4.7 16

Average 96.3 ± 3.1 96.6 ± 3.0

80



Sensors 2022, 22, 8526

Figure 11. The distribution of mutual information between the top 25 features selected by (a) MIBIF
and (b) PCA for subject av.

4.1.5. Comparison with Other Competing Techniques

Since accuracy is the key criterion for evaluating the performance of methods in
a BCI system, we compared the classification accuracy of the proposed CiSSA-CSP method
with other competing methods. Table 6 provides a comparative study of the classification
performance between the proposed method and ten recently reported methods for Com-
petition III dataset IVa, namely, FBCSP [14], CTFSP [6], Fusion [18], TWFBCSP-MVO [24],
SFBCSP [16], STFSCSP [39], DFBCSP [40], CC-LR [37], ISSPL [41], and Class Separability
(CS) [35] methods. The highest classification accuracies among these methods are high-
lighted in bold font for each subject and their averages. The highest classification accuracy
of our proposed method is 100% for subject aw. Furthermore, the classification accuracies
of our proposed method for subjects aa, al, and ay are very close to the highest classification
accuracy of other competing methods. The average classification accuracies of our proposed
method are 96.3% and 96.6% for MIBIF and PCA feature selection, respectively, which are
higher than the average classification accuracies of other methods. It can be concluded
that the proposed method outperforms the recently reported competing methods for MI
EEG classification.

Table 6. Comparison of the classification performance between the proposed method and eight
recently reported methods for Competition III dataset IVa (subject aa, al, av, aw, and ay).

Method
Classification Accuracy (%)

aa al av aw ay Average

FBCSP [14] 83.6 94.6 51.4 93.9 88.2 82.4
CTFSP [6] 86.1 98.6 52.1 96.1 92.1 85.0
Fusion [18] 80.0 96.8 70.0 92.5 91.1 86.1
TWFBCSP-MVO [24] 89.6 99.3 69.3 96.1 92.1 89.3
SFBCSP [16] 91.5 98.6 77.4 98.0 94.7 92.0
STFSCSP [39] 92.5 98.6 79.4 97.8 95.0 92.7
DFBCSP [40] 92.3 99.3 78.1 99.3 95.1 92.8
CC-LR [37] 100 94.2 100 100 75.3 93.9
ISSPL [41] 93.6 100 79.3 99.6 98.6 94.2
Class Separability [35] 95.6 99.7 90.5 98.4 95.7 96.0
Our method (MIBIF) 98.6 99.6 85.7 99.6 97.9 96.3
Our method (PCA) 98.2 99.6 87.9 100 97.5 96.6

4.1.6. Computational Complexity

In order to investigate the computational complexity of the proposed method, we
calculated the time consumption of training and testing phase on Competition III dataset

81



Sensors 2022, 22, 8526

IVa. The experiment was implemented using MATLAB R2014a on a PC with Intel(R)
Core(TM) 2.40 GHz CPU and 8.0 GB RAM. Figure 12 shows the computational time of the
training phase taken by different methods with 10-fold cross-validation. From Figure 12a,
it can be seen that combining spectral and temporal information in the CSP features by
sub-band filtering (CiSSA + CSP) and time segmentation (Subtime + CiSSA + CSP) takes
much more time than the CSP method. In addition, the time required by the MIBIF
feature selection method is much longer than PCA. Furthermore, we compared the time
consumption of CiSSA and other common filtering methods, as shown in Figure 12b. The
results indicate that CiSSA and FIR consume the least time, while CiSSA achieves the
highest classification accuracy (shown in Table 2).

Figure 12. Computational time taken by different methods on Competition III dataset IVa with
10-fold cross-validation. (a) Computational time taken by CSP, CiSSA + CSP, Subtime + CiSSA + CSP,
Subtime + CiSSA + CSP + MIBIF and Subtime + CiSSA + CSP + PCA. (b) Computational time taken
by FIR + CSP, IIR + CSP, WDec + CSP, ICA + CSP, ICA + FIR + CSP and CiSSA + CSP.

After training, the optimal CSP filter for each time-frequency segment, the indexes
of selected features, and the SVM model can be directly used for testing. Hence the
computational time is significantly reduced during the testing phase. Table 7 lists the
average testing time of one trial using our method and other recently reported methods
for subject aa. The results indicate that, for one test trial, the average execution time of our
method is 156.4 ms (MIBIF) or 156.7 ms (PCA). Although our method takes a longer time to
compute one trial than other competing methods, it can meet the requirement of real-time
processing since the computational time is much less than the length of one trial (3.5 s).
Therefore, the proposed method improves the motor imagery classification performance
without degrading the computation efficiency for BCI applications.

Table 7. Comparison of average computational time for testing one trial with different competing
methods for subject aa.

Methods Testing Time (ms)

FBCSP 78.8
CTFSP 143.2

DFBCSP 146.6
Fusion 23.4

STFSCSP 45.2
Class Separability 72.6

Our method (MIBIF) 156.4
Our method (PCA) 156.7
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4.2. Results and Discussion of Experimental EEG Dataset

In the study of the experimental EEG dataset, the 9-channel EEG signals of all trials
were segmented into T = 4 epochs with overlapping time of 1s (0–2 s, 1–3 s, 2–4 s, 3–5 s).
Table 8 shows the classification accuracies of different algorithms for twenty subjects using
10-fold cross-validation. The classification performance of CSP is poor for most subjects
and the average accuracy of CSP is 74.7%. When spectral information is combined with
the CSP features by decomposing the EEG into sub-bands using CiSSA, the classification
performance improves compared to CSP for all subjects. The average classification accuracy
of CiSSA + CSP is 90.4%. The average accuracy of Subtime + CiSSA + CSP further increases
to 92.3%. Similar to the public available dataset, k = 9 optimal features were selected for all
subjects to preliminarily study the effects of MIBIF and PCA. When MIBIF is used as the
feature selection method after Subtime + CiSSA + CSP, the classification accuracy decreases
for most subjects and the average classification accuracy decreases to 89.8%, indicating that
nine optimal features are not enough to carry sufficient discriminative information. When
PCA is used for dimensionality reduction after Subtime + CiSSA + CSP, the classification
accuracy increases slightly with all subjects, except for subjects S1, S12, and S14. Subtime +
CiSSA + CSP + PCA provides the best results with an average classification accuracy
of 93.9%. The results of the experimental EEG dataset are consistent with the results of
Competition III dataset IVa. It is concluded that the proposed CiSSA-CSP method can be
used in different MI datasets, which verifies the universal applicability of the method. To
verify the reliability of the experimental results, a paired t-test [27] is used between two
adjacent methods in Tables 1 and 8 to show the statistical difference in the classification
accuracies of different methods. The paired t-test’s results on all subjects of public and
experimental datasets are shown in Table 9. It can be seen that all the p-values are less than
0.05 (p < 0.05), which means all improvements are statistically significant.

Table 8. The classification accuracies of the proposed CiSSA-CSP method on experimental motor
imaginary EEG.

Subject

Classification Accuracy (%)

CSP CiSSA + CSP
Subtime + CiSSA

+CSP
Subtime + CiSSA

+CSP + MIBIF
Subtime + CiSSA

+CSP + PCA

S1 70.4 ± 6.1 97.5 ± 2.9 96.4 ± 4.1 93.6 ± 5.0 95.4 ± 4.5
S2 68.2 ± 10.6 87.5 ± 5.1 91.4 ± 3.0 86.1 ± 6.4 91.8 ± 3.8
S3 61.8 ± 11.9 95.4 ± 2.4 95.4 ± 4.1 95.0 ± 4.2 97.9 ± 2.5
S4 66.8 ± 9.4 85.7 ± 7.5 88.9 ± 3.9 88.9 ± 6.8 91.8 ± 5.8
S5 76.1 ± 14.8 88.6 ± 6.9 87.1 ± 10.1 87.1 ± 13.7 90.4 ± 11.3
S6 51.4 ± 10.3 80.8 ± 10.1 85.0 ± 9.0 77.1 ± 15.7 86.8 ± 10.7
S7 61.1 ± 6.2 77.1 ± 7.6 86.1 ± 8.2 78.6 ± 6.9 89.6 ± 7.8
S8 73.6 ± 6.1 90.0 ± 5.8 87.9 ± 6.1 92.5 ± 4.9 87.9 ± 7.8
S9 77.9 ± 7.1 93.2 ± 4.9 95.0 ± 4.8 91.4 ± 7.4 96.8 ± 4.3
S10 88.6 ± 9.0 92.9 ± 5.3 91.8 ± 5.8 90.7 ± 8.3 93.9 ± 5.8
S11 85.0 ± 6.0 92.1 ± 6.7 90.7 ± 5.1 91.8 ± 5.1 94.3 ± 4.5
S12 89.3 ± 7.7 93.6 ± 5.5 95.7 ± 4.4 90.7 ± 5.9 95.4 ± 4.1
S13 77.5 ± 11.2 91.1 ± 6.6 93.6 ± 5.5 90.4 ± 8.6 95.7 ± 6.0
S14 87.9 ± 4.8 90.0 ± 2.8 95.4 ± 3.4 91.8 ± 3.8 93.9 ± 5.1
S15 82.9 ± 5.8 95.7 ± 5.3 93.6 ± 5.0 90.0 ± 5.3 94.6 ± 3.0
S16 75.7 ± 9.6 92.9 ± 5.3 93.9 ± 4.1 92.5 ± 3.9 97.9 ± 3.8
S17 73.9 ± 7.0 92.1 ± 5.3 97.1 ± 2.8 92.5 ± 6.6 97.1 ± 3.8
S18 83.6 ± 5.4 85.7 ± 7.5 92.1 ± 6.3 91.1 ± 4.8 92.5 ± 4.3
S19 63.6 ± 12.5 91.1 ± 7.4 93.6 ± 4.4 88.2 ± 9.4 95.7 ± 7.1
S20 79.3 ± 4.7 95.4 ± 3.8 95.7 ± 6.0 95.0 ± 5.9 97.9 ± 3.5

Average 74.7 ± 8.3 90.4 ± 5.7 92.3 ± 5.3 89.8 ± 6.8 93.9 ± 5.5
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Table 9. Paired t-test (α = 0.05) result for the classification accuracy on public and experimental datasets.

CSP CiSSA + CSP
Subtime + CiSSA

+CSP
Subtime + CiSSA

+CSP + MIBIF
Subtime + CiSSA

+CSP + PCA

p-value - 0.0000 0.0018 0.0006 0.0001

Paired t-test is used between two adjacent methods. For example 0.0000 is the paired t-test result between CSP
and CiSSA + CSP methods and 0.0018 is the paired t-test result between Subtime + CiSSA + CSP and CiSSA +
CSP methods.

The classification accuracy of the proposed mothed on the experimental EEG dataset
varies with the number of features selected by MIBIF or PCA. To select the most suitable
features, the classification accuracies over the number of selected features by MIBIF or PCA
were calculated, and we chose the number of features having the highest accuracy. Table 10
shows the highest classification accuracies and the selected feature dimension by MIBIF
and PCA. It can be seen that, for all subjects except for subject S11, the number of features
selected by PCA is smaller than that by MIBIF, while the classification accuracy derived
by PCA is higher than that of MIBIF. The average highest classification accuracy with
dimensionality reduction by PCA for all subjects is 95.2%, 1.5% higher than the accuracy
derived by MIBIF.

Table 10. The highest classification accuracies and the selected feature dimension (k) by MIBIF and
PCA for all subjects on the experimental data we recorded.

Subject
MIBIF PCA

Accuracy (%) Dimension (k) Accuracy (%) Dimension (k)

S1 97.5 ± 4.5 39 98.6 ± 2.5 17
S2 91.8 ± 4.5 15 93.2 ± 3.1 11
S3 97.1 ± 3.7 32 98.2 ± 2.5 8
S4 90.4 ± 6.3 17 93.9 ± 4.5 3
S5 88.2 ± 10.5 55 91.8 ± 11.6 7
S6 85.4 ± 11.1 69 90.0 ± 6.3 28
S7 87.9 ± 7.9 28 90.7 ± 5.4 14
S8 92.5 ± 4.9 9 92.9 ± 5.6 23
S9 95.4 ± 5.1 67 98.2 ± 2.5 15

S10 92.5 ± 6.2 11 95.0 ± 5.4 11
S11 93.9 ± 4.5 5 94.6 ± 4.5 14
S12 96.8 ± 3.6 47 96.4 ± 3.8 8
S13 94.3 ± 6.3 17 95.7 ± 6.0 9
S14 96.1 ± 4.9 63 95.4 ± 3.4 62
S15 95.7 ± 5.5 30 96.8 ± 3.6 14
S16 94.6 ± 4.2 45 97.9 ± 3.8 9
S17 97.5 ± 2.4 60 97.5 ± 2.9 13
S18 93.6 ± 4.1 24 93.6 ± 5.5 19
S19 95.0 ± 3.5 23 95.7 ± 7.1 9
S20 98.6 ± 3.0 36 98.6 ± 3.5 15

Average 93.7 ± 5.3 95.2 ± 4.7

5. Conclusions

We propose a novel algorithm, CiSSA-CSP, for learning the optimal time-frequency-
spatial patterns to improve classification accuracy of MI EEG. Specifically, raw EEG data
are first segmented into multiple time segments using a sliding window. Spectrum-specific
sub-bands are further derived for each time segment in a set of non-overlapping filter
bands using CiSSA. Therefore, features extracted in all time-frequency segments using
CSP combine more sufficient and discriminative time-frequency-spatial information. We
then devised a feature fusion based on mutual information or PCA to extract robust and
optimal CSP features. A linear SVM classifier was trained on the optimized EEG features
to accurately identify the MI tasks. The experimental study implemented on the public
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and experimental EEG datasets validated the effectiveness of the CiSSA-CSP method.
Compared with several other competing methods, the proposed CiSSA-CSP method leads
to a superior classification accuracy (averaged classification accuracies were 96.6% and
95.2% for the public and experimental datasets, respectively), which confirms that it is
a promising method for improving the performance of MI-based BCIs.
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Abstract: Brain–computer interfaces (BCIs) are successfully used for stroke rehabilitation, but the
training is repetitive and patients can lose the motivation to train. Moreover, controlling the BCI
may be difficult, which causes frustration and leads to even worse control. Patients might not adhere
to the regimen due to frustration and lack of motivation/engagement. The aim of this study was
to implement three performance accommodation mechanisms (PAMs) in an online motor imagery-
based BCI to aid people and evaluate their perceived control and frustration. Nineteen healthy
participants controlled a fishing game with a BCI in four conditions: (1) no help, (2) augmented
success (augmented successful BCI-attempt), (3) mitigated failure (turn unsuccessful BCI-attempt
into neutral output), and (4) override input (turn unsuccessful BCI-attempt into successful output).
Each condition was followed-up and assessed with Likert-scale questionnaires and a post-experiment
interview. Perceived control and frustration were best predicted by the amount of positive feedback
the participant received. PAM-help increased perceived control for poor BCI-users but decreased it
for good BCI-users. The input override PAM frustrated the users the most, and they differed in how
they wanted to be helped. By using PAMs, developers have more freedom to create engaging stroke
rehabilitation games.

Keywords: brain–computer interface; motor imagery; gamification; stroke rehabilitation; frustration;
perceived control; performance accommodation mechanisms; game design

1. Introduction

A stroke is globally one of the leading causes of acquired disability among adults [1].
However, the heterogeneity of the injury complicates finding a single treatment that is ef-
fective for all patients and the effects of existing treatment options are limited [2]. However,
in recent years, several new rehabilitation techniques have been proposed, which rely on
the induction of plasticity and motor learning principles [3–5]. One proposed technique
that has shown promising results is the brain–computer interface (BCI) [6–8]. It was shown
in many studies that BCIs can be used for inducing Hebbian-associated plasticity by trig-
gering electrical stimulation [9–12], rehabilitation robots [13,14], or exoskeletons [15] based
on movement-related cortical activities through either motor imagery (MI) or attempted
movements [16]. Improvements in functional scores such as the Fugl-Meyer Score have
consistently been reported for upper and lower limbs (see, e.g., [17,18] for recent reviews).
BCI training can be effective, but as for many other rehabilitation techniques, repetitive
training is needed, and the outcome is likely to be correlated with the amount of performed
training. The repetitive training may cause boredom in the patients, which eventually
can lead to patients not adhering to the regimen [19]. A potential solution to keep the
patients engaged and motivated to maintain the training efforts can be through gamifi-
cation [20], which was used successfully in various other rehabilitation scenarios [21,22].
To introduce gamification in BCI-based rehabilitation, patients need to be able to provide
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input to activate the lesioned brain area to maximize the effect of the rehabilitation [7].
However, 10–30% of all individuals cannot operate a BCI satisfactorily for control and
communication purposes, i.e., when achieving recognition rates less than 70% [23]. It
should be noted though that lower recognition rates still induce plasticity [8], although a
better BCI performance was suggested to improve the induction of plasticity [9]. The BCI
performance may be enhanced in various ways by selecting the optimal pre-processing
techniques [24–26], features [25,27–30], classifiers [29,31], or by focusing on user instruc-
tions and training [23,32,33]. By improving the BCI performance, the patients’ perceived
control and frustration improve as well [34–40], which may help them maintain interest
in the training. Moreover, frustration has a detrimental effect on BCI performance with
increasing frustration leading to worse BCI performance [39]. Despite the use of optimal
signal processing techniques or learning principles, the BCI performance may still be poor
for some users, or other factors may impede the BCI performance, such as incompetence
or fear [41]. A way to tackle this is by injecting concealed, artificial, positive feedback and
in this way improve the perceived BCI performance [34,35]. This approach can only be
implemented in a meaningful way in synchronous BCIs with binary input (MI vs. idle
activity) [35]. Alternatively, game mechanics can be used to assist users, such that they
maintain interest in the training, and the mechanics conceal the actual BCI performance.
The game mechanics represent a type of dynamic difficulty adjustment [42], which regulate
the game’s challenge to accommodate for imperfect user input, and are named performance
accommodation mechanisms (PAMs) [43]. PAMs are used to match the challenge of the
game to the player’s skill level. If the game’s challenge is sufficiently but not too high,
players can enter a flow state in which they feel challenged but will likely succeed in
making the interaction engaging [44]. This could be important in a BCI training context
where there is great variability in the BCI skill levels. Flow was reported to account for a
major part of the enjoyment of playing games [45,46].

A PAM may be defined in the following way: “A game mechanism to increase the player’s
enjoyment by lowering the game’s challenge level to accommodate for poor performance of the player,
input device or system” [43]. PAMs may be divided into five overall groups (although other
smaller and more specific groupings may exist): Augmented success, mitigated failure,
input override, rule change, and shared control [43]. In this study, we focus on the first
three listed PAMs. Augmented success provides the user with an outcome that is better
than what normally can be expected from a successful input, e.g., this mechanism was
implemented as power-ups or boosts in driving games. Mitigated failures transform failed
inputs to outputs that are between failure and success, such that failed inputs are not
penalized but not successful either. An example of this mechanism in a shooting game
could be that a low-performing player is not losing as much health as if the mechanism was
not activated. Input override can replace a failed input with a system-generated successful
input, e.g., this mechanism can be used in a targeting shooting task where failed inputs still
lead to an instant lock on the nearest target. These PAMs could be used to create engaging
games that allow patients with poor BCI control to experience more enjoyable rehabilitation
training sessions. However, it is unknown how these PAMs affect perceived control and
frustration in a BCI context. To that end, this study implements PAMs in an MI-controlled
online BCI game and investigates how each PAM affects the levels of perceived control and
frustration as well as exploring the qualitative aspects of using such PAMs.

2. Materials and Methods

2.1. Participants

A total of 19 healthy participants participated in this study (7 women and 12 men
with a mean age of 27 ± 8 years). All participants provided their informed consent prior to
participation. Prior to the experiment, the participants were instructed on how to perform
kinesthetic or first-person MI [16].
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2.2. Brain–Computer Interface

The BCI in this study was based on kinesthetic MI of a palmar grasp of the right hand
and implemented using the “Motor Imagery BCI” scenario in OpenViBE [47]. A similar
setup was used previously (see, e.g., [15,35,48]). Continuous EEG was recorded using
a cap with sintered Ag/AgCl electrodes (OpenBCI, USA) and amplified using a Cyton
Biosensing Board (OpenBCI, USA). The EEG was recorded from F3, F4, C3, Cz, C4, P3,
and P4 according to the International 10–20 System. The electrodes were grounded at
CPz and referenced to AFz. The EEG was sampled at 250 Hz. The amplified EEG was
transmitted through Bluetooth to a computer running the OpenViBE software. The EEG
was bandpass filtered between 8 and 30 Hz with a 5th-order Butterworth filter to reduce the
electrical activity outside the mu (8–12 Hz) and beta (13–30) frequency ranges for enhancing
the event-related desynchronization [49]. This was followed up with a common spatial
pattern filter that was applied to maximize the difference in spectral power between the
two classes (MI vs. idle activity). The bandpower was obtained from the CSP-filtered
data from each electrode and used as input for a linear discriminant analysis classifier.
The filter coefficients for the CSP filter and the parameters for the decision boundary were
extracted from calibration data. The linear discriminant analysis classifier was trained
using five-fold cross-validation. Every 1/16 s the BCI system calculated a value between
0 and 1, and if the value exceeded a subject-specific threshold of 0.5 s it was considered as
MI. The subject-specific threshold was determined based on the threshold leading to the
highest offline classification threshold. This threshold was used in a short online test of
the BCI system (<5 min) before the actual testing began to adjust it if necessary to obtain a
trade-off between the number of true positive and false positive detections. When MI of a
palmar grasp was detected in the experimental sessions a trigger was sent to unity through
a TCP socket in OpenViBE. Figure 1 visualizes the complete communication relationship
between the BCI and the game.

Figure 1. Data flow from the BCI cap to the fishing game developed in Unity. The BCI only controls
the game when the black cursor is within the input window, marked by the green area on a bar
displayed in the fishing game.

2.3. Game

The participants in this study played a game where three implementations of the
different PAMs/help could be integrated. The participants played a custom-made fishing
game where they controlled a fisherman and had to catch as many fish as possible from
a lake. The player had to move the hook up and down using the up and down keys on a
keyboard, to catch the fish, which swam at three different depths in the lake (visualized in
Figure 2. When the fish swam into the hook, it was hooked and a progress bar was shown.
Then the player had to reel in the fish using kinesthetic MI of a palmar grasp of the right
hand. To avoid conflicting movement-related brain activity associated with pressing the
keys on the keyboard and reeling in the fish with MI, the MI was initiated two seconds
after the last press on the keyboard. Initially, a preparation phase of two seconds was
given (marked with white) followed by a two-second input window where the user had
to perform MI (marked with green). A black cursor moving from left to right indicated

89



Sensors 2022, 22, 9051

the timing of the two phases. The input window closed when MI was detected or after
two seconds if no MI was detected. When the input was closed the participants received
feedback in the form of (A) the fish being reeled in (success), (B) the fish unreeling (failure),
or (C) PAM activation (special). It required one to three reels to catch the fish depending on
the fish’s depth in the lake. It required three unreels for the fish to escape.

Figure 2. In the fishing game, participants control a fisherman reeling fish. Participants use arrow
keys to move the hook up and down between three lanes. A fish may appear in a random lane from
either left or right side and may swim into the participant’s hook. The BCI input window then begins
and the participant may then perform MI when the black cursor is within the green area.

2.3.1. Performance Accommodation Mechanisms

The experiment evaluated three PAMs: augmented success, mitigated failure, and in-
put override. The PAMs were implemented in the fishing game as ways to help the player
reel in the fish. In the augmented success PAM condition, the fisherman eats a herb to
make him stronger, which helps the player reel in the fish faster—moving up two lanes
instead of one. Augmented success provides extra positive feedback, equivalent to two
successful reels. In the mitigated failure PAM condition, the fisherman adds a clamp to the
fishing rod such that the fish is prevented from escaping. At the end of a mitigated failure
trial, the fish maintains the same position which can be considered neutral feedback. In
this way, the fish is not caught, but it does not escape either. In the input override PAM
condition, an external computer-controlled avatar in the form of a person comes in and
takes over the fishing rod to reel up the fish on behalf of the fisherman. The input override
provides positive feedback equivalent to a regular single successful reel. We contrasted all
of these PAM conditions with a reference condition labeled as ‘normal’ in which players
only received regular positive and negative feedback based on their input. Table 1 provides
a full overview of the possible outcomes within each condition.

2.3.2. Urn Model

Each condition consisted of 20 trials in which players could attempt to reel in fish by
performing MI. In the reference condition, all trials were controlled by the players’ BCI.
In PAM conditions, normal trials were shuffled with 30% special trials as visualized in
Figure 3. In addition, participants’ trials were rejected if they exceeded 70% control in the
helped condition, to ensure all participants had similar experiences including both positive
and negative feedback. To ensure that participants experienced the target rates, trials had
predefined behaviors, which determined how the trial could end, visualized in the bottom
flow chart in Figure 3. Rejection trials could override successful attempts if more negative
feedback was needed. Special trials could override both successful and rejected attempts,
except for augmented success, which required successful input from the user to augment.
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The order of special trials, normal trials, and rejected trials was determined by an urn
model. The urn model continuously counted how many successful, failed and special trials
players had and evaluate the order of upcoming trials. If the urn model decided that a
player was to receive augmented success in a trial, this would require them to produce
the success. If the player failed to perform MI, the urn model would evaluate the order of
upcoming trials again and place an augmented success in a later trial. Trials designated for
input override and mitigated failure disregarded users’ input and provided help at the end
of the input window instead. This behavior was used for experimental purposes to ensure
enough PAM trials were provided; in real scenarios, input override and mitigated failure
only trigger when players fail to perform MI.

Figure 3. Each condition consisted of 20 trials. In the helped conditions, help trials with predefined
outcomes (blue) were shuffled with normal (no PAM) trials (gray) to provide users with 30% help.
Forced rejections (red) were inserted when people were succeeding above the 70% target control rate.

2.4. Experimental Setup

Initially, the cap was mounted on the participants and the signal quality was checked
to make sure there was good signal quality (see Figure 4). In the calibration session,
the participants were asked to perform MI 30 times. They were instructed to perform
kinesthetic or first-person MI by recalling the sensation of doing a palmar grasp of the
right hand. They were asked to maintain the imaginary contraction for four seconds while
avoiding blinking or making contractions of facial muscles or other muscles. A visual
cue of a red arrow pointing to the right was shown to the participants for four seconds
to indicate when to start and stop the imaginary contraction. Thirty trials of idle activity
were also recorded when the participants were resting, a visual cue with the text “Rest”
was displayed to the participants for four seconds. Each MI trial was followed by an idle
activity trial. After the BCI was calibrated the experiment started. The experiment followed
a within-subject design, where participants played four conditions each (a control condition
without PAM, and one condition per PAM). To avoid any order bias, we used a Latin square
design for PAM conditions. The participants were introduced to one condition at a time.
Prior to each condition, the facilitator introduced the condition by explaining the PAM.

• Control condition: The facilitator explained the core game. This condition was always
the first condition the participants went through.

• Augmented Success: “In this condition, the fisherman will occasionally become stronger.”
• Mitigated Failure: “In this condition, occasionally a clip on the fishing rod will prevent the

fish from escaping.”
• Input Override: “In this condition, a girl will occasionally come to help you.”

In each condition, the participants played for 20 trials and tried to catch as many fish
as possible. For the final fish in each condition, if the participants had no more trials left,
the fish would escape.
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Figure 4. Each participant in the experiment (1) underwent BCI setup and BCI calibration, (2) played
a fishing game in four conditions, starting with the normal condition, followed by (3) three helped
conditions in a shuffled order. Participants were then debriefed about their experiences.

In accordance with previous BCI-related studies, we focused on the user experi-
ence [34–37], and the dependent variables we measured were frustration and perceived
control. After each condition, participants rated on a Likert scale their perceived control
(“I felt I was in control of the fisherman reeling in the fish.”) 1 (Strongly disagree) to 7 (Strongly
agree) and frustration (“How much frustration did you feel in this condition?”) from 1 (Strongly
absent) to 7 (Strongly pronounced). They were informed to do this while considering
the condition as a whole (“Please rate your experience as a whole during this play-through.”).
The participants were kept unaware of their actual BCI performances from their calibration
and test sessions so that they would not influence their ratings.

At the end of the experiment, the participants were debriefed. First, participants were
inquired as to their prior expectations of the experiment, for instance, whether they thought
they would do better or worse, and how it was to control the BCI. Participants elaborated
on any previous experience with BCI, to allow for grouping and rating difference checks
in the analysis. Participants pointed out the hardest and easiest condition, and what their
thoughts were on the PAMs. We went through their Likert scale ratings with them, to check
for potential misunderstandings, i.e., prompting them to explain extreme values, which
were used in the qualitative analysis to reason about outlier data points.

2.5. Data Analysis
2.5.1. Variables

The study collected continuous data and MI detections from the BCI and event data
from the game (e.g., user input and game activity). An overview of the variable pool
can be found in Table 2. Each participant contributed perceived control and frustration
Likert scale item scores for each of the four conditions, which was merged with the game
data and analyzed in R studio. Individual conditions were reviewed to identify potential
abnormalities. From the combined dataset, we selected eight variables (MI conversion
rate, PAM rate, condition, positive feedback, fish caught, fish lost, fish reel, and fish unreel)
to evaluate people’s ratings of perceived control and frustration. Fish unreel, fish reel,
fish lost, and fish caught were included in the analysis because they represent the types
of positive and negative feedback presented in the game. PAM Rate was included to
analyze the impact of introducing help. In addition, we included the condition variable to
analyze for differences between three types of help (augmented success, mitigated failure,
and input override) and the normal condition. MI conversion rate was included to compare
how users’ ability to perform MI to obtain successful trials affected perceived control and
frustration ratings.
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Table 1. Trials were manipulated by the urn model to target 30% help and limit control in help
conditions. The table shows the mean % of how help conditions changed the outcomes as described
in Section 2.3.1, compared to the normal condition (reference condition).

Augmented Success (AS) Input Override (IO) Mitigated Failure (MF) Normal Condition

Negative (No Change) 46% Negative (No Change) 33% Negative (No Change) 30% Negative (No Change) 42%
Positive (No Change) 28% Negative to Positive (IO) 15% Negative to Neutral (MF) 17% Positive (No Change) 57%
Positive to Extra Positive (AS) 14% Positive (No Change) 37% Positive (No Change) 40%
Positive to Negative 12% Positive to Positive (IO) 15% Positive to Neutral (MF) 13%

Table 2. Descriptions of dependent (response) and independent (explanatory) variables used in the
analysis and their minimum (Min) and maximum values (Max), means, and standard deviation(s) (SD).

Variables Min Max Mean SD Description

Response

Perceived Control 0 1 0.46 0.27 Normalized 7-point Likert scale rating by partici-
pants after playing a condition.

Frustration 0 1 0.50 0.29 Normalized 7-point Likert scale rating by partici-
pants after playing a condition.

Explanatory

MI Conv. Rate 0 1 0.54 0.28 Normalized count of trials that were caused by suc-
cessful motor imagery activations in a condition.

Pos. Feedback 0 1 0.52 0.24 Normalized count of how many trials delivered a
positive outcome (reeling fish, catching fish, receiv-
ing help) in a condition, regardless of cause.

Fish Caught 0 8 3.59 2.39 Count of how many fish were reeled all the way up
and caught in a given condition.

Fish Lost 0 6 1.69 1.69 Count of how many fish participants lost when play-
ing a given condition.

Fish Reel 0 20 6.75 3.54 Count of how many times participants managed to
reel a fish closer to them in a condition.

Fish Unreel 0 14 6.54 3.31 Count of how many times the fishing rod unreeled
(the fish trying to escape) in a condition.

PAM rate 0 0.3 0.18 0.13 Normalized count of trials in which participants re-
ceived help in a condition.

Condition - - - - Participants played four conditions: Normal (no
PAM), augmented success, input override, and miti-
gated failure.

2.5.2. Analysis Method

Many of the explanatory variables represent different ways to consider positive feedback
and it is not clear which variables are better at explaining how people rate perceived control and
frustration. To investigate this question, we constructed models from the variables and tested
whether models, which included a variable, were significantly different to a null model without
the variable present. We used cumulative link mixed models from the ordinal package [50]
fitted with Laplace approximation, also known as an ordered response mixed model. We used
cumulative link mixed models in our analysis because they provide a regression framework
that treats observations made in the experiment’s response variables frustration and perceived
control correctly as ordinal data. To counter potential pseudoreplication [51] from our repeated
measures design, we used Participant as the basis for the null model and modeled it as random
intercepts to account for by-subject baseline rating differences. We determined the most suitable
model from our variables by using forward step-wise selection, which added variables based
on the Akaike information criterion (AIC). We tested for significant predictors of frustration and
perceived control, using Likelihood ratio tests with a p-value threshold of 0.05. The variables
were tested as fixed effects and determined based on their known relationship in affecting
control or positive feedback in the experiment.
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Participant Likert scores of perceived control and frustration were summarized visu-
ally through to aid exploratory analysis. In contrast to the cumulative link mixed models,
participants’ Likert scores were normalized from 1–7 to 0–1, treated numerically in tables,
and visualized with linear regression for exploratory analysis.

Qualitative data included participant video recordings, game recordings, and notes
taken during debriefing interviews, which we thematically analyzed for repeated pat-
terns [52]. Due to a mistake in the experimental procedure, Participant 2 had missing data
and was, therefore, excluded from the analysis.

3. Results

Eighteen participants played and scored four conditions, shown in Table 3. In three
conditions, an urn model manipulated their experience, as summarized in Table 1.

Table 3. Participant demographics, individual scores per condition (Likert scales of perceived control
and frustration), MI conversion rate (% of MI events, which resulted in positive outcomes), and
positive feedback (% of trials, which delivered positive feedback). Gray denotes high frustration, low
perceived control, low MI conversion rate, or low positive feedback.

Variable 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Gender F M M M M F M M F F F F M M M M M F

Age 27 29 60 27 22 23 24 24 23 22 33 24 22 24 21 28 26 25

Perceived Performance 0.85 0.95 0.35 NA 0.7 0.75 0.2 0.75 0.8 0.075 0.6 0.5 0.15 0.35 0.6 0.35 0.45 0.5

BCI Experience Yes Yes No No Yes Yes Yes Yes Yes Yes No No Yes No No No Yes Yes

Perc. Control 0.67 0.75 0.21 0.37 0.63 0.58 0.29 0.54 0.46 0.04 0.29 0.71 0.11 0.54 0.75 0.42 0.38 0.54

Frustration 0.33 0.13 1.00 0.38 0.54 0.42 0.50 0.58 0.42 1.00 0.54 0.25 0.67 0.50 0.29 0.83 0.54 0.21

MI Conv. Rate 92% 85% 21% 61% 32% 80% 32% 75% 36% 11% 71% 80% 27% 52% 34% 45% 78% 55%

Pos. Feedback 78% 74% 28% 57% 35% 70% 35% 68% 40% 18% 66% 70% 32% 50% 40% 49% 65% 52%

Aug. Success

Perc. Control 0.67 0.83 0.33 0.33 0.50 0.33 0.33 0.17 0.33 0.00 0.17 0.50 0.33 0.67 1.00 0.67 0.17 0.67

Frustration 0.33 0.17 1.00 0.17 0.67 0.50 0.67 0.83 0.33 1.00 0.50 0.17 0.67 0.33 0.17 0.67 0.67 0.17

MI Conv. Rate 95% 80% 15% 60% 15% 90% 50% 30% 35% 15% 85% 75% 35% 65% 45% 45% 85% 55%

Pos. Feedback 65% 60% 15% 50% 15% 55% 35% 20% 25% 15% 70% 50% 30% 50% 45% 45% 60% 45%

Fish Caught 0 6 1 4 1 5 1 0 2 1 8 4 2 6 5 6 5 5

Fish Lost 0 0 5 1 5 2 4 5 4 5 0 2 3 2 3 2 2 2

Input Override

Perc. Control 0.50 0.50 0.17 0.50 0.67 0.67 0.33 0.50 0.50 0.00 0.33 0.67 0.00 0.67 0.83 0.33 0.33 0.33

Frustration 0.50 0.17 1.00 0.50 0.67 0.50 0.33 0.50 0.17 1.00 0.67 0.83 0.50 0.50 0.33 0.83 0.50 0.50

MI Conv. Rate 100% 95% 5% 55% 35% 95% 30% 95% 15% 5% 50% 90% 30% 65% 40% 30% 65% 45%

Pos. Feedback 100% 95% 35% 70% 50% 100% 55% 95% 40% 35% 60% 95% 50% 75% 65% 60% 70% 60%

Fish Caught 0 8 2 6 3 7 5 8 2 2 4 7 3 7 4 4 5 4

Fish Lost 0 0 3 0 2 0 2 0 3 4 1 0 2 0 1 1 0 2

Mit. Failure

Perc. Control 0.50 0.67 0.00 0.33 0.67 0.33 0.33 0.67 0.33 0.17 0.00 0.67 0.50 0.67 0.17 0.33 0.67

Frustration 0.33 0.17 1.00 0.33 0.33 0.50 0.33 0.67 0.50 1.00 0.83 0.00 0.50 0.33 1.00 0.50 0.00

MI Conv. Rate 90% 80% 10% 70% 30% 50% 25% 75% 30% 25% 80% 75% 55% 15% 40% 85% 60%

Pos. Feedback 60% 55% 5% 50% 25% 40% 25% 55% 30% 20% 65% 55% 50% 15% 25% 55% 45%

Fish Caught 0 4 0 4 1 2 1 5 1 1 5 4 3 1 1 4 3

Fish Lost 0 0 4 1 2 1 3 0 2 3 0 0 1 3 2 0 1

Ref. Condition

Perc. Control 1.00 1.00 0.33 0.33 0.67 1.00 0.17 0.83 0.67 0.00 0.67 1.00 0.00 0.33 0.50 0.50 0.67 0.50

Frustration 0.17 0.00 1.00 0.50 0.50 0.17 0.67 0.33 0.67 1.00 0.17 0.00 0.83 0.67 0.33 0.83 0.50 0.17

MI Conv. Rate 85% 85% 55% 60% 50% 85% 25% 100% 65% 0% 70% 80% 15% 25% 35% 65% 75% 60%

Pos. Feedback 85% 85% 55% 60% 50% 85% 25% 100% 65% 0% 70% 80% 15% 25% 35% 65% 75% 60%

Fish Caught 0 6 3 5 4 8 1 8 4 0 6 6 1 2 2 5 7 4

Fish Lost 0 0 2 1 2 0 4 0 0 6 0 0 5 4 3 0 0 2
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3.1. Perceived Control

Forward stepwise selection constructed nine significant models for perceived control,
listed at the top of Table 4. Six of eight explanatory variables resulted in significant
models, where Fish Lost performed best in terms of AIC, ML, and LR when compared
to the null model. Fish Lost was, therefore, chosen as the null model, and to form the
basis for the model construction in the forward stepwise selection, to see if the variable
could be combined with others. Three of the eight fixed effects (Fish Caught, Condition, and
PAM Rate) made significant improvements to the model with Fish Lost. Examination of
the Fish Lost + PAM Rate model resulted in the model outcomes shown at the bottom of
Table 4. Contrary to expectations, PAM Rate was estimated to negatively affect participants’
rating of perceived control (estimate = −7.86, p < 0.001)—when people received more help,
their ratings generally were lower. The examination of the second-best model Fish Lost +
Condition estimated that the negative effect came from the conditions input override and
(estimate = −2.04, p = 0.004) mitigated failure (estimate = −2.08, p = 0.004), while augmented
success’s estimate was marginally positive it did not significantly affect perceived control
(Estimate = 0.2, p = 0.786). The negative effects of input override and mitigated failure are
also evident in the top row of Figure 5, which visualizes the relationship between positive
feedback and perceived control in each condition. From the visual inspection, we observed
that when participants experienced more than 50% of positive feedback, they tended to
favor conditions without help. Only in cases where positive feedback was low (less than
50%), did participants rate help higher in the augmented success condition.

Table 4. (Top) Results of significant likelihood ratio tests predicting perceived control, with the AIC
(Akaike information criterion), ML (maximum likelihood), LR (likelihood ratio), and χ2 (significance).
(Bottom) fixed effect estimates for predicting perceived control in the best model “Fish Lost + PAM
Rate”.

Predicted Fixed Effect AIC ML LR χ2

Perceived Control Fish Lost + PAM Rate 215.82 −98.91 15.61 <0.001
Fish Lost + Condition 219.11 −98.55 16.32 0.001
Fish Lost + Fish Caught 226.70 −104.35 4.72 0.030
Fish Lost 229.43 −106.71 24.05 <0.001
Fish Caught 232.12 −108.06 21.36 <0.001
Pos. Feedback 233.27 −108.63 20.21 <0.001
MI Conv. Rate 237.67 −110.83 15.81 <0.001
Fish Reel 242.10 −113.05 11.38 0.001
Fish Unreel 245.62 −114.81 7.86 0.005

Predicted Fixed Effect Estimate Std. Error z Value p

Perceived Control PAM Rate −7.86 2.14 −3.68 <0.001
Fish Lost −1.39 0.27 −5.11 <0.001

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Positive Feedback

Pe
rc

ei
ve

d 
Co

nt
ro

l

AS IO MF NO

Figure 5. Cont.

95



Sensors 2022, 22, 9051

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Positive Feedback

Fr
us

tr
at

io
n

AS IO MF NO

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Perceived Control

Fr
us

tr
at

io
n

AS IO MF NO

Figure 5. The relationship between perceived control and positive feedback is shown in the top row
of each of the four conditions, while the relationship between frustration and positive feedback is
shown in the middle row. In the bottom row, the relationship between frustration and perceived
control is shown. AS: augmented success, IO: input override, MF: mitigated failure, and NO: normal
condition without PAM help. Each data point represents the rating of a single participant.

3.2. Frustration

Forward stepwise selection constructed four significant models, using four of the
eight explanatory variables to predict frustration, listed at the top of Table 5. Escaping
fish frustrated the participants (Fish Lost, Estimate = 0.62, p = 0.003), and conversely,
participants were less frustrated when they caught more fish (fish caught, estimate = −0.39,
p < 0.001). However, participants’ frustration ratings were not affected by the type of help
they received. For frustration, no models that included PAM Rate or Condition were different
from the null model. Visual inspections of the middle row plots in Figure 5 show a clear
downward relationship between frustration ratings and positive feedback for all conditions.
Augmented success and normal conditions showed similar relationships while the input
override showed overall higher frustration ratings despite participants receiving more
positive feedback than any other condition on average (M = 0.67, SD = 0.22). Input override
and mitigated failure both showed less decreasing changes in the frustration ratings as
positive feedback increased, indicating that higher control did not make as much of a
difference in people’s frustrations. When plotting frustration and perceived control were
against each other (Figure 5, bottom row), a clear correlation was shown in all conditions
with the exception of input override.

The MI conversion rate was a significant fixed effect in models of perceived control
and frustration, but variables relating to in-game feedback (fish lost, fish caught) resulted in
models with lower AIC, and lower ML (shown in Tables 4 and 5). Participants had widely
different MI conversion rates between 5–100% (M = 0.54, SD = 0.28).
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Table 5. (Top) Results of significant likelihood ratio tests predicting frustration. (Bottom) fixed effect
estimates for predicting frustration in the best model “Fish Lost”.

Predicted Fixed Effect AIC ML LR χ2

Frustration Fish Lost 239.63 −111.82 8.81 0.003
Fish Caught 240.46 −112.23 7.99 0.005
MI Conv. Rate 242.49 −113.25 5.95 0.015
Pos. Feedback 244.20 −114.10 4.24 0.039

Predicted Fixed Effect Estimate Std. Error z Value p

Frustration Fish Lost 0.62 0.21 2.96 0.003

3.3. Qualitative Results

Playing the control condition, several participants (10/19) found it easy to control,
while a few participants (3/19) said they were learning the game in this condition, which
reduced the frustration of a few participants (2/19). The in-game character taking over the
fishing rod in the input override condition was frustrating for most participants (13/19),
because they wanted to solve the task themselves: “I did not want any help from the girl.”
(P7, 11, 17). Input override removed their agency “it doesn’t really feel like my attempt
when someone else was helping.” (P2), and reduced the legitimacy of the reward “it was less
rewarding [to catch the fish] because I got help from the girl.” (P14, 16). The mitigated failure
condition highlighted participants’ failures, as they had another try but frustrated only
very few (3/19). However, few participants (4/19) found the extra try less frustrating, “the
clip [mitigated failure] was encouraging because you got a second try.” (P2). Some participants
(6/19) found augmented success easy to control, as one participant mentioned that the
condition felt less patronizing than the rest. Catching a fish made some participants (7/19)
feel in control of the fisherman reeling in the fish. Not being able to decide when to trigger
the PAMs in the three conditions caused confusion for some participants (5/19). Not being
able to trigger the last action causing the fish to escape frustrated a few participants (4/19).
Losing control caused a few participants (2/19) to feel frustration. P11 felt they had no
control despite having good calibration.

4. Discussion

In this study, three PAMs (augmented success, mitigated failure, and input override)
were implemented in an online MI-BCI to evaluate their effects on perceived control and
frustration. The help from PAMs was perceived differently, but generally, input override
frustrated participants the most since they wanted to perform the tasks by themselves,
or they blamed themselves for not succeeding since they knew they were unable to trigger
the BCI when they received help despite its positive outcome. Moreover, in the mitigated
failure condition, a similar tendency in frustration ratings was seen since the participants
were aware when they were unable to trigger the BCI, although neutral feedback was
provided and that could have caused the participants to blame themselves. Both PAMs
reduced the participants perceived control. The augmented success did not increase
frustration or reduce perceived control. It should be noted that the participants were
explicitly informed about the PAMs before they tried the conditions, so it is possible that
the PAMs could be perceived differently by naive players.

Participants with lower BCI control generally rated their perceived control higher in
the PAM conditions with respect to the normal condition without PAM and vice versa
for participants with better BCI control. The lower ratings of perceived control for the
participants with better BCI performance could be partly explained by the fact that their BCI
performance could be slightly impeded in the PAM conditions. However, the participants
were kept unaware of their actual BCI performance, so they could not be sure about the
potential reduction of their BCI performance in the PAM conditions. They only had their
own experience to judge from. Perceived control negatively correlated with frustration in
all conditions, but with a weaker correlation for the input override PAM, which frustrated
the participants the most. The negative correlation between perceived control and frustra-
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tion is in agreement with our previous findings [34,35]. The findings regarding positive
feedback as a predictor of perceived control and frustration agree with a similar study
using online MI-BCI methodology with fabricated input [35]. Surrogate BCI studies have
also reported that higher levels of positive feedback increase perceived control and reduce
frustration [34,36,37]. Perceived control was rated differently in the PAM conditions for
participants with the lowest and highest BCI performance. A similar finding was reported
for BCI control with biased feedback, where users with poor BCI performances benefited
from biased feedback and users with good BCI performances were impeded by this [53].
It should be noted that in the current study the BCI performance was fairly low with few
participants achieving BCI performances higher than 80%. Thus, the entire spectrum of
the BCI performance has not been covered sufficiently and, hence, it is unknown if similar
ratings of perceived control in PAM conditions are applicable for BCI performances higher
than 80%. The negative correlation between perceived control and frustration in all condi-
tions was expected since it was shown that perceived control and frustration are inversely
correlated in both able-bodied users and people with a stroke [34,35]. However, in the input
override condition, a weaker negative correlation was found. This could be due to the fact
that explicit help overruled the actual control and, hence, reduced the perceived control and
increased frustration, which was also indicated by several participants in the qualitative
analysis. Input override is similar to positive fabricated input, which has previously been
shown to lead to a correlation between perceived control and frustration [35], but the
difference in the current study is that input override is not concealed in the game, and the
participants were informed about the input override PAM prior to the condition. Thus,
it should be considered if input override should be concealed instead of being explicitly
articulated in the interaction, which may reduce the frustration.

4.1. Methodological Considerations

As outlined, the BCI performance in this study was modest and did not cover the
higher end of the spectrum. This does not necessarily mean that the participants were poor
BCI performers but the design of the interaction with only a two-second input window
might have been too challenging. The participants only had two seconds to produce MI,
contrary to our previous study, which allowed for MI during a five-second window, which
yielded a better BCI performance with recognition rates exceeding 90%. The BCI setup,
hardware, and processing were identical to our previous study [35]. In hindsight, two
seconds may be too little time to perform MI (or to perform more than one attempt during
an input window), especially when the participants had to produce MI exceeding a specific
threshold for 0.5 consecutive seconds. In future studies, we would recommend increasing
the duration of the input window up to five seconds. This would increase the likelihood
of a false positive detection being counted as a true positive since a longer input window
means that more false positive detections can occur [12]. This risk, however, could be
reduced by setting a higher threshold that has to be exceeded for a given period of time.
The threshold should be set such that the number of false positive detections is minimized
but that it is still possible for the user to activate the BCI. In some applications/interactions,
it could be desirable to set the threshold such that either more or fewer true and false
positives are accepted. In applications requiring higher thresholds, i.e., a lower number
of true and false positives, PAMs may be more useful since there is more room to help
the user on the contrary to applications with lower thresholds, where a higher number
of true and false positives lead to many successful trials potentially making the PAMs
redundant. Lastly, the BCI performance can be enhanced using other signal processing and
classification methods or training the user in performing MI.

In the current study, healthy users participated, but the intended use of a gamified
MI-BCI system is for stroke rehabilitation. The findings in the current study cannot be
directly transferred to a population of stroke patients, which, besides motor impairments,
may have cognitive impairments and different levels of technological prerequisites. Stroke
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patients are generally above 60 years of age, while the participants in the current study
consisted of able-bodied primarily in their twenties.

4.2. Implications

In this study, we showed that it was possible to integrate different PAMs in a BCI
paradigm that are usable and meaningful for stroke rehabilitation. The PAMs created
different reactions from the users, which could be useful for designing engaging games.
The findings though suggest that the use of explicit input overrides should be considered
carefully to avoid frustration, but it may still be useful to use it to create engaging interac-
tions for the user and stroke patients may perceive help differently than the able-bodied
participants in this study. Augmented success can be used to highlight the successes of
the users, which could strengthen motivation. By using multiple PAMs, different types of
games with various designs can be created, which could support the rehabilitation efforts
to get the patient to train more.

Moreover, PAMs could potentially be used in training sessions to learn to perform MI.
For this application though, it is expected that augmented success and mitigated failure
would be the best choices since input override will provide inaccurate feedback to the user
while augmented success could reinforce the learning and mitigated failure would not
discourage users.

4.3. Future Perspectives

In future studies where the entire performance spectra need to be covered in systematic
ways, researchers could consider using surrogate BCIs that share the same characteristics
as an online MI-BCI but with other more reliable input methods, such as a concealed eye-
tracker (an EEG cap can be mounted and it can be conveyed to the users that blink, as picked
up by the BCI) [34,35]. In this way, there is access to the ground truth and performance can
be artificially controlled, such that users experience different levels of control that can be
similar across the study population. As outlined previously, stroke patients differ from the
participants included in the current study, and it is important to learn how stroke patients
react to different PAMs, so they can be used in the best way for engaging interactions in
rehabilitation. Another aspect that should be tested, is how users react to PAMs when they
attend multiple training sessions. It is expected that the BCI performance could improve as
a result of training and familiarization with the BCI system and interaction. In the current
work, PAMs were rated differently for better-performing users compared to users with
lower BCI performance. Lastly, the type of interaction should be considered if the feedback
should be realistic, e.g., using a humanoid hand or if the feedback can be more abstract [48].
The former is shown to improve the ownership and perceived control over more abstract
feedback, but the latter could result in more engaging or fun interactions by providing the
designers of rehabilitation games with more artistic freedom.

5. Conclusions

This study showed that PAMs could be integrated into an online BCI based on MI,
and the different PAMs could assist the participants. The amount of combined positive
feedback received from regular and PAM-enhanced inputs could explain the perceived
control and frustration of participants. The different PAMs can be used in a more varied and
richer way to aid users with poor BCI performance beyond adding simple extra positive
sham feedback. The condition that explicitly depicted input override frustrated participants
the most, but it is clear that people have different preferences in how they can be helped.
Within the different types of PAMs, game developers can exercise tremendous artistic
freedom to create engaging interactions for BCI training that either directly manipulate the
outcomes of a single action or its effect in a bigger task context.
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Abstract: Traditional advertising techniques seek to govern the consumer’s opinion toward a product,
which may not reflect their actual behavior at the time of purchase. It is probable that advertisers
misjudge consumer behavior because predicted opinions do not always correspond to consumers’
actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer
behavior and decision making, as well as the prediction of their gestures for product utilization
through an unconscious process. Existing methods do not focus on effective preprocessing and
classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method
for preprocessing and classification of EEG signals is proposed. The proposed method involves
effective preprocessing of EEG signals by removing noise and a synthetic minority oversampling
technique (SMOTE) to deal with the class imbalance problem. The dataset employed in this study
is a publicly available neuromarketing dataset. Automated features were extracted by using a long
short-term memory network (LSTM) and then concatenated with handcrafted features like power
spectral density (PSD) and discrete wavelet transform (DWT) to create a complete feature set. The
classification was done by using the proposed hybrid classifier that optimizes the weights of two
machine learning classifiers and one deep learning classifier and classifies the data between like and
dislike. The machine learning classifiers include the support vector machine (SVM), random forest
(RF), and deep learning classifier (DNN). The proposed hybrid model outperforms other classifiers
like RF, SVM, and DNN and achieves an accuracy of 96.89%. In the proposed method, accuracy,
sensitivity, specificity, precision, and F1 score were computed to evaluate and compare the proposed
method with recent state-of-the-art methods.

Keywords: neuromarketing; EEG; SMOTE; LSTM; DWT; PSD

1. Introduction

It is a well-established practice to improve sales and awareness among consumers
by marketing and promoting a variety of consumer products through an advertising cam-
paign [1]. This can be done to increase sales. The understanding of the basic mechanisms
that govern consumer shopping behaviors are the most essential topics that require further
inquiry according to marketing professionals. In advertising and consumer behavior re-
search, neuroscience can be utilized to improve the accuracy of existing marketing methods.
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Neuromarketing is a method that integrates physiological techniques and neuroscience to
get insights into customer behavior in making accurate predictions of customers’ prefer-
ences during the process of making the choice [1]. Neuromarketing is an extremely new
type of advertising that makes use of brain-imaging technology to investigate how peoples’
brains react to marketing stimuli. Electroencephalography (EEG) has been extensively used
for decades to measure the activity of the brain neurons.

Consumer preference recognition by EEG signal is an inclusive and extensive topic of
research. In order to understand why and how customers respond to stimuli, researchers
use neuroimaging techniques to determine which areas of their brains are activated while
making decision about the ecommerce product. By utilizing EEG signals, one can easily
determine how the consumer truly makes his or her decision for buying the ecommerce
product. Neuromarketing is a field of study that aims to better understand how consumers
make their purchasing decisions. A company’s marketing strategy may be objectively
improved based on what makes positive or negative impressions in consumers’ minds
about their product [2]. Researchers [3,4] in the field of neuromarketing have emphasized
the use of biometric data in marketing campaigns so that marketing companies and firms,
by utilizing EEG signals, can have a better idea about the consumer’s brain activity while
making purchase decisions. EEG signals in [5] were divided into different bands in the fre-
quency domain. These bands have different frequency ranges and represent the following
activities. The beta band (14–30 Hz) represents the occupied or busy brain. The alpha band
(8–14 Hz) shows the calmness of the brain. The theta band (4–8 Hz) reflects the excitement.
The delta band (1–4 Hz) reflects sleep, relaxation, and fatigue [1].

The term neuromarketing refers to the combination of two disciplines, namely neuro-
science and marketing. The field primarily makes use of medical technologies in order to
conduct studies into the responses of the brain to varying conditions. If a person takes an
example of traditional advertising methods used by different companies, when a consumer
buys an ecommerce product and expresses interest or loses interest in something, one can
only obtain the consumer’s point of view about a certain item and has no knowledge of
the activities taking place in the consumer’s subconscious at the time of the purchase. As
a result, a person is unable to distinguish between the preferences of customers who like
or dislike the product [6]; in this circumstance, EEG signals can be used to determine the
customer preference about the product. Approximately 90% of data is reportedly processed
subliminally in the human mind [7]. If we consider the fields of neuromarketing and con-
sumer neuroscience, the conventional marketing research methods cannot obtain insight
into the subconscious activities of customers. The information that can be acquired by the
use of neuromarketing is also more accurate than the information that can be retrieved
from traditional approaches. This is due to the fact that consumers’ decisions are influenced
by their subconscious beliefs. Because traditional market research does not concentrate
on the subconscious processes that occur in a customer’s brain while they are making a
purchase decision, there is a disparity between the findings of traditional market research
and the actual behavior of customers at the point of sale. This results in a gap between the
two sets of data [8]. The main contributions of this research study are as follows.

• The proposed method has achieved significant improvement in results due to noise
removal from EEG signals.

• The class imbalance problem has been resolved by the help of the synthetic minority
oversampling technique (SMOTE).

• The proposed method has been able to recognize consumer choice in terms of like and
dislike with accuracy 96.89%, sensitivity 95.89%, and specificity 96.21%.

• A new ensemble classifier has been proposed in this study that has never been used
before in existing methods, and it helps to accurately classify EEG signals between the
like and dislike classes.

The research paper is organized in different sections. A literature review presents
necessary background of the problem and a detailed literature review about the state-of-
the-art methods for customer preference recognition. The literature review is divided into
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three major components. Starting with the discussion about preprocessing techniques used
by different studies, we follow up with a summary of various feature-extraction techniques.
An overview of the various classification methods is presented, employed by different
researchers. The Materials and Methods section consists of an introduction to the publicly
available neuromarketing dataset. Signal acquisition is discussed in detail followed by the
steps taken to prepare, structure, and store the data. The proposed methodology embodies
a complete methodology of the proposed mechanism. We first provide an overview of the
proposed system along with a flow diagram. The rest of the sections include proposed
feature extraction, in which we discuss handcrafted feature-extraction methodologies
and automated feature extraction by using LSTM. The classification section explains the
techniques employed for classification of EEG signals like DNN as a deep learing classifier
and SVM, DT as a machine learning classifier, and an ensemble model for classification of
EEG signals into like and dislike.

Neuroscience methods have enhanced marketing strategies in the last century by
allowing researchers to examine both conscious and unconscious influences on consumer
behavior. Due to its low cost, EEG is one of the most commonly used neuroscientific tools
in marketing studies [9]. In most of the cases, customers are not compelled to buy goods
when conventional marketing methods (e.g., television ads and newspaper ads) are used.
Marketing strategies such as television commercials, newspaper advertising, and brochures
merely try to determine a person’s attitude toward a product; this attitude may or may not
match the person’s real behavior when it comes time to make a purchase. The goal of this
study is to determine the preferences of customers in terms of their likes and dislikes by
analyzing the EEG signals that are generated by the customers’ brain activity.

Consumer buying behavior is the foundation of both traditional advertising research
and neuromarketing studies [10]. In spite of the similar starting premise, the research meth-
ods used by the two methodologies differ significantly. These discrepancies are the result
of varying research approaches in both fields. In conventional marketing research methods,
we analyze the product which is already launched in the market, but in neuromarketing
research we analyze the product from different aspects which have yet to be launched
in the market. The consumer self-reports are very important in conventional marketing
research, but in neuromarketing the consumer’s personal reviews about the product are
not as important because we are gathering the brain activity of the consumer.

In neuromarketing research, the reactions of the consumers are not controlled, but
in conventional marketing research the reactions of the consumer are controlled. In the
conventional marketing research the participant has time to study the research questions
before answering them, but in neuromarketing research the participant or consumer’s
physiological reactions can be gathered immediately as he/she is presented with the
research questions about the product. Mostly, people are reluctant to completely convey
their opinions and preferences about a product when asked directly, so one does not know
what actually is happening in the subconscious of consumers when employing conventional
marketing methods. However, there are various neuroimaging tools that can easily access
the consumer brain information while making decisions or expressing preferences for
different products. In this way, brain-imaging techniques and tools can help marketers
and advertisement agencies to improve the marketing campaigns before launching the
product in the market and also during the in-market inspection of campaign’s success after
the launch.

2. Literature Review

Most people are unwilling to express their whole thoughts and preferences about a
product, so one can have no idea what is going on in the mind of a consumer when making
purchase decisions. Neuroimaging tools make it possible to obtain information quickly and
readily about a customer’s brain while they are evaluating various products and making
purchase decisions. Consumer choice recognition basically involves three main steps. The
first step is preprocessing in which unwanted noise will be removed from EEG signals,
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the second step is to extract the desired features and then comes to classify EEG signals
in terms of likes and dislikes. In neuromarketing studies, consumers’ brain signals are
recorded so that researchers can better understand how the human psyche chooses one
item over another.

2.1. Preprocessing of EEG Signals

In any kind of machine learning application, data is usually in raw form and needs
some sort of preprocessing before it is usable for feature extraction. For many decision-
making sectors, the automatic analysis of diverse and multimodal data and the instanta-
neous extraction of information by using machine learning approaches have become major
challenges [11–14].

In particular, a wide variety of artifacts, including eye blinks, muscular activity,
and noise from electrical power lines, might emerge during EEG signal recording (see
Gauba et al. [12]). Such artifacts could distort useful information in the signal; thus, it
is necessary to delete them to get better results. For preprocessing, several techniques
have been discussed here. Amna et al. [13] removed the noise from EEG signals by using
independent component analysis (ICA). Abeer et al. [2] used bandpass filter for noise
removal. Aldayel et al. [5] removed noise with a Savitzky–Golay filter.

Gupta et al. [15] found that using a notch filter operating at either 50 or 60 Hz signifi-
cantly reduced the amount of electrical and environmental interference. The elimination of
artifacts was accomplished by Yilmaz et al. [9]. Many researchers have turned to bandpass
filtering with a variety of cutoff frequencies so that the quality of the signal can be improved
before it is employed for prediction. Rakshit et al. [16] used Butterworth fourth-order
bandpass filters with cutoff frequencies ranging from 0.5 to 60 Hz in their research. Prepro-
cessing of EEG signals has been accomplished by using tenth-order elliptical bandpass and
common average referencing spatial filters [17]. ICA and principal component analysis
(PCA) are two other techniques for removing artifacts (see [18,19], respectively).

Figure 1 shows us the preprocessing techniques employed for removing noise from
raw EEG signals.

Figure 1. Preprocessing of EEG signals in literature.

2.2. Feature Extraction of EEG Signals

Data that has been preprocessed typically consists of large quantities and has higher
dimensions. Data presented in this way does not convey any information that is valuable
and also provides redundant information. The term “feature set” refers to a subset of data
that contains fewer dimensions, and additional processing is done on this feature set. The
transformation of data into a feature set is known as feature extraction. When the EEG
signals have been preprocessed, features are extracted for the classification between like
and dislike states. EEG signals are decomposed by the Daubechies 4 wavelet decomposition
in [5]. Abeer et al. [2] extracted features by using PCA. Aldayel et al. [5] splits the coefficients
into five frequency bands. Reference [20] used Morlet wavelet transform by using Gaussian
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wave shapes. Reference [20] have employed the FFT for feature extractions, and STFT was
used by Rakshit et al. [16].

DFT was employed by [23] for feature extraction.The statistical mean was calculated
by [21] for all electrode channels, whereas [18] only utilised it for the specific channels.
In [21], the Welch method was used for feature extraction. According to Guo et al. [22],
there are two ways to estimate rating. One of them is to take the average of the relative
power measures among participants, and the other is to simply use the average relative
power across participants. The power spectrum density has been extracted by numerous
researchers like [19,23–25], and power spectral analysis has been used to obtain spectral
moments. In [26], features were extracted by statistical analysis by employing the spec-
tral centroid. Figure 2 shows us the techniques employed for extracting features from
EEG signals.

Figure 2. Feature extraction of EEG signals in the literature.

2.3. Classification of EEG Signals

Following the completion of the process of feature extraction from EEG signals, the
next step is to categorize the signals into the like and dislike states. One definition of
classification is the process of developing a model that partitions the data into a number
of distinct categories. The values of particular distinguishing characteristics are used
to classify the data; samples that belong to the same class as other samples in terms
of these characteristics’ values are classed together. By using a boosted tree classifier,
Amna et al. [27] were able to reach an accuracy of 88.89% when classifying EEG signals.
Abeer et al. [2] employed DNN for the classification of EEG signals.

Researchers [25,28] employed RNN for the EEG data classification model. Ref. [29]
classified EEG with 92.40% accuracy into four categories of movements (foot, right/left
hand, and rest) by using advanced visualization techniques and a convolutional neural
network (CNN) [30,31]. In [32] researchers employed a CNN model for classification of
EEG signals. Hasnain et al. [33] extracted features from EEG data by using a convolutional
deep belief network. The parietal lobe is responsible for touch, taste, and bodily awareness.
The prefrontal and frontal lobes have the most influence on neuromarketing [34]. Certain
studies focused their efforts on certain brain regions [35], whereas others considered the
entire brain [34,36–40].

Ambler et al. [34] discovered that advertisements had an effect on brain activity in
diverse cortical areas. Researchers demonstrated the effect of visual stimuli on the activation
of the left frontal lobe by using EEG in the study cited in the previous sentence [37].
Dmochowski et al. [41] analyzed EEG data from participants in commercial videos in
order to identify regions of the brain that are consistently more (or less) active in response
to stimuli. Braeutigam et al. [42] goes into additional depth on both predictable and
unpredictable decisions, where predictability is determined by prior use of the product
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and the time gap between stimulation and decision making. The multiple brain regions
that are related to pleasure and reward were investigated in [43], and the study provides a
comprehensive explanation of these brain regions. Researchers used a mix of convolutional
neural networks (CNNs) and long short-term memory (LSTM) in [44] to classify emotions
based on EEG readings. Figure 3 provides a representation of the classification methods that
researchers used in order to divide EEG data into preference categories of like and dislike.

Figure 3. Classification of EEG signals in the literature.

Most of the research in neuromarketing and EEG is focused on how consumers feel
about products, but here the emphasis is on the details of the product that cause the subject
to make a particular choice (see Fernandez et al. [45]). Duan et al. [46] employed PNN and
KNN for classification of EEG signals. Brain activation and oscillatory activity between
the left and right occipital electrodes were studied by Kawaski et al. [47] to better under-
stand the impact of color preference on the visual attention-related region of the brain.
Rakshit et al. [16] employed logistic regression to discover the most distinct frequencies for
consumer product choice. Frontal spectral activations of the brain have been explored by
looking at the subjects’ preferences, as they record them (see Kawasaki et al. [48]). On a di-
abetic retinopathy dataset, a model composed of machine learning (ML) algorithms such as
random forest (RF) classifier, decision tree classifier, adaboost classifier, K-nearest neighbor
classifier, and logistic regression classifier is tested by Reddy et al. [49]. Aldayel et al. [5]
features are classified into like and dislike by using SVM and RF and obtained an accuracy
of 68.33%. Morin et al. [50] conducted research and used the Welch method for classification
of EEG signals. Yadava et al. [1] used the HMM for classification of EEG signals in terms
of likes and dislikes. Aldayel et al. [5] used the DNN for the classification of EEG signals.
In [51], researchers used SVM for the purpose of classification. Luis et al. [52] also used
SVM for classification. In Hammou et al. [7], the researchers used RF for classification.

Classification is the ultimate and also the most cardinal step in consumer choice recog-
nition systems [53], as it is the classifier performance that is used to calculate the sensitivity
and specificity. Artificial neural networks, deep neural networks, linear discriminant analy-
sis, K-nearest neighbors, RF, and decision trees were mostly used by researchers in existing
methods. A comparison of the most recent state-of-the-art consumer choice recognition
approach demonstrates that preprocessing of EEG signals is essential for the classification
of EEG signals with high sensitivity and specificity. In the feature-extraction process, both
handcrafted and automated features can be extracted; nevertheless, it has been noted that
automated features outperform handcrafted features.

A combination of both of these characteristics can be advantageous, but it is not cur-
rently utilized by researchers in their techniques employed in existing choice recognition
systems. Feature selection also minimizes the influence of the curse of dimensionality,
which is lacking in current approaches. Furthermore, there is a tradeoff between sen-
sitivity and specificity. Multivariate features can be retrieved, and classification can be
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performed by using DNN, SVM, and RF as these classifiers provide improved performance
if preprocessing and extraction of features have been performed effectively.

Analysis of the existing state-of-the-art methods has shown that choice recognition
cannot be predicted with higher sensitivity without efficient preprocessing, a complete
set of features, and effective classification. Existing approaches in all three processes are
hindered by numerous research gaps. In preprocessing, many researchers do not use
a set of methods to boost the SNR of EEG signals. No technique for EEG signals has
offered a solution to reduce the impact of the class imbalance problem on consumer choice
recognition. Existing approaches lack a comprehensive feature set, which must be created
by combining both handcrafted and automated features, and classification has also been
kept simple. Table 1 shows the recent state-of-the-art methodologies for consumer emotion
prediction by using EEG signals.

Table 1. Comparison of different state-of-the-art customer choice recognition systems.

Method Preprocessing Features Classifier Accuracy Sensitivity Specificity

Amna et al. [13] (2022) Savitzkay Golay Filter - Boosted Tree Classifier 88.89% 84.68% 86.76%

Abeer al Nafjan et al. [54] (2022) bandpass Filter PCA DNN 94% - -

P.Santhiya et al. [55] (2022) ICA NW-STFT SVM 91% 90.23% 89.97%

Somayeh et al. [56] (2022) ICA PSD Statistical Analysis 93% - -

Rupali et al. [57] (2021) bandpass Filter DWT LSTM 92% 90.36% 91.86%

Adam et al. [14] (2021) Notch Filter PCA SVM, KNN 68.50% - -

Aldayel et. al. [4] (2021) Bandpass Filter DWT DNN 87% 91.2% 87.5%

Yilmaz et al. [58] (2018) bandpass Filter Statistical Features SVM 82.55% 78.63% 80.79%

Jafar et al. [20] (2018) - Statistical Features DT 68.33% 67.98% 66.37%

Yadava et al. [1] (2017) Savitzky- Golay Filter DWT HMM 70% - -

Teo et al. [17] (2017) - DNN DNN 74.60% 71.49% 73.60%

Chew et al. [15] (2016) Average Filter PSD SVM 80% 82.3% 80.5%

Maarten et al. [59] (2015) Notch Filter, ICA FFT SVM 68% - -

Hakim et al. [52] (2015) High Pass Filter Statistical Features ANN 68.50% - -

Ariel et al. [8] (2013) Low Pass Filter Statistical Fea tures Cardinal Analysis 65% 61.73% 64.19%

3. Materials and Methods

Dataset Explanation

The dataset was recorded by [1] by using an Emotiv EPOC+ device and consists of
EEG recordings from 25 subjects for 42 different products. Table 2 shows a summary of the
dataset. Electrodes placed on the scalp provide different channels of brain signals. A total
of 14 electrodes were used for the acquisition of the EEG signals. A sampling frequency
of 2048 Hz is used internally in an EPOC and then the data is downsampled to 128 Hz
in order to reduce data and speed up computation. Table 2 depicts the details about the
neuromarketing dataset gathered by Yadava et al. [1].

Table 2. Summary of neuromarketing dataset.

Number of Participants 25

Participants Gender/Age Both male and females aged 18–38 years

No. of Products 14

No of Samples 42(14 × 3)

Total Samples 42 × 25 = 1050

EEG Signal Recording Time 4 s
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Table 2. Cont.

EEG Signal Recording Time 4 s

No of Classes 2 (Like & Dislike)

No of Channels 14

EPOC Sampling Frequency 2048 Hz to 128 Hz

Device Name EMOTIV EPOC

Device Name EMOTIV EPOC

Experimental Method
Each user viewed and evaluated his or her pref-
erences for 42 pictures of ecommerce products
in form of like or dislike

4. Overview of Proposed Methodology

In the proposed method, preprocessing involves artifact removal and noise removal
using the Savitzky–Golay filter. This filter is solely responsible for smoothing EEG signals.
Smoothing data is a method of removing noise from a set of data. It enables the creation of
a pattern that stands out from the ambient noise. A band stop filter has been applied on
this frequency domain data to remove noise. The SMOTE algorithm is also employed to
deal with the class imbalance problem.

SMOTE makes use of the vector interpolation approach in order to produce synthetic
samples of the minority class when working with high-dimensional data. Following the
completion of the preprocessing, the features are extracted through the use of the power
spectral density (PSD), also known as the Welch method, and the discrete wavelet transform
as examples of handcrafted features, and long short-term memory (LSTM)-based features
as examples of automated features. In signal processing applications, LSTM is extensively
applied to extracted automated features. After extracting features from denoised EEG
signals, the training data was 70% and testing data was 30%. Different ML classifiers
were employed, including decision tree (DT), SVM, and deep learning classifiers (DNNs)
for classification between the two classes. However, it is observed that the ensemble
classifier gives better classification results in terms of increased sensitivity and specificity.
Figure 4 shows us the proposed ensemble model for consumer emotion prediction by using
EEG signals.

Figure 4. Flow diagram of the proposed consumer emotion prediction.
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Proposed Preprocessing of EEG Signals

EEG recordings are easily influenced by external noise. It is difficult to pinpoint
the features in EEG signals due to noise. There are a variety of known solutions to the
noise problem. Smoothing data is a method of removing noise from the EEG signals to
increase the signal-to-noise ratio. It enables the creation of a pattern that stands out from
the ambient noise. Noise was removed from EEG signals by using the Savitzky–Golay
filter that smoothes the signal and removes the noise. FFT and the Savitzky–Golay filter
were employed to reduce noise and remove artefacts. A Savitzky–Golay filter is a digital
filter that can be used to a range of digital data points to smooth them out to increase their
precision without affecting the signal. In the dataset, there are two classes, like and dislike.
Another problem is the like-to-dislike samples ratio, which indicates that there are very
few samples of the like class available in the dataset in comparison to the samples available
for the dislike class. This leads to a class imbalance problem, which in turn hinders the
classification’s performance.

As part of the proposed method, synthetic data for the like class has been generated in
order to lessen the impact of the class imbalance between the like and dislike classes. To
overcome the problem of class imbalance, SMOTE was employed to generate the samples
for the like class. In the SMOTE technique, the oversampling technique was employed, in
which the data of the minority class was duplicated from the majority class population.
SMOTE works by using a k-nearest neighbor algorithm to make synthetic data samples
for the minority class. The samples are exactly the same as the original samples. SMOTE
works on selecting instances in the feature space that are close to each other, drawing a line
between them, and then drawing a new sample along that line. First, an example from the
minority group is selected randomly. Then, k of the nearest neighbors for that case (usually
k = 5) are discovered. Synthetic samples are constructed at random points between the
two samples in feature space, based on a random selection of a neighbour.

After applying the SMOTE technique and removal of noise to increase the SNR, the
frequency was resampled to a 128 Hz channel. In contrast to previous findings, preference
states seem to generate low-frequency EEG signal ranges primarily. Thus, the useful
bandwidth of the EEG signal data for choice detection is between 4 and 45 Hz. A bandpass
filter with a bandpass of 4.0 to 45.0 Hz was applied. Savitzky–Golay filters accept a variety
of input parameters, including X, order, and frame length. We employed a Savitzky–Golay
filter with an order of 11 and a frame length of value 2. To eliminate noise from all 1050 files,
a Savitzky–Golay filter was employed. We have

Qj =

m−1
2

∑
i=− m−1

2

ciSj+1,
m + 1

2
≤ j ≤ n − m − 1

2
(3.1), (1)

where m is the number of frames, ci is the number of convolution coefficients, and Q is the
smoothed signal. Polynomial values are calculated with the frame span m, which is used to
find the values of ci with this method.

5. Proposed Feature Extraction of EEG Signals

Feature extraction is the process of getting lower-dimension, useful, and nonredundant
information from the data. This reduced set of information is known as the feature vector.
Automated feature extraction techniques and handcrafted feature-extraction methods were
employed for getting better results. Feature extraction is a procedure that enhances the
complexity of raw EEG signals, and by the help of feature extraction, one easily gather
required information from the EEG signal. Many time-frequency domain feature-extraction
approaches are available. Wavelet transform (WT) for EEG signals is now the most common
and useful option. The proposed method calculates features in both domains like the time
domain and frequency domain.
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5.1. Handcrafted Features

The preprocessing of EEG signals is followed by feature extraction. Discrete wavelet
transform and power spectral density are handcrafted features extracted from EEG signals.
DWT encodes the signal in the time-frequency domain and are usually applied in biomedi-
cal signal processing. When it comes to decomposition, the DWT method uses a multistage
approach to break down an input signal into smaller waves.

Wavelet transform methods are of two types, namely CWT and DWT [60]. DWT stands
for discrete wavelet transform, and it is a wavelet transform that samples wavelets by
using scaling and translation parameters. The wavelet vector decomposes the signals into
orthogonal components (see Nilashi et al. [60]). The DWT technique derives a collection
of features, which includes details (D2-D5) and (A5). The signals are decomposed into
wavelet coefficient vectors, which are then analyzed. Both time and frequency domains are
considered in this technique. The following two equations describe the sequential filtering
of the initial signal, which begins with low-pass filtering g and ends with high-pass filtering
h. The wavelet function can be seen as in following equations,∫ −ϕ∞

+∞
ψ(t)dt = 0 (2)

ϕm,n(t) = a
−m

2
0 ϕ(a−m

0 t − nb0), (3)

where a and b are scaling and translation parameters that can have discrete values. m is
frequency and n is time belonging to Z. A and D are shown in the scaling function (4), and
(5) denotes the wavelet function. We have

φj,k(n) = 2j/2h(2jn − k) (4)

wj,k(n) = 2j/2g(2jn − k). (5)

(φk), k(n) denotes the scaling function that belongs to (L), and (ωj), k(n) denotes the wavelet
function that is related to (H); the signal’s length is denoted by M Here, n is the discrete
variable that lies between the values of 0 and M-1 and here we have J = (log 2) (M) and the
values of k and j are between 0-J-1. Equations (6) and (7) are used to calculate the values of
Ai and Di [27],

Ai =
1√
M

∑
n

x(n)× φj,k(n) (6)

Di =
1√
M

∑
n

x(n)× ωj,k(n). (7)

Figure 5 shows the four-level decomposition of EEG signals. A second feature-
extraction method utilised is PSD. Fourier analysis demonstrates that every physical signal
may be reconstructed into a spectrum of frequencies spread across a continuous range. The
signal’s frequency content, including noise, is called its spectrum. When a signal’s energy
is focused in a certain time span, the energy spectral density can be computed. The PSD
can be defined as the energy distribution per unit time in a signal because the total energy
of a signal throughout all time is limitless.

The PSD indicates the strength of a signal by its frequency. PSD is a technique that
is widely used in neuromarketing research is feature extraction by frequency domain
analysis [61]. For determining power spectral density of EEG signals, MATLAB was used.
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Figure 5. Decomposition of EEG signal into four levels by using DWT.

5.2. Automated Feature Extraction by Using LSTM

Predictive problems using time series data are notoriously challenging to implement
due to their inherent complexity. Time series predictive modeling adds more complexity than
traditional regression predictive modeling because it includes a sequence dependence among
the input variables. One of the most effective types of neural networks, recurrent neural
networks, are able to take sequence dependency into account. Recurrent neural networks
like the LSTM network are popular in deep learning because they allow for the successful
training of extremely massive architectures. The inability to selectively remember essential
information or values for a longer period of time causes feed-forward neural networks and
non-LSTM recurrent neural networks to be less effective at sequence prediction.

In 1997, Sepp Hochreiter and Jürgen Schmidhuber published the recurrent neural net-
work (RNN) architecture known as LSTM [62]. When it comes to learning from experience,
conducting analysis, and making predictions about time series data, LSTM networks excel
in comparison to traditional RNNs. Several iterative enhancements have been made to
LSTM designs over the years. The LSTM architecture relies heavily on the idea of gated cells.
The architecture of the cell allows LSTM to handle long-term dependence by regulating
the influx and egress of data. There is a cell state and three gates in an LSTM cell. Figure 6
shows the architecture of the LSTM model employed for automated feature extraction.The
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purpose of the sigmoid function used by each gate is to either add or subtract data from
the current state of the cell.

Figure 6. Architecture of LSTM model [36].

A memory cell is composed of four primary elements: an input gate, a neuron with a
self-recurrent connection, a forget gate, and an output gate. These elements work together
to form the cell. A memory cell’s state is guaranteed to be stable from one time step to
the next thanks to the self-recurrent link’s weight of 1. The gates control how the memory
cell communicates with its surroundings. The state of the memory cell can be altered by
external signals, which can be allowed or blocked by the input gate. In contrast, the state of
the memory cell can either impact other neurons or be blocked by the output gate. Both
of these outcomes are possible. The forget gate has the ability to alter the self-recurrent
link that is present in the memory cell, causing the cell to either remember or forget its
former state.

5.3. Significance of Using LSTM for Automated Features

In recent years, deep learning and machine learning technologies have gained promi-
nence, with considerable impacts seen in real-world applications such as image/speech
recognition, NLP, classification, prediction, and a wide variety of other applications [63].
The development of artificial neural networks has made these kinds of things conceivable
in recent years. RNNs, which are one sort of advanced artificial network, have a great
deal of flexibility as a result of their capacity to carry out operations on sequences. When
it comes to understanding data patterns that change over the course of time, an RNN is
the best option. It is widely acknowledged in the field of data science that the prediction
and categorization of sequences is one of the most difficult problems to solve. In time
series data, these challenges can range from estimating sales to seeing trends in stock

114



Sensors 2022, 22, 9744

market data, from comprehending movie plots to recognizing voice tones, from translating
languages to predicting a typist’s next word on the keypad of an iPhone, etc. In light of
current developments in data science, it has come to light that LSTM networks are the most
efficient solution to the vast majority of these sequence prediction or classification issues.

The fully connected layer in an LSTM is used to extract robust and relevant features,
whereas the Softmax layer in LSTM is used to extract predicted labels in output. Due to
the RNN’s recurrent structures, LSTM has a low computational complexity when using
gradient-based learning techniques to train a neural network. Vanishing gradient is a
typical problem that hinders the network’s capacity to learn and perform. Although RNNs
provide a great deal of resilience, their limited memory means they are vulnerable to
vanishing gradients. In order to fix this, a more suitable structure, such as an LSTM is
required. The latter is a complex design that overcomes vanishing gradient problems; it
is a version of an RNN. Remembering the previous inputs is essential because the output
is based on those inputs. When more parameters are introduced, the standard RNN’s
inability to look back more than a few time steps hinders its performance. An LSTM may
selectively forget and remember data/patterns for very long period of time. The ability of
an LSTM to detect and prioritize which input and information should be kept within the
network sets it apart from more basic RNNs and feedforward neural networks.

6. Proposed Classification

After the successful completion of the training process of automated features by LSTM
and handcrafted features by using DWT and PSD, the data was passed to our hybrid
classifier. The hybrid classifier combines the weights of SVM, DT, and the deep learning
classifier DNN. It gives the findings of each individual classifier a weight and then utilizes
this weight-probabilistic ensemble for further processing. The data that was utilized for
training is 70% and testing was done on 30% of the data comprising two labels, namely like
and dislike. Figure 4 depicts the proposed ensemble framework for the hybrid classifier.
The proposed methodology consists of classifiers, namely SVM, DT, and DNN. A genetic
algorithm is used to optimise the weights in this weight vector. The weight-modelling
process is divided into two stages. The separation of incorrect samples from the rest of the
samples in the training dataset is done in the first phase. When individual classifiers classify
samples, they classify them into distinct classes, resulting in incorrect samples. These
samples were employed alone for optimisation purposes. As we know that processing only
the confused samples requires less time, the weights for the confused samples determined
in the previous step are optimised in the second phase and optimization of weights was
done by genetic algorithm. The detailed working of individual classifiers are as follows.

Decision tree refers to a method of supervised learning that is nonparametric and
can be used for both classification and regression. The characteristic that results in the
greatest increase of information is chosen to serve as the root node for the [64] structure.
Information gain is defined as the anticipated decrease in entropy that is brought about as
a result of dividing the samples up according to this characteristic. The following equation
can be used to determine the entropy of a system. We have

Entropy = −∑ Pilog2(Pi), (8)

where Pi is the ratio of elements in of each label in a set.
The SVM refers to a group of supervised learning algorithms that can be used for clas-

sification, regression, and the identification of outliers. SVM is useful in high-dimensional
spaces, and their usefulness does not diminish even in circumstances in which the number
of dimensions exceeds the number of samples. However, the fundamental concepts that
underpin the SVM algorithm can be described in a way that does not involve the use of
equations. We have
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k(x, y) = exp(−||x − y||2/σ2) (9)

k(x, y) = (ax · y + b)n (10)

(x, y) = exp(−a||x − y||+ b) (11)

k(x, y) = (a||x − y||+ b)1/2 (12)

k(x, y) = (a||x − y||+ b)−1/2. (13)

These equations are for the different kernels for SVM. In the SVM, separating hyper-
planes are selected based on their margins, which are defined as the distances from the
separating hyperplane to the nearest expression vector. By using this hyperplane, the SVM
is better and can be able to anticipate the right categorization of samples that have not been
seen before.

Once the removal of noise from the data is complete, we split the data by using the
train–test split into 70% for training and 30% of the data for testing purposes. We do this
before feeding this data to the deep learning model for extraction of features. The number
of epochs, also called hyperparameters, is 300. Before starting the training process, the
values of hyperparameters must be defined, these values express the model’s layer size
and decides how the model is being trained.

The hyperparameters that are defined for the DNN classifier are batch size = 100 and
epochs = 300. These defined hyperparameter values are optimal, but in some cases these
values may not be optimal. Hence, along with the tuning of these sets of hyperparameter
values, we have obtained optimal results; this procedure is called hyperparameter tuning.
The loss was found with an optimizer which reduces the loss function. Adam is an
optimization algorithm for stochastic optimization. For binary class classification, the
binary class entropy was employed. An algorithm called binary cross-entropy evaluates
each prediction to the actual class output, which can be either 0 or 1. It then creates a score
that penalizes the probability based on the difference between the expected and actual
values. Increasing cross-entropy loss occurs when the anticipated probability diverges from
the actual label. A comprehensive feature vector can be obtained by first extracting the
automated features from EEG signals. DNNs are models that are made up of layers of
”neurons” that are connected together and in which each layer performs a linear change to
the input data. A nonlinear cost function is used to handle the transformation results of each
layer after they have been transformed in each layer. By minimizing a cost function that
describes the transformation, one can establish how the parameters of such transformations
should be set. The applications of deep learning covered an extremely broad spectrum,
including areas like as speech recognition, image recognition, and the processing of natural
languages. It has been demonstrated that DL is an excellent method for analyzing EEG
signals. To detect the consumer preference in terms of likes and dislikes, a model is built
based on handcrafted and automated features extracted by DWT, PSD, and LSTM.

The DNN model is a feed-forward neural network with five hidden layers which are
fully connected. The input layer has 512 input units, whereas each subsequent hidden
layer had 20% of the previous layer units. The activation that was employed is a rectified
linear unit (ReLu). The cross-entropy function or cross-functions was employed to calculate
the output was SoftMax. The number of target preferences (2) was correlated to the
dimension(s) of the output layer. As we are detecting two states from EEG signals, like
and dislike, we have two units in our output layer. We have employed the Adam gradient
descent on the DNN classifier to train it with the following characteristics: three different
objective loss functions (binary cross-entropy, categorical cross-entropy, and hinge cross-
entropy). The dropout rate for the input layer and hidden layer was 0.3%. We have also
used the early stopping criteria to overcome the overfitting. The test set had around 30% of
the samples in the dataset; therefore we tested our classifier on it.
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Ensemble Classification by Using the Genetic Algorithm

After the successful feature extraction, two types to features were gathered. The first
one is handcrafted features extracted by DWT and PSD, and the second are automated
features using LSTM. The proposed methodology consists of classifiers, namely SVM, DT,
and DNN. Weight optimization was carried out by using the genetic algorithm. It gives the
findings of each individual classifier a weight and then utilizes this weight-probabilistic
ensemble for further processing. As illustrated in the equation below, the classification is
dependent on the measurement of evidence supplied by the individual classifiers. We have

class(v) = arg.max∀classi(
c

∑
i

ak ∗ Pck(y = classi|v)), (14)

where Pck(y = classi|v) is basically the probability of class i, which gives us the sample
node by using the classifier denoted by k and the weight is denoted by ak that is linked
with the probabilistic prediction of the sample belonging to class Ck. The data that was
utilized for training is 70% and testing was done at 30% of the data comprised of two
labels, namely X1 = Like and X2 = Dislike. Figure 7 depicts the proposed ensemble
framework for hybrid classifiers. The framework includes an ensemble of feature vectors:
ak = aDNN, aSVM, aDT. Optimization of the weights in this weight vector was done
by using the genetic algorithm. Two steps are involved in the modeling of weights. In
the first phase, confused samples are separated from the rest of the samples contained in
the training dataset. Confused samples are those samples that are categorized to distinct
classes by their respective classifiers. As it is easy and requires less time to process only
the confused samples, in the second phase, the weights for the confused samples that were
computed in the first phase are optimized. The optimization of weights is carried out by
using the genetic algorithm.

Figure 7 shows us the block diagram of ensemble classifier. The genetic algorithm
is one of the methods that can be used to eliminate redundant or irrelevant features. In
machine learning, often redundant or irrelevant features obscure the primary categorization
features. Feature selection has become an important area of study in order to eliminate
such characteristics that are unnecessary. The feature-selection process is to select some of
the most effective and representative features from a set of features in order to achieve the
purpose of reducing the feature space dimension. The genetic algorithm is useful for select-
ing features. The selection is based on the new individuals’ physical fitness. The genetic
algorithm is founded on the idea that the greater the fitness, the greater the probability
of selection. With low fitness, the probability of selection is low. This selection technique
produces a relatively optimum group from the initial data. The selected individuals then
undergo the crossover procedure to produce new individuals. The subsequent step is
mutation, which yields a new subset. Through this series of processes, a new generation
of individuals is produced that is unique from the original generation and is progressing
toward an increase in overall fitness from one generation to the next. As a result of the
decision to generate the future generation by picking the individuals that are fit, the less fit
individuals would be gradually removed. We have

P(xi
k) =

f (xi
k)

∑i=1 f (x)k
. (15)

Figure 7 shows the weights optimization of classifiers like SVM, DNN and DT.
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Figure 7. Block diagram of ensemble classifier.

7. Performance Evaluation

To verify the validity of the proposed system, different performance evaluation criteria
have been used. These included sensitivity (the true positive rate), specificity (the true
negative rate), and ROC (the receiver operating characteristic curve). Accuracy is the
measure of correctly classified samples. Accuracy cannot be a good measure of evaluation
in our case because even if the system does not correctly identify the positive (which is
less in number) but correctly identifies all the instances of the negative class (which has a
higher proportion), the accuracy will still be high. Another reason is that with the increase
in sensitivity, the false positive rate also starts to increase, measurement of metrics like
sensitivity and specificity are required of evaluate our system for classification of samples
between the like and dislike states.

• Accuracy Classification models can be evaluated by using a variety of criteria, and
one of them is accuracy. Accuracy is the percentage of correct predictions out of all
possible predictions. The proposed model considers accuracy to be a measure of the
model’s ability to accurately predict whether the consumer will like the product or
dislike the product. The accuracy can be calculated by using Equation (22):

Accuracy =
TN + TP

TN + TP + FN + FP
. (16)

In the above equation, TP means the true positive and FN indicates the false negative.
• Sensitivity The percentage of correct positive predictions is what we call sensitivity.

Higher sensitivity in a proposed model denotes the model’s ability to accurately
predict whether or not the customer will like the product. Equation (23) can be used
to calculate sensitivity:

Sensitivity =
TP

TP + FN
. (17)

• Specificity The degree of specificity refers to the validity of negative predictions, or the
percentage of true predictions. With a better model, we can forecast that a consumer
will not like a product with greater accuracy. Equation (24) can be used to calculate
sensitivity. We have

Speci f icity =
TN

TN + FP
, (18)

where TN means the true negative and FP indicates the false positive. To conclude,
the average specificity of the ensemble classifier is better than the average specificity
of DT, SVM, and DNN.
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8. Results and Discussion

In this section, we present the results of our investigation as well as an explanation of
the methodology that we have proposed. After the preprocessing and feature extraction,
the weights of classifiers like DT, SVM, and DNN were optimized by using the genetic
algorithm. Results were compared in terms of the area under curve, accuracy, sensitivity,
and specificity, the proposed method is compared with other classifiers, including DT, SVM,
and DNN.

An SVM is a type of supervised machine learning model that uses classification
techniques in order to categorize samples into one of two groups. After providing an SVM
model with training data for each category, it is possible to train the model to categorise
fresh data by using the training data. They offer two significant advantages over more
recent algorithms such as neural networks: increased efficiency with a lower sample size
and faster speed than the older techniques (in the thousands). Because of this, the approach
is suitable for text classification tasks, which need a dataset consisting of at least several
thousand cases that have been labelled. In the field of machine learning, the measuring
of performance is a very important component. The AUC-ROC curve is a useful tool
for assessing the performance of classification algorithms. An area under the receiver
operating characteristic curve (AUC-ROC) is used to visualise the performance of binary
class classifiers.

Of the several approaches to evaluation, the ROC curve is by far the most useful. Some-
times it is also referred to as the area under the receiver operating characteristic (AUROC).
The AUC-ROC curve is a useful tool for evaluating the performance of a classification task
at a number of different thresholds. When it comes to the ability to separate measurements,
the area under the curve (AUC) is the symbol for it, whereas the probability is generated
from the ROC curve. When the area under the curve (AUC) is greater than 0.8, it indicates
that the model does an excellent job of predicting the proper answer. When plotting the
ROC curve, the x-axis indicates the rate of false positives, whereas the y-axis indicates the
rate of true positives. As long as the AUC is close to 1, a model is likely to stand out, and
when the value of the AUC approaches 1, a model is functioning in a very good way for
binary class classification. If the AUC is getting close to 0, it suggests that the model’s
output is not very accurate, and is not satisfactory. It suggests that our model is incorrectly
forecasting the values 0 and 1, respectively.

Figure 8 depicts the AUC curve of the classifier. In the proposed methodology, we have
compared the accuracy with different classifiers which include decision tree, SVM, DNN,
and the proposed hybrid classifier. Among the different classifiers, the hybrid classifier
outperforms in terms of accuracy and gives us highest accuracy of approx 96.68%. The
sensitivity is also a very important feature to evaluate the performance of the model.

Figure 8. AUC curve to examine the performance of ensemble classifier.
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9. Result Achieved by Varying Different Experimental Settings

The proposed deep learning model is employed on the mentioned data with the
goal of recognition of customer preference in terms of likes and dislikes. The experiment
started by preprocessing the data to reduce the data by removing unnecessary information
and also noise present in the data. In contrast to previous findings, preference states
seem to generate a low-frequency EEG signal. Thus, the useful bandwidth of EEG signal
data for preference detection is between 4 and 45 Hz. We have devised three different
experiments.The subsequent sections describe the experiment’s goal, the steps that were
taken, and the results that were found in each experimental setting.

9.1. Analyzing the Effect of Various Preprocessing Techniques in the Proposed System

Increasing the signal-to-noise ratio (SNR) of EEG signals is a key step in the customer
preference recognition technique because it lowers noise and other distortions in the signals.
EEG signals have been preprocessed by using a variety of approaches to boost SNR and
eliminate power line noise. Bandpass filtering, fast Fourier transform (FFT), Savitzky–
Golay filter and synthetic data generation are all examples of these approaches. First, the
EEG signals were not preprocessed in order to evaluate the performance of the baseline
feature-extraction method. By using time/frequency domain characteristics obtained from
the data, states of liking and disliking are categorized by using an SVM classifier. Accuracy,
sensitivity, and specificity are used to evaluate the experimental environment. Table 3
shows the analysis and comparison of various preprocessing techniques for removal of
noise and checks the performance metrics like accuracy, sensitivity, and specificity.

Table 3. Comparison of different preprocessing techniques in terms of accuracy, sensitivity and specificity.

Method Accuracy% Sensitivity% Specificity% Precision% F1 Score%

No Preprocessing, DWT, SVM 63.48 62.79 62.68 63.46 63.59

FFT, DWT, SVM 68.52 67.96 67.91 69.5 68.97

FFT + Savitzkay Golay Filter, DWT, SVM 71 70.58 70.24 71.76 70.3

FFT+Savitzkay Golay Filter+SMOTE, DWT, SVM 76 75.46 75.71 74.98 75.3

A consumer preference recognition system that does not preprocess EEG signals is
unable to obtain improved results. In this experimental setup, we could not achieve a
sensitivity and accuracy of more than 70%, with 67.2% sensitivity, and 69.5% specificity.
From experiment 1, we concluded that without the preprocessing of EEG signals we could
not achieve good results, so in the second experiment a bandstop filter was employed to
remove the high frequency components. After applying the bandpass filter and Savitzky–
Golay filter and SMOTE technique, an experiment was conducted to check the effect of
the preprocessing technique. In the second experiment, it was concluded that by using
preprocessing techniques the accuracy improved to 76%.

Figure 9 shows us the comparison of difference preprocessing techniques in terms of
specificity, sensitivity, and accuracy.
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Figure 9. Analysis of different preprocessing techniques in the proposed system.

9.2. Examining the Effects of Different Feature-Extraction Methods in the Suggested System

In the second experiment, the optimal method for extracting features from a dataset is
examined. The handcrafted features and automated features were tested in this experiment.
The handcrafted features include the DWT and power spectral density (PSD), and auto-
mated feature include LSTM-based features. Both the handcrafted and automated features
were tested one by one, and results were evaluated by accuracy, specificity, and sensitivity.
An additional factor is that the automated features were extracted by using LSTM.

In the first iteration, the preprocessing settings were retained the same as they were
in the first experiment, and the DWT was utilized in order to extract the features. SVM
was employed for classification after feature extraction. This method’s outcomes cannot
be compared to what is currently possible. The experiment had a 62.79% sensitivity and a
62.68% specificity. PSD was used instead of DWT in the second iteration, and preprocessing
settings were identical to the first experiment. After the feature extraction, classification
was done by SVM. As a result of this adjustment, the sensitivity was increased to 78.87%,
and the specificity was increased to 78.69%. In the third iteration, DWT- and PSD-based
features were concatenated, the preprocessing and classification setting was the same as per
a previous experiment. In this iteration, the accuracy achieved was 87.25%, the specificity
was 87.78%, and the sensitivity was 87.66%.

Table 4 shows us the comparison of different feature-extraction techniques. In order to
better understand the implications of various feature-extraction methods, we designed an
LSTM network. The results produced in this environment were somewhat comparable to
those of current state-of-the-art systems. After a thorough investigation, similar architec-
tures were also discovered in the literature. The details of this network have been explained
in detail in chapter 3. The experimental settings produced the increased accuracy of 85%
with specificity of 84.78% and sensitivity of 84.27%. In the last iteration, DWT-, PSD-, and
LSTM-based features were gathered, passed to the SVM classifier, and the preprocessing
settings were the same as per previous iterations. The accuracy achieved in this experiment
was 87.25%, the sensitivity was 87.66%, and the specificity was 87.66%.
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Table 4. Comparison of different feature extraction techniques applied.

Method Accuracy% Sensitivity% Specificity% Precision% F1 Score%

FFT + Savitzkay Golay Filter + SMOTE,
PSD, SVM 79.26 78.87 78.69 79.63 79.52

FFT + Savitzkay Golay Filter + SMOTE,
DWT + PSD, SVM 83.28 82.91 82.86 83.2 83.7

FFT + Savitzkay Golay Filter + SMOTE,
LSTM, SVM 85 84.27 84.78 84.6 85.3

FFT + Savitzkay Golay Filter + SMOTE,
DWT + PSD + LSTM, SVM 87.25 87.66 87.78 88.6 87.8

Figure 10 shows us the comparison of feature extraction techniques.

Figure 10. Analysis of different feature extraction techniques in proposed system.

9.3. Analysis of Effect of Various Classification Techniques in the Proposed System

Different classifiers were tested as part of a third experimental setting. Preprocessing
was handled by Savitzky–Golay filter, SMOTE, and FFT. Feature extraction was handled by
DWT and PSD, and LSTM.

DNN was employed to classify in the first iteration. Decision tree was utilised for
the classification in the second iteration, and SVM was employed in the third iteration
and didn’t get the accuracy. For this reason, weights for all the classifiers are gathered
and passed to the genetic algorithm for optimization and then classification between like
and dislike was done by optimized weights. The following are the classification results
obtained after optimization: a sensitivity of 95.89%, specificity of 96.21%, accuracy of 96.89%,
precision of 95.78%, and F1 score of 95.76%. Table 5 summarises the initial conditions and
the subsequent outcomes for each iteration.
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Table 5. Comparison of different classification techniques in terms of accuracy, sensitivity, specificity,
precision, and F1 score.

Method Accuracy% Sensitivity% Specificity% Precision% F1 Score%

FFT + Savitzky–Golay Filter + SMOTE,
DWT + PSD + LSTM 90.89 90.78 92.27 91.5 91.8

FFT + Savitzkay Golay Filter + SMOTE,
DNN 92.47 90.43 91.37 92.5 91.89

FFT + Savitzkay Golay Filter + SMOTE,
DWT + PSD + LSTM, Ensemble
Classifier Using Genetic Algorithm

96.89 95.89 96.21 95.78 95.76

Figure 11 shows us the comparison of different classification techniques.

Figure 11. Analysis of different classification techniques in proposed system.

10. Comparison of Results of Consumer Choice Recognition Method by Using
Different Experiments

Following the first three experiments, the preprocessing of EEG signals was deter-
mined. Figures 4–11 compares the results of various experiments conducted as part of this
study. In the first experiment, EEG data was used with no preprocessing to extract hand-
crafted features, which were then classified by using SVM. In the second experiment, EEG
signals were preprocessed by first applying bandpass filtering to eliminate high-frequency
components; then, handcrafted features were extracted and applied SVM to classify them.
The comparison of these two trials reveals that preprocessed signals yield significantly
better results with improved accuracy. Following the previous experiment, EEG signals
are preprocessed by using a bandpass filter and Savitzky–Golay filter and FFT in the third
experiment. In this experiment, the same method was employed for feature extraction
and classification as previously used in other experiments. With this experimental setup,
there are improvements in accuracy, sensitivity, specificity, precision, and F1 score. Similar
to experiment 4, experiment 5, and experiment 6, feature-extraction methods have been
modified by adopting the same preprocessing and classification technique. Table 6 depicts
the comparison of results for different experimental settings by evaluating in terms of
accuracy, sensitivity, specificity, precision, and F1 score.
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Table 6. Comparison of different experimental settings applied.

Method Accuracy% Sensitivity% Specificity% Precision% F1 Score%

No Preprocessing, DWT, SVM 63.48 62.79 62.68 63.46 63.59

FFT, DWT, SVM 68.52 67.96 67.91 69.5 68.97

FFT + SGF, DWT, SVM 71 70.58 70.24 71. 70.3

FFT + SGF + SMOTE, DWT, SVM 76 75.46 75.71 74.98 75.3

FFT + SGF + SMOTE, PSD, SVM 79.26 78.87 78.69 79.63 79.52

FFT + SGF + SMOTE, DWT +
PSD, SVM 83.28 82.91 82.86 83.2 83.7

FFT + SGF + SMOTE, LSTM, SVM 85 84.27 84.78 84.6 85.3

FFT + SGF + SMOTE, DWT + PSD +
LSTM, SVM 87.25 87.66 87.78 88.6 87.8

FFT + SGF + SMOTE, DWT + PSD +
LSTM, DT 90.89 90.78 92.27 91.5 91.8

FFT + SGF + SMOTE, DWT + PSD +
LSTM, DNN 92.47 90.43 91.37 92.5 91.89

FFT + SGF + SMOTE, DWT + PSD +
LSTM, Ensemble Classifier By Genetic
Algorithm

96.89 95.89 96.21 95.78 95.76

Figure 12 shows us the comparison of results achieved for consumer emotion predic-
tion by applying the different experimental settings.

Figure 12. Comparison of results achieved for consumer choice recognition by using different
experiments.

Different experiments were conducted and different kinds of feature-extraction tech-
niques were applied. In first iteration, the features were extracted by using DWT, and
experimental settings for preprocessing and classification was the same as previous ex-
periments. By analyzing the results, it was concluded that there is no such improvement
in accuracy, specificity, sensitivity, precision, or F1 score. Consequently, concatenation of
the DWT and PSD featues was performed, and then the signals were classified in terms of
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likes and dislikes and came to know that there was improvement in the results. For the
next iteration, we have concatenated DWT-, PSD-, and LSTM-based features and compiled
the results.The results show that there is a significant amount of improvement in accuracy,
specificity, sensitivity, precision, and F1 score by the concatenation of handcrafted features
with automated features by LSTM.

In the last experiment, the experimental settings for preprocessing and feature ex-
traction are the same, and classification was iterated by using different classifiers like
DNN, SVM, and decision tree. The highest accuracy achieved was 92.68%, which was
not acceptable, so the ensemble classifier was employed. The weights for each classifier
were passed to the genetic algorithm for optimization. The highest accuracy achieved is
96.89%, with specificity of 96.21% , sensitivity of 95.89%, precision of 95.78%, and F1 score
of 95.76%.

Figure 13 shows us the comparison of the confusion matrix for consumer emotion
prediction.

Figure 13. Comparison of confusion matrix for different experimental settings.

11. Evaluation of the Effectiveness of the Proposed Method in Comparison to
State-of-the-Art Customer Choice Recognition Systems

A dataset consisting of electroencephalogram readings was employed in order to
make a comparison between the results obtained by the proposed method and those
obtained by traditional consumer choice recognition techniques. The performance of
the proposed approach is superior compared to the existing methods.The system for
recognizing consumer choice can be adversely affected by an increase in sensitivity with low
specificity. The accuracy is 88%, but specificity is 86.76%, which reveals the high false alarm
rate that affects the recognition of consumer choice negatively [13]. It is possible to detect
the consumer preference on various e-commerce products; however, Jafar et al. [65] were
unable to obtain sensitivity and specificity greater than 69%. Aldayel et al. [4] suggested a
consumer choice recognition system with an average sensitivity of 91.2%, but only 81.5%
specificity. Rupali et al. [57] and Yadava et al. [1] have employed DWT for feature extraction,
but the proposed architecture uses automated as well as handcrafted characteristics to
classify between likes and dislikes. The proposed method has obtained a sensitivity of
95.89% while maintaining a specificity of 96.21%. The results of the suggested technique
are compared with recent state-of-the-art methodologies in Table 7, which examines the
three concepts of accuracy, specificity, and sensitivity.
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Table 7. Comparison of different state of the art customer choice recognition systems.

Method Preprocessing Features Classifier Accuracy Sensitivity Specificity

Amna et al. [13] (2022) Savitzky–Golay Filter - Boosted Tree Classifier 88.89% 84.68% 86.76%

Abeer al Nafjan et al. [54] (2022) bandpass Filter PCA DNN 94% - -

P.Santhiya et al. [55] (2022) ICA NW-STFT SVM 91% 90.23% 89.97%

Somayeh et al. [56] (2022) ICA PSD Statistical Analysis 93% - -

Rupali et al. [57] (2021) bandpass Filter DWT LSTM 92% 90.36% 91.86%

Adam et al. [14] (2021) Notch Filter PCA SVM, KNN 68.50% - -

Aldayel et al. [4] (2021) Bandpass Filter DWT DNN 87% 91.2 81.5

Yilmaz et al. [58] (2018) bandpass Filter Statistical Features SVM 82.55% 78.63% 80.79%

Jafar et al [20] (2018) - Statistical Features Decision Tree 68.33% 67.98% 66.37%

Yadava et al [1] (2017) Savitzky-Golay Filter DWT HMM 70% - -

Teo et al. [17] (2017) - DNN DNN 74.60% 71.49% 73.60%

Chew et al. [15] (2016) Average Filter PSD SVM 80% 82.3 80.5

Maarten et al. [59] (2015) -, ICA FFT SVM 68% - -

Hakim et al. [52] (2015) - Statistical Analysis DT 68.50% - -

Ariel et al. [8] (2013) Low Pass Filter Statistical Features Cardinal Analysis 65% 61.73% 64.19%

Proposed Method Bandpass Filter, Savitzkay Golay Filter, SMOTE LSTM, DWT, PSD Ensemble Classifier 96.89% 95.89% 96.21%

The ROC curve is another crucial efficiency metric. This graph shows how well a
classification system performs in terms of sensitivity versus the percentage of false positives.
This experimental setting comprises the preprocessing of EEG signals by applying bandpass
filtering, FFT, SMOTE, and the Savitzky–Golay filter, as well as the feature extraction and
categorization of extensive feature set by using an ensemble classifier. It has been discovered
that the method that was proposed is capable of reaching better sensitivity while keeping a
low number of false positives. The outcomes of the proposed system are compared with
those of the state-of-the-art systems in Table 7. The proposed system has higher levels of
both specificity and sensitivity. Therefore, it is crucial to get a high, genuinely positive rate
and low false positives by having a class with a high degree of similarity chosen as the
positive class. According to the findings, the proposed system outperforms the state of the
art in terms of both true positive rates and false positives.

12. Conclusions and Future Directions

The first phase in consumer choice recognition often involves the preprocessing of
EEG signals, followed by feature extraction and classification. Numerous academics have
attempted to forecast customer preferences in terms of likes and dislikes during the past few
years. The procedure of gauging customer choice with greater sensitivity and specificity
has proven difficult. Effective preprocessing of EEG signals includes removing EEG signals’
noise from EEG signals and to deal with the problem of class imbalance caused by fewer
data samples from the like class in comparison with the dislike class and extracting features
that give high interclass variance to assist in accurate classification of like and dislike states
are some of the issues that must be resolved. Researchers have not been able to enhance
classification accuracy without preprocessing of EEG signals; hence, preprocessing and
noise removal plays a critical role in attaining improved accuracy. Researchers have adopted
the notch, Butterworth, PCA, and ICA for the preprocessing of EEG signals. However, the
results reveal that FFT, SMOTE, and bandpass filter do a better job of boosting the SNR
than other approaches.

In recent studies researchers used PSD to extract features, whereas decision tree was
used for classification. To improve the performance evaluation metrics like accuracy,
specificity, and sensitivity, the proposed model was tested by using different classifiers, but
the improved accuracy, sensitivity, and specifivity was achieved by an ensemble classifier
that classifies the EEG signals by optimizing the weights of classifiers like DNN, SVM,
and RF by genetic algorithm. Several gaps were determined in preprocessing and feature
extraction after conducting this comparison. Feature extraction implies a customized LSTM
architecture. The sensitivity and specificity of these approaches have been assessed. In
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the existing systems, the problem of class imbalance was not confronted. In the proposed
method to deal with class imbalance, the SMOTE technique was employed.

The proposed method makes use of SMOTE to generate like class samples to resolve
the problem of class imbalance. For classification of EEG signals, we employed different
classifiers but could not achieve the desired accuracy. Consequently, an ensemble classifier
was employed, and weights from different classifiers were optimized by using the genetic
algorithm. It is significant that our proposed technique has improved sensitivity, specificity,
accuracy, precision, and F1 score. In this dataset, three performance indicators have yet
to be attained by any existing methods. According to the results, our proposed method’s
ROC curve assessment outperforms existing methods in terms of increased sensitivity and
specificity. In the future, we can also employ generative adversarial networks (GANs)
for synthetic data generation. It is possible that future research will examine different
techniques to deal with fake responses. Furthermore, a neutral choice for the products
might be implemented to present users with more options. When viewing products, the
tracking of a user’s eye movement could be seen as additional parameter in the prediction
of preferred choices. To improve the prediction outcomes, it may be necessary to investigate
more robust features and classifier combinations. Secondly, for good results we can also
focus on the dataset. In this research, the total instances for our ensemble classifier are 1050,
which could be considered a small number of examples. Consequently, in the future we can
apply our model to the dataset having large instances of customer preferences to obtain
better results.
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Abstract: This study addresses time intervals during robot control that dominate user satisfaction
and factors of robot movement that induce satisfaction. We designed a robot control system using
electromyography signals. In each trial, participants were exposed to different experiences as the
cutoff frequencies of a low-pass filter were changed. The participants attempted to grab a bottle
by controlling a robot. They were asked to evaluate four indicators (stability, imitation, response
time, and movement speed) and indicate their satisfaction at the end of each trial by completing
a questionnaire. The electroencephalography signals of the participants were recorded while they
controlled the robot and responded to the questionnaire. Two independent component clusters
in the precuneus and postcentral gyrus were the most sensitive to subjective evaluations. For the
moment that dominated satisfaction, we observed that brain activity exhibited significant differences
in satisfaction not immediately after feeding an input but during the later stage. The other indicators
exhibited independently significant patterns in event-related spectral perturbations. Comparing these
indicators in a low-frequency band related to the satisfaction with imitation and movement speed,
which had significant differences, revealed that imitation covered significant intervals in satisfaction.
This implies that imitation was the most important contributing factor among the four indicators.
Our results reveal that regardless of subjective satisfaction, objective performance evaluation might
more fully reflect user satisfaction.

Keywords: electromyography; electroencephalography; satisfaction; subjective response; robot control

1. Introduction

In the development of an advanced human–robot interface, user satisfaction should
be investigated to determine the optimal control configuration. Several studies have evalu-
ated interface usability [1–3] and user satisfaction [4]. For an individualized interface, the
system must recognize the reactions of the user to its responses. Although some studies
have investigated brain-related user responses, such as brain activity reflecting delayed
response during real-time cursor control [5], brain activity during control for interfacing
has rarely been investigated regarding subjective feelings. Brain activity related to a va-
riety of subjective feelings has been investigated based on self-reported information. For
example, brain activity with respect to changes due to the mood of a film was investigated
in [6]. Changes in emotional states induced by auditory stimuli were investigated using
electroencephalogram (EEG) signals [7], and emotional states related to music were investi-
gated using EEG data [8]. The use of EEG signals to detect emotion has been validated by
several classification methods such as support vector machine, k-nearest neighbor, naive
Bayes, long- and short-term memory, and deep belief networks (DBNs) [9]. In addition,
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because EEG signals have been involved in a variety of analysis methods, such as fuzzy
decision tree [10], and combined with other sensors [11], they can be adopted for subjective
evaluation of human–robot interfaces.

Users control a robot for a purpose (e.g., to grasp an object). If they fail to control the
robot or feel that it might not grasp the object, they feed a different input into the robot.
In such cases, when a user gives up or succeeds in moving the robot, defining the user’s
satisfaction in a trial is necessary. To track the source of the satisfaction, first, we need to
understand the moment that dominates the satisfaction and the factors of robot movement
that induce user satisfaction. The representation of objective indicators of robot movement
by the brain has not been elucidated. This could be linked to the user’s evaluation of the
robotic performance, which is information that could be exploited.

However, the timing of and the factors that affect satisfaction remain unclear. Sat-
isfaction can be measured by subjective responses to a questionnaire. We attempted to
determine brain activity related to satisfaction and the important interval, which dominates
satisfaction, according to the difference between EEG in unsatisfactory and satisfactory
tasks. For factors that cause satisfaction, we selected four indicators (stability, imitation,
response time, and movement speed) related to the robot’s performance to determine
the extent to which these performance-related indicators, which might be independent of
satisfaction, are relevant to satisfaction. We categorized performance indicators as abstract
and direct indicators. By determining parameters that the robot system can handle, we can
focus on the parameters of satisfaction. Otherwise, we should determine abstract concepts
for performance evaluation that primarily contribute to satisfaction within the brain. How-
ever, if we cannot use abstract parameters for robot control, they can be decomposed for
easy handling. Unlike speed and time, stability and imitation were intended to represent
abstract indicators. This enables us to determine whether satisfaction can be attributed to
directly controllable indicators. The subjective responses obtained from the questionnaire
can be linked to EEG signals to determine relevant brain areas and are observed in the
same region as satisfaction.

This study investigated aspects of both satisfaction and EMG-based robotic control.
We designed a system controlled by EMG signals. In each trial, we exposed the participants
to different experiences by changing the cutoff frequencies (1, 2, 5, and 10 Hz) of a low-
pass filter for the input EMG signals. The participants attempted to grab a bottle by
controlling the robot. At the end of each trial, the participants were asked to complete
a questionnaire to evaluate the four indicators and their satisfaction levels. The EEG signals
of the participants were recorded while they controlled the robot and responded to the
questionnaire. We further compared the brain activities based on five parameters (the
aforementioned four indicators and the level of satisfaction).

2. Experimental Procedures

2.1. Participants

A group of eight healthy individuals comprising five men and three women partici-
pated in the experiment. The mean and standard deviation of their ages were 26.75 years
and 3.33 years, respectively. All participants were right-handed and provided written
informed consent before the experiment. This study was conducted as per the Declaration
of Helsinki and approved by the ethics committee of the Tokyo Institute of Technology
(ethics number: 2019002).

2.2. Experimental Apparatus and Data Collection

Figure 1 shows the experimental environment. A controllable robotic hand (qb Soft-
Hand, qbrobotics, Navacchio, Italy) was fixed in front of a table. The robot provides
19 anthropomorphic DOFs, one synergy, one motor, 1.7 kg of nominal payload, 0.77 kg
of weight, and 1.1 s for clenched fists from a wide-open position. The bottle was placed
near the robotic hand. During the experiment, the participants sat on a chair and wore
an EEG cap. The sitting posture enabled them to see the robotic hand and screen. Their
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left hand was placed on a keyboard to answer the questionnaire, and their right arm was
placed on an armrest. To fix an EMG sensor, an arm brace was worn on their right hand.
In addition, the participants wore a face cover with opaque paper, which prevented them
from seeing their right hand. EMG signals from 32 channels were measured with an array
EMG sensor [12] and 24 bit resolution at a sampling rate of 500 Hz and used for robotic
control. An OptiTrack motion capture system (NaturalPoint, Inc., Corvallis, OR, USA)
recorded the motions of the participants and robotic hand. Three motion capture markers
were attached to the back of the wrist on the end of the radius/ulna, back of the hand on the
third metacarpal bone, and back of the middle finger (between the metacarpophalangeal
and proximal interphalangeal joints) of the participants and the robot. EEG signals were
recorded from 64 electrodes using a BioSemi ActiveTwo system (BioSemi, Amsterdam,
Netherlands) with 24 bit resolution at a sampling rate of 512 Hz, as shown in Table 1.

Figure 1. Experimental environment (not to scale). During the experiment, participants sat on a chair
and placed their right arm on an armrest attached to the table. A keyboard was placed on the table
through which participants responded to questions by pressing a button. For the task, participants
were asked to grab a bottle, which was positioned such that the robot hand could be bent to grab
the bottle. The robot hand could bend/extend a wrist and grip fingers with one degree of freedom
(DOF). An opaque face cover prevented the participants from seeing their right arm. A monitor was
placed in front of the table along the midline of the body, which includes a robot hand on the line to
enable participants to easily see the screen.
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Table 1. Electrodes and description of electrode labels.

Label Meaning

Fp Prefrontal lobe

F Frontal lobe

T Temporal lobe

P Parietal lobe

O Occipital lobe

C Central lobe

Combination of above labels Position between two places

Even numbers The right hemisphere

Odd numbers The left hemisphere

Z The midline on the coronal plane

Used electrodes

Fp1, Fp2, Fpz, AF3, AF4, AF7, AF8, AFz, F1, F2, F3,
F4, F5, F6, F7, F8, Fz, FT7, FT8, FC1, FC2, FC3, FC4,
FC5, FC6, FCz, C1, C2, C3, C4, C5, C6, Cz, T7, T8,
TP7, TP8, CP1, CP2, CP3, CP4, CP5, CP6, CPz, P1,
P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, PO3, PO4,

PO7, PO8, POz, O1, O2, Oz, and Iz

2.3. Experimental Paradigm

Calibration was necessary because the robotic hand was controlled using only EMG
signals. First, each participant sat on a chair and placed their right arm on the armrest, as
shown in Figure 1. Then, they were instructed to perform six different hand motions: hand
gripping/opening, wrist flexion/extension, and pronation/supination. Each hand motion
was repeated thrice. The EMG signals measured during the motions were rectified and
filtered with a second-order Butterworth low-pass filter with a cutoff frequency of 5 Hz.
Noisy channels were rejected before preprocessing. By using the hierarchical alternating
least squares algorithm [13], we extracted two muscle synergies from the EMG signals in-
volved in the gripping/opening motions and four muscle synergies from those involved in
the other motions. If the extracted muscle synergies did not reflect the expected movement,
the number of synergies was increased. The weight of each muscle synergy was normalized
to the maximum weight. Next, the joint angles were estimated using a musculoskeletal
model [14] and introduced into the robot hand as an input command. After calibration,
the participants learned to control the robot hand. They were subsequently instructed
to remember and replicate their methods of controlling the robot hand during the task.
However, if a participant failed to control the robot, the calibration process was repeated.

In the experiment, we used four cutoff frequencies (1, 2, 5, and 10 Hz) of the low-pass
filter of the EMG signals. The participants were exposed to different control experiences.
Each trial had one of the four cutoff frequencies, which were determined randomly. The
participants were not informed of the aspects that were changed or the various options
available. They were only informed that they would have different control experiences in
each trial. At the beginning of the experiment, a “wait” message appeared on the screen,
and the participants immediately put their hands in a resting state. When the message
was changed to “Go”, the participants attempted to grab the bottle by controlling the
robot. This was achieved by flexing their wrists and grasping their hands. When the robot
hand approached the bottle tracked by motion capture markers, a questionnaire appeared
on the screen after 2 s. However, this information was concealed from the participants.
Notably, no trial in which the interval between the “Go” cue and the questionnaire was less
than 2 s occurred. The participants were asked to evaluate the following four indicators
related to the control performance: stability (unstable vs. stable), imitation (bad vs. good),
response time (delay vs. no delay), and movement speed (extremely slow vs. extremely
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fast). Stability and imitation were selected as more abstract indicators than speed and time
to determine whether satisfaction was attributed to directly controllable indicators. After
answering the survey, they were asked to evaluate their subjective satisfaction, regardless of
the objective performance of the robot. The questionnaire was designed using a five-point
Likert scale. When they completed the questionnaires, a “relax” message appeared on the
screen until the next trial began. This procedure was subsequently repeated. The indicators
are defined as follows: stability refers to the extent to which the robot shakes unnecessarily
or performs unnecessary movement during the trial, imitation is determined by the extent
to which the robot’s movement is identical to the movement of the actual hand, response
time refers to the time required to move the robot, movement speed is determined by
the speed of the robot during the trial, and satisfaction is determined by the extent of the
participants’ feelings about the trial if they used this interface as a user.

The participants were required to perform three runs, with each run consisting of
81 trials and a break between successive runs. For each run, a frequency of 10 Hz was
presented 21 times, and the other frequencies were presented 20 times each. Participant 6
performed two runs, and participant 1 performed one run consisting of 97 trials (25 trials
for the 10 Hz and 24 trials for each of the others).

2.4. EEG Analysis

EEGLAB was used for preprocessing [15] as follows: EEG data were resampled at
a frequency of 256 Hz and filtered using a high-pass filter with a cutoff frequency of 1 Hz.
We used cleanLineNoise [16] to remove line noise and artifact subspace reconstruction
(ASR) to correct the artifacts [17,18]. The cutoff parameter for the ASR was set to 10. Cleaned
data were re-referenced to the average. Next, we performed an independent component
analysis using Adaptive Mixture ICA. An equivalent dipole model corresponding to each
independent component was fitted using fitTwoDipole [19]. All independent components
were identified using ICLabel [20].

The components identified as the brain were used for group-level analysis, for which
k-means clustering was performed based on the dipole locations of the brain components.
Ten clusters were determined using the silhouette index [21]. We extracted epochs between
0 s (“Go” cue) and 2 s after the “Go” cue to calculate the event-related spectral perturbations
(ERSPs) of the independent components within a frequency of 50 Hz with intervals of 1 Hz
using the Morse wavelet. For comparison, the various responses to the questionnaire were
classified into two groups such that their proportions were approximately 50% each. For
statistical testing, we performed a cluster-based permutation test with a weak control of
the family-wise error rate [22]. Here, the number of permutations was set to 5000, and the
threshold p-value for preselection was set to 0.01. Generally, the minimum and maximum
values for a permutation within each cluster are selected for multiple testing corrections
for comparison. However, we selected the minimum (or maximum) of the minimum (or
maximum) values obtained from all the clusters for each permutation to determine the 5th
and 95th percentile values, respectively. These values were commonly applied to achieve
a multiple testing correction, which was a stronger correction than usual for the clusters.

3. Results

We obtained two clusters that were primarily related to the four indicators and sat-
isfaction. Figure 2 illustrates the dipole densities of the clusters that exhibit significant
differences. The anatomical regions estimated according to the dipole locations were
the precuneus, with a probability of 22.5%, and the postcentral gyrus, with a probability
of 17.9%.
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Figure 2. Dipole densities of clusters showing significant differences between conditions. The mean
Montreal Neurological Institute (MNI) coordinate of the first cluster was (35 0 52), and the estimated
location was the postcentral gyrus, with a probability of 17.9%. The mean MNI coordinate of the
second cluster was (26 −69 55), and the estimated location was the precuneus, with a probability
of 22.5%.

Figure 3 shows the ERSPs and t-statistics of the clusters in the comparison of satisfac-
tion. The clusters exhibited significant areas that started from approximately 1.5 s and were
sustained to the end of the epoch. Additionally, significant areas in the delta band power
(1–4 Hz) were commonly found in both clusters. Figure 4 shows the significant areas of
the clusters in the comparisons. An independent pattern of significant areas was identified
in all comparisons. The cluster in stability exhibited a significant area within the range of
approximately 0.5–1 s, and the clusters in the other indicators exhibited significant areas
over the entire epoch. In addition, we observed common significant areas in both clusters.
In the imitation comparison, significant areas in the gamma band power (30–50 Hz) were
commonly found in both clusters. In the speed-of-movement comparison, significant areas
in the alpha band power (8–13 Hz) were commonly found in both clusters. Table 2 shows
the t-statistics of the significant areas. If both increasing and decreasing significant areas
were found in a cluster, the values were calculated separately.

As satisfaction exhibited a significant difference in the low-frequency band, we checked
event-related potential in the comparisons with significant differences over the frequency
range, i.e., movement speed and imitation. Figure 5 shows the power of the clusters related
to the precuneus in the range of 1–8 Hz. Within the range of 0.6–1 s, the comparison
of the movement speed exhibited a power difference (t-test; p < 0.01), whereas that in
the satisfaction was not significant. Within the range of 0.3–0.6 s, satisfaction exhibited
a moderate difference (t-test; p < 0.05), and imitation exhibited a more significant difference
(t-test; p < 0.01). Within the range of 1.6–2 s, the comparisons of both satisfaction and imita-
tion exhibited significant differences (t-test; p < 0.01), whereas the difference in movement
speed was not significant.
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Figure 3. Event-related spectral perturbation of clusters including a significant area in the comparison
of satisfaction. The dotted line represents the onset of the “Go” cue. In each figure set, the third column
represents t-statistics and the significant area. This plot indicates that satisfaction is determined
dominantly in the final phase of control.

Figure 4. Significant areas in the comparisons; stability (unstable vs. stable), imitation (bad vs. good),
response time (delayed vs. no delay), and movement speed (extremely slow vs. extremely fast). The
dotted line represents the onset of the “Go” cue. The blue areas represent negative t-statistics, and
the red areas represent positive t-statistics.
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Table 2. T-statistics of significant areas.

Indicator Cluster Mean Min (or Max)

Stability Precuneus −3.79 −5.83

Imitation Postcentral (increase) 3.26 3.89

Postcentral (decrease) −3.49 −6.15

Precuneus −3.01 −7.85

Response time Postcentral (increase) 3.45 4.28

Postcentral (decrease) −3.8 −6.81

Precuneus 3.99 6.66

Speed Postcentral −3.63 −5.73

Precuneus −3.79 −5.42

Satisfaction Postcentral −3.69 −4.30

Precuneus −3.22 −3.49

Figure 5. Power (1–8 Hz) of the clusters related to the precuneus. We extracted powers within
the range of 1–8 Hz shown as a significant area in ERSP. The comparison of the movement speed
exhibited a power difference within the range of 0.6–1 s, although the power difference in satisfaction
was not significant. Although the power difference within the range of 1.6–2 s was significant in
the comparison of satisfaction and imitation, the difference in the movement speed was not. Within
the range of 0.3–0.6 s, satisfaction exhibited a moderate difference, and imitation exhibited a more
significant difference. All tests were performed by t-test (*: p < 0.05; **: p < 0.01).

137



Sensors 2023, 23, 277

4. Discussion

By using the participants’ responses to the questionnaire, we investigated the reflection
of brain activity on user satisfaction alongside performance indicators of EMG-based robot
control. We found that two clusters primarily linked satisfaction and the indicators, as
shown in Figure 2. Brain activity exhibited significant differences in satisfaction at a later
stage but not immediately after feeding an input, as shown in Figure 3. The indicators
exhibited their independent significant patterns in ERSPs, as shown in Figure 4.

User satisfaction exhibited significant differences primarily at the end of the epoch.
This could imply that the level of satisfaction was primarily determined by the latest
information, regardless of the robotic performance immediately after an input command.
This might be a specific characteristic of satisfaction in the brain determined by the latest
information. This has rarely been discovered in a study on user satisfaction in human–robot
interaction [23]. However, a previous study on user satisfaction with a haptic interface
reported that EEG power in the early period exhibited a significant correlation with user
satisfaction [24]. The reported results revealed that each participant exhibited different
frequency bands (alpha, delta, and high gamma), primarily contributing to satisfaction.
We conjecture that the experiment in the previous study asked participants only about
satisfaction, which would have different meanings depending on the individual. In our
questionnaire, we suggested multiple indicators, which might have enabled the participants
to limit their interpretation of satisfaction. In addition, different interface environments
could define different satisfaction levels. In a dial interface, gamma EEG over the frontal
area in the early period exhibited a significant contribution to satisfaction [25]. Additionally,
some studies have reported that different paradigms exhibited different preferences in
a brain–computer interface using motor imagery [26].

Among the four indicators, stability exhibited a significant difference in a portion
of the epoch. However, the other indicators exhibited significant differences in most of
the epochs. Several independent activations appeared to be involved in significant areas
in response time and movement speed. The cluster related to the precuneus exhibited
an earlier and more significant difference than the other clusters, indicating that movement
speed and delay might be processed as information about a fundamental concept through
the precuneus within the brain. As visual information is processed in two pathways,
this might reflect the process on the dorsal pathway. Humans can intuitively recognize
delay and speed immediately as they observe a robotic movement. However, considerable
time is required to recognize stability, indicating that stability is represented as integrated
information in the brain. Another high-level concept is the sense of agency, which refers
to the feeling of control [27] and is dependent on delay and speed. Delay has been used
to reduce the sense of agency [28]. A previous study reported that the speed of controlled
objects is also related to the sense of agency [29]. This supports the idea that delay and
speed are the fundamental factors affecting subjective feelings. Although delay appears
to be a low-level concept, its effect is complex. Participants sometimes fail to perceive the
correct delay [5]. Moreover, the awareness between certainty and uncertainty with respect
to the delayed response of a robotic hand can induce a significant difference in the theta
band of the parietal lobe [30]. Additionally, although unlike delay, imitation is not a simple
concept, significant differences were observed immediately after the onset. This might be
caused by differences in the gamma band related to sensory awareness [31,32], which may
have influenced subjective feelings. The significant gamma powers in the other interval
might be related to emotional processing [33].

In all the indicators, including satisfaction, the pattern of significant regions in one of
the clusters resembled the pattern of the other cluster in the time–frequency plot, implying
that the two clusters may be functionally connected and reflect information flow between
them. Moreover, the gamma power in imitation, gamma power at the end of the epoch in the
response time, and alpha power in the movement speed exhibited a larger difference area
in the precuneus-related clusters than in the postcentral-gyrus-related cluster. Furthermore,
user satisfaction exhibited a longer and larger significant area in the postcentral gyrus than
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in the precuneus. Considering the visual information pathway through the parietal area,
satisfaction is primarily determined by other integrated information, unlike information
through the precuneus at that time.

We used a k-means algorithm for clustering based on the dipole locations. However,
several other methods could be used for clustering, such as hierarchical clustering or
a sequential algorithm of partitional clustering. In this case, other features could be included
for optimized clustering besides dipole location. These features should be investigated in
future studies so that optimized components related to the task or stimulus can be extracted.

As the ERSPs in the low-frequency band were related to satisfaction, we compared
them with imitation and movement speed, which exhibited significant differences. The
speed indicator showed that the difference between powers within the range of 0.6–1 s
was significant, whereas satisfaction exhibited a significant difference within the range
of 1.6–2 s. This may imply that speed is not a primary contributor to satisfaction. For
imitation, powers within the ranges of 0.3–0.6 s and 1.6–2 s exhibited significant differences.
Satisfaction also exhibited significant differences in both intervals, but the difference in
the early period was moderate. As imitation covered significant intervals in satisfaction, it
was the most important contributing factor among the four indicators. We presented the
indicators as evaluation indicators regardless of the participant’s satisfaction. Our results
reveal that objective performance evaluation, regardless of subjective satisfaction, can fully
reflect satisfaction. As no optimal control configurations exist, the robot system should
evaluate the user’s satisfaction without measuring satisfaction. In other words, satisfaction
should be estimated using information that the robot system can exploit. Our results prove
the feasibility of this method with brain-related signals. However, the information that
contributed to satisfaction was not a simple parameter such as delay or movement speed.
The fundamental unit satisfaction processing in the brain might be neither of these factors.
Although we have yet to elucidate the representation of imitation in the brain, we discov-
ered integrated information related to a robot’s objective movement, causing satisfaction to
be processed in the brain. In future studies, integrated information, which might consist
of basic parameters such as delay and movement speed, should be investigated to ensure
the decomposition of integrated information and determine more direct contributors to
satisfaction. Then, the information could be exploited to determine individualized optimal
parameters and used to generalize individualized preferred robot configurations.
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Abstract: Advances in signal processing and machine learning have expedited electroencephalogram
(EEG)-based emotion recognition research, and numerous EEG signal features have been investigated
to detect or characterize human emotions. However, most studies in this area have used relatively
small monocentric data and focused on a limited range of EEG features, making it difficult to compare
the utility of different sets of EEG features for emotion recognition. This study addressed that by
comparing the classification accuracy (performance) of a comprehensive range of EEG feature sets
for identifying emotional states, in terms of valence and arousal. The classification accuracy of five
EEG feature sets were investigated, including statistical features, fractal dimension (FD), Hjorth
parameters, higher order spectra (HOS), and those derived using wavelet analysis. Performance
was evaluated using two classifier methods, support vector machine (SVM) and classification and
regression tree (CART), across five independent and publicly available datasets linking EEG to
emotional states: MAHNOB-HCI, DEAP, SEED, AMIGOS, and DREAMER. The FD-CART feature-
classification method attained the best mean classification accuracy for valence (85.06%) and arousal
(84.55%) across the five datasets. The stability of these findings across the five different datasets also
indicate that FD features derived from EEG data are reliable for emotion recognition. The results may
lead to the possible development of an online feature extraction framework, thereby enabling the
development of an EEG-based emotion recognition system in real time.

Keywords: EEG; emotion recognition; EEG feature extraction; valence; arousal; pattern recognition

1. Introduction

Emotions have a complex and fundamental role in cognition and behavior, influencing
how we interact with and interpret our daily life experiences. Technology that can help
recognize and measure emotions is highly desirable, as this can facilitate research and
development in areas such as healthcare, education, psychology, robotics, marketing,
and entertainment. Emotion recognition technology can also offer individuals (or clinicians)
tools to aid emotion regulation and intervention. However, despite years of interest in
psychology and affective computing, the development of reliable and generalizable emotion
detection techniques is still a challenge. To that end, this study provides a comprehensive
analysis of electroencephalogram (EEG) measures of emotional states, categorized in terms
of valence (positive vs. negative) and arousal (high vs. low).

Numerous experiments on emotion recognition have been undertaken in recent years
utilizing both physiological signals (e.g., electrocardiogram (ECG), galvanic skin resistance
(GSR), electromyogram (EMG), respiration rate (RR), electrodermal activity (EDA) and
EEG signals) [1,2] and behavioral data (e.g., facial expression images, body gestures, speech
and voice signals) [3,4]. Behavioral data can provide useful measures of emotion-related
processes; however, they can also be easily biased due to their subjective and controllable
nature. In comparison, physiological signals are relatively automatic and uncontrolled
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and, therefore, may capture processes that can distinguish an individual’s true (unbiased)
emotional states more objectively. Thus, relative to behavioral data, physiological signal-
based emotion recognition has fundamental advantages in terms of reliability and validity.

A range of physiological signals have been explored for emotion recognition [1,5].
However, relative to other modalities, techniques based on EEG data have received remark-
able attention due to the direct link between EEG and the neurophysiological activity of
the central nervous system, as well as its high time resolution and reliability. Furthermore,
due to the rapid advancement of sensor technology EEG data collection is becoming more
practical. Considering the popularity of EEG as a measure of emotion, and its increasing
accessibility for researchers and consumers, this current study is focused on EEG-based
emotion recognition. Despite the large number of studies conducted on EEG-based emotion
recognition, there are unsolved issues and questions. For example, the number of emotion
classes recognized, the number of electrodes used, the accuracy of emotion recognition,
and the generalization of the emotion recognition task.

To detect emotions using EEG, researchers traditionally extract a range of signal
properties referred to as ‘features’, which are then analyzed relative to emotions (or emotion
processing), to explore their utility for detecting or classifying experienced emotions.
The accuracy of emotion recognition will be largely influenced by the quality of feature
extraction and their functional relevance (or significance) to emotions. Until now, few EEG
studies have been performed to compare the importance of different EEG features that are
often used for emotion recognition. Schaaff and Schultz [6] compared classification accuracy
of pleasant, neutral, and unpleasant emotional state among two different sets of features
measured in the time domain (e.g., statistical), and frequency domain (e.g., Fast Fourier
Transform) . Petrantonakis et al. [7] computed the higher order crossing (HOC) features
of EEG signals and evaluated their performance in classifying emotional states (such as
happiness, surprise, anger, fear, disgust, and sadness) among statistical and wavelet-based
features. Frantzidis et al. [8] suggested using the Event Related Potential (ERP) amplitude,
ERP latency and Event Related Oscillation (ERO) amplitude as features for emotional state
classification . In [9], the authors performed time–frequency analysis to assess the event
related synchronization (ERS)/desynchronization (ERD) characteristics of EEG data and
compared liking and disliking emotional states across various time–frequency ERS/ERD
features. Jenke et al. [10] explored multiple features such as band power, HOC, fractal
dimension (FD), discrete wavelet transform (DWT), Hilbert–Huang spectrum, differential
asymmetry, and rational asymmetry. They compared the classification of happy, curious,
angry, sad, and quiet emotional state among different feature vectors. Liu and Sourina [11]
computed FD features and compared the performance with statistical features for valence
recognition. Yuvaraj et al. [12] employed bispectrum features for basic emotional state
classification and compared the classification performance with power spectrum, wavelet
packet and nonlinear features. Recently, Nawaz et al. [13] proposed an emotion recognition
framework based on the statistical features and evaluated the classification accuracy in
comparison to power, wavelet, and entropy features. Together, these studies indicate the
potential to detect or characterize basic emotional state using various EEG feature sets.
However, it is difficult to compare the performance of feature sets across the different
studies as most analyses were performed using only on handful of features, thus failing to
provide insight into their relative utility for developing automated (i.e., online) systems
that can understand or classify human emotions in applied settings. Furthermore, many
studies were evaluated only on a monocentric data (i.e., single, or smaller dataset), typically
collected from on a smaller cohort.

The present study aims to provide the most comprehensive analysis of different
EEG feature sets for emotion recognition to date to determine which features are best for
distinguishing emotional states, categorized in terms of valence and arousal. To achieve
this, a wide range of features are analyzed across five public datasets to identify the most
significant and generalizable EEG features distinguishing high/low emotional valence and
arousal states; the five public datasets used in this study are, DEAP [14], DREAMER [15],
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MAHNOB-HCI [16], AMIGOS [17] and SEED [18]. The feature sets that are explored
include statistical, fractal dimension (FD), Hjorth parameters, higher order spectra (HOS),
and wavelet transform. Like in most machine learning studies (e.g., [7,12,13]), classification
accuracy serves as the main performance metric in this investigation; however, given that
machine learning accuracy can vary across classification techniques [7,12,13], we also test
the performance of two common classifiers, specifically, support vector machine (SVM)
and classification and regression tree (CART). In this way, we aim to recommend the most
useful and generalizable EEG feature-classification technique for detecting emotional states
and to guide the future development of emotion recognition systems.

The key contributions of the current study are the following: We (i) evaluated the
performance using five independent and public EEG emotion datasets and (ii) identified the
optimal feature set for reliable EEG-based emotional state recognition. To our knowledge,
this study could be one of the first to utilize five independent public datasets to identify the
optimal EEG feature set that can discriminate emotions. The rest of the work is arranged as
follows. The scalp EEG datasets and the details of the method are explained in Section 2.
Various experimental results and discussions are described in Section 3. Last, Section 4
covers the conclusions.

2. Materials and Methods

Figure 1 shows the methodological framework of the EEG and machine learning tech-
niques used in the present study. For each EEG dataset (described in Section 2.1), the raw
EEG data was subjected to (1) preprocessing, (2) feature extraction, and (3) emotional
state classification based on ground-truth self-report data reflecting emotional valence
and/or arousal.

Figure 1. An overview of the proposed machine learning framework for emotion recognition based
on EEG signals.

2.1. Emotion-Related EEG Datasets

This study utilizes emotion-related EEG signals from the five most popularly used
public datasets, namely MAHNOB-HCI, DEAP (Dataset for Emotion Analysis using Phys-
iological signals), SEED (SJUT emotion EEG Dataset), AMIGOS (A dataset for Mood,
personality, and affect research on individuals and GrOupS), and DREAMER. Table 1 sum-
marizes the core details of these datasets that are relevant to the present research, including
sample characteristics and EEG parameters. Datasets include EEG recordings from 15–40
(M = 27.4, SD = 9.4) young adult participants (55% male overall), recorded using different
EEG systems with 14–62 scalp channels. The specifics of each dataset are described in detail
in the subsequent paragraphs.

The MAHNOB-HCI was pioneered by Soleymani and fellows [16], which comprises of
32-channel EEG recordings and other peripheral nervous system (PNS) signals. The signals
were obtained from 27 participants as they watched 20 video clips, which lasted from 34.9 s
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to 117 s. Participants rated their levels in valence, arousal, dominance, and predictability,
after they watched each clip. The DEAP emotion dataset is a multimodal dataset created
by [14], which comprises EEG signals from 32-channels and other PNS signals. These
signals were collected from 32 healthy subjects when they were watching 40 music video
clips (i.e., 40 trials in total), each video clip lasting a minute. After each video/trial, the par-
ticipants were asked to rate their arousal, valence, dominance, like/dislike, and familiarity
level using self-assessment report. The data of each video consists of 60-s EEG recordings
and a 3 s baseline data. The EEG were collected with the sampling frequency (Fs) of 512 Hz.
The SEED dataset [18] comprises EEG and eye movement signals from 15 participants
exhibiting three different emotions namely positive, negative, and neutral emotional state.
Each participant had three experiment sessions on different days. In each session, there
were fifteen four-minute videos to evoke the required emotions. Therefore, for the three
sessions, there are 45 trials in the database. The same fifteen videos were used in all three
experiment sessions. The EEG signals were collected from 62 channels with Fs = 1000 Hz
and down sampled to 200 Hz. After each session, the participants were asked to label the
video according to the contents: −1 for negative, 0 for neutral, and 1 for positive. In this
study, we employed only recordings with positive and negative labels from participants to
assess our results with additional emotion datasets that apply binary classifiers.

Table 1. Information about the datasets used in this study.

Public
Dataset
Name

Pub.
Year

Sample
Size
(N)

Gender Ratio
(Mean
Age ± SD)

Total
Trials
or
Videos

Trial/
Video
Dura.

Rec.
Ses.

# EEG Channels
/Device
/Fs

Emotional
States

Rating
Scale
Ranges
(Thres.)

MAHNOB
-HCI 2011 27

11M /16F
(NS
± NS)

20
34.92
to
117 s

1
32/
BioSemi Active II
/256 Hz

Valence &
Arousal

1–9
(4.5)

DEAP 2012 32
16M/16F
(26.9
± NS)

40 60 s 1
32/
BioSemi Active II
/512 Hz

Valence &
Arousal

1–9
(4.5)

SEED 2015 15
7M/8F
(23.27
± 2.37)

10 ∼240 s 3
62/
ESI Neuro Scan
/1000 Hz

Positive &
Negative

−1, 0, & 1
(NA)

AMIGOS 2018 40
27M/13F
(28.3
± NS)

16 <250 s 2
14/
Emotive EPOC
/128 Hz

Valence &
Arousal

1–9
(4.5)

DREAMER 2018 23
14M/9F
(26.6
± 2.7)

18 65–393 s 1
14/
Emotiv EPO
/128 Hz

Valence &
Arousal

1–5
(2.5)

All the EEGs are recorded using the international 10–20 positioning system. Fs = sampling frequency in Hz,
M = Male, F = Female, SD = standard deviation, s = seconds, NS = not specified, NA = not applicable, Pub.—
publication, dura.—duration, Rec.—recording, ses.—sessions, thres.—threshold.

The AMIGOS dataset [17] includes 14 channels of EEG data, 2 channels of ECG data,
galvanic skin response, and frontal video. The dataset was prepared from the recordings of
40 participants when they viewed 16 film clips, which lasted no longer than 250 s. After see-
ing each movie clip, participants self-assessed their levels of arousal, valence, dominance,
liking, familiarity, and seven fundamental emotions (happiness, disgust, surprise, fear,
anger, sorrow and neutral). As stated in [19], seven participants (participant ID: 9, 12, 21, 22,
23, 24, 29, and 33) physiological signals had missing data, therefore we excluded them in
our study. Some participants (participant ID: 5, 11, 28, and 30) did not have either valence
or arousal affective state values, so we excluded their data as well. The DREAMER dataset
was developed by [15] and comprised of EEG signals from 14 channels and 2-channel ECG
signals. These signals were collected from 23 healthy participants (aged between 22 and
33 years) as they watched 18 video clips with lengths between 65 and 393 s. After every
video clip, the participants assessed their degrees of arousal, valence, and dominance using
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self-assessment manikin (SAM). In addition, 60-second baseline signals were recorded
before each clip. EEG signals were captured with an Emotive EPOC wireless neuro headset
with Fs of 128 Hz.

In this study, only the raw EEG and self-report data reflecting emotional valence and
arousal were extracted for analyses. Furthermore, to be consistent across datasets, only
data from the first session was used from sets including multiple sessions (i.e., AMIGOS
and SEED). Across all datasets, and in this study, emotional valence and arousal (Figure 2)
were analyzed as two orthogonal dimensions [19–21], consistent with popular circumplex
models of emotion (e.g., [22]). The self-report scales used to rate valence and arousal
differed across datasets; for DEAP, MANHOB-HCI, and AMIGOS each dimension was
rated on a scale of 1 to 9, whereas for DREAMER, they were rated from 1 to 5, with lower
numbers reflecting more negative or lower valence and arousal, respectively. To test and
validate EEG classification of emotion, EEG data were first categorized as either low or
high valence and arousal relative to the midpoint of the respective self-report scale (e.g.,
DREAMER data with valence score <2.5 were classed as low valence and ≥2.5 were classed
as high valence). For the SEED dataset, trials were already labeled in terms of positive
(labeled 1) and negative (labeled 0) emotion categories; hence, further categorization was
not necessary.

Figure 2. The two-dimensional model of emotions: valence–arousal plane.

2.2. EEG Signal Preprocessing

EEG signal preprocessing, feature extraction, and emotional state classification were
performed in Python (v3.7.1) and MATLAB (vR2020b). The average number of EEG
trials across datasets was 569.6 (SD = 423.4), including 540 for MAHNOBHCI (20 trials
× 27 participants), 1280 for DEAP (40 trials × 32 participants), 150 for SEED (10 trials ×
15 participants), 464 for AMIGOS (16 trials × 28 participants), and 414 for DREAMER
(18 trials × 23 participants). EEG trial data were filtered using a 50/60 Hz notch and 1 Hz
high-pass Butterworth filters (4th order) to remove electrical mains and DC artefact. Data
were then down sampled to 128 Hz to match the sample rates across datasets, before being
rereferenced to the common average, and segmented into 2-second nonoverlapping epochs.
Epochs were then subjected to automatic artefact rejection to remove eye-blinks and other
electrical artefacts by excluding segments with data exceeding ±100 μV. There was an
average of 1046 (SD = 411) epochs for valence and 1036 (SD = 438) epochs for arousal across
participants that were accepted for further analysis.

2.3. EEG Feature Extraction

Feature extraction refers to the process of transforming raw data into numerical
features that can be processed while preserving the information in the original data set. It
yields better results than applying machine learning directly to the raw data. In the emotion
recognition process through EEG signals, feature extraction is the crucial part of the emotion
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classification. The quality of the feature extraction will directly affect the accuracy of the
emotion classification. In this study the feature extraction and analysis aimed to identify the
salient EEG data that can distinguish or classify emotional states. To that end, we compared
the classification performance of ten EEG feature sets that have shown reliable performance
in previous emotion recognition studies [10–13,23], including Statistical, Wavelet, Fractal
Dimension, Hjorth Parameters, Higher Order Spectra, Spectral Power, Entropy, Nonlinear,
Connectivity, and Graph Metric features. For brevity, only the top five performing feature
sets are reported in this article, including Statistical, Wavelet, Fractal Dimension, Hjorth
Parameters, Higher Order Spectra features as described in Table 2. All feature sets were
extracted from each channel and epoch of the preprocessed EEG data.

Table 2. Summary of EEG features employed in this study.

Feature Set Features No. of Features

Statistical

Mean (μx), Median (X̄), Standard deviation (σx), Skewness,
Kurtosis, Mean of absolute values of 1st difference (δx),
Mean of absolute values of 2nd difference (γx),
Normalized 1st difference (δ̄x), and Normalized 2nd difference (γ̄x)

9

Wavelet
Mean and standard deviation of the absolute values of the coefficients
in each of the 12 scales (with Morlet as mother wavelet). 24

Fractal dimension (FD)
Katz’s fractal dimension (KFD), Petrosian fractal dimension (PFD),
and Higuchi’s fractal dimension (HFD). 3

Hjorth parameters Mobility (h1), and Complexity (h2). 2

Higher order spectra (HOS)

Bispectrum magnitude (BisMag), Sum of logarithmic amplitudes of
Bispectrum (H1), Sum of logarithmic amplitudes
of diagonal elements in the bispectrum (H2), and
1st-order spectral moment of amplitudes of diagonal elements
of the bispectrum (H3).

4

2.3.1. Statistical Features

Descriptive statistical measures of EEG time-series data have been used for emotion
recognition in previous studies [10,11,13]. In this study, the statistical feature set includes the
mean (μX), median (X̄), standard deviation (σX), mean of absolute values of 1st difference
(δX), 2nd difference(γX), normalized 1st difference (δ̄X), and normalized 2nd difference
(γ̄X) measured from the time-series data at each channel, across epochs; these features were
calculated as indicated in Equations (1)–(7) below:

μX =
1
T

T

∑
t=1

(X(t)), (1)

X̄ = med(X(t)), (2)

σX =

√√√√ 1
T

T

∑
t=1

(X(t)− μX)2, (3)

δX =
1

T − 1

T−1

∑
t=1

|(X(t + 1)− X(t)|, (4)

γX =
1

T − 2

T−2

∑
t=1

|(X(t + 2)− X(t)|, (5)

δ̄X =
δX
σX

, (6)
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γ̄X =
γX
σX

(7)

where X(t) denotes the time series EEG signal and T represents the total number of EEG
samples. In addition, we also extracted skewness, and kurtosis features from the EEG data.

2.3.2. Wavelet Analysis

Wavelet transform is a popular time–frequency (TF) decomposition technique that
divides the EEG signal in several approximation and details levels of wavelet coefficients
corresponding to various EEG frequency ranges, while conserving the time information of
the signal. Previous studies have used wavelet analysis to measure the EEG TF distribution
related to emotions [13,24–26]. Here, six-level continuous wavelet transform (CWT) was
applied using the Morlet window function to obtain wavelet coefficients of EEG bands.
This mother wavelet is chosen based on its near optimal time–frequency (TF) represen-
tation characteristics [27]. Besides, Morlet wavelet is widely used in EEG-based emotion
recognition studies [28,29]. For sampling rate of 128 samples/sec, we obtained 18 scales
and extracted CWT coefficients from first 12 scales as they have frequency >1.25 Hz. Each
scale frequencies are: 61.115 Hz, 43.59 Hz, 31.09 Hz, 22.17 Hz, 15.81 Hz, 11.28 Hz, 8.04 Hz,
5.74 Hz, 4.09 Hz, 2.92 Hz, 2.08 Hz, and 1.48 Hz. The equation used to compute the CWT
coefficients from one-dimensional (1D) EEG signal data is given in Equation (8):

CWT(a, b) =
∫ ∞

−∞
X(t)

1√|a|ψ
(

t − b
a

)
dt (8)

where x(t) denotes the time-series EEG signal in this work, ψ is the mother wavelet, and a is
the scaling parameter, and b is the shifting parameter. Since the coefficients extracted from
this frequency range are related to emotion [27–29], we computed average of the absolute
values of the wavelet coefficients in each level scales as wavelet features, which is defined
in Equation (9):

μ(CK,�)
=

1
�

N

∑
�=1

|CK,�|2, (9)

σ(CK,�)
=

√
∑
(
C(K, �)− μ(CK,�)

)2

N
(10)

where C(k,l) denotes the each value of the wavelet coefficients at the kth decomposition
level, � is the number of coefficients, and k = 1, 2, 3· · · , N represents the number of
decomposition levels.

2.3.3. Fractal Dimension

FD features approximate the complexity (or fractality) of the EEG times-series data pro-
viding an indication the level of self-similarity of the EEG signal across all time scales. Pre-
viously, FD features have shown promise for EEG-based emotion recognition [13,23,30,31].
In this study, we considered several FD algorithms commonly used for EEG signal analysis,
namely Katz [32], Petrosian [33], and Higuchi [34]; these algorithms are explained below.

Katz’s fractal dimension (KFD): Katz suggested an algorithm to compute FD based on
waveform planar curve [35], which is defined in Equation (11) as:

KFD =
log(L)
log(d)

(11)
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where, d represents the distance between the two consecutive points (curve diameter) and
L denotes the curve length. The mean of FD is calculated as KFD, by dividing L and d by
the mean distance between the locations (a), as shown in Equation (12):

KFD =
log(L)
log(d)

=
log

( L
a
)

log
( d

a
) =

log(N)

log(N) + log
( d

L
) (12)

where N is the number of time samples in the EEG epoch.
Petrosian fractal dimension (PFD): This algorithm converts time-series EEG signal into

binary sequences [35]. The PFD is calculated as shown in Equation (13):

PFD =
log(m)

log(m) + log
( m

m+0.4Nδ

) (13)

where Nδ denotes the number of segment pairs in the binary sequence that are not identical,
and m represents the samples number in the segment.

Higuchi’s fractal dimension (HFD): Higuchi developed a method for finding FD directly
from the original time series by decomposing into N samples, X(n) = X(1), X(2), X(3)· · ·
X(N). A new time-series signal is generated by selecting one sample after every ith sample,
which is defined as:

Xj
i = X(i), X(i + j), X(i + 2j), ...X

(
i + int

(
N − i

j

)
∗ j

)
(14)

where i = 1, 2, 3, 4· · · j. Here, i represents the initial time, j represents the internal time,
and N represents the total number of samples. For each i, the length of the curve, Li(j) is
represented as Equation (15), and then taken as the average value of j values of Li(j).

Li(j) =
∑

int
(

N−i
j

)
m=1 |X(i + mj)− X(i + m − 1)j| ∗ (n − 1)

k ∗ int
(N−i

j
) (15)

The HFD method is developed from the concept that the curve under consideration is
fractal-like if L(j)αj(−FD) where FD denotes fractal dimension, and it is measured as given
in Equation (16):

HFD =
< L(j) >

logj
(16)

2.3.4. Hjorth Parameters

Hjorth parameters are statistical functions that explain the EEG signal characteristics
in the time domain, which have also been successfully used in emotion recognition from
EEG signals [10,36]. It consists of two main measures, namely mobility (h1), and complexity
(h2) features [37,38], which are defined according to the following Equations (17) and (18) :

Mobility(h1) =

√√√√ σ2
d

σ2
x(t)

=
σd

σx(t)
, (17)

Complexity(h2) =

√√√√√√√
σ2

dd
σ2

d

σ2
d

σ2
x(t)

=

σdd
σd
σd

σx(t)

(18)

where, x(t) represents the time-series EEG signal with a length of N, σx(t) relates to the
standard deviation (SD) of EEG signal, σ2

x(t) denotes the variance in the time-series EEG
signal, σd denotes the SD of the 1st derivative of x(t), and σdd denotes the SD of 2nd
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derivative of x(t). This activity is mobility (estimates the mean frequency), and complexity
(computes the bandwidth of the signal).

2.3.5. Higher Order Spectra

Higher order spectra (HOS) are a spectral representation of higher order statistics
that can retain the information related to deviations from Gaussianity and the degree of
nonlinearity in the time-series EEG signal. Among the group of HOS features, bispectrum
(Bis) is regarded as an effective feature for recognizing emotion from EEG signals [10,12,24].
Bispectrum depicts the Fourier Transform (FT) of the third order moment of the signal [39],
calculated as shown in Equation (19).

Bis( f1, f2) = E[X( f1) · X( f2) · X∗( f1 + f2)] (19)

where X(f) is the FT of the given signal X(t), * represents its complex conjugate, and E[·]
denotes the expectation operation. In this study, bispectrum features namely, bispectrum
mean magnitude (BisMag), and different bispectrum moments were extracted from EEG
segments [40], which are computed as Equations (19)–(22):

Bispectrum magnitude, BisMag

BisMag =
1
N ∑

Ω
|Bis( f1, f2)|, (20)

Bispectrum logarithmic amplitudes summation, H1

H1 = ∑
Ω

log(|Bis( f1, f2)|), (21)

Bispectrum logarithmic amplitudes of diagonal elements summation, H2

H2 = ∑
Ω

log(|Bis( fD, fD)|), (22)

1st order spectral moment of amplitudes of diagonal elements of the bispectrum, H3

H3 = ∑
Ω

mlog(|Bis( fD, fD)|) (23)

where N is the total number of time points in the principal domain region, Ω.

2.4. Emotion and EEG Feature-Classification Techniques

Two classification techniques, SVM and CART, were applied and evaluated for emo-
tional valence and arousal recognition using each EEG feature set described above, as well
as a combination of all feature sets; the specific combination of a feature set (e.g., statistical)
and classifier (e.g., SVM) is considered a unique feature-classification technique, which can
be tested relative to other combinations. In terms of the classifiers, SVM forms a decision
boundary between two classes (e.g., low vs. high valence) and attempts to increase each
class distance from the decision boundary [12]. The function of kernel is to take data as
input and transform it into the required form. Different SVM algorithms use different types
of kernel functions. In the current study, Gaussian radial basis function (RBF) SVM (GSVM)
is used due its excellent learning performance [41] in many applications including EEG-
based emotion recognition [12,42,43]. CART classifiers use a minimum cost-complexity
pruning technique [44]. For example, every test could consist of a linear combination of
attribute values for numeric attributes. As a result, the output tree shows a hierarchy of
linear models [44]. We compared the performance of four classifiers that have shown reli-
able classification performance in previous EEG-based emotion recognition studies [5,13],
including CART, GSVM, Random forest (RF) and k-nearest neighbor (KNN). For brevity,
only top two performing classifiers are reported in this paper, including CART and GSVM.
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We applied Bayesian optimization technique for GSVM and CART classifiers to optimize
the hyperparameters for each inner fold. For GSVM, we optimized 2 hyperparameters,
namely box constrain and kernel scale. For CART, we optimized number of learning
cycles, and learn rate, and minimum leaf size. Besides, we have used also random under
sampling boosting for ensemble to effectively handle imbalanced data, and standardized
the predictor data.

2.5. EEG Feature-Classification Accuracy

The accuracy of each EEG feature set-classification technique was evaluated using
4-fold cross-validation. In this approach, each participant’s data was divided into 4-folds
(i.e., four equal subsets of their data without overlap); 3-folds are randomly used for classi-
fier training and the remaining fold is used as the final test for accuracy and validation. This
4-fold process is performed four times so that each fold is used as a test set, resulting in four
classifier accuracy scores for each feature-classification method and participant. The mean
accuracy is then computed across the 4-folds reflecting the final feature-classification ac-
curacy per participant. This is applied separately for each dataset. To evaluate overall
emotion feature-classification performance, the mean, and the SD of the final accuracy
scores were computed across all participants.

2.6. Statistical Analysis: Comparing Feature-Classification Performance between EEG Feature Sets

Two-tailed paired-sample t-tests were used to evaluate whether emotion classification
performance differs between feature sets. Cliff’s Delta value was also computed as an
additional effect-size measure of the difference between sets. It is a non-parametric effect
size measure that computes the degree of difference between two groups of data (in this
case, FD versus each feature set) beyond the meaning of p-values. Cliff’s Delta range
between −1 and 1, with effect sizes of −1 or 1 indicating that there is no overlap between
the two groups, whereas a 0.0 indicates no difference between feature set means. Statistical
significance was defined as p-value < 0.05. The p-values were corrected for multiple
comparisons using Holm–Bonferroni correction.

2.7. EEG Scalp Topography Related to Emotion Processing

The topographic distribution of the most significant feature sets was visually inspected
to consider the spatial distributions associated with high/low valence and arousal. To im-
prove visual comparison, the features from each dataset were standardized (z-scored) and
only common channels that were shared by all datasets (i.e., 14 channels) were plotted.

3. Experimental Results and Discussion

This section presents the classification accuracy of different feature sets and classifiers
for each public EEG dataset. Higher accuracy scores are indicative of feature-classification
methods that are more reliable for EEG emotion recognition. Tables 3 and 4 display the
mean classification accuracy for emotional valence and arousal, respectively. Accuracy
scores are shown for each feature-classification technique, including the combination of
all feature sets (i.e., Combined-ALL); the highest accuracy scores within and across each
dataset (i.e., Average) are highlighted in bold.

The majority of EEG feature-classification methods performed reasonably well with
average classification accuracies ≥77.78% and 77.59% for valence and arousal, respectively.
This is interesting as it suggests a complex relationship between 2D emotional states and
many properties of the EEG signal and is consistent with the successful application of these
features across previous emotion recognition studies [7,10,13]. As demonstrated by the
average classification accuracy across datasets in Tables 3 and 4, the performance of EEG
FD feature set was higher for classifying high/low emotional valence and arousal relative
to other features when using either the GSVM or CART classifiers. These results are broadly
consistent with previous research highlighting the value of FD features for detecting implicit
emotional states [31,45,46]. Furthermore, the FD feature set delivered classification results
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with the lowest SD of accuracy, showing that they perform more consistently than other
techniques in this study; this is a valuable property, suggesting greater stability or reliability
of this feature set for applied emotion recognition. This outcome is also consistent with
prior research showing that the intraclass correlation coefficient (ICC) of FD features is
higher for emotional state classification relative to other methods, supporting its reliability
for categorizing valence and arousal [46].

Table 3. Emotional Valence: Mean (±SD) EEG Feature-classification accuracy (%). Bold represents the
highest average accuracy scores within and across each dataset.

Feature
Set

Classifier
Dataset Name

Average
DEAP DREAMER MAHNOB AMIGOS SEED

Combined-ALL
GSVM 73.09 ± 0.060 86.56 ± 0.063 78.23 ± 0.080 76.94 ± 0.076 96.73 ± 0.024 82.31 ± 0.084

CART 76.38 ± 0.072 88.44 ± 0.066 82.08 ± 0.081 78.47 ± 0.087 97.08 ± 0.022 84.49 ± 0.075

Statistical
GSVM 69.62 ± 0.066 83.74 ± 0.064 75.47 ± 0.077 74.47 ± 0.082 96.14 ± 0.035 79.89 ± 0.093

CART 75.02 ± 0.086 88.26 ± 0.067 81.67 ± 0.097 78.19 ± 0.087 97.01 ± 0.020 84.03 ± 0.078

Wavelet
GSVM 69.11 ± 0.064 82.10 ± 0.075 71.94 ± 0.079 72.34 ± 0.070 93.39 ± 0.047 77.78 ± 0.089

CART 77.34 ± 0.066 87.99 ± 0.066 82.57 ± 0.082 79.12 ± 0.084 96.78 ± 0.023 84.76 ± 0.070

Fractal dimension
GSVM 75.69 ± 0.065 83.94 ± 0.065 80.91 ± 0.078 76.83 ± 0.084 96.40 ± 0.030 82.75 ± 0.074

CART 78.18 ± 0.079 87.59 ± 0.067 83.98 ± 0.087 79.07 ± 0.084 96.50 ± 0.030 85.06 ± 0.066

Hjorth
parameters

GSVM 73.23 ± 0.068 82.20 ± 0.066 78.82 ± 0.069 71.57 ± 0.067 96.32 ± 0.023 80.43 ± 0.088

CART 70.52 ± 0.063 80.86 ± 0.065 75.33 ± 0.071 70.21 ± 0.070 94.25 ± 0.037 78.23 ± 0.089

Higher order
spectra

GSVM 73.78 ± 0.073 83.31 ± 0.076 79.39 ± 0.081 72.23 ± 0.086 96.83 ± 0.028 81.11 ± 0.088

CART 72.18 ± 0.076 83.68 ± 0.069 78.27 ± 0.087 72.98 ± 0.082 95.66 ± 0.037 80.56 ± 0.086

Table 4. Emotional Arousal: Mean (±SD) EEG Feature-classification accuracy (%). Bold represents
the highest average accuracy scores within and across each dataset.

Feature
Set

Classifier
Dataset Name

Average
DEAP DREAMER MAHNOB AMIGOS

Combined-ALL
GSVM 75.83 ± 0.072 90.35 ± 0.072 80.55 ± 0.081 79.49 ± 0.093 81.56 ± 0.053

CART 78.82 ± 0.076 92.02 ± 0.065 83.21 ± 0.082 81.00 ± 0.092 83.76 ± 0.050

Statistical
GSVM 72.51 ± 0.085 88.92 ± 0.072 77.46 ± 0.084 77.10 ± 0.103 79.00 ± 0.060

CART 77.38 ± 0.092 91.76 ± 0.068 83.72 ± 0.084 80.94 ± 0.087 83.45 ± 0.053

Wavelet
GSVM 71.60 ± 0.079 87.62 ± 0.089 75.65 ± 0.095 77.15 ± 0.096 78.01 ± 0.059

CART 78.83 ± 0.077 91.60 ± 0.067 84.14 ± 0.082 81.20 ± 0.087 83.94 ± 0.048

Fractal dimension
GSVM 77.48 ± 0.072 88.99 ± 0.074 82.80 ± 0.079 79.10 ± 0.088 82.09 ± 0.044

CART 79.90 ± 0.086 91.60 ± 0.067 85.58 ± 0.085 81.11 ± 0.087 84.55 ± 0.045

Hjorth parameters
GSVM 75.62 ± 0.069 87.02 ± 0.083 80.70 ± 0.075 75.28 ± 0.099 79.66 ± 0.047

CART 73.14 ± 0.071 86.07 ± 0.085 76.94 ± 0.080 74.21 ± 0.107 77.59 ± 0.050

Higher order spectra
GSVM 75.83 ± 0.079 88.35 ± 0.082 81.13 ± 0.083 76.77 ± 0.091 80.52 ± 0.049

CART 75.36 ± 0.081 88.69 ± 0.081 79.62 ± 0.086 76.79 ± 0.098 80.11 ± 0.051

N.B. The SEED dataset is not listed as it did not record arousal data.

Another important finding of the present study is that CART classifiers performed bet-
ter for EEG emotion recognition compared to GSVM. Using the FD feature set, we achieved
the highest mean classification accuracy (average across the five datasets) for valence and
arousal as 85.06% and 84.55%, with CART classifier (hereafter named as FD-CART). This
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was found to be the case across all datasets utilized in this study and is in line with previous
research supporting the utility of CART for emotion recognition [47,48]. For that reason,
we focus on reporting feature set outcomes utilizing the CART classifier in subsequent
sections. Figure 3 shows the box plot of the top three feature set (fractal dimension, wavelet
transform, and statistical features) accuracies using CART on each dataset. The plot visu-
ally displays the distribution of classification accuracies across each subject and illustrates
that the reliability of selected EEG feature set for applied emotion recognition. Table 5
summarizes the statistical results of two-tailed paired t-tests comparing CART classification
performance between different feature sets. The t-test outcomes (p-values) and Cliff’s Delta
effect size also demonstrate that FD features have significantly higher accuracy than other
feature sets, confirming the descriptive observations in Tables 3 and 4.

Figure 3. Top three feature sets. Boxplot of CART accuracy on each DEAP, DREAMER, MAHNOB,
AMIGOS and SEED emotion dataset. X-axis represents the dataset name. Y-axis indicates the
classification accuracy. Black dot in the figure represents average classification accuracy of each
participant across 4-folds.

Table 5 shows the statistical results of two-tailed paired t-test of CART classification
performances among different feature sets. From the p-value, it is clear that the results from
the FD are statistically different (p-value < 0.05) from other feature sets listed in the table,
including the combination of features. Table 5 also provides the mean difference effect size
for paired samples based on Cliff’s Delta. From the Cliff’s Delta, it is apparent that, across
the five datasets, the emotional state classification accuracy with FD feature set is more
accurate on average. However, it is not always the most accurate in each individual case.

The present research utilized a data-driven approach for identifying EEG features that
are optimal for emotion detection, thus while FD clearly demonstrates the best performance,
it is currently unclear why this feature set is the most effective. Further research is needed
to investigate this matter; however, considering our results and the prior literature, we
speculate that methodological (technical) and/or functional reasons could explain why FD
features are most effective for emotion recognition. In terms of methodology, FD features
are nonlinear complexity estimators and calculated over short time-periods, are robust to
noise, and do not require any prior transformation of the time series [46,49]. This differs
to other methods (e.g., wavelet, statistical) and is beneficial for emotion recognition. At a
functional level, fractality indicates whether the EEG signal is synchronous or repetitive
over different time scales (i.e., similar patterns occur over shorter and longer intervals),
representing the nonlinear complexity of underlying brain activity [50]. As explained
by Zappasodi et al. [50] complexity is considered to reflect efficient neuronal function-
ing, varying between randomness and constant periodicity; with the extremes related to
disfunction and difficulty shifting between brain states. From this viewpoint, we can spec-
ulate that different emotional states are associated with unique levels of signal complexity,
with high/low valence and arousal leading to important shifts in network complexity on a
spectrum. This is consistent with the idea that emotions can drive mental (and neuronal)
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states associated with more or less lability and/or cognitive flexibility (e.g., [51]). FD may
provide a relevant and effective means to model those functional differences, which are not
captured in other EEG measures of 2D emotional states.

Table 5. Statistical results (p-values effect size) of two-tailed paired t-test of CART classification
performances among different feature sets.

Condition
p-Value Cliff’s Delta Effect Size

Arousal Valence Arousal Valence

FD vs. Wavelet 3.31 × 10−3 3.53 × 10−2 0.045 0.022
FD vs. Statistical 6.85 × 10−8 1.31 × 10−9 0.063 0.061
FD vs. Hjorth Parameters 2.13 × 10−19 1.22 × 10−21 0.397 0.420
FD vs. Higher order spectra 3.01 × 10−19 1.53 × 10−21 0.261 0.277
Combined-ALL 3.93 × 10−4 1.25 × 10−3 0.058 0.045

Effect size based on Cliff’s Delta. FD—Fractal dimension.

The topography of FD features (i.e., KFD, PFD, and HFD) associated with high or
low valence are plotted in Figure 4. The grand mean (GM) head maps calculated across
datasets for KFD suggest that higher (i.e., more positive) valence was associated with
less complexity (fractality) at frontal electrode sites, particularly over the left hemisphere,
relative to periods of low valence. This pattern is somewhat consistent with the GM
topography of PFD, which suggests higher valence is related to lower complexity at frontal,
temporal, and occipital electrode sites. GM HFD indicates a slightly different pattern,
with higher valence linked to relatively higher complexity at the most frontal EEG channels,
but lower complexity over left frontocentral regions. In general, these results suggest that
states of higher valence are related to less EEG complexity over frontal regions. However,
this is not always consistent within datasets, and given the limited sites these topographic
findings should be considered tentatively.

The topography of FD features (i.e., KFD, PFD, and HFD) associated with high or low
arousal are plotted in Figure 5. The GM headmaps for KFD suggest that higher arousal is
related to lower complexity at frontal and temporal sites over the left hemisphere. GM PFD
is shows a similar spatial distribution for high and low arousal, with lower complexity at
left frontocentral sites and temporoparietal sites relative to other scalp regions, and this
pattern is stronger in periods of high arousal. GM HFD shows the opposite pattern
compared to PFD. These GM topographic distributions are somewhat consistent with those
shown for valence, with higher arousal broadly associated with lower complexity over the
left hemisphere. However, it is important to note that these topographic interpretations
are based only on visual inspection with limited channels. It is also apparent that these
GM spatial distributions of FD features are not completely consistent across all datasets.
For that reason, these topographic results should only be used as a tentative guide for
research interested in FD distribution relative to emotional states or the optimal location
for electrodes to facilitate EEG emotion recognition. For more definitive outcomes future
research involving more EEG channels is needed.

Table 6 provides a comparison to other studies in the literature that have utilized
more than one dataset to validate their methods. As the AMIGOS and DREAMER emotion
datasets were only lately released, there are only limited comparative studies and hence,
for comparison, baseline evaluation work also included in Table 5. Siddharth et al. [52]
utilized RGB topographic maps computed from power spectral density (PSD) features
using bicubic interpolation and assessed binary classification (low/high) for valence and
arousal emotion using DEAP, DREAMER, MANHOB, and AMIGOS . They achieved results
71.09–83.02% for valence and 72.58–80.42% for arousal emotion recognition. In another
study, Li et al. [53] suggested an approach that generates spatial maps from EEG signals and
combined graph regularized extreme learning machine (GRELM) with SVM for recognizing
emotions. They obtained an accuracy of 62.005–88.00% for valence emotion on DEAP and
SEED emotion datasets. In the recent study, Topic and Russo [19] demonstrated a hybrid
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deep learning approach using holographic and topographic feature maps for emotion
recognition using EEG signals. In this approach, they introduced EEG-topography in
which they utilized the spatial and spectral information and performed classification of
valence and arousal on DEAP, DREAMER, AMIGOS and SEED datasets. They reported
76.61–88.45% and 77.72–90.54% for valence and arousal emotion recognition, respectively.
The AMIGOS emotion dataset [17] authors achieved the classification accuracy of 57.60% for
valence state and 59.20% for arousal state using power spectral density (PSD) EEG features.
Similarly, the researchers of the DREAMER dataset [15] achieved emotion recognition
accuracy of 62.49% and 62.17% for valence and arousal, respectively. From all these studies,
we can see that the identified FD feature set performs better than comparable methods
previously reported for both affective states consistently in all the five datasets. This
demonstrates the effectiveness of fractal dimension features combined with CART classifier
for emotion recognition using EEG signals.

Figure 4. Topography of normalized EEG FD features for high/low valence. GM denotes the grand
mean of each FD feature across all the datasets. KFD—Katz’s fractal dimension, PFD—Petrosian
fractal dimension, HFD—Higuchi’s fractal dimension.
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Figure 5. Topography of normalized EEG FD features for high/low arousal. SEED dataset does not
have arousal class. GM denotes the grand mean of FD each feature across all the datasets.KFD-Katz’s
fractal dimension, PFD-Petrosian fractal dimension, HFD-Higuchi’s fractal dimension.

Table 6. Comparison with other studies in the literature.

Research
Study

Features Employed
Classification Method

Best Accuracy (%) Achieved

DEAP DREAMER MAHNOB AMIGOS SEED

Topic and Russo, [19]
HOLOfm
CNN-SVM

V:76.61
A:77.72

V:88.20
A:90.43 -

V:87.39
A:90.54

V:88.45
A: -

Topic and Russo, [19]
TOPOfm
CNN-SVM

V:76.30
A:76.54

V:81.96
A:84.92 -

V:80.63
A:85.75

V:70.37
A: -

Siddharth et al. [52]
RGB colored image
CNN-ELM

V:71.09
A:72.58

V:78.99
A:79.23

V:80.77
A:80.42

V:83.02
A:79.13 -

Li et al. [53]
Spatial map
GRELM-SVM

V:62.00
A: - - - -

V:88.00
A: -

Katsigiannis et al. [15]
PSD
SVM -

V: 62.49
A:62.17 - - -

Miranda et al. [17]
PSD, SPA
SVM - - -

V:57.60
A:59.20 -

This study FD-CART
V:78.18
A:79.90

V:87.59
A:91.60

V:83.98
A:85.58

V:79.07
A:81.11

V:96.50
A: -

“-” means that this experiment was not in this research. A—Arousal, CNN—Convolutional Neural Net-
work, ELM—Extreme Learning Machine; GELM—Graph regularized Extreme Learning Machine, HOLO-FM—
Holographic Feature Maps, PSD—Power spectral Density, SPA—Spectral Power Asymmetry, SVM—Support
Vector Machine, TOPO-FM—Topographic Feature Maps, V—Valence.

4. Conclusions

In this work, we present a comparative analysis on different feature extraction methods
using multichannel EEG recordings for the creation of a reliable emotional state recog-
nition system. A comprehensive set of features (statistical, FD, Hjorth parameters, HOS,
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and wavelet transform features) were obtained from the EEG signals. We conducted a quan-
titative comparison of feature extraction techniques with two different classifiers, GSVM,
and CART. The emotion EEG datasets namely, DEAP, DREAMER, MAHNOB, AMIGOS
and SEED were used to assess the performance of the study. The findings revealed that
FD feature set are the most sensitive feature metric in distinguishing emotions categorized
in terms of high/low valence and arousal. The FD-CART feature-classification method
tested in this study achieves an overall best mean accuracy of 86.79% and 84.55% for binary
classification of valence, and arousal, respectively, using all features in the FD set. Our
results suggest that the fractality of the EEG time-domain data has a substantial role and
is more reliable for emotional state recognition. This might result in the creation of an
effective online framework for extracting EEG features and the development of a real-time
human computer interactive system for emotional state recognition.

The study comes with two limitations. Firstly, it would be interesting to explore deep
learning classifiers as an alternative for CART and SVM. In recent years, convolutional lay-
ers of deep neural networks have been found successful in EEG-based classification of emo-
tion [54,55]. It was not feasible to explore this approach here due to lack of data. However,
integrating deep learning with the present research may be a fruitful direction for further
work in EEG emotion recognition. Secondly, though subject-dependent cross-validation
approach is carried out, building a truly subject-independent (e.g., leave-one-subject-out)
system would be more reliable and scalable. In the future, we will extend this approach to
subject independent cross-validation (e.g., leave-one-subject-out) with emotional state cate-
gorization in three-dimensional space, i.e., the valence-arousal-dominance emotional model.
In addition, we also intend to investigate the FD-CART feature-classification method on
the combined emotion EEG datasets for training, validation, and evaluation purposes.
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Abbreviations

The following abbreviations are used in this manuscript:

CART Classification and Regression Tree
DWT Discrete Wavelet Transform
DEAP Dataset for Emotion Analysis using Physiological signals
ECG Electrocardiogram
EEG Electroencephalogram
EDA Electrodermal Activity
EMG electromyogram
ERP Event Related Potential
ERO Event Related Oscillation
FD Fractal Dimension
GM Grand Mean
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GSVM Gaussian Radial Basis Fucntion Support Vector Machine
GSR Galvanic Skin Resistance
HFD Higuchi’s fractal dimension
HOC Higher Order Crossing
HOS Higher Order Spectra
KFD Katz’s Fractal Dimension
KNN K-Nearest Neighbor
PFD Petrosian fractal dimension
PNS Peripheral Nervous System
RF Random Forest
RR Respiration Rate
SD Standard Deviation
SVM Support Vector Machine
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Abstract: The reliable monitoring of the depth of anesthesia (DoA) is essential to control the
anesthesia procedure. Electroencephalography (EEG) has been widely used to estimate DoA since
EEG could reflect the effect of anesthetic drugs on the central nervous system (CNS). In this study,
we propose that a deep learning model consisting mainly of a deep residual shrinkage network
(DRSN) and a 1 × 1 convolution network could estimate DoA in terms of patient state index
(PSI) values. First, we preprocessed the four raw channels of EEG signals to remove electrical
noise and other physiological signals. The proposed model then takes the preprocessed EEG
signals as inputs to predict PSI values. Then we extracted 14 features from the preprocessed EEG
signals and implemented three conventional feature-based models as comparisons. A dataset
of 18 patients was used to evaluate the models’ performances. The results of the five-fold cross-
validation show that there is a relatively high similarity between the ground-truth PSI values and
the predicted PSI values of our proposed model, which outperforms the conventional models,
and further, that the Spearman’s rank correlation coefficient is 0.9344. In addition, an ablation
experiment was conducted to demonstrate the effectiveness of the soft-thresholding module for
EEG-signal processing, and a cross-subject validation was implemented to illustrate the robustness
of the proposed method. In summary, the procedure is not merely feasible for estimating DoA by
mimicking PSI values but also inspired us to develop a precise DoA-estimation system with more
convincing assessments of anesthetization levels.

Keywords: deep learning; depth of anesthesia; electroencephalogram; patient state index

1. Introduction

Anesthesia is essential to ensuring the successful implementation of surgeries and
the safety of patients [1]. The precise control of the anesthesia procedure depends on
the reliable monitoring of the depth of anesthesia (DoA), which has been a hot topic for
medical researchers in the field [2,3]. An electroencephalogram (EEG) uses scalp electrodes
to capture the brain’s electrical activity, which may reflect the effect of anesthetic drugs
on the central nervous system (CNS). Therefore, EEGs have been widely used in emotion
recognition, depression detection, DoA estimation, etc. [4–10].

In clinical practice, several EEG-based commercial monitors of DoA have been in-
troduced with the aid of anesthetists. Among these, the bispectral index (BIS) monitor
(Aspect Medical Systems, Newton, MA) is the most popular device, representing different
anesthetized states using BIS values that range from 0 to 100 [11]. The NEXT Generation
SedLine® Brain Function Monitoring (Masimo, Irvine, CA, USA) device has been recently
introduced, and its crucial parameter is the patient state index (PSI) [12]. Previous work
shows that the agreement between the PSI and BIS is relatively good, and the SedLine
monitor is advantageous because it has more channels than the BIS monitor [13].
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Over the past years, various EEG-based features have been proposed to assess DoA.
Entropy features may be used to measure the complexity and irregularity of signals [14].
Permutation entropy (PE) and sample entropy (SampEn) features are commonly used to
estimate DoA [15,16]. Wavelet transform-based features such as wavelet-weighted median
frequency and wavelet-coefficient energy entropy have also shown a good performance in
DoA estimations [17]. In addition, recent research has revealed a combination of multiple
features that could improve DoA estimation. Ortolani et al. [18] combined 13 features
to estimate DoA using an artificial neural network (ANN). Shalbaf et al. [19] used an
adaptive neuro-fuzzy system with fractal, entropy, and spectral features to assess DoA.
Gu et al. [20] extracted 4 features and compared the performances of an ANN and support
vector machine (SVM) in a DoA assessment. Their methods successfully distinguished
the awake state from other anesthetized states, but the performance results for the deeply
anesthetized state were not satisfactory. Moreover, these proposed models are highly
dependent on the features of manual design and selection. An EEG is a physiological signal
that may be affected by several kinds of noise. Hence, some noise-sensitive features may
have a negative effect on the model’s performance or even render it unable to compute.

Deep learning models have been demonstrated to outperform conventional machine-
learning models in various fields such as computer vision, natural-language processing,
and biomedical-signal processing in their ability to automatically extract high-level features
from data [21]. Recently, some researchers have applied deep-learning techniques to
estimate DoA. Lee et al. [22] implemented a deep-learning model consisting of long short-
term memory (LSTM) and a feed-forward neural network to predict BIS values, surpassing
the pharmacokinetic-pharmacodynamic model. Afshar et al. [23] combined deep residual
networks (ResNets) and bidirectional LSTM (Bi-LSTM), using EEG signals as the input.
Their proposed models surpassed the conventional feature-based models, but the results of
the different anesthetized states needed to be more balanced. They did not involve studies
that used more channels to predict PSI values. These works should consider the detailed
preprocessing of the noise of the raw EEG signal; otherwise, it may lead to poor regression
and classification results. A network that is too singular and simple in terms of its structure
cannot play the advantages of the end-to-end deep-learning model.

In this paper, we utilized an effective and mature preprocess to remove the noise of
the raw EEG signal and propose a deep-learning model to estimate DoA using PSI values
as the reference outputs. Our proposed model mainly consists of a revised deep residual
shrinkage network (DRSN) and a 1 × 1 convolution network. The DRSN is suitable
for dealing with signals disturbed by noise, while the 1 × 1 convolution can increase
the representation power and reduce the dimension of neural networks. Our proposed
model directly takes EEG signals as inputs and predicts a value ranging from 0 to 100
as a measure of DoA. We extracted 14 features from EEG signals and implement three
conventional feature-based models as comparisons. We also compared the performances of
our proposed model and the other models in terms of both regression and classification
metrics to demonstrate the former’s superiority. Our studies thus offer a new strategy that
is both promising and feasible for processing EEG signals for DoA estimation, and they
spark inspiration for developing a better DoA-estimation system by integrating PSI or BIS
values with expert assessments.

Our workflow is shown in Figure 1, and the rest of this paper is organized as follows:
Section 2 describes the dataset and methodologies. Section 3 presents the experimental
settings and results. The discussion is presented in Section 4, and conclusions are given
in Section 5.
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Figure 1. Our workflow.

2. Materials and Methods

2.1. Dataset

The dataset used in this research, which contains 18 patients aged 66–92 years old,
was registered, collected, and provided by Peking University People’s Hospital. During
hip fracture repair surgeries, the patients received spinal anesthesia, and midazolam was
given to achieve a soothing state. The raw EEG signals were recorded using the NEXT
Generation SedLine® Brain Function Monitoring (Masimo, Irvine, CA, USA) device, which
was recently introduced into clinical practice and displays PSI as the index of sedation
depth. The SedLine EEG sensor consists of 6 electrodes: 1 reference channel (CT), 1 ground
channel (CB), and 4 active EEG channels (L1, L2, R1, and R2) placed in the frontal pole.
During the midazolam anesthesia, the raw EEG signals are sampled at 178.2 Hz. The
dataset we used records 4 channels’ raw EEG signals, PSI values, spectral edge frequency
(SEF), burst suppression ratio, electromyographic (EMG) activity, and artifact percentage.

2.2. EEG Signals Preprocessing

Raw EEG signals recorded in operation rooms are usually contaminated by electrical
noise and other physiological (not brain-related) signals (e.g., eye movements, heartbeats,
and muscle activities). Therefore, it is necessary to preprocess the raw EEG signals before
the subsequent analysis.

First, we split the raw EEG signals into 4 s long segments with 50% overlap for
further processing.

Second, we adopted a bandpass (1–51 Hz) finite impulse response (FIR) filter to
remove the electrical noise and baseline drift. Most FIR filters are linear-phase filters
and don’t cause a phase distortion or delay distortion of the EEG signals. However, the
artifacts, especially electrooculogram artifacts (EOAs) whose magnitude is much higher
than that of EEG, often have a spectral overlap with the EEG signals. Hence, it becomes
a dilemma where traditional bandpass filters cannot remove EOAs while preserving the
desired EEG information.

Third, to deal with the dilemma above, we propose an EOA-removing algorithm
WT-CEEMDAN-ICA based on wavelet transform (WT), complete ensemble empirical-
mode decomposition with adaptive noise (CEEMDAN), and independent component
analysis (ICA) technologies [24–26]. As depicted in Figure 2, the WT-CEEMDAN-ICA
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consists of 6 steps: First, the WT technique is used to decompose the raw EEG signals into
several wavelet coefficients. The EOAs and EEG components in the wavelet coefficients can
be considered a subset of the original EOAs and EEG components. Second, the CEEMDAN
technique is adopted to decompose each wavelet coefficient into several intrinsic mode
functions (IMFs). Third, the IMFs of each wavelet coefficient are decomposed into multiple
independent components (ICs) by using ICA. Fourth, by setting the threshold of the sample
entropy of ICs, the ICs of EOAs and EEG components are separated because they are
generated by different sources and are independent of each other. Then, the IMFs of the
EEG components are recovered by performing the inverse transformation of ICA on the ICs
of EEG components. Fifth, the wavelet coefficients are recovered by performing the inverse
transformation of CEEMDAN. Finally, the EEG signals without EOAs are reconstructed by
performing the inverse transformation of WT.

 
Figure 2. The algorithm flowchart of the WT-CEEMDAN-ICA method used to remove EOAs from
EEG signals.

Finally, we combined the 4 channels of the clean EEG signals of 4 s with the corre-
sponding PSI value as a sample. Therefore, we obtained 22,282 samples in total to evaluate
the performance of our models in estimating DoA.

2.3. Evaluation Metrics

In this paper, we built several models to estimate DoA in terms of the predicted
PSI values and evaluated their performance in terms of both regression and classification
metrics. The mean squared error (MSE) was adopted to measure the difference between
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the predicted and the ground truth PSI values. In addition, we categorized patient states
into 4 different anesthetized states according to the corresponding PSI values, including
the awake (AW, PSI: 81–100), light anesthesia (LA, PSI: 51–80), normal anesthesia (NA,
PSI: 26–50), and deep anesthesia (DA, PSI: 0–25) states. As shown in Table 1, we used the
classification accuracy (ACC), sensitivity (SE), and F1-score (F1) to evaluate the models’
performances on different anesthetized states.

Table 1. Several regression and classification evaluation metrics.

Metric Formula Description

MSE
(Regression)

1
N × N

∑
1

(
P̂SI − PSI

)2 Mean Squared Error

ACC
(Classification)

TP+TN
TP+FP+FN+TN Accuracy

SE
(Classification)

TP
TP+FN Sensitivity

PR
(Not used directly in this paper)

TP
TP+FP Precision

F1
(Classification) 2 × SE×PR

SE+PR F1-score

In Table 1, N is the number of samples, P̂SI is the predicted PSI value, PSI is the
ground truth PSI value, TP is true positive and it equals the number of samples whose
actual labels and predicted labels are both positive, TN is true negative and it equals the
number of samples whose actual labels and predicted labels are both negative, FP is false
positive and it equals the number of samples whose actual labels are negative and predicted
labels are positive, and FN is false negative and it equals the number of samples whose
actual labels are positive and predicted labels are negative.

2.4. Deep Learning Model
2.4.1. Deep Residual Shrinkage Network

ResNets are proposed to deal with the degradation problem in deep networks [27].
ResNets introduce the shortcut connections mechanism so that the gradients are not only
back-propagated layer by layer but also flow back to the beginning layers directly. As
shown in Figure 3, the basic component of ResNets is a residual building block (RBB) which
consists of two convolutional layers, two batch normalization (BN) layers, two rectifier
linear units (ReLUs) layers, and one shortcut connection. Figure 3a is the identity block
where the input feature map is the same size as the output feature map, while Figure 3b is
the convolutional block where the size of the input feature map is different from that of the
output feature map.

DRSN is a deep learning method that integrates soft thresholding as trainable shrink-
age functions inserted into the ResNets. The DRSN forces the unimportant features to
be zeros so that the extracted high-level features become more discriminative. Previous
experimental results have demonstrated that the DRSN is not only capable of improving
the discriminative feature learning ability but is also applicable when dealing with various
signals that are disturbed by noise [28]. As depicted in Figure 4, the basic component of
DRSN with channel-wise thresholds (DRSN-CW) is a residual shrinkage-building unit
with channel-wise thresholds (RSBU-CW). The RSBU-CW is different from the RBB in that
the RSBU-CW is distinguished by a special module for estimating thresholds used in soft
thresholding. The special module mainly consists of a global-average pooling (GAP) layer,
a BN layer, a ReLU layer, a sigmoid layer, and a two-layer fully connected network. The
module takes the feature map x as its input to generate a 1D threshold vector τ. The values
of τ are positive and kept in a reasonable range so that the RSBU-CW can prevent the
output features from being all zero and eliminate noise-related information. The process of
the module is expressed as follows:
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αc =
1

1 + e−zc
(1)

τc = αc ·xavg (2)

yh, w,c =

⎧⎨⎩
xh,w,c − τc, xh,w,c > τc
0,−τc ≤ xh, w,c ≤ τc

xh,w,c + τc, xh,w,c < −τc

(3)

where h, w, and c are the indexes of height, width, and channel of the input feature map x,
and the output feature map y, respectively, zc is the feature at the cth neuron of the two-
layer fully connected network, αc is the cth scaling parameter after the sigmoid layer, and
τc is the threshold of the cth channel.

Figure 3. The structure of residual building block (RBB): (a) the identity block where the input feature
map is the same size as the output feature map. H, W, and C represent the height, width, and channels
of the input and output feature map, respectively. (b) the convolutional block where the size of the
input feature map is different from that of the output feature map. There is a convolution operation
and a Batch-normalization operation in the convolutional shortcut for changing the shape of the input.
H1, W1, and C1 represent the height, width, and channels of the input feature map, respectively.
H2, W2, and C2 represent the height, width, and channels of the output feature map, respectively. An
RBB consists of two convolutional layers, two batch normalization (BN) layers, two rectifier linear
units (ReLUs) layers, and one shortcut connection.

2.4.2. 1 × 1 Convolution

1 × 1 convolution was proposed to increase the representation power and reduce the
dimension of neural networks [29,30]. As shown in Figure 5, the size of the input feature
map of the 1 × 1 convolutional layer is H × W × C (H, W, and C represent the height,
width, and channels, respectively, and are henceforth represented as such in the rest of
this paper), the size of the 1 × 1 convolutional kernel is 1 × 1 × C, and the size of the
corresponding output feature map is H × W × 1. The 1 × 1 convolution does not change
the height or the width of feature maps but reduces the number of channels. Therefore, a
1 × 1 convolution is effective for dimensionality reduction, adding additional non-linearity
to networks, and creating smaller convolutional neural networks that retain a higher degree
of accuracy.
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Figure 4. The structure of residual shrinkage building unit with channel-wise thresholds (RSBU-CW).
H1, W1, and C1 represent the height, width, and channels of the input feature map, respectively.
H2, W2, and C2 represent the height, width, and channels of the output feature map, respectively.
There is a soft thresholding module in RSBU-CW. xavg, z, and α are the indicators of the feature
maps used to determine the threshold τ. x and y are the input and output feature maps of the soft
thresholding module, respectively.

Figure 5. The illustration of 1 × 1 convolution. H, W, and C represent the height, width, and channels
of the input feature map, respectively. A 1 × 1 convolution does not change the height or width but
the number of channels of inputs.
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2.4.3. Proposed Regression Model

We proposed a deep learning regression model to estimate the depth of anesthesia
based on DRSN-CW and 1 × 1 convolution. The architecture of our proposed model is
depicted in Figure 6. There are two blocks in the model: the DRSN-CW block and the
1 × 1 convolution block. We implemented the RSBU-CW with 1D convolutions because
the input EEG signals of each channel are 1D time series. Besides this, we replaced the
activation function ReLU in the RSBU-CW with the exponential linear unit (ELU) for better
performance. The DRSN-CW block was used to automatically extract high-level feature
representations from the EEG signals. In general, fully connected networks are adopted
to predict the desired values using the final representations. However, the parameters
of a fully connected network are usually more than half of those of the whole model,
resulting in the risk of overfitting and expensive computation. Therefore, we used the
1 × 1 convolution instead of the fully connected network to predict the PSI values. The
size of the final representation r was 1 × W × 16, and the 1D convolution layer reduced
the dimension of r into 1 × W × 1. Then, an average pooling layer was used to generate a
single value v. Finally, the predicted PSI value p was generated with a Sigmoid function
and scaled to the range of (0, 100) as follows:

p =
100

1 + e−v , (4)

and we used MSE as the loss function of our proposed regression model.

Figure 6. The structure of our proposed model consists of the DRSN-CW block and 1 × 1 convolution
block. The inputs of our proposed model are 4 channel-EEG signals, and the outputs are the
corresponding predicted PSI values.
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2.5. Conventional Models
2.5.1. Features Extraction

The conventional models usually use extracted features instead of the clean EEG
signals as inputs. Therefore, we extracted several features relating to PSI from the EEG
samples according to what Drover et al. [12] propose.

• Band Power

The recorded EEG signals consist of 4 different channels (FP1, FP2, F7, and F8, ac-
cording to the international 10–20 system [31]). We computed the power spectral density
for each frequency band with the MNE-Python package [32]. The EEG signals can be
divided into five frequency bands (δ [1–4 Hz], θ [4–8 Hz], α [8–14 Hz], β [14–31 Hz], and
γ [31–51 Hz]) according to their frequency ranges. Then, we computed the band powers of
each frequency band using the multitaper spectral-analysis method [33]. Furthermore, the
relative band power of a specific-frequency band could be calculated by dividing it by the
total band power.

• Spectral Edge Frequency

The spectral edge frequency (SEF) is a popular measure used in EEG monitoring [34].
SEF95 is the frequency below which 95% of the total power of a given signal is located. We
computed the SEF95 in the left and right hemispheres, respectively.

• Sample Entropy

Approximate entropy is a measure describing the complexity and regularity of time
series, while sample entropy is a similar but more accurate method to approximate en-
tropy [35,36]. Sample entropy has been used to estimate DoA and has achieved good
results [16]. Based on the existing research’s parameter settings, we calculated each chan-
nel’s sample entropy values as the last 4 features.

In total, we extracted 14 features from the EEG signals, including the total power in
the frontopolar region, the total power in the left hemisphere, the total power in the right
hemisphere, the band power changes in δ, the band power changes in θ, the band power
changes in α, the band power changes in β, the band power changes in γ, the SEF95 in
the left hemisphere, the SEF95 in the right hemisphere, and the sample entropy values of
4 channels, respectively.

2.5.2. Conventional Regression Models

This paper used three conventional regression models to estimate DoA as comparisons,
including the support vector regression (SVR), random forest (RF), and ANN.

• Support Vector Machine

SVM is a classic supervised machine learning model that analyzes data for both
classification and regression tasks [37], and the model for regression tasks is support vector
regression (SVR) [38]. Although there are slight differences between SVR and SVM, they
share the same core idea of finding a hyperplane that best divides the training samples. In
this paper, we used SVR with radial basis function kernel.

• Random Forest

RF is a classic supervised learning algorithm that uses an ensemble learning method
for classification and regression tasks. RF operates by constructing multiple decision trees
and outputting the mean prediction of the individual trees. In this paper, we used 300 trees
to train the model.

• Artificial Neural Network

ANN is a computing system inspired by the biological neural networks that constitute
animal brains [39]. ANN is a nonlinear statistical model that learns complex relationships
between inputs and outputs to find new patterns. In this paper, we implemented an ANN
of the structure 14–64–16–1 to predict the PSI values.
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3. Results

3.1. Experimental Settings

In this section, we describe the experimental settings in detail. To evaluate the perfor-
mances of different models, we conducted a five-fold cross-validation: First, we shuffled
the whole dataset randomly and split the dataset into five groups. Second, for each group,
we took the dataset as the test set, trained models on the other 4 groups, and evaluated
models on the test set. Finally, we summarized the results of the five-fold cross-validation
with the mean and variance of all metrics. Besides this, we also implemented a cross-subject
validation as a supplement. Figure 7 illustrates the distribution of the dataset used in this
study. The numbers of samples of different anesthetized states are unbalanced: 49.14% of
samples belong to AW, while only 3.31% of samples belong to DA.

Figure 7. The data distribution of the dataset used in this study.

Each EEG sample contains 4 channels of 4 s EEG signals whose dimension is 4 × 712.
The amplitudes and variances of EEG signals among different individuals and situations
could vary greatly. Therefore, the data standardization was adopted to make our proposed
model converge faster and generalize better: First, we transformed the EEG signals of the
train and test sets into a 1D vector that has 2848 columns. Second, we computed each
column’s mean and standard deviation on the train set. Third, we standardized each
column by subtracting its mean and dividing it by its standard deviation on both the train
and test sets. Finally, we reshaped the 1D vectors into EEG signals whose dimension is
4 × 712. A similar data standardization was applied to the samples containing 14 extracted
features for the conventional feature-based models.

We implemented our proposed model and the ANN model with PyTorch [40]. The
Adam optimization was applied to minimize the MSE loss function. We set the batch size
as 64, the initial learning rate as 0.005, and the maximum of epochs as 256. The learning rate
decreased by 10% every 20 epochs, and we used L2 normalization to prevent overfitting.
We implemented the SVR and RF models with Scikit-learn [41].

3.2. Experimental Results

We compared our proposed model with three conventional models. As shown in
Table 2, our proposed model has good regression performance and classification ability.
In the MSE metric, the mean and STD of our proposed model are significantly less than
the conventional models, indicating our proposed model’s impressive regression and
generalization performance. Our proposed model yields the highest ACC, SE, and F1 in
the classification metrics, especially the ACC and SE values (ACC: 0.9503, SE: 0.8411) in
comparison with conventional models (ACC ≤ 0.8640, SE ≤ 0.6685). Moreover, as depicted
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in Figure 8, our proposed model exhibits the most balanced performance for different
anesthetized states.

Table 2. The regression and classification results (mean ± STD) of our proposed model and three
conventional models. The mean squared error (MSE) result is the average of the five-fold cross-
validation where we split all the samples into five groups, four groups are used as the train set,
and one group is used as the test set for each cross-validation. The accuracy (ACC), sensitivity (SE),
and F1-score (F1) results are the macro-averaging (we compute the metrics independently for each
anesthetized state and then take the average) results of the 4 different anesthetized states.

Metrics SVR RF ANN Our Proposed Model

MSE 166.02 ± 7.77 90.95 ± 4.88 109.20 ± 5.80 40.35 ± 3.22
ACC 0.8596 ± 0.0574 0.8640 ± 0.0720 0.8606 ± 0.0380 0.9503 ± 0.0224

SE 0.4825 ± 0.3391 0.6685 ± 0.1266 0.5650 ± 0.2801 0.8411 ± 0.0790
F1 0.475 ± 0.2941 0.6770 ± 0.0840 0.5901 ± 0.2337 0.8395 ± 0.0812

Figure 8. The classification performances (ACC, SE, and F1) of all the models on different anesthetized
states (AW, LA, NA, and DA) and the regression performance (MSE) of all the models.

We illustrate one of the five-fold cross-validation results in Figure 9. There is a
relatively high similarity between the ground truth PSI values and the predicted PSI values
of our proposed model, and the Spearman’s rank correlation coefficient is 0.9344.

To demonstrate the effectiveness of the soft thresholding module in the RSBU-CW,
we conducted an ablation experiment. We evaluated our proposed model’s regression
and classification performances with and without the soft thresholding module in the
RSBU-CW. As shown in Figure 10, when the soft thresholding module is ablated, the MSE
increases by 38.33, and the classification performances significantly decline as well.

In addition, to further illustrate the effectiveness and robustness of the model we
proposed, we conducted a 5-fold cross-validation, which is cross-subject. First, we divided
all the subjects into five groups. Specifically, there are four subjects (4122 samples in total)
in Group A, four (4271 samples in total) in Group B, four (4590 samples in total) in Group C,
three (4793 samples in total) in Group D, and three (5056 samples in total) in Group E.

Similarly, for each group separately, we took it as the test set, trained models on the
other four groups, and evaluated models on the test set. Finally, we summarized the results
of the five-fold cross-validation with the mean and variance of all metrics. The results
are shown in Table 3 and Figure 11. As can be seen, our proposed model still achieves
a better performance in both regression and classification. More precisely, even for the
best-performing random forest among the three conventional models, its mean square error
is much higher than ours.
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Figure 9. Part of the predicted PSI values of our proposed model. The red line represents the ideal
prediction model where the predicted PSI values equal the ground truth PSI values exactly.

Figure 10. The regression and classification performances of the two models in the ablation experi-
ment on the soft thresholding module in the RSBU-CW.

Table 3. The regression and classification results (mean ± STD) of our proposed model and three
conventional models in cross-subject validation.

Metrics SVR RF ANN Our Proposed Model

MSE 173.22 ± 8.56 97.56 ± 6.88 133.49 ± 5.40 49.22 ± 4.62
ACC 0.7908 ± 0.1187 0.8420 ± 0.0765 0.8216 ± 0947 0.9203 ± 0.0470

SE 0.4675 ± 0.3391 0.6575 ± 0.1266 0.5700 ± 0.1414 0.8054 ± 0.0243
F1 0.4599 ± 0.2132 0.6670 ± 0.0821 0.5852 ± 0.1274 0.8070 ± 0.0306
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Figure 11. The classification performances (ACC, SE, and F1) of all the models on different anes-
thetized states (AW, LA, NA, and DA) and the regression performance (MSE) of all the models in
cross-subject validation.

Similarly, we computed Figure 12 to show the correlation between predicted PSI
values and ground truth, and Spearman’s rank correlation coefficient is 0.9172, which is
still significant.

Figure 12. Part of the predicted PSI values of our proposed model in cross-subject validation.

4. Discussion

In previous studies, most researchers used the EEG-based features with conventional
models (e.g., ANN, RF, SVR) to estimate DoA in terms of BIS values. However, the
regression and classification performances could have been more satisfactory. Besides, the
performances of different anesthetized states needed to be more balanced. Thanks to the
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development of deep learning methods, some researchers adopted deep learning models to
process EEG signals directly to assess DoA. The results of deep learning models were better
than that of conventional models. These conventional machine-learning methods are based
on various features extracted manually [42]. In comparison, the highlight of our proposed
model, which mainly consists of the DRSN-CW and the 1 × 1 convolution networks, is that
the model can automatically extract features in the training process. Therefore, the trouble
and difficulty of manually extracting features are resolved.

The actual experimental results also demonstrate the superiority of our proposed
model over other traditional methods. Furthermore, our proposed model achieves the
most balanced results for different anesthetized states among all the models, especially
for DA, even though there is a dilemma of limited subjects. In addition, we conducted an
ablation experiment to demonstrate the effectiveness of the soft thresholding module for
EEG-signal processing. Therefore, our proposed model is a promising and feasible method
for estimating DoA.

There are several noteworthy points of this research:

1. The recorded raw EEG signals are usually contaminated by electrical noise and other
physiological signals. We used bandpass finite filters to remove electrical noise, and
the WT-CEEMDAN-ICA algorithm to extract clean EEG signals.

2. We adopted deep learning models to extract discriminative features automatically
instead of extracting features manually from EEG signals.

3. To improve our proposed model’s generalization ability and convergence speed, we
standardized the EEG signals.

4. DRSN-CW can deal with signals disturbed by noise, which is suitable for EEG-signal processing.

The 1 × 1 convolution network has much fewer parameters than a fully connected
network, decreasing the overfitting risk while retaining better performance. Our proposed
deep learning model is capable of mimicking PSI values and distinguishing different anes-
thetized states by directly processing EEG signals, indicating that deep learning methods
have tremendous advantage over conventional methods in processing EEG signals to
estimate DoA. This research provides inspiration to develop an accurate and reliable DoA
assessment system beyond the proprietary PSI or BIS algorithm. Although we used PSI
values as DoA labels in this study, our proposed model is not limited to mimicking PSI
values. By combining PSI or BIS values with expert assessments of anesthetized levels
and building a large-scale DoA dataset, deep learning methods could be evaluated and
improved from a more comprehensive perspective. Therefore, directly processing EEG
signals with deep learning models is a promising and feasible method to estimate DoA.

5. Conclusions

Reliable DoA monitoring is essential for surgeries. For this purpose, we utilized an
effective preprocess for noise filtering and propose a deep learning model, mainly consisting
of the DRSN-CW and 1 × 1 convolution networks, to estimate DoA in terms of PSI values.
We also compared our proposed model with three conventional feature-based models on the
dataset of 18 patients. The experimental results show that our proposed model remarkably
surpasses conventional models in regression and classification performances. The results
of the ablation study and cross-subject validation further illustrate the robustness and
structural advantages of the model. Deep learning models are promising and feasible to
assess DoA during surgery.

At the same time, we also realize that the information contained in a single kind of
physiological signal is limited, which determines the upper limit of the performance of
our proposed model. Therefore, to develop a more accurate and reliable DoA assessment
system in the future, we will include more signals (such as ECG, EMG, blood pressure, etc.)
besides EEG. We will build a larger DoA dataset that combines the PSI values and expert
assessments of anesthetized levels as DoA labels, thereby improving our proposed deep
learning model.
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Abstract: Emotion artificial intelligence (AI) is being increasingly adopted in several industries such
as healthcare and education. Facial expressions and tone of speech have been previously considered
for emotion recognition, yet they have the drawback of being easily manipulated by subjects to
mask their true emotions. Electroencephalography (EEG) has emerged as a reliable and cost-effective
method to detect true human emotions. Recently, huge research effort has been put to develop
efficient wearable EEG devices to be used by consumers in out of the lab scenarios. In this work,
a subject-dependent emotional valence recognition method is implemented that is intended for
utilization in emotion AI applications. Time and frequency features were computed from a single
time series derived from the Fp1 and Fp2 channels. Several analyses were performed on the strongest
valence emotions to determine the most relevant features, frequency bands, and EEG timeslots
using the benchmark DEAP dataset. Binary classification experiments resulted in an accuracy of
97.42% using the alpha band, by that outperforming several approaches from literature by ~3–22%.
Multiclass classification gave an accuracy of 95.0%. Feature computation and classification required
less than 0.1 s. The proposed method thus has the advantage of reduced computational complexity
as, unlike most methods in the literature, only two EEG channels were considered. In addition,
minimal features concluded from the thorough analyses conducted in this study were used to achieve
state-of-the-art performance. The implemented EEG emotion recognition method thus has the merits
of being reliable and easily reproducible, making it well-suited for wearable EEG devices.

Keywords: classification; EEG; emotion recognition; prefrontal channels; time and frequency features

1. Introduction

Emotion artificial intelligence (AI), also known as affective computing, is the study of
systems that can recognize, process, and respond to the different human emotions, thereby
making people’s lives more convenient [1]. Emotion AI is an interdisciplinary field that
combines artificial intelligence, cognitive science, psychology, and neuroscience. In 2019,
the emotion AI industry was worth about 21.6 billion dollars, and its value was predicted
to reach 56 billion dollars by the year 2024 [2].

Emotions are mental states created in response to events occurring to us or in the world
around us. A large body of research since the 1970s showed that basic emotions, such as
happiness, sadness, and anger are similarly expressed among different cultures [3]. James
Russell, a renowned American psychologist, suggested a dimensional approach in which
all human emotions could be expressed in terms of valence and arousal [4]. Valence refers to
the extent to which an emotion is pleasant (positive/happy) or unpleasant (negative/sad),
whereas arousal (intensity) refers to the strength or mildness of a given emotion (Figure 1).
Russell’s valence-arousal model is very popular owing to its simplicity and efficacy, both
which lead to it being widely adopted in emotion AI systems [5].
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Figure 1. Valence-arousal model [6].

Emotions can be detected from a person’s facial expressions and tone of speech. Al-
though these methods were previously considered for automatic emotion recognition [7,8],
they both have the limitation of being easily manipulated by a person to hide his/her
true emotions [5,9]. Electroencephalography (EEG) is a non-invasive technique that can
measure spontaneous human brain activity while providing excellent temporal resolution
yet limited spatial resolution [10]. EEG can thus provide a reliable method to detect and
monitor true, unmanipulated human emotions. EEG-based emotion recognition has been
successfully implemented in various applications including (1) education: to measure
student engagement, (2) health: to diagnosis psychological diseases, and (3) emotion-based
music players: to provide a more engaging experience [11].

The cerebral cortex is the outermost layer of the brain that is associated with the highest
mental capabilities. The cerebral cortex is traditionally divided into four main lobes which
are the frontal (F), parietal (P), occipital (O), and temporal (T) (Figure 2). Each brain lobe is
typically associated with certain functions, yet many activities require the coordination of
multiple lobes [12]. The frontal lobe is responsible for cognitive functions such as emotions,
memory, decision making, and problem solving, as well as voluntary movement control.
The parietal lobe process information received from the outside world such as that related
to touch, taste, and temperature. The occipital lobe is primarily responsible for vision, while
the temporal lobe is responsible for understanding language, perception, and memory. EEG
depicts the brain’s neuron activity in the different lobes through measuring the electrical
voltage at the scalp. For an adult, this voltage is typically in the range of 10–100 μV.
The 10/20 system is an internationally recognized EEG electrode placement method that
divides the scalp into 10% and 20% intervals. The main EEG channels in the international
10/20 system are illustrated in Figure 3. Each channel is annotated with a letter and a
number to identify the specific brain region and hemisphere location, respectively.
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Figure 2. The cerebral cortex divided into the frontal, temporal, parietal, and occipital lobes [13].

 
Figure 3. The international 10/20 system for electrode placement [14].

EEG signals are typically decomposed into five basic frequency bands which are the
delta (Δ), theta (θ), alpha (α), beta (β), and gamma (δ) bands (Figure 4). Each frequency
band is associated with a different type of brain activity [15–17]. Delta and theta are the
two slowest brain waves often occurring whilst sleeping and during deep meditation.
Specifically, delta waves are more dominant in deep restorative sleep (unconsciousness),
whereas theta waves are related to light sleep, daydreaming, praying, and deep relaxation
(subconsciousness). Both waves were also detected in cognitive processing, learning, and
memory [17,18]. Alpha, beta, and gamma brain waves are on the other hand associated
with consciousness. Alpha are the dominant brain waves of normal adults occurring when
one is calm and relaxed while still being alert. Beta waves are produced throughout daily
activities performed in attentive wakefulness. Gamma are the fastest waves linked to
complex brain activities requiring high level of thought and focus, for example problem
solving. Table 1 summarizes the five different brain wave bands and their associated
psychological states. Brain wave frequency bands are typically used to extract meaningful
emotion-related features [17].

Historically, EEG equipment has been highly complicated and bulky, restricted to the
monitoring of stationary subjects by highly trained technical experts within controlled
lab settings [19]. Recently, enormous effort has been exerted to develop wearable EEG
handsets that are reliable, affordable, and portable, by that overcoming the limitations of
conventional EEG headsets (Figure 5). Wearable EEG headsets allow for the long-term
recording of brain signals while people are unmonitored, out of the lab, and navigating
freely. Furthermore, EEG signals collected by the wearable headsets can be easily sent to
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a computer or mobile device for storage, monitoring, and/or data processing. Wearable
EEG devices thus allow for the development of many clinical and non-clinical applications
that were never previously possible. For example, wearable EEG has been shown to
be effective for stroke [20], seizure [21], and sleep [22] remote monitoring by medical
experts. EEG signals from wearable headsets can also be used for the development of
brain-controlled-interface (BCI) applications such as car driver assistance [23], as well as
wheelchair control for people with disability [24]. In addition, individuals can use EEG to
improve their productivity and wellness via monitoring their moods and emotions [25].
However, extracting meaningful information using few EEG channels in order to reduce
the computational complexity of wearable headsets is still an ongoing challenge [26,27].

Table 1. Characteristics of the five basic brain waves.

Band Symbol Frequency Range Psychological State

Delta Δ <4 Hz unconsciousness Deep sleep

Theta θ 4–8 Hz subconsciousness Light sleep and meditation

Alpha α 8–12 Hz

consciousness

Normal relaxed yet alert adult

Beta β 12–30 Hz Daily activities

Gamma δ >30 Hz Complex brain activities

In the present study, a subject-dependent emotional valence recognition algorithm is
introduced that is intended for wearable EEG devices. The contributions of this work are
as follows:

a. Only the difference signal between the frontal Fp1 and Fp2 channels was considered
for feature extraction.

b. Simple statistical features were explored (Hjorth parameters, zero-crossings,
and power spectral density), all which share the merit of having low computa-
tional complexity.

c. Several analyses were made to determine the frequency band, time slot, and features
most suitable for reliable EEG-based valence detection.

d. The presented valence recognition algorithm outperformed several state-of-the-art
methods with the added advantages of requiring only two EEG channels, a single
frequency band, as well as only two simple statistical features, thus making it suitable
for integration within wearable EEG devices.

Figure 4. Samples from delta, theta, alpha, beta, and gamma brain waves [28].
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(a) (b) 

Figure 5. (a) Conventional lab EEG headset [29] versus (b) wearable headset from NeuroSky [30].

2. Literature Review

Emotion AI systems generally rely on handcrafted and/or automatic extraction of
meaningful features for the classification of the different human emotional states (Figure 6).
In this section, the different types of EEG-based features commonly used for emotion
recognition are introduced followed by a summary of the most widely used classifiers for
emotion recognition. Next, state-of-the-art EEG-based emotion detection methods from
literature are presented, indicating the considered EEG channels, frequency bands, features,
and the classifier, as well as the performance results.

Figure 6. Emotion AI system diagram.

2.1. EEG Features

EEG-based emotion recognition features can be categorized based on the domain from
which they are computed into four different types which are as follows [31]:

(1) Time-domain (spatial) features are handcrafted features that are extracted from the
EEG time-series signal. They can be computed directly from the raw EEG signal
or from the different frequency bands separated with the aid of bandpass filters.
Time-domain features comprise simple statistical features [32–34] such as the mean,
standard deviation, skewness, and kurtosis. In addition, they include more com-
plex features such as the Hjorth parameters [5,32,35–41], High Order Crossings
(HOC) [5,33,38,40,42], Fractal Dimensions [43–45], Recurrence Quantification Analysis
(RQA) [46,47], in addition to entropy-based features [5,34,35,45,48].

(2) Frequency-domain features are also handcrafted features, yet they are computed
from the EEG signal’s frequency representation. The Fast Fourier transform (FFT)
and Short-time Fourier Transform (STFT) are typically used to acquire the frequency-
domain signal from the EEG waves. Frequency-based features allow for the deeper
understanding of the signal by considering its frequency content. Frequency-domain
features include the widely used power spectral density (PSD) [33,35,39,49–51], as
well as rational asymmetry features (RASM) [32,34,39,52,53]. Statistical features such
as mean, median, variance, skewness, and kurtosis are also commonly computed
in the EEG’s the frequency domain, as well as the relative powers of the various
frequency bands [54].

(3) Time-frequency domain features are handcrafted features extracted from sophisti-
cated time-frequency signal representations. Wavelet transform (WT) is a powerful
tool that can decompose a signal into different subbands by applying a series of
successive high and low frequency filters. WT has the advantage of being localized in
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both time and frequency. It can thus be used to divide the EEG signal into the delta,
theta, alpha, beta, and gamma subbands from which wavelet time-frequency features
can be directly computed for emotion classification. Wavelet features typically include
simple statistical measures such as mean, standard deviation, skewness, kurtosis,
energy, and entropy [9,32,39,53,55–57].

(4) Deep features refer to those features that are automatically extracted in an end-to-end
manner using one or more deep networks. Deep features have been gaining increased
popularity and are being used either solely or alongside handcrafted (traditional) fea-
tures in emotion AI [58]. Inputs to the deep networks can be the raw EEG signal [59,60],
traditional features [61], or images that are obtained either from the EEG signal’s
Fourier Transform (spectrograms) or Wavelet Transform (scalograms) [62–65]. In
addition, the deep networks used for the feature extraction can be directly utilized or
initially pretrained (transfer learning) to enhance performance.

Handcrafted (traditional) features have been widely implemented in the design of
reliable EEG-based emotion AI systems. Time-domain features have the merit of being
easy to implement while efficiently extracting relevant information from the EEG signals.
Specifically complex time domain features such as Hjorth parameters and High Order
Crossings were shown to give reliable results in EEG emotion recognition [31]. Frequency-
domain features have also been widely implemented for EEG emotion recognition due to
their efficient performance, yet they have the disadvantage of missing temporal information.
Wavelet-domain features have the advantages of being localized in time and frequency
allowing for extraction of simple yet meaningful features from the signal. A limitation of the
wavelet-based features is the selection of a suitable mother wavelet [31]. Most EEG-based
emotion recognition approaches thus combine different types of features for consistent
performance. Several traditional classifiers were implemented in literature to classify the
handcrafted features from which some of the most popular are support vector machine
(SVM), k-nearest neighbor (kNN), random forests (RF), naïve Bayes (NB), and gradient
boosted decision trees (GBDT) [66].

As for deep learning approaches, convolutional neural networks (CNNs), deep belief
networks (DBN), and long short-term memory networks (LSTMs) among others have been
used for feature extraction in emotion AI systems. In addition, pretrained readily available
CNNs, such as GoogleNet, were widely used in literature as they tend to give reliable
performance without requiring enormous data for training. A SVM classifier as well as
sigmoid/softmax activation functions are then typically used at the network’s final stage
for emotion classification. Deep EEG emotion recognition methods, however, have the
limitation of requiring a huge amount of data for their proper training in comparison to
traditional methods [54].

2.2. Previous Literature

Several public EEG emotion datasets were introduced including DEAP [67], SEED [68,69],
MAHNOB-HCI [70], and DREAMER [71]. Few works also report results using their own
private self-generated datasets [51]. DEAP is currently considered the benchmark dataset
in EEG-based emotion detection being the most widely used public EEG emotion dataset in
the literature, mostly owing to it having the largest number of observations per subject [72].

EEG emotion recognition approaches can be divided into subject-dependent and
subject-independent [46,73]. Subject-dependent methods train a separate model for each
subject within the dataset. Subject-independent methods train a single model using data
from all or some of the subjects within the considered dataset [74]. Recent papers comparing
subject dependent and independent approaches showed that the former consistently gave
5–30% higher performance depending on the implemented approach. Such results are
mainly due to the discrepancy between subjects related to how they feel and express their
emotions [75]. For example, Nath et al. [73] have observed that EEG signals from a specific
subject were somewhat similar yet significantly varied across different subjects, even when
the same stimulus was considered. In addition, Putra et al. [75] found that different subjects
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varied in their response to valence stimuli, with some subjects being more responsive than
others [75]. Subject-dependent approaches are thus better suited for reliable personalized
emotion AI applications with wearable EEG [64].

Table 2 summarizes some of the recent EEG emotion recognition approaches using
the benchmark DEAP dataset. For each research paper, the summary indicates the utilized
(1) EEG channels, (2) frequency bands, (3) feature types: time—frequency—wavelet—
deep features, (4) classifier, (5) experimental approach: subject-dependent (dep.)—subject-
independent (indep.), as well as the (6) accuracies (Acc.) reported for valence (val.) and
arousal (arl.) emotion recognition. For the subject independent emotion recognition
methods, reported accuracies are for the experiments performed considering the complete
dataset. As for the subject dependent methods, reported accuracies are the average of
the experiments repeated for all the subjects in the dataset. The summarized literature
review shows that subject-dependent (personalized) approaches that adopted deep learning
methods, gave accuracies that were higher than 90% for both valence and arousal. However,
subject-dependent approaches relying solely on traditional methods scarcely resulted in
accuracies that exceeded 75%. Another limitation observed in previous literature is that
most methods consider many or all EEG channel electrodes and/or frequency bands which
can lead to high computational overhead with minimal, if any, performance improvement.

Table 2. Summary of EEG-based emotion recognition approaches that utilize the DEAP dataset.

Research
Paper

Channels EEG Bands Features Classifier
Dep./

Indep.
Val./
Arl.

Acc.
%

Mohammadi
et al., 2017 [55]

Fp1, Fp2
Gamma Wavelet Features kNN Indep.

Val.
Arl.

80.68
74.60

Fp1, Fp2, F7, F8, F3, F4,
FC5, FC6, FC1, FC2

Val.
Arl.

86.75
84.05

Salma et al.,
2017 [59] All Raw Deep Features

(LSTM) Sigmoid Dep. Val.
Arl.

85.45
85.65

Wu et al., 2017
[53] Fp1, Fp2 All Frequency, WT

Features GBDT Dep. Val. 75.18

Zhuang et al.,
2017 [76]

FP1, FP2, F7, F8, T7,
T8, P7, P8 Beta, Gamma Time (EMD) SVM Dep. Val.

Arl.
69.10
71.99

Eun et al.,
2018 [77]

Fp1, Fp2, F3, F4, T7,
T8, P3, P4* Raw Deep Features

(LSTM) Sigmoid Indep. Val.
Arl.

78.00
74.65

Putra, 2018 [75]

All All except
delta Wavelet Features kNN Dep. Val.

Arl.
59.00
65.70

All All except
delta Wavelet Features kNN Indep. Val.

Arl.
58.90
64.30

Yang et al.,
2018 [60] All Raw Deep Features

(LSTM, CNN) Softmax Dep. Val.
Arl.

90.80
91.03

Parui et al.,
2019 [36] All

Raw Time, WT Features
XGBoost Indep.

Val.
Arl.

75.97
74.20All Frequency Features

Xing et al.,
2019 [78] All All except

delta Frequency Features LSTM Indep. Val.
Arl.

81.10
74.38

Cui et al.,
2020 [79] Symmetric Channels All except

delta

Regional-
Asymmetric CNN

(RACNN)
Softmax Dep. Val.

Arl.
96.65
97.11

Garg and
Verma,

2020 [65]
All Raw Scalogram Images GoogleNet

(pretrained) Indep. Val.
Arl.

92.19
61.23
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Table 2. Cont.

Research
Paper

Channels EEG Bands Features Classifier
Dep./

Indep.
Val./
Arl.

Acc.
%

Nath et al.,
2020 [73,80]

All All Band Power

LSTM Dep. Val.
Arl.

94.69
93.13

SVM Indep. Val.
Arl.

72.19
71.25

Aslan,
2021, [62] All Raw Scalogram Images

GoogleNet
(pretrained)

+SVM
Indep. Val.

Arl.
91.20
93.70

Ozdemir et al.,
2021 [81] All Alpha, Beta,

Gamma
Multi-Spectral

Topology Images
CNN, LSTM +

Softmax Indep. Val.
Arl.

90.62
86.13

Huang,
2021 [61]

Symmetric Channels Raw signal Bi-hemisphere
spatial features

CNN
Dep. Val.

Arl.
94.38
94.72

Indep. Val.
Arl.

68.14
63.94

Yin et al.,
2021 [48]

All

Raw signal
Differential Entropy

Cube
GCNN,
LSTM

Dep. Val.
Arl.

90.45
90.60

All Indep. Val.
Arl.

84.81
85.27

Zhang et al.,
2021 [58]

Fp1, Fp2, F3,
F4, AF3, AF4*

All Time, Frequency
Softmax Indep. Val.

Arl.
84.71
83.28Raw signal Deep Features

(HFCNN)

Cheng et al.,
2022 [82] All Raw Signal Deep Features

(randomized CNN) Ensemble Dep. Val.
Arl.

99.19
99.25

Gao et al.,
2022 [37] All All except

delta
Time, Frequency

Features
CNN

+ SVM Indep. Val.
Arl.

80.52
75.22

In the present study, a subject-dependent approach is adopted for valence (happy/sad)
emotion classification intended for personalized emotion AI applications with wearable
EEG. Since several previous studies showed that the frontal channels are the most relevant
for EEG-based emotion recognition [33,39,40,53,83], only the Fp1 and Fp2 channels were
considered for emotion recognition. The widely used DEAP benchmark dataset was
considered for its reliability, as well as to facilitate comparison to previous approaches.
Time and frequency EEG features were extracted from a single time series related to the
Fp1 and Fp2 channels which are the Hjorth parameters, zero-crossings, and PSD.

Happiness and sadness emotions (valence) have been reported to dramatically affect
the theta, alpha, and beta waves of the frontal channels [84]. Interestingly, the delta [85],
alpha [86], and gamma [87,88] waves of the frontal channels were also shown to be individ-
ually useful for EEG-based emotion recognition. Several analyses were thus performed
in this work to determine the frequency bands most suitable for valence detection consid-
ering the different computed features. In addition, performance was observed when the
compete EEG signal was considered for feature computation in comparison to when only
a short segment was utilized. The aim of the performed analyses was to find the most
suitable feature set that would achieve superior performance comparable to state-of the-art
methods, all while requiring minimal computational overhead. Primarily, only the sixteen
strongest emotions (eight happiest and eight saddest) were considered in the analyses in
order to assure significant discrepancy between the emotions. Then, the complete DEAP
dataset was utilized for the final experimentations concerning binary and multiclass valence
classifications, as well as for comparison to previous literature.
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3. Methods

3.1. Dataset

DEAP is a public audio-visual stimuli-based emotion dataset [67] that was collected
from 32 subjects. For emotion recognition, the use of audio-visual stimuli guarantee higher
valence intensity is experienced with respect to visual stimuli (pictures) [89]. The subjects
ages ranged between 19 and 37, with an average of 26.9 years. Each subject watched
40 one-minute music videos intended to elicit different emotions. These one-minute videos
were extracted from long-version music videos to include maximum emotional content.
EEG signals from thirty-two electrodes placed according to the international 10/20 system
were recorded at a sampling rate of 512 Hz then downsampled to 128 Hz. Each electrode
recorded 63 s EEG signal, with a 3s baseline signal before the trial. The 3 s baseline was
ignored here as previously performed in [58,76,77,90].

After watching each video, participants performed a self-assessment of their emo-
tional states of valence, arousal, liking, and dominance on a continuous scale from 1 to
9. Only valence was considered in the present study which would be useful for per-
sonalized medical applications as well as in emotion-based entertainment content. The
valence scale ranges from sad to happy with ratings closer to one representing low va-
lence (sad), whereas ratings closer to nine indicating high valence (happy). For the bi-
nary classification experiments, a threshold (thresh.) of five was considered to separate
the low and high valence classes as commonly performed in many other works such as
Refs. [58,60,61,73,74,76,77,91–94]. This threshold value is typically chosen to overcome the
class imbalance issue in the DEAP dataset [64,67]. As for the three-class classifications,
thresholds of three and six were considered to divide the dataset into low valence (sad),
mid-range (neutral), and high valence (happy).

3.2. Channel Selection

The international 10/20 system includes several electrode placement markers applied
to detect the brain waves from the different brain lobes. In deep learning approaches where
it is basically the network’s task to extract meaningful features from the data, it is common to
input all the EEG channels to the network for emotion recognition [59,60,94]. Nevertheless,
several studies have shown that considering all EEG channels can be redundant and that
extracting features from a few significant channels can results in reliable performance with
the added advantage of reduced computational complexity [35,53,55].

For wearable EEG headsets, requiring only one or two EEG channels can substantially
reduce the hardware complexity thus facilitating its usage in non-laboratory settings, as
well as reducing its overall cost, all which would make it more attractive to day-to-day
consumers [35,53,95]. From the different brain lobes, the frontal lobe is the one most
associated with emotion recognition using EEG signals [5]. Specifically, several studies
have shown that features calculated from the prefrontal brain region (Fp1-Fp2) result in best
performance as compared to other brain areas [35]. Mohammadi et al. [55] more specifically
showed that the Fp1-Fp2 channel pair resulted in highest accuracies in comparison to other
frontal channel pairs, and that combining all the frontal channels resulted in a somewhat
enhanced performance. Interestingly, Wu et al. [53] found that not only did Fp1-Fp2 result
in the highest accuracies in comparison to the other frontal channels, but that solely using
Fp1-Fp2 resulted in similar performance to the case when features from four or six frontal
channels were combined. The Fp1-Fp2 channel pair was thus chosen in this study for
valence-related feature extraction.

Previous research has shown that positive emotions are associated with left frontal
activity, whereas negative emotions are associated with right frontal activity [96,97]. Sym-
metric channel pairs from the left and right brain hemispheres were thus commonly
considered in literature by being either subtracted or divided in order to create a single
wave from which relevant features were calculated [61,98,99]. In the present study, the EEG
features were extracted from a single time series signal computed as the difference between
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the Fp1 and Fp2 channels in order to measure the asymmetry in brain activity due to the
valence emotional stimuli [67].

3.3. EEG Band Separation

Five different third order Butterworth band-pass filters were implemented to separate
the delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–60 Hz)
frequency bands (Table 1). The Butterworth filter has been previously used for the EEG
bands separation owing to its flat response, simplicity, and efficiency [5,40].

3.4. Feature Extraction

Both time and frequency domain EEG features were initially computed from all the
frequency bands (delta–theta–alpha–beta–gamma). Next, feature analysis was performed
to determine which features were more suitable for valence emotion recognition, as well as
the most relevant frequency band for feature extraction.

A. Hjorth Parameters

Hjorth parameters [100] were introduced by Bo Hjorth in 1970 to represent several
signal statistical properties (Figure 7). Hjorth parameters have been successfully used in
various EEG emotion recognition research [5,32,35–40]. The three Hjorth parameters are
activity (variance), mobility, and complexity given by the following equations:

Activity = varaince (y(t)) (1)

Mobility =

√
activity(dy(t)/dt)

activity(y(t))
(2)

Complexity =

√
mobility(dy(t)/dt)

mobility(y(t))
(3)

Figure 7. Characteristic changes in an arbitrary reference signal, illustrating their relation to the
different Hjorth parameters [100].

B. Zero-Crossings

The zero-crossings of a signal are the number of times the signal intercepts the horizon-
tal x-axis thus changing signs. Zero crossings are used to measure the oscillating property
of a signal indicating the degree of excitation within a specific frequency band.

C. Power Spectral Density

Power spectral density (PSD) is among the most widely implemented EEG features
for emotion recognition [72]. PSD describes the average signal power over its frequency
bands. To obtain the PSD, the amplitude of the FFT is multiplied by its complex conjugate
which is then summed to get the total power.

4. Results

In the present study, an EEG-based subject-dependent valence emotion recognition
approach is presented using the difference Fp1-Fp2 signal. Figure 8 illustrates the ex-
perimental workflow adopted in order to develop an efficient and reliable system that is
suitable for wearable EEG. Initially, the Hjorth parameters (activity–mobility–complexity),
zero-crossing, and PSD features were computed from the different frequency bands. Next,
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the strongest emotions per subject were considered for the feature analyses in which the
EEG bands, timeslots, and features were determined. Finally, the selected feature set was
used for the binary and multiclass valence emotion classification of the complete DEAP
dataset. Since a subject dependent approach was adopted in this work, all the classification
experiments were repeated for each of the 32 subjects in the DEAP dataset, and the average
accuracies of all subjects were reported as the final performance measure.

Figure 8. Experimental workflow.

KNN and SVM classifiers are the most commonly used for EEG emotion recogni-
tion [66,72]. The kNN classifier has the advantages of being simple while giving reliable
results [45]. The SVM classifier can be easily tuned for optimal performance. A kNN
classifier was used for the feature analyses, whereas both the kNN and SVM with radial
basis function (rbf) were considered in the final classification experiments. For the kNN
classifier, several k values were compared, then k = 5 was chosen as it was found to give
better overall performance. For all cases, the Euclidian distance was considered within
the kNN classifier to determine the nearest neighbors. As for the SVM classifier, the hy-
perparameters (cost and gamma) were repeatedly tuned for each subject in the different
experiments using Bayesian optimization. A leave-one-out cross-validation (LOOCV) was
used in all the experiments. All feature computations and classification experiments were
performed using MATLAB R2021a on an Intel Core i7-5500U CPU @2.4 GHz with 16 GB
of RAM.

4.1. Feature Analyses

In this work, the aim of the feature analyses was to determine the most relevant
(1) frequency band (delta–theta–alpha–beta–gamma), (2) timeslot (first 20 s–middle 20 s–
last 20 s–complete 60 s), and (3) features (activity–mobility–complexity–zero-crossings–
PSD) for EEG valence recognition. Sixteen videos per subject were included in the feature
analyses, those being the ones with eight highest and eight lowest self-rated valence
emotions. Considering only the strongest emotions assures significant discrepancy between
the two emotional classes (high valence and low valence) for more reliable feature analyses.
A similar approach was previously considered in [52,53].

A. Band/Feature Analysis

Feature/band analysis was performed in order to determine the frequency bands
and features most suitable for valence classification. The three Hjorth parameters, zero-
crossings, and PSD features were calculated from the five EEG frequency bands (delta,
theta, alpha, beta, gamma). KNN classifier was then used to classify the 1 minute trials
into high or low valence. Figure 9 summarizes the valence (happy/sad) classification
performance for the different experiments. For all the EEG frequency bands, the variance
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(Hjorth activity) and PSD were found to result in the highest accuracies. Roshdy et al. [101]
have previously shown that the standard deviation, which is the square root of the variance,
was highly correlated with valence emotion. PSD is among the most widely accepted
measure for valence recognition in the literature [102]. Results of the feature analysis are
thus in agreement with previous literature.

 
Figure 9. Valence classification accuracies for the different features and EEG frequency bands.

Table 3 summarizes the variance and PSD accuracies for the five different frequency
bands. Results indicate that for both features, the alpha band gave the most reliable
performance closely followed by the delta band. These results are in agreement with
several research that showed that the alpha [32,72] and delta [85] bands were relevant
for valence emotion detection. The low accuracies attained by the gamma band features
were however unconventional as the gamma band was previously shown to be suitable for
emotion recognition [55,87]. The gamma band was thus further divided into three subbands
which are 30–40 Hz, 40–50 Hz, and 50–60 Hz, and the previous analysis were repeated.
Results summarized in Table 4 indicate a significant improvement in performance when
the gamma band was subdivided into three different subbands. Best results were attained
by the fast gamma subband (50–60 Hz) for which accuracies of 99.02% and 98.63% were
achieved for the variance and PSD, respectively, by that outperforming results attained by
the same features for the delta and alpha bands.

Table 3. Valence classification accuracies (%) for the different EEG bands using activity and PSD.

All
(2–60 Hz)

Delta
(2–4 Hz)

Theta
(4–8 Hz)

Alpha
(8–12 Hz)

Beta
(12–30 Hz)

Gamma
(30–60 Hz)

variance 62.50 95.51 84.77 98.24 84.57 68.56

PSD 61.33 95.12 84.38 97.85 84.38 70.31

Table 4. Valence classification accuracies (%) for the different gamma subbands using activity
and PSD.

30–60 Hz 30–40 Hz 40–50 Hz 50–60 Hz

variance 68.56 91.99 91.40 99.02

PSD 70.31 91.99 91.02 9.63
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Based on the feature/band analysis, it can be deduced that the variance (Hjorth
activity) and PSD calculated from the delta, alpha, and fast gamma frequency bands result
in the most consistent performance. Further experiments performed in this study will thus
only use the indicated features and frequency bands.

B. Time Slot Analysis

In the DEAP dataset, a 1 minute EEG recording is provided for each video stimulus
per subject. Several previous works considered only the middle time slot omitting the
first part for emotions to settle and the last part for fatigue [56,58]. Others used only the
last thirty seconds under the assumption that it yields better results [53,67]. In order to
test these presumptions, the variance (Hjorth activity) and PSD features were calculated
from the first, middle, and last 20 seconds (s) of the EEG recordings for the delta, alpha,
and fast gamma bands. Valence classification results for the three indicated timeslots
in comparison to using the complete 1 minute are summarized in Table 5. Overall, bet-
ter valence classification performance is achieved by the alpha and fast gamma bands
(~97–99%) than for the delta band (~95–96%). For the delta band, results from the different
slots were somewhat close. However, the first timeslot resulted in slightly improved re-
sults compared to when the complete 1 minute was considered. As for the alpha and fast
gamma bands, results indicate that the middle time slot gave more reliable performance
in comparison to the first and last timeslots. Nevertheless, considering the full 1 minute
EEG signal resulted in an overall better performance than for any of the 20 s time slots. The
full one-minute signal will thus be considered for more consistent performance in all the
upcoming experiments.

Table 5. Strongest emotion classification accuracies (%) for different EEG time slots.

Delta (2–4 Hz) Alpha (8–12 Hz) Gamma (50–60 Hz)

Variance PSD Variance PSD Variance PSD

1–20 s 96.29 96.09 97.46 97.07 97.66 97.66
20–40 s 95.51 95.70 97.46 97.46 98.05 98.05
40–60 s 94.92 95.51 96.68 97.27 98.05 97.85
1–60 s 95.51 95.12 98.24 98.24 99.02 98.63

C. Feature Boxplots

At the beginning of this section, the activity (variance), mobility, complexity, zero-
crossings, and PSD features were computed from the five EEG frequency bands. Clas-
sification results considering the strongest emotions showed that the variance and PSD
were the most relevant for valence emotion recognition regardless of the frequency band.
Specifically, experimentation results showed that the variance and PSD computed from
the delta, alpha, and fast gamma full 1 minute EEG signals resulted in the most reliable
valence emotion classification performance in comparison to the other considered cases.

In this subsection, the boxplots of the variance and PSD were generated (Figure 10)
to illustrate the features’ distributions for the two valence classes: low valence (sad) and
high valence (happy). Boxplots display a five-number summary of the data including
the minimum, first quartile, second quartile (median), third quartile, and maximum. For
both features, the boxplots demonstrate significant discrepancy between the two valence
classes which emphasizes their relevance as previously shown in the different classification
experiments within the previous subsections.
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Figure 10. Boxplots of the variance and PSD features for the delta, alpha, and fast gamma bands
considering the full 1 minute EEG signal.
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4.2. Valence Classifications

In this section, the subject dependent valence emotion classifications were performed
considering all the forty video trials included in the DEAP dataset. The variance (Hjorth
activity) and PSD features were computed from the full 1 minute delta, alpha, and fast
gamma bands which were found in the previous section to be the most relevant for valence
classification. Variance and PSD were used both individually and collectively and results
were given for each case. KNN and SVM with rbf kernel were considered in all experiments.

Tables 6 and 7 summarize the binary classification accuracies for the kNN and SVM
classifiers, respectively. Overall, the SVM classifier gave better accuracies than the kNN
classifier. The alpha band is shown to give consistently better results closely followed by
the delta band, whereas the fast gamma band results are almost 10% less for both classifiers.
Fast gamma is thus shown to be reliable when discriminating between strong sad and
happy emotions attaining accuracies that were as high as 99% (Table 4), yet less useful
when more mellow emotional states were additionally involved.

Table 6. Valence classification accuracies (%) for the complete DEAP dataset (kNN).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 95.08 96.09 85.23

PSD 95.08 96.25 84.76

Variance + PSD 95.00 96.33 85.55

Table 7. Valence classification accuracies (%) for the complete DEAP dataset (SVM-rbf).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 96.95 97.26 87.58

PSD 95.55 96.80 87.50

Variance + PSD 97.19 97.42 87.11

Generally, variance (Hjorth activity) and PSD gave close results in all experiments.
For the alpha and delta bands, all achieved accuracies were greater than or equal to
95%, indicating the efficacy of the considered features for valence emotional recognition.
Variance did, however, give slightly better results than PSD in most cases. Combining these
two features resulted in an overall more consistent performance. Best results were achieved
when the combined features were calculated from the alpha band resulting in accuracies
of 96.33% and 97.42% for the kNN and SVM classifiers, respectively. Several research
has shown that the frontal channels’ alpha band was significantly affected by a person’s
happiness and sadness emotions [28,103]. The findings of this work, in which the alpha
band was found to be more reliable than other frequency bands for valence recognition, are
thus in agreement with previous literature.

For the sake of attaining a more comprehensive insight on the performance of the
proposed method, the valence classification accuracies per subject for the combined variance
and PSD features for the delta, alpha, and fast gamma bands are presented in Table 8. For
the alpha band, twenty-eight and thirty of the total thirty-two DEAP subjects had their
emotions recognized with an accuracy that is greater than or equal to 95% for the kNN and
SVM classifiers, respectively, which indicates the reliability of the considered features.
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Table 8. Valence classification accuracies (%) per subject for the combined variance and PSD features
considering the complete DEAP dataset.

Subject
kNN SVM (rbf)

Delta Alpha Fast Gamma Delta Alpha Fast Gamma

1 95.0 97.5 77.5 97.5 97.5 77.5

2 92.5 95.0 77.5 87.5 95.0 82.5

3 95.0 97.5 72.5 97.5 97.5 75.0

4 100 92.5 60.0 97.5 95.0 72.5

5 95.0 90.0 90.0 97.5 95.0 92.5

6 100 95.0 97.5 100 97.5 95.0

7 95.0 95.0 87.5 97.5 100 92.5

8 95.0 97.5 77.5 97.5 100 85.0

9 95.0 97.5 82.5 97.5 97.5 87.5

10 95.0 97.5 90.0 100 95.0 90.0

11 90.0 92.5 90.0 90.0 95.0 87.5

12 95.0 100 85.0 100 100 85.0

13 97.5 95.0 70.0 100 97.5 67.5

14 95.0 97.5 97.5 100 97.5 100

15 95.0 97.5 82.5 97.5 97.5 82.5

16 100 95.0 75.0 100 95.0 77.5

17 95.0 97.5 85.0 97.5 100 85.0

18 97.5 100 90.0 97.5 100 92.5

19 95.0 95.0 95.0 97.5 92.5 95.0

20 95.0 97.5 85.0 97.5 97.5 90.0

21 95.0 97.5 90.0 100 97.5 97.5

22 97.5 100 90.0 100 100 85.0

23 92.5 100 95.0 95.0 100 95.0

24 97.5 97.5 77.5 95.0 97.5 77.5

25 95.0 95.0 87.5 97.5 97.5 85.0

26 95.0 95.0 100 97.5 97.5 100

27 97.5 90.0 95.0 100 92.5 95.0

28 87.5 97.5 97.5 90.0 97.5 97.5

29 95.0 95.0 97.5 97.5 95.0 97.5

30 95.0 97.5 87.5 97.5 100 90.0

31 85.0 97.5 82.5 92.5 100 85.0

32 95.0 97.5 70.0 100 100 70.0

Average 95.0 96.33 85.55 97.19 97.42 87.11

In order to further investigate these results, the median, average, and standard devia-
tion of the valence ratings of the two subjects with the lowest and highest SVM accuracies
in the alpha band were inspected and summarized in Table 9. Furthermore, these statistical
measures were also calculated for all the thirty-two subjects in the DEAP dataset. For sub-
ject #27 (one of the subjects with the lowest accuracies), it is noticed that both the median
and average of the valence ratings are higher than the value of the threshold considered
in this work for the low/high valence class separation. Modifying this threshold value
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to become six instead of five, which is closer to subject #27′s median and average, indeed
resulted in improving this subject’s emotional recognition accuracy by 5% to become 97.5%.
On the other hand, the increased threshold had no effect or minimal effect on the other
considered subjects and minimal effect on the overall performance. These results indicate
the robustness of the two implemented measures for valence emotion recognition whilst
also highlighting the importance of considering subject variability for more reliable results.

Table 9. Valence ratings statistical measures and classification accuracies for different valence thresh-
olds, given for the subjects with the lowest and highest performance as well as for the complete
DEAP dataset.

Highest Accuracies Lowest Accuracies
All

SubjectsSubject
#12

Subject
#22

Subject
#19

Subject
#27

Valence ratings
statistical
measures

Median 5.04 5.00 5.04 6.08 5.04

Average 4.88 4.69 5.23 6.08 5.25

Std. deviation 2.24 2.44 1.80 2.18 2.13

Accuracies
(SVM)

Threshold = 5 100 100 92.5 92.5 97.42

Threshold = 6 97.5 100 92.5 97.5 96.56

Table 10 summarizes the three-class valence classification results using the variance,
PSD, as well as both features calculated from the delta, alpha, and fast gamma bands.
Similar to the binary classifications, best results were attained when the features were
computed from the alpha band, closely followed by the delta band. For the alpha and
delta bands, considering one of the features or both combined resulted in close accuracies
ranging from 94.22% to 95.39%. Best performance (accuracy = 95.39%) was attained when
the variance was computed from the alpha band.

Table 10. Valence three-class accuracies (%) for the complete DEAP dataset (SVM-rbf).

Delta
(2–4 Hz)

Alpha
(8–12 Hz)

Fast Gamma
(50–60 Hz)

Variance 94.30 95.39 78.13

PSD 94.69 94.22 78.28

Variance + PSD 94.92 95.00 78.44

5. Discussion

In the present study, an efficient EEG-based valence recognition method was presented
that considers only the difference Fp1-Fp2 signal for feature extraction. Analyses showed
that the variance and PSD computed from the 1 minute alpha band were the most suitable
for valence recognition. Final classification experiments considering the entire DEAP
dataset resulted in accuracies of 97.42% and 95.39% for the two and three class valence
classifications, respectively. Torres et al. [72] have reported that in previous literature,
accuracies were on average about 85% and 68% for two and three class EEG-based valence
classifications, respectively. The performance of the proposed methods thus surpasses the
average performance of EEG-based valence detection methods by approximately 10% and
27% for two- and three-class classifications, respectively, indicating the superiority of the
implemented method.

The notion that few simple handcrafted features can give promising results in EEG-
based valence classification has been previously demonstrated in several research papers.
In an early work by Sourina et al. [104], accuracies well above 90% were achieved for all
subjects considering only three frontal channels using music to invoke the emotional stimuli.
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In another work by Amin et al. [105], emotion recognition accuracies exceeding 98% were
attained considering only the relative wavelet energy, which was calculated from the delta
band of 128 electrodes. However, for both these works performance could not be compared
to other methods as private datasets were utilized. A later work by Thejaswini et al. [32]
achieved an overall average accuracy of 91.2% upon classifying the SEED dataset to three
classes: positive, neutral, and negative emotions. They implemented simple statistical
features including the RASM and Hjorth parameters, but again considering twenty-seven
electrode pairs for the feature computations.

The DEAP dataset, considered in this study, is reportedly the most widely utilized
for EEG emotional recognition [72] which facilitates comparison between the different ap-
proaches. Table 11 summarizes the performance of several other EEG emotion recognition
methods from literature that also used the DEAP dataset. The comparison indicates the
EEG channels and frequency bands considered in each approach, as well as the binary
classification accuracy. For the sake of a fair comparison, all valence emotion recognition
methods included are based on subject-dependent experiments, which is the approach
considered in this work. Wu et al. [53], like in this work, used only the FP1 and Fp2 frontal
channels, yet achieved a relatively low accuracy of 75.18%. Other methods used all the
EEG channels whether individually or in the form of channel pairs. In addition, most of
the studies summarized in Table 11 considered all the frequency channels by that ignoring
the significance of some bands over others for valence emotion recognition. Overall, the
valence classification accuracies of the summarized approaches mostly range from 75.18%
to 96.65%. The EEG valence emotion recognition method introduced in the present study
results in an accuracy of 97.42% by that outperforming several state-of-the-art methods
deep learning methods.

Table 11. Valence (happy/sad) classification performance for the DEAP dataset.

Method Year Method Channels Bands Acc. %

Wu et al. [53] 2017 FFT and WT features with GBDT Fp1, Fp2 All 75.18

Salma et al. [59] 2017 LSTM and RNN All Raw 85.45

Yang et al. [60] 2018 LSTM and CNN All All 90.80

Cui et al. [79] 2020

Differential Entropy + SVM
Symmetric channel

pairs All except delta

89.09

Multilayer Perceptron (MLP) 92.57

Regional-Asymmetric CNN (RACNN) 96.65

Nath et al. [80] 2020 Band power with LSTM All All 94.69

Yin et al. [48] 2021 Differential entropy with ECLGCNN All All 80.52

Huang et al. [61] 2021 Bi-hemisphere discrepancy CNN Symmetric channel
pairs Raw 94.38

Chen et al. [82] 2022 Ensemble Deep Randomized-CNN All Raw 99.19

Proposed 2022 Variance + PSD with SVM Fp1-Fp2 Alpha 97.42

Nevertheless, the recent approach introduced by Cheng et al. [82], which is based
on randomized CNN and ensemble learning, resulted in an overall accuracy of 99.17%
which is 1.75% higher than the implemented method. In their work, they reported an
average training time of 35.15 s. As for the proposed method, an average of 0.06 s were
required for the feature computation, training, and classification. Nevertheless, the machine
learning-based proposed approach, even though performing not as well as Cheng et al.’s
method, has the valuable merit of being simpler to reproduce.

The proposed EEG-based valence emotion recognition method was shown to result in
reliable performance while relying on statistical measures that are simple to compute. In
addition, it relies on standard machine learning algorithms that are easily configured. No
image construction was required, and no complex neural networks needed to be trained. In
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the literature, several works have also shown that handcrafted features can achieve compa-
rable performance to deep learning approaches with the former having the merit of reduced
computational complexity which could be attractive in real-time applications [106–108].
Another advantage of the presented method is that unlike in other literature where all the
frequency bands or the raw EEG signal were considered, only the alpha band was used for
feature extraction. The alpha band was utilized in this work as it was shown in the analyses
performed in Section 4.1 to be the most relevant for valence detection. Interestingly, several
clinical studies have previously shown that there is indeed a relationship between the alpha
activity measured from the prefrontal cortex and emotional response [109,110].

The proposed method considers only the Fp1-Fp2 channel pair from which the alpha
band’s variance and PSD were computed, by that minimizing the computational overhead
whilst achieving reliable performance making it suitable for wearable EEG headsets used
in real-time applications [26,111]. Overall, the results attained here are quite promising.
Yet, there is still room for enhancement of the suggested method. Future work includes
considering arousal along with valence recognition, as well as calculating other statistical
features that are relevant to EEG-based emotion recognition such as entropy and RASM. In
addition, the integration of handcrafted and deep features can be investigated. Explainable
AI (XAI) methods can then be implemented to understand what the models are learn-
ing and why the specific decisions were made. XAI can also be applied to investigate
whether EEG-based emotion detection is gender or culture dependent, as is speech emotion
recognition [112].

6. Conclusions

EEG-based subject-dependent valence emotion recognition is widely implemented in
personalized emotion AI applications. In this work, the difference signal (Fp1-Fp2) was
used to calculate the Hjorth parameters (variance-mobility-complexity), zero-crossings,
and PSD features for the emotional valence detection using the benchmark DEAP dataset.
Several analyses were performed to determine the features, frequency band, and timeslot
most suitable for reliable subject-based valence recognition. Primarily, only the eight
strongest high and low valence emotions per subject were considered for analysis to assure
significant discrepancy between the two classes. Classification results indicated that the
variance and PSD features were the most suitable for valence recognition regardless of the
considered frequency channel. Nevertheless, the delta, alpha, and fast gamma bands were
shown to be the most relevant for valence recognition. Boxplots of the variance and PSD
features for the most relevant frequency bands validated and supported the classification
results. In addition, calculating the features from the complete 1 minute EEG signal was
found to give more reliable performance than when only a 20 s timeslot was used for feature
computation. Best results were achieved when the variance and PSD were computed from
the alpha band resulting in accuracies of 97.42% and 95.0% for the binary and multiclass
classification, respectively. Comparison to previous literature showed that implemented
method outperformed several state-of-the-art approaches with the advantage of reduced
computational complexity due to the reduced number of electrodes, features, and frequency
bands considered. This approach would thus be highly attractive for practical EEG-based
emotion AI systems relying on wearable EEG devices.
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Abstract: Electroencephalography (EEG) is often used to evaluate several types of neurological brain
disorders because of its noninvasive and high temporal resolution. In contrast to electrocardiography
(ECG), EEG can be uncomfortable and inconvenient for patients. Moreover, deep-learning techniques
require a large dataset and a long time for training from scratch. Therefore, in this study, EEG–EEG
or EEG–ECG transfer learning strategies were applied to explore their effectiveness for the training of
simple cross-domain convolutional neural networks (CNNs) used in seizure prediction and sleep
staging systems, respectively. The seizure model detected interictal and preictal periods, whereas
the sleep staging model classified signals into five stages. The patient-specific seizure prediction
model with six frozen layers achieved 100% accuracy for seven out of nine patients and required
only 40 s of training time for personalization. Moreover, the cross-signal transfer learning EEG–ECG
model for sleep staging achieved an accuracy approximately 2.5% higher than that of the ECG model;
additionally, the training time was reduced by >50%. In summary, transfer learning from an EEG
model to produce personalized models for a more convenient signal can both reduce the training time
and increase the accuracy; moreover, challenges such as data insufficiency, variability, and inefficiency
can be effectively overcome.

Keywords: cross-domain transfer learning; electroencephalography (EEG); electrocardiography
(ECG); convolutional neural network (CNN); seizure prediction; sleep staging

1. Introduction

Electroencephalography (EEG) is often used to evaluate several types of neurological
brain disorders, such as epilepsy, dementia (e.g., Alzheimer’s disease), mental illness (e.g.,
depression), sleep disturbance, and unexplained headaches (e.g., intracranial hematoma) [1].
As artificial intelligence techniques have improved, many researchers have used machine-
learning or deep-learning technology to identify or classify physiological signals [2–4]
to reduce the burden on doctors and the time patients spend waiting for their diagnosis.
Although machine learning is a mature field, with most algorithms, domain knowledge
still needs to be applied for the feature selection [5]. By contrast, in deep-learning, use-
ful features are automatically extracted, simplifying data preprocessing and improving
recognition performance. For example, Shoeibi et al. [6] compared the performance of
several conventional machine-learning methods—including support vector machine (SVM),
k-nearest neighbors, decision tree, naïve Bayes, random forest, extremely randomized trees,
and bagging—with that of three deep-learning architectures—the convolutional neural net-
work (CNN), long short-term memory (LSTM), and one-dimensional (1D) CNN-LSTM—in
schizophrenia (SZ) diagnosis based on z-score-normalized EEG signals from 14 subjects
without and 14 patients with SZ. Bagging classification obtained the highest accuracy
from the machine-leaning models (81% accuracy); the best deep-learning algorithm, the
1D-CNN-LSTM model, achieved a substantially superior accuracy of 99%.

However, the application of deep-learning requires the collection of a large dataset and
substantial training time. In practice, the accuracy of models that have been well-trained
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often decreases substantially when the models are applied to new data. For example,
Cimtay and Ekmekcioglu [7] selected a pretrained CNN model, InceptionResnetV2, for
classifying emotions from EEG data. In their one-subject-out binary classification tests on
the SJTU Emotion EEG Dataset (SEED), InceptionResnetV2 achieved a mean accuracy of
82.94%; however, the mean cross-dataset prediction accuracy of the model trained on SEED
and tested on the Loughborough University Multimodal Emotion Dataset was only 57.89%.
That means developing and training a bespoke model for each patient would require an
excessive investment of time and resources.

Furthermore, many sleep monitoring studies have input multichannel EEG data to
deep-learning models successfully. However, for clinical use, multichannel EEG must be
performed by a professional. If such signals were to be collected using a wearable device at
home, various factors would have to be considered, including long-term data storage, easy
operation by a nonprofessional, and user comfort. Hence, many researchers have begun to
investigate the potential of using other physiological signals—such as electrocardiogram
(ECG), respiration, or blood oxygen—for sleep assessment. For example, Urtnasan et al. [8]
used a deep convolutional recurrent model for the automatic scoring of sleep stages on the
basis of raw single-lead ECG data from 112 subjects. They achieved an overall accuracy
of 74.2% for five classes and 86.4% for three classes. Although they concluded that ECG
can be used for at-home sleep monitoring, effectively improving the low accuracy of this
method would be challenging.

In recent years, researchers have applied transfer learning in attempts to overcome
these challenges (e.g., [9,10]). In transfer learning, the knowledge of a trained model,
such as its features and weights, are input to a new model for further use. That means it
reuses a pre-trained model for a new problem. Many implementations are to start from a
pre-trained model, remove/freeze task-specific top layers, and fine-tune bottom layers of
the new data. Here, the pre-trained models are partially transferred since only parameters
in the bottom layers are transferred. Some examples of pre-training models in fine-tuning
include AlexNet, ResNet, and VGG-16 [11]. This can greatly reduce not only the training
data required but also the computing resources and time required for training a new model.
For example, Zargar et al. [12] combined three ImageNet CNNs with three classifiers
for predicting seizures. The Xception convolutional network with a fully connected (FC)
classifier achieved a sensitivity of 98.47% for 10 patients from a European database, and
the MobileNet-V2 model with an FC classifier trained on only one patient’s data but
tested on six other patients achieved a sensitivity of 98.39%. Their study demonstrated
the feasibility of the cross-patient application and performance improvements enabled by
transfer learning. One interesting application of transfer learning is cross-signal transfer
learning, in which a pretrained model with one type of signals is transferred to another,
completely different type of signals. However, cross-domain transfer learning is rarely
applied in the medical literature. Bird et al. [13] attempted to use unsupervised transfer
learning to adapt a multilayer perceptron and CNN network for EEG classification to
electromyographic (EMG) classification. Their results revealed that if only EEG or EMG
was used to train the model, the accuracy was 62% or 84%, respectively. However, EEG
to EMG transfer learning (i.e., EEG pretrained weights were used as the initial weight
distribution for the EMG classification models) and EMG to EEG transfer learning achieved
accuracies of 85% and 93%, respectively. Hence, EEG to EMG transfer learning did result in
a higher initial classification accuracy than using EMG alone; however, the improvement
was lower than that of EMG to EEG transfer learning. This result demonstrated the
possibility of using cross-domain transfer learning for different biosignals to reduce both
the complexity of the models and the difficulty and tediousness of signal collection.

EEG can be used to detect brain abnormalities and provides an effective basis for
patient evaluation. However, the method has many practical challenges. By using transfer
learning, the aforementioned problems—time-consuming model training, low accuracy on
novel data, and insufficient training data—might be effectively solved. Therefore, this study
attempted to apply transfer learning to EEG-based classification to explore the effectiveness
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of various cross-domain training methods for improving recognition performance. Two
simple experiments were performed for the verification of the proposed methods: (1) in
Experiment 1, a seizure prediction system for detecting interictal and preictal periods
was developed by using a patient-specific/cross-dataset transfer learning strategy. The
preictal period was defined as 20, 30, or 40 min before a seizure. Epilepsy is a chronic
neurological disease caused by abnormal brain electrical activity; it influences the behavior,
movement, sensory perceptions, or cognition to negatively affect work, daily life, and
social relationships [14]. An early seizure warning could greatly reduce the danger to
and harm experienced by patients with epilepsy. In the experiment, a general epilepsy
prediction model based on a CNN was first developed and then adapted for particular
patients by using transfer learning to fine-tune parameters with the goal of reducing the
model development time and improving the results for each patient. (2) In Experiment
2, a sleep staging system for detecting the five sleep stages was developed by using a
cross-signal transfer learning strategy. Collecting ECG signals during sleep is easier and
more convenient than collecting EEG signals; however, ECG models typically have lower
accuracy. Hence, in the experiment, a CNN-based sleep staging model for EEG was first
developed and validated; the EEG model was then converted into an ECG model and
fine-tuned in an attempt to reduce the required number of training samples for the ECG
model and achieve higher accuracy. CNN is a common type of neural network model
used in deep-learning. Because of its automatic detection of visual features, CNN is widely
used in image segmentation and classification. This main advantage is also suitable when
applied to EEG raw data for a variety of recognition purposes [15].

2. Materials and Methods

2.1. Experiment 1
2.1.1. Datasets

EEG data were downloaded from two datasets: the Siena Scalp EEG database and
Zenodo database. From the Siena Scalp EEG database, EEG signals for 13 patients with
epilepsy (mean ± standard deviation age 42.6 ± 13.8 years) were obtained; one patient
included in the database had data of insufficient length, so these data were excluded. The
record duration was 9 h 17 min ± 5 h 39 min [16,17]. From the Zenodo dataset, EEG signals
were obtained for 14 patients with epilepsy (age 17.4 ± 9.6 years), excluding one as well,
with a record duration of 7 h 55 min ± 4 h 15 min [18]. For each patient, the diagnosis of
epilepsy and classification were made by a doctor. All patients provided written informed
consent approved by the Ethics Committee of the University of Siena.

2.1.2. Data Acquisition

The EEG signals from both datasets were recorded using a Video-EEG with 29 channels
in accordance with the International 10-20 system (i.e., FP1, F3, C3, P3, O1, F7, T3, T5, Fc1,
Fc5, Cp1, Cp5, F9, Fz, Cz, Pz, FP2, F4, C4, P4, O2, F8, T4, T6, Fc2, Fc6, Cp2, Cp6, and F10) at
a sampling rate of 512 Hz.

2.1.3. Data Analysis

EEG signals were preprocessed using MATLAB R2019a v9.6.0 in three steps: (1) all
signals were detrended to remove means, offsets, and slow linear drifts over the time
course; (2) the detrended signals were filtered using a 0.5–50 Hz bandpass filter; and (3) the
global field power was computed over time for the filtered 29-channel signals using the
formula [19]:

GFP(t) =

√√√√ N

∑
i=1

(xi(t)− xt)
2/N (1)

where t is the time in milliseconds, N is the number of channels, xi is the value at time
point t, and x is the mean value across channels at time point t. After preprocessing, the
signals were truncated by using 10-s overlapping windows with 8 s of overlap and divided
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into four epileptic states: (1) seizure: the period after the previous seizure and before the
current seizure with an interval of at least 50 min [13]. (2) Preictal 20–10: 20 min to 10 min
before the seizure. (3) Preictal 30–20: 30 min to 20 min before the seizure. (4) Preictal 40–30:
40 min to 30 min before the seizure. A total of 12,222 samples were obtained for each
state (Figure 1).

Figure 1. Illustration of four epileptic states in EEG signals.

2.1.4. Classification and Performance Evaluation

The CNN model was implemented using Python v3.8.8 on a personal computer with
an Intel Core i7-10700K CPU, NVIDIA Quadro RTX 4000, and 64.0 GB of RAM running
Windows 10 with CUDA 10.1. We modified the model of Wang et al. [20]; the model
comprised four convolutional layers, five pooling layers, and three FC layers (Table 1).

Table 1. Parameters of the CNN model for seizure prediction.

Layer Type Filter Size # Filter Stride Output

conv1d_1 Conv1D 10 32 2 2556 × 32
batch normalization_1 Batch Normalization - - - 2556 × 32
max_pooling1d_1 MaxPooling1D 3 1 1 2554 × 32
conv1d_2 Conv1D 10 64 2 1273 × 32
batch normalization_2 Batch Normalization - - - 1273 × 32
max_pooling1d_2 MaxPooling1D 3 1 1 1271 × 32
conv1d_3 Conv1D 10 64 2 631 × 64
batch normalization_3 Batch Normalization - - - 631 × 64
max_pooling1d_3 MaxPooling1D 3 1 1 629 × 64
conv1d_4 Conv1D 10 128 1 620 × 128
batch normalization_4 Batch Normalization - - - 620 × 128
max_pooling1d_4 MaxPooling1D 3 1 1 618 × 128
global_average_pooling1d GlobalAveragepooling - - - 128
dense_1 Dense - - - 256
dense_2 Dense - - - 128
dense_3 Dense - - - 2

Hyperparameters: optimizer = Adam, batch size = 128, learning rate = 0.0002 (reduce_lr: min_lr = 0.00001).

Three approaches were used for training: recordwise, subjectwise, and patient-specific.
For all approaches, 10-fold cross-validation was used to evaluate the trained models. The
optimized model was then validated on the testing dataset by calculating its accuracy,
specificity, and sensitivity. These processes were performed five times (Figure 2).

In the recordwise approach, data from two datasets were randomly divided into
two sets: 90% for training (approximately 11,000 samples per state) and 10% for testing
(approximately 1222 samples per state). In the subjectwise approach, the Siena Scalp EEG
data were used for training (11,000 samples per state), and the Zenodo data were used
for testing (1222 trials per state). In the patient-specific transfer learning, the subjectwise-
trained model was transferred to a model for the data of an individual subject in the
Zenodo dataset. Subject data were randomly divided into training and testing datasets
in a 90:10 ratio (178 and 20 samples per state, respectively). The first 12, 9, 6, or 3 layers
were frozen (i.e., their weights were fixed) and the unfrozen layers were retrained for the
individual. The performance of the models with various numbers of frozen layers was
compared (Figure 3).
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Figure 2. Scheme of the training process for a 10-fold cross-validation by using (a) recordwise,
(b) subjectwise, and (c) patient-specific approaches.

2.2. Experiment 2
2.2.1. Datasets

We used EEG data downloaded from the Sleep Cassette subset of the Sleep-EDFX
database [16,21], which consists of 153 polysomnographic (PSG) recordings. Seventy-eight
healthy subjects (age = 58.8 ± 22.4 years) were included and the record duration was ap-
proximately 20 h, including the whole sleep period. The ECG data were downloaded from
the Haaglanden Medisch Centrum (HMC) sleep staging database [16,22], which consists of
154 PSG files. A total of 154 patients with different sleep disorders (age = 53.8 ± 15.4 years)
were included, and the record duration was 7–13 h.
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Figure 3. Basic procedure for the classification of preictal and interictal periods by using (a) record-
wise, (b) subjectwise, and (c) patient-specific approaches.

2.2.2. Data Acquisition

EEG signals were recorded using a dual-channel (Fpz-Cz) cassette recorder at a sam-
pling rate of 100 Hz. Each 30-s epoch was manually labeled by experts in accordance
with the R&K standard [23] as belonging to one of six sleep stages: wake, S1, S2, S3, S4,
or REM. We coded S1 as NREM1, S2 as NREM2, and combined S3 and S4 as NREM3 in
accordance with the American Academy of Sleep Medicine (AASM) standard. ECG signals
were recorded using a SOMNOscreen PSG recorder at a sampling frequency of 256 Hz.
Each 30-s epoch was manually labeled by sleep technicians at HMC in accordance with the
AASM standard (Figure 4).

2.2.3. Data Analysis

EEG signals were preprocessed in two steps using MATLAB R2019a v9.6.0. First, all
signals were detrended to remove means, offsets, and slow linear drifts over the time course.
These detrended signals were then filtered using a 30-Hz lowpass filter. After preprocessing,
the signals were truncated using 30-s windows with 22.5-s overlaps and categorized by
sleep state. A total of 16,000 samples were obtained for each state. ECG signals were
similarly preprocessed in two steps using MATLAB R2019a v9.6.0. All signals were first
detrended to remove means, offsets, and slow linear drifts over the time course. These
detrended signals were then filtered using a 0.5–40-Hz bandpass filter. After preprocessing,
the truncation process was performed for the EEG signals. A total of 16,000 samples were
obtained for each state.
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Figure 4. Examples of sleep recordings and hypnograms from the (a) EEG, and (b) ECG datasets.

2.2.4. Classification and Performance Evaluation

The CNN model was implemented using Python v3.5.4 running on a personal com-
puter with an Intel Core i7-9700K CPU, NVIDIA Geforce RTX 2060, and 64.0 GB of RAM and
running Windows 10 with CUDA 10.1. We modified the model of Jadhav and Mukhopad-
hyay [24]; the model comprised three blocks and two FC layers. Block_1 and block_2
each comprised two convolutional layers, two batch normalipyzation (BN) layers, and one
pooling layer; block_3 comprised one convolutional layer, one BN layer, and one global
pooling layer (Table 2). The EEG to ECG transfer learning was performed in three steps:
(1) the construction of an EEG-based sleep stage model; (2) transfer of the trained EEG
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model to an ECG model; and (3) freezing of block_1–3, block_1–2, or block_1 (i.e., fixing
the pretrained weights) and retraining of the unfrozen layers (Figure 5).

Table 2. Parameters of the CNN model for sleep staging.

Block Layer Type Filter Size # Filter Stride Output

Block_1

conv1d_1 Conv1D 5 16 1 2996 × 16
batch normalization_1 Batch Normalization - - - 2996 × 16
conv1d_2 Conv1D 5 16 1 2994 × 16
batch normalization_2 Batch Normalization - - - 2994 × 16
average_pooling1d_1 AveragePooling1D 2 1 2 1496 × 16

Block_2

conv1d_3 Conv1D 5 32 1 1492 × 32
batch normalization_3 Batch Normalization - - - 1492 × 32
conv1d_4 Conv1D 5 32 1 1488 × 32
batch normalization_4 Batch Normalization - - - 1488 × 32
average_pooling1d_2 AveragePooling1D 2 1 2 744 × 32

Block_3
conv1d_5 Conv1D 5 32 1 740 × 32
batch normalization_5 Batch Normalization - - - 740 × 32

global_average_pooling1d GlobalAveragepooling - - - 32
dense_1 Dense - - - 32
dense_2 Dense - - - 5

Hyperparameters: optimizer = Adam, batch size = 128, learning rate = 0.001 (reduce_lr: min_lr = 0.0001).

Figure 5. Basic procedure for the sleep staging classification in the (a) ECG model, (b) EEG model,
and (c) EEG–ECG transfer learning model.

Data were randomly divided into two sets: 80% for training and 20% for testing. A
five-fold cross validation was used to evaluate the trained models. The optimal model was
then tested using the testing dataset and evaluated its accuracy, Cohen’s kappa, and the
F1-score. These processes were performed 10 times (Figure 6).
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Figure 6. Scheme of the training process for a 5-fold cross-validation.

3. Results

3.1. Experiment 1

The effectiveness of the three training approaches for establishing a CNN-based
epilepsy prediction model was investigated. The results for the recordwise training (Table 1)
revealed that the accuracy, sensitivity, and specificity for classifying interictal and preictal
20–10-, 30–20-, and 40–30-min states were all greater than 99%, 98%, and 99%, respectively;
the training time for all three models was approximately 2 h. Hence, this training approach
had an excellent performance, but the training was somewhat time-consuming.

The results for subjectwise training (Table 3) revealed that the accuracy, sensitivity,
and specificity for the classifying of interictal and preictal 20–10-, 30–20-, and 40–30-min
states were all greater than 82%, 84%, and 83%, respectively; however, the training time
for all three models was still approximately 2 h. Hence, a comparison of the results for
recordwise and subjectwise training revealed that if the novel subject data were not used for
the model training, the test accuracy, sensitivity, and specificity decreased but the training
time remained constant.

Table 3. Performance of the recordwise and subjectwise training approaches.

Record-Wise Training
Accuracy (%) Sensitivity (%) Specificity (%) Time

preictal 20–10 99.37 (±0.14%) 99.47 (±024%) 99.27 (±047%) 2 h 12 min 43 s
preictal 30–20 98.61 (±0.20%) 98.21 (±0.12%) 99.03 (±0.35%) 2 h 13 min 43 s
preictal 40–30 99.59 (±0.22%) 99.77 (±0.13%) 99.40 (±0.44%) 2 h 04 min 06 s

Subject-WiseTraining
Accuracy (%) Sensitivity (%) Specificity (%) Time

preictal 20–10 84.25 (±0.20%) 82.45 (±1.39%) 82.45 (±1.39%) 2 h 17 min 07 s
preictal 30–20 84.46 (±0.20%) 84.81 (±0.94%) 84.12 (±1.09%) 2 h 19 min 11 s
preictal 40–30 86.17 (±0.84%) 88.73 (±0.90%) 83.60 (±2.05%) 2 h 20 min 03 s

The results for patient-specific transfer learning (Table 4) differed from those for
recordwise and subjectwise training. The models with 12 frozen layers that were used to
classify interictal and preictal 20–10-, 30–20-, and 40–30-min states achieved metrics greater
than 90%, 88%, and 95%, respectively, with training times of approximately 2 min. Models
with nine frozen layers classifying interictal and preictal 20–10-, 30–20-, and 40–30-min
states achieved metrics of 100%, >98%, and >96%, respectively, with training times of
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approximately 45 s. Those with six frozen layers achieved metrics of 100%, >97%, and >99%
with training times of approximately 40 s, and those with three frozen layers achieved
metrics of >96%, >94%, and >98% with training times of approximately 50 s, respectively.
In summary, transfer learning training could be completed in approximately 1 min, and the
accuracy, sensitivity, and specificity for most patients was high.

Table 4. Classification of accuracy, sensitivity, and specificity (mean values) of the patient-specific
interictal and preictal classification transfer learning models.

NO.

# of
Frozen
Layers

Preictal 20–10 Preictal 30–20 Preictal 40–30
Acc
(%)

Sen
(%)

Spe
(%)

Time
(s)

Acc
(%)

Sen
(%)

Spe
(%)

Time
(s)

Acc
(%)

Sen
(%)

Spe
(%)

Time
(s)

2

3 98.0 96.1 100 42 100 100 100 39 99.5 100 99.1 43
6 100 100 100 40 100 100 100 37 100 100 100 37
9 100 100 100 35 100 100 100 46 100 100 100 35

12 97.5 100 94.7 104 97.0 93.3 100 112 100 100 100 107

4

3 100 100 100 42 100 100 100 41 100 100 100 43
6 100 100 100 37 100 100 100 37 100 100 100 35
9 100 100 100 35 100 100 100 46 100 100 100 33

12 94.9 90.4 100 107 100 100 100 118 97.5 100 95.4 109

5

3 100 100 100 39 100 100 100 37 100 100 100 33
6 100 100 100 34 100 100 100 34 100 100 100 31
9 100 100 100 43 100 100 100 30 100 100 100 28

12 100 100 100 107 100 100 100 109 100 100 100 103

7

3 100 100 100 39 100 100 100 36 100 100 100 42
6 100 100 100 36 100 100 100 32 100 100 100 35
9 100 100 100 44 100 100 100 33 100 100 100 32

12 100 100 100 109 100 100 100 109 100 100 100 109

8

3 100 100 100 41 100 100 100 56 100 100 100 37
6 100 100 100 32 100 100 100 33 100 100 100 36
9 100 100 100 28 100 100 100 29 100 100 100 36

12 100 100 100 109 100 100 100 109 99.5 100 97.7 109

9

3 100 100 100 35 99.5 100 99.33 37 100 100 100 49
6 100 100 100 37 100 100 100 35 100 100 100 35
9 100 100 100 33 100 100 100 34 100 100 100 31

12 100 100 100 108 97.5 100 96.66 100 100 100 100 109

10

3 100 100 100 46 100 100 100 44 100 100 100 46
6 100 100 100 34 100 100 100 40 100 100 100 36
9 100 100 100 33 100 100 100 33 100 100 100 32

12 97.5 94.7 100 89 100 100 100 109 100 100 100 109

11

3 100 100 100 40 97.5 94.11 100 41 99.5 100 98.57 36
6 100 100 100 31 99 97.64 100 38 99.5 99.23 100 33
9 100 100 100 30 98.99 100 98.6 33 97.5 96.15 100 29

12 100 100 100 109 94.99 88.23 100 109 97.5 96.1 100 109

13

3 100 100 100 48 98 95.7 100 36 100 100 100 34
6 100 100 100 36 99.9 98.9 100 28 100 100 100 36
9 100 100 100 30 100 100 100 28 100 100 100 29

12 100 100 100 109 100 100 100 105 100 100 100 106

Specifically, the training time was shortest (~30 s) when freezing nine layers for the
classification of interictal and preictal 40–30-min states for nine patients; freezing six layers
resulted in the highest accuracy (except for patient 11 with 99.5%). Freezing 12 layers led to
the longest training time (~2 min) and the lowest accuracy—which was even lower than
when using the recordwise approach. The results thus indicated that transfer learning was
superior to recordwise or subjectwise learning.
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3.2. Experiment 2

Three CNN-based sleep staging models were established: the EEG model, the ECG
model, and the EEG–ECG transfer learning model (Table 5). The EEG model for sleep stage
classification achieved accuracy, Cohen’s kappa, and F1 scores of 92.67%, 0.908, and 92.69%,
respectively; the training time (including five-fold cross validation) was approximately 1.5 h;
the favorable Cohen’s kappa and F1 scores indicated that the model had favorable validity
and reliability. The ECG model achieved accuracy, Cohen’s kappa, and F1 scores of 86.13%,
0.827, and 86.07%, respectively; the training time was still approximately 1.5 h. Finally, the
EEG–ECG transfer learning model with block_1 frozen achieved metrics superior to the
ECG-only model: 88.64%, 0.858, and 88.59%, with a lower training time of approximately
47 min. Freezing block_1 and block_2 or all three blocks resulted in lower scores than the
ECG model; however, the training time was far shorter than that for the ECG model at
approximately 17 min. Hence, the model with block_1 frozen (two convolutional layers,
two BN layers, and one pooling layer) achieved both a higher performance and a lower
training time than the ECG-only model.

Table 5. Classification accuracy, Cohen’s kappa, and F1 score (mean ± standard deviation) of the
EEG model, ECG model, and the EEG–ECG transfer learning model.

Model Accuracy Kappa F1 Time

EEG 92.67 (±0.45%) 0.908 (±0.006) 92.69 (±0.45%) 1 h 32 min 42 s
ECG 86.13 (±1.49%) 0.827 (±0.019) 86.07 (±1.46%) 1 h 38 min 10 s

EEG–ECG (frozen block_1) 88.64 (±1.00%) 0.858 (±0.013) 88.59 (±1.01%) 47 min 31 s
EEG–ECG (frozen block_1&2) 82.16 (±0.56%) 0.777 (±0.007) 82.12 (±0.52%) 17 min 00 s
EEG–ECG (frozen block_1~3) 63.38 (±0.62%) 0.542 (±0.008) 63.19 (±0.60%) 17 min 05 s

Figure 7 illustrates the accuracy and loss functions of the EEG, ECG, and EEG–ECG
models. An early stop strategy with a patience of 10 was implemented to terminate the
training process. The validation accuracy and loss curve of the EEG model increased and
decreased quickly, respectively. The validation accuracy and loss curves of the ECG model
both fluctuated initially and then stabilized. For the EEG–ECG transfer learning model,
the validation accuracy and loss curve were initially high and low, respectively, but slowly
stabilized after fluctuating slightly. Overall, overfitting was not evident for any of the three
models; hence, the training was judged to be effective.

Figure 7. Accuracy (upper panel) and loss (lower panel) functions of the (a) EEG model, (b) ECG
model, and (c) EEG–ECG model (frozen block_1).

Figure 8 presents the confusion matrixes for the three sleep staging models. Except
for NREM1, which was frequently misclassified as waking or NREM2, high classification
accuracies were achieved. Hence, the three models achieved favorable classification results
and no substantial imbalance was identified.
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Figure 8. Confusion matrix of the (a) EEG, (b) ECG, and (c) EEG–ECG model (frozen block_1).

4. Discussion

4.1. Experiment 1

Recordwise training is a commonly used approach in initial deep-learning research. In
training, data from all subjects in a database are randomly divided into a training set and
testing set; each sample (from the same subject) is considered independent. For example,
Acharya et al. [25] developed a computer-aided seizure diagnosis system to automatically
distinguish the class of EEG signals (i.e., normal, preictal, or seizure) by using a 13-layer
CNN model. They employed a dataset of 100 epochs for each of five healthy subjects and
five patients with epilepsy, while 90% of the total data was set for training. Their model
achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00%, and 95.00%, respectively.
Moreover, Wei et al. [26] proposed a long-term recurrent CNN for discriminating preictal
from interictal states for seizure prediction. They similarly used a 9:1 ratio to divide
the EEG data of each subject into training and test sets. Their seizure prediction model
achieved an accuracy of 93.40%, prediction sensitivity of 91.88%, and specificity of 86.13%.
In our experiment, all EEG samples from 27 patients with epilepsy in two datasets were
mixed and were randomly divided into training and test sets (1222 samples per state). The
classification accuracy, sensitivity, and specificity for interictal and preictal (regardless of
period) states were all greater than 98%. These results indicate that the recordwise trained
model is often only effective for classifying the used dataset, and its performance on novel
data is poor [7].

Many studies have adopted subjectwise training for deep-learning models in which
data from an individual are included in either the training or the testing set. This method
better matches practical applications of the trained model to novel patients. However, the
accuracy is an inevitable issue. In our experiment, we used EEG data from one dataset
(Siena Scalp EEG database) for training, and EEG data from another dataset (Zenodo
database) for testing. The accuracy decreased from 98% for the recordwise approach
to only 84%; this may be attributable to the inter-person differences and the diversity
of the data. This problem of a cross-subject domain shift has partly been addressed by
some scholars. For example, Wang et al. [27] proposed a multiscale CNN, known as
SEEG-Net, for evaluating drug-resistant epilepsy. They conducted cross-validation on
a multicenter stereoelectroencephalography dataset by using the leave-one-group-out
method and achieved an accuracy of 94.12% and 87.02% for the MAYO and FNUSA
datasets, respectively; leave-one-subject-out cross validation on a private clinical dataset
led to an accuracy of 93.85%. Although their proposed model performed highly in detecting
pathological activity, it still has insufficient generalizability for practical applications.

The quality of EEG signals is affected by breathing, blinking, and swallowing during
the measurement. In addition, individual differences may also affect evaluations based
on these signals [28]. To avoid overfitting, deep-learning requires an enormous volume
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of training data and hence a long training time, delaying system development. Hence,
we selected patient-specific transfer learning for retraining our model; specifically, data
for a specific subject in the Zenodo dataset were used to fine-tune a model pretrained on
the Siena Scalp EEG database. This method required a smaller amount of data, achieved
high accuracy, and required little additional training time to produce the customized
model. Layer-wise transfer learning is a commonly used approach in which some layers
are frozen to decrease the training time. If a few layers are frozen, the model has high
elasticity but requires a longer training time; by contrast, freezing many layers reduces
the training time but often reduces the accuracy. Our experimental results indicated that
a model with six frozen layers had a short training time (~40 s) and achieved the highest
accuracy of nearly 100%. Freezing nine layers achieved a similar performance to freezing
six layers; however, the imperfect results for patient 11 revealed that such a model may
have insufficient elasticity to be applicable to all individuals. The optimal number of frozen
layers may depend on the size of the training data [29]. Hence, for smaller datasets, training
the FC layers alone is insufficient; some convolutional layers must also be trained to obtain
a stable, accurate model.

Finally, we compared the accuracy rates of our model with those of models reported by
other recent studies on epileptic seizure prediction using EEG data (Table 6). Dissanayake
et al. [30] extracted Mel-frequency cepstrum coefficients (MFCCs) features from EEG signals
and used them in a graph neural network (C-GNN) based on geometric deep-learning
to predict epileptic seizures. Their subject-independent models were trained through a
10-fold cross-validation with over a 95% accuracy in both CHB-MIT and Siena databases.
Zhao et al. [31] proposed a novel end-to-end model AddNet-SCL for seizure prediction
based on EEG signals. They used a quasi-patient-specific method (i.e., 0.75 × (1−1/N),
0.25 × (1−1/N), and 1/N of a patient’s EEG data were used for the training, validation,
and testing, respectively; where N was the number of seizure events) to conduct sepa-
rate model training for each subject from CHB-MIT and Kaggle databases, and achieved
0.94 AUC and 0.831 AUC, respectively. Considering the robustness and generalization of
the learning models, either training manner, i.e., subject independent or patient-specific,
could achieve a high performance, while ours had the highest accuracy, specificity, and
sensitivity. Furthermore, the use of raw EEG data in our experiment can facilitate the
processes of data collection and processing and benefit future applications, bypassing the
need for feature extraction or selection.

Table 6. Performance of different seizure prediction systems based on CNNs with EEG signals.

Study Dataset Input Model
Training

Type
Acc
(%)

Sen
(%)

Spe
(%)

Dissanayake et al. [30] Siena EEG MFCCs

C-GNN
(distance-based)

S-Ind
96.0 96.0 96.6

C-GNN
(partially learned) 95.5 95.1 95.1

Zhao et al. [31] CHB-MIT Raw data

1D-CNN

P-Spc -

88.7

-ResCNN 89.9

SCL-AddNets 93

This Study

CHB-MIT Raw data
(GFP)

1D-CNN
+

transfer learning
P-Spc 99.73 99.79 99.65

Siena EEG
+

Zenodo

Raw data
(GFP)

1D-CNN
+

transfer learning
P-Spc 99.9 99.9 100

S-Ind: subject independent; P-Spc: patient-specific.

4.2. Experiment 2

Silveira et al. [32] used random forest to classify 106,376 single-channel EEG epochs
from the Physionet public database into two- to six-state sleep stages. They computed

213



Sensors 2023, 23, 2458

the kurtosis, skewness, and variance of the coefficients decomposed through the discrete
wavelet transform as classification features. The accuracy and Cohen’s kappa were >90%
and >0.8, respectively, demonstrating that single-channel EEG is a feasible method of sleep
staging. More recently, many studies have applied various deep-learning models for sleep
staging with the goal of achieving automatic and accurate classification by avoiding manual
feature extraction. For example, Yildirim et al. [33] developed a 1D-CNN model by using
EEG signals from two public databases (Sleep-EDF and Sleep-EDFX) for the sleep stage
classification. The accuracy of the model for five sleep classes on single-channel EEGs from
the Sleep-EDF and the Sleep-EDFX databases was 90.83% and 90.48%, respectively. In our
experiment, we also used the Fpz-Cz single-channel EEG signals from the Sleep-EDFX
database for five-class sleep staging to train a modified 1D-CNN (10 layers in total; 9 layers
fewer than in the model of [33]). The accuracy reached 92.67%, indicating that using fewer
convolutional layers and max pooling instead of average pooling can slightly improve both
the accuracy (~2%) and training efficiency. Although max pooling retains key sleep features
in EEG, it ignores secondary features that may be effective for classification. By contrast,
average pooling retains these features.

Due to the increasing prevalence of wearable biosignal sensors, many researchers
have begun to study ECG sleep staging as an alternative to EEG staging. For example,
Ebrahimi et al. [34] extracted features from ECG-derived respiration signals based on
the R and S waves of the QRS complex, raw thoracic respiratory rate (R), and heart rate
variability (HRV) and evaluated the performance of various signal combinations in an
SVM automatic sleep staging model. Their best accuracy (89.32%) for classifying four
stages—wake, Stage 2, slow wave sleep, and REM—was obtained when using HRV and R
signals. Furthermore, Wei et al. [35] extracted 25 features from HRV and R signals and used
LSTM for the two- to five-class sleep staging of patients with mental disorders, achieving
accuracies of 89.84%, 84.07%, 77.76%, and 71.16% and Cohen’s kappa of 0.52, 0.58, 0.55,
and 0.52, respectively, for the four classification tasks. These results indicate that increasing
the number of classes decreases the performance; improving the accuracy requires the
combination of various signals with different features. However, manual feature selection is
time-consuming. Hence, some researchers have used deep-learning models for ECG sleep
staging. For example, Tang et al. [36] used a CNN with gated recurrent units to classify
sleep stages into four classes on the basis of single-lead ECG signals from the three public
datasets SHHS2, SHHS1, and MESA. Their best accuracy and Cohen’s kappa were 80.6%
and 0.70, respectively—a substantial improvement over previous attempts at cross-dataset
classification. In our experiment, we used a CNN model for five-class sleep staging and
an achieved average accuracy was 86.13%, which demonstrates that the model structure
is effective for both EEG and ECG signals; the model achieved favorable performance for
both signals, but the ECG model required more computational resources and training time.

Therefore, we applied transfer learning to improve the performance of the ECG model
by basing it on the highly accurate EEG model. Freezing block_1 produced an EEG–ECG
transfer learning model with an accuracy of 88.64%, a small improvement (~2.5%) compared
with the ECG-only model. Radha et al. [37] trained an LSTM model to classify four-class
sleep stages by using ECG data (292 participants, 584 recordings) and then transferred some
of its weights to photoplethysmography (PPG) data (60 participants, 101 recordings) by
using three transfer-learning strategies. The accuracy and Cohen’s kappa of the ECG–PPG
model were 76.36% and 0.65, respectively—a substantial improvement over those of the
PPG model (69.82% and 0.55). This result demonstrates the merit of transfer learning
if similar data are reused. However, few studies have attempted cross-signal transfer
learning. Phan et al. [10] trained two recurrent neural networks in the source domain (a
large database; the Montreal Archive of Sleep Studies database in this case) and then fine-
tuned them in the target domain (two small databases: the SurreycEEGrid database and the
Sleep Cassette and the Sleep Telemetry subsets of the Sleep-EDFX database). The transfer
learning achieved an improvement in accuracy of 1.5% for their SeqSleepNet+ network
(78.5% for EEG-only to 80.0% for EEG-EOG) and 3.5% for their DeepSleepNet+ network
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(75.9% to 79.4%). These transfer-learning studies reveal that the knowledge transfer from
the same or similar signals can considerably increase model performance; for different
signals, however, it does not greatly increase the accuracy but substantially reduces the
training time, in our case. Moreover, if too many layers are frozen (too much knowledge is
shared), training the new model has a limited effect and the model may fit the data poorly,
resulting in high-speed training but low performance.

Finally, we compared the accuracy rates of our model with those of models reported
by other recent studies on sleep staging using EEG data (Table 7). Li et al. [38] proposed
an EEGSNet model based on CNN and bi-directional LSTM (Bi-LSTM) to extract features
from the EEG spectrogram and classify them into five sleep stages. They trained their
model using a 20-fold or leave-one-out cross-validation according to the size of the datasets.
The accuracies were 94.17%, 86.82%, 83.02%, and 85.12%, respectively, for the sleep-edfx-8,
sleep-edfx-20, sleep-edfx-78, and SHHS datasets. Jadhav et al. [24] evaluated the raw EEG
epochs, short-time Fourier transform (STFT), and stationary wavelet transform (SWT) in
the same dataset (i.e., sleep-edfx-78) by using CNN models. Their subject-wise models were
trained through a 20-fold cross-validation with over 83% accuracy. For the classification of
five sleep stages, our model with fewer layers achieved a better performance and the direct
use of raw EEG data in our experiment can be of benefit for fast diagnosis. Table 8 shows
the comparison of our model with other recent closely related studies using ECG data.
Urtnasan et al. [8] used a deep convolutional recurrent (DCR) model based on the CNN
and a gated recurrent unit (GRU) for the automatic scoring of sleep stages. They trained
and tested the model using the ECG signals of 89 subjects and 23 subjects, respectively,
randomly selected from the dataset and achieved an overall accuracy of 74.2% for five
classes and 86.4% for three classes. Tang et al. [36] pre-trained a model built on five CNN
blocks, bi-directional GRU layers, and a fully connected layer with a dataset and then
re-trained it with another dataset with an improvement of 20%. Considering the resources
and time, they randomly sampled 100 subjects (70% for training and 30% for testing) from
each dataset. There is still room for improvement in the effect of using ECG signals alone
for classification. By using transfer learning from EEG to ECG, our model could classify
more classes with a better performance, which demonstrates the feasibility of automatic
sleep staging using ECG signals.

Table 7. Performance of different sleep staging systems based on CNNs with EEG signals.

Study Dataset Input Model # CNN Layer Sleep Stage Acc (%) Kappa F1 (%)

Li et al. [38] sleep-edfx Spectrogram EEGSNet 15 Wake-REM-N1-N2-N3 83.02 0.770 77.26

Jadhav et al. [24] sleep-edfx
Raw data 1D-CNN 6

Wake-REM-N1-N2-N3
83.59 0.780 77.00

SWT 2D-CNN 6 85.49 0.800 78.70
STFT 2D-CNN 4 85.81 0.800 79.70

This Study sleep-edfx Raw data 1D-CNN 5 Wake-REM-N1-N2-N3 92.67 0.908 92.69

Table 8. Performance of different sleep staging systems based on CNNs with ECG signals.

Study Dataset Input Model # Class Sleep Stages Acc (%) Kappa F1 (%)

Urtnasan et al. [8] Samsung
Medical Center Raw data CNN+GRU

3 Wake-NREM-REM 86.40 - -
5 Wake-REM-N1-N2-N3 74.20 - -

Tang et al. [36]
SHHS2

Raw data
CNN+GRU

(Domain adaptation) 4
Wake-REM-
Light-Deep

78.70 0.749 -
SHHS1 74.80 0.675 -
MESA 80.60 0.705 -

This Study HMC sleep
center Raw data

1D-CNN (ECG)
5 Wake-REM-N1-N2-N3

86.13 0.827 86.07
1D-CNN (EEG-ECG) 88.64 0.858 88.59

Our experiments have some limitations. First, the sample size was insufficient. Includ-
ing more databases in the training and test sets would improve the reliability of the model.
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Second, temporal information was not considered. Automatic feature extraction coupled
with time series training, such as CNN-LSTM, may be more effective.

5. Conclusions

This study attempted to apply cross-domain transfer learning for two EEG-based clas-
sification tasks—seizure prediction and sleep staging—to explore its effects on recognition
performance.

In Experiment 1, binary classification models were trained using a recordwise ap-
proach to test the architecture of our model; this model achieved an accuracy, specificity,
and sensitivity of >98%. Subsequent subjectwise training simulated practical applications
in which the test and training data were independent; this model achieved an accuracy,
specificity, and sensitivity of >82%. Due to this dramatic decrease in the model performance,
cross-dataset transfer learning was used to train patient-specific models; the model with six
frozen layers achieved an accuracy, specificity, and sensitivity of 100% for seven out of nine
subjects and >97% for the remaining two; moreover, only 40 s of additional training time
was required. By applying transfer learning, the model could learn the EEG characteristics
of an individual to achieve personalized and accurate detection that could increase the
practicality of seizure prediction.

In Experiment 2, transfer learning on different signal sources for five-class sleep
staging prediction was attempted. The same modified model architecture was used to build
EEG and ECG models. As expected, the accuracy, Cohen’s kappa, and F1-score (92.67%,
0.908, and 2.695%) of the EEG model were superior to those of the ECG model (86.13%,
0.827, and 86.07%). However, transfer learning produced an EEG–ECG model with an
accuracy approximately 2.5% greater than that of the ECG model. Although this cross-
signal transfer-learning method achieved little performance improvement, the training time
was reduced by >50% compared with that for the ECG-only model, effectively reducing the
computing resource consumption. Additional studies should be conducted regarding the
challenges of knowledge transfer between different signals. To the best of our knowledge,
this experiment is the first to demonstrate the feasibility of cross-signal transfer learning
from EEG to ECG for sleep staging. EEG measurement is inconvenient and uncomfortable;
hence, using ECG for sleep staging could enable practical applications, such as wearable
devices employed for sleep analysis and recording sleep quality.

In summary, EEG can be used to detect brain abnormalities and provides an effective
basis for patient evaluation. However, its limitations restrict its use in practice. Cross-
domain transfer learning strategies may be able to overcome these problems for further
specific uses, such as precision medicine, portable devices, or rare disease detection, in
simple or original model structures.
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Abstract: In this work, we propose a novel framework to recognize the cognitive and affective
processes of the brain during neuromarketing-based stimuli using EEG signals. The most crucial
component of our approach is the proposed classification algorithm that is based on a sparse repre-
sentation classification scheme. The basic assumption of our approach is that EEG features from a
cognitive or affective process lie on a linear subspace. Hence, a test brain signal can be represented
as a linear (or weighted) combination of brain signals from all classes in the training set. The class
membership of the brain signals is determined by adopting the Sparse Bayesian Framework with
graph-based priors over the weights of linear combination. Furthermore, the classification rule is
constructed by using the residuals of linear combination. The experiments on a publicly available
neuromarketing EEG dataset demonstrate the usefulness of our approach. For the two classification
tasks offered by the employed dataset, namely affective state recognition and cognitive state recogni-
tion, the proposed classification scheme manages to achieve a higher classification accuracy compared
to the baseline and state-of-the art methods (more than 8% improvement in classification accuracy).

Keywords: sparse representation classification; brain computer interfaces; neuromarketing;
electroencephalography

1. Introduction

A Brain Computer Interface (BCI) system (or device) provides us with the ability
to create a communication channel between the human brain and the computer. This
communication channel could be used for various purposes and applications, ranging
from helping people with motor disabilities to entertainment or robotics [1,2]. The brain’s
activity can be readily captured by several brain imaging modalities, such as functional
magnetic resonance imaging (fMRI), Magnetoencephalography (MEG), functional near-
infrared spectroscopy (fNIRS), and electroencephalography (EEG) [3]. Among those, EEG
stands out as the most affordable and least invasive solution.

How we use the brain activity or how we evoke the production of the brain activity
defines the type of BCI. An active BCI system uses the brain activity for controlling a device.
However, this activity is consciously controlled by the human and it can be produced either
by means of a volitional modulation or in response to an external stimulation [3,4]. On the
other hand, a passive BCI system records the human’s brain activity while performing reg-
ular, everyday tasks with the purpose to explore human’s perception, awareness, cognition,
and emotions for enriching human–computer interaction (HCI) with additional informa-
tion [2,5]. One application of passive BCI systems concerns marketing purposes [6–8].
Neuromarketing is an evolving field that combines consumer’s behavior studies with
neuroscience. Neuromarketing studies include the direct use of neuroimaging technol-
ogy in order to explore a consumer’s behavior to specific marketing elements (products,
packaging, advertising, etc.) [7]. However, marketing elements are closely connected to
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the illustration of multimedia content; hence, the consumer is (or subject or participant),
while he/she is exposed to the various marketing elements, simultaneously observing and
consuming multimedia content (i.e., videos ads, images) [9]. This aspect must be taken into
account in neuromarketing studies. Loosely speaking, we can say that neuromarketing
studies involve cognitive brain processes, such as working memory and visual object
recognition, related to the consumption of multimedia contents/videos, and, affective brain
processes, such as emotions, related to preferences about products.

EEG signals play an important role in neuromarketing since they provide us with
the ability to study cognition and affection with high-temporal resolution. EEG signals
have been used, among others, to evaluate TV advertisements and consumers’ preferences
and choices. The most prominent brain activity features that are being employed in EEG-
based neuromarketing studies include: spectral features, asymmetry between brain’s
hemispheres, and, Inter-Subject Correlations (ISCs) [10]. Many researchers have studied the
relationship of spectral features to choice behavior [11], consumer’s preferences [12–14], and
the impact of advertisements [15]. Additionally, hemispheric asymmetry has been linked to
approach/withdrawal behaviors [16]. From a neuromarketing perspective, it has been used
to study the decision of purchasing a product [17], to evaluate TV advertisements [18], and
to predict consumer’s preferences [13] and consumer’s engagement [19,20]. Finally, EEG-
based ISCs is a relatively new measurement suitable for studying long-duration stimuli [10].
ISCs are capable of expressing the overall engagement level while participants are being
exposed to video stimuli. ISCs were used to predict marketing outcomes with respect to
advertisements [21] and to predict consumer preferences [13].

An EEG-based BCI system is composed of various modules, including data acquisition,
pre-processing of data, and the data analysis module. EEG signals are complex, non-linear,
and non-stationary. However, they can be considered stationary within short time intervals.
All the above cause the actual interpretation of EEG signals to be very challenging. Con-
sidering, also, the fact that most marketing-related experiments are usually performed in
complicated and noisy environments where the user is subject to many external stimuli and
internal cognitive tasks, the problem of analyzing the EEG data for neuromarketing pur-
poses is becoming more challenging. In general, EEG data analysis (after the extraction of
specific features) includes either the employment of statistical methods (e.g., t-tests) [22,23]
or the use of Machine Learning (ML) approaches to realize decoding schemes. The most
common ML schemes that are being employed in such neuromarketing studies are based
on Support Vector Machines (SVM) and k-Nearest Neighbors (kNN) [13–15]. It also worth
mentioning that, although Deep learning (DL) has shown prominent results in many BCI
applications [24–26], its employment in neuromarketing is particularly challenging due
to the lack of sufficiently large neuromarketing datasets and the variability of EEG signal
across time, sessions, and subjects [27].

From a neuromarketing perspective, we can observe that brain activity patterns
(i.e., spectral features, asymmetry between brain’s hemispheres, and, ISCs) are used to
discriminate between consumers’ preferences. However, typical ML approaches treat
these patterns as data points in a space and they learn from the properties of individual
data points, but those properties do not include information about how these patterns are
connected (i.e., interactions between data points) [28]. To include interactions between
activity patterns, we can used a graph, and, subsequently, find a methodological approach
to incorporate information about the graph’s structure into the ML model. In our work, we
use this information by adopting a graph-based prior distribution. Intuitively, our method,
besides using brain activity patterns to construct the dictionary matrix, use, also, the
interactions between these patterns, through the prior distribution, to discriminate between
consumers’ preferences. Hence, our method exploits the brain activity patterns, and their
interactions, that are appearing during the decision processes related to neuromarketing.

In our work, we propose a new classifier for neuromarketing purposes that is based on
the idea of sparse representations, called Sparse Representation Classification (SRC) [29–32].
SRC classifiers have been successfully used in face recognition [29] and in the classification
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of EEG-based motor imagery tasks [31,33]. Our basic assumption about the adoption of the
SRC classifier is that brain activity patterns, belonging to the same cognitive (or affective)
process, lie on the same linear subspace [31,33,34]. In our work, we use this classifier to
provide prediction algorithms related to participant’s preferences and product’s identifica-
tion, which are two important problems in neuromarketing studies. More specifically, the
contributions of our paper are:

• We explore the sparsity of brain signals in neuromarketing scenarios and we propose
a novel SRC-based classification algorithm with applications to neuromarketing.

• We propose the use of a Sparse Bayesian Learning framework to find the weights
of the linear combination, resulting in an iterative algorithm. More specifically, the
current brain signals (i.e., a test signal) are represented as a sparse linear combination
of brain signals existing in the training set (i.e., a dictionary of brain atoms).

• We propose the use of a graph-based sparseness generator prior, hence our algorithm
is able to better use any prior knowledge and can improve classification performance
in comparison with the state-of-the-art SRC algorithms. This prior knowledge contains
structural information about the graph that describes our data.

• The proposed SRC classifier has been used as the basic part of a new EEG-based
affective signal processing framework to discriminate affective processes during a
neuromarketing experiment. Furthermore, the classifier is also used to discriminate
between the cognitive processes that are evoked due to product viewing.

Finally, we carry out extensive experiments, and the results demonstrate that our
proposed framework achieves superior performance in comparison with the existing state-
of-the-art approaches on the same EEG-based neuromarketing dataset.

The paper is organized as follows. In Section 2, we provide information about the
problem definition and the associated EEG dataset. Moreover, a description of the overall
approach and methodology is also included in this Section. Then, in Section 3, we present
the results from our experiments and we provide a comparative analysis with well-known
classifiers. After that, in Section 4, we provide a discussion related to our work and its
future directions. Finally, in Section 5, some concluding remarks are drawn.

2. Methodology

2.1. Experimental Procedure and Dataset

The original dataset [13] included 33 participants, out of which recordings from
two participants have been removed due to bad signal quality. The experiment was
designed to mimic the real experience of watching TV. The participants watched six different
commercials, three times each (for a total of eighteen commercial views). For this dataset,
eight wet electrodes were placed at positions F7, Fp1, Fpz, Fp2, F8, Fz, Cz, and Pz. The EEG
device is named StartStim 8, by the Spanish company Neuroelectrics, and has a 500 Hz
sampling rate. Furthermore, the wet electrodes consist of two parts: the fastener and the
threaded washer. The fastener is based on a Ag/AgCl sintered pellet. Additional technical
details about the device can be found on [13]. Immediately after the end of the experiment,
the participants answered a questionnaire regarding each product for 15 min. Based on the
questionnaires, it is possible to obtain an order from the most to the least likable product.
More information about the dataset can be found in [13].

The above neuromarketing EEG-based dataset can be examined from many perspec-
tives. Clearly, it is a dataset related to neuromarketing since the participants are exposed to
multimedia contents specifically designed for marketing purposes (i.e., commercial video
and advertisements). The stimuli that participants are exposed to are complex (visual
or auditory) resulting in brain states that simultaneously include cognitive and affective
phenomena. More specifically, while the participants watched a commercial video, they
were able to recognize each product (cognitive process) and various other elements of the
video. Furthermore, they provided us with information (through questionaires) about how
likeable each product was (affective process). From the above, two questions arise: which
video/product did the participant watch, and, how likeable is this video/product? These
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two questions can be answered by solving the corresponding classification problems. We
note here that each commercial video has, at least, two labels: one indicating the shown
product and the other expressing each participant’s preference.

It is important, here, to describe the classification problems that are of particular
interest in neuromarketing studies. First of all, clearly, in such studies, we seek to recognize
the preferences of the participants (affective brain states). However, in additional to the
above, it is equally important to be able to acquire information on how the brain perceived
the semantics of various marketing-based stimuli associated with a certain product (i.e.,
brand’s name, product’s images, product’s videos, etc). In other words, we seek to verify
whether the images and videos selected to advertise a certain product are sufficient to create
a unique identity for that product, or if they were unnoticed by the consumer, causing no
difference to watching information about any other product. A first step in this direction
is to examine if we could discriminate the marketing stimuli (i.e., commercial videos)
using the brain states of the participants (cognitive brain states). By doing so, we have
a clear indication that the marketing-based stimuli that have been used to advertise that
product have imprinted a unique identity in the subconscious of the consumer. Finally,
in the subsequent analysis, the classes are the preferences of the participants in the case
of affective brain states, and, the corresponding commercials (i.e., products) in the case of
cognitive brain states.

2.2. EEG Features

Prior to the feature extraction process, the EEG signals were pre-processed as in [13].
The EEG recordings were referenced to the Cz electrode and high-pass filtered at 0.1 Hz.
Furthermore, a notch filter at 50 Hz was applied. After that, Independent Component
Analysis (ICA) was applied to remove eye movements and blinks. Furthermore, a visual
inspection of the raw data was performed to exclude the apparent artifacts from later
processing. Finally, to calculate various EEG power features, spectrograms were separately
calculated on each electrode (using MATLAB’s spectrogram function) with a window of
2 s (1000 samples) and maximal overlap (999 samples). The power signals were then
aggregated into well-known EEG frequency bandwidths [13]. The ranges of the bandwidths
were: Delta 0.5–4 Hz; Theta 4–7.5 Hz; Alpha 8–12 Hz; Beta 13–25 Hz; and Gamma 26–40 Hz.
The final outcome of the preprocessing stages was power signals in the five frequency
bands for each electrode and each commercial’s viewing separately, for every participant.

The preferences of a consumer are closely connected to approach–withdrawal behav-
iors. Approach–withdrawal behavior triggers the brain’s affective processes. Furthermore,
the brain area that is involved in such situations is the frontal cortex. Hence, it is natu-
ral that frontal hemispheric asymmetry is used as an indicator of approach–withdrawal
tendencies [16,17]. Additionally, the frontal cortex is involved in the brain’s cognitive
processes [35]. Furthermore, besides treating a participant as totally independent from
the others, it is worth examining if there are any connections between the brains of the
participants under the same stimuli. In this direction, in [21], it is reported that engagement
to an activity can be measured by examining the correlation between the brains of the
participants. Based on the above, and to provide predictions about cognitive and affective
brain states, we extract EEG features that describe the brain’s frontal activity, as well as the
inter-subject correlations.

In our study, we follow the approach of [13] for feature extraction. More specifically,
we have extracted frontal band power features, hemispheric asymmetry features, and
features describing the inter-subject correlations.

Frontal Band Powers (FBP): EEG signals from the frontal electrodes—Fp1, Fp2, and
Fpz—are used to extract the power for each electrode and for each band, yielding a total of
15 features per commercial viewing.

Hemispheric asymmetry: We calculated, for each frequency band, the difference be-
tween the band powers of the frontal electrodes, F7 and F8. This resulted in five additional
features, out of which the alpha-band asymmetry was related to approach–withdrawal behavior.
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Inter-subject Correlations (ISC): Inter-subject correlation is typically employed as
a measure of engagement [21]. The ISC score is computed for each specific view of a
commercial. For each participant (or subject), the frequency band, frontal electrode, product,
and commercial viewing, we used the corresponding power signals, and cross-correlated it
with the averaged power signal of the same commercial view from all the other participants.
The cross-correlation resulted in a correlation time-series, resulting in 15 ISC scores per
commercial view for each participant. After the features’ extraction step, the features were
ordered across viewings (i.e., the highest log–power value receives the value of 1, while
the lowest log–power value receives the value of 6). Additional information about the
pre-processing of EEG signals and the extraction of EEG features can be found in [13].
Finally, the extracted EEG features (e.g., 35 features for each video) are fed into a classifier
to recognize the cognitive and affective brain states.

2.3. Sparse Representation Classification Scheme

SRC-based classification frameworks use the training samples directly as the basis to
construct the overcomplete dictionary. The idea behind this approach is that, if the dictio-
nary contains enough training samples, then a test sample can be accurately represented by
a linear combination of training examples from the same class, leading to a representation
of the test sample; in terms of the training samples, that is naturally sparse. Hence, in terms
of neuromarketing EEG-related studies, the idea is that brain’s features of a test example
can be represented well by a sparse linear combination of brain’s features from the same
class of the training examples. In this subsection, we provide a short introduction to the
basic SRC scheme, and, then, we describe the proposed SRC scheme.

Given a dataset D = {(fi, �i)}N
i=1, where fi are feature vectors of size p × 1 and �i the

corresponding labels, we can collect all the features vectors in a matrix, X ∈ �p×N . The
basic idea behind SRC is that the label of the test vector y ∈ �p is unknown; however, we
can represent it as a linear combination of the training samples from all classes, where their
labels are known:

y = Xw (1)

where X ∈ �p×N is a matrix containing all the training vectors from all classes, N is the
number of training vectors, and w ∈ �N is the coefficient vector. In the case where noise is
present, the model describing the relation between the test vector and the training vectors
is provided by:

y = Xw + e (2)

where e ∈ �p is the noise term with bound energy ‖e‖2 ≤ ε. At the beginning, in order to
find coefficients w, researchers solved the following minimization problem:

ŵ = arg min
w

{‖y − Xw‖2
2 + ρ‖w‖1}. (3)

In the Compress Sensing (CS) literature, we can find many solvers for the above
minimization problem [36,37]. The above solvers seek to find sparse solutions for the
coefficients since they assume that only a few coefficients are being activated. However, in
many cases we wish to examine a more general form of coefficient activation, which can be
described by the following minimization problem:

ŵ = arg min
w

{‖y − Xw‖2
2 + ρ f (‖w‖2) + ‖w‖1}. (4)

In order to solve the above problem, we devise a new algorithm based on the special-
ized Bayesian framework described in [38,39].

Now that we have seen how a test vector can be described as a linear combination of
training vectors, we will discuss how we could use this linear combination to provide a
classification rule. In order to provide the classification rule, we use the residuals of linear
combination. More specifically, if we let δc(·) : �N → �N be a function that selects the
coefficients associated with the class c, we can then calculate the residuals for each class
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as: rc(y) = ‖y − Xδc(ŵ)‖2, c = 1, · · · , C. The class for the given test signal is found by
using the minimum of the residuals class(y) = arg minc{rc(y)}. The overall algorithm is
described in Algorithm 1. We can see that the algorithm contains two basic steps. The
first step is related to the minimization problem, while the second step is related to the
classification rule.

Algorithm 1 Basic sparse representation classification scheme

Require: Training samples, X, with its corresponding labels, � and one test sample, y
1. Solve the minimization problem:
ŵ = arg minw{‖y − Xw‖2

2 + ‖w‖1}
2. Calculate the residuals:
rc(y) = ‖y − Xδc(ŵ)‖2, c = 1, · · · , C

Ensure: class(y) = arg minc{rc(y)}

In the next paragraphs, we provide a method to solve the problem of Equation (4)
by adopting the Sparse Bayesian Framework [38,39]. Similar to the manifold structure of
the data [39], the manifold structure of the features can be viewed as an important prior
knowledge for the inference procedure. To introduce this information into our Sparse
Representation Classification scheme, we adopt a Gaussian distribution and define a very
specialized prior over weights w that includes properties from graph theory and, also, it
has a tendency for sparsity. More specifically, our prior over weights w is defined by:

p(w|a) ∝
(
|A + B|

)1/2
exp

{
− 1

2
wT(B + A)w

}
(5)

B = λXT LX, where λ is a trade-off parameter, and L ∈ �p×p represents the graph Lapla-
cian matrix. We can observe here that matrix B can be singular; hence, we introduce an
additional term, the non-negative diagonal matrix A, A = diag{ai}N

i=1. This matrix acts as
a regularization term to counter-attack the possible instability of B, and it promotes sparse
solutions to our problem. One important factor that influences the overall approach is how
we proceed with the construction of the graph Laplacian matrix L. This matrix describes
structures between features, and, in our approach, we adopt a two-step procedure for its
construction. First, we construct the adjacency matrix V by using the k-nearest neighbor
graph. Then, the graph’s weights Vij were calculated by using the Gaussian kernel [39], and
the graph Laplacian matrix L is calculated according to: L = D − V, where D is a diagonal
matrix, Dii = ∑

p
i=1 Vij. It is important to note here, from an application perspective, that

matrix B incorporates the interactions between brain activity patterns into the model, while,
the matrix A describes the contributions of each individual’s brain activity pattern. Finally,
and importantly, in our approach, we assume that the noise, e, is white Gaussian noise,
p(e) ∼ N (0, βI), where I is the identity matrix.

Decomposing the full posterior according to p(w, a, β|y) = p(w|y, a, β)p(a, β|y), and
applying the Bayes’ rule for the weights w, we obtain:

p(w|y, a, β) =
p(y|w, β)p(w|a)

p(y|a, β)
(6)

The likelihood of the data, p(y|w, β) (derived from Equation (2)), is provided by:

p(y|w, β) =
β

p
2

(2π)
p
2
· exp

{
− β

2
(y − Xw)T(y − Xw)

}
(7)
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Combining the prior over weights (Equation (5)), the Bayes rule (Equation (6)) and
the likelihhod of the data (Equation (7)), we can obtain the posterior distribution over
w ∼ N (ŵ, Σ), where:

ŵ = ΣXTy (8)

Σ = (A + B + βXTX)−1 (9)

In our approach, we have not defined any prior information (i.e., uniformative prior)
about the model’s hyper-parameters, a and β; hence, we maximize the marginal likelihood
of the data, p(y|a, β), to obtain updates for the hyper-parameters [38]. After some algebraic
computations, the marginal likelihood is provided by:

p(y|a, β) =
∫

p(y|w, β)p(w|a)dw

∝ |C|−1/2 exp
{
− 1

2
yTC−1y

}
. (10)

Equivalently and straightforwardly, we can compute its logarithm according to:

L(a, β) = log p(y|a, β) ∝ −1
2

(
log |C|+ yTC−1y

)
(11)

where C−1 = 1
β I + X(A + B)−1XT . Maximizing L(a, β), we obtain the following updates:

a(new)
i =

γi
ŵi

(12)

β(new) =
p − ∑i γi

(y − Xŵ)T(y − Xŵ)
(13)

where γi = 1 − a(old)
i (Σii + Mii), and Mii is the diagonal elements of matrix M = A−1B(I +

A−1B)−1A−1. Our learning algorithm for the weights, w, consists of the iterative appli-
cation of Equations (8), (9), (12), and (13) until satisfying a given convergence criterion.
Finally, the proposed algorithm for classification is provided in Algorithm 2.

Algorithm 2 Proposed sparse representation classification scheme

Require: Training samples, X, with its corresponding labels, �, one test sample, y, trade off
parameter λ, and number of the nearest neighborhoods, k.
1. Construct graph Laplacian matrix, L.
2. Iterate over Equations (8), (9), (12) and (13) to find ŵ
3. Calculate the residuals:
rc(y) = ‖y − Xδc(ŵ)‖2, c = 1, · · · , C

Ensure: class(y) = arg minc{rc(y)}

3. Results

The proposed SRC algorithm has been compared with:

• The SVM classifier [13,40], using RBF (SVM-RBF) and Linear (SVM-Linear) kernels;
• The kNN classifier [13];
• The basic SRC classification scheme [29,31];
• The Random Forest (RF), an ensemble of decisions trees classifiers [13,40];
• The typical Deep Learning Neural Network (DLNN) classifier [41]. The used DLNN

consisted of three fully connected layers, where each one of the first two are followed
by a batch normalization layer and a rectified layer. The third fully connected layer is
followed by a softmax layer for classification purposes. For the DLNN optimization
procedure, we have used the Adam optimizer and the learning rate has been set to 0.1.
As an input to the network, we use the extracted features, while the first and second
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fully connected layers have 20 and 10 hidden units. Furthermore, the hidden units of
the third layer are equal to number of corresponding classes.

All the experiments have been executed in a Matlab environment. We used the
Matlab’s built-in functions for SVM-RBF, SVM-Linear, DLNN, and kNN, and have also
implemented the SRC-based classifiers in Matlab. To evaluate the performance, we used
the classification accuracy, defined as the ratio between the number of correctly classified
samples to the total number of samples. Furthermore, in the experiments where multiclass
classification is involved, we provided the corresponding confusion matrices. Furthermore,
in the presented experiments and based on the preliminary results, the trade off parameter
λ was set to 1 and the number of the nearest neighborhoods, in order to construct the k-nn
graph, was set to p/2. Finally, we perform one-way ANOVA to examine the statistical
significance between classifiers’ accuracy.

3.1. Affective States Recognition

In our first experiment, we examine if the reported classifiers can discriminate between
the least and the most preferred products (a binary classification problem). The cross
validation approach followed in this experiment was the one proposed in [13,42], so the
provided results could be directly comparable. More specifically, a train/test split of
85–15% was performed, and the provided results were obtained by repeating the train/test
split process 5000 times. The results of our first experiment are depicted in Figure 1. We
can observe that the proposed SRC method achieves a performance of 82.34%, which is
marginally better than the kNN and the basic SRC, and far better than the SVM variants
(75.70% for SVM-Linear, 49.99% for SVM-RBF, 81.96% for kNN, 79.51% for basic SRC,
73.32% for RF, and 69.16% for DLNN). Furthermore, the proposed SRC method provides
significantly better performance, more than 8%, (for this particular neuromarketing dataset)
than those reported in [13,42].

Figure 1. Averaged classification accuracy (with standard error) between the least and most preferred
products.

In our second series of experiments (with respect to participants’ preferences), we
examine if the reported classifiers can discriminate between all participants’ preferences
(a six class classification problem), and not only between the least and most preferred
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products. In this experiment, the 10-fold cross-validation approach was used in order to
examine the performance of classifiers, and this procedure has been repeated 10 times to
reduce any random effects. In Figure 2, we see the average performance for each classifier.
Again, we can observe that the SRC classifier provides the best performance among all the
methods. The SRC achieves an average accuracy of 64.70% compared to 59.47% of basic
SRC (the second best classifier). Additionally, the SVM with RBF kernel has achieved an
accuracy of 43.70%, while the SVM with linear kernel has achieved accuracy of 34.54%, the
kNN 53.63%, the RF 39.62%, and the DLNN 28,42%. Furthermore, we can observe here
that all classifiers provide accuracy above the random level (16.67%), indicating that it is
possible to distinguish between different affective states of the brain. One way ANOVA
was conducted to compare the effect of the classification methods on accuracy values. The
used methods were compared. There was a significant difference in the accuracy among
the classification methods at the p < 0.05 level for the seven methods F(6,693) = 460.71,
p < 0.001. Post hoc analysis revealed that the proposed SRC method had a significantly
better accuracy than the rest of the methods. The above-reported results provide evidence
supporting our hypothesis that EEG features from different brain processes lie into different
linear subspaces. Finally, in Figure 2, we provide the confusion matrices for each classifier.
Additionally, we calculate the class-wise recall (true positive rate), by normalizing the
confusion matrix across each row, and the class-wise precision (positive predictive value),
by normalizing across each column the confusion matrix. We can observe that, in the
majority of classes (i.e., the participants’ preferences), the proposed SRC scheme provides
the best class-wise recall and the best class-wise precision. Our model achieved the highest
recall and precision for the majority of classes, indicating better classification performance
from the other methods.

(a) Proposed SRC (b) Basic SRC

Figure 2. Cont.
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(c) kNN (d) SVM-Linear

(e) SVM-RBF (f) RF

(g) DLNN

Figure 2. Overall accuracy and confusion matrices for each method with respect to products’ prefer-
ences. Each matrix provides the overall performance of each classifier with respect to each class (in
our case, product’s preferences). Furthermore, class-wise precision (last two separated columns on
the right) and class-wise recall (last two separated rows on the bottom) are provided.
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3.2. Cognitive States Recognition

Now, we will examine if classifiers can discriminate between products’ ads/video
(a six class classification problem) using the brain signals of the participants. The basic
goal of this experiment is to examine if the cognitive states that are produced in the
participant’s brain when he/she watches a product’s video are different among products.
In this experiment, the 10-fold cross-validation approach was used and this procedure
was repeated 10 times. In Figure 3, we see the average performance for each classifier.
More specifically, we can observe that the proposed SRC achieves an average accuracy
of 68.09% compared to 51.09%, 43.92%, 57.69%, 63.83%, 47.90%, and 37.70% of SVM-RBF,
SVM-Linear, kNN, basic SRC, RF, and DLNN. Again, we can observe that the proposed SRC
classifier provides the best performance among all the methods. One-way ANOVA was
conducted to compare the effect of the classification methods on the accuracy values. The
used methods were compared. There was a significant difference in the accuracy among
the classification methods at the p < 0.05 level for the seven methods F(6,693) = 276.79,
p < 0.001. The post hoc analysis revealed that the proposed SRC method had a significantly
different accuracy than the rest of the methods. Furthermore, in Figure 3, we also provide
the confusion matrices for each classifier with the class-wise precision and class-wise recall.
The above results clearly show the superior performance of the proposed SRC scheme
against the competitive methods. Again, all the classifiers provide performance above
random classification (16.67%), a clear indication that, at some degree, the used marketing
stimuli evoke different cognitive states in the brain of the participants. Additionally, from a
neuromarketing perspective, we can observe in Figure 3 that all classifiers present their
best class-wise (or product-wise) accuracy with respect to the first product; hence, we can
conclude that the video related to this product is more easily remembered and recognized
(i.e., imprinted) by the participants.

(a) Proposed SRC (b) Basic SRC

Figure 3. Cont.
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(c) kNN (d) SVM-Linear

(e) SVM-RBF (f) RF

(g) DLNN

Figure 3. Overall accuracy and confusion matrices for each method with respect to which product the
participant views. These matrices provide the performance of each classifier with respect to each class
(in our case participant views). Furthermore, the class-wise precision (last two separated columns on
the right) and class-wise recall (last two separated rows on the bottom) are provided.
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3.3. Sensitivity to the Number of Training Samples

In this subsection, we provide experimental evidence about the sensitivity of our
method with respect to the number of training samples. More specifically, we perform
experiments with a varying number of training samples. As a case study for these experi-
ments, we use the binary classification problem related to the affective states recognition,
and, more specifically, to the recognition of the least and most preferred products. We use
the train/test split as the cross-validation approach, where we vary the size of the training
set. Furthermore, we provide comparisons with the SVM-Linear, kNN, and basic SRC.
These methods present the best performance among the comparative methods on our first
experiment (see Figure 1). The obtained results are provided in Figure 4. We can observe
that all the methods increase their performance as the size of the training set is increasing.
However, we can also observe that the proposed method provides the best performance in
all cases compared to other methods. It is interesting to note here that, to achieve a similar
level of performance, our method needs significantly less training samples. For example,
to achieve an accuracy of 75%, it needs 73 training samples, while the SVM-Linear needs
146 and the kNN around 100. Furthermore, we can observed that the basic SRC scheme
is the second best method, especially for a small number of training samples, indicating
that the assumption of sparse representation is valid for these kinds of data. Furthermore,
comparing the proposed method with the methods presented in [13,42], we can conclude
that our method needs less training samples to achieve the same level of performance. To
conclude, it is obvious that the proposed method exhibits better behaviour than the other
comparative methods with respect to the number of training samples.

Figure 4. Averaged classification accuracy by changing the number of training samples from 20 to
160 training samples.

4. Discussion

The provided experiments have shown the superior performance of our algorithm
over the SVM classifier. However, it is important to the here three basic methodological
differences between the SVM classifier and the proposed SRC-based classifier. The first
difference is on how the presented algorithms are using the training data. The SVM is
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an eager learner [40,41], determining the decision boundary from the training data before
considering any testing sample. On the other side, the SRC classifier (similar to kNN) is
a lazy learner [40,41], just storing training samples and waiting until it is given a testing
sample before considering any computation, or learning. The second difference lies on how
each methodology deals with what is called linear combination. The SVM linearly combines
the features in order to provide a decision about the current testing sample. On the other
side, the SRC classifier linearly combines the training samples in order to decide about the
testing sample. The third difference lies on the underlying assumptions about the structure
of the data. The SVM assumes that the classes are discriminated by hyperplanes, while the
SRC assumes that classes lie in different subspaces; hence, a testing sample can be linearly
represented more accurately by the training samples of the same class.

From the above properties, we can observe that, when a new test signal arrives, our
approach needs to find the weights before deciding for the label. Instead, classifiers such as
SVM just compute a linear combination since the weights are learned before processing the
test signal. Hence, the computational complexity of our algorithm is considerably larger.
However, we can mitigate, at some degree, for this disadvantage. More specifically, we
can derive a fast version of the above algorithm adopting the fast marginal likelihood
maximization procedure. This fast version provides an elegant treatment of feature vectors
by adaptively constructing the dictionary matrix through three basic operators: addition,
deletion, and re-estimation. More information on this subject can be found in [38,39].

One important aspect of our approach is related to the construction of the dictionary.
The sparse representation modeling of data assumes an ability to describe a test sample
as linear combinations of a few training samples from a training set (i.e., atoms from a
pre-specified dictionary) [43]. Under this view, the choice of the training set (or dictionary)
is crucial for the success of this model. In general, the choice of a proper dictionary can be
performed by building a sparsifying dictionary based on a mathematical model of the data
or learning a dictionary from the training set. In our work, we constructed the dictionary
from the data using a simplified approach. More specifically, the dictionary was constructed
by concatenating the extracted feature vectors. However, someone has the possibility to
learn a specialized dictionary from the particular data using approaches such as kSVD [43].
Furthermore, features that by design lead to sparse representations could be adopted.
One such case are the features based on Common Spatial Patterns (CSP). These types of
features have been used under the concept of sparse representation in motor imagery
problems [31]. More specifically, CSP features lead to a dictionary that partially posses the
property of incoherence (i.e., incoherence between classes) [31]. A crucial property that has
connections with Compressive Sensing theory. In the future, it is our intention to use the
aforementioned methods for constructing a more suitable dictionary for the proposed SRC
classification scheme.

In our approach, we have used features related to brain activity. These features are
used to discriminate between the preferences of a participant (i.e., the least and most
preferred products) and/or visual stimuli (i.e., which product’s video the participant
watch). However, the above features ignore, or at least they do not fully exploit, a very
important property of brain that is related to the connectivity between brain’s areas in
response to a stimuli. Brain connectivity has shown great potential in the recognition of
brain diseases [44,45] and in BCI systems [46]. Hence, future extensions of our algorithm
could include features based on brain connectivity. Furthermore, an approach similar
to [26] could be adopted where time–frequency (TF) maps (or features) of EEG signals are
extracted and used as features. It is interesting to examine if this type of features possess
similar properties to the CSP features. Furthermore, we note that we have extracted features
that describe the brain activity patterns (spectral features), asymmetry between brain’s
areas, and correlations between the participants. We can observe that these features try to
explain the different characteristics of the brain, so they can be considered as features that
belong to different families. Hence, in the future, a more sophisticated fusion approach
could be adopted instead of the concatenation approach.
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It is important to discuss some issues related to the selected channels of our work.
The provided channels do not cover the entire brain; however, they are suitable for neuro-
marketing purposes because the electrode sites are located in the prefrontal cortex. The
prefrontal cortex is associated with sustained attention, emotions, working memory, and
executive planning [16,47], Furthermore, recent evidence suggests that it may be an integral
part for visual perception and recognition [48]. Additionally, prefrontal EEG channels
have several attractive properties for real-world applications: discreet (not clearly visible),
unobtrusive, comfortable to wear, impeding the user as little as possible, and user-friendly,
since they can be operated and attached by the user [49,50]. However, there is a compromise
in the recording quality resulting into noisy signals, with low SNR. Clearly, more channels
covering all four brain cortices could be used if someone desires to perform an intensive
analysis of neural responses using the richer representations that are offered by the larger
number of channels. In the current study, we demonstrate that the contribution of EEG
measures to prediction with a cost-effective electrode array is possible.

Most neuromarketing-related EEG studies explore the affective states of the brain,
ignoring the cognitive aspect of the problem. Identifying EEG-based discriminative fea-
tures for video categorization might provide meaningful insight about the human visual
perception systems [9,51]. As a consequence, it will greatly advance the performance of
BCI-based applications enabling a new form of brain-based neuromarketing-related video
labeling. Furthermore, during the cognitive stage of watching video commercials, the
parietal region receives sensory stimuli and messages from different brain regions. During
this cognitive integration, the stimulus is represented in the human brain, according to its
physical characteristics or personal experience [22]. Additionally, in the cognitive process
involved for the understanding of objects, a high-level multimodal semantic integration
occurs. All the above cognitive phenomena influence the affective brain’s states brought
on by the video/ads and are creating an impact on the final preference decision about this
video/these ads [22]. In our work, we provide evidence that the EEG signals from neuro-
marketing studies can be used to provide additional information to the experimenter related
to the recognition of visual objects from the participant’s brain. The recognition of ads using
EEG data may help us to better understand the decision process inside the human brain
and, potentially, it could be helpful for designing a highly robust, possibly brain-inspired
model related to the human affection process with applications to neuromarketing.

5. Conclusions

In this work, we have proposed a new SRC-based classifier for the recognition of affec-
tive and cognitive brain states for neuromarketing purposes. More specifically, an extension
of the basic SRC scheme was proposed that utilizes the graph properties of neuroimaging
data. Our experiments have shown that the extended SRC classifier is capable of achieving
better performance than the widely used classifiers in neuromarketing studies such as the
SVM, kNN, DLNN, RF, and decoders based on Riemannian Geometry. Furthermore, based
on the provided results, we can see that it is able to accurately discriminate between cogni-
tive tasks (different products) and between affective tasks (the participants’ preferences).
Our experimental analysis provides evidence that EEG signals could be used for predicting
consumers’ preferences in neuromarketing scenarios. Our algorithm has been tested on a
dataset with 33 participants, which is a suitable number for our experiments; however, a
much larger number of participants is required to ensure the generalization of our work;
hence, in the future, we intent to construct and release to the scientific community a new
dataset related to neuromarketing and EEG. Finally, high-level future extensions of our
work could include the introduction of video semantics in order to discover additional
perspectives of the same dataset, and the usage of transfer learning approaches to predict
the preferences of one specific participant.
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Abstract: Activity in the gamma range is related to many sensory and cognitive processes that
are impaired in neuropsychiatric conditions. Therefore, individualized measures of gamma-band
activity are considered to be potential markers that reflect the state of networks within the brain.
Relatively little has been studied in respect of the individual gamma frequency (IGF) parameter. The
methodology for determining the IGF is not well established. In the present work, we tested the
extraction of IGFs from electroencephalogram (EEG) data in two datasets where subjects received
auditory stimulation consisting of clicks with varying inter-click periods, covering a 30–60 Hz
range: in 80 young subjects EEG was recorded with 64 gel-based electrodes; in 33 young subjects,
EEG was recorded using three active dry electrodes. IGFs were extracted from either fifteen or
three electrodes in frontocentral regions by estimating the individual-specific frequency that most
consistently exhibited high phase locking during the stimulation. The method showed overall high
reliability of extracted IGFs for all extraction approaches; however, averaging over channels resulted
in somewhat higher reliability scores. This work demonstrates that the estimation of individual
gamma frequency is possible using a limited number of both the gel and dry electrodes from responses
to click-based chirp-modulated sounds.

Keywords: individual gamma frequency (IGF); auditory steady-state response (ASSR); dry electrodes

1. Introduction

A great interest in individualized markers of brain activity that have potential clinical
or neuro-technological applications has recently emerged. This attention has largely been
drawn to electroencephalography (EEG), which provides cheap and fast assessment oppor-
tunities which are applicable even outside the laboratory in ecologically valid settings. The
analysis of the signal offers large possibilities with a focus on versatile domains and func-
tional outcomes. Several authors have addressed individual resonant frequencies, i.e., the
largest frequencies of the activity of subjects, as a reflection of the state of neural networks
relating them to certain functional manifestations. To illustrate, peak alpha frequencies
have been shown to be related to performance in cognitive tasks [1,2], whereas peak theta
frequencies were proposed to relate to cognitive control [3]. Similarly, peak frequencies
in the gamma range were addressed. The gamma-range activity has been argued to be
important for many cognitive and sensory processes and is frequently impaired in neu-
ropsychiatric conditions. For example, the preferred frequencies in the gamma range were
related to the ability to detect a gap in the sounds, i.e., to the temporal sampling rate in
the auditory system [4,5]. Additionally, peak frequencies in the gamma range were shown
to decline with age [6,7] and to “slow down” in subjects with developmental dyslexia [8],
patients with schizophrenia [9,10], or Alzheimer’s disease [6]. This suggests that peak
gamma frequencies might have a physiological meaning and deserve further investigation.
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However, since a prominent peak in the gamma activity is usually not observed in
the EEG frequency spectra, determining individual-specific dominant gamma frequency
(individual gamma frequency, IGF) is not a straightforward task. It is not entirely clear
what is the best method of measurement for gamma range preferred frequencies. Attempts
were made to extract it from resting-state EEG data [6], from a response to transient sensory
stimuli [11,12], or in response to some meaningful cognitive tasks and related events [13,14].
Alternatively, the periodic stimulation testing of the most preferred frequency, defined
as generating the largest response, was employed utilizing an auditory steady-state ap-
proach. To illustrate, Zaehle et al. stimulated using amplitude-modulate sounds at single
frequencies spanning a 20–100 Hz range and estimated the preferred gamma frequencies
to be around 30–60 Hz with a peak at 48 Hz [15]. Similarly, Gransier et al. tested a range
of between 0.5 and 100 Hz showing that peak was within the 30–60 Hz range, with a
mean of 45 Hz [16]. However, stimulation with single frequencies is time-consuming and
problematic for clinical assessment; thus more elaborate approaches need to be developed.
As an alternative, a chirp-based stimulation was proposed, demonstrating its capability to
detect peak responses in the gamma range [17,18]. Chirp sounds represent a stimulation
type where the amplitude modulation of the carrier covers certain frequency ranges of
interest. However, amplitude-modulated sounds are known to evoke less pronounced
EEG responses [19]. To utilize the benefits of the click-based stimulation that produces
strong brain responses, we recently tested the ability of stimuli composed of single clicks
when spaced in a logarithmic manner to evoke gamma-range responses [20]. This approach
demonstrated that in response to stimulation, a peak in the gamma range could be ob-
served, and responses at the peak were related to certain cognitive abilities, namely, the
time needed to perform complex information-processing tasks [20,21].

The abovementioned works were performed in laboratory settings using research-
grade EEG equipment. Nevertheless, modern experimental situations require that the
methods work in less controlled experimental settings, e.g., on the data of a small number
of dry EEG channels that allow for fast assessment. This would enable easier translational
application and assessment in more naturalistic settings.

In this work, we tested whether it was possible to reliably extract individual gamma
peak information from the responses to auditory chirp-based stimulations collected with
research-grade EEG equipment and dense electrode placement over the region of interest
where a response was observed. Then, we tested the approach on data collected with
custom-made dry EEG electrodes and a low number of EEG channels. We focused on the
estimation of IGF based on the phase-locking measure that was shown to produce the
strongest and most reliable results for classical auditory-steady state responses [22] and
more pronounced results for click-based chirp stimulation [20,21].

2. Materials and Methods

2.1. Participants

A group of 80 young participants (42 females, 2 left-handed; mean age ± SD: 26.07 ± 4.28)
without a reported history of psychiatric and neurological disorders participated in the
study using a high-density EEG system. The hearing thresholds of all the subjects were
within the normal range (<25 dB HL at octave frequencies). Participants abstained from
alcohol 24 h prior to the testing and did not consume nicotine and caffeine-containing
drinks for at least one hour prior to the experiment. The study was approved by the Vilnius
Regional Biomedical Research Ethics Committee (no. 2020/3-1213-701), and all participants
provided their written informed consent.

A group of 33 young subjects (15 females; mean age ± SD: 27.8 ± 5.85) without
a reported history of psychiatric and neurological disorders participated in this study
utilizing a custom-made dry electrode EEG system. All subjects had normal hearing along
with normal or corrected-to-normal vision. Subjects provided written informed consent
after the procedural details had been explained and before the experiment. All experimental
procedures were approved by the Ethics Committee for Human and Animal Research of
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the National Institute of Information and Communications Technology (no. B210152204).
The experiment was performed in accordance with the ethical standards described in the
Declaration of Helsinki.

2.2. EEG Acquisition

A 64-channel EEG signal was recorded with an ANT device (ANT Neuro, Hengelo,
The Netherlands) and WaveGuard EEG gel-based cap with integrated Ag/AgCl electrodes
which were placed according to the 10-10 International electrode placement system. Mas-
toids were used as a reference; the ground electrode was attached close to Fz. Impedance
was kept below 20 kΩ, and the sampling rate was set at 1024 Hz. Simultaneously, vertical
and horizontal electro-occulograms (VEOG and HEOG) were recorded from above and
below the left eye and from the right and left outer canthi.

The 3-channel EEG data were collected using a wireless portable system (PolymateM-
ini AP108, Miyuki Giken Co., Ltd., Tokyo, Japan) with three active dry electrodes (Unique
Medical Co., Ltd., Tokyo, Japan) [23] positioned at FC3, FCz, and FC4 according to the
10–20 International electrode placement system. The right mastoid was used as a reference;
the ground electrode was attached to the left mastoid. The sampling rate was set at 500 Hz.
Simultaneously, vertical and horizontal electro-occulograms (VEOG and HEOG) were
recorded from above and at the side of the left eye.

2.3. Auditory Stimulation

Stimulus trains were created of single identical 1.5 ms white-noise bursts of alternating
polarity spaced with changing inter-click periods to cover a range from 30 to 60 Hz in a
decreasing-then-increasing order. The duration of the stimulus train was 1500 ms, and
200 repetitions were presented with 700–1000 ms inter-stimulus intervals. The schematic
representation of the sounds used is presented in Figure 1A. The auditory stimuli were
designed in the Matlab 2014 environment (The MathWorks, Inc., Natick, MA, USA) and
presented binaurally through Shure SE215 earphones (in the 64-channel group) and through
RHA MA750 earphones (in three dry electrode groups). The sound pressure level was set
at 60 dB.

Figure 1. (A) A schematic representation of the sound stimulus used in this study. (B) Electrode
placement for 64- and 3-channel systems. Channels used for analysis are colored in green. (C) A
schematic representation of time-window definition for the calculation of IGFs from PLI. The bold
red line indicates the timing of the stimulation; the red dashed line denotes the edge of averaging
window (+150 ms). a.u.—arbitrary units.
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2.4. EEG Processing

The 64-channel EEG data were pre-processed in EEGLAB for MatLab© [24] in a
manner as described in previous research [20]. The power-line noise was removed using
multi-tapering and Thomas F-statistics (CleanLine plugin for EEGLAB). The data were
visually inspected, and channels with substantial noise (shift, movements) were removed.
Further, EEG data were submitted to an independent component analysis (ICA) that was
performed with the ICA-implementation of EEGLAB (‘runica’ with default settings [25,26])
after Independent components relating to eye movements (blinks and saccades), and ECG
were removed. The removed channels were then reconstructed using a 3D spherical spline
method [27].

The 3-channel EEG data were offline pre-processed in EEGLAB for MatLab© [24].
An ICA was performed with the ICA implementation of EEGLAB (‘runica’ with default
settings) after the visual inspection. Independent components related to eye movements
(blinks and saccades) were removed.

2.5. Individual Gamma Frequency Extraction

The analysis of all the data was run using Fieldtrip [28] functions in MATLAB R2020a.
Time-frequency transformation using a complex Morlet wavelet (14 cycles) was applied to
the signal within a 1–120 Hz range. The phase-locking index (PLI) was used as a measure
of interest and was known to be least sensitive to noise and produced the most stable
results. To create responses for each subject, 100 iterations were run with 100 randomly
selected epochs. In the 64-channel group, electrodes covering the frontocentral region
where a gamma response to auditory stimulations was consistently observed and selected
for the analysis (Figure 1B). For the 3-channel data, all electrodes were included in the
analysis. The responses were averaged within 150 ms time intervals for each frequency
from 30 to 60 Hz, in steps of 1 Hz. The averaging windows (marked with a red dashed
line in Figure 1C) were selected based on the time onset of the corresponding frequency in
the chirp-like stimulus (red bold line in Figure 1C), both in the chirp-down and chirp-up
periods (Figure 1C).

Several IGF estimation approaches were tested. First, different sets of channels were
selected for 64-channel data: 15 channels (F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3,
C1, Cz, C2, and C4) or 3 channels (FC3, FCz, and FC4). Secondly, for both sets of selected
channels, the PLI values in chirp-down and chirp-up periods were either averaged together
to obtain a single IGF estimate for each frequency or were analyzed separately to obtain
two IGF estimates–one for the down part and one for the up part. This was conducted
in order to account for the possibility that “slowing” or “speeding” (frequency change)
could depend on the direction of stimulation. These 6 approaches are further referred to
as “IGF extraction condition”: electrodes kept, down-up; electrodes averaged, down-up;
electrodes kept, down; electrodes kept, up; electrodes averaged, down; electrodes averaged,
up. Furthermore, the outputs within each selected channel were also averaged or kept
separated. In all of these approaches, 5 dominant frequencies within a 30–60 Hz range with
the highest PLI values were extracted for each trial iteration (and channel, if channels were
not averaged), resulting in a trial iteration (×channel) × the top 5 frequencies of the matrix
for each subject.

To estimate the most prevalent IGFs, the mode was computed from all the values
within the matrix for each subject following the reasoning of Bjekić et al. [29]. The
participant-level reliability of IGF was calculated as the ratio between the number of
IGF values within the whole matrix and the total number of cells within the matrix after
excluding the last dimension, which represented the top 5 frequencies. The rationale behind
choosing this divisor was that any frequency value could be present only once among a
single set of the top 5 frequencies, thus excluding the last dimension, which allowed one to
estimate how consistently the IGF value appeared among the dominant 5 frequencies in
each trial iteration and (if not averaged) each channel. The computed IGF reliability ratios
of all subjects were further divided into ranges: singular IGF (>0.8), high IGF reliability
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(0.51–0.8), medium IGF reliability (0.31–0.5), low IGF reliability (0.16–0.3), and no IGF
(≤0.15). The example of IGF estimation from a single subject is presented in Figure 2.
To further compare the reliability ratios across different IGF extraction conditions, a non-
parametric Friedman test and post hoc Wilcoxon pairwise comparisons with Bonferroni
correction were applied.

Figure 2. An example of IGF estimation on an average of 15 channels and averaged chirp-down and
chirp-up parts in two subjects: the matrix of 100 trial iterations and 5 frequencies displaying the
highest PLI response. The extracted IGF is marked in red.

3. Results

For visualization purposes, the time-frequency plots of PLIs for two representative
subjects of data averaged over 15 gel electrodes with corresponding topographies at es-
timated IGF for chirp-down, chirp-up, and both parts averaged (A), and time-frequency
plots of PLIs for two representative subjects for data averaged over 3 dry electrodes (B) are
presented in Figure 3.

Figure 3. Example of time-frequency plots of PLIs. (A) Time-frequency plots of PLIs for two subjects
from 15 gel electrodes data. Topoplots at IGF were created separately for chirp-down, chirp-up,
and the averaging of both parts. (B) Time-frequency plots of PLIs for two subjects from three dry
electrodes data.
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3.1. 64-channel Gel Electrode System

The descriptive statistics of IGF estimation for all the tested conditions are presented
in Table 1. Alongside the mean values, ranges of estimated IGF values and reliability scores
for every method tested are presented.

Table 1. Descriptive statistics of the IGF estimations and IGF reliability intervals from 64-channel gel
electrode data.

Descriptive Statistics Reliability Intervals *

IGF Extraction Condition
Mean

IGF (Hz)

IGF
Range
(Hz)

Mean
Reliability

Reliability
Range

Singular
IGF (n)

High
(n)

Medium
(n)

Low
(n)

No IGF
(n)

15
ch

an
ne

ls

Electrodes kept, down-up 37 (±4) 30–47 0.67 (±0.16) 0.27–0.98 15 47 17 1 0
Electrodes averaged, down-up 37 (±4) 30–47 0.89 (±0.12) 0.47–1.0 62 17 1 0 0

Electrodes kept, down 37 (±5) 31–53 0.59 (±0.16) 0.29–0.95 11 42 26 1 0
Electrodes kept, up 37 (±3) 30–45 0.66 (±0.13) 0.32–0.97 10 59 11 0 0

Electrodes averaged, down 38 (±5) 31–52 0.83 (±0.15) 0.51–1.0 47 33 0 0 0
Electrodes averaged, up 37 (±3) 30–46 0.89 (±0.13) 0.58–1.0 62 18 0 0 0

3
ch

an
ne

ls

Electrodes kept, down-up 37 (±4) 30–49 0.71 (±0.18) 0.38–1.0 28 40 12 0 0
Electrodes averaged, down-up 36 (±4) 30–49 0.88 (±0.14) 0.47–1.0 58 21 1 0 0

Electrodes kept, down 37 (±5) 31–52 0.64 (±0.18) 0.34–0.98 18 41 21 0 0
Electrodes kept, up 37 (±4) 30–50 0.69 (±0.16) 0.32–0.99 22 47 11 0 0

Electrodes averaged, down 38 (±6) 30–52 0.82 (±0.16) 0.48–1.0 48 30 2 0 0
Electrodes averaged, up 37 (±4) 30–51 0.87 (±0.13) 0.42–1.0 57 22 1 0 0

* Singular: >0.8; high reliability: 0.51–0.8; medium reliability: 0.31–0.5; low reliability: 0.16–0.3; no IGF: ≤0.15.

3.1.1. Chirp-Down and Up Averaged

The analysis on averaged chirp-down and chirp-up parts when each of the 15 channels
was evaluated separately yielded the IGFs for each subject with a mean of 37 (±4) Hz and
a reliability ratio of 0.67 (±0.16). The reliability scores mostly ranged from high to medium,
with only one case of low reliability. When channels were averaged, the mean IGF was
37 (±4) Hz, and the reliability ratio was, on average, 0.89 (±0.12). The reliability scores
ranged from a very high to high, with only one medium reliability case.

In the case of three channels, when analyzed separately, averaging chirp-down and
chirp-up parts yielded IGFs of 37 (±4) Hz with a reliability ratio of 0.71 (±0.18). Reliability
scores were mostly in a range from high to medium. The analysis of IGFs on chirp-up and
down averaged parts when three channels were averaged estimated the IGFs to be 36 (±4)
Hz, with a reliability of 0.88 (±0.14). The reliability scores were mostly very high or high.

3.1.2. Chirp-Down and Up Separate

The analysis on separate chirp-down and chirp-up parts and each of the 15 channels
separately yielded comparable IGFs in chirp-down (37 ± 5 Hz) and chirp-up periods
(37 ± 3 Hz); however, for the chirp-down period, the reliability ratio was somewhat lower
(0.59 ± 0.16) than for chirp-up (0.66 ± 0.13). In both cases, reliability scores predominantly
fell into a range from high to medium. Correlations between IGFs were calculated to
see how IGF in chirp-down and up parts were related. A significant positive correlation
was obtained (r = 0.47, p < 0.001). When IGFs were analyzed separately for chirp-down
and chirp-up periods, with 15 averaged channels, IGF for the chirp-down period was
38 (±5) Hz, and for the chirp-up period was 37 (±3) Hz. The reliability ratio for chirp-
down was slightly lower (0.83 ± 0.15) than for chirp-up (0.89 ± 0.13); however, in both
cases, the reliability scores were in favor of either singular IGF or high-reliability outcome.
Correlations between the IGFs confirmed that estimates from the chirp-down and chirp-up
parts were positively related (r = 0.56, p < 0.001).

When chirp-down and chirp-up parts were analyzed separately on three electrodes,
IGFs for the chirp-down period were at 37 (±5) Hz with a reliability ratio of 0.64 (±0.18),
and for the chirp-up part at 37 (±4) Hz with a reliability of 0.69 (±0.16). The reliability
scores were mostly in a range from high to medium. Correlations between IGF values for

242



Sensors 2023, 23, 2826

both periods revealed a significant positive association (IGF: r = 0.45, p < 0.001). When the
three electrodes were averaged, and the chirp-down and chirp-up parts were analyzed
separately, IGFs for the chirp-down period were estimated at 38 (±6) Hz with a reliability
ratio of 0.82 (±0.16) and for the chirp-up parts at 37 (±4) Hz with the reliability ratio of
0.87 (±0.13). The reliability scores fell into a range from very high to medium. IGFs in
chirp-down and chirp-up periods were positively correlated (IGF: r = 0.44, p < 0.001).

3.1.3. Comparison of Reliability Ratios across IGF Extraction Conditions

There was a statistically significant difference in reliability ratios depending on the
extraction condition (χ2(11) = 587.55, p < 0.001). Post hoc pairwise comparisons (Supple-
mentary Material, Table S1) showed significant differences in reliability estimates between
conditions with averaged electrodes vs. the electrodes kept, regardless of the number of
channels and whether the chirp-down and chirp-up parts were taken together or separately.
No difference in reliability ratios was observed between the chirp-down and chirp-up
extraction conditions. In addition, significant differences were not present when comparing
the reliability estimates from 15-channel and 3-channel extraction conditions.

3.2. 3-Channel Dry Electrode System

The descriptive statistics of IGF estimation in all the tested conditions are presented in
Table 2. Alongside the mean values, ranges of estimated IGF values and reliability scores
for every method tested are presented.

Table 2. Descriptive statistics of the IGF estimations and IGF reliability intervals from 3-channel dry
electrode data.

Descriptive Statistics Reliability Intervals *

IGF Extraction
Condition

Mean
IGF (Hz)

IGF
Range
(Hz)

Mean
Reliability

Reliability
Range

Singular
IGF (n)

High
(n)

Medium
(n)

Low
(n)

No IGF
(n)

3
ch

an
ne

ls

Electrodes kept, down-up 41 (±8) 31–57 0.71 (±0.18) 0.34–1.0 9 19 5 0 0
Electrodes averaged, down-up 41 (±8) 31–57 0.75 (±0.17) 0.38–1.0 14 14 5 0 0

Electrodes kept, down 42 (±10) 30–60 0.70 (±0.17) 0.33–0.99 10 19 4 0 0
Electrodes kept, up 41 (±7) 30–59 0.72 (±0.18) 0.30–1.0 12 16 4 1 0

Electrodes averaged, down 42 (±9) 30–60 0.75 (±0.17) 0.37–0.99 14 16 3 0 0
Electrodes averaged, up 40 (±7) 30–60 0.75 (±0.17) 0.35–1.0 15 16 2 0 0

* Singular: >0.8; high reliability: 0.51–0.8; medium reliability: 0.31–0.5; low reliability: 0.16–0.3; no IGF: ≤0.15.

3.2.1. Chirp-Down and Up Averaged

The analysis on averaged chirp-down and chirp-up parts when each of the three
channels was evaluated separately yielded IGFs of 41 (±8) Hz with a reliability ratio of
0.71 (±0.18). Reliability scores were mostly defined in a range from high to medium.
The analysis of IGFs on chirp-up and down parts together when the three channels were
averaged estimated the IGFs to be 41 (±8) Hz, with a reliability of 0.75 (±0.17). The
reliability scores were mostly very high and high.

3.2.2. Chirp-Down and Up Separate

When the chirp-down and chirp-up parts were analyzed separately on three electrodes,
IGFs for the chirp-down period were at 42 (±10) Hz with a reliability ratio of 0.70 (±0.17),
and for the chirp-up part at 41 (±7) Hz with a reliability of 0.72 (±0.18). The reliability
scores mostly ranged from high to medium. Correlations between IGF values for both
periods revealed a significant positive association (IGF: r = 0.53, p < 0.005). When chirp-
down and chirp-up parts were analyzed separately on three averaged electrodes, the IGFs
for the chirp-down period were estimated at 42 (±9) Hz with a reliability ratio of 0.75
(±0.17), and for the chirp-up parts at 40 (±7) Hz with the reliability ratio of 0.75 (±0.17).
The reliability scores fell into a very high–medium range. IGFs in chirp-down and chirp-up
periods were positively correlated (IGF: r = 0.60, p < 0.001).
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3.2.3. Comparison of Reliability Ratios across IGF Extraction Conditions

There was a statistically significant difference in reliability ratios depending on the
extraction condition (χ2(5) = 22.07, p < 0.001). Post hoc pairwise comparisons (Supple-
mentary Material, Table S2) showed significant differences in reliability estimates between
the corresponding conditions with averaged electrodes vs. the electrodes kept. No differ-
ences in reliability ratios were observed between the chirp-down and chirp-up extraction
conditions.

4. Discussion

Recently, attention has been drawn to the individualized parameters of the EEG signal,
which could efficiently be used as biomarkers or as a guide to track brain activity for
neurotechnological applications. One of the parameters is the individual gamma peak
frequency (IGF), which has shown some promising physiologically relevant changes in
clinical populations [8,10,30]. However, an efficient way for IGF estimation still needs to be
developed. The analysis of periodic responses to periodic stimulation stands as one of the
ways to probe brain oscillations [31]. This approach is frequently used in neuropsychiatric
conditions, where the great potential of the responses was shown [32,33]. Several works
demonstrated not only the gamma response per se but also the preferred frequency of the
response to show physiologically meaningful changes [7,34], suggesting that this parameter
should be investigated further as well.

This study tested the possibility of reliably extracting individual gamma peak informa-
tion from the responses to auditory chirp-based stimulation collected with research-grade
EEG equipment and dense electrode placement over the region of interest where a response
was observed. The same approach was tested on the data collected with custom-made dry
EEG electrodes and a low number of EEG channels.

We showed that responses to auditory chirp-based stimulation could be recorded with
both systems (Figure 3). Moreover, using chirp-based stimulation, we were able to reliably
estimate the IGFs with both research-grade gel electrode and low-density dry electrode
systems. According to the results (Tables 1 and 2), the reliability scores obtained from the
data recorded with gel electrodes for some IGF extraction conditions (e.g., “Electrodes
averaged, down-up”, “Electrodes averaged, down”, and “Electrodes averaged, up”) were
somewhat better than the data collected with dry electrodes (0.89 ± 0.12, 0.83 ± 0.15,
0.89 ± 0.13 for 15 gel electrodes and 0.88 ± 0.14, 0.82 ± 0.16, 0.87 ± 0.13 for 3 gel electrodes
versus 0.75 ± 0.17, 0.75 ± 0.17 and 0.75 ± 0.17 for three dry electrodes). However, when
electrodes were not averaged, and chirp-up and down parts (“Electrode kept, down” and
“Electrode kept, up”) were assessed separately, the reliability of IGF estimates from the dry
electrode system somewhat outperformed the gel electrode system (0.59 ± 0.16, 0.66 ± 0.13
for 15 gel electrodes and 0.64 ± 0.18, 0.69 ± 0.16 for 3 gel electrodes versus 0.70 ± 0.17,
0.72 ± 0.18 for three dry electrodes). The observed effect could partly be explained by
the different signal-to-noise ratios (SNR) of the two systems. In general, the SNR of dry
electrodes is low [35], and the extracted gamma from dry electrodes could have been overall
less reliable due to the captured noise (including common phase noise), thus averaging had
little effect on PLIs and reliability scores (all conditions close to 0.70–0.75, Table 2).

Importantly, our results showed that IGFs could be reliably estimated from three
channels placed within the region of interest. In line with previous observations, the largest
activation in response to auditory stimulation was evident in the frontocentral region
(topoplots, Figure 3A), and that was very similar for various IGFs in both this study and
previous reports [20,21]. This finding is also in line with earlier studies using responses to
chirp stimulation and showing that even information from a single channel placed in the
region of interest can provide physiologically relevant information [36,37]. Still, although
no major difference in reliability scores obtained from data of 15 gel channels versus three
gel channels could be observed (Table 1), averaging over channels and chirp-up and down
parts contributed to somewhat better reliability estimates–this approach showed the best
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reliability scores for all conditions (fifteen gel channels, three gel channels, and three dry
channels) that can be explained by increasing SNR [38].

We used chirp-down-up stimulation to take into account the fact that “slowing” or
“speeding” could depend on the direction of stimulation (frequency change). As can be seen
in Tables 1 and 2, averaging over channels, in general, was slightly better for producing
more reliable outcomes than the averaging of chirp-up and down parts. This potentially
suggests that for IGF estimation, the stimulation duration could be reduced by keeping only
chirp-up or down part, making the overall procedure faster and more comfortable for the
subject. Previously, responses to the chirp-up and chirp-down stimuli were shown to not
differ, and gamma-range activity did not depend on the attention level of the subject [39,40].
Moreover, IGFs estimated from chirp-down and chirp-up parts were significantly correlated
in the current report (correlation coefficients ranged between 0.44 to 0.60), suggesting that
IGFs could be extracted from the stimulation of any direction.

The proposed IGF extraction method can be easily implemented in research settings
both from auditory stimulation and IGF extraction perspectives, even when only simple
equipment with a low number of dry electrodes is available. The IGF estimation from
responses to click-based chirps has been implemented in studies on healthy young par-
ticipants by our group before [20,21] employing the simple maximal response detection
approach. The method proposed in the current study is expected to produce more reliable
results; however, it should further be tested in more diverse populations–older subjects or
clinical groups–where changes in IGF could be physiologically meaningful.

5. Conclusions

The proposed approach to estimate individual gamma frequencies in response to the
auditory click-based chirp stimulation resulted in the reliable estimation of IGFs using both
the gel and dry electrode systems. The higher reliability of extracted IGFs was observed for
data that were averaged over channels and chirp parts for the gel electrode system, and
averaging over channels was more efficient for both the gel and dry electrode systems than
averaging over chirp parts.
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//www.mdpi.com/article/10.3390/s23052826/s1. Table S1: p values of Wilcoxon pairwise compar-
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comparison across IGF extraction conditions, dry electrode data.
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Abstract: Planning goal-directed movements towards different targets is at the basis of common daily
activities (e.g., reaching), involving visual, visuomotor, and sensorimotor brain areas. Alpha (8–13 Hz)
and beta (13–30 Hz) oscillations are modulated during movement preparation and are implicated in
correct motor functioning. However, how brain regions activate and interact during reaching tasks
and how brain rhythms are functionally involved in these interactions is still limitedly explored.
Here, alpha and beta brain activity and connectivity during reaching preparation are investigated
at EEG-source level, considering a network of task-related cortical areas. Sixty-channel EEG was
recorded from 20 healthy participants during a delayed center-out reaching task and projected to
the cortex to extract the activity of 8 cortical regions per hemisphere (2 occipital, 2 parietal, 3 peri-
central, 1 frontal). Then, we analyzed event-related spectral perturbations and directed connectivity,
computed via spectral Granger causality and summarized using graph theory centrality indices (in
degree, out degree). Results suggest that alpha and beta oscillations are functionally involved in the
preparation of reaching in different ways, with the former mediating the inhibition of the ipsilateral
sensorimotor areas and disinhibition of visual areas, and the latter coordinating disinhibition of the
contralateral sensorimotor and visuomotor areas.

Keywords: electroencephalography; center-out reaching; event-related spectral perturbation (ERSP);
event-related desynchronization (ERD); spectral Granger causality; in degree and out degree

1. Introduction

Planning goal-directed movements towards visual targets at different positions in
space is at the basis of common daily activities (e.g., reaching, reach-to-grasping). The
underlying neural processing mainly involves occipital, parietal, and frontal brain areas,
spanning from visual to visuomotor to sensorimotor areas, reflecting movement preparation
and initiation [1]. Specifically, movement preparation includes the perception of the visual
cue, the extraction of high-level movement goals (e.g., a specific reach endpoint), and the
computation of low-level movement commands [2,3].

Oscillations recorded with magneto- and electro-encephalography (M/EEG) describe
the synchronous activity of thousands of anatomically aligned neurons. Neural oscillations
are strongly modulated by motor tasks; during movement preparation and execution, the
amplitude of M/EEG oscillations in alpha (8–13 Hz) and beta (13–30 Hz) bands is attenuated
in the sensorimotor areas (post-central gyrus, pre-central gyrus, and supplementary motor
areas) [4,5]. This phenomenon is known as event-related desynchronization (ERD) and is
followed by a rebound, in general also exceeding the resting value, once the movement
is executed (event-related synchronization, ERS) [4]. Such ERD can be interpreted as
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an electrophysiological neural correlate of activation (i.e., disinhibition) of cortical areas
involved in processing motor-related sensory information or in the production of motor
behavior [4], and was found to be modulated depending on the task complexity and
performance [6–8]. ERD in sensorimotor regions starts up to 2 s before movement onset and,
even when performing unimanual movements, does not remain confined in the hemisphere
contralateral to the moved hand but also involves the ipsilateral hemisphere, both during
movement preparation and execution [4,9,10]. The ERD ipsilateral to the moved hand was
found to be modulated by task complexity [11], age [12], and pathology [13] and contributes
to maintain the motor performance [14]. For example, in stroke patients, stronger alpha-
ERD was observed in the ipsilateral central sites compared to contralateral ones while
moving their paretic hand [13], supporting the idea that ipsilateral sensorimotor activity
may compensate deficits related to pathology to preserve motor performance.

Besides contralateral and ipsilateral sensorimotor areas, other areas are also involved
in motor control depending on the motor task, such as parietal and occipital areas, both in
the contralateral and ipsilateral hemisphere [14,15]. Therefore, it is well established that
successful motor functioning depends on the interactions and communications among
multiple brain regions [16]. Understanding how these areas interact is crucial from a
neurophysiological perspective, to gain insights into the mechanisms underlying motor
functions, both in healthy subjects and in patients. This knowledge can also be instrumental
for diagnostic applications and for the development of assistive and rehabilitation devices.
Indeed, brain connectivity analysis during motor tasks is a topic of intense investigation
in neuroscience, using both functional Magnetic Resonance Imaging (fMRI) techniques
and M/EEG techniques. The former are characterized by high spatial resolution allowing
a more precise anatomical allocation of connectivity couplings, but have poor temporal
resolution. The latter have a coarser spatial resolution, but their high temporal resolution
allows connectivity to be characterized in specific frequency bands, thus examining how
brain interactions are associated with different, functionally relevant brain rhythms. In
EEG-based studies, patterns of connectivity related to motor tasks are often analyzed in
alpha and beta bands (e.g., see [17–20]), although connectivity in other spectral ranges
(gamma, i.e., >30 Hz, delta, i.e., 1–4 Hz, theta, i.e., 4–8 Hz) is sometimes investigated too
(e.g., see [21–23]). In the following section, some results of connectivity studies (both fMRI-
and M/EEG-based) are delineated.

The activity of ipsilateral sensorimotor regions appears to be modulated via inter-
hemispheric interactions from the contralateral hemisphere [14,16,24,25]. While the exact
role of ipsilateral sensorimotor areas and of the connectivity coupling with the contralat-
eral ones is still debated, results corroborate the view that these mechanisms participate
somehow to control and perform unimanual movements [26]. Indeed, evidence was found
about inter-hemispheric interactions promoting inhibition in the ipsilateral sensorimotor
areas, to facilitate the contralateral processing of an upcoming movement. Interestingly,
in stroke, inhibitory influences appear decreased from the sensorimotor regions of the
lesioned hemisphere towards the contralesional ones; this suggests that a motor network
reorganization takes place so that the contralesional regions (ipsilateral to the affected
hand) may help the movement of the affected hand [20]. Oscillations in the alpha band
have been suggested to mediate a general inhibitory mechanism helping in the suppression
of task-irrelevant or task-interfering information [27,28]. An alpha-mediated inhibitory
mechanism was observed while planning actions (externally triggered), as the increase
in inter-hemispheric sensorimotor connectivity in the alpha band was found to inhibit
more the ipsilateral sensorimotor areas [10]. Moreover, inter-hemispheric coupling between
sensorimotor areas was found strengthened in the alpha and beta bands when task com-
plexity increases and when learning new motor programs [26]. Thus, increase in bilateral
interactions has been also associated to increased exigencies on the motor system [26].

Furthermore, motor tasks have been found to encompass connectivity changes in
largely distributed networks involving areas beyond the central sensorimotor ones. In
particular, there is vast evidence that fronto-central sensorimotor cortices and posterior
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parietal cortices are cooperatively involved in goal-directed actions (e.g., reaching, grasping,
interacting with objects and tools) to dynamically integrate sensory inflows and motor
outflows, for movement planning and selection, and online monitoring [29–31]. In this
regard, an increased connectivity between parietal and motor cortices was observed in the
beta band during lever pressing [32] and during preparation and execution of praxis hand
movements [33]. Lastly, beta-band connectivity between parietal and motor cortices was
also found to be modulated by the amount of visual information in a visuo-motor reaching
task [34].

Despite the intense research and the large amount of collected findings, some aspects
remain under-investigated. In particular, although reaching is a key component of mo-
tor actions that allow humans to interact with the environment, only a limited number
of studies have examined EEG-based connectivity in reaching tasks [23,34,35]. Chung
et al. [34] investigated EEG oscillatory activity and directed connectivity (via dynamic
causal modeling) during the execution of visually-guided ballistic arm movement, and
compared the effect of high vs. low visual gain. The study focused on two cortical areas
(left sensorimotor and medial parietal), considered the movement and post-movement
phase, and characterized connectivity differences between movements in the two visual
conditions. Caliandro et al. [23] analyzed scalp ERD/ERS during the execution of reach and
grasp movements, and quantified changes in the source-level connectivity network over
the whole cortex during movement compared to rest; they used a non-directed connectivity
measure (lagged coherence), and applied a graph analysis to evaluate the ‘small world-ness’
property of the network. From MEG data, Yeom et al. [35] applied a time-window shifting
approach to explore changes in brain connectivity with motor states, from movement prepa-
ration to movement execution; non-directed connections (using mutual information) were
estimated between motor-related cortical regions, and graph-based degree centralities were
computed to identify network hubs. While these studies of course provide relevant results,
they suffer from the limitations that either non-directed metrics of connectivity were used
to investigate couplings among several widely distributed regions [23,35] or directional
metrics were used to investigate the coupling between two brain regions only [34]. Thus, a
description is desired about the frequency-specific changes in directional-dependent inter-
actions evoked by a reaching task within a large network of task-related areas, including
occipital (visual), parietal, and fronto-central cortices.

In this study, we aim at contributing to this description by investigating alpha- and
beta-band oscillatory mechanisms in key brain regions during reaching movement preparation
at two levels of analysis: (i) modulations of regional power (ERD/ERS), as measured by
event-related spectral perturbations; (ii) changes in interactions between brain regions, as
measured by a directed connectivity measure (spectral Granger causality). To this aim, we
recorded EEG from 20 healthy participants while performing a delayed center-out reaching
task towards five different positions equally spaced and located in a semi-circle. The EEG
activity was projected to the cortex, and the activity of 16 cortical regions of interest (ROIs),
8 per hemisphere, was considered, by selecting the ROIs most involved in the planning and
control of reaching movements. First, a time-frequency analysis was conducted to reveal
the event-related spectral perturbations associated with reaching movement preparation,
focusing on the alpha and beta bands. Then, directed connectivity between the ROIs in
the alpha and beta bands was analyzed via spectral Granger causality. Differences in the
connectivity network between reaching preparation and rest (baseline) were emphasized
using two indices derived from the graph theory, i.e., the in degree and out degree centrality
indices quantifying the overall connectivity inflow and outflow for each ROI.

2. Materials and Methods

2.1. Participants

Twenty healthy volunteers (11 M and 9 F, aged 21.9 ± 2.3 years, mean (m) ± standard
deviation (std)) participated in the study. They were all right-handed and had normal
or corrected-to-normal vision. The study was approved by the Bioethics Committee of
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the University of Bologna (protocol code: 61243, date of approval: 15 March 2021) and
written informed consent was obtained from all participants before the beginning of the
experiment. All data were analyzed and reported anonymously.

2.2. Experimental Protocol and EEG Data Acquisition

The experimental paradigm consisted of a delayed center-out reaching task towards
five different positions equally spaced and located in a semi-circle (see Figure 1a). The
reaching targets were five red LEDs placed on a wooden plane (i.e., reaching was performed
in 2-D). LEDs were controlled using a DAQ NI USB-6008 board (National Instruments
Corp., Austin, TX, U.S.) controlled via MATLAB® (The Mathworks Inc., Natick, MA, USA).
The participants sat upright in front of the semi-circle. To support the participants’ arm
and to reduce the participants’ fatigue during the task, the task was performed with their
right arm on top of a custom-made passive mechanical arm with 2 joints (see Figure 1a),
sliding over the plane by means of a rolling ball bearing.

The experimental session consisted of 6 blocks, with a short break between blocks. In
each block, 50 trials were acquired, reaching one of the 5 targets in each trial (10 repetitions
for each target). The sequence of targets to reach was randomly generated in each block.
Each trial started with the participants’ hand resting at the center of the semi-circle (rest
position) while the participant fixated on the center of the semi-circle. After a random
interval between 2 and 3 s (rest interval) sampled from a uniform distribution, one of the
five LEDs turned on, representing the target to reach (cue-signal, target position). Then,
the participant fixated on the target to reach, waiting for 2 s for the go-signal. The go-
signal was provided by turning one of the LEDs adjacent to the LED to reach. Once the
go-signal was provided, the participant started the reaching movement towards the target
(forward movement, corresponding to a 2-D center-out reaching movement), and once they
reached the target, both LEDs providing the cue-signal and go-signal turned off. Then, the
participant switched the fixation from the target LED back to the center of the semi-circle
and remained at the target for 2 s. Finally, a new go-signal was provided by turning on the
same LED used as go-signal in the forward movement, and the participant started moving
back to the rest position (backward movement).

At the beginning of the session, each participant wore an EEG cap with 61 electrodes
(1 passive (ground) + 60 active g.SCARABEO electrodes, g.tec Medical Engineering GmbH,
Schiedlberg, UA, Austria) placed according to the 10/10 system. The reference electrode
was placed on the right earlobe and the ground electrode in AFz (see Figure 1b for electrode
locations). Signals were amplified with g.HIAMP80 Research amplifier (g.tec Medical Engi-
neering GmbH, Schiedlberg, UA, Austria), sampled at 512 Hz, and electrode impedances
were kept below 50 kΩ. A notch digital filter (stopband of 48–52 Hz), performed by the
digital signal processor of g.HIAMP80, was applied during recording.

2.3. EEG Data Analysis

In this study, the analysis was focused on source-level changes in EEG activity and con-
nectivity that occurred during the interval of preparation of the forward movement (from
the center to a periphery point), i.e., between the cue-signal (black triangle in Figure 1c)
and the first go-signal (first violet triangle in Figure 1c).
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Figure 1. (a) Schematics of the recording setup. (b) Location of electrodes and regions of interest
(ROIs). The electrodes were placed according to the 10/10 system and the ROIs considered in this
study were taken from the Desikan–Killiany atlas. The reference channel (right earlobe) is marked in
red, while the ground channel (AFz) in green. The selected ROIs were the cuneus (CU) and lateral
occipital (LO) cortices as occipital regions, the precuneus (PCU) and superior parietal (SP) cortices
as parietal regions, the post-central gyrus (PoC), the precentral gyrus (PrC), and the paracentral
lobule (PaC) as peri-central regions, and the superior frontal gyrus (SF) as frontal region. (c) Trial
sequence. Each trial started with a rest interval (2–3 s, random) that ended once a cue signal (target
LED turning on) was provided to the participant indicating the target position. Then, the participant
started preparing the center-out reaching movement (forward movement) and started the movement
only after 2 s, once the first go-signal was provided (neighbor LED turning on). Once they reached
the target, the participant held the position for 2 s while all LEDs were turned off. Finally, the second
go-signal was provided (same as for the forward movement), triggering the backward movement
toward the rest position. The fixation cross is displayed for each interval; note that, in the first scheme
of panel c (rest interval 2–3 s), the fixation cross (at the rest position) is not visible since covered by
the participants’ hand.

2.3.1. EEG Pre-Processing

The pre-processing consists of the following steps:

i. Linear detrending of signals belonging to each recording block.
ii. Band-pass filtering between 1 and 60 Hz and notch filtering at 50 Hz of signals

belonging to each recording block. Notch filtering was applied also offline since
visualization of the power spectral density of the recorded EEG signals evidenced
insufficient attenuation of the power line noise by the notch filter applied during
recording.

iii. Identification of bad channels within signals of each recording block via random
sample consensus method (RANSAC) [36].

iv. Concatenation of electrode signals across recording blocks.
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v. Removal of channels that were labelled as bad (step iii) at least in one recording
block (3 ± 2 channels per subject removed, m ± std, ranging from 0 to 8).

vi. Removal of artifacts (ocular, muscular, heart, and channel noise) via independent
component analysis (ICA) via visual inspection of the components. ICA was com-
puted using the extended Infomax algorithm [37,38] which estimates mixed sub-
Gaussian and super-Gaussian sources. Across subjects, 31 independent components
were removed, on average (ranging from 25 to 39). This relatively large number of
removed ICs derives from the long-lasting recording (3750 s overall, obtained by
concatenating 6 blocks) and on the type of performed task. Indeed, tasks involving
motor activities are more prone to create isolated non-stereotypic artifacts (such as
electrode pops, or complex movement artifacts) that are extracted in separated ICs
and that add to the classical ICs separating stereotypic artifactual activity such as
blinking, eye-movements, and heartbeat. We visually explored each IC (its time
pattern, power spectral density, and topological map) carefully before removing it,
in an effort to minimize the removal of potentially useful activity.

vii. Spherical spline interpolation of the bad channels removed in step v.
viii. Epoching into 4 s-length trials, starting 1 s before and ending 3 s after the presen-

tation of the cue-signal, i.e., after the target LED to reach turned on. Thus, trials
were defined from −1 s to 3 s, where 0 s corresponds to the onset of the cue-signal
(corresponding to the black triangle in Figure 1c).

ix. Baseline correction of each trial, by removing the mean value computed over the
rest interval from −1 s to 0 s, channel by channel.

x. Common average re-referencing.

All pre-processing steps were performed in Python using custom scripts and the
functionalities of MNE Python library (version 1.2.2) [39] for implementing step vi.

2.3.2. Cortical Activity Reconstruction and Computation of Activity within Regions of
Interest (ROIs)

Sensor-space signals (scalp signals) were transformed into source-space signals (cor-
tical signals) using MNE Python library (version 1.2.2) [39]. A template head anatomy
was adopted using the FSaverage template, with the source space restricted to the cortex
and discretized into 20,484 vertices. The forward problem [40] was solved via the bound-
ary element method, applying MNE default parameters. The inverse problem [41] was
solved using eLORETA (exact Low-Resolution Electromagnetic Tomography) [42] with
MNE default parameters, with identity noise covariance matrix, and with the dipole source
orientation constrained to be perpendicular to the cortex, resulting in one source signal per
cortical vertex (i.e., 20,484 source signals).

The whole cortical surface was parcellated into 68 regions according to the Desikan–
Killiany atlas [43], and we selected 8 regions of interest (ROIs) per hemisphere (16 in total)
for our analysis. The selection of the ROIs was based on a priori information, considering
the regions reported in the literature as most involved in motor planning and control during
reaching movements [15,44,45]. The selected ROIs (see Figure 1b) included:

i. The cuneus (CU) and the lateral occipital cortex (LO), located in the occipital lobe;
they mainly have visual functions.

ii. The precuneus (PCU) and the superior parietal lobule (SP), located in the posterior
parietal cortex; they have associative (mainly visuomotor) functions, and their
activations has been specifically associated to planning and execution of reaching
movements [29].

iii. The post-central gyrus (PoC), the precentral gyrus (PrC), and the paracentral lobule
(PaC), located in the peri-central part of the cortex. They include the somatosensory
cortex (PoC), the primary motor, premotor, and supplementary motor areas (PrC
and PaC), and overall are denoted as sensorimotor ROIs.

iv. The superior frontal gyrus (SF), located in the frontal region and implicated in
high-level motor control functions [46].
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For each trial, a single waveform representative of the neural activity of each ROI was
derived, by averaging all signals of the vertices belonging to that ROI. To avoid cancelling
out the activity in case of many vertices in the ROI with dipole orientations in opposite di-
rections, the signs of source signals that were not oriented as the “dominant direction” were
flipped before averaging, as performed in Ghumare et al. [47]. The dominant direction was
the first principal direction of all dipole orientations within the ROI. This sign flip procedure
is adopted by Brainstorm toolbox [48] when using constrained dipole orientations.

2.3.3. Cortical Event-Related Spectral Perturbation

For each subject, each trial, and each ROI, the cortical event-related spectral perturba-
tion (ERSP) were obtained based on the continuous wavelet transform of the cortical signal
representative of that ROI using complex Morlet wavelet as basis function. Specifically,
‘cmor1.5-1.0′ was used as mother wavelet, with the first parameter denoting the bandwidth
and the second parameter the normalized center frequency (normalized by the sampling
period) [49]. Therefore, the mother wavelet had center frequency of 512 Hz with 4 oscilla-
tions (scales from 64 to 42 for alpha band, and from 42 to 16 for beta band). The wavelet
transform coefficients were squared to obtain time-frequency power representations. Then,
for each subject and each ROI, these representations were averaged across trials, separately
for each of the 5 target positions, and normalized using the rest interval between −1 and 0 s
as baseline (see Grandchamp et al. [50]). Specifically, for each frequency, the average power
value between −1 and 0 s was computed, obtaining the average baseline power frequency
by frequency. Then, the ERSP was computed as the difference between the power at each
time-frequency point and the average baseline power at the same frequency, divided by
this same average baseline power (thus, ERSP expresses the difference with respect to the
baseline in percentage of the baseline).

Subsequently, for each subject and each ROI, the ERSP was averaged over the alpha
band (8–13 Hz) and beta band (13–30 Hz), obtaining alpha-ERSP and beta-ERSP. We per-
formed preliminary analyses by testing differences in alpha-ERSP and in beta-ERSP across
different targets via permutation cluster tests [51] between each possible pair of targets,
corrected for multiple comparisons via Benjamini–Hochberg [52] false discovery rate for
each band. As no significant difference was found (p > 0.05), alpha-ERSP and beta-ERSP
were also averaged across targets. Lastly, the time interval between the cue-signal and the
go-signal was divided into two non-overlapped 1 s-length windows, i.e., from 0 to 1 s (early
post-cue window) and from 1 to 2 s (late post-cue window, hereafter referred as post-cuelate).
Then, we averaged the alpha-ERSP and beta-ERSP over the late post-cue window, obtaining
the post-cuelate alpha-ERSP and post-cuelate beta-ERSP, which were assumed as mainly repre-
sentative of the alpha and beta perturbations related to reaching movement preparation.
The choice of considering this window is justified since the ERSPs in the early post-cue
window were strongly affected by the visual evoked potential elicited by the lighting of the
target LED.

This analysis was performed using custom Python scripts and the Python library
PyWavelets [53] (version 1.4.1).

2.3.4. Cortical Functional Connectivity and Degree Centralities (in Degree, out Degree)

For each subject, directional influences between ROIs in alpha and beta bands were
estimated by computing pairwise Granger causality (GC) [54] in the frequency domain.
Denoting with xi[n] and xj[n] two time series, here corresponding to the cortical signals
representative of the i-th and j-th ROI (see Section 2.3.2), the system

[
xi[n]; xj[n]

]
can be

represented using a bivariate autoregressive model with order p (p = 30 in this study, as we
already adopted in previous studies, e.g., in Magosso et al. [55]). By Fourier-transforming
this time-domain representation, a spectral representation is obtained. Then, the power
spectrum of each time series (e.g., xi[n]) can be computed according to Geweke [56] and
decomposed into an intrinsic term and a causal term, the latter being the term predicted
by the other time series (e.g., xj[n]). The spectral GC from the j-th to the i-th ROI at each
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frequency f , GCj→i( f ), is defined as the log of the ratio between the total power of xi[n] at
f and the difference between the total power of xi[n] at f and the causal power exerted by
xj[n] onto xi[n] at f . Thus, the quantity GCj→i( f ) increases as the causal power increases.
At each frequency f , the spectral GC is represented by a non-symmetric matrix with shape
NROI×NROI (NROI = 16 in this study), with the off-diagonal ji-th value quantifying the
directional influence from the j-th ROI to the i-th ROI at that frequency (GCj→i( f )).

Spectral GC was computed separately within two different 1 s-length windows, i.e., the
baseline (rest) window from −1 to 0 s and the late post-cue window (reaching movement
preparation, post-cuelate) from 1 to 2 s. The window from 0 to 1 s was neglected since it was
strongly influenced by the transient due to the visual event related potential, elicited by
the cue-signal. Still, to compensate for residual non-stationarities that might occur also
in the considered windows in case of non-complete exhaustion of the evoked potential
in the first post-cue second, the evoked potential was removed from each trial [57]. Rest
windows and movement preparation windows were concatenated across trials, and spectral
Granger causality was computed over the concatenated trials, thus estimating directional
influences between ROIs across all trials in the two conditions. Alpha-GC and beta-GC
were computed by averaging together the values of the GC spectrum belonging to alpha
and beta bands, separately in the baseline and late post-cue conditions, resulting in 4 total
connectivity matrices (A ∈ R

NROI×NROI ) per subject (baseline alpha-GC, baseline beta-GC, post-
cuelate alpha-GC, post-cuelate beta GC). Furthermore, each connectivity matrix was normalized

such that the sum of all off-diagonal connectivity values was 1 (
∼
A = A/∑i,j;i �=j Aij), thus

emphasizing how much each connectivity value contributed to the overall connectivity
across the selected ROIs as performed in [20].

Finally, indices derived from the graph theory were used to better understand changes
in the topology of the brain connectivity network between baseline (rest) and late post-cue
(movement preparation) conditions. Indeed, each matrix containing the connections values
between the ROIs can be represented as a weighted directed graph, where each node
corresponds to an ROI and the weight of each directed edge corresponds to the connection
value. We computed two centrality indices, taking into account the direction of connections:
the in degree—i.e., the sum of connectivity values entering into each ROI (quantifying
the overall connectivity inflow)—and the out degree—i.e., the sum of connectivity values
departing from each ROI (quantifying the overall connectivity outflow). The two indices
were computed for each connectivity matrix, i.e., for each band (alpha and beta) and each
condition (baseline, post-cuelate).

This analysis was performed using custom Python scripts, replicating the functions of
the Brainstorm toolbox [48] (version 3.221212) that compute spectral Granger causality.

2.4. Statistical Analyses

The following tests were conducted:

i. For all 16 ROIs, post-cuelate alpha ERSP and post-cuelate beta ERSP were compared to 0
(corresponding to the average baseline value after normalization), using Wilcoxon
signed-rank tests. This comparison was performed to identify ROIs with a different
ERSP during movement preparation compared to rest, separately for alpha and beta
(16 test for each band). To correct for multiple tests, false discovery rate correction
at α = 0.05 was applied, using the Benjamini–Hochberg procedure [52].

ii. For all pairs of homologous ROIs, post-cuelate alpha ERSP and post-cuelate beta ERSP
were compared between left and right ROIs using Wilcoxon signed-rank tests.
This comparison was applied to identify ROIs with a lateralization in the spectral
perturbations, separately for alpha and beta (8 tests, for each band). To correct for
multiple tests, false discovery rate correction at α = 0.05 was applied, using the
Benjamini–Hochberg procedure [52].

iii. Alpha-GC and beta-GC were compared between post-cuelate and baseline using permu-
tation tests (5000 permutations) [51]. This was performed to identify connections
between ROIs that resulted in significantly differences during movement prepa-
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ration compared to rest, separately for alpha and beta (16*15 = 240 tests for each
band).

iv. For all ROIs, in degree and out degree in each band were compared between post-
cuelate and baseline using Wilcoxon signed-rank tests. This was performed to identify
ROIs with a different inflow or outflow during movement preparation compared to
rest, separately for alpha and beta (16 tests for each band and centrality index). To
correct for multiple tests, false discovery rate correction at α = 0.05 was applied,
using the Benjamini–Hochberg procedure [52].

3. Results

3.1. Cortical Event-Related Spectral Perturbation

The grand average ERSP for each ROI is reported in Figure 2. A strong ERS is evident,
spanning from the theta band (4–8 Hz) to the low beta band, associated to the visual evoked
potential elicited by the cue-signal and go-signal (LED turning on). The ERS extinguished
approximately 500 ms after each stimulus onset denoted by the black (cue) and purple (go)
triangle in Figure 2. As expected, the ERS resulted more pronounced in visual (LO, CU)
and visuomotor ROIs (SP, PCU) compared to the other ROIs, due to the visual nature of
the stimuli. Furthermore, a clear ERD can be observed during the movement preparation
period, in particular from 0.5–0.6 s to 2 s and during movement too, i.e., after the go-signal
(from 2 to 3 s). The ERD involves both alpha and beta bands in the visual (LO, CU) and
visuomotor ROIs (SP, PCU), and especially the beta band in the sensorimotor ROIs (PoC,
PrC, PaC). Finally, the most frontal ROI included in the analysis (SF) showed less ERD
compared to other ROIs.

By averaging the ERSPs represented in Figure 2 over the alpha and beta bands, the
alpha-ERSPs and beta-ERSPs were computed and are reported in Figure 3, to better visualize
the ERSP temporal dynamic in these frequency ranges. Concerning alpha-ERSPs (Figure 3a),
the following observations can be made with a focus on the movement preparation period
(i.e., 0–2 s). In agreement with Figure 2, a strong ERS was elicited by the cue-stimulus,
especially in visual (LO and CU) and visuomotor ROIs (PCU and SP). In the other ROIs,
ERS was smaller. Cue-related ERS was followed by ERD (except than in SF), especially in
the late post-cue interval (1–2 s). In this interval, ERD was approximately constant in visual
and visuomotor ROIs, while it kept gradually increasing (from approximately 0 to −15%)
in the sensorimotor ROIs (PoC, PrC, PaC).

Concerning beta-ERSPs (Figure 3b) in the same period (0–2 s), similar observations
held in visual and visuomotor ROIs, with evident ERS produced by the cue stimulus
followed by ERD, in particular in the late post-cue interval. In the other ROIs, only ERD
occurred. Furthermore, the pattern of beta-ERD exhibited some differences compared to
alpha-ERD. In the sensorimotor ROIs, the gradual increase in post-cue ERD was more
pronounced in the beta band (up to −25%) than in the alpha band. Furthermore, in
several ROIs, beta-ERD showed appreciable differences between the two hemispheres, with
the contralateral hemisphere reaching lower ERD values (up to −25%) compared to the
ipsilateral hemisphere (up to −12%). Finally, while in visual ROIs alpha-ERD was almost
constant during the late post-cue interval, in the same interval, beta-ERD in the visual ROIs
tended to decrease (i.e., assumed less negative values), showing a partial return towards
baseline value (i.e., 0%).

Of course, as the reported representations refer only to epochs including rest (from −1
to 0 s), reaching preparation (from 0 to 2 s), and at least part of center-out reaching execution
(from 2 to 3 s), the rebound of the ERSP recovering the resting condition value before the
start of the new trial (i.e., 0) is not evident from these figures. Thus, Supplementary
Figure S1 displays the alpha- and beta-ERSP over a longer epoch for Cz, an electrode site
representative of the motor-related response, showing that the ERSP rebounded once the
subject returned to the rest position (backward movement completed), and confirming that
resting condition is recovered before the beginning of a new trial.
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Figure 2. Event-related spectral perturbations (ERSPs). The grand-average ERSP is reported for each
selected ROI of the left (label prefix “L.”) and right (label prefix “R.”) hemisphere. The small black
and purple triangles at the bottom of each plot mark the time associated with the cue onset and
go onset of the center-out reaching movement, respectively. To increase readability, x- and y-labels
are reported only for the first plot. The position of each ROI is also visualized, limited to the left
hemisphere, highlighted in red in the 3-D view of the cortex (A: anterior, L: lateral).

Figure 4 reports the alpha- and beta-ERSP averaged over the late post-cue interval
(post-cuelate alpha-ERSP and post-cuelate beta-ERSP), and the results of the statistical analyses.
Significant ERD (p < 0.05) during movement preparation was obtained for all ROIs
compared to rest in the beta band, and for visual and visuomotor ROIs in the alpha
band. Furthermore, ERD results were significantly (p < 0.05) stronger in the contralateral
hemisphere in the beta band (but not in the alpha band) for all ROIs except LO and PCU,
with higher significance for sensorimotor ROIs (p < 0.005 for PoC and PaC, p < 0.01 for
PrC).
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Figure 3. Alpha (a) and beta (b) event-related spectral perturbations (ERSPs). Here, the ERSPs
reported in Figure 2 were averaged within alpha and beta bands and visualized as a function of time.
The grand-average alpha-ERSP and beta-ERSP is reported for each selected ROI of the left (black
thick lines) and right (red thick lines) hemisphere. Shaded areas denote the standard error of the
mean across subjects (in grey for the left ROI, in red for the right ROI). The small black and purple
triangles shown at the bottom of each plot mark the time associated with the cue onset and go onset
of the center-out reaching movement, respectively. Note that in this figure, to increase the readability,
x- and y-labels are reported only for the first plot.
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3.2. Cortical Functional Connectivity and in Degree and out Degree Indices

The connections that were significantly higher (in red) or lower (in blue) in the late
post-cue interval compared to baseline are displayed in Figure 5, separately for the alpha
band (left panel) and beta band (right panel). Decreased alpha-band connectivity was
mainly localized posteriorly, involving bilateral visual (occipital) and visuomotor (pari-
etal) ROIs, but also with a left-lateralized involvement of sensorimotor regions (L.PrC).
Increased alpha-band connections were mainly directed from left to right, especially toward
right sensorimotor regions. As to the beta band, left ROIs (in particular visuomotor and
sensorimotor) exhibited decreased connections, both entering and exiting, while right ROIs
overall showed increased entering and exiting beta-band connections.

Figure 4. Alpha (a) and beta (b) event-related spectral perturbations (ERSPs) during reaching
movement preparation. Here, the alpha-ERSP and beta-ERSP reported in Figure 3 were averaged
within the second half of the movement preparation interval of the center-out reaching movement
(i.e., from 1 to 2 s with respect to cue onset). These values are also referred to in the manuscript as
post-cuelate alpha-ERSP and post-cuelate beta-ERSP. In each panel, for each ROI (grey: left ROI, red: right
ROI) the bar height denotes the mean value across the subject and the error bar the standard error
of the mean. Results of the performed statistical analyses are reported too. Specifically, symbols *
(reported at the bottom of each panel) denote ERSPs significantly different compared to the baseline
(* p < 0.05, ** p < 0.01, *** p < 0.001). Symbols † (reported at the top of each panel) denote ROIs
with significantly different ERSP between the left and right hemisphere († p < 0.05, †† p < 0.01).

Figures 6a and 7a report the ROIs that exhibited significantly different in degrees (left)
and out degrees (right) for the alpha and beta bands, respectively, when comparing late
post-cue interval to baseline. Each bar plot in Figures 6b and 7b shows, for a selected ROI,
the difference (late post-cue minus baseline) in the connections entering into the selected
ROI from each other ROI, or exiting from the selected ROI towards each other ROI. The

259



Sensors 2023, 23, 3530

shown differences highlight the ROIs contributing more to the in degree or out degree of
the selected ROI (significant differences are indicated by grey bars).

 

Figure 5. Directed connections between ROIs—as measured by the spectral Granger causality—that
resulted significantly higher (in red) or lower (in blue) during reaching movement preparation
compared to rest, in alpha (left) and beta (right) bands. To improve readability, ROI labels are
displayed on the cortex in the middle panel, separately from the other panels.

As to the alpha band (Figure 6), the late post-cue interval was characterized by a
significantly lower alpha-inflow in bilateral visual ROIs (L.LO and R.LO), a significantly
higher alpha-inflow in ipsilateral frontal ROI (R.SF) and in ipsilateral sensorimotor ROIs
(R.PrC and R.PoC). The latter was mainly mediated by ipsilateral visual and visuomotor
ROIs (R.CU and R.PCU), by a contralateral sensorimotor ROI (L.PrC), and by the bilateral
frontal ROIs (L.SF and R.SF). Moreover, the same ipsilateral sensorimotor areas (R.PrC
and R.PoC) that were shown to be higher in degree also exhibited a significantly increased
alpha-outflow mainly towards other areas in the same hemisphere (among them R.SP,
R.PCU, R.SF).

As to the beta band (Figure 7), some visual ROIs (L.CU and R.CU) exhibited signifi-
cantly higher beta-inflow and beta-outflow. The contralateral visuomotor ROI L.SP was
characterized by a significantly decreased beta-inflow, especially from sensorimotor ROIs in
the same hemisphere (L.PrC and L.PaC). Indeed, the latter ROIs, together with L.PoC, had
decreased beta-outflow not only towards L.SP but, interestingly, also towards ipsilateral
sensorimotor ROIs (R.PrC and R.PoC).
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Figure 6. (a) ROIs with a significantly different in degree (left panel) and out degree (right panel)
during reaching movement preparation compared to rest in the alpha band. Circle size reflects the
strength of the significance (small: p < 0.05, medium p < 0.01, large: p < 0.001); red/blue circles
denote an increased/decreased measure (in degree or out degree) during movement preparation
compared to rest. (b) Each bar plot shows, for a selected ROI among the ones in panel a, the difference
in the connections (movement preparation—rest) entering in the selected ROI from all other ROIs or
exiting from the selected ROIs towards all other ROIs. The bar height denotes the mean value across
the subjects and the black line the standard error of the mean. Significant differences are marked via
grey bars.
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Figure 7. (a) ROIs with a significantly different in degree (left panel) and out degree (right panel)
during reaching movement preparation compared to rest in the beta band. (b) Each bar plot shows, for
a selected ROI among the ones in panel a, the difference in the connections (movement preparation—
rest) entering in the selected ROI from all other ROIs or exiting from the selected ROIs towards all
other ROIs. See the caption of Figure 6 for further details.

4. Discussion

This study investigates alpha and beta mechanisms related to the preparation of
reaching movements by analyzing the cortical activity by means of event-related spectral
perturbations, and the connectivity between regions by means of spectral Granger causality
and graph analysis. The analysis of brain connectivity, either at rest or during a task, is
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today recognized as a fundamental tool to gain insights into how different brain regions
work together (in a synergistic or antagonistic way) and exchange information to achieve
behavior, and how this coordinated activity is disrupted in pathological states. Among
the measures of connectivity, GC is a popular statistical method to analyze directed in-
teractions in multivariate dynamical systems [58]. An attractive property of GC for brain
connectivity investigation is its frequency domain formulation, eligible for the analysis
of causal interactions in specific frequency bands and, thus, particularly relevant in the
case of neuroelectric signals, extremely rich in oscillatory content. In the context of brain
connectivity networks, graph theoretical approaches provide a powerful way to quantify
the topological properties of the networks, inferring meaningful attributes that improve
the understanding of connectivity patterns and of their functional roles [59].

The present study provides a novel contribution to the investigation of electromagnetic
brain activity and connectivity in reaching tasks. To the best of our knowledge, this is the
first time that directed connectivity and direction-sensitive indices derived from the graph
theory, joined with ERSP analysis, are applied to investigate a large set of brain areas in
the preparation phase of a reaching task, providing an enriched EEG characterization and
interpretation of brain regions’ activation and of their causal interactions during reaching
movement preparation. Specifically, here, both ERSP and spectral GC were analyzed on
the cortical activity reconstructed from the EEG while healthy subjects prepared a reaching
movement compared to a rest condition.

4.1. Event-Related Spectral Perturbations

Reaching movement preparation was associated to alpha-ERD in visual and visuo-
motor ROIs (and only one sensorimotor ROI). Even though alpha-ERD exhibited slightly
stronger results in the contralateral hemisphere (e.g., for SP and PCU in Figure 4), no
significant differences were observed between hemispheres. It is worth noticing that this
result held also without averaging together different targets, i.e., by performing the ERSP
analysis within each single target, as reported in Supplementary Figure S2. From this figure,
no significant inter-hemispheric difference in the alpha band was observed, widely across
ROIs and targets, except only for the target located most rightwards, that showed a stronger
alpha-ERD for the contralateral side in PrC and PoC. Alpha-ERD is likely associated to
the goal-directed visuomotor nature of the task, involving both visuo-spatial attention and
the processing of spatial information to guide the hand to the proper position accurately
(i.e., location of the target LED). As to the beta band, widespread beta-ERD was observed,
stronger in sensorimotor and visuomotor ROIs, and significantly higher in the contralat-
eral hemisphere in particular for the sensorimotor ROIs (this result held also within each
target, see Supplementary Figure S3). These results on alpha- and beta-ERD agree with
the study of Wang et al. [10], showing that during visually-cued movement preparation
(even though finger movement and not reaching movement was analyzed), alpha-ERD
was localized more posteriorly, while beta-ERD was more widespread and more lateralized.
Considerations also come by looking at the alpha- and beta-ERSP dynamic in Figure 3.
The visuomotor and mainly the sensorimotor ROIs exhibited time-increasing ERD (i.e.,
time-increasing disinhibition) in the alpha band and especially the beta band throughout
the movement preparation period, with ERD further increasing during movement execu-
tion. This suggests a progressively growing engagement of sensorimotor ROIs during the
entire trial, from movement preparation to execution. The same did not hold for visual
ROIs (LO and CU). Indeed, after the transient related to visual-evoked potential, visual
ROIs exhibited a constant alpha-band disinhibition in the preparation phase, suggesting a
sustained visuo-spatial attention while preparing the action. Conversely, these ROIs tended
to rapidly deactivate (i.e., ERSP tended to partially return towards 0) in the beta band,
indicating a more marginal role in motor planning. Differences in alpha- and beta-ERD
suggested that these rhythms are to some extent independent and with distinct functional
relevance. Indeed, while the suppression of beta oscillations is tied to the activation of
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neuronal populations involved in movement, the suppression of alpha oscillations also
reflects visual information processing and cognitive processing related to attention [60].

4.2. Connectivity Network and Centrality Indices

Causal influences between ROIs were analyzed via spectral GC and differences in
connectivity network were assessed between reaching movement preparation and rest. In
degree and out degree centrality indices were computed, quantifying overall connectivity
inflow and outflow for each ROI, and were used to identify the ROIs that significantly
exhibited changes in inward and outward connections during movement preparation
compared to rest. It is worth noticing that, despite these differences being quantified by
aggregating the information across reaching targets, the result was not driven by a small
subset of targets, as the obtained differences were similar across targets (see Supplementary
Figures S4–S7).

As to alpha-band connectivity, decreased interactions were mainly in visuomotor and
visual regions, and were probably linked to the reduced amplitude of alpha oscillations in
these ROIs (see alpha-ERD in Figure 2) and related to visual information processing (as
decreased connectivity values can be related to desynchronization [35]). Interestingly, our
results indicate a prevalent anterior-to-posterior direction of decreased alpha connections
(from parietal to occipital and also from front-central to parietal and occipital regions), and
with bilateral LO that most showed reduced alpha inflow. Previous studies have reported
top-down modulatory influences in the alpha band from higher-level frontal and parietal
areas to the lower-level visual cortex, as a mechanism for controlling visuo-spatial attention
via facilitation (decreased alpha-band influences) and inhibition (increased alpha-band in-
fluences) [61,62]. Our findings appear in line with this hypothesis, with decreased inflow in
the early visual cortex facilitating visual processing of stimuli for goal-directed movement.
Decreased anterior-to-posterior alpha connectivity was accompanied by increased left-to-
right alpha connections, and significantly higher alpha-inflow in ipsilateral sensorimotor
ROIs. Importantly, the latter was also mediated by a contralateral sensorimotor ROI (L.PrC,
see Figure 6b-left). Considering the inhibitory role of alpha rhythm, these results agree with
previous evidence of inhibitory inter-hemispheric interactions between sensorimotor cor-
tices [14] (concurring at facilitating the movement) that may be functionally implemented
via alpha oscillations [10]. Furthermore, the inhibition of ipsilateral sensorimotor ROIs
(R.PrC and R.PoC) was also exerted by a top-down mechanism operated by the two frontal
ROIs (L.SF and R.SF, see Figure 6b-left), suggesting that top-down alpha influences from
higher level areas can also be implicated in modulating (inhibiting or facilitating) motor-
related processing other than sensory processing. Lastly, ipsilateral sensorimotor ROIs
were also characterized by an increased alpha-outflow, mainly confined in the ipsilateral
hemisphere (see Figure 6b-right), thus potentially contributing to further spreading and
sustaining the inhibition in the ipsilateral hemisphere.

As to beta-band connectivity, a first notable result is the significantly higher beta-
inflow and beta-outflow observed in visual ROIs (L.CU and R.CU). This might be related
to ERD in the beta band that tended to reduce in the visual areas (ERSP tending to return
closer to 0, Figure 3b upper panel) and that may be interpreted as an early disengagement
of visual cortices from motor processing. Indeed, while visuomotor and sensorimotor
ROIs likely contribute to motor-related processing in a sustained or increasing manner
during the movement preparation period (as supported by their constant or increasing
ERD dynamic, see Figure 3), it seems reasonable that visual cortices deactivate earlier.
The second notable result is the significantly lower beta-outflow observed in contralateral
sensorimotor ROIs (L.PrC, L.PoC, L.PaC) that had the main effect of significantly reducing
beta-inflow in contralateral visuomotor ROIs (L.SP, Figure 7b-right). Based on this result,
contralateral sensorimotor ROIs might act as hubs for beta-band desynchronization among
movement-related regions, and such decoupling may represent a mechanism to interrupt
the maintenance of the current motor output and favor regions to be engaged in the
impending movement. Indeed, beta-band synchronization has been hypothesized to
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promote maintenance of the current sensorimotor state, while compromising the neural
processing of new movements [63]. In this regard, it is also interesting to note that the two
hemispheres are characterized by opposite changes in beta-band connections, with mainly
increased beta-band connections entering and exiting from the ROIs in the ipsilateral
hemisphere, as opposed to the contralateral hemisphere. This may indicate a coordinated
beta-band competition between the two hemispheres, functionally relevant for performing
unilateral movements.

As highlighted by our results, by analyzing the EEG via complementary investiga-
tions in the frequency domain (via ERSP and spectral GC, using also indices derived from
graph theory), an enriched characterization of the preparation of reaching movements was
provided. Overall, these findings substantiate the idea of the presence of different mech-
anisms during movement preparation operated by alpha and beta rhythms, comprising
an alpha-mediated inhibition mechanism on the ipsilateral sensorimotor areas, and a beta-
mediated disinhibition mechanism of the contralateral visuomotor and sensorimotor areas.
Furthermore, alpha oscillations emerge as a general mechanism for inhibiting processing in
task-irrelevant regions (alpha increase) and facilitating processing in task-relevant regions
(alpha decrease), involving both motor and sensory regions. Conversely, beta-band desyn-
chronization appears as a more motor-specific disinhibition mechanism; indeed, despite the
widespread beta-ERD involving all regions, connectivity analysis reveals spatially specific
differences in beta-band interactions where visual areas (although actively involved in sen-
sory processing during the task) and also ipsilateral motor-related areas were characterized
by beta-band connectivity increase. The present study not only contributes to expanding
the neurophysiological description of motor-related mechanisms but may also have clinical
and practical implications. For example, connectivity appears as a measure able to capture
more subtle changes in brain functioning; thus, brain connectivity may provide markers of
neuromotor disorders more sensitive to progression or improvement. Moreover, measures
of connectivity have potential applications in motor-based brain–computer interfaces; in-
deed, motor states can be decoded exploiting artificial intelligence approaches not only by
using scalp-level EEG [64,65], but also from features related to brain network connectiv-
ity [66]. Interestingly, the knowledge learned by these decoders could also be exploited to
analyze, in a data-driven way, the most relevant interactions for a target variable under
analysis [64,65,67–69] (e.g., a specific movement), by designing and applying explainable
artificial intelligence approaches specific for functional connectivity analyses.

Of course, the present study has some limitations. First, our analyses were not con-
ducted on the whole cortex parcellation but on a selection of ROIs known to be implicated
in reaching movement preparation and control. However, other ROIs (not considered
in the performed analyses) may also be involved, e.g., the right inferior frontal gyrus
(R.IF), a region found to play a role in motor control via top-down inhibition of planned or
ongoing action [70]. As complementary analyses, we also performed the same analyses
conducted in this study for bilateral IF areas in Supplementary Figures S8 and S9. Here,
the signal representative of L.IF and R.IF was obtained, for each hemisphere, by averaging
the signals of the pars opercularis, pars orbitalis, and pars triangularis, since these three
regions compose the inferior frontal gyrus in the Desikan–Killiany atlas, adopted in this
study for cortex parcellation. As obtained for SF, IF (both left and right) had small and
bilateral ERDs during movement preparation and was involved in the alpha-mediated
top-down inhibition of the ipsilateral sensorimotor areas. Thus, future studies could benefit
from considering the whole cortex parcellation to avoid missing potentially relevant ROIs.
Furthermore, the selected ROIs were based on the Desikan–Killiany atlas, and some of them
englobe large portions of the cortex. In particular, as concerning the sensorimotor areas, we
did not specifically consider the primary motor cortex (M1), supplementary motor areas
(SMA), and premotor cortex (PMC), which are small regions in the sensorimotor cortex,
and deemed to be core motor areas, largely investigated in connectivity studies [23,34,35].
Rather, we preferred to consider larger areas (likely englobing the previous core areas)
also due to the use of a template head model for cortical source estimation, rather than
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individual head models. The use of a template head model (which, however, is commonly
adopted in the literature when individual brain MRIs are not available [71]), unavoidably
leads to a reduction in spatial accuracy in source localization and spatial inaccuracy may
have a greater effect when small areas consisting of a low number of voxels are selected.
By considering the average behavior of larger areas, spatial inaccuracies may have a more
tolerable impact. Another limitation is related to the adoption of a fixed and short time
window for computing the spectral GC, i.e., 1 s windows for rest and 1 s windows for
reaching preparation, concatenated across trials. Indeed, movement preparation is a dy-
namic process that could benefit from a dynamic description of connectivity between brain
regions. Furthermore, more accurate results with parametric spectral GC are known to be
obtained as the window length increases [58]. However, due to the trial-based nature of the
experimental paradigm, the movement preparation phase was inherently limited. These
aspects may be addressed in the near future by studying the dynamic of spectral GC via
non-parametric methods.

5. Conclusions

In conclusion, in this study, we investigated the frequency-specific changes in cortical
activity and in directed connectivity evoked by the preparation of a reaching task within
a network of task-related areas, spanning from occipital to parietal and fronto-central
cortices.

Our results suggest that alpha and beta oscillations are functionally involved in the
preparation of reaching movements in different ways. That is, beta mainly reflects the
disinhibition of areas involved in movement, mainly contralateral visuomotor and sensori-
motor areas, and concurs at coordinating the disinhibition among these areas. Alpha also
reflects visual processing and visuo-spatial attention and concurs at mediating an inhibi-
tion mechanism (inter-hemispheric and top-down) of the ipsilateral sensorimotor areas (to
facilitate the preparation of the unilateral upcoming movement) and the disinhibition of
visual cortices (to facilitate visuo-spatial attention during preparation).

Overall, this study contributes to enriching the description of the neural mechanisms
underlying reaching movement preparation in healthy subjects, for a better comprehension
of the neurophysiological correlates. In prospective, this knowledge could be useful to
analyze alterations occurring in pathology (e.g., stroke) and to improve diagnostic and
therapeutic applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23073530/s1|, Figure S1: Alpha (a) and beta (b) event-related
spectral perturbations (ERSPs) at Cz considering a larger epoch (from −1 to 11 s respect to the
cue-onset) than the one used in the main text (from −1 to 3 s). The epoch considered here includes
the overall trial, i.e., both the forward and backward movement, from 0 to 10 s; an additional final
second is displayed (from 10 to 11 s), reporting also the first second of the random inter-trial interval
(ranging from 2–3 s randomly) of the subsequent trial. This analysis was performed to observe the
ERSP dynamic for a longer period, checking for ERSP rebound towards rest values (i.e., towards
0). Here, ERSPs were computed at the scalp level using the same procedure as at source-level (see
Section 2.3.3) and are visualized as a function of time (as reported in Figure 3 at the source-level).
Black tick line denotes the grand-average alpha-ERSP in the left plot and the grand-average beta-
ERSP in the right plot, and shaded grey area denotes the standard error of the mean across subjects.
The small black and purple triangles shown at the bottom of each plot mark the time associated
to the cue onset and go onset of movements, respectively. The first purple triangle refers to the
go-onset for the forward movement, while the second one refers to the backward movement. Figure
S2. Target-specific alpha event-related spectral perturbations (ERSPs) during reaching movement
preparation (post-cuelate interval), in the different ROIs. Here, for each ROI, the alpha-ERSP was
averaged within the second half of the movement preparation interval (from 1 to 2 s with respect
to cue onset, i.e., post-cuelate interval), separately for each target to reach. For each target and each
ROI (grey: left ROI, red: right ROI), the bar height denotes the mean value across the subject and the
error bar the standard error of the mean. The black square represents the rest position of the hand;
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the bar plots are topologically arranged inside the page according to the target position they refer
to. The same statistical analyses as the ones conducted to produce Figure 4 in the main text were
performed here; however, instead of performing comparisons based on post-cuelate ERSP averaged
across targets, the comparisons were performed separately for each target. Results of the performed
statistical analyses are reported using symbols: symbols * (at the bottom of each panel) denote ERSPs
significantly different compared to baseline (* p < 0.05, ** p < 0.01, *** p < 0.001); symbols † (at
the top of each panel) denote ROIs with significantly different ERSP between the left and right
hemisphere († p < 0.05, †† p < 0.01, ††† p < 0.001). Reported statistical results are corrected for
multiple comparisons, with correction applied separately within each target. Note that significant
inter-hemispheric difference was observed only in case of the most rightward target (bar plot at the
bottom right), as to ROI PoC and PrC, with alpha-ERD significantly larger in the contralateral ROI
than in the ipsilateral one. Figure S3. Target-specific beta event-related spectral perturbations (ERSPs)
during reaching movement preparation (post-cuelate interval). Here, for each ROI, the beta-ERSP
was averaged within the second half of the movement preparation interval (from 1 to 2 s with
respect to cue onset, i.e., post-cuelate interval), separately for each target to reach. See the caption
of Supplementary Figure S2 for further details. Note that significant inter-hemispheric difference
was observed for several targets and ROIs (especially sensorimotor and visuomotor), with beta-ERD
significantly larger in the contralateral ROI than in the ipsilateral one. This result is in agreement
with results obtained collapsing together all targets (see Figure 4 in the main text). Figure S4. ROIs
with a significantly different in degree between center-out reaching preparation and rest in the alpha
band, separately for each target position. The black square represents the rest position and each in
degree representation is topologically placed according to the target it refers to. The same statistical
analysis as the one conducted to produce Figs. 6 and 7 in the main text was performed. However,
instead of performing comparisons based on the connections averaged across targets, the comparisons
were performed separately for each target. Circle size reflects the strength of the significance (small:
p < 0.05, medium p < 0.01, large: p < 0.001); red/blue circles denote an increased/decreased
measure (in degree or out degree) during movement preparation compared to rest. Figure S5. ROIs
with a significantly different out degree between center-out reaching preparation and rest in the
alpha band, separately for each target position. The black square represents the rest position. See the
caption of Supplementary Figure S4 for further details. Figure S6. ROIs with a significantly different
in degree between center-out reaching preparation and rest in the beta band, separately for each target
position. The black square represents the rest position. See the caption of Supplementary Figure
S4 for further details. Figure S7. ROIs with a significantly different out degree between center-out
reaching preparation and rest in the beta band, separately for each target position. The black square
represents the rest position. See the caption of Supplementary Figure S4 for further details. Figure S8.
Alpha (a) and beta (b) event-related spectral perturbations (ERSPs) of the inferior frontal (IF) gyrus.
The grand-average alpha-ERSP and beta-ERSP is reported for the left (black tick lines) and right (red
tick lines) hemisphere. Shaded areas denote the standard error of the mean across subjects (in grey
for the left ROI, in red for the right ROI). The small black and purple triangles shown at the bottom of
each plot mark the time associated to the cue onset and go onset of the center-out reaching movement,
respectively. Figure S9. Directed connections between ROIs—as measured by the spectral Granger
causality—that resulted significantly higher (in red) or lower (in blue) during reaching movement
preparation compared to rest, in alpha (left) and beta (right) bands. Here, also the inferior frontal (IF)
gyrus is added to the set of ROIs considered in the study (thus, here, 18 ROIs in total are considered).
To improve readability, ROI labels are displayed on the cortex in the middle panel, separately from
the other panels.
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Abstract: The safety of flight operations depends on the cognitive abilities of pilots. In recent
years, there has been growing concern about potential accidents caused by the declining mental
states of pilots. We have developed a novel multimodal approach for mental state detection in
pilots using electroencephalography (EEG) signals. Our approach includes an advanced automated
preprocessing pipeline to remove artefacts from the EEG data, a feature extraction method based on
Riemannian geometry analysis of the cleaned EEG data, and a hybrid ensemble learning technique
that combines the results of several machine learning classifiers. The proposed approach provides
improved accuracy compared to existing methods, achieving an accuracy of 86% when tested on
cleaned EEG data. The EEG dataset was collected from 18 pilots who participated in flight experiments
and publicly released at NASA’s open portal. This study presents a reliable and efficient solution for
detecting mental states in pilots and highlights the potential of EEG signals and ensemble learning
algorithms in developing cognitive cockpit systems. The use of an automated preprocessing pipeline,
feature extraction method based on Riemannian geometry analysis, and hybrid ensemble learning
technique set this work apart from previous efforts in the field and demonstrates the innovative
nature of the proposed approach.

Keywords: ensemble learning; machine learning; EEG; pilot deficiencies; artifact detection; tangent
space; EEG preprocessing; heterogeneous data; mental states classification; feature extraction

1. Introduction

The evolution of the aviation industry is heavily dependent on maintaining the highest
standards of safety. Advances in aircraft design, endurance, and safety have led to a decrease in
the number of aircraft accidents worldwide since the 1960s [1]. However, operator reliability
remains a crucial factor in maintaining flight safety, as flight crews are responsible for a
wide range of tasks, including receiving instructions from air traffic control, interpreting
onboard instrument data, making course corrections, briefing cabin crew and passengers,
and responding to unexpected events. Operating an airplane requires a high level of mental
acuity, and these responsibilities can compromise flight safety [2–4]. According to data
analyzed by the International Air Transport Association (IATA), there were 45 plane crashes
caused by pilots losing control of the aircraft, resulting in 1645 fatalities between 2012
and 2021 [5,6]. Furthermore, the Commercial Aviation Safety Team (CAST) investigated
18 aircraft accidents in which pilots lost control and found that deficiencies in flight crew
attention were involved in 16 of the 18 incidents [7]. As a result, CAST recommended that
the aviation community, which includes government, business, and academic institutions,
conduct research to detect and assess attention-related pilot performance deficiencies
(APPD), specifically focusing on channelized attention (CA), diverted attention (DA), and
startle/surprise (SS) mental states. CA is a state where pilots engage in a puzzle-based
video game called Tetris while remaining focused entirely on the game without paying
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attention to other tasks. DA is a state in which pilots solve math problems that periodically
appear while performing display monitoring tasks. Pilots who are in the SS mental state
experience unexpected inversions of the primary flight display in the simulator.

To achieve this goal, researchers from both academia and industry have investigated a
variety of approaches based on physiological signals and machine learning (ML) methods.
In terms of physiological signals, quantitative sensors, both singular and multiple, have
been employed to capture biological signals from the human body in both field studies
and near-realistic laboratory environments. The electroencephalography (EEG) sensor
is widely regarded as the most crucial physiological signal for analyzing mental states
due to its ability to detect transient alterations in brain activity that may be indicative of
pilots’ attention deficits. It seems to provide the most accurate data for distinguishing
mental states. It is also preferable to other methods of brain monitoring since it is safe,
adaptable, non-invasive, and an utterly passive recording technique. Despite its advantages,
EEG is notorious for picking up artefacts from environmental factors and physiological
phenomena, such as muscle activity, ocular movements, line noise, and heartbeats, which
compromise the quality of the signals. Therefore, isolating the neural signal relative to the
cognitive processes that reflect brain activity from the recorded artefacts is crucial.

The presence of artefacts in EEG data can negatively impact the performance of ML
models used to detect different mental states of pilots. To address this issue, researchers
have employed various signal processing and feature extraction techniques. One approach
is to record and combine EEG with non-brain physiological signals, such as functional
near-infrared spectroscopy, electrocardiogram (ECG), galvanic skin response (GSR), and
respiration (RP), simultaneously. However, the fusion of features derived from EEG and
non-brain physiological signals may not always improve the performance of ML mod-
els [8,9]. Another approach is to utilize traditional preprocessing techniques to handle
contaminated EEG data. Visual inspection and rejection, filtering, and Independent Com-
ponent Analysis (ICA) are examples of such conventional denoising procedures. These
methods, while effective, have several downsides, including the need for manual imple-
mentation, being slow and inefficient for longer recording sessions, and being difficult for
beginners to execute [10,11]. These drawbacks highlight the importance of developing an
automated preprocessing method.

Features or essential information embedded in the EEG signal are usually extracted
after preprocessing, as they are crucial for classification tasks [12–14]. Both temporal and
spatial features can be extracted from the EEG signals. For pilot mental state classification,
temporal features in the time, frequency, and time–frequency domains are commonly
extracted [15]. One such method that originates in the frequency domain is the power
spectrum density (PSD). The presence or absence of shifts in the power spectra of individual
EEG bands is an important indication of different mental states. In brain–computer interface
(BCI) applications, spatial features are commonly extracted. They represent the active area
of the brain. For pilot mental state classification, they are rarely used as input.

Features extracted from EEG signals are then fed into an ML model to predict various
types of mental states. ML models are trained to distinguish between either binary or
multiple classes. Fatigue, workload, stress, and drowsiness are examples of detected
mental states in the literature. Most studies have attempted to establish a clear distinction
between normal (NE) and each mental state (i.e., a binary classification) or to categorize a
single mental state into three or more distinct levels. In addition, only a few studies have
focused on assessing and detecting attention-related pilot performance deficiencies (APPD).
To the best of our knowledge, no attempts have been made to simultaneously recognize
different APPD states (i.e., multiclass classification), particularly CA, DA, SS, and NE, using
solely EEG data.

This study aims to investigate the viability of identifying APPD states using publicly
released EEG data. Specifically, the study poses the following research questions: (1) Can
an advanced automated EEG preprocessing pipeline be developed to clean the dataset?
(2) Can spatial features that are relevant to predicting pilot mental states, such as CA, DA,
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and SS, be extracted from cleaned EEG data? (3) Can a hybrid ensemble learning model
be developed to classify four pilot mental states based on heterogeneous EEG data using
spatial features? (4) Will the hybrid ensemble learning model outperform other ML models?
(5) How can the results of this study contribute to the development of tools and techniques
for detecting and assessing attention-related pilot performance limitations/deficiencies in
aviation settings?

In this work, we propose a novel multimodal approach that decontaminates the EEG
signals, extracts meaningful features, and detects the APPD states using heterogeneous
cleaned EEG signals collected from 18 pilots. The main contributions of this paper are
as follows:

• Development of automatic preprocessing pipeline to automatically repair or remove
corrupted EEG data.

• Development of feature extraction and selection methodology, based on Riemannian
geometry analysis of the cleaned EEG data, that handles the issues of an imbalanced
dataset and the curse of dimensionality and extracts meaningful features from the
EEG signals.

• Development of a novel APPD system based hybrid ensemble learning for classifying
CA, DA, SS, and NE states.

Recognition of APPD mental states was critically examined using several different
ensemble learning algorithms, including Random Forests (RF), Extremely Randomized
Trees (ERT), Gradient Tree Boosting (GTB), AdaBoost, and hybrid ensemble learning
(Voting). By addressing these research questions and providing these contributions, this
study provides new insights into the use of EEG data to predict and assess APPD, as
recommended by the CAST.

The remaining sections of this work are structured as follows: In Section 2, we briefly
examine relevant works. The existing EEG recordings, the proposed multimodal approach,
and the proposed ML classification models are described in Section 3. In Section 4, we
report and discuss experimental findings. Section 5 wraps up the investigation and suggests
some directions to explore next in terms of research.

2. Related Work

The process of identifying mental states typically involves four steps: collecting data,
cleaning it, selecting relevant features, and making predictions. The first step involves
capturing signals from the brain and converting them into digital form. Then, to ensure
accurate analysis, any extraneous noise or artifacts present in the data are removed through
preprocessing. Next, specific characteristics of the data are selected and extracted in
preparation for classification. These extracted features are then used by a classifier to make
predictions about which class the data belongs to. As this process specifically relates to
EEG data, the following provides a summary of previous research on the three stages of
mental state detection: preprocessing, feature extraction, and classification.

2.1. Signals Preprocessing

An assortment of neuronal activity, physiological artefacts, and non-physiological
noise can be found in raw EEG data. As their presence may hinder the performance of
ML models [16], identifying and removing artefacts is a crucial preprocessing step before
their use [17]. Although most research preprocessed their EEG data, there were a few
exceptions [18–20]. To increase the signal-to-noise ratio (SNR), it is necessary to undertake
a preprocessing procedure to eliminate extraneous noise and artefacts.

For the pilot’s mental states classification, conventional preprocessing techniques,
including filtering [16,21–27] and ICA [24,25,28], were employed on the EEG recordings.
For example, Roza et al. [16] used a band-pass filter with a center frequency of 12–30 Hz to
isolate the beta rhythm. Han et al. [25] used band-pass filtering at 0.1–50 Hz to remove the
high frequency prior to removing eyes-related artefacts using the ICA algorithm. Similarly,
Alreshidi et al. [29] used previously released pilot EEG data to analyze the influence of three
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preprocessing procedures on the efficiency of two ML models. The results demonstrated
no discernible changes in the performance accuracies of the models when the data were
filtered or when ICA was applied for eye-related artefact detection after data filtration. It
has been established in the literature that typical preprocessing procedures for EEG data
analysis necessitate knowledge and experience on the part of the analyst. Furthermore,
they are only applicable when applied manually, requiring inspection, identification, and
removal of faulty channels and contaminated data segments.

The past few years have seen the development of a number of partially or completely
automated EEG preprocessing procedures that provide ways to clean EEG data. The
Autoreject algorithm is an example of an automated preprocessing procedure that can be
employed in EEG analysis pipelines [30]. It is a novel approach for automatically identifying
and repairing erroneous segments in EEG data from single trials. It uses advanced statistical
learning techniques, such as Bayesian hyperparameter optimization and cross-validation,
to select amplitude thresholds to use for rejecting or repairing bad segments in EEG data.
The Autoreject technique was used by Bonassi et al. [31] to automatically repair or reject
contaminated epochs in EEG data. Pousson et al. [32] preprocessed the EEG data that were
recorded from pianists doing musical tasks using the Autoreject method. There was a total
of 10% erroneous epochs that were uncovered by the method and subsequently omitted
from the investigation. Previous research has established that Autoreject has a significant
role in the automatic purification of EEG data.

2.2. Feature Extraction

EEG is a set of stochastic signals that conceals extremely intricate data. Because of
its high nonlinearity, its features are prone to sudden fluctuations. Human mental states,
however, transition gradually from one state to the next [33]. Feature extraction aims to
extract relevant features from data to map EEG segments to mental states.

Various features, such as statistical [16,22,34] and power spectral density fea-
tures [16,18,21–25,28,34,35], have been extracted from pilots’ EEG recordings in earlier
research in order to classify pilots’ mental states. For example, Wu et al. [28] used the power
spectrum curve area representation of the decomposed delta, theta, alpha, and beta brain
waves obtained using wavelet packet transform as features to perform the classification.
Roza et al. [16] derived 15 distinct features from EEG and other physiological signals. The
wavelet coefficients and several statistical features were extracted from the EEG signals.
Furthermore, Binias et al. [26] extracted logarithmic band-power features using common
spatial pattern (CSP) spatial filtering, which is widely used in BCI applications, from pilots’
EEG recordings.

There has been a recent uptick in the use of Riemannian geometry-based feature
extraction and classification algorithms for BCIs. The first implementation of these tech-
niques in BCI applications was published in [36]. The authors employed the Riemannian
mean covariance matrix distance as a feature for classification purposes. Additionally, they
showed how the covariance matrices can be represented as vectors in the tangent space of
the Riemannian manifold. Majidov and Whangbo [37] computed the covariance matrices
obtained by using CSP spatial filtering and mapped them onto the tangent space of the
Riemannian manifold. Singh et al. [38] used the data from the EEG electrodes to create
spatial filters that reduce the dimensionality prior to employing Riemannian distance as a
pattern recognition metric for classification. In addition, classifiers based on Riemannian
geometry were used by Appriou et al. [39] in the proposed BioPyC toolbox. One such
classifier is the tangent space classifier.

2.3. Mental State Classification

After EEG signals have had their features extracted, they must be classified using
either a binary or multiclass ML approach. Because of the increased efficiency with which
neural data may be analyzed and the need to decode brain activity, ML, and particularly
Deep Learning (DL), algorithms have found widespread use in the field of computational
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neuroscience. Supervised ML algorithms, for instance, must first be trained using example
data. The model and its learnt properties are then used to make predictions about the class
label of new data that have not yet been seen.

For the detection of various pilot mental states, previous studies implemented var-
ious ML [18,22–27,34,35,40,41] and DL [16,18,25,26,28,35,42,43] algorithms. For instance,
Han et al. [25] proposed a detection system based on multimodal physiological signals and
a multimodal deep learning (MDL) network, consisting of convolutional neural network
(CNN) and long short-term memory (LSTM) algorithms, to detect pilot’s mental states,
namely distraction, workload, fatigue, and normal. Roza et al. [16] proposed an emotion
recognition system based on multimodal physiological signals and artificial neural network
(ANN). The system was developed to detect five emotional states, namely happy, sad,
angry, surprised, and scared. To identify the various states of mental fatigue, Wu et al. [28]
presented a deep contractive autoencoder network; up to 91.67 percent of cases of the
fatigued mental status of pilots could be correctly identified. In a flight simulator exper-
iment, Johnson et al. [23] investigated probe-independent methods for categorization of
three layers of task-complexity. The investigation was carried out using six classification
algorithms, namely naïve bayes, decision trees, quadratic discriminant analysis, linear
discriminant analysis (LDA), k-nearest neighbors (KNN), and support vector machine
(SVM). Dehais et al. [40] devised a scenario in which twenty-two pilots using a six-dry-
electrode EEG system performed a low-load and high-load traffic pattern, as well as a
passive auditory oddball. Zhang and Wang [24] proposed a concatenated structure of
deep recurrent and 3D CNN to learn spatial–spectral–temporal EEG features for cross-task
mental workload assessment. The findings reveal that the proposed approach achieved an
average accuracy of 88.9%. Distinguishing between stages of brain activity related to idle
but concentrated anticipation of visual cues and reactions to them using LDA, KNN, SVM,
RF, and ANN algorithms was the focus of the research of Binias et al. [26].

Detecting and assessing APPD was also addressed in previous studies. For example,
Harrivel et al. [35] employed RF, extreme gradient boosting, and deep neural network
classifiers to predict CA, DA, and low workload states. As a preliminary study, through the
use of different sensing modalities in high-fidelity flight simulators, the authors classified
three types of mental states. Harrivel et al. [34] employed RF, gradient boosting, and
two SVM classifiers to identify CA and SS states in further studies. The authors stressed the
need for addressing the data quality issues. Terwilliger et al. [20] aggregated three mental
states classes, namely CA, DA, and SS, into one class called event. To distinguish the event
class from the NE mental state class, the authors presented a convolutional autoencoder
approach. In previous research, we examined the effects of two preprocessing procedures
on SVM and ANN using EEG data from a pilot exposed to CA, DA, SS, and NE states [29].
Although the models demonstrated the viability of combining data from two scenarios, the
curse of dimensionality prevented them from accurately predicting the DA and SS states.

In the field of aviation, several studies have been conducted to evaluate the efficacy
of EEG data in predicting mental states of pilots. Some of these studies have employed a
binary classification approach to detect different mental states, while others have utilized
EEG data in combination with other physiological data to improve performance. In this
study, we develop a multiclass classification approach to identify CA, DA, SS, and NE
states using only EEG data.

Another notable limitation of previous studies is the limited sample size, with many
only incorporating EEG data from fewer than 10 participants. This raises questions re-
garding the generalizability of their results, as the findings may only be applicable to a
small subset of the population. While incorporating additional signals can sometimes
improve model performance, it can also introduce additional noise and complexity to the
system, making it more challenging to interpret the results. In this work, we develop our
model using only cleaned heterogeneous EEG data collected from 18 pilots, which provides
more generalization.
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Additionally, some studies have not disclosed the necessary information to make their
work easily reproducible, while others have failed to make their datasets publicly available.
This makes it challenging for other researchers to verify or build upon their findings. In this
work, we train our models with publicly released EEG data, which makes it reproducible.

Furthermore, some studies have not performed proper preprocessing techniques on
their EEG data, such as advanced filtering and artefact removal, potentially compromising
the validity of their results. The noise can interfere with the extraction of meaningful fea-
tures and patterns in the EEG signal, leading to a decrease in the accuracy and reliability of
the resulting model. To minimize the impact of noise on the performance of ML techniques,
it is important to preprocess the EEG signal and remove as much noise as possible before
training the model. Accordingly, we develop an automated preprocessing pipeline in this
study to automatically clean and improve the quality of the EEG signals.

Regarding extracting meaningful features for the machine learning models, researchers
have hardly ventured beyond statistical and PSD features. In this work, we extract tangent
space vectors based on Riemannian geometry analysis in an attempt to detect APPD states.

To the best of our knowledge, current research did not attempt to combine multiple
approaches from different areas to predict the pilot’s mental states, which makes this
study the first of its kind in the aviation field. The innovative nature of this study lies
in the development of a novel multimodal approach to detect and classify APPD states
using cleaned EEG data. The EEG signals from 18 pilots were collected from a variety
of conditions to form the heterogeneous EEG data. The approach involves the automatic
preprocessing of the EEG signals, feature extraction and selection methodology based on
Riemannian geometry analysis, and a novel APPD system that classifies the APPD states.
The system addresses the issues of corrupted EEG data, imbalanced datasets, and the curse
of dimensionality, and provides meaningful features from the EEG signals, making it a
unique contribution to the field.

3. Materials and Methods

3.1. Dataset Description

In November 2020, a dataset was obtained from NASA’s open data portal website,
which comprised experimental data collected from 18 pilots. The pilots participated
in four experiments, three of which took place in a non-flight environment and one in
a high-fidelity motion-based flight simulator. The non-flight environment experiments
lasted approximately 6 min, while the flight simulator experiment lasted approximately
1 h. The data were recorded in physiological signals and were provided in CSV format.
Information regarding the utilized EEG recording headset and the flight simulator is
reported in Appendix A.

The dataset was divided into one-second epochs and combined into a single dataset
of 89,198 samples, to account for the varying durations of each benchmark task. The
benchmark tasks included NE, CA, DA, and SS. A typical snapshot and schematic of each
experiment is depicted in Figure 1. The majority of the samples in the dataset came from
the NE class (80%).

This dataset has great potential for advancing research in the fields of BCI and human
factors in aviation and can be used to develop new models and algorithms to predict pilot
performance under different conditions, as well as training programs to improve pilot
performance in high-stress situations. Additionally, the dataset can be utilized to evaluate
the design of flight deck interfaces and test the effectiveness of new technologies, such as
augmented reality and virtual reality, in enhancing pilot performance.

3.2. The Automatic Preprocessing Pipeline

This study implemented advance preprocessing techniques using an open-source
library called MNE-Python. The proposed EEG data preprocessing pipeline is shown in
Figure 2. A brief description of the preprocessing steps is discussed below.
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Figure 1. A typical snapshot and schematic of each experiment.

 

Figure 2. An outline of the multimodal approach based on EEG.

The EEG data were given in a CSV file. We used the MNE-Python library to apply
advanced preprocessing methods. A “raw” object, a core data structure for continuous EEG
data, was created and included information such as channel names and types, standard
montage labeling, and the sample rate.

The first step was to filter the EEG signals. This was achieved by applying a digital
filter to the data, which suppresses specific frequency components that fall outside of a
designated range. There are two main types of digital filters used in digital signal processing
(DSP): finite impulse response (FIR) and infinite impulse response (IIR). In the present study,
we applied band-pass filtering to the EEG signals using an FIR filter, with a cutoff range of
1–50 Hz. We then segmented the EEG data into one-second non-overlapping epochs. The
epochs that had a maximum peak-to-peak signal amplitude of more than 700 μV, or a
minimum peak-to-peak signal amplitude of less than 1 μV, were dropped from the dataset,
as their existence negatively affected the applicability of the next preprocessing steps.
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Afterwards, we employed the Autoreject method to repair or discard corrupted epochs.
Bayesian optimization and cross-validation are leveraged in Autoreject to automatically
determine an artefact threshold for each channel/sensor; thereafter, faulty channels/sensors
are interpolated, or the epoch is discarded. Figure 3 is a diagram depicting the operation
of the Autoreject algorithm in a simplified form. For a detailed discussion of how and
why this algorithm works, we suggest reading [38], written by the program’s creators.
To identify and eradicate blinks and other forms of artifactuality, we employed an MNE-
Python function that used the EEG channel Fp1 as a surrogate electrooculogram. These
components have a lot of variation and tend to be located in the frontotemporal region of
the head. The EEG signals were reconstructed after the blinking component was eliminated
from the source matrix. Finally, we used Autoreject again to encounter any distortions that
could be found after repairing the blink artefacts.

 
Figure 3. A simplified form of the Autoreject algorithm operation.

With more than 80% of the data coming from the NE class, it is possible that the trained
model will be biased toward that class. This makes a model’s predictions seem naive, even
if they have a high degree of accuracy. To counteract the preponderance of the NE class,
we undersampled the data with the intention of creating a more even distribution across
all classes.

3.3. EEG Feature Extraction

After preprocessing the EEG data, two methods that expanded upon previous work
on EEG BCI were adopted. First, the EEG data were subjected to specialized spatial filtering
in order to boost SNR. We used an algorithm modified from the xDawn algorithm to
estimate the spatial filters. Second, we extracted the features from a particular form of the
EEG epochs’ covariance matrices and adjusted them using techniques from Riemannian
geometry. Indeed, the covariance matrices, being Symmetric and Positive-Definite Matrices
(SPD), are topologically localized on a Riemannian manifold. To reduce the covariance
matrices dimensionality by discarding irrelevant information, we performed the Fisher
Geodesic Discriminant Analysis (FGDA) algorithm proposed by [44,45]. Be aware that the
features are matrices, rather than the typical vectors. Because we need to maintain the
special structure of these matrices, we cannot simply vectorize them. As an alternative, we
employed techniques from Riemannian geometry introduced in [46] to map the covariance
matrices, belonging to a manifold, onto the Riemannian tangent space, where they may
be vectorized and treated as Euclidean objects. Each matrix is represented as a vector of
size n(n + 1)/2, where n is the dimension of the SPD matrices. Figure 4 is a geometric
depiction of the tangent space mapping process. Despite its more common association
with motor imagery, we believe that incorporating it into a visual processing task as part
of our research could prove to be useful. A tangent space formed by a group of tangent

278



Sensors 2023, 23, 7350

vectors can be defined for each point P, where P ∈ P(n). Between P and the exponential
mapping P = Expp(Si), each tangent vector S is the derivative at t = 0 of the geodesic Γ(t),
denoted as

ExpP(Si) = P
1
2 exp(P− 1

2 SiP− 1
2

)
P

1
2 (1)

 

Figure 4. A geometric depiction of the tangent space mapping process.

The formula to perform the inverse mapping is denoted as

LogP(Si) = P
1
2 Log(P− 1

2 PiP− 1
2

)
P

1
2 (2)

Once the tangent space vectors have been extracted, we may use the Principal Com-
ponent Analysis (PCA) and ANOVA methods as a variable selection strategy to lower the
space dimension and alleviate the curse of dimensionality.

3.4. EEG Classification

In this study, we rigorously tested multiple ensemble learning algorithms, including
Random Forests (RF), Extremely Randomized Trees (ERT), Gradient Tree Boosting (GTB),
AdaBoost, and Voting, for their ability to recognize APPD mental states. A modified version
of the 5-fold cross-validation process based on stratification was used to assess the quality
of the proposed approach.

Five-fold cross-validation is a commonly employed technique in machine learning to
assess the performance of algorithms. The method involves dividing the original dataset
into five equal-sized subsets, referred to as folds. In turn, each fold serves as the validation
data once while the remaining four folds are utilized as training data. This process is
repeated five times, with each fold being used exactly once as the validation data. The
performance of the algorithm is then evaluated based on the average of the results obtained
from the five trials.

This approach to evaluating performance provides a more reliable estimate compared
to a single train/test split. This is due to the reduction of variance in performance estimates
and the assurance that all data are utilized for both training and testing.

RF: In 2001, L. Breiman presented the Random Forest algorithm as a general-purpose
classification and regression technique, and it has since seen tremendous success. The
method has been shown to be effective in situations when there are more variables than
observations, as it mixes multiple randomized decision trees and averages their predictions.
It can be scaled up to address complex issues, customized to meet the needs of a wide
range of ad hoc learning projects, and designed to yield metrics of varying significance.
The entropy function was used as a metric of split quality in our work, with the number of
estimators fixed at 200.

ERT: It is a classifier that works in a way that is similar to RF, but with a slight twist: it
introduces randomization to the training process. Each tree in ExtraTrees’s multiple trees is
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trained independently using the entire dataset used for the classification. The optimum
branching at a node is determined by considering a subset of all features, much like the
Random Decision Forest. Each feature has a single threshold picked at random rather than
multiple, less optimal ones. In our research, we used a total of 200 estimators and the
entropy function to evaluate split quality.

GTB: It provides a prediction model in the shape of a collection of weak prediction
models, most often decision trees. GTB is the name of the resulting procedure when a
decision tree is the weak learner. The method extends the boosting algorithm to any loss
function that can be differentiated. In our study, split quality was assessed using the
‘friedman_mse’ function and a total of 100 estimators.

AdaBoost: The statistical classification meta-algorithm known as Adaptive Boosting
was developed by Yoav Freund and Robert Schapire in 1995. Its performance can be en-
hanced by combining it with a variety of different learning methods. This method creates
a model in which each piece of information is given the same amount of consideration.
Incorrectly labelled points are thus given more weight. After this new model is created, the
points with greater weights will be given more consideration. A model will be trained re-
peatedly until a reduced error is received. Because of its rapid convergence to a smaller test
error after fewer boosting iterations, the ‘SAMME.R’ method was chosen in our research.

The hybrid model (Voting): The goal is to predict class labels using a majority vote or
the average projected probability (soft vote) based on the results of a collection of machine
learning classifiers that are conceptually distinct from one another. A classifier like this
can help even out the performance of a group of otherwise comparable models. Based
on the outcomes of RF, ERT, and GTB, we used the average projected probability to make
predictions about class labels.

3.5. Performance Metrics

Several indicators are used to determine the reliability of our findings. The Confusion
Matrix is the most important criterion for evaluating our classification models. Metrics
like a model’s accuracy, precision, and recall are also crucial for understanding how well
it actually performs. True positive (TP), false positive (FP), true negative (TN), and false
positive (FN) are the four concepts used in the metrics. In greater detail, these metrics are
described as follows:

Accuracy: It is the proportion of accurately predicted classes achieved by the model.
The formal definition is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision: It can be defined as the percentage of positive observations that were
successfully anticipated relative to the total number of positive observations that were
predicted. The formal definition is as follows:

Precision =
TP

TP + FP
(4)

Recall: It can be calculated by dividing the number of accurately anticipated positive
observations by the total number of observations in the actual class. The formal definition
is as follows:

Recall =
TP

TP + FN
(5)

F1-score: It is the weighted average of Precision and Recall. The formal definition is
as follows:

F1 − score = 2 × Precision × Recall
Precision + Recall

(6)
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4. Results and Discussion

In this study, a multimodal approach was proposed to identify attention-related pilot
performance-limiting states based on heterogeneous EEG data. We employed an automated
preprocessing pipeline to clean the EEG data by either removing or repairing corrupted
epochs. We employed an extraction and selection methodology based on Riemannian
geometry analysis to obtain meaningful features from the cleaned data. Using these
extracted features, we trained a hybrid ensemble learning model in addition to four other
ensemble learning models to detect APPD states.

4.1. EEG Signal Analysis

This section presents and discusses the results of employing the automated prepro-
cessing pipeline. Figure 5 reveals the size of the dataset before and after preprocessing
the dataset.
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Figure 5. The size of the dataset before and after preprocessing the dataset.

We observed that the proposed pipeline identified and discarded a total of 33,786 con-
taminated epochs in the dataset; to be precise, 29,175 epochs from the NE class, 3632 epochs
from the CA class, 598 from the DA class, and 381 epochs from the SS class were dropped
from the dataset, as they were considered artefacts.

The proposed EEG preprocessing pipeline aims to improve the quality of EEG data
by removing artifacts and other sources of noise, ultimately leading to more accurate and
reliable results in downstream analyses. The employed pipeline removed 33,786 out of
89,198 epochs were recorded, resulting in a final dataset of 55,412 epochs. While some may
argue that removing such a large number of epochs may lead to a loss of valuable data, it
is important to consider the rationale behind the preprocessing steps and the impact they
have on the quality of the remaining epochs.

While visually inspecting the discarded epochs, we observed that the epochs were
contaminated by physiological artefacts, such as muscle tension and clenching of the
jaw, and non-physiological/technical artifacts, such as body movements and powerline
interference. As an illustration, Figure 6A depicts an eight-epoch window of the original
EEG data, whereas Figure 6B depicts an eight-epoch window of the EEG data that have
been preprocessed using the preprocessing pipeline. Figure 6A reveals that ocular activity
artefacts, such as blinks and lateral eye movements, were spotted and color-coded as red
in epochs 15, 18, and 20. These three epochs were deleted in addition to epochs 19, 21,
and 25, as indicated in Figure 6B. We also noticed that some epochs, epoch 16 for instance,
were repaired.
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(A) 

(B) 

Figure 6. An eight-epoch example of the EEG signals before and after preprocessing.

Based on the results presented, the EEG preprocessing pipeline appears to be effective
in improving the quality of the EEG data. The visual comparison of the EEG signal before
and after preprocessing indicates a reduction in noise and artifacts, resulting in a cleaner
and more consistent signal.

The use of Autoreject for artifact rejection and correction, followed by eye-related
artefact removal, and a second stage of Autoreject for further correction, provides a com-
prehensive approach to minimizing the impact of artefacts on the EEG signal. The use of
these methods in combination is likely to capture a wide range of artefacts and improve
the overall quality of the data.

The effectiveness of the pipeline is also supported by the quantitative analysis of the
EEG data. For example, the reduction in the number of epochs removed after preprocessing
may indicate that the pipeline was successful in identifying and removing a significant
proportion of the artifacts. Furthermore, the comparison of the EEG data before and after
preprocessing may provide evidence of the improvements made in the EEG data quality.

However, it is important to note that the effectiveness of the pipeline may depend
on various factors, such as the quality of the initial EEG data and the parameters used for
each stage of the pipeline. Therefore, a careful evaluation of the resulting EEG data and
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the quality of the analysis should be conducted to determine the overall effectiveness of
the pipeline.

In addition, while the use of automated methods for artefact detection and correction
can provide several advantages, such as consistency and efficiency, they may not capture all
sources of noise and artifacts. Therefore, it may be beneficial to supplement the automated
methods with visual inspection, especially in cases where subtle sources of noise may
be present.

We also report the spectral power analysis of one pilot while performing the high-
fidelity motion-based flight simulator experiment to examine the overall activity level of
the brain at different frequencies. Figure 7 illustrates the spectral power topography during
APPD mental states, namely (A) NE, (B) SS, (C) CA, and (D) DA. The power spectral density
was computed for each frequency band (delta (0–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–30 Hz), and gamma (30–45 Hz)).

Figure 7. Spectral power topography during APPD mental states, namely (A) NE, (B) SS, (C) CA,
and (D) DA.

In all frequency bands, we commonly found an increase mean power of the CA,
DA, and SS states compared to the NE state. We also observed a lower frequency power
increase in all frequency band ranges during the SS state. For the delta activity, the highest
mean spectral power was located in the frontal lobe during the CA and DA states. For
the theta and alpha activity, the highest spectral power was observed in the frontal lobe
for theta activity (max: 47.5 dB) and in the frontal and occipital lobes for alpha activity
(max: 36.7 dB) during the DA state. Theta oscillations have been linked to mental states of
relaxation and drowsiness, while alpha oscillations have been associated with decreased
cognitive engagement and mind-wandering. For the beta (max: 33.3 dB) and gamma
activity (max: 33 dB), the highest spectral power was observed in the occipital lobe during
the CA state. Both beta and gamma oscillations have been connected to engaged cognitive
processing, including perception and memory, while beta oscillations have been associated
with focused attention and concentration.

Spectral power analysis is a well-established method for analyzing EEG data that has
been used in many studies to investigate the spectral properties of the EEG signal. In our
study, we used spectral power analysis to visualize the topography of EEG activity during
four different mental states—CA, DA, SS, NE. By calculating the power spectral density of
the EEG signal in different frequency bands, we were able to obtain topographical maps
that showed the distribution of power across the scalp. These maps provided a global
view of the EEG patterns that were associated with each mental state, and they allowed
us to identify the scalp regions that exhibited the strongest or weakest power in different
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frequency bands. This information was useful in identifying patterns of EEG activity that
were associated with each mental state, and in validating the results of our subsequent
classification analysis. Thus, the use of spectral power analysis was essential to achieving
the primary objective of our study, which was to gain a better understanding of the EEG
patterns underlying the four mental states.

4.2. Evaluation of Machine Learning Models

Five ensemble learning models, namely RF, ERT, GTB, AdaBoost, and Voting, were
trained with tangent space features generated from cleaned EEG data using the 5-fold
cross-validation technique. First, we estimated the spatial covariance matrices from the
cleaned EEG data and obtained a set of SPD matrices of shapes (48, 48). Each matrix was
vectorized, obtaining 1176 tangent space features, which were then projected to a lower
dimensional space using PCA. In Table 1, we show the performances of the employed
ensemble learning models. We considered the macro average of the evaluation metrics
Accuracy, Recall, Precision, and F1-score. We also show the standard error, which we
calculated based on the F1-score metric for each class because we trained the models using
the 5-fold cross-validation technique.

Table 1. Ensemble learning models’ performances.

Methods Mental Class Accuracy (%) Precision (%) Recall (%) F1-Score (%) Standard Error

RF

NE 91 92 91 0.010
SS 82 81 82 0.009
CA 87 86 87 0.013
DA 82 83 83 0.011

Macro average 86 86 86 86

ERT

NE 90 91 90 0.011
SS 80 80 80 0.016
CA 86 85 86 0.010
DA 81 82 82 0.012

Macro average 84 84 84 84

GTB

NE 91 90 91 0.016
SS 82 82 82 0.009
CA 87 87 87 0.012
DA 83 84 83 0.011

Macro average 86 86 86 86

AdaBoost

NE 91 88 89 0.009
SS 80 80 80 0.007
CA 83 82 83 0.010
DA 79 81 80 0.023

Macro average 83 83 83 83

Voting

NE 91 92 92 0.013
SS 82 82 82 0.009
CA 87 86 87 0.012
DA 83 84 83 0.013

Macro average 86 86 86 86

To provide thorough analysis, the degree of confusion generated by each model
was computed. The confusion matrix for the 5-fold cross-validation results using the RF
classifier is shown in Figure 8A; the ERT was employed in (B), GTB in (C), AdaBoost in (D),
and Voting in (E). The values of the diagonal elements represent the percentage of correctly
predicted classes.
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Figure 8. The confusion matrix for the 5-fold cross-validation results. The RF model’s confusion
matrix is shown in (A); the ERT in (B), GTB in (C), AdaBoost in (D), and Voting in (E).

Based on the data from Table 1, we observed that all five models provided good
detection performances. The best accuracy performance achieved was 86%, which was
achieved by the RF, GTB, and Voting models, followed by AdaBoost (84%) and ERT (83%).
The same trend can be seen across different metrics, including precision, recall, and F1-score.
We believe the reason why ERT did not perform as well as the RF model, although both
algorithms are based on the bagging or bootstrap aggregation technique, is because of
the randomness in the way splits are computed; while the most discriminative thresholds
are picked as the splitting rule in RF, thresholds in ERT are drawn at random, which
slightly increased biasness in the model. Similarly, we also observed a slight difference in
the performances of GTB and AdaBoost, even though both algorithms are based on the
boosting technique. We suspect the reason of the increase in GTB model performance is
due to the use of the log loss function, which is more robust to mislabeled examples in the
dataset; unlike GTB, the AdaBoost algorithm uses the exponential loss function.

Figure 8 further shows that all models made accurate classification predictions. The
NE mental state was predicted by all five models to be the easiest to distinguish, with
an accuracy performance range of 88.44–91.88%, followed by the CA with a range of
82.34–86.88%. It was also discovered that, across all five models, DA was the third best
at recognizing class with an accuracy performance of 81.25–84.06%, while SS was the
worst at recognizing class with an accuracy performance of 79.53–82.50%. Nevertheless,
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these performance levels can be enhanced if the dataset is more cohesive. With regards
to predicting NE and DA states, the Voting classifier performed best, whereas the GTB
classifier performed best with regards to predicting CA and SS states.

The use of ensemble models has become increasingly popular in machine learning
due to their ability to leverage the strengths of different models to improve performance. In
this study, we compared the performance of several popular ensemble models, including
RF, ERT, GTB, and AdaBoost, with a hybrid ensemble model. The results showed that
the hybrid ensemble model outperformed ERT and AdaBoost and achieved comparable
performance to RF and GTB. One of the key advantages of the hybrid ensemble model is
its flexibility. By combining different models, the hybrid ensemble approach can handle
various types of data and tasks, making it a versatile option for different applications.
In contrast, the other models tested in this study were each based on a single algorithm,
limiting their flexibility to some extent. Another advantage is its improved generalization
ability. The use of a combination of models in the hybrid ensemble approach can help to
mitigate the risk of overfitting. This can lead to more accurate predictions on new, unseen
data, making the hybrid ensemble model a promising approach for practical applications.

Several studies have investigated the classification of mental states using EEG data.
However, some of these studies did not make their dataset publicly accessible, did not
achieve clear or consistent results, employed different sensors and conventional preprocess-
ing techniques, or did not classify the same number of mental states. In order to compare
the results of our multimodal approach with other studies, we evaluated our approach in
the context of studies that have used the same dataset.

Harrivel et al. [35] implemented a broad suite of sensors to classify pilot mental
states. Although this study provided initial insights into the use of physiological signals to
measure attention in aviation, their datasets were limited in size. In addition, their results
were not conclusive because they were based on only one pilot. Harrivel et al. [34], on
the other hand, considered a larger sample size and employed multiple sensors, including
EEG, ECG, GSR, and respiration. However, the study relied on spectral power features and
did not classify four mental states. Moreover, the results were not as good as in our study,
likely due to the limited classification capabilities of spectral power features. Similarly, [20]
considered a larger sample size of 18 users but did not clean their data from artifacts and
merged three mental states into one called the event state. The lack of artifact removal may
have contributed to unclear results, and the use of different metrics limited comparison
with our study.

We also evaluated our approach in the context of studies that have used a different
dataset. For example, Han et al. [25], proposed a multimodal deep learning network to
classify four mental states (distraction, baseline, workload, and fatigue) using a dataset
of eight pilots. The authors employed conventional preprocessing techniques, including
filtering and ICA for removing eye-related artifacts. They also extracted PSD features
from the EEG signals and provided three topographic maps as inputs to a CNN model. In
addition, the authors employed ECG, GSR, and respiration signals as inputs to an LSTM
network. However, the dataset used by Han et al. was not a publicly accessible dataset,
unlike our study and studies [20,29,34,35], which were all publicly available. While their
results were promising, the small sample size and lack of a public dataset may limit the
generalizability of the findings. In addition, our approach achieved an accuracy of 86%
in detecting mental states, which is a substantial improvement over Han et al. study’s
performance of 77.7%. Hernández-Sabaté et al. [43] developed a CNN model to classify
different mental workloads of pilots using EEG signals. Although they made their dataset
publicly available, they divided a signal state to multiple states.

In comparison to our previous study [29], where we evaluated the impact of different
preprocessing techniques on the performance of ML algorithms for classifying pilots’ mental
states, the current study represents a significant improvement in mental state detection.

In this study, we developed a novel multimodal approach that includes advanced
automated preprocessing techniques, Riemannian geometry-based feature extraction, and
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a hybrid ensemble learning technique that combines the results of several machine learning
classifiers. The use of Riemannian geometry analysis for feature extraction and the hybrid
ensemble learning technique outperforms traditional approaches and shows the impor-
tance of advanced techniques in improving the accuracy of mental state detection. Our
approach is the first of its kind because it combines advanced techniques proposed in three
different fields: Autoreject, from the neuroscience field for data preprocessing; Tangent
space mapping, from BCI for feature extraction; and hybrid ensemble learning artificial
intelligence for pilot’s mental states classification.

This study can have significant implications for improving pilots’ performance and
safety in the aviation industry. Our approach has the potential to benefit several sectors
within the aviation industry. One important application is in pilot training and performance
evaluation. By accurately characterizing pilot mental states using EEG data, the proposed
approach can be used to identify areas where pilots may need additional training or support,
and to evaluate the effectiveness of training programs in improving cognitive performance.

Another potential application is in aviation safety, particularly in identifying potential
safety hazards related to pilot mental states. By providing a detailed and accurate char-
acterization of pilot mental states during flight, the proposed approach can help identify
situations where pilots may be at higher risk of making errors or experiencing cogni-
tive overload, allowing for proactive interventions to be taken to prevent accidents and
improve safety.

Additionally, our approach has the potential to improve human–machine interaction
in the aviation industry. By using EEG data to monitor pilot mental states, future BCI
systems can be developed that are better able to adapt to the cognitive state of the pilot,
improving the efficiency and safety of the aviation system as a whole.

Overall, the potential applications of our approach are diverse and have the potential
to make a significant contribution to the aviation industry by improving safety, training,
and human–machine interaction.

5. Conclusions

We conducted an exploratory investigation using uncontaminated EEG data and
ensemble learning algorithms to characterize the pilot’s mental states (i.e., channelized
attention, diverted attention, startle/surprise, and normal). We also demonstrated how
the pilot’s varied mental states impacted physiological indicators. With the goal of iden-
tifying the neural signal related to cognitive processes reflective of brain activity while
disregarding the other artefacts and extracting significant information, we proposed a
feasible approach for automatically preprocessing EEG data. In order to proceed to the
classification phase, the processed data underwent feature extraction, during which spatial
covariance matrices were calculated and subsequently mapped onto the Riemannian tan-
gent space. Four ensemble learning models, namely RF, ERT, GTB, and AdaBoost, and a
hybrid ensemble model were trained using tangent space vectors.

Based on the findings, it was clear that the proposed method successfully identified
artifacts in the EEG epochs and either fixed or discarded them automatically. In addition,
the results indicated the viability of implementing EEG-based BCI systems, such as tangent
space mapping, to characterize the pilot’s mental states. According to the findings of the
pilot’s mental states detection investigation, we observe that the RF, GTB, and the hybrid
ensemble models are the best at predicting NE, CA, SS, and DA states, with an accuracy
rate of 86%.

The innovative nature of this study lies in its combination of advanced automated
preprocessing techniques, Riemannian geometry-based feature extraction, and ensemble
learning models, which, together, provide a detailed and accurate characterization of pilot
mental states, ultimately leading to a safer and more efficient aviation system.

The models’ performances will be further refined, and the training dataset will be
enlarged, in subsequent work. We also aim to apply the aforementioned approach to a
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broad range of machine learning and deep learning models. In further studies, we can also
investigate the possibility of extracting other meaningful features.
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Appendix A

Appendix A.1. Advanced Brain Monitoring X24 EEG Headset

The X24 EEG headset was employed to gather the EEG dataset. This headset offers a
wireless option for acquiring and recording EEG signals without the need for scalp abrasion.
It is equipped with 20 electrodes arranged in the standard 10–20 format and one additional
electrode, POz, as shown in Figure A1. These electrodes are located at specific locations
on the head, such as Fz, Cz, Pz, F3, F4, C3, C4, P3, P4, O1, O2, T5, T3, F7, Fp1, Fp2, F8, T4,
T6, and Linked Mastoids. The wireless technology allows for freedom of movement for
the user during data collection and display in real-time. The headset collects EEG signals
from the sensors on the participant and processes the signals through analog-to-digital
conversion, encoding, formatting, and transmission. It operates at a sample rate of 256 Hz
and uses the system’s bi-directional capabilities to check scalp-electrode impedance and
monitor battery capacity in the X24 Headset. Figure A1 illustrates the names and locations
of the electrodes on the EEG sensor.

Figure A1. EEG electrode names and locations.

Appendix A.2. Flight Simulator

The dataset was obtained from 18 commercial aviation pilots who participated in
a research flight deck simulation at NASA Langley Research Center. The flight deck,
which is known as the cockpit motion facility, is an all-glass reconfigurable cockpit that
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is equipped with a programmable sidestick and pedal control inceptors. The simulator,
which can operate in both motion-based and fixed-base modes, is designed to provide a
high-fidelity, full-systems flight experience for pilots. It is used to evaluate and improve
research concepts related to flight crew operations, covering everything from engine startup
to engine shutdown.
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