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Preface

Web searching and web data mining constitute the cornerstone of today’s diverse intelligent web

applications. With the rapid advancement in digitization and intelligentization, web searching and

web data mining serve as the main methods of extracting valuable information from large quantities

of ever-growing network data. With the rapid development of information technology and artificial

intelligence, web applications have expanded from traditional information retrieval and multimedia

services to mobile crowd-sensing systems, intelligent healthcare systems, and even collaborative

scientific innovation platforms. The emergence of novel applications generates massive amounts of

heterogeneous data, calling on more complex and comprehensive analysis and modeling technologies

for their exploration and exploitation. At the same time, the emergence of a large number of machine

learning models, such as CNN, RNN, LSTM, BERT, Transformer, graph neural networks, etc., also

provide more powerful tools for analyzing and modeling web data. Consequently, web searching

improves the relevance and accuracy of search results by employing more complex algorithms, while

web data mining helps enterprises and organizations to deeply understand customer needs and

optimize their products and services. The models, algorithms, and techniques of web searching and

web data mining are constantly and rapidly evolving, leading to various autonomous, proactive,

content-exploring, self-learning, socially collaborative, and location-aware web applications.

To address the challenges in the development of web searching, web data mining, and web-based

applications, we launched this Special Issue in September 2022, which encourages researchers all over

the world to submit their high-quality original work related to all aspects of this field. After more than

a year of hard work from all authors, reviewers, and editors, of the fifteen articles submitted, ten were

finally accepted for publication after the peer-review process: an acceptance rate of 67 percent. The

published articles cover a range of topics, from basic models and algorithms to newer applications.

Although submissions to this Special Issue are now closed, the need for further in-depth research and

development remains. We believe that this Special Issue, “New Horizons in Web Search, Web Data

Mining, and Web-Based Applications”, has addressed some significant existing knowledge gaps and

aids in the advanced development of web searching, web data mining, and web-based applications.

It will inspire more researchers to devote themselves to this field and make more contributions in

the future.

In the end, we would like to take this opportunity to express our most profound appreciation

to the MDPI Book staff; the editorial team of the Applied Sciences journal, especially Andy Liu,

Section Managing Editor of this Special Issue; the talented authors; and the hardworking and

professional reviewers.

Jing Zhang, Jipeng Qiang, and Cangqi Zhou

Editors
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1. Introduction

In today’s era of rapid digitization and information technology advancement, web
search and web data mining stand at the core of the technological progress of numerous
web-based applications [1–3]. Web search is accompanied by the emergence of the Internet,
and it continues to develop as Internet applications become increasingly diversified. It has
evolved from the early days of navigating people to web pages of interest and providing
people with rich content to automatically searching for relevant resources based on the
user’s characteristics, integrating related functions, and pushing personalized services.
The root cause of achieving these exciting web application experiences is that we have
a set of web data mining algorithms that continuously analyze massive amounts of web
data and user-generated content [4]. They analyze large volumes of data in an automated
or semi-automated manner to find hidden functional patterns like outliers, clusters, and
association rules, classify targets into different categories, or link two different types of
items (i.e., recommender systems).

In general, web search and web data mining are the main ways to extract valuable
information from massive network data, and their models, algorithms, and techniques
are constantly evolving. As a result, web applications tend to be autonomous, proactive,
content-exploring, self-learning, socially collaborative, and location-aware. For example,
through user click and eye-tracking modeling, search results can be optimized more ac-
curately based on user characteristics [5]. Advanced autoencoder deep learning models
make extracting information from heterogeneous contexts more efficient [6]. In web image
search, semi-supervised pseudo-labeling and variational contrastive learning can be used
to overcome the influence of noise and obtain better retrieval performance [7]. Embracing
location-based social networks into web applications enables the users to register whenever
they visit a specific point-of-interest (POI) through the so-called check-ins, or to establish
social links with other users in the system [8]. Relying on multiple rounds of natural
language, the interaction technology image search engine can obtain more semantically ac-
curate retrieval results [9]. Crowdsourcing technology makes large-scale scientific research
collaboration based on the web possible [10,11]. In summary, search engines improve the
relevance and accuracy of search results by employing more complex algorithms, such as
models based on machine learning and machine intelligence. Web data mining helps
enterprises and organizations deeply understand customer needs and optimize products
and services by applying complex statistical methods, machine learning, and deep learning
technologies. Together with the development of cloud and mobile computing, web-based
applications have become more powerful and diverse. These applications support the

Appl. Sci. 2024, 14, 530. https://doi.org/10.3390/app14020530 https://www.mdpi.com/journal/applsci
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operation of multiple industries such as e-commerce [12], online education [13], and re-
mote healthcare [14]. Innovations such as blockchain technology and the application of
the Internet of Things have further expanded the possibilities of web applications [15,16],
providing users with safer and more personalized services.

The articles published in this Special Issue have shown that web search, web data min-
ing, and web-based applications are in a stage of rapid development. Different research and
practices from various fields indicate that with the continuous emergence and application
of new technologies, these fields will continue to drive social and technological progress.

2. An Overview of Published Articles

“Predicting Task Planning Ability for Learners Engaged in Searching as Learning Based
on Tree-Structured Long Short-Term Memory Networks” by Pengfei Li, Shaoyu Dong,
Yin Zhang, and Bin Zhang was published in November 2023, and it proposed a new method
by which to predict the task planning ability of learners using network-based search engines
in the context of searching as learning (SAL). This method not only improves the accuracy
of predicting the task-planning ability of learners but also provides valuable insights for
web-based search engines, recommendation systems, and instructional designers. The in-
novative contribution of this study lies in its ability to help create personalized and efficient
search interfaces and support educators in designing more effective learning experiences
based on the needs of individual learners.

“WSREB Mechanism: Web Search Results Exploration Mechanism for Blind Users” by
Snober Naseer, Umer Rashid, Maha Saddal, Abdur Rehman Khan, Qaisar Abbas, and
Yassine Daadaa was published in October 2023, and it introduced an innovative frame-
work for improving the accessibility of network search for blind users and addressing
the challenges they face due to information exchange and cognitive pressure. This study
proposes a novel WSREB mechanism, which emphasizes accessibility and navigation of
web documents while reducing the cognitive load in a non-linear and integrated way. It sig-
nificantly improves the availability and accessibility of network content for business units.
This study helps to redefine the paradigm of online search to promote inclusivity and
optimize user experience for blind users, reflecting that technological development in web
search increases the well-being of minority groups.

“A Neural-Network-Based Landscape Search Engine: LSE Wisconsin” by Matthew
Haffner, Matthew DeWitte, Papia F. Rozario, and Gustavo A. Ovando-Montejo was pub-
lished in August 2023, and it introduced a search engine, namely, LSE Wisconsin, which
extends the perspectives of remote sensing research by implementing image retrieval based
on terrain and vegetation features. The new method proposed in this study indicates that
the VGG16 and ResNet-50 networks typically produce more favorable results, marking an
important step towards developing more comprehensive and high-resolution landscape
search engines. This study helps to create powerful and user-friendly digital resources for
the research community and users, improving the accessibility and practicality of remote
sensing data in various applications.

“Web Page Content Block Identification with Extended Block Properties” by Kiril Gri-
azev and Simona Ramanauskaitė was published in May 2023 and proposed an innovative
method for web content block recognition, which is of great significance for automatically
integrating web content into other systems. The main technological advancement lies in
the ability to describe, in detail, the scope and variants of each content block through text
similarity and document object model (DOM) tree analysis. Compared to manual tagging
and other existing methods, it can recognize more content blocks, reducing at least 70%
of manual tagging work. This work led to a full understanding of the web page structure,
making automated integration and transformation of web content possible.

“EFCMF: A Multimodal Robustness Enhancement Framework for Fine-Grained Recog-
nition” by Rongping Zou, Bin Zhu, Yi Chen, Bo Xie, and Bin Shao was published in January
2023, and it proposed an innovative method for fine-grained recognition in multi-mode
data. It enhances the learning ability of multimodal data complementarity by randomly
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deactivating modal features in the constructed multimodal fine-grained recognition model,
solving challenges such as pattern loss and resistance attacks. EFCMF improves the process-
ing of missing modal scenes without additional training. It is worth noting that compared
to traditional models under adversarial conditions, it achieves significantly higher accuracy
and shows a 27.13% performance improvement.

“Link Prediction with Hypergraphs via Network Embedding” by Zijuan Zhao, Kai Yang,
and Jinli Guo was published in December 2022 and introduced a new link prediction
method using hypergraphs and network embedding (HNE), demonstrating technological
progress in the field of network analysis and providing a new perspective for studying
complex relationships. Hypergraphs provide a natural way to represent complex higher-
order relationships. The findings of this paper have broad implications, proposing potential
applications in different fields such as online social network recommendations and bioin-
formatics by integrating hypergraphs and network embedding methods.

“Unsupervised Domain Adaptation via Stacked Convolutional Autoencoder” by
Yi Zhu, Xinke Zhou, and Xindong Wu was published in December 2022, and it proposed a
new unsupervised domain adaptation method that significantly improves domain adapta-
tion technology by using the Stacked Convolutional Sparse Autoencoder (SCSA). It obtains
higher-level representations for unsupervised domain adaptation by performing layer
projection from the original data. SCSA effectively addresses the challenges of performance
degradation caused by ineffective optimization and data redundancy in deep neural net-
works. Compared with existing methods, it shows superior classification accuracy of up to
89.3%. This research effectively improves the efficiency of using unsupervised methods to
transfer knowledge in different domains.

“Development of a Web Application for the Detection of Coronary Artery Calcium
from Computed Tomography” by Juan Aguilera-Alvarez, Juan Martínez-Nolasco, Sergio
Olmos-Temois, José Padilla-Medina, Víctor Sámano-Ortega, and Micael Bravo-Sanchez was
published in November 2022, and it introduced a novel web application that uses Agaston
technology for semiautomatic quantification of coronary artery calcium (CAC). This study
makes an important advancement in cardiovascular disease analysis. The innovative
approach in the system provides accessibility to any device through internet connectivity,
which significantly simplifies the processes of healthcare professionals and improves the
practicality and efficiency of cardiovascular risk assessment. This system not only simplifies
the workflow of cardiologists but may also help with the early detection and management
of cardiovascular diseases.

“Fuzzy MLKNN in Credit User Portrait” by Zhuangyi Zhang, Lu Han, and Muzi Chen
was published in November 2022, and it proposed an improved fuzzy MLKNN multi-
label learning algorithm. The new algorithm solves the subjectivity problem caused by
the discretization of credit data and provides more dimensional portraits for credit users.
It weakens the subjectivity of credit data after discretization by introducing intuitionistic
fuzzy numbers and better realizes the multi-label portrait of credit users by using the
corresponding fuzzy Euclidean distance. Compared with traditional MLKNN algorithms, it
significantly improves performance, especially in reducing one error. The method creatively
combines fuzzy set theory with multi-label learning, paving the way for more sophisticated
credit data analysis and potentially aiding in more accurate credit risk assessments.

“Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowl-
edge Concepts?” by Liting Wei, Yan Li, Yi Zhu, Bin Li, and Lejun Zhang was published in
October 2022, and it proposed a novel multi-label text classification prompt adjustment
method (PTMLTC). The proposed method automatically links exercises with knowledge
concepts in educational environments. Specifically, the relevance scores of exercise content
and knowledge concepts are learned by a prompt tuning model with a unified template,
and then the multiple associated knowledge concepts are selected with a threshold. It solves
the cost and time challenges of requiring a large amount of training data in traditional
multi-label text classification methods and performs significantly better than existing meth-
ods in terms of efficiency and accuracy on the self-constructed Exercises–Concepts dataset
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of the Data Structure course. This innovative method not only simplifies the process of
connecting educational content but also has the potential for wider application in intelligent
education systems.

3. Conclusions

The objectives of this Special Issue on “New Horizons in Web Search, Web Data Mining,
and Web-Based Applications” were successfully achieved through the incorporation of
groundbreaking research in these domains. Each contribution significantly advanced
the understanding and capabilities of web-based technologies, focusing on enhancing
information retrieval, intelligent data analysis, and innovative application development.
The collective impact of these studies is profound, aligning with the core purpose of science
and research: to enhance human experiences and capabilities in the digital age. This issue
stands as a testament to the potential of web technologies in shaping a more informed,
efficient, and connected world.

Author Contributions: Conceptualization, J.Z.; Investigation, J.Z. and J.Q.; Writing—original draft
preparation, J.Q. and C.Z.; Writing—review and editing, J.Z. All authors have read and agreed to the
published version of the manuscript.
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Featured Application: This paper introduces a neural-network-based landscape search engine

tool for the state of Wisconsin. It provides several examples of how the application works and

suggests avenues for future research.

Abstract: The task of image retrieval is common in the world of data science and deep learning, but it
has received less attention in the field of remote sensing. The authors seek to fill this gap in research
through the presentation of a web-based landscape search engine for the US state of Wisconsin.
The application allows users to select a location on the map and to find similar locations based on
terrain and vegetation characteristics. It utilizes three neural network models—VGG16, ResNet-50,
and NasNet—on digital elevation model data, and uses the NDVI mean and standard deviation for
comparing vegetation data. The results indicate that VGG16 and ResNet50 generally return more
favorable results, and the tool appears to be an important first step toward building a more robust,
multi-input, high resolution landscape search engine in the future. The tool, called LSE Wisconsin, is
hosted publicly on ShinyApps.io

Keywords: image retrieval; remote sensing; web GIS; GIScience

1. Introduction

Deep learning (DL) has been extensively and successfully applied in the field of remote
sensing for tasks such as object detection, object segmentation, and land use classification [1].
Such methods have brought about major advancements in the discipline and have been
crucial to the fusion of data science and remote sensing. At the same time, however, image
retrieval—that is, returning similar images given a single input image—has become an
increasingly common data science task, yet its application to remotely sensed datasets
has been lacking. This project seeks to fill that gap in research through the creation of a
“landscape search engine” tool, designed particularly for (though certainly not limited to)
location analysis applications.

To achieve this goal, the authors leverage several common DL models—VGG16,
ResNet-50, and NasNet—on digital elevation model (DEM) data and combine these outputs
with a traditional vegetation metric, the normalized difference vegetation index (NDVI),
in creating the image retrieval tool. The authors present this as a publicly accessible web
application (https://uwec-geog.shinyapps.io/lse-wi accessed on 6 August 2023) which
allows users to retrieve similar landscapes in the US state of Wisconsin for a location they
select on the map. Using sliders and drop-down list options, users can select a specific
neural network (NN) model, the number of locations to retrieve, the relative weight on
terrain or vegetation, the amount of weight to place on mean vs. standard deviation NDVI,
and an optional exclusion radius from the input location. To date, this is the only landscape
search tool built specifically for the state of Wisconsin, and, to the authors’ knowledge,
it is the only search engine tool which leverages neural network models for landscape
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search. Considering the increasing impact of data science on the domains of geographic
information science (GIScience) and remote sensing, the development of this tool and its
corresponding metrics signifies a crucial stride towards the creation of robust, user-friendly
digital resources for the research community and end-users alike.

Background

Implementations of DL in remote sensing and within the broader field of geographic
information science (GIScience) have been applied to a variety of tasks, such as land cover
mapping [2], environmental parameter retrieval [3], data fusion and downscaling [4], object
detection [5], and information construction and prediction (see [1,6,7] for comprehensive
overviews). Other efforts have focused on advancing the principles of DL in remote
sensing, including the integration of aerial images, and the detection of small objects on the
landscape [5,8]. Yuan et al. [3], in particular, have advocated for the fusion of geographic
principles into DL for remote sensing tasks, most notably Tobler’s famous First Law of
Geography: “Everything is related to everything else, but near things are more related than
distant things”. The most common and mainstream frameworks are back-propagation NNs,
such as convolutional neural networks (CNNs). Indicative of their power, CNN models
often produce a sizable increase in accuracy over traditional regression models, particularly
when working with remotely sensed data. Further, unlike traditional learning algorithms,
intrinsic features from raw input data can be extracted using a variety of DL frameworks
without using manual digitizing techniques, thus reducing the need for reliance on domain
knowledge [9].

Despite the significant number of remote sensing studies which utilize DL, there is a
paucity of research on the particular task of image retrieval using remotely sensed data,
with a few notable exceptions. Jasiewicz et al. [10] first coined the term “landscape search
engine” in building a landscape similarity tool for terrain across the entire country of Poland.
Using the concept of “geomorphons”, this approach classifies pixels from digital elevation
models (DEMs) into several types: ridge, shoulder, spur, slope, hollow, footslope, valley, pit,
flat, and peak. Another landscape similarity tool, developed by Dilts et al. [11], has been
applied toward location optimization of control sites based on the spatial characteristics of
treatment sites. The researchers applied a moving window analysis to generate per-pixel
maps of similarity between the treatment and control areas for site selections. Outside of
this application, the United States Geological Survey (USGS) has a landscape search tool
focusing on land treatment exploration within the United States, making use of modifiable
parameters, such as soil and vegetation characteristics [12]. Through an interactive web
map, it allows users to input empirical characteristics for the purpose of finding areas with
similar heat load, soil properties, and climate conditions. At the time of writing, however,
the two formerly mentioned studies do not have publicly available toolkits, and none of
these prior implementations make use of NNs.

VGG16, ResNet-50, and the Neural Architecture Search Network (NasNet) have been
used frequently in remote sensing. The Visual Geometry Group (VGG) model architec-
ture is a standard CNN which uses a specified number of consecutive convolutional
layers to extract features from image data. The input of VGG is an image with resolution
224 × 224, and, since VGGNet is a classification network, the output shape is propor-
tional to the number of classes in the dataset. The model architecture consists of multiple
convolution layers followed by max pooling layers, and the end of the model consists
of fully connected layers followed by the final classification layer. Two common VGG
architectures used are VGG16 and VGG19, which are sixteen and nineteen layers deep,
respectively [13]. The VGG16 architecture, in particular, was first introduced by Simonyan
and Zisserman [14] for image recognition and has been used extensively in multispectral
and hyperspectral image classifications even with low resolution imagery [15]. It has also
been utilized for tasks such as road feature extraction [16], sea ice classification [17], image
stitching [18], and many others.
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ResNet-50 falls into the family of deep residual networks and contains 50 layers:
48 convolutional layers, one average pooling layer, and one max pooling layer [19]. This
model, along with small modifications to its architecture, has been successfully applied in
many remote sensing applications, such as image segmentation [20], classification [21,22],
and image captioning [23]. In a comparative study of several NN models for remote sens-
ing classification, ResNet-50 indeed outperformed other models, including NasNet and
VGG16 [24]. NasNet has been applied to tasks such as scene classification (e.g., see [24,25])
but has been used for remote sensing tasks less often than VGG16 and ResNet-50. This
makes its use in new applications of particular interest as a comparison with more com-
monly utilized models.

It should be noted that the issues associated with image retrieval for landscapes vary
markedly from those associated with image retrieval on traditional color photographs.
Whereas a picture of a red ball against the backdrop of green grass and a blue sky exhibits
stark within-image pixel differences (i.e., high contrast), the continuous nature of the Earth’s
surface makes such extreme differences uncommon in landscape qualities like elevation.
Similarly, the variability of color in a natural landscape is much less than what is present
in photos containing human objects, such as vehicles and clothing. For these reasons, it is
worth exploring the utility of DL for image retrieval with landscape data.

2. Methods and Data

Due to the often long computation times incurred by using NN models and in making
vector geometry calculations, the code used to create LSE Wisconsin was grouped into
three stages: (a) data extraction, (b) a priori modeling, (c) and ad hoc querying. We
notably take a different approach from Jasiewicz et al. [10] by using NNs rather than
geomorphons, additionally utilizing vegetation data, and allowing users to select a variety
of model options. Further, our work is differentiated by the fact that the models make no
explicit classification of pixels into various terrain types. In addition to taking advantage of
state-of-the-art algorithms, this approach adds the benefit of flexibility.

2.1. Data Extraction

Two freely available remotely sensed data sources were utilized in this project: DEM
data and NDVI data (see Figure 1). The DEM data comes from the Wisconsin Department of
Natural Resources (DNR), and a 30m DEM resolution was selected to produce reasonable
computation times given the size of the state of Wisconsin. This data is available for
direct download as a single file from the Wisconsin DNR. Using a command line utility
from the Geospatial Data Abstraction Library (GDAL), this single file was retiled into
individual .tif files, each 256 × 256 pixels. Thus, the resulting extent of each .tif was about
7.5 km × 7.5 km, which resulted in a total of 2510 observations after removing .tif files
which were completely empty (i.e., those at Wisconsin’s borders). This size balances ease
of computation while keeping a user-friendly approach. Medium-sized cities such as Eau
Claire and La Crosse can mostly be covered by 1–2 grid cells, whereas larger cities such as
Madison and Milwaukee are encompassed by more cells. It also strikes a reasonable balance
between substantial terrain and vegetation variation between grid cells on the application,
without burdening users with an overwhelming number (i.e., tens of thousands) of small
grid cells as selection options.

The vegetation data comes from the National Air and Space Administration’s (NASA)
Moderate Resolution Imaging Spectroradiometer (MODIS) program, specifically, the 16-Day
L3 Global 250 m SIN Grid. Similar to the DEM data, this dataset is available as a single
HDF5 file. Using the R Project for Statistical Computing, the single raster was cropped by
each of the 2510 DEM .tif files into individual vegetation .tif files. This ensured a one-to-one
spatial match of each terrain and vegetation grid cell. The vegetation data come from
5 June 2021 which was selected for several reasons. First, by this point, all of the snow
has melted in Wisconsin, and plants are actively growing. At the same time, crops have
been planted but are not yet fully grown. The idea behind this was to effectively separate
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natural vegetation (i.e., prairie and forests) from agriculture. Experiments with vegetation
data from later in the growing season did not effectively show the difference between
the abundant coniferous forests of northern Wisconsin and the farms commonly found
farther south.

Figure 1. Map of terrain (DEM) and vegetation (NDVI) data.

2.2. A Priori Modeling

The a priori modeling—which only runs once—effectively serves as a data preparation
step before the results are handed over to the web application. The majority of this a priori
code was developed with Python 3.7 with a small portion being written in the R Project for
Statistical Computing. The major steps for the terrain data involved (1) creating feature
vectors using NN models, (2) comparing the feature vectors using cosine distance, and
(3) using min-max normalization to effectively scale the results. The three NN models
selected are benchmark models in TensorFlow and are commonly used in remote sensing,
though other models, such as XCeption and Inception, were tested, but were ultimately not
utilized due to their apparent poor performance for the task at hand. Though the authors
experimented with applying NN models to the vegetation data similarity, it was ultimately
discovered that more direct measures of NDVI, e.g., the mean and standard deviation,
better captured similarity as the resolution of individual vegetation images was relatively
low, which resulted in the NN models struggling to effectively separate these single-band
observations with relatively little structural difference.

Model Metrics

In order to create feature vectors, each DEM dataset, stored as a .tif, was first read
as a numpy array and resized appropriately based on the required input dimensions of
each model. This resizing was accomplished with bilinear sampling. Since the DEM data
is effectively a singular band containing one variable—elevation—and NN models often
work with three bands (i.e., RGB) images, this singular channel was copied two more times
to create an n × 3 array. Each array was then processed through each NN model to create a
one-dimensional feature vector.

Following this, each pair of feature vectors was compared using the cosine similarity
defined as:

cos_sim =
A · B
‖A‖‖B‖

where A is one feature vector and B is another. This is effectively a measure of the angle
between two model outputs in vector space, computed by dividing their dot products by
their magnitudes. This produces a single value for each pair of images.

In order to scale results between 0 and 1, min-max normalization was used:

9



Appl. Sci. 2023, 13, 9264

model_sim =
xi,j −min(x)

max(x)−min(x)

where xi,j represents a single pair of similarity results and x represents the aggregate of all
pairs. This was separately completed for each of the three NN models, producing variables
resnet50_sim, vgg16_sim, and nasnet_sim. These values were each stored in individual
numpy arrays.

After this, the vegetation metrics were computed. The within-image mean NDVI
and standard deviation NDVI were each computed, and similarities were computed by
retrieving the absolute value of the difference between each pair and then subtracting this
value from 1:

mean_ndvi_sim′
i,j = 1− abs(ndvi_meani − ndvi_meanj)

sd_ndvi_sim′
i,j = 1− abs(ndvi_sdi − ndvi_sdj)

These were then min-max normalized to create variables mean_ndvi_sim and
mean_sd_sim and were stored as numpy arrays. Distances (variable dist) were also calcu-
lated between each image pair and stored in a numpy array.

Finally, the results were aggregated into a SQLite database. Here, each row represents
a pair of locations and their corresponding similarity metrics, producing a “tall” rather
than “wide” dataset. Since there are 2510 locations in the dataset, the number of rows is
equal to the square of the number of locations, i.e., 6,300,100. While this approach produces
a reasonable amount of data duplication, leveraging a database in this way allows for
shorter query times and more efficient memory usage within the web application. The final
database size is a manageable ~450 MB.

2.3. Ad Hoc Querying

The querying of results occurs behind the scenes in the web application, which was
created with R’s web framework, Shiny [26]. On the application’s landing page, users are
given several input options:

• Exclusion radius in miles (variable dist, values: 0–300): following Tobler’s First Law
of Geography, it was expected that nearby locations would be highly similar and
that users may want to exclude options within a certain distance in order to retrieve
results from farther away. The default is 0, meaning that no locations are excluded
due to nearness.

• Number of similar locations to retrieve (variable k, values: 1–10): The default is 5.
• Terrain model (variable resnet50_sim, vgg16_sim, or nasnet_sim, depending on

using input from options “ResNet-50”, “VGG16”, and “NasNet”): The neural network
model to use in comparing results.

• Criteria weight for terrain (variable terrain_scale, values of 0–1): Relative weight
to use for terrain (default of 0.8). This gives end-users flexibility by allowing them to
place more or less emphasis on terrain versus vegetation.

• Criteria weight for NDVI mean vs. NDVI standard deviation (variable veg_mean_scale,
values 0–1): Relative weight to use for each of the two NDVI variables (default of 1).
This allows users to place more or less emphasis on total vegetation (i.e., mean NDVI
similarity) versus the amount of NDVI variability (i.e., NDVI standard deviation).

Using these input values with the similarities stored in the database, a “total similarity”
metric is computed on-the-fly after a user selects input options and clicks on the “Find
Similar Landscapes” button:

total_sim = (terrain_scaleu ∗model_sim)+

(veg_scaleu ∗ ((veg_mean_scaleu ∗ veg_mean_sim) + (veg_sd_scaleu ∗ veg_sd_sim))
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where

veg_scaleu = 1− terrain_scaleu

and

veg_mean_scaleu = 1− veg_sd_scaleu

Here, variables noted with the subscript “u” are either taken from or calculated by user
input, whereas the others have been computed a priori and are stored on disk. Effectively,
total_sim takes the similarity results and scales them based on the user’s desired param-
eters. This metric represents the combined similarity of terrain and vegetation, enabling
users to tailor emphasis on one landscape characteristic or the other to suit a specific use
case. The relative weight to place on terrain (terrain_scaleu) is multiplied by the terrain
similarity scores as computed by the NN models and the cosine distance between the fea-
ture vectors (model_sim). Similarly, the weight to place on vegetation (veg_scaleu)—which
is the additive inverse of the weight placed on terrain—is multiplied by the vegetation sim-
ilarity results. However, since vegetation similarity considers both NDVI mean similarity
(veg_mean_sim) and NDVI standard deviation similarity (veg_sd_sim), the weight to place
on each of these vegetation metrics is considered as a part of the larger weight placed on
vegetation similarity through the inputs veg_mean_scaleu and veg_sd_scaleu, respectively.
The metric total_sim could be thought of as simply a weighted average of similarity results
scaled by user input options.

Other variables are retrieved from user input and queried from the SQLite database
using R’s dbplyr package [27] (see Figure 2 for a visual representation of the model).
Queries are accomplished quickly due to dbplyr’s ability to query databases on disk rather
than loading an entire dataset into memory; though users may notice a delay of several
seconds, the web application currently operates with only 1 GB of memory and a single
CPU core.

Figure 2. Similarity calculation flowchart.

3. Case Studies

3.1. Observations of General Patterns

In order to better understand how similarity scores are distributed and what the results
mean, the authors aggregated the similarity scores of each location pair for every model.
Then, the distributions and correlations between measures were investigated. In general,
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the aggregated similarity scores produced by ResNet-50 and NasNet are highly left-skewed,
with NasNet scores being more leptokurtic (Figure 3). This means that these scores are
generally closer to a value of 1, or deemed more similar on average. The VGG16 similarity
scores, on the other hand, are far more mesokurtic and slightly right-skewed. This means
that, for any given pair of landscapes, the ResNet-50 and NasNet scores are more likely to
be scored as more similar, though it should be kept in mind that this is simply a function
of how the models produce and compare feature vectors. Min-max normalization helps
in compensating for non-normality, but, in the end, such transformations do not alter the
ordering of similar images, only the way in which they are represented. The vegetation
similarity scores are also left-skewed (Figure 4).

Figure 3. Density plots of neural network model similarities.

Figure 4. Density plots of NDVI similarities.
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A correlogram of all variable pairs helps determine how similar model metrics are
in terms of what they fundamentally measure (Figure 5). Pairs with stronger correlations
exhibit a higher degree of overlap, while those with weaker correlations manifest distinc-
tive measurements. The inclusion of distance in correlation computations also provides
insights into spatial dependence. Spearman’s ρ is used due to the non-normal nature of the
distributions. Correlations among the variables are generally weak with the exception of
the terrain variable pairs:

• resnet50_sim with vgg_16_sim
• resnet50_sim with nasnet_sim
• vgg16_sim with nasnet_sim

Figure 5. Correlogram of similarity results.

The strongest relationship is between resnet50_sim and nasnet_sim (ρ = 0.72), mean-
ing that these variables capture similar things. In turn, this means that vgg16_sim is
capturing something relatively unique. Despite the high correlations between ResNet-50
and NasNet, we keep both due to the exploratory nature of the web application. Indeed, in
practice, the two do seem to function differently.

There is virtually no correlation between the individual vegetation metrics with any
of the terrain metrics. On the surface, this appears counterintuitive as the amount of
vegetation in a location is, to a certain degree, dependent on characteristics closely tied
to the terrain: lithology, topography, and soil. However, while Wisconsin is far from
isotropic, its terrain admittedly does not vary nearly as much as a state like Colorado,
which straddles the Rocky Mountains. Following this, very flat locations in the state can
have wildly different NDVI values—consider, for example, a location of mostly water and
one of flat farmland. Further, given the right skew of most model metrics, yet the low
amount of correlation between the terrain and vegetation similarity scores, using these two
in tandem to produce the total similarity score is wise, as, importantly, the two combined
help separate individual observations.

In general, there is a surprisingly low amount of spatial dependence in the data as
evidenced by the small Spearman’s ρ correlations of the variable dist with others. In fact,
the relationship between dist and veg_mean_sim along with the relationship between dist
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and veg_sd_sim are both negative, meaning that nearby locations are likely to be dissimilar
in terms of NDVI. While this is a little surprising given the apparent regional differences in
Wisconsin with respect to vegetation, the scale of analysis is such that adjacent locations
can indeed vary greatly.

3.2. Individual Locations

Below, we demonstrate the use of the application with three different locations and
parameter configurations. These were chosen intentionally to demonstrate both where the
search engine appears to function well and where it does not. Additionally, we retrieve
similarity results for three different parts of the state with varied terrain features and
vegetation types. We attempt to use a variety of different configuration options, though it
is not possible to cover them all.

3.2.1. Location A: Western Wisconsin

This location is located in western Wisconsin, just south of the town of Independence.
Situated in the area commonly referred to as the “Driftless Area” due to its lack of evidence
for glaciation, it is characterized by relatively steep ridges and dendritic drainage—that is,
the terrain appears like branching tree roots (Figure 6). In retrieving similar landscapes, the
following model parameters are used:

• k = 5
• terrain_model = ‘resnet50’
• terrain_scale = 0.8
• veg_mean_scale = 1.0
• user_dist = 0

Figure 6. DEM and NDVI rasters for Location A (id = 1521).

These are the default options within the web application. So, if a user were to use the
application, click on the same location, and obtain results with no modifications, the exact
same result would be obtained. With these default options, the majority of the emphasis is
placed on the terrain signature—80%—rather than on the vegetation. Additionally, for the
20% of metric emphasis used on vegetation, 100% is used on the total NDVI and none is
used on the NDVI variability. No exclusion distance is used in this case, so results may be
obtained for locations at any distance away from the parent location (see Figures 7 and 8,
and Table 1 for results).

Despite the fact that matched locations are found at varied distances from the parent
location—between 5 and 171 miles away—the model appears to work well with this type
of location, as matched instances appear very similar, especially those ranked 1, 2, and 5.
The dendritic patterns are clearly visible in these matched locations, just like the parent
location. The matched location ranked 1 is also located in the Driftless Area, and the
matched location ranked 2 is located in the cell adjacent to the parent location, just to
the West.
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Figure 7. Matched locations for Location A (id = 1521).

Figure 8. Map of matched locations for Location A (id = 1526, shown in blue) labeled by similarity
rank (interactive web map available online).
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3.2.2. Location B: Northern Wisconsin

This location lies in northern Wisconsin in Bayfield County, between the towns of
Hayward and Ashland. It is within the Bibon Swamp State Natural Area, and the region is
characterized by glacial moraines and a plethora of lakes. While the parent DEM appears
to possess significant amounts of water (Figure 9), being in a swamp, this is only the case at
certain times of the year. The following model parameters are used:

• k = 5
• terrain_model = ‘vgg16’
• terrain_scale = 0.5
• veg_mean_scale = 0.9
• user_dist = 0

Figure 9. DEM and NDVI rasters for Location B (id = 117).

Equal emphasis is placed on terrain and vegetation, and a small amount of emphasis is
placed on NDVI variability (10%). Instead of ResNet-50, VGG16 is used, and the exclusion
distance is kept at 0 (Figures 10 and 11, and Table 2 for results).

Figure 10. Matched locations for Location B (id = 117).
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Figure 11. Map of matched locations for Location B (id = 117, shown in blue) labeled by similarity
rank (interactive web map available online).

Here, all matched locations are relatively distant as the closest matched location is
124 miles away. That said, all matched locations appear materially similar to the parent
location, as most are relatively flat and appear to contain significant portions of water.

3.2.3. Location C: Urban Milwaukee

This is the only urbanized location evaluated in this paper, and it lies in the southeast
part of the state near Lake Michigan. The area is relatively flat with moderately low NDVI
values (Figure 12). The following parameters are used:

• k = 5
• terrain_model = ‘resnet50’
• terrain_scale = 0.2
• veg_mean_scale = 0.5
• user_dist = 150

Figure 12. DEM and NDVI rasters for Location C (id = 2276).

Here, the influence of terrain is kept small compared to vegetation. Additionally,
vegetation variability carries 50% of the overall vegetation influence. This example also
makes use of the exclusion distance metric, as all locations within 150 miles of the parent
image are excluded from the results. These results have some intriguing facets that are
worth discussing (Figures 13 and 14, and Table 3).

First, the terrain images of the matched locations appear visually dissimilar from the
parent location, but this is to be expected with only 20% of the overall metric emphasis
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placed on terrain. The vegetation images appear to be very similar to the parent location, as
they have relatively low NDVI values. Notably, all five matched locations appear in a small
group; the distances away from the parent location are 262, 253, 241, 213, and 214 miles,
respectively, ranked from most similar to least similar. While these are not urban areas,
they are certainly visually similar based on the criteria utilized. It is also notable that the
area containing the cluster of matched locations is the one substantial area of native prairie
in Wisconsin.

Though this example exhibits the difficulty in identifying urban areas as similar to
other urban areas, land use is not necessarily dependent upon terrain. Further, at the
time of year of this NDVI data—early June—vegetation is less dependent on land use for
built-up land than later in the growing season. The inclusion of additional datasets, such as
true color aerial photographs, or simply using NDVI from a different time of year, would
likely change this result.

Figure 13. Matched locations for Location C (id = 2276).

Figure 14. Map of matched locations for Location C (id = 2276, shown in blue) labeled by similarity
rank (interactive web map available online).
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4. Discussion

Overall, in the authors’ experiments, it appears as though VGG16 and ResNet-50 work
best for retrieving similar landscapes. Despite the high degree of correlation between the
ResNet-50 and NasNet similarity scores, ResNet-50 nevertheless appears to work better.
Due to the near infinite number of potential parameter combinations, it is not practical to
demonstrate the application using every configuration option and not even with every NN
model. The authors leave this further exploration up to the reader. The development of this
introductory tool provides a meaningful first step in the domain of NN-based landscape
search engines, but, despite the application’s utility, its approach is not without drawbacks.
Future implementations could improve upon LSE Wisconsin in a variety of ways, yet many
of the limitations point to need for a robust, multi-input custom NN architecture designed
specifically for landscapes. The subsequent discussion echos this point.

First, higher resolution data encompassing smaller areas may allow for more tangible
applications, especially given the low amount of spatial dependence in the data. Lidar-
derived 1 m DEM, for instance, could be used in place of the terrain data utilized in LSE
Wisconsin. This would, however, increase the end dataset size by a factor of 90, placing
considerable strain on a web server equipped with 1GB of memory at the time of writing.
Second, one of the most salient limitations is that all models appear, at least to some degree,
to struggle in comparing locations covered by large amounts of water. The inclusion of
water as a discrete variable in a multi-input NN model would appear prudent, but there
can be considerable variation in where water is actually present throughout Wisconsin,
particularly in its wide-ranging marshes in the northern part of the state.

Related to this, vegetation data from multiple time periods would allow for different
types of comparisons. For instance, giving users the option to select a time period later
in the summer may help differentiate urban areas from agricultural land use better, as
elucidated in the Milwaukee example. Indeed, such issues would be resolved by the
use of a custom NN architecture with several inputs—e.g., terrain, multiple vegetation
datasets, land use, aerial photography, and others—but such an approach is inhibited by the
inherent subjectivity of “similarity”, not to mention a lack of remote sensing test datasets
for such problems. Survey-based research would be beneficial in quantifying the degree
of landscape likeness. An approach such as the one implemented by Wang et al. [28] with
remote sensing scientists would be useful; appropriately ranking a set of images could be
used as a test dataset for a custom NN architecture.

Other more obvious extensions include applying this approach to other US states,
other locations entirely, or expanding the approach to include an entire country. Such a
foray would be ambitious, however, given the necessity of using large, potentially disparate
datasets outside of Landsat-derived products. Another ambitious improvement would
be in giving users the ability to input their own terrain and/or vegetation datasets for
evaluation, though this would require feature vector comparison on-the-fly. Moreover,
the increasing availability of user-derived datasets using unmanned aerial systems (UAS)
presents opportunities also worth considering for additional improvements. Future work is
needed by domain experts to help fine-tune LSE Wisconsin for real use cases and to direct
future development.

5. Conclusions

This paper introduced a methodology for constructing a neural-network-based land-
scape search engine and presented a corresponding web application. This is the first tool
of its kind for the U.S. state of Wisconsin, and, to the authors’ knowledge, it is the first
landscape search engine tool that uses NN for landscape search. Through this paper, the au-
thors have demonstrated that benchmark NN models can indeed work for image retrieval
with landscape data, and VGG16 and ResNet-50 appear to be the most promising models.
Despite the models struggling in locations with significant amounts of water, as it stands
now, LSE Wisconsin could nevertheless be used directly for location analysis applications.
This tool marks an important step in the application of image retrieval on remotely sensed
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datasets, and additional domain applications are likely to emerge with time. Further, the
authors hope that LSE Wisconsin ultimately pushes the research community toward a more
robust, multi-input landscape search engine tool in the future.
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Abstract: Coronary atherosclerosis is the most common form of cardiovascular diseases, which
represent the leading global cause of mortality in the adult population. The amount of coronary
artery calcium (CAC) is a robust predictor of this disease that can be measured using the medical
workstations of computed tomography (CT) equipment or specialized tools included in commercial
software for DICOM viewers, which is not available for all operating systems. This manuscript
presents a web application that semiautomatically quantifies the amount of coronary artery calcium
(CAC) on the basis of the coronary calcium score (CS) using the Agatston technique through digital
image processing. To verify the correct functioning of this web application, 30 CTCSs were analyzed
by a cardiologist and compared to those of commercial software (OsiriX DICOM Viewer).All the
scans were correctly classified according to the cardiovascular event risk group, with an average
error in the calculation of CS of 1.9% and a Pearson correlation coefficient r = 0.9997, with potential
clinical application.

Keywords: Agatston score; computed tomography; coronary artery calcium; image processing; web
application

1. Introduction

The World Health Organization indicates that 17.9 million people died from cardio-
vascular diseases in 2019, which represent 32% of all deaths worldwide [1]. Atherosclerosis
is a progressive disease characterized by the accumulation of lipids and fibrous elements in
the large arteries, and it is the primary cause of heart disease and stroke [2]. Atherosclerosis
is closely related to the calcified plaque detected in coronary arteries [3,4], which is known
as coronary artery calcium (CAC), and its detection is considered to be one of the strongest
indicators to predict the presence of atherosclerosis in patients who do not have symptoms
yet [5–7]. The most common way to detect CAC is through a cardiac computed tomogra-
phy (CT) for calcium scoring (CTCS), which consists of a noncontrast enhanced CT of the
heart [8], which is interpreted by quantifying the coronary calcium score (CS) in terms of
the Agatston score [9–11]. CS is determined on CTCS by identifying calcified lesions that
are represented on CT as pixel islands with an intensity greater than 130 Hounsfield units
(HU) belonging to one of the coronary arteries: left main (LM), left anterior descending
(LAD), circumflex (CX), and right coronary artery (RCA) [9].

Digital image processing provides techniques frequently used in the identification of
CAC, for example, the design of automatic algorithms to obtain CS, the segmentation of
coronary arteries, and the relationship between other clinical indicators and CAC. For the
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development of these studies, some researchers use open-source medical image processing
software such as 3DSlicer [12] to manually segment lesions or regions of interest (ROIs);
the manually obtained information is supplied to computed or statistical systems for
analysis and/or interpretation [13–15]. Another open-source software option is ImageJ [16],
which, in addition to allowing for manual operations with images, allows for developers to
use predefined semiautomatic functions and the possibility of creating custom macros or
plugins to automate some image process analyses [17–21]. An alternative to the previously
defined software is the use of the OpenCV open-source library [21] which allows for
implementing more complete image processing techniques through predefined classes and
functions [22–25].

The development of applications with web technology has increased significantly
because they present advantages such as (1) no installation required, (2) automatic updates,
and (3) universal access form any device connected to the internet [26]. Web applica-
tions have been developed in medicine [27–29] especially during COVID-19 [30–32] ,
academia [33,34], ecology [35,36], and biology [37,38], among others [39–41]. This arti-
cle presents a web application to determine the CAC on the basis of the Agatston score
evaluated with digital processing techniques in the corresponding images included in
a CTCS.

2. Materials and Methods

The web application uses CTCS scans to perform the semiautomatic calculation of the
CS in the lesions defined by the specialist in cardiovascular medicine. Its implementation
required three stages: (1) image processing and the calculation of results, (2) the program-
ming of the web page, and (3) the deployment of the application on the Internet (Figure 1).
The backend was programmed in the Python language, and the frontend was developed
with the HTML, CSS, and JavaScript languages. The web application was mounted onto
a virtual private server (VPS), so that users could use it from any device with an Internet
connection. A physician with a specialty in cardiology and 10 years of experience in the
field compared the results of the web application with the results of the OsiriX DICOM
Viewer software, which is the application that the cardiologist uses daily. Two filters were
proposed to remove noise from to the image, so three CS values were evaluated, Pearson’s
correlation coefficient was calculated for each of the assessments performed in comparison
with the reference OsiriX DICOM viewer software, and the diagnoses issued by the special-
ist were also compared with the total CS value per scan for each developed method. Lastly,
the risk of a. cardiovascular event corresponding to each of the studies according to the
classification given by the CS was compared with the reference.

2.1. Calculation of the Coronary Calcium Score

For the calculation of CS in the coronary arteries, the calcified lesions represented
on the CT as pixel islands with intensity greater than 130 HU located in one of the four
coronary arteries (LM, LAD, CX, and RCA) are identified. Figure 2 shows an example
of a lesion of each of the ROIs identified with different colors (LM: red, LAD: blue, CX:
yellow, and RCA: green). In addition, pixel islands with an intensity greater than 130 HU
are shown that were not part of any of the coronary arteries (such as bones); these islands
were identified as None (cyan).
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Figure 1. Stages of web application development.

Figure 2. Example of islands of pixels with an intensity greater than 130 HU and their labels.

The CS in terms of the Agatston score is an indicator of the presence of coronary artery
disease (CAD) and determines the presence of atherosclerosis in patients who do not even
have symptoms [5–7].

To calculate the Agatston score, the density score (F) is used, which depends directly
on the maximal HU value of the lesion. The possible values of F are (a) F = 1 if 130 ≤
HUmax ≤ 199, (b) F = 2 if 200 ≤ HUmax ≤ 299, (c) F = 3 if 300 ≤ HUmax ≤ 399, (d) F = 4
if 400 ≤ HUmax [9]. In addition, the area (a) of the calcified lesion in mm2 was evaluated.
Equation (1) was used to evaluate the CS, where n represents the number of lesions.

CS =
n

∑
i=1

F1×a1 (1)

In the calculation of CS, islands of pixels with an area of less than 1 mm2 were not
considered because it was established as such in the medical protocol [9].
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2.2. Image Dataset

The dataset was integrated with 80 CTCS scans obtained in three hospitals that had
different tomographic equipment. This implies that each scan has a different pixel area
measurement that is obtained from the header of the DICOM file, and all images were
reconstructed to 2.5 mm slice thickness. In the conformation of the database, 30 scans
(Hospital 1: 15 scans, Hospital 2: 9 scans, Hospital 3: 6 scans) were chosen to have a
representative sample of each cardiovascular event risk group: moderate (10 < CS ≤ 100),,
moderate–high (100 < CS ≤ 400), and high (CS > 400), the former due to the fact that they
presented a greater number of lesions per scan, obtaining more information compared to
the groups of very low (CS = 0) or low (0 < CS ≤ 10) in which the number of pixel islands
is minimal. To calculate the CS, the web application accesses the tags from the DICOM files:
(1) 0028,000A—columns, (2) 0028,0010—rows, (3) 0028,0030—pixel spacing, (4) 0028,0102—
high bit, (5) 0028,1052—rescale intercept. No patient name or other information is necessary,
so anonymous scans are possible to load.

2.3. Image Processing

In this stage, the Pydicom and OpenCV Python libraries are used. With Pydicom [42],
DICOM files with information compatible to Python were integrated. With the OpenCV
library [43], conversion, binarization and filtering operations were performed on the images
obtained from Pydicom. To evaluate the CS, the lesions of each slice of the CTCS scan were
selected; consequently, the image processing algorithm performs the following functions
(Figure 3): (1) open the image set and navigate through the slices, (2) identify pixel areas
greater than 130 HU, (3) select lesions of calcium in the arteries, adding labels according
to the corresponding coronary artery (LAD, LM, CX, and RCA). The original image is
represented in HU and is converted into a grayscale map, so that the user can easily identify
the elements that comprise the CT image (Grayscale). Later, this image is represented in
RGB format to obtain an image with color. With the original image (HU), two binary images
are also generated. In the first, pixels with HU values greater than or equal to 130 HU are
labeled with a “1”, and in the second, pixels with HU values less than 130 HU are labeled
“1”. From the image with pixels ≥ 130 HU, an image (Labeling) with islands of labeled
pixels is obtained that is used to obtain information that allows for finding the relationship
between possible lesions and the corresponding coronary artery (Selected Calcifications).
To obtain the image that is shown to the user (Final Image), areas greater than 130 HU are
extracted from the RGB image, and the result is added to the Selected Calcifications image.

Figure 3. Digital processing of computed tomography images.
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Each time the user points to a pixel island (Figure 4), it is labeled with the selected
coronary artery (LAD, LM, CX and RCA), saving the relationship of each of the lesions in a
Python list and changing the color of the island of pixels by that corresponding to the artery.
The application calculates the area of the selected lesion. If the area is greater than or equal
to 1 mm2, the corresponding density score is calculated. Since there may be variations in
the CTCS due to the size of the patient and the calibration of the tomographic equipment,
increasing the final value of the CS [44], the application of two additional processing
techniques for the attenuation of the variations was proposed, and three different density
scores were calculated. The first density score (F1) corresponds to the selected island of
pixels as proposed by Agatston [9]. The second proposed density score (F2) is calculated
after the application of a Gaussian blur filter that was programmed with the GaussianBlur
function that is included in the OpenCV library. The third proposed density score (F3) is
calculated after applying a classification criterion that checks that the maximal intensity
values. Maintaining a minimal mode, the algorithm separates the pixels into three groups
according to their intensity level. The first group contains the pixels with an intensity
greater than or equal to 400 HU (F = 4), the second group the pixels with an intensity
greater than or equal to 300 HU (F = 3), and the third group the pixels with an intensity
greater than or equal to 200 HU (F = 2). To obtain the resulting F, it is necessary to examine
whether the number of pixels in each group maintains the minimal programmed mode;
if more than one group meets the sufficient area, the highest density score is considered
to be correct; if none of the groups meets the minimal pixel condition, then F = 1 (default
value). Once the F values are obtained for each of the proposed methods (F1, F2, F3), a CS
is calculated for each F of the selected lesion, and its value is added to the corresponding
total CS as indicated in Equation (1).

Figure 4. CS calculation flow.

2.4. Validation of Image Processing Calculation Results

To validate the CS calculation proposals, a medical specialist in cardiovascular imaging
evaluated CS in each of the studies using the CS plugin of the OsiriX DICOM Viewer
software, which is the application he uses daily, and then evaluated the studies selecting
the same lesions using the developed image processing tool. The results obtained in the
image processing tool are as follows: (1) before applying any processing (Original), (2) after
applying the Gaussian filter (Gaussian) to the original image, (3) after applying the minimal
mode algorithm (MinMode) to the original image. In this way, the CS results obtained
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for each density score were compared: (1) OsiriX vs. Original, (2) OsiriX vs. Gaussian, (3)
OsiriX vs. MinMode.

2.5. Programming the Web Page and HTTP Requests

The web page was programmed using HTML, CSS, JavaScript, and the Python Flask
library. Python is the programming language of the backend of the application, so the Flask
instructions allow for transferring the results of image processing and CS calculation to the
user interface (frontend) compiled with HTML code and Jinja2 (Used by Flask), in addition
to performing traditional HTTP requests (GET or POST). The CSS language is used to
define the styles of the page and JavaScript for the interaction and the request of HTTP
requests (POST and GET). The requests were through AJAX functions and JSON codes,
which allows for the partial and asynchronous updating of the page, obtaining fluency
in the interaction. The responses sent by the server are the image resulting from using
some of the available functions and the results of the CS calculations. The responses are
transferred back using JSON codes again; the resulting JPEG image is encoded with the
base64 positional numbering system. The HTTP requests from the application (Figure 5)
are the following: (a) increase and decrease the Z position of the set of images. This request
helps in navigating through the different slices that the entire CTCS contains. The client
performs one of the two GET requests (increase or decrease), and the server modifies the
Z position and responds with the corresponding slice image. (b) Activate coronary artery.
This is a POST-type request where the client selects the label of the artery with which they
want to indicate the lesions. The server receives the selected label and responds with a
confirmation, which is reflected in the arteries menu on the web page. (c) Label the calcium
lesion. The user can label the lesions by directly selecting the islands of pixels on the image,
and the lesion is labeled according to the artery that is active at that moment. The server
receives a POST-type request with the X, Y coordinates of the selected pixel, processes the
image, performs the CS calculations, and responds to the client with the new image and the
obtained results. In addition, a relational database was used for the administration of the
users and the CTCS scans uploaded to the application by each of the users. The mysqlclient
and SQLAlchemy Python libraries were used for the creation, migration, and updating of
the database.

Figure 5. User functions in the web page.

2.6. Setting Up the Application on the Internet

The application was set up on a VPS with Ubuntu 20.04 operating system with NginX
services to offer the web service and MariaDB for the database compatible with MySQL.

30



Appl. Sci. 2022, 12, 12281

Using the Python Virtualenv library, a Python 3.8 virtual environment was created with
the Pydicom, OpenCV, Flask, and Gunicorn libraries. The used VPS had 4 vCPU cores,
200 GB SSD, and 8 GB of RAM. A system service was activated for the application to have
nonstop availability.

3. Results

3.1. CS Calculation and Validation

The diagnoses issued by the specialist were compared with the total CS value per
scan for each of the density score calculation methods (Original, Gaussian, MinMode),
and the average error was calculated between each of the comparisons, obtaining the
following errors: (a) OsiriX vs. Original = 3.8%, (b) OsiriX vs. Gaussian= 4.7%, (c) Osirix vs.
MinMode = 1.9%. Another characteristic that was compared was the risk of cardiovascular
event corresponding to each of the studies according to the classification given by the
CS. Of the 30 studies carried out with the OsiriX software, 7 belonged to the Moderate
risk group, 10 to the Moderate–High group, and 13 to the High risk group. The Original
function did not correctly classify 1 study as belonging to Moderate–High risk, while
the functions with additional processing (Gaussian and MinMode) correctly classified all
studies regarding to the results obtained with OsiriX. Figure 6 shows the results of the total
CS of each one of the studies where the difference in the results of CS with each of the
proposed methods is observed and the limits of the classification by risk of cardiovascular
event are also observed.

Figure 6. Total CS and risk category classification of the performed studies.

Subsequently, the Pearson’s correlation coefficient (r) was calculated for each of the
comparisons made, the OsiriX vs. Original comparison obtained r = 0.9996, the OsiriX vs.
Gaussian comparison obtained the lowest coefficient with r = 0.9995, and the comparison
of OsiriX vs. MinMode r = 0.9997, this being the one with the best correlation of the three.

According to the results obtained in the comparisons of the image processing and CS
calculation methods, it is possible to observe that the MinMode technique is the one that
most closely resembles the results obtained with the reference commercial software, so this
proposal is the one selected to be used in the web application. Figure 7 shows an example
on how the results were compared and validated using the same slice from a CTCS scan
that had the same pixel area selected. Figure 7a shows the image that was analyzed with
Osirix, and the image in Figure 7b was analyzed with the proposed web application.

31



Appl. Sci. 2022, 12, 12281

(a) (b)

Figure 7. Comparison of the same slice from a CTCS scan. (a) Image in Osirix Dicom Viewer.
(b) Image in web application.

3.2. Access to the Web Application

The web application can be accessed from any device with an Internet connection to
calculate the CS without the need to have specialized software installed. The proposed
application is available to the general public and it has no cost. The application access link
is the following: https://www.getcalciumscore.com, accessed on 7 October 2022.

The application has a registration page, as shown in Figure 8; username, e-mail,
company, and password data are required. The form shown in Figure 9 is the one corre-
sponding to the login for users who are already registered. Figures 8 and 9 show the main
navigation header where the terms and conditions for the use of the application can be
reviewed, and the “How to Use” link shows a video explaining the general operation of
the web application.

Figure 8. New user registration form.
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Figure 9. Registered user login form.

Once logged into the application, the user is redirected to the home page (Figure 10),
where the option to upload scans is found using the “Upload a new Scan” section, a file in
.zip containing a compressed folder with the set of .dcm files. In this section, if no scan is
selected, a help image is displayed that indicates the location of each of the tools that the
user can use. An exemplary scan is available to all users that does not allow for saving new
results or to be eliminated, but it can load results from previously highlighted pixel areas.

Figure 10. Home page with no scan selected.

The Slice UP and Slice DOWN buttons activate slice change requests and display
the previous or next slice, respectively. The “Unselect”, “RCA”, “LAD”, “LM” and “CX”
buttons activate requests to change the coronary artery label, the selected label button
remains green.

Figure 11 shows the example of the home page where the user has loaded two scans
(Patients 1 and 2). Patient 2 is currently selected, and the lesions in the coronary arteries
of the entire scan are selected, obtaining a CS of 425 as a result. In Slice 37 (shown in the
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example), three islands of pixels were selected as CAC lesions in the LAD, one in the LD
and one in the CX. The results obtained with the selected islands are saved using the blue
“Save results” icon next to the scan name. To load the previously saved results, the green
“Load results” icon is used. The red “Delete Scan” icon is used when one wants to remove
the scan from the web application; the deleted scans are deleted from the server and from
the database. Each of the cyan islands represents the pixels that are above 130 HU (the
majority are bones around the chest); they are displayed in this way to assist the user in
identifying the ROIs.

Figure 11. Example of home page with two scans loaded.

4. Discussion

Data comparisons indicate that the results obtained by the proposed web application
are like the results obtained with OsiriX DICOM Viewer. The difference between the two
tools is attributed to the fact that OsiriX software could use a low-pass filtering technique
that is different from the one used in our proposal to reduce variations in the images.
Pacsbin (Orion Medical Technologies, Baltimore, MD, pacsbin.com, accessed on 7 October
2022) is a picture archiving and communication system (PACS) that allows for viewing
DICOM images; with support for the most common image manipulation tools, its main
contribution is to bring a fully featured PACS environment to the web for teaching cases
and research. Recent articles [45–47] mentioned the importance of Pacsbin in distance
learning in the training of future radiologists, which is possible because it was developed
as a web-based system. Although Pacsbin is an application with multiple image analysis
tools, it does not allow for the measurement of calcium in coronary arteries like the web
application proposed in this article.

Marco Aiello [48] provided a comparative table of the 10 DICOM viewers used in their
study. The evaluated software can read and display DICOM images, and all are free-access
or open-source; some paid software was included if a free trial version was available.
Of the 10 listed programs, only two could be used from a web browser (Postdicom and
Papaya Viewer), and two allow for calculating the CS (Horos Viewer, 3D slicer), but they
do not meet both characteristics. In other web applications related to CS [49,50], statistical
studies of patients with CAC were carried out, and calculators that estimate the percentage
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derived from the age, sex, ethnicity and CS of the patient were proposed, so the application
suggested in this article complements this type of tools used by physicians.

5. Conclusions

In this study, a web application for the quantification of CS was implemented. Three
measurements were proposed: (1) without using any additional processing for variations
in the image, (2) using a Gaussian blur filter to attenuate the noise generated in the CTCS,
and (3) using an algorithm that ensures a minimal number of pixels with the same density
score. The data were compared against commercial software OsiriX DICOM Viewer where
the third applied algorithm had a higher correlation (r = 0.9997). The average error that
was obtained for the CS comparison in the proposal without filter was 3.8%,4.7% for the
proposal with Gaussian filter, and 1.9% for the minimal mode algorithm.

Of the studies, 96% for the original proposal and 100% using any of the proposed
filtering algorithms were correctly classified in the corresponding risk group. The imple-
mentation of some additional processing to reduce noise in the image and thus have more
stable HU values was considered to be important. This proposal offers a web application
available from any device with Internet access and a web browser to perform the interpre-
tation and calculation of the calcium score in the coronary arteries without the need for
installing additional software. The medical specialist who supported the development of
this application found it to be a notable and very useful tool that facilitates the calculation
of the calcium score from any device and without the need for a specific DICOM viewer.
He found that the application was not complicated in its operation, it was very intuitive,
and that further it simplified the selection of calcified areas by having the high intensity
areas marked before marking them. The clinical cardiologist would be able to elaborate,
consult, and compare studies of their patients at any time. Lastly, it facilitates cardiologists
or other medical specialists in interacting with one of the tools that is gaining the most
acceptance worldwide in the prevention of cardiovascular risk.

Author Contributions: Conceptualization, J.A.-A. and S.O.-T.; methodology, J.A.-A. and J.M.-N.;
software, J.A.-A. and J.P.-M.; validation, S.O.-T. and J.M.-N.; formal analysis, S.O.-T.; investigation,
V.S.-O., M.B.-S. and J.P.-M.; resources, S.O.-T.; writing—review and editing, V.S.-O. and M.B.-S.;
supervision, J.M.-N.; project administration, J.M.-N. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Cardiovascular Diseases. Fact Sheet. 2021. Available online: https://www.who.int/news-room/
fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 10 July 2022).

2. Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [CrossRef] [PubMed]
3. Patel, J.; Blaha, M.J.; McEvoy, J.W.; Qadir, S.; Tota-Maharaj, R.; Shaw, L.J.; Rumberger, J.A.; Callister, T.Q.; Berman, D.S.; Min, J.K.;

et al. All-cause mortality in asymptomatic persons with extensive Agatston scores above 1000. J. Cardiovasc. Comput. Tomogr.
2014, 8, 26–32. [CrossRef] [PubMed]

4. Hecht, H.S. Coronary Artery Calcium and Prevention Guidelines. JACC Cardiovasc. Imaging 2020, 13, 1187–1190. [CrossRef]
[PubMed]

5. Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary Artery Calcium Score Combined With Framingham
Score for Risk Prediction in Asymptomatic Individuals. JAMA 2004, 291, 210–215. [CrossRef] [PubMed]

35



Appl. Sci. 2022, 12, 12281

6. Taylor, A.J.; Bindeman, J.; Feuerstein, I.; Cao, F.; Brazaitis, M.; O’Malley, P.G. Coronary Calcium Independently Predicts Incident
Premature Coronary Heart Disease Over Measured Cardiovascular Risk Factors: Mean Three-Year Outcomes in the Prospective
Army Coronary Calcium (PACC) Project. J. Am. Coll. Cardiol. 2005, 46, 807–814. [CrossRef]

7. Shaw, L.J.; Raggi, P.; Schisterman, E.; Berman, D.S.; Callister, T.Q. Prognostic Value of Cardiac Risk Factors and Coronary Artery
Calcium Screening for All-Cause Mortality. Radiology 2003, 228, 826–833. [CrossRef]

8. Isgum, I.; Bartels-Rutten, A.; Prokop, M.; Ginneken, B. Detection of coronary calcifications from computed tomography scans for
automated risk assessment of coronary artery disease. Med. Phys. 2007, 34, 1450–1461. [CrossRef]

9. Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium
using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [CrossRef]

10. Palomares, J.F.; Evangelista, A. Cuantificación del calcio aórtico y arteriosclerosis vascular en individuos asintomáticos: más allá
de las arterias coronarias. Rev. Esp. Cardiol. 2016, 69, 813–816. [CrossRef]

11. Yoon, W.J.; Crisostomo, P.; Halandras, P.; Bechara, C.F.; Aulivola, B. The use of the Agatston calcium score in predicting carotid
plaque vulnerability. Ann. Vasc. Surg. 2019, 54, 22–26. [CrossRef]

12. 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 10 July 2022).
13. Kay, F.U.; Abbara, S.; Joshi, P.H.; Garg, S.; Khera, A.; Peshock, R.M. Identification of high-risk left ventricular hypertrophy

on calcium scoring cardiac computed tomography scans: validation in the DHS. Circ.Cardiovasc. Imaging 2020, 13, e009678.
[CrossRef] [PubMed]

14. Foldyna, B.; Eslami, P.; Scholtz, J.E.; Baltrusaitis, K.; Lu, M.T.; Massaro, J.M.; D’Agostino, R.B.; Ferencik, M.; Aerts, H.J.; O’Donnell,
C.J.; et al. Density and morphology of coronary artery calcium for the prediction of cardiovascular events: insights from the
Framingham Heart Study. Eur. Radiol. 2019, 29, 6140–6148. [CrossRef] [PubMed]

15. Dransfield, M.T.; Huang, F.; Nath, H.; Singh, S.P.; Bailey, W.C.; Washko, G.R. CT emphysema predicts thoracic aortic calcification
in smokers with and without COPD. COPD. 2010, 7, 404–410. [CrossRef]

16. Image Processing and Analysis in Java. Available online: https://imagej.nih.gov/ij/index.html (accessed on 10 July 2022).
17. Sun, Z.; Ng, C.K. High calcium scores in coronary CT angiography: effects of image post-processing on visualization and

measurement of coronary lumen diameter. J. Med. Imaging. Health. Inform. 2015, 5, 110–116. [CrossRef]
18. Phillips-Eakley, A.K.; McKenney-Drake, M.L.; Bahls, M.; Newcomer, S.C.; Radcliffe, J.S.; Wastney, M.E.; Van Alstine, W.G.;

Jackson, G.; Alloosh, M.; Martin, B.R.; et al. Effect of high-calcium diet on coronary artery disease in Ossabaw miniature swine
with metabolic syndrome. J. Am. Heart. Assoc. 2015, 4, e001620. [CrossRef]

19. Cahalane, R.M.; Broderick, S.P.; Kavanagh, E.G.; Moloney, M.A.; Mongrain, R.; Purtill, H.; Walsh, M.T.; O’Brien, J.M. Comparative
analysis of calcification parameters with Agatston Score approximations for ex vivo atherosclerotic lesions. J. Cardiovasc. Comput.
Tomogr. 2020, 14, 20–26. [CrossRef]

20. Bos, D.; Ikram, M.A.; Elias-Smale, S.E.; Krestin, G.P.; Hofman, A.; Witteman, J.C.; van der Lugt, A.; Vernooij, M.W. Calcification in
major vessel beds relates to vascular brain disease. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2331–2337. [CrossRef]

21. OpenCV. Available online: https://opencv.org/ (accessed on 10 July 2022).
22. Durlak, F.; Wels, M.; Schwemmer, C.; Sühling, M.; Steidl, S.; Maier, A. Growing a random forest with fuzzy spatial features

for fully automatic artery-specific coronary calcium scoring. In International Workshop on Machine Learning in Medical Imaging;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 27–35. [CrossRef]

23. Toji, B.; Ohmiya, J.; Kondo, S.; Ishikawa, K.; Yamamoto, M. Fully Automatic Extraction of Carotid Artery Contours from
Ultrasound Images. IEICE Trans. Inf. Syst. 2014, 97, 2493–2500. [CrossRef]

24. Mirunalini, P.; Aravindan, C.; Nambi, A.T.; Poorvaja, S.; Priya, V.P. Segmentation of Coronary Arteries from CTA axial slices
using Deep Learning techniques. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi,
India, 17–20 October 2019; pp. 2074–2080. [CrossRef]

25. de Vos, B.D.; Wolterink, J.M.; Leiner, T.; de Jong, P.A.; Lessmann, N.; Išgum, I. Direct automatic coronary calcium scoring in
cardiac and chest CT. IEEE Trans. Med. Imaging 2019, 38, 2127–2138. [CrossRef]

26. Garousi, V.; Mesbah, A.; Betin-Can, A.; Mirshokraie, S. A systematic mapping study of web application testing. Inf. Softw. Technol.
2013, 55, 1374–1396. [CrossRef]
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Abstract: Fine-grained recognition has many applications in many fields and aims to identify
targets from subcategories. This is a highly challenging task due to the minor differences between
subcategories. Both modal missing and adversarial sample attacks are easily encountered in fine-
grained recognition tasks based on multimodal data. These situations can easily lead to the model
needing to be fixed. An Enhanced Framework for the Complementarity of Multimodal Features
(EFCMF) is proposed in this study to solve this problem. The model’s learning of multimodal
data complementarity is enhanced by randomly deactivating modal features in the constructed
multimodal fine-grained recognition model. The results show that the model gains the ability to
handle modal missing without additional training of the model and can achieve 91.14% and 99.31%
accuracy on Birds and Flowers datasets. The average accuracy of EFCMF on the two datasets is
52.85%, which is 27.13% higher than that of Bi-modal PMA when facing four adversarial example
attacks, namely FGSM, BIM, PGD and C&W. In the face of missing modal cases, the average accuracy
of EFCMF is 76.33% on both datasets respectively, which is 32.63% higher than that of Bi-modal PMA.
Compared with existing methods, EFCMF is robust in the face of modal missing and adversarial
example attacks in multimodal fine-grained recognition tasks. The source code is available at
https://github.com/RPZ97/EFCMF (accessed on 8 January 2023).

Keywords: fine-grained recognition; multimodal; modal missing; adversarial examples

1. Introduction

The purpose of fine-grained recognition is to distinguish subordinate categories (like
owls, albatrosses, and seagulls in birds) with subtle differences in the same primary category
(such as birds [1], Flowers [2], dogs [3], cars [4], and fruits [5]). These are applied to real-
world scenes in different fields, such as species identification, vehicle identification, product
identification [6,7] and so on. Since subcategories are all similar to each other, different
subcategories can only be distinguished by subtle and subtle differences, which makes
fine-grained identification a challenging problem.

Many fine-grained recognition methods have been proposed, which can be divided
into two categories on a single visual modality. (1) One is a strongly-supervised method
based on a localization and classification subnetwork, and the other is a weakly-supervised
method for end-to-end feature encoding [8]. In intensely supervised methods, techniques
such as object detection [9–11] or segmentation [12,13], can be used to locate parts of
objects with crucial fine-grained features and enhance the effect of recognition, such
as the use of segmentation models for assisted classification of part-stacked [14], and
part-based RCNN [15] with detection models. (2) The other is weakly-supervised meth-
ods. In weakly-supervised methods, most of the classical classification networks such as
ResNet [15], DenseNet [16] and other backbone structures are used as feature extraction
models, among which VggNet [17] is used to construct dual-stream branches and fuse
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them. The BCNN [18] and MOMN [19] methods are based on the BCNN method. These
methods focus on improving the classification accuracy of the visual modality but are easily
limited by a single visual modality.

Recently, some methods for fine-grained recognition based on multimodal data have
been proposed. There are three data fusion methods in the data fusion modalities: vision
and language, vision and speech, and vision and knowledge. Among them, the fusion
method of vision and language is represented by CVL et al. [20–22]. In addition to using
the two modalities of vision and language for fusion, Zhang et al. [23] also conducted
corresponding research on vision and sound and fused the two modalities of vision and
sound. In addition, related works introduce knowledge information [24–26] and fuse it
with visual modalities. These methods effectively improve the accuracy of fine-grained
recognition tasks by fusing data from multiple modalities. But its robustness in the face of
modal missing and adversarial examples attacks is not well considered.

However, in practical fine-grained recognition tasks, modal missing and adversarial
examples are often encountered, leading to the models based on multimodal data needing
to be fixed. The reason for the modal missing is that in the data acquisition process, several
modalities in a small part of the data need to be included due to factors such as instrument
failure. Adversarial examples attacks refer to the unusual noise generated by the adversarial
example method [27–32] that makes the model prone to fatal errors.

There are many application scenarios in which visual and language modalities exist
in the actual usage process. For example, a product or a movie introduction often has
visual modal information, such as pictures and videos, and language modality information,
such as keywords and brief descriptions. The scenarios mentioned above are often prone
to missing modalities. The standard solution is to train multiple models to cope with
scenarios with only one modality, which is often more expensive. The EFCMF framework
is proposed in this paper to utilize multimodal data better and reduce the cost.

This paper builds a multimodal fine-grained recognition framework EFCMF of visual
language fusion with the same accuracy as the existing methods to solve the above prob-
lems. The framework adopts the technique of random modality deactivation for training
while ensuring that original fusion accuracy remains unchanged. In this way, the model
acquires the ability to cope with the modal missing and adversarial examples attacks, and
dramatically improves its accuracy when attacked by adversarial examples.

The proposed framework’s contributions are as follows: (1) The framework can deal
with the modal missing problem without training additional single-modal fine-grained
recognition models. (2) The framework can take advantage of multimodal data without
adversarial training. The model accuracy is guaranteed to stay the same by using the
modality that has not suffered from adversarial examples attacks. (3) Through a large
number of experiments, hyperparameters to guide the use of random deactivation training
methods are given.

2. Method

To address the problem of modal missing and adversarial example attacks in the
multimodal fine-grained recognition task of vision and language fusion. The framework
adopted in this study is shown in Figure 1, which consists of three parts: a visual feature
extraction module, a language feature extraction module, and a feature fusion module.
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Figure 1. Structure of Enhanced Framework for Multimodal Feature Complementarity Based on the
Modal Feature Random Deactivation Training Method.

2.1. Visual Feature Extraction Module

In the visual feature extraction module, the backbone network for feature extraction [33]
is composed of four transformer layers. The input image is subjected to high-dimensional
mapping of four feature extraction modules, and a high-dimensional vector Iv that can
express the image features is obtained. The the input of the visual modality is represented
as Img

3×384×384
. The i-th layer of the network is denoted as Layeri, and the number of channels

of the output feature Feati
c×h×w

is c, and the size is h × w. Then, the entire visual feature

extraction module can be expressed as:

Layer1−4(X) = Layer4(Layer3(Layer2(Layer1(X)))) (1)

Its forward propagation process can be expressed as follows:

Feat4
1536×144×1

= Layer1−4

(
Img

3×384×384

)
(2)

After the image is subjected to high-dimensional mapping through four feature layers,
a feature matrix with 1536 channels is obtained, and then the output features are globally
pooled, and the pooled features are deformed to obtain a feature vector Iv with a length
of 1536.

The backbone network of language modalities consists of several convolutional
layers [34] (denoted as Conv). Its forward propagation process can be expressed as follows:

2.2. Language Feature Extraction Module

The input text (denoted as Text = [Word1, . . . , Wordn]) is a sequence of n words, and
encodes words by constructing a dictionary to map words to the integer domain:

[num1, . . . , numn] = [Encode(Word1), . . . , Encode(Wordn)] (3)

Then, the one-hot encoding method is used to map from the integer domain to the
sparse vector space, and the process is as follows:[

Vec1
n×1

, . . . , Vecn
n×1

]
= [OneHot(num1), . . . , OneHot(numn)] (4)
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After that, take an embedding layer with weight WE
50×n

, map the sparse vector to a dense

vector of 50 dimensions, and reshape it into a 3D embedding matrix Mat
1×n×50

:

Mat
1×n×50

= reshape
([

WE
50×n

×Vec1
n×1

, . . . , WE
50×n

×Vecn
n×1

])
(5)

Next, feature extraction (represented as Feat ) is performed by k convolution kernels
with m convolutional layers of size h×w (the i-th convolutional layer is denoted as Convi

ki×wi×hi

),

and the obtained features are pooled:

Feati
ki×1×1

= Pool

(
Convi

ki×wi×hi

(
Mat

1×n×50

))
(6)

2.3. Feature Fusion Module

Finally, all the features of the output are concatenated (represented as cat) and reshaped
to obtain the features Il for fusion:

Feat
∑m

i ki ×1×1
= cat

([
Feat1

k1×1×1
. . . , Featm

km×1×1

])
(7)

Il = Feat
∑m

i ki
= reshape

(
Feat

∑m
i ki ×1×1

)
(8)

In the feature fusion module, the study adopts a feature-level fusion strategy to obtain
new features by concatenating the features of the visual modality and language modality

[
Iv
Il

]
= cat(Iv, Il) (9)

The error is backpropagated through the classifier to jointly training the two feature
extraction modules of the model.

The weight of the fully connected layer of the module is W, which can be regarded
as the splicing of two weights using modal features for classification: W = cat(Wv, Wl) =[
Wv | Wl

]
, and the matrix product with the feature to obtain the Out:

Out = W × I =
[

Wv Wl
]× [ Iv

Il

]
(10)

During training, in order to simulate modal missing to enhance the ability of the model
to cope with modal missing and adversarial examples attacks, the input modal features are
randomly deactivated. The random inactivation of features is a random event conforming
to the Bernoulli distribution, and its Bernoulli random variable is rm ∼ Bernoulli(p). When
a modality is missing, the visual modality has a q probability of remaining intact, and the
Bernoulli random variable for this event is rv ∼ Bernoulli(q), and the language modality is
rl = 1− rmrv.Then,the forward propagation process of the module is as follows:

Iv = rv ∗ Iv , Il = rl ∗ Il (11)

I = cat(Iv, Il) =

[
Iv
Il

]
(12)
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The output of the model appears as follows:

Out = W × I =
[

Wv Wl
]×

[
I
′
v

I
′
l

]

= (1− rm(1− rv)) ∗Wv × I
′
v + rl ∗Wl × I

′
l

= (1− rm(1− rv)) ∗Outv + rl ∗Outl

= (1− rm(1− rv)) ∗Outv + (1− rmrv) ∗Outl

= (1− rm) ∗Out + rm(rv ∗Outv + (1− rv) ∗Outl)

(13)

The average expectation of the output is:

E(Out) = (1− p) ∗Out + p ∗ (q ∗Outv + (1− q) ∗Outl) (14)

At this time, the model can be considered as an ensemble model of three models with
strong correlation. Out is a vector representing the confidence (denoted as Con fi) of the
classification result of the model for a total of k categories: Out = [Con f1, . . . , Con fi] Finally,
the output result is normalized by softmax to obtain the predicted value Pred, and the Loss
is calculated as follows:

Pred = softmax(Out) =
1

∑k
1 eCon fi

[
eCon f1 , . . . , eCon fi

]
Loss = Label ∗ log(Pred) + (1− Label) ∗ log(1− Pred)

(15)

It can be inferred from the Formula (15) that when p = 0, the output expectation of the
model is E(Out) = q ∗Outv + (1− q) ∗Outl At this time, if q = 0.5, it can be considered
that Out is equal to the average of the outputs Outv and Outl of the visual modal classifier
and the language modal classifier:

E(Out) =
1
2
(Outv + Outl) (16)

Then, the model becomes a normal feature fusion model, and the average output of
the model is expected

E(Out) = Out = W × I (17)

Since the error rate and correlation of the ensemble model are negatively correlated,
we hope this method can weaken the correlation between submodels and improve the com-
plementarity between modal features to improve the model’s accuracy and robustness. this
study performs related experiments in next Section to find the appropriate hyperparameters
to optimize the model.

3. Experiment

3.1. Experimental setting

To verify the feasibility and universality of the method in this study, the experimental
details are as follows:

The visual feature extraction module of the model has been pretrained on the ImageNet
dataset [35], and the features output by the last layer of convolutions are pooled for feature-
level fusion. The data of the visual modality adopt The Birds dataset [1] and Flowers
dataset [2], the width and height of the image are scaled to 384 pixels, and some of the
grayscale images are copied and synthesized into a three-channel image. Finally, the
image is normalized using ImageNet data processing. The language modality adopts
the text description extended by Reed et al. [36]. Because there are certain errors in
the text description, the spelling correction operation is advanced on the text, and then
lemmatizes words to form a new dictionary, Finally a 50-dimensional embedding layer is
used for embedding.
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The deep learning framework PyTorch [37] and the adversarial example toolbox
torchattacks [38] are used in the experiments. The training parameters of each module of
the model are shown in the Table 1.

Table 1. The training parameters of each module of the model.

Optimizer
Learning

Rate
Weight
Decay

Dropout Batch Size Epoch

Vision SGD 0.005 0.00001 0.5 8 50
Language RAdam 0.01 0.0001 0.5 32 50

Fusion SGD 0.005 0.00001 0.5 8 50

The parameters for generating adversarial examples are shown in the Table 2.

Table 2. Generating parameters for adversarial examples using torchattacks.

Eps Alpha Steps c Kappa lr Random_Start

FGSM 0.014 / / / / / /
BIM 0.01568 0.00392 0 / / / /
PGD 0.03 0.00784 10 / / / /
C&W / / 100 0.0001 0 0.1 True

3.2. Experiment Results
3.2.1. Analysis of the Robustness and Accuracy Performance of the Model

In this study, the robustness of the model is tested by attacking the model with
adversarial examples and causing modal missing (deactivating the features of each modality
of the model). The robustness results of the model are shown in Table 2. Accuracy represents
the model’s accuracy when adversarial examples do not attack it, and the modality is not
missing. FGSM, BIM, PGD, and C&W are adversarial examples of attack methods. Vision
Missing means visual modal features are missing (zeroing the input features of the visual
modality), and Language Missing represents the absence of modal language features
(zeroing out the input features of language modality).

The proposed method has excellent accuracy advantages compared with Bi-modal
PMA. It can surpass the fine-grained recognition method of Bi-modal PMA in the Birds
and the Flower datasets. At the same time, the method’s robustness in this study is also
excellent, and in the face of adversarial sample attacks, EFCMF can exceed Bi-modal PMA
such as FGSM, BIM, PGD, and C&W in most cases. In the face of FGSM attacks, EFCMF’s
accuracy in the Birds dataset can exceed Bi-modal PMA by about 16% and on the Flowers
dataset by about 70%. In addition, EFCMF performed well in the face of BIM attacks and
PGD attacks, surpassing Bi-modal PMAs by about 9% on the Birds dataset and about 70%
on the Flowers dataset. When attacking with powerful adversarial examples method PGD,
the accuracy of Bi-model PMA on both datasets has been reduced to the lowest point, which
is lower than that of random decider (0.0050). However, EFCMF is still able to exercise
some judgment, still having an accuracy of 0.0642 on the Birds dataset and 38% accuracy
on the Flowers data set. The case of C&W attacks is unique, and Bi-modal PMA has high
accuracy on the Birds dataset. inactivation, which is a critical reason EFCMF can cope well
with missing modality. In order to verify that random modal inactivation can effectively
improve the model’s ability to cope with modal loss, this study retrains Bi-modal PMA
using this method. The model test results are shown in Table 3, and it can be seen that
after random mode deactivation training, the model’s ability to cope with modal loss can
be effectively improved. After training with this method, Bi-modal PMA improved the
model accuracy by 15% and 40% under the absence of visual modality in the Birds and
Flowers datasets, respectively. At the same time, the accuracy of Bi-modal PMA in the
face of FGSM and BIM counterattack attacks has also been improved. Random modality
deactivation, which is a critical reason EFCMF can cope well with missing modality. In
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order to verify that random modal deactivation can effectively improve the model’s ability
to cope with modal loss, this study retrains Bi-modal PMA using this method. The model
test results are shown in Table 4, and it can be seen that after random mode deactivation
training, the model’s ability to cope with modal loss can be effectively improved. After
training with this method, Bi-modal PMA improved the model accuracy by 15% and 40%
under the absence of visual modality in the Birds and Flowers datasets, respectively. At
the same time, the accuracy of Bi-modal PMA in the face of FGSM and BIM counterattack
attacks has also been improved.

Table 3. The model’s accuracy in the face of adversarial example attacks and modalities is missing.

Accuracy FGSM BIM PGD C&W
Vision

Missing
Language
Missing

Birds [1]

Bi-modal
PMA 0.8870 0.2260 0.1350 0.0013 0.7433 0.0486 0.7899

EFCMF
(p = 0.8,
q = 0.4)

0.9114 0.3826 0.2231 0.0642 0.5730 0.5051 0.9099

Flowers [2]

Bi-modal
PMA 0.9700 0.1503 0.0488 0.0019 0.7509 0.0098 0.8999

EFCMF
(p = 0.8,
q = 0.4)

0.9931 0.8882 0.7656 0.3803 0.9509 0.6441 0.9941

Table 4. Comparison of the accuracy of the Bi-modal PMA method trained by the random modality
deactivation method.

FGSM BIM PGD C&W
Vision

Missing
Language
Missing

Birds

Bi-modal PMA 0.2260 0.1350 0.0013 0.7433 0.0486 0.7899
Bi-modal

PMA (p = 0.8,
q = 0.4)

0.3386 0.1824 0.0043 0.7239 0.2057 0.7297

Flowers

Bi-modal PMA 0.1503 0.0048 0.0019 0.7509 0.0098 0.8999
Bi-modal

PMA (p = 0.8,
q = 0.4)

0.2109 0.0371 0.0000 0.6582 0.4362 0.8735

EFCMF has more accuracy advantages than Bi-modal PMA and higher accuracy
than other fine-grained recognition models. As shown in Table 5, it can be seen that the
EFCMF method has higher accuracy than the multimodal fine-grained recognition models
such as CVL, TA-FGVC, KERL, and KGRF. Furthermore, EFCMF has higher accuracy
in single-modal fine-grained recognition methods such as Inception-v3 [39], ViT-B [40],
and PART [41].

Table 5. Comparison of the accuracy of each method.

Method Data Field Birds [1] Flowers [2]

CVL [21] Vision+Language 0.8555 \
TA-FGVC [22] Vision+Language 0.8810 \

KERL [25] Vision+Knowledge 0.8700 \
KGRF [26] Vision+Knowledge 0.8849 \

Bi-modal PMA [42] Vision+Language 0.8870 0.9740
Inception-V3 [39] Vision 0.8960 0.9737

ViT-B [40] Vision \ 0.9850
PART [41] Vision 0.9010 \

EFCMF (ours) Vision+Language 0.9114 0.9931
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3.2.2. Performance of the Model under Different Hyperparameters

In this study, the two hyperparameters p and q were performed 36 experiments on each
dataset at intervals of 0.2 from 0 to 1. In order to investigate the effects of hyperparameters
p and q on the model’s robustness and accuracy, the experimental results are plotted in this
study as heat maps shown in Figures 2–4.

(a) (b)

Figure 2. Heat map of model accuracy for different values of p and q. (a) Birds. (b) Flowers.

(1) Language
Missing

(2) Vision
Missing

(a) (b)

Figure 3. Heat map of accuracy of model facing modal missing for different values of p and q.
(a) Birds. (b) Flowers.

Figure 2 shows the model’s accuracy for different values of p and q. The most special
cases are at p = 1, q = 0, and q = 0.2. The reason is that for p = 1, the model only
has data from the visual or language modality for each input sample. When q < 0.2, the
probability of missing data of visual modality is higher, and the model is mostly training
the extraction module of language modality at this time. q < 0.2 makes the model use
only the information of linguistic modality for fine-grained recognition, and therefore the
accuracy is lower.
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Figure 3 shows the heat map of the accuracy of the model in the face of the missing
modality. It can be seen that the accuracy of the model increases with the increase of
the modal deactivation probability p and the decrease of the visual modality integrity
probability q and stays at a low level when facing the missing visual modality. The above
phenomenon is related to the degree of training in the language modality feature extraction
module. The higher the training degree of the linguistic modality feature extraction module,
the better the model can face the visual modality missing.

(1)
FGSM

(2) BIM

(3) PGD

(4) C&W

(a) (b)

Figure 4. Heat map of the accuracy of the model against the adversarial examples attack with
different values of p and q. (a) Birds. (b) Flowers.
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Figure 4 shows the model’s accuracy in the face of the adversarial example attack
under different values of p and q. The p and q parameters not only have a particular
influence on the model’s ability to cope with the modal missing but also can impact the
robustness of the adversarial sample attack. As shown in Figure 4b, with the appropriate
selection of p and q parameters, the trained model has strong robustness and can maintain
high accuracy against examples attacks.

In order to better demonstrate the effects of parameters p and q on the model, the data
in Figures 2–4 are averaged on each axis to obtain the accuracy trend plots in Figures 5 and 6,
respectively, and the results are given in the following.

(1) Analysis of the effect of the modality deactivation probability p on the model

Figure 5 shows the average model accuracy in various cases for the matrix data shown
in Figures 2–4 for each p-value obtained by averaging over q-values. It can be seen that
the impact of p-values in the face of adversarial sample attacks is similar for both datasets,
with curves having extreme value points at p = 0.2 as well as p = 0.8 and a minimal value
point at p = 0.4. The extreme value point implies that the random modal deactivation
impacts the model’s robustness relative to the case when p = 0 is not performed randomly
and can enhance the model’s ability to cope with counter-sample attacks at the appropriate
value. Tables 6 and 7 correspond to the data in Figure 5a,b, respectively.

(a) (b)

Figure 5. The accuracy trend of the probability of modality deactivation p. (a) Birds. (b) Flowers.

Table 6. Accuracy averages for different cases with different values of the modal deactivation
probability p for the Birds data set.

p = 0.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

Accuracy 0.9142 0.9137 0.9147 0.9129 0.9128 0.7065
FGSM 0.3418 0.3605 0.3152 0.3341 0.3534 0.3044
BIM 0.1716 0.2027 0.1315 0.1622 0.1882 0.1491
PGD 0.0456 0.0557 0.0321 0.0436 0.0587 0.0468
C&W 0.5366 0.5627 0.5027 0.5272 0.5467 0.4558
Vision

Missing 0.0070 0.0059 0.0321 0.0982 0.1630 0.1872

Language
Missing 0.9137 0.9143 0.9152 0.9136 0.9120 0.6103

Table 7. Accuracy averages for different cases with different values of the modal deactivation
probability p for the Flowers dataset

p = 0.0 p = 0.2 p = 0.4 p = 0.6 p = 0.8 p = 1.0

Accuracy 0.9962 0.9958 0.9961 0.9959 0.9956 0.8426
FGSM 0.8828 0.8895 0.8966 0.8848 0.8962 0.7338
BIM 0.6786 0.7379 0.6773 0.7510 0.7891 0.6113
PGD 0.3843 0.4600 0.3636 0.4505 0.5026 0.3781
C&W 0.9263 0.9397 0.9291 0.9358 0.9410 0.7894
Vision

Missing 0.0108 0.0136 0.0198 0.0297 0.0281 0.0474

Language
Missing 0.9958 0.9964 0.9956 0.9956 0.9956 0.8317
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Tables 6 and 7 show that the model’s accuracy mostly stays the same when p is less
than 0.8. The accuracy of the model drops substantially when p = 1. The reason is that
with p = 1, the model only uses the data of the visual modality or the data of the linguistic
modality to update the weights each time, especially in q = 0. The model only uses the
features of the linguistic modality for training, and the model degenerates into a recognition
model of the linguistic modality, so the accuracy drops considerably.

In the face of the adversarial example attack, the model can achieve the maximum
number of accuracy maxima in the face of the adversarial sample attack at p = 0.8. This
phenomenon is because a higher p-value can better ensure the independence between two
features, whose standard features can represent more information in an integrated way and,
therefore, can achieve higher accuracy. In contrast, at p = 0, the model is not trained with
random modal deactivation. Its average accuracy will be lower than the two maximum
value points and higher than the minimum points. The results show that the parameter p
can improve in robustness only by using the correct value. Otherwise, it may not only fail
to improve the robustness but may also decrease it.

In the face of modality missing, it shows that both p = 0 and p = 1 correspond to poor
average accuracy. These extreme cases represent training only the verbal modal feature
extraction module and the visual modal feature extraction module, respectively, leading to
model failure.

(2) Analysis of the effect of the visual modal integrity probability parameter q on the model

By averaging Figures 2–4 on the vertical axis, we can obtain the average accuracy of
the visual modal integrity probability q in each case, as shown in Figure 6. There is an
maximum point at q = 0.4 for both datasets, achieving the highest accuracy under most
adversarial sample attacks. Equation (14) shows the reason for this point. The parameter p
controls the probability of training the model with visual modal data in the case of missing
modality. A large or small probability p will result in one of the modality feature extraction
modules that cannot be trained effectively. Therefore, the value q = 0.4 is suitable to meet
the theoretical expectation.

(a) (b)

Figure 6. The accuracy trend of the visual modal integrity probability q. (a) Birds. (b) Flowers.

Table 8 and 9 shows the specific values of Figure 6. Tables show that the maximum
number of maximum points for accuracy exists at q = 0.4 under the four adversarial
examples attacks. The reason the accuracy maximum point appears at q = 0.4 when facing
the adversarial example attack is that when the visual modality input data of the model
is severely attacked, the unattacked linguistic modality features can describe the target
better at this time. Lowering the p-value and making the model more biased to use the
features of linguistic modality can improve some accuracy. Moreover, letting q = 0 and
q = 1 both lead to a significant drop in the model’s accuracy in the face of modal deficits,
which suggests that when training with the random modal deactivation method, it is best
not to have the model extremely biased towards training a single modality. A proper bias
towards training linguistic modalities enables the model to learn better standard features.
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Table 8. Accuracy averages for different cases with different values visual modal integrity probability
parameter q for the Birds dataset.

q = 0.0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1.0

Accuracy 0.8100 0.8092 0.9125 0.9130 0.9153 0.9142
FGSM 0.3221 0.3203 0.3538 0.3486 0.3342 0.3223
BIM 0.1554 0.1562 0.1934 0.1809 0.1633 0.1528
PGD 0.0423 0.0394 0.0622 0.0515 0.0505 0.0393
C&W 0.4968 0.4888 0.5487 0.5501 0.5284 0.5198
Vision

Missing 0.1454 0.1342 0.1098 0.0751 0.0232 0.0051

Language
Missing 0.7606 0.7615 0.9136 0.9145 0.9135 0.9154

Table 9. Accuracy averages for different cases with different values of visual modal integrity proba-
bility parameter q for the Flowers dataset.

q = 0.0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1.0

Accuracy 0.8426 0.9956 0.9959 0.9956 0.9958 0.9967
FGSM 0.7520 0.9011 0.8943 0.8935 0.8619 0.8810
BIM 0.6245 0.7170 0.7879 0.7420 0.6835 0.6902
PGD 0.3866 0.4717 0.5123 0.4294 0.3595 0.3796
C&W 0.7959 0.9364 0.9453 0.9412 0.9160 0.9265
Vision

Missing 0.0458 0.0408 0.0224 0.0204 0.0106 0.0093

Language
Missing 0.8322 0.9954 0.9954 0.9959 0.9956 0.9961

(3) Analysis of the impact of pre-training on the model

The above experiments reveal that the model is more challenging to update the
weights of the linguistic feature extraction module without the modal random deactivation
method. After training with random modal deactivation, the model’s accuracy in the face
of language modality still needs to meet the requirements. For this reason, the number of
training iterations required for each feature extraction module during the training of the
multimodal model is not consistent. The feature extraction module of the visual modality
is often already pre-trained on a large dataset, so the feature extraction module of the
linguistic modality requires more iterations for training. Experiments were done with
p = 0.8 and q = 0.4 to verify the above idea. Table 10 shows the experimental results,
where pre-trained indicates that the language modality of the model has been pre-trained.

Table 10. The effect of pre-training of the language feature extraction module on various aspects of
the model.

Dataset p q Pretrained Accuracy FGSM BIM PGD C&W
Vision

Missing
Language
Missing

Birds 0.8 0.4 False 0.9105 0.3639 0.2152 0.0811 0.3639 0.1775 0.9138
0.8 0.4 True 0.9114 0.3826 0.2231 0.0642 0.5730 0.5051 0.9099

Flowers 0.8 0.4 False 0.9951 0.8451 0.7118 0.4412 0.9098 0.0382 0.9961
0.8 0.4 True 0.9931 0.8882 0.7656 0.3803 0.9509 0.6441 0.9941

Table 10 shows that when the language feature extraction module is trained, the
model’s accuracy is substantially improved due to visual modality deficiency. At the same
time, it can achieve some improvement in the face of the adversarial sample attacks of
FGSM, BIM, and C&W. This indicates that the standard features of the multimodal fine-
grained recognition model based on feature fusion are more likely to be biased to represent
modal features that have been pre-trained. Therefore, it is desirable to pre-train each feature
extraction module of the multimodal model to ensure that the standard features do not
tend to represent a particular modality more often.
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3.3. Discussion

The above experiments show that both EFCMF and Bi-modal PMA are multimodal
fine-grained recognition methods based on feature fusion. However, the robustness of the
two differs significantly because of the structural complexity between them. Bi-modal PMA
transforms the features of the visual module into attention to linguistic modalities through
the QRM eodule, a process that makes the model structure more complex. EFCMF, on the
other hand, performs feature fusion using connections, which is a better way to reduce the
complexity of multimodal fine-grained recognition models.

Bi-modal PMA and EFCMF without pre-training of the linguistic modality feature
extraction module showed lower accuracy when faced with the missing of linguistic
modality. The reason is that both models use a pre-trained visual modal feature extraction
module, which requires far fewer iterations to train than the linguistic modal feature
extraction module because it is pre-trained. At the same time, EFCMF is trained using
random modal deactivation, which simulates the modal deficit and allows the model to
cope with counter-sample attacks. The random deactivation train method and pre-training
of the linguistic modal feature extraction module make EFCMF more capable of coping
with the missing modality.

Although EFCMF is able to achieve 91.80% and 99.80% on Birds and Flowers datasets,
respectively, with specific parameters, the difference in accuracy of each parameter is not
large, generally within 2%. Therefore, this study chooses to sacrifice some accuracy to
improve the robustness of the model, which is also more beneficial to the application of the
method in practical engineering.

In summary, it is because EFCMF employs various methods that facilitate the im-
provement of robustness that it has strong robustness in the face of modal deficiencies and
against sample attacks.

4. Conclusions

In order to improve the ability of deep learning models to cope with modal missing and
adversarial sample attacks, this study designs an enhanced framework for modal feature
complementarity, EFCMF. The framework does not require additional expensive methods
such as model distillation or adversarial training to train the models. The method effec-
tively improves the models’ robustness with appropriate parameter selection. Meanwhile,
relevant experiments are conducted in the latest multimodal fine-grained classification
methods using the training method of the framework, and the results show the validity of
the findings. While ensuring the overall classification accuracy of the model and enhancing
the ability of the model to extract features of each modality, the model gains the ability to
cope with the lack of modality and some ability to cope with adversarial examples.

When facing the same level of adversarial sample attacks, EFCMF has a significant
advantage over Bi-modal PMA in dealing with FGSM, PIM, and PGD adversarial sample
attacks. It achieves a 15.56%, 8.81%, and 6.29% accuracy advantage on the Birds dataset
and a 73.79%, 71.68%, and 37.84% accuracy advantage on the Flowers dataset, respectively.
The average accuracy of EFCMF for both datasets is 52.85%, which is 27.13% higher than
Bi-modal PMA when facing all four adversarial sample attacks. In the face of visual modal
deficits, EFCMF achieves 45.65% and 63.43% higher accuracy on Birds and Flowers datasets,
respectively. In the face of linguistic modal deficits, EFCMF achieved 12% and 9.42% higher
accuracy on the Birds and Flowers datasets, respectively. The average precision of EFCMF
for both datasets is 76.33%, which is 32.63% higher than that of Bi-modal PMA in the face of
modal deficits. Regarding accuracy, EFCMF achieved 91.14% and 99.31% accuracy on the
Birds and Flowers datasets. All these performances show that EFCMF has high accuracy
and strong robustness.
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Abstract: Aiming at the problems of subjective enhancement caused by the discretization of credit
data and the lack of a multi-dimensional portrait of credit users in the current credit data research, this
paper proposes an improved Fuzzy MLKNN multi-label learning algorithm based on MLKNN. On the
one hand, the subjectivity of credit data after discretization is weakened by introducing intuitionistic
fuzzy numbers. On the other hand, the algorithm is improved by using the corresponding fuzzy
Euclidean distance to realize the multi-label portrait of credit users. The experimental results show
that Fuzzy MLKNN performs significantly better than MLKNN on credit data and has the most
significant improvement on One Error.

Keywords: Fuzzy MLKNN; multi-label learning; user portrait; Credit Reference Data

1. Introduction

The Credit Reference Database of the People’s Bank in China is a fundamental credit
database in which the basic information and credit information of legal persons and
organizations are collected, sorted, preserved, and processed in accordance with the law,
where credit data are generally divided into corporate credit data and personal credit
data [1]. An enterprise’s credit report data report generally includes the basic information of
the enterprise, affiliated company information, financial statements, information summary,
credit history, etc., while in a personal credit report, the content generally includes basic
personal information, work, and residence. Information, individual credit card information,
default information, etc. [2]. With the expansion of credit reporting, the credit reporting
system is constantly being upgraded. The personal education and residence information
of the first-generation system has been further improved, and the loan repayment record
has been increased from two years to five years. It is known as “the most stringent credit
investigation system in history” [3]. From a macro perspective, based on credit data,
through database technology and the credit analysis system, it can help banks obtain
various credit reports, thereby providing a reference for credit demanders to formulate
plans and identify risks. At the same time, regularly publishing a blacklist of untrustworthy
enterprises, introducing honest enterprises, and releasing relevant information to the
public can play a role in monitoring bad business practices and encouraging honesty and
trustworthiness. Therefore, credit data is the basic link to the operation of the social credit
system, and it is of great significance for the realization of the functions of the social credit
system. From a micro perspective, the revealing function of personal credit data can help
individuals prove their credit status in a short period, thereby helping borrowers with good
credit to obtain loans quickly. For lending institutions, they can also quickly learn about
lenders to help judge and control credit risks and to assist them in credit management
activities on this basis [4].

Categorized from the perspective of data processing, credit data mainly includes
original survey data and processed data. From the perspective of data attributes, credit
data is mainly divided into quantitative and qualitative data. Qualitative data is a record
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of some facts described in language form, and quantitative data can be directly used for
quantitative analysis. Many qualitative data can be quantified, but credit data itself has
the characteristics of many variables, a large amount of sample information, and is non-
intuitive [5]. Therefore, how to intuitively obtain the user’s credit information from a large
amount of data has become an urgent problem to be solved. In recent years, research
on data mining has emerged. Some scholars have discussed the relationship between
data mining and credit reporting systems, sorted out the basic framework of applying
data mining in credit reporting systems, and applied traditional data mining methods to
handling credit data [6]. According to the characteristics of credit data, some scholars use
the method of feature selection and other basic machine learning algorithms to process
personal credit data to study the personal credit status of users [7,8].

However, the limitation of past research is that, on the one hand, the discretization
method used to process credit information data in the past process will weaken the objec-
tivity of the data. On the other hand, the classification method of classical machine learning
is used, along with a single label, such as portraits of users and “good” and “bad”, which
will bring about a lot of information loss. Therefore, developing a multi-label learning algo-
rithm suitable for analyzing credit data is the key problem to solving the multi-dimensional
portrait of credit users. Based on this, this paper first uses fuzzy Euclidean distance to
improve the classical MLKNN multi-label learning algorithm based on fuzzing the data
after the discretization of credit data. The improved algorithm is called Fuzzy MLKNN.
Then the processed data set is used to train the learner and implement multi-label portraits
of credit reporting users during the testing process. Provide technical support for digging
deeply into the characteristics of credit reporting user groups and interpreting credit re-
ports. The innovations of this paper are as follows: On the one hand, it provides a new
data processing method for the field of credit data mining and introduces an improved
multi-label learning algorithm, which expands the breadth of machine learning in the field
of credit data research. On the other hand, it creatively combines fuzzy set theory with
a multi-label learning algorithm and conducts more in-depth research on improving the
multi-label learning algorithm.

The structure of the rest of the paper is as follows. In Section 2, we summarize the
related work of multi-label learning; in Section 3, we propose the Fuzzy MLKNN algorithm;
Section 4 shows the experimental performance of Fuzzy MLKNN and traditional algorithms
and the comparison of Fuzzy MLKNN and other classic multi-label learning algorithms; in
Section 5 we use Fuzzy MLKNN to analyze the credit user portraits; in the final section we
summarize the research conclusions and put forward suggestions for further study.

2. Literature Review

2.1. Multi-Label Learning

Multi-label learning is an important branch of machine learning, which is different
from traditional single-label learning in that there are multiple labels corresponding to
each predicted sample [9]. In recent years, multi-label learning has been widely used in
text classification [10,11], sentiment analysis [12], image recognition, and other fields, and
various multi-label classification algorithms have emerged one after another. The existing
multi-label learning algorithms are mainly proposed from two perspectives: one is based
on transformation, and the other is self-adaptation [13].

From the transformation, it is always based on converting to binary classification,
typical methods directly convert multi-label problems into multiple single-label problems,
and each label is judged by the presence or absence [14–16]. The three most commonly
used problem transformation methods are Binary Correlation (BR) [17], Label Power Set
(LP) [18], and Chain of Classifiers (CC) [19]. BR transforms the multi-label problem into
a set of independent binary problems. Then, each binary problem is processed using a
traditional classifier. LP treats each unique label set as a class identifier, transforming
the original multi-label dataset into a multi-class dataset. After using it to train a regular
classifier, the predicted classes are inverse transformed to label subsets. However, with
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the number of tags increasing, the number of binary codes tends to increase exponentially,
affecting the algorithm’s performance, so it does not have good generalization ability. CC
is an extension of BR, which strings two classifiers into a chain for learning, considering the
correlation between labels, but the algorithm’s performance needs to be improved. Both
BR and LP are the basis of many multi-label ensemble-based methods. CC addresses the
BR limitation by considering the label association task. [20–22].

From the self-adaptation, it refers to the algorithms which can automatically adapt to
the multi-label classification problem [23–25]. Typical adaptive multi-label classification
algorithms are RankSVM, ML-DT, MLKNN, etc. RankSVM is an improvement to the
traditional SVM, which modifies the loss in SVM to a ranking loss and optimizes the
linear classifier to minimize the label ranking loss [26]. ML-DT is an improvement to the
traditional decision tree. It draws on the idea of the decision tree to filter features according
to the information gain to generate a classifier and uses the information gain to represent
the feature’s ability to discriminate all labels [27]. The MLKNN algorithm is a KNN-based
multi-label classification algorithm [28–30]. The algorithm finds the K nearest neighbor
samples. It performs statistical analysis on the labels of the K nearest neighbor samples to
obtain the probability that the predicted sample contains each label. MLKNN outperforms
some of the well-established multi-label learning algorithms mentioned above and is easy
to understand and implement [31]. Furthermore, MLKNN is less restrictive in its use and
is suitable for a wide variety of multi-label learning problems [28]. A summary of each
algorithm, as well as the advantages and disadvantages, can be found in Table 1.

Table 1. Summary of advantages and disadvantages of multi-label learning algorithms.

Algorithm Descriptions Advantages Disadvantages

Binary Correlation (BR) Individual classifier for each label Simple Ignores label correlations

Label Power Set (LP) Each unique label set as a
class identifier Simple Not applicable to more labels

Chain of Classifiers (CC) Extension of BR, String two
classifiers into a chain for learning Consider label correlations Performance depends on the

order of classifiers in the chain

RankSVM Improvement to the traditional SVM Performance improvement Not suitable for dealing with
high-dimensional samples

ML-DT Improvement to the traditional DT Performance improvement
Not suitable for processing
continuous variables, large
samples, and multi-class data

MLKNN Improvement to the traditional KNN Strong applicability,
Performance improvement Ignores label correlations

2.2. Application of Fuzzy Theory

Nowadays, fuzzy theory has also been used widely to measure uncertainty. It is a
form of alternative mathematics suited for vagueness, especially for small quantities [32].
According to the characteristics of the multi-label problem, most of the multi-labels can be
transformed into fuzzy numbers and then recognized and calculated through fuzzy rules us-
ing machine learning methods, such as clustering. The classic clustering algorithm is a fuzzy
mean clustering algorithm. FCM is the most common way of introducing the membership
function in fuzzy set theory into the calculation of distance to achieve better cluster divi-
sion [33]. In recent years, scholars have not only improved fuzzy mean clustering on fuzzy
computing rules [34–36] but also proposed a series of fuzzy clustering methods [37–39], such
as Probabilistic Intuitionistic Fuzzy Hierarchical Clustering (PIFHC) [40]. PIFHC considers
intuitionistic fuzzy sets to deal with the uncertainty present in the data. Instead of using
traditional hamming distance or Euclidean distance measure to find the distance between
the data points, PIFHC uses the probabilistic Euclidean distance measure to propose a
hierarchical clustering approach. And from experiments with the real-world car dataset
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and the Listeria monocytogenes dataset, intuitionistic distance can improve by 1–3.5% in
the clustering accuracy.

Based on the above research, MLKNN is a multi-label learning algorithm with excellent
performance and strong applicability. At the same time, as an adaptive algorithm, it can
process a large amount of data information quickly, and the operation efficiency is fast.
Therefore, we select MLKNN as the learning algorithm, as the intuitionistic fuzzy number
can express the discretized attribute variable value more objectively. Meanwhile, the
distance calculation process existing in the MLKNN can be improved by a new fuzzy
distance formula. We explore the intuitionistic fuzzy distance to improve the MLKNN
algorithm, proposed as Fuzzy MLKNN.

3. Fuzzy MLKNN

This section will give a detailed introduction to Fuzzy MLKNN. Fuzzy MLKNN is
an improvement based on classic MLKNN, mainly in finding K nearest neighbor samples
in the traditional MLKNN algorithm. The distance between two sample points in high-
dimensional space is changed from the traditional Euclidean measure improved to a fuzzy
Euclidean one. Therefore, this part first defines the multi-label problem in Section 3.1, then
introduces the related concepts of fuzzy sets and fuzzy distance measurement in Section 3.2,
and finally introduces the specific process of Fuzzy MLKNN in Section 3.3.

3.1. Problem Definition

We define the problem to be studied in this paper as follows: Let X = {x1, x2, x3 . . . xn}
denote the sample space, L = {l1, l2, l3 . . . lm} denote the label set, Y = {y1, y2, y3 . . . yn}
represents the label space. For any item li in L (1 ≤ i ≤ m), there is li ∈ {0,1}, and when li
takes 0, it means that the label is no related label, when li is 1, it means the label is a related
label. Given training set D = {(xi, li) | 1 ≤ i ≤ n, xi ∈ X, li ∈ L}, the goal of multi-label
learning-Fuzzy MLKNN is to train from a given training set D, A multi-label classifier
Fuzzy MLKNN: X → 2L, obtained through a training label classifier to predict the set of
labels contained in unknown samples.

3.2. Basic Concepts of Intuitionistic Fuzzy Sets

Fuzzy set theory was first proposed by Professor Zadeh in 1965 and was first used
in fuzzy control [41]. It is an effective tool for dealing with uncertain information. Later,
with the deepening of research, in 1986, the concept of the intuitionistic fuzzy set (IFS)
was introduced into the traditional fuzzy sets [42]. Intuitionistic fuzzy sets can more
accurately describe the nature of fuzziness in information from the two dimensions of
membership and non-membership and have greater advantages and characteristics when
dealing with uncertainty and ambiguity. It has attracted more attention in the application
fields, such as pattern recognition, intelligent control, natural language processing, machine
learning, etc. [43].

Definition 1. Assuming that X is a non-empty set, A = {(x, μA(x), vA(x))|x ∈ X} is called an
intuitionistic fuzzy set.

Among them, μA(x) ∈ [0, 1] and vA(x) ∈ [0, 1] are the degree of membership and
non-membership of element x belonging to A, respectively, 0 ≤ μA(x) + vA(x) ≤ 1 ∀x ∈ X.
Also, πA(x) = 1− μA(x) − vA(x) is called the degree of hesitation that the element x
belongs to A. Generally, the intuitionistic fuzzy number is denoted as α = (μα, vα) [44].
The intuitionistic fuzzy set proposed by Atanassov is an extension of the traditional fuzzy
set [32]. The introduction of the non-membership function enables the intuitionistic fuzzy
set to express uncertain and fuzzy data more delicately and objectively.
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Definition 2. The Euclidean distance of any two intuitionistic fuzzy numbers α1 = (μα1, vα1) and
α2 = (μα2, vα2) is defined as:

d(α1, α2) =

√
1
2
(μα1 − μα2)

2 + (vα1 − vα2)
2 (1)

3.3. Fuzzy MLKNN

The basic idea of the traditional MLKNN algorithm is to draw on the idea of the KNN
algorithm to find K samples adjacent to the predicted sample, count the number of each
label in the K samples, and then calculate the probability of the test sample containing
each label through the maximum posterior probability [45]. The label whose predicted
probability is greater than a certain threshold is the label of the predicted sample.

The improved MLKNN algorithm using the intuitionistic fuzzy distance is mainly the
process of finding K nearest neighbor samples in the traditional MLKNN algorithm. The
measure of the distance between two sample points in high-dimensional space is improved
from the traditional Euclidean measure to the fuzzy Euclidean measure to find more
accurate nearest neighbor sample points with reference significance for label prediction.
The specific mathematical form and symbolic expression of the algorithm follow, and the
basic notation is shown in Table 2.

Table 2. Notation.

Variables Description

X Samples space
Y Labels space
xi Arbitrary i-th sample

αi
Feature vector of xi. The elements in αi are composed of intuitionistic
fuzzy numbers.

yi Label set of xi
L The label category vector
l Arbitrary single category label l ∈ L
N(x) The set of K nearest neighbors of x identified in the training set
Cx(l) The number of sample with label l in neighbor set N(x)
Hl

1 the event that x has label l
Hl

0 The event that x has not label l

El
j

The event that, among the K nearest neighbors of x, there are exactly j instances
with label l.

Suppose the training set is X = {x1, x2, x3 . . . xn}, indicating that there are n training
samples. The feature data in each training sample is represented by α = (α1, α2, . . . αt).
There are t features in total, and each feature data is represented by an intuitionistic fuzzy
number. The label set of the training sample is Y = {y1, y2, y3 . . . yn}, It represents the label
set corresponding to each sample. L = {l1, l2, l3 . . . lm} represents the label category vector,
and m represents the number of label types. It is known that the training sample is x ∈ X,
and its corresponding label set is yx ⊆ Y, If yx(l) = 1, it means that the label l is included
in the label set of the sample x, otherwise yx(l) = 0, it means that the label set of sample x
does not contain the label l. Furthermore, let N(x) denote the set of K nearest neighbors of
x identified in the training set, Cx(l) refers to the number of samples with label l in the K
nearest neighbors of x. Hl

1 represents the event that sample x has the label l, Hl
0 represents

the event that sample x has not the label l. El
j represents the event that, among the K nearest

neighbors of test sample x, there are exactly j samples with label l. At this time, the formula
of MLKNN for multi-label classification obtained according to Bayes’ theorem is as follows:

yx(l) = argmax
b∈{0,1}

P(Hl
b)P(El

q|Hl
b)

P(El
q)

= argmax
b∈{0,1}

P(Hl
b)P(El

q|Hl
b) (2)
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Among them, b takes 0 or 1. If we want to get whether the label l belongs to sample
x, we only need to judge which value of b can maximize the value of the formula. If the
formula value is the largest when b = 1, it is proved that yx(l) = 1, that is, the sample x has
the label l. On the contrary, if the value of the formula is the largest when b = 0, it is proved
that yx(l) = 0, that is, the sample does not have the label l. In calculating the K nearest
neighbor samples, the distance calculation between samples is involved, so we use fuzzy
Euclidean to measure the distance between fuzzy data. The specific measurement formula
is shown in the above Equation (2).

For each label l in the equation, its corresponding prior probability P(Hl
b) can be

calculated by Equation (3). That is, divide the number of samples with label l in the training
set by the total number of samples in the training set.

P(Hl
1) = (s +

n

∑
i=1

yx)/(s× 2 + n)

P(Hl
0) = 1− P(Hl

1) (3)

Among them, s is a smoothing parameter controlling the strength of uniform prior. In
this paper, s is set to be 1, which yields the Laplace smoothing, and ∑n

i=1 yx represents the
total number of samples with label l in the n training samples.

The posterior probability can be calculated by Equations (4) and (5).

P(El
j |Hl

1) = (s + c[j])/(s× (k + 1) +
k

∑
p=0

c[p]) (4)

P(El
j |Hl

0) =
(
s + c′[j]

)
/(s× (k + 1) +

k

∑
p=0

c′[p]) (5)

Among them, j represents the number of samples with label l in the K nearest neighbor
samples of test sample x. c[j] represents the number of samples in all training samples
whose K neighbors have j samples with label l, and themselves also have label l. And c′[j]
means the number of samples in all training samples whose K neighbors have j samples
with label l, but the samples themselves do not contain label l. Then, this paper calculates
the probability that sample x contains label l by Equation (6).

P(l) = P(Hl
1)P(El

j |Hl
1)/P(Hl

1)P(El
j |Hl

1) + P(Hl
0)P(El

j |Hl
0) (6)

The whole algorithm can be found in Appendix A.

4. Experiments

4.1. Evaluation Metrics

The general performance evaluation metrics of multi-label learning algorithms have
been extensively studied and sorted out by researchers [46,47]. In this paper, we select the
five most commonly used indicators to compare the performance of the algorithms. Among
them, HammingLoss is considered from the perspective of samples. The other four indicators
are considered from the perspective of label ranking. They include Average_Precision,
RankingLoss, OneError, and Coverage. The specific calculation form of these indicators will
be explained below.

HammingLoss refers to the average number of misclassifications of multiple labels on a
single sample. The smaller the indicator, the better the performance of the algorithm.

HL =
1
t

t

∑
i=1

1
m
|ZiΔYi|

58



Appl. Sci. 2022, 12, 11342

where t is the number of test samples, m is the number of labels, Zi is the predicted label
set, Yi is the real label set, and | | represents the difference between the two sets, that is,
the number of errors between the predicted labels and the true labels.

Average_Precision is different from Precision in single-label classification. It is not
the average Precision of all training samples on each label but represents the average
probability that the order of the predicted relevant labels is before the specific real relevant
labels. The larger the index, the better the performance.

averagePrecision =
1
t

t

∑
i=1

1
|Yi| ∑

y∈Yi

|{y′|rank f (xi, y′) ≤ rank f (xi, y), y′ ∈ Yi}|
rank f (xi, y)

RankingLoss indicates an incorrect ranking in the ranking sequence of the label set
owned by the sample, that is, the number of times that the ranking of the relevant labels
appears behind the irrelevant labels. The smaller the index, the better the performance of
the algorithm.

RL =
1
t

t

∑
i=1

1
|Yi||Yi|

|{(y′, y′′ )| f (xi, y′) ≤ f (xi, y′′ ), (y′, y′′ ) ∈ Yi ×Yi}|

where Yi is the complementary set of Yi to the total label set L.
OneError refers to the number of times that the first-ranked label in the predicted label

of the sample does not belong to the sample-related label. The smaller the index, the better
the performance of the algorithm.

oneError =
1
t

t

∑
i=1

(argmax
li∈L

f (xi, lj) /∈ Yi)

Coverage can be understood as the step size in the sorted sequence of predicted label
sets that needs to be traversed to get all the true relevant label sets. Likewise, the smaller
the metric, the better the algorithm performance.

coverage =
1
t

t

∑
i=1

maxrank f
y∈Yi

(xi, y)− 1

where−1 ensures there is no limit case of misclassification; that is, the top-ranked predicted
labels are their true labels.

4.2. Experiment Setting

The data in this experiment is the credit data of some users from 2008 to 2012 provided
by the Credit Center of the People’s Bank of China, including about 10,000 user records. The
attributes involved in the data include three aspects: basic personal information, account
opening information, and credit activity information. There are 37 attributes, including
6 binary attributes, 12 nominal attributes, and 19 numerical attributes. There are 8 pieces
of corresponding label information, which are considered from three aspects: personal
development and stability, frequency of credit activities, and attention to credit status.
This part of the information is obtained from financial institutions. However, there is a lot
of missing data and incomplete information in these data. Therefore, before conducting
experiments, data cleaning and data preprocessing are required to ensure the quality of
data used for model training.

First, after removing privacy variables, such as ID number, telephone number, address,
etc., the correlation test of variables was carried out, and some variables with a correlation
exceeding 0.7 were removed. A total of 11 attribute variables were selected from 37 attribute
variables for the experiment (including 2 nominal attributes and 9 numerical attributes).
The correlation matrices of some variables are shown in Table 3.
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Then delete the missing and obviously unreasonable data in these attribute data,
and finally, select 1000 pieces of data with complete information for the experiments.
The basic information of the data set used for the experiments is described in Table 4.
Cardinality represents the average number of labels per sample; Density represents the
label density, which is calculated by dividing Cardinality by the number of labels, and
Proportion represents the specific label proportion of the samples.

Table 3. Correlation matrices of some variables.

Coefficient of Correlation (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) year_income 1 0 0 0 0.01 0.01 0 0 0.04 0.03
(2) credit_over_amount 0 1 0.02 0.03 −0.02 −0.03 −0.02 −0.02 −0.01 −0.02
(3) loan_over_amount 0 0.02 1 1 −0.01 −0.01 −0.02 −0.02 0 −0.01
(4) total_over_amount 0 0.03 1 1 −0.01 −0.01 −0.02 −0.02 0 −0.01
(5) bank_legal_org_num 0.01 −0.02 −0.01 −0.01 1 0.99 0.94 0.94 0.58 0.64
(6) bank_org_num 0.01 −0.03 −0.01 −0.01 0.99 1 0.93 0.93 0.59 0.65
(7) credit_legal_org_num 0 −0.02 −0.02 −0.02 0.94 0.93 1 1 0.58 0.63
(8) credit_org_num 0 −0.02 −0.02 −0.02 0.94 0.93 1 1 0.58 0.63
(9) total_credit_amount 0.04 −0.01 0 0 0.58 0.59 0.58 0.58 1 0.52
(10) query 0.03 −0.02 −0.01 −0.01 0.64 0.65 0.63 0.63 0.52 1

Table 4. Original dataset information.

Examples Features Labels

train test Nominal Numeric Numbers Cardinality Density Proportion
700 300 2 9 8 3 0.375 0.018

Second, in the process of data preprocessing, since the original attribute data are
different in nature and magnitude, this paper needs to uniformly convert nominal attributes
and numerical attributes into discrete variables and perform segmentation processing.
However, this process will cause the subjectivity of the real data to be amplified. Therefore,
we intuitively fuzzify the discrete data to ensure the objectivity and accuracy of the original
data as much as possible and to facilitate our calculations.

Therefore, we need to process the data in two stages. The first is discretization, and
the second is fuzzification. According to the objective data interval distribution of the
variables themselves after discretization, we assign corresponding fuzzy numbers to each
group of variables using the cumulative probability distribution in probability statistics.
For example, for the discrete variable distribution of annual income, we will count the
probability of each discrete variable, such as “1”, “2”, “3”, etc., and then calculate its
cumulative distribution to determine the membership degree which belongs to the income
set. In addition, for the convenience of calculation, the hesitation degree is set to 0, so
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the non-membership degree is 1 minus the membership degree. The specific processing
processes are shown in Tables 5 and 6.

Table 5. Representative the credit variable data conversion process record.

Attribute Name Data Conversion Process

education
Primary school = 1; Secondary technical school = 2; Junior high
school = 3; Senior middle school =4; Junior college = 5;
University = 6; Postgraduate = 7

year_income
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; more
than 1,000,000 RMB = 6

career

Soldier = 1; Heads of state agencies, party organizations,
enterprises, and institutions = 2; Clerks and related personnel = 3;
Production personnel in agriculture, forestry, animal husbandry,
fishery, and water conservancy = 4; Commercial and service
industry personnel = 5; Professional skill worker = 6;
Production and transportation equipment operators and related
personnel = 7

credit_account 1~5 = 1; 6~10 = 2; 11~20 = 3; 21~50 = 4; more than 50 = 5;

Table 5. Cont.

Attribute Name Data Conversion Process

loan_strokecount 0~2 times = 1; 3~5 times = 2; 6~8 times = 3; 9~11 times = 4; more
than 11 times = 5

total_credit_amount
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; More
than 1,000,000 RMB = 6

total_use_amount
1~10,000 RMB = 1; 10,001~50,000 RMB = 2; 50,001~100,000 RMB = 3;
100,001~500,000 RMB = 4; 500,001~1,000,000 RMB = 5; More
than 1,000,000 RMB = 6

credit_amount_utilization_rate 0~0.3 = 1; 0.3~0.6 = 2; 0.6~0.9 = 3; 0.9~1 = 4

query 1~5 times = 1; 6~10 times = 2; 11~20 times = 3; 21~50 times = 4;
51~100 times = 5; more than 100 times = 6

credit_over_amount No overdraft = 0; Overdraft = 1

total_over_amount No overdue = 0; Overdue = 1

Table 6. Fuzzification process.

Attribute Name Corresponding Intuitionistic Fuzzy Number

education 1:(0.01, 0.99); 2:(0.10, 0.90); 3:(0.17, 0.83); 4:(0.41, 0.59);
5:(0.79, 0.21); 6:(0.98, 0.02); 7(1, 0)

year_income 1:(0.01, 0.99); 2:(0.40, 0.60); 3:(0.73, 0.27); 4:(0.95, 0.05);
5:(0.98, 0.02); 6:(1, 0)

credit_amount_utilization_rate 1:(0.09, 0.91); 2:(0.20, 0.80); 3:(0.58, 0.42); 4:(0.97, 0.03); 5:(1, 0)

After the attributes are processed, the label information must be converted into nu-
merical values. The label information is obtained from the experience data of financial
institutions. The specific label information and serial numbers are shown in Table 7. In
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the process of experimental testing, any one of the 8 labels may exist in the label set of the
predicted sample.

Table 7. Label information conversion process record.

Coding 1 2 3 4 5 6 7 8

Labels Name
Personal

development
stability

Personal
development

instability

Low
frequency of

credit activities

Medium
frequency of

credit activities

High frequency
of credit activities

Low
attention to
credit status

Normal
attention to
credit status

High
attention to
credit status

In the experiment, we refer to the method of the paper [48], use the matrix to represent
the situation between the sample and the label, establish an m*n matrix, let n be the number
of samples, m the number of labels, let minj = −1 or 1, where =1 represents the jth sample
and has the label i, otherwise meaning the sample does not have the label i.

The experimental environment in this research is MATLAB (R2019b). There are
two parameters involved in the experiment. One is the selection of the K value; the other is
the setting of smoothing parameters. Regarding the choice of K value, generally speaking,
if the K value is too small, it is easily affected by abnormal points. The model is easy to
overfit, while if the K value is too large, it is more likely to suffer from problems caused by
unbalanced samples, resulting in under-fitting; such results can be seen in the work of [49].
Therefore, in this paper, K is changed from 2 to 40, and the traditional MLKNN algorithm
and the improved MLKNN algorithm are compared. A total of 80 experiments are carried
out to obtain the performance change effect chart, to determine the optimal K value under
the two algorithms, and to compare the results. Regarding the smoothing parameter, we
are consistent with the existing literature and are set to the default value of 1.

4.3. Comparison with Fuzzy MLKNN and Other Multi-Label Learning Algorithms

After determining the most suitable K value, this paper further compares the per-
formance of the improved algorithm proposed with other commonly used multi-label
learning algorithms on the credit data set. According to the classification of multi-label
learning algorithms, this paper considers two types of multi-label learning algorithms. One
is the multi-label algorithm based on problem transformation, including Binary Relevance
and Classifier Chain, and the other is the adaptive algorithm Rank SVM. As a result, the
performance of the algorithm is studied. The comparison results are shown in Table 8.

Table 8. Performance comparison between different multi-label algorithms.

Binary Relevance Classifier Chain Rank SVM Fuzzy MLKNN

HammingLoss 0.1947 0.2584 0.1688 0.0867

Average_Precision 0.8652 0.7542 0.8944 0.9436

RankingLoss 0.1281 0.2410 0.0900 0.0500

OneError 0.0852 0.2130 0.0667 0.0133

Coverage 3.0500 3.5200 2.9900 2.5267

By comparing the five indicators in the table, it is found that the improved Fuzzy
MLKNN shows better and better performance in learning the credit data set. Among
them, the two indicators of HammingLoss and OneError have the most obvious advantages.
This paper finds that its learning time is relatively short. In addition, comparing the five
indicators of other algorithms, it is found that the performance of Rank SVM is second,
the performance of the RankingLoss indicator is relatively good, and the performance of
Classifier Chain on the credit data set is the worst. Therefore, this paper further uses the
improved MLKNN to predict the test set data.
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4.4. Comparative Analysis of Fuzzy MLKNN with MLKNN

According to the above parameter settings, two sets of comparative experiments are
carried out on the preprocessed data set to observe the performance under different K
values and compare the advantages and disadvantages of the traditional algorithm and the
improved algorithm. The results are shown in Figures 1–5.

Figure 1. HammingLoss values under different K values.

Figure 2. Average_Precision under different K values.
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Figure 3. RankingLoss under different K values.

Figure 4. One Error under different K values.

Figure 5. Coverage under different K values.
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The smaller the HammingLoss, the smaller the average number of misclassifications,
and therefore the better the performance. From Figure 1, it can be directly seen that the
HammingLoss value of the improved algorithm has an overall improvement compared with
the traditional algorithm. The HammingLoss value of the traditional algorithm is between
0.12 and 0.15, and the mean value is 0.132. The overall fluctuation is relatively stable, and
the distribution of the smallest HammingLoss value is not obvious, which is obtained at
K = 14, 28, 31, and 34, respectively. The HammingLoss value of the improved algorithm is
between 0.08 and 0.11, with an average value of 0.096. During the change from K = 10 to 35,
the overall trend decreases. The smallest HammingLoss value can be easily obtained from
the figure at K = 35. At the same time, we can find that the algorithm’s performance before
and after the improvement in HammingLoss is not synchronous with the variation of the K
value. From the perspective of HammingLoss only, the value of K selected for the optimal
performance of the traditional algorithm and the improved algorithm is different.

The higher the Average_Precision, the better the performance of the multi-label learning
algorithm. It can be observed from Figure 2 that the Average_Precision of the improved
algorithm is significantly better than the traditional algorithm, and the gap between the
two becomes more obvious with the increase of the K value. The value of Average_Precision
of the traditional algorithm is between 0.89 and 0.92, with an average value of 0.909, and as
the value of K increases, the overall trend decreases. The algorithm performs best when
K = 14. The value of Average_Precision of the improved algorithm is between 0.92 and 0.95,
with a mean value of 0.938, and with the increase of the K value, the overall trend is upward.
When the value of K takes a value near 36, the performance is optimal, and when K = 36,
the value of Average_Precision is at most 0.944.

Since Rankingloss and OneError are considered indicators based on the order of labels
and are in the same order of magnitude, the smaller the two indicators are, the better the
performance is. This paper considers these two indicators at the same time. In Figure 3, the
blue line is the RankingLoss with MLKNN, and in Figure 4, the green columnar presents
OneError values with MLKNN. Respectively, the red line in Figure 3 and the orange
columnar in Figure 4 are the RankingLoss and OneError values of Fuzzy MLKNN.

First of all, from the value of RankingLoss, the improved algorithm is better than the
traditional algorithm, and as the value of k increases, this advantage is gradually obvious.
The average value of the traditional algorithm on RankingLoss is 0.08, and the low values
are obtained at K = 8, 11, and 14. The mean RankingLoss of the improved algorithm is
0.055, and the minimum value is obtained at K= 36. Secondly, from the perspective of the
OneError value, it can be seen from the figure that the OneError value of the traditional
algorithm is significantly higher than that of the improved algorithm, and the former value
fluctuates greatly. The average OneError value of the traditional algorithm is 0.063, while
the average OneError value of the improved algorithm is 0.016. Based on the consideration
of the OneError value, the optimal K value of the traditional algorithm is obtained when
K = 14; the optimal K value of the improved algorithm is obtained when K = 17.

Figure 5 shows the performance of Coverage under different K values. Coverage is
the step size required to traverse the correct label. The smaller the index, the better the
performance. From the figure, we can see that the Coverage of the improved algorithm
is also significantly lower than that of the traditional algorithm. The mean value of the
improved algorithm on Coverage is 2.585, and the traditional algorithm is 2.822. The
minimum Coverage values of the improved algorithm can be obtained at 24~26, 36, while
the minimum Coverage values of the traditional algorithm are obtained at 10, 11, and 14.

Through the analysis of the above experimental results, we find that the improved
algorithm is better than the traditional algorithm in all evaluation metrics, and the per-
formance of the OneError value is the most significant, proving that the fuzzy distance
measure is effective in the multi-label learning process of credit data. In addition, through
the analysis of the optimal selection of the K value on different indicators, this paper finds
that the traditional algorithm and the improved algorithm are not consistent in the selection
of the optimal K value. The selection of the optimal K value of the traditional algorithm is
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significantly lower than the improved algorithm. From the comprehensive consideration
of the performance of the above five indicators, it is more appropriate to take 14 for the
optimal K value of the traditional algorithm. And the optimal K value of the improved
algorithm is 36. Therefore, for these two results, we mainly use the improved algorithm
with better performance in the following analysis process and select the K value of 36 to
conduct further in-depth research on the data.

5. User Portrait

To make a portrait of users, we need to describe the distribution characteristics of
labels. Referring to [50,51], we choose the best parameter with Fuzzy MLKNN, K = 36, and
then conduct the algorithm with the whole dataset. The results are shown in Table 6 and
Figure 6. Table 6 summarizes the proportion of one label, and Figure 6 describes user labels.

Figure 6. The distribution of user labels.

Firstly, from the learning results of one label in Table 9, users with low credit frequency
account for the largest proportion, accounting for about 73%, followed by users with
relatively stable personal development, accounting for about 67%, and the third is users
with low credit concerns account for about 47%. It is more consistent with the actual
situation. Most credit users have a low frequency of credit activities. The proportion
of users with a medium frequency of credit activities is the least, indicating that the
polarization of credit users is more serious in terms of credit activities.

Table 9. Proportion of one label.

Label Code Labels Name Proportion

1 Personal development stability 0.670

2 Personal development instability 0.330

3 Low frequency of credit activities 0.733

4 Medium frequency of credit activities 0.040

5 High frequency of credit activities 0.143

6 Low attention to credit status 0.470

7 Medium attention to credit status 0.260

8 High attention to credit status 0.173
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Secondly, from the learning results of user labels, the proportion of credit users with
predicted labels [136], [236], and [137] reached 59%, accounting for more than half of the
total number of credit users, similar to the actual life situation. The user group represented
by [136] has stable personal development, low credit frequency, and low credit concern.
These users account for about 30% of the total number of users. [236] represents groups with
unstable personal development, low credit frequency, and low credit concern, accounting
for about 17% of the total users. From this, we can find that there is no significant correlation
between the personal stability status and the credit status of credit reporting users to a
certain extent. [137] represents groups with stable personal development, low credit
frequency, and moderate credit concern, accounting for about 12% of the total population.
The fourth and fifth place are [158] and [237], respectively, representing groups with
stable personal development, high credit frequency, and high credit status concern, and
individuals with unstable personal development, low credit frequency, and medium credit
concern. This result also verifies the earlier conclusion that an individual’s stability does
not directly affect his credit status. In addition, we also found a relationship between the
frequency of credit activities and attention to the credit situation. High credit frequency is
accompanied by high credit attention, while low and medium credit frequency also pays
less attention to credit status, which aligns with real life.

6. Conclusions

This paper proposes a systematic clustering algorithm–Fuzzy MLKNN, which uses
intuitionistic fuzzy sets to conduct distance metrics, and then improves the MLKNN multi-
label learning algorithm. From the experiments, we find it has three advantages over the
classical algorithm. Firstly, by fuzzing the data, the subjectivity of the original data in the
process of data discretization can be weakened, and the objectivity and authenticity of the
experimental data can be enhanced simultaneously. Secondly, the classical algorithm is
improved by using the Euclidean fuzzy distance formula; to a certain extent, the distance
between sample points is more representative than the original distance. Third, the fuzzy-
improved algorithm outperforms the classical algorithm in multiple performance indicators,
among which the OneError indicator is the most obvious.

The limitation of this paper is that it only considers the advantages of the improved
algorithm from an experimental point of view and has not yet obtained relevant theoretical
proof. Therefore, some questions worthy of further study remain. Theoretical analysis
concerning the effectiveness of Fuzzy MLKNN will need more discussion. Moreover, as
with other multi-label algorithms, Fuzzy MLKNN may suffer from missing labels and noisy
labels, which will need more data to test.
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Appendix A

function [Prior,PriorN,Cond,CondN]=MLKNN_train(train_data,train_target,Num,Smooth)
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%MLKNN_train trains a multi-label k-nearest neighbor classifier
%
% Syntax
%
% [Prior,PriorN,Cond,CondN]=MLKNN_train(train_data,train_target,num_neighbor)
%
% Description
%
% KNNML_train takes,
% train_data - An MxN array, the ith instance of training instance is stored in train_data(i,:)
% train_target - A QxM array, if the ith training instance belongs to the jth class, then train_target(j,i) equals +1,
otherwise train_target(j,i) equals -1
% Num - Number of neighbors used in the k-nearest neighbor algorithm
% Smooth - Smoothing parameter
% and returns,
% Prior - A Qx1 array, for the ith class Ci, the prior probability of P(Ci) is stored in Prior(i,1)
% PriorN - A Qx1 array, for the ith class Ci, the prior probability of P(~Ci) is stored in PriorN(i,1)
% Cond - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance in Ci will belong to Ci, is stored in Cond(i,k+1)
% CondN - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|~Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance not in Ci will belong to Ci, is stored in CondN(i,k+1)

[num_class,num_training]=size(train_target);

%Computing distance between training instances
dist_matrix=diag(realmax*ones(1,num_training));

for i=1:num_training-1
if(mod(i,100)==0)

disp(strcat('computing distance for instance:',num2str(i)));
end
vector1=train_data(i,:);
for j=i+1:num_training

vector2=train_data(j,:);
dist_matrix(i,j)=sqrt(sum((vector1-vector2).ˆ2));
dist_matrix(j,i)=dist_matrix(i,j);

end
end

%Computing Prior and PriorN
for i=1:num_class

temp_Ci=sum(train_target(i,:)==ones(1,num_training));
Prior(i,1)=(Smooth+temp_Ci)/(Smooth*2+num_training);
PriorN(i,1)=1-Prior(i,1);

end

%Computing Cond and CondN
Neighbors=cell(num_training,1); %Neighbors{i,1} stores the Num neighbors of the ith training instance
for i=1:num_training

[temp,index]=sort(dist_matrix(i,:));
Neighbors{i,1}=index(1:Num);

end

temp_Ci=zeros(num_class,Num+1);
temp_NCi=zeros(num_class,Num+1);
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for i=1:num_training
temp=zeros(1,num_class);
neighbor_labels=[];
for j=1:Num

neighbor_labels=[neighbor_labels,train_target(:,Neighbors{i,1}(j))];
end
for j=1:num_class

temp(1,j)=sum(neighbor_labels(j,:)==ones(1,Num));
end

for j=1:num_class
if(train_target(j,i)==1)

temp_Ci(j,temp(j)+1)=temp_Ci(j,temp(j)+1)+1;
else

temp_NCi(j,temp(j)+1)=temp_NCi(j,temp(j)+1)+1;
end

end
end
for i=1:num_class

temp1=sum(temp_Ci(i,:));
temp2=sum(temp_NCi(i,:));
for j=1:Num+1

Cond(i,j)=(Smooth+temp_Ci(i,j))/(Smooth*(Num+1)+temp1);
CondN(i,j)=(Smooth+temp_NCi(i,j))/(Smooth*(Num+1)+temp2);

end
end

Function
[HammingLoss,RankingLoss,OneError,Coverage,Average_Precision,Outputs,Pre_Labels]=MLKNN_test(train_data,
train_target,test_data,test_target,Num,Prior,PriorN,Cond,CondN)

%MLKNN_test tests a multi-label k-nearest neighbor classifier.
%
% Syntax
%
%
[HammingLoss,RankingLoss,OneError,Coverage,Average_Precision,Outputs,Pre_Labels]=MLKNN_test(train_data,train

_target,test_data,test_target,Num,Prior,PriorN,Cond,CondN)
%
% Description
%
% KNNML_test takes,
% train_data - An M1xN array, the ith instance of training instance is stored in train_data(i,:)
% train_target - A QxM1 array, if the ith training instance belongs to the jth class, then train_target(j,i)
equals +1, otherwise train_target(j,i) equals -1
% test_data - An M2xN array, the ith instance of testing instance is stored in test_data(i,:)
% test_target - A QxM2 array, if the ith testing instance belongs to the jth class, test_target(j,i) equals +1,
otherwise test_target(j,i) equals -1
% Num - Number of neighbors used in the k-nearest neighbor algorithm
% Prior - A Qx1 array, for the ith class Ci, the prior probability of P(Ci) is stored in Prior(i,1)
% PriorN - A Qx1 array, for the ith class Ci, the prior probability of P(~Ci) is stored in PriorN(i,1)
% Cond - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|Ci) (0<=k<=Num), i.e., k
nearest neighbors of an instance in Ci will belong to Ci, is stored in Cond(i,k+1)
% CondN - A Qx(Num+1) array, for the ith class Ci, the probability of P(k|~Ci) (0<=k<=Num), i.e.,
k nearest neighbors of an instance not in Ci will belong to Ci, is stored in CondN(i,k+1)
% and returns,
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% HammingLoss - The hamming loss on testing data
% RankingLoss - The ranking loss on testing data
% OneError - The one-error on testing data as
% Coverage - The coverage on testing data as
% Average_Precision- The average precision on testing data
% Outputs - A QxM2 array, the probability of the ith testing instance belonging to the jCth class is
stored in Outputs(j,i)
% Pre_Labels - A QxM2 array, if the ith testing instance belongs to the jth class, then Pre_Labels(j,i) is
+1, otherwise Pre_Labels(j,i) is -1

[num_class,num_training]=size(train_target);
[num_class,num_testing]=size(test_target);

%Computing distances between training instances and testing instances
dist_matrix=zeros(num_testing,num_training);
for i=1:num_testing

if(mod(i,100)==0)
disp(strcat('computing distance for instance:',num2str(i)));

end
vector1=test_data(i,:);
for j=1:num_training

vector2=train_data(j,:);
dist_matrix(i,j)=sqrt(sum((vector1-vector2).ˆ2));

end
end

%Find neighbors of each testing instance
Neighbors=cell(num_testing,1); %Neighbors{i,1} stores the Num neighbors of the ith testing instance
for i=1:num_testing

[temp,index]=sort(dist_matrix(i,:));
Neighbors{i,1}=index(1:Num);

end

%Computing Outputs
Outputs=zeros(num_class,num_testing);
for i=1:num_testing

% if(mod(i,100)==0)
% disp(strcat('computing outputs for instance:',num2str(i)));
% end

temp=zeros(1,num_class); %The number of the Num nearest neighbors of the ith instance which belong to the
jth instance is stored in temp(1,j)

neighbor_labels=[];
for j=1:Num

neighbor_labels=[neighbor_labels,train_target(:,Neighbors{i,1}(j))];
end
for j=1:num_class

temp(1,j)=sum(neighbor_labels(j,:)==ones(1,Num));
end
for j=1:num_class

Prob_in=Prior(j)*Cond(j,temp(1,j)+1);
Prob_out=PriorN(j)*CondN(j,temp(1,j)+1);
if(Prob_in+Prob_out==0)

Outputs(j,i)=Prior(j);
else
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Outputs(j,i)=Prob_in/(Prob_in+Prob_out);
end

end
end

%Evaluation
Pre_Labels=zeros(num_class,num_testing)
for i=1:num_testing

for j=1:num_class
if(Outputs(j,i)>=0.5)

Pre_Labels(j,i)=1;
else

Pre_Labels(j,i)=-1;
end

end
end
HammingLoss=Hamming_loss(Pre_Labels,test_target)
RankingLoss=Ranking_loss(Outputs,test_target);
OneError=One_error(Outputs,test_target);
Coverage=coverage(Outputs,test_target);
Average_Precision=Average_precision(Outputs,test_target);
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Abstract: Network embedding is a promising field and is important for various network analysis
tasks, such as link prediction, node classification, community detection and others. Most research
studies on link prediction focus on simple networks and pay little attention to hypergraphs that
provide a natural way to represent complex higher-order relationships. In this paper, we propose a
link prediction method with hypergraphs using network embedding (HNE). HNE adapts a traditional
network embedding method, Deepwalk, to link prediction in hypergraphs. Firstly, the hypergraph
model is constructed based on heterogeneous library loan records of seven universities. With a
network embedding method, the low-dimensional vectors are obtained to extract network structure
features for the hypergraphs. Then, the link prediction is implemented on the hypergraphs as the
classification task with machine learning. The experimental results on seven real networks show our
approach has good performance for link prediction in hypergraphs. Our method will be helpful for
human behavior dynamics.

Keywords: link prediction; hypergraph; network embedding; machine learning; heterogeneous
network; library loan records; human behavior dynamics

1. Introduction

Link prediction [1–3] has been widely applied in many fields with extensive research
studies, especially in society networks, such as community detection [4] and recommen-
dation [5]. It aims to predict the potential links between nodes based on existing links,
and has a wide range of applications in many fields, from bioinformatics [6,7] and social
science [8] to computer science [9]. Existing traditional methods for link prediction [10–13]
focus on simple graphs mostly and less on the interactions between pairs of nodes present
in real-world systems, while research on high-order interactions is of great significance
for modeling complex systems. For instance, in scientific collaboration networks, several
researchers work together on a research project; in the brain network, a human behavior
usually involves multiple neurons. Link prediction on high-order interactions leads to
some challenges, while a hypergraph [14–16] provides a useful way to modeling such inter-
actions. A hypergraph can reflect multiple nodes’ relations with hyperlinks, and can be
used in evaluating vital nodes [17], describing protein interaction [18] and so on. Hyperlink
prediction on hypergraph has been investigated to predict higher-order links such as a
user releasing a tweet containing a hashtag [19]. Hyperlink prediction [20] has also been
helpful to predict multiactor collaborations [21]. By formulating various kinds of nodes and
associations into a hypergraph, link prediction on heterogeneous networks has developed
increasingly. Li Dong [19] modeled various types of objects and relations of networks as
hypergraphs and used link proximities to construct a cost function to predict users’ links.
Maria [22] constructed relations between pairs of drugs into a hypergraph to predict mul-
tidrug interactions. Liu et al. [23] proposed a Metapath-aware HyperGraph Transformer
(Meta-HGT) for node embedding to capture the high-order relations. Kang et al. [24] pro-
posed dynamic hypergraph neural networks based on key hyperedges (DHKH) to consider
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a dynamic hypergraph structure. Fan et al. [25] presented a method named heterogeneous
hypergraph variational autoencoder (HeteHG-VAE) for link prediction in heterogeneous
information networks (HINs) mapped to a heterogeneous hypergraph with a certain kind
of semantics to capture both the high-order semantics and complex relations among nodes,
while preserving the low-order pairwise topology information of the original HIN.

Network embedding [26,27] combining machine learning or deep learning with net-
work science has made it possible to automatically learn and preserve network properties
by representing nodes in a low-dimensional space. It is usually assumed that the dis-
tance between the representation vectors of nodes reflects the similarity of the nodes in
networks [28]. Network embedding typically realizes a network representation through
matrix factorization, random walk and neural network methods. The matrix factoriza-
tion methods select an adjacency matrix, an incident matrix, a Laplacian matrix and their
variant forms to factorize and obtain the embeddings, such as M-NMF [29] and Lapla-
cian eigenmaps [30]. The random walk methods generate embeddings through a random
walk of nodes on graphs and training node sequences in models; representative methods
include the Deepwalk [31], Node2vec [32] and Graphwave models [33]. The methods
based on a neural network realize an embedding by the nonlinear function of deep models
to map the networks in a vector space, such as HeGan [34], VERSE [35] and SiNE mod-
els [36]. Furthermore, deep-learning-based link prediction methods on hypergraphs have
achieved rapid development. Yadati et al. [37] proposed a neural hyperlink predictor (NHP)
adapting graph convolutional networks (GCNs) [38] for link prediction in hypergraphs.
Node2vec [32] with a single-layer perceptron (Node2vec-SLP) was an improved version
of Node2vec for hyperlink prediction, which employed a one-layer neural network to
compute hyperlink scores [39].

Considering that hypergraphs can represent higher-order systems more conveniently,
the interaction information of nodes is characterized into vectors with network embedding,
so that the link prediction on hypergraphs can be converted into a classification problem.
Therefore, we provide a novel idea of link prediction with hypergraphs with network
embedding (HNE) in this paper. Our motivation is to predict the relationships of students
based on the library loan records of universities, instead of higher-order relationships of
students. Thus, we investigate the link prediction with hypergraphs. We use a hypergraph
to model all types of objects and relations of the library loan record networks. Firstly,
we construct different kinds of nodes associations in a heterogeneous network with a
hypergraph according to the library loan records of seven universities. Secondly, a network
embedding method, Deepwalk, is utilized to extract structural information and represent
nodes by vectors. Thirdly, a machine learning model, a random forest [40], is applied
as a classifier for the link prediction. The experiments are conducted on seven sizes of
heterogeneous networks and compare several typical link prediction methods to verify
the performance of the proposed approach and achieve the promising results on the
seven datasets.

The innovations in this paper are as follows: We propose a link prediction method
using hypergraphs based on network embedding. The representation of the features
of library loan record associations are novel in the process of our overall algorithm for
link prediction of the relationship of students, which means that learning technology is
applied to human behavior dynamics networks, that is, network embedding technology is
introduced into human behavior dynamics networks. Then, a vector of each student for
library loan records is constructed as a training set. Our method achieves promising results
on the seven different datasets.

2. Materials and Methods

Figure 1 shows the complete flow chart for HNE, the link prediction approach we
propose based on hypergraphs with network embedding. First, the heterogeneous networks
constructed from library loan records of seven universities are explored, which consists of
two types of nodes (Node I represents students, Node II indicates the books borrowed by the
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students from libraries) and their interactions. The hypergraph is constructed according
to these interactions; the hyperlinks represent Node II linked with Node I. The Node I
network is constructed based on hypergraph properties. The incidence matrix denotes
the relationships between Node I and hyperlinks. The adjacency matrix describes the links
between Node I. Second, the embedding vectors of Node I are generated by the network
embedding model. Then, the embedding vectors of links are generated by concatenating
the vectors of pairwise nodes. Finally, the links vectors are divided into training data and
testing data. The training data are put into the random forest classifier to train the model,
then the testing data are used to predict potential links.

Figure 1. The framework of link prediction for hypergraphs via network embedding (HNE).
(a) The heterogeneous network contains two types of nodes, Nodes I and II, with their interactions;
it can be constructed by a hypergraph model. The incidence matrix represents the node–hyperlink
interactions and the adjacency matrix describes node–node associations. (b) The Deepwalk model is
applied to learn the node embedding vectors. (c) The random forest classifier is trained to predict
link labels.

2.1. Hypergraph Construction

A hypergraph is defined as H = (V, E) where V = {v1, v2, . . . , vn} and E = {E1, E2, . . . ,
Em} [41]. V is a set of n hypernodes and E is a set of m hyperlinks. The hyperlink Ei =
{vi1, vi2, . . . , vij}, (i = 1, 2, . . . , m; j = 1, 2, . . . , n) contains j nodes, that is, the size of Ei is j.
The | V | × | E | incidence matrix can be represented by H.

H(v, e) =
{

1, i f v ∈ e
0, i f v /∈ e

(1)
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Based on H, the node degree d(v) of each node v meaning the number of neighbor
nodes of node v is represented as

d(v) = ∑
e∈E

H(v, e). (2)

The hyperdegree dH(v) of node v denotes the number of hyperlinks which the node v
participates in. The degree δ(e) of hyperlink e is the total number of neighbor hyperlinks of
hyperlink e as follows,

δ(e) = ∑
v∈V

H(v, e). (3)

The hyperdegree δH(e) of hyperlink e denotes the number of nodes of hyperlink e [42].

2.2. Learning Representations with Network Embedding

With the adjacency matrix from a hypergraph model, the representation learning
vectors of nodes are obtained by a network embedding model. In this paper, we introduce
the Deepwalk network embedding method which consists of two parts, that is, a random
walk and Skip-gram. Firstly, some sequences of nodes with the same length t can be
obtained by a random walk. Each node is the root of a walk sampling Wvi ; the root node vi
randomly selects one of the links connected to it and moves to the neighbor node to start
the next walk until the walk length reaches t; the maximum length t denotes the size for a
sequence of nodes. Secondly, a window of a specific length slides to sample the context for
target node vi in the sequence of nodes. Three layers are involved in the Skip-gram model:
input, hidden and output layer. The initial representation of target node vi is the input, the
model parameters are trained and updated to maximize the probability of the neighbors of
the target node vi.

Pr({vi−w, . . . , vi+w} \ vi | Φ(vi)) =
i+w

∏
j=i−w,j �=i

Pr(vj | Φ(vi)) (4)

where Φ(vi) denotes the current representation vector of node vi, w is the size of the window
in Skip-gram, {vi−w, ..., vi+w} \ vi is the context of node vi, and the hierarchical softmax
adopts a binary tree to reduce the complexity of calculating Pr(vj | Φ(vi)). The problem
turns into maximizing the probability of paths from the root node to the tree nodes.

2.3. Loss Function

Finally, the node embedding output from this model is applied to the specific node
classification task of semi-supervised learning, and the loss function is calculated to min-
imize the cross-entropy loss value between the true label and the predicted value in the
training set. The calculation process is shown in Equation (5):

ι = −∑
l∈L

Yl ln(C · Zl) (5)

where C is the parameter of the classifier, L is the set of training set nodes, Yl and Zl

represent the true labels corresponding to the training set data and the predicted values
generated by the model, respectively. Based on the training set data, in this paper, we
used the backpropagation method to train the parameters of the model for learning more
accurate node embedding representations.

2.4. Datasets

In this paper, the real library loan records of seven universities in Shanghai, which
were Shanghai University of Electric Power (SUEP), Shanghai Ocean University(SHOU),
Shanghai University of Finance and Economics(SUFE), University of Shanghai for Science
and Technology(USST), Shanghai International Studies University(SISU), Shanghai Normal
University(SHNU) and Tongji University(TJU), were used to validate the performance
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of our approach. The datasets were collected from Huiyuan sharing [43]. We organized
the data from 2017 to 2018 and took two columns of data, ISBN and PATRON_ID, as the
different types of nodes to construct the hypergraphs. PATRON_ID represented NodeI and
ISBN denoted the hyperlinks in Figure 1. The structural properties of the hypergraphs are
analyzed in the Table 1. As shown in Table 1, n denotes the number of nodes, m0 refers to
the total number of links between nodes, 〈k〉means the average degree of nodes, m is the
number of hyperlinks, 〈dH(v)〉 refers to the average hyperdegree of a node, 〈δ(e)〉means
the average degree of hyperlink, and 〈δH(e)〉 is the average hyperdegree of a hyperlink.

Table 1. The structural properties of the seven hypergraphs.

Datasets n m0 m Density 〈k〉 〈dH(v)〉 〈δ(e)〉 〈δH(e)〉
SUEP 906 24,362 19,530 0.0297 27 29 47 1.3

SHOU 2680 222,126 64,958 0.0309 81 41 108 1.7

SUFE 1720 148,188 35,727 0.0501 86 33 62 1.6

USST 2733 230,597 54,437 0.0308 84 36 93 1.8

SISU 3089 478,953 72,100 0.0502 155 46 142 2

SHNU 3557 263,305 93,996 0.0208 74 43 120 1.6

TJU 6150 988,516 131,199 0.0261 161 42 134 1.9

3. Experiments

To evaluate the performance of HNE, we conducted experiments on the seven datasets.
Firstly, to train the model, we took the existing links as positive samples and then obtained
random negative samples according to the number of positive samples. Given a test ratio
(set as 30%) as input, the positive and negative samples were divided into a training set and
a test set. Secondly, the embedding vectors of links were represented by concatenating the
embedding vectors of the corresponding node pairs in the training set and test set for the
unsupervised link prediction. After that, we input the embedding vectors of the samples in
the training set into the random forest to learn the potential relationships among links and
then input the embedding vectors of the samples in the test set into the trained random
forest to predict possible links. Finally, the results of the link prediction were assessed with
the AUC metric.

3.1. Compared Methods

In this paper, we compared the proposed HNE with three categories of baselines:
similarity-based methods–CN [10], Jaccard coefficient [11], random-walk-based methods–
Katz [12] and RWR [13], and deep-learning-based methods–Node2vec [32], GCN [38].
The existence probabilities of links were evaluated by the similarity between two nodes.
Common neighbors (CN) is a link prediction method that is based on evaluating the
overlap or similarity of two nodes by obtaining the number of common neighbors in a
graph. The Jaccard coefficient is defined as the ratio of the common neighbor size of
node i and node j to the size of all their neighbors. Katz centrality is an approach for
summing all paths of nodes i and j, where the weight of paths decays exponentially
according to their length, to evaluate how closely two nodes are related in the graph.
Random walk with restart (RWR) provides a kind of random walk where node i moves to
its neighbor with probability c or it jumps to the original node with probability 1− c. We
set c = 0.2 in this paper. Node2vec learns a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network neighborhoods of nodes.
GCN is a classical graph neural network to learn the representation of nodes in graphs
by convolutional networks. For the deep-learning-based methods, we set the embedding
dimension as 64, and for all methods, we randomly ran them 10 times and reported the
average results.

78



Appl. Sci. 2023, 13, 523

The training set data selected in this experiment were obtained by random sampling.
In order to more comprehensively evaluate the accuracy and validity of the experimental
results, in this paper, we used a weighted average processing to consider a training sample,
the n classification problem was decomposed into two classification problems, and then the
prediction results of the model were evaluated. Four evaluation indicators, AUC, precision,
recall and F1-score were evaluated in the experimental results of the model to ensure the
reliability and validity of the HNE method.

3.2. Results

To evaluate the performance of the four methods of link prediction, the experiment
was implemented 10 times to compute the average AUC score and the results are shown in
Figure 2. We observe that the AUC scores of HNE were 0.8247, 0.9077, 0.844, 0.8433, 0.8418,
0.8693 and 0.8120, respectively, on the seven datasets, which were better than those of the
other methods on the seven datasets. The AUC scores improved by 26.9%, 16%, 19%, 32%,
1.67% and 7.38% at most compared with the scores of the CN, the Jaccard coefficient, the
Katz centrality, the RWR, Node2vec and GCN, respectively. Based on the above analysis, a
promising performance was achieved for the HNE method. Moreover, the performance of
HNE was very stable on the seven datasets with different sizes.

Figure 2. The AUC of CN, Jaccard, Katz, RWR, Node2vec, GCN and HNE on seven datasets.

We further evaluate the performance of our method with the precision, recall and
F1-score on the seven datasets. As shown in Tables 2 and 3, the precision, recall and F1-score
of our method achieved the best results on the seven datasets. Specifically, the precision of
HNE was 0.9424 on the SUFE dataset, which was better than the other algorithms. For the
recall and F1-score, our method improved by 2.2% and 28.7% and 7.7% and 19.2% compared
to Node2vec and GCN, respectively. The F1-scores of HNE were superior to the other
methods except on the TJU dataset. The experiment results show that our proposed method
outperformed the CN, the Jaccard coefficient, the Katz centrality, the RWR, Node2vec and
GCN on all datasets except the TJU dataset. Therefore, our algorithm showed a better
performance and effectiveness for link prediction than traditional methods.

From the experiments, we can see that in the seven datasets, our method still main-
tained a relatively stable overall performance.
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Table 2. The experimental results for the precision, recall and F1-Score on the SHOU, SUFE, SUEP.

SHOU SUFE SUEP

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CN 0.6971 0.6091 0.6499 0.8996 0.6654 0.7650 0.7063 0.5645 0.6275
Jaccard 0.7569 0.6034 0.6715 0.9034 0.6916 0.7834 0.7412 0.5424 0.6263

Katz 0.6705 0.8001 0.7333 0.6722 0.8121 0.7356 0.6663 0.8061 0.7296
RWR 0.5446 0.5456 0.5449 0.5929 0.6250 0.6083 0.5328 0.5366 0.5337

Node2vec 0.8317 0.8037 0.8223 0.9416 0.8566 0.898 0.8401 0.8154 0.8275
GCN 0.7959 0.7675 0.7814 0.9046 0.8372 0.8696 0.7934 0.7734 0.7832
HNE 0.8379 0.8052 0.8212 0.9424 0.8685 0.9040 0.8516 0.8331 0.8422

Table 3. The experimental results for the precision, recall and F1-score on the USST, SISU, SHNU
and TJU.

USST SISU SHNU TJU

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

CN 0.6902 0.6663 0.678 0.6885 0.6161 0.8354 0.7594 0.6821 0.7187 0.8289 0.7467 0.7856
Jaccard 0.7685 0.6271 0.6906 0.7481 0.6246 0.6808 0.8107 0.6800 0.7396 0.8726 0.7596 0.8122

Katz 0.6711 0.8093 0.7337 0.6682 0.8022 0.7291 0.6706 0.8085 0.7331 0.6666 0.7925 0.7241
RWR 0.5438 0.5191 0.5306 0.5603 0.5455 0.5526 0.5457 0.5368 0.5411 0.5718 0.547 0.5588

Node2vec 0.8603 0.805 0.8317 0.866 0.8068 0.6502 0.8706 0.8582 0.8644 0.8668 0.8355 0.8512
GCN 0.8185 0.7738 0.7955 0.8328 0.7798 0.8054 0.8358 0.8229 0.7293 0.7848 0.7375 0.7604
HNE 0.8632 0.8160 0.8389 0.8657 0.8092 0.8365 0.8706 0.8674 0.8691 0.8365 0.7789 0.7972

4. Conclusions and Discussions

In this paper, a link prediction approach with network embedding was proposed
for hypergraphs. The proposed HNE method applied the Deepwalk model to extract
features of nodes according to the hypergraphs constructed from library loan records, then
a classifier was trained to predict the potential links between nodes. The experiment results
on seven datasets showed that our approach outperformed typical link prediction methods.
The comparison of AUC, precision, recall and F1-score with six methods demonstrated the
effectiveness of the proposed approach.

In the future, the idea of combining hypergraphs and network embedding can not
only be applied to link prediction, but also implement more tasks, such as node importance,
community detection and node classification. In addition, our proposed algorithm has wide
practical applications, such as recommendations for online social networks, knowledge
reasoning for knowledge hypergraph construction, drug-target prediction or drug-disease
prediction in the field of bioinformatics and so on. In addition, as more graph neural
network methods [44–47] are proposed, we can explore hyperlink prediction algorithms
and other graph neural network models for preserving more structural and semantic
information of hypergraphs to solve the fundamental problems in hypergraph analysis.
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Abstract: The growing utilization of web-based search engines for learning purposes has led to
increased studies on searching as learning (SAL). In order to achieve the desired learning outcomes,
web learners have to carefully plan their learning objectives. Previous SAL research has proposed the
significant influence of task planning quality on learning outcomes. Therefore, accurately predicting
web-based learners’ task planning abilities, particularly in the context of SAL, is of paramount
importance for both web-based search engines and recommendation systems. To solve this problem,
this paper proposes a method for predicting the ability of task planning for web learners. Specifically,
we first introduced a tree-based representation method to capture how learners plan their learning
tasks. Subsequently, we proposed a method based on the deep learning technique to accurately
predict the SAL task planning ability for web learners. Experimental results indicate that, compared
to baseline approaches, our proposed method can provide a more effective representation of learners’
task planning and deliver more accurate predictions of learners’ task planning abilities in SAL.

Keywords: searching as learning; learning ability; HCDP; Tree-Structured Long Short-Term Memory
Networks; user analysis; task planning

1. Introduction

In recent years, the advent of web-based search engines has revolutionized the way
people access information. These ubiquitous tools are extensively employed, not only for
informational queries but also increasingly for learning purposes [1,2]. Recognizing the
potential of web-based search engines as valuable learning aids, researchers have focused
on searching as learning (SAL), utilizing web-based search engines as a means to acquire
knowledge and support learning processes and conceptualizing searching activities as
learning activities [3,4].

Unlike the traditional field of information retrieval, which primarily views search-
ing as a tool for information acquisition, studies on SAL place greater emphasis on the
learning process that learners engage in through web-based searching. Building upon this
perspective, research in the domain of SAL focuses on the role of search systems in directly
facilitating human learning [5]. This area of study goes beyond mere information retrieval
to emphasize examining the effects, implications, and results derived from utilizing search
systems in the context of educational processes. From a perspective of information retrieval,
SAL research shifts the focus from the relevance of individual search results to supporting
the learning process itself [6]. From an educational perspective, SAL research concentrates
on deeply understanding how learners use search engines to meet their learning needs and
how optimization can enhance learning outcomes [2].
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Studies have proposed that SAL combined with thoughtful task planning can lead
to enhanced learning outcomes [7,8]. At the beginning of the SAL process, learners often
only possess a vague understanding of the learning object, meaning their knowledge
structures are insufficient to precisely articulate what they seek to learn. During the SAL
process, learners are required to continually refine their learning tasks and retrieve relevant
information from web-based search engine results, progressively constructing and refining
their knowledge structures. This process involves the generation of queries, the evaluation
of search results, and iterative adjustments and refinements of knowledge structures [5,9].

Understanding and predicting learners’ task planning ability in SAL are crucial for
web-based search engine providers, recommendation systems, and educators [6,10]. By
comprehending learners’ planning abilities, web-based search engines and recommen-
dation systems can provide targeted guidance, suggest relevant learning resources, and
optimize search results to facilitate effective learning [11]. Additionally, educators and
instructional designers can utilize these insights to tailor instruction, provide appropri-
ate scaffolding, and design interventions aimed at improving learners’ planning skills,
ultimately fostering metacognitive awareness and self-regulated learning [12].

To address the challenge of predicting learners’ task planning ability, this paper
proposes a novel method that leverages the Hierarchical Clustering Algorithm Based on
Density Peaks (HCDP) model and the Tree-Structured Long Short-Term Memory Networks
(Tree-LSTM) algorithm. The HCDP model is employed to capture and represent the
hierarchical relationships among learning activities and learning subtasks. By modeling
the learning process in this way, we can effectively capture the nuances of task planning in
SAL. The Tree-LSTM algorithm is utilized to predict learners’ SAL task planning ability
based on the extracted features from the tree structure.

The experimental results demonstrate the efficacy of our proposed method in effec-
tively predicting learners’ task planning ability within the context of SAL. Furthermore, the
key features extracted from the tree structure serve as reliable indicators of learners’ plan-
ning ability, providing valuable insights for web-based search engines, recommendation
systems, and instructional designers.

Overall, this paper contributes to the field of information retrieval and learning by of-
fering a methodological approach to predict learners’ task planning ability in the context of
SAL. The findings hold implications for web-based search engine providers, recommenda-
tion systems, and educational practitioners. For search engine designers, our study aids in
developing learner-focused search interfaces by understanding SAL task planning, leading
to enhanced personalization and efficiency. For educational practice, our research informs
educators about learner challenges in SAL, enabling more effective learning experience
design and targeted support.

2. Related Works

2.1. Predictive Models for Learners’ Abilities

The predictive modeling of learners’ abilities has gained significant interest, especially
due to its potential in customizing learning environments for individual learners, thereby
optimizing the learning process.

Numerous models have been proposed that utilize Machine Learning (ML) and Ar-
tificial Intelligence (AI) algorithms to predict abilities. For example, Thai-Nghe et al. [13]
introduced a method to predict student performance based on past interactions using collab-
orative filtering and matrix factorization techniques. Similarly, Márquez-Vera et al. [14] em-
ployed decision trees, Naive Bayes, and k-nearest neighbors to anticipate student dropouts
in online courses. Liu et al. [15] propose a two-stage framework to predict the cognitive
level of the learner. Agrawal et al. [16] pointed out that learning ability can be estimated
by administering a test designed using modern practices such as those based on Item
Response Theory (IRT). Bockmon et al. [17] conducted a comprehensive study on the pre-
dictive modeling of students’ introductory programming abilities at the end of the semester.
To achieve this, they employed a multinomial logistic regression approach, aiming to de-
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velop a robust model that could effectively forecast students’ performance in programming
tasks. This model’s sophistication lies in its ability to handle multiple predictor variables
and their interactions, offering a nuanced understanding of student performance. Fur-
thermore, the research delved into the relationship between various factors, such as prior
programming abilities, spatial skills, socioeconomic status, and students’ attitudes toward
computing, in order to determine their influence on the final programming outcomes. In
sum, this comprehensive analysis provides a foundation for developing targeted educa-
tional strategies that can significantly improve student outcomes in programming and
related technical disciplines.

The advancements in predictive modeling underscore the importance of understand-
ing learners’ abilities, which is a crucial aspect of Searching as Learning (SAL). This under-
standing aids in the development of more effective web-based learning tools and strategies.

2.2. Searching as Learning

The growing utilization of web-based search engines as tools for learning has attracted
considerable attention from researchers. Studies have explored the impact of web-based
search engine features, such as query formulation assistance, result evaluation techniques,
and personalized recommendations, on learning outcomes [7,18]. These investigations
highlight the significance of effective web-based search engine usage in supporting the
learning process [19,20].

For instance, query formulation assistance helps learners in generating effective search
queries, enabling them to retrieve relevant and accurate information [6,21,22]. Result
evaluation techniques aid learners in critically assessing the credibility, relevance, and
reliability of search results, enabling them to make informed decisions regarding the
information they encounter during their learning process [23].

SAL studies use searching as a part of the learning process and aim to explore the
integration of web-based search engine utilization and web learning to improve learning
outcomes [6,24,25]. Similar SAL studies conceptualize searching as an integral component
of the learning process and underscore the significance of search in enhancing learning
outcomes [6,26,27]. These studies emphasize the importance of task planning quality,
including query formulation and result evaluation, in achieving desired learning outcomes.

3. Data Collection and Labeling

In this section, we discuss the dataset employed in our experiments that was procured
from the University Writing Program (UWP) courses at Northeastern University. Further,
we discuss how we achieved capability labeling for task planning in the SAL context.

3.1. Data Collection

In this section, we begin by detailing the SAL dataset utilized in this study, collected
from learners enrolled in the UWP course at Northeastern University. The data collection
methodology has been described in our previous work [6]. Here, we briefly outline the
types of SAL data captured for each learner:

(1) Search logs. We recorded learners’ search activities with web-based search engines
by developing a Firefox browser plug-in. Specifically, for a learner, we recorded
searching activities such as their issued search queries, clicking on URLs, and reading
duration times.

(2) Search results. We recorded search results after each issued search query.
(3) Learning outcomes. We recorded programming snapshots for each learner during

compilation.

In the initial five weeks of our study, we systematically introduced tasks with an
incrementally increasing number of subtasks. The distribution of these subtasks within
the assignments is illustrated in Figure 1. Research conducted in the domain of SAL has
suggested that the act of searching within SAL can be perceived as a sequence of activities
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with the purpose of learning [28]. Although we cannot directly observe, we can predict
their learning state by analyzing their search activities and learning outcomes.

 

Figure 1. The distribution of subtasks in the learning assignments.

3.2. Data Labeling

In this study, six researchers specializing in the field of SAL from Northeastern Univer-
sity participated in the labeling process. These experts included two associate professors,
two doctoral candidates, and two master’s degree learners. Each participant was tasked
with evaluating the SAL abilities of learners based on the dataset we collected. This evalua-
tion involved reviewing the collected data in conjunction with the scores of corresponding
assignments within the course curriculum. The average scores from five distinct assign-
ments were ultimately employed as the annotated indicators for gauging the SAL abilities
of the learners.

To facilitate the labeling of SAL task planning abilities, it is first necessary for each
participant to analyze the learning process of learners in order to understand how these
learners decompose their learning tasks. To ensure the validity of manual annotations,
we required participants to answer specific questions given different types of interaction
behaviors. This ensures a comprehensive understanding of the learner’s learning process
during analysis, as illustrated in Table 1. Additionally, participants can also refer to the
learner’s phased learning outcomes and final grades for labeling.

The statistical outcomes of the capability labeling for task planning in the SAL context
is illustrated in Figure 2. For the purpose of this research, the manually annotated SAL
task planning abilities are classified into five distinct levels, ranging from 1 to 5. A score of
1 represents the lowest level of capability, while a score of 5 signifies the highest level of
proficiency in SAL task planning.
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Table 1. Questions that need to be answered for different types of SAL behavior.

Issuing queries

1. Why did the learner issue this query?
2. Is this query related to the previously submitted queries?
3. What is the relationship between the results returned by this query and the results returned by
previous queries?

Clicked on URLs

1. What learning object is the learner interested in?
2. Was this click event triggered by the most recent query?
3. Is the learner’s learning objective the same as or related to the learning objective of the
previously submitted queries?

Programming

1. Through which queries did the learner acquire his/her learning outcomes?
2. To achieve the learning outcomes, did the learner experience struggles or study
unrelated content?

 

Figure 2. Results of SAL Task planning Capability Labeling.

4. Proposed Methodology

In this section, we will accomplish two primary objectives. First, we innovatively
employ the HCDP method for constructing tree-like structures, effectively enabling the
hierarchical representation of SAL task planning. Second, we introduce the use of the
Tee-LSTM approach to facilitate the prediction of SAL task planning abilities.

4.1. Representation of Task Planning in Searching as Learning

In this section, we focus on the construction of a structured representation for task
planning in SAL. While linear structures have been extensively employed for representing
task planning, recent research has indicated that learning processes are often intricate search
activities requiring learners to navigate among varying learning objectives and tasks [29].
Consequently, a linear structure proves insufficient for capturing the complexity inherent
in a learner’s task planning strategies.

Mehrotra et al. [30] substantiated the advantages of tree-structured representations in
modeling search task planning. Moreover, current research has indicated that hierarchical
clustering algorithms can effectively capture the subtask structure of learners’ search
tasks [6]. Accordingly, in the present study, we adopt a tree-structured approach to provide
a more nuanced and effective representation of task planning in SAL.
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To fully leverage the unique context-specific features of SAL and to provide a more
accurate representation of a learner’s task-based structural divisions, we introduce a novel
method for SAL task partitioning based on HCDP. This advanced hierarchical clustering
algorithm allows for capturing the intricacies of searching and learning interactions in
SAL [31].

To accurately model the structure of a learner’s task planning, we consolidate his/her
SAL-related interactive activities prior to initiating the modeling process. We complete this
based on the observation that learning activities are triggered by issuing search queries.
Furthermore, what learners acquire is contingent upon the queries they submit. Hence, in
constructing the structural representation of a learner’s task planning, we employ queries
as the nodes of the structure. While these nodes are represented by queries, it should be
noted that they encapsulate not only the search queries themselves but also the subsequent
learning that occurs as a result.

In traditional HCDP, the algorithmic framework is fundamentally structured around
three core procedures: the computation of local densities, the construction of a hierarchical
representation of the data, and the extraction of optimal clusters [32–34]. Given that
our research objective specifically aims to establish a hierarchical architecture for task
partitioning in SAL, our study focuses only on executing the initial two procedures.

HCDP employs k-nearest neighbors for the computation of local densities. The HCDP
model computes the local density as follows [34]:

ρi = max
j∈knn(i)

dist(i, j) (1)

where ρi is the Nodei’s k-nearest density, dist(i, j) denotes the distance between Nodei
and Nodej.

For each Nodei, SAL establishes a connection to its nearest neighbor with higher
density using edge weight ϕ. The computation for ϕ is as follows.

ϕi = min
j:ρi>ρj

dist(i, j) (2)

Therefore, in our task of hierarchical representation for task planning, the focus is on
being able to calculate dist(i, j) by integrating features from SAL. To achieve this goal, we
calculate dist(i, j) from three dimensions: search, learning, and the connection between
search and learning. We list the SAL features for calculat dist(·) that we employed in
Table 2. The hierarchical clustering visualization of partial SAL data for a learner in the
UWP dataset is shown in Figure 3.

Figure 3. The hierarchical clustering visualization of partial SAL data for a learner.
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Table 2. The SAL features for calculating dist(·).

Search-related features

1. Cosine distance between two sets of query terms.
2. Edit distance between two sets of query terms.
3. Jaccard distance between two sets of query terms.
4. The proportion of identical terms in two search queries.
5. Semantics distance between queries.

Features of the relationship between searching and learning

1. The average cosine distance between the web page links clicked after queries.
2. The average edit distance between the web page links clicked after queries.
3. Cosine distance between the sets of UWP terms contained in clicked links after two queries.
4. Cosine distance between the sets of UWP terms contained in the search results after
two queries.

Learning-related features

1. Cosine distance between the sets of UWP classes contained in programming snapshots after
two queries.
2. Edit distance between the sets of UWP classes contained in programming snapshots after
two queries.
3. Semantic distance between two programming snapshots.

4.2. SAL Task Planning Ability Predicted Based on the Tree-LSTM Model

In this paper, we address the challenge by employing the Tree-LSTM model. A
Tree-LSTM is a neural network architecture that extends the standard Long Short-Term
Memory (LSTM) framework [35]. While standard LSTM models are designed to process
sequential data, Tree-LSTM models are adapted to handle tree-structured data. This makes
them particularly useful for tasks that involve hierarchical or nested structures, such as
natural language sentences, computer programs, or chemical molecules [31]. Therefore,
the Tree-LSTM model serves as an instrumental methodology, enabling a more nuanced
understanding of hierarchical dependencies and thereby predicting task planning ability
from tree hierarchical representation.

The key advantage of Tree-LSTMs lies in their ability to capture the hierarchical de-
pendencies within tree-structured data [35,36]. This is particularly beneficial in educational
contexts where learning tasks often involve layered concepts or stepwise procedures. For
instance, in the realm of programming education, the Tree-LSTM model can effectively
represent and analyze the structure of code, discerning the underlying logic and predicting
potential errors or areas of improvement in student submissions [37,38].

In the context of our research framework, the Tree-LSTM model ingests a tree-structured
representation encapsulating the complexities of the learning task as its input. The tree-
structured data input represents the hierarchical organization of a learning task, capturing
various elements such as the sequence of steps, dependencies among concepts, and the
progression of learning objectives. The Tree-LSTM model then processes this input to
generate an output in the form of a predictive assessment, quantifying a learner’s abilities
in task planning. Analogous to the conventional LSTM model, each unit in a Tree-LSTM
architecture is equipped with input gates denoted as im, output gates symbolized by om,
along with a memory cell cm and a hidden state hm. Unique to the Tree-LSTM model,
the updating mechanism for these gate vectors and memory cells is conditioned upon
the aggregated states of multiple child units, if present. Moreover, each Tree-LSTM unit
is endowed with specialized forget gates fm,k for each child unit k [39,40]. This design
intricacy enables the Tree-LSTM to serve as a robust framework for modeling hierarchical
relationships, particularly valuable for tree-structure presentation of learning tasks.

Let S(m) denote the subtree of m, and the transition equations of the Tree-LSTM model
are as follows [41]: ∼

hm = ∑n∈S(j) hn (3)
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im = σ
(

W(i)xm + U(i)hm + b(i)
)

(4)

fm,k = σ
(

W( f )xm + U( f )hm + b( f )
)

(5)

om = σ
(

W(o)xm + U(o)hm + b(o)
)

(6)

um = tan h
(

W(u)xm + U(u)hm + b(u)
)

(7)

cm = im ◦ um + ∑k∈S(m)
fm,k ◦ ck (8)

hm = om ◦ tan h(cm) (9)

where σ(·) denotes the logistic sigmoid function, and ◦ denote the element-wise multiplica-
tion. In the Tree-LSTM model, the state of the composite nodes is derived from the states of
the nodes, as illustrated in Figure 4.

h1

h2.
hn

.

hm

c1

c2..
cn

σ σ σ. . .
f1 f2 fn

x

tanh σ σ
um im om

fm cm

hm

Figure 4. Tree-LSTM model for task planning ability prediction.

The inclusion of these additional gates and the unique updating mechanism enables
the Tree-LSTM model to effectively capture and analyze the intricacies of hierarchical data,
making it a powerful tool for modeling the dynamic nature of learning tasks. This advanced
functionality positions the Tree-LSTM as an ideal framework for tasks that require an
understanding of nested or sequential dependencies, such as predicting a learner’s ability
to plan and execute complex learning tasks.

5. Experiments

To assess the efficacy of our proposed methodology in forecasting learners’ abilities in
task planning within the SAL, we executed an array of experiments utilizing the North-
eastern University UWP dataset as our empirical foundation. This section commences by
detailing the experimental setup. Subsequently, we substantiate the merits of our approach
by juxtaposing its performance metrics against those of established baseline algorithms.

5.1. Experimental Setup

To verify the performance of our proposed method, we commence by delineating
the experimental setup. The design of our experiments employed the dataset gathered
from the UWP course at Northeastern University (China), and the manually labeled task
planning abilities that we discussed in Section 3.2. To ensure the reliability of our findings,
we employed stratified ten-fold cross-validation for dataset partitioning into training and
testing subsets. The rationale behind utilizing stratified ten-fold cross-validation lies in its
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capacity to mitigate the introduction of potential biases and anomalous results, which may
stem from imbalanced or skewed data distributions.

For comparative model analysis, our methodology underwent a two-phase evaluation.
Initially, we compared our proposed method with state-of-the-art (SOAT) hierarchical
clustering algorithms, thereby establishing the performance efficiency of the HCDP algo-
rithm in the hierarchical representation within the SAL task planning. Subsequently, our
framework was benchmarked against baseline predictive models for assessing the model’s
predictive accuracy.

5.2. Comparison with SOAT Hierarchical Clustering Methods Based on the UWP Dataset

In this section, we evaluate the advanced nature of our proposed methodology in the
domain of learning task-structured representation through comparative experiments with
SOAT methods. Selected methods for comparison include hierarchical clustering methods
like Bayesian Hierarchical Clustering (BHC) [42], Min-Min-Roughness (MMR) [43], and
Bayesian Rose Tree (BRT) [30]. A commonality between these methods and our proposed
approach is their capability to construct hierarchical representations for learning task-
planning. To ensure fairness and validity in the comparative analysis, all methods utilize
SAL features consistent with those presented in Table 3 wherever possible. During the
prediction phase, all of these hierarchical clustering methodologies employ the same Tree-
LSTM model and undergo parameter optimization through identical procedures.

Table 3. The experimental results with hierarchical clustering methods.

Method Precision Recall F1

BHC 0.717 0.701 0.709
MMR 0.782 0.73 0.755
BRT 0.82 0.805 0.812

Our method 0.889 0.825 0.856

As illustrated in Table 3, it is evident that the methodology proposed in this study
demonstrates a superior performance over the baseline methods across multiple evalua-
tion metrics. Specifically, the proposed approach surpasses the best-performing baseline
method by approximately 7.1% in terms of average prediction accuracy for the UWP dataset.
Notably, our method’s performance exceeds that of the original BRT model, thereby sub-
stantiating the efficacy of the proposed model in the learning process. Moreover, among
all methods, the BHC method exhibits the weakest predictive performance. This can be
attributed to the fact that the binary tree structure is not congruent with the structural
nuances of the learning process. In Table 4, the confusion matrix corresponding to the
method we have proposed is delineated. This matrix effectively illustrates the performance
of our methodology in terms of true positives, false positives, true negatives, and false
negatives. Through this representation, we aim to provide a clear and comprehensive
understanding of the accuracy, precision, recall, and specificity of our approach.

Table 4. The confusion matrix our method.

Method TP FP TN FN

Our method 104 13 91 22

Further, we conducted a comparative analysis of various algorithms’ predictive capa-
bilities across learning tasks with varying numbers of subtasks. As illustrated in Figure 5
(where the X-axis represents the number of subtasks in a learning task), with an increase
in the number of subtasks, the prediction accuracy of the method proposed in this paper
declines less compared to that of other baseline methods. When the number of tasks
reaches 14 (which corresponds to the assignment with the most subtasks in this course), the
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difference in prediction accuracy between our proposed method and the best-performing
baseline algorithm is at its maximum. In summary, as the number of subtasks increases,
the performance advantage of our proposed algorithm becomes increasingly evident.

 

Figure 5. Comparison results for different numbers of subtasks.

5.3. Comparison with Predicative Methods

In this section, we evaluate the efficacy of our proposed methodology in the realm
of task planning capability prediction by contrasting it with baseline approaches. The se-
lected comparative methodologies include fundamental ML algorithms like Graph Neural
Networks (GNNs) [44] and Recursive Neural Networks (RecNNs) [45]. These models were
chosen for their capacity to accommodate tree-structured input data, thereby ensuring
a level playing field for comparative analysis. The input to all of the models was con-
structed using HCDP, a preprocessing technique suited for SAL. During the training phase,
parameter optimization was performed across all models to ensure performance.

Table 5 showcases a comprehensive evaluation of various algorithms, including our
proposed methodology. The results elucidated in this table are a testament to the effec-
tiveness of our technique. It is evident from the empirical data that our approach has a
definitive edge over the baseline methodologies.

Table 5. The experimental results with baseline predicative methods.

Method Precision Recall F1

GNN 0.843 0.824 0.833
RecNN 0.835 0.817 0.826

Our method 0.889 0.825 0.856

In the field of SAL, the precision and accuracy of predictions hold paramount signifi-
cance. Given the complexities inherent to SAL, it is imperative for algorithms to adeptly
predict and optimize task planning. As delineated in Table 5, our methodology distinctly
excels in this dimension. It not only assures enhanced accuracy but also emphasizes
the salience of context-aware predictions within SAL. Multiple elements bolster the pre-
eminence of our approach. Primarily, the strategy we introduced is congruent with the
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task planning architecture intrinsic to learners. Subsequently, the Tree-LSTM exhibits
remarkable efficacy in modeling and predicting tree-structured data.

6. Conclusions

This research innovatively introduces a novel method for the accurate prediction of
task planning abilities in the context of SAL. By utilizing the HCDP algorithm, we offer a
hierarchical representation of the task planning for learners engaged in SAL. Leveraging
the Tree-LSTM algorithm, we subsequently achieve precise predictive abilities for assessing
task planning in SAL. Empirical validation, based on the UWP dataset, corroborates the
effectiveness of our proposed approach.

For search engine designers, our research will assist web-based search engine de-
signers in constructing learner profiles and in understanding how learners progressively
complete their tasks in the context of SAL. Additionally, our findings will guide designers
in creating more personalized and efficient search interfaces tailored for educational pur-
poses. Moreover, our research can inform the optimization of query suggestions and the
customization of result filtering based on learners’ task planning abilities in SAL.

For educational practice, our research will significantly aid educational practitioners
in designing more effective learning experiences. Specifically, it will help practitioners
promptly identify and address the challenges and struggles learners may encounter, offer-
ing robust support in instructional design. Furthermore, this understanding will enable
practitioners to provide targeted guidance and support, particularly for learners who
struggle with planning and organizing learning tasks.

Future research avenues may encompass the analysis and understanding of various
other abilities demonstrated by learners throughout the learning process. Additionally,
the role of metacognition in influencing learning trajectories within SAL contexts warrants
further investigation.
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Abstract: Exercises refer to the evaluation metric of whether students have mastered specific knowl-
edge concepts. Linking exercises to knowledge concepts is an important foundation in multiple
disciplines such as intelligent education, which represents the multi-label text classification problem
in essence. However, most existing methods do not take the automatic linking of exercises to knowl-
edge concepts into consideration. In addition, most of the widely used approaches in multi-label
text classification require large amounts of training data for model optimization, which is usually
time-consuming and labour-intensive in real-world scenarios. To address these problems, we propose
a prompt tuning method for multi-label text classification, which can address the problem of the
number of labelled exercises being small due to the lack of specialized expertise. Specifically, the
relevance scores of exercise content and knowledge concepts are learned by a prompt tuning model
with a unified template, and then the multiple associated knowledge concepts are selected with
a threshold. An Exercises–Concepts dataset of the Data Structure course is constructed to verify
the effectiveness of our proposed method. Extensive experimental results confirm our proposed
method outperforms other state-of-the-art baselines by up to 35.53% and 41.78% in Micro and Macro
F1, respectively.

Keywords: linking exercises to concepts; multi-label text classification; prompt tuning; few-shot

1. Introduction

In recent decades, personalized learning has become a mainstream solution to enhance
students’ learning interest, and experience in intelligent education systems [1–3]. One of
the fundamental and key tasks in personalized learning is knowledge tracing [4,5], which
aims to evaluate the students’ learning state of knowledge concepts.

Exercises have played an important role in the knowledge tracing tasks, which is
one of the evaluation metrics of whether students have mastered specific knowledge
concepts [6,7]. Students in intelligent education systems choose the right exercises according
to their own needs and acquire specific knowledge concepts during exercise. In turn, we
can track changes in students’ acquisition of knowledge concepts during their exercising
process. From this perspective, knowledge tracing should consist of a students–exercises–
knowledge concepts hierarchy [8]. However, most existing methods of knowledge tracing
approaches [9–11] are partially modeled among the hierarchy (i.e., students–exercises or
students–concepts). This is because, in some intelligent systems, there is a lack of connection
between exercises and knowledge concepts. To this end, we take the automatic linking of
exercises to knowledge concepts into consideration for knowledge tracing tasks.

In essence, linking exercises to knowledge concepts is a multi-label text classification
(MLTC) problem. As shown in Figure 1, the relationship between exercises and knowledge
concepts is one-to-one or one-to-many, which aims to assign one or more concepts to each
input exercise in the dataset. Moreover, Figure 1 shows that the semantics between exercises
and knowledge concepts are highly correlated.

Appl. Sci. 2022, 12, 10363. https://doi.org/10.3390/app122010363 https://www.mdpi.com/journal/applsci
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Figure 1. Examples of exercises linking to knowledge concepts from dataset.

Recently, deep-learning-based methods have achieved fairly good performance in
MLTC for the superiority of feature representation learning. For example, Liu et al. [12]
utilized the strengths of the existing convolutional neural network and took multi-label
co-occurrence patterns into account in the optimization objective to produce good results
in MLTC. Pal et al. [13] proposed a graph attention network-based model to capture the
attentive dependency structure among the labels. Chang et al. [14] fine-tuned the BERT
language model [15] to capture the contextual relations between input text and the induced
label clusters. However, these deep-learning-based methods in MLTC tasks require large
amounts of training data for model optimization, which is usually time-consuming and
labour-intensive in real-world scenarios. Unfortunately, linking exercises to knowledge
concepts usually lacks training data because some knowledge concepts corresponding to a
few exercises or new courses may contain a paucity of labelled data.

To address these problems, we propose a Prompt Tuning method for Multi-Label Text
classification (PTMLTC for short). First, the prompt tuning model with a unified template
predicts the relevance scores of exercises and knowledge concepts. Then, the multiple
associated knowledge concepts are picked with a threshold. In order to verify the effective-
ness of our proposed method, an Exercises–Concepts dataset of the Data Structure course
is constructed. Extensive experimental results confirm our method outperforms other
state-of-the-art methods by up to 32.53% and 41.78% in Micro and Macro F1, respectively.

The contribution of our paper can be summarized as follows:
(1) To the best of our knowledge, this is the first attempt to automatically link exercises

to knowledge concepts. We built an Exercises–Concepts dataset of the Data Structure
course and reconstructed the few-shot dataset.

(2) We propose a prompt tuning method for multi-label text classification to link
exercises to knowledge concepts. Large amounts of labelled or unlabeled training data are
not required.

(3) Extensive experimental results confirm that our proposed method outperforms
other state-of-the-art deep-learning-based methods.
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2. Related Work

In this section, firstly, we introduce the deep-learning-based multi-label text classi-
fication methods. Then, the prompt tuning learning methods used in our models will
be presented.

2.1. Multi-Label Text Classification

The goal of MLTC is to associate one or more relevant labels for each input text
instance. The traditional MLTC methods include one-vs-all methods [16,17], tree-based
methods [18,19] and embedding-based methods [20,21]. For example, Babbar et al. [16]
proposed a distributed learning mechanism for MLTC, which can use doubly parallel
training to reduce the expensive computational cost of one-vs-all methods. Prabhu et al. [22]
presented a method called FastXML by optimizing an nDCG-based ranking loss function
to further reduce expensive computational costs. Tagami [21] proposed a graph embedding
method, which learns partition data points by the k-nearest neighbour graph (KNNG) and
uses an approximate k-nearest neighbour to predict results by exploring KNNG in the
embedding space.

In recent years, due to the powerful ability of feature representations learning [23,24],
deep models have gained much attention and achieved superior performances over tradi-
tional methods. The focus of existing deep-learning-based methods on MLTC is learning-
enhanced text representation for improving performance. For example, Liu et al. [12]
utilized the strengths of the existing convolutional neural network (CNN) and dynamic
pooling to model the text representation for MLTC. Xiao et al. [25] employed an atten-
tion mechanism to explore highlight important context representation in MLTC tasks.
Ma et al. [26] utilized the bidirectional Gated Recurrent Unit network and hybrid embed-
ding for learning the representation of the text level-by-level. Chang et al. [14] proposed
to fine-tune the BERT language model [15] in order to capture the contextual relations
between input text for MLTC.

In addition, recently, the dependencies or correlations among labels have demonstrated
the ability to improve performance in most MLTC tasks. Along this line, many deep-
learning-based methods have been proposed to model label dependencies. For example,
Chen et al. [27] explored labels’ correlations through Recurrent Neural Networks, which
were used to predict labels one-by-one sequentially. Pal et al. [13] proposed a graph-
attention network-based model to capture the attentive dependency structure among the
labels. Yang et al. [28] treated MLTC tasks as a sequence generation problem and proposed
a decoder structure to capture the dependencies between labels that selected the most
informative words automatically while predicting different labels. Xun et al. [29] learned
label correlation by introducing an extra CorNet module that is applied to a deep model at
the prediction layer to enhance raw label predictions with correlation knowledge.

However, most existing deep-based MLTC methods require a large amount of labelled
or unlabeled training data for model optimization, which is often time-consuming and
labour-intensive. Therefore, designing methods that can achieve promising results in the
few-shot scenario remain a huge challenge in real-world MLTC tasks.

2.2. Prompt Tuning

Prompt-based learning [30–32] is regarded as a new paradigm in natural language
processing and has drawn great attention from multiple disciplines, which promotes the
downstream tasks by using the pre-training knowledge as much as possible. Starting from
the GPT-3 [33], Prompt tuning has demonstrated unique strengths in a variety of tasks,
which contain text classification [32,34], relation extraction [35], event extraction [36] and
so on. Prompt-based learning directly models the probability of text on top of language
models. It is different from traditional supervised learning, which trains a model to predict
the output y as P(x | y) with the input x. Specifically, in the prediction task, firstly, a
template is added to the original input x to form a new textual string prompt x′ with
[MASK]. Then, the reconstructed x̂ is learned with the language model to probabilistically
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fill the unfilled information. For example, Cui et al. [37] employed closed prompts filled
by a candidate named entity span as the target sequence in named entity recognition
tasks. Li et al. [38] proposed Prefix-tuning that uses continuous templates to improve
performance than discrete prompts. There has already been some recent effort in devoting
external knowledge to prompt design. For example, Hu et al. [34] proposed a knowledge-
able prompt-tuning by expanding the label word space of the verbalizer with external
knowledge bases. Chen et al. [35] proposed a knowledge-aware prompt-tuning approach,
which introduced relation labels knowledge into prompt construction. In addition, many
works [34,39] have demonstrated that prompt-based learning greatly improves model per-
formance in few-shot scenarios. Hambardzumyan et al. [40] proposed an automatic prompt
generation method to transfer knowledge from large Pre-trained Language Models, which
achieved excellent performance in a few-shot setting. Gu et al. [41] proposed to add soft
prompts into the pre-training stage and pre-train soft prompts in the form of unified classi-
fication tasks, which can reach or even outperform in few-shot settings. However, in the
knowledge tracing tasks, we are not aware of existing prompt-learning-based approaches
that automatically link exercises to knowledge concepts. To this end, we propose a prompt
tuning method for multi-label text classification to link exercises to knowledge concepts.

3. Prompt Tuning Method for Multi-Label Text Classification

In this section, the details of our proposed PTMLTC are given, and the general frame-
work is shown in Figure 2.

Figure 2. The general framework of our PTMLTC. Exercise Text sequence is connected with united
template as the input of prefix Language Model. It will then predict the probability of filling the token
[MASK] with each word of knowledge concepts. Sigmoid() function is used to obtain the probability
of exercise texts linking to knowledge concept labels. Finally, a threshold mechanism is adopted to
predict all the possible knowledge concept labels.

3.1. Problem Formalization

In this paper, we aim to use few exercises with labeled concepts to predict one or
more related concepts for each input exercise text. Given C = {c1, c2, · · · cN} is the label
space with N concepts, the goal is to learn a function h(·) : E → 2C from the support
set S = {(Ei, Ci)}NS

i , where E denotes the exercise-instance space, S usually contains K
exercise-instances (K-shot) of N concept-labels (N-way), NS is the size of the support set.
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For each learning instance (Ei, Ci), Ei ⊆ E is l-dimensional input and Ci ⊆ C is the related
concepts set. For an unseen instance e in the query set, the classifier predicts a set of
concepts P = h(e) ⊆ C.

3.2. Prompt Tuning Method for Multi-Label Text Classification

As is shown in Figure 2, our methods adopt a threshold-based strategy [42,43] to
achieve multi-label text classification. Firstly, the relevance scores of exercise content and
knowledge concepts are transformed into a masked language model by prompt tuning
methods. Specifically, a prompt template is defined as Vprompt = ”It belongs to [MASK]”.
and combine the exercise text x = {x0, x1, x2, · · · , xn} to form the final input for prompt
tuning input eprompt, which can be shown as Equation (1):

eprompt = [CLS]x, It belongs to [MASK]. (1)

Suppose that M is a large corpus of Pre-trained Language Models (PLMs in short),
the probability of filling the token [MASK] for each word of concept c in the knowledge
concepts set C can be denoted as PM([MASK] = c | eprompt). Here, we need a map function
Sigmoid() to predict the probability of each concept independently. The relevance scores
can be represented as (2):

P(c | ePrompt) = Sigmoid(PM([MASK] = c | eprompt)) (2)

Finally, we add an additional threshold mechanism to determine knowledge concepts
corresponding to exercises, which can be formulated as (3):

P(e) = {c | P(c | ePrompt) > t, c ∈ C} (3)

where t is the threshold.
To better introduce our method, we take an example shown in Figure 3. The exercise

text “The stack is characterized by first in, last out, and the queue is characterized by first
in, first out. (right)” is wrapped with template as the input. PLM is adopted to predict
the predict the probability of filling the token [MASK] with knowledge concepts word set
array, stack, queue, linked list. Then, Sigmoid() function is used to obtain the probability
of exercise text linking to labels {array, stack, queue, linkedlist}. Due to the probability of
exercise text linking to stack, queue greater than threshold, exercise text is regarded as
linking to {stack, queue}.

Figure 3. An example of our proposed method.
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It has been proven that binary cross-entropy loss (BCE) over sigmoid activation is
more suited for multi-label problems and outperforms cross-entropy loss [12]. Therefore,
in our paper, the BCE loss function is chosen to learn parameters in the tasks, which can be
formulated as (4):

min
Θ
− 1

K

K

∑
i=1

N

∑
j=1

[yij log(σ( p̂ij)) + (1− yij) log(1− σ( p̂ij)) (4)

where p̂ij represents the predicted value of exercise i belongs to concept j. yij represents the
value of exercise i belongs to concept j, and σ is the sigmoid function σ(x) = 1

1+e−x .

4. Experiment

In this section, we conduct extensive experiments on the constructed Exercises–
Concepts dataset of the Data Structure course to verify the effectiveness of our proposed
method for linking exercises to knowledge concepts. In the following, firstly, the Exercises–
Concepts dataset of the Data Structure course and the few-shot dataset construction are
introduced in detail. Then the compared methods and evaluation metrics of our exper-
iments are shown. Finally, we analyze the experimental results and the influence of the
main parameters.

4.1. Datasets

Exercises–Concepts dataset of Data Structure course: To study the problem of linking
exercises to knowledge concepts, we construct the Exercises–Concepts dataset of the Data
Structure course. Refer to MOOCCube_DS [44] data repository and Several national
planning textbooks, we extract 65 classic knowledge concepts. Subsequently, 2027 exercises
used in these textbooks are marked with the corresponding knowledge concepts. Details
are shown in Table 1.

Few-shot dataset construction: To simulate the few-shot situation, we reconstruct the
dataset in to the form of few-shot learning, where each example is the combination of a
query instance (eq, cq) and the corresponding K − shot support set S. Unlike the single-
label classification problem, instances of multi-label classification may be associated with
multiple labels. Therefore, there is no guarantee that each label appears exactly K times
during sampling. To address the problem, we approximately construct K− shot support
set S with the Minimum-including Algorithm [43]. It constructs a support set generally
complying with the following two conditions: (1) All labels in the original dataset appear
at least K times in support set S. (2) At least one label will appear less than K times in S
if any (eq, cq)pair is removed from it. For the original dataset, we sampled NS different
support sets. For each support set, we take the remaining data as the query set. Each
support-query-set pair constitutes one few-shot episode.

On the test stage, we constructed 10 different few-shot episodes for each selected
K-shot. Among them, support set is used to fine tuning model, and query set is used to test
the effectiveness of methods.
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4.2. Baselines and Evaluation
4.2.1. Baselines

Traditional deep-learning-based multi-label text classification methods, such as XML-
CNN [12], MAGNET [13], require massive amounts of training data for model optimization,
which inevitably leads to performance degradation in the few-shot scenario. However, the
PLMs tuning multi-label text classification methods can provide a certain advantage in
the few-shot problem. Therefore, three PLMs tuning methods are conducted as compared
methods, the details are described as follows:

TextCNN [45]: The method uses a simple CNN with one layer of convolution on top
of word vectors for Sentence Classification. In our experiments, PLMs are used to learn the
representation of words, in addition, a multi-label classification layer is added to predict
labels. Notably, the method is fine-tuned on the support set to select the optimal model
and validated on the query set.

TagBert [46]: This is a model based on a large pre-trained model and a multi-label
classification layer. Following the parameter setting of a threshold-based multi-label
method, a fixed threshold tuned on the support set is used in the experiments.

BertFGM (https://github.com/percent4/keras_bert_multi_label_cls (accessed on 2 April
2021)): Based on the TagBert method, adversarial training [47] is introduced to increase the
robustness and generalization of the model.

The experimental setup of all the above methods is the same as that in TextCNN.

4.2.2. Evaluation

In our paper, the MacroF1 and MicroF1 are introduced to evaluate the effectiveness of
our proposed method. MacroF1 calculates the average of the F1 scores obtained for each
category, which can be formulated as (5):

Pt =
TPt

TPt + FPt

Rt =
TPt

TPt + FNt

Macro F1 =
1
| C | ∑t∈C

2PtRt

Pt + Rt

(5)

where Pt represents the precision of each category, Rt represents the recall of each category.
TPt, FPt and FNt are the true-positive, false-positive and false-negative example of the t-th
label in the label set C, respectively. MicroF1 calculates the overall of the F1 scores, which
can be formulated as (6):

P= ∑t∈C TPt

∑t∈Y TPt + FPt

R =
∑t∈C TPt

∑t∈C TPt + FNt

Micro F1 =
2PR
P+R

(6)

where P represents the overall precision, R represents the overall recall.

4.3. Experimental Results
4.3.1. Experiment Settings

We evaluate the performance of our proposed method on the few-shot Exercises–
Concepts dataset. Because some concepts in the dataset have only 5 exercises, we select the
value K in K-shot as 1 and 5, respectively. There are some hyper-parameters that need to
be initialized in the above methods. Firstly, we introduce uniform settings in all methods.
The maximum length sequence is set as 512. These models are optimized by Adam with
batch size 4 and learning rate 1× 10−5. Then, the size of thresholds has an impact on final
performance. The thresholds are set as 0.10, 0.65, 0.82, 0.24 on 1-shot setting in TextCNN,
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TagBert, BertFGM and PTMLTC, respectively. On 5-shot setting, the thresholds are 0.08,
0.70, 0.85 and 0.20. The reported results are the mean and variance of the experimental
results on 10 randomly generated few-shot datasets.

4.3.2. Performance Comparison

Results of 1-shot setting:The results of the 1-shot exercise linking to knowledge con-
cepts are shown in Table 2. From the experimental results, we can have the following
observations. Firstly, we can observe that the results of MicroF1 and MacroF1 in the
PTMLTC method are 54.74% and 46.11%, respectively, which are far better than the other
three baselines. In the case of much training data, the performance of BertFGM is better
than the TagBert. However, added adversarial training in the few-shot problem obtains
interference information, which makes the classifier more indistinguishable. BertFGM
achieves worse results than the TagBert. Results of 5-shot setting: The results of the 5-shot
exercise linking to knowledge concepts are shown in Table 3. The results are basically
consistent with the trend of the 1-shot setting. Compared with the 1-shot setting, the results
of all methods have been improved in the 5-shot setting. These results demonstrated that
the increasing of training data improves classification performance. In addition, PTMLTC
has a smaller margin of advantage in 5-shot setting compared with 1-shot setting. It is
proved that the fewer the data, the more obvious the advantages of PTMLTC.

Table 2. Results of 1-shot on our dataset. Metrics marked in bold contain the highest metrics for
the dataset.

Method
1-Shot

Micro F1 Macro F1

TextCNN 6.60 ± 1.23 5.70 ± 0.89

TagBert 9.83 ± 0.77 6.05 ± 2.16

BertFGM 6.65 ± 2.47 2.11 ± 2.13

PTMLTC 53.86 ± 3.16 49.04 ± 3.42

Table 3. Results of 5-shot on our dataset. Metrics marked in bold contain the highest metrics for
the dataset.

Method
5-Shot

Micro_F1 Macro_F1

TextCNN 29.49 ± 0.62 29.84 ± 2.67

TagBert 47.06 ± 0.18 41.50 ± 6.90

BertFGM 34.72 ± 0.99 26.66 ± 3.12

PTMLTC 62.37 ± 0.43 58.84 ± 0.84

4.3.3. Ablation Study

We compare the effects with different PLMs. In our proposed methods, Bert [15]
and Roberta [48] models are adopted with bert-base-chinese (https://huggingface.co/
bert-base-chinese (accessed on 5 February 2022)) and chinese-roberta-wwm-ext (https:
//huggingface.co/hfl/chinese-roberta-wwm-ext (accessed on 6 February 2022)). Table 4
summarizes The results are summarized in Table 4, which shows the Roberta-based pre-
training model achieves better results than Bert.

The success of prompt tuning mainly owes to the template design and label words.
Different templates are designed in our method to discuss their effect. The details are
shown Table 5. The template was selected as “It belongs to [MASK]”, which obtains the
better result.
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Table 4. Results of different PLMs on our dataset. Metrics marked in bold contain the highest metrics
for the dataset.

Method
Micro F1 Macro F1

1-Shot 5-Shot 1-Shot 5-Shot

PTMLTC_Bert 50.74 ± 1.53 58.56 ± 1.50 46.11 ± 2.68 54.28 ± 1.47

PTMLTC_Roberta 53.86 ± 3.16 62.37 ± 0.43 49.04 ± 3.42 58.84 ± 0.84

Table 5. Results of the different design of the templates. Metrics marked in bold contain the highest
metrics for the dataset.

Templates
1-Shot 5-Shot

Micro F1 Micro F1 Micro F1 Micro F1

It belongs to [MASK]. 53.86 ± 2.74 49.04 ± 3.12 62.37 ± 1.05 58.84 ± 0.89

The concept is [MASK]. 50.98 ± 2.92 51.35 ± 2.15 58.44 ± 0.77 54.28 ± 1.15

The concept belongs to
[MASK]. 52.76 ± 3.13 46.83 ± 2.47 60.99 ± 0.37 53.85 ± 0.62

4.3.4. Parameter Sensitivity

Regarding our proposed method, in this section we have studied the influence of the
parameter, which is the threshold t in Equation (3). The experimental mode of control
variables is adopted, when one variable is changed, the other variables remain unchanged.
We randomly selected a dataset from the 1-shot and 5-shot few-shot datasets for verification.
After some preliminary tests, we found that the value of t will have a relatively large impact
on the effect, it can be ensured that the effect will not excessively fluctuate within a certain
range. The value set of t is [0.14, 0.16, 0.18, 0.22, 0.24, 0.26]. It can be observed from Figure 4
that t = 0.24 on the 1-shot setting and t = 0.2 on the 5-shot setting lead to the best results.

Figure 4. Effects of threshold t on two datasets.

5. Conclusions and Future Work

In this paper, a prompt tuning multi-label text classification method is proposed
to realize the link between exercises and knowledge concepts. The main idea is that the
relevance scores of exercise content and knowledge concepts are learned by a prompt tuning
model with a unified template, and then the multiple associated knowledge concepts are
selected with a threshold. On the constructed dataset, we compare the proposed method
with other baseline methods. The results show that PTMLTC achieves better performance
than other state-of-the-art methods in the evaluation metrics, and with fewer training data,
the advantage is more conspicuous. The knowledge concepts in the course bear a natural
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graph relationship, and our work ignores the relationship between them. Future work will
try to introduce the structural relationship between knowledge concepts into the model for
achieving better results.
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Abstract: Unsupervised domain adaptation involves knowledge transfer from a labeled source to
unlabeled target domains to assist target learning tasks. A critical aspect of unsupervised domain
adaptation is the learning of more transferable and distinct feature representations from different
domains. Although previous investigations, using, for example, CNN-based and auto-encoder-based
methods, have produced remarkable results in domain adaptation, there are still two main problems
that occur with these methods. The first is a training problem for deep neural networks; some
optimization methods are ineffective when applied to unsupervised deep networks for domain
adaptation tasks. The second problem that arises is that redundancy of image data results in
performance degradation in feature learning for domain adaptation. To address these problems, in this
paper, we propose an unsupervised domain adaptation method with a stacked convolutional sparse
autoencoder, which is based on performing layer projection from the original data to obtain higher-
level representations for unsupervised domain adaptation. More specifically, in a convolutional
neural network, lower layers generate more discriminative features whose kernels are learned via a
sparse autoencoder. A reconstruction independent component analysis optimization algorithm was
introduced to perform individual component analysis on the input data. Experiments undertaken
demonstrated superior classification performance of up to 89.3% in terms of accuracy compared to
several state-of-the-art domain adaptation methods, such as SSRLDA and TLMRA.

Keywords: domain adaptation; convolutional autoencoder; sparse autoencoder

1. Introduction

An assumption of traditional machine learning classification methods is that training
and test data have independent and identical distributions [1]. Because different domains
are usually different but related in real-world scenarios, most existing traditional machine
learning methods are not guaranteed to be effective due to the ubiquitous large discrepancy
between different domains [2,3]. To address this problem, in recent decades, domain adap-
tation methods have attracted a great deal of attention and stimulated research studies [4–7],
which have primarily focused on the transfer of knowledge between different domains.
Because the target domain is usually unknown, unsupervised domain adaptation aims to
promote learning tasks in target domains based on knowledge in source domains, which
has far-ranging consequences for practical applications, such as speech emotion recognition
[8], medical image classification [9], and semantic image segmentation [9].

Among domain adaptation methods, including instance-transfer, parameter-transfer,
feature-representation-transfer and relational-knowledge-transfer methods [10], methods
based on feature representation learning can be applied to a broader set of scenarios due
to loose restrictions on source data [11]. The key issue for feature-representation-transfer
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methods is how to learn more discriminative and transferable feature representations to
minimize deviations between different domains [12].

In recent decades, remarkable progress has been made in the use of feature learning
methods based on shallow structure and deep neural networks which have learned how to
transfer representations across domains and have performed well in unsupervised domain
adaptation. Typical shallow learning methods, such as transfer component analysis [13],
aim to reduce domain divergence in new feature space using a kernel function. In com-
parison to shallow structure methods, deep neural networks have been shown to be more
effective by separating the explanatory factors behind different domains [14,15]. Recently,
mainstream deep neural networks, such as the convolutional neural network (CNN) [16],
the recurrent neural network (RNN) [17], the generative adversarial network (GAN) [18],
and Autoencoder [19], have been used to learn more discriminative representations for
unsupervised domain adaptation and have performed well in reducing domain divergence.

Among unsupervised domain adaptation methods that are based on deep neural
networks, the autoencoder-based method has achieved superior performance with respect
to the no label requirement and fast convergence speed. For example, the stacked denoising
autoencoder (SDA) method [20] aims to learn higher-level representations from all available
domains to train a classifier that performs classification on new-featured spaces. Similarly,
to address the issue of high computational cost in SDA, a marginalized stacked denoising
autoencoder method [19] has been proposed based on matrix computation, which is as
effective as SDA in representation learning for domain adaptation and has been shown to
be more efficient. In light of the development of these methods, Wei et al. proposed an
unsupervised domain adaptation method based on non-linear representation learning [21],
which introduced non-linear coding by kernelization into SDA to enable the extraction of
deep features.

While it is possible to explore different domains and learn transferable and discriminative
representations using unsupervised domain adaptation methods based on autoencoders, most
current approaches depend on use of the classical structure of autoencoders or integration
of regularization terms into the objective function [22–24]. For improved understanding of
feature representation learning, here, a method is proposed to achieve representation learning
based on a stacked convolutional sparse autoencoder for unsupervised domain adaptation,
which can capture more transferable and distinguishable features by layer mapping of the raw
data and unsupervised domain adaptation. Firstly, we utilize the reconstruction independent
component analysis (RICA) algorithm [4] with whitening to pre-process the original data in
both source and target domains, where “whitening” refers to a transformation of the original
data x to xwhitened, and the covariance matrix of xwhitened is the identity matrix. A stacked
sparse autoencoder is then introduced to extract features to alleviate domain discrepancy.
Secondly, based on the new feature space learned by the first component, convolution and
pooling are applied to maintain local relevance. Finally, we stack two convolutional sparse
autoencoders to achieve more abstract and transferable representation learning. Compared to
other state-of-the-art methods, experimental results obtained confirm the effectiveness of our
proposed framework for unsupervised domain adaptation.

In summary, this paper makes the following main contributions:

• We explicitly propose a new framework of unsupervised domain adaptation based on
a stacked convolutional sparse autoencoder (short for SCSA). There is an obvious dis-
tinction between this method and the original method [2,14], which relies on applying
the classical structure of the autoencoder to learn representations or integratation of
the regularization term into the objective function.

• Our proposed SCSA has two main components in each layer. In the first component, a
stacked sparse autoencoder with RICA is introduced for recognition feature learning
to reduce the divergence between the source and target domains. In the second
component, the convolution and pool layer is utilized to preserve the local relevance
of features to achieve enhanced performance.
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The remainder of the paper is organized as follows: In Section 2, related work is
described. In Section 3, the SCSA proposal is described in detail. Several real-world datasets
are presented and the experimental results are analyzed in Section 4. The conclusions are
presented in Section 5.

It is worth explaining that we first introduced the unsupervised domain adaptation
method in our conference paper [25], titled “Domain Adaptation with Stacked Convolu-
tional Sparse Autoencoder”, published in the proceedings of the Twenty-Eighth Interna-
tional Conference on Neural Information Processing (ICONIP), Indonesia, 8–12 December
2021. In our conference paper, we focus on a domain adaptation method with an au-
toencoder (SCSA). Here, we propose an unsupervised domain adaptation framework.
Compared with our previous version, we add the following: (1) further discussion and
analysis regarding validation of the proposed method; (2) more detailed description of
the proposed method; (3) a more comprehensive survey of related studies; and (4) further
experimental analysis of the SCSA and the baselines.

2. Background Studies

Due to strong feature representation learning ability, deep neural networks have
attracted considerable attention regarding domain adaptation. For example, Ganin et al.
proposed an unsupervised domain adaptation method with deep architectures [26], which
trained a model with standard back-propagation on large-scale labeled source data and
unlabeled target data. Similarly, Sener et al. proposed a fine-tuned deep neural network
to minimize the discrepancy between different domains [27]. An end-to-end model was
designed to jointly optimize learned features, to cross-domain transform, and target label
prediction. Existing deep domain adaptation methods can be broadly categorized into
three classes: discrepancy-based, adversarial-based and PLM-based methods [28].

Discrepancy-based methods aim to embed data from source and target domains into
a kernel space to alleviate domain discrepancy. For example, Zhang et al. proposed a
deep neural network based on the maximum mean discrepancy (MMD) [29], which was
able to learn a common subspace to simultaneously align both marginal and conditional
distributions. Long et al. proposed a residual transfer network [30], which not only aligned
the feature distributions between different domains, but also transferred the classifier with
a residual function. As well as these deep methods, which mainly focus on cross-feature
learning, many methods have been proposed to transfer the classifier across different
domains. For example, Pinheiro proposed training the classifier with similarity learning
[31]; application of this method demonstrated that feature representation learning together
with similarity learning can improve domain adaptation.

Inspired by the generative adversarial net (GAN) approach, adversarial-based domain
adaptation methods aim to minimize deviations across domains using an adversarial ob-
jective. For example, Long et al. designed a conditional domain adversarial network [32],
which conditions adversarial adaptation models based on the discriminative information
conveyed in the classifier predictions. Kang et al. proposed a contrastive adaptation net-
work for minimizing intra- and inter-class deviations [7], which included an end-to-end
update strategy for model optimization. Pei et al. proposed a multi-adversarial domain
adaptation method [33]. In this method, multiple class-wise domain discriminators are con-
structed to reduce the shift of joint distributions between different domains and to achieve
fine-grained alignment of different class distributions. In this way, each discriminator only
matches samples of source and target data belonging to the same class.

Recently, pre-trained language models (PLMs) have received much attention and
achieved remarkable improvements in a series of tasks. As PLMs can learn syntactic,
semantic and structural information, there has been some effort to apply PLMs to domain
adaptation. For example, Zhang et al. proposed a domain adaptation neural network based
on BERT for multi-modal fake-news detection [34]. The pre-trained BERT and VGG-19
model were first introduced to learn text and image features, respectively. Then the multi-
modal features were mapped onto the same space by domain adaptation. Finally, a detector
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was used to distinguish fake news. Guo et al. proposed the creation of input disturbance
vectors using soft prompt tuning to optimize domain similarity [35], introducing targeted
regularization to minimize domain discrepancy.

Although the deep learning methods described have achieved fairly good results in
domain adaptation, the deep neural network training problem remains. Some efficient
models, such as graph regularization and sparse constraint, cannot be applied directly in
supervised convolutional networks. Moreover, although some optimization methods have
been proposed, they have not been shown to be effective in unsupervised deep networks
for domain adaptation tasks.

3. Related Work

The goal of domain adaptation is to reduce the discrepancy between different domains
and to bridge the chasm among them. Amongst unsupervised domain adaptation methods,
methods based on feature learning have been widely applied in multiple disciplines a a
result of looser limitations on the data in the source domain. According to the technology
used, existing feature-learning-based methods for domain adaptation can be broadly
divided into two categories: shallow-learning and deep-learning methods.

3.1. Shallow Learning Methods

Among unsupervised domain adaptation methods based on shallow structure, the
transfer component analysis (TCA) model [13] is a typical model that attempts to minimize
the distance between source and target domains in a new feature space using the maximum
mean discrepancy (MMD). Chen et al. proposed an unsupervised domain adaptation
method based on an extreme learning machine network to retain the space information
of the target domain [36], which seeks to transfer the source domain for better matching
of the data distribution in the target domain by reducing the MMD distance. He et al.
proposed an unsupervised domain adaptation model for multi-view data [37]; the features
extracted from one view of the data are considered privileged information from another
view. Chen et al. proposed combination of domain-adversarial learning and self-training
with the intention of combining the strengths of both methods [38]. The pseudo-label
prediction and the confusion matrix were learned using self-training and using an adver-
sarial approach, respectively. Wang et al. proposed a symmetric and positive-definite
matrix network for domain adaptation (daSPDnet) [39]. Inspired by Riemannian manifold
methods, daSPDnet aims to enable EEG emotion recognition by overcoming the variability
in the physiological responses of subjects.

Some effort has already been invested in applying unsupervised transfer methods
to heterogeneous domains. For example, Liu et al. proposed a heterogeneous unsuper-
vised domain adaptation model [40], which introduced an n-dimensional metric of fuzzy
geometry to compute the similarity between different vectors. Based on the results, the
fuzzy equivalence relations were explored and the cross-domain clustering categories were
captured. Yan et al. proposed an optimal matrix transport method for heterogeneous
domain adaptation [41], which introduced the entropic Gromov–Wasserstein discrepancy
for learning an optimal transport matrix. Luo et al. proposed a distance metric learning
method for heterogeneous domain adaptation [42]. This method used existing models to
learn the knowledge fragments in the source domain, which can reduce domain divergence.

However, unsupervised domain adaptation methods based on shallow structure have
two main drawbacks. The first is utilization of labeled data information, since a small
amount of labeled data can significantly improve domain adaptation performance. The
second drawback is the capacity for feature learning. How to learn more transferable
representations to alleviate domain discrepancy represents a major challenge.

3.2. Autoencoder-Based Methods

Among deep neural networks, autoencoder-based unsupervised domain adaptation
methods have performed well with respect to the no label requirement and fast convergence
speed. For example, Glorot et al. proposed a stacked denoising autoencoder (SDA) for
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domain adaptation [43]. A marginalized denoising autoencoder (mSDA) method was
proposed for speeding up SDA by two orders of magnitude [19]. Wei et al. introduced
non-linear coding by kernelization into the mSDA for domain adaptation [21]. Zhuang et al.
proposed an unsupervised domain adaptation framework with deep autoencoders [22]. In
this method, the mSDA is utilized to pre-train the whole framework and two encoding and
decoding layers are incorporated to learn more transferable representations between the
source and target domains. Zhu et al. proposed integration of the manifold regularization
term in the objective function [2], involving stacking of two layers of autoencoders to learn
more abstract representations for unsupervised domain adaptation. Yang et al. proposed
a semi-supervised method using dual autoencoders [1], which extracted more powerful
features using two different autoencoders based on mSDA for unsupervised domain
adaptation. Nikisins et al. proposed a face presentation attack detection model using
an autoencoder and a multi-layer perceptron [44], which transferred the knowledge of
facial appearance between different domains. This domain adaptation method reduced
the requirements for large-scale labeled data, which avoided labor-intensive work and
reduced costs when training face recognition systems. Zhu et al. proposed a deep sparse
autoencoder for an imbalanced domain adaptation problem [45], which could adjust the
model automatically according to the degree of imbalance to bridge the gap between
domains. In this method, a self-adaptive imbalanced cross-entropy loss function is used
to highlight minority categories and automatically compensate for training loss bias. In
contrast to autoencoder-based methods that rely on application of the classical structure
of an autoencoder to learn representations or integrate the regularization term into the
objective function, our method introduces convolution and pooling kernels to use local
relevance to learn abstract representations for domain adaptation.

4. Our Proposed Method

4.1. Motivation

For domain adaptation, methods based on feature representation learning can be
applied to a broader set of scenarios because of the loose restrictions on the source data.
Furthermore, among representation-learning-based domain adaptation methods, some
typical supervised and unsupervised deep learning models, such as convolutional neural
networks and the autoencoder, have achieved fairly good performance. However, there are
two main problems that have prevented the further development of these methods. The
first is the training problem associated with deep neural networks. Some efficient models,
such as graph regularization and sparse constraint, cannot be applied directly in supervised
convolutional networks. In addition, although some optimization methods have been
proposed [46–48], they have not been demonstrated to be effective in unsupervised deep
networks for domain adaptation tasks. The second problem is data redundancy of image
data. As the adjacent pixels of an image inside a local area are highly correlated, high-
dimensional features of image data are inevitably affected by performance degradation in
representation learning. For example, in a local receptive field neural network, the local
relationship of replication features leads to a non-uniform distribution of edge detectors.
To address these two problems, we propose a stacked convolutional sparse autoencoder
method for unsupervised domain adaptation. In contrast to previous autoencoder-based
methods that rely on the classical structure or the integration of regularization terms into
the objective function, path-wise training is used to optimize the model of the sparse
autoencoder and then the convolutional kernels are used to reserve the local relevance for
learning abstract representations. Furthermore, the reconstruction independent component
analysis (RICA) algorithm with whitening is introduced to pre-process the original data
in both the source and target domains to remove correlations inside the local area for
representation learning.

In Figure 1, a stacked convolutional sparse autoencoder is illustrated as the proposed
unsupervised domain adaptation method. The SCSA consists of several levels: for example,
there are two layers in Figure 1; layer 2 is a repeat of layer 1 for more abstract feature
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learning; each layer is composed of two components. Firstly, the input data information
is sphered according to the RICA with whitening. The overall goal of this part is to
perform a separate part analysis of the imported data. Then, the transferable features are
learned by training on patches with a sparse autoencoder. Secondly, the CNN feature maps
are generated with the help of practical convolution operations and pooling in different
domains. According to the projection layer, a classifier is built from the final features by
transforming and reshaping them in the overall target domain.

Figure 1. Illustration of our proposed SCSA. Each layer is composed of two main components: a
stacked sparse autoencoder and the convolution and pooling kernels. The whitening layer is first
introduced for recognition feature learning.

4.2. Stacked Sparse Autoencoder

The first component is composed of a sparse autoencoder with a whitening layer
that learns the latent feature representations from the data in the source domain. As the
target domain is unlabeled in unsupervised domain adaptation, the source domain Ds

with labeled data and target domain Dt with unlabeled data is Ds = {x(s)i , y(s)i }|ns
i=1 with

x(s)i ∈ Rm×1 and Dt = {x(t)i }|nt
i=1, where x(s)i ∈ Rm×1 and x(t)i ∈ Rm×1 denote the instances

in the source and target domain and ns and nt denote the number of instances in the source
and target domain, respectively; y(s)i ∈ {1, 2, . . . , c} denotes the label information in the
source domain, m denotes the feature dimension of the input data and c denotes the number
of labels. In a sparse autoencoder, at the encoder stage, the data from both the source and
the overall target domains are projected onto vectors in the hidden layer, respectively,
expressed as ξ(s) and ξ(t). Then, in the decoder stage, the ξ(s) and ξ(t) are mapped to
the output layer as x̂(s)i and x̂(t)i . To obtain more powerful feature representations for
knowledge transfer, we introduce a softmax encoder weight regularization to apply the
labeled information in the source domain to train the whole model.

First, we introduce the RICA algorithm to perform the independent component analysis
from the original data in both source and target domains. We utilize the whitening layer
before the RICA to make the input less redundant. The objective function can be shown as (1):

JRICA(WR) = λ‖WRX‖1 +
1
m

∥∥∥WT
R WRX− X

∥∥∥2

2
(1)

X denotes the original data in both source and target domains, WR denotes the weight
matrix, and λ are the tuning parameters. To scale the reconstruction item, i.e., the second
item in (1), the L1 regularization expressed as f (x) =

√
(WX)2 + ε is introduced to (1). In

our method, we select ε = 0.1 as a small constant to prevent the L1 regularization item
from being numerically close to zero. Thus, (1) can be expressed as (2):

JRICA(WR) = λ ∑ (
√
(WRxi)2 + ε)+

1
2n

n
∑

i=1
( 1

m

∥∥WT
R WRxi − xi

∥∥2
2)

(2)

The partial derivatives of JRICA(WR) can be formalized as (3):
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∇WR JRICA(WR) =
2
m (WR(WT

R WRX− X)XT

+(WRX)(WT
R WRX− X)T)

+λ((WRX)2 + ε)−
1/2(WRX)XT

(3)

According to the partial derivatives of (3), the output WT
R WRX of the RICA is fed into

the next autoencoder as the input.
After the RICA, we introduce the stacked sparse autoencoder with softmax weight

regression to learn more abstract features across the source and target domains. In the
stacked sparse autoencoder, the desired partial derivatives regrading W and b can be shown
as (4) and (5):

∇W(l) J(W, b) = δ(l+1)(ξ(l))T (4)

∇b(l) J(W, b) = δ(l+1) (5)

W(l), b(l) and ξ(l) are the weight matrix, bias vector and output of the lth hidden level
in the autoencoder, respectively. Taking the added sparsity penalty term in the sparse
autoencoder into consideration, δl can be calculated in (6):

δl =

((
s

∑
r=1

Wl
riδ

(l+1)

)
+ β(− p

p̂i
+

1− p
1− p̂i

)

)
f ′(zl

i) (6)

where f ′(zl
i) = Wl xi+bl . The output of the sparse autoencoder is represented as W2(W1xi +

b1) + b2. Due to space limitation, more details for (4)–(6) are provided in Appendix A.
To utilize the labeled information in the source domain to alleviate domain discrepancy,

we follow the approach used in [2]; the softmax encoder weight regularization is introduced
into the stacked sparse autoencoder. The objective function is described in (7):

J = J1(x, x̂) + αJ2(ξ, θ) + βJ3(W1, W2, b1, b2) (7)

where α and β are the trade-off parameters, which aim to balance the effectiveness of each
item in (7).

The first term J1(x, x̂) in (7) is the reconstruction error, which can be defined as (8):

J1(x, x̂) =
n

∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2

(8)

The second term J2(ξ, θ) in (7) is the cost function of the softmax encoder weight
regularization, which can be formalized as (9):

J2(ξ, θ) = − 1
n

n

∑
i=1

c

∑
j=1

1{y(s)i = j} log
eθT

j ξ
(s)
i

c
∑

l=1
eθT

l ξ
(s)
i

(9)

where θT
j denotes the j-th row of W2, and y(s)i denotes the label xi in the source domain.

The last term J3(W1, W2) in (7) is the total weight regularization, which can be written
as (10):

J3(W1, W2) = ‖W1‖2 + ‖W2‖2 + ‖b1‖2 + ‖b2‖2 (10)

As the objective function is an unconstrained optimization problem, the minimization
of J with respect to W1, W2, b1, b2 and θj is adopted using the l-bfgs method, which has
been demonstrated to be a more efficient backtracking method [22]. The partial derivatives
of θj can be formalized as (11):
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∂J
∂θj

= α(− 1
n

n

∑
i=1

c

∑
j=1

1{yi = j}(1− eθT
j ξi

c
∑

l=1
eθT

l ξi

)ξi) (11)

The alternate optimization method is adopted to derive the solutions as follows:
Wj ← Wj − η ∂J

∂Wj
, bj ← bj − η ∂J

∂bj
, θj ← θj − η ∂J

∂θj
where η is the step length, which

determines the speed of convergence.

4.3. Convolution and Pool Layer

After feature learning via the stacked sparse autoencoder, the convolution and pool
kernel is utilized to preserve the local relevance of features. Given x(l) ∈ Rm1×m2×d are the
whole sample representation of both source and target domain maps of layer l, where m1
and m2 represent the height and width of each input map, respectively, and d represents
the number of channels. The patches P ∈ R(n1×n2×d)×K are extracted from x(l) to compose
the training set for learning latent features, where K denotes the number of patches, n1 and
n2 are the size of patches, respectively, and n1 × n2 × d denotes the convolution kernel size.
Each input is reshaped to the vector of (n1 × n2 × d)× 1 for the convenience of training
the autoencoder. The number of neurons in hidden layer l can be manually designed.

After the convolved features are extracted, we divide the input features into disjoint
n1 × n2 regions, and the mean (or maximum) activation function is utilized to obtain the
pooled convolution feature representations, where n1 and n2 denote the size of patches.
Different pooling methods are selected for different distributed datasets. For example, the
mean pool objective function is (12):

P =
P−mean(P)

std(P)
(12)

In the experiments performed, the parameter ϑ in the objective function J(ϑ) is updated
as (13):

ϑ = ϑ− γ∇ϑ J
(

ϑ; x(i)
)

(13)

where xi is derived from the projection and γ is the learning rate, which is usually much
lower than the corresponding learning rate in batch gradient descent due to larger variance
in the update. In the experiments undertaken, the momentum method is introduced to
rapidly facilitate the objective along the shallow ravine.

v = φv + γ∇ϑ J
(

ϑ; x(i)
)

ϑ = ϑ− v
(14)

where v is the current velocity vector with the same dimension as the parameter vector ϑ.
φ ∈ (0, 1] determines how many iterations from the previous gradients are incorporated
into the current update.

It is of note that the pooling operation can both reduce the representation dimensions
and select more significant features. For example, the pervasive pooling tools, such as
max-pooling [49], mean-pooling [50] and stochastic pooling [51] have achieved promis-
ing performance in feature representation learning. Therefore, in the experiments, two
different pooling tools, max and mean pooling, were used according to the distribution of
the datasets.

5. Experiments

5.1. Datasets

Corel Data Set http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features, ac-
cessed on 1 June 2022. In the experiments, two different top categories in the dataset, such
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as flower and traffic, were selected as positive and negative [4]. The source domain was
built by randomly choosing a subcategory from flower and traffic and the target domain
was built by choosing another subcategory from flower and traffic. In this way, 144 domain
adaptation classification tasks were constructed.

ImageNet Data Set http://www.image-net.org/, accessed on 1 February 2021. In
the experiments, five domains where the ImageNet data information was centralized
were selected [52], including ambulance, taxi, jeep, minivan and scooter. The scooter
is considered as a set of negative cases, randomly divided into four other datasets. To
better build the classification, we randomly selected two domains from the four domains
as the source domain and target domain, respectively. Therefore, 12 domain adaptation
classification tasks were constructed in this way. The number of positive and negative
instances in four domains was 1000, and the number of features was 900. Details of the
ImageNet datasets used in the experiments are listed in Table 1.

Table 1. Details of the ImageNet dataset used in our experiment.

Domain1 Domain2 Domain3 Domain4

Number of Positive Instances 1000 1000 1000 1000

Number of Negative Instances 1000 1000 1000 1000

Feature 900 900 900 900

Leaves Data Set http://www.cse.wustl.edu/mchen/, accessed on 1 January 2021. In
this dataset, there are 100 plant species in total, divided into 32 genera, with 16 species for
each genus [53]. In the experiments, we selected four different genera from this dataset and
four class classification problems were constructed with 64-margin descriptors. Therefore,
12 domain adaptation classification tasks were constructed.

5.2. Compared Methods

The following baseline methods were compared with our proposed SCSA:

• The standard classifier without unsupervised domain adaptation technique; we intro-
duced support vector machine (SVM) in the experiments.

• Transfer component analysis (TCA) [13], which aims to project the original data
into the common latent feature space via dimension reduction for unsupervised
domain adaptation.

• Marginalized stacked denoising autoencoders (mSDA) [19], which are elaborated to
learn more abstract and invasive feature representations so that domain integration
can be carried out.

• Transfer learning with deep autoencoders (TLDA) [14]. The dual-level autoencoder is
designed to learn more transferable features for domain adaptation.

• Transfer learning with manifold regularized autoencoders (TLMRA) [2]. To obtain
more abstract representations, the method combines manifold regularization and
softmax weight regression.

• Semi-supervised representation learning framework via dual autoencoders (SSRLDA)
[1]. The mSDA with adaptation distributions and multi-class marginalized denois-
ing autoencoder are applied to obtain global and local features for unsupervised
domain adaptation.

5.3. Experiment Settings

For the trade-off parameters, α = 0.01, β = 0.005 and λ = 0.01 were set for the Corel
and ImageNet datasets, while α = 0.05, β = 0.001 and λ = 0.001 were set for the Leaves
dataset in our experiments. The hyper-parameters in the convolutional layers, such as the
total number of maps, the kernel size, and the pooling type and size, are shown in Table
2. Among the methods compared, the best parameters were measured in the experiments
using the mSDA method http://multitask.cs.berkeley.edu, accessed on 1 February 2021.
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For TCA, the total number of latent subspace dimensions was intentionally fixed and the
best results were reported. For TLDA, the main parameters of the default settings were
reported in [14]. We implemented the source code of TLMRA and SSRLDA under optimal
parameter settings.

Table 2. Main configurations of SCSA on Datasets.

Data Sets Configurations

Corel Data Set

Kernel Size 11 × 11 × 3

Maps Number 1000

Pool Type max

Pool Size 12 × 12

ImageNet Dataset

Kernel Size 10 × 10 × 3

Maps Number 500

Pool Type max

Pool Size 24 × 24

Leaves Dataset

Kernel Size 6 × 6 × 3

Maps Number 800

Pool Type mean

Pool Size 3 × 3

5.4. Experimental Results

All the experimental results for the three datasets are listed in Table 3. Our experiments
were conducted five times and the results presented are the average performances of all
domain adaptation tasks. Figures 2 and 3 show the results for the ImageNet and Leaves
datasets, respectively. The following conclusions are drawn from the experimental results:

• All the domain adaptation methods significantly and consistently outperformed the
standard SVM classifier, demonstrating the advantages of the feature-representation
method in a broader set of scenarios.

• Compared to shallow learning methods, such as TCA, autoencoder-based methods,
such as TLDA, TLMRA, and SSRLDA, all achieved superior results in unsupervised
domain adaptation, indicating the superiority of deep-learning-based methods in
learning transferable and discriminative features across domains. Notably, mSDA
achieved comparable performance to TCA, demonstrating that the traditional structure
of the autoencoder cannot learn sufficient features. This is why other autoencoder-
based methods require improvements in architecture.

• In comparison with mSDA, our SCSA achieved better performance in all tasks for
three different datasets, demonstrating the superiority of our framework for exploring
different domains compared to autoencoder-based domain adaptation methods.

• By comparison to other autoencoder-based deep methods, such as TLDA and TLMRA,
our proposed SCSA achieved better performance for overall tasks in the same target
domains and for the same problems. These methods rely on the classical structure of
autoencoders (i.e., TLMRA) or the integration of regularization terms into the objective
function (i.e., TLDA). The results confirm that our SCSA can explore abstract and
distinctive features for domain adaptation.

• For all three experimental datasets, our method was better than SSRLDA. From
Figures 2 and 3, it can be seen that our method achieved better results for most tasks
in the same target domains and for the same problems. Our SCSA also achieved
comparable performance to SSRLDA in other tasks. As a semi-supervised method,
our method achieved superior performance for all three image datasets, indicating
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that the convolution and pooling layer can maintain the local relevance and learn
features better for domain adaptation in image datasets.

• Generally, compared with alternative methods, our SCSA achieved the best results in
all groups for three different datasets, confirming the effectiveness of our proposed
method.

Table 3. Average accuracy on all three datasets (%).

SVM TCA mSDA TLDA TLMRA SSRLDA SCSA
ImageNet Data Set

62.6 ± 0.9 75.6 ± 1.1 77.6 ± 1.2 83.6 ± 1.1 88.9 ± 1.1 89.1 ± 0.7 89.3 ± 0.9
Corel Data Set

52.9 ± 0.8 76.5 ± 0.7 73.4 ± 0.6 80.2 ± 0.6 84.5 ± 0.5 84.9 ± 0.6 85.1 ± 0.4
Leaves Data Set

60.0 ± 0.4 72.0 ± 0.5 70.1 ± 0.4 67.5 ± 0.4 73.6 ± 0.7 75.0 ± 0.5 76.2 ± 0.6
Tip: The bolder ones mean better.

Figure 2. Performances on ImageNet dataset. The y-axis represents the classification accuracy of the
target domain; the x-axis represents the index of the problem sample.

Figure 3. Performances on Leaves dataset. The y-axis represents the classification accuracy of target
domain; the x-axis represents the index of the problem sample.

5.5. Analysis of Properties in SCSA

SCSA with and without RICA: In our SCSA, the RICA with whitening played a
foundation and optimization role in the experiments. Therefore, we conducted additional
experiments to evaluate its optimizing ability. Table 4 shows the results for the SCSA with
and without RICA for all three datasets. From the results, it can be observed that the pro-
posed SCSA with RICA outperformed SCSA without RICA for all three datasets, indicating
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that the RICA can pre-process all the image datasets and make the input less redundant,
which is obviously helpful for more transferable and discriminative feature learning. With
less redundant input data, the cross-domain and invariant feature representations can
improve performance in domain adaptation.

Table 4. Average accuracy of SCSA without or with RICA for three datasets (%).

Without RICA With RICA
ImageNet Data Set

89.0 ± 0.7 89.3 ± 0.9
Corel Data Set

84.8 ± 0.5 85.1 ± 0.4
Leaves Data Set

74.1 ± 0.5 76.2 ± 0.6

Computational Cost: The time complexity of a stacked sparse auto-encoder is O(h1 + h2),
where h1 and h2 are the hidden unit numbers of two layers, respectively. For our method, we
took the labeled information into consideration, given c as the number of classes; the time
complexity is O(h1 + h2 + h2 • c) = O(h1 + h2 • (1 + c)) = O(h1 + h2). For the convolu-
tion and pooling kernels, the time complexity is O(m×m× p× p× d) = O

(
m2 × p2 × d

)
,

where m×m and p× p× d represent the size of the input and the patches, respectively.
The time complexity of our SCSA is O

(
m2 × p2 × d + h1 + h2

)
.

5.6. Transfer Distance

The transfer distance that can be defined as theA-distance is widely used as a similarity
measure between the source and target domains [2,15,54]. The A-distance can be defined
as A−distance = 2(1− 2error), where error is the generalization error of classifiers, such
as the linear SVM trained on the binary classification problem, which is used to distinguish
the source domain from the target domain. If the new features are more suitable for domain
adaptation tasks, the A-distance increases in the new representation space. The results
on the Corel and ImageNet datasets with and without our proposed SCSA are shown in
Figure 4. It can be observed that the distance increases with the new features after the
proposed method is applied. It appears that the representations obtained by SCSA are
more appropriate for transfer learning applications.

(a) Corel Dataset

Figure 4. Cont.
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(b) ImageNet Dataset

(c) Leaves Dataset

Figure 4. A-distance on Corel, ImageNet and Corel datasets. The x-axis and y-axis represent the
A-distance on the raw data and learned features space.

5.7. Parameter Sensitivity

The influence of hyper-parameters is investigated in this section, which includes λ,
α and β in (3) and (7), respectively. In the experiments, when one parameter is changed,
the values of the other parameters are fixed. α is sampled from {10−4, 5 × 10−4, 0.01,
0.05, 0.1, 0.5, 1}, β is sampled from {10−4, 5 × 10−4, 10−3, 5 × 10−3, 0.01, 0.05, 0.1, 0.5,
1}, and λ is sampled from {10−4, 10−3, 0.01, 0.1, 1, 10}, respectively. All the results for
the ImageNet datasets are reported in Figures 5–7. According to the observations, we set
α = 0.01, β = 0.005 and λ = 0.01 to obtain the best and most stable results.

Figure 5. Parameter Influence on α of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of α.
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Figure 6. Parameter influence on β of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of β.

Figure 7. Parameter influence on λ of SCSA on ImageNet dataset. The y-axis represents the classifica-
tion accuracy of the target domain; the x-axis represents the value range of λ.

6. Conclusions

In this paper, we proposed an unsupervised domain adaptation framework based
on a stacked convolution sparse autoencoder, called SCSA. Our method can learn more
transferable and discriminative representations across domains. Firstly, the original data is
pre-processed by the layer-wise RICA with whitening. Then, the labeled data information
in the source domain is encoded via softmax encoder weight regularization in a sparse
autoencoder model. Finally, the convolutional kernels are used to reserve the local relevance
for learning abstract representations. The proposed method was extensively tested on
several datasets and was found to be more effective than state-of-the-art domain adaptation
methods. The proposed method was extensively tested on several datasets and an accuracy
of up to 89.3% was obtained, outperforming other state-of-the-art autoencoder-based
domain adaptation methods, such as SSRLDA.

The designed SCSA is only concerned with the unsupervised domain adaptation of
image data and is not concerned with other types of data, such as text data. In the future,
we intend to focus on learning better feature representations in text data for unsupervised
domain adaptation.
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Appendix A

The aim of the sparse autoencoder is to constrain the neurons in the hidden layers
to be inactive most of the time. Given an input set {x1, . . . , xi, . . . , xn}, xi ∈ Rm×1, and the
hidden unit set {ξ1, . . . , ξr, . . . , ξs}, ξi ∈ Rk×1, the average activation of the hidden unit can
be calculated as (A1):

p̂r =
1
n

n

∑
i=1

[ξr(xi)] (A1)

To ensure that the hidden unit’s activation status is inactive, the constraint p̂r = p
is enforced, where p is the sparsity parameter, which is close to zero. The KL divergence
method can be used to penalize p̂r if it deviates significantly from p, as shown in (A2):

s

∑
r=1

KL(p|| p̂r) =
s

∑
r=1

p log
p
p̂r

+ (1− p) log
1− p
1− p̂r

(A2)

The overall cost function of the sparse auto-encoder can be shown as (A3):

Jsparse(W, b) = Jr(W, b) + β
s

∑
r=1

KL(p|| p̂r) (A3)

where Jr(W, b) is defined as (6) and β is the hyper-parameter which controls the weight of
the sparsity penalty term. Since the term p̂r is the average activation of the hidden unit, it
also depends on W and b.
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Abstract: Web page segmentation is one of the most influential factors for the automated integration
of web page content with other systems. Existing solutions are focused on segmentation but do not
provide a more detailed description of the segment including its range (minimum and maximum
HTML code bounds, covering the segment content) and variants (the same segments with different
content). Therefore the paper proposes a novel solution designed to find all web page content blocks
and detail them for further usage. It applies text similarity and document object model (DOM) tree
analysis methods to indicate the maximum and minimum ranges of each identified HTML block. In
addition, it indicates its relation to other blocks, including hierarchical as well as sibling blocks. The
evaluation of the method reveals its ability to identify more content blocks in comparison to human
labeling (in manual labeling only 24% of blocks were labeled). By using the proposed method, manual
labeling effort could be reduced by at least 70%. Better performance was observed in comparison
to other analyzed web page segmentation methods, and better recall was achieved due to focus on
processing every block present on a page, and providing a more detailed web page division into
content block data by presenting block boundary range and block variation data.

Keywords: web segmentation; hierarchical segments; web page labeling

1. Introduction

The vast majority of data are presented in web systems in HTML format. The purpose
of designing this technology was to present data to humans. However, current technologies
are increasingly interconnected, so the content must be designed for machines to read,
rather than just humans [1]. Machine-adapted labeling of content on web pages is a
base for automated content extraction, data mining, content transformation, and other
needs [2]. However, the existing HTML standard is slowly moving away from presentation
over data. Content-related semantic tags like header, nav, section, article, figure, etc., are
introduced but are mixed with general-purpose tags to build the needed design. Thus, web
page content block identification is a relevant task that should be automated rather than
performed manually.

For automated data gathering from web pages, after the HTML code is obtained, it
should be divided into content blocks and then the type of each block should be defined [3].
The first part is conducted by segmenting the HTML code or dividing it into content blocks.
The second part uses intelligent solutions to classify the blocks into predefined types [4].
However, both of these parts currently are facing some challenges, which are related to the
hierarchical nature of web page blocks [5]:

• Some content blocks might be divided into smaller internal blocks. For example, menu
can have menu items, and article paragraph can have some highlighted words of
phrases. In the first case, the division into internal blocks is meaningful, while in the
case of text formatting, it mostly will be redundant. Therefore, the level of detailing
might cause redundancy of blocks.
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• Content block might have HTML code ranges, caused by its presentation structure. If
the block content is surrounded by several tags, it can be gathered by using different
selectors, and the path to the segment and its content might vary. Therefore, for more
accurate block classification, knowledge of the possible ranges would be beneficial.

• Hierarchical and sibling relations between different blocks might positively affect the
block classification accuracy. Blocks like navigation menus and lists have a hierarchical
structure, therefore keeping the links between the blocks would bring more features for
correct block type identification. At the same time, identification of relations between
blocks might lead to a reduced size of the dataset without losing any of the data. Only
one sibling element could have a label, while the remaining ones could be associated
as sibling blocks of the same type.

The mentioned issues in conjunction with other limitations affect the fact there is no
solution capable of automatic extraction of unknown structure website data and linking
it to the appropriate content type [6]. The existing solutions require a predefined website
structure or extraction of specific data, such as listed items, links or other blocks only.

Our goal in this paper is to propose a novel approach to web page block identification,
which would provide a bigger variety of content blocks and more detailed information
about the content blocks, in comparison to existing web page segmentation solutions.
Each identified block should contain a content reflecting certain structural element of the
web page (menu, header, title, contacts, paragraph, etc.). The method should identify
all content blocks with its internal structure and provide more detailed block data than
traditional web page segmentation solutions, such as block’s ranges, hierarchical relations,
and siblings. Such an extension of content block information would extend the capabilities
of the segmentation data application and lead to a better website content block classification.

2. Related Work

Currently, the content block extraction from web pages is mostly conducted by web
page segmentation methods [7,8] as the main part of content blocks match the web page
segments, while selected segments can be repeatedly analyzed to get internal structure
of segments of it. A significant portion of existing solutions for web page segmentation
is based on visual page segmentation. M. Cormier et al. [9] and J. Zaleny et al. [10]
rely on visual analysis only, eliminating the dependency on web page implementation
technologies. However, image segmentation-based solutions usually are more expensive in
computational time in comparison to document object model (DOM)-based methods [11].
J. Kiesel et al.’s [12] research indicates that segmenting web pages visually provides high
performance. However, in the research, the Vision-based Page Segmentation (VIPS) method,
which uses both DOM and visual segmentation solutions, had the highest performance.

By integrating DOM tree analysis, a wide range of metadata can be analyzed. We can,
for example, apply text analysis to identify related text on a web page [13], detect malicious
websites [14], and segment blocks [15]. In addition to text, it also includes content analysis
and text density for web page segmentation [16].

Furthermore, DOM structure and its related features are also relevant for web page
segmentation [17,18]. Language-independent solutions for dedicated content extraction
are available [19]. Some existing web page segmentation solutions are oriented to specific
application areas. For example, A. Sonaja and S. Gancarski [20] proposed a solution to con-
vert HTML code from version 4 to version 5. The project involves web page segmentation
and its migration to HTML 5. Image segmentation is used to identify different types of
images on a web page [21]. However, the existing solutions do not provide a means of
obtaining complete data on the web page block, which would be necessary for extending
web mining capabilities [22]. Existing methods do not focus on the range of HTML code
corresponding to the same block (additional tags can be used to surround the content
and affect the presentation and variety of selectors or paths to extract the content). Block
variations (relationships between siblings or hierarchically related blocks) are not linked to
obtaining a more interconnected block map as well.
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To compare the existing segmentation methods, several datasets are prepared. One
of the most used was created in 2014 and presents a list of web pages that were popular
at that moment [23]. The labeling of the dataset presents a few main blocks on each web
page with no details on composite elements. On average, this dataset has 13 labeled blocks
for each web page, while the median is 16 blocks. The summary of accuracy metrics using
different segmentation methods is presented in Table 1.

Table 1. Summary of proposed method accuracy metrics and comparison to other methods.

Method Precision Recall Accuracy F-Score

BoM [16] 31% 26% 26% 28%
VIPS [17] 24% 26% 24% 25%

SegBlock [18] 38% 40% 38% 39%
Semantic-Block [19] 40% 43% 42% 42%

Fusion-Block [20] 45% 54% 48% 49%
Integrated-Block [20] 52% 62% 54% 53%

Results of other methods were gathered from previous research papers [22] and
include the following web page segmentation methods:

• BoM [24] combines the structural, visual, and logical features of web pages.
• VIPS [25] is visual analysis of web pages only.
• SegBlock [26] combines the visual appeal, logic, and features of the content on a

web page.
• Semantic-Block [27] uses Gestalt laws.
• Fusion-Block [28] is Gestalt law-inspired and subsequential re-segmentation, which

uses semantic text similarity.
• Integrated-Block [28] uses DOM structure, is vision-based, and uses text-based simi-

larity metrics analysis based on web page segmentation.

Research works on specifically web page content block identification exist as well [29,30].
Those are able to identify main web page structure blocks with almost perfect accuracy,
however, they are oriented on content block identification based on an analysis of multiple
web pages in the same website. This approach is not suitable for one page websites or those,
who use different design for different sections or even pages. As well the block bounds
or block variations are not estimated in those early web page content block identification
solutions. Meanwhile the relations of similar DOM elements is an important aspect [31]

Another web page content block identification direction in research papers is search
for some specific content block in the web page [32]. In most of the cases it is based on the
content block text analysis. However the full potential of the area is limited because of lack
of high quality datasets, suitable for machine learning based models.

The existing datasets and methods are mostly oriented on web page segments, which
usually identify segments, not content block. One segment can combine multiple content
blocks into bigger, visually consistent segment. Despite the fact, the dataset has just
segments, main content blocks, and no details of internal blocks, or code ranges of the
blocks, the accuracy metrics are far from perfect. This illustrates the area is complex and
requires different solutions to fully master the web page content segmentation and division
into content blocks.

3. Block Identification Method for Block Range and Variation Estimation

3.1. Definition of Block Range and Variation

HTML code has a hierarchical structure, where one tag contains other tags that define
smaller components of the parent tag. An example of a hierarchical relationship can be
seen in Figure 1. Menu elements are blocks of information that can be visually identified on
the website. They also have smaller components—menu items. Menu items are arranged
according to the hierarchy of the menu element. Additionally, those menu items are siblings
since they are presented in the same block and have the same structure.
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Figure 1. Example of block (menu) with three hierarchically related inner blocks (menu items).

With different tags and their combinations, the example menu case with multiple
menu items can be realized. Figure 2 shows one of the examples. It demonstrates how the
boundaries of the menu can be indicated by different tags (<header>, <div> or <nav>). All
three possible boundaries visually produce the same block. In all cases, the user would treat
it as a menu regardless of the possible boundaries of the menu. However, in some cases
(machine learning, block structure matching, etc.) the usage of specific or all available tags
can affect the desired result. To extend machine-oriented block segmentation properties,
we define the range (maximum and minimum boundaries) of HTML blocks.

 

Figure 2. HTML code example, illustrating the range between the maximum and minimum bound-
aries of the blocks.

The maximum boundary is the tag (element in the DOM tree), which defines the
widest possible area, covering only the content of the block. In the DOM tree, it would be
the highest element, containing only the content of the block and its child blocks, excluding
siblings. Meanwhile, the minimum boundary is the tag, which will produce a child block
with just partial content of the block, not the full content. If it were in the DOM tree, it
would be the last element, before the child elements are visible.

In the example, presented in Figure 2, <section> tag contains both image and the
navigation items, therefore it is a minimal bound of block B1. Consequently block B1.1
has matching maximum and minimum boundaries as going deeper than the div would
produce the content itself (image) and going wider would include other sibling block
content. The area between minimum and maximum boundaries of each block is the part,
which has no content in it.

Block variations are defined as similar blocks belonging to the same parent block. In
the case of menu items, as shown in Figure 2, the three menu items are variants of each other.
Not all child tags are variants of one another (blocks B1.1 and B1.2 are not variants, just
siblings as has completely different structure). Whether those siblings are variants or not
depends on their structural similarity. The variant blocks must share the same parent block
and internal structure, but not the content. In case of Figure 2 example, the path of tags for
all B1.2 child elements is the same (<header>,<div>,<section>,<nav>,<ul>,<li>,<a>), while
the path between B1.1 and B1.2 is different. The level of similarity can be adjusted based on
the web page type or segmentation requirements.

3.2. General Idea of Web Page Division to Content Blocks with Extended Properties

Combining the above two features (block boundaries and variations) we can achieve
additional flexibility in the identified content block data in both manual and automated
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labeling processes. This additional flexibility comes from the fact that by using these fea-
tures we can reduce the total number of blocks per page by using relationship connections
between them. That way when a user is manually marking blocks he or she only needs to
label one variant of similar blocks, while the others will be picked up automatically. This
would require less work than labeling the whole page.

Figure 3 shows an example of how block relationships make a difference. If we had no
block relationships then this code snippet alone would have 8 distinct blocks that would
need to be identified to fully process this code snippet (numbered in red circles). To extract
only the content-filled blocks, without taking the boundaries into account, we would need
to label fewer blocks; four would be sufficient—one for the menu (red dot no. 1) and three
for its items (red dot no. 4, 6 and 8). But this can lead to results that are more difficult to
verify even if they are correct. The difficulty arises from the fact that during validation only
exactly labeled blocks would be deemed correct, so that approach requires a lot of precision.
Through the use of block relationships, we can greatly reduce the number of distinct blocks.
However, we are also able to maintain information about the complete structure that allows
the extraction of all data. With relationships, we would technically have only 2 blocks
(marked in blue circles—one for menu and one for menu item) while all other related blocks
would be accessible either by hierarchical relation or by structure variations.

 

Figure 3. HTML code example, illustrating the reduction of labeled blocks when instead of 8 blocks
(marked with red dots), a person needs to assign labels to two (marked with blue dots) of them.

To implement web page division into blocks with extended properties, we analyze
the DOM tree from top to bottom, starting with the <body> tag (see Algorithm 1). This
tag would represent the most general block—web page content. The estimation of block
boundaries will provide additional value, as the minimal boundary will define where the
actual content and inner blocks start. At the same time, the relationship between child
blocks will be able to estimate the repeating structures of variant blocks.

The web page division into blocks solution was implemented to match the dataset data
structure provided in our earlier research [22]. It takes an URL address as input and stores
all the identified blocks, and the relations between them, in the database. The methods
responsible for block maximum and minimum boundary identification and variation
estimation are presented in further sections.

Algorithm 1: segmentation

input: DOM tree of the rendered web page HTML code
set analyzed block to <body>
set analyzed parentBlock to <body>
if analyzed block is not empty then

call boundaryEstimation with block and parentBlock return minBlock
call getChildren with minBlock return children
call getVariations with children
for each children

call segmentation with children
end

end
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3.3. Method for Block Range Estimation

Due to various design requirements blocks that store the same information, but have
different visual representations can often use different HTML structures. Additional HTML
elements may be required solely to achieve the required visual representation. As a result,
it is crucial to detect the minimum and maximum boundaries of a content block.

As the HTML is analyzed from top to bottom, we can assume the block starts with the
maximum block boundary. Deeper elements are analyzed to find the bare minimum. To
achieve this we calculate content similarity while traversing the HTML tree. The maximum
boundary of Figure 2 starts at line 1 and ends in the last line. The whole code represents
the maximum boundary.

The minimum boundary of this block is defined by the <section> element. Comparing
the content of these 2 boundaries, we would get the same content that the user sees in both
cases. Only the actual data that the user would see, ignoring any other elements, carrying
no information, is used for block content similarity estimation.

There are times when small blocks of content can be added to create a visual effect
without impacting the content. The symbols can be applied to separate elements (at
the beginning or the end of a menu, etc.). A similar problem is addressed by F. Fauzi
et al. [33] only meaningful images are extracted, ignoring non-relevant images. We used
the Hamming normalized distance [34] to measure the similarity between the content of
the blocks to account for noise in the content. The content was extracted by stripping
HTML blocks and leaving only clean text for comparison. The threshold value was set
at 0.1, by analyzing existing tendencies in web pages. Any comparison of parent and
child tags that produces a value below 0.1 means that we still haven’t found the minimum
boundary. As soon as we get a comparison value of 0.1 or above we know that the minimum
boundary was reached during the previous iteration. All blocks between the maximum and
minimum boundaries (including the boundary blocks) are saved in the dataset as blocks’
length boundaries.

One of the disadvantages of this approach is that it does not cover blocks that have
no text content. Such situations can occur when self-closing HTML tags are used. One
of the most common self-closing tags is <img> (see Figure 4). Its data are all stored in
attributes, thus the content of such a block is empty after HTML tags are removed from the
text. Another situation where this issue can arise is when content is added via CSS rules.
To represent links to the corresponding website, social media icons (logos of social media
networks) are commonly used. In such cases, it is often an icon being applied to an HTML
tag via CSS rather than via HTML. This would again result in no content in the HTML tag.
But these are edge cases that deal mostly with visual information.

 

Figure 4. HTML code example, illustrating the range between maximum and minimum boundaries
when empty content elements are included.

To capture such blocks correctly, we added additional checks to the algorithm. First,
we check whether the parent block contains any content. If there’s no content and the
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analyzed block is the only child block, then we can safely assume that the child block can
be added as the block length boundary.

When analyzing blocks that have content we should still check for images to make sure
that the correct block boundaries are determined. To do this we count the occurrences of
image tags within parent and child blocks. This is only conducted when the textual content
of parent and child blocks is the same and there is more than one child block present. In
the simplified HTML code example in Figure 3, we present a case when an incorrect block
length variation can be captured. This is because image-like blocks are not accounted for. If
the image tag is ignored in this example, then the minimum content block boundary would
be incorrectly determined and increased by 1 level, compared to the correct detection.

The schema of HTM block boundary range estimation is presented in Algorithm 2. It
takes into account content similarity and the existence of <img> tags. For each candidate
to the minimal boundary, the method will be called recursively, and for each child block
accordingly, while traversing all DOM trees from top to bottom.

Algorithm 2: boundaryEstimation

input: block for analysis and its parent block
set minBoundary to block
set maxBoundary to block
set distance to 0
repeat

call getChildren with block return children
if parentBlock clean text is empty then

if number of children <= 1 then

set distance to 0
else

set distance to 1
end

else

if parentBlock clean text = block clean text and number of children >1 then

call getImageCount with parentBlock return parentImages
call getImageCount with block return blockImages
if parentImages = blockImages then

set distance to 0
else

set distance to 1
end

else

call hammingDist with block text and parentBlock text return distance
end

end

set block to first children
set minBoundary to first children

until distance >= 0.1
store block data with minBoundaries and maxBoundaries
store block data with children relations
retrun minBoundary

3.4. Method for Block Variation Estimation

Block type variation means that we’re identifying blocks of the same purpose but
with different content. This would allow us to identify clusters of blocks of the same type.
Clusters in this case are defined by a common parent block. To achieve this we traverse
the HTML tree and look for adjacent HTML blocks that have a similar HTML structure.
Structure similarity is evaluated with the help of the HTML path similarity estimation
algorithm. When traversing the HTML tree, we are looking for blocks that have multiple
child blocks. Blocks with a single child block are ignored. After encountering multiple child
blocks we compare them to see whether their structure is similar. At this step we look at
the structure, no content is evaluated. Structural similarity is calculated using the Sequence
Matcher method [35]. We employed a slightly modified version of the algorithm with the
autojunk heuristic disabled since we passed preprocessed HTML structure for analysis.
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The basic schema is presented in Algorithm 3. Its principle is to compare each block
with its sibling, whether they are similar or not. Experiments with different situations and
their similarity estimation were conducted to measure the threshold value for similarity.
The situations for experiments were selected independently from the further used web
pages. We have found that a sequence matcher similarity of more than 0.92 is enough
to determine whether two sibling blocks are variants of each other. Experiments with
XML schema similarity [36] indicate the best results can be achieved with weight of 0.8–
0.9. HTML tags are more general, therefore we increased the threshold value to 0.92. It
allows interconnections and estimation of block clusters. Therefore in transformations, by
applying the transformation to one of the blocks, links to other blocks exist and can be used
to transform the variations of the block as well.

Algorithm 3: getVariations

input: blocks for analysis
for each block in blocks

call getSiblings with block return siblings
for each sibling in siblings

call structuralSimilarity with block and sibling return similarity
if similarity > 0.92

store variation between block and sibling
end

end

end

3.5. Novelty of the Proposed Methods

The main novelty of the paper is expressed in multiple perspectives:

• A more detailed extraction of data from content blocks is the focus of the proposed
method. It not only identifies content blocks but also defines variation bounds. Such
data can be used for more accurate comparisons between web page blocks.

• Methods are proposed to divide web page into content blocks. Using this approach
can simplify the manual work of web page data labeling. Therefore the identified
content blocks are additionally grouped to reduce the number of blocks to label. In
addition, the proposed architecture allows traceability of all blocks, so labels of one
element of the group can be associated with the rest of the group.

• Unique in the sense that it integrates web page block text and structure similarity. Close
to Hamming distance for text similarity estimation, both parent and child relations are
taken into account to identify group bounds.

In comparison to Andrew Judith et al. solution [37], our method defines as many
content blocks as there are on the page, not limiting the number of blocks. In comparison
to other segment number not fixed solutions [38], this method is faster, as it does not
require two stages (to identify the number of clusters and then to divide the web page into
this number of blocks) and extracts all possible content blocks from the web page. The
blocks are not limited to text containing structured blocks only [39] and extract all, not only
structured blocks [40].

4. Results of Web Page Division to Content Blocks

4.1. Data for Web Page Division to Content Blocks Validation

The validation of the proposed methods is complicated as all existing datasets are
dedicated for web page segmentation and do not have extended information about block
boundaries and block variations [41]. Furthermore, most of the data sources used in
existing research papers are not available for repeating experiments. Nevertheless, the
purpose of the methods is different, therefore, an accurate comparison would be difficult to
implement. Due to the above, for the purpose of validation of the proposed solutions, a
series of experiments were executed to gather the dataset.
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For the experimentation, 10 existing web pages were used. Additionally, three web
pages (https://1.kiril.dev/, https://5.kiril.dev/, https://6.kiril.dev/, all accessed on 27
April 2023) were prepared to reflect typical one-page websites with different content blocks.
The web pages were randomly chosen from one-page website designs and stored in the
selected repository to ensure they would not be modified in the future. As they were
designed by web designers using the Bootstrap framework, each of them includes both the
main structure of the web page and a creative approach. All the web pages were manually
revised by labeling as many as possible unique content blocks.

The one-page websites or one web page of the site were chosen to illustrate a wide
variety of blocks on one page. A fragment of one of the web pages and its manual block
identification example is presented in Figure 5. The red border defines first-level blocks.
Its internal blocks are marked in purple, while its inner blocks are presented with green
borders. The example lists all content blocks and their hierarchy can be traced, while sibling
block estimate (in the case of menu items, contact components or contact form fields) might
reduce the need for manual segmentation actions.

 

Figure 5. A visual view of a web page fragment with identified blocks and their hierarchy.

To label data more accurately (not only labels, but block coordinates, and block selec-
tors are critical), a web system was created. Web page labeling participants were asked to
name all content blocks they saw, including different granularity blocks. However, they
were allowed to identify just one block of equivalent blocks with different content (for exam-
ple, one menu item instead of all menu items one by one within the same menu). All labeled
data were stored in the database for further comparison with automatically identified web
page content blocks. In this study, the label of the block was not required. However, this
information is stored in the same database so that it can be used in future research.

During the manual web page labeling, in total, 40,492 tags existed and 16,453 if
YouTube is excluded (WYT) (see Table 2). We will further provide two values for most of
the metrics, due to YouTube using a lot of proprietary tags, meaning that in some cases,
statistics can be greatly affected. In any case, this amount of labeling data are too big for
regular users, while expert labeling for a large number of websites might be too expensive.

134



Appl. Sci. 2023, 13, 5680

Table 2. Summary of manually labeled data.

No. Web Page No. of Tags
Labeled
Blocks

Percentage of
Labeled Tags

1 https://1.kiril.dev/, accessed on 27 April 2023 521 89 17%
2 https://5.kiril.dev/, accessed on 27 April 2023 531 84 16%
3 https://6.kiril.dev/, accessed on 27 April 2023 393 64 16%

4 https://www.youtube.com/,
accessed on 27 April 2023 24039 75 0%

5 https://addons.mozilla.org/en-US/firefox/,
accessed on 27 April 2023 981 61 6%

6 https://www.apple.com/,
accessed on 27 April 2023 1087 69 6%

7 https://www.apple.com/retail/business/,
accessed on 27 April 2023 826 74 9%

8 https://www.buzzfeednews.com/,
accessed on 27 April 2023 1523 98 6%

9 https://gridbyexample.com/,
accessed on 27 April 2023 111 17 15%

10 https://www.nytimes.com/,
accessed on 27 April 2023 2474 203 8%

11 https://slack.com/, accessed on 27 April 2023 768 87 11%

12 https://stripe.com/en-gb-lt/connect,
accessed on 27 April 2023 4990 144 3%

13 https://www.telegraph.co.uk/news/,
accessed on 27 April 2023 2248 114 5%

In total 40,492 1179 3%

In total without YouTube (WYT) 16,453 1104 7%

The labeling was conducted by persons with a basic knowledge of HTML and no
experience in data labeling. They labeled 1179 (1104 WYT) blocks in total across all websites.
This is just 2.9% (6.7% WYT) of the total number of HTML blocks on the surveyed web
pages. Labeled data percentages across all web page tags illustrate the ratio between unique
labels and tags needed to achieve a one-page website. Meanwhile, if accurate machine
learning web page labeling solutions have to be created, these require a detailed dataset
which would reflect all tag paths. This is an increase of labeling effort by almost 35 times or
almost 15 times if we exclude YouTube data. Therefore, the labels should be duplicated or
linked for different tag path variations to obtain a more accurate dataset.

4.2. Results of Web Page Division to Content Blocks Test Cases

The same web pages were divided into content blocks with the proposed methods.
The summary of identified web page content blocks is presented in Table 3. It illustrates
that the total number of content tags has been reduced by 80% (71% WYT).

Table 3. Summary of data for automated web page division to content blocks.

Web
Page No.

No. of
Web
Page
Tags

No. of
Potential
Content
Blocks

Filtered
Content
Blocks

Reduced
Content
Blocks

Boundary Range No. of
Blocks
with

Siblings

Siblings

Single
Length

Max–Min
Range

Main
Sibling

Related
Sibling

1 521 502 469 238 166 72 114 42 72
2 531 518 494 192 88 104 91 24 67
3 393 379 305 136 87 49 72 23 49
4 24,039 23,983 5743 3458 1772 2816 621 226 395
5 981 899 511 256 136 242 128 48 80
6 1087 919 718 281 216 239 218 59 159
7 826 763 612 285 185 262 148 42 106
8 1523 1433 975 472 264 444 144 32 112
9 111 87 82 45 38 27 21 4 17
10 2474 2410 2174 778 425 797 661 188 473
11 768 702 364 168 116 137 111 29 82
12 4990 4375 2866 1346 888 1091 909 251 658
13 2248 2125 1344 436 184 557 223 55 168

In total 40,492 39,095 16,657 8091 4565 6837 3461 1023 2438

WYT 16,453 15,112 10,914 4633 2793 4021 2840 797 2043
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The reduction of content blocks was achieved in several steps. We know that some
tags have nothing to do with content (head tag with its contents, scripts, styles, etc.). Some
of these tags (<base/>, <link/>, <meta/>, <style>) are easy to exclude, by selecting only
the content of the body tag. This way, we reduce the total amount of tags from 40,492 to
39,095 (16,453 to 15,112 WYT). This amounts to a 3.5% (8% WYT) reduction. The body
content should also be filtered since it usually contains tags that add value to the content.
However, they do not store content themselves. For example, script tags are often included
in the body tag. By filtering body content for tags that are not used to display content,
we reduce the number of content tags from 39,095 to 16,657 (15,112 to 10,914 WYT). This
equates to a 57% (28% WYT) reduction. In total, the reduction amounts to 59% (27% WYT)
compared to the starting value of 40,492 (16,453 WYT) tags.

A more advanced reduction cannot be conducted without those simple tag reductions.
Detecting content block boundaries rather than all instances of possible content tags allows
us to further reduce content blocks to the mentioned 80% (71% WYT) reduction. From
the filtered 16,657 (10,914 WYT) blocks, only 8091 (4633 WYT) were left by applying the
proposed web page division to content blocks method. The reduction was achieved by
identifying variants of different block boundaries and by leaving just one of the multiple
identified sibling segments.

By grouping content block boundaries and identifying sibling variants of the block,
filtered content blocks were reduced. The analysis of these two methods shows that about
51% (58% WYT) of the tags can be classified into boundary ranges. The boundary block
typically groups 5 (3 WYT) tags into one block with min–max boundaries for the block.

Another form of content block reduction is the identification of relevant blocks and
counting the path of one content block rather than all of them. In the analyzed web pages
3461 (2840 WYT) blocks had a sibling block. In the reduced set of content blocks, 1023 (797
WYT) were selected to represent sibling blocks, while 2438 (2043 WYT) were linked to them
but eliminated. According to this, sibling blocks have, on average, three instances, but only
one-third of them can be stored to represent the block pattern.

4.3. Results of Web Page Division to Content Blocks Comparison to Manual Labeling

The web page division to content blocks for manual and automated labeling were
stored identically (except the label was not set in automated segmentation) in the same
database structure but in different instances of it. Due to the database structure matching,
a comparison of manual and automated division is possible. On the other hand, it is
not a straightforward process, as in manual labeling, the user could identify some tags
and content blocks but not others. The grouping of tags into maximum and minimum
boundary blocks was not requested either. Therefore, additional methods were prepared to
match a manually labeled tag to an automated division to content block with an estimation
of whether the manually labeled tag fits within the content block boundaries (minimum
bounds <= labeled tag <= maximum bounds). By using this method, we can estimate
the match between labels, even in cases where the boundaries are labeled similarly but
not identically. Another method estimates whether a labeled tag corresponds to another
content block based on its structure. The feature gathers data about sibling blocks, which
were ignored for simplicity, however, correspond to some of the already identified blocks
but with different content.

This matching between automated web page division to content blocks and manual
labeling enabled us to estimate whether our solution was able to identify all content blocks
labeled by humans. In total, 1179 content blocks were labeled by human experts (1104
WYT). The dependency of a number of tags in the web page and our method of identified
blocks are presented in Figure 6 which indicates the linear dependency.
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Figure 6. Dependency between human-labeled number of blocks and tags in the appropriate
web page.

The labeled blocks were mapped to the identified by using our proposed content block
identification method. For further performance analysis, the standard classification metrics
were used. The true positive (TP) was assumed for the number of blocks, indicated by our
method and matching the dataset-defined segments or user-labeled blocks. False positive
(FP) were the other blocks our method detected, but which were not labeled in the dataset.
False negative (FN) was for a number of blocks which were labeled in the dataset but were
missing in our output, while the true negative (TN) was calculated by subtracting TP, FP,
and FN from the total number of tags in the web page. The summary of the metrics is
presented in Table 4.

Table 4. Summary of proposed method accuracy metrics comparing reduced content blocks.

Web
Page No.

Number
of Blocks

Number of

Precision Recall Accuracy F-ScoreTrue
Positive

True
Negative

False
Positive

False
Negative

1 238 89 0 149 0 37% 100% 71% 54%
2 192 84 0 108 0 44% 100% 80% 61%
3 136 64 0 72 0 47% 100% 82% 64%
4 3458 75 0 3383 0 2% 100% 86% 4%
5 256 61 0 195 0 24% 100% 80% 38%
6 281 69 0 212 0 25% 100% 80% 39%
7 285 74 0 211 0 26% 100% 74% 41%
8 472 98 0 374 0 21% 100% 75% 34%
9 45 17 0 28 0 38% 100% 75% 55%
10 778 203 0 575 0 26% 100% 77% 41%
11 168 87 0 81 0 52% 100% 89% 68%
12 1346 144 0 1202 0 11% 100% 76% 19%
13 436 114 0 322 0 26% 100% 86% 41%

Overall 8091 1179 0 6912 0 15% 100% 83% 25%

WYT 4633 1104 0 3529 0 24% 100% 79% 38%

The results indicate that the proposed web page division to content blocks solution can
identify all content blocks that would be manually labeled. At the same time, it identifies
additional content blocks that were ignored during manual labeling. The main reason for
ignoring some blocks during manual labeling is their repetitive nature. This repetitiveness
can be observed in a couple of ways. First, when a block can have various boundaries while
presenting the same content, we use the block’s max–min boundary detection to negate the
need to label all of the possible combinations of the same block. Another situation with
repetitive blocks arises when there are multiple content blocks for the same purpose but
with different content. The most basic example of this is the navigation menu. Each menu
element has the same structure as all the other elements of the same menu, so users tend to
mark only one menu element. We use structural sibling relationships between blocks to
detect other menu elements. This allows us to detect all menu items regardless of which
menu element was labeled by the user. Sometimes, these two cases of repetitiveness can
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happen at the same time; for example, menu items can also have multiple boundaries
within the max–min range, so both techniques can be used at the same time to determine
all other possible labeled block variations.

The obtained results of automated web page division to content blocks comparison
to manual labeling results indicate that the solution can identify all manually labeled
blocks (directly or indirectly, by using related sibling records). This leads to 100% precision.
Currently, the increase in testing data is problematic. This is because the existing datasets
of web page segmentation or labeling are not fully adapted to the extended model of web
page labeling.

Talking about the accuracy of the proposed method, it could be expressed as 83% (79%
WYT) taking into account how many blocks were labeled by person and were present in the
dataset of automatically detected blocks, eliminating relevant siblings. These conditions
correspond to the ones that were presented for manual labeling—labeling all components
for the same purpose. Under the same conditions, the F-score would be 25% (38% WYT).

4.4. Proposed Method Comparison with Existing Segmentation Methods

To compare the proposed method with other existing web page division to content
blocks is complicated as there are no exact analogues. However, web page segmentation
solutions are very similar by their nature. Those methods are mostly validated by using a
commonly used dataset [23]. The labeling of the dataset is not as broad as the proposed
method aims to provide. It reflects both in the number of blocks (the average number
of blocks in the dataset is 13, while our previously tested web pages had an average of
79 blocks) and details about each block (the dataset has specific block boundaries, while
our solutions and previously used web page analysis data has minimum and maximum
ranges for each block, as well as relations between siblings, similar blocks). While this
dataset has a much higher number of records, web pages usually estimate the method’s
performance by using this dataset.

This dataset was selected as some existing web page segmentation methods already
used it, therefore, there are accuracy metrics for those methods (see Table 1 in Section 2). The
precision, recall, accuracy, and F-score were calculated for each record in the dataset, and
average values were calculated to summarize the results. With this dataset, our proposed
method achieved 11% precision, 100% recall, and 77% accuracy, and the F-score was 19%.
The results indicate that our proposed method is not precise (11%), and the F-score (19%)
is the lowest among other methods. However, it is related to the fact that the dataset
contains just a small portion of labeled blocks and segments, while our solutions aim to
find all possible content blocks. Moreover, the numbers are not directly comparable as
the other research papers were estimating the accuracy of used segments, not content
blocks. However, even taking into account our method of grouping sibling elements into
groups, it shows a high accuracy (77%) similar to the web page segmentation methods,
while the recall stays constant (100%) because no blocks are removed from the web page,
just assigned to one or another block variation or group.

5. Discussion

In the proposed solution, DOM tree and web page similarity estimation are used
instead of a visual comparison of the web page. This simplifies its application as no
complex models for data clustering are needed.

While our web page division to content blocks method results cannot be compared
directly with other research results (because of different purpose, data, and dataset labeling
details), they are similar to those obtained by other web page labeling or segmentation
methods [12]. As the results can differ depending on the dataset and labeling, the proposed
method was compared to a dataset [23] and methods used to segment the same dataset.
According to the obtained results, we obtain lower results, but that is due in part to the fact
that the dataset had a very limited number of labels, and is adapted to present segments,
not all content blocks.
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The precision value is among the lowest in comparison to existing research and
experiment results. This is affected by the limited number of labeled blocks in the dataset
as well, as only the main blocks are included in the dataset but not all small elements
were labeled internally. Recall is the other side of it. Our methods achieve 100% recall and
outperform any other method. This is because we do not eliminate any of the blocks but
group them into variations or sibling groups.

Summarizing the results and limitations of the method, its high potential could be
exploited for assistance in manual web page labeling. The method could extract all possible
content blocks from the web page and present them to the individual executing the labeling.
This would reduce the need for tag/block revision by 90% (70% not taking into account
the YouTube case). At the same time, the labeling data will be richer in the sense of
relations between blocks. This could be exploited even for more interactive labeling when
label assignment to one block automatically generates proposals for the labels of other
related blocks.

As more detailed datasets of the extended labeling data become available, the method
could be improved to identify or propose the label for the block. This would lead to a
full understanding of the web page structure, therefore, the automated integration and
transformation of web page content would be possible.
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Abstract: In the contemporary digital landscape, web search functions as a pivotal conduit for infor-
mation dissemination. Nevertheless, blind users (BUs) encounter substantial barriers in leveraging
online services, attributable to intrinsic deficiencies in the information structure presented by online
platforms. A critical analysis reveals that a considerable segment of BUs perceive online service access
as either challenging or unfeasible, with only a fraction of search endeavors culminating successfully.
This predicament stems largely from the linear nature of information interaction necessitated for BUs,
a process that mandates sequential content relevancy assessment, consequently imposing cognitive
strain and fostering information disorientation. Moreover, the prevailing evaluative metrics for web
service efficacy—precision and recall—exhibit a glaring oversight of the nuanced behavioral and
usability facets pertinent to BUs during search engine design. Addressing this, our study introduces
an innovative framework to facilitate information exploration, grounded in the cognitive principles
governing BUs. This framework, piloted using the Wikipedia dataset, seeks to revolutionize the
search result space through categorical organization, thereby enhancing accessibility for BUs. Empiri-
cal and usability assessments, conducted on a cohort of legally blind individuals (N = 25), underscore
the framework’s potential, demonstrating notable improvements in web content accessibility and
system usability, with categorical accuracy standing at 84% and a usability quotient of 72.5%. This
research thus holds significant promise for redefining web search paradigms to foster inclusivity and
optimized user experiences for BUs.

Keywords: blind users; web search; information exploration; usability analysis

1. Introduction

In the contemporary digital age, web search engines have established themselves as
critical access points for online information, processing approximately 3.5 billion queries
daily, a significant portion of which are centered on exploratory information seeking [1,2].
These exploratory sessions are characterized by users engaging with the search engines
with complex, divergent queries aimed at broad-based learning about intricate topics [3].
This interaction typically entails users inputting keyword-based queries and consulting a
series of document snippets presented in a linear list by the search engine, ranked according
to their relevance to the query [4,5].

This linear interaction paradigm has not been exempted from scholarly criticism,
chiefly due to its convergence tendency and a lack of alignment with the needs for diverse
content exploration. The central issue lies in the fact that the search results are indexed
and optimized based on offline evaluative metrics like precision and recall, which, while
gauging relevance, fail to encapsulate subjective user satisfaction, particularly for blind
users (BUs) [6,7]. Consequently, recent scholarly endeavors are channeling efforts towards
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the development of intuitive search engines and evaluative metrics that integrate human-
centric considerations [8].

Notwithstanding, the prevailing web search interfaces predominantly cater to the
sighted user population, manifesting information in a linear and visually centered fash-
ion [5]. This approach significantly hampers the approximately 75 million BUs globally
from accessing and deciphering web content efficiently [7]. The linear representation ne-
cessitates BUs to engage in sequential information retrieval, prompting them to devise
alternative strategies to navigate accessibility and usability barriers, including utilizing
CTRL+F for manual content location, employing screen reader functionalities, or leveraging
meta-information to anticipate content [9].

Therefore, it becomes imperative to acknowledge that while existing web search
engines are adept at sourcing relevant web-based information, they inadvertently engender
accessibility and usability impediments for BUs. The conventional display of the top-ten
blue links often results in cognitive overload for BUs. In order to solve this problem,
the goal of our research is to come up with a new way for BUs to look for information
that takes cognition into account and allows search results to be shown in a better, more
organized way. To scrutinize the efficacy of this proposed framework, we enlisted a group
of legally blind individuals (N = 25) to gauge its impact on facilitating a more nuanced
exploration behavior.

1.1. Major Contributions

The main contribution of the paper is summarized as follows.

1. Formalizing an information exploration framework considering the BU cognitive rule.
2. Categorically organizing the search results space for enhanced BU access.
3. Evaluating the proposed framework from empirical and usability perspectives on

legally BUs.

Assistive technologies, such as screen readers and voice assistants, are available to
aid BUs in navigating the web. However, not all websites are compatible with these tools,
and their limitations may hinder a seamless experience. The cumulative cognitive load of
listening to synthesized speech, processing information, and navigating can lead to mental
fatigue for BUs. Hence, in this research, we formally investigate a framework that provides
BUs with effective access to web content exploration.

BUs encounter a multitude of challenges when attempting to navigate the digital
landscape and access online information. The predominant hurdle they face underlies the
inherently linear nature of search engine results. These results, presented as ranked snippets,
compel BUs to sift through information sequentially, resulting in time-consuming searches
and potential disorientation. The struggle intensifies due to the deficiency of navigational
aids designed with BUs in mind. Elements like buttons, menus, and images often lack
proper labeling or structuring, rendering navigation a complex endeavor. Additionally,
much of the online content lacks the necessary accessibility features, such as accurate
heading tags, alternative text for images, and semantic markup. Consequently, screen
readers—critical tools for BUs—struggle to convey content effectively. Therefore, to provide
ease to the BUs, we devise a mechanism to categorically organize the search results space.

Further complicated matters pertaining to deciphering complex user interface ele-
ments using screen readers pose their own difficulties and missing labels and improper
grouping can render these forms virtually unusable for BUs. Visual elements like charts and
graphs—widely used to convey information—pose a significant obstacle to BUs. Without
proper alternative representations, the meaning behind these visual aids is lost, hampering
comprehensive understanding. Meanwhile, the overwhelming volume of web content
exacerbates the challenge and these techniques must be investigated from the BU usabil-
ity perspectives. Therefore, this research additionally aims to evaluate the formal BU
exploration framework from the usability perspectives.
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1.2. Paper Organization

The structure of this manuscript is delineated as follows: Section 2 encompasses
a critical literature review, examining contemporary strategies prevalent in the domain.
Section 3 elucidates the proposed theoretical framework in detail, forming the foundation
of this study. Section 4 explains the procedural elements integral to the instantiated
framework. Subsequently, Section 5 offers an analytical insight into the empirical and
usability metrics applied, along with the resulting data. The penultimate Section 6 hosts
an in-depth discussion, paving the way for Section 7, which culminates with concluding
remarks and potential future research trajectories.

2. Literature Review

Blindness is a visual impairment that affects individuals’ ability to perceive visual
information, either partially or entirely. As a significant portion of the population, the BUs
face numerous challenges in today’s digital landscape. Hence, web accessibility is becoming
increasingly crucial to ensure that BUs can access online information seamlessly. Under-
standing how BUs interact with the web is essential to fostering an online environment
that adapts to their diverse needs and allows them to fully participate in the digital world.
In this context, exploring the technologies that assist BUs to navigate the web effectively
is becoming essential to foster an environment where BUs can participate equally. The
traditional interfaces present significant challenges for the BUs when interacting with the
web. The subsequent subsections briefly discuss the BU information seeking on the web
and the existing accessibility technologies, along with the associated challenges.

2.1. BU Information Seeking

Information searching on the web is a challenging task for BUs [10]. This is due
to the enormity of the information on the web and the lack of appropriate navigational
support for the BUs. On the contrary, the existing web search engines, being the gateway to
accessing information on the web, treat BUs similarly to sighted ones and offer no special
assistance in information searching and navigation [10]. Hence, BUs are left at the discretion
of navigational support from third-party assistive tools. In such a scenario, the BUs are
constrained to use assistive tools [11], such as screen readers and talking software, JAWS,
voice assistants, Braille, etc. The screen readers primarily convert text into synthesized
speech and use an automated voice to read out the content [12]. Depending on the structure
of a document, the voice may provide structural speech, including headings, links, buttons,
and text, allowing BUs to navigate and interact with the information. JAWS (Job Access
with Speech) is similar to screen readers with the additional functionality of Braille displays,
allowing blind users to access information in Braille format [13]. The voice assistants, such
as Siri, Google Assistant, Alexa, etc., can help BUs with various web-related tasks, including
searching for information, setting reminders, or reading emails [14].

The BUs face a lack of assistive tools and applications. There is an immense need
to develop systems that better adapt to the BU’s needs and preferences [15]. While the
third-party assistive tools provide an interface for accessing the information, they are inca-
pable of effectively rendering the information best suited to the BU’s cognitive capabilities.
As a result, studies indicate that BUs are hesitant to use assistance due to a lack of trust in
such systems.

2.2. BU Accessibility Standards

To overcome the structural difficulties of the content, various accessibility standards
are introduced. Firstly, the Web Content Accessibility Guidelines (WCAG) and Authoring
Tool Accessibility Guidelines (ATAG) introduced by the World Wide Web Consortium
(W3C) provide guidelines and success criteria for making web content more accessible.
This includes adding alternate text, making information navigable without a mouse, and
establishing structured documents. Section 16 of the Rehabilitation Act requires [16] federal
agencies to ensure that their electronic and information technology is accessible by provid-
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ing appropriate captions and means to skip duplicate content. Accessible Rich Internet
Applications (ARIA) ensure that the core navigational features are accessible to the BUs,
such as dropdown menus and tab panels, via screen readers [17]. User Agent Accessibility
Guidelines (UAAG) from W3C focus on enabling assistive technology conformance with
BUs by allowing them to adjust preferences, such as speech rate and Braille display settings,
to enhance their browsing experience.

However, studies report that these standards are often overlooked, and most websites
do not implement these guidelines [18]. BUs express difficulty in navigating and finding
the required information on the web. Moreover, a percentage of the BUs are over the age of
18 [19]. In this regard, there is an immediate need to explore a tool that can structure the
content information content that adopts the BU cognitive needs and allows them to explore
the information on the web effectively.

2.3. BU State-of-the-Art Tools

Roy et al. [20] developed a voice-activated email prototype, considering the cognitive
needs of BUs. Their system operated on three basic commands: send, read, and exit to
compose the email, read the inbox, and exit the program, respectively. Fayyaz et al. [21]
devised an approach to reduce BU’s cognitive load by presenting the summarized infor-
mation in PDF tables. They used contextual information such as data types, captions,
matching sentences, etc., and devised a keyboard-based navigational menu for interaction.
Bukhaya et al. [22], Nair et al. [23], and Christopherson et al. [24] leveraged image process-
ing techniques via deep learning to convert the visual information into text for subsequent
processing by a text reader. Tucket et al. [25] embedded Near Field Connectivity (NFC) in
academic pages preloaded with the speak command.

Zeboudj et al. [26] used the Pigeon algorithm to efficiently find relevant web pages
and used resultantly retrieved web documents as pseudo-relevance feedback from the
initial query. Subsequently, they extracted keywords via the Frequent Pattern Growth
algorithm to determine the optimal query for reformulation. Figueroa-Gutiérrez et al. [27]
proposed an architecture considering image processing techniques to automatically extract
graphs under an image format, generating a description accessible to users with visual
impairments. Meliones et al. [28] used the augmented voice assistance of Alexa to allow
elderly BUs to generate voice commands. The system maps the request to relevant services
on the web, retrieves the relevant documents, and speaks to the BUs.

However, the existing tools are concerned with enhancing the content for better acces-
sibility by voice assistants. The summarized literature is also presented in Table 1. To the
best of our knowledge, a practical investigation to restructure the information presentation
mechanism for BUs considering their cognitive capabilities is yet to be undertaken. In the
subsequent subsection, we briefly examine the issues and motivation for this research.

Table 1. Summarizing the references, approaches, and limitations of the studies mentioned in the
literature review.

Cited Approach Limitations

[10] BUs face challenges due to lack of navigational support Reliance on third-party assistive tools
[11] Utilization of screen readers, JAWS, voice assistants Limited effectiveness of assistive tools
[20] Voice-activated email prototype Focused on a specific application (email)

[21] Reduce cognitive load using summarized information Limited to information presented in tabular
format

[22–24] Leverage image processing to convert visual information Relies on image recognition; may not cover all content
[25] Embed Near Field Connectivity (NFC) for interaction Limited to specific contexts (academic pages)
[26] Pigeon algorithm for efficient web page retrieval Focused on improving search result relevancy
[27] Image processing for automatic graph description Limited to content with graphical elements
[28] Voice assistance augmentation for BUs Primarily extends voice assistant functionality
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2.4. Issues and Motivations

The Internet has become the most ubiquitous technology for seeking information
online. Combined with easy access to handheld devices and the ability of the web to
interconnect immense amounts of information, the users’ information-seeking paradigm is
now relying on online information-provider services such as search engines. However, the
literature has shown that 81% of Internet BU users still consider accessing online services
difficult or impossible [29]. Among them, only 53% of BUs are reported to succeed in
their navigation tasks on the web [30]. Hence, the web can then be a cause of exclusion
for BUs. These difficulties may be explained by the inherent shortcomings of online
information providers. Notably, the information interaction of BU users with online
information providers is linear. This presents numerous shortcomings. The BUs has to
determine the relevancy of the information content sequentially, which is time-consuming.
Subsequently, information seeking in a linear search paradigm is cognitively challenging
for BUs, which often results in information disorientation for BUs. Furthermore, the
effectiveness of a web service is determined solely by the offline empirical evaluation
measures of precision and recall, ignoring the behavioral and usability aspects of designing
a search engine.

To overcome the challenges in this research, we are interested in investigating an
online web search framework considering the needs of BUs. Mainly, we transformed
the online information-seeking paradigm of BUs from linear to hierarchical, considering
the cognitive processing capabilities of the BUs. Furthermore, we provided multimodal
interaction for enhanced accessibility. Finally, we evaluated the proposed framework from
the empirical and usability perspectives to determine its effectiveness by recruiting legally
qualified BUs.

3. WSREB Mechanism

We created a WSREB mechanism to address core issues in web document exploration
for BUs, i.e., non-linear navigation, accessibility, and cognition load. We instantiated the
WSREB mechanism by implementing a tool that facilitates BUs to explore web search docu-
ments. Primarily, the WSREB mechanism elaborates formal representations, commencing
with tree-based data models and categorical data models, component-based architecture,
and SUI design. Moreover, it emphasizes accessibility and navigation of web documents
while reducing the cognitive load in a non-linear and integrated way. The WSREB mecha-
nism provides an accessible solution for BUs to explore web search results documents.

3.1. WSREB Approach

The WSREB approach enables the exploration of web search documents utilizing
exploratory search principles. The primary goals of the approach are twofold: (i) enable
BUs to convey their exploratory needs via multimodal query terms; and (ii) provide web
document exploration to enhance accessibility in a non-linear way. Generally, BUs with
clear search goals perform lookup activities to reach their required information. However,
for exploratory needs, BUs often have ambiguous search goals.

To overcome this challenge, the proposed approach allows BUs to explore and navigate
through the retrieved results, as well as refine their query as needed. Figure 1 illustrates
the WSREB approach.
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Figure 1. A systematic flow diagram of the WSREB approach.

Our approach allows BUs to express their information needs via multimodal query
formulation. The multimodal queries comprise textual and acoustic modalities (Figure 1a,b).
The capability to create multimodal queries is critical to fulfilling the exploratory needs of
BUs. Textual queries aid in constructing keyword-based queries, while acoustic queries
allow users to freely express complete natural language sentences via voice. The SERB
system combines complex textual and auditory queries, utilizing Boolean operators (AND,
OR, NOT) between the query keywords. Acoustic queries are saved and processed to assist
users in the future (as depicted in Figure 1b). Typically, web search engines designed for
BUs present query search results linearly, which enhances the search engines’ ability to
target lookup searches. A set of query-based documents is retrieved depending on the web
search engines (Figure 1c). Our approach forms document groups based on the similarities
(Figure 1d). These groups are unordered similarity pairs computed via statistical methods.

The mechanism of SERB provides the results in a non-linear form. For this purpose,
the tree structure is introduced, which holds the results, and the results are depicted in
a hierarchical form so that the exploration activity of the blind user is enhanced. The
representation of results in a non-linear form helps the blind user reduce the time spent
searching for the required information. The hierarchical structure converts into a categorical
form. The interactive categories play a crucial role in exploring the results. Previously,
interactive categories were not introduced so that the blind user could interact and search
more interactively. In the representation of the categories, the Miller rule is applied, which
helps the blind user. In the representation of the categories, cognitive ability is enhanced by
using the rule. The blind user can easily search for information within the categories. The
blind user, with or without expertise in the domain, can fulfill their information needs. The
goal of the approach is to facilitate the blind user by providing a simple, clear structure
for the information and a blind-friendly interface, along with interactive categories in
the non-linear presentation of the search results. The shortcut keys play a major role in
accessibility and interaction with the system. The shortcut keys allow the blind user to
access the information; therefore, the shortcut keys are introduced to access the information
more conveniently. In this way, the interaction with the blind user is more efficient and
effective. The voice-over introduces a guide that guides the blind user to perform the steps
and reach the destination. The structure also allows screen readers to serialize the content
and read the structure in a minimum amount of time.
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3.2. Approach Formal Algorithm Definitions

Definition 1. Query:
The BU-based query q retrieves a set of documents D = {d1, d2 . . . , dn}, which contains

relevant textual information. During the information-seeking journey, the user may issue multiple
queries and may refer to the previously issued query. Hence, multiple issued queries can be
encapsulated in a set Q = {q1, q2 . . . , qn}.

Definition 2. Multimodal Queries:
The Q may comprise Textual query Qt and Acoustic Query Qa. Both Qt and Qa ac-

cept multiple keywords as a set K = k1, k2 . . . , kn. Moreover, the query may also incorporate
Boolean operators (AND, OR, NOT). Hence, the formation of a query may take the form of
k = k1(AND ‖ OR ‖ NOT)kn.

Definition 3. Retrieved Documents:
The d is considered as a tuple containing associated information d = td, ud, di, where td is the

title of a document, ud is the URL of the document and di is the document description. This can be
formalized as {t d, ud, di} ∈ d ∈ D.

Definition 4. Document Groupings:
In D, each unordered pair i.e., {dn−1, dn} underpasses through statistical methods to form

multiple groups g considering a threshold γ. Let a set of groups G = {g1, g2, . . . , gn} and each gn
is a tuple-containing document gn = {d1, d2, . . . , dn}. However, all gn documents contains unique
dn; therefore, gn−1 �= gn.

Definition 5. Tree Data Model:
Formally, a document tree DT is a pair containing nodes N and edges E given as T = (N, E).

In the set of nodes N = {n1, n2 . . . , nn}, each n represents the title of documents. For the set of
edges E = {e1, e2 . . . , en}, each e represents weighted edges between nodes.

Definition 6. Categorical Data Model:
The categorical data model interacts with the k-array tree data model to generate hierarchies

H = {T1, T2 . . . , Tn}. A similarity measure SMy is applied on each Tn to arrange the hierarchies
in descending order of similarity to Q. This can be formalized as H′ ={∀(Q, Tn)||SMy(Q, Tn) >
SMy(Q, Tn−1)}, where y is a similarity threshold value.

The notable distinction in the proposed categorical model is the prevention of over-
lapping hierarchies since the existing literature criticizes overlapping as being difficult to
interpret, especially when documents belong to multiple branches or categories within the
hierarchy [31]. This can make it challenging for users to understand the structure and locate
relevant documents [32]. Furthermore, as the hierarchy grows, navigation and management
become more challenging [33]. Hence, the decisive hierarchical structure was chosen to
ensure that the form hierarchies are easier to interpret, able to handle high-dimensional
data, demonstrate simplicity and high speed, good accuracy, and the capability to produce
rules for clear and understandable human classification. To further enhance navigation
within the proposed model, the cognitive rule is applied to display several categories where
{∀T ∈ H′ → |T| = 7∓ 2}.
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Algorithm 1 Algorithm for querying and retrieving documents.

Input:User QueryQ
Output:Retrieved DocumentsD
FunctionQuery (Q):

ifmodality(Q) != String then
Q =MultimodalQueries(Q);

end
query = extract_keywords(Q);
documents= fetch_results(query)
return documents

FunctionMultimodal Queries (Qa):
Qt= extract_keywords(Qa);
returnQt

Function Retrieved Documents (documents):
D = [];
for document in documents do

D.append((title, URL, description = extract_metadata (docu
ment); D.append(tuple(title, URL, description));

end
returnD

3.3. Component-Based Architecture

Architecture is commonly defined as the “fundamental organization of a system em-
bodied in its components, their relationships to each other and to the environment, and
the principles guiding its design and evolution” [34]. The eminent feature of a component-
based architectural design is the separation of concerns [35]. Therefore, the proposed
mechanism employed a component-based architecture, as depicted in Figure 2. The archi-
tecture consists of five components: a web component, a query component, an information
retrieval component, a tree-ranked component, a categorical component, and a blind
exploration component. Each component is restricted to the assigned logic.

Figure 2. Component-based architectural representation of the proposed mechanism.

The web component accesses the textual objects by exploiting the textual modality.
Considering the web documents as textual objects, this component searches the web and
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archives all the documents. The IR component handles all the information retrieval tasks.
The query-based retrieved documents are processed considering their title, content, and
URI. The pre-processor performs parsing and term-processing while generating a logical
view of the query for searching. The tokenizer creates tokens of words from the documents,
which the indexer then uses to create a list by joining the tokens with the keywords. The
indexer creates an inverted index while maintaining and mapping the pointers of search
keywords to the documents. The indexer and term-processing correlate with the stemmer
and stop-word remover. Afterward, the stemmer reduces the inflected words to their
base root, while the stop-word remover eliminates the common words, computing their
high frequency. Finally, the ranker is triggered, which ranks the retrieved and processed
documents based on query relevancy.

Algorithm 2 Algorithm for formation of tree data model.

Input:User QueryQ and DocumentsD
Output:Document TreeTD datamodel
FunctionDocument Grouping (documents, query):

grouping_threshold = JS(query, documents) + SD(JS);
document_group = []; for document in documents do

if (JS(document) > threshold) then
document_group.append(document);

end
end
return document_group

Function Tree Data Model (documents_group, query):
tree= k_array();
_similarity_documents= JS(query, documents_group);
parent_node_document = sorted_similarity_documents.pop();
tree.add_parent(parentnodedocument);
for document in sorted_similarity_documents do

threshold = Mean(sorted_similarity_documents) + SD(JS);
if document == parent_node_document then

tree.append_extra_child(sorted_similarity_documents.pop());
end
else if document > parent_node_document then

tree.append_left(sorted_similarity_documents.pop());
end

Else
tree.append_right(sorted_similarity_documents.pop());
end, end
return tree

FunctionCategorical Data Model (tree):
min_threshold = 5;
max_threshold = 9;
for branch in tree do

if branch.levels() < min_threshold ORbranch.levels() > max_threshold then
tree.remove(branch);

end
end
return tree
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Algorithm 3 Algorithm for overall flow of data model.

model. Input:User QueryQ and DocumentsD
Output:Document TreeTD datamodel
FunctionMain (Q):
D = Retrieved Documents(Query(Q));
G = Document Grouping(D,Q);
DT = TreeDataModel(G,Q);
C = Categorial DataModel(TD);

return C

The document controller applies multiple statistical computations and thresholding
techniques to form groups on the received ranked documents. Each document group is a
non-hierarchical group containing distinctive and unique documents. In each document
group, a linear list is maintained where the document and group rankings are based on
query relevancy and the IR component. The tree data modeling component converts the
disjoint document groups into document hierarchies. Each disjoint document group forms
a hierarchical structure, developing a parent–child relationship among the documents. This
component utilizes several algorithms to form hierarchies and sustain levels of document
hierarchies within a group.

The categorical data modeling component is responsible for processing the document
hierarchies into categories via cognition. Each group’s document hierarchy generates
disjoint categories based on the hierarchy’s top node and query relevancy. Furthermore,
several computations re-arrange the categories in descending order and organize them
on a similarity basis. Moreover, a cognitive rule is applied to categories and reorganizes
them into more relevant and desired web search documents. Furthermore, each category
is divided into sub-categories, and each sub-category contains multiple documents. The
accessible interface component directly links with web and categorical data modeling
components. The document categories are displayed along with navigational information.

The interface component has direct links with web and categorical data modeling
components. The interface visualizes the web search results, highlighting the fact that
this interface design is suitable for all kinds of visually impaired users. The visualization
aids the other visually impaired users to interact with the web, whereas the blind users
can vocally interact with it via assistive technologies. The interface component allows
visually impaired or blind users to search the web via multi-modality queries, i.e., textual
and acoustic queries. It visualizes the interactive categories received from a categorical
component. These categories allow exploration and lookup of web search results, i.e.,
documents. The navigation panel enhances accessibility, allowing users to navigate and
reach the documents based on their information needs.

4. Mechanism Instantiation

A scenario for a blind user to explore web search results instantiates the exploration
mechanism. The instantiation process activates the functionality of the proposed approach
using a pre-defined structure [36]. The instantiation attains the applicative scenario of
the proposed mechanism, eliminating web exploration issues. The following section
elaborates on the dataset, instantiation preliminaries, and implementation of the proposed
exploration tool.

4.1. Dataset

There are various benchmark datasets available for web search documents, including
MSRA, WOS, the Braille dataset (as described in Table 2), and Wikipedia, which have
been extensively adopted by multiple researchers [37]. However, Wikipedia is widely
used among all the datasets due to its large, consumed source of capturing knowledge.
The highly dependable sources during a web search are real-time data. The significance
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of Wikipedia as real-time data involves progress, data updating, analysis, and dynamic
behavior. Therefore, the exploration mechanism is instantiated on a real-time Wikipedia
dataset to attain all possibilities of applicative scenarios. The Wikipedia real-time dataset
contains a bulk of web documents covering a diverse range of domains and topics.

Table 2. Archive various datasets and Tools utilized for experiments.

No. URL Access Date

1. MSRA https://paperswithcode.com/dataset/msra-td500 12 January 2023

2. WOS https://paperswithcode.com/dataset/web-of-science-dataset 12 January 2023

3. braille https://www.kaggle.com/datasets/shanks0465/braille-character-dataset 12 January 2023

4. Wikipedia https://huggingface.co/datasets/wikipedia 12 January 2023

5. Django https://www.djangoproject.com/ 13 January 2023

6. PyCharm https://www.jetbrains.com/pycharm/ 14 January 2023

7. VoiceAPI https://www.twilio.com/docs/voice 15 January 2023

8. PyLucene https://lucene.apache.org/pylucene/ 16 January 2023

4.2. Instantiation Preliminaries

Initially, the user issues a query. The keywords are extracted from the query to retrieve
the documents along with the metadata (as shown in Algorithm 1). Subsequently, data
model processing is performed (as described in Algorithm 2). The categories represent-
ing web search results are formulated via similarity values. These similarity values are
compared with a threshold, i.e., the highest similar document. The Jaccard similarity, i.e.,
J(A, B) = A ∩ B, A ∪ B, is applied to attain the textual modality t = Mean(JS) + SD(JS)
where t is a textual threshold, mean (JS) is the mean of Jaccard similarity up to I times
and SD(JS) is the standard deviation of Jaccard similarity. The textual similarity involves
similarity between document keywords, titles, links, and descriptions, generating a set
of JS including all nodes. The reasons for choosing Jaccard similarity specifically in this
research are numerous. Firstly, Jaccard similarity is robust to outliers since it does not
take the shape of the distributions into account and operates on categorical data, which
is important in accurate document hierarchy generation. Secondly, the Jaccard similarity
forms the hierarchies based on significant overlapping of the documents with minimal pre-
processing requirements (e.g., term frequency/inverse document frequency normalization
and vector sparsity issues). This facilitates rapid real-time hierarchy generation. Thirdly,
Jaccard similarity works closer in spirit to Boolean search than some other text similarity
measures. This is primarily because both Jaccard similarity and Boolean search are based on
set operations and binary (yes/no) logic. Hence, considering BU needs, Jaccard similarity
was deemed a better choice to form the categorical tree data model based on the Miller
cognition rule. The overall flow is outlined in Algorithm 3.

4.3. Implementation

A tool-based WSREB mechanism is implemented to allow blind users to explore web
search results documents. The tool employed the Django framework and Python libraries
via the PyCharm IDE community version 3.7.1, as described in Table 2. The Django web
services are utilized for server applications, while the function initiates document and URL
mapping. The voice API is exploited for acoustic requests, and Apache PyLucene creates
an inverted index of Wikipedia documents.

5. Evaluations

We evaluated the WSREB mechanism to analyze the empirical and usability studies.
The empirical evaluation assesses the theoretical aspects, whereas the usability evaluation
measures the quality and interactivity of the WSREB mechanism-based tool.
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5.1. Empirical Evaluation

The SERB mechanism aims to facilitate the exploration of the categories linear and
non-linearly. This mechanism also provides accessibility in activities of web search results.
Precision is utilized to measure the effectiveness of search results. Precision is calculated
by the relevant search results divided by the retrieved search results. The efficiency and
exploration activities are measured with click-through rates. Hence, the efficiency of the
SERB mechanism is measured via precision, and the exploration activities are evaluated
through click-through rates. Therefore, in the following section, we discuss the participants,
experiment procedure, measures, and experiment results.

5.1.1. Evaluation: Category-based Precision

The empirical evaluation was conducted to measure the efficiency of categories and the
exploration activities of the documents. The comparison of the efficiency of the categories
is based on the two types, which are voice-based categories and text-based categories. The
result is analyzed in a better way. This section depicts the evaluation metric, methodology,
and results.

5.1.2. Evaluation Metric

The evaluation metric measures the efficiency of categories through precision and
comparison of results based on voice and textual queries. The purpose behind the compari-
son is that, as the user is blind, the blind user queries through voice, while textual queries
through a screen reader require effort. The SERB tool provides a voice query as well as a
textual query with interactive categories. The proposed structure for the search results for
the blind user provides a better analysis. Measuring query-based precision is a division of
relevant documents over the retrieved document search results.

5.2. Experimental Setup

The category efficiency measure with the SREB tool is based on retrieved results. The
experiments are processed on an Intel(R) Core (TM)i7-4700MQ CPU @ 2.40GHz equipped
with 16 GB of RAM and a 64-bit operating system. Textual queries are executed to retrieve
the document search results, and data are instantiated in the search results, which are further
used in categories and exploration. The formation of the categories is based on the similarity
relationship; therefore, the categories show the precision of the relationship as well. The
Boolean operators (AND, OR NOT) are also provided for the search. Queries are selected
for the comparisons, both voice and textual. The executed queries are based on multiple
topics. Table 3 shows the query that is executed. The first keyword depicts the query, and
the second keyword depicts the idea or concept of belonging to the first keyword. We
conducted multiple experiments, which included five queries to calculate the precision of
the textual query-based categories and voice query-based categories. Here, we mentioned
that the top 10 (n = 10) results were taken to compute the precision. The MAPc was
calculated by performing five experiments. Similarly, the Precision PR, Average Precision
APv, and Mean Average Precision (MAP) calculated the correctness of the formation of
voice-based categories.

Table 3. Queries selected for the evaluation.

Operators Category B

Animals AND, OR Sea animals, land animals, vertebrates, reptiles
Corona Virus AND, OR Symptoms, cases, countries, vaccine
Imran Khan AND, OR, NOT Prime minister, cricketer, education
Plants AND, OR Photosynthesis, sunlight, land
Airplanes AND, OR Jet fighters, air force
Roses AND, OR Red, region
Sports AND Games
Wonders of the World AND Countries
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5.3. Reachability Evaluation

Reachability evaluation is the evaluation of the navigation and exploration activities
and the reachability of the results measured via click-through rates (CTRs). The computation
of the reachability of blind users is based on the queries. The click-through rate serves as
a measure of reachability. Hence, reachability is defined as the number of clicks required
to search from the source to the destination. The CTRs calculate the document search
results using voice and textual queries. The path of the CTRs is from the source node to the
destination node. The formula for the CTRs is calculated by Equation (1).

RCTRe (|Si→Di|) = number of clicks (Si→Di) (1)

In this formula, RCTRe is the reachability via CTRs of the exploration activities, |Si|
is represented as the source node, and |Di| is represented as the destination node in
the document search results. The average reachability is measured on the set of the
query divided by the total number of queries. The formula of the average reachability is
measured as:

ARCTex (|Si→Di|) = ∑i = 1
nRCTex (|Si→Di|) (2)

Here, the ARCTex is the average reachability of the exploration activities, i is the ith
experiment and N is the total number of the experiments. The MARCTex is calculated
as the number of queries divided by the total number of experiments and calculated by
Equation (3) as:

MARCTex (|Si→Di|) = ∑i = 1
nRCTex (|Si→Di|) (3)

5.4. Usability Evaluation

This questionnaire is utilized to measure the quality of the interface, satisfaction,
system usefulness, and information about the system. Nineteen questions are involved to
measure the usability, and the scale begins from 1 to 7, which depicts strongly disagreeing
to strongly agreeing. The results are shown in Table 4, which summarizes the score of the
CUSQ, which covers the interface screen, system information, and terminology, along with
the learning and capabilities of the system in a broader range.

Table 4. User’s CUSQ Evaluation Overall Satisfaction (Overall), System Usefulness (Usefulness),
Information Quality (Info. Qua.) and Interface Quality (Inter. Qua.).

Blind Users Overall Usefulness Info Qua Inter Qua Avg Score

BU1 5.62 5.18 5.62 5.98 5.6 0.8

BU2 5 4.72 5 5.2 4.98 0.71

BU3 5 5.18 5.10 5.13 5.10 0.72

BU4 5.62 5.54 6.9 7.15 6.3 0.9

BU5 5.37 5.18 5.1 5.8 5.3 0.75

BU6 5.25 5.3 5.2 5.4 5.2 0.74

BU7 4.62 4.63 5.0 5.6 4.9 0.7

BU8 4.37 5.1 5 6 5.1 0.72

BU9 5 4.1 4.8 5.1 4.7 0.67

BU10 3.62 3.90 4 5 4.13 0.59

BU11 4.37 4.7 5.1 5.8 4.9 0.7

BU12 5 5 5 6 5.2 0.74

BU13 5.5 4. 3.89 4.5 4.6 0.65

BU14 3.62 5.1 5.0 5.6 4.8 0.68

BU15 5.12 5.5 5.1 5.8 5.3 0.75
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Table 4. Cont.

Blind Users Overall Usefulness Info Qua Inter Qua Avg Score

BU16 6 5.2 5 6 5.5 0.78

BU17 5.3 5.6 5.3 5.8 5.5 0.78

BU18 5.08 5.3 4.8 5.1 5.0 0.71

BU19 5.6 5.0 4.85 5.2 5.1 0.72

BU20 5.6 5 4.9 5.6 5.2 0.74

BU21 4.6 4.8 4.5 5 4.7 0.67

BU22 5.5 4.8 4.5 5 4 0.57

BU23 5.2 5.6 5.1 5.8 5.4 0.77

BU24 5.2 5.8 5.0 5.6 5.4 0.77

BU25 6.12 5.0 4.58 5.3 5.2 0.74

Avg 5.09 5.0 4.97 5.53 5.08 0.69

Score 0.7 0.71 0.71 0.79 0.72 0.78

The score shows the overall usability of the SERB tool is 78%, which is good. The
usefulness of the system is 70%, whereas the information quality is 71%. The interface
quality is also at 71%. This shows that the overall usability of the SERB tool for blind users
is satisfactory.

6. Results and Discussions

Figure 3 shows the results presented in the categories based on voice and textual
queries. In the first experiment, the voice-based categories were more efficient as compared
to text-based categories. In the second experiment, the textual queries showed better
results than the voice queries. The third experiment depicted that textual-based categories
and voice-based categories show a minimal difference. The fourth experiment shows the
results are similar, both with textual-based categories and voice-based categories. The fifth
experiment shows that the voice-based categories show more efficient results as compared
to the textual-based categories. The calculated results of voice-based categories and text-
based categories are presented in Table 5. The conclusion of the five experiments is that the
category’s MAPc for the textual-based categories is 84 percent, whereas the voice-based
categories MAPc is 86%. These results show that blind users can efficiently explore and
access the categories with voice. Exploring the categories with voice enables blind users to
enhance the search and explore the search results.

Figure 3. Efficiency comparison of categories based on textual and voice search results.
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Table 5. Precision of categories with textual and voice query results (experiments, Query, Categories’
Precision (Pc), Categories’ Average Precision (APc), Voice query Precision (Pv), Voice query Average
Precision (APv).

Experiments Query Pc APc Pv APc

1

Qry1
Qry2
Qry3
Qry4
Qry5

1
1
1
0

0.4

0.68

0.8
0.4
1
1
1

0.84

2

Qry1
Qry2
Qry3
Qry4
Qry5

1
1

0.8
0.6
1

0.88

1
1

0.6
1

0.3

0.78

3

Qry1
Qry2
Qry3
Qry4
Qry5

1
1
1

0.84
1

0.96

1
1
1

0.90
0.82

0.94

4

Qry1
Qry2
Qry3
Qry4
Qry5

1
0.4
0.8
1
1

0.84

1
0.43

1
1

0.8

0.846

5

Qry1
Qry2
Qry3
Qry4
Qry5

1
1

0.75
0.63

1

0.876

0.90
1
1

0.74
1

0.928

MAP 0.84 0.865

The reachability is built on the CTR results taken from the source node to the desti-
nation node against the query. The raking list is considered from the source node to the
destination node of the document search results. Figure 4 shows the average results of
the CTR for each experiment that is conducted. The ARCTR of the experiments is 6.5, 7,
6.9, 6, and 7.9 to reach the results of the documents at the position that is defined by the
exploration mechanism of the SERB tool. The results of the MARCTRe of all experiments
in numbers are 6.86. It depicts that approximately seven clicks are used to reach the des-
tination results at a certain ranking position. The ARCTR of the experiments is 5, 6, 5.9,
6.5, and 6 to reach a certain position of the documents defined by the mechanism of the
SERB tool. The MARCTR of the experiment is 5.88, which means five clicks are required to
reach the destination results of the documents at a certain ranking position. The results
depict that the voice query is efficient and reduces the number of clicks that are feasible for
reaching the destination. Hence, the proposed approach presents various implications, as
provided in Table 6 for BUs. These applications demonstrate the versatility and potential
impact of AI-driven content summarization in enhancing BUs’ access to information across
various domains. By automating the process of distilling essential information, this tech-
nology can empower blind BUs to navigate, understand, and engage with online content
more effectively.
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Figure 4. Query-based reachability results.

Table 6. Potential applications of AI-driven content summarization for BUs.

Application Description

Web Content Summarization Automatically generate concise summaries of web articles, blog posts, and news
articles, aiding BU efficient content consumption.

Academic Material Summarization Summarize lengthy academic papers, research articles, and textbooks, enabling BUs to
grasp key concepts and findings without reading every detail.

Document Summarization Generate summaries for various document types, including contracts, legal
documents, and manuals, making complex information more accessible to BUs.

Email and Communication Summarize lengthy emails, communication threads, and documents shared
electronically, allowing BUs to manage correspondence more effectively.

News and Updates Aggregation Automatically extract essential details from multiple news sources, presenting BUs
with concise and timely updates on current events and topics.

Educational Content Summarization Summarize educational videos, lectures, and online courses, helping BUs grasp the
main concepts and lessons without needing to watch or read the entire content.

Navigational Assistance Summarize navigational instructions, maps, and directions, providing BUs with
concise guidance for travel and navigation.

Technical Documentation Condense technical manuals, user guides, and documentation for software and
hardware, aiding BUs in understanding and troubleshooting complex systems.

Social Media and Posts Summarize lengthy social media posts, threads, and comments, enabling BUs to
engage with online discussions more efficiently.

Personalized News Feeds Provide BUs with tailored news summaries based on their interests and preferences,
helping them stay informed without being overwhelmed by content.

6.1. Computational Analysis

The WSREB mechanism involves several components, including querying, document
retrieval, grouping, hierarchical and categorical data modeling, and interface interactions.
Each of these components may have its own computational complexity and calculated
as follows:

◦ Querying and document retrieval might have a complexity of O(n) where n is the
number of documents retrieved.

◦ Grouping and statistical methods could contribute additional complexity.
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◦ Hierarchical and categorical data modeling might involve tree traversals, which could
be O(log n) for balanced trees, or even O(n) in the worst case if not properly optimized.

◦ The interface interactions may have constant time complexity (O(1)). Considering
the interplay of these components, the overall complexity of the WSREB mechanism
could be quite complex and not easily reducible to a single Big O notation.

6.2. Theoretical and Practical Implications of the Framework

Traditionally, the existing information systems presented the search results as ranked
snippets that compel BUs to sift through information sequentially, resulting in time-
consuming searches and potential disorientation. The struggle intensifies due to the
deficiency of navigational aids designed with BUs in mind. To overcome this challenge, we
proposed a theoretical framework that categorically organized the search results space as
hierarchies. To determine the effectiveness of the proposed framework, we conducted a
thorough empirical and usability evaluation yielding satisfactory results. The proposed
approach provided promising results in allowing BUs to effectively browse the relevant
information and with each step get closer to the required information logarithmically.
The implications of the proposed approach are diverse, especially when augmented with
Artificial Intelligence (AI).

Potential applications of AI-driven content are summarized for BUs in Table 6. Specifi-
cally, instead of integrating the search results, the proposed framework can incorporate
AI-based summarized documents. This especially can aid academic users in summarizing
and organizing the academic literature. While the traditional information system can be
challenging for BUs to decipher using screen readers, potentially leaving them with an
incomplete understanding of the webpage’s content, the proposed framework allows BUs
to formulate their search journey and navigate via voice commands.

Assistive technologies, such as screen readers and voice assistants, are available to
aid BUs in navigating the web. However, not all websites are compatible with these tools,
and their limitations may hinder a seamless experience. The cumulative cognitive load of
listening to synthesized speech, processing information, and navigating can lead to mental
fatigue for BUs. In response to these challenges, we devised our approach conforming to
the cognitive needs of the BUs. Ultimately, the goal is to create a digital environment that
accommodates the diverse needs of individuals, ensuring equal access to information and
participation for all, regardless of visual ability.

7. Conclusions

In conclusion, the present era mainly relies on web search as the primary means of
accessing information. Within this context, blind users (BUs) constitute a significant portion
of web users. Despite recent technological advancements in web search mechanisms, BUs
continue to face difficulties in accessing online services, leading to approximately 53%
success of the search sessions. These challenges can be attributed to inherent shortcomings
in information organization mechanisms on the web. Notably, BUs interact with infor-
mation linearly, having to sequentially determine the relevance of content, resulting in
cognitive strain and time consumption, ultimately leading to information disorientation.
Therefore, in this research, we investigated a non-linear information exploration mecha-
nism for BUs. The categorical data model interacts with the tree data model to generate
hierarchies based on the similarity threshold. We leveraged the multimodal (textual and
voice) interaction of the BUs for searching on the web using the Wikipedia dataset. The
efficacy of the proposed mechanism was evaluated from empirical and usability perspec-
tives. The empirical evaluation showed 84% and 86.5% for the categorical precision and
voice query precision, respectively. The behavioral analysis showed the accessibility of the
search results within five clicks on average. Table 7 describes the potential future directions
of the proposed system.
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Table 7. Potential future directions for AI-driven content summarization.

Future Work Description

Enhanced Abstractive Summarization
Develop more advanced abstractive summarization techniques that can generate
summaries with higher coherence and readability. Incorporate contextual understanding
and style mimicry.

Customizable Summary Length Allow users, including blind users, to specify the desired length of the summary based on
their preferences and reading capabilities.

Multilingual Summarization Extend AI-driven summarization to support multiple languages, enabling blind users to
access content in their preferred language.

Domain-Specific Summaries Create specialized summarization models for various domains (e.g., scientific literature,
news, legal documents) to cater to diverse informational needs.

Adaptive Summarization Develop algorithms that adapt summarization based on user feedback, continually
improving the quality of generated summaries for blind users.

Real-time Summarization Implement summarization techniques that can generate summaries in real-time, enabling
immediate access to key information as blind users navigate the web.

Integration with Assistive Tools Integrate AI-generated summaries seamlessly with screen readers and other assistive
technologies commonly used by blind users.

Cross-Modal Summarization Explore generating summaries not only in text but also in alternative formats, such as
audio summaries, to accommodate varying accessibility preferences.

Evaluation with
Blind Users

Conduct thorough user studies and evaluations involving blind users to assess the
effectiveness, usability, and impact of AI-driven content summarization.

Privacy-Aware Summarization Develop techniques that generate accurate summaries while respecting user privacy,
ensuring sensitive content is not exposed in the summary.

Hybrid Approaches Combine extractive and abstractive summarization methods to leverage the strengths of
both approaches for improved accuracy and readability.

The usability evaluation covering the interface screen, system information, and termi-
nology, along with the learning and capabilities of the system in a broader range, showed
an overall 72.5% usability score. While this research focused on architectural aspects of
BU web exploration, in the future, we are interested in investigating the effectiveness of
the proposed approach in various instantiation tools such as deep learning and in a stan-
dalone service environment that can be embedded in voice-activated assistive technologies.
Furthermore, we are also interested in performing a comparative analysis of the existing
BU information exploration assistive tools for a detailed investigation of BU information
exploration behavior.
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