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Preface

The ever-evolving landscape of maritime science and engineering continually challenges

researchers to explore innovative methodologies and cutting-edge technologies. In the pursuit of

safer and more efficient maritime operations, scholars worldwide have embarked on comprehensive

investigations, the results of which are compiled in this remarkable collection of papers.

In the first paper, “A Semantic Network Method for the Identification of Ship’s Illegal Behaviors

Using Knowledge Graphs: A Case Study on Fake Ship License Plates,” authors Wan, Fu, Zhang,

and Xiao introduce a pioneering approach that employs knowledge graphs to detect illicit activities

related to ship license plates. Their method opens up new avenues for enhancing maritime security

and law enforcement.

The second paper, “Leverage Bayesian Network and Fault Tree Method on Risk Assessment

of LNG Maritime Transport Shipping Routes: Application to the China–Australia Route,” authored

by Chang, He, Fan, Guan, and He, addresses the critical issue of risk assessment in LNG maritime

transport. By merging Bayesian networks and fault tree analysis, the authors present an innovative

solution for assessing the safety of shipping routes, particularly the China–Australia route.

In the third contribution, “Online Estimation of Ship Dimensions by Combining Images with AIS

Reports,” Huang, Hu, Lu, Mei, and Yang propose a novel approach for estimating ship dimensions

by combining image data with Automatic Identification System (AIS) reports. This methodology has

significant implications for real-time vessel tracking and maritime surveillance.

The fourth paper, “Probabilistic Modeling of Maritime Accident Scenarios Leveraging Bayesian

Network Techniques,” by Liao, Weng, Zhang, Li, and Li, explores the application of Bayesian network

techniques to model maritime accident scenarios. By adopting a probabilistic framework, the authors

offer a valuable tool for improving maritime safety and accident prevention.

In the fifth paper, “A COLREGs-Compliant Ship Collision Avoidance Decision-Making Support

Scheme Based on Improved APF and NMPC,” authors Li, Wang, Wu, and Ni present a collision

avoidance decision-making support scheme compliant with the International Regulations for

Preventing Collisions at Sea (COLREGs). Their work showcases advancements in ship collision

avoidance techniques and navigational safety.

The sixth paper, “A Deep Learning Method for Ship Detection and Traffic Monitoring in an

Offshore Wind Farm Area,” authored by Liu, Hu, Ji, Zhang, and Yu, introduces a deep learning

approach for ship detection and traffic monitoring in offshore wind farm areas. This innovative

technique enhances offshore operations and safety by providing comprehensive monitoring

capabilities.

The seventh paper, “A Ship Route Planning Method under the Sailing Time Constraint,” by Li,

Cui, Zhang, and Yang, presents a ship route planning method that considers the constraint of sailing

time. The authors’ approach aids in optimizing routes for efficient and timely maritime operations.

In the eighth paper, “Parameter Prediction of the Non-Linear Nomoto Model for Different Ship

Loading Conditions Using Support Vector Regression,” Lan, Zheng, Chu, and Ding delve into ship

modeling and parameter prediction. Their work enhances our understanding of ship behavior under

varying loading conditions, contributing to the advancement of maritime engineering.

The ninth paper, “An Intelligent Algorithm for USVs Collision Avoidance Based on Deep

Reinforcement Learning Approach with Navigation Characteristics,” by Sun, Fan, and Wang,

introduces a deep reinforcement learning approach for unmanned surface vehicles (USVs) collision

avoidance. This innovation leverages navigation characteristics to enhance the safety and efficiency

of USV operations.

ix



The collection concludes with the tenth paper, ”Neural Network, Nonlinear-Fitting, Sliding

Mode, Event-Triggered Control under Abnormal Input for Port Artificial Intelligence Transportation

Robots,” authored by Zhu, Zhang, Liu, Hu, and Zhang. Their research explores the intricacies

of control mechanisms for artificial intelligence-based transportation robots in port environments,

highlighting the potential of these robots to revolutionize maritime logistics.

In this compendium, each paper embodies the commitment of the global maritime science

and engineering community to address multifaceted challenges and drive forward the frontiers of

knowledge. These contributions collectively underscore the imperative of continuous innovation

and cross-disciplinary collaboration to ensure the sustainability, safety, and efficiency of maritime

endeavors. We extend our gratitude to the authors for their diligent efforts and to the readers for

their interest in advancing the field of marine science and engineering.

Mingyang Zhang, Xinyu Zhang, Shanshan Fu, Lei Dai, and Qing Yu

Editors
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1. Introduction

Marine navigation is the lifeblood of international trade and the global economy,
facilitating over 80% of worldwide commerce [1]. The maritime industry’s pivotal role in
sustaining global trade cannot be overstated. In a rapidly evolving technological landscape,
intelligent and safe marine navigation has emerged as a critical domain within the maritime
sector [2]. The integration of cutting-edge technologies, including artificial intelligence (AI),
machine learning (ML), and big data analytics, holds the promise of significantly enhancing
the intelligence and safety of ships navigating our oceans [3]. These advances are not only
transforming the ways in which ships traverse vast sea expanses but also revolutionizing
maritime logistics, fleet management, and environmental monitoring [4,5].

With the advent of AI and ML, predictive algorithms are now being employed to
optimize routes, thereby reducing fuel consumption and minimizing the environmental
impact [6]. Big data analytics enables the processing of massive amounts of data from
various sources, such as satellite imagery, oceanographic data, and automatic identification
system (AIS) data, providing insights that were previously unattainable. This convergence
of technology and marine expertise is paving the way for autonomous ships, which promise
to further revolutionize the industry by enhancing efficiency, safety, and reliability [7,8].
Furthermore, the integration of IoT (Internet of Things) devices in maritime operations is
facilitating the real-time monitoring and maintenance of critical ship components, thus
preventing failures and ensuring smoother operations at sea [5]. Cybersecurity, too, has
become a paramount concern, with these technological integrations necessitating robust
security protocols to safeguard navigational and operational data from cyber threats [9].

As we enter this new era of safe, intelligent, and sustainable navigation, it is evident
that the maritime industry is on the brink of a technological revolution [10]. The potential
benefits extend far beyond the shipping companies themselves, impacting global trade and
environmental conservation and even reshaping international regulatory frameworks [11].
In essence, the fusion of technology with traditional maritime practices is not just a trend
but also a transformative movement, setting the course for a more efficient, safe, and
sustainable future in marine navigation.

2. An Overview of the SI and Published Articles

In response to these transformative developments, the Journal of Marine Science and
Engineering (JMSE) proudly presents this Special Issue (SI), entitled “Recent Developments
and Knowledge in Intelligent and Safe Marine Navigation”. This SI serves as a platform to
showcase original contributions that explore and apply emerging and frontier technologies
to bolster the intelligence and safety of operational ships in real-world conditions.

J. Mar. Sci. Eng. 2023, 11, 2303. https://doi.org/10.3390/jmse11122303 https://www.mdpi.com/journal/jmse
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This SI brings together a collection of research papers that not only contribute to
academic discourse but also have substantial practical relevance to the maritime industry.
The insights and innovations presented within this SI are vital to ensuring the continued
advancement of intelligent and safe marine navigation. The contributions discuss recent
developments on big data analytics and big data fusion for ship detection (contributions
3 and 6); ship-to-ship collision avoidance using deep reinforcement learning approach
(contributions 5 and 9); navigation risk evaluation (contributions 2 and 4); ship system
identification for the development of digital twins of autonomous ships (contribution 8);
intelligent route planning (contribution 7); and artificial intelligence transportation robots
(contribution 10). These methods draw from a confluence of expertise, merging insights
from ship science, big data science, AI, and their interdisciplinary interactions. Expanding
on this knowledge, this SI also delves into the realm of advanced environmental monitoring
techniques, leveraging AI to predict and mitigate the impacts of maritime activities on
marine ecosystems (contribution 8). It further explores the integration of IoT and sensor
networks for enhanced shipboard/offshore monitoring and diagnostics (contribution 3),
with potential to enhance predictive maintenance and operational efficiency. Additionally,
this SI addresses the critical aspect of cybersecurity/fake ship license plates (illegal ship
behaviors) in maritime operations (contribution 1), providing novel strategies that can
be employed to protect sensitive navigational and operational data in an increasingly
connected and digitalized maritime environment. It also includes case studies and reports
on real-world applications, highlighting the practical implementation of these technologies
in various maritime settings. These studies provide invaluable insights into the challenges
and successes of integrating high-tech solutions in the dynamic and often unpredictable
marine environment.

3. Conclusions

This SI, “Recent Developments and Knowledge in Intelligent and Safe Marine Naviga-
tion”, stands as a testament to the innovative spirit and forward-thinking approach of the
maritime industry. It encapsulates a diverse array of research and developments that are
not only pushing the boundaries of maritime science but also exploring a potential course
for safer, more efficient, and sustainable marine navigation in the future.

We are greatly appreciative of the authors who have contributed their original re-
search to this SI. Their commitment to enhancing marine navigation technology is clearly
reflected in the quality and innovation of the papers they have presented. This collection
demonstrates the collective efforts being undertaken to improve safety, intelligence, and
sustainability in our oceans. This SI is more than a collection of academic papers; it is
a hub where innovative ideas and transformative technologies in the maritime domain
meet. Each contribution enriches our understanding of maritime science and expands the
possibilities of marine navigation and safety. We encourage readers and researchers from
across the world to explore the articles published in this SI. Whether you are a professional
in the industry, an academic, or an enthusiast in marine science and engineering, these
pages offer a wealth of knowledge and inspiration. The research and practical applications
presented here are likely to shape the future of maritime navigation and safety.

In essence, this SI reflects the ongoing progress in this field and serves as an indicator
of the potential for a more informed, efficient, and environmentally mindful maritime
future. We anticipate that the insights offered in this collection will inspire further re-
search, collaboration, and innovation globally, contributing to the ongoing advancement of
intelligent and safe marine navigation.

Author Contributions: Conceptualization, M.Z.; writing—original draft preparation, M.Z.; writing—
review and editing, M.Z., X.Z., S.F., L.D. and Q.Y.; funding acquisition, X.Z., S.F., L.D. and Q.Y.; All
authors have read and agreed to the published version of the manuscript.
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Abstract: With the advancement of intelligent shipping, current traffic management systems have
become inadequate to meet the requirements of intelligent supervision. In particular, with regard
to ship violations, on-site boarding is still necessary for inspection. This paper presents a novel ap-
proach for enhancing ships’ management and service capabilities through scientific knowledge graph
technology to develop a ship knowledge graph. The proposed approach extracts key characteristics
of ship violations from the ship knowledge graph, such as monitoring ships, expired ship certificates,
multiple ship tracks, inconsistent ship tracks with port reports, and ships not reported to the port
for a long time. Combining the characteristics of ship violations, the approach uses reasoning and
identification techniques to detect specific instances of falsely licensed ships and other violations. The
development of the ship knowledge graph analysis system enables the identification and verification
of illegal ships using fake license plates, while also improving the effective utilization of maritime
data and enhancing the ability to make informed decisions related to ship safety. By leveraging
cognitive approaches and knowledge graphs, this study offers the potential to develop an intelligent
decision-making system for maritime traffic management.

Keywords: ship knowledge graph; illegal behavior; fake ship license plates; decision-making;
traffic management

1. Introduction

1.1. Background

With the advancement of intelligent shipping, traditional maritime supervision sys-
tems such as ship automatic identification systems, ship traffic management systems, very
high frequency (VHF) wireless, and ship video supervision systems have become inad-
equate to meet the requirements of intelligent supervision. These systems are unable to
achieve the safety supervision purpose of wide area coverage, intelligent decision-making,
and rapid response [1,2]. In particular, with regard to ship violations, on-site boarding is
still necessary for inspection. The current practice of comparing the automatic identifica-
tion system (AIS) dynamic information of the inspected ship with the AIS information on
the maritime supervision platform through manual identification, to identify the ship as
abnormal or violating if it does not match, is time-consuming and inefficient for timely and
accurate maritime supervision [3,4]. Moreover, challenges such as irregular and renamed
ship names, diverse configurations of ship AIS equipment, multiple ships with one nine-
digit code or one ship with multiple nine-digit codes [5,6], and irregular encoding of ship
nine-digit code information also present significant obstacles to the precise detection of
ship violations [7,8].
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Currently, research on identifying ship’s illegal behaviors primarily focuses on ship
traffic management. Liu and Tian [9] introduced a traditional method for analyzing and
discriminating AIS ship data to identify illegal coding problems of ship AIS equipment, with
a single recognition target and low performance. Rong et al. [10] proposed a new method
for automatically identifying ship collision avoidance behavior from ship trajectories
using AIS trajectory data, and the data source is relatively small and fails to consider more
comprehensive factors, resulting in insufficient reliability and accuracy of identification [11].
Kaluza et al. [12] elaborated on the attribute characteristics of key ship data in maritime
data according to different ship uses and stowage methods, focused on the data attributes
themselves and failed to attempt to explore the association relationships between attributes.
Veenstra et al. [13] proposed a framework for port sensing and computing based on
maritime big data. While this method uses multi-source data, such as ship GPS tracks, ship
attributes, port geographic information, and port facility parameters to construct maritime
big data, it still relies on system-level data analysis. Acharya et al. [14] used spatial
clustering to identify accident-prone areas, analyze the causes of accidents, and develop
risk prevention and control strategies based on maritime accident data, but did not consider
other dimensions to make comprehensive assessment decisions. Fu et al. [15] proposed
an object-oriented Bayesian network model to quantitatively assess the risk of maritime
accident scenarios in ice-covered Arctic waters concerning human and organizational
factors. Similarly, Kehrer and Hauser [16] reviewed visualization for multifaceted scientific
data and visual analysis techniques but did not use knowledge graphs as visual objects.

This analysis of the literature shows that the identification of violations in multi-source
maritime ship data is predominantly based on the manual matching of information. Re-
search methods for processing before data analysis are also mostly conventional, and the
source data used for data analysis are relatively homogeneous, failing to analyze the behav-
ior of ships comprehensively. Most research on maritime mass data focuses on the attribute
characteristics that can be directly reflected by the data themselves, failing to explore the
potential behavior of ships under big data. Although research on ship applications based
on maritime data is relatively abundant, the functions are often similar and discrete, leading
to issues such as the homogeneity of ship behavior analysis and inconsistency of analysis
points. Currently, research on ship multi-source data processing and behavior analysis
based on knowledge graph technology is lacking, especially regarding the application
research on ship knowledge graph construction, ship violation analysis, and identification
for maritime ship data [17,18]. Given the rapid development of shipping technology driven
by new technologies such as big data, the Internet of Things, and artificial intelligence,
the need for intelligent transformation and development of water traffic management and
services has become more pressing. It is necessary to conduct in-depth research on the
innovative application of maritime data combined with new technologies.

To improve the effectiveness of ship management and services, this study proposes an
innovative approach that constructs a ship static and dynamic relationship graph based on
multi-source maritime ship static and dynamic data. The study analyzes the correlation
relationship between ships, extracts ship behavioral features, and comprehensively reasons
and identifies ship violations using these features. The proposed method is validated
through a practical case study, which demonstrates the feasibility and effectiveness of the
knowledge-graph-based approach for identifying ship violations. This method integrates
maritime multi-source data to achieve universal ship knowledge graph modeling. Based
on violation behavior rules, graph inference technology is used to efficiently determine ship
violations, improving the efficiency of ship behavior judgment, and offering the potential
to develop an intelligent decision-making system for maritime traffic management.

1.2. The Definition of Ship Illegal Behavior

The term “ship violations” generally pertains to ship-related behaviors that contravene
the stipulations outlined in the Maritime Traffic Safety Law of the People’s Republic of
China. These behaviors can include violations of ship and marine facility management
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orders, crew management orders, navigation, berthing, and operational management
orders, dangerous goods carriage safety supervision and management orders, and marine
search and rescue management orders, as well as marine traffic accident investigation and
handling orders [4,19–21]. The definitions of several illegal behaviors are listed as follows:

• Speed violation: a ship sailing at a speed exceeding the prescribed speed, including
speeding or not complying with speed restrictions in a specific area;

• Improper navigation rules: the failure of a ship to follow the prescribed navigation
rules, such as failure to follow the navigation guidelines, or failure to comply with the
rules for crossing ships;

• Unqualified seaworthiness safety inspection: the ship’s seaworthiness certificate in-
formation is incomplete or abnormal, the navigation safety equipment is incomplete or
defective, and the ship fails to pass the maritime ship safety inspection, and is deemed
unseaworthy;

• Violation of maritime management requirements: the failure of a ship to comply
with maritime safety management requirements during navigation, such as ship
misregistration, AIS closure, failure to report port, failure to maintain appropriate
ship spacing, failure to comply with navigation signs and signals, and failure to take
appropriate collision prevention measures;

• Improper use of communication and navigation equipment: the failure or incorrect
use of communication and navigation equipment by ships during navigation, such as
navigation radio communication and navigation equipment, satellite communication
and navigation equipment, radar, or GPS.

This article, however, focuses specifically on the issue of fake ship license plates, which
constitute a breach of navigation, berthing, and operational management orders [22,23].
Utilizing a fake license plate involves the unlawful use of the same ship name and number
belonging to another or the use of a canceled ship name and number painted on a new,
renewed, modified, or purchased ship without approval. These fake ship license plates
are used under the guise of legitimacy with the intent of deceiving others. To counter this
problem, the Ministry of Transport and Communications has been actively working to
combat the use of fake ship license plates. In line with this, the maritime department has
been exerting significant pressure to suppress illegal acts of licensing of ships.

2. Method

2.1. Framework

This research focuses on the data object associated with maritime ships, encompassing
both static and dynamic data. The research process involves three key aspects: stage 1 per-
tains to processing ship data, while stage 2 involves the construction of a knowledge graph
model related to ships. Finally, stage 3 centers on the application of the ship knowledge
graph, as shown in Figure 1. The research process can be distilled into three main stages:

• Stage 1: Data and processing. Ship data processing is necessary due to the hetero-
geneity of data from multiple sources and issues such as redundancy, anomalies,
irregularities, and other paradigmatic problems. Data pre-processing techniques in-
cluding data de-duplication, data noise reduction [24], data supplementation, data
fusion, and other methods are utilized to address these challenges;

• Stage 2: Ship knowledge graph modeling (takes center stage). This involves using
knowledge graph technology and the maritime supervision business model to es-
tablish ship graph semantic rules and achieve the semanticization of the ship data
graph [25,26]. Entity extraction and relationship extraction methods are employed
to transform triadic data structures [27]. At the same time, knowledge fusion and
denotation disambiguation techniques are utilized to complete the construction of
the ship static graph [28]. The construction method of the ship knowledge graph in
this study has significant innovative advantages in understanding actual business
rules, integrating professional knowledge in the field, automating data updates, and
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providing powerful query interfaces. It better meets actual business needs, improves
reliability and operability. Subsequently, based on AIS data and the definition of ship
violations, calculations are made for ship violation features such as monitoring key
ships, expired ship certificates, inconsistent ship tracks with reported ports, multiple
ship tracks, and ships that do not report ports for extended periods [29]. These calcu-
lated violation features, in combination with the ship name graph identified through
on-site inspections, are used to infer ship licensing violations, ultimately leading to
the creation of a complete ship knowledge graph that integrates both dynamic and
static data [30,31];

• Stage 3: The application and validation of the ship knowledge graph. Using fused
regional ship static and dynamic graphs, E-chart technology is used to conduct graph
analysis and display ship violations [32]. The feasibility of the method is then verified
by combining it with actual cases.

Complete ship  
data

Stage 1: Data processing

Stage 2: Knowledge graph modelling

Stage 3: knowledge graph application

Ship static 
data Step 1: Data de-duplication

Step 2: Data noise reduction

Step 4: Data fusionShip dynamic  
data

Maritime 
business data

Ship 
violations

Step 5: Semantic Design

Ship knowledge 
graph

Fake ship license 
plate judgment

Step 6: Ontology construction

Step 7: Entity linking

Step 8: Ship behavior feature 
extraction

Step 9: Ship fake license plate 
inference

Ship graph 
semantic rules

Ship static graphShip AIS

Step 3: Data filling

Figure 1. Research framework of the identification of ship’s illegal behaviors using knowledge graph.
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2.2. Data and Processing
2.2.1. Data Origin

This study area mainly focuses on the identification of illegal behaviors of fake ship
license plates based on the ship’s knowledge graph. The main task is to study the construc-
tion of the ship’s knowledge graph and identify the fake ship license plate behaviors. The
primary data involved are the static data of ships in maritime management and the dynamic
business data of maritime supervision. The dataset includes basic ship information, ship
company information, key tracking ship information, ship nationality certificates, ship
entry and exit reports, ship violation inspection data, and ship AIS information [33–35], as
shown in Table 1.

Table 1. Data source.

Dataset Information

Basic ship information Ship number, Chinese and English names of the ship, ship type, ship length, ship tonnage,
ship owner, ship registration location, ship location, ship status.

Ship company Serial number, Chinese and English names of the ship, legal representative, telephone number.

Key tracking ship
Tracking number, ship registration number, Chinese and English names of the ship, port of

registry, MMSI, tracking reason code, tracking reason name, and date of creation, among others;
these data mainly have data redundancy and missing data.

Ship nationality certificates Ship number, Chinese name of the ship, MMSI, owner of the ship, contact number, starting
validity, expiry date, registration authority, certificate printing number.

Ship entry and exit reports

Ship number, ship registration number, Chinese and English names of the ship, MMSI, ship type,
gross tonnage, net tonnage, gross engine power, passenger capacity, ship length, beam, depth,
ship owner, port name, port number, type of port, name of port, reporting time, berthing code,

berth of call, actual cargo volume, local port volume, goods, passenger.

Ship violation inspection Inspection number, inspection code, inspection content, inspection results, problems, description.

Ship AIS MMSI, Chinese and English names of the ship, heading, course, speed, longitude, latitude, draft,
received time.

• Basic ship information comprises essential ship data such as ship number, Chinese
and English names of the ship, Maritime Mobile Service Identify (MMSI), nationality,
ship type, and initial registration number [36]. The main issues with these data are
data redundancy, data noise, and data being missing;

• Ship company information encompasses the shipowner’s company serial number,
Chinese and English names of the company, legal representative, and contact telephone
number, among other details. These data mainly have data ambiguity issues;

• Key tracking ship information includes tracking number, ship registration number,
Chinese and English ship names, port of registry, MMSI, tracking reason code, tracking
reason name, and date of creation, among others. These data mainly have data
redundancy and missing data;

• Ship nationality certificate data includes ship registration number, Chinese name of
the ship, MMSI, owner of the ship, contact number, starting validity period, expiry
date of the certificate, registration authority, and certificate printing number, among
other key details. The main issue with these data is missing data;

• Ship entry and exit report data is comprised of ship identification number, ship reg-
istration number, Chinese and English ship names, MMSI, ship type, gross tonnage,
net tonnage, gross engine power, passenger capacity, overall ship length, beam, depth,
ship owner, port name, port number, type of port of entry/exit, name of next port,
reporting time, berthing code, berth of call, actual cargo volume, local port unload-
ing/loading volume, actual dangerous goods volume, local port unloading/loading
dangerous goods volume, actual passenger volume, local port drop-off/pick-up vol-
ume, actual vehicle volume, local port unloading/loading vehicle volume, number
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of barges, local port unloading/loading barges, actual container volume, local port
unloading/loading container volume, and other relevant information. The main issue
with these data is data noise;

• Ship violation inspection information comprises data such as the supervision and
inspection number, inspection content code, inspection content, inspection results,
violations or problems found, and description of violations or problems. The main
issues with these data include missing data and data ambiguity;

• Ship AIS information includes MMSI, Chinese and English ship names, heading,
course, speed, longitude, latitude, draft, received time, and other relevant data points.
The main issues with these data include data noise and missing data.

Duplicate ship names and MMSI mainly characterize the problem of duplicate and
redundant maritime ship data. The problem of ship data noise includes attribute data noise
and spatial data noise. Attribute noise mainly refers to the problem of unclear data features
caused by the complexity of field design. In contrast, spatial data noise mainly refers to
the problem of data features not being displayed and data spatial anomalies caused by
large amounts of data. The problem of missing ship data mainly includes features such as
MMSI and trajectory being missing. The ambiguity problem of ship data is mainly caused
by inconsistent information such as the ship’s ownership company, ship contact person,
and communication address. Based on the knowledge graph of ships, identifying illegal
behavior of ship deck rigging may pose a threat to the safety of ships and may also pose a
threat to the safety of crew members. The behavior judgment process requires collecting
and processing a large amount of ship and crew information, which may involve personal
privacy and require measures to protect it.

2.2.2. Data Processing

Ship data pre-processing is a key step for accurate and efficient data mapping transfor-
mation, analysis, and application. The principle of data processing starts with removing
abnormal data and updating supplementary data as much as possible. The pre-processing
methods used include data de-duplication, data noise reduction, data filling, and data
fusion, as shown in Figure 2. The following are specific descriptions of these steps.

Step 1
Date de-duplication

Step 2
Data noise reduction

Step 3
Data filling

Uniquely identified 
ship dataMarine vessel 

database

Clearer
ship data

Data normalization method
Douglas-Peuker (DP) method

More complete 
ship data

Similar interpolation method
Open interface synchronization method

Step 4
Data fusion

Data ambiguity More comprehensive 
and accurate ship dataData replacement and splicing fusion method

Data noise

Standardization

Missing data

Data redundancy

Data query-regular matching method

 
Figure 2. Data processing.
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• Step 1: Data de-duplication. For the problem of duplicate redundancy of maritime
ship data, data cleaning is carried out by data query and regular matching methods,
including redundancy processing by using MMSI and ship name segment and redun-
dancy processing by ship registration number and ship name segment to ensure that
ship data can be uniquely identified;

• Step 2: Data noise reduction. For the ship data noise problem, the data normalization
method is used for standardized field template design and field screening, and in
principle, information such as primary key, Chinese name, English name, type, and
content is retained, and attribute field information is simplified; for the ship spatial
data noise problem, the Douglas–Peuker (DP) method is used for the abnormal ship
spatial trajectory extraction thinning to simplify the ship spatial field information to
achieve the purpose of clearer data. The DP algorithm is used to determine the key
waypoints of the ship’s trajectory [35]. These key waypoints can be used to represent
the geographical locations where the ship changes course. Figure 3 and Table 2 show
the steps of the DP algorithm. Step 1 can be used to generate an approximated line
segment between the departure and destination points. Steps (2, 3, . . ., n) introduce
sub-line segments using various threshold parameters ε [23].

Figure 3. Douglas–Peuker algorithm.

Table 2. DP algorithm for the abnormal ship spatial trajectory extraction.

DP Algorithm

Inputs : Require :
ship trajectory (Points); ε (thresholds) Parameter d (distance), dm (maximum distance), index
Outputs : Waypoints WP = {p1, p2, ..., pk}
Process : 1 : For i = 2 to i = (n− 1)2 : d = VD (CL[i], Line[CL[1], CL[n]])
3: If d > dm
4: index = i
5: dm = d
6: End if
7: End if
8: If dm >= €
9: WaypointLList = DP (CL [1. . .. . .index], ε)
10: WaypointRList = DP (CL [index. . .. . .n], ε)
11: Waypoints = {WaypointLList, WaypointRList}
12: Else
13: Waypoints = {CL [1], CL [n]}
14: End if
15: Return Waypoints
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The steps of the DP algorithm (the black line represents the original ship trajectory
centerline, and the red line represents the simplified ship trajectory. The idea of the
simplified ship trajectory centerline is to approximate the original trajectory in green).

• Step 3: Data filling. For the problem of missing ship data, the same kind of cubic
spline function interpolation, K-mean clustering, and mean value method [23] are
used to estimate and fill the missing data. Making full use of the third-party complete
ship data, adopting the method of data interface synchronization, and completing the
data filling of MMSI, ship name, ship type, etc., based on the third-party data interface,
and completing the filling of spatial information such as port and ship trajectory based
on the open GIS data interface make ship data more complete. Data filling effectively
improves the integrity of ship data, improves the accuracy of ship data analysis and
ship knowledge graph modeling, enhances the distribution characteristics of ship
data, and improves the efficiency of ship data analysis and processing. The cultivation
process fully considers the nature of ship data and the types of missing values, and
combines the goal of building a ship knowledge graph to ensure that the filling process
does not introduce noise or deviation;

• Step 4: Data fusion. In response to the problem of ship data ambiguity, we adopted
data replacement and splicing fusion methods, such as splicing and fusing multi-
ple contact fields to form more accurate contact descriptions, so as to eliminate the
heterogeneity between data and improve data integrity and reliability.

2.3. Knowledge Graph for the Identification of Ship Illegal Behaviors

The process of constructing a knowledge graph for the domain of ships typically
involves several interrelated steps. These steps typically include the semantic design of the
graph, ontology construction, entity linking, graph computation, and inference. Semantic
design involves the identification of domain-specific concepts and relationships, which
form the backbone of the knowledge graph. This step is essential for ensuring that the
knowledge graph accurately reflects the domain of interest and can provide meaningful
insights. Ontology construction is the process of creating a formal specification of the
concepts and relationships in the domain, typically using a standardized language such as
OWL or RDF. This step is crucial for ensuring that the knowledge graph is structured in a
way that can be easily queried and analyzed. Entity linking involves identifying and linking
instances of concepts in the knowledge graph to external sources of information, such as
databases or websites. This step can help to enrich the knowledge graph with additional
information, and make it more useful for real-world applications. Graph computation
is the process of analyzing the structure of the knowledge graph and extracting useful
insights or patterns. This step is essential for understanding the relationships between
concepts and identifying domain interest areas. Finally, inference is the process of making
logical deductions or predictions based on the knowledge graph, using techniques such as
rule-based reasoning or machine learning. This step can help to uncover new insights and
generate hypotheses for further investigation.

A top–down construction method [37] is used. The top–down construction method is
a widely used approach to knowledge graph construction, which involves starting with a
high-level view of the domain and then refining the details and relationships over time.
This method helps to ensure that the knowledge graph is accurate, consistent, and reflects
the most important concepts and relationships in the domain.

2.3.1. Step 5: Semantic Design

To construct a ship knowledge graph business model, under the process of Section 2.2,
a Mysql [38], ship relational database, is utilized for field extraction after a thorough
understanding of ship maritime supervision and navigation security business, as shown in
Figure 4.
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Figure 4. Semantic design for the identification of ship’s illegal behaviors.

The model encompasses the ship company, ship type, ship history changes, ship
certificates, ship key tracking and reasons for tracking, and ship dynamics port call. The
relationships between business models are integrated with actual maritime business logic.
Semanticized rule descriptions are conducted via entity-relationship-entity ternary semantic
definitions to accomplish this. In this approach, nodes represent objects while concepts and
edges signify relationships between nodes. The definition of association combinations is
established to formulate a ship graph semantic rule that comprehensively describes the
entire maritime business.

2.3.2. Step 6: Ontology Construction

In order to extract relevant information from the processed ship data, the semantic
rules pertaining to entity, attribute, and relationship data are employed. The relationships
and events between the entities are established using primary and foreign keys, creating
a relational subject–predication–object (SPO) triad. Subsequently, the triadic data are
combined and transformed into basic ship graph ontology elements, as shown in Figure 5.

SPO model

Structured data 
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Cypher entity import
(Load CSV)
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Figure 5. Ontology construction.

The primary objective of entity identification and extraction is to identify named
entities of various categories, including shipping companies, ships, crew, certificates, key
surveillance, ports, berths, dynamic reporting visas, etc. The extraction process entails
identifying structured entity-relational data, defining entity boundaries, and determining
entity types through Mysql-based primary and foreign key association queries. Following
this, semantic rules defined in the previous step are used to extract two or more entities
from the relational data and establish matching semantic relationships. The Cypher Load
CSV function [39] is employed within the neo4j graph database to convert the relational
SPO ternary data into entity graph data.
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2.3.3. Step 7: Entity Linking

In the process of integrating ship data, multiple representations for a single entity
often lead to a reduction in the quality of the integrated data, as shown in Figure 6. This
paper proposes a pattern-matching method to address the problem of entity referent dis-
ambiguation. The method involves discovering the graph relationships between attributes
in different relational data sources and calculating the similarity of related descriptions to
match patterns. Entities and relational objects are deleted, replaced, and fused to solve con-
flicts between predicates in triples, and to ensure the unique integration of heterogeneous
data sources. Furthermore, the meaning of ship entities may vary in different contexts,
necessitating entity disambiguation. This paper adopts word-sense annotation to model
disambiguation. The semantic features introduced in the previous section include semantic
class information based on syntactic relations, such as semantic classes of subject/object
central words, and semantic role annotation class information. Combining semantic infor-
mation for contextual semantic discrimination classification can address the problem of
diversity in the representation of ship entities.

Step 7: Entity construction

Ship entity 
disambiguation, 

denotational 
disambiguation

Ship knowledge fusion
(uniqueness 
processing)

Pattern Match 
model

Step 7: Entity construction

Ship entity
disambiguation, 
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processing)

Pattern Matchh
modelmmm elll

Figure 6. Entity construction.

2.3.4. Step 8: Ship Behavior Feature Extraction

Based on the developed database, a ship behavior feature extraction method is pro-
posed to identify ship behavior feature features, as shown in Figure 7.
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Figure 7. Ship behavior feature extraction.
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Based on the features, K-means algorithm is used to cluster this feature information of
ship trajectory in the case study area [35]. The mathematical background to this process is
displayed in Equations (1)–(4) below and the pseudocode of the process is summarized in
Table 3. For a point pi in the way of a trajectory defined as per Equation (1), the locations of
the departure and destination ports are defined as in Equation (2). Then, the length of the
ship trajectory is calculated as in Equations (3) and (4).

pi = {MMSI, TIMESTAMP, LON, LAT, SOG, COG, Dra f t} (1)

Tse = {(lon1, lat1 ), (lonn, latn )} (2)

d
(

pj, pj+1
)
=
(
TimeStampj+1 − TimeStampj

)× (sogj + sogj+1
)
/2 (3)

Tlength =
n−1

∑
j=1

d(pj, pj+1) (4)

where (lon1, lat1) and (lonn, latn) denote the longitude and latitude of the departure and
destination ports, respectively. d(pj, pj+1) denote the distance between pj and pj+1 (see
Figure 8). This is example 2 of an equation:

Table 3. Ship trajectories clustering method using K-means algorithm.

K-Means Algorithm

Input:
Dataset, D = {x1, x2, ..., xm}, clustering number K, the maximum number of iterations N
Output:
Clustering C = {c1, c2, ..., ck}
Process:
1. Select K trajectories as the centre trajectories {μ1, μ2, ..., μk};
2. Initially cluster division Ct = {c1, c2, ..., ck};
3. For n = 1, 2, ..., N:
4. For i = 1, 2, ..., m:
5. Calculate distance between the trajectory xi and μj(j = 1, 2, ..., k) dij =

∣∣∣xi − μj

∣∣∣;
6. Mark category as j corresponding the smallest dij;
7. End for
8. For j = 1, 2, ..., K:
9. Calculate the centre trajectories based on the new clustering result

μj = ∑ x(x ∈ μj)/
∣∣∣μj

∣∣∣
10. End for
11. If the clustering result remains consistent:
12. Go to line 17;
13. Else:
14. Go to line 4;
15. End if
16. End for
17. Output C = {c1, c2, ..., ck}.

Figure 8. Defined ship trajectory using AIS data.
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Finally, the ship multi-track determination method traces through Mysql relational
data and neo4j graph database fusion calculation with the following rules:

(a) Define the data set X = {x1, x2, ..., xn}, where each xi represents a point in the ship
trajectory;

(b) Preprocessing the dataset, e.g., sorting the trajectories in chronological order and
representing each point as a triplet of (longitude, latitude, time);

(c) Choose the number of clusters k, initialize k prime centers c1, c2, ..., ck;
(d) For each point xi, calculate its distance dij to each center of mass cj and classify it into

the cluster sj to which the center of mass with the closest distance belongs;
(e) Update the center of mass, and for each cluster sj, update its center of mass cj to be

the average of all its points;
(f) Repeating the above steps (d) and (e) until the center of mass no longer changes or

reaches the specified number of iterations, obtaining the number of ship multiple
trajectories, and finally labeling and refining the ship multiple trajectory feature
information into the ship feature graph.

Based on the ship entity (ship number, ship name), extract local subgraphs centering
on ship attributes (such as ship name, MMSI, ship type, etc.), key monitoring relationship
and certificate expiration relationship, obtain ship attributes, ship key monitoring and
ship certificate expiration subgraph features and refine them into the new ship feature
graph with specific markings; use Mysql aggregation and correlation query to retrieve
ship reporting information. The ship characteristics are extracted and added to the ship
characteristics graph by using Mysql aggregation and correlation query to retrieve the ship
reporting information; the ship multiple trajectory features and the ship reporting time
sequence information are fused, and the inconsistent trajectory and reporting features are
inferred and added to the ship characteristics graph.

2.3.5. Step 9: Fake Ship License Plates Inference

As shown in Figure 9, the rules for fake ship license plates can be defined in order
of whether the ship is an inland ship, MMSI or ship name information does not match,
certificate expiration or invalidity, inconsistent or non-reporting of ports and trajectories,
and ship focus monitoring. Using ship knowledge graph feature analysis technology, ship
feature vectors can be extracted from ship information from monitoring chokepoints before
combining them with feature weights for weighted assignment. The calculation process
includes the following four sub-steps:

Step 9-1: Discover the ships that may be snared from the mapping of ship behavior
characteristics in the study area, mainly acquiring the ships with multiple trajectories (this
ship is usually a sea ship), and extract the abnormal trajectory data of the ship at sea;

Step 9-2: Retrieve the surveillance chokepoints within 50 kn of the surrounding area
with this ship as the center. Assume the longitude and latitude of the ship i (i = 1, 2, 3) are
lati and latj respectively; the longitude and latitude of the monitoring chokepoint j (j = 1, 2,
3) are loni and lati, respectively. The distance Dij between ship i and monitoring chokepoint
j can be calculated as Equations (5)–(7).

Di j = R ∗ 2a ∗ tan2(
√

a,
√

1− a), (5)

a = sin2(Δlat/2) + cos(lati) ∗ cos(latj) ∗ sin2(Δlon/2) . (6)

Δlon = loni − lonj, Δlat = lati − latj. (7)

where R is the radius of the Earth and takes the value of about 6371 km. After finding the
distance between any point and the current position, determine whether it is less than or
equal to 50 kn (1 kn is about 1.852 km) to obtain the corresponding result;
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Step 9-3: Calculate the spatial distance between the multi-track ship and the surveil-
lance chokepoint, calculate the average speed of the ship, combine the two to calculate
the time difference, and collect the ship’s information before the time difference of the
surveillance chokepoint. The calculation formula of average ship speed is as Equation (8):

Vn =
n

∑
i=1

vi/n = (v1 + v2 + ... + vn)/n (8)

Vn denotes the average speed, Vi is the ship sailing speed at each point, and n denotes
the total number of points;

Step 9-4: The collected ship information set is correlated and compared with the ship
behavior characteristic graph in the current region, and combined with the fake license
plate rules, according to the weight order of whether the ship is a river ship, whether the
ship information does not match (ship name/MMSI), whether the ship certificate is invalid,
whether the ship does not have the reported port record (if so, also judge whether the ship
trajectory is inconsistent with the reported port), or whether the ship is a key monitoring,
etc. The highest possible ship is finally deduced.

Step 9: Ship fake license plates inference

Rules for fake 
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Ship behavior 
graph

Key monitoring

Step 9: Ship fake license plates inference
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Figure 9. Fake ship license plates inference.

3. Case Study

The semantic rules for ship graph data are constructed with reference to the business
rules of maritime supervision and maritime security, and the ternary processed ship ontol-
ogy data are combined with the semantic rules to form a standard ship graph knowledge
representation. A case study was carried out on river–sea direct ships.

3.1. Ship Knowledge Graph Construction

The ontology construction based on the graph semantic rules can form the ship base
graph model, which includes the ship’s owner company, ship type, key tracking or not, ship
certificate validity, ship port call, etc. After the completion of the ontology construction, the
initial prototype of the ship knowledge graph is formed, as shown in Figure 10.
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Figure 10. Ship semantic model.

Ontologies include Ship, Historyship(HShip), Shiptype(St), Company(Com), Cert,
Key Track, Key Type(Kt), Port, Berth, etc. Relations include type, renew, cert, belong,
keytracking, reason, have, etc.

Also included is a description of the category that a ship belongs to by establishing a
type of entity link relationship; a description of the ship’s change history by establishing
a renewed relationship; the ship certificate information is included by establishing a cert
relationship; a description of the ship company that the ship belongs to by establishing a
Belong_to relationship; a description of whether a ship is a key tracking ship by establishing
a key tracking relationship; a description of the specific reason why a ship is a key tracking
ship by establishing a reason relationship. By establishing the relationship to describe the
berth information under the port, the corresponding ship relationship graph is shown in
Figure 11.

 

Figure 11. Ship relationship graph.

The ship knowledge graph database established by setting up ship characteristic
rules [40] and combining the ship maritime supervision and navigation protection business
model can realize the presentation of the overall relationship network of ships and the
ship portrait of the static relationship of specific ships [34]. Take the ship named “Ning
Shuangshun 5568” as an example. By drawing its portrait, we can see that it is a river ship,
the type of ship is a bulk carrier, it belongs to the maritime key tracking ship, it has violated
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regulations in Nanjing and disobeyed the authorities or evaded them, its certificate is valid
(valid until 10 January 2021), and it belongs to Shen Yuanzhu, a self-employed person.

3.2. Extraction of Ship Behavior Characteristics Graph

To extract the key waypoints, the key waypoints of ship navigation lanes were deter-
mined for each ship trajectory using the DP algorithm (see Figure 3 and Table 2 for the
theoretical concept). Taking the “Xinhong 998” ship as an example, the historical trajectory
of the ship for a certain period of time was first obtained from the MySQL database. Due
to the dense trajectory, it is not convenient to perform data analysis. Therefore, the DP
algorithm was used to optimize the ship’s historical trajectory. The following figure shows
the optimization effect of the ship’s trajectory under different threshold conditions. As part
of this process, sub-line segments were extracted using the DP algorithm with ε = 0.0025
(see Figure 12).

Figure 12. Key waypoints determination using DP algorithm with the various threshold parameters.

For each ship trajectory, the K-means algorithm is used to cluster and analyze whether
the ship has multiple abnormal trajectories (theoretical concepts are shown in Figure 8 and
Table 3). In order to determine whether the “Xinhong 998” ship has multiple trajectory
features, the K-means algorithm is used to cluster and analyze the optimized ship’s histor-
ical trajectory, quickly identifying the multiple trajectory features of the ship. As shown
in Figure 13, two types of trajectories can be found during the same period of the ship,
indicating the existence of multiple trajectory features.

Based on Mysql and neo4j fusion calculation, the K-means clustering algorithm is used
to identify multiple abnormal features of ship trajectory in the study area, and the acquired
features are added into the ship behavior feature graph; based on specific ship ontology,
the fusion calculation (subgraph inference, Mysql aggregation, and correlation query) is
used to obtain ship data with abnormal features such as key monitored ships, expired ship
certificate, inconsistent ship trajectory and reported port, etc., and the feature information is
improved into the ship behavior feature graph. The ship data with abnormal features, such
as ship certificate expired, ship trajectory inconsistent with reported port, ship not reported
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port for a long time, etc., are obtained through fusion calculation (subgraph inference,
Mysql aggregation, and correlation query) to form a complete ship behavior feature graph.
The calculation process is shown in Table 4.
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Figure 13. Ship trajectories clustering using K-means algorithm.

Table 4. Ship behavior feature extraction process.

No. Features Calculation Methods Procedures

1 Multiple ship tracks K-means multiple
trajectory clustering

1. Calculate the ship history trajectory;
2. Obtain the number of ship multiple trajectories by K-means
multiple trajectory clustering method.

2 Maritime key
monitoring ships Subgraph inference

1. Mysql retrieves data on ships that have been classified as maritime
priority monitoring;
2. neo4j queries and identifies ship entities on the retrieved result data.

3 Ships with expired
certificates Subgraph inference

1. Mysql to ship certificate relationship data retrieval, find certificate
expiry information;
2. neo4j fused results data for ship entity query and identification.

4 Inconsistent ship tracks
with reported ports

Mysql aggregation and
associated query

1. Calculate the historical trajectory of a ship;
2. Calculate the ship’s route to report port;
3. Compare ship history trajectories with ship reporting paths based
on spatial similarity;
4. Judge the consistency of the ship’s trajectory with the reported
port path.

5 Ships not reporting
ports for a long time

Mysql aggregation and
associated query

1. Mysql combines multiple ship reporting relationship tables for
correlation analysis and generates results data for ships that have not
reported to port for a long time;
2. neo4j fused results data for ship entity query and identification.

The subgraph search based on ship knowledge graph can quickly extract static features
of ships, such as basic information of ships (including MMSI, ship name, ship type), validity
of ship certificate, whether the ship is focused on tracking and the reasons for tracking,
etc., and add them to the static feature graph of ship behavior; combined with dynamic
port reporting information and ship AIS information, it can extract dynamic features of
ships that combine motion and static, and realize the full domain mastery. By analyzing
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the relationship between time and space trajectory, we can find out the characteristics such
as ships not reporting to port and inconsistency between the path of ships reporting to port
and the actual AIS route trajectory, and add them into the dynamic feature graph of ship
behavior. The combination of ship static feature graph and dynamic feature graph forms a
complete ship behavior feature graph.

3.3. Fake Ship License Plate Judgment
3.3.1. Fake Ship License Plate Discovery

Based on ship behavior feature graph analysis, we focus on the abnormal behavior of
double trajectories of ships in specific areas. As shown in Figure 14, taking “Xinhong 998”
ship chart node in the upstream section of the Yangtze River as an example for analysis, this
ship is a sea ship with static chart characteristics, and in the time range of ‘21 March 2021
00:00:00’ to ‘21 March 2021 03:16:14’, the ship dynamically reports ports to call at Jiangyin,
Diagang, and Niutoushan ports. Checking the AIS trajectory of this ship, it is found that
one is the inland trajectory of the Yangtze River, and the inland trajectory is consistent with
the reported path. The other is the sea navigation trajectory, and there is no matching sea
reporting information, which means that some ships have multiple abnormal trajectories.
The abnormal trajectory is the sea section, so it can be inferred that this ship has the risk of
being licensed by the inland ship for sea navigation.

Figure 14. Ship multiple trajectory abnormalities.

3.3.2. Calculation and Reasoning of Fake Ship License Plate

For “Xinhong 998” multiple areas of sea track, we obtained the center point of the
ship track, taking the center point as the circle, 50 nautical miles (see more in Figure 15) as
the radius, and searching the ship monitoring chokepoint within the range (query to the
monitoring chokepoint of Lianjiang Maritime Office). We calculated the distance between
the center point of the ship track and the monitoring chokepoint, combined with the average
speed of the ship’s property characteristics. To obtain the approximate time difference
between the ship sailing from the monitoring chokepoint and the track area (roughly 2 h
and 15 min by calculation), we subtracted the time difference from the multiple track time
period of “Xinhong 998”, and obtained the time range of the monitoring chokepoint as
‘20 March 2021 09:45:00’ to ‘21 March 2021 01:01:14’. We obtained the ship information
of the surveillance chokepoint in this time range, identifying “Ning Shuangshun 5568”
as the active ship under the current surveillance chokepoint in the current time range,
comparing the ship information with the ship behavior characteristics graph in the current
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area through circular association, and combining with the fake ship license plate rules. The
ship “Ning Shuangshun 5568” is an inland river ship, and its AIS track cannot be found,
which means the ship MMSI information does not match, the ship certificate has exceeded
the validity period, the ship reporting information related to this ship cannot be found, and
the ship belongs to the maritime key tracking ship. Thus, it meets many characteristics of
the fake ship license violation, the matching degree is high, and it can be judged that the
ship has the characteristics of the fake ship license plate violation. There is a high possibility
that the ship set “Xinhong 998” is sailing at sea, and engaging in illegal activities.

Figure 15. Monitoring checkpoint search.

This study collected questionnaire feedback from experts, and after statistical calcula-
tion, obtained the weight allocation information of ship deck rules, as shown in Table 5.

Table 5. Weighted features of fake ship license plates.

Feature Weight

Inland waterway ship 0.2
Ship information matches 0.4

Certificate is invalid 0.1

Not reported port for a long time 0.2
The port report is inconsistent with the trajectory 0.1

Key monitoring ship 0.1

Based on the weighted of inland river-ship-licensed seagoing ships as shown in Table 6,
the following algorithm is used to determine whether the ship is a licensed ship:

(a) Check if the ship is an inland waterway ship. If so, assign a weight of 0.1 to it;
otherwise, no weight will be added;

(b) Check if the ship information matches. If it does not match, assign a weight of 0.4 to
it; otherwise, no weight will be added;

(c) Check if the ship is using certificate information or if the certificate is invalid. If so,
assign a weight of 0.1 to it; otherwise, no weight will be added;

(d) Check if the ship has not reported port for a long time or if the port report is inconsis-
tent with the trajectory. If so, assign a weight of 0.2 to it; otherwise, no weight will
be added;
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(e) Check whether the ship is a key monitoring ship. If so, assign a weight of 0.1 to it;
otherwise, no weight will be added. Add all weighted weight values together to
obtain the total weight W of the ship;

(f) If W is greater than a certain threshold t (such as 0.6), it is determined that the ship is
a licensed ship; otherwise, it is determined that it is not a licensed ship.

Table 6. Weight for fake ship license plates.

Number Ship
Number

Ship Name Inland
Ship

Ship
Information

Mismatch

Invalid
Certificate

Abnormal Ship
Reporting Key

Monitoring
Weight

No Port
Reporting

Inconsistent
Trajectory

1 60117000047 runcheng9 0.2 0.2
2 70106000226 jinfuxin28 0.2 0.2
3 80112000047 dafeng3 0.2 0.1 0.2 0.1 0.6
4 60019000021 fanzhou10 0.2 0.1 0.2 0.1 0.6
5 80617000090 jinjiangpeng29 0.2 0.1 0.3
6 60115000027 shunqiang68
7 60016000039 ninghua417
8 270117000007 ningshuangshun5568 0.2 0.4 0.1 0.2 0.1 1

Among them, steps (a)~(d) are to check the characteristics of the ship and give corre-
sponding weights based on the characteristics; step (e) is to add the weight of ownership
to obtain the total weight of the ship; and step (f) is to determine whether the ship is a
licensed ship based on the total weight. In practical applications, it is necessary to select
an appropriate threshold t based on the specific situation, and continuously optimize and
adjust the features and weights to improve the accuracy and reliability of the algorithm.

Based on the above weight determination algorithm, ships that meet the definition
threshold of ship fraud with a value greater than 0.6 include Ning Shuangshun 5568 (1),
Dafeng 3 (0.6), Fanzhou 10 (0.6), etc. Among them, Ning Shuangshun 5568 has the highest
weight value and can be determined as a ship with fraudulent behavior.

4. Discussion

Based on the analysis of the collision accident between the “Zhonggang 88” ship
and the “Ningshuangshun 5568” ship in Fuzhou on 21 March 2021, the “Zhonggang 88”
ship, owned by Fujian Zhonggang Shipping Co., Ltd., loaded 4950 tons of wheat from
Nantong to Quanzhou, collided with the “Ningshuangshun 5568” ship owned by Shen XX
in the waters about 1.5 nautical miles west of Mazu Nangan Island (approximate position:
26◦10.4′ N/119◦53.2′ E). The accident caused the sinking of the “Ningshuangshun 5568”
ship, and the stowage information of the “Zhonggang 88” ship was basically consistent
with the portrait of the “Zhonggang 88” ship. No relevant records were found for “Ning
Shuangshun 5568”.

A visualization analysis system for ship knowledge graphs was developed based
on the ship knowledge graph technology studied in this study and combined with 3D-
force-graph technology. The portrait analysis of the “Ningshuangshun 5568” ship shows
that it belongs to an inland navigation ship, and its appearance at sea violates the rules of
cross-inland and ocean navigation. Due to its lack of dynamic port reporting records and
historical trajectory, it can be theoretically inferred that there is an illegal act of ship licensing.
Combining the above analysis with the risk of “Xinhong 998” being falsely licensed for
sea navigation by inland ships during the same period, and combining the abnormal
trajectory of “Xinhong 998” in the current period analyzed earlier with the consistency of
the monitoring checkpoint distance and speed calculation of the “Ningshuangshun 5568”
falsely licensed ship, the combination of the two can indirectly infer that “Ningshuangshun
5568” falsely licensed “Xinhong 998” has a high probability of crossing inland rivers and
sea navigation.

The final accident investigation report also confirmed that the “Ningshuangshun
5568” was falsely licensed as the “Xinhong 998”; “Ningshuangshun 5568” evaded normal
maritime supervision and did not comply with the maritime regulations on the exclusive
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supervision of AIS for ships. The validity period of the certificate expired on 10 January
2021. When the accident occurred, the validity period of the certificate had expired. In
addition, “Ningshuangshun 5568” had not yet fulfilled the declaration business of ship
reporting operations as required, and it should bear the primary responsibility for this ship
collision accident.

The inference method based on the graph of illegal behavior of ship deck rigging can
also be applied to the field of ship collision risk assessment, and this method has a certain
degree of universality. The inference technology for the graph of illegal behavior of ship
cheating mainly includes extracting illegal behavior features of ship cheating, the design
of ship cheating rules, the allocation of feature weights of ship cheating behavior, graph
calculation, and graph inference process, etc. It is also applicable to the determination of
ship collision risk. A ship collision risk assessment based on graph calculation and graph
reasoning can be achieved by identifying and extracting key risk factors for ship collisions,
designing ship collision rules, and assigning weights to key risk factors for ship collisions.

5. Conclusions

This paper presents the construction of a ship knowledge graph using science knowl-
edge graph technology, which allows for extracting ship violation features and identifying
specific fake ship license plates through inference and case analysis verification. The results
of this research can significantly enhance the decision-making ability of maritime for ship
safety supervision. The ship static and dynamic knowledge graph facilitates ship portrait
and ship hidden relationship mining and analysis, allowing for the rapid identification of
maritime key tracking ships, ships with expired certificates, and the consistency of ship
trajectories and reported ports. It also enables the identification of multiple trajectory
anomalies of ships and the retrieval of ships that have not reported ports for a long time.
Through the analysis of the ship graph, the existence of abnormal ships navigating across
inland rivers and seas, as well as the violation of the ship’s license plate, can be determined.
Furthermore, in conjunction with the identification of ship names under on-site supervision,
ship graph comparison analysis can be conducted to enable rapid screening and key moni-
toring of abnormal risks similar to “Ning Shuangshun 5568”, thereby enhancing the ability
to prevent accidents beforehand. The ship graphical portrait provides full information
on the ship belonging to the company, certificate information, the last port from where
it departed, the next port where it will arrive, local cargo, and the ship’s crew, as well
as violation behavior characteristics. This information allows for timely response to ship
monitoring and tracking business requirements and enhances after-accident investigation,
tracing, and control disposal capability through the use of graph path query and source
tracing methods.

In summary, this research enhances the maritime industry’s pre-accident prevention
capability and post-accident handling capability through the construction and analysis of a
ship knowledge graph, providing valuable insights for ship safety supervision decision-
making.
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Abstract: The China–Australia Route, which serves as the southern economic corridor of the ‘21st
Century Maritime Silk Road’, bears great importance in safeguarding maritime transportation oper-
ations. This route plays a crucial role in ensuring the security and efficiency of such activities. To
pre-assess the risks of this route, this paper presents a two-stage analytical framework that com-
bines fault tree analysis and Bayesian network for evaluating the occurrence likelihood of risk of
transporting liquefied natural gas (LNG) on the China–Australia Route. In the first stage, our study
involved the identification of 22 risk influencing factors drawn from a comprehensive review of
pertinent literature and an in-depth analysis of accident reports. These identified factors were then
utilized as basic events to construct a fault tree. Later, we applied an expert comprehensive evaluation
method and fuzzy set theory, and by introducing voting mechanism into expert opinions, the prior
probability of basic events was calculated. In the second stage, a fault tree was transformed into a
Bayesian network, which overcame the deficiency that the structure and conditional probability table
of the Bayesian network find difficult to determine. Consequently, the employment of the Bayesian
network architecture was applied to forecast the likelihood of LNG maritime transport along the
China–Australia shipping pathway. The probability importance and critical importance of each basic
event was calculated through an importance analysis. The development of a risk matrix was achieved
by considering the two primary dimensions of frequency and impact, which were subsequently
utilized to categorize all relevant risk factors into high, moderate, or low risk categories. This allowed
for effective risk mitigation and prevention strategies to be implemented. Finally, assuming that
the final risk occurs, we calculated the posterior probability of the basic event to diagnose the risk.
The research findings indicate that the primary reasons for the risk of transporting LNG on the
China–Australia Route are the impact of natural forces and epidemics, piracy and terrorist attacks,
and the risk of LNG explosions. In the final section, we provide suggestions and risk control measures
based on the research results to reduce the occurrence of risks.

Keywords: risk assessment; maritime transport; fault tree analysis; Bayesian network; Liquid Natural
Gas (LNG)

1. Introduction

The rapid development of the shipping industry has significantly contributed to the
growth of global trade, but it has also posed challenges to maritime safety [1]. The safety
of routes has emerged as a critical domain of emphasis for the shipping sector and its
associated enterprises. As the southward economic channel of the ‘21st Century Maritime
Silk Road’, the China–Australia and New Zealand route has gained significant attention
for its transportation function and significance. However, according to a report by the
International Maritime Organization, the safety situation of maritime transportation along
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this route is not optimistic. Nevertheless, as per a report published by the International
Maritime Organization, the safety status of maritime transportation along this course is not
sanguine. How to scientifically and reasonably build the risk assessment model of the route
is an important premise and calls for mastering the risk status of the route and identifying
the influencing factors in the risk scenario.

From 2010 to 2023, very serious levels of maritime casualties and accidents accounted
for 60–70% of the total number of accidents along the China–Australia and New Zealand
route, highlighting the seriousness of safety risks along the route. For example, on
17 May 2023, a fishing vessel from China to Australia capsized in the Indian Ocean. The
vessel with 39 crewmembers onboard is still missing. To ensure the sustainable devel-
opment of the shipping industry, preventing maritime accidents and ensuring safety at
sea should be the primary goal of the International Maritime Organization. Therefore,
describing various risks and developing a quantitative evaluation model for the risk of
LNG maritime transportation on this route to accurately predict and prevent risks that
have not yet occurred can guide the safety of maritime transportation activities to a certain
extent [2].

Previous studies have demonstrated that due to the numerous influencing factors
involved in the indicator system, the diverse types and complex structures of indicators,
as well as the participation of experts, maritime safety risk assessment problems have
uncertainties brought about by the diverse types of indicators, structural uncertainties
brought about by complex system structures, and cognitive uncertainties brought about
by human cognitive limitations. Taking into account various uncertainties, risk factors
including cargo characteristics, ship conditions, environmental conditions, human error,
and management issues ensure that the safety of maritime transport is a complex task [3].
Addressing these challenges requires the collection and investigation of the latest data from
recent maritime accidents, analysis of the causes of such accidents, identification of key risk
influential factors (RIFs) under different scenarios, and the prediction of associated risks.

While classical risk analysis methods, including Failure Mode and Effects Analysis,
Analytic Hierarchy Process, Markov Model, Human Factors Analysis and Classification
System, and Fault Tree Analysis (FTA), have been widely used to identify critical factors for
enhancing maritime safety, they are not practical for uncertain risk analysis with changing
environmental conditions [4]. Among these models, Failure Mode and Effects Analysis
with transparent and simple features [5] and Analytic Hierarchy Process with the ability to
assign different weights to indicators [6] are widely used. However, both methods require
experts to make evaluations in highly complex assessment environments [7]. Professional
level, personality traits, and subjective judgment can all affect the ability to make accurate
evaluations, leading to ambiguity and uncertainty in the final results, which cannot be used
for risk assessment under multiple indicators. Human Factors Analysis and Classification
System is designed to analyze different degrees of human factors in accidents. Celik M [8]
introduced the Human Factors Analysis and Classification System model for water traffic
accidents and identified the lowest level human factors in the model through a fuzzy
analytic hierarchy process. However, its shortcomings are obvious. This method is only
applicable to risk assessment caused by human factors in smaller models and cannot
express other relevant factors. These limitations have necessitated the development of
advanced risk analysis methods, such as Fuzzy Logic (FL) and the Bayesian Network.

Among the advanced methods used for maritime risk analysis, BN has gained signifi-
cant attention due to its ability to explain the relationships among multiple variables under
uncertainty, based on probabilistic information for risk assessment. Risk analysis using
BN has become a promising technique in complex and uncertain shipping scenarios [9].
For example, Fan et al. [10] used the Naïve Bayesian Network (NBN) to model maritime
accident risk analysis and identified 16 RIFs based on the analysis of 161 accident reports
collected from 2012 to 2017. Similarly, Jiang and Lu [11] proposed a dynamic Bayesian
network (DBN) model to assess dynamic contingencies in the Indian Ocean sea lanes based
on incident data from 2007 to 2018.
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However, the Bayesian network faces some challenges when capturing the conditional
probability tables (CPTs) among the influencing factors and make it hard to determine a
rations structure among the nodes: (1) when determining the CPT, the traditional method
is expert scoring or data-driven, but these two methods require a high number of data sam-
ples, consuming time and energy; and (2) regarding structural learning, expert judgment is
usually introduced, which can lead to strong subjectivity and bias, especially when multiple
nodes are involved. Zhao [8] has shown that FTA can cleverly solve this problem, and com-
bining FTA and BN can be used for maritime risk analysis under complex environmental
impacts, which can be beneficial in compensating for their respective shortcomings. They
use fuzzy fault tree analysis and noise or gate Bayesian network to estimate the probability
of navigation accidents. The fault tree analysis is constructed from the navigation accident
investigation report, and then the fault tree analysis is transformed into a Bayesian network
using Noisy-OR gate. Finally, the model was applied to Qinzhou Port and reasonable
conclusions were drawn by comparing it with the calculation results of other waterways.

This paper endeavors to rectify the aforementioned shortcomings by presenting the
following measures. The primary objective of this paper is to propose a two-stage model
framework for evaluating the risk of LNG maritime transport on the China–Australia
route. The first stage involves constructing a fault tree based on the influencing factors
identified from the related literature and accident reports, followed by calculating the
prior probability of basic events using the expert comprehensive evaluation method and
fuzzy set theory. In the second stage, the fault tree is transformed to a BN model, and
the results of FTA in the first stage are input into the BN model in the second stage as
initial values. After completing the BN model validation, the next step is to predict,
prevent, and diagnose the risk of LNG maritime transport, and introduce a risk matrix to
analyze the risks from the perspectives of importance and frequency. This paper offers
three significant contributions: (1) the introduction of fuzzy set theory and expert voting
mechanism addresses the challenges associated with handling conflicts in expert opinions
and the inherent fuzziness in the expert scoring process and enriches the application of
expert scoring methods in the field of risk assessment; (2) the probability importance
degree and key importance degree obtained from the fault tree analysis are regarded as two
inputs of the risk matrix. This enables decision-makers to clearly perceive the frequency
and severity of risks, as well as their interrelationships, and assigns them priority levels,
expanding the application and development of traditional risk management theory where
risk is directly multiplied by frequency and importance; and (3) the richness of influencing
factors in the LNG maritime transportation process leads to the complexity and uncertainty
of the indicator system structure. Through the transformation of FTA to BN, a rational and
scientific Bayesian risk assessment model has been constructed, expanding the application
of LNG risk transportation under uncertain factors.

The remainder of this paper is organized as follows. Section 2 reviews the literature
related to maritime accident research and the application of BN and FTA in maritime risk
analysis and explores relevant research gaps. Section 3 proposes a risk assessment frame-
work for LNG maritime transportation. This includes an illustration of the basic theory,
identification of influencing factors in the risk assessment model, and explanation of the
voting mechanism and risk matrix used in the subsequent analysis. In Section 4, the method-
ology is applied to evaluate the risk of LNG maritime transport on the China–Australia
route. Section 5 proposes improvement measures for risks with a high impact on the
model output.

2. Literature Review

2.1. Risk Assessment of LNG Maritime Transport

LNG maritime transportation belongs to high-risk cargo transportation, and there is
rich research in the academic community on the risks of LNG maritime transportation.
Vanem et al. [12] conducted a high-risk assessment of the global navigation of LNG ships.
The analysis collects and combines information from multiple sources and available infor-
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mation from different sources has been structured in the form of event trees for different
generic accident categories. Five different types of LNG-related risks have been identified,
namely collision, grounding, contact, fire and explosion, and accidents that occur during
loading and unloading at the dock. The results showed that the highest risk is collision. On
the basis of traditional evaluation models, Martins [13] proposed a complete quantitative
risk analysis method (QRA) for potential risk accidents that may occur during the offshore
terminal loading and unloading processes of LNG ships. By comparing it to traditional
models, the advantages and limitations of the new model are pointed out. Marroni et al. [14]
developed a simplified method for the risk assessment of LNG ships in port areas. Based
on the standard characteristics of the ship, a set of reference accident scenarios that need
to be considered in risk assessment has been determined, providing specific guidance for
determining hazards, estimating frequency of occurrence, and consequences. Finally, a
customized risk matrix was adopted to support decisions on prevention and mitigation
measures. Abdussamie et al. [15] proposed a fuzzy set method to deal with the uncertainty
in expert opinions used in qualitative risk assessment research (such as a risk matrix). The
risk parameters are modeled using fuzzy set, and the fuzzy risk values of several dangerous
scenarios at different stages of the ship berthing operation are calculated.

Among the existing methods for quantitative risk analysis, fault tree analysis (FTA)
and Bayesian network (BN) are conventional tools. For example, Zhou [16] took the
loading and unloading process of a ship as an example, constructed a modified FTA for
ship accident leakage, and introduced human reliability analysis (HRA) to predict human
errors in the loading and unloading processes of LNG ships. Finally, the results of FTA and
human reliability analysis are combined, and a Monte Carlo simulation (MCS) is used to
evaluate the risk. Additionally, Zhao et al. [17] used Bayesian network to identify potential
risks, calculate accident probability, and evaluate the severity of consequences for the safe
anchoring system of LNG ships. Yeo [18] analyzed and identified potential hazardous
events that may occur during the unloading process of LNG transport vessels at floating
terminals. They use Bayesian networks to dynamically analyze the safety of LNG ships
during loading and unloading to identify the most likely types of accidents. The result is
similar to Vanem: collision is the most probable accident to occur during the offloading
process of an LNG carrier at berth, which may have catastrophic consequences. Li et al. [19]
proposed a process risk-based decision-making method for LNG ships colliding with Arctic
Sea ice or obstacles based on the dynamic Bayesian network (DBN) risk assessment model,
indicating that the decision-making process of ship navigation is dynamically related to
time. Additionally, Melani et al. [20] combined the two methods, using FTA to analyze
the failure of the unloading equipment of LNG ships. They combined it with pre-hazard
analysis and causality diagram to calculate the probability of various accidents through
Bayesian probability. Finally, they used the risk matrix for risk analysis and provided
corresponding improvement measures and suggestions.

2.2. FTA and BN in Maritime Risk Analysis

In this section, the advantages of FTA and BN in risk modelling are further demon-
strated by a systematic review of its applications in maritime accident/risk analysis. FTA
and BN models have been extensively applied in the field of maritime transport risk assess-
ment and have yielded several notable results. FTA aims to determine the root cause by
using a top-down method to build the accident chain and evaluate its impact on the acci-
dent. Fu et al. [21] proposed a fuzzy event tree method for Frank copula, which evaluated
the risk of major ship accidents in Arctic waters under the consideration of uncertainty.
Ugurlu [22] used FTA for qualitative and quantitative analysis to determine the root causes
of ship-to-ship collisions statistically. Results show that the violation of the COLREG Rules
is the most important and effective factor for collision accidents.

A Bayesian network model is used for quantitative assessment of risks under certain
conditions. For instance, Wan et al. [23] develop a novel model to assess the risk factors
of maritime supply chains by incorporating a fuzzy belief rule approach with Bayesian
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networks. The new model, compared to traditional risk analysis methods, has the capability
of improving result accuracy under a high uncertainty in risk data. In another study, Baksh
et al. [24] employed BN to assess the transport risks during navigation in the Arctic Sea.
The researchers first discussed the causes of maritime accidents and calculated the prior
probability of Bayesian network nodes based on historical data and expert judgment.
Subsequently, the possibility of accidents was determined through a sensitivity analysis of
the model. The results revealed that sea ice was the main influencing factor of the accident,
and appropriate management measures were proposed accordingly. Additionally, Chen
et al. [25] proposed an evidence-based fuzzy Bayesian network method to build a maritime
accident Statistical model. Using maritime accident reports, the Bayesian network was
constructed from a systematic perspective and its reliability was verified by three axioms.

FTA can establish a linear or sequential relationship between events leading to an
accident and provide a known conditional probability table and a clear model structure
for the Bayesian network. For example, Sakar et al. [26] mapped FTA to BN to analyze the
causes of grounding accidents and found that navigation factors had the most significant
impact on grounding accidents. Sokukcu et al. [27] considered the limitations of Fault tree
analysis in terms of conditional dependence and stationarity, proposed a Bayesian network
mapping method based on Fault tree analysis to overcome this limitation, and conducted a
probabilistic risk analysis on collision events. Kaushik et al. [28] proposed a comprehensive
method based on intuitionistic fuzzy fault tree and Bayesian network to evaluate the fault
probability of a system in cases of imprecise and insufficient fault data. The results indicate
that when the statistical failure data of components are inaccurate, this method can be used
as an alternative method for reliability probability assessment.

Based on the literature review presented above, two research gaps have been identified:
(1) regarding structural learning, most studies use data-driven TAN or traditional BN
models, which require expert guidance or data-driven development, leading to high
energy and time consumption. Additionally, when multiple evaluation indicators are
involved, determining the causal relationship between nodes and CPT in the network
can be challenging. To address these issues, a FTA transformation method can be applied
to remedy the structural defects of a traditional BN model and (2) when obtaining the
quantitative value of the prior probability of the root nodes, most studies use the method
of expert questionnaire. However, the possible deviations in the questionnaire results are
not handled, resulting in a large deviation in the prior probability of some root nodes.
By introducing an expert voting mechanism, we consider screening and retaining the
expert opinions with significant deviations. Thus, the accurate prior probability value can
be obtained.

In order to address the aforementioned gaps in the research, this study employs
a comprehensive, multi-step framework. First, we identify risk factors that may lead to
hazards in LNG maritime transport by reviewing relevant literature and develop a fault tree
model accordingly. Next, the probability of failure of basic events is calculated according
to the fuzzy set theory and expert scoring method. W also introduce a voting mechanism
into expert scoring results to handle results with significant differences in opinions. For
example, when experts have similar ratings for the frequency of events, their opinions
are taken into consideration for subsequent analysis. However, when most experts give
a relatively unified opinion on the frequency of an event, while very few experts have
opposite opinions, the opinions of the very few experts are discarded, and the unified
opinions of other experts are retained.

Then, the fault tree is transformed into a Bayesian network, and the risk prediction,
prevention, and diagnosis are carried out in turn. The novelty of this research lies in inte-
grating the fault tree with the Bayesian network, where FTA analyzes the causal relationship
between risk factors, compensating for the challenge of determining the causal relationship
of nodes in the Bayesian network model. After establishing the Bayesian network model,
we can perform forward prediction and backward diagnosis, which overcome the limitation
of the fault tree’s inability to carry out probabilistic quantitative analysis.
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3. Model Construction

3.1. Establish a Maritime Risk Assessment Framework

FTA and BN are two widely used methods for risk assessment. However, using FTA
for risk assessment requires calculating the top event state based on the probability of
basic events, resulting in generating a large number of calculations when reasoning in the
forward direction, and backward reasoning cannot be carried out in this model. These
problems can be overcome in the BN model, which allows for both forward and backward
reasoning. Additionally, fault tree transformation is the primary approach for constructing
a Bayesian network.

Maritime risk analysis studies that use FTA-BN are typically conducted through
several established steps, including data collection, variable identification, FTA structure
transformation, BN model validation, and sensitivity analysis [29]. The methodology
in this paper is no exception, and it consists of five parts: (1) identification of variables,
(2) construction of the fault tree, (3) transformation of the fault tree into a Bayesian network,
(4) calculation of the probability of root nodes, and (5) risk prediction, prevention, and
diagnosis, as depicted in Figure 1.

3.2. Risk Factor Identification

RIFs, which stands for Risk Influencing Factors, are the variables that impact the secu-
rity and safety of maritime transportation. Identifying risk influencing factors can provide
support for subsequent survey questionnaires, concretizing and digitizing indicators. This
can identify potential problems in the entire process of LNG maritime transportation and
provide complete and scientific information for risk control measures. The widely used
identification method currently is to identify RIFs based on the construction of a maritime
accident database, utilizing relevant literature and the existing maritime accident record
guidance from the IMO. After searching on the Web of Science, 16 typical journal papers
were selected, which described the risk factors and were further analyzed against each of
the retrieved results, as shown in Appendix A. Next, 22 RIFs were identified and are listed
in Figure 2, with the frequency of occurrence of each risk factor. It is evident that the safety
performance of LNG ships, high waves, heavy fog, strong sea breeze, unsafe behavior of
personnel, piracy, and terrorist attacks are the top six RIFs identified in previous research.
Once the RIFs were identified, previous studies in the field usually simplified the definition
of their states to reduce the high data demand in quantifying their interdependencies, such
as CPTs in BN. In this paper, all RIFs were set to two states: normal and fault. Experts
scored the occurrence frequency of each RIF, and the fault probability was obtained through
data processing, which was then input into the BN as prior probability.

3.3. Fault Tree Construction

FTA is a well-structured and widely used tool for the risk assessment and root cause
analysis (RCA) of complex systems. In a fault tree there are top events, intermediate events,
and basic events. The fault tree analysis begins with a final result, which is the top event,
and decomposes layer by layer from top to bottom according to the causal relationship of
logic gates until it cannot be decomposed any further. Finally, the basic events that caused
the final failure are identified. This method can intuitively analyze various ways of system
fault occurrence, effectively finding the fault source of the system. FTA produces graphical
displays that show the logical connections between failure and the path toward the failure
of a system. Due to the visualization and predictability of FTA, it has been widely used in
the maritime field [21].

The event structure and relationship of the risks associated with the maritime transporta-
tion of liquefied natural gas (LNG) are illustrated in Table 1. This table outlines the specific
factors that are represented by each event, and their relationship with intermediate events.
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Figure 1. Developed framework for maritime transport risk assessment.
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Figure 2. Frequency of RIFs in the retrieved literature and accident reports.

In view of the event design for the risk fault tree of LNG maritime transport in Table 1,
this paper obtained the fault tree structure by drawing with Visio, as shown in Figure 3.

3.4. Introduce Fuzzy Set to Obtain Probability of Basic Events

The fuzzy set theory (FST) was introduced by Zadeh [30] as a means of dealing
with imprecision and vagueness. A fuzzy set on a given domain U means that, for any
x ∈ U, there is a number u(x) ∈ [0, 1] corresponding to it. The membership function
u(x) represents the membership value of x in U. The triangular fuzzy number is a simple
and widely used method for representing the membership function, where a and b are
the lower and upper limits of the fuzzy number, respectively, and m is the value with the
highest possibility. In this paper, a triangular fuzzy number U = (a, m, b) is utilized to
represent the fuzzy failure probability of the nodes, and the membership function is given
by Equation (1).

u(x) =

⎧⎨⎩
x−a
m−a , a < x ≤ m
b−x
b−m , m < x ≤ b
0, othervise

(1)

The expert survey method has been widely used in risk research as an effective
and feasible approach. However, this method solely focuses on the level of the expert
judgment’s ability, while ignoring the uncertainty in expert judgment. This can result
in a certain degree of deviation in data reliability, which greatly impacts the subsequent
evaluation. To address this issue, this paper proposes an expert survey method based on
the confidence index, which takes into account the subjective reliability of the experts.
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Table 1. Event structure relationship for risk of LNG maritime transport.

Top Event Intermediate Events Basic Events

Risk of LNG
maritime

transport (T)

LNG’s own transport risks (I1)
Fire and explosion risk of LNG (X1)

LNG loading and unloading risks (X2)

Vessels and equipment risks (I2)
Safety performance of LNG ships (X3)

Difficult handling of LNG ships (X4)

Safety of shipping
routes (I3)

Inherent risks of the route itself (I4)

Long course distance (X5)

Deep channel (X6)

High ocean current velocity (X7)

Heavy traffic flow in the section (X8)

Influence of
weather and sea

state (I5)

High waves (X9)

Low visibility (I8)
Heavy fog (X10)

Thunderstorms (X11)

Sea breeze effect (I9)
Strong sea breeze (X12)

High frequency of strong winds (X13)

Coastal ports risk
(I6)

Objective factors (I10)

Fewer LNG unloading ports (X14)

Uncertain navigable period (X15)

Draft of LNG ships at ports (X16)

Subjective factors (I11)

Unsafe behavior of personnel on LNG
ships (X17)

Poor organization (X18)

Maritime security
environment (I7)

Influence of political
game (I12)

Maritime sovereignty disputes (X19)

Military conflicts (X20)

Non-traditional
threat to security (I13)

Piracy and terrorist attacks (X21)

The impact of epidemic (X22)

Figure 3. Fault tree diagram of LNG maritime transport risk assessment.

Firstly, the expert judgment ability, denoted as ξ, was categorized into five levels,
represented by ‘I, II, III, IV, and V’ and corresponding to the values ‘0.6, 0.7, 0.8, 0.9, and
1.0’, respectively. A smaller ξ value indicates less reliable expert judgment ability. The
subjective reliability, represented by ψ, measures the degree of reliability of the expert
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in their judgment and is divided into five levels, denoted as ‘0.6, 0.7, 0.8, 0.9, and 1.0’,
respectively. A higher level of subjective reliability ψ indicates a more reliable judgment.
Assuming that m experts participate in the survey, the confidence index δn of the nth expert
can be calculated using Equation (2).

δn = ξn × ψn (2)

Secondly, in this paper, we adopt five fuzzy languages, namely ‘very low (VL)’,
‘low (L)’, ‘medium (M)’, ‘high (H)’, and ‘very high (VH)’, to describe the failure proba-
bility [31] of basic events. Table 2 illustrates the corresponding relationship between the
linguistic variables and the failure probability intervals. The ith interval is defined by its
lower and upper bounds [ai, ai+1], and its average value ci(1 ≤ i ≤ 5).

Table 2. Triangular fuzzy number assignment.

Fuzzy Languages Lower Bound (ai) Mean (ci) Upper (ai+1)

1 VL 0.00 0.10 0.20
2 L 0.20 0.30 0.40
3 M 0.40 0.50 0.60
4 H 0.60 0.70 0.80
5 VH 0.80 0.90 1.00

Multiple experts are selected to score the probability of failure of the basic event,
usually the expert confidence level δ is less than 1, which means that the remaining
probability of the root node is 1 − δ, distributed among other intervals. According to
the Gaussian distribution pattern of random variables, the probability of failure tends
to fluctuate around its expectation and gradually decreases as it moves away from the
expectation. Therefore, a simplified formula for the distribution of residual probability
1− δ in other intervals is proposed, as shown in Equations (3)–(5), where ai is the lower
bound of the triangular fuzzy number in the ith interval of failure probabilities.

Pk
xn

=

⎧⎪⎨⎪⎩
δ, k = i(i = 1)
(a5+2−k−a1)

5
∑

n=2
(an−a1)

× (1− δ), 2 ≤ k ≤ 5 (3)

Pk
xn

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ai−ai−k)
i−1
∑

n=1
(ai−an)

× 1−δ
2 , 1 ≤ k ≤ i− 1

δ, k = i
(a6+i−k−ai)

5
∑

n=i+1
(an−ai)

× 1−δ
2 , i + 1 ≤ k ≤ 5

(4)

Pk
xn

=

⎧⎪⎨⎪⎩
(a5−a5−k)
4
∑

n=1
(a5−an)

× (1− δ), 1 ≤ k ≤ 4

δ, k = i(i = 5)
(5)

Thirdly, the failure probability evaluated by each expert on the root node Xn can be
obtained through Equation (6), where ck is the average value of the Kth failure probability
interval, as shown in Table 2.

Pxn =
5

∑
k=1

(
ck × Pk

xn

)
(6)

36



J. Mar. Sci. Eng. 2023, 11, 1722

Fourthly, the fuzzy number P∗ of the failure probability of each basic event is obtained
by calculating the mean value. Then, the failure probability P of the basic event is calculated
by solving the fuzzy, as shown in Equations (7) and (8) [25].

z = 2.301
(

1− P∗

P∗

) 1
3

(7)

P =

{ 1
10z , P∗ �= 0
0, P∗ = 0

(8)

3.5. Transforming the Fault Tree into Bayesian Network

A Bayesian network is a directed acyclic graph (DAG) that encodes the joint probability
distribution of a set of random variables [32]. As a tool for prediction, diagnosis, and
reasoning, a BN can calculate the probability of risk occurrence. The Bayesian network has
two types of reasoning: causal reasoning and diagnostic reasoning. Causal reasoning refers
to predicting the probability of the failure of the target node based on the probability of the
root node failure. Diagnostic reasoning involves assuming that the target node has a fault.
Based on the degree of correlation between nodes, the possibility and importance of each
root node can be obtained. This information can then be used to determine the specific
reason for the occurrence of the target node.

The network diagram of BN can be observed as the qualitative part of the model,
while the quantitative part of the model is composed of probability parameters. The
joint probability of a set of random variables (A1, A2, A3, . . . , An) based on the conditional
independence and the chain rule can be obtained as follows:

P(A1, A2, A3, . . . , An) = P(A1|A2, A3, . . . , An)P(A2|A3, . . . , An) . . . P(An−1|An)P(An) (9)

Bayes theorem [24] is used in the BN to update the failure probability (prior) of basic
events given new observations to yield the consequence probability (posterior) using the
following equation:

P(A | B) = P(B|A)P(A)

P(B)
(10)

where P(A|B) is the posterior probability of A if B is true.
In addition to the posterior probability, the probability importance degree and the

critical importance degree are also used to study the probability of the risk caused by the
basic event.

Probability importance refers to the degree to which the change of probability of
failure of basic events causes the change of probability of failure of top events. The specific
calculation formula is as follows:

Ipr
i = p(T = 1|ai = 1)− p(T = 1|ai = 0) (11)

Critical importance refers to the change rate of top event failure probability caused by
the change rate of basic event failure probability, which essentially reflects the importance
of basic events in the fault tree. The specific calculation formula is as follows:

Icr
i = p(Ai = 1)[p(T = 1|ai = 1)− p(T = 1|ai = 0)]/p(T = 1) (12)

where, T is the top event; P(T = 1|·) is the conditional probability of the top event;
Ai = 1, 0 indicates the status of occurrence or non-occurrence of basic event i; and P(Ai) = 1
is the prior probability of the basic event i.

After establishing the relationships between events, logical relations, and symbols of
the Bayesian network model in the fault tree, the fault tree was transformed into a Bayesian
network, as shown in Figure 4. The top event in the fault tree is denoted by T, and the
basic event is represented by N = (x1, x2, . . . . . . , xn). After transformation, the graphical
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structure of the developed BN is shown in Figure 5. The colors of nodes represent the target
node, intermediate node, and root node in order of depth to light.

Figure 4. Transformation diagram of AND-Gate and OR-Gate.

Figure 5. Bayesian network for risk assessment of LNG maritime transport.

4. Case Study

4.1. Description of the China-Australia Route

The China–Australia route, starting from China, passes through Southeast Asian
countries such as the Philippines and Indonesia, as well as the South China Sea, Banda Sea
and other sea areas, and finally reaches Australia and South Pacific island countries. As
China’s offshore route, this route is a route channel with intensive and busy economic and
trade exchanges with Australia and other countries, and it is also an important maritime
transport channel for national strategic energy. China imports a large amount of energy
and goods such as LNG and iron ore from Australia, which is the lifeline of China–Oceania
import and export trade. Therefore, the shipping activities such as container transportation,
LNG, iron ore, asphalt, and other bulk cargo transportation on the China–Australia route
are active and frequent.
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Due to the uncertainty of risks along the China–Australia route, there are certain
impacts and losses along the route due to risks, providing a certain warning for the safe
operation of the route. According to the statistics on maritime casualties and accidents
released by the IMO, the statistics on maritime casualties and accidents along the route can
be divided into three levels: very serious, serious, and not very serious. During 2006–2020
(the global shipping industry was impacted and affected by the global COVID-19 from
2020 to 2023, so there were fewer casualties and accidents at sea), the proportion of the
very serious marine casualties and accidents along the line was basically 60–70%. The
proportion of serious maritime casualties and accidents is second, ranging from 20% to 30%.
The proportion of less serious maritime casualties and accidents is the smallest, around 10%.
This indicates that the consequences of maritime safety accidents caused by safety risks
along the route are relatively serious. Therefore, the risk issues of the China–Australia route
need to be taken seriously and security risk control along the route should be strengthened.
In addition, according to a series of reports on Safety and Transportation Review issued
by IMO, among the top ten loss areas in 2012–2019, southern China, Indonesia, and the
Philippines have always been the key areas and focuses of ship losses. Among these key
areas, the areas along the China–Australia route account for the vast majority, and the
proportion of ship losses along the route remains around 20–30% globally. The significant
safety risk losses indicate that the results caused by safety risks along the route are not
optimistic and urgently need to be taken seriously by relevant parties.

4.2. Risk Prediction

In the realm of risk analysis, the utilization of expert evaluation via questionnaires
is widely regarded as a reliable approach to supplement the inadequacies inherent in
incomplete data, thereby affording the opportunity to procure prior probabilities of greater
precision. When selecting multiple experts to score the probability of failure of basic
events, the judgment ability of each expert (ξ) may be distinguished according to their
working years.

The flowchart of the refinement stage of the voting mechanism is shown in step 3 of
Figure 1. Firstly, each expert needs to choose a probability based on their own experience
and research objectives. The five probabilities given by experts are all located in “very
low (VL), low (L), medium (M), high (H), and very high (VH)”. In the second step,
expert opinions will be processed to further identify voting results with scores far below
the average score for each factor. After discussion, it is believed that this situation was
an accidental situation encountered by a certain expert and could not be symbolically
summarized. Therefore, the excessive biased opinions in this situation are removed and
the common opinions of the majority of experts are retained. The third step is to process
and calculate the retained opinions into fuzzy set theory, converting them into probability
values within the range of (0, 1). The prior probability of each basic event is obtained.

In this study, six experts were invited to conduct the expert judgements. Table 3
shows the allocation of experts according to their years of work experience, and the specific
questionnaire survey results can be found in Appendix B.

Table 3. Expert assignment situation.

Expert No.
Expert Judgment

(ξ)
Subjective Reliability Level

(ψ)
Degree of Confidence

(δ)

1 0.9 1 0.9
2 0.8 0.9 0.72
3 0.6 0.9 0.54
4 0.8 0.8 0.64
5 1 0.8 0.8
6 0.8 0.8 0.64
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It can be observed from the questionnaire results that the scoring results of most
basic events are relatively average. The Mean ci corresponding to each fuzzy language is
averaged, and the error between the scoring results of six experts under 22 basic events
and the average value is calculated, respectively. Five experts are involved, so a ratio of 0.2
is used for screening. We believe that scores exceeding the average value by 20% conflict
with the opinions of most experts, so we have manually removed this situation to ensure
consistency in expert judgment. If the error is within 0.2, it is considered reasonable, and
the scoring result error table is shown in Table 4. If the score error of four Basic events is
higher than 0.2, the expert opinion with a larger error in this case will be discarded and the
other average expert opinions will be retained. In this way, the fairness of expert scoring
opinions has been reasonably addressed. Meanwhile, the deviation of unequal information
in the subjective judgment of experts is overcome, and the accuracy of the prior probability
value of basic events is guaranteed.

Table 4. The scoring result deviation.

RIFs Average Value No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

X1 0.43 0.13 0.07 0.07 0.07 0.13 0.07
X2 0.30 0.00 0.20 0.00 0.20 0.20 0.20
X3 0.30 0.20 0.00 0.00 0.00 0.00 0.20
X4 0.23 0.07 0.07 0.07 0.07 0.13 0.13
X5 0.20 0.10 0.10 0.10 0.10 0.10 0.10
X6 0.23 0.07 0.13 0.07 0.27 0.13 0.13
X7 0.50 0.20 0.20 0.20 0.20 0.00 0.40
X8 0.53 0.03 0.17 0.17 0.03 0.23 0.03
X9 0.57 0.07 0.13 0.07 0.07 0.07 0.13
X10 0.77 0.07 0.07 0.13 0.07 0.07 0.13
X11 0.40 0.10 0.10 0.10 0.10 0.10 0.10
X12 0.40 0.10 0.10 0.10 0.10 0.10 0.10
X13 0.70 0.00 0.00 0.20 0.00 0.20 0.00
X14 0.70 0.00 0.00 0.20 0.20 0.00 0.00
X15 0.30 0.00 0.00 0.20 0.00 0.00 0.20
X16 0.30 0.00 0.00 0.20 0.20 0.00 0.00
X17 0.17 0.07 0.07 0.13 0.07 0.13 0.07
X18 0.23 0.07 0.13 0.07 0.07 0.07 0.13
X19 0.27 0.17 0.03 0.03 0.23 0.03 0.17
X20 0.43 0.27 0.13 0.07 0.07 0.13 0.13
X21 0.73 0.03 0.03 0.17 0.03 0.03 0.03
X22 0.80 0.10 0.10 0.10 0.10 0.10 0.10

The prior probabilities of each basic event in LNG maritime transport risk can be
calculated using Equations (3)–(8), and the calculation results are shown in Table 5.

Table 5. Probability transformation of expert language.

Basic Event
Prior

Probability
Basic Event

Prior
Probability

Basic Event
Prior

Probability

X1 3.13 × 10−3 X9 7.51 × 10−3 X17 4.63 × 10−4

X2 1.40 × 10−3 X10 1.86 × 10−2 X18 7.78 × 10−4

X3 1.33 × 10−3 X11 2.49 × 10−3 X19 9.66 × 10−4

X4 7.38 × 10−4 X12 2.47 × 10−3 X20 3.25 × 10−3

X5 5.53 × 10−4 X13 1.40 × 10−2 X21 1.71 × 10−2

X6 8.44 × 10−4 X14 1.42 × 10−2 X22 2.37 × 10−2

X7 5.78 × 10−3 X15 1.28 × 10−3

X8 6.05 × 10−3 X16 1.28 × 10−3

The probabilities of top event and intermediate events can be obtained after importing
the prior probabilities of various basic events into the Bayesian network model. This step
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becomes ‘risk prediction’. By performing calculations using NETICA, the probability of the
occurrence of risks during LNG maritime transport on the China–Australia route is 0.106,
which is the predicted result. Due to the direct connection between the three intermediate
events I1, I2, and I3 and the top event, they are considered as the direct cause of the risk
occurrence. The direct causes of accidents are also evaluated, with a probability of 0.102
assigned to ‘Shipping routes safety risks (I3)’, 4.53 × 10−3 to ‘LNG’s own transport risks
(I1)’, and 9.82 × 10−7 to ‘Vessels and equipment risks (I2)’. As a result, measures to reduce
the risk of shipping routes should be prioritized over other risk-reduction measures.

4.3. Model Validation

The validity of the BN model can be evaluated using the two axioms. The reliability of
partial nodes in the network is verified by applying these axioms sequentially.

Axiom 1: The change of the failure probability of the target node is observed in the
BN model by changing the prior probability value of the relevant intermediate node. This
test determines whether the model meets the requirements of Axiom 1.

Axiom 2: The total impact of the combination of probability changes from ‘evidence
nodes’ on the target value should always be greater than the combination of probability
changes from ‘secondary evidence nodes’.

The results of Axiom 1, depicted in Figure 6, show that the prior probability value
of the target node and the intermediate node exhibit similar fluctuation trends. When the
probability of the intermediate nodes being in the ‘normal’ state is 0%, the probability of the
target node being in the ‘normal’ state is also 0%. This is because, in CPT, any abnormality
in the three intermediate nodes leads to the occurrence of the final accident.

Figure 6. Test result of Axiom 1 under various prior probabilities.

To verify Axiom 2, it is necessary to first determine ‘evidence nodes’ and ‘secondary
evidence nodes’. The state of ‘Safety of shipping routes (I3)’ is related to ‘Inherent risks of
the airline itself (I4)’, ‘Influence of weather and sea state (I5)’, ‘Coastal ports risk (I6)’, and
‘Maritime security environment (I7)’. Therefore, in this paper, ‘Safety of shipping routes (I3)’
is considered an ‘evidence node’, while ‘inherent risks of the airline itself (I4)’, ‘Influence of
weather and sea state (I5)’, ‘Coastal ports risk (I6)’, and ‘Maritime security environment (I7)’
are regarded as ‘secondary evidence nodes’.

When new evidence is introduced into the Bayesian network and the probability of
four nodes being in the ‘normal’ state is 100%, the probability of ‘Risk of LNG maritime
transport (T)’ being in the ‘normal’ state is 89.4%, 93.5%, 90.9%, and 93.5%, respectively.
When the probability of the four nodes being in the ‘normal’ state simultaneously is 100%,
the probability of ‘Risk of LNG maritime transport (T)’ being in the ‘normal’ state is 99.5%.
This value is greater than the probability value of ‘Risk of LNG maritime transport (T)’
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caused by the individual change probabilities of the four nodes, thereby satisfying the
validation conditions of Axiom 2. In addition, tests were conducted on other corresponding
secondary evidence nodes, which also met the validation criteria of Axiom 2.

4.4. Risk Prevention

By calculating and ranking the critical importance and probability importance of basic
events, it is possible to clarify the degree of influence of each event on the occurrence risk.
Taking control measures for events with a high degree of impact and a relatively easy
reduction in the failure probability can effectively prevent the occurrence of LNG maritime
transport risk.

4.4.1. Calculation of Importance

The probability importance and critical importance of basic events can be calculated,
and the results are shown in Table 6.

Table 6. Basic event significance calculation results.

Basic Event
Probability
Importance

Critical
Importance

Basic Event
Probability
Importance

Critical
Importance

X1 0.897 0.026 X12 0.896 0.021
X2 0.895 0.012 X13 0.907 0.12
X3 0.001 8.26 × 10−6 X14 0.907 0.121
X4 0.001 8.26 × 10−6 X15 0.895 0.011
X5 0 0 X16 0.895 0.011
X6 0 0 X17 0.001 0
X7 0 0 X18 0 0
X8 0 0 X19 0.895 0.008
X9 0.901 0.064 X20 0.897 0.027
X10 0.911 0.16 X21 0.909 0.146
X11 0.896 0.021 X22 0.916 0.204

4.4.2. Rank of Importance

The risk matrix is a qualitative analysis tool used to rank the likelihood and conse-
quences and specify the level of risk. It mainly analyzes and evaluates risks from two
dimensions: the likelihood of risk factors occurring, and the severity of damage caused.
This evaluation method is a combination of qualitative and quantitative methods. The
form of the risk matrix is represented by a two-dimensional table, and the basic risk matrix
coordinate diagram is shown in Figure 7. By drawing a risk matrix diagram, multiple risks
in the system can be more intuitively compared, and the corresponding order and methods
of risk factors can be further determined based on the comparison results.

The basic risk matrix mainly divides the risk level into three regions: A, B, and C. If
a risk factor is located in Region A, it is considered a high-level risk factor. Preventive
measures should be taken well, and rules and regulations should be established to avoid
such situations. If a risk factor is located in Region B, it is considered a moderate risk
factor and reasonable control methods and solutions need to be developed. If a risk factor
is in region C, it is considered a very low-level risk factor. Under the existing security
management system, there is no need for additional control.

In order to comprehensively evaluate the risk of LNG maritime transport, the risk
matrix analysis is introduced on the basis of the Bayesian network. Risk matrix is a
qualitative analysis tool used to grade the possibility and consequence and specify the
risk level. It can comprehensively represent the frequency and severity of risk accidents.
According to the calculation results of probability importance and critical importance,
they are standardized and presented in the table in the form of quadrants. By classifying
the analyzed risks, we can obtain three different risk categories: ‘high risk factor (HR)’,
‘medium risk factor (MR)’, and ‘low risk factor (LR)’. The specific division is shown in
Figure 8.
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Figure 7. Basic risk matrix.

 

Figure 8. Risk matrix.

4.4.3. Analysis of Importance Ranking Results

The high-risk factors are located at the intersection of the peaks of probability im-
portance and critical importance, which means the events with a high risk of influencing
top events and easily reduce the priori probability [33]. Taking measures to reduce the
possibility of failure of these events will quickly and effectively reduce the risk of LNG
maritime transport.

From the calculation results of probability importance, we find that there is no sig-
nificant difference between the importance values of the top 14 basic events, which is
much higher than the bottom 8. The order of critical importance of the top 14 is the same
as probability importance, but the critical importance of the top 5 is far higher than that
of others. Consequently, the fundamental occurrences associated with the uppermost
five were scrutinized as perilous elements. Specifically, these comprise ‘Non-traditional
threat to security (I13)’, ‘Heavy fog (X10)’, ‘High frequency of strong winds (X13)’, and
‘Fewer LNG unloading ports (X14)’. First of all, non-traditional security threats along
the China–Australia route are increasingly prominent. Piracy and terrorist attacks have
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international characteristics, increasing the probability of transport risks. Moreover, the
impact of the global epidemic has made maritime public health safety one of the important
factors affecting transport risks. Therefore, we should include this factor in the assessment
and response to transport risks and strengthen joint prevention and control measures
to build a solid maritime security defense line. Secondly, ‘Heavy fog (X10)’ and ‘High
frequency of strong winds (X13)’ fall under the category of ‘Influence of weather and sea
state (I5)’. In case of severe weather, navigation ships need to take evasive measures such
as entering the port or avoiding navigation. Finally, the small number of seaports on the
China–Australia route has a high impact on LNG maritime transport risks, mainly because
some ports along the route do not have facilities and equipment for LNG storage, loading,
and unloading, resulting in poor connectivity with other ports, thereby increasing the risks
in LNG transport.

Meanwhile, eight basic events with probability importance and critical importance
close to zero are considered low-risk factors, namely ‘Safety performance of LNG ships
(X3)’, ‘Difficult handling of LNG ships (X4)’, ‘Long course distance (X5)’, ‘Deep channel
(X6)’, ‘High ocean current velocity (X7)’, ‘Heavy traffic flow in the section (X8)’, ‘Unsafe
behavior of personnel on LNG ships(X17)’, and ‘Poor organization (X18)’. Reducing the
occurrence probability of these events has less effect on improving the safety of LNG
maritime transport and is more difficult to reduce [33]. We can summarize this as two
intermediate events: ‘Vessels and equipment risks (I2)’ and ‘Inherent risks of the route itself
(I4)’. In the case of limited resources, we can ignore these factors.

Moreover, medium-risk factors are events with high probability importance but low
critical importance. Although such factors have a high risk of influencing the occurrence of
top events, their own occurrence frequency is very low. Therefore, daily inspection and
management should be strengthened for such factors, and potential symptoms should be
found and handled in a timely manner.

4.5. Risk Diagnosis

The cause of risk can be diagnosed by sorting the posterior probability of basic events,
with the support of the ability of BN’s binary risk diagnosis and risk prediction. The
posterior probability of each basic event is calculated through NETICA, as shown in
Table 7.

Table 7. Basic event posterior probability.

Basic Event
Posterior

Probability
Basic Event

Posterior
Probability

Basic Event
Posterior

Probability

X1 2.95 × 10−2 X9 7.07 × 10−2 X17 4.70 × 10−4

X2 1.32 × 10−2 X10 1.75 × 10−1 X18 7.80 × 10−4

X3 1.30 × 10−3 X11 2.35 × 10−2 X19 9.10 × 10−3

X4 7.50 × 10−4 X12 2.33 × 10−2 X20 3.06 × 10−2

X5 5.50 × 10−4 X13 1.32 × 10−1 X21 1.61 × 10−1

X6 8.40 × 10−4 X14 1.34 × 10−1 X22 2.23 × 10−1

X7 5.80 × 10−3 X15 1.21 × 10−2

X8 6.03 × 10−3 X16 1.21 × 10−2

The posterior probability ranking results of basic events are as follows.

Px22 > Px10 > Px21 > Px14 > Px13 > Px9 > Px20 > Px1 > Px11 > Px12 > Px2
> Px15 = Px16 > Px19 > Px8 > Px7 > Px3 > Px6 > Px18 > Px4 > Px5 > Px17

If there are risks in LNG maritime transport on the China–Australia route, the most
likely reasons are ‘The impact of epidemic (X22)’, ‘Piracy and terrorist attacks (X21)’, ‘Fewer
LNG unloading ports (X14)’, and ‘Influence of weather and sea state (I5)’. When accidents
occur in maritime transport, priority can be given to checking whether these events occur,
so as to save time and cost.
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5. Suggestions and Discussion

Based on the diagnosis of maritime transport risks on the China–Australia route, this
paper puts forward suggestions and measures to reduce risks by reducing the probability
of events with high posterior probability in Table 7.

As shown in Table 7, when accidents occur in LNG maritime transport, the posterior
probability ranking of the top six basic events is significantly higher than others. To mitigate
the risks associated with these events, the following suggestions and measures are proposed.
From the perspective of risk control, these six events are divided into two categories for
consideration: preventable and uncontrollable. Among them, the posterior probability
ranking first and third are ‘The impact of epidemic (X22)’ and ‘Piracy and terrorist attacks
(X21)’, which are considered as preventable events due to their low probability of failure. In
response to the impact of the epidemic, shipping companies are predominantly affected,
so it is crucial to establish a response mechanism for epidemic prevention and control for
them; for piracy and terrorist attacks, the country should strengthen its domestic naval
capacity building for defense. The rest are uncontrollable risks. The fourth-ranked event
is ‘Fewer LNG unloading ports (X14)’, and as this situation cannot be improved in a short
period of time, the establishment of alternative route mechanisms at ports can alleviate
this impact to some extent. Finally, the second, fifth, and sixth-ranked events, namely
‘Heavy fog (X10)’, ‘High frequency of strong winds (X13)’, and ‘High waves (X9)’ can be
summarized as the intermediate event ‘Influence of weather and sea state (I5)’. Given the
unchangeable nature of these objective conditions, the only viable approach is to avoid
LNG loading and unloading operations during adverse weather conditions.

The following are specific further discussions based on the above suggestions. For
shipping enterprises, they should establish epidemic prevention and control response
mechanisms. The outbreak of the global COVID-19 pandemic has increased the risk of
shipping routes due to port suspensions in some relevant countries. To prevent similar
situations from causing greater risks in the future, shipping enterprises should take targeted
actions. For example, they should formulate comprehensive and feasible emergency
plans for epidemic prevention and control under the leadership and guidance of the
national government. This would help establish and improve relevant emergency response
mechanisms to reduce the harm caused by public health emergencies at sea and prevent
the spread of the epidemic [34]. Furthermore, strengthening the marine defense line for
epidemic prevention and control is essential. Only by maintaining the normal order of
maritime activities on the China–Australia route, and reducing the risk of the route, can we
promote the recovery and normalization of shipping. Thus, it is crucial to take proactive
measures to ensure the safety and security of shipping activities in the face of similar
global accidents.

For the country, it is necessary to strengthen the capacity building of the domestic
navy. The waters surrounding the South China Sea, Indonesia, and the Philippines are
known for their high levels of pirate attacks and maritime terrorism, which create multiple
uncertainties for shipping routes in the region. Therefore, it is crucial to enhance the
construction of the domestic navy to improve route security. Specifically, China should
focus on improving the navy’s long-distance combat capability and defense capability, as
well as enhancing the protection mechanism for LNG ships. Additionally, the ability to
patrol dangerous waters and monitor the marine environment must be strengthened, and
a well-established emergency plan system for piracy and terrorist attacks must be put in
place. Increasing the frequency of naval convoys on the China–Australia route and cracking
down on piracy are also important measures to consider.

For ports, a route substitution mechanism could be established to address the chal-
lenges posed by the restrictions of many islands, such as the Indonesian archipelago and
the South Pacific islands, and the different passing capacities of key nodes, such as the
Straits. Alternative routes should be actively sought to reduce the threat of emergencies
to route safety. In the face of security threats, the route substitution mechanism could be
implemented to reduce losses caused by port blockade and ensure the safety of the route.
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Furthermore, loading and unloading operations should be avoided as far as possible
during bad weather conditions. If environmental factors such as bad weather, strong winds,
or waves affect the loading and unloading operation, it should be stopped immediately,
and the corresponding connecting equipment should be disconnected to ensure the safety
of the ship and the wharf.

6. Conclusions

The main contribution of this paper is to build a fault tree analysis and Bayesian
network model for the risk assessment of LNG maritime transport on the China–Australia
routes. The proposed model combines the two methods to overcome the problem that con-
ditional probabilities in the Bayesian network find difficult to determine. Specifically, due
to the complexity of the maritime scenario, it is inappropriate for analysis to attribute acci-
dents to a single cause or a few causes. This paper constructs accident causation networks
from various perspectives of cargo, ships, route, and environment. The fault tree is estab-
lished by investigating relevant literature and accident investigation reports, and expert
opinions and fuzzy set are used to derive the prior probability, the fault tree is transformed
into Bayesian network, and the conditional probability table in the Bayesian network is
obtained through a relationship gate in fault tree analysis. From further analysis, the key
influencing factors and sensitive factors can also be identified in this developed model.

In conclusion, the China–Australia route is an important maritime transport route
for the trade activities between China and the Oceania region. However, the route is
subject to multiple uncertainties, including piracy, terrorism, epidemic, port restrictions,
and inclement weather conditions. These uncertainties pose significant risks to the safety of
maritime transport activities and may result in economic losses and environmental damages.
To reduce the risks and ensure the safety of maritime transport activities on this route,
various measures should be taken, such as strengthening the construction of the domestic
navy, establishing safety early warning systems for LNG storage and transportation, setting
up appropriate meteorological monitoring departments, and avoiding LNG loading and
unloading operations in bad weather conditions. By implementing these measures, we
can promote the recovery and normalization of shipping on the China–Australia route and
facilitate economic and trade cooperation between China and the Oceania region.

This paper analyzed the effect of risk factors from a systematic perspective based
on real-world accidents. Although this paper takes LNG and the China–Australia route
as an example, the proposed model can also be applied to other route to predict the
probability of maritime accidents if the proposed route data have similar characteristics.
Moreover, quantitative information assessed by experts due to limited data may be a biased
representation of the exact real-world situation. Therefore, future work can model and
analyze large amounts of data to provide additional and practical insights into enhancing
marine safety.
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Appendix A. The Sources of RIFs Based on the Retrieved Results

Refs. [35] [36] [37] [38] [39] [40] [41] [42] [24] [43] [44] [45] [34] [46] [47] [40] Reports

X1 A A A A A A
X2 A A A A A
X3 A A A A A A A A A A A
X4 A A A A A A
X5 A A A A
X6 A A A A
X7 A A A A
X8 A A A A A A
X9 A A A A A A A A A A
X10 A A A A A A A A A A
X11 A A A A A
X12 A A A A A A A A A A A A
X13 A A A A A A A
X14 A A A A
X15 A A A A A
X16 A A A A A A
X17 A A A A A A A A A A
X18 A A A A A A
X19 A A A
X20 A A A
X21 A A A A A A A A A
X22 A A A

Note: ‘A’ means this RIF is applied in the related reference.

Appendix B. Questionnaire Results

Basic Events

Expert
1 2 3 4 5 6

Fire and explosion risk of LNG (X1) L M M M L M
LNG loading and unloading risks (X2) L M L M VL VL
Safety performance of LNG ships (X3) M L L L L VL
Difficult handling of LNG ships (X4) L L L L VL VL

Long course distance (X5) VL VL L VL L L
Deep channel (X6) L VL L M VL VL

High ocean current velocity (X7) H H L H M VL
Heavy traffic flow in the section (X8) M H H M L M

High waves (X9) M H M M M H
Heavy fog (X10) H H VH H H VH

Thunderstorms (X11) L L M L M M
Strong sea breeze (X12) L M M L L M

High frequency of strong winds (X13) H H VH H M H
Fewer LNG unloading ports (X14) H H VH M H H
Uncertain navigable period (X15) L L M L L VL
Draft of LNG ships at ports (X16) L L M VL L L

Unsafe behavior of personnel on LNG ships (X17) VL VL L VL L VL
Poor organization (X18) L VL L L L VL

Maritime sovereignty disputes (X19) VL L L M L VL
Military conflicts (X20) H L M M L L

Piracy and terrorist attacks (X21) H H VH H H H
The impact of epidemics (X22) VH VH H VH H H
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Appendix C. Abbreviation and Full Name

Abbreviation Full Name

LNG Liquefied Natural Gas
FTA Fault Tree Analysis
BN Bayesian Network

IMO International Maritime Organization
RIFs Risk Influential Factors

FMEA Failure Mode and Effects Analysis
HFACS Human Factors Analysis and Classification System

FL Fuzzy Logic
NBN Naïve Bayesian Network
DBN Dynamic Bayesian Network
CPTs Conditional Probability Tables
QRA Quantitative Risk Analysis
HRA Human Reliability Analysis
MCS Monte Carlo Simulation
RCA Root Cause Analysis
FST Fuzzy Set Theory

DAG Directed Acyclic Graph
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Abstract: Ship dimensions are an important component of static AIS information, and are a key factor
in identifying the risks of ship collisions. We describe a method of extracting and correcting ship
contour information using inland waterway surveillance video combined with AIS information that
does not depend on ship dimension data. A lightweight object detection model was used to determine
the ship’s position in an image. Dynamic AIS information was included to produce multigroup
control points, solve the optimal homography matrix, and create a transformation model to map
image coordinates onto water surface coordinates. A semantic segmentation DeepLabV3+ model
was used to determine ship contours from the images, and the actual dimensions of the ship contours
were calculated using homography matrix transformation. The mAP of the proposed object detection
model and the MIoU of the semantic segmentation model were 86.73% and 91.07%, respectively.
The calculation error of the ship length and width were 5.8% and 7.4%, respectively. These statistics
indicate that the proposed method rapidly and accurately detected target ships in images, and that
the model estimated ship dimensions within a reasonable range.

Keywords: contour extraction; object detection; semantic segmentation; coordinate mapping

1. Introduction

In water traffic scenarios, ship collision avoidance needs to use an automatic identifi-
cation system (AIS) or radar and other navigational equipment to obtain the movement
information of ships, and the two must complement each other. Using AIS reports, it is
often difficult to accurately calculate the distance of the ship from its surrounding objects
without considering the shape of the ship. The AIS position is determined by the position
of the GPS antenna, and the distance between the GPS antenna and the ship periphery can
range from tens to hundreds of meters. For ship–pier collisions, it is necessary to consider
the transverse distribution of ships in the river, and use the ship width data to calculate the
collision probability. The ship collision risk index (CRI) is calculated through the distance
closest point of approach (DCPA), the time closest point of approach (TCPA), and other
indexes to represent the urgency of the ship collision at a micro level. In the process of
calculating the CRI between two ships, an AIS-equipped ship is often shown as a triangle
or rectangle with the transponder at the center [1]. There are dimensional attributes in
the AIS static information to represent the length and width of the ship, but in practice,
these AIS data are often unavailable. Table 1 shows the dimensions and numbers of ships
passing through two inland waterway channels in China within a given time period. It is
clear from the table that ship dimension information is unavailable for more than 60% of
the vessels. Given the possible consequences of ship collisions, the problem of unavailable
ship size data needs urgent resolution.
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Table 1. Available information for ship dimensions.

Bulk Carrier Tanker

No.
Observed

No. with
Available

Information
Ratio

No.
Observed

No. with
Available

Information
Ratio

Jingzhou
waterway 100 38 0.38 50 19 0.38

Yichang
waterway 100 33 0.33 50 26 0.52

Images have become more widely used for information extraction by computer vision
technologies. An augmented reality system based on a fusion of AIS and advanced image
processing technology can provide auxiliary information for early warning of navigation
risks for autonomous surface vehicles (ASVs) [2]. Such system can also be used for traffic
supervision that enables vessels to conform to navigation regulations in key navigable
waters [3].

Combining visual data with AIS information enables the estimation of the size of
specific ships in the image. Remote sensing or visible light images have frequently been
used to extract the contours of target ships, create matching external rectangles or ellipses
based on the contour shapes, and derive longitudinal and transverse ship dimension
information [4]. Therefore, contour extraction is the basis of ship size estimation, which has
been widely used in the transportation sector.

There have been many studies of ship contour extraction. In conventional contour
extraction methods, edge detection based on image characteristics has been used to de-
termine contours. Yan et al. [5] improved the Canny edge detection algorithm using a
two-dimensional wavelet Gaussian function to calculate the partial derivative of the struc-
tural filter gradient amplitude, and adopt maximum inhibition and threshold filters for
edge detection and connection for ships. Gu et al. [6] used a binary image gradient calcula-
tion for edge detection, and determined the minimum enclosing rectangle for ship contours.
Zhu et al. [7] demonstrated a ship recognition method that used a predicted shape template
to determine ship contours using the Otsu method, with peak density detection and column
scanning as well as a conventional area averaging algorithm. Nie et al. [8] used a binarized
normed gradient (BING) algorithm to predict the location of a ship in SAR images, and
used an active contour algorithm to predict ship contours iteratively. Standard ship contour
extraction methods are simple but are often unable to extract deep image information, and
are only suitable for simple scenes.

Convolutional neural networks (CNN) are widely used for image feature extraction in
deep learning applications in networks such as VGGNet [9], GoogleNet [10], Inception [11],
and ResNet [12]. CNNs have important applications in semantic segmentation; multicate-
gory target contours can be accurately segmented using pixel-level classification of images,
and they have been used in many ship contour extraction applications. The fully convolu-
tional network (FCN) was commonly used to extract ship contours by categorizing each
pixel in a remote sensing image into the bow, hull, land, and sea [13]. Bovcon et al. [14] de-
veloped a deep encoder–decoder framework (the water obstacle separation and refinement
network) for autonomous crewless ship navigation that extracted the contours of several
ship targets. Ust et al. [15] introduced a scaffolding learning regime (SLR) that trained
an obstacle detection segmentation network under weak supervision for individual ship
contour extraction. Kelm et al. [16] trained a CNN to identify central pixels; the network
recognized a part of an input image and calculated a rotation angle, and used the central
pixel to describe the upcoming directional change in the contour. Deep learning methods
that rely on training data are more accurate than other established methods, and are highly
adaptable to different scenarios.

Remote sensing data of a particular area are not frequently updated, and vessels are
densely distributed on inland waterways, making it difficult to accurately extract contours
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from remote sensing images at any given point in time. Visible light images are generally
made from a horizontal perspective, and this perspective is not particularly suitable for
accurate ship size estimation. Targeting the problem of missing information of some ship
dimensions in a waterway, this study innovatively proposes an intelligent identification
method of ship dimensions based on a fusion of inland waterway monitoring overhead
image and AIS information. The research scenario is shown in Figure 1, the important
stretches of the upper reaches of the Yangtze River that have high marine traffic flow and
density. The main contributions of this study are as follows:

 

Figure 1. The traffic flow of Jingzhou Bridge in one month: white and yellow bands are used to
represent the traffic flow in two different directions.

• A deep learning ship object detection model was developed based on a lightweight
object detection model, and using the SENet attention mechanism to improve the
network structure and increase the effectiveness of detection;

• An optimal homography matrix solution algorithm using several AIS control points
was developed to determine the mapping relationship between image coordinates
and water surface coordinates;

• Ship contours were extracted using the deep learning DeepLabV3+ semantic segmen-
tation model, in conjunction with the homology matrix transformations to determine
the real size of the vessel.

2. Related Studies

2.1. Ship Object Detection

Ship object detection technology has a research history of more than twenty years, and
forms the basis for combining video and AIS information in our study [17]. The established
methods include those based on the water–sky boundary, saliency detection, and moving
object detection. Kim et al. [18] used a background algorithm to detect ships, and combined
it with AIS to match ships with ship-related information. Fefilatyev et al. [19] developed a
method using optimal water–sky boundary extraction combined with Gaussian distribution
and the Hough transform. Yang et al. [20] designed a ship motion tracking system based
on the FPGA that differed from traditional inter-frame difference methods, which had fixed
frame intervals. Its inter-frame difference method was based on the adaptive extraction of
key frames, and was used to adaptively detect ships moving at different speeds.

The CNN is used mainly to solve object detection problems, either in two-stage
algorithms such as Faster RCNN [21] and Mask RCNN [22], or single-stage algorithms such
as YOLO [23] and SSD [24]. Object detection algorithms that use deep learning overcome
the shortcomings of target detection algorithms, such as lack of targeted region selection,
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sliding window redundancy, and time complexity. Using a deep learning algorithm for
ship object detection significantly improves detection. The rotational CNN algorithm [25]
was used for text detection because of its excellent rotation detection capability that was
introduced to ship target detection, and this produced good results. He et al. [26] combined
the Gabor filter with the Faster RCNN to increase ship object detection accuracy from
satellite images. Zhang et al. [27] preprocessed images with a support vector machine, and
then processed the RoI images with a ship detection algorithm that used a regional CNN.
This technique improved the recall and precision of small ship detection and the overall
performance of the algorithm. Guo et al. [28] added rotation angle information to feature
extraction, which increased the detection rate of ship objects at different scales, and greatly
reduced the quantity of redundant information in the detection frame.

2.2. Video Ranging Technology

Video ranging technology is important in determining the true locations of imaged
objects. The two types of video ranging are monocular ranging and binocular ranging.
Monocular ranging has the benefits of a simple structure, rapid operation, and low cost; it
is the main field of research at present, and a commonly used method is the Kalman filter
(KF). Einhorn et al. [29] devised a feature-based extended Kalman filter (EKF) monocular
visual ranging measurement algorithm that captured images with a single camera and
used a depth estimation method to calculate a reliable initial estimate; the 3D positions
were later reconstructed via an EKF. Chen et al. [30] introduced a monocular vision ranging
measurement method based on pixel area and aspect ratio that predicted and optimized
the pixel position in the subsequent frame using KF processing.

Another widely used technique was to calculate the distance to the object using object
detection and camera projection. Raza et al. [31] used marker points to establish a line
in the image, and used a linear equation to calculate the real-world distance between
pixels based on the length of the line. Huang et al. [32] developed a monocular vision
distance measurement method using object detection and segmentation; they developed
a two-dimensional geometric vector model and used camera projection to calculate the
distance. Zhe et al. [33] developed a monocular vision distance measurement method
based on 3D detection, and created a regional distance geometric model to calculate the
distance based on 3D detection and camera projection that produced good results when
image detail was obscured.

The geometric principle of camera projection is shown in Figure 2, where C indicates
the fixed position of the camera; A and B are points on the target; A′ and B′ are the
respective projections of points A and B on the plane of the camera sensor, which are
recorded in the image; the projection line AA′ and camera optical axis plane belong to the
surface method; h is the height of the center of the camera sensor above the surface; d and
d′ are the surface distances from the target to the vertical axis of the center of the sensor; θ
is the angle between the lines OA and OB on the horizontal surface; f is the focal length
of the camera. When the conditions x = X

2 , y < Y
2 , and y = y′ are satisfied, the distances

between target points and the camera are calculated with the following:

d =
f ·h

Y/2− y
(1)

d′ = d
cos θ

(2)
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Figure 2. Geometric principle of camera projection.

3. Methods

There are four distinct stages of ship contour extraction: object detection, coordinate
mapping, semantic segmentation, and image correction. Figure 3 is the technical roadmap
of this research, and shows how data is transmitted between the various stages. In this
section, we describe the key steps in detail.

Figure 3. Technology roadmap of ship contour extraction and correction: video and AIS are input
data, and the optimal homography matrix is first calculated, which is used to map the segmented
image; after image correction and contour extraction, the final actual contour is output.
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3.1. Object Detection Model

In general, object detection models often have a deep network structure, and require a
large number of convolution layers with many parameters. Real-time inferences can only
be performed if the devices they run on have adequate computing power. NanoDet is an
excellent lightweight object detection model introduced in 2020 that dramatically reduces
the number of parameters using a series of optimization methods. NanoDet can be quickly
trained and ported to most embedded modules.

NanoDet uses several lightweight methods in the backbone, neck, and head, which
enable it to balance accuracy, speed, and processing volume. The backbone is ShuffleNet
V2, which removes the last layer of the convolution from the network and extracts 8, 16, and
32 downsampled features as the next inputs. ShuffleNet V2 is a CNN architecture that uses
pointwise group convolutions to simplify the calculation of 1× 1 convolutions, and uses
channel shuffle to resist negative influences. The network greatly reduces computation,
but maintains accuracy. The PAN module is a feature pyramid structure that performs
upsampling and downsampling successively, which can fully integrate high-level features
with low-level features. The neck is an optimized PAN that deletes all convolutions in the
PAN, and only uses 1× 1 convolutions extracted by the backbone for channel dimension
alignment. An interpolation algorithm is used for upsampling and downsampling, and
the multiscale feature map is added for feature fusion, which enables the network to
learn the characteristics of multiscale targets. The FCOS is a typical anchor-free object
detection algorithm with head detection through the neck of the output feature map pixel
classification and bounding box regression to obtain the detection box. The optimized FCOS
model was used as the detection head with abandoned weight sharing; it uses different
convolutions to extract features at each layer and uses batch normalization, which uses deep
separable convolution instead of group normalization. The number of convolution kernels
and convolution channels also decreases, and the generalized focal loss function is used to
resolve problems of convergence in training. In all, these methods greatly reduce redundant
convolution and the number of parameters in the model, thus decreasing computation time.

SENet [34] is a spatial attention mechanism that increases the depth of a CNN and
improves feature extraction. It consists of squeeze, excitation, and reweight functions. In
the squeeze stage, the feature space with dimensions c× h×w is compressed to c× 1× 1 by
global pooling, and the feature maps of a single channel are compressed into a weight factor.
Two fully connected devices are used in the excitation stage. The first compresses the global
information obtained from the global pooling; the feature dimension c× 1× 1 is reduced to
c/r× 1× 1. The second fully connected device is used to map the feature back to c× 1× 1
after ReLU activation. A sigmoid function is used to determine the normalized weight in a
range of 0–1 of each channel to multiply the original feature map in the reweight stage.

The network structure is shown in Figure 4. SENet was added between ShuffleNetV2
and the optimized PAN with 40 × 40, 20 × 20, and 10 × 10 feature maps are input to
emphasize useful features and suppress irrelevant features. Figure 4 shows the two feature
maps before and after the SENet mechanism for comparison, and displays the SENet-
enhanced features. After the calculations for PAN feature fusion and the FCOS detection
head, the final output represents the locations of candidate boxes and their scores for
different categories.
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Figure 4. NanoDet–SENet network structure.

3.2. Coordinate Mapping

Mapping sensor image coordinates onto the water surface is key to matching image
information with real-world information. When the camera attitude is constantly shifting,
it is often necessary to combine optical ranging methods to ensure the camera view is
parallel to the water surface. When parameters for camera height above the water surface,
focal length, and pitch angle are combined with the projection equations, the depth map of
the image can be calculated to predict the distance to each pixel on the water surface in
the image. However, deploying surveillance cameras in inland river navigation areas is
complex, and parameters such as height, focal length, and pitch angle are difficult to obtain
in a timely manner. The use of data from fixed monitoring locations often requires using
a homography transformation matrix to convert between the sensor image coordinate
system and the water surface coordinate system, depending on the control points, and then
mapping the pixel coordinates of the ship contour image to the water surface coordinates.
The equation for the homography matrix transformation is as follows:

[x′ y′ w′] = [u v 1]

⎡⎣ a11 a12 a13
a21 a22 a23

a31 a32 1

⎤⎦ = [u v 1]H (3)

where u and v are the pixel coordinates of the control points; the transformed coordinates
are represented as (u′, v′), where u′ = x′

w′ and v′ = y′
w′ . H is the homography transformation

matrix. At least four control points are required for the eight independent parameters in
the solution of H.

We used the real-time AIS position data and the corresponding observed ship positions
in the image to create several control point coordinates. This necessitates that the camera
be raised above the water’s surface so that the hull takes up as much space as possible
in the overhead image; on at least one channel, the camera can see the ship’s side and
back, as shown in Figure 5. The specific calculation steps of the optimal homographic
transformation matrix are as follows.
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Figure 5. Multi-group control points constructed based on AIS information.

1. Obtain the video and AIS data for two ships on different courses to form four groups
of matching coordinates and AIS positions. One is Ai = {(Loni, Lati), Boxi}, where
Loni and Lati are the latitude and longitude coordinates of the control point i, and
Boxi = {(ui1, vi1), (ui2, vi2) . . . , (uin, vin)} is the set of pixel coordinates of control
points in group i, which consists of coordinates of n equally spaced pixels. The control
points of two ships traveling in the forward and backward directions are combined in
pairs to produce several homography transformation matrices;

2. Detect the key point pi of Boxi, where pi is the intersection of the extended side in the
lateral and inferior directions from the saliency detection image produced by the LC
model that obtains the saliency value of a pixel by calculating the sum of the distance
in color between the pixel and all other pixels in the image. The two waterlines are
determined with linear fitting;

3. Select the two sets of coordinates for one ship, Box1 and Box2. Two key point pixels
p1 and p2 are calculated, and Equation (3) is used to calculate the corresponding
n2 groups of water surface coordinates for p1 and p2. The error calculation of the
homography matrix Hj is as follows:

→
Pj = p′2j − p′1j , j = 1, 2, 3, ...,n2 (4)

lon′2 = lon2 × cos θ − lat2 × sin θ (5)

lat′2 = lat2 × cos θ + lon2 × sin θ (6)

→
K =

(
lon′2, lat′2

)− (lon1, lat1) (7)

β j = cos−1

⎛⎜⎜⎝
→
Pj·
→
K∣∣∣∣→Pj

∣∣∣∣× ∣∣∣∣→K∣∣∣∣
⎞⎟⎟⎠, j = 1, 2, 3, . . . ,n2 (8)

where p′1j and p′2j are the mapped coordinates of p1 and p2, respectively, and θ, the
steering angle of the ship, is determined from the AIS information. When the smallest
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βα has been obtained, the matrix Hα calculated by βα is considered to be the optimal
homography matrix.

3.3. Semantic Segmentation Model

Ship contour extraction requires segmentation of the area covered by the ship surface
when viewed from above, but the area is often obscured by the superstructure of the vessel.
Commonly used image segmentation algorithms are often greatly affected by noise and lack
robustness, and it is difficult to determine the target area when it is obscured. However, the
deep learning DeepLabV3+ semantic segmentation model [35] is highly accurate, robust,
and not very susceptible to noise. Therefore, it is suitable for use in the segmentation of
specific targets in a complex environment.

The network structure of DeepLabV3+ is shown in Figure 6. It consists of an encoder
and a decoder. The main body of the encoder is a deep CNN with dilated convolution that
controls the size of the receptive field by a rate (r) without changing the size of the feature
graph. A greater value of r produces a larger receptive field. The dilated convolution in
the encoder is combined with a spatial pyramidal pooling module to produce multiscale
information. The main constituents of the encoder are the following:

 
Figure 6. DeepLabV3+ network structure (The Non-English characters in the illustrations are mean-
ingless).

a. One 1× 1 convolution layer and three 3× 3 empty convolution layers. The rate r is
(6, 12, 18) when the output step size is 16, and is doubled when the output step size is 8.

b. A global average pooling layer is used to produce image-level features that are then
input into the 1× 1 convolution layer and bilinearly interpolated to the original size.

c. Five features of different scales are combined in the dimension channel, and then input
into the 1 × 1 convolution layer to be combined to produce 256 channels of new features.

The decoder can also combine low-level features with high-level features to increase
segmentation accuracy. The main steps of feature fusion are as follows. The multiscale
feature information is bilinearly interpolated and upsampled. The encoder then combines
it with the original features that were extracted by the CNN. The combined feature infor-
mation is then convoluted for simple feature combination. Finally, the combined features
are bilinearly interpolated and upsampled to produce the segmentation results.

Xception [36] was used as the backbone network for feature extraction (Figure 6).
Xception, which is an improved version of Inception V3, introduces depthwise convolution
derived from Inception V3 to reduce model complexity and improve segmentation. The
label in Figure 6 is from the annotation of the input images. The spatial pyramid module
combined with dilated convolution combines multiscale image information. A larger value
of r will extract features from different regions of the image into a larger receptive field,
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thus reducing obscuration by the superstructure. The marked area is the area where the
ship is vertically mapped onto the water surface.

4. Results

4.1. Ship Object Detection

The experimental platform was a desktop computer with Windows 10, a GTX1050Ti
GPU, and the PyTorch 1.8.0 framework. We created a coco dataset for training with
2535 images collected from surveillance videos from waterways upstream and downstream
of the Yichang Yangtze River Bridge and the Jingzhou Yangtze River Bridge in China.
The images included ships from different angles of different sizes, and in various lighting
conditions. The image count was increased to 5070 using data enhancement methods such
as noise processing, random angle rotation, random brightness adjustment, and simulated
rain and fog weather conditions. Labelme software was used to annotate the images, which
contained 12,376 ship objects altogether. The dataset was divided for training, validation,
and testing in a ratio of 8:2:1. The input size for detection was 320× 320. Stochastic gradient
descent (SGD) was used for optimization. The initial learning rate was set to 0.01 because it
is a common value suitable for most deep learning models.

The object detection models were trained and tested before and after validation, and
their precision and recall were calculated. Precision represents the proportion of correctly
predicted targets in total predictions, and recall represents the proportion of all target
predictions that were correct. In general, precision decreases as recall increases.

To assess detection improvement attributed to SENet, P–R curves were plotted using
precision and recall values for the two models before and after validation. In addition, the
mainstream object detection algorithms Faster RCNN and YOLOv4, and the lightweight
algorithm YOLOv4-Tiny using the test set, were selected for comparison to further assess
the accuracy and efficiency of the NanoDet–SENet model detection. Table 2 shows the
number and size of parameters for these three models. It can be seen from the table that
NanoDet–SENet is an excellent lightweight model because its network complexity is much
less than that of other models.

Table 2. Params number and size of different models.

Total Params Params Size

Faster RCNN 137.08 M 522.91 MB
YOLOv4 64.36 M 245.53 MB

YOLOv4-Tiny 6.06 M 23.10 MB
NanoDet–SENet 0.95 M 3.62 MB

The P–R curves for the experiment are shown in Figure 7. Detection by several
algorithms was assessed using four indicators: mean average precision (mAP), frames/s
(FPS), precision, and recall, which are shown in Table 3. It can be seen from the table that the
NanoDet–SENet model outperformed NanoDet, YOLOv4-Tiny, and Faster RCNN in terms
of precision and the mAP, but did not perform as well as YOLOv4. The recall was greater
than for NanoDet and YOLOv4-Tiny, but less than that for Faster RCNN and YOLOv4.
The FPS was significantly greater than for all the other models except NanoDet. These
results indicate that the SENet attention mechanism significantly influenced the detection
effectiveness of the model, and that NanoDet–SENet detected objects almost as well as
YOLOv4, although it is a simpler model.
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Figure 7. P–R curves for tested models.

Table 3. Comparison test results of target detection.

Precision (%) Recall (%) mAP (%) FPS

Faster RCNN 69.68 81.51 78.84 6.35
YOLOv4 86.23 79.64 90.20 9.10

YOLOv4-Tiny 84.20 74.55 83.68 30.71
NanoDet 78.96 74.72 76.55 38.62

NanoDet–SENet 85.09 76.83 86.73 37.47

4.2. Establishment of the Homography Transformation Model

We combined AIS information with video data to create the optimal homography
transformation matrix between the sensor pixel coordinate system and the water surface
coordinate system. The critical aspect of this algorithm is the synchronization of the time of
the image sequence with the time of AIS information acquisition to ensure the accuracy of
key point detection.

A Hikvision zoom network camera remotely captured video stream was transmitted
using a real-time streaming protocol (RTSP), and a message queue telemetry transmission
(MQTT) server was used to create an AIS information transmission platform. The video
transmission rate was 3.2 Mbps with a 3.5 s delay, and the AIS signal delay was 6 s. As
described in Section 3.2, the delays were eliminated, and the video and AIS information
was used to obtain the coordinates of 250 sets of control points.

The key points were then tested. The accuracy of key point detection decreases for
small-target ships, so we needed to ensure the ship detection boxes we selected as the
control points were of adequate size and had well-defined contours, as shown in Figure 8.
Figure 8a,b show ship objects detected at two distinct time points. The ship moving away
from the sensor on the left side of the images was used to validate the optimal homography
matrix. The red pixels in Figure 8c,d show the LC significant image pixels of change
points, and the green pixels show key points after linear fitting. Figure 8d shows that the
model predicted the exact position of the key point when the ship was further away from
the sensor.

61



J. Mar. Sci. Eng. 2023, 11, 1700

Figure 8. Key point detection progress: (a) ship object detection at first time, (b) ship object detection
at second time, (c) key point detection at first time, and (d) key point detection at second time.

After we derived the optimal homography matrix, as described in Section 3.2, we
used sensor data for the upstream and downstream directions to test the homography
transformation model. Consecutive AIS coordinates were obtained, and the pixel coor-
dinates of key points in the corresponding images were obtained and mapped onto the
water coordinate system to predict the trajectory. Figure 9 shows that the trajectory of key
points after coordinate mapping was very close to the AIS trajectory. The mean values
of the distances between the corresponding points in the two sets of trajectories, 11.5 m
and 77.8 m, were consistent with relative positions and distances between the real-world
GPS antenna and the ship waterline inflection point. This result shows the accuracy of
coordinate mapping using the homography transformation model.

Figure 9. Test results of homography transformation model.
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4.3. Ship Contour Extraction

Only images of bulk carriers and oil tankers were used, because the irregular shapes
of passenger and container ships add unnecessary complexity to the development of the
prototype model. We used surveillance cameras to obtain overhead views of vessels on
the waterway to ensure that the deck surface matched the ship hull as much as possible.
The object detection method was used to take automatic photos that were stored to create a
semantic segmentation data set. The model training platform was a desktop computer with
Windows 10 and an RTX3060Ti GPU using the Keras 2.2.5 framework. Target ship contours
were labeled using Labelme software, and pixels were classified as either foreground or
background. The ratio of the training set, validation set, and test set was 8:2:1. Online data
enhancement was used to randomly amplify the image and label data in each batch in the
training stage. The input data size for the model was 512× 512.

The mean intersection over union (MIoU), which is a standard metric of the accuracy
of a semantic segmentation algorithm, was used to assess the performance of the algorithm.
The equation is as follows:

MIoU =
1

k+1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)

where k is the number of pixel categories, pij is the number of pixels that originally belonged
to category i but are predicted to be in category j, and MIoU is the average number of times
the predicted value coincides with the actual value in each category. A greater value of
MIoU indicates more accurate network prediction.

The FCN is commonly used for ship image semantic segmentation [37]. An FCN
classifies images at a pixel level by selecting a sliding window for each pixel. Unet (unity
networking), an improvement on the FCN [38], has been widely used in the field of
transportation. Therefore, we compared these two models with DeepLabV3+. The IoU
results for background and foreground after training for 50 epochs are shown in Table 4. It
can be seen that DeepLabV3+ has clear advantages over FCN and Unet.

Table 4. Comparison test results of semantic segmentation.

Background_IoU (%) Boat_IoU (%) Mean_IoU (%)

FCN 99.42 79.80 89.61
Unet 99.28 67.35 83.32

DeeplabV3+ 99.54 82.61 91.07

The output images of DeepLabV3+ needed to be trimmed. Trimming was performed
by calculating the number of pixels in the stern area along the transverse axis of the ship,
and setting a threshold to eliminate scattered pixels to avoid individual misclassified pixels
having undue impact on the corrected image. The segmentation results are shown in the
first three columns of Figure 10. It can be seen from Figure 10 that the DeepLabV3+ model
segmented the target area well without obstruction from the superstructure. The fourth
column in Figure 10 shows the trimmed images that represent the actual ship contour
region after coordinate mapping. The pixel size of the image corresponds to a real-world
distance of 115 m. It is clear from these results that the size and heading of ships at different
distances in the image were approximately estimated.

A comprehensive review of all the experimental results shows that the DeepLabV3+
semantic segmentation model can be successfully used on a high-performance server that
receives automatic photos and uploading based on lightweight object detection and accom-
plishes contour extraction tasks on the cloud server, thus avoiding bandwidth usage for
transmitting large amounts of remote video data. The object detection model will determine
the rectangular region surrounding a vessel, increase the proportion of ship features in
DeepLabV3+ input, and improve the pertinence of the semantic segmentation model.
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Figure 10. Ship contour extraction and size restoration results (The Non-English characters in the
illustrations are meaningless).

We captured the video frame at the same time of receiving the AIS signal, and extracted
the ship’s aera with the semantic segmentation model. Based on the restored image, edge
detection was combined with the Hough transform to further detect the minimum enclosing
rectangle of the ship. We tested for several ships by estimating their dimensions, which
we then compared with the actual dimensions; the results are shown in Table 5. We found
that the average length relative error was 5.84%, and the average width relative error was
7.53%; these values are in a reasonable range. We also noted that the maximum length error
and width error were 14.2% and 16.5%, respectively; this was because the color and texture
features of the ship are not obvious enough to cause semantic segmentation errors, and
were further amplified by image correction.
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Table 5. Ship dimension data calculation results and errors.

MMSI
Length (m) Width (m)

Actual Calculated Error (%) Actual Calculated Error (%)

413773165 87 90.3 3.8 14 14.6 4.3
413774959 87 84.2 3.2 15 16.3 8.7
413779378 90 96.7 7.4 15 17.0 13.3
413781326 106 110.6 4.3 17 18.2 7.1
413783151 107 115.2 7.7 16 17.1 6.9
413803847 90 96.8 7.6 15 15.4 2.7
413811188 100 97.5 2.5 16 16.9 5.6
413819165 100 114.2 14.2 17 19.8 16.5
413831856 110 113.6 3.3 19 20.0 5.3
413801536 107 103.1 3.6 16 16.6 3.8

Mean - - 5.8 - - 7.4

According to the experimental results of Park et al. [4] using satellite-observed ships,
the RMS errors for the length and width were 12.1 m and 6.8 m, respectively. We further
calculated that the RMS error according to Table 5 and obtained the corresponding results
as 6.6 m and 1.4 m, respectively, which are obviously better. This final result is valuable
for creating and improving AIS data, and also provides a foundation for calculating ship
collision risk.

5. Conclusions

Ship dimension information is important at the micro level in ship collision risk cal-
culations. To avoid having to work with missing or incorrect ship dimension data, deep
learning algorithms were used to extract ship contours from inland waterway surveil-
lance video and real-time AIS information. According to the experimental results, the
proposed object detection model and semantic segmentation model were very accurate in
our experimental trials, and thus successfully resolved the missing AIS data issue.

The easily used lightweight ship object detection model that we developed for edge
computing processed at a high frame rate without GPU acceleration, and facilitated the
automatic acquisition and uploading of ship images. Therefore, it provides crucial support
for shipping control on inland waterways.

In this study, AIS real-time position information was taken as a virtual control point
to create a coordinate mapping model that rapidly and accurately mapped sensor image
coordinates onto water surface coordinates without the need to rely on various projection
parameters. Therefore, this method merits future development to further promote the
combination of video, AIS, and radar information.

The combination of the object detection model and the coordinate mapping model,
together with the use of the semantic segmentation algorithm, allowed us to extract the ship
contour from the image and predict its actual size. The experimental trial results suggest the
method is effective, and demonstrates the capability to extract ship dimension information
automatically. This capability will benefit inland waterway regulatory authorities by
enabling them to improve management of ship navigation.

The method still has some limitations. On the one hand, it has requirements regarding
camera heights and shooting angles for coordinate mapping, as described in Section 3.2;
therefore, a camera is best installed in the midspan of an inland river bridge with a bridge
floor elevation of more than 50 m. On the other hand, the contour extraction method is not
suitable for passenger ships and container ships, because their true contours are poorly
reflected in the image.

Errors in ship contour extraction mainly come from the coordinate mapping model
and semantic segmentation model. In our future research, we will add more ship images
to the semantic segmentation dataset to improve the generalizability of the dataset so
that the model can more exactly segment images of different types of ships. Vessel GPS
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positioning generally exists within 1 m of error, which can affect the effectiveness of the
coordinate mapping method. Thus, we will explore the error correction method based on
constructing the trajectory equation to predict the GPS positioning coordinates according
to the characteristics of GPS positioning coordinates obeying the Gaussian distribution at a
certain moment. We will also endeavor to constantly use ships to simulate the control points
during the experiment, in order to continuously update the optimal homography matrix.
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Abstract: This paper introduces a scenario evolution model for maritime accidents, wherein Bayesian
networks (BNs) were employed to predict the most probable causes of distinct types of maritime
incidents. The BN nodes encompass factors such as accident type, life loss contingency, accident
severity, quarter and time period of the accident, and type and gross tonnage of the involved ships.
An analysis of 5660 global maritime accidents spanning the years 2005 to 2020 was conducted. Using
Netica software, a tree augmented network (TAN) model was constructed, thus accounting for
interdependencies among risk-influencing factors. To confirm these results, a validation process
involving sensitivity analysis and historical accident records was performed. Following this, both
forward causal inference and reverse diagnostic inference were carried out on each node variable
to scrutinize the accident development trend and evolution process under preset conditions. The
findings suggest that the model was competent in effectively predicting the likelihood of various
accident scenarios under specific conditions, as well as extrapolating accident consequences. Forward
causal reasoning unveiled that general cargo ships with a gross tonnage of 1–18,500 t were most
prone to experiencing collision and stranding/grounding accidents in the first quarter. Reverse
diagnostic reasoning indicated that, in the early morning hours, container ships, general cargo ships,
and chemical ships with a tonnage of 1–18,500 t were less likely to involve life loss in the event of
collision accidents.

Keywords: maritime traffic safety; maritime accident; Bayesian network (BN); accident scenario
analysis; Netica

1. Introduction

Intricately variable and multifaceted climatic conditions, endemic to an expansive
marine environment, have perpetually underscored maritime transport as a vocation of
considerable risk. Incidents disrupting maritime transit, which encompass a spectrum of
occurrences from vessel collisions to groundings, and from onboard fires to devastating
explosions, bear the hallmark of low frequency yet are marked by their profoundly destruc-
tive aftermath [1]. Upon the unfortunate manifestation of a maritime accident, a tsunami
of undesirable outcomes typically ensues, including, notably, substantial financial loss,
a tragic toll of human casualties, or even the insidious onset of extensive environmental
pollution [2]. As an imperative and fundamental step toward mitigating the inherent perils
of maritime navigation, a comprehensive exploration into the multifactorial etiology of
these traffic mishaps proves indispensable [3–5]. Moreover, it becomes increasingly pivotal
to meticulously undertake a dynamic risk evaluation, focusing on the myriad facets of
maritime operations [6–8]. Complementing this, the development and implementation
of robust predictive models, which can potentially forecast the calamitous conjunction of
human fatality and its probability in the event of an accident, could contribute significantly
toward minimizing future maritime disasters [9–12].
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Over the years, an impressive corpus of scholarly efforts has been devoted to en-
hancing our understanding of maritime traffic safety, including explorations into accident
causation analysis [3–5,13], accident consequence assessment [14–16], and accident loss
computation [17,18]. These endeavors have given rise to an array of innovative evaluation
methodologies. In one notable study, Hu et al. [3] skillfully harnessed the capabilities of
the Human Failure Analysis and Classification System (HFACS) in tandem with structural
equation modeling (SEM) to disentangle an intricate web of causal factors underpinning
marine traffic accidents (MTAs). Chou et al. [4], in a synergistic integration of technologies,
amalgamated the Automatic Identification System, Geographic Information System, and
an electronic chart (e-chart) to scrutinize the interplay between environmental factors, geo-
graphical locations, and the common causes of marine mishaps. By overlaying vessel traffic
flows, accident sites, and environmental data on a shared e-chart, their research unfurled
valuable insights into port authorities when streamlining ship traffic flow and curtailing the
prevalence of marine accidents in the vicinity of ports. Meanwhile, Xue et al. [5] proffered
a comprehensive analytical framework for investigating the peculiarities and causative
factors of ship accidents, utilizing a decade’s worth of historical data that were harvested
from the capriciously fluctuating backwater expanse of the Three Gorges Reservoir region.
Their extensive work yielded a thorough summary and visualization of vessel accident
categories and severity, involved vessel types, spatial–temporal distribution characteristics,
and vessel accident loss, along with the underlying causes and lessons gleaned from perti-
nent accidents that were achieved through a rigorous statistical and comparative analysis
of historical data. Elsewhere, Fu et al. [13] engineered a bivariate probit model to delve into
an array of 311 Arctic ship accidents spanning from 1998 to 2017. Their study brought to the
fore influential factors such as gross tonnage, ship type, ship age, accident type, accident
year, accident location, wind, and sea ice as the primary contributors to accident severity.
Simultaneously, their research unveiled an intriguing negative correlation between serious
accidents and those resulting in pollution. As research on maritime traffic accidents has
illuminated a gamut of potential causative factors, the increased granularity of available
accident data has spurred a growing number of scholars to concentrate on the ramifications
of these mishaps, specifically on the evaluation of accident consequences and loss computa-
tion. Such undertakings have risen to prominence, particularly in the eyes of managers
concerned with incidents that yield significant economic damage and human casualties.
For instance, Chen et al. [15] presented an evidence-based Fuzzy Bayesian network method-
ology to erect probabilistic models of marine accidents, thereby enabling the appraisal
of accidents that were likely to spawn severe consequences. In a similar vein, Ventikos
and Giannopoulos [16] introduced a criterion to assess the risks and repercussions within
the maritime transport sector from a societal perspective, thereby formulating a novel
framework for the marine risk assessment, which facilitated a comparison of disparate
accident scales and characteristics, while accurately mirroring the risk threshold society was
prepared to tolerate. Chen et al. [17] pioneered an enhanced entropy weight-TOPSIS model
to furnish a holistic analysis and appraisal of the marine total loss incidents, encompassing
a global scope from 1998 to 2018. These studies, though highly impactful, predominantly
undertake analyses either from the standpoint of accident causation or the evaluation of
accident consequences. Rarely do these scholarly pursuits straddle both domains in a
bidirectional inquiry.

In the realm of accident scenario analysis, methodological constructs like event tree
analysis and accident tree analysis are frequently utilized in the assembly of traffic accident
scenario evolution models [19–23]. However, the breadth of most accident cause analyses of-
ten overshadows their specificity, impeding their ability to yield targeted recommendations
to forestall analogous events [24]. To bridge this gap, scholars could employ a Bayesian
network-based maritime accident scenario modeling approach. Bayesian networks stand
as a form of a probabilistic graphical model, which is deftly equipped to encapsulate and
deliberate over uncertain knowledge and nebulous relationships among variables. This
versatile modeling approach, designed to embrace the labyrinthine and dynamic character
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of maritime activities, excels at discerning the contributory factors that precipitate maritime
accidents [3,5]. Employing a synergistic blend of historical data and expert acumen, this
model could approximate both the likelihood of an accident’s occurrence and the potential
fallout arising from a range of accident scenarios [14,16]. Bayesian networks (BN) find
broad application in confronting uncertain multi-factor causality inference, accident causa-
tion analysis, and scenario prediction, making them invaluable tools in road and waterway
transportation sectors [25–32]. Various scholars have employed these tools in diverse
studies: Zou and Yue [33] melded the probabilistic risk analysis with the BN theory to
explore the origins of road traffic accidents; Yuan et al. [34] constructed a scenario-derived
prediction model for the repercussions of fire accidents in oil and gas storage and trans-
portation emergency processes, leveraging a defuzzification method and a dynamic BN
model. Other researchers, such as Zhao et al. [35], have used the ISM-BN model to assess
the impact of varying factors on maritime safety, successfully pinpointing the critical risk
components for different accident types. Afenyo et al. [36] utilized a BN model to sketch
an Arctic shipping accident scenario and illuminated the crucial causative elements of a
potential accident scenario. Similarly, Jiang et al. [37] proposed a Bayesian network-based
risk analysis strategy to evaluate maritime accidents along the 21st-century Maritime Silk
Road (MSR), identifying the principal influencing factors that could bolster accident pre-
vention measures and ensure maritime transportation safety and sustainability. In a more
focused study, Si et al. [38] employed a BN structure learning algorithm that paired the
kernel density estimation with a model weighted average strategy to dissect the causative
elements of container ship collisions, basing their analysis on a limited set of container ship
collision sample data. Other studies like Fan et al. [39] and Hänninen et al. [40] proposed
similar Bayesian network-based risk analysis approaches to understand the contributing
factors to maritime transport accidents, with the latter focusing more on maritime safety
management and its relationship with maritime traffic safety. Despite these successes, these
aforementioned studies suffer from a triad of limitations: (1) a paucity of sample data from
maritime accidents, (2) a labor-intensive and time-consuming data collection process, and
(3) the inherent difficulty of obtaining accident loss records. Summarily, while waterway
transportation research has honed its focus on accident causality reasoning and accident
causation analysis, there remains a conspicuous void in the research landscape pertaining
to accident scenario modeling.

In light of this, this paper aimed to build a BN model for the evolution of maritime
accident scenarios using global maritime accident data. These data derived from the Global
Integrated Shipping Information System (GISIS) and established by the International
Maritime Organization (IMO) have been widely used by scholars in maritime accident
studies [41–47]. The novelty of this research lies in the use of a BN-based approach to
model maritime traffic accident scenarios. This is a unique method of analyzing the causes
of maritime traffic accidents through performing dynamic risk assessments on shipping
activities and predicting the probability of accident occurrence and its consequences. This
innovative approach enables the identification and simulation of influencing factors across
a range of accident scenarios, providing an intricate understanding of the complexities
associated with maritime traffic accidents.

This study provides comprehensive analysis and valuable insights into 5660 global
maritime accidents from 2005 to 2020. The accident data were well sampled, non-manually
collected, open, and, more importantly, provided a high number of data fields in relation to
accident losses. This made it possible to compensate for data limitations that have existed in
previous studies. This study had two main contributions. First, a tree augmented network
(TAN) model was developed to construct BN and train the data, and a data-driven BN-
based method was proposed that could effectively predict the probability and consequences
of accidents. Second, the proposed model was able to predict the causal factors that were
most likely to lead to specific accident consequences; this could help maritime stakeholders
implement effective preventive measures to improve maritime transportation safety.
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The rest of this article is structured as follows. Section 2 briefly introduces the structure
and construction method of BN and further introduces the method TAN driven by the data.
Section 3 builds the TAN model based on the data of 5660 maritime accidents and carries
out sensitivity analysis and simulation verification on the built model. Section 4 uses the
two-way reasoning ability of the TAN model to predict the accident chain and analyze the
accident causes. Finally, the fifth part summarizes the full text.

2. BN Structure Learning—TAN

BN is a directed acyclic graph (DAG) that is composed of nodes and directed edges
and is widely employed to illustrate the interdependence and strength of associations
between variables. As shown in Figure 1, in DAG S = {X, E}, X denotes the set of nodes
in the network, Xi ∈ X denotes the random variable in the domain of the definition of this
restriction, and E denotes a set of directed edges in this network. The network represents
the interrelationship between variables through vectorial arcs, with the intensity of each
association specified by a table of conditional probabilities.

 

Figure 1. Graph of a valid BN with directed acyclic graph structure.

There are two primary approaches to the generation of BN structures: (1) the expert
knowledge method and (2) the data-driven method. In the expert knowledge method, the
BN structure was built by subjectively evaluating the causal relationships between vari-
ables. Conversely, the data-driven method was employed to uncover the interdependence
between variables based on the learning algorithm of the BN model and data correlations.
In this study, since sufficient sample data were collected, the data-driven method was used
to construct the BN structure.

Data-driven Bayesian approaches could be classified into three main categories: (1) the
naive Bayesian network (NBN), (2) the augmented naive Bayesian network (ABN), and
(3) the tree augmented network (TAN). Among these, TAN learning effectively combined
the simplicity and robustness of NBN computation with its ability to characterize interaction
dependencies among variables, thus providing insights into the key factors leading to the
outcomes of specific accidents [48]. Therefore, this paper employed the data-driven TAN
approach to construct the BN structure.

BN encodes the joint probability distribution over a set of random variables U. We let
U = {A1, · · · An, C}, where n denoted the number of influencing factors, where A1, · · · An
represent the influencing factors, and C is a class variable (accident type). It was established
that the set of parent nodes of C in U was empty, meaning ∏ C = ∅. Moreover, ∏ Ai had
at most one other node in addition to C that could have an associated edge pointing to it.
The joint probability density distribution adhered to the following equation:

P(A1, · · · An, C) = P(C) ·∏n
i=1 P(Ai|C) (1)
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In the process of learning the TAN structure, Chow and Liu [49] proposed an approach
to optimize and construct the BN structure using the conditional mutual information of
each attribute pair. This function was defined as:

IP
(

Ai, Aj | C
)
= ∑aii ,aji ,ci

P
(
aii, aji, ci

)
log

P
(
aii, aji | ci

)
P(aii | ci)P

(
aji | ci

) (2)

where IP denotes the conditional mutual information; aii is the i-th state of the influencing
factor Ai; and aji is the i-th state of the influencing factor Aj.

3. Global Maritime Accident TAN Model

3.1. Data Collection

This paper utilized the Marine Casualties and Incidents (MCI) database in GISIS,
which is managed by IMO [50]. GISIS is a comprehensive, global maritime information
system. In accordance with IMO regulations, every country with sovereignty over its
territorial sea is required to report maritime accidents that occur within its waters to the
IMO. The MCI database contains two types of information in relation to global maritime
accidents: first, the factual data gathered from various sources, and second, detailed data
obtained from casualty investigation reports submitted to the IMO.

The MCI database houses global maritime accident data dating back to 1973. Between
1973 and 2000, the annual number of recorded maritime accidents was quite limited. From
2001 onward, the number of accidents documented in the MCI database has been more
consistent. However, the accident timestamps during 2001–2004 are only accurate to the
day, which is not sufficient for studying the specific time periods in which these accidents
occurred. Consequently, low-quality data from the early years have been excluded, and a
total of 5660 maritime accidents recorded from 2005 to 2020 were utilized to construct the
BN model.

3.2. Node Variable Definitions

Based on the literature’s studies on maritime accident factor analysis [1,43,51,52], there
are 16 primary factors that contribute to maritime accidents, including the ship type, hull
type, ship’s age, length, gross tonnage, operation, voyage segment, ship’s speed, condition,
equipment or device condition, ship’s design, interaction information, weather conditions,
ocean conditions, time period, and channel traffic condition. Combining these factors with
the information available in the MCI database, seven node variables for the BN model
were selected; these included the accident quarter, accident period, accident type, ship type
involved, total tonnage of the ship involved, life loss contingency, and accident severity.

Given the requirement of discrete variables for BN nodes, it was necessary to discretize
continuous variables in the accident statistics. The division of accident occurrence quarters
into the first quarter (January, February, and March), second quarter (April, May, and June),
third quarter (July, August, and September), and fourth quarter (October, November, and
December) were conducted. The categorization of accident periods was made during dawn
(0:00–5:59), early morning (6:00–8:59), morning (9:00–11:59), noon (12:00–13:59), afternoon
(14:00–16:59), early evening (17:00–19:59), and evening (20:00–23:59). To discretize the gross
tonnage of the ships involved, the collected data and the centroid clustering (CC) algorithm
were utilized for their classification. The CC algorithm, which uses the minimization error
sum of squares as the objective function, was employed and terminated when the number
of iterations reached a preset maximum of 5000 iterations. The optimal classification results
yielded four groups based on the gross tonnage of the ships involved: (1–18,500 t), (18,501–
57,500 t), (57,501–120,000 t), and (120,001–403,342 t). Among these, 403,342 t represented
the maximum total tonnage of the ships involved in the collected data.

Furthermore, in this paper, we classified non-routine accidents, such as missing ships,
life-saving equipment accidents, and numerous accident types with irregular or rare records,
accounting for no more than 5% as “others” [53]. Multipurpose ships, tugboats, supply, and
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offshore vessels, unspecified ship types, and other ship types represented no more than 10%
were categorized as “others” [53]. Table 1 presents the names, classifications, frequency of
occurrence, and percentages of each discrete variable category. Specifically, the “quarter of
accident” is a variable divided into four categories, corresponding to the four quarters of
the year. Category “a” represents accidents that occurred in the first quarter (January to
March), with a frequency of 1539, accounting for 27.19% of the total occurrences. Similarly,
“b” is for the second quarter (April to June), “c” for the third quarter (July to September),
and “d” for the fourth quarter (October to December), each with their respective frequencies
and percentages. The “ship type” is a variable that has seven categories. For instance, “a”
represents general cargo ships, which were involved in accidents 989 times, making up
17.47% of the total occurrences. “b” stands for bulk carriers, “c” for container ships, “d”
for chemical tankers/oil tankers, “e” for passenger ships, “f” for fishing ships, and “g” for
others. Each category has its corresponding frequencies and percentages of occurrence. The
“accident type” is a variable that categorizes the types of accidents that occur. For example,
category “a” denotes collisions, which occurred 1016 times, representing 17.95% of the
total accidents. Similarly, “b” stands for stranding/grounding, “c” for fire/explosions, “d”
for capsize, “e” for machinery damage, “f” for contact, and “g” for others, each with their
respective frequencies and percentages. Each of the remaining variables in Table 1 followed
a similar pattern, wherein specific categories were defined for each variable, along with
their frequency of occurrence and corresponding percentages.

Table 1. Variables for building BN.

Variable Name Classification Frequency Percentage/% Variable Name Classification Frequency Percentage/%

Quarter of
accident

a (the first
quarter) 1539 27.19

Ship type

a (general cargo
ship) 989 17.47

b (the second
quarter) 1353 23.90 b (bulk carrier) 255 4.50

c (the third
quarter) 1406 24.84 c (container ship) 370 6.54

d (the fourth
quarter) 1362 24.06

d (chemical
tanker/oil

tanker)
537 9.49

Period of
accident

a (dawn
0–5 a.m.) 1954 34.52 e (passenger

ship) 453 8.00

b (early morning
5–8 a.m.) 562 9.93 f (fishing ship) 634 11.20

c (morning
8–11 p.m.) 693 12.24 g (others) 2422 42.79

d (noon
11–13 p.m.) 427 7.54

Gross tonnage

a (gross tonnage
[1,18,500]) 4011 70.87

e (afternoon
13–16 p.m.) 647 11.43 b (gross tonnage

[18,501,57,500]) 1219 21.54

f (early evening
16–19 p.m.) 540 9.01 c (gross tonnage

[57,501,120,000]) 340 6.00

g (evening
19–24 p.m.) 837 14.79 d (gross tonnage

[120,001,403,342]) 90 1.59

Accident type

a (collision) 1016 17.95
Life loss

contingency

a (life loss) 1651 29.17
b (strand-

ing/grounding) 823 14.54 b (no life loss) 4009 70.83

c
(fire/explosion) 754 13.32

Severity of
accident

a (particularly
serious

accidents)
2837 50.12

d (capsize) 365 6.45 b (serious
accidents) 2034 35.94

e (machinery
damage) 287 5.07 c (general

accident) 622 10.99

f (contact) 281 4.96 d (unspecified
accident) 167 2.95

g (others) 2134 37.70

3.3. TAN Modeling

Based on the data processing results, the relationship between the six influencing fac-
tors and accident consequences was examined. Netica software with a “learning network”
function was employed to develop a TAN model, which was grounded on Equation (2),
ensuring that all connections between nodes were meaningful. The BN qualitative structure
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was trained by data, followed by a rigorous review conducted by domain experts to confirm
the significance of the links between these nodes. In this study, no changes were made
during the finetuning process, as all the interrelationships suggested by the data were in
alignment with reality. The initial structure of TAN, which is depicted in Figure 2, was
based on the data-driven TAN training results that showcased the realistic correlations
between variables. The numbers depicted in Figure 2 represent the initial results of the
TAN model. For instance, if the type of accident is divided into seven categories, the initial
proportion of each category after initialization is approximately 14.3%. Therefore, the sum
of the proportions for all categories would equate to 100%. This explanation is applicable
to all other variables depicted in Figure 2 as well.

Figure 2. Initial structure of TAN model.

Utilizing the TAN model, Netica software employed basis functions to create a struc-
ture learning module and a parameter learning module, which automatically learned the
conditional probability table (CPT) parameters from the sample dataset. The construction
of TAN and the obtainment of CPT facilitated the calculation of the posterior probability of
each variable. The statistical results of these probabilistic variables were instrumental in
the analysis of maritime safety considerations and the facilitation of accident prevention.
Figure 3 presents the TAN results for the random variables of interest.

3.4. Sensitivity Analysis and Model Validation
3.4.1. Sensitivity Analysis

In the Netica software, the accident type was selected as the target node, and sensitivity
analysis on this node was conducted to identify the factors with the greatest influence on
the target node within the TAN model.

The mutual information value represents the sensitivity level between two random
variables; a higher value indicates the greater sensitivity of the influencing factor to the
target node and, conversely, its lower sensitivity. The sensitivity analysis function in Netica
software was used to calculate the mutual information value, percentage, and variance for
each influencing factor and accident type, as displayed in Table 2. According to Table 2, the
accident consequence and accident severity were the factors most sensitive to the accident
type performance, with mutual information values of 0.14246 and 0.14033, respectively;
these were notably higher than those of the other four factors. These results revealed
how accident consequence and accident severity were the two most intuitive factors for
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determining the type of accident, followed by ship type, gross tonnage of the ship, time
period, and quarter.

Figure 3. TAN of vessel navigation risk.

Table 2. Mutual information shared with “accident type”.

Nodes Mutual Information Value Percentage/% Variance

Life loss contingency 0.14246 5.800 0.0176774
Accident severity 0.14033 5.710 0.0088289

Ship type 0.04235 1.720 0.0013155
Vessel gross tonnage 0.02096 0.853 0.0004918

Time period 0.02006 0.817 0.0012170
Quarter 0.00421 0.171 0.0000869

Concerning the pivotal factors impacting a variety of accident types, the subsequent
step entailed a discernment of how these factors, or the states of these factors, influence the
intended accident category. This was conducted by calculating the joint probability of each
factor and the “accident category”, as depicted in Table 3.

According to Table 3, the state of each factor that exerted the most significant impact
on an accident category is disclosed (in bold value). For instance, in the “life loss contin-
gency” category, when in the state “life loss”, the highest likelihood was for accident type
“collision” (22.2%), whereas in the state “no life loss”, there was the lowest probability
to be “collision” (7.9%). In the “severity of accident” category, state “serious accidents”
demonstrated the highest probability for accident type “stranding/grounding” (23.5%),
while state “particularly serious accidents” exhibited the lowest probability for accident
type “stranding/grounding” (7.09%). Looking at the “ship type”, type “bulk carrier”
showed the highest likelihood for accident type “collision” (25.9%), whereas type “fishing
ship” indicated the lowest probability for accident type “collision” (8.53%), but had the
highest probability to be in “fire/explosion” (21.9%) and “capsize” (12.4%). Although
“gross tonnage” and “quarter of accident” showed little difference in the probability of
influencing “accident type”, the probability of “collision” was the highest. In addition, both
“collision” and “capsize” showed the highest probability at nighttime.
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Table 3. The joint probability of the TAN model.

Life loss contingency

a b c d e f g

a 7.90 3.34 12.10 10.30 2.31 1.94 62.10
b 22.20 19.30 13.80 4.83 6.27 6.27 27.20

Severity of accident

a b c d e f g
a 14.50 7.09 13.10 9.65 2.18 1.94 51.60
b 22.00 23.50 14.90 2.77 7.07 6.73 23.00
c 20.50 17.60 11.40 3.46 9.18 10.30 27.60
d 17.40 17.10 10.60 8.03 8.19 7.87 30.90

Ship type

a b c d e f g
a 18.80 19.90 7.76 7.68 5.96 5.39 34.50
b 25.90 21.90 5.63 2.38 6.01 4.98 33.20
c 21.70 10.80 13.00 2.17 4.73 4.73 42.90
d 22.60 13.10 21.00 2.04 5.68 4.51 31.00
e 10.70 14.80 15.40 6.02 5.14 9.23 38.70
f 8.53 10.30 21.90 12.40 4.70 2.57 39.70
g 18.90 13.50 12.10 6.63 4.62 4.77 39.50

Gross tonnage

a b c d e f g
a 16.80 15.20 13.60 8.52 5.43 4.60 35.90
b 21.00 14.30 12.10 1.44 3.34 5.48 42.30
c 20.10 11.00 13.10 1.98 6.06 5.56 42.20
d 18.20 7.96 18.00 4.87 8.20 9.55 33.20

Period of accident

a b c d e f g
a 19.20 16.00 14.30 7.39 5.19 3.16 34.70
b 21.80 17.30 11.40 4.70 3.88 5.83 35.10
c 12.60 9.42 13.90 5.22 5.90 6.63 46.40
d 17.00 11.40 12.80 7.25 4.38 5.72 41.50
e 14.60 11.30 16.60 7.15 4.95 6.12 39.30
f 12.90 16.50 10.50 7.29 5.08 5.84 41.90
g 23.50 16.50 11.50 5.07 5.47 5.23 32.70

Quarter of accident

a b c d e f g
a 17.40 16.90 13.30 5.99 4.56 4.82 37.00
b 18.80 12.50 14.90 5.86 4.60 5.48 37.80
c 17.10 14.60 13.80 6.62 5.98 3.87 38.10
d 18.60 13.80 11.20 7.42 5.22 5.80 37.90

This analysis underscores the influence that a particular state had on a single factor in
an accident category. Additionally, it demonstrates how different states of a single factor
contributed to the probability of a specific accident category. Generally, more attention
should be paid to those conditions that display high probabilities of accidents due to the
state of the single factor under an accident type.

3.4.2. Model Validation

To validate the effectiveness of the TAN model, three offshore accident cases from 2021
were randomly selected, each with varying accident consequences and severities, and were
labeled as events 1, 2, and 3. The case data were input into the model for scenario analysis,
and Table 4 presents the relevant data information for these accident cases.
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Table 4. State values of real event factor variables.

Variables
Event Number

1 2 3

Quarterly c a b
Time period e b g

Ship type g a g
Life loss contingency a b b

Accident severity a b c
Vessel gross tonnage b a b

Accident type g b a
Accident probability 75.1% 38.0% 44.4%

Based on the data from three randomly selected events, the probability of the known
nodes, such as the quarter, time period, vessel type, accident consequence, accident severity,
and gross tonnage of the vessel, was set to 100%. The types and probabilities of the predicted
accidents were then observed. As illustrated in Table 4, the probability of other accident
types occurring in event 1 was 75.1%; the probability of stranding/grounding in event 2 was
38.0%; and the probability of collision in event 3 was 44.4%. When compared to the original
data’s accident types, the predicted accident types for the three events matched, indicating
that the model’s predictions were accurate to some extent. Since the occurrence probability
of other accident types in the original data was significantly higher than that of collision and
stranding/grounding, the data-driven TAN model’s simulation results demonstrated better
performance in predicting the occurrence probability of other accident types (e.g., Figure 4a)
and for average results in predicting collision and stranding/grounding accidents (e.g.,
Figure 4b,c).

Figure 4. Event model validation.
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4. Results and Discussion

The TAN model has the ability to reason bidirectionally and can help explain the most
likely scenarios that are associated with a specific accident type. The data-driven TAN-
based model examined the correlations between various influencing factors of maritime
accidents and accident types, as well as accident consequences. This analysis enabled the
prediction of the likelihood of various accident scenarios and the extrapolation of accident
consequences under specific conditions.

4.1. Accident Chain Forecast

After the manipulation of the TAN model using Netica software, the relationships
between the influencing factors and the accident type, including life loss contingency and
the probability of each node, were obtained. By adjusting the placement bar of a single
node or multiple nodes, the target node’s probability trend was observed; therefore, a
judgment could be formed of the potential trends and consequences of the accident.

The parameters of the conditions for maritime accidents were first simulated by
changing a single node and observing the changes in the target node. When changing the
ship type, more significant changes occurred in the probability of each accident type. For
example, when the ship type was set to a chemical ship, the probability of a fire/explosion
accident type increased significantly. When the ship type was a bulk carrier, the probability
of the collision accident type increased notably. This study showed that different ship types
could lead to significant differences in the occurrence of accident types. Additionally, the
ship’s gross tonnage and the accident’s quarter and time also impacted the accident type.

Since the accident type was influenced by the joint decision of several nodes, the
influence of a single node on the accident type was more one-sided. Therefore, the accident
quarter was set to the first quarter (with the variable node’s confidence bar set to 100%),
the ship type was set to a general cargo ship, and the gross tonnage to 1–18,500 t, as
shown in Figure 5. The change in the accident type and accident severity node probability
from the early morning to evening is shown in Figure 6. As seen in Figure 6, among the
types of maritime accidents throughout the day, the probability of a fire/explosion on
ships was low, except for the afternoon time period, which was 18.2%; the probabilities of
capsize, machinery damage, and contact were also low below 10%. Among other accidents,
the probabilities of ship collision and stranding/grounding accidents were significantly
higher at around 20%. Additionally, it was observed that the occurrence probability of
stranding/grounding accidents was significantly higher during the dawn and evening
than in other periods.

Unlike previous studies, this paper focused specifically on the question of whether or
not the consequences of an accident could involve a loss of human life when an accident
occurred under this scenario. As shown in Figure 7, the change in the probability of the “life
loss contingency” node from the early morning to the evening showed that the probability
of an accident consequence that did not involve loss of life was much higher than the
probability of an accident consequence that involved loss of life throughout the day in this
scenario. The results of the study indicate that the probability of potential loss of life is
low for all accident types in this scenario. Therefore, accidents involving collisions and
fires/explosions do not necessarily result in loss of life outcomes either and may need to be
combined with additional accident causation in order to obtain more reliable conclusions.
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Figure 5. Analysis of the accident chain with the characteristics “first quarter”, “general cargo”, and
“gross ship tonnage set to 1–18,500 t”.

Figure 6. The posterior probability of “accident type” and “severity of accident” in specific acci-
dent scenarios.

In summary, the highest probabilities of collision and stranding/grounding occurred
at dawn, with the accident severity for this appearing particularly serious. A collision
was most likely to occur at noon, with high accident severity. Particularly severe collision
and stranding/grounding accidents were more likely to occur in the evening. It is worth
mentioning that although the probabilities of collision and stranding/grounding of ships
were higher in this scenario, the probability of life loss was relatively low, and the accident
consequences were less affected by the time of the accidents.
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Figure 7. The posterior probability of “life loss contingency” in specific accident scenarios.

4.2. Accident Cause Analysis

In this study, the bidirectional reasoning of the TAN model was employed, allowing for
both causal reasoning and diagnostic reasoning. The application of causal reasoning aided
in the prediction of accident chains, while diagnostic reasoning assisted in the analysis of
the accident causes. By determining the type, consequence, and severity of an accident, a
more intuitive comprehension of the causes and mechanisms behind maritime accidents
could be achieved.

As demonstrated in Figure 8, certain patterns were identified from the research data.
For instance, when the accident type was classified as a collision, with severity as a general
accident and no involvement of life loss, there was a significantly higher probability of
container ships, general cargo ships, and chemical ships that were involved compared to
other ship types. This indicates a necessity for focusing on the safety measures of these
types of vessels, given their higher likelihood of being involved in collision accidents. The
results also revealed a correlation between ship tonnage, time of the accident, and frequency
of collision accidents. Ships with a tonnage between 1 and 18,500 t were more prone to
collisions during dawn hours. A plausible explanation for this might be the combined
influence of lower visibility conditions, potential crew fatigue, and less active navigation
during these hours.

Furthermore, the data suggest that accidents involving container ships, general cargo
ships, and chemical ships of such tonnage typically have a lower probability of causing life
loss. This might be attributed to the relative ease with which personnel can escape from
smaller ships in distress or potentially the higher success rate of rescue operations due to
the manageability of these smaller vessels.

These findings provide essential insights into maritime accident patterns. By identify-
ing specific circumstances and ship types that are associated with a higher risk of accidents,
it could be possible to develop more targeted safety protocols and preventive measures.
It also highlights the usefulness of predictive models, such as the TAN model, for risk
management in the maritime industry.

In conclusion, these findings emphasize the intricate nature of maritime accidents and
the numerous variables involved. Through the bidirectional reasoning of the TAN model, a
more thorough understanding of these accidents could be obtained, potentially leading
to the development of more effective accident prevention strategies and, ultimately, the
enhancement of maritime safety.
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Figure 8. Analysis of accident scenarios with the characteristics “collision”, “general accident”, and
“no life loss”.

5. Conclusions

Ship safety has always been a major concern in the maritime transportation industry.
In this paper, a TAN model for a maritime traffic accident risk assessment was constructed
to analyze the relationship between the consequences of maritime accidents and various
influencing factors and to use model simulation to analyze how different risk factors can
affect different types of maritime accidents.

The TAN model was constructed based on data from a total of 5660 maritime accidents
from 2005 to 2020. In addition to other accident types, the accident type with the highest
probability of occurrence among maritime traffic accidents included collision, followed by
stranding/grounding, and then fire/explosion.

The sensitivity analysis and simulation validation of the constructed model showed
that accident consequences and accident severity are the two most intuitive factors when
determining the type of accident occurrence, followed by the ship type, gross tonnage of the
ship, time period, and season. The constructed model effectively predicted the likelihood of
various accident scenarios and accident consequence projections under specific conditions.

According to the causal reasoning analysis of the TAN model and under the conditions
of “first quarter”, “general cargo ship”, and “ship’s gross tonnage of 1–18,500 t,” the
probability of ship collision and stranding/grounding accidents was higher, while the
probability of life loss was relatively low, and the consequences of this accident were less
affected by the time of the accident. According to the analysis of the model’s diagnostic
reasoning, in the general collision accident chain without loss of life, container ships,
general cargo ships, and chemical ships were the main types of ships involved in such
accidents. Ships with a tonnage of 1–18,500 t were more likely to have such accidents
during the dawn; however, their probability of causing loss of life was lower. These
findings carry significant implications for enhancing safety measures in the maritime
transportation industry. By understanding the frequency, severity, and common conditions
of various types of accidents, stakeholders could develop more targeted and effective
accident prevention strategies.

Despite utilizing a substantial volume of publicly available accident data to achieve
reliable predictive outcomes, we acknowledge the limitations of our study. It is plausible
that the introduction of more variables could alter these results. Future work should focus
on expanding this model to include additional variables such as environmental factors
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(weather conditions, sea state), ship design and maintenance factors, human factors (crew
experience, fatigue), and others that could impact the risk and consequences of maritime
accidents. Additionally, more in-depth research should be carried out to investigate the
different patterns of accidents associated with different types of ships at various times of
day to refine preventative measures accordingly.
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Abstract: In this paper, combined with the improved artificial potential field (IAPF) method and
the nonlinear model predictive control (NMPC) algorithm, a collision avoidance decision-making
support scheme considering ship maneuverability and the International Regulations for Preventing
Collisions at Sea (COLREGs) is proposed. First, to comply with the requirements of COLREGs,
an improved repulsive potential field is presented for different encounter scenarios when the ship
detects the risk of collision, and the coordinated ship domain is applied to provide safety criteria for
collision avoidance. Then, by transforming the MMG model to a discrete-time nonlinear system, the
NMPC is utilized to predict the future state of the ship according to the current state, and the IAPF
method is incorporated to calculate the potential field in each future state as the objective function.
Following this approach, the action taken to avoid collision is more effective, the ship motion in
avoiding collision is more accurate, and the collision avoidance decision making is more reasonable.
Finally, two simulation examples of multi-ship encounter scenarios are applied to illustrate the merits
and effectiveness of the proposed collision avoidance decision-making support scheme.

Keywords: collision avoidance; improved artificial potential field; nonlinear model predictive control;
ship maneuverability; COLREGs

1. Introduction

In the past decades, due to the high incidence and serious consequences of ship colli-
sion, preventing collision accidents has always been in the spotlight among practitioners
and researchers. Through the analysis and investigation of a large number of accident
reports, researchers have come to a common conclusion that human factors are the main
cause of ship collision accidents [1]. To mitigate or even eliminate the impact of human fac-
tors, the research on ship anti-collision mainly focuses on assisting human and autonomous
collision avoidance [2].

Ship path planning methods are always presented to realize autonomous collision
avoidance and navigation. The application of A-star [3], rapid-exploring random tree [4]
and other algorithms [5] in ship path planning has been developed for many years. Com-
paratively, these studies take into account static obstacles and ignore dynamic obstacles.
The artificial potential field (APF) method, which was first formally applied [6] to real-time
collision avoidance of robots in known static environments, has gradually attracted the
attention of scholars and is widely used in path planning, such as unmanned aerial vehicle
(UAV) [7], autonomous vehicle [8], etc. Due to its ability to deal with static and dynamic ob-
stacles, the APF method is also applied in ship collision avoidance [9,10]. In the process of
collision avoidance, the requirements of some key rules in COLREGs are usually taken into
account. A COLREGs-constrained multi-ship real-time autonomous collision avoidance
decision-making algorithm based on improved APF was proved to have the advantages of
fast calculation speed and strong robustness [11]. The repulsive potential field was modified
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depending on the relevant descriptions of COLREGs for different encounter scenarios, and
a guidance strategy was proposed for an underactuated unmanned surface vehicle (USV)
based on improved APF [12]. However, the traditional APF method is prone to falling
into local optima in path planning. Some researchers gradually focus on combining APF
and other algorithms to overcome the drawbacks of traditional APF. A collision avoidance
scheme based on APF and deep Q-learning network (DQN) was presented, incorporating
the resultant force of APF and the requirements of COLREGs into the reward function of
DQN [13]. To improve the feasibility and reasonability of an anti-collision scheme, a path
planning algorithm considering the requirements of COLREGs and combining modified
velocity obstacle (VO) and APF was proposed [14]. However, compared with the traditional
APF, the repulsive potential field for three encounter scenarios should be developed and
improved according to the rules of COLREGs.

At present, a lot of research works on path planning methods ignore whether the ob-
tained path is prone to being tracked by the ship. In other words, path planning should also
fully consider the ship motion control algorithm and tracking effect. Due to its outstanding
performance in predicting the future state and dealing with multi-constraint problems,
model predictive control (MPC) was widely utilized in ship motion control [15,16]. MPC is a
control method based on the object, and its control accuracy is directly related to the model’s
accuracy. For a nonlinear system, linearizing the nonlinear system and then utilizing MPC
control can simplify the control process and improve the calculation speed, but it may
also lead to low control accuracy, poor controller robustness and other consequences [17].
For ship trajectory tracking and obstacle avoidance in uncertain external environmental
disturbance, a trajectory tracking control method based on nonlinear model predictive
control (NMPC) was proposed to ensure the high control accuracy and strong robustness of
the controller [18]. A trajectory tracking with obstacle avoidance algorithm, incorporating
an event-triggered mechanism into the NMPC design, was presented, which can ensure
good obstacle avoidance effect and reduce the computational burden [19]. Obviously, to
improve control accuracy and controller robustness, the NMPC scheme is more suitable for
ship motion control than the MPC scheme.

Based on the excellent tracking performance of the MPC scheme, the combination
of MPC and APF has gradually attracted scholars’ attention in collision avoidance. A
repulsive potential field was included in an NMPC method to avoid collision with obstacles
and control multiple USV in arbitrary formations [20]. However, this scheme ignores the
COLREGs and only considers static obstacle avoidance. Considering the constraints of
ship maneuverability and the requirements of COLREGs, a novel motion planning method
based on MPC and APF was proposed for multi-object collision avoidance [21], which
can solve the problem of easily falling into local optima in traditional APF. It is worth
noting that the ship kinematic model used was obtained by ignoring the influence of sway
velocity components and simplifying the hydrodynamic parameters and derivatives of the
model [22]. This model is mainly applied to describe the ship maneuvering characteristics of
a small rudder angle, while the accuracy of describing the ship maneuvering characteristics
of a large rudder angle is insufficient [23].

In particular, the maneuvering modeling group (MMG) model is one of the famous
and high-precision mathematical models for ship maneuvering presented by the Japanese
Towing Tank Conference (JTTC) [24]. To describe the ship maneuvering motion charac-
teristics for a ship meeting at a close range, a collision avoidance dynamic support model
was proposed [25] by combining a three-degrees-of-freedom (DOF) MMG model, a control
algorithm and a collision avoidance parameter mathematical model, which demonstrates
the importance and necessity of considering ship maneuvering motion characteristics in
collision avoidance. In addition, ship maneuvering motion characteristics should be con-
sidered when providing the safety criteria for collision avoidance. The coordinated ship
domain, which was proposed by taking into account ship maneuverability and mutual
interaction of meeting ships [26], can provide more reasonable safety criteria than other
ship domains.
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Motivated by the above observation, this paper proposes a collision avoidance decision-
making support scheme by combining the IAPF method and the NMPC algorithm, which
considers the COLREGs and ship maneuverability. The main contributions are summarized
as follows.

(1) According to some critical rules of COLREGs, the repulsive potential field for three
encounter scenarios, i.e., head-on, crossing and overtaking situations, is developed
and improved in this paper.

(2) A standard 3 DOF MMG model is applied to denote ship maneuvering motion
characteristics in the process of collision avoidance, and then, a collision avoidance
decision-making support scheme is proposed by incorporating the IAPF method into
the NMPC design.

(3) The coordinated ship domain, which considers ship maneuverability and mutual
interaction of meeting ships, is applied to determine the safety criteria in the process
of collision avoidance.

The rest of the article is organized as follows. Section 2 describes the IAPF method
considering the requirements of COLREGs and introduces the coordinated ship domain.
Section 3 introduces the MMG model and gives the NMPC design procedure. Section 4
shows the effectiveness of the presented collision avoidance decision-making support
scheme. Section 5 presents the conclusions.

2. Improved Artificial Potential Field Method

As a path planning method with simple principles and practical solid application, the
APF is widely used in collision avoidance. The core idea of the APF method is to regard
the motion of a ship in an actual environment as the motion in a virtual potential energy
field, where the ship is affected by all kinds of forces. The attractive force of the goal point
drives it toward the goal point. On the contrary, the obstacles in the environment produce
a repulsive force to prevent the ship from colliding with obstacles. Therefore, the resultant
force will bring the ship closer to the target point and away from the obstacles. In addition,
when the APF is combined with MPC, instead of calculating the attractive and repulsive
forces, the total potential field is calculated [21], and the path with the gradient of steepest
descent in the total potential field is the optimal path.

2.1. Attractive Potential Field

The attractive potential Uatt(p) is defined as a function of the relative distance between
the own ship (OS) and the goal point.

Uatt(p) =
1
2

kattρ(pos, pg)
2 (1)

where katt is the attractive potential field coefficient; pos, pg are the position of the OS and the
goal point, respectively. ρ(pos, pg) is the distance between the own ship and the goal point.

2.2. COLREGs-Compliant Repulsive Potential Field

Collision risk assessment is a vitally important part of the process of collision avoid-
ance. The closest point of approach (CPA) method is selected to assess collision risk and
decide whether to take avoiding action [27]. Meanwhile, in the process of actual ship
collision avoidance, the requirements of COLREGs cannot be ignored. Based on the above-
mentioned statement [12], this paper proposes an improved repulsive potential field, which
considers risk and complies with COLREGs. There are different ways to improve the
different encounter situations. Primarily, according to Rule 14 of COLREGs [28], which
describes the action of two power-driven vessels in a head-on situation, it can be found
that the own ship shall alter course to the starboard and pass on the port side of the target
ship (TS). Therefore, the repulsive potential field is constructed according to the change in
the distance between the OS and the TS, and the distance from the OS to the longitudinal
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centerline of the TS. Then, some settings are added, so that the own ship’s actions can avoid
collision and comply with the requirements of COLREGs. The repulsive potential field
generated by the TS is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Urep = 1
2 krep

(ds(p,pL)+d1)
2

ρ(pos ,pt)
2

i f ρ(pos, pt) ≤ lt, ds(p, pL) > −d1 and TCPA ≥ 0

0 others

(2)

where krep is the repulsive potential field coefficient; ρ(pos, pt) is the distance between the OS
and the TS; lt is the influence radius of the TS; d1 is a preset reference distance in a head-on
situation; ds(p, pL) denotes the distance from the OS to the longitudinal centerline of the
TS. If the OS is on the port side of the TS, ds(p, pL) is a negative value; otherwise, it is a
positive value.

Similarly, according to Rule 15 of COLREGs, which describes the action of two power-
driven vessels in a crossing situation, it can be found that the give-way ship shall avoid
crossing ahead of the other vessel. Assuming the OS is a give-way ship, the repulsive
potential field is constructed according to the change in the distance from the OS to the TS
and the distance from the OS to the transverse centerline of the TS. The repulsive potential
field of the TS when the OS needs to avoid the TS in a crossing situation is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Urep = 1
2 krep

(ds(p,pT)+d2)
2

ρ(pos ,pt)
2

i f ρ(pos, pt) ≤ l0, ds(p, pT) > −d2 and TCPA ≥ 0

0 others

(3)

where d2 is a preset reference distance in a crossing situation; ds(p, pT) denotes the distance
from the OS to the transverse centerline of the TS. If the OS is on the stern side of the TS,
ds(p, pT) is a negative value; otherwise, it is a positive value.

For an overtaking situation, according to Rule 13 of COLREGs, it can be found that the
give-way ship can alter the course to the starboard or the port depending on the navigation
conditions. When the OS is a give-way ship, the repulsive potential field of the TS is
constructed according to the change in the distance between the OS and the TS, and the
distance from the OS to the transverse centerline of the TS as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Urep = 1
2 krep

(d3−dv(p,pL))
2

ρ(pos ,pt)
2

i f ρ(pos, pt) ≤ l0, dv(p, pL) < d3 and TCPA ≥ 0

0 others

(4)

where d3 is a preset reference distance in an overtaking situation; dv(p, pL) denotes the
vertical distance between the OS and the longitudinal centerline of the TS, which is a
positive value.

This paper aims to find a path with the gradient of steepest descent in the total
potential field. Here, the total potential field at the ith moment is used for analysis, and the
ship is assumed to be within the influence range of the Nt target ships. The total potential
field Pf,i at the ith moment is expressed as follows:

Pf ,i = Pg,i +
Nt

∑
n=1

Pt,i,n (5)

where Pg,i is the potential field of the goal at the ith moment; Pt,i,n is the potential field of
the target ship n at the ith moment.
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2.3. Coordinated Ship Domain

Over the past decades, the research on the ship domain of marine traffic engineering
has received much attention because the ship domain plays a vital role in the navigational
safety of ships. The concept of the ship domain was first proposed as an “effective do-
main” [29], which means the domain around a ship under way, which most navigators of
the following ships would avoid invading. Then, the ship domain was further regarded as
the effective area around a ship, which a navigator would like to keep free for other ships
and stationary obstacles [30]. Through years of progress, a large number of ship domains
have been presented for various purposes, which were classified into three classes in a
geometrical manner, i.e., circle, ellipse and polygon.

The shape and size of the ship domain model depend mainly on the characteristics of
the ship, such as length and speed. However, the difference in the size of the ship domain
between the two vessels can lead to a different identification of the danger level. Therefore,
the coordinated ship domain is applied [26], which considers the cooperation between
ships and the influence of the ship’s advance on the setting of a safe distance. In addition,
the distance from the middle of the ship to the bow of the ship is also a major factor and
should be considered when ships meet at close quarters. Hence, the radius of the ship
domain Rc is expressed as

Rc = Dcenter + TAmax (6)

where Dcenter denotes the distance between the center of the ship domain and the bow of the
ship, which is equal to 0.5Lmax; TAmax denotes the maximum ship length of the universal
advance and the tactical diameter based on turning circle maneuver data, which is equal to
4.0Lmax. Therefore, the size of the ship domain can be expressed as

Rc = 0.5Lmax + 4Lmax = 4.5Lmax (7)

where Lmax is the maximum length of the ships, which are involved in an encounter
situation, which is expressed as follows

Lmax = max(L1, L2, . . . , Ln), (n = 1, 2, . . . , N) (8)

When multiple ships are meeting on the open sea, the coordinated ship domain is
applied to the own ship and the target ships simultaneously to ensure passage at a safe
distance, i.e., multiple meeting ships use the same ship domain.

3. Collision Avoidance Decision-Making Support Scheme Based on IAPF and NMPC

3.1. Maneuvering Modeling Group (MMG) Model

Figure 1 shows the body-fixed coordinate system o-xyz within the space-fixed coordi-
nate system o0-x0y0z0, and the origin o is located in the mid-ship of the ship.

The variations in the ship heading angle ψ and ship position (x, y) in the space-fixed
coordinate system are expressed as⎧⎨⎩

.
x = u cos ψ− v sin ψ
.
y = u sin ψ + v cos ψ
.
ψ = r

(9)

v = vm + xGr (10)

where u, v and r denote the surge velocity, sway velocity at the gravity and yaw rate,
respectively; vm and xG are the sway velocity at mid-ship and the distance from the center
of gravity to the mid-ship.

91



J. Mar. Sci. Eng. 2023, 11, 1408

Figure 1. Coordinate systems.

Concretely, the standard 3 DOF MMG motion equations are defined as follows:⎧⎨⎩
(m + mx)

.
u− (m + my)vmr− xGmr2 = XH + XR + XP

(m + my)
.
vm + (m + mx)ur + xGm

.
r = YH + YR

(IzG + x2
Gm + Jz)

.
r + xGm(

.
vm + ur) = NH + NR

(11)

where m, mx, my, Jz and IzG are the ship’s mass, the ship’s added mass in the o–x axis
direction, the added mass in the o–y axis direction, the added moment of inertia around the
mid-ship and the moment of inertia of the ship around the center of gravity, respectively.
X, Y and N are the surge force, lateral force and yaw moment around the mid-ship; the
subscripts H, R and P denote the ship hull, rudder and propeller, respectively. The force
and the moment acting on the hull XH, YH and NH are defined as follows:⎧⎪⎪⎨⎪⎪⎩

XH = (1/2)ρLppdU2X′H(v′m, r′)
YH = (1/2)ρLppdU2Y′H(v′m, r′)
NH = (1/2)ρL2

ppdU2N′H(v′m, r′)
U =

√
u2 + v2

m

(12)

where ρ, d, Lpp and U denote the water density, ship draft, ship length between the perpen-
diculars and the resultant velocity, respectively. v′m is nondimensionalized by vm/U, and r’
is nondimensionalized by rLpp/U. The force acting on the propeller XP is defined as⎧⎪⎨⎪⎩

Xp = (1− tP)ρn2
pD4

p(kt2 J2
p + kt1 Jp + kt0)

JP = u
[
1− wp0 exp(C0(β− x′pr′)2)

]
/npDp

β = arctan(−vm/u)

(13)

where δ, tp, np, Dp and Jp denote the rudder angle, thrust deduction factor, propeller
revolution, propeller diameter and propeller advanced ratio, respectively. kt0, kt1, kt2 are
the propeller thrust open water characteristic coefficients; wp0, C0, β and xp denote the
wake coefficient of the propeller in a straight moving direction, the experimental constant,
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the drift angle and the longitudinal coordinate of the propeller position, respectively. The
force and the moment acting on the rudder XR, YR and NR are defined as follows:⎧⎪⎪⎨⎪⎪⎩

XR = −0.5(1− tR)ρAR(u2
R + v2

R) fα sin αR sin δ
YR = −0.5(1− aH)ρAR(u2

R + v2
R) fα sin αR cos δ

NR = −0.5(xR + aHxH)ρAR(u2
R + v2

R) fα sin αR cos δ

αR = δ− tan−1(vR/uR) ≈ δ− vR/uR

(14)

where tR, aH, xH and xR denote the steering resistance deduction factor, the increase factor
of the rudder force, the distance from the additional lateral force component to the mid-
ship and the distance from the rudder to the mid-ship, respectively. AR, αR, fα, uR and
vR represent the profile area, the effective inflow angle, the lift gradient coefficient, the
longitudinal and lateral inflow velocity of the rudder, respectively.

Meanwhile, consider the actual performance of the rudder as follows

.
δ = −(1/TE)δ + (1/TE)δE (15)

where TE is the steering factor; δE denotes the order angle of the steering gear and also
represents the actual input of the system.

3.2. Nonlinear Model Predictive Control Design

It can be seen from Equation (11) that the maneuvering equations are a system of
first-order ordinary differential equations. The common numerical methods for solving
such problems include Euler, Runge–Kutta, linear multi-step, etc. The Runge–Kutta method
is commonly used in an actual calculation because it can improve the order of the algorithm
to meet the different accuracy requirements [31]. Before solving the equation, combine
the aforementioned maneuvering equations into a new system of ordinary differential
equations, and transform it into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
u = f1(t, u, vm, r, δ, ψ)
.
vm = f2(t, u, vm, r, δ, ψ)
.
r = f3(t, u, vm, r, δ, ψ)
.
δ = f4(t, u, vm, r, δ, ψ)
.
ψ = f5(t, u, vm, r, δ, ψ)
.
x = f6(t, u, vm, r, δ, ψ)
.
y = f7(t, u, vm, r, δ, ψ)

(16)

If the value of each variable is known at time ti, then at time ti+1 = ti + τ; the standard
four-order Runge–Kutta formula for calculating each variable is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui+1 = ui + τ(K11 + 2K12 + 2K13 + K14)/6
vm i+1 = vm i + τ(K21 + 2K22 + 2K23 + K24)/6
ri+1 = ri + τ(K31 + 2K32 + 2K33 + K34)/6
δi+1 = δi + τ(K41 + 2K42 + 2K43 + K44)/6
ψi+1 = ψi + τ(K51 + 2K52 + 2K53 + K54)/6
xi+1 = xi + τ(K61 + 2K62 + 2K63 + K64)/6
yi+1 = yi + τ(K71 + 2K72 + 2K73 + K74)/6

(17)

where τ is the time of each calculation step. The value of Kji in the formula is calculated as
follows:⎧⎪⎪⎨⎪⎪⎩

Kji = f j(ti, ui, vm i, ri, δi, ψi)
Kj,i+1 = f j(ti +

τ
2 , ui +

τ
2 K1i, vm i +

τ
2 K2i, ri +

τ
2 K3i, δi +

τ
2 K4i, ψi +

τ
2 K5i)

Kj,i+2 = f j(ti +
τ
2 , ui +

τ
2 K1,i+1, vm i +

τ
2 K2,i+1, ri +

τ
2 K3,i+1, δi +

τ
2 K4,i+1, ψi +

τ
2 K5,i+1)

Kj,i+3 = f j(ti + τ, ui + τK1,i+2, vm i + τK2,i+2, ri + τK3,i+2, δi +
τ
2 K4,i+2, ψi + τK5,i+2)

(18)
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According to Equations (15)–(18), the general form of the ship’s discrete-time nonlinear
system can be expressed as follows:

ξ(i + 1) = f (ξ(i)) + g1δE(i) (19)

where ξ(i) = [u(i), vm(i), r(i), δ(i), ψ(i), x(i), y(i)]T represents the vector of the ship’s state
at the ith moment; g1 = 1/TE stands for control gain, which is a constant. Define the
predictive horizon Np, the control horizon Nc, and Nc ≤ Np. According to the current state,
the predicted state in the future Np horizon can be obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(i + 1|i) = f (ξ(i)) + g1δE(i)
ξ(i + 2|i) = f (ξ(i + 1|i)) + g1δE(i + 1)

...
ξ(i + n|i) = f (ξ(i + n− 1|k)) + g1δE(i + n− 1)

...
ξ(i + Nc|i) = f (ξ(i + Nc − 1|i)) + g1δE(i + Nc − 1)

...
ξ(i + Np

∣∣i) = f (ξ(i + Np − 1
∣∣i)) + g1δE(i + Nc − 1)

(20)

where ξ(i + n|i) is the vector of the predicted state at i + n using the state ξ(i) at the i moment.
When n≥Nc, δE(i + n) = δE(i + Nc − 1). Thus, the optimal control sequence can be expressed
as Uc = [δE(i), δE(i + 1), . . . , δE(i + n − 1), . . . , δE(i + Nc − 1)]T, and only the first control
action in the control sequence is finally applied to the plant in MPC applications [32].

In order to consider the influence of ship maneuverability in the process of collision
avoidance, this paper combines the NMPC and APF methods to transform the ship motion
planning problem into an optimization problem with constraints. Only the constraint
of control input is considered here, i.e., the constraints of the rudder angle and rudder
deflection speed are as follows: {

−35◦ ≤ δi, δE i ≤ 35◦

−3◦/s ≤
.
δ ≤ 3◦/s

(21)

The process of solving optimization problems with the NMPC method is as follows.
First, the objective function within the prediction horizon is obtained by predicting the
future state of the ship from the current ship state. Then, the objective function is optimized
to obtain the optimal input sequence at the current time. Moreover, select the first element
of the optimal input sequence as system input at the current time to calculate the ship’s
state at the next time. Finally, repeat the above steps. In this process, combined with the
improved APF, the objective function in the NMPC is defined as follows:

J =
Np

∑
n=1

Pn
f ,i (22)

where Pn
f ,i is the predictive total potential field at the ship’s location at the moment i within

the predictive horizon n, which is detailed in Equation (5).

4. Simulation and Analysis

In this section, two simulations are conducted to show the effectiveness of the pre-
sented collision avoidance decision-making support scheme. Simulation 1 is a multi-ship
meeting scenario where only the own ship takes action to avoid other ships. Before this,
different collision avoidance action distances are set for different encounter situations
between two ships, and collision avoidance actions are taken only when two ships are close
to the set distance. Simulation 2 is also a multi-ship encounter scenario where the own
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ship considers the risk of collision with all target ships and takes appropriate actions to
avoid all target ships at once. Then, the proposed scheme and an existing method [12]
are simulated, respectively, under the same scenario, and the advantages of the proposed
scheme are analyzed based on the simulation results. The existing method, which is a
COLREGs-compliant guidance strategy based on improved APF, can choose a suitable
heading according to the change in the total potential field. Therefore, the heading and the
trajectory obtained by the two methods are compared in the simulation.

The benchmark ship KVLCC2 tanker is selected as a sample ship from multiple
meeting ships. The data of the sample ship [24] are given in Tables 1 and 2, respectively.

Table 1. Principal particulars of KVLCC2 tanker.

Symbol Quantity Symbol Quantity

Lpp (m) 320.0 Cb 0.81
B (m) 58.0 DP (m) 9.86
d (m) 20.8 HR (m) 15.8

Displacement (m3) 312,600 AR (m) 112.5
xG (m) 11.2

Table 2. Hydrodynamics force coefficients of sample ship.

Symbol Quantity Symbol Quantity Symbol Quantity

R′0 0.022 N′R −0.049 wp0 0.35
X′vv −0.040 N′vvv −0.030 C0 −2.1
X′vr 0.002 N′vvr −0.294 X′p −0.48
X′rr 0.011 N′vrr 0.055 tR 0.387

X′vvvv 0.771 N′rrr −0.013 aH 0.312
Y′v −0.315 M′

x 0.022 X′H −0.464
Y′R 0.083 M′

y 0.223 γR ( βR < 0) 0.395
Y′vvv −1.607 J′z 0.011 γR ( βR > 0) 0.640
Y′vvr 0.379 tp 0.220 L′R −0.710
Y′vrr −0.391 kt0 0.2931 ε 1.09
Y′rrr 0.008 kt1 −0.2753 κ 0.50
N′v −0.137 kt2 −0.1385 fα 2.747

Simulation 1. In this simulation, a two-dimensional Cartesian coordinate system in nautical miles
(nm) is utilized to express the position of the goal point and the ship. In the simulation studies, all
ships sailed in open water with good visibility, and the initial states of the OS and the TS are shown
in Table 3. The initial sway velocity, yaw rate and rudder angle of all ships are set as zero. To assess
the collision risk, Table 3 lists the initial DCPA between the OS and the TS calculated from the
ship’s initial position, course and velocity. Based on the data in Table 1, the coordinated ship domain
Rc = 4.5Lmax = 0.78 nm. The setting of a safe distance is closely related to the visibility conditions
at sea, and the safe distance can be set to 1 nm when the visibility is good [33]. Combining the size
of the ship domain, set the safe distance as dsafe = 1.6 nm in this simulation. Set different distances
to take avoiding action for different encounter situations between the OS and the TS, e.g., as 6 nm
for a head-on situation, as 4 nm for a crossing situation and as 3 nm for an overtaking situation.
The primary simulation parameters are shown in Table 4.

Table 3. The initial state of the own ship and target ships in Simulation 1.

Position
Course

(◦)
Surge Velocity

(kn)
DCPA
(nm)

OS (10,01) 000 15.5
TS1 (13,05) 270 15.5 0.71
TS2 (10,14) 170 15.5 1.13
TS3 (14,08) 346 5.5 3.06

95



J. Mar. Sci. Eng. 2023, 11, 1408

Table 4. The significant parameters in the simulation.

Description Notations Value

Reference distance in a head-on situation (nm) d1 2
Reference distance in a crossing situation (nm) d2 2

Reference distance in an overtaking situation (nm) d3 2
Attractive potential field coefficient katt 5
Repulsive potential field coefficient krep 200

Time of each calculation step (s) τ 5
Predictive horizon Np 10

Control horizon Nc 8
Steering factor TE 2.5

The simulation results are shown in Figures 2–6. Figure 2 shows the complete motion
trajectories of four ships, indicating the position and the ship domain at the moment of
closest proximity between the own ship and the other target ships. The curve represents
the trajectory of the OS, and the other straight lines represent the trajectory of the TS. In
addition, it can be observed that there is no collision risk between the target ships. Figure 2a
shows the trajectories generated by the scheme based on the IAPF and NMPC methods,
considering ship maneuverability. The trajectory in Figure 2b is generated by an existing
method, ignoring ship maneuverability. Combined with the variation diagram of the own
ship’s heading angle in Figure 3, it can be seen that the trajectory and the heading angle of
the OS in Figures 2b and 3b are not sufficiently smooth compared with those in Figures 2a
and 3a, and this difference is caused by whether the ship maneuverability is considered.
In addition, there is an apparent course oscillation in Figure 3b caused by the sudden
appearance or disappearance of the repulsive force at the edge of the TS’s potential field.
NMPC will predict the potential field information for a period of time in the future and
choose the path with the gradient of steepest descent in the total potential field to avoid
repeated disappearance and appearance of the repulsive force; consequently, there is no
course oscillation in Figure 3a. As observed in the figure, there is a crossing situation
between the OS and TS1, a head-on situation between the OS and TS2 and an overtaking
situation between the OS and TS3. According to the requirement of COLREGs, the OS
takes an alternative course of action to avoid TS1, TS2 and TS3 in a sequence. There is
no crossing of the ship domains, which shows that the collision avoidance effect is good.
However, when the OS avoids TS1, it does not take into account the collision risk with TS2
and TS3, resulting in frequent steering maneuvers.

 
(a) (b) 

Figure 2. Results of multi-ship, multiple encounter scenarios’ collision avoidance validation in
Simulation 1: (a) result of the proposed method; (b) result of the existing method.
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(a) (b) 

Figure 3. Variation diagram of the own ship’s heading angle in Simulation 1: (a) result of the proposed
method; (b) result of the existing method.

Figure 4. Variation diagram of the distance between the own ship and target ships in Simulation 1.

Figure 5. Variation diagram of the rudder angle of the own ship in Simulation 1.
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Figure 6. Variation diagram of the velocity of the own ship in Simulation 1.

Figure 4 shows the variation in the distance between the OS and the TS. Obviously,
combined with Figure 2, the minimum distance between the OS and the TS is higher than
the safe distance dsafe, which reflects that the coordinated ship domain is more intuitive for
evaluating the effect of collision avoidance. It can be seen from Figure 5 that the change
in the rudder angle of the OS is always within the prescribed range in advance, which is
also the most intuitive manifestation of ship maneuverability constraints. The variation
diagrams of the OS’s surge, sway and resultant velocity are drawn in Figure 6, and it can be
easily seen that the surge, sway and resultant velocity vary with the change in the rudder
angle, which reflects the maneuvering characteristics of the ship.

Simulation 2. In this simulation, there is a risk of collision between the OS and all other ships,
and there is no risk of collision between the target ships. As shown in Table 5, the initial states of
the OS and the TS are given, as well as the initial DCPA between the OS and the TS. Here, the
distance to take collision avoidance action is enlarged, so that the OS takes collision risk with all
target ships into account when taking avoidance action. The repulsive potential field coefficient is
set as krep = 800, and the other parameters and values are configured identically to those used in
Simulation 1.

Table 5. The initial state of the own ship and target ships in Simulation 2.

Position
Course

(◦)
Surge Velocity

(kn)
DCPA
(nm)

OS (01,01) 045 15.5
TS1 (04,05) 045 5.5 0.71
TS2 (15,02) 315 14.5 0.53
TS3 (13,11) 225 15.5 1.41
TS4 (04,16) 135 8.5 1.32

Figure 7 shows the complete motion trajectories of the OS and four target ships and
marks the moment and the position of the closest distance between the OS and the TS.
Figure 7a shows the trajectories generated by the scheme based on the IAPF and NMPC
methods, considering ship maneuverability. The trajectory in Figure 7b is generated by an
existing method, ignoring ship maneuverability. The own ship’s heading angle changes
during collision avoidance using the two methods are described in Figure 8a,b, respectively.
The reasons for the differences in the OS trajectory and heading angle in Figures 7 and 8
are consistent with those mentioned in Simulation 1. Combined with the variation in the
distance between the OS and the TS depicted in Figure 9, it can be seen that all target ships
are successfully avoided by relying only on the OS to take actions. From the perspective of
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the OS’s trajectory, the OS adopts fewer course alterations to avoid multiple target ships.
This suggests that increasing the distance of collision avoidance actions can simultaneously
consider the collision risk with more target ships, effectively reducing the number of course
alterations required by the OS. Meanwhile, as shown in the rudder angle change diagram
in Figure 10, the maneuvering amplitude adopted by the OS in the collision avoidance
process is also small. Figure 11 displays the variation diagrams of the OS’s surge, sway and
resultant velocity, which vary with the change in the rudder angle, indicating the ship’s
maneuvering characteristics.

 
(a) (b) 

Figure 7. Results of multi-ship, multiple encounter scenarios‘ collision avoidance validation in
Simulation 2: (a) result of the proposed method; (b) result of the existing method.

 
(a) (b) 

Figure 8. Variation diagram of the own ship’s heading angle in Simulation 2: (a) result of the proposed
method; (b) result of the existing method.

Figure 9. Variation diagram of the distance between the own ship and target ships in Simulation 2.
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Figure 10. Variation diagram of the rudder angle of the own ship in Simulation 2.

Figure 11. Variation diagram of the velocity of the own ship in Simulation 2.

5. Conclusions

In this paper, a collision avoidance decision-making support scheme based on an im-
proved artificial potential field method and nonlinear model predictive control algorithm
is proposed. In order to make the ship’s collision avoidance actions conform with the
requirements of COLREGs, the repulsive potential fields of the ships in head-on, crossing
and overtaking encounter situations are improved, respectively. Meanwhile, the coordi-
nated ship domain is applied to the own ship and target ships simultaneously to ensure
passage at a safe distance. The 3 DOF MMG model is utilized and transformed with the
Runge–Kutta method to obtain the discrete-time nonlinear system, and then, the colli-
sion avoidance decision-making scheme is designed by combining the IAPF and NMPC
methods. Moreover, two sets of simulation results show that the collision avoidance path
planned by the proposed scheme not only complies with the requirements of COLREGs
but also considers the maneuvering motion characteristics of the ship. Compared with the
trajectory generated by an existing method, the trajectory obtained by the proposed scheme
is smoother, and the proposed scheme overcomes the deficiency of course oscillation in
traditional APF.
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In addition, this paper does not consider the external disturbances and system uncer-
tainties, which will be further studied to improve the practicability of the planned path in
the future.
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Abstract: Newly built offshore wind farms (OWFs) create a collision risk between ships and installa-
tions. The paper proposes a real-time traffic monitoring method based on machine vision and deep
learning technology to improve the efficiency and accuracy of the traffic monitoring system in the
vicinity of offshore wind farms. Specifically, the method employs real automatic identification system
(AIS) data to train a machine vision model, which is then used to identify passing ships in OWF
waters. Furthermore, the system utilizes stereo vision techniques to track and locate the positions
of passing ships. The method was tested in offshore waters in China to validate its reliability. The
results prove that the system sensitively detects the dynamic information of the passing ships, such
as the distance between ships and OWFs, and ship speed and course. Overall, this study provides
a novel approach to enhancing the safety of OWFs, which is increasingly important as the number
of such installations continues to grow. By employing advanced machine vision and deep learning
techniques, the proposed monitoring system offers an effective means of improving the accuracy and
efficiency of ship monitoring in challenging offshore environments.

Keywords: traffic safety; offshore wind farms; YOLOv7; stereo vision; deep learning

1. Introduction

Motivated by the demands for clean energy in the context of ongoing climate change,
the number of offshore wind farms (OWFs) grows rapidly in lots of coastal countries [1].
The present development shows the advantages of offshore wind farms, for example,
delivering secure, affordable, and clean energy while fostering industrial development
and job creation. Based on the annual report from the Global Wind Energy Council,
2021 becomes the best year in the offshore wind industry, in which 21.1 GW of offshore
wind capacity was commissioned, bringing global offshore wind capacity reach to 56 GW,
three times more than in 2020. The GWEC Market Intelligence forecasts that 260 GW of
new offshore wind capacity could be added during 2022–2030 under the current positive
policies, allowing the total global offshore wind installations to rise from 23% growth in
2021 to at least 30% growth by 2031. In the year 2021, China constructed 80% of new
offshore installations worldwide becoming the world’s largest offshore market [2].

However, this trend of increasing numbers of offshore wind farms puts pressure on
local water traffic management. For example, the newly added obstacles increase the
difficulties for both the navigation of passing vessels [3] and of Search and Rescue. Once
an accident happens, it results in water pollution, significant damage to facilities and
other catastrophic casualties and economic losses. For the year 2021, the Global Offshore
Wind Health and Safety Organisation (G+) report pointed out that there were a total of
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204 high-potential incidents and injuries recorded [4]. Recently, some collision accidents
were also reported for the UK, China, and the Netherlands, leading to shipping hull and
turbine damage, and electric power loss, especially for construction and fishing ships. For
instance, on 31 January 2021, the drifting bulk carrier Julietta D collided with a transformer
platform in the Hollandse Kust Zuid wind farm, which was under construction. On
2 July 2022, a dragging accident in southern waters led to 25 casualties and a vessel sank.
Therefore, monitoring vessels in the offshore wind farm waters and detecting potential
hazards becomes an urgent question for stakeholders of offshore wind farms.

The current monitoring system for water traffic is the Vessel Traffic Services (VTS),
which uses the Automatic Identification System (AIS), radar and other detection sensors
to show the water traffic situation dynamically. The topics of technology development,
information collection, communication, and system design have been studied for the VTS.
However, the limitations of its use in offshore wind farm waters are noted due to trespasses
and the deliberate turning off of the AIS. Developing a reliable monitoring system can
aid the safety of navigation of passing vessels and offshore wind farms. To improve the
reliability of using VTS in offshore wind farm water, previous studies proposed several
novel methodologies to develop monitoring models. Li et al. reviewed 153 papers related
to ship detection and classification and suggested that the current ship detection methods
could be divided into two categories, feature design-based methods and Convolutional
Neural Network (CNN) based methods [5]. For instance, Zhao et al. developed a coupled
CNN model to detect small ships in waterways with a high density of shipping water
using a clustered Synthetic Aperture Radar image approach [6]; Zhang et al. proposed
a fast region-based convolutional neural network (RCNN) method to detect ships from
high-resolution remote sensing images [7]. Using feature design-based methods, Hu et al.
employed dilated rate selection and attention guided feature representation strategies for
ship detection, in which the dilated convolution selection strategy was applied to a multi-
branch extraction network, extracting context information of different receptive fields [8].
Yu et al. employed an advanced ship detection method using Synthetic Aperture Radar
images based on the YOLOv5 [9]. The results of this study showed a great improvement in
the feature expression ability and sensitivity for target detection after adding a coordinate
attention mechanism and a feature fusion network structure. Priakanth et al. proposed
a hybrid system by using wireless and IoT technology to avoid boundary invasions [10].
Ouelmokhtar et al. suggested using Unmanned Surface Vehicles (USV) to monitor waters,
in which an onboard RADAR is used to detect the targets [11]. Nyman discussed the
possibility of using satellites for monitoring, which allows for the visual surveillance of
a large area [12]. The relatively low cost of data acquisition makes the use of satellites
appealing, however, some prior theory or knowledge is needed to sort through the vast
collection of satellite data and images. Although these studies have their advantages, these
technologies may typically focus on large water areas, increasing the financial burden for
offshore wind farms. Therefore, low-cost, high efficiency and reliable systems are still
needed. The low cost of equipment makes video surveillance technologies a possible way
to monitor water traffic at a close distance. However, original video surveillance requires
human supervision to achieve continuous monitoring, consuming a large number of human
resources. In addition, the challenges faced by offshore wind farm operators and managers
in the environment and the high workload of their daily tasks may lead to error-prone and
tedious situations. Nowadays, automated surveillance systems observing the environment
utilizing cameras are widely used. These automatic systems can accomplish a multitude
of tasks, which include detection, interpretation, understanding, recording, and creating
alarms based on the analysis. They are widely used in different situations, for instance, in
road traffic, Pawar and Attar got detection and localization of road accidents from traffic
surveillance videos [13]. Vieira et al. and Thallinger et al. quantitatively evaluated the
safety of traffic by utilizing security cameras [1,14]. A video surveillance-based system
that can detect the pre-events, with an automatic alarm generated in the control room was
proposed for improving road safety [15].
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Motivated by the above-mentioned difficulties and advantages, this study aimed to
pioneer the use of machine vision technologies to aid traffic monitoring in offshore wind
farm waters. Specifically, a vision-based monitoring system was developed for OWFs to
improve the reliability and efficiency of ship traffic detection and tracking. The system
trains a “YOLOv7” machine visual model using automatic identification system (AIS) data.
The fine-trained model can identify the passing ship in OWF waters, not only providing
the identified target, but also the degree of confidence during the monitoring process. Then
a stereo vision algorithm is applied in the model to locate and track the positions of the
passing ships. So that the dynamic information (e.g., speed, course, and position) for each
target can be provided by the system. In addition, the proposed system was validated by
comparing the provided dynamic information with AIS data to ensure the reliability of
the results. The contributions of this work are highlighted as follows. The study pioneers
the uses of machine vision to aid traffic monitoring in offshore wind farm waters, covers
the gap for the current VTS system and provides a novel way for offshore water traffic
management. In addition, the model can provide more efficient and reliable dynamic data
for individual and overall traffic that can be expanded to providing early warning for
ship risk and accident prevention. The main contributions of this work are summarized
as follows:

(1) This paper evaluates the performance of using the YOLOv7 model in offshore wind
farm waters. It shows that the YOLOv7 model has a high accuracy rate for vessel
detection. The results prove that the YOLOv7 models have higher dynamicity for ship
detection compared to other ship detection methods.

(2) An optimization strategy for training a visual-based identification model is presented.
The study collects hybrid data sources (e.g., AIS data, images) to develop the model
training database and validate the model by comparing the positions between AIS data
and the detection results. consequently, this ensures the performance of continuous
target detection with significant accuracy.

(3) The proposed target identification system was further tested in an offshore case. By
using an embedded device, the inference time reached real-time performance (less
than 0.1 s) and the overall processing time for one frame was 0.76 s, proving the
possibility of implementation of the system in real-time ship traffic monitoring.

The remainder of this paper is organized as follows: Section 2 outlines a review of
related research. In Section 3, the framework of the system is introduced in detail. The
experimental data and the test results are reported in Section 4. The obtained results are
discussed in Section 5. Finally, conclusions are drawn in Section 6.

2. Literature Review

This section can be categorized into three groups based on the method used in the
studies: ship monitoring, machine vision in target detections, and machine vision in target
tracking, respectively.

2.1. Ship Monitoring Technology

Implemented to promote safe and efficient marine traffic, VTS are typically the most
widely used technology for ship supervision. It is a shoreside service within a country’s
territorial waters that, by detecting and tracking the ship, aims to monitor the traffic, assist
the traffic control and manage navigational matters, and provide support and required
information for passing ships. The VTS collects dynamic data via two sensors, the radar
and AIS; however, both have their limitations. For instance, the radar echo can be dis-
turbed in an environment with the external noise of RF interference and clutter, which
creates potentially dangerous situations and decrease VTS functionality. Regarding this
matter, Root proposed high-frequency radar ship detection by clutter elimination [16].
Dzvonkovskaya et al. pioneered a new detection algorithm in ship detection and tracking
but ignored the external influences position [17]. Another question concerns the limitations
of detecting small ships in coastal waters (e.g., offshore wind farm water). From this point
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of view, Margarit et al. proposed a ship operation monitoring system based on Synthetic
Aperture Radar image processing to achieve inferred ship monitoring and classification
information, which further improves the Synthetic Aperture Radar image from the new
sensor data [18]. Moreover, radar is unable to provide sufficient static information such as
ship type and size, which means other systems (e.g., AIS) are needed. The AIS is another
important piece of information for ship monitoring, which can compensate for the limita-
tions of radar. It achieves the automatic exchange of ship information and navigation status
between ships and shore. As a type of reliable data source, AIS data has been widely used in
lots of studies to analyze ship traffic, making it important for water traffic management. For
instance, Brekke et al. combined AIS data with satellite Synthetic Aperture Radar images
to detect ship dynamic information (e.g., speed, course) [19]. To improve the reliability
of radar, Stateczny collected sets of data from AIS and radar, and then applied a numeri-
cal model to compare the covariance between the two types of data [20]. Pan and Deng
proposed a real-time monitoring system for shore-based monitoring of ship traffic [21].
Although the AIS data are valuable for ship traffic management, several limitations remain.
For instance, the AIS can be closed manually. The AIS is not mandatory for some small
ships such as dinghies and fishing boats [22].

In coastal waters, the offshore wind farm is a relatively new type of installation
that influences the existing ship traffic, not only occupying the navigable waters but also
creating blind areas by blocking radio signals, reducing the ability to detect and track small
targets. Relevant studies using traditional data sources (e.g., AIS, radar), including Yu et al.,
used AIS to analyze the characteristics of the ship traffic in the vicinity of offshore wind
farms [23] and then developed models to assess the risk for individual ships [24] or for the
ship traffic flows [25]. However, as a highly accurate and reliable model for ship detection
is still the basis for ship monitoring in offshore waters, traditional ship detection methods
(e.g., AIS, radar) were updated to overcome the potential uncertainties, such as small target
detection, visual monitoring, and unpredicted invasions.

Consequently, some vision-based technologies have been applied for ship detection,
ship tracking, and ship monitoring. For instance, to overcome the difficulty of remote ship
control and monitoring in high traffic waters, Liu et al. designed a portable integrated
ship monitoring and commanding system [26]. To test the data availability, Shao et al.
used image data captured from surveillance cameras to achieve target detection [27]. To
improve the function of the target automatic monitoring and tracking, Chen et al. proposed
a mean-shift ship monitoring and tracking system [28], which shows the possibility of
using machine visual technologies for water traffic monitoring.

2.2. Applications of Machine Vision in Target Detections

Machine vision technology enables a machine with a visual perception system, with
the help of hardware (e.g., camera, infrared thermal imager, night vision device) and a
software program. It can recognize and manipulate the activities and perform image-based
process control and surveillance for traffic monitoring, manufacture inspection, autopilot,
and other scene perception usages [29,30]. A widely used application of machine vision is
the Tesla driverless system, which was equipped with the hardware needed for Autopilot
and the software program to realize Full Self-Driving.

Central to machine vision is the target recognition and detection algorithms. Figure 1
shows the development of recognition and detection algorithms that are used for object
detection. The early studies of machine vision came up with Scale Invariant Feature
Transform, which involved five steps to match the similarity of two images and to detect
targets [31]. Then SIFT was upgraded to the Viola-Jones detection algorithm [32], histogram
of oriented gradients (HOG) [33], Data Management Platform (DMP), and so on.
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Figure 1. Development of machine vision technologies.

However, the above-mentioned algorithms extract target features manually, and can
only perform well when they are guaranteed to extract sufficiently accurate features, so
that they are inapplicable where a large number of targets exist. They are replaced by
applying deep learning approaches to detect targets. Deep learning-based detection al-
gorithms have the advantage of being able to extract features from complex images. The
deep learning-based methods can be grouped into two categories based on the way they
extract target features: the anchor-based methods (i.e., Convolutional Neural Network
(CNN) methods and You Only Look Once (YOLO) methods) and the anchor-free meth-
ods (e.g., adaptively spatial feature fusion methods [34], Corner Net methods [35]). The
Anchor-based algorithms are further classified into single-stage detection and two-stage
detection. Due to stability and accuracy, anchor-based methods have become more popular
in recent years. Typical methods include YOLOv1-v5 [16,36–40], single shot multibox
detector [41], and Region CNN etc. For instance, Girshick et al. [42] proposed a novel
method of R-CNN for target detection. The method uses image segmentation combining
regions and CNNs to improve accuracy; however, it requires a large database to train
the detection model, which reduces the detection speed. To improve detection speed,
Meng et al. developed an improved Mask R-CNN, which ignores the RolAlign layer in the
R-CNN [43]. Zhao et al. suggested enhancing the relationship among non-local features and
refining the information on different feature maps to improve the detection performance
of R-CNN [44]. Redmon and Farhadi proposed a joint training method to improve the
traditional YOLOv1 model [45]. The upgraded YOLOv3 model uses binary cross-entropy
loss and scale prediction to improve the accuracy of the model while ensuring the detec-
tion speed of detection [16]. The YOLOv3 model was adopted in vision detection studies
including Gong et al. [46]. Patel et al. proposed a novel deep learning approach, which
combines the capabilities of Graph Neural Networks (GNN) and the You Look Only Once
(YOLOv7) deep learning framework; the results show an increased detection accuracy [47],
Li et al. [48] and etc., which prove its fast speed in the convergence and detection process.
The applications of vision detection have been done in various domains, as well as water
traffic management. To design a deep learning-based detector for ship detection, Li et al.
applied the Faster-CNN algorithm to train the ship target detection model, which achieves
higher accuracy [49]. To address the shortcomings of the region proposal computation, Ren
et al. introduced a region proposal network (RPN) by sharing the convolutional features of
Fast R-CNN and RPN to further merge the two into one network [50].

2.3. Applications of Machine Vision in Target Position and Tracking

Machine vision methods used for target tracking can be categorized as monocular
vision and binocular vision based on the tracking mechanism [51,52]. The monocular
vision was first proposed by Davison [53], who used overall decomposition sampling to
solve the challenge of real-time feature initialization. The basis of the monocular vision
systems is the simultaneous localization and mapping (SLAM) method, which calculates
the distance of the target within the camera’s field of view. Although monocular visual
localization is simple to operate and does not require feature point matching, it is less
accurate and only suitable for specific environments. Therefore, it is not suitable for use in
complex environments such as maritime target localization and tracking. To solve these
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problems, binocular vision positioning has been proposed and is widely used in many
fields. However, binocular vision pre-localization only works on a flat surface and cannot
accurately localize objects, so scholars have extended binocular vision to stereoscopic
vision [54,55].

Binocular stereo vision technology can simulate the human eye to perceive the sur-
rounding environment in three dimensions, making it widely used in various fields [56–59].
To reduce errors in the localization part of binocular stereo vision systems due to interfer-
ence from complex environments, Zou et al. proposed a binocular stereo vision system
based on a virtual manipulator and the localization principle [60]. They designed a binoc-
ular stereo vision measurement system to achieve an accurate estimation of target object
positions. Zuo et al. used binoculars to capture point and line features and selected or-
thogonality as the minimum parameter for feature extraction, which solved the problem
of unreliability of binocular stereo vision in detecting objects [61]. Therefore, compared to
monocular vision techniques, binocular stereo vision is a more effective technique for target
tracking. It is more accurate, simpler to operate, and suitable for dynamic environments,
making binocular vision systems more appropriate for ship supervision in offshore wind
farms than monocular vision systems. Video tracking allows for continuous monitoring of
the ship, which is very helpful.

Based on the above studies, it can be noted that traditional approaches of using AIS
and radar data for ship identification, tracking and localization have their drawbacks.
For example, radar has difficulty in detecting small targets and fails to provide some
important information (i.e., ship type). The AIS provides dynamic and static information
for individual ships but it can be turned off manually, which cause difficulties in ship
tracking and invasion detection. Hence, this study suggests a novel way for ship detection
and tracking by using a visual-based target detection model which not only overcomes the
difficulties of current ship detection and tracking approaches but also provides new ideas
to enhance dynamic ship monitoring in coastal waters.

3. Methods

This section proposes a novel framework for ship detection and tracking in the waters
near OWFs. The framework uses the vanilla YOLOv7 algorithm as a critical component to
detect ships in dynamic situations while applying binocular stereo vision to track the ships.
The framework structure is shown in Figure 2.

The framework consists of seven steps. (1) to collect real-time ship video from the
waters in the vicinity of the OWFs; (2) to process the collected ship video and picture
information; (3) to set the relevant parameters; (4) to construct the training database from
the collected video and AIS data; (5) to train the ship detection model using the YOLOv7
approach; (6) to map the ship position from videos into the physical world with the aid of
binocular stereo vision and (7) to validate and output the results. The details of those steps
are introduced as follows.

Step 1: Cameras placed at wind turbines are used to provide real-time videos of ship
traffic in the vicinity of offshore waters. Then, images containing ships are collected to
develop the training databases. In the database, images that may have ships that can be
overlapped with another image are deleted.

Step 2: This step defines the parameters used in the monitoring system. For the
detection model (i.e., YOLOv7), the three parameters learning rate, momentum, and
decay are used. The learning rate is a hyperparameter used by the optimizer to control
the step size of the parameter update. It can influence the adjustment of the parameter
value. Momentum is a regulating hyperparameter in the optimizer, which is used to
control the direction and speed of parameter updates. By setting a suitable momentum
hyperparameter, the parameter updates can be made more stable and avoid problems
such as excessive oscillation or too slow descent during training. Decay or decay rate is a
regulating hyperparameter in the optimizer that is used to make the learning rate gradually
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decrease. It allows for a more detailed search of the parameter space, making it easier for
the model to reach a minimum and produce more accurate predictions.

In addition, the camera includes internal and external parameters. The internal
parameters are focal, pixel, and resolution. They are mainly used as the basis to transform
the ship’s position from pixel coordinates to camera coordinates. The external parameters
cover camera positions, and high, horizontal, and vertical angles, which convert the ship’s
position from camera coordinates to world coordinates. By calibrating the left and right
cameras, those internal and external camera parameters are crucial for ship positioning.

Step 3: Establish the initial training samples for YOLO model training, which is used to
obtain the object in the port videos (i.e., generate a bounding box for each ship in the video).
Before training, the ship pictures need to be processed through annotation using an image
annotation tool. Each ship in the picture is selected in this study, and the corresponding
AIS data are input to develop the database. The database includes the position coordinates
of the corners of the ship’s box, as well as the width and height of the ship in the picture. In
the training process, standard techniques such as multi-scale training, data augmentation,
and batch normalization are used to train the ship detector.

Figure 2. The framework for the monitoring system.
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Figure 3 shows the training process of the YOLOv7 model, which consists of the
backbone network, a convolutional feature fusion network, and the decoding processing.

 
Figure 3. The steps to train the YOLOv7 model.

The YOLOv7 model consists of a backbone, neck, and a head. The input image is
scaled to a size of 640 × 640 with a constant aspect ratio, and the blank part of the image is
filled with gray. As shown in Figure 3, the input image is grided as 640 × 640 to detect the
target. The backbone is a convolutional neural network responsible for extracting features
from a given input image; the neck mainly generates a feature pyramid and passes various
scales of features to the head, which generates prediction boxes and ship categories as
outputs for each object. In addition, sensitivity and accuracy can be affected by the size
of the grids. As shown in Figure 4, a scale of 20 × 20 is used for big target detection, a
medium scale of 40 × 40 is used to detect the middle target, and a small scale of 80 × 80 for
the small target.

 
(a) (b) (c) 

Figure 4. The sizes of the grids to capture ships: (a) 20 × 20, large ships; (b) 40 × 40, medium ships;
(c) 80 × 80, small ships.

Step 4: This study uses a 3D reconstruction technique called binocular stereo vision
to achieve ship positioning. Stereo vision is a technique that involves detecting objects
using two or more cameras. By simultaneously calibrating the left and right cameras, the
internal and external parameters of both cameras can be determined. To obtain the position
of the ship, the target coordinates are mapped from the video to the physical world using
imaging principles, the whole structure is shown in Figure 5.
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Figure 5. The steps for ship detection and positioning.

In the proposed system, the left pixel coordinate
(

ule f t, vle f t

)
is obtained from the

input image captured by the left camera into YOLOv7. Meanwhile, the right pixel coordi-
nate

(
uright, rright

)
is obtained after matching the image captured by the right camera and

left camera.
The pixel point is denoted by m = [u, v]T. The world point is denoted by M = [X, Y, Z]T.

We use x̃ to denote the augmented vector by adding 1 as the last element: m̃ = [u, v, 1]T ,
M̃ = [X, Y, Z, 1]T . The relationship between the world point M and its pixel projection m is
given by:

sm̃ = A[R T] M̃, with A =

⎡⎣α γ u0
0 β v0
0 0 1

⎤⎦ (1)

where s is an arbitrary scale factor, the extrinsic parameters (R, T) is the rotation and
translation, which related the world coordinate system to the camera coordinate system,
and A is the camera intrinsic matrix, with (u0, v0) the coordinates of the principal point,
α and β the scale factors in u and v axes, and γ the parameter describing the skew of the
two axes.

In order to obtain the relative positions between any two coordinate systems, the
rotation R and translation T need to be acquired by calibrating the left and right cameras,
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simultaneously. This calibration process involves capturing images of a checkerboard
pattern at different orientations, as shown in Figure 6. The images are then processed
using the “Stereo Camera Calibrator” tool in MATLAB to obtain the camera parameters,
including the rotation and translation matrices.

Figure 6. The checkerboard calibration.

As a result, the world coordinate [X, Y, Z]T of the ship is obtained. The latitude–

longitude coordinate of the ship is denoted by P =
[

Platitude, Plongitude

]T
can be formulated

as follows:

P = Pcamera +

[
X
Y

]
(2)

where Pcamera =
[

Pcamera
latitude, Pcamera

longitude

]T
is the latitude–longitude coordinate of the camera.

4. Case Study

4.1. Database and Processing

In this experiment, our team collected a total of 1000 images of marine ships to form
the MYSHIP database1. It had a resolution of either 1920 × 1080 or 2840 × 2160. Because
the training of a convolutional neural network requires a considerable number of samples,
we also added the SEASHIP database to our database. The SEASHIP database consists of a
total of 7000 images with a resolution of 1920 × 1080. As shown in Figure 7, the database is
divided into six categories of ships: ore carriers, bulk cargo carriers, general cargo ships,
container ships, fishing boats, and passenger ships.
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Ore carrier General cargo ship 

  

  

  

Bulk cargo carrier Fishing boat 

  

  

  
Passenger ship Container ship 

  

  

  

Figure 7. The six types of ships included in the training database.

We divide the database into three parts: the training set, the validation set, and the
test set in the proportion 6:2:2. The division of the database is shown in Table 1.
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Table 1. The number of images in each database.

Database
Number of Samples Number of Ships

MYSHIP SEASHIP MYSHIP SEASHIP

Training set 600 4200 1334 4934
Validation set 200 1400 444 1610

Test set 200 1400 446 1669
Total 1000 7000 2224 8213

4.2. Parameter Setting

In this experiment, the parameters of the camera used to capture ship video and image
data are shown in Table 2.

Table 2. The hardware parameters of the camera.

Parameter Name Parameter Unit

Focal length 12.5–775 mm
Pixel 3 mp

Resolution 2048*1536 ppi
Wide dynamic range 120 db

The internal and external parameters of the two cameras are shown in Table 3.

Table 3. The calibration parameters.

Setting
Intrinsic Matrix Rotation Translation Distortion

Pixel m m m

Left
camera

⎡⎣534.31 0.00 342.64
0.00 534.31 234.42
0.00 0.00 1.00

⎤⎦ ⎡⎣1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

⎤⎦ ⎡⎣1.00
1.00
1.00

⎤⎦ ⎡⎣−0.29
0.11
0.00

⎤⎦,
[

0.00
0.00

]
Right

camera

⎡⎣537.39 0.00 326.62
0.00 537.01 250.58
0.00 0.00 1.00

⎤⎦ ⎡⎣ 1.00 0.00 0.01
−0.00 1.00 250.58
−0.01 0.01 1.00

⎤⎦ ⎡⎣−99.72
1.27
0.05

⎤⎦ ⎡⎣−0.29
0.10
0.00

⎤⎦,
[

0.00
0.00

]

The experiments were carried out on a computer platform configured with 64G
memory, an Intel Core i9-12900kF CPU and a NVIDIA GeForce RTX 3090 Ti GPU for
training and testing. The system of the experiment platform was Windows 10. Referring
to previous studies [62–64], the training parameters of the model were set as follows: the
initial learning rate was 0.001, the attenuation coefficient was 0.0005, and the stochastic
gradient descent rate was 0.9.

4.3. Construction of the Training Database

In this paper, we used the image annotation tool labellmg to manually annotate the
boxes of each ship in the images (https://github.com/heartexlabs/labelImg (accessed on
18 June 2023)). Labellmg is the most widely used image annotation tool for creating custom
databases. Once the images are annotated, a dataset is generated that contains the category
of the ship, the position of the corners of the ship’s box, as well as the width and height of
the ship.

To prevent overfitting and improve target detection accuracy, data augmentation
strategies are applied to the images in the database, which increased sample diversity and
improved the robustness of the model. In the experiment, several augmentation techniques
such as horizontal flipping, vertical flipping, random rotation, Mosaic, and cutout were
applied to enrich the training samples.
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4.4. Detection

The proposed model was then tested with four scenarios to assess its performance.
The details for the video of each scenario is shown in Table 4.

Table 4. The details for the videos.

No. Frame Rate (fps) Resolution Duration(s) Category Ship Status

video#1 10 720 × 1280 150 Container ship Underway
video#2 10 2160 × 3840 60 Bulk cargo carrier Moored
video#3 10 2160 × 3840 480 Passenger ship Moored

video#4 10 2160 × 3840 60 Passenger ship
Fishing boat

Underway
Anchored

Video 1 shows an underway container ship navigating a traffic route. The frame rate
of the video is 10 per second (fps), the duration is 150 s, and the resolution is 720 × 1280.

Video 2 tests the performance of the model to detect a static target, therefore a moored
bulk cargo ship was selected. The frame rate of the video is 10 per second (fps), the duration
is 60 s, and the resolution is 2160 × 3840.

Video 3 is a berth with several moored ships. It tests whether the model could detect
the passenger ship within a complex water environment. The frame rate of video is 10 per
second (fps), the duration is 480 s, and the resolution is 2160 × 3840.

Video 4 shows a scenario of two ships. One is a passenger ship passing a bridge and
another is an anchored fishing boat. It can be considered as a typical condition to test
whether the model can detect ships when obstacles exist. The frame rate of the video is
10 per second (fps), the duration is 60 s, and the resolution is 2160 × 3840.

The video clips are shown in Figure 8.

 

  

  

  

Figure 8. The four scenarios used to test the model: video 1; video 2; video 3 and video 4.

It can be seen from Figure 8, that with use of the proposed model, the targets in the
different scenarios can be detected; the associated ship type and confidence rates are given
in Table 5.
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Table 5. The confidence of detect results for videos.

No.
Minimum

Confidence
Maximum
Confidence

Average Confidence

Video 1 0.95 1.00 0.97
Video 2 0.99 1.00 0.99
Video 3 0.50 0.94 0.76
Video 4 0.53 0.84 0.72

In Table 5, the minimum confidence, maximum confidence, and average confidence
for the target in Video 1 and Video 2 are (0.95, 1.00, 0.97) and (0.99, 1.00, 0.99), respectively,
showing high accuracy and reliability of the model to detect ships underway and moored.
Based on this, it can be concluded that the proposed system provides satisfactory detection
performance and is capable of successfully detecting target objects in a typical offshore
wind farm. However, in Video 3 and Video 4, although the target can be detected by the
proposed model, the minimum confidence decreased to 0.50 and 0.53, and the average
confidence decreased to 0.76 and 0.72. The main reason for this reduced confidence is
the impacts from the complex environment conditions and surroundings, which can be
overcome by (1) providing more training data to enhance the model detection probability,
(2) using additional segmentation methods before detecting the ship, however, the time-
consumption will become another problem.

4.5. Position and Tracking Results

Figures 9 and 10 show typical object position and tracking results (i.e., Video 1 and
Video 2). The results shown in Figure 9 detect an underway container ship, with a confi-
dence degree of 0.99. After synchronizing images from two cameras and matching them
with binocular stereo vision model, the ship’s position was obtained as 118.745 E and
24.4749 N. In addition, the ship’s dynamic information of speed and course was calculated
as well, where the speed was 11.61 knots and the course was 290.01 degrees.

 

Figure 9. Position and tracking result for Video 1.
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Figure 10. Position and tracking result for Video 2.

In Figure 10, an anchored bulk ship was detected; the model assigns the confidence
degree of 0.99 and gives the position of the ship as longitude of 118.1074 E and latitude of
24.5521 N. As it is an anchored ship, the speed and the course for this ship is 0.

5. Validation

5.1. Detection Validation

To validate the proposed model, the two databases MYSHIP and SEASHIP were used.
The detection capabilities were evaluated by the following indices: accuracy rate (P), recall
rate (R), false alarm rate (F), miss alarm rate (M), and average precision (AP), which were
defined as follows:

� Precision (P): proportion of samples that are correctly detected in all test results.
� Recall rate (R): proportion of actual positive samples that are correctly detected.
� False alarm rate (F): proportion of negative samples that are incorrectly detected as

positive samples.
� Miss alarm rate (M): proportion of actual positive samples that are incorrectly detected

as negative samples.
� Average precision (AP): the integral value of the Precision Rate-Recall rate curve (P-R

curve).
� Average precision50 (AP50): the average accuracy of the test when the IOU threshold

is 0.5.
� Average precision50:95 (AP50:95): the average accuracy of the test when the IOU threshold

is 0.5–0.95.

The relationship between these indices are mathematically described as function 3:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P = TP
TP+FP

R = TP
TP+FN

F = FP
TP+FP = 1− P

M = FN
TP+FN = 1− R

AP =
∫ 1

0 P(R)dR

(3)

where TP is the counts of the true positive that correctly predicts positive samples, TN is
the counts of the true negative that correctly predicts negative samples, FP is the counts of
the false positive that incorrectly predicts negative samples and FN is the counts of false
negative that incorrectly predicts positive samples.

5.2. Validating the Proposed Models

By using the validation index, the performance of the model is shown in Table 6.
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Table 6. The performance of the YOLOv7 model on the database.

Database P R F M AP50 AP50:95

MYSHIP 74.38% 78.20% 21.80% 25.62% 97.10% 72.61%
SEASHIP 62.49% 70.97% 29.03% 37.52% 96.40% 61.61%

In general, the system has high recognition accuracy and precision for ships. The
rates of detection accuracy were relatively high (74.38% for the MYSHIP and 62.46% for
SEASHIP datasets). However, by comparing the evaluation results, Table 6 shows the
YOLOv7 model demonstrated better performance on the latter database (i.e., SEASHIP
database). This is due to the MYSHIP database including more distant and overlapping
ships, making identification more challenging.

Then, to validate the accuracy of the model’s predictions, the ship’s real-time AIS
data in the four cases (Video 1–4) was collected. The detected results from the proposed
model were compared with information provided in the AIS data, which is considered
more accurate and reliable. Table 7 displays the comparison of different detection systems
for ships.

Table 7. The results comparing different detections systems for ships.

Video #1 Video #2 Video #3 Video #4

System result Container ship General cargo ship Passenger ship × 5
General cargo ship × 2

Fishing boat
Passenger ship

AIS data Container ship General cargo ship Passenger ship × 2 Passenger ship

Table 7 shows the proposed system can detect ship types with high accuracy, while
showing advantages of ship detection that are not provided by AIS data. For instance, in
Video 3, only two passenger ships have AIS data but in reality, there were five passenger
ships and two general cargo ships but some of them had turned off their AIS or were
missing signals. Similarly, Video 4 shows a fishing boat that did not provide its AIS data,
but it was detected by the video system.

The accuracy of the positioning results was compared as well. As the AIS transmits
ship position with different rates (e.g., 2–10 s when ships are underway and 180 s when
ships are moored or anchored), this study linked all the AIS positions with time sequences
to obtain the ship trajectories. In this study, the update frequency of the proposed model
was set as 2 s each time and all positions were linked following the time sequences to obtain
the trajectories. Then, the deviation between the AIS based trajectories and the model
detected trajectories in Video 1 were calculated and the results are given in Figure 11 and
the deviations are given in Table 8.

Table 8. The comparison between the AIS data and the system output result.

Sample#1 Sample#2 Sample#3 Sample#4

System output Longitude 118.0796 E 118.1074 E 118.1081 E 118.1117 E
Latitude 24.4806 N 24.5521 N 24.5466 N 24.5579 N

AIS data (◦) Longitude 118.07962 E 118.10737 E 118.10814 E 118.11169 E
Latitude 24.48064 N 24.55212 N 24.54661 N 24.55791 N

Deviation (◦) Longitude 0.00002 −0.00003 0.00004 −0.00001
Latitude 0.00004 0.00002 0.00001 0.00001
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Figure 11. The comparison between the AIS based trajectories and model detected trajectories.

It can be seen in Figure 11 that due to the low update rate, only three AIS records
were received for the ship in Video 1. Therefore, three AIS positions were linked and the
deviations on the longitude and latitude were calculated (see Table 8). Notably, although
the deviation between the two trajectories existed, they were all less than ±0.0001 degree
(11 m approximately), which is broadly acceptable.

6. Discussion

6.1. Comparing the Current System Used for Ship Detection and Tracking

Based on the case study results, the advantages of use of visual based technologies for
ship detection are as follows:

(1) The proposed approach provides a way for ship monitoring with satisfactory accuracy
and reliability. The developed system can obtain necessary information about ship
traffic (e.g., speed, position, course), so that it becomes a novel supplement for VTS
and OWF managers. In addition, in contrast to AIS and radar, this system uses
cameras to collect ship videos, and the CCTVs are already fixed in most of the OWFs
worldwide. Therefore, the cost of developing this system in practice can be very low.

(2) As already mentioned, the proposed system has a high frequency of updating the
ship information (i.e., 10 fps) and high accuracy in individual ship tracking (the
tracking errors less than 15 m/0.0001 degrees). Thus, the developed system reasonably
provides ship dynamic data and ensures collision risk assessment for ships in the
vicinity of OWFs.

(3) The proposed framework hybridizes several visual technologies. The study not only
proves the possibility of using these technologies to aid ship monitoring in offshore
wind farm waters but also can be considered as evidence to apply the machine visual
model for ship detection and tracking in other similar waters, such as narrow channels,
bridges, on a river, etc.

Moreover, the advantages and disadvantages of current ship detection approaches
were compared, and the results are listed in Table 9.

Table 9 presents several highlights between the current ship detection approaches. The
radar tracking system can accurately measure and track moving or stationary targets, but it
has a blind spot, and the echoes are susceptible to environmental factors, which can lead to
target loss. The AIS-based ship reporting system can compensate for these shortcomings
of radar, but AIS cannot identify targets that are not equipped with AIS or have the AIS
turned off, so that leads to missed tracking. Both the CNN-based and the YOLO-based
model show high accuracy for target detection. However, The YOLO algorithm is time
consuming due to its faster detection speed and frequency.
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Table 9. The comparison between the existing system and our system.

Method Name Advantage Disadvantage

AIS based ship
reporting system

1. Capable of automatically obtaining target position,
status, speed, and other information
2. High accuracy of ship dynamic data
3. Strong performance against rain, snow, and
wave interference
4. Eliminate the blocking area of some radars

1. Operates only at VHF
2. Cannot identify targets without AIS devices installed
3. The data are not continuous and poor timeliness

Radar tracking system

1. Capable of automatic tracking and
automatic warning
2. Accurate measurement and display of distance,
bearing, speed and size of the target

1. Blind spots exist
2. The echo is easily affected by weather, sea state and
terrain obstruction, etc.
3. In the multi-target dense area is prone to false
tracking and target loss phenomenon

YOLO model

1. Has a high recognition speed, and can efficiently
identify multiple targets
2. Superiority in real-time target detection
3. Suitable for detecting objects of various shapes
and sizes

1. Global information has a good performance, but
poor performance on a small range of information
2. Compared to some recognition algorithms, the
accuracy rate is slightly worse

RCNN model
1. Powerful adaptability for recognition and
classification of complex data
2. Feature classification works well

1. Large number of operations, large sample size and
time are required to train the model
2. Lack of annotation resources for specific target
samples, high quality for the database

6.2. YOLO Series

In this study, the YOLOv7 model was trained with AIS data and incorporated binocular
vision to improve the accuracy of system detection. The proposed system can complete
ship detection and target tracking, which significantly increases the model’s accuracy
and applicability. However, the YOLO series are developing rapidly. To evaluate the
performance of detecting targets in maritime domain by using the YOLO series, this study
selected the YOLOv5 model as the benchmark. In the comparison, both methods use the
same database and hardware platforms. The results of the comparison experiment is shown
in Table 10. The original YOLOv5 model achieved 73.80% of detection precision, while
the YOLOv7 model achieved 77.48%, which is 3.68% higher than the YOLOv5 model. The
recall rates for the YOLOv5 and YOLOv7 models were not very different (73.41% and
73.19%). The false alarm rate of the YOLOv5 model was 3.68%, which was higher than for
the YOLOv7 model. For the index of miss alarm rate, the YOLOv5 and YOLOv7 models
had similar performance, with 26.6% and 26.81%, respectively. Then the study set the IOU
threshold at 0.5 to test the index of average accuracy. The YOLOv5 model obtained an
average accuracy of 95.76%, while the YOLOv7 model reached 97.03%. Similarly, setting
the IOU threshold in the interval of 0.5–0.95, the results showed the average accuracy for
the YOLOv5 model dropped to 70.37% and for the YOLOv7 model it was 71.51%, which is
1.14% higher than the YOLOv5 model. Consequently, based on these comparisons, it can
be concluded that the proposed method can be effective for ship detection and real-time
traffic monitoring.

Table 10. The results of the comparison experiment between the YOLOv5 and YOLOv7 models.

Methods P R F M AP50 AP50:95

YOLOv5 73.80% 73.41% 26.20% 26.60% 95.76% 70.37%
YOLOv7 77.48% 73.19% 22.52% 26.81% 97.03% 71.51%

However, the system proposed above also needs to be improved. First, there are still
some ships that may not be well detected in the proposed system (current accuracy is
77.48%) due to their position and orientation. When the ship drives independently and
laterally, it is easily detected by the system. Moreover, when the ship is longitudinal, and
multiple ships overlap, the system may regard these ships as obstacles and ignore them.
For example, the ship in Video 3 has the lowest confidence. This is because, among the
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vessels detected by the system, those with a low confidence level are characterized by
facing the camera end on. This orientation makes the ship’s characteristics less obvious, so
it is easily ignored by the system. Second, the database needs to be expanded to include
more training data. Third, the potential effects of critical weather conditions (e.g., snow,
heavy fog, and rain) were not tested in this study. Therefore, further studies can be carried
out providing more labelled samples, and we will collect more data to enrich the system
database and train better classifiers in following research. Meanwhile, the system will be
tested under critical environments in practice soon.

7. Conclusions

This paper proposed a ship detection and positioning system based on the YOLOv7
algorithm and stereo vision technologies and introduces the framework and detailed
methods used in this system. In addition, this study suggests a novel concept of using AIS
data as the training resource for model training, which improves the accuracy of using the
YOLOv7 model and stereo vision algorithms in ship detection and tracking. Applying the
proposed model in a real ship case study validates the possibility of using the YOLOv7
algorithm to track and identify ships when the stereo vision algorithm is applied to locate
ship positions.

The benefit of the proposed system is that it can detect vessels automatically and
achieve real-time tracking and positioning. The system not only eases the workload of
OWF operators during CCTV monitoring but also provides a possible way for ship traffic
management in the water in the vicinity of OWFs. Moreover, the novel system shares the
idea of using machine vision technology for ship collision prevention. In addition, the
proposed method applies not only to offshore wind farm waters but can be applied in the
future to any place of interest. Based on the analysis of the proposed system, further study
can investigate applying the proposed system in ships to achieve situation forecasting.
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Abstract: This paper realizes the simultaneous optimization of a vessel’s course and speed for a
whole voyage within the estimated time of arrival (ETA), which can ensure the voyage is safe and
energy-saving through proper planning of the route and speed. Firstly, a dynamic sea area model with
meteorological and oceanographic data sets is established to delineate the navigable and prohibited
areas; secondly, some data are extracted from the records of previous voyages, to train two artificial
neural network models to predict fuel consumption rate and revolutions per minute (RPM), which
are the keys to route optimization. After that, speed configuration is introduced to the optimization
process, and a simultaneous optimization model for the ship’s course and speed is proposed. Then,
based on a customized version of the A* algorithm, the optimization is solved in simulation. Two
simulations of a ship crossing the North Pacific show that the proposed methods can make navigation
decisions in advance that ensure the voyage’s safety, and compared with a naive route, the optimized
navigation program can reduce fuel consumption while retaining an approximately constant time to
destination and adapting to variations in oceanic conditions.

Keywords: ship routing; artificial neural network; speed configuration; A* algorithm

1. Introduction

With improvements in ship intelligence, big data technology, and navigation-related
sensors, Maritime Autonomous Surface Ships (MASS) have attracted significant attention.
At the same time, safety and energy-saving issues related to maritime navigation have grad-
ually become the focus of attention in this new low-carbon era. In 2018, the International
Maritime Organization adopted the IMOInitial Strategy for Greenhouse Gas Emission Reduc-
tion from Ships, sending a strong signal to the international community that the shipping
industry is changing to a low-carbon industry [1]. Reducing fuel consumption through
proper route planning is an important means to respond to the requirement for a low-
carbon strategy. However, due to the length of ships’ transoceanic voyages, which can
range from two weeks to more than a month, weather and sea state forecasts cannot be
accurately made, and the accuracy of these forecasts decreases as the time increases. There-
fore, it is required that the ship route optimization should fully consider the dynamically
meteorological marine environment, and the route needs to be re-evaluated and updated
when forecast data are updated [2].

Weather routing can be defined as finding an optimum route in consideration of
the ETA, sailing waypoints, sailing speed, and fuel consumption based on the weather
forecast data and ship performance [3]. According to this definition, some researchers
mainly extract and analyze sailing records to find the association of vessels to routes [4] or
summarize a data-driven optimal route in a specific navigation region [5]. Others focus on
solving a path-finding problem at the operation level. The main goal of this operational
problem is to plan a navigation route from one port to another based on a predefined
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purpose [6], in which conditions (weather, waves, and other environment variables) are
along the route.

Since the ship’s navigational task often has complex influences, planning a ship route
is often regarded as a pathfinding problem, which assumes that the ship’s speed or main
engine power is maintained at a fixed value and only the ship’s geographical path is
considered as a variable. In this way, route optimization has been researched based on
various methods or algorithms, such as the modified isochrones method [7], dynamic
programming [8–10], Dijkstra’s algorithm [11], and the A* algorithm [12], and some evo-
lutionary algorithms such as the genetic algorithm [13,14] and the swarm algorithm [15]
have also been used. However, for ocean-going ships, the meteorological and marine
environment changes rapidly, and it is not easy to maintain a stable and uniform speed for
a long time on the route. The above research ignores many constraints of the meteorological
environment and the ship itself. Thus, it is difficult to ensure the result is the globally
optimal solution [2].

In order to solve such problems, some 3D algorithms have been developed, in which
the time variable is considered as the third dimension. Taking minimal fuel consump-
tion as the goal, some scholars have used genetic algorithms to optimize meteorological
routes under the premise of ensuring the ships’ safety in adverse sea conditions [16–18].
Evolutionary algorithms, such as genetic algorithms, have the potential to balance local
searches and global searches. However, when the ocean voyage is so long that it has
many feasible routes, the limited search capability in the optimization process may fail to
obtain the optimal global solution. Another research interest is to add a time variable to
an existing two-dimensional route searching deterministic algorithm so that it becomes
a three-dimensional path searching deterministic algorithm, such as the modified three-
dimensional isochrones method with weighting factors [19] and three-dimensional dynamic
programming algorithms that include meteorological factors [20–24]. These algorithms
mainly use the idea of staged optimization in dynamic programming. In each stage of the
optimization process, only a few nodes with the best results can enter the next stage, while
the other sub-path nodes are eliminated to reduce the computational effort [6]. Meanwhile,
in each stage of the recursion process, the discarded nodes may be associated with the
optimal global solution with deterministic constraints. In contrast, the A* algorithm has
the advantage of retaining all nodes in each recursion and finding the optimal nodes in
stages; thus, it increases the possibility of finding the optimal global solution. However, it
also results in an exponential increase in the number of search nodes with each stage of
the recursion process, which makes it difficult to add a time-like dimension to the route
optimization problem.

With the continuous development of artificial intelligence technology, its use to achieve
ship weather route optimization has become a new research interest. The idea is to generate
recommended routes after summarizing and analyzing a large amount of ship navigation
data. Some scholars process AIS data to recognize key turning regions and connect these
turning regions via cluster similarity measuring to generate reasonable routes for different
types of ships [25,26]. Others try to use artificial neural networks and machine learning
algorithms to predict the fuel consumption of a ship under different sailing conditions
to achieve the goal of determining the expected duration or saving energy [27]. For ex-
ample, artificial neural networks have been used to optimize a ship’s speed based on
large amounts of ship operation data to reduce fuel consumption [28,29]. Three different
statistical models have been used to forecast and optimize the speed of container ship
routes with the goal of improving navigational safety and determining expected duration
by integrating meteorological information such as wave height, wave period, wind speed,
and other information [30]. From the above research, it can be shown that different weather
route optimization methods often require different applicable conditions and generally
need to assume some ideal conditions, such as a more stable ship navigation state, fewer
optimization nodes or dimensions, etc.
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For a voyage’s safety and economy, ship course and speed are the two key variables in
saving energy and controlling arrival time. In an actual navigation situation, distinct course
and speed choices may cause a vessel to encounter radically different sea states, so a ship’s
course and speed should be planned according to the dynamic sea environment, and most
commercial software do so, such as the Bon voyage system, Seaware enroute, SPOS, and
so on [31]. Normally, some environmental factors, like the resistance of calm water [32],
waves [33], and winds [34], can significantly affect a ship’s speed. Calculating the values of
ship dynamics is extremely complex because of the consideration of hull shape, seakeeping
characteristics of the ship, the sea spectrum, and other parameters. Thus, it is too laborious
and time-consuming for ship weather routing. In addition, under severe sea conditions,
fuel consumption can be reduced exponentially by properly reducing a ship’s speed, thus
the ship can adjust its speeds in different sea states to reduce its fuel consumption [27].

Therefore, this paper proposes a ship route planning method under a sailing time
constraint, which introduces speed as a variable in the ship route optimization process
to realize the co-optimization of ship course and speed. In the next section, a three-
dimensional sea environment model is constructed, which can load weather data in real
time to inform the route optimization process. Section 3 builds an ANN-based model that
relates ship parameters to fuel consumption rate and RPM for use in the optimization
process. Section 4 introduces a speed variable to the route optimization process to jointly
optimize ship course and speed, to design the voyage route, and to plan for deceleration
or acceleration to effectively reduce fuel consumption. As a result of adding a variable,
it can be understood from the above description of the 3D deterministic algorithms that
the number of sub-paths increases exponentially as the algorithm iterates [35,36]. For ship
route planning oriented towards transoceanic voyages, this will increase the searching time
significantly. Thus, to compute a navigation strategy under the sailing time constraint in an
acceptable computational time, Section 5 proposes a customized A* algorithm, which uses
ETA to constrain the search space and a suitable heuristic function to guide the direction
of the search. Two simulations are performed in Section 6 to test and highlight the main
features of the method, followed by conclusions in Section 7.

2. Dynamic Sea Environment Model

2.1. Three-Dimensional Sea Environment Model

In current navigation situations, route optimization should comply with the following
restrictions:

1. The ship should navigate in an area with sufficient water depth.
2. The ship should not sail in dangerous wind and wave conditions.
3. The route plan should consider dynamic meteorological and sea conditions for long-

distance and long-term navigation.

To satisfy the above constraints, a three-dimensional sea environment model is es-
tablished for ship route optimization. Most of the forecast data and reanalysis data of
the current meteorological and sea state are in “GRIB” format, and this type of data is
used to divide the ocean area into a sequence of dense grids. Each grid cell has uniform
meteorological and oceanographic properties; hence, grid cells can be taken as the route
nodes and discretize ship routes into sequences of waypoints.

The environmental grid data in this paper include meteorological and oceanographic
data from the European Centre for Medium-Range Weather Forecasts [37] and ocean
bathymetry data from the General Bathymetric Chart of the Oceans [38]. Each two-
dimensional grid datum at a single time is read from the environmental data and recorded
in the form of a matrix. These multiple time matrices are stored in a 3D matrix, as shown in
Figure 1, where t1, t2, . . . tn represent the meteorological and oceanographic information
in the grid cells at discrete times t, and the time interval between them is generally fixed.
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Moreover, the environmental data in row x and column y at time t are defined by E(x, y, t).
The environmental effect on a ship can be expressed as follows:

E(x, y, t) = f (ϕ, λ, v, t0) (1)

Here, (ϕ, λ) is the ship’s location, v is the ship’s speed, and t0 is the ship’s departure
time. After the calculation of the waypoints sequence and the corresponding speed config-
uration from the departure time t0, the goal grid (x, y) will be found to arrive at time t. In
addition, the index (x, y) is also related to the range and accuracy of the environmental data.

Figure 1. Three-dimensional marine environmental model.

2.2. Binarization of Navigation Area

After reading and storing the environmental data, the data representation is shown in
Figure 2. The white contour lines in the figure are contours of wave height, the direction of
the arrows indicates the wind direction, their length indicates the value of the wind speed,
and the elevation is represented by the isosurface.

Sketch map of terrain and wind wave field in the North Pacific
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Figure 2. Marine environment visualization.

As can be seen in Figure 2, there are obstructive conditions in the map, including static
obstacles such as islands and shoals in the marine environment, and dynamic restricted
navigation zones corresponding to areas of strong winds and high waves (e.g., the contour-
dense area in Figure 2 has wave heights above 6 m). Grid cells with obstructive conditions
should be marked as unnavigable cells through which the route is forbidden to pass, while
others marked as navigable, in which the ship can sail through unconstrained. Significantly,
the classification and marking of the cells should be pre-processed considering the ship’s
characteristics and performance factors.
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A binary method is used in grid pre-processing to divide the navigation area, and the
navigable cells are set to 1; unnavigable cells are set to 0, which are also called restricted
grids. The grid pre-processing is shown in the Formula (2). Combining the ship draft and
elevation information, when the water depth of the grid (x, y) is not sufficient to ensure the
safety of shipping, it is set as unnavigable and expressed as Navi(x, y) = 0. Also, when the
wind and wave of the grid (x, y) exceeds the ship’s anti-wave ability at time t, it is set as
unnavigable and expressed as Navi(x, y, t) = 0.

Navi(x, y, t) =

⎧⎨⎩
0, insu f f icient water depth,
0, wind and waves over the threshold,
1, meet the ship′s navigation conditions.

(2)

In this way, the marine environment in Figure 2 can be binarized, and the restricted
grids are filled with black while the free grids are filled with white. Thus, the restricted and
free grids can be distinguished. And the accuracy of grids is often the same as the acquired
environment data, which is set to 0.5◦ × 0.5◦ in this paper, as shown in Figure 3. In this
figure, a sea area with wave heights over 6 m is set as a unnavigable area, as framed in the
red box.

Figure 3. Binary image of the raster marine environment.

3. Predictive Model for Ship Parameters

Since the sea status during the voyage is not always static, the relevant parameters
of the ship will constantly change (e.g., fuel consumption rate, speed, course, etc.), which
affects the corresponding sailing decisions. Therefore, establishing a reliable and effective
model to predict these effects is necessary for accurate route optimization. Artificial neural
networks can be used for modeling complex systems. They are highly adaptable, robust,
fault-tolerant, and surface-fitting and are well-suited to predictive analysis. Since the
prediction model needs to be continuously invoked in route planning, a prediction model
with a relatively simple structure and high prediction accuracy is required, and an artificial
neural network model with a single hidden layer can meet such needs [39].

3.1. Pre-Processing of Data

To accurately predict the ship’s sailing state under various external factors, a large
amount of sailing data and an artificial neural network-based ship parameter prediction
model are needed. In this work, the training and testing data are from actual navigation
records of one container ship’s voyages from 1 January to 28 February 2021. The details of
that container ship are shown in Table 1.
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Table 1. Ship parameters.

Parameter Value

Ship type Container ship
Displacement (t) 169,700
Length (m) 348
Beam (m) 51.2
Draft (m) 13.5
Pitch (mm) 8668

A total of 36,440 consecutive records were collected during the voyages. Each record
has required data types, such as date, latitude, longitude, speed over ground (SOG), course,
draft, fuel consumption, and RPM, etc. Due to errors in equipment and instruments,
network signals, and other factors, there are noisy and erroneous data in the records.
The predictions of the model may have large errors compared with the actual values if all
records are directly used for model training, making it difficult to reflect the actual fuel
consumption under many influencing factors. So, a data cleaning method proposed by ISO
based on the idea of removing track anomalies was designed to filter the data and eliminate
useless data [40]; the major steps are shown below:

1. Remove anomalous records in which data are incomplete, such as missing latitude
and longitude data.

2. To reduce the complexity of the artificial neural network mentioned later, the absolute
directions of weather are converted to the directions to the ship reference frame:

dirwr = |180◦ − |(dirc − dirwa) mod 360◦|| (3)

where dirwr represents directions of weather components (wind and wave) to the ship’s ref-
erence frame, dirc is the ship’s course, and dirwa is the absolute directions of weather com-
ponents.

3. According to this method [40], extract sequential records of approximately 10 min
and combine them into one segment.

4. Calculate the mean value μ of each type of data di in a segment.

For data that are not measured as angles, the mean μ for the N data points in a
segment with values di is computed by

μ =
1
N ∑N

i=1 di (4)

For data that are measured as angles, the mean μ is computed by

μ = arctan

(
∑N

i=1 sin di

N

/
∑N

i=1 cos di

N

)
(5)

5. Calculate the standard error of the mean σ of each type of data in a segment. The stan-
dard error of the mean σ is computed by

σ =

√
1
N ∑N

i Δ2
i (6)

For data not measured as angles, the difference Δi is computed by

Δi = |di − μ| (7)
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For data measured as angles, the difference Δi is computed by{
Δi = 360◦ − ri, ri = mod(|di − μ|, 360◦) > 180◦
Δi = ri, ri = mod(|di − μ|, 360◦) ≤ 180◦ (8)

6. Two thresholds are used to delete segments in which the standard error of the mean
of certain data is too large. In particular, if the σ of RPM is greater than 3 min−1 or the
σ of SOG is greater than 0.5 kt, then all records in that segment are deleted. After this
operation, several uniform sailing segments are obtained.

7. We use Chauvenet’s criterion to determine if data are anomalous in each uniform
sailing segment. Once a data point is identified as an outlier based on the criterion, it
is removed. A new mean and standard error of the mean can be calculated based on
the remaining values and the new sample size.
The probability for the occurrence of any di is computed by

P(di) = erfc
(

Δi

σ · √2

)
(9)

where P(di) is the probability of occurrence of di and erfc is the complementary
error function.
A datum is considered an outlier if Formula (10) is fulfilled.

P(di)× N < 0.5 (10)

This method cleans the original voyages’ records to obtain several navigation segments
with a duration of about 10 min and a uniform speed. The mean values of these
segments’ data can be used for subsequent training and prediction of the model.

8. The different types of input data have different units. It would reduce the performance
and convergence of the predictive model if the filtered data of the segments were
input into the neural network directly. Therefore, the z-score standardization method
is adopted to standardize the data:

d∗ty =
dty − μty

σty
(11)

where d∗ty is one type of data in a segment after the standardization, dty is this type of
data unprocessed in the segment, and μty and σty are the mean and standard error
value of this type of data in all segments.

3.2. Predictive Model for Ship Parameters

An artificial neural network (ANN) has good nonlinear mapping capability, adaptive
learning capability, and parallel information processing capability. Compared with tra-
ditional system identification methods, ANNs do not require knowledge of the physical
causal relationships between the observed system variables, providing a way to model
the system without information about the internal state of the system. In this paper, an
ANN with a single hidden layer is used as a prediction tool for fuel consumption rate
and RPM because of its simplicity, robustness, and ideal prediction effect [39,41]. In ad-
dition, the ship’s sailing performance also changes as time passes, and the ANN can be
reconstructed quickly based on more recent sailing data when necessary.

3.2.1. Structure of the Predictive Model

An artificial neural network consists of several connection layers, which can be divided
into an input layer, hidden layer, and output layer according to their position and function.
All neurons in the network are connected to adjacent neurons located in different hierarchies.
The structure of an ANN with a single hidden layer is shown in Figure 4.
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Here, wij is the connection weight from the ith neuron in the input layer to the jth
neuron in the hidden layer. vjl is the connection weight from the jth neuron in the hidden
layer to the lth neuron in the output layer. θj is the bias of the jth neuron in the hidden
layer. γl is the bias of the lth neuron in the output layer. f is the activation function of the
hidden layer, and g is the activation function of the output layer.

An ANN establishes a mapping from N-dimensional to Q-dimensional data through the
above process, and the functional relationships can be expressed by the following formulas:

bj = f
(
∑n

i=1 wijai + θj

)
(12)

cl = g
(
∑p

j=1 vjlbj + γl

)
(13)

Figure 4. Multiple-layer ANN with a single hidden layer.

The activation function of the hidden layer f (x) must be a bonded nonlinear function
that is continuous, smooth, and monotonically increasing. So, the Relu activation function
is used for its advantages of simple computation, simple derivatives, fast convergence,
one-sided inhibition, and broader boundaries.The activation function of the output layer
g(x) does not necessarily need to be nonlinear, so a linear function is used. The relevant
activation functions are shown as follows:

f (x) = max(0, x) (14)

g(x) = x (15)

3.2.2. Error Back-Propagation Algorithm

The error back-propagation algorithm [42] is a method that uses the difference between
the actual output and the desired output to correct the weight parameters layer by layer
from back to front, which applies to supervised learning. When learning samples are
provided to the network, if there is a gap between the desired output and the output
based on current weights and biases, the error function of the current output and the
desired output is calculated, and then the error signal is back-propagated along the original
connection path to update the neuron weight parameters of each layer.

Assuming that M learning samples are provided to the network, the error function of
the network for each learning sample is constructed as follows.
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The goal of learning is to minimize a given error function, and network training is
generally stopped when the error function value terminates a downward trend and starts
to rise:

Ek =
1
2∑P

l=1

(
yk

l − ck
l

)2
(16)

where k is the learning sample number (k = 1 ∼ M), l is the dimension of the output
layer (l = 1 ∼ Q), Ek is the error function of the kth learning sample, yk

l is the expected
output in the lth dimension of the kth learning sample, and ck

l is the actual output of the lth
dimension of the kth learning sample.

The network calculates the global error after obtaining all M samples and updates the
parameters uniformly based on the global error E. The global error E of the network is the
sum of all the learning sample errors:

E = ∑M
k=1 Ek (17)

This work uses the Levenberg–Marquardt (LM) algorithm to update the parameters.
The LM algorithm combines the advantages of the gradient descent method and the Newton
method, as its error function decreases faster at the beginning, and provides the ideal search
direction when the error function is near the optimal value [43]. The parameter updating
formula of the LM algorithm is as follows:

ω(i + 1) = ω(i)− (H + λI)−1 ∂E
∂ω

(18)

Here, ω represents the neural network parameters, including connection weights
between different layers and the offsets of each layer; i is the number of learning times; H
is the Hessian Matrix of the error function; and I is the unit matrix.

The parameter λ is updated by taking larger values in the early stages of learning
so that the parameters are updated along the inverse direction of the gradient, while the
direction of iteration of the step is shifted to the direction of the Newton method as λ
gradually decreases to zero in the later stages [43]. Compared with other iterative methods,
the LM algorithm has a relatively good convergence rate for training networks of medium
size [44].

3.3. Selection of Model Variables

The two essential criteria for evaluating the utility of a sailing route are sailing time
and fuel consumption. Except for voyage distance, the variables most closely related to
these two criteria are the speed over ground (SOG) and fuel consumption rate. SOG is
affected by the navigation environment in a natural sea state, and differs from the calm
water speed due to added resistance from waves, winds, and currents, as well as the
reduction in propulsive efficiency caused by waves and increased resistance, which is often
known as ship speed loss. Ship speed loss is a critical parameter in route planning for
voyage time and fuel consumption evaluation, and it is calculated based on the calm water
speed and the actual sea state in the general route optimization process; then, the ship’s
actual SOG is obtained. But in voyage records, it can be noted that the expected calm water
speed is not recorded, so the traditional way to calculate speed loss using calm water speed
and the SOG in natural sea state is no longer practical. Fortunately, there is the real-time
RPM data in the voyage record, which is a measurement closely related to the expected
calm water speed.

So, the actual SOG is taken as one optimization variable in this work, and once the
SOG is assigned, the sailing time can easily be calculated, and the recommended value of
RPM can be predicted through the ANN model, as shown in Figure 4, which can make the
ship sail at the assigned SOG. In this way, the output variables of the ANN model are RPM
and fuel consumption rate, and they are used to calculate the total sailing time and fuel
consumption in the ship route optimization procedure.
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To meet the route optimization task, the calculation and prediction of ship-related
parameters, which generally need to be updated frequently to serve the route planning
algorithm, should not occupy too much running time. Thus, the input variables of the
ANN should have the following characteristics:

1. They can represent the current navigation state or navigation environment of the ship.
2. They can be obtained or predicted in some way in the route planning process.
3. How the data are obtained or predicted cannot be too complex or take up too much

running time.

Thus, eight input variables which meet the above characteristics have been selected to
establish an ANN-based model for fuel consumption rate and RPM prediction, including
ship data such as the SOG, ship course, fore draft, aft draft, and sea environment data
such as relative wind direction, relative wave direction, wind speed, and wave height.
The relevant variable mapping relationship is shown in Figure 5.

Course

Fore draft

Aft draft

Speed over ground 

Wind speed

Relative wind direction 

Wave height

Relative wave direction

ANN

Fuel 

consumption 

rate

Rpm

Figure 5. Variable mapping.

4. Co-Optimization of Ship Course and Speed

The route between the starting node and end node consists of several rhumb lines,
and each rhumb line connects two adjacent nodes, as shown in Figure 6. Each node includes
three variables: position, time, and speed. Then, a sequence of n nodes can represent the
whole voyage, including the speed along each leg.

Figure 6. Related variables of the ship.

The course is represented by the orientation of the rhumb line connecting two adjacent
nodes; by adjusting the position of the nodes, the course is changed. The time when the
ship arrives at the next node is determined by the course and speed, and the meteorological
and sea conditions that the ship encounters vary as time goes by. So, the route and its speed
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are the keys to ship route decision, and by adjusting the position of nodes and the speed
between them, the whole route can be optimized.

Figure 7 shows the process of route generation. The centers of grids marked with 83,
67, 45 indicate nodes where the ship is located; the surrounding arrows refer to alternative
courses from one node to the next; and t1, t2, t3 are the times when the ship reaches these
nodes in sequence. When the ship chooses different courses and sails with different speeds,
the nodes and their arrival times are different too, so the ship will encounter different
wind and wave states, and the sailing time and fuel consumption may differ accordingly.
The wind and wave state the ship encounters can be obtained using the 3D sea environment
model in Section 2.1, while the fuel consumption can be calculated using the predictive
model in Section 3.

Figure 7. The process of route generation.

Thus, node selection and speed configuration are the two key methods in ship voyage
optimization, and optimizing ship course as well as speed is an efficient way to plan a
voyage, so a method for the co-optimization of a ship’s course and speed is proposed in
this work.

4.1. Speed Configuration

Usually, the speed during the voyage will be maintained in a range according to the
ship’s performance. To ensure safety and economic efficiency, the ship will sail at a suitable
speed in a certain sea area, and the set of permissible speeds is presented as follows:

v = [vmin, vmin + vcd, vmin + 2vcd, . . . , vmax] (19)

Here, v is a row matrix vector including n permissible speeds, its interval is vcd, vmin
is the minimum value in v, and vmax is the maximum value in v.

Accordingly, since there are multiple permissible speeds in each node, a leg from one
node to an adjacent node is expanded from 1 to n. Alternatively, one node i is extended to
n “ext-nodes” iw, described as follows:

iw = {P(i, vw)|vw ∈ v} (20)

Here, iw means the ship sails from node i to the next adjacent node with fixed speed
vw, and P contains all navigation states at node i. In addition, one sailing node is expanded
into a row matrix. Thus, this method can be used to achieve parallel computation and
speed up the algorithm operation.
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Therefore, a speed configuration can be a part of an optimized route, as shown in
Figure 8. The expression form of the optimized route from the starting node S to the end
node T evolves from the original S− A− B− C− D− E− T to S13 − A12 − B13 − C14 −
D12 − E15 − T. That is, the ship sails from the origin node S to node A at 13 kt, from node
A to node B at 12 kt, and continues sailing until from node E to the end node T at 15 kt.
With this method, the optimized route not only contains the optimized route (Figure 9)
but also includes the optimal speed in each segment (Figure 10) to realize the synergistic
optimization of the ship’s course and speed.

Figure 8. Diagram of the nodes after adding sailing speed.

Figure 9. Route formed by the projection.
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Figure 10. Sailing speed formed by the projection.

5. Weather Route Optimization for Ships with Sailing Time Constraints

5.1. A* Algorithm

The A* algorithm is based on Dijkstra’s algorithm, with an added heuristic function
for predicting the future cost of movement to influence the search direction and narrow the
search space, so that it can find the shortest path in a certain sense in a short time.

The main process of the A* algorithm is to build an “Openlist” node set to store nodes
to be checked and a “Closedlist” node set to store checked nodes, and iterate continuously
to select the node with the lowest movement cost to obtain the shortest path. The basic
form of the function to evaluate the movement cost is shown in the following formula:

F(i) = G(i) + H(i) (21)

Here, i is the current node. F is the estimated total movement cost from the starting
node to the end node. G is the minimum movement cost recorded from the starting node
to the current node, and the heuristic function H is the estimated movement cost from the
current node to the end node.

The A* algorithm calculates and iterates the node selection according to this evaluation
function. Its basic process is as follows: the total movement cost of surrounding nodes is
calculated from the starting node. The node with the minimum movement cost is selected
in each iteration until the end node is found. The process is shown in Figure 11.

The A* algorithm has characteristics of fast calculation speed to an optimal solution,
but there are several problems that need to be solved for route optimization tasks, as follows:

1. The two-dimensional A* algorithm takes distance as the evaluation criterion. At the
same time, ship fuel consumption and navigation time are the main factors to evaluate
the navigation cost of a route, and taking distance as the evaluation criterion cannot
accurately quantify the navigation cost.

2. The two-dimensional A* algorithm does not consider speed. In contrast, the ship
does not sail at a fixed speed over the whole voyage; dynamically adjusting speed
according to the sea state is desirable.

3. The two-dimensional A* algorithm does not consider dynamic unnavigable areas
with heavy winds and waves, which will affect the safety and efficiency of the voyage.

Thus, the A* algorithm needs to be modified to meet the actual needs of ship navigation.
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Figure 11. The search process of the A* algorithm.

5.2. Evaluation Functions Concerning Time and Fuel Consumption

The Estimated Time of Arrival (ETA) is the time when a ship or vessel is expected
to arrive at a specific destination. An accurate ETA can make entire supply chains more
efficient and reliable, and it also helps to determine the expected duration of a vessel’s route.

Generally, as the two most important factors in evaluating a route, voyage time and
fuel consumption need to be fully considered in the evaluation function. In fact, the voyage
schedule is the crucial constraint for merchant vessels, and in the scope of reducing gas
emissions, the effect of an increased sailing speed could be enhanced by the waiting time
for a free berth, therefore accounting for even more emissions. The ship must arrive
at the specific destination at a time close to the ETA, and thus the expected duration is
taken as a constraint in the route design process, and minimum fuel consumption is the
optimization objective.

In order to meet the above description, two evaluation functions for sailing time and
fuel consumption are proposed:

FTiw = GTiw + HTiw (22)

FFiw = GFiw + HFiw (23)

Here, GTiw and GFiw are the actual time and fuel consumption of the route from the
starting node to the current ext-node iw, described as follows:

GTiw =
n

∑
i=1

di
vw

(24)

GFiw =
n

∑
i=1

di
vw
× qiw (25)
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Let hw and iw describe two adjacent ext-nodes and hw be the previous node; then, di is
the distance between hw and iw, and di

vw
refers to the sailing time from hw to iw at the speed

vw. qiw refers to the fuel consumption rate when the ship sails from hw to iw. The value
of qiw can be calculated using the fuel consumption rate model in Section 4.1.

In addition, it is well-known that since the heuristic function H affects the search
efficiency of the A* algorithm, a suitable H function can guarantee a faster search speed
and the quality of the route [45]. To ensure the solution quality with a short running
time, heuristic functions with suitable search efficiency, named HT and HF, are proposed
as follows:

HTiw = dEi/vw (26)

HFiw =
dEi
veco

· fq(veco) (27)

where dEi is the distance from node i to the end node; HTiw is the estimated time when
the ship reaches the end node from the current ext-node iw at the speed vw; HFiw is the
estimated fuel consumption from the current ext-node iw to the end node at speed veco; veco
is the economic speed of the ship, usually artificially set; and fq is a function of the fuel
consumption rate and speed.

The relationship of fuel consumption rate with speed is generally a cubic relationship,
as shown in the Formula (28):

fq(v) = av3 + bv2 + cv + d (28)

where a, b, c, and d are fitting coefficients that vary with the ship’s characteristics.

5.3. Customized A* Algorithm with Time Constraint

After reconstructing the evaluation function, the process of the A* algorithm is also
customized accordingly. The process is as follows, which is shown in Figure 12:

1. Initialize Openlist (the set of ext-nodes to be checked) and Closedlist (the set of ext-
nodes checked).

2. All ext-nodes belonging to the start node S are added to the Openlist, and their GT
and GF are set to 0, while the HT and HF are calculated and recorded.

3. If it is judged that the Openlist is not empty, the operation goes to Step 4; otherwise,
there is no solution to this problem, which means no available path exists between S
and T, and the procedure is terminated.

4. The total navigation time FT of each ext-node in the Openlist is calculated. If the
total navigation time FT of one ext-node is greater than the pre-set ETA, the node
is retained in the Openlist but will not be executed in the rest of this step. Then,
the ext-node iw with the minimum fuel consumption of the whole voyage is found in
these nodes which meet the time limit. And the ext-node iw will be removed from the
Openlist and added into the Closedlist, setting the SOG record to vw.

5. Traverse all the adjacent nodes of the navigation node i. There are two situations for
the ext-nodes of these adjacent nodes:

• If there is no ext-node of the adjacent node j in Openlist and Closedlist, all ext-
nodes of node j are added to Openlist, the G and H value of these ext-nodes are
calculated and recorded, and the parent node of these ext-nodes is set as node iw.

• If there is an ext-node jw of the adjacent node j in the Openlist, and the GT
and GF values of jw calculated in this step are both smaller than those stored
in the Openlist, the G and H values of jw in the Openlist will be updated corre-
spondingly in this step. Also, the ext-node jw’s parent node is set as node iw.
Conversely, all information of the ext-node jw stored in Openlist will remain
unchanged.
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6. Check whether there is any ext-node in Openlist that is subordinate to the end node
T. If not, repeat Step 3; if it already exists, a path composed of ext-nodes is found
by querying the parent node of the current ext-node step by step until the starting
node. The sailing route and speed configuration are obtained after mapping like in
Section 4.1.

7. The weather forecast data and navigation data at each ext-node on the route are
extracted based on the waypoint sequence and speed configuration. Then, the RPM
prediction model is called, and the above data are modified as the input of the
prediction model to calculate the recommended RPM of each ext-node on the route.
Then, the RPM recommendation scheme is output for the whole voyage.
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Figure 12. Flow chart of the customized A* algorithm.

5.4. Overall Optimization Flow

The weather route optimization method proposed in this paper consists of four parts:
ship historical data processing, the ship parameter prediction model, ship navigation data
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processing, and ship route optimization. Briefly, the work flow is as follows, which is
shown in the Figure 13:

1. The historical data processing part uses historical ship voyage records and correspond-
ing meteorological historical data, etc. These data are standardized by pre-processing
data methods, and the pre-processed data are used as input for the ship parameter
prediction models.

2. The ship parameter prediction model part is used to build two artificial neural network
models with the same frame. The input contains eight variables: SOG, fore draft,
aft draft, course, wind speed, wind direction, wave height, and wave direction; the
output is fuel consumption rate or RPM. The trained models are used for calculating
fuel consumption rate and RPM in the voyage afterward.

3. The ship navigation data processing part obtains and divides the ship’s characteristics
and the weather forecast data into eight input variables which meet the require-
ments of the ship parameter prediction model and are used in the route planning
process afterward.

4. The ship route optimization part is based on the customized A* algorithm, using the
ship fuel consumption rate prediction model and the current sailing data to calculate
the fuel consumption for all nodes to be checked in order to find the node with the
minimum fuel consumption that satisfies the ETA constraint and thus obtain the
optimal ship route. Finally, the RPM recommendation scheme for the whole range is
obtained based on the sailing data and the generated route.

Notably, the ship route can be frequently updated during the voyage. The frequency
of calculation during the sailing voyage would depend on the fleet’s will and the updating
frequency of the forecast weather data. If the voyage is too long to acquire the forecast data
at the later part of the voyage, this method would find the optimum route based on the
current weather information. In addition, the updated route may have great difference
with the prior one. But both routes are planned based on the assurance of sailing safety and
economy, which can be identified as the optimal sailing strategy at their respective states.
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Figure 13. Diagram of the overall optimization process.

6. Simulation Experiment and Results Analysis

6.1. Performance Analysis of Ship Parameter Prediction Models

In order to evaluate the prediction effect of the artificial neural network model de-
signed in this paper, the data set is divided into a training set and a test set. The training
set is used to train the model, and the test set is used to test the generalization ability of
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the model. Each ten-minute segment (extracted in Section 3.1) is taken as a data point
by calculating its average value. A total of 1976 data points are obtained from the data
set, of which 1580 data points are randomly picked and used as the training set, and the
remaining 396 data points are used as the test set. The parameters of fuel consumption rate
model and RPM model are shown in Table 2. The prediction effect of the two models’ test
sets are shown in Figures 14 and 15, and the blue dots are the actual value of the test set.

Table 2. ANN parameters.

Parameters Value

Number of neurons in hidden layer of fuel
consumption rate model 45

Number of neurons in hidden layer of
RPM model 140

Activation function of the hidden layer Relu
Optimizer Levenberg–Marquardt
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Figure 14. Effect of the fuel consumption rate model.
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Figure 15. Effect of the RPM model.
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A perfect predictive model should have a predicted value equal to the true value,
which means the points would lie on the black diagonal line. The vertical distance from
the line to any point is the prediction error for that point. A good model has minor errors,
as Figures 14 and 15 show; all the blue dots surround the black lines, and the average
relative error of the fuel consumption rate model and RPM model are 0.0594 and 0.0101,
respectively. Thus, the above models can meet the navigation requirements in practice and
can be used in the ship route optimization process to calculate fuel consumption and RPM.

6.2. Simulation Experiment of Ship Weather Route Optimization System

The proposed ship route optimization method under the sailing time constraint,
described in detail in Section 5, has been validated and verified in a series of computer
simulations based on actual voyage records. Two scenarios have been selected with different
passages (voyage departure and destination points) and times (different weather conditions,
having a direct impact on the optimization process). The simulations are programmed using
MATLAB, and the accuracy of the relevant meteorological data is 0.5◦ × 0.5◦, as mentioned
in Section 2.

6.2.1. Scenario 1: Voyage from Osaka to Los Angeles on 3 February 2021

In this scenario, a voyage from Osaka with a departure on 3 February 2021, at 18:00
UTC with a destination of Los Angeles has been simulated; its expected duration is 370 h,
and its economic speed is set to 13.5 kt. The primary purpose of this simulation is to verify
the ability to avoid wind and wave areas.

The experimental parameters are listed in Table 3, in which the threshold values are
set according to the actual demand of the ship’s voyage.

Table 3. Experimental parameters.

Parameters Value

Start 35.5◦ N, 141◦ E
End 34◦ N, 120◦ W
SOG range (knot) [8, 19]
Maximum allowable wind speed (m/s) 20
Maximum allowable wave height (m) 6
Minimum draught (m) 14

The ship’s course and speed were optimized using the methods proposed in this work,
and an optimal route was generated. As shown in Figure 16, the optimal route (red curve)
is compared with a great circle (GC, green curve) with SOG of 13.5 kt for the whole voyage.
For Figure 16, the wave heights are represented by the isosurface and the wind speeds are
represented by contour lines. The four charts describe the wind and wave conditions and
the routes at different times (80 h, 165 h, 230 h, and 367 h, referring to the time after the
ship departs).

From Table 4, it can be concluded that when the ship sails along the great circle route,
there are 26.26 h of sailing time in heavy wind and wave areas, accounting for about 7.27%
of the total sailing time, which is very unfavorable to the ship’s navigational safety, while
the optimized route generated by the proposed method in this work avoids the dangerous
sea area with heavy wind and waves.

Table 4. Comparison of routes.

Time (h) Danger Time (h)

Optimized route 367.15 0
Great circle route 361.38 26.26
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Figure 16. Comparison of ship routes at different moments.

The distribution of and variation in the wind and waves during the voyage are
demonstrated in Figure 16, where “80 h” refers to the situation that the optimized route
chooses to sail to higher latitudes in advance based on the analysis of meteorological
information; at about 165 h and 230 h, there are heavy winds and waves on the great circle
route, and the optimized route avoids this area in advance; “367 h” is the comparison of
the two routes after reaching the destination point.

The speed distribution is shown in Figure 17, and the wave heights on the two routes
are shown in Figure 18. Define the route between each two adjacent nodes as a “segment”,
and the segment numbers from the starting node to the end node increase in sequence.

It can be seen from Figure 18 that the optimized route encounters a significantly lower
incidence of high significant wave heights compared with the great circle route, and the
maximum wave height is also smaller. Therefore, the algorithm can handle the upcoming
navigational risks in advance. The speed configuration is also more reasonable than the
case of uniform speed for the whole voyage.
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Figure 17. Ship speed configuration for the whole range.
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6.2.2. Scenario 2: Voyage from Tainan to Los Angeles on 17 January 2021

In this scenario, a voyage from Tainan (23◦ N, 120◦ E) with a departure on 17 January
2021 at 07:00 UTC with a destination of Los Angeles (34◦ N, 120◦ W) was simulated, and its
expected duration is 410 h. The primary purpose is to compare the optimized route with
the historical route to evaluate the effectiveness of the algorithm. Some experimental
parameters of the ship are the same as in Scenario 1.

As shown in Figure 19, the optimized route (red curve) is compared with the historical
route (green curve). The economic speed of the optimal route is set to 13.5 kt. It is known
that the ship’s safety was not compromised on the historical route, so the comparison
focuses on the sailing time and fuel consumption (FOC).
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Figure 19. Comparison of routes under wind and wave fields.

As seen from Table 5, compared with the historical route, the optimized route saves
about 130.93 tons of fuel consumption (7.25%) within the specified sailing time. And the
increase in voyage time is by 4.35 h (1.08%), which is tolerable for the route planning. Thus,
it achieves the purpose of saving energy by designing the optimal route and reasonably
configuring speeds. In addition, the speed configuration (Figure 20) and required RPM
(Figure 21) for the whole voyage are also generated. Moreover, the output RPMs of the
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whole voyage will also guide the ship to reach the planned SOGs, which provides more
assistance for real-time ship navigation.

Table 5. Comparison of routes.

Time (h) FOC (t)

Optimized route 408.69 1674.27
Historical route 404.34 1805.20
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Figure 20. Ship speed configuration for the whole range.
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6.2.3. Computational Complexity of This Method

This paper adds one dimension about the SOG to the route planning method, which
may cause a exponential increase in the computational cost. But with the rational design of
the customized A* algorithm’s evaluation function and operation process, the computa-
tional cost is significantly reduced, as Table 6 shows. When the optimal route is output,
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the computation times for the two scenarios are 991.917 s and 731.639 s, which is tolerable
in the practical application. In addition, the storage sizes of the data (includes Openlist and
Closedlist) are 1.10 MB and 1.04 MB. Given all the above, the computational complexity of
this method is acceptable.

Table 6. Computational cost of two scenarios.

Computational
Time (s)

Data Size (MB)

Scenario 1 991.917 1.10
Scenario 2 731.639 1.04

7. Conclusions

As the main influencing factor of navigation efficiency in the process of ship route
optimization, speed control gives ample space for optimization and should be fully consid-
ered in ship route design. Based on this, this paper proposes a ship route planning method
under a sailing time constraint that designs the ship course and speed simultaneously to
realize an optimal navigation strategy, including route and speed configurations for the
whole voyage. This navigation strategy can ensure that a ship arrives at its destination
close to its ETA. Such an optimized navigation program can not only avoid the navigational
risks brought by a heavy sea state but can also generate an optimal route with minimized
fuel consumption while arriving at the required ETA.

In this paper, a rasterized dynamic sea area model was constructed by processing
meteorological information, and speed configuration was added to the route optimization;
then, single nodes were extended to collections of “ext-nodes” for optimization. Based on
the actual voyages’ records, an artificial network model was modeled to predict the fuel
consumption rate and RPM to assist the route optimization. Then, the evaluation function
and operation process of an A* algorithm were designed to achieve the simultaneous
optimization of vessel course and speed based on the premise of arriving at ETA. The results
of two optimization simulations of the winter route in the North Pacific Ocean showed
that the algorithm proposed in this paper could not only guarantee navigational safety
but could also reduce fuel consumption by 130.93 tons or about 7.25% compared with
the historical route. Therefore, the methods in this paper can help ships reduce their fuel
consumption while avoiding windy and stormy areas and still arrive at their ETA, which
has particular practical significance in accomplishing complex transoceanic tasks.

In the future, we will consider more specific complexities of the sailing environment
(such as currents, ice-covered waters, etc.) by obtaining and analyzing data from more
voyages or different types of ships. In addition, while an ANN with a single hidden layer
has great performance, there is space to optimize the prediction of the fuel consumption
rate, which can be further investigated. We have up to now only used the three-dimensional
A* algorithm to plan a low-fuel-consumption route under a time constraint, while the needs
of ship navigation may be very diverse, and future attempts will be made to use such
three-dimensional algorithms to solve multi-objective ship navigation tasks and further
improve the computational speed.
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Abstract: Significant changes in the load of cargo ships make it difficult to simulate and control
their motion. In this work, a parameter prediction method for a ship maneuvering motion model is
developed based on parameter identification and support vector regression (SVR). First, the effects
of least-squares (LS) and multi-innovation least-squares (MILS) parameter identification methods
for the non-linear Nomoto model are investigated. The MILS method is then used to identify the
parameters of the non-linear Nomoto model under various load conditions, and model training
datasets are established. On this basis, SVR is used to predict the parameters of the non-linear
Nomoto model. The results reveal that the MILS method converges faster than the LS method. The
SVR method achieves lower accuracy than the MILS method, but exhibits reasonable prediction
accuracy for zigzag motions, and the maneuvering motion model can be predicted as navigation
conditions change.

Keywords: non-linear Nomoto model; parameter identification; multi-innovation least-squares;
support vector regression

1. Introduction

In recent years, the impact of economies of scale has led to an increase in ship size,
traffic intensity, and related risks [1]. Accurate models for the maneuvering of cargo
ships are critical for maneuvering simulations and control applications [2]. Currently,
there are three major types of ship maneuvering motion models, the ship hydrodynam-
ics model [3,4], the Maneuvering Modeling Group (MMG) model [5], and the Nomoto
model [6]. Although the ship hydrodynamics model and MMG model are of high accuracy,
many hydrodynamic parameters are difficult to obtain. The Nomoto model is simple and
easy to use, with hydrodynamic parameters that can typically be obtained from captive
model tests, numerical calculations based on computational fluid dynamics (CFD), and the
system identification method. Captive model tests require expensive towing tanks and
numerical calculations consume significant computational resources. The system iden-
tification method is practical and effective, and requires little experimental time or cost.
This method only needs state information and an inertia term, and does not involve force
measurements. As a result, it takes several minutes for a free running test, compared with
several weeks for CFD simulations, depending on the propeller modeling and the grid
resolution [7]. Thus, it is easier to apply the ship maneuvering model through the system
identification method. System identification theory has broad application prospects in
ship motion modeling and control, combined with scaled free-running ship models or
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full-scale ship tests [8]. This theory has been applied in frequency domain identification,
Kalman filters (KF), Gaussian process modeling, the maximum likelihood method, neural
networks, support vector machines (SVM), least-squares (LS) methods, and hybrid methods.
Among these, the LS method is one of the most practical approaches [9]. As an improved
recursive form of the LS method, the recursive least-squares (RLS) method has the high
identification accuracy and ease-of-use [10], and is widely applied in the identification of
ship model parameters.

However, the present work mainly uses a single standard maneuver to generate the
training data. For example, Luo et al. [11] used 25◦/5◦ zigzag maneuver data as the training
set, and predicted the zigzag maneuver motions of 25◦/5◦ and 35◦/5◦ by SVM and particle
swarm optimization (PSO) algorithms. Zhu et al. [12] identified the model parameters by
20◦/20◦ zigzag maneuver data using the RLS method based on SVM. Xue et al. [13] used
the empirical Bayesian method to clean simulated polluted responses from a 20°/20° zigzag
test and identify hydrodynamic parameters. However, the zigzag test datasets for different
rudder angles corresponds to different dynamic characteristics. For this reason, scholars
such as He et al. [14] used multiple standard maneuver datasets as training data, which
ensures a better ability to predict maneuvering motions under a greater range of rudder
angles. Wang et al. [15] used the 20◦/20◦, 15◦/15◦, and 10◦/10◦ zigzag test data to cover
as many dynamic features as possible. They investigated the fidelity of the model under
different levels of perturbation and verified that SVM can achieve better generalization
compared to traditional neural networks, but this approach has been validated on constant
parameters and cannot be applied to time-varying coefficients. In additional, datasets with
different rudder angles are generally used for training without exploring the effect of the
rudder angle on the maneuverability parameters, and factors such as ship engine speed,
load, and trim are not considered.

For most cargo ships, the load, trim, draft, and engine speed change greatly during
daily voyages, making the dynamics characteristics highly variable and leading to uncer-
tainty in maneuverability parameters [16]. More research is required on their effect on
maneuverability, which is important for the ease of ship control and safe navigation [17].
If the ship maneuvering motion model cannot be accurately obtained in real-time, the ship’s
automatic motion control and autonomous collision avoidance control will be compromised.
Ship collisions may lead to devastating consequences, such as a ship capsizing/sinking,
resulting in oil spills and fatalities [18]. To solve this problem, Zhang et al. [19] proposed a
multi-innovation least-squares (MILS) method for identifying the ship maneuvering model
parameters. The MILS method can achieve higher identification accuracy and faster conver-
gence than the RLS method. Wang et al. [20] used non-linear Gaussian filtering algorithm
to solve the problem of on-line parameter identification in ship autonomous navigation
control. However, during the actual navigation of cargo ships, the ship’s trajectory is mostly
straight without larger rudder angles (larger than 10◦), resulting in insufficient parameter
excitation and significant random noise in real-time training data. Thus, the real-time
parameter identification method is difficult to generate reasonable results during the actual
navigation process that the system identification method is almost useless for cargo ships in
a daily voyage. To guarantee a strong excitation of the training data, large yaw-amplitude
motions, such as zigzag tests, should be conducted. Unfortunately, it is almost impossible
to do so for full-scale ships as the cost is too high. It is a reasonable approach to predict a
ship’s motion model in real-time based on groups of identified parameters under several
typical operating conditions.

In this study, a scaled free-running ship model is used to perform zigzag tests under
different loads, trims, speeds, and rudder angles to obtain the maneuvering motion model
of the cargo ship. The non-linear Nomoto model parameters of the scaled free-running ship
model under each navigation condition are obtained using the MILS method, and the effects
of rudder angle, engine speed, bow trim, stern trim, and load are investigated. SVR is then
used to predict the parameters of the non-linear Nomoto model. The prediction accuracy of
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the Nomoto model parameters is evaluated by comparing the ship motion simulation data
with the scaled free-running ship test data. This study makes the following contributions:

(1) We propose a parameter prediction method for ship maneuvering motion models
based on SVR. A training dataset of non-linear Nomoto model parameters under
various navigation conditions is established. The proposed algorithm has good
prediction accuracy and can quickly obtain the maneuvering model parameters.

(2) We use the MILS method to identify the parameters of the non-linear Nomoto model
under various navigation conditions. Additionally, the effects of rudder angle, engine
speed, trim, and load on the maneuvering parameters are analyzed, providing an
optimal direction for ship maneuvering and control.

(3) Based on the parameter identification of the Nomoto model, we include the engine
speed, bow and stern draft, and test rudder angle into the training set. The predicted
maneuvering motion model can change with navigation conditions, matching the
dynamics of the cargo ship in the daily voyage.

2. Parameter Identification of Maneuvering Motion Model

2.1. Ship Maneuvering Motion Model

Considering the balance between model accuracy and calculation efficiency, ship
maneuvering motion models are established based on the first-order non-linear Nomoto
models. As shown in Figure 1, we take due east as the X-axis and due north as the Y-axis
to establish the X–O–Y Earth fixed coordinate system. We take the bow direction as the
x0-axis and the starboard direction as the y0-axis to establish the ship’s fixed coordinate
system x0–o–y0.

Figure 1. Coordinate system of ship maneuvering motion.

As depicted in Figure 1, Ψ is the ship’s heading angle and r is the yaw angular velocity.
Thus, r = ψ̇. The first-order non-linear Nomoto model [21] are, respectively, expressed as

Tṙ + r + αr3 = K(δ + δr), (1)

where K is the turning index; T are time coefficients; δr is the effective neutral rudder angle;
α is the coefficient of the non-linear term; and δ is the actual rudder angle. The ship speed
in the x0- and y0- directions are u and v, respectively. The ship speed can be expressed as a
vector v = [u, v, r] and converted to the Earth fixed coordinate system as follows

η̇ = R(ψ)v, (2)
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R(ψ) =

⎡⎣ sin(ψ) cos(ψ) 0
− cos(ψ) sin(ψ) 0

0 0 1

⎤⎦, (3)

where η is the position vector and R(ψ) is a rotation matrix that maps vectors from a body
fixed frame to an inertial frame.

2.2. Model Parameter Identification
2.2.1. Model Discretization

Assuming that the data samples collected from the experiments are discrete with a
time step of h, let y(t) = ψ(t)− ψ(t− 1) and ψ̇(t) = ψ(t+1)−ψ(t)

h . Then, ψ̈(t) = y(t+2)−y(t+1)
h2 .

With the forward difference quotient used to replace the derivative, Equation (1) can be
rewritten as:

Tψ̈(t) = K(δ(t) + δr)− ψ̇(t)− αψ̇3(t), (4)

y(t + 2)− y(t + 1) =
K
T

h2δ(t) +
Kδr

T
h2 − 1

T
hy(t + 1)− α

T
y3(t + 1)

h
, (5)

and

y(t)− y(t− 1) =
K
T

h2δ(t− 2) +
Kδr

T
h2 − 1

T
hy(t− 1)− α

T
y3(t− 1)

h
. (6)

Let all parameters be identified as A =
[

K
T

Kδr
T − 1

T − α
T

]T
and all known vari-

ables set as x(t) =
[

h2δ(t− 2) h2 hy(t− 1) y3(t−1)
h

]T
. Then, Equation (6) can be

written as:
Y(t) = y(t)− y(t− 1) = xT(t) ·A. (7)

The left-hand side of Equation (7) is the differences in heading angles. x(t) is the
information vector and A is the vector to be identified.

The zigzag maneuver, also known as the Kempf overshoot or “Z” maneuver, is
one of the standard test methods for measuring the maneuverability of ships [22]. It
is convenient for observation and comparison. Through zigzag tests of the scaled free-
running ship model, the heading angle sequences ψ(t) = [ψ(1), ψ(2), . . . , ψ(t)] and rudder
angle sequences δ(t) = [δ(1), δ(2), . . . , δ(t)] are obtained. These test data are utilized for
identification based on the LS and MILS methods, respectively. The maneuvering motion
model parameters (K, T, α, and δr) can then be determined.

2.2.2. Identification Based on LS

It is assumed that the input and output data of the model are sampled from t = 1 to t = n,
and then the output data {Y(1), Y(2), . . . , Y(n)} and information data {x(1), x(2), . . . , x(n)}
are obtained. The expanded matrix equations are as follows:⎧⎨⎩

Y = XTA

Y = [ Y(n) Y(n− 1) . . . Y(1) ]T

X = [ x(n) x(n− 1) . . . x(1) ]
. (8)

The LS loss function is expressed as:

VLS =
1
n

n

∑
t=1

(Y(t)− xT(t)A)2. (9)

Minimizing the LS loss function gives Â, which is the estimated value of A:

Â = [XXT ]−1XY. (10)
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2.2.3. Identification Based on MILS

The recursive equations of the RLS method [23] are⎧⎨⎩
A(t) = A(t− 1) + P(t)x(t)e(t)
e(t) = Y(t)− xT(t)A(t− 1)
P−1(t) = P−1(t− 1) + x(t)xT(t)

, (11)

where P(t) is the covariance matrix and e(t) is the innovation scalar for each iteration.
The feature of RLS is that the estimation of parameters in each iteration mainly depends
on the current updated information, and past information is generally not used. In real
complex navigation conditions, environmental interference often has a negative impact on
traditional identification methods. To solve this problem, a multi-innovation identification
theory based on an information window with a certain length is proposed [24]. This
solves small-sample estimation problems based on the innovation vector. To improve the
recognition accuracy by reusing the past state and measurement information, the multi-
innovation length p is introduced and the innovation scalar e(t) is extended to the multi-
innovation vector E(p, t):

E(p, t) =

⎡⎢⎢⎢⎣
e(t)

e(t− 1)
...

e(t− p + 1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Y(t)− xT(t)A(t− 1)

Y(t− 1)− xT(t)A(t− 1)
...

Y(t− p + 1)− xT(t− p + 1)A(t− 1)

⎤⎥⎥⎥⎦ . (12)

Similarly, the output vector and information vector of the MILS method are:{
Y(p, t) =

[
Y(t) Y(t− 1) · · · Y(t− p + 1)

] T

X(p, t) =
[

x(t) x(t− 1) · · · x(t− p + 1)
] . (13)

Thus, the recursive equations of the MILS method can be written as:⎧⎨⎩
A(t) = A(t− 1) + P(t)X(p, t)E(p, t)
E(p, t) = Y(p, t)− XT(p, t)A(t− 1)
P−1(t) = P−1(t− 1) + X(p, t)XT(p, t)

. (14)

3. Parameter Prediction of Maneuvering Motion Model

3.1. Analysis of Navigation Parameters

For cargo ships, the characteristics of the maneuvering motion models will be affected
by navigation parameters, such as the ship speed, load, trim, and rudder angle. Considering
the detectability, these parameters are simplified as the following.

(1) Engine speed RT

This study considers a engine that is used to drive the propeller directly, and the
engine speed can be accurately measured by the Hall effect element. Thus, the engine
speed is indirectly used to reflect the ship speed.

(2) Bow draft DF and stern draft DA

The bow and stern draft are used to describe the load and trim of the ship. These
quantities can be read from the bow and stern draft scales.

(3) Test rudder angle δT

We consider 10◦/10◦, 20◦/20◦, and 30◦/30◦ rudder angles in the zigzag tests. The rud-
der angle can be measured by an incremental encoder.

Based on the parameter identification of the Nomoto model, the engine speed, bow
and stern draft, and test rudder angle are included in the training set for training the
SVR model.

155



J. Mar. Sci. Eng. 2023, 11, 903

3.2. Parameter Training Based on SVR

It is necessary to establish a Nomoto model that can automatically adapt to the
navigation conditions. Considering the sample set size, a SVR-based parameter-learning
method for the maneuvering motion model is proposed. Let the training sample set
be (xi, yi), i = 1, 2, . . . , N, xi ∈ Rd, where xi and yi denote the input and output spaces,
respectively, d is the sample dimension, and N is the number of samples. Then, Rd

represents the d-dimensional vector space in which the samples are located. We establish a
non-linear mapping from the input space to the output space, ϕ(x):Rd → H, and use linear
regression to analyze the sample data in the high-dimensional feature space H. The SVR
model f (x) = ω · ϕ(x) + b can then be established, where ω is the weight vector and b is
the offset. Introducing the slack variables ξi and ξ∗i , the regularized risk function can be
transformed into the dual optimization problem,

min J =
1
2
‖ω‖2 + C

l

∑
i=1

(ξi + ξ∗i ), (15)

subject to :

⎧⎨⎩
yi −ω · ϕ(xi)− b ≤ ε + ξi
−yi + ω · ϕ(xi) + b ≤ ε + ξ∗i

ξi · ξ∗i ≥ 0
i = 1, 2, · · · , l. (16)

where J is the regularized risk, C is the penalty factor, ε is the insensitivity factor, and l
is the dimension of the Euclidean space. According to the principle of structural risk
minimization, f (x) should minimize N

2 ‖ω‖2. The weight vector can be expressed as

ω =
N

∑
i=1

(λi − λi
∗)xi, (17)

where λ is the Lagrange multiplier.
Therefore, the SVR machine can be expressed as:

f (x) =
N

∑
i=1

(λi − λi
∗)〈xi · x〉+ b. (18)

Based on the non-linear characteristics of ship maneuvering motion parameters,
the non-linear radial basis function (RBF) kernel is selected as

K(x, xi) = exp

{
−‖x− xi‖2

2σ2

}
, (19)

where σ is the parameter of the kernel function.
Although traditional SVR can effectively deal with high-dimensional, non-linear,

and small-sample datasets, it is vulnerable to outliers and noise. This is because all
samples are treated equally, resulting in a large deviation in the classification interface.
A weighted training set based on the sample error is now presented. Based on the parameter
identification results of the maneuvering motion model under condition i (described in
Section 3.1), the zigzag simulation motion is deduced by using the fourth-order Runge–
Kutta (R-K) algorithm to obtain a series of heading angle data. The RMSE between the
heading angle simulation and test data are calculated under condition i as:

RMSEi(ψ̂, ψ) =

√√√√ 1
T − 1

T

∑
t=0

[
ψ̂i(t)− ψi(t)

]2. (20)
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In order to improve the accuracy of RBF-SVR, the influence of training samples with
larger identification errors should be weaken. The SVR kernel function is improved by
introducing sample weights into the RBF-kernel function.

K(x, xi) = exp

{
− ‖x− xi‖2

(ωi + ωj)σ2

}
, (21)

where ωi is the i-th training sample weight, and ωj is the j-th test sample weight. These
weights are defined as functions of the root mean square error (RMSE) of the training and
test samples, as follows:

ωi =

∥∥∥∥RMSEi − RMSEmax − RMSEmin
RMSEmax

∥∥∥∥. (22)

As the main parameters of SVR, ε, C, and σ have a significant impact on the regression
accuracy (i.e., generalization ability) [25]. The leave-one-out (LOO) method is used to
investigate the generalization ability of SVR. In the LOO method, one sample is selected
as the test set h(xj), and the remaining samples are used as the training set. SVR is used
to obtain the estimated value f̂ (xj) of the test set. The RMSE of SVR is then used as the
precision index:

RMSE( f̂ , h) =
1

N−1

N−1

∑
i=1

√√√√[ 1
N

N

∑
j=1 and j �=i

(
f̂ (xj)− h(xj)

)2
]

. (23)

Taking the minimum RMSE of regression estimation as the optimization goal, the pa-
rameters ε, C, σ are optimized by a genetic algorithm. The fitness value is as follows:

f itness = sort
[
1
/

RMSE
(

f̂ , h, ε, C, σ
)]

. (24)

3.3. Evaluation Indicators

The RMSE and Pearson’s product–moment correlation coefficient (PCC) are used to
evaluate the accuracy of the proposed method. The RMSE measures the deviation between
the predicted value and the true value, but cannot measure the correlation. Therefore, PCC
is used to calculate the correlation between the predicted value and the true value as a
supplementary evaluation index. PCC is often denoted as R and is calculated as

h̄ =
1
N

N

∑
i=1

h(xj), (25)

f̄ =
1
N

N

∑
i=1

f̂ (xj), (26)

and

R =
∑N

i=1
{(

h(xj)− h̄
)(

f̂ (xj)− f̄
)}

√
∑N

i=1
(
h(xj)− h̄

)2
√

∑N
i=1

(
f̂ (xj)− f̄

)2
. (27)

4. Test Verification

4.1. Scaled Free-Running Ship Model Test System

The test system is built using the scaled free-running ship model of KVLCC2, as dis-
played in Figure 2. It is equipped with a main control board, gyrocompass, differential GPS
(D-GPS) module (Real-time kinematic, RTK system), rudder angle sensor, and speed sensor,
allowing ship motion data to be collected in real-time. The main parameters of the scaled
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free-running ship model are listed in Table 1, and more details of KVLCC2 can be found on
SIMMAN 2014 [26].

(a) (b)

(c)

Figure 2. Ship maneuverability test platform. (a) Scaled free-running ship model. (b) Shipboard
control terminal. (c) Major sensors and controllers on board.

Table 1. Parameters of test models.

Parameter Full-Scale Ship Scaled Ship Model

Scale ratio 1:1 1:266
Length between

perpendiculars (Lpp) 320 m 1.200 m

Maximum beam of waterline 58 m 0.217 m
Depth 30 m 0.112 m
Draft 20.8 m 0.078 m

Displacement 312,622 t 16.42 kg
Propeller diameter 9.86 m 37 mm

Number of propeller blades 4 4
Propeller area ratio 0.431 0.431

Rudder area 135.9 m2 0.00192 m2

Rudder turning rate 2.34◦/s 38.24◦/s

4.2. Test Conditions

To obtain the navigation data of the ship model, the zigzag test conditions are set in
terms of the engine speed, test rudder angle, and bow and stern draft, as depicted in Table 2.
It should be noted that the light load mentioned is relative to the full load. Bow and stern
trim are a lighter condition than the light load. To ensure that the rotational inertia moment
of the ship model remains unchanged in each repeated test, the bow and stern draft are
adjusted by uniformly pasting ballast lead blocks at fixed positions along the length of the
ship. We set the rudder turning rate of the full-scale ship as ωS, the scale ratio of the model
as RS, and the rudder turning rate of the scaled model as ωM = ωS ·

√
RS. This ensures that

the angular velocity of the rudder is similar to that of the full-scale ship.
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Table 2. Zigzag test conditions.

Navigation
Condition

Engine Speed
(rpm)

Bow Draft (cm) Stern Draft (cm)
Test Rudder

Angle (◦)

Light load 2000 7 7
3000 7 7

10◦/10◦
20◦/20◦
30◦/30◦

Full load 2000 9 9
3000 9 9

Bow trim 2000 7 5
3000 7 5

Stern trim 2000 5 7
3000 5 7

4.3. Test Data Analysis
4.3.1. Parameter Identification

The free-running model tests were carried out in a lake, as displayed in Figure 3.
The heading angle ψ(t) and rudder angle δ(t) of the scaled free-running ship model were
recorded with a frequency of 10 Hz to form a preliminary training set H(t) = [ψ(t) δ(t)].
To study the convergence of the identification parameters, the preliminary training set was
split into a series of training samples according to the time length, and parameter identifi-
cation based on the LS method was carried out. Meanwhile, considering data convergence
and computational efficiency [23], the innovation length was set to 4, and parameter iden-
tification based on the MILS method was performed. Taking the navigation condition of
a 2000 rpm engine speed, 20◦ rudder angle, 5 cm bow draft, and 7 cm stern draft as an
example, Figure 4 reveals the parameter identification results of the first-order non-linear
Nomoto models.

Figure 3. Zigzag tests.

As depicted in Figure 4a–d, for the first-order non-linear Nomoto model, the MILS
method converges faster than the LS method. The parameters K, T, and α converge after
approximately 500 iterations (i.e., 50 s). The effective neutral rudder angle δr converges
relatively slowly, requiring around 1500 iterations. This is because low-frequency random
disturbances (e.g., randomness of ship motion) influence the scaled free-running ship
model as it sails. The fourth-order R-K integration method was used to simulate the motion
of the ship model, and the heading angle and yaw angular velocity are shown in Figure 4e.
From Figure 4e, the simulation heading angles are very similar to the experimental data.
In the remainder of this study, the MILS method is used to identify the parameters of the
first-order non-linear Nomoto model. This allows us to analyze the law of the maneuvering
motion model parameters under different navigation conditions.
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(a) (b) (c) (d)

(e)
Figure 4. Results of the first-order non-linear Nomoto model. (a) Convergence process of K. (b) Con-
vergence process of T. (c) Convergence process of α. (d) Convergence process of δr. (e) Time history
of heading angle and yaw angular velocity for experimental and simulated data.

4.3.2. Parameter Training

A series of zigzag tests were carried out under the navigation conditions listed in
Table 2. The first-order non-linear Nomoto model parameters were identified by the
MILS method. At least five zigzag tests should be carried out under each navigation
condition. Due to the deviation of the results obtained in each identification, the parameters
of the maneuvering motion model are shown as box diagrams in Figures 5 and 6, where 7-5
represents the bow trim condition, 5-7 represents the stern trim condition, 7-7 represents the
light load condition, and 9-9 represents the full load condition. Under four test conditions
(1: rudder angle 30◦, bow trim, engine speed 2000 rpm; 2: rudder angle 10◦, bow trim,
engine speed 3000 rpm; 3: rudder angle 30◦, bow trim, engine speed 3000 rpm; and
4: rudder angle 30◦, full load, engine speed 3000 rpm), many experimental data are invalid
and unstable due to the random environmental disturbances, non-linear ship motion,
the data collection process, and other factors. Thus, only one grouping of valid data
are identified.
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(a) (b)

(c) (d)
Figure 5. Identification results at 2000 rpm engine speed. (a) Identification results of K. (b) Identifica-
tion results of T. (c) Identification results of α. (d) Identification results of δr.

(a) (b)

(c) (d)
Figure 6. Identification results at 3000 rpm engine speed. (a) Identification results of K. (b) Identifica-
tion results of T. (c) Identification results of α. (d) Identification results of δr.
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The test rudder angle δT , rudder force Fδ, rudder force arm Aδ, ship turning inertia
Izz, hydrodynamic force FW , and hydrodynamic action area of the underwater hull Sh
have significant impacts on the maneuvering performance. As shown in Figures 5 and 6,
under the same engine speed and rudder angle conditions, K and T are greater under the
bow trim condition than under the stern trim condition, and are greater under the full
load condition than under the light load condition. In general, Izz and Fδ are very similar
in the bow trim (7-5) and stern trim (5-7) conditions; however, Aδ is larger in the bow
trim condition, and so K and T are greater in the bow trim condition than in the stern
trim condition. Compared with the light load condition (7-7), Sh is larger in the full load
condition (9-9), resulting in a larger value of Izz. Thus, K is larger in the full load condition,
which means that the turning angular velocity is higher. Because of the larger Izz, the value
of T in the full load condition is higher than in the light load condition, meaning that it
takes longer to enter the stable turning state. The values of K and T basically decrease
with increasing rudder angle. A change in rudder angle usually causes the ship to turn
and change its course, which will affect the speed and turning rate of the ship. Within a
certain range of rudder angles, the ship’s steering response accelerates as the rudder angle
increases, but this also enhances the ship’s lateral resistance, reducing the driving force
and steering ability of the ship; thus, K and T decrease accordingly. Note that an excessive
rudder angle not only increases the ship’s navigation resistance, but also aggravates the
ship’s sway and affects the ship’s stability. Comparing Figure 5a with Figure 6a and
Figure 5b with Figure 6b, it is clear that a higher speed produces a larger value of K and a
lower value of T. The reason may be that the higher speed increases the rudder force and
turning torque, enhancing the turning rate.

From Figure 5c, α approaches zero as the rudder angle increases, meaning that a larger
rudder angle decreases the non-linear motion. This may be because the hydrodynamic
forces and moments are sufficiently large at greater rudder angles, while the random
disturbances are not significant; however, this phenomenon does not occur at an engine
speed of 3000 rpm. The effective neutral rudder angle δr exhibits strong randomness in
different conditions, making it difficult to determine the change rule and hydrodynamic
action mechanism. δr is the angle of a ship’s rudder necessary to maintain its heading
with no lateral force applied. It is affected by the ship speed, draft, and environmental
interference. There is no obvious regularity in the change of δr. Fortunately, the influence
of δr is limited.

The first-order non-linear Nomoto model parameters identified by MILS and the
engine speeds, bow and stern drafts, and test rudder angles of the scaled free-running
ship model were non-dimensionalized and normalized to create a complete training set:
Gi = [RTi, DFi, DAi, δTi, Ki, Ti, αi, δri]. SVR training was used to obtain rapid regression
predictions of the ship maneuvering motion parameters under any condition. The spe-
cific process is illustrated in Figure 7. Additionally, Table 3 shows the optimal kernel
function parameters.

Table 3. The optimal kernel function parameters.

Nomoto Model
Parameters

Kernel Function Parameters of SVR

ε C σ

K (s−1) 0.000002 0.86 1.175
T (s) 0.001 2.561 0.922

a (s/◦2) 0.000001 0.156 0.021
δr (◦) 0.00002 4.0103 1.041
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Figure 7. Flowchart of ship maneuvering motion model under multi-navigation conditions.

4.4. Model Accuracy Verification

We used the MILS method to directly identify the parameters of the first-order non-
linear Nomoto model, and compared them with the SVR prediction results, as illustrated
in Table 4. Under the two verification conditions, the values of K and T predicted by the
SVR are close to those directly identified by the MILS, although the effective neutral rudder
angle δr is slightly different. The variation of the non-linear coefficient α is relatively large.
In addition, it can be seen from the analysis in Section 4.3.2 that K and T decrease as the
rudder angle increases. K and T decrease in stern trim conditions. Additionally, K and T
increase with increasing load, while a higher engine speed lead to a higher K value and
lower T value. The coupling effect of rudder angle, load, stern trim, and engine speed
makes the reduction in K less than the reduction in T.

The parameters obtained by the MILS and SVR methods were used for dynamic
simulations. To further validate the method proposed in this study, the computational
results of the MMG parameters of KVLCC2 by Yasukawa et al. [27] were cited and compared
with the simulation results by numerical integration of the differential equation, as shown
Table 5. Where the primary figure input to the symbol means a non-dimensionalized value,
force and moment are non-dimensionalized by 1/2ρLppdU2 and 1/2ρL2

ppdU2, respectively.
More details can be found in the references [27,28]. It is worth noting that the shape
of the blades was modified due to the difficulty of machining the prototype propeller.
The simulated and experimental results of the zigzag motions are shown in Figure 8.
The SVR and MILS results in condition 2 are close to the experimental data, while the MMG
results have a phase lead compared with the experimental data. In condition 1, the SVR
and MMG results have a phase lag compared with the experimental data and MILS results.
Table 6 compares the overshoot angles in the zigzag maneuvers. The overshoot angles of the
SVR and MILS simulation results are smaller than the experimental values. The overshoot
angle of MMG simulation results is less than the experimental value in condition 1 and
greater than the experimental value in condition 2. In condition 1, the MMG method is more
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accurate in predicting overshoot angles, while, in condition 2, it has comparable accuracy to
MILS. It is difficult to predict the overshoot angle to within a few degrees [27]. The RMSE
and PCC between the simulated and experimental heading angles are listed in Table 7.
The errors and correlation coefficients of the MILS simulation results are better than SVR
and MMG. This is because the MILS method is a direct identification, using information
from the current navigation condition for identification. The method based on SVR is an
indirect identification; it does not use data from the current navigation condition, but trains
the MILS identification results of other navigation conditions to predict the current value.
The hydrodynamic derivatives of MMG were obtained based on captive tests of a 2.902 m
model ship. There is a scale effect with the ship model in this study. In general, however,
the RMSE and PCC values are reasonable under the verification conditions, indicating that
the SVR-based prediction method proposed in this study has good generalization ability.

(a) (b)

Figure 8. Simulated and experimental results of zigzag motions. (a) Comparison of results under
verification condition 1. (b) Comparison of results under verification condition 2.

Table 4. Comparison of identified results.

Verification
Condition

Navigation Condition Parameters K (s−1) T (s) a (s/◦2) δr (◦)
Engine
Speed
(rpm)

Rudder
Angle

(◦)

Bow
Draft
(cm)

Stern
Draft
(cm)

MILS SVR MILS SVR MILS SVR MILS SVR

1 2000 15 8 8 0.559 0.566 4.282 4.009 −0.004 0.0094 0.492 0.620
2 2500 25 6 8 0.415 0.430 1.228 1.303 0.023 0.0076 2.013 2.419

Table 5. Hydrodynamic derivatives used in the simulations [27,28].

Surge Force Derivatives Lateral Force Derivatives Yaw Moment Derivatives

R0
′ 0.022 Yv

′ −0.315 Nv
′ −0.137

Xvv
′ −0.040 Yr

′ 0.083 Nr
′ −0.049

Xvr
′ 0.002 Yvvv

′ −1.607 Nvvv
′ −0.030

Xrr
′ 0.011 Yvvr

′ 0.379 Nvvr
′ −0.294

Xvvvv
′ 0.771 Yvrr

′ −0.391 Nvrr
′ 0.055

Yrrr 0.008 Nrr
′ −0.013

Table 6. Comparison of overshoot angles.

Verification
Condition

Overshoot
Angle

Test (◦) MILS (◦) SVR (◦) MMG (◦)

1 1st overshoot 12.17 7.89 7.51 10.71
2nd overshoot 13.62 11.7 8.97 12.31

2 1st overshoot 12.03 8.97 7.75 16.88
2nd overshoot 12.04 8.13 6.62 14.96
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Table 7. Simulated and experimental error statistics of zigzag motions.

Verification Condition Method RMSE (◦) PCC

1
MILS 3.8414 0.9839
SVR 5.9296 0.9639

MMG 5.3710 0.9725

2
MILS 4.8138 0.9847
SVR 6.2458 0.9733

MMG 7.1617 0.9638

5. Conclusions and Prospects

Based on the parameter identification of the Nomoto model, the SVR method has
been used to predict the parameters of ship maneuvering. Using a desktop computer
(Intel® Core™ i7-10700F CPU @2.90 GHz, 40 GB RAM), the average training time of the
SVR model was just 1.5 s. The scaled free-running ship model experiments show that the
proposed method has good prediction accuracy and can quickly obtain the maneuvering
model parameters. The specific conclusions are the following.

(1) The MILS and LS methods have good accuracy for parameter identification with the
first-order non-linear Nomoto models. In general, the MILS method converges faster
than the LS method. Thus, the MILS method was used to identify the parameters
of the first-order Nomoto model with different maneuvering motions. The resulting
dataset was trained using the SVR-based method to predict 15◦/15◦ and 25◦/25◦
zigzag motions. The results show that the SVR-based prediction method can obtain
the Nomoto model parameters quickly, although the accuracy is slightly lower than
that of the MILS method.

(2) The effects of rudder angle, engine speed, bow trim, stern trim, and load on the
maneuvering coefficients were analyzed. K and T are larger in the bow trim condition
than in the stern trim condition. In the full load condition, K and T are larger. K and
T decrease as the rudder angle increases. Additionally, higher speeds lead to higher K
values and lower T values. At an engine speed of 2000 rpm, α approaches zero as the
rudder angle increases; however, this does not occur at an engine speed of 3000 rpm.
The effective neutral rudder angle δr exhibits strong randomness under different
conditions, making it difficult to determine the variation pattern of this parameter
and its hydrodynamic action mechanism.

This study has presented a method for solving the problem of insufficient excitation
of cargo ship navigation data. By considering the influence of engine speed, load, trim,
and rudder angle, the ship motion model under various load conditions in a daily voyage
can be predicted. The main limitations of the proposed method are that the accuracy is
slightly lower than that of the direct identification method (e.g., MILS), and large amounts
of historical data of various navigation conditions are required for training. Although we
have tried our best to understand and explain the hydrodynamics, it may be flawed in
some aspects. In addition, the SVR model is trained based on zigzag experimental data
and can only be used for zigzag-like maneuvers of ships. However, zigzag maneuvers
seem not to be fully representative for anti-collision or track-change maneuvers in open sea.
In future work, there should be a better balance between zigzag and turning circle tests in
those fields of ship operations.
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Appendix A

Table A1. Training data of 2000 rpm.

Engine Speed
(rpm)

Test Rudder
Angle (◦)

Bow Draft
(cm)

Stern Draft
(cm)

K (s−1) T (s) a (s/◦2) δr (◦) Weight

2000 10 7 5 7.49 × 10−1 3.52 × 100 6.68 × 10−4 2.59 × 100 6.24 × 10−1

2000 10 7 5 9.19 × 10−1 4.16 × 100 2.58 × 10−3 1.61 × 100 4.68 × 10−1

2000 10 7 5 9.48 × 10−1 4.62 × 100 4.04 × 10−3 2.69 × 100 1.45 × 10−1

2000 10 7 5 1.03 × 100 4.59 × 100 5.21 × 10−3 1.72 × 100 9.97 × 10−1

2000 20 7 5 5.18 × 10−1 2.16 × 100 1.85 × 10−4 2.83 × 100 4.15 × 10−1

2000 20 7 5 4.38 × 10−1 1.88 × 100 −1.14 × 10−3 2.80 × 100 7.69 × 10−1

2000 20 7 5 4.99 × 10−1 2.03 × 100 −2.11 × 10−4 2.67 × 100 9.60 × 10−1

2000 20 7 5 4.90 × 10−1 2.14 × 100 8.27 × 10−6 2.09 × 100 2.63 × 10−1

2000 30 7 5 3.26 × 10−1 1.45 × 100 −1.22 × 10−3 3.55 × 100 5.14 × 10−1

2000 10 7 7 5.91 × 10−1 2.36 × 100 5.85 × 10−4 1.69 × 100 4.74 × 10−1

2000 10 7 7 6.49 × 10−1 2.73 × 100 2.80 × 10−3 2.33 × 100 9.43 × 10−1

2000 10 7 7 7.04 × 10−1 3.06 × 100 4.46 × 10−3 2.27 × 100 9.79 × 10−1

2000 20 7 7 4.46 × 10−1 1.80 × 100 9.38 × 10−5 2.97 × 100 9.83 × 10−1

2000 20 7 7 4.53 × 10−1 1.88 × 100 1.99 × 10−4 2.96 × 100 9.34 × 10−1

2000 20 7 7 4.05 × 10−1 1.92 × 100 −8.31 × 10−4 2.75 × 100 8.01 × 10−1

2000 20 7 7 5.41 × 10−1 2.21 × 100 2.24 × 10−3 2.85 × 100 9.93 × 10−1

2000 30 7 7 3.32 × 10−1 1.50 × 100 −5.63 × 10−4 3.90 × 100 7.37 × 10−1

2000 30 7 7 3.87 × 10−1 1.74 × 100 6.29 × 10−4 4.03 × 100 9.11 × 10−1

2000 10 9 9 1.24 × 100 7.94 × 100 2.89 × 10−2 2.80 × 100 5.58 × 10−1

2000 10 9 9 9.89 × 10−1 5.31 × 100 1.20 × 10−2 2.23 × 100 3.45 × 10−1

2000 10 9 9 9.41 × 10−1 5.50 × 100 1.48 × 10−2 2.43 × 100 8.67 × 10−1

2000 10 9 9 1.18 × 100 6.62 × 100 1.87 × 10−2 2.71 × 100 5.57 × 10−1

2000 20 9 9 8.54 × 10−1 5.63 × 100 1.39 × 10−2 2.83 × 100 1.00 × 100

2000 20 9 9 6.67 × 10−1 4.00 × 100 5.29 × 10−3 2.54 × 100 8.76 × 10−1

2000 20 9 9 7.20 × 10−1 4.41 × 100 9.80 × 10−3 3.14 × 100 8.32 × 10−1

2000 30 9 9 3.60 × 10−1 2.23 × 100 7.08 × 10−5 3.72 × 100 4.92 × 10−1

2000 30 9 9 3.60 × 10−1 2.23 × 100 7.08 × 10−5 3.72 × 100 4.92 × 10−1

2000 30 9 9 4.83 × 10−1 3.33 × 100 4.99 × 10−3 3.57 × 100 6.89 × 10−1

2000 30 9 9 3.47 × 10−1 2.30 × 100 −2.75 × 10−4 3.46 × 100 8.10 × 10−1

2000 10 5 7 3.04 × 10−1 1.26 × 100 −6.21 × 10−3 −3.25 × 10−1 2.12 × 10−1

2000 10 5 7 2.97 × 10−1 7.04 × 10−1 −6.71 × 10−3 1.02 × 100 9.96 × 10−1

2000 10 5 7 2.84 × 10−1 8.30 × 10−1 −1.08 × 10−2 8.96 × 10−1 8.57 × 10−1

2000 10 5 7 3.10 × 10−1 8.86 × 10−1 −7.05 × 10−3 1.66 × 100 8.57 × 10−1

2000 20 5 7 3.27 × 10−1 8.03 × 10−1 −8.84 × 10−4 1.28 × 100 6.36 × 10−1

2000 20 5 7 2.95 × 10−1 7.10 × 10−1 −2.97 × 10−3 1.76 × 100 8.17 × 10−1

2000 30 5 7 2.66 × 10−1 7.43 × 10−1 −1.54 × 10−3 1.73 × 100 8.48 × 10−1

2000 30 5 7 2.86 × 10−1 7.06 × 10−1 −1.01 × 10−3 3.07 × 100 8.70 × 10−1

2000 30 5 7 3.20 × 10−1 1.08 × 100 2.14 × 10−5 3.48 × 100 7.23 × 10−1
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Table A2. Training data of 3000 rpm.

Engine Speed
(rpm)

Test Rudder
Angle (◦)

Bow Draft
(cm)

Stern Draft
(cm)

K (s−1) T (s) a (s/◦2) δr (◦) Weight

3000 20 7 5 7.29 × 10−1 1.39 × 100 1.01 × 10−4 2.03 × 100 8.32 × 10−1

3000 20 7 5 6.04 × 10−1 1.17 × 100 −7.03 × 10−4 1.98 × 100 6.30 × 10−1

3000 20 7 5 6.84 × 10−1 1.25 × 100 −2.13 × 10−4 2.20 × 100 8.97 × 10−1

3000 30 7 5 4.49 × 10−1 9.40 × 10−1 −6.16 × 10−4 2.52 × 100 4.21 × 10−1

3000 10 7 7 8.58 × 10−1 1.58 × 100 6.65 × 10−4 3.46 × 100 6.35 × 10−1

3000 10 7 7 9.89 × 10−1 2.06 × 100 1.55 × 10−3 2.91 × 100 8.99 × 10−1

3000 10 7 7 8.81 × 10−1 1.99 × 100 1.39 × 10−3 3.37 × 100 7.25 × 10−1

3000 20 7 7 6.79 × 10−1 1.39 × 100 −1.76 × 10−5 2.36 × 100 2.71 × 10−1

3000 20 7 7 5.76 × 10−1 1.18 × 100 −5.17 × 10−4 1.72 × 100 6.76 × 10−1

3000 20 7 7 6.38 × 10−1 1.20 × 100 −2.36 × 10−4 2.10 × 100 8.99 × 10−1

3000 30 7 7 4.04 × 10−1 7.69 × 10−1 −7.91 × 10−4 2.27 × 100 4.87 × 10−1

3000 30 7 7 4.35 × 10−1 8.73 × 10−1 −5.76 × 10−4 3.15 × 100 7.23 × 10−1

3000 10 9 9 1.25 × 100 3.70 × 100 2.30 × 10−3 2.32 × 100 8.40 × 10−1

3000 10 9 9 1.10 × 100 2.92 × 100 2.06 × 10−4 2.34 × 100 7.43 × 10−1

3000 10 9 9 1.14 × 100 3.53 × 100 1.86 × 10−3 2.11 × 100 3.38 × 10−1

3000 20 9 9 8.96 × 10−1 2.48 × 100 1.48 × 10−3 3.06 × 100 6.07 × 10−1

3000 20 9 9 8.28 × 10−1 2.39 × 100 1.62 × 10−3 2.90 × 100 9.16 × 10−1

3000 20 9 9 7.85 × 10−1 2.08 × 100 5.39 × 10−4 2.81 × 100 7.20 × 10−1

3000 10 5 7 4.58 × 10−1 1.16 × 100 −1.42 × 10−3 1.32 × 100 9.43 × 10−1

3000 10 5 7 4.77 × 10−1 1.11 × 100 −1.73 × 10−3 2.21 × 100 9.15 × 10−1

3000 10 5 7 5.16 × 10−1 1.71 × 100 3.40 × 10−3 1.86 × 100 8.87 × 10−1

3000 20 5 7 4.98 × 10−1 1.21 × 100 1.19 × 10−5 1.77 × 100 6.96 × 10−1

3000 20 5 7 5.36 × 10−1 1.68 × 100 8.87 × 10−4 1.72 × 100 6.24 × 10−1

3000 20 5 7 4.59 × 10−1 8.25 × 10−1 −6.71 × 10−4 1.34 × 100 8.04 × 10−1

3000 30 5 7 4.37 × 10−1 1.05 × 100 −1.18 × 10−4 1.81 × 100 5.79 × 10−1

3000 30 5 7 5.05 × 10−1 1.67 × 100 4.75 × 10−4 2.22 × 100 4.12 × 10−1
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Abstract: Many achievements toward unmanned surface vehicles have been made using artificial
intelligence theory to assist the decisions of the navigator. In particular, there has been rapid
development in autonomous collision avoidance techniques that employ the intelligent algorithm of
deep reinforcement learning. A novel USV collision avoidance algorithm based on deep reinforcement
learning theory for real-time maneuvering is proposed. Many improvements toward the autonomous
learning framework are carried out to improve the performance of USV collision avoidance, including
prioritized experience replay, noisy network, double learning, and dueling architecture, which can
significantly enhance the training effect. Additionally, considering the characteristics of the USV
collision avoidance problem, two effective methods to enhance training efficiency are proposed. For
better training, considering the international regulations for preventing collisions at sea and USV
maneuverability, a complete and reliable USV collision avoidance training system is established,
demonstrating an efficient learning process in complex encounter situations. A reward signal system
in line with the USV characteristics is designed. Based on the Unity maritime virtual simulation
platform, an abundant simulation environment for training and testing is designed. Through detailed
analysis, verification, and comparison, the improved algorithm outperforms the pre-improved
algorithm in terms of stability, average reward, rules learning, and collision avoidance effect, reducing
26.60% more accumulated course deviation and saving 1.13% more time.

Keywords: unmanned surface vehicles; deep reinforcement learning; autonomous collision
avoidance; COLREGs

1. Introduction

With the higher demand for unmanned surface vehicle (USV) intelligent technology,
countries have taken measures to improve the effect of autonomous collision avoidance
while safeguarding public life and property. Intelligence navigation refers to a USV that can
use a sensing system to obtain current maritime navigation information and autonomously
generate USV navigation decisions to achieve safe and reliable water navigation. Research
on intelligent USV navigation is of great practical importance for the shipping industry
and even human society.

USVs have been used for missions at sea due to their small size, high speed, low cost,
and no risk of human casualties. In ocean mapping, USVs are used to carry GNSS and
other equipment to assist in achieving accurate positioning and mapping [1]. The USV can
efficiently achieve the detection of submarine geomorphology and underwater objects by
carrying side scan sonar [2]. In hydrological monitoring, the detection area is covered by the
navigation and control of the USVs, and the hydrological parameters are monitored by the
sensor equipment [3,4]. In addition, many studies for path-tracking control [5], trajectory
tracking [6], dynamic positioning [7], and collision avoidance [8] problems are a permanent
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basis for any application of USVs, and they can forcefully advance the development of the
problem of autonomous USV navigation.

There are many ways of designing autonomous collision avoidance algorithms for
USV, such as A*, artificial potential field, velocity obstacle, dynamic window, fast marching
method, etc. Ren et al. [9] use the velocity obstacle method for collision avoidance algorithm
design, optimizing the way of setting up the velocity obstacle region for multi-ship collision
avoidance. Fan et al. [10] use an improved cuckoo search algorithm designed with an adap-
tive update step, which optimizes the global search capability and can plan a better collision
avoidance strategy. Guan et al. [11] use the A* method and dynamic window method to
design a collision avoidance algorithm for static and dynamic obstacles, optimizing the
weight coefficient of the dynamic window algorithm by deep Q network. These methods
have unique advantages in specific environments and are very effective in USV collision
avoidance algorithms, but their disadvantages are also distinct. Firstly, the operational
anthropomorphism degree of these algorithms is not sufficient. Secondly, the generalization
ability of some algorithms is poor, and the tuning of parameters is complicated. Moreover,
some algorithms simplify the actual situation when applied in training and are difficult
to be applied in practice. However, the model-free deep reinforcement learning approach
based on learning styles can effectively compensate for these shortcomings.

With the development of the deep reinforcement learning approach, it has achieved
great results in many fields due to its outstanding perception and decision-making capabil-
ities, such as Go [12], video games [13], autonomous navigation [14], and medicine [15].
It is based only on itself, without any human knowledge of collision avoidance beyond
navigation rules. However, it can make excellent decisions in many challenging domains.
Especially in USV collision avoidance, reliable samples for learning are hard to obtain and
expensive. Therefore, independently, starting tabula rasa, deep reinforcement learning can
fully compensate for these problems and complete collision avoidance tasks in complex
USV encounter situations.

On the issues of USV collision avoidance, many pieces of research on autonomous
collision avoidance based on the deep reinforcement learning approach have been devel-
oped. Most researchers focus on the model-free method because this direction is easy to
implement, and for another reason, the model-based method is difficult. The model-free
method used in the USVs collision avoidance algorithm is divided into value-function-
based and policy-gradient-based [16]. The former is good at dealing with discrete action
space. Chen et al. [17] provide a representative paradigm for the discrete ship movements
and devise a unique way of training. Li et al. [18] employ the traditional artificial potential
field (APF) method to optimize the reward signal of the DQN method, resulting in a more
scientific reward signal. Shen et al. [19] improve the neural network framework for more
efficient learning, obtaining a better collision avoidance effect than the algorithm before
improvement. Zhou et al. [20] improve the collision algorithm to solve the sparse reward
problem, using two networks to generate actions and evaluate behavior. Compared to the
DQN algorithm, the training effect under the improved algorithm is better.

Research on the latter, the policy gradient method, is also widely studied. Du et al. [21]
propose an improved algorithm based on the deep deterministic policy gradient (DDPG)
algorithm [22] that combines with Douglas–Peucker (DP) algorithm to plan the path. The
Long Short-Term Memory (LSTM) architecture and rich reward function are designed
to improve the speed and stability of convergence. Xu et al. [23] also choose the DDPG
algorithm and establish a risk assessment model, improving the network structure. Their
algorithm has a good collision avoidance effect and real-time performance. Additionally,
Chen et al. [24] propose a cooperative multi-agent deep reinforcement learning algorithm
for ship collision avoidance, resulting in a good collision avoidance effect under simple
typical ship encounter situations. Considering the results of this collision avoidance
research, based on the reinforcement learning algorithm, there are some problems worth
further consideration:
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(1) In many pieces of research, the training environment in each episode is fixed, lacking
practical significance, whether complex or not.

(2) Most researchers are not selecting more random seeds to verify the superiority and
reliability of their algorithm.

(3) Some researchers are not considering the maneuverability characteristics of USVs
adequately.

Deep reinforcement learning theory provides an extraordinary way for USVs’ au-
tonomous collision avoidance safety and efficiency. Compared with the traditional methods,
it performed better in complex environments with simple designs. Furthermore, it does
not require any prior knowledge from the expert navigator about avoiding the obstacle
well; surprisingly, it is not even necessary to provide fully observed training environments,
to accomplish the complex collision task.

Aiming at the above problems and characteristics, in this paper, a USV collision
avoidance algorithm based on the deep reinforcement learning approach, DRLCA, is
designed. The main contributions of this paper are as follows:

(1) This paper considers the restriction of maneuverability and international regulations
for preventing collisions at sea (COLREGs) in the training process. A suitable train-
ing environment with stochasticity and complexity is designed based on the deep
reinforcement learning approach. Additionally, considering the collision avoidance
process for factors, a meticulous reward signal for USVs training is constructed, which
makes training more practical.

(2) Double Q learning method is used to reduce overestimation, dueling neural network
architecture to improve training effect, and prioritized experience replay to optimize
sampling. The results of various improvements are analytically compared under an
abundant training environment based on multiple random number seeds.

(3) Aiming at the hard-exploration problem caused by the training environment with strong
randomness, the noisy network method is introduced, which can enhance the detection
capability. Experimentally, the best way of noise adding in USV collision avoidance
training is confirmed. Considering the characteristics of the USVs collision avoidance
problem, the restriction of the dynamic area is introduced in training for calculation
reduction and the clip of neural network state input for training effect improvement.

This paper is organized as follows. Kinematic parameters, COLREGs, ship domain,
and USV mathematical models are in Section 2. Section 3 is about the deep reinforcement
learning approach and its optimization methods. Section 4 describes the establishment
of the training environment. In Section 5, the improved algorithm for USVs collision
avoidance is tested in the Unity environment. The last section is the summary and prospect.

2. USV Collision Avoidance Parameters

2.1. USV Collision Avoidance Characteristics

As shown in Figure 1, Y(N) and X(E) point to the north and east. (xU , yU), (xO, yO),
and (xT , yT) are the positions of our own USV, obstacle USV, and terminal. ϕU , ϕT , ϕO, φ,
αO, and θ are our USV course, absolute azimuth of the terminal and our own USV, obstacle
USV course, relative azimuth of the terminal and our own USV, absolute azimuth of the
obstacle USV and our own USV, and the relative azimuth of the obstacle USV and our
own USV. The distance between obstacle USV and our own USV is d. The speed of our
own USV and obstacle USV are VU and VO. To reflect the USV collision avoidance training
characteristics, the following Norrbin ship mathematical model is selected [25],{

Tη̇ + η + αη3 = Kδ
η = ϕ̇

(1)

where, T, K, and α are related to USV maneuverability, and the course change caused
by rudder angle change can be well calculated. Because the research object of this paper
is the “Lan Xin” USV, which has a vector propulsion system, it is necessary to consider
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the influence of the characteristics of the steering gear. The vector propulsion system is a
type of thruster that can change direction to achieve maximum speed propulsion in any
direction and can obtain additional control torque to achieve control of ship attitude change.
Therefore, the following equation, the second-order propulsion angle response model, is
selected in this paper,

δ̈ + 2ζωn δ̇ + ωn
2δ = kωn

2δr (2)

where, ωn, ζ, and k are intrinsic frequency, damping ratio and proportionality coefficient as
ωn = 0.958, ζ = 0.811 and k = 0.923. δr is the target rudder angle.

Figure 1. USV collision avoidance kinematic.

The accurate division of USV encounter situations is crucial for collision avoidance
agent training, and it is divided into the following six conditions in this paper [26]:

(1) As shown in Figure 2a, when the obstacle USVO and own USVU are at the relative
azimuth of [355◦, 360◦) ∪ [0◦, 5◦), it is the head-on encounter situation. According to
the COLREGs, when there is a hazard of USV collision, both USVs have to avoid each
other and should turn to the port side as they pass.

(2) As shown in Figure 2b, when USVO is at the [247.5◦, 355◦) relative azimuth of USVU ,
and there is a risk of collision, it is the crossing-stand-on encounter situation. USVU
should stand on the course, and USVO should turn to starboard.

(3) As shown in Figure 2c, when USVO is at the [5◦, 112.5◦) relative azimuth of USVU ,
and there is a risk of collision, it is the crossing-give-way encounter situation. USVU
should turn to starboard, and USVO should stand on the course.

(4) As shown in Figure 2d, when USVU is at the [112.5◦, 247.5◦) relative azimuth of USVO,
and there is a risk of collision, it is the overtaking encounter situation. USVU should
avoid the collision, and turns to starboard or port are allowed.

(5) As shown in Figure 2e, when USVO is at the [112.5◦, 247.5◦) relative azimuth of USVU ,
and there is a risk of collision, it is the overtaking encounter situation. USVU should
stand on the course.

(6) Additionally, when the obstacle USV is in breach of rules, our own USV should avoid
it proactively.
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(a) (b)

(c) (d)

(e)

Figure 2. Encounter situation. (a) Head-on; (b) Crossing-stand-on; (c) Crossing-give-way;
(d) Overtaking-give-way; (e) Overtaking-stand-on.
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2.2. USV Collision Avoidance Characteristics

In Figure 2, our USV and the obstacles also have a region with the radius of r, called
ship domain (SD) [27]. This domain is for each USV and is used to determine the collision
when another USV invades. There are three main ways of defining the ship domain,
theoretical analyses, experts’ knowledge, and determined empirically. The first two are
mainly based on a variable number of parameters to regulate the shape and size of the
ship domain, which is complex and detailed. The third one lacks some details but is more
concise. In this paper, the third way of a circular ship domain is chosen, which is a clean and
practical ship domain shape. It is essential for deep reinforcement learning USV collision
avoidance algorithm training. Another essential concept is the dynamic area (DA), recorded
as R, planning a circular range around USV. When the obstacle USV is not in this range,
there is no collision risk between the USVs. These two parameters are used to calculate
the collision risk index (CRI), which can not only visualize the current risk for navigation
intuitively but is also the key to guiding collision avoidance behavior. The distance at the
closest point of approaching (DCPA) and time to the closest point of approaching (TCPA)
are defined as shown in Figure 3, and they can be calculated as follows,{

DCPA = dOU sin(λ)
TCPA = dOU cos(λ)/VOU

. (3)

Figure 3. DCPA and TCPA.

Their membership functions uD and uT can be calculated as follows,

uD =

⎧⎪⎨⎪⎩
1, |DCPA| ≤ r
0.5− 0.5 sin[ π

R−r × DCPA(R+r)
2 ], r < |DCPA| ≤ R

0, |DCPA| > R

(4)

If TCPA > 0,

uT =

⎧⎪⎨⎪⎩
1, TCPA ≤ T1

[ T2−TCPA
T2−T1

]2, T1 < TCPA ≤ T2

0, TCPA > T2

(5)
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If TCPA ≤ 0,

uT =

⎧⎪⎨⎪⎩
1, |TCPA| ≤ T1

[ T2+TCPA
T2−T1

]2, T1 < |TCPA| ≤ T2

0, |TCPA| > T2

(6)

T1 and T2 are expressed as follows,

T1 =

⎧⎨⎩
√

D2
1+DCPA2

VOU
, D1 ≥ |DCPA|

0, D1 < |DCPA|
(7)

T2 =

⎧⎨⎩
√

D2
2−DCPA2

VOU
, D2 ≥ |DCPA|

0, D2 < |DCPA|
(8)

Therefore, the USV collision risk uCRI can be calculated as follows,

uCRI =

⎧⎪⎨⎪⎩
0, uD = 0
0, uD �= 0, uT = 0
max(uD, uT), uD �= 0, uT �= 0

(9)

3. Deep Reinforcement Learning

Deep reinforcement learning theory focuses on the interaction in learning, which
addresses how an agent can maximize their reward through learning conspicuous behavior
in different states under a specific environment. It is worthwhile to note that it requires
only a small amount of prior knowledge provided by humans, but it can complete many
challenging problems. Such as path planning in a grid [28], imitating humans playing video
games [29], and controlling the movement of vehicles [30]. The deep reinforcement learning
approach does not need to investigate internal connection and hidden architecture to the
object. Through trial-and-error and delay reward, it can perform control and environment
identification tasks simultaneously [31]. The reinforcement learning theory with strong
decision-making ability is very suitable for use in the research of USVs. Based on the USV
agent and training maritime environment, this algorithm can accomplish the task of USV
collision avoidance well in a complex environment.

3.1. Deep Q Learning

Reinforcement learning theory is very suitable for use in unstructured and intricate
environments because it is almost impossible for other algorithms to accurately describe the
implicit relationship between the environment and the agent. In this way, the component
that can make decisions is called the agent, and all the others are the environment. All the
frames in reinforcement learning theory are around the constant interaction between these
two components [32]. The core of agent-environment interaction consists of the following
four elements [33]. The first element is the policy π. It describes the mapping relationship
from state to action, similar to a functional relationship, and determines the selected action
in the current state. The second element is reward signal Gt. It is a scalar form of feedback
from the environment to the agent’s behavior, and it defines the long-standing goal of
the agent in reinforcement learning processing. The third element is the value function
v. It is similar to the reward signal, a quantitative description of advantages based on
the latest state. The value function analyzes the better choice from a longer perspective.
Finally is the model, which reflects whether the agent has the ability to react to the external
environment. The method of driving the interaction process is through the Markov decision
process (MDP) [34], which consists of the following three parts. The first part is the state S,
which describes the agent and environment at the current moment t. The second part is the
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action A, which represents all possible ways an agent can influence the environment. The
third part is the reward function R, which describes the value of the reward for taking a
particular action in a given state. The last part is transition probability p(s′, r|s, a), which
selects a specific probability distribution for each state and action. In every step t, the agent
influences the environment by its action At, basing the state St−1 and reward Rt−1 of the
last step, and then getting a new state St and reward Rt. Through such a learning process,
the reinforcement learning agent can continue understanding the environment deeper and
achieve clever solutions to complex control problems.

Q learning is an algorithm [35] that not only contains the bootstrapped learning idea
from Dynamic Programming algorithm [36], learning without waiting for the end of an
episode but also allows continuous interaction with the environment without modeling, as
in the Monte Carlo method [37]. The Q learning algorithm is updated using the following
functions,

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (10)

Though Q learning has performed well in many control problems, there are still many
limitations because of the updating form of the value function based on the Q table. In
many complex control problems, the reinforcement learning approach is used to deal with
problems that are common, complex, and high-dimensional, such as tasks with huge state
space or a complex combination of forms, whereas traditional Q learning is inadequate.
Therefore, the Q table is fitted using a specific neural network. The gradient descent
technique is used instead of the Q table to update the neural network, which perfectly
makes up for the defects of traditional Q learning [38].

Figure 4 shows an update schematic diagram of the DQN algorithm. At every training
step t, the agent interacts with the environment, constantly enriches its knowledge, and
improves their behavior. The state S is fed into the neural network θ and influences the
environment by maximizing the action value obtained at this training step t. Then, the state
S changes to S′ as the environment changes, and the agent can obtain the corresponding re-
wards signal. Whereafter, the information of interaction (s, a, r, s′) is saved in the experience
replace buffer for sample and learning. The evaluating Q network output Q(s, a; θ), and
target Q network output Q(s′, a′; θ−). In this way, all the parameters of the loss function
needed for neural network training can be obtained, and the gradient descent method
is used to update the evaluating Q network. Finally, the parameters of evaluating the Q
network are copied to the target network every N step to achieve the real policy update.

Figure 4. DQN algorithm architecture.
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3.2. Collision Avoidance Algorithm for USV

When building a USV collision avoidance training framework with the deep reinforce-
ment learning approach, a complete set of state, action, and reward signals is essential and
can facilitate efficient training.

The first part is the design of state space. The USVs autonomous collision avoidance
system must be able to face complex and time-varying maritime conditions. With reliable
sensors, USVs can perceive the real-time information of obstacles within a range and
can be used for USV collision avoidance behavior training. So, the following state space
is designed,

S = {ϕU , ϕ̇U , δU , δ̇U , ϑt, dt, dO1, ϑO1, ϕO1, . . . , dOm, ϑOm, ϕOm, dS1, ϑS1, . . . , dSn, ϑSn} (11)

The state space can be divided into four parts. The first part is the state of our own
USV, which reflects the navigation information of the USV. It contains its own USV course
ϕU , the change rate of our USV course ϕ̇U , its own USV rudder angle δU , and the change
rate of the USV’s rudder angle δ̇U . The second part is the terminal state, which describes
the navigation destination of each episode. It contains the absolute azimuth of the terminal
and USVU , and the distance between USVU and the terminal. The third part is the state of
obstacle USVs, which reflects the navigation information of obstacle USVs near our USV,
and for m obstacle USVs, there are m groups. It contains the absolute azimuth of USVO
and USVO, the distance between our own USV and the obstacle USVs, and the obstacle
USVs’ course. The fourth part is the state of static obstacles with n sets of information for
n obstacles USV. It contains the absolute azimuth of static obstacles and USVO, and the
distance between our USV and static obstacles.

The second part is the building of the action space. It is appropriate to design some
actions in action space as the change of rudder angle because the USV changes its navigation
state by rudder changes, and it can be designed as the following action space,

A = {Δδ1, Δδ2, Δδ3, Δδ4, . . . , Δδk} (12)

After selecting the action, the change of target rudder angel Δδk is obtained, and the
new target rudder angle is as follows,

δr ← δr + Δδk (13)

In this paper, 11 different sizes of actions are designed in the action space to enable the
USV to adopt various behaviors, such as not changing the rudder angle, slightly changing,
and hard changing. Therefore, the specific designs of action space are as follows,

A = {−5◦,−4◦,−3◦,−2◦,−1◦,+0◦,+1◦,+2◦,+3◦,+4◦,+5◦} (14)

The third part is the design of the reward signal, which evaluates the various USV
behaviors at each training step. The training is to continuously learn about the new envi-
ronmental conditions and maximize their estimation of future benefits, but this estimation
is derived from the design of reliable reward signals. The reward design of this paper is
divided into the following two parts,

(1) The reward for goal

(a) Terminal reward
The terminal is where the end of USV navigation is on each training episode. The
design of the terminal reward can encourage this good behavior and affect the

whole training environment through bootstrap. When
√
(xU − xt)

2 + (yU − yt)
2

< rmin + rt, it is considered that reaching the terminal, and getting the reward, Rt.
(b) Collision reward

Avoiding obstacles is another important goal in training. Punishment for colli-
sion can teach the trained USV to keep a safe distance from obstacles. When
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√
(xU − xO)

2 + (yU − yO)
2 < r or

√
(xU − xO)

2 + (yU − yO)
2 < rO, it is consid-

ered that colliding the obstacle USV. The collision reward obtained is RO.

When
√
(xU − xO)

2 + (yU − yO)
2 < r + rS, it is considered that colliding the

static obstacle. The collision reward is RS.
(c) COLREGs reward

COLREGs provide a constraint for USV behaviors. Integrating COLREGs into the
training process in a reward signal can endow the trained USV agent with regularized
avoidance behavior. When E ∈ {E3, E4} and a /∈ {0◦,+1◦,+2◦,+3◦,+4◦,+5◦},
the reward signal RC = kCuCRI can be obtained. The more dangerous the
moment of breaking the COLREGs, the higher the penalty for USV. When
E ∈ {E3, E4} and a ∈ {0◦,+1◦,+2◦,+3◦,+4◦,+5◦}, or E ∈ {E1, E2, E5, E6},
there are the conditions that the our USV should go straight or turn left or right.
The designed reward signal is 0.

(d) Seamanship reward
When there are no obstacles or no duty to give way, our USV should keep straight
as far as possible. Therefore, the following seamanship reward is designed to
restrain the navigation behavior of the USV: When a /∈ {0◦} and uCRI = 0, the
reward is Rδ.

(2) Guiding reward
The guiding reward can enrich the reward signal in a training environment and avoid
the training difficulty caused by the sparse rewards problem.

(a) Course reward
The course that points more toward the terminal is considered to be a better
state, so the course reward signal is designed as follows,

Rϕ = kϕ(ϕk − |ϕU − ϕT |) (15)

where ϕk is the critical value of the positive or negative reward.
(b) Course better reward

The agent’s behavior is positive if it makes the course more pointed toward the
terminal after an action, so the course better reward signal is designed as follows,

RΔϕ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rs , if φ smaller
rb , if φ bigger
re1 , if φ doesn’t change, and φ = 0
re2 , if φ doesn’t change, and φ �= 0

(16)

Thus, the complete reward signal function can be expressed as,

R = Rt + RO + RS + RC + Rδ + Rϕ + RΔϕ (17)

After designing the state space, action space, and reward signal, the training
system is completed. Figure 5 shows the complete training architecture. At
each step, the state information is input into the neural network, then the value
of all actions based on the current network parameters and state is obtained
through the neural network. Then the selected action is obtained, resulting in
the environment update.

178



J. Mar. Sci. Eng. 2023, 11, 812

Figure 5. Training Architecture.

4. Improvement for USV Collision Avoidance Algorithm

4.1. Double DQN

In the training process of the DQN algorithm, uncontrollable overestimation of the
action value generally exists, which is caused by the unknown of the real action value
in the learning process, resulting in the performance of the training being affected and
even falling into local optimal [39]. The DQN algorithm uses a greedy policy based on the
action with the maximum action value in the action space, which will introduce significant
maximization bias. This kind of overestimation is common. However, the influence of
overestimation on the optimal policy can be reduced as much as possible by Double Q
learning. In the traditional DQN algorithm, as shown in Equation (18), the action is chosen
through the target network, while the value estimation output is also. This operation is
the root cause of the overvaluation. Therefore, it can be decoupled by two neural network
outputs. The action is selected by the evaluated network rather than based on the target
network to reduce the impact of the overestimation problem [40]. A new calculation
method can be obtained as shown in Equation (19).

YDQN
t = r + γ max

a′
Q(s′, a′; θ−) (18)

YDouble_DQN
t = r + γQ(s′, arg max

a′
Q(s′, a′; θ); θ−) (19)
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4.2. Dueling DQN

Dueling neural network architecture is an outstanding method [41]. As shown in
Equation (20), the action value function is divided into a state value function and an
advantage function. The former describes the worth of a state, while the latter describes
the relative importance of each action. It can distinguish the value of different states and
actions, leading to more robust training.

Q(s, a; θ, α, β) = V(s; θ, β) + A(s, a; θ, α) (20)

4.3. Prioritized Experience Replay

As a pivotal part of the DQN algorithm, the experience replay buffer can reduce sample
correlation and improve sample utilization. The traditional DQN algorithm uniformly
samples the experience from the replay buffer after storing samples through action policy.
However, this form may not be optimal. In different training conditions and steps, the value
of each interaction for network training is distinct. If interactions have different sampling
probability weights, the interactions that are more valuable to the current USV training will
be assigned higher weights, which will be more conducive to agent learning [42]. Here
a significant index, TD-error, forms an essential part of the loss function and a basis for
gradient descent. This index provides easily accessible and valid evidence for the definition
of priority, making the interactions in the experience replay buffer with a certain tilt. This
random-priority method makes learning from the experience more robust. TD-error is
as follows,

TD = r + γ max
a′

Q(s′, a′; θ−)−Q(s, a; θ) (21)

Interactions with high sampling weights are also not guaranteed to be sampled at any
step, while those with low sampling weights are not necessarily not sampled. The priority
only makes the samples that need to be chosen much easier. The probability of sampling is
as follows,

P(i) =
pα

i
∑m pα

m
(22)

where P(i) is the probability of sampling for each interaction, and there are m interactions
in the experience replay buffer. α is used to adjust the effect of priority. When α → 0,
it is uniform sampling, and the higher α is, the more prominent the effect of priority on
sampling. This paper adopts proportional prioritization as follows,

pi = |TDi|+ ε (23)

where, TDi is the TD-error after normalization of TDi =
TDi

TDmax
, and ε is a parameter to

avoid the problem of zero denominators.
The off-policy method requires importance sampling weights (ISW) to correct the

bias of estimation based on different samples. However, the transfer probability of the
Q-learning algorithm is not dependent on policy but on the environment. Therefore, it
does not need ISW. Nevertheless, the prioritized experience replay method breaks this
advantage because the unbiasedness of the expected value estimation depends on the
sample with the same distribution as the expected value. The prioritized experience replay
changes the distribution of the samples in an uncontrolled way. Therefore, it is necessary to
compensate for this bias by adding ISW, which is calculated as follows,

ωi =

(
1
N

1
P(i)

)β

(24)
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This normalized ISW can make the updating process more stable. β can adjust the
impact of prioritized experience replay. When β → 1, it cancels out the inconsistent
probability effect of prioritized experience replay. So, its loss function is shown as follows,

L(θ) = E

[
ωiTDi

2
]
. (25)

4.4. Noisy Network

Because the training environment considered in this paper is multivariate, it places
high demands on the exploratory capabilities of the algorithm. Although promoting the
exploration with ε greedy policy is easy to implement and their effect is acceptable in most
cases, it is not a reasonable enough choice because the agent acting up to the greedy-action
with a specific probability value is too aimless. So, it can drive exploration by adding a
learnable noise instead of ε greedy policy [43], which has not been used in USV collision
avoidance. The weight and bias of the neural network become uncertain due to the noise
parameters, which will increase the uncertainty of neural network output and promote
agent exploration. After adding noise, the neural network can be expressed as follows,

y .
= (μw + σw � εw)x + μb + σb � εb (26)

where, weight w is divided into two parts, the weight μw without noise and the weight
σw with noise. εw is the noise parameter, and � represents element-wise multiplication
for adding the noise to each weight σw in the neural network. Similarly, μb is the bias
without noise, and σb is the bias with the noise parameter of εw. The noisy network forms a
way of exploration by reasonably controlling the noise added to each network parameter,
which can meet the different exploration needs in different training conditions. Factorized
Gaussian noise is chosen to construct the noise in the neural network, which has a lower
computational cost, that is suitable for the DQN algorithm. The noise can be constructed
as follows, {

εw
i,j = ζ(εi)ζ(ε j)

εb
j = ζ(ε j)

(27)

where, ζ(a) = sgn(a)
√|a| is a function for construction of noise. All the value of param-

eters εi and ε j are obeyed Gaussian distribution as ε ∼ N(0, k). The variance k limits the
noise size, and the higher variance means a greater ability to explore. The mean of zero
means introducing noise parameters will not bias the original policy. Introducing a noisy
network instead of the traditional neural network is more beneficial for environment explo-
ration. The noise drives the exploration making the algorithm more flexible, reasonable,
and efficient. So, its loss function is as follows,

′
L (ζ)Noisy = Eε,ε− [E(s,a,r,s′)[r + γ max

a′
Q(s′, a′, ε−; ζ−)−Q(s, a, ε; ζ)]2]. (28)

4.5. Improvements with USV Characteristics

Since the input to the neural network in the form of USV states contains scalar values
with many differences in the order of magnitude, such as rudder angle values, direction
values, and distance values, it is not reasonable to put them directly into training. USV
state clipping is a benefit for improving the network training efficiency. By normalizing the
input, the potential problem of the large descent gradient caused by the differential input
can be avoided as much as possible, which makes neural network training more robust.

If the obstacles are too far from our own USV, the changes in the distance between
the USVs do not affect the navigation of the USV. Therefore, it is not worth wasting more
computational resources on learning these conditions. In this paper, a simplified way is
designed, using the collision avoidance parameter of DA, the distances between USVs and
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obstacles or the terminal more than the DA value R are limited to R, which can effectively
improve the training effect.

The code for this Algorithm 1 is as follows,

Algorithm 1 DRLCA algorithm code
Initialize USV training environment
Initialize experience replay buffer H to capacity of C
Initialize evaluation neural network in θ
Initialize target network in θ− = θ
Initialize variance of noise in k
For episode = 1, n do

Initialize initial states of each USV and static obstacles
Initialize speed of our USV and obtain ship domain size r in current episode
While true

Update the USV collision avoidance training environment
Generate εi and ε j
Get noise parameters
Select the action with am = arg max

a
Q(s′, arg max

a
Q(s′, a; θ), ε−; ζ−)

Changing rudder angel by execute action a∗ = am in environment, and obtain sm+1
Obtain collision avoidance reward signal R = Rt + RO + RS + RC + Rδ + Rϕ + RΔϕ

Store current transition (sm, am, rm, sm+1) in experience replay buffer H
Assign current transition to highest priority pmax
By priority for each transition P(i), sample the random minibatch of transitions (sk , ak , rk , sk+1) from H

for learning
Caculate ISW ωi for each transition in minibatch
Caculate TD-error TDi .

Obtain yi =

{
rj, i f j + 1 is the terminal
rj + γ max

a′
Q(sj, a′, ε−; ζ−), otherwise

Using gradient descent with ISW, Update evaluate network parameters θ
Update pi = |TDi |+ ε for all samples
If it is target network updating step xN

update the weight θ− = θ
End if
The number of steps counted plus 1

End while
End for
Return the weight θ∗ = θ− of target network

5. Experiments

5.1. Training Environment

Figure 6 shows a collision avoidance training environment designed with a single
obstacle USV. The left part of this figure shows how the obstacle USV is generated, with
360 initial positions, spaced the degree of η = 1◦ evenly distributed around the circumfer-
ence. The right part of this picture shows how the static obstacles are generated, with eight
potential locations for each initial location of obstacle USV. Six of these locations are evenly
distributed around the circumference of the circle, and the other two are at the intersection
of line P1P3, line P4P6, and line P2P5. In each episode, randomly select two locations from
these eight locations to generate static obstacles. It constitutes a simulation environment
with 360 × 8 × 7 = 20,160 random combinations of obstacles. In addition, the simulation
in this paper is based on the Unity virtual marine simulation training and testing platform.

This experiment is based on 2× RTX 2080Ti GPUs, Xeon Gold 5218 CPU, Python 3.6,
and Tensorflow 1.15 for environment building, algorithm training, and collision avoid-
ance testing.
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Figure 6. Training environment.

5.2. Framework for Training

Based on the various improvements of the algorithm structure and simulation envi-
ronment, the training hyperparameters selected in this paper are shown in Table 1. For
more stable training, the learning rate is designed to be very low and the discount factor
very high, 0.0001 and 0.99, respectively. The update frequency of the target network is
4096, and the sampling number is 600. The noise variance is 0.1, and the mean value is 0,
which ensures a suitable exploration capability while avoiding the bias caused by noise.
The ISW is initially 0.5, and the priority experience replay factor is 0.4. For better training,
start training on the 2000th step. The experience replay memory size of 1,000,000 ensures
that no experience is dropped.

Table 1. Hyperparameters for training.

Hyperparameter Value

Learning Rate 0.0001
Discount Factor 0.99

Target Network Update Frequency 4096
Replay Memory Size 1,000,000

Batch Size 600
Noise Variance 0.1

Noise Mean 0.0
Greedy Value 1.0

Importance Sampling 0.5
Linearly Anneal of Importance Sampling 1.25× 10−6

Priority Experience Replay 0.4
Replay Start Size 2000

Figure 7 shows the neural network architecture in this paper. With 900 neurons in
each layer, the green part is the traditional layer of the Q network, the yellow is the noise
layer, the blue is the dueling network architect, the orange is the addition operation, the
red is state input, and the black is the action output. The optimizer is Adam. The activation
function is Lecky_ReLU.

183



J. Mar. Sci. Eng. 2023, 11, 812

Figure 7. Neural network architecture.

5.3. Training

The average reward in training is shown in Figure 8. The same ten sets of random
number seeds are selected for all algorithms for ten simulations, and the average reward
graph containing confidence regions is plotted. In ten simulations, the average reward
per 40 episodes is averaged to one value, forming ten values, and the point on the curve
is the average of these ten values. The shaded part in this figure shows the confidence
region, whose upper and lower bounds are the maximum and minimum values among
these ten values. The means of the average reward value of each algorithm over different
training stages is shown in Table 2. An individual improvement is limited, but the algorithm
proposed in this paper, DRLCA, combining all improvement methods, has a very significant
collision avoidance performance. The average reward of DRLCA rises very fast in the early
stage, especially the first point on the curve, which is already much higher than others and
smooths out at a higher average reward value position in the later stage of training.

Figure 8. Average reward.
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Table 2. Mean of rewards at different stages of training.

Alogrithm
First Third of

Training
Middle Third of

Training
Last Third of

Training

DRLCA −75.86 −32.61 −20.83
DQN −91.05 −48.37 −47.26

Double DQN −85.33 −47.62 −49.55
Per DQN −81.92 −37.46 −51.17

Dueling DRLCA −96.42 −48.82 −38.18
Noisy DQN −81.97 −43.11 −34.09

As Figure 9a shows the condition of USV training in the first episode, the USV will
keep rotation because the agent has no knowledge about this environment and is basing its
movement on random exploration. Figure 9b shows the training effect in the 9th episode,
where the USV tries to collect more experience. Figure 9c shows the training effect in the
20th episode. The USV has tried more behaviors to explore this environment. Figure 9d
shows the training effect in the 46th episode, where the USV reaches the terminal for the
first time, which is very important for the training and proves that the guidance reward
designed in this paper is very effective. Figure 9e shows the effect in the 124th episode,
where the failed collision experience with the obstacle USV is crucial for better learning.
As shown in Figure 9f, the effect in the 358th episode, the USV constantly optimizes
its behavior, and within the next thousands of training episodes, the optimal collision
avoidance policy is approached continuously.

(a) (b) (c)

(d) (e) (f)

Figure 9. Training. (a) First episode; (b) 9th episode; (c) 20th episode; (d) 46th episode; (e) 124th
episode; (f) 358th episode.

To verify whether all the improvements have positive effects and whether removing
one leads to better training, an ablation study is performed. The average reward of the
ablation study is shown in Figure 10. The means of the average reward value of each
algorithm over different ablation study stages is shown in Table 3. The average reward
height and increase rate of the algorithms with any one improvement removed are lower
than the DRLCA, verifying all the improvement methods are complementary.
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Figure 10. Ablation study.

Table 3. Mean of rewards at different stages of ablation study.

Alogrithm
First Third of

Training
Middle Third of

Training
Last Third of

Training

DRLCA −75.86 −32.61 −20.83
DQN −91.05 −48.37 −47.26

Without Double DQN −97.36 −43.94 −31.61
Without Per DQN −88.91 −49.68 −33.53

Without Dueling DRLCA −69.30 −35.92 −31.44
Without Noisy DQN −73.84 −52.57 −52.04

5.4. Test

The first test environment is shown in Figure 11, where our USV is in the No. 6
encounter situation with the USVO, and USVU should avoid the USVO and steers both to
port and starboard are allowed. Concurrently, the two static obstacles do not obviously
block the navigation of our own USV that can be used to test whether the USV collision
avoidance agent has learned to ignore the non-hazardous obstacles. Figure 11a shows the
effect of collision avoidance of the DRLCA algorithm and Figure 11b DQN algorithm. The
initial position of the USVO, static obstacles 1 and 2 are (402.33, 783.66), (216.34, 402.33),
and (442.76, 205.51). The course of obstacle USV is 161◦. Figure 11c shows the change of
rudder angle and course of collision avoidance of the DRLCA, Figure 11d DQN algorithm.
Figure 11e shows the changes in the distance of collision avoidance of the DRLCA algorithm,
Figure 11f DQN algorithm. By adding up 180− φ (if φ > 180◦) or φ (if φ ≤ 180◦) in each
second, the accumulated course deviation can be obtained, and the DRLCA is 1730.28◦and
DQN is 3781.80◦. The closest distances to the three obstacles are 43.89 m, 136.66 m, and
162.22 m for DRLCA, and 129.81 m, 169.04 m, and 104.55 m for DQN.

The second test environment is shown in Figure 12, where it is in the No. 1 encounter
situation, and USVU should avoid the USVO and steers both to port and starboard are
allowed. In addition, there are two static obstacles, one of which does not affect our USV’s
navigation, and the other does. It tests the collision avoidance ability when encountering
static obstacles and USV at the same time. Figure 12a,b show the effect of collision avoid-
ance of DRLCA and DQN. The initial position of the USVO, static obstacles 1 and 2 are
(654.51, 757.15), (505.24, 799.95), and (628.56, 422.74). The course of obstacle USV is 211◦.
Figure 12c,d shows the change of rudder angle and course of collision avoidance of DRLCA
and DQN. Figure 12e,f shows the distance in collision avoidance of DRLCA and DQN. In
the index of accumulated course deviation, the DRLCA is 707.51◦, and DQN is 2357.59◦.
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The closest distances to the three obstacles are 44.32 m, 245.9 m, and 99.51 m for DRLCA
and 57.6 m, 274.29 m, and 66.81 m for DQN.
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Figure 11. Encounter situation 1. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.
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Figure 12. Encounter situation 2. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

The third test environment is shown in Figure 13. The interference from the obstacle
USV is not significant, which can verify the ability to avoid static obstacles. Figure 13a,b
show the effect of collision avoidance of DRLCA and DQN. The initial position of the
USVO, static obstacles 1 and 2 are (789.77, 422.35), (538.82, 644.89), and (461.18, 355.11).
The course of obstacle USV is 285. Figure 13c,d shows the change of rudder angle and
course of collision avoidance of DRLCA and DQN. Figure 13e,f shows the distance in
collision avoidance of DRLCA and DQN. The accumulated course deviation is 3371.51◦ for
DRLCA, and DQN could not compare because of the incomplete navigation. The closest
distances to the three obstacles are 136.02 m, 100.57 m, and 138.48 m for DRLCA and
36.45 m, 65.79 m, and 103.96 m for DQN.
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Figure 13. Encounter situation 3. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

The fourth test environment is shown in Figure 14. Our USV is in the No. 4 encounter
situation with the obstacle USV, and there is no interference from the static obstacles.
Figure 14a,b show the effect of collision avoidance of DRLCA and DQN. The initial
position of the USVO, static obstacles 1 and 2 are (363.80, 232.70), (232.70, 636.20), and
(633.65, 431.90). The course of obstacle USV is 27◦. Figure 14c,d shows the change of
rudder angle and course of collision avoidance of DRLCA and DQN. Figure 14e,f shows
the distance in collision avoidance of DRLCA and DQN. The accumulated course deviation
is 909.19◦ and 2074.92◦ for DRLCA and DQN. The closest distances to the three obstacles
are 55.11 m, more than 300 m, and 88.98 m for DRLCA and 33.16 m, 265.91 m, and 183.41 m
for DQN.
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Figure 14. Encounter situation 4. (a) Path planned by DRLCA; (b) Path planned by DQN; (c) Course
and rudder for DRLCA; (d) Course and rudder for DQN; (e) Distance for DRLCA; (f) Distance for DQN.

Table 4 shows the comparison results for four experiments. In groups 1, 2, and
4 experiments, the DRLCA reduced the total course deviation by 54.25%, 70.00%, and
56.18%, respectively, compared with the DQN, with an average improvement of 60.14%.

In total, 100 experiments of collision avoidance under the same random number seed
are carried out. As shown in Table 5, the results of these experiments are recorded. The
number of successful arrivals, out-of-bounds, and collisions are also recorded, and the
success rate of the DRLCA is much higher. Because the failed collision avoidance will affect
the result of the accumulated course deviation, only the experiments that reach the terminal
are used for the calculation. The accumulated course deviation for DRLCA is 2150.02◦, and
DQN is 2929.36◦, improving 26.60%. Finally, the average time per experiment is compared
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for DRLCA and DQN, which are 211.875 and 214.304 s, improving by 1.13%. The improved
algorithm performs better on collision avoidance problems in this environment.

Table 4. Results of four experiments.

Experiment Result Course Deviation

Test environment 1, DRLCA arrival 1730.28◦
Test environment 1, DQN arrival 3781.80◦

Test environment 2, DRLCA arrival 707.51◦
Test environment 2, DQN arrival 2357.59◦

Test environment 3, DRLCA arrival 3371.51◦
Test environment 3, DQN collision /

Test environment 4, DRLCA arrival 909.19◦
Test environment 4, DQN arrival 2074.92◦

Table 5. Results of 100 times experiments.

Algorithm Successful Arrival Out of Bound Collision Average Accumulated Deviation of Course Average Time

DRLCA 97 3 0 2150.02◦ 211.875 s
DQN 56 30 14 2929.36◦ 214.304 s

5.5. Multi-Obstacle USV Collision Avoidance

A test effect diagram of multi-obstacle USV collision avoidance is shown in Figure 15.
As shown in Figure 15a, the first stage shows the initial condition of a test environment.
The obstacle USVs are at the position of (250, 600), (570, 480), and (800, 200). The static
obstacles are at (250, 270) and (400, 500). The course of obstacle USVs are 90◦, 225◦, and
315◦. As shown in Figure 15b, stage 2 is a condition when our own USV avoids a static
obstacle. As shown in Figure 15c, our USV encounters USVO2 in the No. 1 encounter
situation, turns to the starboard, and successfully avoids the obstacle USV. As shown in
Figure 15d, our USV encounters the USVO3 in the No. 3 encounter situation. Our USV
successfully turned to the starboard to avoid the obstacle USV according to the COLREGs.
As shown in Figure 15e, stage 5, the USVU is close to the USVO1, but there is no hazard of
collision. Therefore, our USV continued to navigate to the terminal. Finally, as shown in
Figure 15f, our USV arrives at the terminal.

(a) (b)

Figure 15. Cont.
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(c) (d)

(e) (f)

Figure 15. Multi-USVs collision avoidance environment. (a) Test stage 1; (b) Test stage 2; (c) Test
stage 3; (d) Test stage 4; (e) Test stage 5; (f) Test stage 6.

6. Conclusions

This paper proposes an autonomous USV collision avoidance framework, DRLCA,
which can be applied to USV navigation. The collision avoidance characteristics and
maneuverability of USV are considered, and an efficient method for collision avoidance
agent training is designed accordingly. A dueling architecture and a double learning
method are used to improve training efficiency. Prioritize experience replay method is
used instead of the uniform sampling method to improve sample utilization. The noisy
network method, which has not been applied to the USV collision avoidance problem,
is used to increase the exploration capability in USV training, verifying the feasibility
of this method. Combining the characteristics of USV collision avoidance, two effective
improvement methods are proposed in this paper, namely USV state clipping and DA
distance restriction. Combined with the Unity virtual marine platform, which has realistic
physical characteristics, the effect of the DRLCA is reliably verified and compared. The
result shows that the improved collision avoidance algorithm proposed in this paper has a
superior USV collision avoidance effect.

In the future, the ship domain will be replaced by an ellipse that can vary with speed
to achieve a more accurate simulation of realistic collision avoidance situations. At the same
time, the reward signal will be designed to be more detailed and associated with different
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information, such as distance, speed, and angle. How the stability and generalization ability
of the algorithm can be further improved will be investigated to cope with the situation that
about 3% of the DRLCA algorithm proposed in this study still does not arrive at the terminal.
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Abbreviations

The following abbreviations are used in this manuscript:

USV unmanned surface vehicle
DQN deep Q network
DRL deep reinforcement learning
COLREGs international regulations for preventing collisions at sea
DRLCA deep reinforcement learning collision avoidance
DDPG deep deterministicpolicy gradient
LSTM long short-term memory
SD ship domain
DA dynamic area
CRI collision risk index
DCPA the distance at the closest point of approaching
TCPA time to the closest point of approaching
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Abstract: A new control algorithm was designed to solve the problems of actuator physical failure,
remote network attack, and sudden change in trajectory curvature when a port’s artificial intelligence-
based transportation robots track transportation in a freight yard. First of all, the nonlinear, redundant,
saturated sliding surface was designed based on the redundant information of sliding mode control
caused by the finite nature of control performance; the dynamic acceleration characteristic of super-
twisted sliding mode reaching law was considered to optimize the control high frequency change
caused by trajectory mutation; and an improved super-twist reaching law was designed. Then,
a nonlinear factor was designed to construct a nonlinear, fault-tolerant filtering mechanism to
compensate for the abnormal part of the unknown input that cannot be executed by adaptive neural
network reconstruction. On this basis, the finite-time technology and parameter-event-triggered
mechanism were combined to reduce the dependence on communication resources. As a result,
the design underwent simulation verification to verify its effectiveness and superiority. In the
comparative simulation, under a consistent probability of a network attack, the tracking accuracy
of the algorithm proposed in this paper was 22.65%, 12.69% and 11.48% higher those that of the
traditional algorithms.

Keywords: nonlinear-fitting redundant sliding mode; event-triggered; abnormal input; neural
network; artificial intelligence transportation robots; track tracking

1. Introduction

With the advent of the era of Industry 4.0, artificial intelligence transportation robots
have gradually matured and have become widely used in ports, logistics, and other freight-
related situations [1]. Tianjin Port uses cutting-edge technologies, such as unmanned
driving, artificial intelligence, and big data, to replace traditional transportation equipment.
There are artificial intelligence transportation robots and a high level of automation for
terminal operations, and it serves as a reference for the construction and development of
domestic container automation terminals. In 2020, Hefei Port introduced artificial intel-
ligence transportation robots, which continuously improve and expand their perception
capabilities in a real operating environment through fusion algorithms, and realize the
trajectory prediction of surrounding traffic participants. They not only realize safe and
stable operation, but also take into account operational efficiency to ensure efficient and
smooth operation. Other port yards have gradually introduced artificial intelligence trans-
portation robots, as shown in Figure 1. However, unknown control anomalies caused by
dynamic uncertainty, control signal transmission noise, network attacks, and program
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faults in the real environment make it impossible for artificial intelligence transportation
robots to achieve precise control. In order to ensure the efficient operation of artificial
intelligence transportation robots in ports and terminals, high-precision trajectory tracking
control is an urgent problem to be solved.

Figure 1. Artificial intelligence transportation robots: operational diagram of the Qingdao Port
Freight Yard.

Nowadays, the robustness of mature control algorithms such as PID [2] and linear
feedback [3] cannot meet the actual needs of jobs in complex scenes. Sliding mode control [4]
is recognized by the control community more and more because of its good robustness and
simple structure. It is worth noting that how to effectively reduce the chattering effect of the
algorithm itself has become a main premise of practical engineering applications. Therefore,
under the premise of ensuring robustness, some scholars used the high-dimensional sliding
surface [5] to optimize the buffeting threshold, and others used the dynamic characteristics
of the sliding mode to design the variable-speed reaching law [6–10] to slow the speed of
the near sliding surface to reduce chattering.

It is worth noting that reducing chattering will reduce the robust performance of
sliding mode control to a certain extent. The interference caused by dynamic uncertainty
especially will mean the robustness of the algorithm cannot be fully brought into play. There-
fore, Baek et al. [11] established a stochastic stability judgment mechanism for uncertainty,
and used a time-delay estimation scheme combined with adaptive technology to achieve
good asymptotic stochastic stability. Niu et al. [12] used neural network approximation
to realize on-line robust sliding mode adaptive control. However, adaptive conservatism
will waste control resources, and intelligent algorithms require high performance of the
controller and need to be further optimized. Zhang et al. [13] proposed a high-order, fast,
non-singular, terminal sliding mode controller based on a double-disturbance observer,
which effectively weakens the chattering phenomenon of the system. Wang et al. [14]
proposed an adaptive, proportional-integral-derivative, fractional-order, non-singular, ter-
minal sliding mode control method based on time-delay estimation, which realizes timely
and accurate adjustment of the control gain of the robust term. Shao et al. [15] proposed an
adaptive, recursive terminal sliding mode controller. The fast, non-singular end sliding
function, and the recursive integral end sliding function were designed by using the recur-
sive structure, so that the sliding surface reaches continuously, which significantly improves
the tracking-error-convergence speed and the anti-interference ability speed-wise.

In practical engineering, robot tasks are required to be timely, and most of the above
algorithms are asymptotically stable. Therefore, how to complete the tracking movement
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within a specified time is an urgent need for the project. Therefore, finite-time technology
was proposed and applied in control systems [16–18]. Wang et al. [19] used a variable
division technique and fuzzy control. Wang et al. [20] took advantage of the approximation
of fuzzy logic systems. Fang et al. [21] gave sufficient conditions for practical fixed-time
stability, as did Ba et al. [22], with the help of a neural network and backstepping technology.
Zuo [23] carried out finite-time control design for second-order nonlinear systems with
uncertainties and disturbances. However, the convergence time of the system with finite-
time stability increases with the initial error, which greatly weakens the convergence
performance of the system. At the same time, in actual engineering, there is are artificial
intelligence transportation robots that have physical limits in the initial stage, and the
error is mostly the maximum error of the control task, but this characteristic has not been
paid attention. The use of limited control resources to complete the control an abnormal
environment has not been further considered.

When transporting in a port’s cargo yard, due to the automatic operation of multi-
frequency scanning for a long time, the equipment will be worn out, which greatly reduces
the control accuracy. Academia mainly studies problems of this kind from the point of view
of being with or without detectors [24–27]. Although sliding mode control can be passively
fault-tolerant without a detector [28], its fault-tolerant response is not sensitive enough,
and its reconstruction accuracy is not high. Therefore, it is often combined with adaptiv-
ity, an observer, and other technologies. There is also a zero-order hold mechanism for
event-triggering to compensate for faults while reducing communication resources [29,30].
In addition, the remote control signal of the robot is calculated and sent by the wireless
upper control terminal, but the host may have some problems, such as Trojan horse im-
plantation, redundant data interference, illegal attack, transmission noise, and so on. This
will lead to matching interference in the transmission information [31]. However, for when
these effects lead to abnormal control, how to better carry out the soft compensation of the
control side is the focus of this paper.

To sum up, it can be known that reducing the parameter-tuning complexity of sliding
mode reaching-law control to reduce chattering and ensure reaching efficiency is a direction
that needs to be improved in the research of super-twisted reaching laws. The physical
limitations of the robot lead to the integration-performance redundancy of unutilized resid-
ual errors on the traditional sliding mode surface, which is also challenging. In addition,
how to better compensate for the abnormal control problems caused by signal interfer-
ence, network attacks, and faults is also very important. Therefore, a new type of sliding
surface was designed. The dynamic acceleration characteristics of the sliding mode are
considered to improve the super-distortion reaching law, the nonlinear saturated filtering
fault-tolerant mechanism is used to fit the abnormal information, and the adaptive neural
network technology is used to fit and compensate. Finally, the stable control of artificial
intelligence transportation robots was realized and event-triggered. The main innovations
of this paper are as follows:

1. The integral processing easily produces the problem of stable error, but the error
state is bounded; that is, the redundant information can be said to be bounded by the state,
the reference trajectory, and information beyond the limit. The elimination of redundant
information is limited to the bounded range, which effectively reduces the problem of stable
error. Using the function of eliminating redundant information of residual error by integral
term, the integral saturation mechanism is designed. While avoiding integral saturation,
the redundant information of residual error, which can be offset by the maximum control
performance, is removed. Compared with the ordinary integral sliding mode control, it
will improve the controllable stability of sliding mode control in the case of fault tolerance
and saturation.

2. The speed of traditional super-twist near the sliding mode surface is larger than
that of the sliding mode dynamic method in this paper. From the angle of approaching
dynamics, a better approaching state can be obtained from a lower speed, so there is a better
buffeting suppression effect than traditional super-twist, and the parameter adjustment
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is also simpler. The control method overcomes the shortcomings of the traditional super-
twist reaching law, such as the complex adjustment of the parameters and the tendency
to increase the buffeting when approaching the instantaneous mutation. Considering the
acceleration dynamic characteristics of the reaching law, the nonlinear, variable damping
reaching law is designed to reduce the change rate of the switching interval between the
reaching stage and the sliding stage of the sliding mode, thereby improving the buffeting
weakening ability and the reaching efficiency.

3. When solving the problem of the control signal being attacked by data interference
and the partial failure of the actuator, the low fitting accuracy of the control abnormal infor-
mation and the difficulty of signal-data interference-attack peeling in the literature [30–32]
are overcome. The nonlinear fitting factor was designed based on the virtual hypothesis of
abnormal information, and the nonlinear saturation-fault-tolerant filtering mechanism was
designed for the dynamic information of system state.

The rest of this paper is divided into four sections: Section 2 establishes the kine-
matic and dynamic motion models of the tracked underwater vehicle and sets out the
preliminary knowledge; Section 3 contains four parts: The first part proposes a new, non-
linear, projection redundant, feedforward sliding mode surface and a new sliding mode
reaching law. It also provides the theoretical comparison and proof of the advantages
of the method. The second part describes the event-triggered mechanism. Then, in the
third part, the new nonlinear fault-tolerant subsystem is proposed, and its effectiveness
is demonstrated. In the fourth part, the kinematics and dynamics controller are designed.
In the Section 4, the Simulink simulation is compared with the control system using a
traditional sliding mode approach law to verify the effectiveness of the control scheme
proposed in this paper. Section 5 gives the conclusion of this paper.

2. Model and Preliminaries

2.1. Artificial Intelligence Transportation Robot Model

The stability and safety of artificial intelligence transportation robots in container cargo
transportation are important, so differential mobile robots are often used. On the other
hand, the differential mobile robots have the characteristic of a nonholonomic constraint.
According to reference [33], the kinematic and dynamic models of robot motion plane are
as follows:

q̇(k) = S(q(k))u(k) (1)

u̇(k) = M̄−1(q)[B̄(q)τl − Fm(q̇)− τ̄d] (2)

where M̄(q) = ST(q)M(q)S(q), τ̄d = ST(q)τd, B̄(q) = ST(q)B(q), and τmax ≥ ‖τ‖. Fm(q̇)

is dynamic uncertainty of robot model. M(q) =

⎡⎣ m 0 −md sin φ
0 m mdc cos φ

−md sin φ m cos φ md2 + J

⎤⎦;

C(q, q̇) =

⎡⎣ 0 0 −ṁmdcosφ
0 0 −ṁmd sin φ
0 0 0

⎤⎦; M(q) =

⎡⎣ m 0 −md sin φ
0 m mdc cos φ

−md sin φ m cos φ md2 + J

⎤⎦;

C(q, q̇) =

⎡⎣ 0 0 −ṁmdcosφ
0 0 −ṁmd sin φ
0 0 0

⎤⎦; T =

[
TL
TR

]
; B(q) =

[
cos φ

r
sin φ

r − b
r

cos φ
r

sin φ
r

b
r

]
; AT(q) =

⎡⎣ sin φ
− cos φ
−d

⎤⎦; λ = −m(ẋ cos φ + ẏ sin φ)φ̇; τd =

⎡⎣ Td1
Td2
Td3

⎤⎦. λ is the Lagrange dynamics’

dykoll coordinates to kinetic multipliers of generalized coordinates. The linear velocity
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and angular velocity matrix is u =

[
v
w

]
. The kinematic model’s coefficient matrix

s(q) =

⎡⎣ cos θ d sin θ
sin θ −d sin θ

0 1

⎤⎦.

2.2. Mathematical Model of Abnormal Control

The data transmission network from controller to actuator is vulnerable to random
noise interference and data-injection interference. In addition, the actuator of the artificial
intelligence transportation robot will have a physical saturation limitation, so it is necessary
to carry out saturation fitting in advance. Here, the input nonlinear fitting model is
introduced. From Equation (2), the true actuator input of using hyperbolic tangent function
to fit the saturation characteristics of robot actuators has the following form:

τl(k) = Aττmax tanh(τ(k) + AD) (3)

where the τ(k) is the controller-calculated online signal. Ar is an input partial fault with
coupling characteristics. AD is a kind of data interference network attack with concealment
characteristics. AD = IA�,� has the characteristics of an independently distributed
Bernoulli sequence with a value of {0} or {1}. The A� is a virtual interference data value
of the control signal caused by the attack.

2.3. RBF Neural Network Fitter

This is inspired by the paper [34]. The radial basis function neural network (RBFNN)
approximation [35] is cited. As shown in Figure 2, a RBF neural network is a three-layer
neural network because of the nonlinear characteristics of system uncertainty. If there
exists an m-dimensional compact set Ξm ⊆ Rm → R and there is an unknown nonlinear
function f (Q) with initial value 0 defined on Ξm, the RBF approximator (4) is used to fit
the dynamic values of f (Q).

f (Q) = W∗ TZ(Q) + eZ(Q), ∀Q ∈ Ξm (4)

where ez(Q) is the bounded RBF fitting error, which is defined on the compact set Ξm.
|ez(Q)| ≤ ēz, and ēz is the maximum nuclear distance. To improve the nonlinear local ap-
proximation ability, the Gaussian function Z(Q) = exp

(
(Q− κ)T(Q− κ)/− l2) is selected

as the smooth kernel function. The κ is approaching the center column distance vector.
The l is a varying constant value. ∗ is the order-m dimensional weight row vector, which is
optimally fitted: as

W∗ = arg

(
min

W̃

{
sup

Q∈Em

∣∣Ŵ−Z(Q)− f (z)
∣∣}) (5)

where Ŵ is the minimum estimate of W∗ that optimizes Ef (Q).
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Figure 2. RBF neural network diagram.

The weight parameters in the online approximation process of the neural network
approximator have been identified using parameter-adaptive technology, which is different
from other neural networks [36] that generally need offline training. This method is based
on the adaptive RBF neural network method in the paper [37], combined with the minimum
parameter-learning method to perturbate the model’s parameters caused by the disturbance
and the neural network’s weight parameters for online adaptation, so the weight matrix
adjustment is automatically adjusted by the adaptive law. There are differences in the use
of control processes in other areas.

The RBF neural network used in this paper is based on the ideas in the paper [35],
and it is used as an online universal approximator, as a regression fitter, and it is fitted
online with the data, so it is different from the general neural network, and this article adds
the minimum parameter-learning method, as described in the paper [37]. The complexity
and calculation time are adjusted with adaptive changes in the control process, and there
is no need to train in advance when the uncertainty approximator of the control system,
the activation function, can be set and the weight matrix can be determined to achieve
universal approximation [35]. Therefore, taking advantage of the universal approximation
property of RBF and the absence of a need for training in advance, the uncertainty caused
by model dynamics and network attacks can be approximated nonlinearly.

2.4. Preliminaries

Lemma 1. For the system (1), when x∗ ∈ R and x∗ �= 0, if Lyapunov function V(x∗) > 0 exists,
Lyapunov condition of the finite-time stability can be given as [30]

V̇(x∗) + β1V(x∗) + β2V∗(x∗) ≤ 0 (6)

where β1 > 0, β2 > 0, and 0 < κ < 1, so the system is globally finite-time stable, and the stable
time depending on the initial state e0 is given as

TV = ln
((

β2 ·V1−κ(e0) + β
)

/β2

)
/(β1 − β1κ) (7)

The relevant proof is shown in reference [30].

Lemma 2. According to the Cauchy–Schwarz inequality, for any number ai and bi(i = 1, 2, . . . , n),
we can know (

n

∑
i=1

aibi

)2

≤
(

n

∑
i=1

a2
i

)(
n

∑
i=1

b2
i

)
(8)
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and any 0 < l < 1, there exists (
n

∑
i=1
|ai|
)t

≤
n

∑
i=1
|ai|t (9)

Lemma 3. For any bc > 0 and zt ∈ R, tanh(·) has the following property:

0 ≤ |zt| − zt tanh(zt/bc) ≤ 0.2785bc (10)

Assumption 1. The unknown bounded low frequency time-varying disturbance τ̄d is ‖τ̄d‖ ≤ τ̂d.
The initial system state errors, ue(0) and qe(0), are defined on a compact set, and it is assumed as
‖ue(t)‖ ≤ ūe and ‖qe(t)‖ ≤ q̂e.

Assumption 2. To the limited range of the freight yard, the range of motion and the desirably refer-
ence trajectory of the robot are bounded . The desirably reference trajectory qr =

[
xr yr θr

]T,

and reference positive scalar speed ur =
[

vr wr
]T. Their derivatives are smooth and bounded.

Assumption 3. The system (6) is a controllable system that satisfies Lemma 2. For facilitate matrix
operation, all constant terms are in the form of a diagonal matrix.

3. Controller Design

The virtual kinematic subsystem is designed to analyze velocity state in this section.
It can obtain tracking position of artificial intelligence transportation robots. Based on
characteristics of contaminated velocity state signals, the fault-tolerant filtering subsystem
is designed. Then, the nonlinear sliding mode surface is designed to improve the robustness
of the controller by establishing a nonlinear bounded state space and combined with the
reaching law to reduce the vulnerability of faults and contaminated communications.
Figure 3 is the schematic diagram of artificial intelligence transportation robot trajectory-
tracking control flow.

Figure 3. Schematic diagram of artificial intelligence transportation robots with a trajectory-tracking
control flow.

3.1. Nonlinear Saturation Fault-Tolerant Filtering Mechanism

According to the system (1), the kinematic position error is defined as

qe =

⎡⎣ xe
ye
θe

⎤⎦ =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦ ·
⎡⎣ xr − x

yr − y
θr − θ

⎤⎦ (11)
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According to the characteristics of virtual backstepping and kinematic spatial, the method
of velocity motion control at low latitudes of dynamics is used to design a virtual-kinematics
control law as the dynamic desire value (12).

ud =

[
vr cos θe − wθe + λ2(xe − d + d cos θe)

wr + λ−1
1 vr(ϑ1(ye + θe) + (dϑ1 + λ1ϑ2) sin θe)

]
(12)

where ur = [vr, wr]
T is the velocity of the reference trajectory.

Combined with the system state information, the error is designed as

Ue =

[
ve
θe

]
= ud − u (13)

Remark 1. The system input is contaminated by GPS sensor failure, unreliable signal, and
actuator failure in the system, which will result in an unknown input. After this kind of in-
put is executed, it will not be able to achieve stability control. Therefore, the nonlinear factor
ητ = Aτ

1+tanh(τ) tanh(Ad)
is involved in constructing the saturation-fault-tolerant mechanism.

The nonlinear saturation-fault-tolerant filtering mechanism η f (k) = 1− ητ + ητ tanh(Ad) de-
notes that the decoupling form about the unknown influence of the signal is dealt with nonlin-
early. According to error Equation (2), the fault-tolerant saturation filtering dynamic subsystem
is designed as u̇ = M̄−1(q(k))[B̄(q(k))τl(k)− F̄m(q̇(k))− τ̄d(k)] + η f (k). The F̄m(q̇(k)) =
Fm(q̇(k)) + τmaxM̄(q(k))η f (k).

This mechanism makes use of unknown information of attack and fault loss to form a nonlinear
virtual hypothesis. According to this hypothesis, signal attack and fault features can be extracted
better, and the fault-tolerant and adaptive ability can be improved further according to saturation
analysis method in the literature [32]. The filtering dynamic error is

ĖR(k) = u̇d(k)−
(

M̄−1(q(k))[B̄(q(k))τl − F̄m(q̇(k))− τ̄d]
)
− η f (k) (14)

3.2. Design of Nonlinear-Fitting, Redundant, Sliding Mode, Event-Trigger Fault-Tolerant Control

Step 1. A new type of a nonlinear, saturated, redundant sliding surface (NSRSMS).
The NSRSMS is denoted as:

SR(k) = ĖR(k) + γaER(k) + B0(ER(k))− Bl(ER(k)) (15)

where Bl(ER(k)) =
∫

tanh(ER(t)) ln
[

Bψ(ER(l)) exp(1)+1
1+exp(1)

]
dl, and Bψ(ER(k)) = βaER(k) tanh

(ER(k)).
The βa = diag{βa1, βa2} is positive permanent diagonal function. The B0(ER(k)) =

−[γaER(0)− l(ER(k))] is initial global approach term to ensure the global mode of SMC.

Remark 2. When the error is designed on a SMS, the maximum error that can be eliminated at
a single time has the characteristic of saturation because of the physical limitation of the control
ability of the controlled robot. Therefore, the redundant information of saturation is used to give
full play to the control performance, prevent the control performance from overshoot, and design a
nonlinear mechanism Bl(ER(k)) to improve the integral saturation. The characteristics of NSRSMS
and linear SMS SI(k) = ĖR(k) +

∫
ER(l)dl + ER(k) + B0(ER(k)) are shown in Figure 4, where∫

ER(l)dl is y-axis and ER(k) is the x-axis.
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NSRSMS
Linear SMS

Figure 4. Comparison of NSRSMS and linear sliding mode surface.

Remark 3. The control performance error struggles to meet the error overshoot when the error is
large; that is to say, the error of the expected performance is relatively easy to control, and if the
error exceeds a certain expected region, it will need to be compensated step by step. It can be seen
in Figure 4 that the saturation term is designed and applied to the sliding surface, the saturated
information is regarded as redundant information, the filtered saturated information is filtered
directly, and the expectation of a certain error is used as the fault-tolerant information control
point. It will be more conducive to the realization of fault tolerant control and reduce the waste of
control performance.

In addition, to avoid control instability caused by singularity in practical engineering, the sin-
gularity of the sliding surface is verified through Equation (16).

ṠR = ËR(k) + γaĖR(k) + Ḃ0(ER(k))− Bγ (16)

where Bγ = tanh(ER(t))
[
ln
(

Bψ(ER(t)) exp(1) + 1
)
+ ln(1 + exp(1))

]
, and we can know that

NSRSMS does not contain singularities in the control process.

Step 2. Nonlinear-damping, super-twisting reaching law (NDSTRL) considering ac-
celeration.

Although the redundant information of the integral saturated sliding mode surface
can be used to improve the control accuracy and reduce the residual error, if there is a
sudden instantaneous error, the buffeting problem can not be ignored, so the NDSTRL is
designed according to the traditional STRL. The NSTRL is denoted as

Ṡr = −γrχ(k) sign
(

ST
R

)
− γkSR (17)

where χ(k) = tanh
(
‖SR(k)‖

3
2
)
‖SR(k)‖

1
2 shows nonlinear time-varying gain. The STRL de-

notes Ṡs = −γrs‖SR(k)‖
1
2 sign

(
ST

R
)− γksSR, and ERL is defined as ṠE = −γrE sign

(
ST

R
)−

γkESR. Figure 5 shows NDSTRL, STRL, and ERL with coefficients equal to one.

205



J. Mar. Sci. Eng. 2023, 11, 659

Figure 5. Comparison of NDSTRL and STRL.

Remark 4. From Figure 5, we can see that the STRL can effectively regulate the reaching speed
according to the system state value. When the reaching speed reaches the SMS, the reaching speed
will be decelerated smoothly. The sudden deceleration at the break point of ERL (see the ERL in
Figure 5a), which can not avoid chattering, will increase the chattering amplitude. Figure 5a shows
that the acceleration of the NDSTRL decreases gradually, and the speed is adjusted gradually.
The acceleration of SMC reaching dynamics are better controlled, which is more conducive to
reducing buffeting. Additionally, even better, in the case of a large error, the speed of sliding mode
will not be reduced.

Remark 5. In addition, we can see in Figure 6 that the NDSTRL acceleration gain has the effect of
adjusting the acceleration trend. The status is closer to that of the SMS; the gain is more, which
will slow down the velocity trend (see Figure 6a). Moreover, the reaching speed can be dynamically
accelerated when the error is large, and speed gain does not need to be adjusted (see Figure 6b).

NDSTRL (
r
=1,

k
=1)

NDSTRL (
r
=1,

k
=1.5)

NDSTRL (
r
=1.5,

k
=1)

(a)

(b)

Figure 6. Comparison of NSTRL and STRL.
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Step 3. Controller based on event-triggered memory input mechanism.
Under the influence of unexpected situations such as network attacks and faults,

saving communication resources can reduce the instability of network control to a certain
extent, so an online memory input event-triggered mechanism was designed (shown in
Equation (18)). This mechanism allows the controlled robot to complete stable control
without achieving the ideal control precision, which can also help to achieve stable control
with a certain level of precision under network attacks.

‖Tl(k)‖ � λ‖τl(kl)‖ (18)

where ϑ|τl(tk)| is the memory input with trigger weight gain, and τl(tk) is the input that
meets the trigger condition. Tl(k) = τl(k) − τl(kl) shows the dynamic characteristics
and the input, and contains the state information of the robot affected by faults and attacks.
When the input value of online calculation satisfies Equation (18), τl(k) = τl(kl), ∀k ∈
[kl , kl+1), it denotes the input affected by the zero-order retention effect of the robot installed
in advance.

Using Equation (17) and Equations (21)–(39), one can obtain the control law (Equation
(19)) and adaptive law (Equation (20)).

τl(k) = τc(k) + τς(k) (19)

˙̂ΘR =
1

4rs
tanh

(
SR
D

)
SR − bΘ̂R + rsrΘ‖SR‖2 ϕ4(ZR) (20)

where τζ(k) denotes an adaptive nonlinear fault-tolerant filter control mechanism, and τc(k) is the

NDSTRL distance. τc(k) = −
(
γaτmaxB̃

)−1GcṠr + γau̇d and τς(k) =
(
γaτmaxB̃

)−1
(

1
4rs

tanh(
SR
D

)
+ rsrΘSR ϕ4(ZR)

)
Θ̂R. rΘ > 0, rs > 0, Z1 =

[
HT

1 , u̇T
d , ςT]T, ΘR = max{‖τmaxEr‖,∥∥ψT

∥∥,
∥∥∥τmaxEf

∥∥∥, ‖τ̄D‖
}

, H1 = ËR(k)+ Ḃ0(ER(k)), and ϕ(ZR) = ‖Dr‖
(
2
∥∥B̃T(q)

∥∥+ ∥∥B̃T(q)

τmaxφ(u)‖+ ‖Dr‖−1∥∥ËR(k) + Ḃ0(ER(k))
∥∥).

3.3. Theoretical Proof

To verify the stability of the controller, the effectiveness of the kinematic virtual
controller, dynamic controller and event-triggered controller will be verified theoretically.

Proof. Theoretical proof of the virtual-kinematics control law.
Next, take the Lyapunov function to prove its stability:

Vq =
1
2

Sx
2 +

1
2

Sy
2 + Sθ (21)

where Sx = xe + d cos θe + d, Sy = ye + d sin θe + θe, Sθ = k1(1− cos θe), k1 and k2 are
positive parameters. After the first order guidance, one can obtain

V̇q = SxṠx + SyṠy + Ṡθ (22)

so we obtain

V̇q = −λ2(xe − d + d cos θe)
2 − α

vr

λ1
(ye + d sin θe + θe)

2 ≤ 0 (23)

As (23) is negative, the system tends to be stable, and it is also proved in [26].

ud =

[
vr cos θe − wθe + λ2(xe − d + d cos θe)

wr + λ−1
1 vr(ϑ1(ye + θe) + (dϑ1 + λ1ϑ2) sin θe)

]
(24)
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Proof. Theoretical proof of the dynamic controller.
The Lyapunov function VR1 = 1

2 ST
RSR is designed, and the first derivative of VR1 with

sampling time can be obtained:

V̇R1 = ST
RṠR

= ST
R
[
Dr
(
u̇d − B̃(q)ηττmax(tanh(τ) + tanh(AD))

+M̄−1(q)F̄m(q̇)− η f + τ̄D

)
+ ËR(k) + Ḃ0(ER(k))− Bγ

] (25)

where γa = Dr, B̃(q) = M̄−1(q)B̄(q), τ̄D = M̄1(q)τ̄d.
By using the saturation analysis mechanism (see Remark 1), the multiplicative fault is

nonlinearized and projected, and one can obtain:

V̇R1 ≤ ST
R
[
Dr
(
u̇d − B̃(q)τmax(tanh(τ) + (1− ητ + ητ tanh(AD)))

+M̄−1(q)F̄m(q̇)− η f + τ̄D

)
+ ËR(k) + Ḃ0(ER(k))− Bγ

] (26)

According to η f = 1− ητ + ητ tanh(Ad), the nonlinear fitting characteristics of neural
network are used to fit the fault, attack, and dynamic nonlinearity. One can obtain

V̇R1 ≤ ST
R
[
Dr
(
u̇d − B̃(q)τmax(τ − Eτ) + Ḃ0(ER(k))− Bγ

+τmaxB̃T(q)
(

ψTφ(u) + Ef

)
+ τ̄D

)
+ ËR(k)

] (27)

where Eτ = τ − tanh(τ), FD(q̇) = τ−1
maxB̄−1(q)Fm(q̇) + η f . According to the above formula,

we can obtain:∥∥∥ST
R

∥∥∥(‖τmaxEτ‖
∥∥∥DrB̃T(q)

∥∥∥+ ∥∥∥ψT
∥∥∥∥∥∥DrB̃T(q)τmaxφ(u)

∥∥∥+ ∥∥∥τmaxEf

∥∥∥∥∥∥DrB̃T(q)
∥∥∥

+ ‖τ̄D‖‖Dr‖+
∥∥ËR(k) + Ḃ0(ER(k)‖) ≤

∥∥ST
R‖ΘR ϕ(ZR)

(28)

From this, we can obtain

V̇R1 ≤
∥∥∥ST

R

∥∥∥ΘR ϕ(ZR)− ST
RDr

[
u̇d − B̃(q)τmaxτ

]
(29)

The global Lyapunov function is denoted as

VR = VR1 +
1
2

Θ̃2
R (30)

where Θ̃R = ΘR − Θ̂R, and Θ̇R = −Θ̇R. The time derivative of Vu is

V̇u = V̇R1 − Θ̃T
RΘ̇R ≤

∥∥∥ST
R

∥∥∥ΘR ϕ(ZR)− ST
RDrτma B̃T(q)

(
τc(k) + τξ(k)

)− Θ̃T
R

˙̂ΘR (31)

By substituting Equations (19)–(20) into Equation (31), one can obtain

V̇R ≤
∥∥∥ST

R

∥∥∥Θ1 ϕ(ZR) + ST
RṠr + ST

R

[
− 1

4rs
tanh

(
SR
D

)
Θ̂R

−rsrΘSRΘ̂1 ϕ4(ZR)
]
− Θ̃T

1

[
1

4rs
tanh

(
Su

D

)
Su − bΘ̂R

+rsrΘ‖SR‖2 ϕ4(ZR)
] (32)
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According to Young’s inequality, we can obtain the following:

∥∥∥ST
R

∥∥∥ΘR ϕ(ZR) ≤ rs

∥∥∥ST
R

∥∥∥ΘR ϕ2(ZR) +

∥∥ST
R
∥∥ΘR

4rs
(33)

Substitute Equation (33) into Equation (32) as

V̇R ≤ ST
RṠr − 1

4rs
ST

R tanh
(

SR
D

)
ΘR + rs

∥∥∥ST
R

∥∥∥ΘR ϕ2(ZR)

− Θ̃T
R

(
−bΘ̂R + rsrΘ‖SR‖2 ϕ4(ZR)

)
+

∥∥ST
R
∥∥ΘR

4rs

− rsrΘ‖SR‖2Θ̂R ϕ4(ZR)

(34)

Using Young’s inequality, we can obtain

rsΘR

∥∥∥ST
R

∥∥∥ϕ2(ZR) ≤ rsrΘΘR

∥∥∥ST
R

∥∥∥2
ϕ4(ZR) +

rsΘR
4rΘ

(35)

Further, using Equation (35), Θ̃1 = Θ1 − Θ̂1 can be rewritten as

V̇R ≤ ST
RṠr − 1

4rs
ST

R tanh
(

SR
D

)
ΘR +

ΘR
4rs

∥∥∥ST
R

∥∥∥+ bΘ̃T
RΘ̂R +

rsΘR
4rΘ

(36)

According to Lemma 3 and Θ̃T
RΘ̂R ≤ Θ̃T

R
(
ΘR − Θ̃R

) ≤ 1
2 Θ2

R − 1
2 Θ̃T

RΘ̃R, we have the
following inequality:

V̇R ≤ ST
RṠr − 1

4rs
ST

R tanh
(

SR
D

)
ΘR +

ΘR
4rs

∥∥∥ST
R

∥∥∥+ bΘ̃T
RΘ̂R +

rsΘR
4rΘ

≤ ST
RṠr − b

2
Θ̃T

RΘ̃R +
1

4rs
0.2785DΘR +

rsΘR
4rΘ

+
b
2

Θ2
R

(37)

Using 1
4

∥∥Θ̃R
∥∥ ≤ b

4

∥∥Θ̃R
∥∥2

+ 1
16b , we can obtain

V̇R ≤ST
RṠr − 1

4

(
Θ̃T

RΘ̃R

) 1
2 − b

4
Θ̃T

RΘ̃R +
1

4rs
0.2785DΘR

+
rsΘR
4rΘ

+
b
2

Θ2
R +

1
16b

(38)

According to Equation (38), we can obtain

V̇R ≤ −
(

ST
R

(√
2γr(gs − IE)

)2
SR

) 1
2 − ST

R

(
γr + γk − 1

2
IE

)
SR

− 1
4

(
Θ̃T

RΘ̃R

) 1
2 − b

4
Θ̃T

RΘ̃R+ �

≤ −η1VR − η2V
1
2

R + �

(39)

where η1

{
λmin

(
γr + γk − 1

2 IE

)
, λmin(b)

4

}
, η2 =

{
λmin

(√
2γr(gs − IE)

)
, 1

4

}
, and �= 1

4rs

0.2785DΘR + rsΘR
4rΘ

+ b
2 Θ2

R + 1
16b .
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4. Simulation Results and Analysis

To verify the effectiveness and superiority of this control algorithm, a comparative sim-
ulation, SISMAEFC, was established by using a conventional integral SMC combined with
the super-twisted sliding mode reaching law [38], and the algorithm was verified and ana-
lyzed by error-simulation results, sliding surface simulation results, and double-actuator-
input simulation results (see Figures 7–10). In addition, because SISMAEFC does not use the
improved nonlinear fault tolerance mechanism and does not reconstruct faults and attacks,
it is compensated directly by adaptive algorithms, which is demonstrated by adaptive laws
(Figure 11). All simulations in this section adopt control parameters as: γa = diag{45, 15.5},
βa = diag{0.01, 0.01}, Gc = diag{1, 1}, τmax = diag{10, 10}, γr = diag{10, 40}, γk =
diag{0.01, 0.1}, rs = diag{0.02, 0.04}, rΘ = diag{0.01, 0.01}, b = diag{10.5, 10.5}, D =
diag{1, 1}. According to the experimental model of the nonholonomic underactuated robot
in the laboratory as the controlled object, the relevant parameters are: m = 15 kg, r =
0.05 m, b = 0.5 m, J = 5 kg ·m2, d = 0.05 m, r = 0.05 m. The RBF ·NNs for H(Z) contain
15 nodes with centers evenly spaced in the range [−3, 3]× . . .× [−3, 3] and widths ωl =
1.8(l = 1, . . . , 15). The simulation interval is designed according to the sampling rate
100hz of the main control chip of the experimental robot. The total simulation time was
150 s. To verify the tracking control performances on different trajectories and the control
stability under attack, the expected trajectory used a trapezoidal line with a combination of
a straight line and a curve [39].

The position error and angular velocity error of the robot under the two algorithms
change over time, and the position error under the algorithm designed in this paper can
converge to zero quickly. From Figure 7, it can be observed that xe stabilized after about
4 s at the earliest stage, and φe stabilized at the latest at around 13 s. The whole system’s
position error could converge in about 15 s, and the stability of the curve was smooth
relatively after the change in curvature after convergence. Although the error curve of
SISMAEFC can converge, the curve shows obvious jitter, and SISMAEFC recovered to a
stable state slowly when numerical fluctuation occurred, which was affected greatly by
model uncertainty, and the convergence was not as good as that of the algorithm designed
in this paper. Additionally, due to the network attack (the attack frequency is 30%), it can
be seen from the local detail diagram that the SISMAEFC jitter is more obvious and the
attack has a greater impact. It is worth noting that the error state under the NRSMEFC
attack and affected by the fault is better, so we can see the attack and fault in this paper.

As shown in Table 1, the two parameters of the algorithm in this paper are smaller,
and the MIAC is 18% lower than the minimum value and 45% lower than the maximum
value of the comparison algorithm. The MISE is 22.6% lower than the minimum value and
11.4% lower than the maximum value of the comparison algorithm. Additionally, under
the same attack, we can see from Figures 9 and 10 that the proposed algorithm is better.

Table 1. Quantitative analysis of the controller’s control effect.

Evaluation Criteria MIAC MISE

Algorithm in this paper [0.90, 2.03] [8.307, 8.844, 3.16]
Comparison algorithm [1.107, 3.75] [10.74, 10.13, 3.57]
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Figure 7. Comparison of system error.

Figure 8. Sliding surface SR comparison.

As shown in Figure 8, when the surface of the traditional sliding surface changes
abruptly, the influence of nonlinear terms will increase significantly near the sliding surface.
The system’s response changes, and the system’s buffeting changes significantly. Due to
the accelerated dynamic characteristics of the reaching law, the residual redundancy will
appear when the system’s error reaches the sliding mode surface. In this paper, the sliding
surface is designed to make up for the deficiency of the traditional sliding surface under
the integral saturation mechanism and nonlinear variable damping reaching law. It reduces
the sharp change in the curvature of the sliding surface, thereby reducing the probability of
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surface mutation. Thus, it eliminates the chattering phenomenon, makes up for the error
redundancy, and improves the stability rate.

Figure 9. Differential coupling input τv comparison.

Figure 10. Differential coupling input τw comparison.
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Figure 11. Comparison of compensation values of adaptive law.

From Figures 9 and 10, we can see that the control input of the algorithm designed in
this paper does not fluctuate obviously under the attack and continues to be stable over
time, but the control scheme shows severe chattering when the attack occurs. In Figure 11,
we can see that the system cannot read the input signal correctly, which will affect the
control effect. It can be seen in trigger times that the dynamic effect is better for the scheme
of nonlinear fitting, followed by adaptive compensation by the controller in this paper. As
the system’s input may be subject to data errors, security attacks, system failures, and other
problems, the system’s input accuracy cannot be guaranteed. As can be seen in Figure 10,
under the algorithm in this paper, the effect of event trigger is obviously better. The active
transmission frequencies of the dual controller output channel of the proposed method and
the comparison method are (8671, 6563) and (10,287, 11,733), respectively, which shows
that the method in this paper has better control performance and is more stable state in
cases of attacks and failures.

5. Conclusions

In this paper, a neural network, nonlinear-fitting, redundant, sliding mode event-
trigger control system affected by abnormal input was designed. Firstly, according to
the dynamic saturation input characteristics, the nonlinear redundant sliding surface was
designed by using the nonlinear fitting function. Then, to reduce the chattering problem
caused by the system, improve the input, and improve the approaching efficiency of a
sliding mode surface with a large error, a nonlinear-damping, super-torsion reaching law
was designed to improve the robust response efficiency of a system with a large error.
For the problem of matching input interference and signal noise in the process of cable-
based signal transmission, the input anomaly is non-linearly fitted by the fault-tolerant
mechanism of the saturation filter, then stripped by saturation analysis, and then fitted by
the nonlinear neural network. A set of nonlinear fault-tolerant subsystems was designed,
which is controlled by an event-trigger mechanism. It improves the tracking accuracy of an
intelligent robot in the cases of physical failure of the actuator, remote network attacks, and
trajectory curvature mutation. In the comparison of simulation experiments, the pose error
of this algorithm was improved by 11.48% at least. It can effectively improve the work
efficiency of the freight yard and save on work costs. It has certain application prospects for
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engineering. In addition, with the development of artificial intelligence research, a class of
algorithms for recognition of human activities has emerged. These include semi-supervised
recurrent convolutional attention model algorithms [40], adaptive semi-supervised feature
analysis algorithms [41], and convolutional neural network and recurrent neural network
algorithms [42]. Consider applying such algorithms to artificial intelligence transport
robots. The algorithm proposed in this paper needs to be improved, and the next step will
be to investigate this problem.
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