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1. Introduction

In April 2020, during the last pandemic health emergency, we launched a Special Issue
hosted by Computation—section Computational Biology, entitled “Computation to Fight
SARS-CoV-2 (COVID-19)”. The COVID-19 infective condition is caused by the etiologi-
cal agent SARS-CoV-2 (2019-nCoV), a novel, highly virulent betacoronavirus. Therefore,
SARS-CoV-2 is an important worldwide health hazard with high mortality and high conta-
giousness. Despite the introduction of vaccines and therapeutic options, the occurrence
of resistant phenomena in SARS-CoV-2 keeps the public attentive to health concerns with
a relevant interest in developing effective antiviral agents, vaccines, and social measures
to mitigate the transmission of the virus and its variants. Accordingly, to advance our
knowledge of the pathogenic mechanism of viruses and to identify novel drug candidates,
computer science may play a significant role in the search for effective therapeutics to cure
this infection. In addition, because of this global health alert, such computational method-
ologies could hasten the development of creative and focused solutions to the coronavirus
emergency. This Special Issue showcases advancements in epidemiology, virus biology, and
medication discovery to provide researchers with cutting-edge computational strategies
for combating SARS-CoV-2. Based on this consideration, the Special Issue has attracted
the attention of scientists in the field, and 27 research articles have been published on this
topic. We divided this editorial article into two sections, one dedicated to the progress in
the development of computer-based tools, mathematical models, and algorithms related
to the socioeconomic impact, epidemiology, diffusion, and dynamics of SARS-CoV-2. The
second section is devoted to computational approaches for understanding virus behavior,
selecting possible vaccine candidates, and identifying promising antiviral agents.

1.1. Socioeconomic Impact, Epidemiology, Diffusion, and Dynamics of SARS-CoV-2

In this section, we analyze the articles published in the Special Issue that focused on
the development of computational models related to the impact on society, with a particu-
lar focus on social, epidemiological, and management issues raised from the inception of
SARS-CoV-2 diffusion. The first article, authored by Chowdhury and coworkers, explored
the social media impact on awareness of COVID-19 related to the global health emergency,
considering scholars at Bangladeshi University. To assess actual shifts in student isolation,
psychological numbness, and trust and belief in social media coverage data, the authors
used a cross-sectional design with a quantitative method. The authors presented to the
students an online survey to determine the connection between knowledge of the pandemic
health emergency and the activity on social media. Data were extracted from 189 completed
surveys. Using exploratory factor analysis (EFA) and path analysis, the authors indicated
that social media are changing the perspective of health problems, affording information
and advice on undesired effects of SARS-CoV-2 infections, favoring psychological wellness,
and having a beneficial effect on quarantine or lockdown. This interesting work indicated
that social media are pivotal in improving knowledge about current and future pandemic
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conditions [1]. Examining the media’s contribution to the COVID-19 pandemic in more
detail, Yakunin and colleagues investigated the mass media influence in relation to the
COVID-19 global health emergency, considering that this situation is an excellent example
of a time when the media are crucial for educating the public about essential information.
The purpose of this study was to undertake a comparative examination of the depiction
of pandemic-related issues in Kazakhstani and Russian Federation internet media. The
major objective of this study is to suggest a technique that would enable the analysis of the
relationship between COVID-19 data from the World Health Organization and dynamic
indicators from mainstream media. Three methods for numerically representing mass
media dynamics were devised and used to complete this challenge, each of which was used
in accordance with a manually chosen set of search terms. The result analysis indicated
both parallel and divergent representations of the epidemiological situation in Russian
and Kazakhstan periodicals. In particular, there was a correlation between publication
activity in the two categories and absolute measures, e.g., the daily death rate and the daily
rate of novel infections. However, the media typically fails to include viral reproduction
and positive rates of confirmed cases. When the rigorousness of quarantine measures is
considered, mainstream media in Russia and Kazakhstan exhibit very different correlations.
According to an analysis of search terms, the issue of fake news and misinformation in
Kazakhstan is worse during times when the epidemiological condition is deteriorating
and crime and poverty are rising. The originality of this study lies in the formulation
and application of a methodological approach that enables a comparison between me-
dia indices and objective COVID-19 statistical parameters [2]. Another important study
was conducted by González-Parra and Arenas. To model the COVID-19 pandemic, the
authors used a highly nonlinear mathematical model to investigate the Omicron wave,
considering the effects of the vaccine. The developed model comprises asymptomatic and
immunized individuals, which affects SARS-CoV-2 dynamics. In addition, the developed
computational tool considered the decrease in vaccination immunity and efficacy against
the Omicron strain. The results of the simulation suggested that even if the Omicron strain
is less lethal, it may still result in more deaths, infections, and hospitalizations. Interestingly,
the authors presented some scenarios that aid in understanding the Omicron wave and
its repercussions. Overall, the described mathematical modeling approach, along with the
simulation of the selected biological systems, explained the enormous Omicron wave under
varied vaccination and transmissibility circumstances. These findings raise awareness that
even though SARS-CoV-2 genotypes have a reduced mortality rate, they can nevertheless
result in more deaths. Accordingly, the developed model can be useful for understanding
the Omicron wave and the impact of novel highly transmissible strains [3]. In a different
study authored by Afiahayati and colleagues, a computer-based technique was described
for precisely estimating the number of cases of COVID-19 in the coming days, which
could be extremely valuable in decision-making for providing proper advice to mitigate
pandemic health emergencies. The researchers forecasted the total number of verified cases
of COVID-19 in Indonesia using the flower pollination algorithm (FPA), a metaheuristic
optimization algorithm. FPA is a robust and adaptive computational technique for opti-
mizing the curve fitting of COVID-19 cases. A machine learning (ML) technique known
as the recurrent neural network (RNN), which is popular for prediction, was used for
analyzing and comparing the FPA performance. The best hyperparameters for the RNN
and FPA were found after a thorough experiment (For the FPA and RNN, there are 24 and
72 different hyperparameter combinations, respectively) to be used for developing the
COVID-19 predictive model. According to the outcomes, the FPA method outperformed
the RNN in both long- and short-term predictions of the COVID-19 cases. Notably, in the
last iteration for long-term forecasting, the FPA model (0.38%) had a substantially lower
mean absolute percentage error (MAPE) than the RNN model (5.31%). In the last iteration
for short-term forecasting of the cumulative COVID-19 instances in Indonesia, the MAPE
for the FPA model (0.74%) was also lower than that for the RNN model (4.8%). The cutting-
edge findings from this study could aid efforts to combat the global COVID-19 health
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emergency [4]. Intriguingly, a multivariate analysis using COVID-19 vaccine infodemic
data in Brazil was described by da Penha Harb and colleagues. This study deals with the
exposure of people to an enormous volume of data considering diverse media channels.
Notably, this information and these data are not always official and true, and often, when
false, they can affect data readability and disease control; incorrect information might
worsen the pandemic’s harmful impacts. Using the multivariate analytic technique, the
research uncovered similar patterns of behavior in the selected population throughout 2021
in two analyses by including information on immunizations from all age groups and with
people aged 64 years or older (13% of the population). The authors employed dendrograms
as a cluster visualization method. To validate the formed clusters, two techniques were
used: the cophenetic correlation coefficient, which produced good findings over 0.7, and
the elbow technique, which confirmed the quantity of identified clusters. As a conse-
quence of examining Brazilian states across all age categories, more homogeneous divisions
were detected, according to the findings. In contrast, the second analysis produced more
heterogeneous clusters, indicating that at the time of vaccinations, there may have been
fear, skepticism, and a strong belief in the infodemic [5]. In another paper related to the
social impact of vaccination campaigns, Shahzad and collaborators used an ML approach
to categorize COVID-19 vaccine-related user responses. In fact, in the pandemic global
health emergency, the availability of COVID-19 immunization offered hope for humanity.
Unfortunately, people still believe that vaccinations have risks, and they express their
beliefs and experiences on social media platforms despite determined vaccination efforts
and recommendations from medical professionals and governments. Such opinions may be
analyzed to identify societal trends and develop strategies for boosting vaccination accep-
tance. Accordingly, the authors described a method for sentiment analysis of worldwide
opinions and impressions of COVID-19 immunization. The study was conducted using
data from Twitter and considered five vaccines, including Moderna, AstraZeneca, Sinovac,
Pfizer, and Sinopharm. For sentiment classification, the tweet datasets were divided into
three categories (e.g., positive, negative, and natural) using different ML classifiers such as
Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Decision
Tree (DT), and Naive Bayes (NB). Interestingly, compared with the other ML methods,
the DT classifier has the best classification performance among all the selected datasets.
The highest accuracy for COVID-19 vaccine tweets with sentiment annotation was 93.0%.
This accuracy was also achieved for the vaccine dataset of AstraZeneca (90.94%), Pfizer
(91.07%), Moderna (88.01%), Sinovac (92.8%), and Sinopharm (93.87%). The quantitative
comparisons indicated that the proposed study was extremely accurate. Therefore, starting
from this type of work, it will be possible to apply deep learning (DL) methods to achieve
better accuracy [6]. De La Hoz-M and colleagues conducted a different type of study. They
examined the published research on COVID-19 from its beginning and monitored the
development of research over two years (February 2020–January 2022). Accordingly, using
text mining, latent Dirichlet allocation modeling, trend analysis, and other techniques, the
authors searched the PubMed database to extract topics and examine the time-based varia-
tions in research for each subject. Furthermore, the authors examined how these themes are
covered in different nations (e.g., United States of America, United Kingdom, Italy, India,
and China), and journals (7040 sources such as Sci. Rep., PLoS ONE, and Int. J. Environ.
Res. Public Health, which represented the leading publishing journals on the COVID-19
outbreak), and 16 research topics and 126,334 peer-reviewed publications were found. The
authors found eight topics (vaccine immunity, telemedicine, prevention, morbidity and
mortality, mental health, ML, risk factors, academic parameters, and information synthesis
methods) showing a rising trend, five (COVID-19 pathology complications, etiopathogene-
sis, epidemiology, diagnostic test, and political and health factors) showing a falling trend,
and the remaining three (pharmacological factors, therapeutics, and others) varied over
time with no clear patterns. In conclusion, the findings can offer new study guidelines and
be helpful to academics and politicians in understanding research trends in the context
of global events. The outcomes demonstrated that topic modeling is a rapid and effective
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technique for assessing the development of a sizable and rapidly evolving research topic,
such as COVID-19 [7]. Another type of work was focused on the development of a compu-
tational method for classifying time-series data related to the number of cases of COVID-19
infection per day. Pangestu and collaborators assessed the effectiveness of community
activity limitations in reducing the number of novel COVID-19 cases in West Java (WJ).
For this investigation, the researchers used time-series clustering on daily positive case
data for COVID-19 across 27 cities and regencies in WJ. Clustering was accomplished using
the k-medoids clustering method with shape-based lock step metrics, notably the cross-
correlation-based distance. During the worst outbreak, the researchers utilized daily new
COVID-19 infection cases in the mentioned cities and regions, considering different periods.
The findings indicated that four was the optimal number of clusters that could be generated
from the data used considering the first period, whereas two was the optimal number of
clusters considering the second period, with silhouette values of 0.2633 and 0.6363, respec-
tively. Results showed that, except for Bogor and Depok, the activity restriction period
was successful in reducing COVID-19 infection during the initial time frame and during
the second period throughout the whole city and region of WJ. Interestingly, the authors
discovered that geography, in addition to the activity restriction period effectiveness, had
an impact on the cluster that was formed. A city’s likelihood of experiencing an increase in
COVID-19 instances depends on the distance from a COVID-19 hotspot area [8]. Curiously,
Alinizzi and colleagues investigated traffic congestion during the COVID-19 pandemic
period as a rising issue in addition to several socioeconomic problems. Accordingly, the
period of traffic congestion hazard (HTC) in metropolitan areas depends on commuters’
decisions regarding home-to-shopping center departure times. The decision to leave early
or stay late to go shopping depended on both internal (related to commuters) and external
(related to shopping centers) considerations. A useful method to evaluate the HTC time
following curfew timings was developed in the selected study. The commuters’ perception
of time spent shopping was evaluated, along with the effects of eight internal (family size,
nature of the job, involvement in extracurricular activities, education level, number of cars,
number of children, age, and availability of a private driver) and three external (dimen-
sions of the city, distance to shopping center, and approachability of favored shopping
center in proximity) factors on their choice. Chi-square and Cramer’s V tests, with an
acceptable 20% response rate, identified family size and participation in other activities
as the most important internal factors and accessibility to the preferred shopping area as
the key external factor. The commuters’ choices of leaving early or later depended in part
on their age, the number of children they had, and the dimensions of the city. Except for
educational level and the presence of household drivers, most of the characteristics showed
significant relationships. The commuters’ responses were divided into four categories
using fuzzy synthetic evaluation (FSE): no delay, short delay, moderate delay, and long
delay. The peak period of traffic congestion was successfully identified by hierarchical
bottom-up aggregation. According to the survey findings, most commuters (approximately
65%) go shopping within 15 min of the curfew lifting; hence, HTC within the first hour
of the no curfew time deserved consideration. Traffic regulation agencies can use the
described method to determine the HTC period and conduct practical traffic management
methods in accordance with the basic sociodemographic information of residents of an
urban neighborhood. By implementing the proposed strategy in various locations and
conducting traffic monitoring studies when the curfew is lifted for the duration of the
pandemic, future research can confirm the results of the current study [9]. Sukandar and
coworkers conducted an important study. They used the cumulative case function to gen-
erate dynamic operators that recover all state dynamics of a susceptible exposed infectious
recovered (EIRs) model for the transmission of COVID-19. In particular, to accommodate
immeasurable control and intervention mechanisms, this analysis considered known and
unrecorded EIRs and a time-dependent infection rate. Cumulative cases were used to
build and implement the dynamic operators. By implementing the generating operators,
all infection processes hidden in this cumulative function can be completely recovered.
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All recorded state dynamics were obtained by directly implementing the operators on the
cumulative function. Furthermore, the unrecorded infection rate per day was calculated
using the ratio of the infection mortality ratio (IFR) to the case mortality ratio (CFR). The
generating operators were used to obtain the residual dynamics of the unrecorded states.
The simulations were run using infection data from ten different countries provided by
Worldometers. The increased amount of daily PCR testing was demonstrated to have
a direct influence on lowering the effective reproduction ratio. Simulations of all state
dynamics, infection rates, and effective reproduction ratios were performed for a number
of countries during the first and second waves of transmission. With this method, daily
transmission indicators are directly measured and can be utilized to successfully control the
epidemic on a daily basis [10]. Aslam published a further article of interest. In this paper,
artificial intelligence was used to predict death and ventilator support early in COVID-19
patients to reduce mortality and increase the chance for more effective and prompt thera-
pies. COVID-19 hospitalized patients from King Abdulaziz Medical City in Riyadh were
included in this study. To determine the influence of specific qualities on the prediction of
death and ventilator support in patients affected by COVID-19, this work coupled a DL
model with explainable artificial intelligence (EAI). Despite producing important results,
the DL model is difficult to interpret. Data were collected from patient demographics,
laboratory tests, and chest X-ray (CXR) results. Due to the unbalanced nature of the dataset,
specificity, sensitivity, balanced accuracy, AUC metrics, and the Youden index were applied
to assess the efficiency of the developed computational tool. In addition, the SMOTE (over-
and under-sampled) datasets and the original datasets were used in the studies. With a
balanced accuracy of 0.98 and an AUC of 0.998 to predict mortality employing the entire
feature set, the developed model performs better than the baseline study. A maximum
adjusted accuracy of 0.979 and an AUC of 0.981 were obtained to predict ventilator support.
The described predictive computer-based tool could help physicians identify patients with
COVID-19 who may need ventilator assistance or die early on, which would improve
the use of hospital resources [11]. Demongeot and coworkers investigated other attrac-
tive aspects related to the pandemic scenario. In fact, it is infrequently investigated how
to estimate daily reproduction counts during the contagiousness phase, and only their
aggregate R0 is usually estimated to define an infectious disease contagiousness level.
Using a deconvolution method on a set of novel COVID-19 infections, the researchers
derived an equation for the discrete dynamics of epidemic propagation and determined the
number of daily reproductions. Considering various nations and waves of the COVID-19
outbreak, results and estimations were obtained to determine how noise can affect the
stability of the epidemic dynamics. Accordingly, it will be possible to enhance estimates of
the distribution of daily reproduction numbers during the infectious period by accounting
for heterogeneity owing to different host age classes [12]. Moreover, Bertrand and Pirch
developed a susceptibility-exposed-infected-quarantined-recovered-deceased (SEIQRD)
model for the propagation of COVID-19 using a flux-based finite element method. The
model was largely based on susceptible-exposed-infected-recovered-deceased (SEIRD)
models recently established, with the addition of a quarantined compartment of the living
population. A least-squares mesoscale method is then used to solve the resulting first-order
system of coupled PDEs. To establish an indicator that affects the predictions generated by
the approach, a variety of data on governmental actions taken to control the spread through-
out 2020 was used. When compared with actual disease-spreading data, the results of
numerical tests showed that predictions of the virus’s space-time behavior were remarkably
accurate [13]. In an interesting paper, Zeng and coworkers investigated the possibility of
understanding the relationship among components crucial to patient disease progression to
decrease the effects of the epidemic. For this purpose, the authors developed an improved
COVID-19 structured dataset from many sources, incorporating local weather information
and study sentiment relevant to a particular nation using natural language processing. The
researcher used both ML and DL methods on the 301,363 samples and 43 attributes in
the expanded structured dataset to predict the likelihood that a patient will survive. To
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enhance the model performance, the authors imported alignment sequence data. When
used on the expanded structured dataset, Extreme Gradient Boosting (XGBoost) predicted
patient survival with 97% accuracy, with climatic conditions and age exhibiting the greatest
significance. Similarly, a multilayer perceptron (MLP) application achieved 98% accuracy.
Accordingly, it would be beneficial to add more potentially significant variables to the
patient data that are already available, such as the current weather, to improve the pre-
diction of the likelihood that the patient will survive [14]. Sarv Ahrabi and colleagues
investigated the patient monitoring issue. They highlighted the importance of careful
patient monitoring in keeping the condition entirely under control, in addition to extensive
medical research. It is well established that the study of X-rays is useful because of its
accessibility; however, viral testing is most commonly used to discover COVID-19. Many
studies have used DL paradigms with the goal of enhancing COVID-19 radiography-based
identification of lung infection. In this context, the authors compared notable methods
for binary classification of infected photos using DL techniques, deriving a convolutional
neural network (CNN) variation with optimized parameters that showed satisfactory per-
formance on a recent dataset of images obtained from COVID-19 patients. Contrary to the
other models provided, the effectiveness of the generated model is of great importance. In
this method, a random selection of a few images from the dataset was used as a holdout
set. The developed tool successfully identified the majority of COVID-19 X-rays, showing
an outstanding general accuracy of 99.8%. Additionally, the relevance of the findings from
evaluating other datasets with various features (which, notably, are not utilized in the
training process) showed that the suggested approach is beneficial in terms of accuracy up
to 93% [15]. Moreover, Gencoglu and collaborators reported an analysis of effective crisis
management during unfavorable health occurrences. During this period, it is fundamental
to comprehend the traits of public attention and sentiment. This is extremely relevant
during a pandemic like COVID-19 because the primary role of risk management is dissemi-
nated across society rather than being centered on a single entity. While many studies have
used Twitter data to describe or anticipate the COVID-19 outbreak, causal modeling of
public attention has not been studied. In the mentioned work, a causal inference approach
was utilized to pinpoint and measure causal links among Twitter activity, public opinion,
and pandemic features such as infection and mortality rates. The outcomes showed that
the suggested strategy may effectively capture epidemiological domain knowledge and
recognize factors that influence public opinion. Notably, by separating events that correlate
with public attention from those that cause public attention, this work could advance the
discipline of infodemiology [16]. Finally, an interesting aspect that correlated SARS-CoV-2
diffusion and transmission with air pollution and related pollutants was investigated in
two papers published in the Special Issue. In particular, Delnevo and collaborators explored
the correlation between air pollution and the fatal effects of COVID-19. To this end, the
authors considered a series of daily values of PM2.5, PM10, and NO2 over time, and the
Granger causality statistical hypothesis test was used to determine the presumption of
causation. Surely, numerous additional investigations at a level commensurate with the
size of this phenomenon (e.g., physical, chemical, and biological) would be required to
fully comprehend the relationship between the spread of this lethal virus and air pollu-
tants. However, as strictly viewed from a Granger causality standpoint, the outcomes
acquired both during and after the government lockdown decisions demonstrate a definite
association [17]. Subsequently, the same research team focused further attention on the
correlation between the propagation of the virus and the presence of airborne particle
pollutants (PM2.5, PM10, and NO2). In this study, the authors have described a new metric
for forecasting COVID-19 diffusion. An ML model was developed and trained using the
following data: (i) all COVID-19 illnesses that occurred between February and July 2020
in Emilia Romagna (Italy), a region in Europe that is among the most polluted; (ii) the
region-specific daily values of all particulates. The traditional ten-fold cross-validation
approach was then utilized on the ML model, and the results showed an accuracy rate of
90%. Finally, the model was applied to forecast the potential reappearance of the virus

6



Computation 2023, 11, 185

in Emilia-Romagna between September and December 2020. The authors were unable
to verify the accuracy of the forecasts at the time of writing this article. However, this
COVID-19 prediction model is the only one of its kind in the world because the authors
speculated on a scenario based on a novel premise [18].

1.2. Structural Modeling, Vaccines, and Antiviral Drug Discovery

The second section is dedicated to the development and applications of computer-
aided procedures for antiviral drug discovery, vaccine candidate selection, and understand-
ing the behavior of the virus, simulating the dynamics of drug targets. In this context, Liang
and collaborators investigated SARS-CoV-2 spike glycoprotein (S-protein) dynamics by
employing a coarse-grained approach using physic-informed ML. Coarse-grained methods
are useful for modeling systems that are not possible to model utilizing classical all-atom
molecular dynamics (MD). Accordingly, by employing learned interaction parameters,
coarse-grained MD simulations attained the microsecond time scale with stability (sim-
ulation speed 40,000 times faster than the conventional MD). When compared with the
usual iterative approach, the proposed framework more accurately matches all-atom refer-
ence structures. The increased efficiency improves the timeliness in developing long-time
simulations of SARS-CoV-2 drug targets and creates opportunities for revealing protein
processes and anticipating environmental changes [19]. Regarding the selection of vaccine
candidate, Oluwagbemi and coworkers developed a computational protocol using bioinfor-
matics and immunoinformatic techniques to generate a multi-epitope mRNA vaccine that
protects against the SARS-CoV-2 S-protein variants that were present in African nations
at the time of the study. In particular, predictions of T- and B-lymphocyte epitopes were
performed using various immunoinformatic methods. To select epitopes that could trigger
a long-lasting immune response, they were subjected to additional tests. Seven epitopes,
a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide,
and linkers comprise the proposed vaccine. The proposed vaccine was also antigenic,
nonallergenic, nontoxic, thermostable, and hydrophilic, according to the results. In 100 ran-
domly chosen SARS-CoV-2 S-proteins, none of the seven epitopes showed alterations. The
vaccine construction secondary structure was stabilized by 36.44% α-helices, 20.45% drawn
filaments, and 33.38% random helices. The simulated vaccine exhibited a strong affinity
for TLR-4, as revealed by molecular docking, indicating its capacity to activate both innate
and adaptive immunity. Further in vitro and in vivo studies should be conducted after the
results and performance of this computational research [20]. In an interesting paper, Singh
and colleagues described a computational approach to find chemicals potentially able to
recover the activity of interferon-stimulated genes (ISGs). ISGylation is a critical step in the
process by which ISGs induce an antiviral response in host cells. In fact, numerous viruses,
such as SARS-CoV-2, decrease host immune responses by negatively influencing the ISGy-
lation process (de-ISGylation). SARS-CoV-2 papain-like protease (PLpro) interacts with
host ISG15, resulting in de-ISGylation. Thus, blocking de-ISGylation to recover ISG activity
may be an appealing method for enhancing the host immunological response to SARS-
CoV-2. For this purpose, the authors evaluated in silico several phytochemicals derived
from well-known immunomodulatory herbs, including Andrographis paniculata, Tinospora
cordifolia, and Ocimum sanctum, for their influence on de-ISGylation induced by SARS-CoV2
PLpro. The authors used a crystallographic complex that reflects the SARS-CoV-2 PLpro
and ISG15 protein interacting model (PDB ID: 6XA9). The ability of these phytochemicals
to bind to the interface region between PLpro and ISG15 was evaluated. Molecular docking
calculations revealed that 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide
(AG1), isocolumbin (GU1), and orientin (TU1) have satisfactory binding energies. Accord-
ing to MD parameters and MM/PBSA calculations, TU1, GU1, and AG1 may bind to the
interface, targeting pivotal residues in the PLpro-ISG15 complex [21]. In the field of antivi-
ral drug discovery, Brogi and collaborators published two papers within the Special Issue
considering two different SARS-CoV-2 drug targets, the RNA-dependent RNA polymerase
(RdRp) and the main protease (Mpro or 3CLpro). The first paper described a computational
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approach aimed at optimizing the alkaloid Quinadoline B (Q3) as a possible SARS-CoV-2
RdRp inhibitor. For this purpose, starting from a previously identified anti-viral fungal
metabolite Q3 as a SARS-CoV-2 RdRp inhibitor, a computational combinatorial method-
ology was used to generate a chemical library based on the Q3 compound. The resulting
chemical library (>900,000 different Q3 derivatives) was screened against RdRp to iden-
tify RdRp binders with higher affinity than the Q3-derived starting molecule. Using this
method, along with the evaluation of the physchem profile, 26 derivatives were identified
as potential RdRp inhibitors. In addition, the most promising derivatives were subjected to
MD simulation to thoroughly examine the binding mechanism. Five compounds showed
improved binding affinity for the RdRp enzyme and are therefore worth further study
as potential antivirals. The described in silico strategy offers a practical computational
method for hit-to-lead optimization, with implications for the search for anti-SARS-CoV-2
drugs and the overall drug optimization process [22]. Later, the same research group
analyzed in silico the potential of peptide-based derivatives containing bifunctional war-
heads that could interact with prime and non-prime residues to covalently bind the Mpro
of SARS-CoV-2 to develop novel antiviral agents. As a result, the authors proposed a
computer-based protocol for discovering potential SARS-CoV-2 Mpro covalent inhibitors.
They examined the possibility of a peptide-based scaffold with diverse warheads as a
substantial alternative to aldehyde and nitrile electrophilic groups using multiple in silico
methodologies. As warheads, we rationally generated four possible inhibitors, including
difluorostatone and a Michael acceptor. Based on molecular and covalent docking, MD
simulation, and free energy perturbation (FEP), the in silico investigation showed that the
generated compounds might function as covalent inhibitors of Mpro and that the examined
warheads could be employed to develop inhibitors that can covalently bind cysteine or ser-
ine proteases, including the Mpro of SARS-CoV-2. Notably, the abovementioned research
provided a rigorous computational protocol for identifying and developing powerful an-
tiviral agents [23]. Further considering Mpro and other possible drug targets, Muhammad
and colleagues examined the interactions of eight natural eucalyptus compounds with
SARS-CoV-2 Mpro to determine whether they could be used as herbal treatments for the
emerging SARS-CoV-2 virus. Atomistic interactions were inspected using various in silico
techniques, such as molecular docking, MD simulations, and MM/PBSA calculations. On
the basis of the outcomes of molecular docking, all drugs examined showed significant
binding energy for Mpro. Three computational hits, α-gurjunene, aromadendrene, and
alloaromadendrene, with satisfactorily predicted affinity, were simulated using GROMACS
to analyze the interactions between Mpro and inhibitor molecules at the molecular level.
According to the results of our MD simulation, aromadendrene and α-gurjunene were
found to be the most promising compounds, with binding energies of −18.99 kcal/mol
and −17.91 kcal/mol, respectively. The outcomes indicated that eucalyptus could be a
hypothetical therapeutic opportunity to inhibit the Mpro enzyme. Remarkably, this work
is one of the first in which has been investigated the role of structural flexibility in Mpro
interactions with herbal drugs [24]. Culletta and coworkers used different computational
techniques to identify drugs against different established drug targets (3CLpro, PLpro, and
different non-structural viral proteins). Homology modeling (for targets with no available
experimental structures) and a structure-based pharmacophore modeling study were con-
ducted for each drug target. Next, using the developed pharmacophore models, a virtual
screening was conducted employing the chemical library provided by DrugBank. Each
target’s potential inhibitors were identified using XP docking, induced fit docking, and
MM/GBSA calculations. After the docking study, 34 hits for the explored targets were
selected (26 experimental drugs, 5 investigational drugs, and 3 approved drugs). The best
binding energy for each molecule, as determined by MM/GBSA calculations, was used
to make the final selection of candidate inhibitors. These chemicals were found able to
interact with crucial residues of each target according to the molecular recognition analysis.
The effectiveness of these drug candidates in successfully inhibiting COVID-19 can be
further assessed. The findings of this study provide crucial information for anti-COVID-19
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drug discovery efforts, identify the primary binding sites for the most significant SARS-
CoV-2 proteins, and present a crucial path for the development of novel antivirals [25].
Finally, Qiao and coworkers developed two computational protocols to identify SARS-
CoV-2 S-protein and 3CLpro inhibitors for possible COVID-19 treatment. Among the
screened compounds showing a significant inhibitory profile in preventing the recognition
of the S-protein of SARS-CoV-2 and ACE-2 in host cells, vancomycin, amphotericin B, and
ergotamine were identified as the most promising compounds. On the other hand, the re-
searchers also identified possible inhibitors of SARS-CoV-2 3CLpro. Among them, the most
interesting drugs identified were dasatinib, rivaroxaban, montelukast, sildenafil, saquinavir,
tadalafil, and vardenafil, which showed docking scores lower than −8.5 kcal/mol [26].
Aminpour and colleagues authored the last paper analyzed here. They used in silico
methods to explore the possible mechanism of action of ivermectin and its derivatives as
possible multitarget antivirals. The authors conducted computational work to estimate the
binding affinity of possible antivirals for the S-protein of SARS-CoV-2, the CD147 receptor
(secondary attachment point for the virus), and the α-7 nicotinic acetylcholine receptor
(α-7nAChr) (important for viral penetration of neuronal tissue as well as an activation site
for the cholinergic anti-inflammatory pathway controlled by the vagus nerve). For each
compound’s various docking locations and binding mechanisms, binding affinities were
computed. Our findings show that ivermectin has a strong affinity for all three of these
molecular targets, with some other drugs having even greater affinities. Interestingly, these
findings point to potential molecular processes through which ivermectin could reduce the
infectiousness and morbidity of the SARS-CoV-2 virus and activate an anti-inflammatory
pathway controlled by α-7nAChR, which might reduce the production of cytokines by
immune cells [27].

Finally, as Guest Editors, we express our gratitude to the Computation Editorial team
for their generous support, all the authors and co-authors for their pertinent contributions
to this Special Issue, and all the reviewers for their work in assessing the submissions. All of
these combined efforts contributed to the research topic’s outstanding success. In addition
to being a significant source of knowledge and inspiration for researchers and students, we
anticipate that this topic will boost the understanding of SARS-CoV-2 behavior, helping
to find effective treatments and measures for reducing viral transmission. You can freely
obtain this Special Issue by clicking on the following link: https://www.mdpi.com/journal/
computation/special_issues/computation_COVID_19, (accessed on 13 September 2023).
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Abstract: This study aimed to examine the role and impact of social media on the knowledge of the
COVID-19 pandemic in Bangladesh through disseminating actual changes in health safety, trust and
belief of social media’s coverage statistics, isolation, and psychological numbness among students.
This study used a cross-sectional design in which a quantitative approach was adopted. Data from
an online survey were collected in a short period of time during the early stages of COVID-19 to
determine the relationship between social media activity and knowledge of the COVID-19 pandemic
with accuracy. A total of 189 respondents were interviewed using structured questionnaires during
the onset of the COVID-19 outbreak in Bangladeshi university students. Exploratory factor analysis
(EFA) and path analysis were performed. Out of 189 respondents, about 80% were aged between
16 and 25 years, of which nearly 60.33% were students. This study explored four factors—knowledge
and health safety, trust in social media news, social distancing or quarantine, and psychological
effect—using factor analysis. These four factors are also found to be positively associated in path
analysis. Validation of the model was assessed, revealing that the path diagram with four latent
exogenous variables fit well. Each factor coefficient was treated as a factor loading (β = 0.564 to 0.973).
The results suggested that the measurement models using four elements were appropriate. The
coefficient of determination was 0.98, indicating that the model provided an adequate explanation.
Social media is transforming the dynamics of health issues, providing information and warnings
about the adverse effects of COVID-19, having a positive impact on lockdown or quarantine, and
promoting psychological wellness. This comprehensive study suggested that social media plays
a positive role in enhancing knowledge about COVID-19 and other pandemic circumstances.

Keywords: social media; COVID-19; psychological impact; social distancing; knowledge

1. Introduction

The coronavirus (COVID-19) pandemic is running rampant globally, creating a world-
wide health crisis. It has already significantly impacted the everyday lives of people. This
deadly virus has killed many millions, among which older adults have been the main
victims. A novel strain of coronavirus, SARS-CoV-2, was first identified in December
2019 in Wuhan, a city in China’s Hubei province, after a flare-up of pneumonia without
apparent reason. Globally, there were 54,558,120 confirmed cases of COVID-19, including
1,320,148 deaths according to the latest update by the World Health Organization (WHO)
on 17 November 2020, which declared a pandemic on 11 March 2020 [1,2]. Most countries
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have tried to save people’s lives from the pandemic threat by putting in place various
restrictive measures including lockdowns and social distancing. The economy in many
countries has come tumbling down due to the COVID-19 [3]. The whole world has come
to a standstill, focusing its efforts on resisting this disease. If adequate precautions are
not implemented, developing countries with frail healthcare systems may suffer the most
disastrous consequences from this epidemic [4,5]. This pandemic has become a serious
socioeconomic, behavioral, psychosocial, governance, and technology challenge, particu-
larly for the frontline healthcare sector. This health crisis has already been transformed into
a global economic crisis [5].

Bangladesh declared a war against COVID-19, like many other countries, becoming
one of the worst-affected nations by this havoc [6,7]. In many parts of the nation, formal
measures such as closing schools, closing offices for a 1 month trial period, prohibiting peo-
ple from leaving their homes after 6 p.m., taking legal action against those who do, banning
gatherings in mosques, and restricting public gatherings were swiftly implemented. This
nation has faced a number of challenges as a result of the pandemic, including maintaining
social distancing, inadequate COVID-19 testing facilities, a lack of COVID-19 mitigation
strategies, and limited financial support [8–10]. To battle the outbreak, Bangladesh was
compelled to proclaim a state of emergency commencing 26 March 2020 [8,11,12]. The
elected government then imposed social distancing, isolation, and home quarantine mea-
sures to reduce infection rates [13]. However, the lives of all individuals have been affected
by COVID-19 from the social, professional, and personal aspects. A national lockdown
strategy was implemented as a remedy, as in other countries [14]. This strategy significantly
affected agricultural production, food supply, and demand. People in Bangladesh came
to know about the infectious virus through television, radio, newspaper, social media, or
personal experience, stimulating anxiety and agitation among citizens, as well as their
friends and family. Social media has recently emerged as indispensable to reach people
easily. Defining social media is a difficult task because it is a constantly changing field.
According to Joosten [15], the term “social media” refers to any number of technological
systems that are linked to cooperation and community. Again, Saydan and Dulek [16]
defined social media as “social platforms where users share their information, manners, and
interests via the internet or mobile systems” and big data applications as “social platforms
where users share their information, manners, and interests via the internet or mobile
systems” [17,18]. Today, social media plays an important role in shaping society and is
perhaps one of the easiest ways to broadcast news or share an idea. During the COVID-19
pandemic, social media also educated people on how to prevent infectious disease and
save lives. There were more than three billion active social media users before the outbreak
of COVID-19. Since started the disease, a substantial rise in time spent on social media
was observed, which facilitated the sharing of COVID-19 information. Online social media
platforms such as Facebook, Instagram, and Twitter allow individuals to associate with one
another across the globe, including the sharing of COVID-19 articles, papers, and reports.
The young generation predominantly embraced web-based life during the pandemic. In
addition to gathering COVID-19-related knowledge, previous studies [9,19] concluded
that students obtained academic knowledge through the use of a variety of social media
apps such as YouTube for self-learning, WhatsApp for exchanging papers, information,
and presentations, and Zoom, Skype, and Google Meet for video conferencing to speed
up learning. In addition to text messaging, video conferencing solutions have been widely
used to promote communication between instructors and students. Students are becoming
more assured in their capacity to use technology to learn, access, share, and generate rele-
vant information, as well as gain knowledge about a subject. Social media has, therefore,
been essential for spreading information throughout the pandemic. Despite the benefits of
social media, a challenge during the pandemic has been the rapid spread of misinformation
or fake news related to the virus outbreak [20,21]. People spent an average of more than 2 h
a day on social media for news mainly related to COVID-19 [22,23], resulting in increased
panic triggered by misinformation [22].
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During the pandemic, direct dissemination of critical COVID-19 guidance through
government offices became impossible [24]. Social media platforms, particularly Facebook
and YouTube, as well as television and various websites, all played important roles in
disseminating health messages and keeping people up to date on the pandemic [20,25].
Social media platforms provide direct access to an unprecedented amount of content and
may amplify rumors and questionable information. Twitter is playing an increasingly
important role in the dissemination of health information. There is mounting evidence that
a highly mentioned paper on this social media platform may reflect the quality of the paper,
which may then be subject to debate in journal clubs, as well as a post-publication social
peer review process that may aid in retraction [20,26]. Information shared on social media,
such as general health precautionary measures, mask use, maintaining social distancing,
hand washing, and lockdowns, has had a positive impact during the pandemic [1,27].
Governments and public health authorities use social networking sites to inform citizens
about COVID-19 testing locations and more affected areas, strictly taking responsibility
for posting legitimate information related to COVID-19. By identifying and tracking user
behavioral patterns, social media can transfer useful information about infectious diseases.
Pandemic-related social media health campaigns can be effective in slowing disease spread
by conveying positive attitudes.

This study contributes to investigating the effect of social media use on the knowledge
of the COVID-19 outbreak in Bangladesh among university students. Furthermore, this
study considers educational level as an indicator with a distinct influence on all the vari-
ables (predictors and dependent) investigated. This approach was infrequent in previous
research [28–30]. Structural equation modeling (SEM) has also been rarely used in studies
on the COVID-19 pandemic in Bangladesh. To the best of our knowledge, this is the first
study to empirically establish the assumed effect of social media on the knowledge of
COVID-19 in the context of Bangladesh using exploratory factor analysis (EFA).

The physical threat of virus spread also requires social distancing by refraining from
regular activity. China’s strict actions, including institutionalized quarantine, isolation, ded-
icated hospitals, and social distancing, were highly effective. Social media has a powerful
role in influencing behavior. According to Radwan and Radwan [31], social media can have
a positive impact on the public if used correctly. Therefore, this paper aims to identify the
impact of social media on the individual, social, and societal levels during the pandemic.
The remainder of the paper is organized as follows: Section 2 describes the methods, along
with the basic statistics and final findings of the article; Section 3 discusses the results of
path coefficients and exploratory factor analysis (EFA); Section 4 provides a discussion;
lastly, Section 5 presents the concluding remarks.

2. Materials and Methods
2.1. The Data

This study obtained primary data by conducting a survey. A structured questionnaire
was developed to collect data on the impact and role of social media during the pandemic.
The questionnaire was propagated as a self-administered Google Form [32] to the target
respondents. A total of 189 responses were recorded, with a response rate of 18%, which
is acceptable for an online survey. This survey was conducted from 21 March to 15 April
2020. Criteria for collecting data were being a regular or frequent internet (or Facebook,
WhatsApp, Twitter, YouTube, Instagram etc.) user, with an age >15.

2.2. Methods

Categorical data analysis mainly involves statistical tools such as logistic, ordinal, or
multinomial regression; logit or probit models including the structural equation model are
considered superior. This complex and widespread model is used massively in market-
ing [33,34], psychology [35,36], and education [37,38]. In the case of the perception of social
media use, SEM can amalgamate many tools such as factor analysis, path diagrams, latent
growth models, and MIMIC. In this study, our goal was to explore latent information from
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respondents related to social media’s role in the COVID-19 pandemic. Each variable was
recorded on a Likert scale (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and
5 = strongly agree). For the path diagram, we examined the measurement model through
exploratory factor analysis, allowing us to classify various variables into a limited number
of selected factors. Structural equation modeling (SEM) has several benefits compared
to other statistical analyses [39]. Firstly, SEM implies a hypothesis-testing approach for
data, which enables scholars to build hypothesis-based methods. Secondly, SEM solves
measurement errors by obtaining unbiased estimates of the relationship between variables.
This error is removed upon correcting correlation or regression estimates. Thirdly, SEM
assembles both latent and observed variables. Lastly, it provides the direct effect, indirect
effect, and total effect of multivariate relations.

In this study, SEM was combined with statistical techniques to exhibit a latent rela-
tionship between dependent and independent or observed and unobserved variables [40].
Exploratory factor analysis (EFA) was used to display latent relationships among factors
or latent variables. Path analysis models were used to perceive observed variables. This
enabled us to estimate and exhibit the relationship between observed variables. The models
also represent an essential part of the historical development of SEM, and they employ the
same underlying process of model testing and fitting as other SEM models. The relationship
of indicators was determined with latent variables through EFA in the measurement model.
This study scrutinized four factors with 11 variables. Therefore, exploratory factor analysis
(EFA), was examined using four factors: knowledge and safeguarding health through
media, self-detainment at home, social media’s accuracy, and psychological monotony.

3. Results

For this study, data were collected from 189 respondents, involving university students
from different private and public universities. Data were collected through a self-administered
questionnaire within a limited time. The background characteristics of the respondents are
shown in Table 1. Among the respondents, about 64% were male; most of the respondents
(80%) were from the age group 16–25 years old, whereas about 6.7% were more than
36 years old. Approximately 54.4% of respondents were from the megacity, whereas more
than one-fourth were from a rural area.

Table 1. Background characteristics of the respondents.

Variables Category and Measurement N %

Sex
Male = 1 115 63.9

Female = 2 65 36.1

Age group
16–25 = 1 144 80.0
26–35 = 2 24 13.3
>36 = 3 12 6.7

Residence
Mega city = 1 98 54.4

Urban = 2 35 19.5
Rural = 3 47 26.1

In univariate statistics, each variable under an item also exhibits a correlation. Each
variable’s mean response was greater than or equal to four (Table 2), indicating that the
respondents were optimistic about being queried. The standard deviation was less than one,
indicating that discrepancy was not observed in response to any question. Additionally,
this study found an intercorrelation of the items ranging from 0.6 to 0.8, indicating the
acceptability of the items.
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Table 2. Mean score and correlation of social media use during COVID-19 pandemic.

Variable Mean SD Item-Test
Correlation

Teaches about symptoms of coronavirus (COVID-19) 4.44 0.70 0.714
Teaches about the spread of coronavirus (COVID-19) 4.35 0.77 0.702
Teaches precautionary steps to reduce the chances of
getting infected 4.33 0.73 0.769

Teaches categories of risk related to coronavirus (COVID-19) 4.21 0.82 0.736
Teaches about being properly sanitized 4.24 0.73 0.720
Teaches about the minimum safe distance between two persons
being 1 m (3 ft) 4.22 0.85 0.701

Teaches the difference between isolation and home quarantine 4.01 0.97 0.669
Fake news/information related to coronavirus is spreading 4.21 1.00 0.369
There has been a negative effect on mental health during the
outbreak of COVID-19 3.97 1.11 0.503

Helps to create public awareness of health issues 4.30 0.73 0.642
Helps to maintain social distance from others 4.14 0.87 0.627
Highlights actual figures related to death or infection during
the pandemic 3.56 1.25 0.593

Highlights COVID-19 without any biases as it is a global issue 3.95 1.13 0.613
Effectively broadcasts government initiatives to fight
against COVID-19 4.03 0.91 0.712

Keeps one entertained during the home
quarantine/lockdown period 4.17 0.97 0.506

Effectively presents the benefits of the “stay home and stay
safe” slogan 4.21 0.91 0.663

Before conducting factor analysis, some precautionary steps were taken to perceive
general knowledge about the dataset. This study accumulated 189 respondents to explore
the impact of social media on the COVID-19 pandemic. For observing outliers and reducing
unobserved variables, Cronbach’s alpha was found to be 0.85. For sampling adequacy,
the KMO measure and Bartlett tests (Table 3) both suggested that the sample size and
correlation of items were acceptable, enabling further analysis.

Table 3. KMO and Bartlett’s test.

Kaiser–Meyer–Olkin Measure
of Sampling Adequacy

Bartlett’s Test of Sphericity

Approx. Chi-Square Degree of Freedom p-Value

0.805 1016.23 55 0.001

For a more in-depth factor analysis, principal component analysis was employed
in this study. According to the rules of thumb and Horst’s parallel analysis, this study
accepted four factors that explained 78.23% of the variance (Table 4).

Table 4. Factor loading explained through Factor analysis.

Component Total Eigenvalue % of Variance Cumulative %

1 4.751 43.188 43.188
2 1.475 13.408 56.595
3 1.248 11.348 67.943
4 1.132 10.289 78.232
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On rotated factor loadings, Kaiser normalization was applied due to its simplicity and
preferable performance. Under factor loadings, the first factor comprised five variables
associated with knowledge-related issues (knowledge of symptoms, spread of knowledge,
precautionary steps for protection, knowledge of risk criteria, and sanitization) (Table 5).
The second factor comprised two variables (the accuracy of social media facts and figures,
and biases in news broadcasting). The third factor incorporated two variables (home
quarantine and lockdown issues). The fourth and fifth factors comprised two variables
(fake information issues and psychological effect of lockdown). For subsequent estimation,
the researchers further analyzed the normality of residuals, anti-image correlation and
covariance matrices, and scree plot (Figure 1). In the scree plot, factors with eigenvalues >1
were counted. Furthermore, this study used parallel analysis to more effectively validate
the factor analysis.

Table 5. Rotated component matrix under factor analysis.

Variables
Component

1 2 3 4

Teaches about symptoms of coronavirus (COVID-19) 0.82
Teaches about the spread of coronavirus (COVID-19) 0.847
Teaches precautionary steps to reduce the chances of
getting infected 0.868

Teaches categories of risk related to coronavirus
(COVID-19) 0.833

Teaches about being properly sanitized. 0.774
Highlights actual figures related to death or infection
during the pandemic 0.889

Highlights COVID-19 without any biases as it is
a global issue 0.864

Keeps one entertained during the home
quarantine/lockdown period 0.903

Effectively presents the benefits of the “stay home and
stay safe” slogan 0.814

Fake news/information related to coronavirus
is spreading 0.875

There has been a negative effect on mental health during
the outbreak of COVID-19 0.849Computation 2023, 11, x FOR PEER REVIEW 7 of 14 
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Exploratory Factor Analysis (EFA)

Factor analysis identified four factors—(i) knowledge and health safety, (ii) trust
in social media news, (iii) distance maintenance or quarantine, and (iv) psychological
effect. The study conducted a path analysis using the latent relationships among the four
factors, and the model was assessed according to its goodness of fit. As no previous
studies analyzed the effect of social media on education, this study innovatively employed
exploratory analysis by scrutinizing three factors and then establishing a structural equation
model (SEM). Moreover, various cutoff points were examined using particular software.

For determining parameters, maximum-likelihood estimation was used as it is better
than other traditional techniques and its estimates are unbiased, consistent, and efficient.
A positive path coefficient between factors (standardized and unstandardized estimates)
indicates their positive influence on each other through social media (Table 6). Therefore,
social media plays a key role in enhancing knowledge, which ultimately helps to improve
health and safety issues, as well as increase trust in social media news, quarantine mainte-
nance, and psychological impact. In other words, social media can be used as a positive
trigger for maintaining lockdown and raising the awareness of safety issues. Furthermore,
trusting figures and abiding by lockdowns were treated as factor loadings (β = 0.564 to
0.973). This suggested that the measurement models of four factors fitted well. A squared
factor loading shows the proportion of variance in the observed variable that is explained
by the factor. A value of rotated loadings closer to 1 better explains the path coefficient from
one variable to another. In other words, the measurement error is reduced. In Table 6, under
the first factor (f1) related to knowledge of health and safety in acknowledging symptoms,
the squared factor loading of knowledge about COVID-19 spread explained 86% of the
variance for that variable under the first factor, with the remaining 14% representing the
measurement error. Similarly, under f4 (psychological monotony), the squared loading of
the negative effect on mental health during the outbreak of COVID-19 explained 97.3%
of the variance. Each coefficient was positively and significantly associated at a 1% level
of significance.

Table 6. Path coefficients of structural equation model.

Parameter Items B p-Value

F1
(knowledge and

safeguarding health
through media)

Teaches about symptoms of coronavirus
(COVID-19) 0.818 *** 0.001

Teaches about spread of coronavirus
(COVID-19) 0.854 *** 0.001

Teaches precautionary steps to reduce the
chances of getting infected 0.885 *** 0.001

Teaches categories of risk related to
coronavirus (COVID-19) 0.792 *** 0.001

Teaches about being properly sanitized. 0.735 *** 0.001

F2
(social media’s

accuracy)

Highlights the actual figures related to
death or infection during the pandemic 0.809 *** 0.001

Highlights COVID-19 without any biases as
it is a global issue 0.818 *** 0.001

F3
(self-detainment at

home)

Keeps one entertained during the home
quarantine/lockdown period 0.656 *** 0.001

Effectively presents the benefits of the “stay
home and stay safe” slogan 0.972 *** 0.001

F4 (psychological
monotony)

Fake news/information related to
coronavirus is spreading 0.564 *** 0.001

There has been a negative effect on mental
health during the outbreak of COVID-19 0.973 *** 0.002

*** The 1% level of significance for β-coefficient.
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As another path diagram in tabulated form, we demonstrate the direct relationships
between variables, as well as the total effect of each diagram. As each coefficient was
positive, the overall path diagram indicated a positive relationship with statistical signif-
icance. In Table 7, the coefficients of the last two factors were >1. Hence, psychological
monotony and lockdowns had a greater effect according to the responses to “keeps one
entertained during the home quarantine/lockdown period” and “fake news/information
related to coronavirus is spreading”. Hence, our path diagram linking factors was sta-
tistically significant in terms of the total effect, model measurement, model fitness, and
overall estimation.

Table 7. Total effect on factors of explanatory variables.

Paths Coefficients SE p-Value

Teaches about symptoms of coronavirus
(COVID-19) > f1 1 (constrained)

Teaches about the spread of coronavirus
(COVID-19) > f1 1.148 0.082 <0.001

Teaches precautionary steps to reduce the
chances of getting infected > f1 1.126 0.082 <0.001

Teaches categories of risk related to
coronavirus (COVID-19) > f1 1.134 0.094 <0.001

Teaches about being proper sanitized > f1 0.933 0.088 <0.001
Fake news/information related to coronavirus
is spreading > f2 1 (constrained)

There has been a negative effect on mental
health during the outbreak of COVID-19 > f2 0.917 0.144 <0.001

Highlights the actual figures related to death
or infection during pandemic > f3 1 (constrained)

Highlights COVID-19 without any biases as it
is a global issue > f3 1.390 0.144 <0.001

Keeps one entertained during the home
quarantine/lockdown period > f4 1 (constrained)

Effectively presents the benefits of the “stay
home and stay safe” slogan > f4 1.920 0.238 <0.001

The chi-square (df = 38) ratio was 121.3, with a p-value of 0.19. This suggests that
our hypothesized model fit the sample data well, and the null hypothesis of the model vs.
saturated model was accepted [41,42]. In this model, the root-mean-square error of approx-
imation (RMSEA) was 0.042 (<0.080); thus, the model adequacy was acceptable [37,41].

Additionally, the computed CLOSE (0.602) was significantly higher than 0.050, indi-
cating no evidence to reject the fact that the RMSEA was greater than 0.500. Furthermore,
the comparative fit index (CFI) and Tucker–Lewis index (TLI) [39,41,43] were 0.95 and 0.96,
respectively. The coefficient of determination was also close to 1 (0.98). These measures
all suggested that the model had a good fit. Subsequently, the skewness and kurtosis
for normality, residuals, and basic statistics of variables were estimated [43]. There were
no outliers, and each variable obeyed a normal distribution with an asymmetric shape
according to skewness and kurtosis.

4. Discussion

This study aimed to evaluate the effects of social media on knowledge and safety
issues, the accuracy of figures, isolation, and psychological monotony through exploratory
factor analysis (EFA), in contrast to other theories such as knowledge, attitudes, and prac-
tices (KAP) [23,37,44–46] or other equation-based models [47–50]. Spreading information
has a significant impact on people’s behavior and can change how well government coun-
termeasures work. Despite lockdown being the only active preventive measure against
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COVID-19, it was impossible to reduce labor in several areas of Bangladesh [10,12,49].
This study elucidated the positive and negative effects of social media on knowledge of
COVID-19 among university students. Dependency on social media and knowledge on
health safety represented the first factor explaining awareness of COVID-19 symptoms,
spread, and transmission, as well as sanitization. These items revealed that social me-
dia played a significant role in preparing mankind for COVID-19, in line with similar
research [24,50–53].

Accordingly, models that predict viral propagation are beginning to take into consider-
ation the population’s behavioral reaction to public health measures and the communication
dynamics underlying content consumption [5,6,20,49,53]. Experts and beginners alike use
social media to share their sensible and irrational viewpoints with little moderation. Self-
detainment or isolation was the solution to fight this pandemic, and social media presented
us with several miniature movies or animations. To reduce depression, anxiety, or stress,
social media can play a positive role through entertainment [30,54]. Moreover, a recent study
discovered that internet-based smartphone use can improve the perceived quality of life
through facilitating positive social media connections, online shopping, online conferencing,
and constant interaction with friends and family living in different countries [13].

Social media has been a blessing in this tough time for millions. It has been an
excellent platform to enhance interaction and study collaboratively. Teachers can now
create interactive lectures, graphical contents, and motion pictures, as well as use diversified
digital tools to enable students to grasp lessons swiftly. The media has also been active in
transmitting the latest news, highlighting the unfavorable attitude of many Bangladeshis.
Long-term lockdowns, as well as unfavorable news or information, may impact mental
health. An earlier study looked at the impact of lockdowns on mental health during the
severe acute respiratory syndrome (SARS) outbreak [55–60].

Facebook, Twitter, YouTube, WhatsApp, and similar social sites assist students in
getting updated information on national and international issues. Education is no longer
confined to textbooks. Even before the pandemic, schools and colleges assigned tasks or
set question papers according to the curriculum, thus limiting a student’s learning. With
access to social media platforms through online learning, students have the opportunity
to search several sources for well-researched solutions. Teachers are no longer confined
to the traditional teaching system. They provide students with educational video links,
access to important resources, and assignment-based tasks to evaluate their understanding.
Students are forced to sit exams, while question patterns are designed to require interaction
and cooperation among friends. Social media platforms such as Messenger and WhatsApp
enable learners get instant information, reviews, or solutions to their problems or get in
touch with professors.

Facebook has played a vital role during this crisis. Several educational groups have
been created to understand students’ problems and provide them with proper guidance.
Ed-tech platforms in Bangladesh use these social media platforms to offer courses at
an affordable cost. In addition, these ed-tech organizations are coming up with more
interactive video lessons to make learning enjoyable, while providing educational content.
The COVID-19 pandemic has led to the birth of many ed-tech companies, changing the
traditional educational system in Bangladesh at an unprecedented pace [8,19,49].

Students from remote areas craving quality education can browse YouTube to connect
with the best teachers. Watching YouTube videos can motivate students to learn more,
share information, or increase their attention span. It has become much easier to read the
desired books, access online notes, or arrange video calls with teachers.

Not many students are connected to Twitter, but those who have signed up can gain
global knowledge. This platform is paving the way in building connections and providing
an opportunity to stand up for oneself. Disseminating views is a great way to build
confidence at a younger age. With students facing less academic pressure, they are taking
their creativity to a whole new level. Moreover, by sharing their work on various social
media platforms, students are getting a break from their daily study routine.
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This study tried to examine alternative ways of indicating social media’s effect on
knowledge about the COVID-19 pandemic. Firstly, according to statistics, the majority of
the respondents agreed strongly that social media is a driving force in safeguarding health,
remaining home safe and sound, being aware of figures and reports spread through media,
and adjusting with monotony. Knowledge through media helps to increase the washing of
hands, as well as the use of a handkerchief or sanitizer, and to reduce touching of the eyes,
nose, and mouth. Secondly, lockdowns or quarantines are novel concepts to most; however,
they are vital in reducing transmission. Due to COVID-19′s infectivity, today’s primary
remedy is to stay home and follow social distancing measures. Thirdly, social media is
not a government agency or solicit organization where people blindly rely on the news.
Instead, people’s confidence in statistics, data, and outcomes mainly derive from posting on
social media, as well as interacting with Facebook, Twitter, or WhatsApp updates. Lastly,
exploratory factor analysis (EFA) revealed a positive relationship between social media
and health outcomes, suggesting that health safeguarding, lockdowns, reliance on media
figures, and psychological resentment are fortified through social media.

5. Conclusions

Social media is the most convenient way to access information, share an opinion, and
evaluate its justification. It has been vital in following COVID-19 and its traumatic death
toll. This study investigated the impact of social media usage on the COVID-19 pandemic
through an online-based questionnaire. The COVID-19 outbreak has become a global
catastrophe. Our study tried to evaluate latent information accessed through social media
on the perception of health issues, quarantine maintenance, data validation and accuracy,
and psychological monotony related to COVID-19.

Empirical evidence through factor analysis portrayed a well-fitted model explaining
78% of the variance. Path analysis revealed that health-related issues and safety were
significantly associated at the 1% level with quarantines, media figure accuracy, and the
psychological effect. The hypothetical factors were positively related to each other through
social media. Univariate analysis highlighted issues such as the health consciousness of
social media users related to knowledge about COVID-19 and its symptoms, risk assess-
ment, and social media accuracy. Factor analysis established four pillars: knowledge and
safeguarding health through media, self-detainment at home, social media’s accuracy, and
psychological monotony. The results indicated a positive impact on health consciousness
in terms of washing hands, using handkerchiefs or tissue, and staying safe at home as
much as possible. Thus, social media has had a positive impact on improving humankind
and conquering COVID-19. Individuals worldwide have faced enormous stress related
to e health concerns stemming from the COVID-19 pandemic, which has escalated social
media use. People used social media to seek accurate health information and stay in touch
with coworkers, peers, friends, and family members. Precautionary health practices are re-
garded as the most effective preventive measures for COVID-19 transmission. Even though
a vaccination program has begun, both vaccinated and unvaccinated people are advised to
take preventive measures [2,24]. People use social media and other educational technology
platforms to gain health-related information and to seek major emotional, informational,
educational, and peer support. More individuals are utilizing social media, increasing ac-
cess to health-related information. The introduction of facemasks, handwashing, and social
seclusion foreshadowed peer, informational, and emotional support. Some limitations of
this study were that it did not rely on theories such as knowledge, attitudes, and practices
(KAP) [44–46] or psychometric scales. Secondly, this study investigated COVID-19 without
considering mental condition, sleep quality, or crucial variables. Overall, this study mostly
exhibited a positive effect of social media on the knowledge of students.
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Abstract: The media plays an important role in disseminating facts and knowledge to the public
at critical times, and the COVID-19 pandemic is a good example of such a period. This research is
devoted to performing a comparative analysis of the representation of topics connected with the
pandemic in the internet media of Kazakhstan and the Russian Federation. The main goal of the
research is to propose a method that would make it possible to analyze the correlation between
mass media dynamic indicators and the World Health Organization COVID-19 data. In order to
solve the task, three approaches related to the representation of mass media dynamics in numerical
form—automatically obtained topics, average sentiment, and dynamic indicators—were proposed
and applied according to a manually selected list of search queries. The results of the analysis
indicate similarities and differences in the ways in which the epidemiological situation is reflected in
publications in Russia and in Kazakhstan. In particular, the publication activity in both countries
correlates with the absolute indicators, such as the daily number of new infections, and the daily
number of deaths. However, mass media tend to ignore the positive rate of confirmed cases and
the virus reproduction rate. If we consider strictness of quarantine measures, mass media in Russia
show a rather high correlation, while in Kazakhstan, the correlation is much lower. Analysis of
search queries revealed that in Kazakhstan the problem of fake news and disinformation is more
acute during periods of deterioration of the epidemiological situation, when the level of crime and
poverty increase. The novelty of this work is the proposal and implementation of a method that
allows the performing of a comparative analysis of objective COVID-19 statistics and several mass
media indicators. In addition, it is the first time that such a comparative analysis, between different
countries, has been performed on a corpus in a language other than English.

Keywords: COVID-19; topic modeling; BigARTM; latent Dirichlet analysis; mass media analysis

1. Introduction

COVID-19 has highlighted the relative inefficiency and low productivity in the health
sector, which in turn have contributed to increased social tension and a steady decline in
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the economic growth in most countries during the pandemic [1]. The healthcare system
can be considered as one of the main factors determining the sustainable growth of welfare
in many countries including Kazakhstan. However, healthcare systems in Kazakhstan
and throughout the world face multiple problems, which cause an increased demand for
health services, high public expectations, and higher expenses [2]. Not only economic
but also social and medical efficiency is important in the healthcare system; “medical
measures of therapeutic and preventive nature may be economically unprofitable, but
medical and social effects require them” [3]. According to the authors of [4], a fundamental
transformation of healthcare systems, based on Artificial Intelligence (AI) technology, is
necessary. The economic impact of AI on healthcare in Europe is estimated at 200 billion
euros [5]. The effect is associated with savings in time and an increase in the number of
lives saved.

One of the technologies related to AI is Natural Language Processing (NLP) [6],
which effectively uses machine learning techniques to process natural language texts and
speech; it is used in healthcare to extract information from clinical records [7], to process
speech messages, and to create question answering systems [8,9]. NLP methods can be
used not only to address the direct healthcare objectives but also to assess how the mass
media (media) reflect the public health situation during the pandemic. Mass media and
social networks have a substantial influence on the informational environment of society.
Nowadays, the media not only act as a source of information on current events, but often
shape the information agenda and form the discourse of socially important topics [10,11].
The inadequate presentation of health authorities in the media may contribute to the spread
of rumors and misinformation [12], and affect the mental health of the population [13].
Topic modeling in combination with sentiment analysis is often used to evaluate media
texts [14–16].

The severity of the COVID-19 pandemic in Kazakhstan and Russia [17] is significantly
higher than for an average nation. While Russia is the ninth largest country by population
in the world, the total number of COVID-19 cases made Russia the third–fifth largest
pandemic nation. Kazakhstan is in 63rd place in terms of population, and holds 36th–39th
place according to the number of new cases. This makes these two nations an interesting
target for this kind of research, especially since mass media in both countries is primarily
in the same language (Russian).

In this paper, we aimed to achieve two research objectives: to identify the differences
in the publication activities of the two countries regarding the COVID-19 pandemic and to
assess the correlation of publication activity with the COVID-19 pandemic indicators.

The main contribution of this study was the development of a new method to compare
and analyze real statistical data on COVID-19 (published by the WHO) and the responses of
mass media specified in the study. These responses were evaluated by new indicators that
are elaborated and introduced in the study. The indicators were developed based on three
approaches used in the evaluation of mass media dynamics—automatically obtained topics,
average sentiment, and dynamic indicators—according to manually selected search queries.

This study also represents the first time such a comparative analysis of COVID-19’s
representation in mass media was performed for languages other than English.

The obtained results showed the substantial differences in the representation of the
pandemic in the media of Russia and Kazakhstan, as well as providing several insights on
how the internet media tended to react to changes in epidemiological situations.

In this work, we used topic modeling for a comparative analysis of the corpus of
media publications on the COVID-19 pandemic in two countries, and we also assessed the
correlation of publication activities with the statistics of the pandemic. The work consisted
of the following parts.

The first part of this study examined the existing research on media publications
during the COVID-19 pandemic. The analysis showed the lack of comparative studies of
the pandemic publication corpora in languages other than English.
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In the second part, we considered the publication corpus and the method of pro-
cessing this corpus; this made it possible to obtain three types of mass media dynamic
indicators describing the different aspects of the representation of the COVID-19 situation
by mass media.

In the third part, we described and discussed the obtained results. The main result of
the experiments was a quantitative comparison of the coefficients of correlation between
the mass media indicators and the indicators of the COVID-19 epidemiological situation, as
well as the analysis of these coefficients. We also briefly described the system architecture
of the proposed method of data collection and processing.

In the end, we briefly described the advantages and limitations of the proposed
approach, and formulated the future research objectives.

2. Related Work

Evaluation of the media content is a focus of many research studies due to its practical
importance for advertising companies, news agencies and governmental bodies. Based on
the analysis of media content, it is possible to predict the possible popularity of news [18]
and to plan PR strategies for the promotion of products and services [19,20]. Government
sectors can use tools for the promotion of their opinions, as well as to improve the planning
of publication activities (i.e., which topics and events should be emphasized) and to identify
negative content.

According to the Edelman Trust Barometer [21], the trust in information presented by
government and media channels remains low. The gap between the informed and general
public is growing [21]. When people do not have reliable information or experience to
comprehend what is going on, they become dependent on the information accessible via
the mass media sources [22]. According to previous studies [23,24], mass media and social
network sources employ manipulative techniques to form public opinion, or to focus the
audience on specific topics. An additional factor affecting public perception is the increased
availability of various news items on the Internet, which can create confusion due to the
usage of personal, often unchecked sources of information, such as personal blogs, video
streaming, and unverified news [25]. Hence, many researchers focus on the possibilities of
assessing the negative effects of media and facilitating its positive effects [26].

During the COVID-19 pandemic, media messages have significantly affected people’s
emotions and their psychological stability [27]. During this period, more than 51% of news
headlines in English-language media have had a negative sentiment and only about 30%
of them were found to be positive [28]. Such information can cause anxiety, fear, anger,
longing, sadness, etc. in a great number of people [29].

Public reactions to the implemented measures, assessed via the analysis of large
volumes of documents, permits the adjustment of the restrictions imposed by government
agencies. In particular, the positive attitudes of the population to the measures of the
governments of South Korea [30] and Singapore [31] were revealed. There is some evidence
of increasing confidence in traditional media in the United States [32] and in India [33].
During the pandemic, the amount of misinformation and rumors circulating on social
media increased significantly; some of them could be detected automatically [34].

The analysis of mass media, social media, and publicly available datasets is important
to encourage analytical efforts and to provide data for pandemic mitigation planning [35].
Such an analysis can also be used as one of the possible proxy indicators and even predictors
of the economic situation in the country [36,37]. The list of analyzed indicators can include
the level of inflation, unemployment, poverty, economic development, etc.

One of the main tools used to analyze large corpora of texts is topic modeling. The
topic model determines the quantitative relationships between documents and topics, as
well as between topics and words or phrases. Clusters of terms and phrases formed in
the process of topic modeling, in particular, allow the solving of problems of synonymy
and polysemy of terms [38]. To build a topic model of a document corpus, the following
methods are generally used: Probabilistic Latent Semantic Analysis (PLSA), ARTM (Addi-
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tive Regularization of Topic Models) [39] and, very commonly, Latent Dirichlet Allocation
(LDA) [40].

Many studies that use LDA as a primary tool focus on identifying the list of topics
prevalent in publications and further analyzing the sentiment of the messages [41]. For
example, the authors of [42] identified several main topics on Twitter, including “news on
new confirmed cases”, “COVID-19-related deaths”, “cases outside China (worldwide)”,
“COVID-19 outbreak in South Korea”, “early signs of outbreak in New York”, “Diamond
Princess cruise”, “economic impact”, “preventive measures”, “authorities”, and “supply
chain”. However, topics related to treatment and symptoms are not as important on
Twitter. In [43], the topics of the publications are summarized as follows: “work and
life under pandemic conditions”, “social problems”, “understanding the nature of the
virus”, and “methods of prevention”. The authors of the paper [44] determined that users
in South Africa focus their attention on the following topics: “sale and consumption of
alcohol”, “staying at home”, “daily tracking of statistics”, “police brutality”, “5G”, “spread
of disease”, “testing”, “doctors”, and “conspiracy theories” about vaccines. An analysis
of publications in different countries revealed common themes widely covered in the UK,
India, Japan, and South Korea: “education”, “economy”, “USA”, and “sports” [14].

LDA is a prevalent method of topic modeling (see Table 1). The most frequent
language of the text corpora is English. Most of the publications are based on the social
networks Twitter, Sina Weibo, and Facebook. The most frequently considered corpus type
is publications on the situation in a particular country.

Table 1. Some examples of objectives and methods of research of publications about COVID-19.

Purpose of Research Method Data Source The Language of the
Corpus of Publications

The impact of news about COVID-19
on people’s emotional state [27] Statistical analysis Online survey English

Analysis of social media information
during a pandemic [45] LDA, Random Forest Twitter, Sina Weibo English, Chinese

Testing the hypothesis that COVID-19
is more likely to spread between
regions with closer ties in social

networks [46].

Statistical analysis Facebook data

Understanding the discourse and
psychological reactions of Twitter

users to COVID-19 [42].
LDA, sentiment analysis Twitter data

Identifying predominant themes and
accompanying emotions [43] LDA Twitter English

Identifying what topics are discussed
by the public and how they affect the
implementation of measures taken by

the government [44]

LDA Papers English

Analysis of PubMed® publication
topics and their evolution over time
during the COVID-19 pandemic [47]

LDA PubMed English
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Table 1. Cont.

Purpose of Research Method Data Source The Language of the
Corpus of Publications

Identification of the most
representative themes and sentiment

analysis [14]

Top2vec [48],
RoBERTa [49] The media English

Assessing social media sentiment
toward coronavirus [41] LDA, sentiment analysis Twitter English

Analysis of Indian online users’
tweets during the COVID-19

lockdown to identify texts containing
fear, sadness, anger, and joy [50]

Sentiment analysis based on
BERT Twitter English

Sentiment predictions on Covid-19
data [51]

Sentiment analysis based on
LSTM Twitter English

Therefore, there is a certain lack of research on corpora of publications about COVID-19
in languages other than English. We did not identify the studies devoted to a comparative
analysis of corpora of texts from the traditional internet media either. It is not clear how the
sentiment of statements in social networks and mass media correlates with the objective
indicators of the pandemic (the number of infected and sick people, the mortality rate, etc.).

One of the main aims of the research is to reduce the above-mentioned gap in studies;
this paper performs a comparative analysis of the Russian-language media in Russia and
Kazakhstan based on the corpus of texts we collected earlier.

We evaluated the correlations between the sentiment expressed in the media, and
the number of publications on certain topics with objective indicators of the COVID-19
epidemic in Russia and Kazakhstan.

In this work, we define media as “traditional” mass media (newspapers, magazines,
and TV-channels) presented in electronic form as well as purely electronic news websites
and social networks represented by widespread services such as Twitter, Sina Weibo,
Telegram, VK., etc. Attention is mainly paid to the mass media in the traditional sense,
which continues to play an important role in shaping the opinions of the population. The
media readership behavior in Kazakhstan and in Russia is very similar, although the lists of
popular news sources are obviously different and generally have almost no intersections.

3. Methods and Data

The employed methods included the following steps (Figure 1): text corpus collection
(a), text corpus processing (b), and correlation analysis using the objective data on the
epidemiological situation (c).

(a) Data collection. Mass media and social network news publications were gathered
using automatic scrapping tools.

(b) Text corpus processing was necessary to extract meaningful dynamic indicators of
mass media publication activity. Three types of indicators were proposed; they were
described in the section below: topics were obtained by a cascade of topic models,
sentiment analysis, and analysis of full-text search queries.

(c) Correlation analysis. We performed the assessment of pairwise correlation between
two groups of dynamic indicators—mass media indicators obtained in step (b) and
COVID-10 epidemiological indicators. We used COVID-19 indicators, which were
processed and prepared by the Center for Systems Science and Engineering at Johns
Hopkins University (JHU CSSE) [52].
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Figure 1. Main steps of the method for correlation analysis of mass media indicators and COVID-19 data.

Finally, the proposed method assumed the performance of manual analysis of the
obtained correlation coefficients in order to draw conclusions about the similarities and
differences of the pandemic reflection in different countries.

A corpus of news publications from media in Russia and in Kazakhstan was used
for the research [53]. It included social networks (VK.com, YouTube, Instagram, and
Telegram) and more than 20 news websites. The total numbers of news items were
as follows: 4,233,990 documents, received from various sources in Kazakhstan, and
2,027,963 documents from various sources in Russia; the date span of the publications
was from 2000 to 2021 (see Figure 2). The data mainly contained news publications from
traditional news web sites or from official groups/channels of those web sites and resources
on social networks. There was a small number of news publications from independent
bloggers or slightly moderated social network groups.

The data were collected using the Python library Scrapy, for which a custom con-
figurable Spider (crawler) was developed. The scraper was run regularly according to a
source-by-source schedule, which ranged from hourly to daily execution based on source
priority. The scheduling was implemented using Apache Airflow DAGs. The scraping pro-
cess was started in late 2019 and subsequently worked according to the schedule; hence, the
date and time of collection for each news publication were very close to its publication date.
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3.1. COVID-19 Data

Data from JHU CSSE [52] were used is order to analyze the objectivity of the represen-
tation of the COVID-19 epidemiological situation in media in Kazakhstan and in Russia.
The daily analyzed indicators are presented in Table 2.

Table 2. COVID-19 epidemiological indicators that were used in the analysis.

Indicator Description

Number of new tests Daily number of new tests for COVID-19

Positive rate The share of COVID-19 tests that are positive, given as a rolling 7-day
average (this is the inverse of tests per case indicator)

Number of new cases smoothed New confirmed cases of COVID-19 (7-day smoothed)

Number of new deaths smoothed New deaths attributed to COVID-19 (7-day smoothed)

Tests per case Tests conducted per new confirmed case of COVID-19, given as a rolling
7-day average (this is the inverse of positive rate indicator)

Virus reproduction rate Real-time estimate of the effective reproduction rate (R) of COVID-19 [54]

Stringency index
Government Response Stringency Index: composite measure based on 9
response indicators including school closures, workplace closures, and
travel bans, rescaled to a value from 0 to 100 (100 = strictest response)

3.2. Methods

We proposed the use of three main approaches to analyzing media data:

• Topic-modeling approach;
• Sentiment analysis;
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• Analysis by search queries.

The first approach applies Topic Modeling (TM). TM is a method that allows the
automatic finding of the hidden latent structures of corpora based on the statistical charac-
teristics of document collections. TM is often used in humanitarian research, since it allows
the efficient representation of large volumes of textual data in the form of a distribution of
a set of terms over documents (D) and a distribution of documents over topics (T) [55].

LDA [40,56] is often used as a method for building topic models. There is also a
popular generalization of LDA, which employs a set of ARTM. We use an ARTM in the
form of the BigARTM library [39] in this research.

The probabilistic thematic model is based on the assumption that each document is
a set of words generated randomly and independently from the conditional probability
distribution of words (w) in documents (d) [55]:

p(w|d) = ∑
t∈T

p(w | t, d) p(t | d) = ∑
t∈T

ϕwtθtd (1)

which represents the sum of mixed conditional distributions on all T-set topics, where
p(w | t) is the conditional distribution of words (w) in topics (t), and p(t | d) is the condi-
tional distribution of topics in the documents (d), w defines the distribution of words and d
represents the documents, ϕwt is a matrix representing distribution of words over topics
and θtd is a matrix representing the distribution of topics over documents. This ratio is
true, based on the assumption that there is no need to maintain the order of documents
in the corpus and the order of words in the documents. The LDA method assumes that
the components ϕwt and θtd. are generated by Dirichle’s continuous multidimensional
probability distribution. The aim of the algorithm is to search for parameters ϕwt and θtd
by maximizing the likelihood function with appropriate regularization:

∑
d∈M

∑
w∈d

ndwln ∑
t∈T

ϕwtθtd + R(ϕ, θ)→ max (2)

where ndw is the number of occurrences of the word w in the document d, and R(ϕ, θ) is a
logarithmic regularizer. To determine the optimal number of topics (clusters) T, the method
of maximizing the coherence value with the use of UMass metrics is often applied [57].

BigARTM is an open-source library for the simultaneous calculation of topic models
on large text corpora, the implementation of which is based on the additive regularization
approach (ARTM), in which the maximization of the logarithm of plausibility, restoring
the original distribution of W words on documents D, is added to a weighted sum of
regularizers, by many criteria:

R(ϕ, θ) = ∑
i=1

τiRi(ϕ, θ) (3)

This summand is a weighted linear combination of regularizers, with non-negative
τi weights.

BigARTM offers a set of regularizers:

1. The smoothing regularizer, based on the assumption that the matrix columns ϕ and θ
are generated by Dirichlet distributions with hyperparameters β0βt and α0αt (iden-
tical to the implementation of the LDA model, in which hyperparameters can only
be positive);

R(ϕ, θ) = β0 ∑
t∈T

∑
w∈W

βwtlnϕwt + α0 ∑
d∈D

∑
w∈W

αtdlnθtd → max (4)

In this way we can highlight the background topics, defining the vocabulary of the
language, or calculate the general vocabulary in the section of each document.
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2. By decreasing the regularizer coefficients, the reverse smoothing regularizer can
be obtained:

(ϕ, θ) = −β0 ∑
t∈T

∑
w∈W

βwtlnϕwt − α0 ∑
d∈D

∑
w∈W

αtdlnθtd → max (5)

This aims to identify the significant subject words, so-called lexical kernels, in addition
to subject topics in each document, zeroing out small probabilities.

3. The decorrelator Phi regularizer makes topics more “different”. The selection of topics
allows the model to discard small, uninformative, duplicate, and dependent topics:

(ϕ, θ) = −0.5 ∗ τ ∑
t∈T

∑
s∈ T

t

cov(ϕt ϕs)→ max, cov(ϕt ϕs) = ∑
w∈W

ϕwt (6)

This regularizer is independent of matrix θ. The estimation of differences in the dis-
crete distributions is implemented by ϕwt = p(w|t) , in which the measure is the covariance
of the current distribution of words in the topics ϕt versus the calculated distributions
ϕs, where s ∈ T/t.

The BigARTM topic model was applied to a corpus of over a million texts (news)
published from 1 January 2020 to 25 February 2021 from over 30 major internet media
sources in Russia and in Kazakhstan. Concatenation of news titles and article bodies was
used to extract the topics.

The analyzed media sources publish news articles in three different languages: Rus-
sian, English, and Kazakh. For the purpose of comparing Kazakhstani and Russian media,
only the news in Russian was considered. Since all three languages use distinctly different
alphabets, the filtering was based on simple character-frequency statistics. Next, the news
in the Russian language was lemmatized using the PyMyStem3 library [58]. A list of stop
words provided by the stop-words Python library [59] was applied.

A cascade of topic models was used in this research, since the preliminary experiments
showed that a single topic model is not capable of providing the required details. First, a
topic model with 200 topics was built; we refer to it as level-0 (initial) model. Then, experts
manually chose and labelled the topics related to medicine, the pandemic, and healthcare.
This labelling was used to filter a sub-corpus of documents that had relative weights, in
relation to the selected topics (from θ-matrix), above a constant threshold, which was set
to 0.05, empirically determined based on experiments. Then, a level-1 topic model (150
topics) was calculated based on the text document from the sub-corpus. However, the
analysis of the level-1 topic model showed that the accuracy of results of medicine-related
filtration was not high enough, and parts of the topics were irrelevant. Hence, the described
process was re-iterated in order to obtain two more models (Level 2 and Level 3). Each
time, the number of topics was chosen empirically based on quality metrics (perplexity,
coherence, and contrast [39]), as presented in Table 3. Let us discuss the metrics used for
the assessment of the models:

Table 3. Main information on the obtained topic models.

Topic Model # Topics # Documents Membership
Threshold Perplexity Contrast Purity

Level-0 200 1679803 - 3165 0.48 0.203
Level-1 150 285564 0.05 1853 0.505 0.207
Level-2 100 241536 0.04 1895 0.509 0.244
Level-3 50 194392 0.1 1859 0.503 0.284
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Perplexity is an indicator from information theory, which defines how well a proba-
bility model predicts a sample. Lower values indicate that the model predicts the sample
better. The perplexity of a probability model (topic model) can be defined as:

PP(p) = 2H(p) = 2−∑x p(x)log2 p(x) = ∏
x

p(x)−p(x)

where H(p) is the information entropy of the distribution, and x represents an iterator over
the samples (documents). Perplexity value does not have a minimum value; hence, it is
usually used to compare different models over the same set of data or to detect the “elbow
effect” to determine the optimal number of topics [60].

Contrast of the topics is defined by the formula 1
|Wt | ∑w∈wt p(t|w), where wt is a

topic kernel, i.e., the words from the topic with relation weight greater than or equal to a
given threshold.

Purity is defined by the formula ∑w∈wt p(w|t), where wt is also a topic kernel [60].
Finally, the following list of topic models was used for analysis:

• The level-0 topic model, which mainly consisted of general topics, such as economy,
medicine (in general), education, etc.

• The level-2 topic model comprised the topics related to medicine including the ones
somehow related to medicine and the epidemiological situation, such as quarantine
limitations in education, sport events and public life, the economic situation in the
context of the pandemic, etc. (Figure 3)

• The level-3 topic model provided very high accuracy in classifying medicine- and
healthcare-related topics and documents

Figure 3. Distribution of topics by relative volume in the second level of the thematic model.

Table 3 illustrates number of topics, membership thresholds, and quality metrics for
the obtained models.

The level-1 topic model did not provide the required level of accuracy; therefore, it
was excluded from the analysis. It only served as an intermediate model, which allowed
the obtaining of the more accurate models.

The obtained topic models were used in order to calculate the relative weight of each
of the topics. The relative weight was calculated daily in order to be able to analyze the
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topics’ dynamics within the publication activity. The relative weight of a topic is a ratio of
a column of the θ-matrix, representing the given topic in relation to the sum of the whole
θ-matrix. The relative weight ranges from 0 to 1 and shows the ratio of information related
to the given topic in the information field described by the corpus under analysis. Figures
4–6 show the dynamics of weekly relative weight of 3 of 100 topics within the level-2
topic model.

Figure 4. Weekly smoothed dynamics of “Vaccine, Drug, Sputnik-V, Russian, Test” topic relative weight.

Figure 5. Weekly smoothed dynamics of “Case, Number, Day, Coronavirus, Reveal” topic relative weight.

Figure 6. Weekly smoothed dynamics of “China, Coronavirus, New, Chinese, Wuhan” topic relative weight.

The topic model made it possible to exclude the personal bias from the process of anal-
ysis; it enhanced the model’s utility in the task of assessing the reflection of epidemiological
situation by mass media. However, this approach was found to have two main limitations:

1. It considers the dynamic weight of only single topic, while it might be possible that
some combination of topics according to other criteria may be more representative;

2. Topic modelling cannot consider the expert opinion, and certain topics, which are
considered to be important by experts, may not be distinguished automatically by the
topic model, depending on its meta-parameters.

In order to resolve this limitations, two other approaches were proposed. Sentiment
analysis was based on MMA (Mass Media Assessment) method [15], which required expert
labelling of topics by sentiment. This approach allowed the analysis of some combinations
of topics grouped by their sentiment. It also allowed the creation of effective classification
models with low volume high-level manual labeling—in this case, labeling topics by
sentiment in the range from −1 to +1. Then, the result for each document was obtained
by a summation of expert labeling results weighted by document related to each topic.
Another aggregation method could also be used, as described in [15]. On test data, this
approach made it possible to achieve an ROC AUC of 0.93, which is comparable to modern
deep learning classifiers.
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It also should be noted that, in this case, the definition of sentiment differed from the
conventional definition: we did not define sentiment as an author’s opinion on some issue,
but rather the general positivity or negativity of the described event for the society. Journal-
ism ethics requires news publications to be neutral and objective; hence, the conventional
definition of sentiment does not seem to apply to the problem.

The third approach aimed to perform an analysis of specific search queries constructed
by experts. It allowed the testing of the specific hypothesis by manually defined search
queries without relying on the topic model to distinguish the corresponding topics. The
list was composed based on the assumption that the COVID-19 pandemic had significantly
affected almost all areas of human activities [61], including healthcare, the economy (un-
employment, crisis, poverty) [62], remote work and education [63], crime rate [64], and the
abundance of fake news [65]. In the list, we attempted to encompass the most important
areas that might have been affected by the COVID-19 pandemic according to common
sense and literature review.

The translated list of queries used for the analysis is presented below:

• Fake, disinformation, anti-vax;
• Unemployment, poverty;
• Crisis, economic decline;
• Famine, starvation, homeless, poverty;
• Remote education;
• Freelance, remote work, brain drain;
• Criminal, robbery, theft, homicide;
• Crisis, lending, debt, microcredits;
• Healthcare, hospitals, issues, healthcare scandals;
• Vaccination, COVID-19 vaccines.

This list was composed manually in order to address the main hypothesis: what areas
of human activity were most affected by the COVID-19 pandemic. The list was based
on the opinion of populations of Kazakhstan and Russia as perceived by experts. The
population was mainly concerned with the economic impact of the pandemic, including
unemployment and poverty, the potential growth of criminal activity due to the economic
decline, impacts on education and healthcare, and also vaccination and how fake news and
disinformation can affect public opinion on the COVID-19 vaccination.

These queries (in Russian) were searched via ElasticSearch with the employment of a
multi-match full-text search method, which returned a list of matching documents with
relative weights. Then, a daily average of these relative weights was calculated for analysis.

ElasticSearch is a NoSQL in-memory storage database, which uses the Apache Lucene
engine for full text search and provides REST API to index (create), modify, and access
(search) different types of data, including texts of arbitrary lengths [66]. ElasticSearch
makes it possible to effectively perform full-text search queries on large volumes of textual
data and is able to assess document relevance based on search queries using built-in
algorithms implemented in the Apache Lucene engine [67].

Distribution of media by the top negative and top positive criteria is presented in
Appendix A.

The next step was calculating the Pearson correlation coefficient and Spearman correla-
tion coefficient between the three groups of indicators described above and the COVID-19
data (Table 2). The use of these two correlation coefficients was justified by the neces-
sity to verify the results using two fundamentally different statistics (parametric and
non-parametric). The Pearson correlation assesses the linear dependency between two vari-
ables, while the Spearman coefficient assesses how well the relationship of two variables
can be described using a monotonic function (which may or may not be linear). These
coefficients can be applied to assess the correlation between two time series. Usually, such
research is performed under the hypothesis that one of the time series is an independent
variable and another is a dependent variable. Such a method of analysis allows the perfor-
mance of an automatic dependency search between hundreds of variables (time series);
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however, the results must be manually analyzed and verified by experts, since correlation
analysis may produce inadequate results, especially when there are too many different
indicators under consideration. The following experimental procedure was proposed:

• Experiments should be performed for Russia and Kazakhstan separately;
• Experiments should be performed for each of the topic models’ average daily senti-

ments using the level-2 topic model, and for each of the search queries separately;
• Experiments should be performed for each of seven COVID-19 indicators selected

for analysis.

Below is a description of the system architecture, which implemented the proposed
methods for data collection, processing and analysis. During the development of the data
processing architecture, the following key needs were identified [68]:

• The possibility of simultaneous calculations with the employment of several machines;
• Ability to flexibly plan the various data processing tasks;
• Ability to monitor tasks in real time, including prompt notification of exceptions;
• Flexibility in using the tools and technologies.

The Apache Airflow open-source software platform was chosen to meet all these
needs that were identified in the analysis.

The system components (see Figure 7) were organized as Docker containers [68].

Figure 7. Multilayer system architecture.

The containers had access to the same virtual network, which provided the ability
to exchange data using standard network protocols (TCP). This system implementation
ensured the operation of subsystems as independent components, and each of them could
be replaced if necessary. The interaction of the system layers—the visualization layer and
the data processing layer—was carried out with the help of the storage system.
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There were three types of storage in the system:

• PostgreSQL—performed the role of a persistent storage medium for structured data;
• ElasticSearch—in-memory NoSQL storage, dedicated to storing unstructured or

poorly structured data, as well as fast search (including full-text), filtering, and stream-
ing access;

• Redis—fast key-value storage, used for caching individual pages and elements, and
for caching authorization sessions. Redis stored service data as well as page and
element caches, which were often accessed.

The general scheme of component interaction was organized according to the ETL
(extract, transform, load) principle: the user makes a request for data in ElasticSearch (if
data are rarely used) or in Redis (if data are often used). Text processing algorithms were
implemented as Airflow-tasks. The processing subsystem used Airflow-scheduler, which
writes information about the distribution of tasks by workers to Redis; they, in turn, report
to Redis about the status of their tasks. The subsystem interface was an HTML + CSS
+ JS website accessible via the HTTP protocol. The web application was implemented
on the Python Django framework, the webserver was Gunicorn, and the reverse proxy
was Nginx. The web application had access to both the persistent storage PostgreSQL
and ElasticSearch.

4. Results and Discussion

The proposed method was applied to the obtained topic models over the course of 42
experiments in which analysis was performed across two countries, three topic models and
seven indicators. Then, the results of the experiments were analyzed by experts. Table 4
illustrates an example of data obtained during the experiments, and shows the topics with
top correlation.

Table 4. Correlation between the number of new deaths from COVID-19 and topics from the initial topic model.

Correlation (Pearson/Spearman) Topic Name (Top-Words) Topic Volume
(Documents)

0.91/0.87 Vaccine, Vaccination, Drug, Coronavirus, Test, Sputnik-V, Russian 15,434

0.86/0.85 Petersburg, Saint Petersburg, Petersburg, Leningrad region,
Moscow, report deaths, COVID 1495

0.77/0.69 Health, Product, Doctor, Alcohol, Organism, Nutrition, Healthy 8318
0.74/0.63 Tell, Photo, Arrive, Depart, Tourism, Return, Go 2693
0.67/0.49 Temperature, Degree, Night, Snow, Weather, Air, Strong 8196

The implemented research allowed us to propose some results and recommendations.
The numbers of daily deaths and daily new cases had higher maximum correlations

in all of the experiments (typically 0.6–0.8). However, more informative relative indicators,
such as the positive test rate, reproduction rate, and number of tests per positive result (an
indicator, reversed to the “positive test rate” indicator) had lower maximum correlations
(typically 0.4–0.6). Hence, the media in Kazakhstan and in Russia focused too much on
absolute numbers, which can be argued to be biased and less informative. For example, the
absolute number of new identified COVID-19 cases does not reflect the situation accurately,
since the number of performed tests may vary drastically. Such types of analysis can lead
to situations when, although the overall epidemiological situation is steady, media start
to inflate the public opinion and cause panic due to an increase in the number of tests,
which leads to an increase in the absolute number of new cases, and the reverse situation is
also possible. However, media agencies in Kazakhstan and in Russia seemed to ignore the
relative indicators.

The index of the stringency of quarantine restrictions seemed to have high correlation
with topics in media in Russia (0.75, Figure 8), while media in Kazakhstan did not seem to
focus on stringency, and the highest correlation was only 0.43 (Figure 9). This may indicate
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that in Kazakhstan, there was a divergence between restrictions due to the pandemic and
their reflection in the media, which can be considered as a problem, since mass media are
one of the main tools for government to broadcast information about current the situation
and related restrictions.

Figure 8. Blue line shows quarantine limitations index in Russia over time, orange line shows dynamic weight of topic with
the highest correlation (0.75) over time. The topic is related to the reports on newly identified COVID-19 cases across the
different regions of the country.

Figure 9. Blue line shows quarantine limitations index in Kazakhstan over time, orange line shows dynamic weight of topic
with the highest correlation (0.43) over time. The topic is related to the reports on newly identified COVID-19 cases across
the different regions of the country.

A topic from the Kazakhstani news corpus with main associated words being “oxy-
gen, investigation, embezzlement” had the highest correlation with the number of daily
deaths from COVID-19 (0.8). This correlation was one of the highest among all topics and
COVID-19 indicators for Kazakhstan. It could be argued that this proves that criminal
embezzlements of liquid oxygen, required for critical cases of lung damage induced by
COVID-19, might be a reason for the increase in the number of deaths. Topics related to the
coronavirus vaccination had the highest correlation with the number of deaths in Russia
(0.82–0.84). This could be interpreted as an attempt to mitigate the risks of panic among
the population by informing them about new methods of stopping the epidemic.

One counterintuitive outcome of the series of experiments was that there was a strong
negative correlation between the number of deaths and newly identified cases and topics
related to the economy and banking (−0.3, −0.4). Although the negative impact of the
pandemic on the world economy is obvious, the deterioration of the epidemiological
situation did not cause the sudden increases in information on politics- and economics-
related topics; at the same time, neutral topics, such as culture, art, celebrities, and lifestyle,
do not correlate considerably with epidemiological indicators.

Tables 5–7 show the correlation coefficients between COVID-19 indicators and senti-
ment in the media in Russia and in Kazakhstan. It is important to note that most topics that
were labelled by experts to be positive according to the level-2 topic model were related
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to vaccination, COVID-related scientific research, and medical development. There were
also several topics on positive COVID-19 dynamics occurring as a result of compliance
with quarantine conditions, as well as a topic about governmental support of small busi-
nesses. Hence, this explains why there was a high correlation between positive news and
overall average sentiment and such indicators as numbers of new deaths and numbers of
new cases.

Table 5. Correlation between average sentiment and COVID-19 indicators.

Russia Kazakhstan

Indicator Correlation Coefficient
(Pearson/Spearman) Indicator Correlation Coefficient

(Pearson/Spearman)

New deaths smoothed 0.81/0.77 New tests 0.55/0.54
New cases smoothed 0.66/0.67 New cases smoothed 0.51/0.76

Positive test rate 0.57/0.54 Positive test rate 0.23/0.62
New tests 0.36/0.49 New deaths smoothed 0.22/0.58

Reproduction rate −0.007/−0.11 Reproduction rate −0.18/−0.43
Stringency index −0.12/−0.16 Stringency index −0.53/−0.56

Tests per case −0.13/−0.05 Tests per case −0.54/−0.58

Table 6. Correlation between numbers of news stories with negative sentiment and COVID-19 indicators.

Russia Kazakhstan

Indicator Correlation Coefficient
(Pearson/Spearman) Indicator Correlation Coefficient

(Pearson/Spearman)

Reproduction rate 0.71/0.72 Tests per case 0.42/0.36
Stringency index 0.65/0.57 Stringency index 0.41/0.75

Tests per case 0.08/0.26 Reproduction rate 0.16/0.42
Positive test rate 0.02/0.17 Positive test rate 0.14/−0.40

New tests −0.11/0.10 New deaths smoothed −0.29/−0.47
New cases smoothed −0.18/0.08 New cases smoothed −0.35/−0.47

New deaths smoothed −0.32/−0.10 New tests −0.56/−0.50

Table 7. Correlation between numbers of news stories with positive sentiment and COVID-19 indicators.

Russia Kazakhstan

Indicator Correlation Coefficient
(Pearson/Spearman) Indicator Correlation Coefficient

(Pearson/Spearman)

New deaths smoothed 0.84/0.71 New cases smoothed 0.50/0.63
New cases smoothed 0.70/0.68 Positive test rate 0.36/0.67

Positive test rate 0.68/0.62 New deaths smoothed 0.29/0.54
New tests 0.47/0.48 New tests 0.20/0.13

Reproduction rate 0.25/0.14 Reproduction rate −0.06/−0.43
Stringency index 0.05/−0.06 Stringency index −0.21/−0.11

Tests per case −0.14/−0.11 Tests per case −0.5/−0.63

These data make it possible to draw some conclusions, which are presented below.
This results obtained using this approach support the hypothesis that the media in

Russia reflected COVID-19 situation more accurately.
Moreover, the number of negative news stories in media in Russian strongly correlated

with two very representative parameters—the virus reproduction rate and the quaran-
tine stringency index—which also indicates that the mass media in Russia presented the
situation in an objective and accurate manner.

Rankings according to the Pearson and Spearman correlation coefficients were iden-
tical to the data obtained for the Russian Federation and very similar to the data for
Kazakhstan. This might indicate that, in the Russian Federation, mass media publication
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activity was responsive the changes in the epidemiological situation in a more linear way,
as compared to the media in Kazakhstan.

Generally, there was a moderate correlation between the number of deaths, new cases,
and new tests, and the number of positive news stories (which was also considerably higher
in the Russian media). This might indicate that the media generally tend to smooth out the
negative psychological effects caused by the pandemic situation, rather than inflating fear.
Specifically, when the epidemiological situation deteriorated, the media tended to publish
more information about the latest research on—and benefits of—vaccines.

Lastly, we consider the results of the manually constructed full-text search query
analysis. There were several options for obtaining the time series from the query results. In
this case, the average daily relative weights of the documents were used (the results are
presented in Table 8).

Table 8. Correlation between average relative weights of queries and indicators with the highest correlations.

Russia Kazakhstan

Query Top Indicator
(Pearson/Spearman)

Correlation
Coefficient

(Pearson/Spearman)
Query Top Indicator

(Pearson/Spearman)

Correlation
Coefficient

(Pearson/Spearman)

Vaccination,
COVID-19 vaccines

Positive rate/Positive
rate 0.76/0.78

Healthcare, hospitals,
issues, healthcare

scandals

Stringency
index/Stringency

index
0.42/0.32

Healthcare, hospitals,
issues, healthcare

scandals

Positive
rate/Reproduction

rate
0.67/0.53 Crisis, lending, debt,

microcredits

Tests per
case/Stringency

index
0.41/0.46

Crisis, lending, debt,
microcredits

Reproduction
rate/Stringency

index
0.56/0.54 Vaccination,

COVID-19 vaccines

Reproduction
rate/Stringency

index
0.38/0.52

Unemployment,
poverty

Stringency
index/Stringency

ondex
0.56/0.48 Fake, disinformation,

anti-vax

Tests per
case/Reproduction

rate
0.33/0.21

Crisis, economic
decline

Tests per
case/Stringency

index
0.49/0.44 Crisis, economic

decline

Tests per
case/Stringency

index
0.29/0.47

Freelance, remote
work, brain drain

Stringency
index/Stringency

index
0.39/0.35 Remote education New tests/Positive

rate 0.29/0.38

Famine, starvation,
homeless, poverty

Stringency
index/Stringency

index
0.35/0.47 Unemployment,

poverty

Tests per
case/Reproduction

rate
0.27/0.29

Fake, disinformation,
anti-vax

Tests per case/Tests
per case 0.33/0.39 Freelance, remote

work, brain drain

Stringency
index/Stringency

index
0.26/0.46

Remote education Reproduction
rate/Tests per case 0.11/0.39 Criminal, robbery,

theft, homicide New tests/New tests 0.20/0.15

Criminal, robbery,
theft, homicide

New deaths/Positive
rate 0.07/0.10 Famine, starvation,

homeless, poverty
New tests/Positive

rate 0.09/0.16

These experiments also demonstrated that the Russian media reflected the COVID-19
situation more objectively.

The rankings that were constructed according to the Pearson and Spearman correlation
coefficients were also identical for the Russian Federation, while for Kazakhstan, there was
considerable inconsistency.

In the cases of both sentiment and query correlation, the most inconsistent COVID-19
indicator, which accounted for the most of the differences in ranking, was the stringency in-
dex of Kazakhstan. According to the analysis, this might indicate that the stringency index
in Kazakhstan changed non-linearly and it was less responsive to changes in the epidemio-
logical situation as compared to the stringency index in Russia. Figures 8 and 9 illustrate
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this difference, since it is visible that the spread of the stringency index was much lower in
Kazakhstan (while the epidemiological situation’s spread seemed to be comparable).

In both countries, the Healthcare, Crisis, and Vaccination queries showed the highest
correlation, while Crime and Famine/Starvation were ranked much lower, even in the me-
dia in Russia, which might indicate that the fears that the pandemic critically damaged the
economy and led to severe problems such as crime and extreme poverty were not justified.

In Kazakhstan, the query about fake news and disinformation was ranked much
higher than in Russia, which might indicate that these were significantly more acute
problems for Kazakhstan.

The queries about remote education, freelancing, and unemployment showed moder-
ate correlations in both countries.

The hypothesis that there might be a lag between COVID-19 indicators and mass
media reaction was already addressed in a number of computational experiments. Different
lags between −10 and +10 days were tested. The experiments showed that mass media
and COVID-19 indicators steadily demonstrated maximum correlation at close to zero
lag, while increases in the lag (either positive or negative) led to monotonic decreases
in the maximum and average correlation coefficients. This regularity was observed in
both countries. Although it might intuitively be assumed that mass media should react
to COVID-19 indicators with some delay, in practice, this idea is not supported. Two
explanations can be considered in this regard:

• Mass media received actual information rather promptly, and react to it operatively;
• There was some inherent lag in the analyzed COVID-19 indicators. For example,

daily statistics may have actually contained some sort of aggregated information over
several days due to imperfections in statistical data collection processes in Kazakhstan
and Russia.

The main contribution of this work is the proposal of a model to perform a comparative
analysis of the representation of the COVID-19 pandemic by mass media in two different
countries, where English was not used as the language of communication, taking into
account multiple points of view—automatically obtained topics, average sentiment, and
dynamic indicators—according to manually selected search queries.

5. Conclusions and Future Research

The COVID-19 pandemic has had a great impact on the life of society in almost all
countries of the world. The analysis of media texts allows us to evaluate the public reaction
to the non-standard situation and the measures taken by national governments.

We proposed a method that, in this study, made it possible to analyze how statistical
indicators related to COVID-19 were reflected in mass media. The method assumes the
application of BigARTM or another topic model in order to obtain the topical structure of
the corpus, which can then be used to calculate the topics’ dynamics. Those dynamical indi-
cators of publication activity can be compared with COVID-19 indicators, such as numbers
of new cases, positive test rates, stringency indexes, and others, in order to perform the
correlation analysis. In this study, sentiment analysis based on topic embeddings [14] was
also conducted, as well as an analysis of correlation in which the daily average relevance
weights were obtained from 10 full-text search queries constructed manually by experts.

The main advantage of the proposed method is that it combines the analysis the
dynamics of unbiased and automatically obtained topics, sentiment analysis based on
expert labelling, and manual queries. It can be argued that an such approach may produce
more objective results and conclusions through the comparative analysis of the results of
three groups of computational experiments.

The proposed method can potentially be used to obtain insights on how COVID-19 is
presented in the media, and on which statistical indicators describe the media activities.
For example, it was found that the media in Russia and in Kazakhstan focused on absolute
values, while more informative relative indicators such as positive test rates and virus
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reproduction rates were generally ignored, since such indicators showed much lower
correlations with publishing activities on several topics as well as with sentiment.

The method might also be applied to estimate how the stringency of quarantine
limitations is reflected in the media. Such an analysis may help indicate reasons for
deteriorations in the epidemiological situation, since quarantine restrictions must not only
be introduced, but also enforced and broadcasted.

The limitations of the current study include the fact that only daily aggregations
were used, while valuable insights could theoretically also have been obtained at different
degrees of granularity. Time-lagged correlation was not considered in the study; however,
this is not a limitation of the method.

One obvious methodological limitation, which is inherent to all correlation-based
approaches, is the possibility of sporadic correlations. However, the proposed method
attempts to avoid this problem by using small (daily) granularity, which makes the chances
of sporadic random correlation much lower, and also by including three different groups
of experiments into the analysis to make it possible to cross-check the findings.

It should also be noted that, in the study, the cross-national effects were not taken into
account; thus, the lack of generalizability to a global perspective is a limitation of this study.

Directions of further research include:

• Attempt to build a model for the recognition of inaccuracies in official statistical
indicators regarding the COVID-19 pandemic using mass media data as a reference;

• Conduct an analysis of the topical profile of the COVID-19 pandemic in different
countries and explore how it evolved over time. Such an analysis can be used to assess
its impact on the economy, education, politics, tourism, etc.
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Appendix A

Visualization of the topic modeling and sentiment analysis results for the corpus of
media publications.
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Figure A1. The dynamics of sentiment.

Figure A2. Number of positive and negative articles.

Figure A3. Negative media.

Figure A4. Top negative news.

Figure A5. Top positive news.
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Abstract: Over the course of the COVID-19 pandemic millions of deaths and hospitalizations have
been reported. Different SARS-CoV-2 variants of concern have been recognized during this pandemic
and some of these variants of concern have caused uncertainty and changes in the dynamics. The
Omicron variant has caused a large amount of infected cases in the US and worldwide. The average
number of deaths during the Omicron wave toll increased in comparison with previous SARS-CoV-2
waves. We studied the Omicron wave by using a highly nonlinear mathematical model for the COVID-
19 pandemic. The novel model includes individuals who are vaccinated and asymptomatic, which
influences the dynamics of SARS-CoV-2. Moreover, the model considers the waning of the immunity
and efficacy of the vaccine against the Omicron strain. This study uses the facts that the Omicron
strain has a higher transmissibility than the previous circulating SARS-CoV-2 strain but is less deadly.
Preliminary studies have found that Omicron has a lower case fatality rate compared to previous
circulating SARS-CoV-2 strains. The simulation results show that even if the Omicron strain is less
deadly it might cause more deaths, hospitalizations and infections. We provide a variety of scenarios
that help to obtain insight about the Omicron wave and its consequences. The proposed mathematical
model, in conjunction with the simulations, provides an explanation for a large Omicron wave under
various conditions related to vaccines and transmissibility. These results provide an awareness that
new SARS-CoV-2 variants can cause more deaths even if their fatality rate is lower.

Keywords: SARS-CoV-2 variant; Omicron wave; mathematical modeling; vaccination; scenarios;
simulations

1. Introduction

Over the course of the COVID-19 pandemic, at least 671 million confirmed cases and
6.83 million deaths have been reported (December 2022) [1]. These reported numbers
are in the lower bounds, since there are asymptomatic and under-reported cases [2–7].
During 2019, 2020, 2021 and 2022, different strains of the SARS-CoV-2 virus have been
found [8–13]. These strains have different characteristics related to contagiousness and
severity. Thus, some SARS-CoV-2 variants affect the count of infected cases, hospitaliza-
tions and deaths [14,15]. Vaccination programs against SARS-CoV-2 started at the very end
of 2019 and the beginning of 2020 in some countries [16–21]. For the year 2022, many coun-
tries have already implemented vaccination programs and some countries have also imple-
mented booster programs [4,22–24]. The evolution of SARS-CoV-2 is affected by various
factors that are difficult to quantify [25–28]. For instance, social behavior and vaccination sta-
tus are major factors that influence the COVID-19 pandemic [27,29–37]. New SARS-CoV-2
strains also play a major role in the evolution of the COVID-19 pandemic and have gener-
ated different spatial-temporal waves in different countries [12,38–44]. These waves are
mainly the product of different contagiousness of new SARS-CoV-2 strains and public
health interventions.
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The Omicron variant caused a new wave during 2022. The count of cases has been
very large and has exceeded previews waves. Omicron was first detected in South Africa
and Botswana in early November 2021, but using retrospective testing, it was found that
Omicron was also present in England, Nigeria and the United States during November
of 2021 [45–47]. Omicron has more than fifty mutations in comparison with the original
circulating SARS-CoV-2 [46]. The Omicron strain carries an unusually high number of
mutations, suggesting potential immune evasion [22]. A near-complete lack of neutralizing
activity has been reported against Omicron in polyclonal sera from individuals vaccinated
with two doses of the BNT162b2 COVID-19 vaccine and from convalescent individuals,
as well as resistance to different monoclonal antibodies in clinical use [22]. In [48], results
suggest that two doses of COVID-19 vaccines only offer modest protection against symp-
tomatic Omicron infection. In [24], the authors showed that Omicron exhibits significant
immune evasion compared to other strains. In addition, they found that the Omicron
spike exhibits reduced receptor binding and cell–cell fusion, but increased cell-to-cell
transmission [24].

Despite the fact that the Omicron strain has lower severity, it has caused a large number
of hospitalizations and the average daily number of deaths has been substantial [49]. Some
studies have reported a lower rate of hospitalization for the Omicron strain compared
with infections caused by the Delta strain [50]. It has been found that booster vaccination
and vaccination of individuals with a history of SARS-CoV-2 infection generated lower
antibody titers than those against the Delta strain [51,52].

One important aspect for studies predicting health outcomes related to this pandemic
is how deadly each of the SARS-CoV-2 strains are. There are two main ways to compute
how deadly a disease is. The first is the infection–fatality ratio (IFR), which is given by
the ratio of deaths to all infected individuals. The second is computing the case fatality
ratio (CFR), which is given by the ratio of deaths to confirmed cases. Estimating the IFR
is complex, since it requires knowing the total number of infected cases. Some studies
have estimated the CFR as being from less than 0.1% to over 25% [53]. For COVID-19, the
true level of transmission is frequently underestimated because a substantial proportion of
people with the infection are undetected, either because they are asymptomatic or are not
reported [53–55]. In places where testing is extensive, the estimation of CFR is more
robust [56]. Another aspect that affects health outcomes is the immunity level of the popu-
lation which is related to the herd immunity. The increase in population immunity makes it
more difficult to compare Omicron’s severity with previous circulating SARS-CoV-2 strains,
since previous exposure to SARS-CoV-2 strains is expected to prevent to some extent severe
outcomes from subsequent infection [57].

The main objective here is to obtain insight into the impact of the Omicron strain.
In particular, our aim is to propose a mathematical approach that helps to provide an
explanation of the large Omicron wave and the great number of deaths during this wave
despite its lower fatality rate. We propose a mathematical modeling framework to study
the Omicron wave and attain some additional insight into its evolution. Mathematical
models are fruitful and have been used to investigate a variety of scenarios related to
the behavior of the COVID-19 disease [6,58–74]. These models are used to study the
impact of a variety of health interventions on epidemics. With in silico simulations of the
mathematical models we can produce a variety of outcomes that are difficult to foresee
due to the nonlinearity and complexity of the epidemics [75–77]. In addition, in some cases
the mathematical analysis permits us to determine under what conditions the disease can
disappear. Previous studies have investigated the dynamics of the COVID-19 pandemic
under two SARS-CoV-2 variants, but some of them did not include vaccination and waning
since they were designed for the early pandemic [78–85]. Recently, some researchers have
studied the Omicron wave dynamics [86–89]. In [88], the authors analyzed a second wave
of COVID-19 and in particular on the Omicron variant pandemic data in India. In [86],
a stochastic and second-order model is proposed to deal with the Omicron wave. A
mathematical model considering age structure, vaccine, antiviral treatment and influx
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of the Omicron variant in Korea was developed in [87]. The authors in [58] proposed a
fractal–fractional age-structure model for the omicron SARS-CoV-2 variant and considered
two age groups. They found that there is a high infection and recovery rate of the Omicron
SARS-CoV-2 variant infection among the population under 50. In [90], a generalized SIR
model was used to simulate and predict the dynamics of Omicron waves in Ukraine and in
the whole world. Mathematical models also have bee used for within-host dynamics for
SARS-CoV-2 and in particular the Omicron variant [91,92]

Over this pandemic, many SARS-CoV-2 strains have appeared and these have different
characteristics [11,93–97]. Previous models have been used to investigate the influence of
new SARS-CoV-2 strains that have a higher probability of transmission [6,38,79,80,83,98–101].
In particular, some interesting studies have considered the mathematical modeling of new
SARS-CoV-2 strains and at the same time imperfect vaccination or waning [83,99,101]. Further-
more, some mathematical models have been proposed for studying SARS-CoV-2
waves [40,102,103]. The models have different underlying assumptions and, as any mathe-
matical model of an epidemic, they have advantages and limitations. A variety of work has
been carried out considering continuous and discrete models that have included vaccinated
subpopulations where people have less probability to get infected, proliferate the virus, or
die [78,81,101,104–108].

In this study, we build a mathematical model for the Omicron wave situation. In-
dividuals who are asymptomatic and vaccinated are included in the model since they
influence the evolution of the Omicron wave [109–115]. In this study, we use the fact that
the Omicron strain has a higher transmissibility than the previously circulating SARS-CoV-2
strains and that the vaccine efficacy is lower for the Omicron strain [22,48]. In addition,
we take into account that preliminary studies have found that Omicron has a lower case
fatality rate compared to previous circulating SARS-CoV-2 strains. We perform in silico
simulations with a variety of scenarios to attain insight into the Omicron wave, its potential
consequences and to explain the Omicron wave situation. In this study, we perform a
brief stability analysis of the developed model and we also identify the basic reproduction
number R0 despite the fact that the in silico simulations are aimed more toward shorter
dynamics [116,117]. The reproduction number R0 is strongly connected to the effective
reproduction numberRt, and therefore is useful in obtaining insight into the behavior of
epidemics and pandemics. The motivation of this work is to provide additional knowledge-
based support to health authorities and the population in general. Scientific studies that
bring awareness of health issues are important to public health despite sometimes the
scientific tools used not being very complex [118]. In summary, we propose a mathemat-
ical approach to provide an explanation of a large Omicron wave arising under various
conditions as a function of vaccination status and transmissibility. These results provide
awareness that new SARS-CoV-2 variants can cause more deaths even if their fatality rates
are lower.

There are some certain previous studies and mathematical models related to the
Omicron wave [119–121]. In [121], the authors implemented a stochastic, discrete-time-,
individual-based transmission model of SARS-CoV-2 infection and COVID-19 disease. The
model considers an age-structured, small-world network. Using sensitivity analysis due
to many uncertainties they show that a new SARS-CoV-2 variant dominance is primarily
driven by its infectivity, which does not necessarily lead to an increased public health
burden. In [119], the authors used a model fitted to more than 2 years of epidemiological
data from England to project potential dynamics of SARS-CoV-2 infections and deaths in
England to December 2022. They considered several key uncertainties including behavioral
changes and waning immunity. They concluded that for the particular case of England and
under the assumption that no new variants emerge, SARS-CoV-2 transmission is expected
to decline. The authors concluded that the projections depend largely on assumptions
around waning immunity, social behavior and seasonality. Other interesting work related
to Omicron waves is presented in [120]. In this work, a generalized SEIR model assuming
gamma-distributed incubation and infectious periods is presented. The model includes
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susceptibility to Omicron. Their results suggest that even in those regions where the Delta
variant is controlled before the beginning of the Omicron wave a significant Omicron
wave can be expected. It is important to remark that for the particular case of England
the Omicron wave was smaller than the Delta wave. In our paper, we provide additional
insight regarding the Omicron wave.

This paper is organized as follows: In Section 2, we build the mathematical model for
the Omicron wave dynamics. Section 3 is devoted to the stability analysis of the model. In
Section 4, the numerical simulation results regarding the Omicron wave are presented, and
the final section is devoted to discussion and conclusions.

2. Mathematical Model for the Omicron Wave Dynamics

We constructed a mathematical model that relies on nonlinear differential equations.
The model includes the Omicron strain and one previous circulating strain of SARS-CoV-2.
The mathematical model uses the fact that Omicron is more contagious than the previously
circulating SARS-CoV-2 strain. The constructed model also encompass people who are
vaccinated and asymptomatic. Moreover, the model assumes the waning of immunity for
vaccinated and recovered individuals. All these are major components of the constructed
model and a novelty in comparison with other models. The developed model assumes that
the pre-existent circulating SARS-CoV-2 strain(s) has (have) lower contagiousness than the
Omicron strain. The constructed model can be extended to other circulating SARS-CoV-2
strains if similar conditions hold.

The model encompass individuals in the susceptible (Si(t)), symptomatic (Ii(t)),
asymptomatic (Ai(t)) and recovered (Ri(t)) groups for each SARS-CoV-2 strain. In addi-
tion, the model comprise three type of subclasses for vaccinated individuals. The first is
when susceptible individuals are vaccinated V(t), the second when individuals who have
recovered from strain 1 get vaccinated V1R, and the last arises when individuals who have
recovered from strain 2 get vaccinated V2R. The individuals in the last two subpopulations
have stronger immunity and protection against the SARS-CoV-2, as immunology studies
have suggested [57]. The model is depicted in Figure 1.

Figure 1. Diagram of the mathematical model (2) with classes and relevant parameters.

The flow of individuals from one subpopulation to another depends on the individual
COVID-19 disease status. The model bears in mind partial cross-immunity against the
other SARS-CoV-2 strain due to the adaptive immune response [75,122–124]. A susceptible
individual can get infected with either strain and progress to the symptomatic classes (with
either the previously circulating strain or Omicron) or to the asymptomatic classes (A1(t)
or A2(t)). The symptomatic and asymptomatic individuals stay in the infectious stage for a
certain time with mean 1/γ. The symptomatic and asymptomatic individuals then move to
the recovered classes (R1(t) or R2(t) respectively). Then, individuals in the recovered class
R1(t) can progress to the vaccinated class V1R(t) if they get vaccinated. However, they can
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also progress (with different probabilities) to infected subpopulations I1(t), I2(t), A1(t) or
A2(t), depending on which strain they get and the symptoms. Analogously, individuals
in the recovered class R2(t) can progress to the vaccinated class V2R(t) if they get vacci-
nated and to the infected subpopulations I1(t), I2(t), A1(t) or A2(t). Recovered individuals
cannot go back to the susceptible population due to partial cross immunity and adaptive
immune system that has memory [57,124–128]. Finally, symptomatic individuals can die
due to COVID-19, but the model assumes that people who are asymptomatic cannot. The
model, as any other epidemiological model, is obviously a simplification of reality. For
instance, the hospitalization subpopulation is not considered explicitly, nor are presymp-
tomatic individuals. It is important to remark that a large number of studies assume these
simplifications in order to focus on some particular stages and/or parameters.

The model allows us to analyze the dynamics of the Omicron wave taking into account
two SARS-CoV-2 strains. Studies have shown that exposure to small airborne particles
is equally, or even more, likely to lead to infection with SARS-CoV-2 as the more widely
recognized transmission via larger respiratory droplets and/or direct contact with infected
people or contaminated surfaces [129]. Thus, we can model the transmission of SARS-CoV-2
by mass action, i.e., a term βS I, where β is the SARS-CoV-2 transmission rate [117]. The
total population size is given by

N(t) = S(t) + I1(t) + A1(t) + I2(t) + A2(t) + R1(t) + R2(t)

+ V(t) + V1R(t) + V2R(t). (1)

The total population N(t) does not include the cumulative deaths but we can compute
them in the in silico simulations. The model is represented by the next differential equations

Ṡ(t) = Λ− (ν + d)S(t)− λ1(t)S(t)− λ2(t)S(t),

İ1(t) = (1− a1)λ1(t)
(

S(t) + (1− ε1)V(t) + (1− ε1R)V1R(t) + (1− ε21R)V2R(t)

+ (1− ε1)R1(t) + (1− ε21)R2(t)
)
− (d + d1 + γ)I1(t),

Ȧ1(t) = a1λ1(t)
(

S(t) + (1− ε1)V(t) + (1− ε1R)V1R(t) + (1− ε21R)V2R(t)

+ (1− ε1)R1(t) + (1− ε21)R2(t)
)
− (d + γ)A1(t),

İ2(t) = (1− a2)λ2(t)
(

S(t) + (1− ε2)V(t) + (1− ε2R)V2R(t) + (1− ε12R)V1R(t)

+ (1− ε2)R1(t) + (1− ε22)R2(t)
)
− (d + d2 + γ)I2(t),

Ȧ2(t) = a2λ2(t)
(

S(t) + (1− ε2)V(t) + (1− ε2R)V2R(t) + (1− ε12R)V1R(t)

+ (1− ε2)R1(t) + (1− ε22)R2(t)
)
− (d + γ)A2(t), (2)

Ṙ1(t) = γ(I1(t) + A1(t))− (d + νr)R1(t)− λ1(t)(1− ε1 )R1(t)− λ2(t)(1− ε2 )R1(t),

Ṙ2(t) = γ(I2(t) + A2(t))− (d + νr)R2(t)− λ2(t)(1− ε22)R2(t)− λ1(t)(1− ε21)R2(t),

V̇(t) = νS(t)− dV(t)− (1− ε1)λ1(t)V(t)− (1− ε2)λ2(t)V(t),
˙V1R(t) = νrR1(t)− dV1R(t)− (1− ε1R)λ1(t)V1R(t)− (1− ε12R)λ2(t)V1R(t),
˙V2R(t) = νrR2(t)− dV2R(t)− (1− ε2R)λ2(t)V2R(t)− (1− ε21R)λ1(t)V2R(t),

where λ1(t) = β I1 I1(t) + βA1 A1(t) and λ2(t) = β I2 I2(t) + βA2 A2(t) are the sources that
produce infections in the different at risk subpopulations. The model comprises ten de-
pendent variables, representing the different subpopulations. The parameters with their
respective meaning and numerical values are shown in Table 1.
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Table 1. Parameters for the Omicron wave mathematical model (2) with their respective meaning
and numerical values.

Parameter Symbol Value

Inflow rate λ 7.864180× 103 people/day [130]
Natural death rate d 0.00002378 1/day [130]
Infectious period γ−1 7 days [131]
Transmission rate βi varied β1 ≤ β2
Death rate (infected with previous circulating strains) d1 0.01 days−1 [106,132]
Death rate (infected with Omicron) d2 varied < 0.01 days−1 [49]
Vaccination rates ν, νR varied ν ≥ νR 1/day [130]
Proportion of asymptomatic ai 0.5 [133,134]

We will analyze some basic features of the model (2) in order to obtain a mathematical
framework for the stability analysis. Some conditions of the model (2) are The initial
conditions satisfy

S(0) > 0, I1(0) ≥ 0, A1(0) ≥ 0, I2(0) ≥ 0, A2(0) ≥ 0, R1(0) ≥ 0, R2(0) ≥ 0,

V(0) > 0, V1R(0) ≥ 0, V2R(0) ≥ 0. (3)

The parameters satisfy

Λ, β!2 , β I1 , βA2 , βA1 , α, γ, d, di, νr ∈ R+, and ai, εi, εiR, εij, εijR ∈ [0, 1]. (4)

Positivity

By the classical theory of ordinary differential equations [135,136], it deduces that the
system (2) is well-posed, and has a unique solution

Z(t) :=
(

S(t), I1(t), A1(t), I2(t), A2(t), R1(t), R2(t), V(t), V1R(t), V2R(t)
)

satisfying the initial conditions given by (3). The dependent variables of the system (2)
are subpopulations; therefore, we must show that if (3) holds, then the solutions of the
mathematical model (2) are positive ∀t > 0.

Theorem 1. Assume that (2) and (3) hold. Then the solution Z(t) of (2) is positive and uniformly
bounded ∀t > 0.

Proof. We define the following number

W = sup
{

ρ > 0
/
∀t ∈ [0, ρ], S(t) > 0, Ii(t) ≥ 0, Ai(t) ≥ 0, Ri(t) ≥ 0, V(t) > 0, V1R(t) ≥ 0, V2R(t) ≥ 0

}
,

for i = 1, 2. Suppose thatW < ∞. Since the solutions of the model (2) are continuous, it
follows that

S(W) = 0, or I2(W) = 0, or I1(W) = 0, or A2(W) = 0, or A1(W) = 0, or R1(W) = 0, or

R2(W) = 0, or V(W) = 0, or V1R(W) = 0, or V2R(W) = 0.

Thus, if S(W) = 0, is obtained before the other variables, one obtains

dS(W)

dt
= lim

t→W−
S(W)− S(t)
W − t

≤ 0.

Accordingly, from first the Equation of the model (2), one obtains that

Ṡ(W) = Λ− (ν + d)S(W)− λ1(W)S(W) + λ2(W)S(W)

= Λ > 0,
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which is a contradiction. Therefore, S(t) > 0, for all t ≥ 0. Now, similarly, if we assume
that V(W) = 0, occurs before any of the other variables are zero, one obtains

dV(W)

dt
= lim

t→W−
V(W)−V(t)
W − t

≤ 0,

and using the eighth Equation (2), another contradiction follows

V̇(W) = νS(W)− dV(W)− (1− ε1)λ1(t)V(W)− (1− ε2)λ2(t)V(W) > 0.

We can use a similar process for the other dependent variables to obtain to similar contra-
dictions. Therefore,W = +∞, and therefore

S(t) ≥ 0, I1(t) ≥ 0, A1(t) ≥ 0, I2(t) ≥ 0, A2(t) ≥ 0, R1(t) ≥ 0, R2(t) ≥ 0, V(t) ≥ 0,

V1R(t) ≥ 0, V2R(t) ≥ 0,

for t > 0. Next, using (2) one obtains

Ṅ(t) = Λ− dN(t)− d1 I1(t)− d2 I2(t) ≤ Λ− dN(t), (5)

and using Gronwall inequalities one obtains that

N(t) ≤ Λ
d
+

(
N(0)− Λ

d

)
e−d t, (6)

for t ≥ 0. Now, taking N(0) ≤ Λ
d

, then N(t) ≤ Λ
d

. On the other hand, from the first and
eighth Eqs. of system (2) it follows that

Ṡ(t) = Λ− (ν + d)S(t)− λ1(t)S(t)− λ2(t)S(t) ≤ Λ− (ν + d)S(t),

and

V̇(t) = νS(t)− dV(t)− (1− ε1)λ1(t)V(t)− (1− ε2)λ2(t)V(t) ≤ νS(t)− dV(t).

Taking the limit, we have that S(t) ≤ Λ
ν + d

and V(t) ≤ νΛ
d (ν + d)

as t → ∞. As a result,

θ ∈ [0, 1) implies that

0 < S(t) + θV(t) ≤ Λ[d + θν]

d (d + ν)
, as t→ ∞.

Therefore, we can consider the region

O=




(S, I1, A1, I2, A2, R1, R2, V, V1R, V2R) ∈ R10

+

∣∣∣∣∣∣∣∣∣∣

N(t) ≤ Λ
d

, S(t) ≤ Λ
d (ν + d)

,

0 < S(t) + θV(t) ≤ Λ[d + θν]

d (d + ν)
, θ ∈ [0, 1)





(7)

which is positively invariant. Thus, the solutions of system (2) are bounded. Further-

more, if N(0) >
Λ
d

, then either the solution enters O for infinite time or N(t) → Λ
d

asymptotically.

3. Stability Analysis

In the qualitative analysis of the model solutions, it is common to determine the
stationary points that identify the disease-free and endemic equilibrium points. In this
case, in the model (2) there is a disease-free point (F∗1 ), which can be found by setting
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I1 = I2 = A1 = A2 = 0, and indicates that SARS-CoV-2 becomes extinct. Now, it is of great
importance to determine in epidemiological models the different parameters that delimit
the different states of a disease. One in particular is the basic reproduction number R0,
which measures the influence of introducing one infected individual into a total susceptible
population [76,137].

3.1. Disease-Free Equilibrium Point andR0

The disease-free equilibrium (F∗1 ) point of the model (2) is given by

F∗1 =
(

S0, I0
1 , A0

1, I0
2 , A0

2, R0
1, R0

2, V0, V0
1R, V0

2R

)
=

(
Λ

d + ν
, 0, 0, 0, 0, 0, 0, 0,

νΛ
d (d + ν)

, 0, 0
)

. (8)

In order to obtain an expression forR0 in the model (2), we use the next generation matrix
(NGM) method [116,137]. For this purpose, we determine the matrix F representing
the new infection cases and the matrix V represents the progression between classes. The
eigenvalue of the matrixFV−1 with largest absolute value is the basic reproduction number
R0. For further technicalities see [116,137]. Thus,

F =




(1− a1)BI1 (1− a1)BA1 0 0

a1BI1 a1BA1 0 0

0 0 (1− a2)BI2 (1− a2)BA2

0 0 a2BI2 a2BA2




, (9)

and

V =




d + d1 + γ 0 0 0

0 d + γ 0 0

0 0 d + d2 + γ 0

0 0 0 d + γ




. (10)

Then, one obtains

FV−1 =




(1− a1)BI1

d + d1 + γ

(1− a1)BA1

d + γ
0 0

a1BI1

d + d1 + γ

a1BA1

d + γ
0 0

0 0
(1− a2)BI2

d + d2 + γ

(1− a2)BA2

d + γ

0 0
a2BI2

d + d2 + γ

a2BA2

d + γ




,
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which is the NGM, and the positive eigenvalues are given by

R01 =
BA1 a1(d + d1 + γ) + BI1(1− a1)(d + γ)

(d + γ)(d + d1 + γ)
, (11)

R02 =
BA2 a2(d + d2 + γ) + BI2(1− a2)(d + γ)

(d + γ)(d + d2 + γ)
,

or

R01 =
BA1 a1

d + γ
+

BI1(1− a1)

d + d1 + γ
,

R02 =
BA2 a2

d + γ
+

BI2(1− a2)

d + d2 + γ
,

where

BI1 =
β I1 Λ
ν + d

(
1 +

(1− ε1)ν

d

)
, BA1 =

βA1 Λ
ν + d

(
1 +

(1− ε1)ν

d

)
,

BI2 =
β I2 Λ
ν + d

(
1 +

(1− ε2)ν

d

)
, BA2 =

βA2 Λ
ν + d

(
1 +

(1− ε2)ν

d

)
.

The parametersR01 andR02 are related to the two different SARS-CoV-2 strains, respec-
tively. Thus, one obtains the spectral radius of FV−1

R0 = max
{
R01 , R02

}
. (12)

The parameterR0 allows us to determine if an outbreak would occur. WhenR0 < 1, and
if the initial conditions of the model (2) are close enough to the equilibrium (F∗1 ), then no
outbreak would occur. However, when R0 > 1, an epidemic would occur. Thus, one
obtains the next theorem.

Theorem 2. When the basic reproduction numberR0 < 1 (R0 > 1), the disease-free equilibrium
point F∗1 of the model (2) and given in (8) is locally asymptotically stable (unstable).

Proof. The proof follows from applying Theorem 2 in [137].

Global Stability of Disease-Free Equilibrium Point

Analyzing the behavior of the solutions of an epidemiological model represented by
a system of differential equations such as (2) around the disease-free equilibrium point
is important because it determines what public health measures are necessary in order
to avoid endemic situations. Thus, we want to analyze whether the disease-free point
F∗1 is a global attractor, i.e., it must be proven that if R0 < 1, the disease becomes extinct
regardless of the initial conditions of the model (2). In other words, the point F∗1 is globally
asymptotically stable (GAS). In order to prove the global stability of F∗1 , we apply the
methodology used in [138]. The system (2) can be written as

Ẏ(t) = F(Y, Z), Ż(t) = I(Y, Z), I(Y, 0) = 0 ∈ R4, (13)

with Y = (S, V, R1, R2, VR1, VR2) which denotes the vector of uninfected compartments,
and Z = (I1, A1, I2, A2) is the vector of infected compartments. Moreover, F(Y, 0) is the
right-hand side of Ṡ(t), V̇(t), Ṙ1(t), Ṙ2(t), V̇R1(t), V̇R2(t), setting I1 = A1 = I2 = A2 = 0.
Thus, F∗1 is rewritten as Y0 =

(
S0, V0, 0

)
, 0 ∈ R4. The following result guarantees the GAS

of F∗1 .

Theorem 3. The point F∗1 given by (8) of system (2) is GAS in O if R0 ≤ 1, and if the next
conditions hold:
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• Condition 1 : Given Ẏ(t) = F(Y, 0), 0 ∈ R4, then Y0 is GAS.
• Condition 2 : I(Y, Z) = J Z − I̊(Y, Z), then I̊(Y, Z) ≥ 0 in O as t → ∞, and J =

DZ(I̊, 0) is an M−matrix, i.e., the off-diagonal elements are non-negative.

Proof. For the Condition 1, we write Ẏ(t) = F(Y, 0), 0 ∈ R4 as

Ṡ(t) = Λ− (ν + d)S(t),

V̇(t) = νS(t)− dV(t),

Ṙ1(t) = −(d + νr)R1(t), (14)

Ṙ2(t) = −(d + νr)R2(t),
˙V1R(t) = νrR1(t)− dV1R(t),
˙V2R(t) = νrR2(t)− dV2R(t).

After some calculations using (14) one obtains

(S(t), V(t), R1(t), R2(t), dV1R(t), V2R(t))→
(

S0, V0, 0
)

as t→ ∞. (15)

On the other hand, for the Condition 2, from (9) and (10) we can obtain the matrix
J = F − V .

J =




(1− a1)BI1 − (d + d1 + γ) (1− a1)BA1 0 0

a1BI1 a1BA1 − (d + γ) 0 0

0 0 (1− a2)BI2 − (d + d2 + γ) (1− a2)BA2

0 0 a2BI2 a2BA2 − (d + γ)




,

and J is an M−matrix. Next, from (15) and in view of (7) yields

I̊(Y, Z) = J Z− I(Y, Z) =




{
Λ(d + (1− ε1)ν)

d(d + ν)
− (S + (1− ε1)V)

}
(1− a1)λ1 − (1− a1)λ1W1

{
Λ(d + (1− ε1)ν)

d(d + ν)
− (S + (1− ε1)V)

}
a1λ1 − a1λ1W1

{
Λ(d + (1− ε2)ν)

d(d + ν)
− (S + (1− ε2)V)

}
(1− a12)λ2 − (1− a2)λ2W2

{
Λ(d + (1− ε2)ν)

d(d + ν)
− (S + (1− ε2)V)

}
a2λ2 − a2λ2W2




≥ 0,

in Ω as t→ ∞, where

W1(t) = [(1− ε1R)V1R(t) + (1− ε21R)V2R(t) + (1− ε1)R1(t) + (1− ε21)R2(t)],

and

W2(t) = (1− ε2R)V2R(t) + (1− ε12R)V1R(t) + (1− ε2)R1(t) + (1− ε22)R2(t),

with W1(t), W2(t)→ 0, as t→ ∞. Thus, it is very clear that I̊(Y, Z) ≥ 0, with 0 ∈ R4.

The consequence of Theorem 3 from the epidemiological viewpoint is that COVID
will not become endemic as long asR0 < 1, regardless of the initial conditions.

3.2. Endemic Equilibrium Point

The behavior of the solutions of the model (2) whenR0 > 1 depends on the endemic
points. We can find these endemic points by simply setting the right-hand side of the
system (2) to zero and obtaining the algebraic solutions representing the endemic points as
a function of the parameters of the mathematical model (2).
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For the model (2), we want to determine the endemic points, which will be denoted by

E∗ = (S∗, A∗1 , I∗1 , A∗2 , I∗2 , R∗1 , R∗2 , V∗, V∗1R, V∗2R), (16)

and this vector is a solution of the following algebraic system:

0 = Λ− (ν + d)S∗ − λ∗1S∗ − λ∗2S∗, (17)

0 = (1− a1)λ
∗
1

(
S∗ + (1− ε1)V∗ + (1− ε1R)V∗1R + (1− ε21R)V∗2R + (1− ε1)R∗1

+ (1− ε21)R∗2
)
− (d + d1 + γ)I∗1 ,

0 = a1λ∗1
(

S∗ + (1− ε1)V∗ + (1− ε1R)V∗1R + (1− ε21R)V∗2R + (1− ε1)R∗1

+ (1− ε21)R∗2
)
− (d + γ)A∗1 ,

0 = (1− a2)λ
∗
2

(
S∗ + (1− ε2)V∗ + (1− ε2R)V∗2R + (1− ε12R)V∗1R + (1− ε2)R∗1

+ (1− ε22)R∗2
)
− (d + d2 + γ)I∗2 ,

0 = a2λ∗2
(

S∗ + (1− ε2)V∗ + (1− ε2R)V∗2R + (1− ε12R)V∗1R + (1− ε2)R∗1

+ (1− ε22)R∗2
)
− (d + γ)A∗2 ,

0 = γ(I∗1 + A∗1)− (d + νr)R∗1 − λ∗1(1− ε1 )R∗1 − λ∗2(1− ε2 )R∗1 ,

0 = γ(I∗2 + A∗2)− (d + νr)R∗2 − λ∗2(1− ε22)R∗2 − λ∗1(1− ε21)R∗2 ,

0 = νS∗ − dV∗ − (1− ε1)λ
∗
1V∗ − (1− ε2)λ

∗
2V∗,

0 = νrR∗1 − dV∗1R − (1− ε1R)λ
∗
1V∗1R − (1− ε12R)λ

∗
2V∗1R,

0 = νrR∗2 − dV∗2R − (1− ε2R)λ
∗
2V∗2R − (1− ε21R)λ

∗
1V∗2R,

where λ∗1 = β I1 I∗1 + βA1 A∗1 and λ∗2 = β I2 I∗2 + βA2 A∗2 . We can see from the first Eq. of the
system (17) that S∗ > 0. Moreover, Λ− (d + ν)S∗ > 0, that is, S∗ ∈ O. Using the second,
third, fourth and fifth Equation (17) we arrive to the next result,

I∗1 =
(1− a1)(d + γ)A∗1

a1(d + d1 + γ)
, I∗2 =

(1− a2)(d + γ)A∗2
a2(d + d2 + γ)

. (18)

Thus

λ∗1 =
dR01(d + γ)(ν + d)A∗1

a1Λ(d + (1− ε1)ν)
, λ∗2 =

dR02(d + γ)(ν + d)A∗2
a2Λ(d + (1− ε2)ν)

. (19)

Now, from the first Equation (17) it follows that

S∗ =
Λ

(ν + d)
(
1 + λ∗1 + λ∗2

) . (20)

Next, from the sixth and seventh Equation (17), and putting (18), it follows that

R∗1 =

γ

(
1 +

(1− a1)(d + γ)

a1(d + d1 + γ)

)
A∗1

(d + νr + λ∗1(1− ε1) + λ∗2(1− ε2))
, R∗2 =

γ

(
1 +

(1− a2)(d + γ)

a2(d + d2 + γ)

)
A∗2

(d + νr + λ∗1(1− ε22) + λ∗2(1− ε21))
(21)

In the same way, from the ninth and tenth Equation (17), one obtains

V∗1R =
νrR∗1

(d + λ∗1(1− ε1R) + λ∗2(1− ε12R))
, V∗2R =

νrR∗2
(d + λ∗1(1− ε2R) + λ∗2(1− ε21R))

, (22)
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and finally

V∗ =
S∗ν

d + (1− ε1)λ
∗
1 + (1− ε2)λ∗2

. (23)

Thus, there are three endemic equilibrium points that can be obtained from Equation (18).
Indeed, if A∗1 = 0 and A∗2 > 0, then one obtains from Equations (18)–(23) that λ∗1 = 0,
λ∗2 > 0, S∗ > 0, R∗1 = 0, R∗2 > 0, V∗1R = 0, V∗2R > 0, and V∗ > 0. Thus, the first endemic
point given by

E∗1 = (S∗, 0, 0, A∗2 , I∗2 , 0, R∗2 , V∗, 0, V∗2R), . (24)

Next, if A∗2 = 0 and A∗1 > 0, then one obtains from Equations (18)–(23) that λ∗2 = 0,
λ∗1 > 0, S∗ > 0, R∗2 = 0, R∗1 > 0, V∗2R = 0, V∗1R > 0, and V∗ > 0. Therefore, the second
endemic point is

E∗2 = (S∗, A∗1 , I∗1 , 0, 0, R∗1 , 0, V∗, V∗1R, 0). (25)

Finally, if A∗1 > 0 and A∗2 > 0 then we can obtain the third endemic point given by
Equations (18)–(23).

Thus, the steady states are one of the endemic equilibrium points depending on the
numerical values of R02 and R01 . For instance, if R02 > R01 > 1 then both SARS-CoV-2
strains survive in the population. This is due to the fact that the mathematical model (2)
does not consider full immunity either from vaccination or natural immunity [62,80]. Re-
cent studies suggest that this is true for the COVID-19 pandemic situation [22,139–143].
We did not perform further stability analysis related to periodic solutions, backward bifur-
cations and global stability since the aim of this study is the short dynamics of the Omicron
wave and obtaining further insight into it.

4. Simulations for the Omicron Wave

We performed in silico simulations of the Omicron wave model (2) for a variety
of scenarios (in fact, infinitely many) in order to obtain insight into the Omicron wave
situation and additional potential consequences of the Omircon strain on the dynamics
of this pandemic. We varied the vaccine’s efficacy against the Omicron strain in order to
consider, as some articles have mentioned, that the efficacy of the vaccine is lower against
the Omicron strain [22,48]. We also varied the transmissibility and severity of the Omicron
strain since it has been revealed that both factors significantly differ in comparison to the
previous circulating SARS-CoV-2 strains [22,24,48]. The in silico simulations allow us to
explain, at least partially, the Omicron wave period. We focus here on the qualitative results
of the in silico simulations since there are uncertainties that make it very difficult to have
accurate forecasts as time has proven over the COVID-19 waves.

The dependence of the transmission rate on the natural daily variability in human
behavior makes estimation of the transmission rate very difficult. Sensitivity analysis is one
means researchers often use to approach the uncertainties in the COVID-19 pandemic. The
numerical simulations presented in the present study show different potential situations in
order to remark on the distinct possibilities regarding the transmission rates. For instance,
when the Omicron variant arose, the scientific community did not know if it was more
transmissible or deadly than the previous strain. The simulations also have the aim of
corroborating the theoretical results in addition to potential explanations of what happened
in the real world. The simulations allow us to present different scenarios regarding the
real values of transmission rate and case fatality rate. This provides additional insight
regarding the COVID-19 pandemic dynamics and future scenarios for new variants.

All numerical simulations were carried out in Python 3.8. Ordinary differential equa-
tions were solved using the scipy.odeint routine. The simulations were performed with
a PC (Intel(R) Core(TM) i7-7820HQ CPU, 2.90 GHz) with 64 Mb RAM. Table 1 shows
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the numerical values of the parameters that were used for the in silico simulations. For
some parameters, we used a wide range of values in order to consider a larger number of
scenarios and potentially extreme cases that might arise due to uncertainty in the parame-
ters. For the initial subpopulations, we took the values from the particular situation of the
USA just before the start of the Omicron wave period [1]. Based on previous works, the
Omicron wave started around mid-November [45]. The values of the initial conditions can
be extracted from different data sources. Like the CDC, we considered the possibility that
for every symptomatic infected case there would be one asymptomatic case, even though
there is some uncertainty for this [1,4,133]. We chose the situation of the USA since the
reported data are more reliable than in other countries and the population is large enough
to observe the main effects on the Omicron wave dynamics. In the numerical simulated
scenarios, there is an effective reproduction numberRt that decreases as the susceptible
subpopulation decreases [80,144]. During the in silico simulations, we assumed that the
parameters are time-invariant, despite that in reality some parameters might vary over
time. Introducing time-varying parameters is a difficult task although some modelers have
attempted it [101]. For the percentage of asymptomatic cases we considered 50%, which is
a situation proposed by the CDC [133]. Making reasonable changes to this percentage does
not affect the qualitative conclusions of this study.

4.1. Efficacy of the Vaccine against the Omicron Strain

The Omicron strain has been detected in many countries [145]. Preliminary data related to
the efficacies of current vaccines against the Omicron strain are available. It has been revealed
that these efficacies are different in comparison with other SARS-CoV-2 strains. In [145], the
authors analyzed 133,437 PCR test results and found that during the proxy Omicron period
the vaccine efficacy against hospitalization was 70%, which is much lower than the 93%
efficacy for the comparator period. In [52], the authors carried out a narrative review from
32 scientific articles supporting the idea that Omicron evades antibodies induced by primary
vaccination or by SARS-CoV-2 infection. We use this information in order to set the efficacies
of the vaccines for the numerical simulations. Based on several scientific articles, we assume
that the current vaccines have less efficacy against the Omicron strain [24,51,128,146–148]. On
the other hand, it has been revealed that the Omicron pseudovirus infects cells more efficiently
than other SARS-CoV-2 strains [128]. Furthermore, those who received two doses of vaccine
have lower neutralizing activity against Omicron [22].

Table 2 shows the different efficacies of the vaccines for a variety of status related to
COVID-19. Some of these efficacies are high if the individuals already had the disease in
good agreement with previous studies [149,150]. Due to a short time study of less than
one year, the model does not consider a particular subpopulation for the cases where
individuals contracted the disease twice, which is very unlikely. However, the model can
also be used as an approximation for longer times, since it considers that once individuals
have been infected with SARS-CoV-2, the likelihood to get infected again is lower due
to memory cells and adaptive immunity [151–153]. The model considers implicitly the
waning of the effectiveness of the vaccine as well as natural immunity since vaccinated and
recovered people can get infected but with lower probability [153–155].

Table 2. Values of the assumed efficacies for the SARS-CoV-2 vaccines used in the in silico simulations.

Parameter From To Value

ε1 V I1, A1 [0.8,0.95]
ε1 R1 I1, A1 [0.8,0.95]
ε2 V I2, A2 [0.37,0.6]
ε1R V1R I1, A1 [0.98,0.99]
ε12R V1R I2, A2 [0.95,0.98]
ε22 R2 I2, A2 [0.9,0.95]
ε21 R2 I1, A1 [0.37,0.6]
ε21R V2R I1, A1 [0.98,0.99]
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4.2. Numerical Simulations towards Steady States

We present three in silico simulations of the model (2) in order to provide additional
support to the theoretical results and observe the long-term behavior. For these scenarios
we used initial conditions where the number of infected cases is very small since we
just want to compare with the theoretical results and sinceR0 is defined for almost fully
susceptible populations [116,137]. We varied the transmissibility of circulating SARS-CoV-2
strains and we considered that the Omicron strain has a higher likelihood to be transmitted
than the previously circulating strain. This allows us to foresee the long-term qualitative
effects of the Omicron wave.

Figure 2 displays the evolution of the symptomatic subpopulations I1(t) and I2(t).
We chose the transmission rate such that R01 < 1 and R02 < 1. Both symptomatic (the
asymptomatic cases were also treated but are not shown) subpopulations approach the
disease-free steady state F∗1 . In order to obtain manageable and useful graphs for the
steady states we use a large natural death rate for faster dynamics only in this subsection.
Figure 3 displays the long-term behavior when R02 > 1 > R01 and the initial infected
subpopulations are small. Note that the Omicron strain becomes the prevalent one and the
previous circulating one vanishes. In Figure 4 we consider the case where the initial number
of infected people with the previously circulating strain is large in order to resemble reality
when Omicron was introduced. It can be seen that despite having a large vaccination rate,
the system (2) still approaches the endemic steady state E∗1 due to the higher transmissibility
of the Omicron strain. Figure 5 depicts the case whereR02 > R01 > 1 and it can be seen that
the previously circulating strains and the Omicron strain become endemic. The explanation
for this is due to the fact that people who got either of the SARS-CoV-2 strains can get the
other strain. After this long-term dynamics results, the next subsection is devoted to the
transient dynamics of the Omicron wave.

Figure 2. In silico simulation of the Omicron wave model (2) when R02 ≈ 0.95 > R01 ≈ 0.82. The
previously circulating and Omicron strains disappear, while the system approaches the point F∗1 . We
use a large natural death rate for faster dynamics.

Figure 3. In silicosimulations of the Omicron wave model (2) when R02 ≈ 1.04 > R01 ≈ 0.9. The
Omicron strain becomes prevalent and the system approaches the point E∗1 .
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Figure 4. In silico of the Omicron wave model (2) whenR02 ≈ 1.04 > R01 ≈ 0.9. The Omicron strain
becomes prevalent and the system approaches the endemic steady state E∗1 despite the fact that the
initial prevalence of the non-Omicron strain has a very large prevalence.

Figure 5. In silico simulations of the Omicron wave model (2) when R02 ≈ 1.5 > R01 ≈ 1.4. The
previously circulating and Omicron strains become prevalent and the system approaches the endemic
steady state E∗.

4.3. Numerical Simulations to Assess Critical Outcomes

For the in silico simulations we considered various efficacies of the vaccine against
the Omicron strain, transmissibility and severity of the Omicron strain. In the analysis, we
focus on the qualitative results and the effects of the aforementioned factors.

Figure 6 displays the paths of each of the subpopulations and some cumulative
numbers. This is a particular case where we can see the evolution of the Omicron wave
for one scenario. This is not a suitable way to understand the effects of the Omicron strain
since there is no comparison with other scenarios. Thus, the next simulations consider
variations of the vaccine’s efficacy against Omicron and also Omicron infectivity.

Figure 6. In silico simulation of the Omicron wave model (2) when R02 ≈ 0.95 > R01 ≈ 0.87. The
two strains vanish and the system approaches the disease-free equilibrium point F∗1 .
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Figure 7 displays different outcomes regarding the final cumulative infected popula-
tion with each strain. It can be seen that when the Omicron infectivity rate increases, the
final cumulative number of people infected with Omicron increases, but the final cumu-
lative number of people infected with the previously circulating strain decreases. This is
due to a competition for the susceptible people among the strains. The model does not
consider co-infection. Furthermore, the final cumulative number of infected people with the
previously circulating SARS-CoV-2 strain increases if the vaccine’s efficacy against Omicron
increases. The opposite situation occurs for the final cumulative number of infected people
with Omicron. However, the changes to final cumulative numbers for people infected with
Omicron are much larger, which partially explains the large number of infected cases that
have been recorded for the Omicron wave.

Figure 8 displays the final cumulative number of deaths when we vary the vaccine’s
efficacy against the Omicron strain and the infectivity of the Omicron strain. As can be
observed, the final cumulative number of deaths increases as Omicron’s infectivity increases
despite assuming the same case fatality rate. This is a major result to bring awareness to,
given that even if the Omicron strain is less deadly the final cumulative deaths can increase
as has indeed occurred [1,49]. We also performed in silico simulations assuming standard
incidence in the model (2) and the results are qualitatively similar.

Figure 7. In silico simulation of the Omicron wave model (2). The outcomes regarding the final
cumulative infected people for each strain. As the Omicron infectivity rate increases, the final
cumulative number of people infected with Omicron increases but the final cumulative number of
people infected with the previously circulating strain decreases.

Figure 8. In silico simulation of the Omicron wave model (2). The outcomes regarding total deaths. As
the Omicron infectivity rate increases, the final total number of deaths increases. As can be observed,
the number of deaths increases despite assuming the same case fatality rate for the two strains.

4.4. Comparison of the Omicron Wave with the Non-Omicron Situation

Finally, we present additional in silico simulations to compare the non-Omicron with the
Omicron situation. In the analysis we focus on the qualitative results related to infected people
and total number of deaths since these are the crucial health outcomes of the pandemic.
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Figure 9 displays the infected subpopulations over a period of six months. The total
number of infected people is larger under the Omicron wave in comparison with the
situation where no Omicron is introduced, as reflected in reality. Notice that initially the
number of people infected with Omicron is much smaller, also as reflected in the real world.

Figure 10 displays the number of deaths over a period of six months assuming a
smaller death rate for people infected with Omicron (25% of previous circulating strain).
The total number of deaths is larger under the Omicron wave in comparison with the
situation with no Omicron despite a large number of the population being vaccinated and
a relative acceptable vaccine efficacy. These results are in good agreement with the results
that have occurred during the Omicron wave [1,49].

Figure 9. In silico simulation of the Omicron wave model (2) when R01 ≈ 0.81, R02 ≈ 1.74 and
vaccine efficacy against Omicron is approximately 79%. More infected cases during the Omicron wave,
despite a large number of the population being vaccinated and a relative acceptable vaccine efficacy.

Figure 10. In silico simulation of the Omicron wave mathematical model (2) when R01 ≈ 0.81,
R02 ≈ 1.74 and vaccine efficacy against Omicron is approximately 79%. More deaths during the
Omicron wave, despite a lower case fatality rate for Omicron, large number of population vaccinated
and a relative acceptable vaccine efficacy.

4.5. Discussion of Numerical Simulation Results

The numerical simulation results presented here agree with those obtained in previous
work related to the Omicron wave. For instance, in [121] the authors found that a new SARS-
CoV-2 variant’s (for example, Omicron) dominance is primarily driven by its infectivity,
which does not always lead to an increased public health burden. This has been shown in
our work through the theoretical results and the numerical simulations. In [119], the authors
considered several key uncertainties and concluded that in the particular case of England
and under the assumption that no new variants emerge, SARS-CoV-2 transmission is
expected to decline. This also agrees with our results, since the basic effective reproductive
number depends on the transmission rates. The authors mentioned that the projections
depend largely on assumptions around waning immunity, social behavior and seasonality.
In our work, we presented sensitivity analysis to assess the effects of uncertainty of some
factors related to the Omicron variant and the results agree with the aforementioned
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work. It is important to remark that during the Omicron wave, people from each region
have different levels of immunity protection. This was investigated in in [120]. Their
results suggested that even in those regions where the Delta variant is controlled before
the beginning of the Omicron wave a significant Omicron wave can be expected. This
has been shown in our study and under some mathematical conditions that we have
found. Thus, all these results provide additional insight into the understanding of new
SARS-CoV-2 variants.

Previous studies have modeled the Omicron wave [119–121]. In [121], the authors
implemented a stochastic, discrete-time- and individual-based transmission model of
SARS-CoV-2 infection and COVID-19 disease. The model considers an age-structured,
small-world network. Using sensitivity analysis, they show that a new SARS-CoV-2 variant
dominance is primarily driven by its infectivity, which does not necessarily lead to an
increased public health burden. In [119] the authors used a model fitted to more than
2 years of epidemiological data from England to project potential dynamics of SARS-CoV-2
infections and deaths to December 2022. They considered several key uncertainties includ-
ing behavioral change and waning immunity. They concluded that for the particular case
of England and under the assumption that no new variants emerge, SARS-CoV-2 transmis-
sion is expected to decline. The authors concluded that the projections depend largely on
assumptions of waning immunity, social behavior and seasonality. Other interesting work
related to Omicron waves is presented in [120]. In this work, a generalized SEIR model
assuming gamma-distributed incubation and infectious periods is presented. The model
includes susceptibility to Omicron. Their results suggest that even in those regions where
the Delta variant is controlled before the beginning of the Omicron wave a significant
Omicron wave can be expected. For the particular case of England, the Omicron wave was
smaller than the Delta wave. In our paper, we provide additional insight regarding the
Omicron wave.

5. Conclusions

Mathematical models are fruitful for the study of various epidemics and infectious
diseases. The models allow us to learn about the evolution of epidemics and also to
grasp the potential effects of public health control strategies on the epidemics. Forecasting
epidemics is frequently a complex task. Mathematical models are able to provide results
that sometimes are difficult to anticipate without mathematical tools.

We constructed a mathematical model to investigate the evolution of the Omicron
wave. The Omicron strain has caused a new wave with a large amount of infected cases and
deaths worldwide. In some countries, the average number of deaths during this Omicron
wave has only slightly increased in comparison with previous circulating SARS-CoV-2
waves. We used a mathematical model to study and approximate the Omicron wave
situation in the USA, but it can be extended to other countries. This study uses the facts that
the Omicron strain exhibits a higher intrinsic transmissibility than the previously circulating
SARS-CoV-2 strain but is less deadly. The numerical simulation results show that despite
the fact that the Omicron strain is less deadly it can nevertheless cause more deaths and
hospitalizations. This result is of paramount importance for public health, since many
people might think that since the Omicron strain is less deadly then the number of deaths
will be fewer during the Omicron wave. The spread of the Omicron strain depends on
several factors, which vary according to the region; therefore, the Omicron wave situation
can be different in other countries or regions. In summary, we used a mathematical model in
conjunction with numerical simulations to provide an explanation of a large Omicron wave
under various conditions related to the variant’s transmissibility. These results provide
awareness that new SARS-CoV-2 variants can cause more deaths even if their fatality rate
is lower. In fact, we can mention that in the USA the peak of number of deaths during the
Omicron wave was comparable to that during the Delta wave despite the fact that during
the former wave people already had immunity protection due to vaccination programs [1].
In addition, in Brazil and Colombia, the numbers of infected cases were larger than those
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during the Delta wave. These facts point out the different potential outcomes of new
SARS-CoV-2 variants with different transmissibility and fatality rates.

From a mathematical analysis viewpoint, we studied first the local stability using the
well-known NGM method. We computed the basic reproduction numberR0 and found
that it is the largest of the two parameters R01 and R02 . This theoretical result reveals
that the COVID-19 pandemic can become extinct if R0 < 1. This is achievable if the
vaccination rate is increased (this implies that people are willing to get vaccinated) and/or
the transmission rate is decreased such that R0 < 1. We also performed global stability
analysis for the disease-free steady state. The numerical simulations provided additional
support to the theoretical analysis and showed qualitative effects of the Omicron strain
on the US population. This study is more designed for a relatively short time horizon.
However, we provide long-term mathematical analysis to obtain a better picture of the
dynamics. Interesting and deeper mathematical analysis can be be carried out regarding
the endemic states, global stability, periodic solutions and bifurcations.

We provided a variety of scenarios that help to obtain insight into the Omicron wave
and its consequences. The numerical simulations showed the Omicron wave outcomes
under different conditions related to the vaccines and transmissibility. The results show
that the final cumulative number of infected people can be greater with respect to previous
waves despite a large number of people being vaccinated. These results are in good
agreement with what has occurred during the Omicron wave. For instance, this happened
in Brazil and Colombia [1,49].

The results presented here help to support public health policies and, most impor-
tantly, to bring awareness to people about the Omicron strain or future highly contagious
SARS-CoV-2 strains. At this time, China is suffering one of the largest waves in spite of the
fact that in the past they were able to control the spread of SARS-CoV-2. As in any math-
ematical model, we need to be aware of the limitations in order to understand potential
misunderstandings or mistaken conclusions. For instance, the constructed mathematical
model assumes homogeneous mixing and constant proportional vaccination rates which
obviously is not the case in the real world. One way to better approximate reality would be
to describe the vaccination using real data which would give a more complex model since
it would then become non-autonomous (see [105]). In addition, more detailed models can
include age structure and seasonality. However, despite the usual limitations of mathemati-
cal models, this study provides useful means of explaining and obtaining deeper insight
about the Omicron wave. As shown by the simulations, the appearance of the Omicron
strain or highly contagious SARS-CoV-2 strains changes the dynamics of the pandemic and
can increase the number of deaths despite a lower mortality rate.

As in any mathematical model of the real world there are limitations in the results
and conclusions. The proposed model is just an approximation of the reality during the
Omicron wave. During this wave several SARS-CoV-2 variants were circulating. The
model assumes the existence of just two main variants. The model assumes a constant
transmission rate for each of the Delta and Omicron variants, but the reality is that these
rates change continuously depending on many complex factors. The proposed model does
not consider explicitly people hesitant to be vaccinated. The model does not consider the
spatial effects of the diffusion of SARS-CoV-2. This has been a common weakness of many
models. The model considers only one vaccinated population without any distinction
between the number of doses received by individuals. The model does not include human
behavioral changes, but considers a variety of transmission rates in the sensitivity analysis.

Finally, we would like to point out that the results presented here are helpful to
obtain further insight into the Omicron wave and the effect of new highly transmissible
strains and new vaccines. Various graphical illustrations show the impact of vaccines and
transmissibility on the Omicron wave. From the results, it can be seen that the COVID-19
pandemic can be eliminated under some circumstances and following the recommendations
of the World Health Organization (WHO).
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Abstract: Coronavirus disease 2019 (COVID-19) was declared as a global pandemic by the World
Health Organization (WHO) on 12 March 2020. Indonesia is reported to have the highest number
of cases in Southeast Asia. Accurate prediction of the number of COVID-19 cases in the upcoming
few days is required as one of the considerations in making decisions to provide appropriate rec-
ommendations in the process of mitigating global pandemic infectious diseases. In this research,
a metaheuristics optimization algorithm, the flower pollination algorithm, is used to forecast the
cumulative confirmed COVID-19 cases in Indonesia. The flower pollination algorithm is a robust and
adaptive method to perform optimization for curve fitting of COVID-19 cases. The performance of the
flower pollination algorithm was evaluated and compared with a machine learning method which is
popular for forecasting, the recurrent neural network. A comprehensive experiment was carried out
to determine the optimal hyperparameters for the flower pollination algorithm and recurrent neural
network. There were 24 and 72 combinations of hyperparameters for the flower pollination algorithm
and recurrent neural network, respectively. The best hyperparameters were used to develop the
COVID-19 forecasting model. Experimental results showed that the flower pollination algorithm
performed better than the recurrent neural network in long-term (two weeks) and short-term (one
week) forecasting of COVID-19 cases. The mean absolute percentage error (MAPE) for the flower
pollination algorithm model (0.38%) was much lower than that of the recurrent neural network model
(5.31%) in the last iteration for long-term forecasting. Meanwhile, the MAPE for the flower pollination
algorithm model (0.74%) is also lower than the recurrent neural network model (4.8%) in the last
iteration for short-term forecasting of the cumulative COVID-19 cases in Indonesia. This research
provides state-of-the-art results to help the process of mitigating the global pandemic of COVID-19
in Indonesia.

Keywords: COVID-19; forecasting; flower pollination algorithm; recurrent neural network

1. Introduction

COVID-19 was declared as a global pandemic by the World Health Organization
(WHO) on 12 March 2020. It is an ongoing pandemic and as of 19 January 2021, more than
95.5 million cases have been confirmed, with more than 2.03 million deaths attributed to
COVID-19 across 190 countries around the world [1,2]. The coronavirus was first identified
in December 2019 in Wuhan, China. COVID-19 has spread globally, with America, Europe,
and countries in Asia reporting high numbers of cases. The government of China quickly
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implemented policies such as lockdown, physical distancing, mandatory masks, and
quarantine to mitigate the spread of the virus. China has successfully controlled the
pandemic rapidly and effectively, but many countries around the world are still struggling
to control the spread of the virus. The virus spread to Southeast Asia on 13 January 2020,
when a 61-year-old woman from Wuhan tested positive in Thailand [3]. Indonesia, a
country with a population of 273 million, is the worst-hit nation in the region, with a rapid
increase in cases since the first case reported in March 2020.

In the beginning, the COVID-19 pandemic has not only disrupted the normal way
of life of the community, business, and government operations, but also the economy.
COVID-19 has affected all levels of society and all areas of life. Hospitals and doctors are
struggling to provide care for the COVID-19 patients, and businesses are affected due to
lockdowns. The COVID-19 pandemic has also forced many activities to be carried out
online, and new standard operating procedures (SOPs) were enforced by the government to
ensure safety protocols for the public and for business operations. The COVID-19 pandemic
is also causing an economic recession. The governments of many countries are allowing
some economic movement while still enforcing strict health safety protocols for the public
and business owners to follow. In any health disease crises, prediction of the number of
cases is of utmost importance because it helps the relevant authorities to take strategic
actions to mitigate the effect of the rise in numbers or control the spread of the disease.

Accurate forecasts are needed to provide useful information in the process of mitigat-
ing the global pandemic infectious disease. Thus, forecasting the number of COVID-19
cases in the upcoming few days will be most useful for considerations in making decisions,
including the provision of personal equipment (PPE), preparation of economic policies,
preparation of health facilities, lockdown policies, and opening of schools or businesses.

Currently, there are two approaches to forecasting COVID-19 cases. The first approach
is forecasting COVID-19 using mathematical and statistical models. The mathematical and
statistical model approach requires knowledge of epidemiology and statistical assumptions
regarding the distribution of the data. Mathematical and statistical model approaches
include the autoregressive integrated moving average (ARIMA) [4–6], seasonal ARIMA
(SARIMA) [4], the susceptible-infected-recovered (SIR) model [5,7], the logistic growth
model [7], and the Richards model, which is an extension of a simple logistic growth
model [8].

The second approach is forecasting COVID-19 using artificial intelligence. One of the
artificial intelligence approaches is machine learning. Machine learning is a computational
method with sophisticated algorithms which can learn the pattern of data to solve forecast-
ing problems. Some machine learning forecasting algorithms for forecasting COVID-19
include multi-layer perceptron, random forest, support vector regression, the Elman neural
network [9–11], and the recurrent neural network (RNN) [9,10,12,13]. Sahid et al. [9] con-
cluded that RNN outperformed support vector regression and ARIMA. Hao et al.’s [10]
experimental results showed that RNN is more suitable for the prediction of the cumulative
confirmed cases compared to death and cured cases.

RNN utilized network architecture which is suitable for processing sequential data.
Qiu, Wang, and Zhou [14] applied RNN with long short-term memory (LSTM) architecture
and attention mechanism for stock price forecasting. Uras et al. [15] applied RNN with
LSTM architecture for Bitcoin closing price forecasting. Yao and Guan [16] applied RNN
with an improved LSTM for natural language processing. RNN is also widely applied for
speech recognition [17] and to solve fuzzy non-linear programming [18]. Hewamalage,
Bergmeir, and Bandara’s [19] experimental studies concluded that RNN is a good algorithm
for obtaining reliable forecasts.

Another artificial intelligence approach for forecasting is a metaheuristics optimization
algorithm. The flower pollination algorithm (FPA) is a robust and adaptive metaheuristics
optimization algorithm which is inspired by how flower pollination occurs. The FPA
solves the balance of global and local search and uses Lévy flight distribution for bet-
ter global search performance. The FPA is a method that aims for optimization. The
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FPA outperformed other nature-inspired methods such as the genetic algorithm and par-
ticle swarm optimization [20]. The FPA has been deployed to estimate transportation
energy demand [21], to forecast Organization of the Petroleum Exporting Countries (OPEC)
petroleum consumption [22], to forecast electricity energy consumption [23], and to solve
combined economic and emission dispatch problems [24]. FPA was created by Yang [20] in
2014 and has been reported to perform better than other metaheuristic algorithms.

In this paper, the FPA was used to determine the optimal coefficients of the variables
in the forecasting function of cumulative confirmed COVID-19 cases in Indonesia. In
other words, the FPA was used to perform optimization for curve fitting of cumulative
confirmed COVID-19 cases. We compare the performance of the FPA with a machine
learning method which is popular for forecasting, the recurrent neural network (RNN).
Experimental results showed that the FPA performed better than the RNN in long-term
(two weeks) and short-term (one week) forecasting. This research provides state-of-the-art
results to help the process of mitigating the global pandemic of COVID-19 in Indonesia.
This paper is structured as follows: after this introduction, the second section covers related
works on forecasting COVID-19 cases. This is followed by the explanation of the data and
the methodology in the third and fourth section. The results and discussion are presented
in the fifth section, and the conclusion is provided in the last section.

2. Related Works

In this section, some related works related to forecasting of COVID-19 cases are
presented. As explained in the first section, there are two approaches on forecasting
COVID-19 cases. The first one, the mathematical and statistical model approach, is pre-
sented here [4–8,25,26].

Mishra et al. [4] applied the ARIMA, SARIMA, and Prophet model to forecast the
cumulative deaths, cumulative cases, and new cases of COVID-19 in India. The model was
used to forecast the COVID-19 cases for next 15–20 days starting on 1 September 2020.

Abuhasel, Khadr, and Alquraish [5] applied SIR and ARIMA models to analyze and
forecast the daily COVID-19 cases in the Kingdom of Saudi Arabia. The deterministic SIR
model was applied to analyze the COVID-19 spread in Saudi Arabia, while the ARIMA
model was used to forecast the daily COVID-19 cases. The two models were applied to the
daily data from March 3 until 30 June 2020.

Ali et al. [6] applied the ARIMA model to forecast the cumulative confirmed cases,
recovered cases, and deaths in Pakistan from COVID-19. The training data to develop the
ARIMA model were from 27 February until 24 June 2020, and then the ARIMA model was
used to forecast the next 10 days (25 June 2020 to 4 July 2020).

Malavika et al. [7] developed mathematical model approaches to forecast COVID-19
in India. The SIR models were applied to forecast the maximum number of active cases
and peak time, the logistics growth curve model was applied for short-term prediction
and the time interrupted regression model was used to analyze the effect of lockdown and
other policies. The models were used to forecast the COVID-19 epidemic in India by the
end of May 2020.

Zuhairoh and Rosadi [8] applied the Richards model, which is an extension of a simple
logistic growth model, to forecast daily cases of COVID-19 in South Sulawesi Province,
Indonesia. In addition to forecasting, the objective of this research was to predict when this
pandemic would reach the peak of its spread, and when it would end. The data used in
this paper were compiled as of 24 June 2020.

Anastassopoulou et al. [25] developed a mathematical model approach to estimate
the fatality ratio (death rate) and recovery case ratio based on time series of positive case
data, death rate, and recovered cases from COVID-19 in Hubei, China. The model was
based on data distribution from Middle East respiratory syndrome (MERS) and severe
acute respiratory syndrome (SARS) cases that occurred previously. The model was applied
to forecast the COVID-19 cases by the end of February 2020.
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Petropoulos and Makridakis [26] applied a simple time series model from the expo-
nential smoothing family to forecast the global number of positive cases, the number of
deaths, and the number of patients who have been cured of COVID-19 infection. The model
was used to forecast the COVID-19 cases from February until March 2020.

The second approach in forecasting the COVID-19 cases is using artificial intelligence,
especially machine learning methods [9–13]. Shahid, Zameer, and Muneeb [9] applied
four different machine learning methods and the well-known ARIMA method to forecast
the confirmed cases, recovered cases, and death cases in 10 major countries affected by
COVID-19. The machine learning methods were RNN with bidirectional LSTM (Bi-LSTM)
architecture, RNN with LSTM architecture, RNN with gated recurrent unit (GRU) archi-
tecture, and support vector regression (SVR). The data used in this research were from
22 January until 10 May 2020 for training, and from 11 May until 27 June 2020 for testing.
The RNN model outperformed the SVR and ARIMA for forecasting COVID-19. The models’
ranking, from the best to the worst performance, was: RNN Bi-LSTM, RNN LSTM, RNN
GRU, SVR, and ARIMA.

Hao et al. [10] applied three machine learning methods to forecast the cumulative
confirmed cases, cumulative deaths, and cumulative cured cases in Wuhan, Hubei Province,
China. The machine learning methods were the Elman neural network, RNN-LSTM, and
support vector machine (SVM). The data used in this research were from 23 January 2020
to 6 April 2020. Based on the experimental results, the RNN-LSTM model is more suitable
for the prediction of the cumulative confirmed cases compared to death and cured cases.

Balli [11] applied four different machine learning time series methods to forecast the
weekly cumulative confirmed COVID-19 cases for the United States of America (USA),
Germany, and the world. The machine learning methods were linear regression, multi-layer
perceptron, random forest, and support vector machine. The data used in this research were
from between 20 January and 18 September 2020. The data consist of weekly cumulative
confirmed cases for 35 weeks. SVM outperformed other methods for forecasting the
COVID-19 cases.

Hawas [12] developed an RNN to forecast the data of COVID-19′s daily infections in
Brazil. The training data to develop the RNN model were from 7 April until 6 May 2020,
and then the RNN model was used to forecast the next 54 days (7 May 2020 until 29 June
2020). In this research, there were two alternative timesteps used for the RNN, 30 and 40.

Shastri et al. [13] developed an RNN to forecast the confirmed cases and death cases
of COVID-19 in India and USA. In this research, variants of LSTM architecture of RNN are
developed, including stacked LSTM, bi-directional LSTM, and convolutional LSTM. The
data of confirmed cases used in this research, for both India and USA, were from 7 February
until 7 July 2020, while the data of death cases for India were from 12 March until July 2020,
and for USA were from 26 February until 7 July 2020. The training data constituted 80% of
the total, while the validation data were 20%.

In the COVID-19 research area, machine learning was used for another task beside
forecasting. Machine learning has been applied to COVID-19 patient data. Zoabi et al. [27]
used gradient-boosting machine model built with decision-tree base-learner for prediction
of COVID-19 positive case based on symptoms while Kim et al. [28] evaluated several
machine learning models to predict the need for intensive care. Recently, Ahmad et al. [29]
proposed Shallow Single-Layer Perceptron Neural Network (SSLPNN) and Gaussian
Process Regression (GPR) model for classification and prediction of confirmed COVID-19
cases. Elzeki et al. [30] proposed a computer-aided model using deep learning to classify
positive COVID-19 based on Chest X-ray image data.

The results of closely related works are summarized in Table 1. In this research, a meta-
heuristics optimization algorithm, the FPA, is used to forecast the cumulative confirmed
COVID-19 cases in Indonesia. The FPA is a robust and adaptive method to perform opti-
mization for curve fitting of COVID-19 cases. The performance of the FPA was evaluated
and compared with a machine learning method which is popular for forecasting, the RNN.
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Table 1. Summarization of closely related works.

Authors Methods Forecasting of COVID-19 Cases Results

Mishra et al. [4] ARIMA, SARIMA,
and Prophet model.

The cumulative deaths,
cumulative cases, and daily

confirmed cases in India.

The best root-mean-square error (RMSE)
of forecasting for the cumulative cases

from 23 August 2020 to 1 September 2020:
82090.21.

Abuhasel, Khadr,
and Alquraish [5] SIR and ARIMA models. The daily confirmed cases in the

Kingdom of Saudi Arabia.
The best RMSE of forecasting for the next

10 days: 341.

Ali et al. [6] ARIMA model.
The cumulative confirmed cases,

recovered cases, and deaths
in Pakistan.

The best RMSE of forecasting for the
cumulative confirmed cases from 25 June

2020 till 4 July 2020: 413.9.

Petropoulos and
Makridakis [26]

A simple time series model
from the exponential

smoothing family.

The global number of cumulative
positive cases, the number of

deaths, and the number of
recovered cases.

The absolute percentage error of forecasting
for the cumulative confirmed cases:

a. 01/02/2020 till 10/02/2020: 388%;
b. 11/02/2020 till 20/02/2020: 7.7%;
c. 21/02/2020 till 01/03/2020: 6.2%;
d. 02/03/2020 till 11/03/2020: 12.1%.

Zuhairoh and Rosadi [8] The Richards model.
The daily confirmed cases in

South Sulawesi Province,
Indonesia.

They provided the prediction that the
peak of the COVID-19 pandemic in South
Sulawesi Province, Indonesia, would be
the middle of June 2020 until the end of

July 2020, with 10,000–12,000 cases
per day.

Shahid, Zameer, and
Muneeb [9]

RNN with bidirectional LSTM
(Bi-LSTM) architecture, RNN
with LSTM architecture, RNN

with GRU architecture, support
vector regression, and ARIMA

method.

The confirmed cases, recovered
cases, and death cases in 10 major

countries.

The best RMSE of forecasting for the daily
confirmed cases from 11 May 2022 to

27 June 2022 (48 days):

a. China: 180.63;
b. Italy: 3612.81;
c. USA: 273,851.39.

Hao et al. [10] Elman neural network,
RNN-LSTM, and SVM.

The cumulative confirmed cases,
cumulative deaths, and

cumulative cured cases in Wuhan,
Hubei Province, China.

The best MSE of forecasting for the
cumulative confirmed cases from

24 March 2022 to 6 April 2022: 0.0320.

Balli [11]
Linear regression, multi-layer

perceptron, random forest, and
support vector machine.

The weekly cumulative confirmed
cases in USA, Germany,

and the world.

The best RMSE of forecasting for the
weekly cumulative cases from 24 May
2022 to 18 September 2022 (17 weeks):

a. Germany: 329,196;
b. USA: 9.531,6776;
c. Global: 25,825.8366.

Hawas [12] RNN. The daily confirmed cases
in Brazil.

R2 of forecasting for the daily confirmed
cases from 7 May 2020 to 29 June 2020:

0.665.

Shastri et al. [13]
RNN (stacked LSTM,

bi-directional LSTM, and
convolutional LSTM).

The daily confirmed cases and
death cases in India and USA.

The best MAPE of forecasting for the daily
cases from 8 June 2020 to 7 July 2020:

a. India: 2.17;
b. USA: 2.00.

3. Data

This research used cumulative daily cases data from Indonesia, which are available
publicly from the Ministry of Health, Indonesia at https://kawalcovid19.id/ (accessed on
11 February 2021). Firstly, this research used data compiled since the first case reported
in March 2020. This research used data from 2 March 2020, the date of the first reported
case, until 24 August 2020. The data from that period are used for training and validation
of models to determine the appropriate hyperparameters. After validation, the next step is
testing. A detailed explanation related to the partition of training, validation, and testing
data is explained in Section 4.4. The pattern of cumulative COVID-19 cases in Indonesia is
presented in Figure 1.
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4. Methods
4.1. Forecasting Using Flower Pollination Algorithm

The flower pollination algorithm (FPA) is a nature-inspired metaheuristic algorithm
proposed by Yang [20]. The FPA is based on the flower pollination process of flowering
plants. Flower pollination can occur by self-pollination or cross-pollination. Self-pollination
refers to pollination that occurs from a different flower, or from the same flower, of a single
plant. When there is no reliable pollinator available, it is usually aided by wind. Self-
pollination is also referred to as abiotic pollination. Cross-pollination, on the other hand,
refers to pollination from a flower of a different plant. Cross-pollination is aided by a
pollinator, such as bees, bats, birds, and flies, who can fly a long distance. The pollinators
may demonstrate as Lévy flight behavior. They jump or fly with distance steps that
obey Lévy distribution. Cross-pollination is also referred to as biotic pollination. Cross-
pollination is considered to be global pollination, while self-pollination is considered to be
local pollination.

There are four rules for the FPA, based on the above flower pollination process of
flowering plants:

1. Rule 1—biotic, cross-pollination, or pollination between flowers is global pollina-
tion following Lévy Distribution. This first rule is represented mathematically in
Equation (1), where xt

i is the pollen i or solution vector xi at iteration t, g∗ is the
current best solution found among all solutions at the current iteration, and L(π) is
the strength of the pollination (step size). Lévy flight is used to mimic it; therefore,
L(π) is derived from a Lévy distribution with a value greater than 0. Lévy distribution
is represented in Equation (2). Lévy distribution uses the standard gamma function
Γ(π), which is valid for large steps s > 0.

xt+1
i = xt

i + γL(λ)
(
xt

i − g∗
)
, (1)

L ∼ λΓ(λ)sin(πλ/2)
π

1
s1+λ

, (s� s0 � 0), (2)

2. Rule 2—abiotic, self-pollination, or pollination of flowers from the same plants. Local
pollination is represented mathematically in Equation (3). xt

j and xt
k are two pollens

of the same plant but from different flowers. ε is a random value from a uniform
distribution in range [0,1].

xt+1
i = xt

i + ε
(

xt
j − xt

k

)
, (3)
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3. Rule 3–flower constancy or equivalent to a reproduction probability proportional to
the likeness of the two flowers involved is often developed by the pollinators.

4. Rule 4—a probability P ∈ [0, 1] is used to switch between local pollination and
global pollination.

In this study, the FPA was used to forecast cumulative cases of COVID-19. The FPA
was used to obtain the best solution g∗ from the set of solutions x. Each x consists of
a multilinear regression coefficient θl , where l = 1, 2, . . . , N and bias θ0 to predict the
cumulative daily cases of COVID-19 for day D′T based on the previous N days, so that
x = {θ0, θ1, θ2, . . . ., θN}. The θl will be used as sum-product for DT−l and then the results
are summed by θ0. Formally, the multilinear regression in this research is represented in
Equation (4):

D′T(x) = θ0 + ∑n
l=1 θl · DT−l , (4)

The objective function for each solution x is to minimize the difference between
predicted cumulative case D′T and actual cumulative case DT . In this research, root-mean-
square error (RMSE) is used to measure the difference. RMSE is presented in Equation (5),
where m is equal to the length of the time series record:

RMSE(x) =

√√√√ m

∑
i=1

(
D′i(x)− Di

)2

m
, (5)

Based on the objective function that has been determined, the fitness function for each
solution to be evaluated is represented mathematically in Equation (6). The best solution
for each generation is g∗, and will be used as the final solution:

f itness(x) =
1

RMSE(x) + 1
, (6)

For each generation t, n solutions as a population are generated. From initial gener-
ation t0, the best solution in the population will be stated as g∗. In generation t, where
t = 1, 2, . . . , MaxGeneration, if there is one solution that is better than g∗, that solution
will replace the existing g∗. The alteration of g∗ is performed iteratively in each generation;
therefore, a dynamic approach is required. The solutions in generation t are formed from
the pollination of the solutions in generation t− 1 (either global pollination or local pollina-
tion, as stated in Equations (1) and (3), respectively). The switch between global or local
pollination in generation t is controlled by switch probability P, as stated in Rule 4.

4.2. Forecasting Using Recurrent Neural Network

The second method applied is the recurrent neural network (RNN). RNN is a kind of
neural network architecture which is suitable for processing sequential data. The advantage
of the RNN architecture is that it is more flexible and can be attuned according to the
number of sequences in input or output. The RNN uses iterative function cycles to store
information [31]. The RNN architecture is constructed in a form such that the network will
remember the previous information and apply it to calculate the current output. In the RNN,
the nodes between the hidden layers are connected periodically, and the hidden layer’s
input includes not only the output of the input layer, but also the output of the hidden
layer at the last time, thus RNN can preserve, learn, and record historical information in
sequence data [32].

The RNN has a similar forward pass process to that of a multilayer perceptron with a
single hidden layer. The difference lies in the fact that RNNs accept activations from both
the current external input and also the hidden layer activations from previous timesteps [31].
As shown in Figure 2, the structure of the RNN includes the input layer, hidden layer,
output layer, the weights of input layer to hidden layers, the weights of hidden layers
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to output layers, and learnable weights for the previously hidden state. These recurrent
connections serve to pass values over timestep or sequence.
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With this architecture, the current output in the RNN depends on the previous state.
In a simple RNN, hidden units will receive the input in the current state and the output
from the previous hidden state. The current hidden unit and the output can be defined
mathematically in Equations (7) and (8), respectively:

ht = σ(W1xt + W2ht−1 + b), (7)

ot = W3ht + b2, (8)

For Equation (7), ht is the hidden state and xt is the input at the current timestep. W1
is the learnable weight from the input layer to the hidden layer, while W2 are learnable
weights for the previously hidden state’s input. σ is an activation function and b1 is the bias
for the hidden layer. The activation function σ can be switched depending on the situation.
The purpose of using the activation function is to ensure that the model is a non-linear
machine. Common activation function choices are sigmoid, tanh, and ReLU functions. For
Equation (8), ot is the output state, ht is the hidden state, W3 is the learnable weight from
hidden layer to the output layer, and b2 is the bias for the output layer.

The complete sequence of hidden activations can be calculated by starting at the first
timestep and then recursively applying Equation (7), incrementing time at each step. For
the initially hidden unit at the start of the timestep, the value of the previously hidden state
unit can either be manually adjusted to a certain value or set to zero. It is known that RNN
stability and performance can be improved by using non-zero initial values. As for the
weights, the norm is to randomize the weight without known information about the data.
However, they can be set to particular values to help avoid overfitting [31].

In neural networks, the error of the prediction with respect to the target is calculated
after the output is obtained. This error is normally in the form of a partial derivative of a
differentiable loss function, where the derivative with respect to the weights can be used to
improve the weights. There are two well-known algorithms that can be used to calculate
the loss derivatives for RNNs: real-time recurrent learning (RTRL) and backpropagation
through time (BPTT). BPTT is known to be simpler and more efficient in computation
time, particularly since its process is similar to normal backpropagation in the neural
network [31].

In this research, the data of cumulative COVID-19 daily cases are represented sequen-
tially. Each sequence consists of data from the previous N. This sequence will be fed to
RNN architectures to predict the cumulative COVID-19 cases of day D′T . The experiments
are conducted using several combinations of hyperparameters, such as the number of
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hidden layers, the dimension of neurons, learning rates, and dropout ratio, to attempt to
determine the best model with minimum RMSE. ReLU is used as the activation function
and Adam is used as the optimizer.

4.3. Model Performance Measurement

In order to measure the performance of the forecasting model, two performance mea-
surements are used in this research, which are root-mean-square error (RMSE) and mean
absolute percentage error (MAPE). RMSE is represented mathematically in Equation (5).
The smaller the RMSE values are, the more accurate the forecasting model is; conversely,
the larger the RMSE values are, the more inaccurate the model is [33]. RMSE value is
the error number, which doesn’t provide any information about the percentage of error
compared to the actual value. Meanwhile, MAPE is a widely used evaluation metric for
forecasting methods presenting the percentage of error. MAPE is represented mathemati-
cally in Equation (9), where At is actual value, Ft is forecast value, and n is the length of
time series recorded.

MAPE =
1
n

n

∑
t=1

∣∣∣∣
At − Ft

At

∣∣∣∣, (9)

The code of both forecasting models, the FPA and RNN, are available to be accessed
publicly at http://ugm.id/covidforecasting (accessed on 29 November 2022). The code is
written in Python programming language.

4.4. Training, Validation, and Testing Data

This study involved two phases, which are Phase 1: Development of FPA and RNN
Model, and Phase 2: Evaluation of the Forecast Performance of the FPA and RNN Model
Developed in Phase 1.

In Phase 1: Model Development, the data period is from 2 March 2020, to 10 July 2020.
The dataset from 2 March 2020, to 10 July 2020, is divided into a ratio of 80:20; 80% for
training data and 20% for validation data. Therefore, the training data are from 2 March
2020, to 4 June 2020, while the validation data are from 15 June 2020, to 10 July 2020,
represented in Table 2. The validation process is carried out to determine the appropriate
hyperparameters for the model.

Table 2. Period for developing the FPA and RNN.

Sample Period

Training (n = 105) 2 March–14 June 2020
Validation (n = 26) 15 June–10 July 2020

In Phase 2: Model Evaluation, after the appropriate hyperparameters for the FPA and
RNN model are obtained, the testing process is conducted. The FPA and RNN model is
tested for short- and long-term forecast of the cumulative COVID-19 cases. We refer to some
references [4–6,10,26] conducting forecasting for the next 7–14 days. Therefore, we used
one-week forecast for the short-term and two-week forecast for the long-term forecasting.

1. Long-term forecast, which forecasts the cumulative cases of COVID-19 over the next
14 days (2-week forecast);

2. Short-term forecast, which forecasts the cumulative COVID-19 cases for the next
7 days (1-week forecast).

In order to obtain more comprehensive results of the performance of the models, the
testing (forecast) process is conducted in several rounds or iterations. Long-term testing is
conducted in 5 iterations, while short-term testing is conducted in 10 iterations. The model
is updated with the relevant training data in each iteration using the hyperparameters
defined in the validation sample in Phase 1. Table 3 presents the period of training data
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and testing data for long-term testing, while Table 4 presents the period of training data
and testing data for short-term testing.

Table 3. Period for long-term testing (forecast).

Iteration Types of Data Period

Iteration 1
Training Data 2 March–15 June 2020
Testing Data 16 June–29 June 2020

Iteration 2
Training Data 2 March–29 June 2020
Testing Data 30 June–13 July 2020

Iteration 3
Training Data 2 March–13 July 2020
Testing Data 14 July–27 July 2020

Iteration 4
Training Data 2 March–27 July 2020
Testing Data 28 July–10 August 2020

Iteration 5
Training Data 2 March–10 August 2020
Testing Data 11 August–24 August 2020

Table 4. Period for short-term testing (forecast).

Iteration Types of Data Period

Iteration 1
Training Data 2 March–15 June 2020
Testing Data 15 June–22 June 2020

Iteration 2
Training Data 2 March–22 June 2020
Testing Data 23 June–29 June 2020

Iteration 3
Training Data 2 March–29 June 2020
Testing Data 30 June–6 July 2020

Iteration 4
Training Data 2 March–6 July 2020
Testing Data 7 June–13 July 2020

Iteration 5
Training Data 2 March–13 July 2020
Testing Data 14 July–20 July 2020

Iteration 6
Training Data 2 March–20 July 2020
Testing Data 21 July– 27 July 2020

Iteration 7
Training Data 2 March–27 July 2020
Testing Data 28 July–3 August 2020

Iteration 8
Training Data 2 March–3 August 2020
Testing Data 4 August–10 August 2020

Iteration 9
Training Data 2 March–10 August 2020
Testing Data 10 August–17 August 2020

Iteration 10
Training Data 2 March–17 August 2020
Testing Data 18 August–24 August 2020

5. Results and Discussion
5.1. Hyperparameter

The validation process is conducted to obtain appropriate hyperparameters for the
FPA and RNN model. The experiments engage several combinations of hyperparameters
and choose the best one, providing the model with minimum RMSE. As explained in
Section 4.4., the training data is from 2 March 2020, until 14 June 2020, while the validation
data is from 15 June 2020, until 10 July 2020.

The combinations of hyperparameters for the FPA and RNN model are:

1. FPA Model:

a. Length of the input timestep: 5 or 7;
b. Switch probability between global pollination or local pollination: 0.3, 0.5, or 0.8;
c. Population size (number of generated solutions): 50, 100, 150, or 200.

2. RNN Model:

a. Length of the input timestep: 5 or 7;
b. Dimension of neurons in LSTM cell: 10, 30, 50;
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c. Learning rates: 0.001 or 0.01;
d. The number of hidden layers: 1 or 2;
e. Dropout ratio for each hidden layer: 20%, 50%, or no dropout.

In total, there are 24 combinations of hyperparameters for the FPA and 72 combinations
of hyperparameters for the RNN. The best hyperparameters will be used in the testing
process. For the RNN model, we use one and two hidden layers. Deeper RNN architecture
required more data for training. In our research, the training data are limited enough
(105 days). Therefore, if we use three or more hidden layers for the RNN, the model will
have high possibility to be trapped in overfitting and it may not provide better results.

5.2. Results and Performance Analysis

The experiments of the validation process used 24 hyperparameter combinations for
the FPA and 72 hyperparameter combinations for RNN in order to determine the best
hyperparameters for this forecasting model. Based on the observation of the RMSE value
for each generation, the number of generations to run the FPA is 100. The RMSE value for
100 generations reached convergence. While the number of epochs to run RNN is 1000, the
RMSE value at 1000 epochs also reached convergence.

The complete 96 experiment results of the validation process are presented in Sup-
plementary Tables S1 and S2, while the best hyperparameters, with the lowest RMSE
values, are:

1. FPA Model:

a. Length of the input timestep: 5;
b. Switch probability between global pollination or local pollination: 0.3;
c. Population size (number of generated solutions): 100;
d. RMSE value: 292.66.

2. RNN Model:

a. Length of the input timestep: 7;
b. Dimension of neurons in LSTM cell: 10;
c. Learning rate: 0.01;
d. The number of hidden layers: 1;
e. Dropout ratio for each hidden layer: no dropout;
f. RMSE value: 502.95.

These parameters were then used to generate the FPA and RNN model for the test-
ing process. In this validation process, the RMSE value from the FPA model (292.66) is
significantly lower than that of the RNN model (502.95).

5.2.1. Long-Term Forecasting

There are two types of testing processes: (1) long-term forecasting for 5 iterations
(different time periods); and (2) short-term forecasting for 10 iterations (different time
periods). In this testing process, two performance measurements are calculated, RMSE
and MAPE.

The long-term forecasting results are explained in this section, while the short-term
forecasting is explained in the next section. The results for long-term forecasting are
presented in Table 5. The FPA and RNN models are not overfitted, because the MAPE
value for testing data is lower than the training data for all iterations. The FPA model has
the lowest MAPE in the last iteration.
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Table 5. Long-term forecasting results.

Iteration Data
FPA RNN

RMSE MAPE (%) RMSE MAPE (%)

Iteration 1
Training Data 185.80 4.12 177.35 2.57
Testing Data 289.05 0.45 567.92 1.11

Iteration 2
Training Data 394.88 7.74 760.54 10.91
Testing Data 997.16 1.07 1802.61 2.62

Iteration 3
Training Data 431.61 9.50 632.57 4.62
Testing Data 1927.70 2.10 4639.33 4.93

Iteration 4
Training Data 550.55 10.90 1082.42 5.03
Testing Data 752.77 0.53 2459.13 2.13

Iteration 5
Training Data 562.86 7.09 1620.60 6.98
Testing Data 621.37 0.38 7715.96 5.31

Figure 3 represents a bar chart of RMSE for long-term forecasting in testing data.
Figure 4 represents a bar chart of MAPE for long-term forecasting in testing data. Based
on Table 5 and the clustered bar chart in Figure 3, the RMSE value of training and testing
provided by the FPA model is lower than that of the RNN model for all iterations. It can be
observed in Table 5 that the MAPE is higher for the FPA for the training sample at iteration
1, 3, and 4. However, the MAPE for the testing sample is lower for the FPA model compared
to the RNN model, which has high MAPE values, as shown in Table 5 and Figure 3. This
shows that the FPA provided more reliable long-term forecasts.
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In total, until the last iteration (iteration five), we have training data consisting of
169 records (2 March 2020 until 17 August 2020). After we observed the forecasting results,
it was determined that the RNN model provides more accurate forecasting in the beginning
of training data (day 1–50), but less accurate in the following days. In contrast with the
RNN model, the FPA model provides more accurate forecasting results than the RNN
starting at day 51. The MAPE value represents the proportion between the error and
the actual numbers. The RNN model provides more accurate forecasting results in the
beginning, when training data contain less than 10,000 cumulative cases, but provides less
accurate forecasting results in the following days, when training data contains more than
10,000 cumulative cases, reaching a total of 140,000 cases on the last day. For this reason,
the RNN model has a higher RMSE value but lower MAPE value than the FPA model for
iteration 3, 4, and 5 of the training data. The FPA model provides more accurate forecasting
after learning, for some iterations; therefore, the FPA model provides a lower RMSE value
but a higher MAPE value than the RNN model in training data. The RNN model requires
more data for training. Unlike the training data, the testing data for each iteration only
consists of 14 days. The next analyses will focus on forecasting results of testing data.

Figure 5 represents the trend for the actual data and long-term forecasting results
using the FPA for each iteration. The x-axis represents the date and the y-axis represents
the cumulative COVID-19 cases. The actual number of cumulative COVID-19 cases are
represented with a blue line (real), the forecasting result for iteration 1 is represented with
a red line (testing 1), iteration 2 is represented with a yellow line (testing 2), iteration 3
is represented with a green line (testing 3), iteration 4 is represented with an orange line
(testing 4), and iteration 5 is represented with a black line (testing 5).
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The RMSE and MAPE value for testing data in iteration 3 are the highest compared to
other iterations. As we can see from Figure 5, the forecasting in iteration 3 (testing 3) learns
the pattern from iteration 1 and iteration 2. The trend of data in iteration 3 has a steeper
slope than the previous iterations. This may be the reason why the error value in iteration 3
is the highest one.

Figure 6 presents the trend of actual data and forecasting results for the RNN model.
The forecasting results of the FPA model are better than those of the RNN model. This is
also confirmed with the RMSE and MAPE results in Table 4, which shows that the overall
RMSE and MAPE values of the FPA model are lower than those of the RNN model. The
RNN model is a deep neural network which requires more data for training. The FPA
model is better than RNN for long-term forecasting.
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5.2.2. Short-Term Forecasting

The results for short-term forecasting are presented in Table 6. The FPA model has
lower RMSE for both training and testing data for all iterations except iteration 7 (RMSE
for the FPA is higher than for the RNN). On the other hand, the RNN model, overall, has
lower MAPE for training data, except iteration 7. The FPA has lower MAPE for testing
data, except at iteration 7. These results show the RNN model may be overfitted in the
iterations where MAPE is higher in testing than the training sample. Overfitting occurs
when the performance of the model is good for the training but not the testing data.

Table 6. Short-term forecasting results.

Iteration Data
FPA RNN

RMSE MAPE (%) RMSE MAPE (%)

Iteration 1
Training Data 372.30 4.57 1612.35 3.79
Testing Data 1179.31 0.74 7240.29 4.80

Iteration 2
Training Data 167.45 5.49 582.25 7.92
Testing Data 195.66 0.30 1878.50 3.64

Iteration 3
Training Data 172.18 3.31 148.22 3.37
Testing Data 346.66 0.48 306.01 0.39

Iteration 4
Training Data 189.55 5.72 508.51 4.50
Testing Data 735.18 0.82 1331.62 1.75

Iteration 5
Training Data 243.84 5.76 627.81 2.59
Testing Data 739.52 0.88 2467.42 2.89

Iteration 6
Training Data 651.86 14.74 1031.12 5.51
Testing Data 2184.86 2.22 3277.67 3.41

Iteration 7
Training Data 477.98 10.00 542.96 5.69
Testing Data 1589.29 1.34 221.98 0.13

Iteration 8
Training Data 395.56 6.41 1166.66 2.91
Testing Data 1228.22 0.99 5895.64 4.85

Iteration 9
Training Data 260.75 3.03 285.52 2.24
Testing Data 373.41 0.21 622.63 0.42

Iteration 10
Training Data 372.30 4.57 1612.35 3.79
Testing Data 1179.31 0.74 7240.29 4.80

Based on Table 6, the RMSE value of training data for iteration 4, 5, 6, 7, 8, 9, and 10
provided by the FPA model is lower than the RNN model, but the MAPE value provided
by the FPA model is higher than the RNN model. This is the same as what occurred for the
long-term forecasting. The RNN model provides more accurate forecasting results in the
beginning, when training data contain less than 10,000 cumulative cases, but provides less
accurate forecasting results in the following days, when training data contains more than
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10,000 cumulative cases, reaching a total of 140,000 cases on the last day. For this reason,
the RNN model has a higher RMSE value but lower MAPE value than the FPA model
for iteration 4,5,6,7,8,9, and 10 in training data. The FPA model provides more accurate
forecasting after learning for some iterations; therefore, the FPA model provides lower
RMSE value but higher MAPE value than the RNN model in training data.

Figure 7 represents a bar chart of RMSE for short-term forecasting in testing data.
Figure 8 represents a bar chart of MAPE for short-term forecasting in testing data. Figure 9
represents the trend for the actual data and short-term forecasting results of the FPA model
for each iteration. The x-axis represents the date, and the y-axis represents the cumulative
COVID-19 cases. The actual number of cumulative COVID-19 cases are represented with a
blue line (real), the forecasting result for iteration 1 is represented with a red line (testing 1),
iteration 2 is represented with a yellow line (testing 2), iteration 3 is represented with a
green line (testing 3), iteration 4 is represented with an orange line (testing 4), iteration 5
is represented with a brown line (testing 5), iteration 6 is represented with a purple line
(testing 6), iteration 7 is represented with a gray line (testing 7), iteration 8 is represented
with a dark blue line (testing 8), iteration 9 is represented with a pink line (testing 9) and
iteration 10 is represented with a black line (testing 10).
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Figure 9. Actual and short-term forecasting for cumulative COVID-19 cases using the FPA model.

Based on Figures 7–9, as with long-term forecasting, the FPA model for short-term
forecasting has the highest RMSE and MAPE value for testing data in iteration 6, which is
iteration 3 for long-term forecasting. The trend of data in iteration 6 has a steeper slope
than the previous iterations. The MAPE value for testing data in iteration 7 provided by the
FPA model (1.34 %) is higher than that of the RNN model (0.13%). The FPA model learned
a new pattern of data in iteration 6, with a steeper slope; therefore, the FPA model has the
highest MAPE in iteration 6 (2.22%). The MAPE decreases in iteration 7 (1.34%) and in the
next iterations. This does not occur in long-term forecasting. The FPA model can learn a
new pattern of data better in long-term forecasting, which is the training data updated for
2 weeks.

Figure 10 represents the trend of actual data and forecasting results for the RNN model.
Based on Figure 8, the highest MAPE value is in iteration 8, which is confirmed with the
forecasting result in Figure 10 (testing 8). The forecasting results of the RNN model for the
long-term model are better than for the short-term model. The training model in the RNN
may not be adequately up to date with the addition of 1 week of data for each iteration.
The RNN could not calculate the pattern of the data with the addition of only a few data
(1 week of data).

Computation 2022, 10, x FOR PEER REVIEW 18 of 21 
 

 

 

Figure 9. Actual and short-term forecasting for cumulative COVID-19 cases using the FPA model. 

Figure 10 represents the trend of actual data and forecasting results for the RNN 

model. Based on Figure 8, the highest MAPE value is in iteration 8, which is confirmed 

with the forecasting result in Figure 10 (testing 8). The forecasting results of the RNN 

model for the long-term model are better than for the short-term model. The training 

model in the RNN may not be adequately up to date with the addition of 1 week of data 

for each iteration. The RNN could not calculate the pattern of the data with the addition 

of only a few data (1 week of data). 

 

Figure 10. Actual and short-term forecasting for cumulative COVID-19 cases using the RNN 

model. 

Overall, the forecasting results of the FPA model are better than the RNN model, 

both for long-term forecasting and short-term forecasting. The FPA model is better than 

the RNN model in the presence of limited training data. The RNN model requires more 

data for training and to learn the pattern of data. The FPA model is better than the RNN 

model for forecasting the cumulative COVID-19 cases in Indonesia. 

6. Conclusions 

Figure 10. Actual and short-term forecasting for cumulative COVID-19 cases using the RNN model.

Overall, the forecasting results of the FPA model are better than the RNN model, both
for long-term forecasting and short-term forecasting. The FPA model is better than the
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RNN model in the presence of limited training data. The RNN model requires more data
for training and to learn the pattern of data. The FPA model is better than the RNN model
for forecasting the cumulative COVID-19 cases in Indonesia.

6. Conclusions

In this research, we presented forecasts of the cumulative COVID-19 cases in Indonesia
using the FPA, a natured-inspired algorithm, to determine the optimal coefficients of the
variables in the forecasting function of COVID-19 cases. We compared the performance of
the FPA with a machine learning method which is popular for forecasting, the RNN. Several
comprehensive experiments were conducted to determine the optimal hyperparameters for
the FPA and RNN. The best hyperparameters were used to develop a model for forecasting.
Long-term and short-term forecasting were conducted using different iterations with data
added as more cases were reported. The FPA model has lower MAPE value than the RNN
model for both long-term and short-term forecasting. These results show that the FPA
model is better than the RNN model for forecasting cumulative COVID-19 cases. The FPA
model was able to provide more reliable forecasts. This research provides state-of-the-art
results to aid the process of mitigating the global pandemic of COVID-19 in Indonesia. In
future, this forecasting model will be extended for COVID-19 active cases and deaths. Then,
the forecasting results will be provided online and updated each day by developing an
online dashboard for users; therefore, it will be more useful.
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Abbreviations
The following abbreviations are used in this manuscript:

ARIMA Autoregressive integrated moving average
Bi-LSTM Bidirectional LSTM
BPTT Backpropagation through time
COVID-19 Coronavirus disease 2019
FPA Flower pollination algorithm
GRU Gated recurrent unit
LSTM Long short-term memory
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MAPE Mean absolute percentage error
MERS Middle East respiratory syndrome
OPEC Organization of the Petroleum Exporting Countries
PPE Personal equipment
ReLU Rectified linear activation function
RMSE Root-mean-square error
RNN Recurrent neural network
RTRL Real-time recurrent learning
SARIMA Seasonal ARIMA
SARS Severe acute respiratory syndrome
SIR Susceptible-infected-recovered
SOP Standard operating procedures
SVM Support vector machine
SVR Support vector regression
USA United States of America
WHO World Health Organization
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Abstract: Since December 2019, with the discovery of a new coronavirus, humanity has been exposed
to a large amount of information from different media. Information is not always true and official.
Known as an infodemic, false information can increase the negative effects of the pandemic by
impairing data readability and disease control. The paper aims to find similar patterns of behavior of
the Brazilian population during 2021 in two analyses: with vaccination data of all age groups and
using the age group of 64 years or more, representing 13% of the population, using the multivariate
analysis technique. Infodemic vaccination information and pandemic numbers were also used.
Dendrograms were used as a cluster visualization technique. The result of the generated clusters was
verified by two algorithms: the cophenetic correlation coefficient, which obtained satisfactory results
above 0.7, and the elbow method, which corroborated the number of clusters found. In the result
of the analysis with all age groups, more homogeneous divisions were perceived among Brazilian
states, while the second analysis resulted in more heterogeneous clusters, recalling that at the start of
vaccinations they could have had fear, doubts, and significant belief in the infodemic.

Keywords: dendrogram; infodemic; COVID-19; Google Trends; multivariate analysis

1. Introduction

Humanity has been seriously affected by the COVID-19 pandemic that originated in
late 2019 in Wuhan, Hubei province in China, caused by the SARS-CoV-2 virus [1,2]. It
was declared a pandemic on 11 March 2020, by the World Health Organization (WHO) [3].
According to the WHO data [4], by May 2022, more than 533 million cases of the disease
had already been confirmed, causing more than 6 million deaths worldwide.

Both the impact of an entirely new and unknown disease, which was already immense,
and the lack of information associated with it allowed false and dubious information to
quickly appear and spread across various social media platforms, newspapers, and maga-
zines [5]. Thus, the COVID-19 pandemic was accompanied by a massive and widespread
wave of disinformation about the disease that can be described as an infodemic [6].

The WHO explains that infodemics are an excessive amount of information about a
problem, making it extremely hard to identify a solution. They can spread both misinfor-
mation and disinformation (accidentally and deliberately false information, respectively)
as well as rumors during a health emergency. Infodemics can severely affect or damage an
effective public health response and create confusion and mistrust among people [7].

The battle against the COVID-19 pandemic and infodemic continues. A long-awaited
step was the development of effective vaccines, which was highly anticipated, and several
vaccines are now available. The development and availability of vaccines are not the only
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obstacles to overcome from a public health perspective. The increasing acceptance of the
vaccine by the population is also paramount to designing public health measures and
reaching a considerable proportion of vaccinated population to achieve herd immunity [8].

However, there is a process of rejection or delay in accepting vaccines, which can be
affected by the variables of trust, compliance, and convenience, and directly influences the
historical context of vaccination [9]. Such resistance is known as vaccine hesitancy, and
before the pandemic, in 2019, the WHO identified it as one of the major threats to global
health [10]. In addition to fake news, other factors impact the drop in vaccine coverage,
such as social, cultural, religious, and economic issues in which the population is involved,
and this can influence whether the population goes to vaccination centers [11].

Following the evolution of the pandemic, until May 2022, Brazil was the third-most
affected country in the total number of cases and second in the total number of deaths [12],
ranked 34th in vaccination (counting both first and second vaccine doses) [13]. Brazil
applied its first vaccine against COVID-19 on 17 January 2021. In three months, 5.32%
of the population had received one of the two necessary doses and only 2% were fully
immunized [13]. The pace was very slow compared to countries like Israel, the United
Kingdom, and Chile [14]. This was due to problems and delays in vaccine purchases (and
when a campaign started, doses ran out), doubts about the effectiveness of the results,
and false and dubious information circulated on the internet and social networks and in
speeches by the President of Brazil, who was considered a denialist and anti-vaccine [14,15].

Because of the above, the purpose of this work is to carry out a spatial analysis
of COVID-19 vaccination by the Federation Units in Brazil from the contribution of the
cluster analysis technique, applying multivariate techniques using indicators that cover
the infodemic data of vaccination from COVID-19 in Google Trends (GT) searches, internet
proliferation in states, and data on deaths and the number of COVID-19 cases.

Cluster analysis makes it possible to group cases or variables into a homogeneous
group based on their similarity. Each object is like the others in the group, maximizing ho-
mogeneity within the group and maximizing heterogeneity between groups. Dendrograms
are used to cluster the states and, thus, generate new divisions of the regions, different
from the geographic regions that already exist in Brazil: first carried out for an analysis
of all age groups available and second with an analysis of the vaccination of the elderly
64 years or older.

Brazil is the fifth largest country in the world geographically and the sixth in popula-
tion; it has 5570 municipalities divided into 27 federative units (26 states and one Federal
District (DF)), which are grouped into five geographic macro-regions (Central-West, North-
east, North, Southeast, and South). After the results obtained from the techniques used,
the new division of the groupings of the states will be visualized through the behavior of
the population.

2. Related Work

The internet is revolutionizing the way epidemic intelligence is collected and offers
solutions to some of these challenges. Freely available sources of information can allow us to
detect disease outbreaks earlier with reduced cost and greater transparency in reporting [16].
Search engines have become pervasive in recent years, retrieving information easily on a
variety of topics, ranging from customer service to general information. In addition to these
research interests, there is a growing interest in obtaining health advice or information.
In this respect, health policy authorities have begun to identify internet search engines as
potential indicators for surveillance and health, such as the GT, a repository of publicly
available information on user research patterns and real-time data [17].

In Mangono et al. [18], GT was used to provide insights and potential indicators
of important changes in information-seeking patterns during COVID-19 with various
pandemic-related terms, such as: coronavirus symptoms, urgent care near me, health
insurance, social distancing, and “Chinese virus”, among others. They compared the
surveys with new monthly Medicaid orders (an application that provides health coverage
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to Americans), and used principal component analysis to identify research patterns in
the GT.

Rovetta and Bhagavathula [19] investigated online search behavior related to the
COVID-19 outbreak and the “infodemic nicknames” circulating in Italy using GT. The
titles of articles from the most read national newspapers and government websites were
surveyed to investigate the extent and attitudes of several related infodemic nicknames for
COVID-19. They defined “infodemic nicknames” as substantially erroneous information,
which gave rise to misinterpretations, fake news, episodes of racism, or any other form of
misleading information that circulated on the internet. They concluded that Google search
query data reflects growing regional and population interest in the pandemic. Searches
related to disinfectants, face masks, health newsletters, vaccines, and symptoms related
to COVID-19 were the main search keywords. However, many infodemic nicknames
circulated in Italy. They also conclude that internet research interest in COVID-19, both
at the regional and city levels in Italy, was influenced by tradition, electronic newspapers,
and printed media coverage.

In Ceron et al. [20], the authors explored news-checking initiatives in Latin America,
using a Markov-based computational method to group tweets into topics and identify their
diffusion among different datasets about false information related to COVID-19 across
regions, comparing if there was a pattern for Argentina, Brazil, Chile, Colombia, Mexico,
and Venezuela.

Multivariate statistical methods were used by Custodio et al. [21], where they per-
ceived that health measures led to a significant reduction in air pollution, but on the other
hand, the impact of these measures in aquatic environments was poorly analyzed. In this
context, multivariate statistical methods were employed to evaluate the water quality of
the rivers of the Mantaro River basin and heavy metal contamination indices during the
health crisis associated with the COVID-19 pandemic. The techniques employed were
principal component analysis and hierarchical cluster analysis according to Spearman’s
correlation, which generated a dendrogram where the five chemical elements were grouped
into two statistically significant groups, observing a significant increase in the critical value
of contamination.

Computational and statistical techniques were used to analyze the heterogeneous spread
of the pandemic and estimate the death rates from COVID-19 [22–24]. In Silva et al. [22],
the authors estimated the effective reproduction rate number for each epidemiological
week in Brazil and designed scenarios based on these values, concluding that the only
way to flatten the curve is to decrease the reproduction rate. The work of Shafiq et al. [23]
was applied to data from Italy and the results revealed that the model of artificial neural
networks is an excellent engineering tool to predict survival and mortality rates, presenting
more satisfactory and better results than other studies found in the literature.

Multivariate analysis techniques and dendrograms on the pandemic, as well as data
from Brazil, are being used for grouping behaviors. James et al. [25] compared and con-
trasted data from the USA, India, and Brazil, looking at the trajectories of cases, deaths,
and mortality rates, which were analyzed state by state. Dendrograms were used and
revealed a similar cluster structure between the USA and India. Both countries had a dense
majority cluster and a small collection of outliers. Brazil, on the other hand, presented
a quite different structure, with two similarly sized clusters that contained most of the
elements and then some outliers.

James and Menzies [26] presented a mathematical framework for determining the be-
havior of the second outbreak of COVID-19 cases in the United States based on a collection
of time series. The data were grouped (dendrograms), identifying the different outbreak
behaviors, and in the appendix of the work, the authors applied the technique to the data
from Brazil and concluded that the second outbreaks were moderate and of comparable
severity to the first outbreaks. This is similar to the USA, which also noted significant
similarities based on geography.
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In the research by Harb et al. [27], a multivariate analysis was performed on a database
of COVID-19 infodemic terms in Brazil over 18 months (1 January 2020 to 30 June 2021),
including socioeconomic and political variables. The infodemic terms were divided into
five groups, and the analysis was performed every 3 months during the evolution of
the pandemic. The study concludes that denial about the pandemic and the influence of
political leadership can influence the search for infodemic information, contributing to
disorganization in the control of the disease and prevention measures.

In this work, using the methodology of Harb et al. [27], we carried out an approach by
combining the database of infodemic vaccination terms, extracted from research in the GT,
related to variables of vaccination numbers (first and second doses), in the entire year of 2021
for Brazil. Multivariate analysis with dendrograms and the elbow method was performed
to group the states into similar patterns of behavior in the two analyses performed.

3. Methodology

The methodology applied in this work can be seen in the flowchart in Figure 1,
based on Harb et al. [27] and Braz et al. [28], and the data obtained were obtained from
the 27 federative units (26 states and Distrito Federal (DF)) for the year 2021. Python
language was used to perform both data manipulation and data clustering steps, and
Tableau software (version 2021.3.3, Tableau Software, Mark Nelson, Seattle, WA, USA) was
used to reproduce the map of Brazil with the generated clusters.

Figure 1. Flowchart of the methodology of the multivariate technique adopted. Processing the data:
(A) selection and treatment of variables. Multivariate Technique: (B) selection of the distance measure;
(C) selection of the clustering algorithm and (D) validation of the clusters.

The two main steps are presented in Figure 1, processing the selected data and cluster-
ing. The first step (A) is the extraction and treatment of the variables, generating a single
dataset. The subsequent step applies and tests the best parameters for clustering (B) and
(C), and at the end, performs cluster validation with two techniques (D).

3.1. Selection and Treatment of Variables for the Database (A)

The first step of the flowchart is the creation of the database, with the selection of
variables to be used, the identification of outliers, and data standardization. Four databases
available on the internet were used. Three are public databases from the government, and
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the last database is data extracted from GT. The following steps were considered: data
collection, data processing, data mining, data interpretation, and validation. The databases
searched were:

1. COVID-19 vaccination records [29]

For each state, three files were made available. After collecting and joining the files,
the vaccination fields were selected by age group, counting the people who completed the
vaccination cycle (1st and 2nd doses). To achieve a better relationship among the states, the
rate per 100,000 inhabitants was calculated for these fields: data divided by the population
of each state, multiplied by 100,000.

2. Coronavirus Panel [30]

The fields with information on the number of COVID-19 deaths and number of new
cases were selected and the annual average per state was performed.

3. Internet access density [31]

Information on fixed broadband and mobile telephony was selected and the average
was determined per each state.

4. Vaccination Infodemic [32]

The infodemic terms about vaccination [27–31,33–36] were selected. A search was
performed on GT by the state for each term. The research was carried out using the
following filters: geographic, which was used for each Brazilian state; period, which was
the chosen year 2021; and categories, which were chosen for all categories and research
groups using web searches. The values returned are from 100 (represents a term’s peak
popularity) to 0 (means there was not enough data about the term). The search was carried
out on 1 May 2022, and for each term, the results found in related subjects and related
searches were evaluated in order to verify if the term was related to non-infodemic content.
As a result, some terms were dropped out.

The infodemic terms selected were: jacare vaccine, turning into jacare, doria vaccine,
DNA vaccine, mutated DNA vaccine, vaccine kills, vaccine kills COVID, COVID cancer,
COVID cancer vaccine, alcoholic drink COVID vaccine, liquid chip, chip vaccine, COVID
hiv vaccine, COVID vaccine Alzheimer, magnetic COVID vaccine, COVID vaccine Coron-
aVac, COVID fetus vaccine, magnetic COVID vaccine, aluminum coronaVac, vaccine causes
autism, vaccine causes impotence, and CoronaVac squint. Some terms are very specific in
Brazilian news, such as the term “turning into alligator”, researched after the President of
Brazil said that after taking the vaccine, a person would become an alligator [37].

After the process of selecting the variables in the databases, outliers were identified,
as the clustering technique is sensitive to outliers [38]. However, after analyzing the
database, it was decided these values should not be removed. The reason for this is that
outliers may form isolated clusters, which, in the case of Brazilian states with more striking
characteristics, can happen.

With the database already formed, the standardization of variables was carried out
because the use of measurement scales in different magnitudes can distort the analysis, and
the most chosen form, among so many techniques, was the standardization z-score, with a
mean of zero standard deviation 1 [39,40], shown in Equation (1),

Z =
x− µ

SD
(1)

where x is a data value, µ is the average of the values of the interval, and SD is the
standard deviation.

The final database contains information from the 27 federative units for the year 2021.
Twelve attributes were selected and treated, as shown in Table 1.
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Table 1. Description of the variables selected in the database.

Name Variable Type Value

state text Brazilian State
number12_17 number Age range 12 to 17 1

number18_64 number Age range 18 to 64 1

number65_69 number Age range 65 to 69 1

number70_74 number Age range 70 to 74 1

number75_79 number Age range 75 to 79 1

number80_ number Age over 80
medCasosNovos number New COVID-19 cases, on average, per day
medObitosNovos number COVID-19 deaths, on average, per day

densblf number Density of fixed broadband 2

denstm number Density of mobile phone 3

infodemia number Relative volume of research for infodemic terms
1 Number of people vaccinated with both first and second doses; 2 Number of accesses divided by the number of
households; 3 Number of accesses divided by population.

3.2. Selection of the Measure of Distance or Similarity between Each Pair of Objects (B)

After the database was complete, the step was to select the measure of distance or
similarity between each pair of objects. According to Metz [41], this approach builds the
clusters so that examples belonging to the same cluster have a high similarity and examples
belonging to different clusters have a low similarity. The measure chosen was Euclidean
distance, the smallest distance between two components. The smaller the distance, the more
similar the observations [42], and it is the most used distance metric in cluster analysis [41].

Equation (2) represents the Euclidean distance, where the distance between two
observations (i and j) corresponds to the square root of the sum of the squares of the
differences between the pairs of observations (i and j) for all p variables:

dij =

√√√√
p

∑
k=1

(
xik − xjk

)2
(2)

where xik is the value of the variable k referring to observation i and xjk represents variable
k for observation j.

3.3. Selection of the Clustering Algorithm: Hierarchical Method (C)

This step selects the algorithm to maximize the differences between the groups in
comparison with the variation within them. They are divided into hierarchical and non-
hierarchical methods. According to Berkhin [43], some characteristics must be considered
when choosing the clustering algorithm, such as: input types (dissimilarity matrix), at-
tribute types, ability to find groups with different shapes, and outlier tolerance, among
others. These characteristics were evaluated, and the hierarchical average method or un-
weighted pair group method with arithmetic mean (UPGMA) was chosen, which presented
the best results in all executions. This method is less sensitive to noise and outliers and is
defined by Equation (3):

d(i, j) =
1
|i||j| ∑

xa∈ i
xb∈ j

d(xa, xb), (3)

where the distance d(i,j) between two groups is given by the average distance between
objects of different groups.

One of the main advantages of hierarchical clustering algorithms comes from the
representation of their results through dendrograms. A dendrogram is a graphical rep-
resentation in tree format that presents the hierarchy of the clusters obtained [44]. In our
paper, we elaborated on the dendrograms by executing the clustering of the database.
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3.4. Validation of the Clusters (D)

At this stage, the quality of the generated clusters was verified through two algorithms.
The first is the cophenetic correlation coefficient (CCC), which measures the degree of
fit between the similarity matrix (phenetic matrix F) and the matrix resulting from the
simplification provided by the clustering method (cophenetic matrix C) [45]. According to
the proposal of Rohlf [45], cophenetic correlations >0.7 are admissible for good clusters and
it is obtained by Equation (4):

CCC =
Côv(F, C)√
V(F)V(C)

(4)

The second algorithm is the elbow method, which interprets and validates coherence
within cluster analysis, designed to help find the appropriate number of clusters within a
dataset (non-hierarchical method). This method allows for evaluation on how the homo-
geneity or heterogeneity within the clusters varies for the value of each cluster. We can see
this “elbow” when plotting its results on a graph, as there is a break in the direction of the
curve, possibly informing the number of clusters to be defined [46]. Equation (5) shows the
objective function, a squared error function:

W(S, C) =
k

∑
k=1

∑
Xi∈Sk

|Yi − Ck|2 (5)

where S is a k-cluster partition of the entity set represented by the vectors Yi (i ∈ I) in the
M-dimensional feature space, consisting of non-empty non-overlapping clusters Sk, each
with a centroid Ck (k = 1,2, . . . K).

4. Computational Results

The database presented for the cluster analysis consisted of 27 observations and 12 in-
dicators (as shown in Table 1). The data were organized in a spreadsheet and standardized
as the indicators have different measurement units or scales and can change or alter the
grouping structure.

4.1. Analysis with All Age Ranges of Vaccination

The dissimilarity measure used was the Euclidean distance, and for the composition
of the clusters, the Average method was used, which presented the best CCC result, as
can be seen in Table 2. It shows the comparison of the results of the execution of the most
used methods for clustering. For each method, the CCC value, number of clusters, and the
cut-off value in the dendrograms are presented.

Table 2. Comparison of the results of the execution of the most used methods for clustering.

Methods CCC Cluster Number Cut Dendrogram

Average 0.887 6 3.1
Centroid 0.884 6 2.5
Complete 0.734 7 3.6

Single 0.808 7 1.6
Ward 0.647 6 5.0

The cut made on the axis of dissimilarity of the dendrogram was at a height of 3.1,
which demonstrated the composition of six probable groups, as can be seen in Figure 2.
Maranhão (MA) and Pará (PA) are highlighted as having particularities different from
the others and greater similarities to each other in terms of the behavior of the indicators
studied for the observed period. Observing the generated dendrogram, the first DF and
second São Paulo (SP) groups were considered groups with an isolated state.
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Figure 2. Dendrogram generated for the database with all age groups. The multivariate analysis
technique was applied to the 2021 data, grouping Brazil in a different format from the Brazilian
regions, which can be observed in the branches of the tree. It presents satisfactory CCC (0.887), and
six clusters were suggested.

DF is the state with the highest average number of new cases per day of COVID-19
and SP is the largest state in terms of the Brazilian population, and, therefore, they may not
have similarities with the other states in the clusters, both with just one state. The third
group has six states (MA, PA, Amazonas (AM), Amapá (AP), Acre (AC), and Roraima (RR)),
with a representation of 22.22%. The fourth group is composed of two states (Ceará (CE)
and Rio Grande do Norte (RN)). The fifth group (Tocantins (TO)), composed of only one
state, did not show similarities in behavior with other observations. Finally, the sixth group,
the largest in the number of states with sixteen, encompasses states from all Brazilian
geographic regions, representing 59.26% of the total states.

To evaluate the generated dendrogram, the CCC was employed, presenting a result
of 0.887, a value admissible as a good cluster [45]. Thus, the CCC result obtained in this
research shows an adequate adjustment of the applied clustering method.

The application of the elbow method contributed to defining the value of the number
of clusters to be used in the non-hierarchical k-means technique for forming clusters, given
that it collaborates in the optimization of clusters [47]. Figure 3 presents the result of the
elbow method for the studied database.

Figure 3. Curve of elbow method generated for the database with all age groups. The number of the
cluster was determined by looking at the point position on the “elbow” arm.

99



Computation 2022, 10, 166

The line traces the variation explained as a function of the number of clusters and
chooses the elbow of the curve as the number of six clusters to be used.

For better visualization of the dendrogram result, the spatial distribution of the states
was performed on the Brazilian map. The map (Figure 4) shows that this technique allowed
for the clustering of the states, presenting some dispersed points, possibly because of some
local peculiarities distributed within the group. However, there is a predominance of
clusters within the same Brazilian region, these being within the same group, according to
the method used.

Figure 4. Map of Brazil generated from the dendrogram result with six clusters (with all age groups).
Two large clusters contain 80% of the Brazilian states, presenting a great homogeneity in the behavior
of the population.

It was noticed that two of the six groups generated present the majority of Brazilian
states, indicating similarities in the behavior of the indicators studied. The group with
the states MA, PA, AM, AP, AC, and RR are the states with less internet proliferation [48].
In the largest group, with sixteen states, a possible advance in vaccination is observed in
Brazil for the year 2021, especially in the South and Southeast regions, which have a high
percentage of the immunized population, but areas in the North and Northeast regions still
have low immunization rates for COVID-19 [49].

The North and Northeast are places with a lower Human Development Index, younger
populations, less educated residents, lower income, and more residents of small towns. In
these places, the end of the pandemic seemed farther away than it did for large São Paulo
centers (individual clusters), which already have high vaccine coverage with two doses,
according to scientists [49], and also showed a lower rate of infodemic searches.

The state of DF, on the other hand, had the highest number of infodemic surveys on
vaccination in 2021.

4.2. Analysis with Vaccination of the Elderly 64 Years or Older

The establishment of priority groups for vaccination is an important strategy, based on
epidemiological indicators and the characterization of the vulnerability of the groups [50].
Thus, elderly citizens were the first to be vaccinated in Brazil, prioritized by age group.
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However, for the second analysis, elderly people aged over 64 years were chosen to
represent about 13% of the population [51].

The Euclidean distance was chosen as the dissimilarity measure, and for the composi-
tion of the clusters, the average method was used, which also presented better results, with
a value of CCC = 0.889. The cut on the dendrogram dissimilarity axis was at the height of
1.8, which results in the agglomeration of eight probable groups, as can be seen in Figure 5.

Figure 5. Dendrogram generated with data of the elderly 64 years or older. The multivariate analysis
technique was applied to the 2021 data, grouping Brazil in a different format from the Brazilian
regions, which can be observed in the branches of the tree. It presents satisfactory CCC (0.889), and
eight clusters were suggested.

The first cluster, DF, a cluster with a single state, stands out isolated as it is the state
with the highest average number of new cases per day (outlier) in just one state. The second
group is composed of two states (MA and PA). The next cluster with the states AM, RR,
AC, and AP has 14.81% representation, followed by the cluster with the highest number of
states, six in all (22.22%) and from the same geographic region (RN, Sergipe (SE), Bahia
(BA), Pernambuco (PE), Alagoas (AL) and CE). The fifth, sixth, and seventh clusters, with
three states: Mato Grosso do Sul (MS), Mato Grosso (MT), and Rondônia (RO); TO, Paraíba
(PB), and Piauí (PI); and Rio Grande do Sul (RS), Rio de Janeiro (RJ), and SP. The last cluster
represents 18.53% of the states, with Espírito Santo (ES), Minas Gerais (MG), Paraná (PR),
Goiás (GO), and Santa Catarina (SC).

Figure 6 presents the result of the elbow method for the database of elderly people
aged 64 and over, suggesting the number of eight clusters.

Figure 6. Curve of elbow method generated with data from the elderly 64 years or older. The number
of the cluster was determined by looking at the point position on the “elbow” arm.
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It can be seen that the second cluster analysis resulted in different groups from the
previous analysis, as illustrated in Figure 5, which is better visualized on the Brazilian Map
in Figure 7. More clusters were found with similar characteristics among themselves, and
differences among the clusters.

Figure 7. Map of Brazil generated from the result of the dendrogram with eight clusters (age group
aged 64 and over). States well distributed in the clusters, showing heterogeneity in the behavior of
the population.

This difference in divisions is very marked, in eight clusters tested with data from the
elderly (13% of the population) to six clusters (all age groups) and with a different number
of states per cluster, possibly due to factors such as:

• vaccination of the elderly was the first in the vaccination calendar (and continued
throughout the year 2021) and had no results on the efficacy of vaccines, leading to
mistrust [52];

• vaccination campaigns were starting without many disclosures and some calendars
did not contain information on dates for each group and where to receive the doses.
Each state had the autonomy to prepare the calendar and dissemination;

• vaccines were missing in many states and started applications through the capitals
(sometimes not arriving in the interiors). According to [53], there were three errors
that led to the lack of vaccines: the government did not anticipate and buy vaccines in
2020, there was a lack of definition on who should be vaccinated first, and a lack of
training caused a waste of doses;

• vaccination infodemics were well-exposed and circulated on social media and the
Internet, generating fear and vaccine hesitation. People began to discredit science,
believe in fake news, and act against science [52].

• in addition, the elderly were identified as the most vulnerable in the dissemination of
fake news [54], and they are seven times more likely to spread false news compared to
people under 29 years [55]. This generated a pertinent concern because the presence
of the elderly as internet users has been growing and this has been shown to be the
largest proportional increase among the age groups [55].
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The more infodemics shared, the greater the amount of fear and mistrust in the
population. In this way, the patterns of behavior among the 27 federative units could be
more heterogeneous.

5. Conclusions

The high demand for information corresponding to the growing popularity of COVID-19
vaccination research in news sources highlights the importance of public health officials
working with the media to ensure that information is correct. This is because a high number
of searches for vaccination infodemics can make it difficult for vaccination campaigns to
be productive.

In this sense, the work used infodemic information on COVID-19 vaccination in Brazil,
collected from the GT for the year 2021, with information on the number of vaccinated
population and other important variables to perform a multivariate analysis of data and
employ dendrograms to cluster the Brazilian states.

The use of the clustering technique, for the two analyses performed, resulted in
six and eight clusters, respectively. Different results were found in the number of clusters
and the aggregated states, composed of states with a high probability of having similar
characteristics within each group and differences from the others. The results obtained
with the CCC indicated a good degree of fit between the dendrograms and the dissimilarity
matrices, allowing inferences to be made from the graphic representation. Finally, the
UPGMA clustering algorithm was the most efficient, providing the lowest degrees of
linkage and the highest CCC values.

In the analysis with vaccination data of the elderly aged 64 years or older, more
heterogeneity in the patterns is visualized. During this period, the population had distrust
and fear of vaccine efficacy, generating more sharing and infodemic research on vaccines.
Vaccination in the states followed at different rates.

After analyzing the generated database, six clusters with more clustered states and
more homogeneity was observed. The number of vaccinations increased in the age groups
as clarifications were made about the importance and efficacy of the vaccine, leading to
a significant decrease in both the number of cases and the number of deaths per day,
and, of course, more vaccines were applied with improvements in the rate of evolution of
pandemic numbers.

Future works should combine more information, expand data to two years of vaccina-
tion (2021 and 2022), and add other variables that express social and sociodemographic
inequality, such as age and sex, which would provide more potential explanations for
the behavior of the Brazilian population. It is intended to use the technique of Bayesian
networks that would help policymakers and health managers understand which variables
are most relevant.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Acre
AL Alagoas
AM Amazonas
AP Amapá
BA Bahia
CCC Cophenetic Correlation Coefficient
CE Ceará
DF Distrito Federal
ES Espírito Santo
GO Goiás
GT Google Trends
MA Maranhão
MG Minas Gerais
MS Mato Grosso do Sul
MT Mato Grosso
PA Pará
PB Paraiba
PE Pernambuco
PI Piauí
PR Paraná
RJ Rio de Janeiro
RN Rio Grande do Norte
RO Rondônia
RR Roraima
RS Rio Grande do Sul
SC Santa Catarina
SD Standard Deviation
SE Sergipe
SP São Paulo
TO Tocantins
UPGMA Unweighted Pair Group Method with Arithmetic Mean
WHO World Health Organization
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Abstract: Respiratory viruses known as coronaviruses infect people and cause death. The multiple
crown-like spikes on the virus’s surface give them the name “corona”. The pandemic has resulted
in a global health crisis and it is expected that every year we will have to fight against different
COVID-19 variants. In this critical situation, the existence of COVID-19 vaccinations provides hope
for mankind. Despite severe vaccination campaigns and recommendations from health experts and
the government, people have perceptions regarding vaccination risks and share their views and
experiences on social media platforms. Social attitudes to these types of vaccinations are influenced
by their positive and negative effects. The analysis of such opinions can help to determine social
trends and formulate policies to increase vaccination acceptance. This study presents a methodology
for sentiment analysis of the global perceptions and perspectives related to COVID-19 vaccinations.
The research is performed on five vaccinations that include Sinopharm, Pfizer, Moderna, AstraZeneca,
and Sinovac on the Twitter platform extracted using Twitter crawling. To effectively perform this
research, tweets datasets are categorized into three groups, i.e., positive, negative and natural. For
sentiment classification, different machine learning classifiers are used such as Random Forest (RF),
Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), and Support Vector Machine (SVM).
It should be noted that the Decision tree classifier achieves the highest classification performance in all
datasets as compared to the other machine learning algorithms. For COVID-19 Vaccine Tweets with
Sentiment Annotation (CVSA), the highest accuracy obtained is 93.0%, for the AstraZeneca vaccine
dataset 90.94%, for the Pfizer vaccine dataset 91.07%, 88.01% accuracy for the Moderna vaccine
dataset, for the Sinovac vaccine dataset 92.8% accuracy, and 93.87% accuracy for the Sinopharm
vaccine dataset, respectively. The quantitative comparisons demonstrate that the proposed research
achieves better accuracy as compared to state-of-the-art research.

Keywords: COVID-19; vaccines; Twitter; sentiment analysis; classification; machine learning

1. Introduction

Machine learning and deep learning models are used in various real-time domains
such as industrial automation, design of design support systems for medical domains
and multimedia analysis [1–5]. Pandemics occur and lead to extensive morbidity and
mortality worldwide. In December of 2019, a case of pneumonia of unknown origin was
reported in Wuhan, China. From there, the epidemic of the coronavirus swiftly spread to
other countries [6–10], leading to the widespread outbreak of COVID-19 on the mainland.
The severe acute respiratory syndrome coronavirus is causing a pandemic of coronavirus
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disease 2019 (COVID-19) all over the globe, and China is one of the countries affected
(SARS-COV-2). China was the first country to have an outbreak of the disease. It was
also the first country to respond with harsh measures, such as lockdowns and rules about
wearing face masks. China was also one of the first countries to get the outbreak under
control. The coronavirus (COVID-19) viruses have made their way to many parts of the
world. This virus has a high rate of spread and is harmful to humans [11].

Italy was the first European country to experience a significant COVID-19 outbreak,
with the detection of the first case on the 21 February 2020 in the province of Lodi in the
region of Lombardy. While each province in Italy had confirmed cases of the virus by
mid-March 2020, the diffusion of the outbreak in the country was very heterogeneous. The
majority of cases were concentrated in Lombardy in the north of the country [12,13].

The World Health Organization (WHO) called the COVID-19 outbreak the sixth public
health emergency of international concern (PHEIC) on 30 January 2020. On 11 March 2020,
the WHO said that COVID-19 had become a pandemic [14]. This year’s new coronavirus
killed 85,522 people on 9 April 2020, and the case fatality rate (CFR) was 5.95%. COVID-19
has been classified by the WHO as having a very high global risk. Because lockdowns
have been implemented in so many areas, the pandemic scenario has impacted virtually
every aspect of society, including the economy [15,16]. Coronavirus disease (COVID-19) is
a pandemic and an issue that exists in more than 200 nations throughout the world. Many
countries have been badly affected by COVID-19 and lots of people have died in the last two
years [16]. The high volume of international travel was the primary factor in the disease’s
dissemination around the globe; the presence of local contagious links played a secondary
role. For example, in 2018, more than 4 billion individuals, or almost six out of every ten
persons on the planet, traveled worldwide by means of commercial airplanes [17].

In response to the unusual spread of the illness, there have been concerted attempts on
a worldwide scale to collaborate on combating the pandemic. The creation of a vaccine is one
of the potential strategies that may be used to combat the COVID-19 pandemic. A chemical
that stimulates the development of adaptive immunity in the body and hence assists in
the body’s fight against various illnesses and diseases is known as a vaccine [17–19]. Many
organizations have developed vaccines to avoid and overcome this situation. People have
to vaccinate themselves to reduce the threat of this malignant disease [20]. For this, they
need some opinion about different types of vaccines available in the market to select the
most suitable vaccine for themselves. Social media platforms such as Twitter have proved
to be a valuable resource that provides instantaneous access for information tracking and
evaluation. In pandemic times, Twitter has been used in various studies as a source of
information, e.g., back in 2009 during the HINI outbreak [21]. Twitter has been widely
used in various studies for the identification of user’s concerns, misinformation spread and
sentiment analysis [22]. Twitter users have expressed their opinions regarding COVID-19
vaccination. Only a few research studies have analyzed public sentiments towards COVID-
19 vaccination. This research will help them to select their desired vaccines from Sinovac,
Pfizer, Moderna, AstraZeneca and Sinopharm. To the best of our knowledge, in previous
studies, researchers have tested two to three vaccinations and found accuracy. This research
collects and analyzes opinions on five major vaccinations and identifies the most effective
machine learning (ML) algorithm to predict the sentiment analysis about five different types
of COVID-19 vaccines. In addition to this, the research aims to analyze the sentiments of
people towards COVID-19 vaccination on the basis of data obtained from social media. The
proposed research will address the following research questions:

• What are people’s sentiments toward COVID-19 vaccination on the social media
Twitter platform?

• What is the most effective machine learning algorithm to predict the sentiment analysis
about five different types of COVID-19 vaccines?

Supervised intelligence enables complex and larger data to be processed and analyzed
along with the desired results being achieved. Machine learning offers a novel approach
to bringing together the methodologies of fundamental research and technical analysis.
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We aim to find better results for the sentiment classification of COVID-19 vaccination by
applying ML models. The key contributions of this research are as follows:

• This research presents a methodology for sentiment analysis of the perceptions and
perspectives of public tweets related to COVID-19 vaccination. In this regard, a global
dataset has been created by extracting tweets related to people’s sentiments towards
COVID-19 vaccination.

• The TextBlob approach has been applied to determine the polarity of sentiments into
positive, negative and neutral. Different supervised machine learning models were
applied to the annotated dataset in order to obtain optimal performance.

• In related state-of-the-art research, the researchers have tested two to three vaccinations
for sentiment classification. This research will collect opinions on five vaccinations
including Sinovac, Pfizer, Moderna, AstraZeneca and Sinopharm and aims to discover
which vaccine produces the best results. The proposed research is validated by
comparing the performance with the state-of-the-art approaches.

The rest of the article is organized into five sections. Section 2 presents a comprehensive
review of the related work. The proposed methodology is discussed in Section 3. Section 4
provides a description of the datasets used for experiments, the metrics used for evaluation
and a discussion of the results. Section 5 concludes the research and provides directions for
future research.

2. Related Work

This section presents a review of the recent literature on the COVID-19 pandemic
which emphasizes the importance of effective vaccination for the whole population.

Machine learning and neural networks have applications in difference domains such
as aerial image classification [23–26], face recognition [27], Internet of Things [28,29],
healthcare [30–32] and sentiment analysis, etc. Manguri et al. [33] stated that the rise
of social data on the internet has accelerated. This leads to study in order to obtain access
to the data and information for a variety of academic and commercial purposes. The global
COVID-19 sickness has now expanded internationally, and social data on the web includes
numerous real-life incidents that happened in everyday life. Many people, including
media outlets and government institutions, are disseminating the newest information and
viewpoints on the coronavirus. The Twitter data was crawled from Twitter social media
through a python programming language, and sentiment analysis was performed using
the text blob library in python. The evaluation results of sentiment analysis are shown as a
graphical representation based on the data. The information originated from Twitter, where
it was discovered via the use of a search for two distinct hashtag keywords: (COVID-19
and coronavirus). In another study [34], the authors argued that a global infrastructure to
enable both normal and pandemic/epidemic adult vaccination is urgently needed because
of the global connections. Since the number of older persons is continually increasing,
the need for a framework to propose vaccinations and establish strong platforms to dis-
tribute them was obvious. For older individuals, their families, communities, and nations,
adult vaccination as a policy has the potential to protect and improve medical, social, and
economic results. COVID-19 vaccinations will soon be available, but it is important to
remember that currently, a number of vaccines are available that can keep adults healthy.

Meena et al. [35] pointed out that social media talks about healthcare were an excellent
starting point for assessing people’s feelings. COVID-19 vaccination was the primary hope
of practically every human being on Earth. Many people took to Twitter to express their
feelings in response to Russia’s first vaccination announcement. Data from tweets were
analyzed for the emotions and psychology of the people and the issue of interest they
were discussing. The social emotions were disclosed and displayed using computational
approaches and algorithms, such as machine-learned and LDA. Sentiment analysis is a
technique for recognizing and categorizing views or feelings represented in the source
material. A vast amount of data that is rich in sentiment is generated by various types
of social media, such as tweets, status updates, blog posts, and so on. The application
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of sentiment analysis to this user-generated data may be highly helpful in identifying
the perspective of the general population. Because of the existence of slang phrases and
misspellings, Twitter sentiment analysis is more complex than conventional sentiment
analysis. On Twitter, the maximum number of characters permitted is 140. According to
authors, there are two methodologies that are employed for interpreting the sentiment
gleaned from the text. These are the knowledge-based approach. Alliheibi [36], mentioned
that individuals in Saudi Arabia who had received the COVID-19 vaccination were studied
via their tweets. People’s replies were classified using computational lexical-semantic
approaches. The findings show that the majority of Saudi Arabians have an unfavorable
view of the government’s COVID-19 immunization take-up campaign. According to the
findings, the use of data mining applications in government institutions and departments
can identify trends that could have an adverse impact on policies and practices, as well as
help government institutions make appropriate decisions and adopt reliable and workable
policies and procedures.

Yousefinaghani et al. [37] pointed out that COVID-19 vaccinations are the subject of an
estimated 4.5 million tweets being analyzed in their investigation. It is possible that Twitter,
as it was in this study, may be an effective tool for promoting public health by increasing
vaccination uptake and decreasing vaccine resistance. Public health officials might benefit
from better knowing vaccine feelings and opinions in order to amplify good postings with
supportive language and debunk negative ones with confrontational language that spreads
misinformation. Public health organizations may also be able to use Twitter and other
media to raise positive messaging and actively minimize negative and opposing messages.

Ezhilan et al. [38] performed a study using a convolutional neural network and a
recurrent neural network built for sentiment analysis based on text data related to Twitter
data sentiment analysis. CNN and RNN sentiment classifiers performed better than other
sentiment classifiers, such as SVM, logistic regression, and Nave Bayes, in terms of accuracy
and recall, according to the empirical assessment in this study. Also shown in the study
was the performance of general-purpose emotion analyzers such as text blob and Vader.
Understanding public opinions regarding coronavirus and COVID-19 helps to detect the
rise in dread sentiment and unpleasant feelings, which were important for developing
much-needed remedies to stop the rapid spread of the pandemic. The use of exploratory
and descriptive text analytics and data visualization methodologies helps to uncover
the most basic of ideas. Andrzejczak-Grzadko et al. [39] observed that the Vaccine side
effects are widespread, although individuals respond to immunizations in various ways.
Manufacturers give a list of their goods’ adverse effects. Adverse responses indicate that
immunizations are effective and that the immune system is reacting. It compares the
AstraZeneca and Pfizer vaccines’ side effects. These responses were more prevalent after
the first dosage of the AstraZeneca vaccination than after the first and second doses of
the Pfizer vaccine, although they were less common after the Pfizer formulation. The
survey was made available on the internet. It was performed on patients who had been
immunized with Pfizer or AstraZeneca vaccines. The participants were questioned about
adverse effects such as injection site discomfort, arm pain, muscle pain, headache, fever,
chills, and exhaustion after receiving the first and second doses of the vaccinations. A
total of 705 persons responded to the survey. Pfizer had vaccinated 196 of them, whereas
AstraZeneca had immunized 509. A total of 96.5% of those who received the first dose
of the AstraZeneca vaccine had at least one post-vaccination response. All of the adverse
effects mentioned in the survey were reported by 17.1% of respondents. Vaccine responses
were recorded by 93.9% of those who received the first Pfizer dosage, while just 2% of those
who received the second dose suffered all of the adverse events listed in the survey. Most
of the subjects had post-vaccinal reactions after the second dose of the Pfizer vaccine: 54.8%
had more adverse reactions, and 15.8% had fewer adverse reactions than after the first dose,
and 29.4% had the same side effects after the first and second doses of the Pfizer vaccine.

Saeed et al. [40] stated that some people were reluctant to get their children vaccinated
because they were afraid of the unknown. The first and second post-vaccination side effects
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of the Sinopharm COVID-19 vaccine were shown to be common and moderate, predictable,
non-serious, and not life-threatening. For the first time, the Sinopharm vaccine’s adverse
effects have been evaluated among an age group, and the findings might help lessen public
vaccination skepticism. Dubey [41] performed a study to explain. In India, the campaign to
prevent COVID-19 began on 16 January 2021. Oxford-Covishield AstraZeneca’s and Bharat
Biotech’s Covaxin were two vaccines employed in this campaign. This initiative has already
surpassed 600,000 people in its first four days, and the government has declared that it
would be increased in the following days to secure residents’ immunity. However, there is
still a segment of the population that is skeptical about the COVID-19 vaccine. It was carried
out to examine the emotions expressed in India’s tweets about these two vaccinations.
While the majority of the public has favorable feelings about these vaccinations, the study
indicates that there are also negative feelings about them, which are linked to emotions
such as fear and wrath. Dumre et al. [42] performed a statistical and sentiment analysis and
observed that people in India have begun developing opinions towards them as a result of
the impending availability of a vaccine against COVID-19. An investigation of the attitudes
and viewpoints of individuals with respect to vaccinations. Out of 200 participants, 32
doctors and 35 participants were vaccinated. The main objectives were to analyze the
response to the survey and draw conclusions with the help of data analysis techniques
and performed sentiment analysis on participants’ responses to identify what stops people
from getting vaccinated.

Cotfas et al. [43] described that machine learning-based posture detection was used to
analyze the one-month time between the initial announcement of a coronavirus vaccine
and the first real immunization procedure outside of the limited clinical trials. The best
classifier was selected after a thorough evaluation of the performance of a number of
different conventional and deep learning methods. The suggested method was able to
classify the tweets into three primary categories, namely in favor, against, and neutral, with
an accuracy of 78.94%. The authors in [44] analyzed that the tweets were categorized into
four different emotions based on their content: fear, sadness, rage, and joy. A pleasant
environment was produced in the healthcare authorities by using phrases such as “thank
you”, “well”, and “good” instead of terms that instill dread in the minds of those who
hear them. In light of these findings, local governments have been pushed to impose
fact-checkers on social media to combat misleading propaganda. There has been a lack of
research on how to verify and categorize tweets, which has led to a rise in the spread of false
information. As a result, the authors used Bert, a unique deep-learning model, to obtain
better classification accuracy in comparison to standard models of ML. Bert’s 89% accuracy
outperformed other models including LR, SVM, and LSTM, according to the results. The
research results helped to clarify public opinion on pandemics and provided a guideline to
medical authorities, public, and private sector employees to overcome unnecessary concern
during pandemics.

3. Research Methodology

This research presents a framework for sentiment analysis of COVID-19 vaccines.
We have used python as a programming language and several libraries for text mining
that will be explained. Figure 1 demonstrates the steps of the proposed methodology
framework for sentiment analysis organized in four multiple layers. In the first step, data
crawling and pre-processing are performed. The second layer is the learning layer where
the pre-processing data will be spilt into training (70% data) and test (30% data) subsets.
The training test ratio is chosen in accordance with state-of-the-art research. Empirical
studies show that the best results are obtained if we use 20–30% of the data for testing, and
the remaining 70–80% of the data for training [17,45]. The training will be used to train
five different ML models namely Random Forest (RF), Naive Bayes (NB), Decision Tree
(DT), Logistic Regression (LR) and Support Vector Machine (SVM). Again, the run-time
behavior of five trained models using model-based testing techniques will be used to check
the model’s predictions. The third layer is the evaluation layer, the performance of models
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will be compared on the basis of the evaluation metrics. The task of sentiment classification
can usually be seen as a two-class classification (positive and negative). In this research, we
add one class namely Neutral, to get the Twitter sentiment. This type of work is essentially
a matter of text classification. The fourth layer is the result layer, it presents an analysis and
discussion of the results.

Figure 1. Block diagram of the Proposed Research.

3.1. Data Collection

This study performed sentiment analysis for COVID-19 vaccination. For this purpose,
the dataset contains tweets related to the COVID-19 vaccination. To extract the tweets from
Twitter with specific keywords, such as COVID-19 vaccine, corona Vaccine, COVID-19
vaccination, and corona vaccination. For this research, we have extracted tweets from
tweeter using developer account access keys and Python popular library tweepy. We have
searched Twitter using keyword search. Hence, we grabbed about 25,004 tweets containing
our search keywords. Then pandas library was used to store the tweets in a data frame and
then in a CSV file for further manipulation. In this study, AstraZeneca, Pfizer, Sinovac and
Sinopharm employed 5001, 5001, 5001, 5001 and 5000 tweets, respectively.

3.2. Data Pre-Processing

Data pre-processing is applied to pre-process the text when building an ML-based
system based on tweet data. Text pre-processing includes the following steps: The text
shown before and after applying some of the pre-processing steps is shown in Table 1.

• Case folding is the removal of the case-sensitive text by changing the text to upper or
lower case. In this study, the lowercase text was applied.

• Dataset filtering/document filtering removes special characters, mentions, links, URLs,
hashtags, single characters, non-ASCII characters, punctuation, number and whitespace.

• Tokenizing means splitting the text into words. The list of tokens is used for
further processing.

• Stop Word removal indicates that any words that are considered to be irrelevant or
possibly irrelevant are removed.

• Stemming means converting words into prevailing words.
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Table 1. Data Pre-processing.

Process Data

Original Tweet “China to launch roadmap to ’live with the virus’ as two new local
vaccines using technologies similar to those of the Novavax and
Oxford-AstraZeneca vaccines, are now available in the country,
according to Chinese officials and medical experts.

Case Folding “China to launch roadmap to ‘live with the virus’ as two new local
vaccines using technologies similar to those of the novavax and
oxford-astraZeneca vaccines, are now available in the country,
according to chinese officials and medical experts.

Document Filtering china ‘to launch roadmap to live with the virus as two new local
vaccines using technologies similar to those of the novavax and
oxford-astraZeneca vaccines are now available in the country
according to chinese officials and medical experts

Tokenizing ‘china’, ‘to’, ‘launch’, ‘roadmap’, ‘to’, ‘live’, ‘with’ ‘the’, ‘virus’ ,
‘as’, ‘two’, ‘new’, ‘local’, ‘vaccines’ ,‘using’, ‘technologies’, ‘simi-
lar’, ‘to’, ‘those’, ‘of ’, ‘the novavax’ ,‘and’, ‘oxford-astraZeneca’,
‘vaccines’, ‘are’, ‘now’, ‘available’, ‘in’, ‘the’ ‘country’, ‘according’,
‘to’, ‘chinese’, ‘officials’, ‘and’, ‘medical’, ‘expert’s’.

Stopword Removal ‘china’, “launch’, ‘roadmap’, ‘live’, ‘virus’ , ‘local’, ‘vaccines’ ,‘us-
ing’, ‘technologies’, ‘similar’, ‘the novavax’, ‘oxford-astraZeneca’,
‘vaccines’, ‘available’, ‘country’, ‘according’, ‘chinese’, ‘officials’,
‘medical’, ‘expert’s’.

3.3. Feature Selection/Extraction

After, the pre-processing stage, the data was processed to select the feature sets. For
feature selection, TextBlob, a well-known lexicon-based approach for performing natural
language processing (NLP) tasks on the raw text was used. TextBlob is a python package
that allows you to manipulate text input using a programming interface. By using TextBlob,
one can analyze sentiments in text, create part of speech (pos) tags, extract noun phrases,
translate, classify and more. TextBlob package comes with different in-built functions that
support the task of language processing. It works for many different languages such as
Arabic, Spanish, English, etc. It works in conjunction with NLTK [11].

3.4. Machine Learning Algorithms

Machine learning (ML) is a popular use of artificial intelligence since it automates
the system and allows it to learn and improve from diverse experiences without being
programmed. Computer programs can teach how to learn by giving them access to data
and allowing them to utilize it for learning in ML. The learning process in ML begins with
seeing the data through examples or instructions that humans offer; these observations
enable ML to look for patterns in order to make the best predictions. Five different ML
models were used to train the classifier and evaluate classification performance using the
test dataset. These are discussed below.

3.4.1. Random Forest

The RF model is an ensemble model that generates high-precision predictions by com-
bining the results obtained from several sub-trees.The supervised ML method known as RF
may be used for both classification and regression analysis. The term “forest” refers to a
collection of independent Decision Trees that are combined in order to reduce the amount of
variance and provide more accurate data forecasts. L. Breiman [46,47] created the random
forest algorithm in 2001, and it has been shown to be a very effective tool for classification
and regression analysis across a variety of domains. The approach, which combines the
predictions from a number of different randomized Decision Trees and then takes the average
of those forecasts, has been shown to work well in circumstances in which the number of
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variables is more than the number of observations. In addition to this, it can be adapted to
a wide range of ad hoc learning challenges and it may provide metrics of changing impor-
tance, both of which make it suited for use with large-scale problems [47]. An RF can be
represented as:

RF = mode{tR1, tR2, tR3, · · · , tRn} (1)

RF = mode{
n

∑
i=1

tRi} (2)

where tR1, tR2, tR3, · · · , tRn represent the Decision Trees in RF and n denotes the number
of trees.

3.4.2. Naive Bayes

The Bayes Theorem’s premise of class conditional independence is used in the NB
classification technique. This indicates that the existence of one characteristic in the likeli-
hood of a certain event has no bearing on the presence of another, and each predictor has
an equal impact on the outcome. Multinomial NB, Bernoulli NB, and Gaussian NB are the
three kinds of NB classifiers. Text categorization, spam detection, and recommendation
systems are all applications of this technology. Classifiers are programs that give a class
to an object or case based on the values of attributes used to characterize this item or case
from a pre-defined list. To do so, NB classifiers employ a probabilistic method, in which
they attempt to predict the outcome [48].

3.4.3. Decision Tree

DTs are a technique for non-parametric supervised learning that may be used for
classification and regression. DT is a model for ML that may be used for the problem-
solving process of regression as well as classification. The purpose of this project is to build
a model that can accurately forecast the value of a target variable by gleaning fundamental
decision rules from the features of the data. A tree may be thought of as a piecewise
constant’s approximation [49]. Until the splits become atomic, the model employs the
binary technique to split the dataset into n number of subsets. When a data subset cannot
be further split, it is said to be atomic. A DT with multiple branches of varying sizes is used
in conjunction with partitioning the dataset into an incremental method of construction.
The DT was employed in this investigation with a max depth hyper-parameter to minimize
complexity and overcome model over-fitting [17].

3.4.4. Logistic Regression

Logistic Regression is a statistical approach to data analysis in which one or more
variables are utilized to determine the outcome. When the target variable is categorical,
the optimum learning model to utilize is LR, which is the regression model that was used
to estimate the likelihood of class members. Linear Regression uses a logistic function to
estimate probabilities for the association between the categorical dependent variable and
one or more independent variables [50]. Logical regression is used whenever the dependent
variables are categorical, such as “true” and “false” or “yes” and “no”, rather than continu-
ous, as in the case of Linear Regression, which is employed if the dependent variables are
continuous. Although both regression models seek to identify correlations between data
inputs, logistic regression is often used when dealing with binary classification challenges
such as spam detection since it is more effective at handling these problems. Logistic
Regression is a technique that may be used to solve a classification issue. It generates a
binomial outcome by stating, in terms of 0 and 1, the probability of an event happening or
not occurring, taking into the process.

The prediction of whether a tumor is malignant or benign, for example, or if an
Email is spam or not, are both instances of the binomial results that may be obtained by
Logistic Regression. There can also be a multinomial result of Logistic Regression, such
as predicting the favorite cuisine: Chinese, Italian, Mexican and others. There can also
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be ordinal outcomes, such as product ratings ranging from 1 to 5, and so on. As a result,
Logistic Regression is concerned with the categorical prediction of the target variable.
Whereas Linear Regression, on the other hand, is concerned with the prediction of values
of continuous variables, such as real estate prices over a three-year period [50].

g(x) =
L

1 + e−k(v−vo)
(3)

The values for the S-shaped curve and the variable v of the LR ranges from −∞ to +∞
for actual numbers. To boost the performance of LR, the hyperparameter “liblinear” was
utilized in this study. The hyperparameter ‘multi-class’ is set as ‘multinomial’ considering
its effectiveness for binary classification problems.

3.4.5. Support Vector Machine

A support vector machine(SVM), which was created by Vladimir Vapnik, is a super-
vised learning model that can be used to both classify and regress data [51]. On the other
hand, the most popular use for it is in the realm of classification problems; in this context, it
is used to generate a hyperplane on which the distance between two classes of data points
is maximized. The decision boundary is a hyperplane that divides the different categories
of data points that are located on each side of the plane (e.g., oranges vs. apples) [51]. SVMs
are capable of dealing with problems relating to both classification and regression. This
method requires that the hyperplane, which acts as the decision boundary, be defined. A
decision plane is necessary whenever there is a need to divide a set of things that belong to
different categories. The items may or may not be separated linearly [51].

3.5. Label Prediction

All datasets’ tweet data was labeled. The model was chosen in the previous stage was
then used to predict the label.

4. Results and Discussion

This section presents the accuracy results of sentiment analysis carried out using five
distinct methods applied to two distinct datasets, with the second dataset being further
subdivided into five distinct vaccination datasets. The accuracy, precision, recall, F1 score,
and support measurement are derived from the Random Forest, Naive Bayes, Decision
Tree, Logistic Regression, and Support Vector Machine (SVM).

4.1. Description of Datasets

We have used two datasets for this research, Dataset 1 [52]: COVID-19 Vaccine Tweets
with Sentiment Annotation (CVSA) and Dataset 2: COVID-19 vaccines related user’s
response crawled from Twitter platform to analyze the opinions about vaccines. Dataset 2 is
further divided according to five known vaccine datasets, i.e., AstraZeneca, Pfizer, Sinovac,
Moderna and Sinopharm, respectively. CVSA has 6000 rows and 3 columns (Tweets id,
label, Tweets text). The Sinovac, Pfizer, Moderna, AstraZeneca and the Sinopharm datasets
have 5001 rows and 5 columns, respectively (Srno, Datetime, Tweet Id, Text, Username).

4.2. Evaluation Metrics

This section explores the evaluation metrics utilized used for the quantitative evalua-
tion of the proposed research. The metrics used for evaluation of the proposed research are:

I. Confusion matrix: The confusion matrix is often used in ML to analyze or show
how models behave in supervised classification contexts [53,54]. It is a square matrix
with rows representing the actual class of the examples and columns representing
their anticipated class. The confusion matrix defined a comparison between actual
and predicted values. The confusion matrix is an N × N matrix, where N is the
number of classes or outputs. For two classes, we obtain a 2 × 2 matrix. Whereas for
three classes or outputs, we obtain a 3 × 3 confusion matrix. The rows indicate the
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actual class of the instances. The confusion matrix has four terms to understand: True
Positive (Tp), False Positive (Fp), True Negative (Tn), and False Negative (Fn). The
datasets used in this research have three outputs or classes, Positive, Neutral, and
Negative. In the multi-class classification problem, we won’t get Tp, Tn, Fp, and
Fn values directly as in the binary classification problem. We need to calculate for
each class.
This matrix includes all of the raw information that was created by a classification
model when it was applied to a specific data set. This information pertains to the
predictions that were produced. It is standard practice to use a testing data set that
was not used during the learning phase of a model in order to assess the correctness
of the model’s ability to generalize its findings. This is performed to see if the model
was able to generalize its findings. A confusion matrix may provide the basis for
the creation of a great number of artificial, one-dimensional performance metrics.
Precision, recall and the F-score, etc. are the performance indicators that can be
computed from the confusion matrix. In association with a 2 × 2 cost matrix, a
confusion matrix can also be used to compute cost-sensitive performance indicators
in cases when different types of errors are not assumed to be equal. The selection of
the optimal performance indicator directly relates to the objectives of the learning
problem. The confusion matrix is shown in Table 2.

Table 2. Confusion matrix.

Predicted Case

Negative Positive

Actual Case

Negative Tn = True Negative
correct prediction of the nega-
tive case

Fp = False Positive
incorrect prediction of the pos-
itive case

Positive Fn = False Negative
incorrect prediction of the neg-
ative case

Tp = True Positive
correct prediction of the posi-
tive case

II. Recognition Accuracy (ACC): The classification accuracy (ACC) is the most generally
used statistic for evaluating classification performance. It is defined as the total num-
ber of instances (TWEETS) correctly classified divided by the number of examples
(TWEETS) in the dataset under consideration. It can be stated numerically as:

Accuracy = ACC =
Tp + Tn

Tp + Tn + Fn + Fp
(4)

III. Recall: Recall is also used for performance measurement. Recall can be defined as the
ratio between tweets classified correctly to the total number of tweets available in the
database. Recall in the formula form can be written as:

Recall = Sensitivity =
Tp

Tp + Fn
(5)

IV. Precision: It is also known as positive predictive value (PPV), precision is widely
used for performance measurement purposes. Precision can be defined as the ratio
between tweets classified correctly to the total number of tweets classified. Precision
in the formula form can be written as:

Precision =
Tp

Tp + Fp
(6)

V. F-measure/F1-Score: The F-score is the harmonic mean of recall and accuracy; a
higher value implies better predicting ability. System performance cannot be assessed
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just on the basis of accuracy or recall. The following formula may be used to determine
the F-score:

F-score =
2× (Precision× Recall)

Precision + Recall
(7)

4.3. Results for Dataset 1: COVID-19 Vaccine Tweets with Sentiment Annotation

This section presents a detailed analysis of the results obtained for dataset 1 by ap-
plying five ML algorithms. The results are demonstrated using a confusion matrix and
bar graphs of different ML classifiers. Figure 2 shows the confusion matrices obtained by
applying different ML algorithms. As discussed earlier, Random Forest is an approach
to supervised ML that may be flexible and is used for both classification and regression
analysis. It can be observed that when the Random Forest algorithm is applied to the
dataset, 81.94% accuracy is obtained. Confusion matrix Figure 2a shows the results of
precision, recall, F1-score and accuracy obtained by applying the Random Forest algorithm
to the dataset. These values are calculated by using Tp, Tn, Fp and Fn parameters. The
precision, recall, F1-score and accuracy achieved by applying the random forest ML model
are 89.94%, 67.76%, 69.9% and 81.94%, respectively, and are shown in Table 3.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e)

Figure 2. Confusion matrix: (a) using Random Forest (b) Naive Bayes (c) Decision Tree (d) Logistic
Regression (e) SVM.

Table 3. Machine learning Performance on COVID-19 vaccine tweets with sentiment annotation.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 81.94 89.18 67.76 69.9

Naive Bayes 75.67 71.55 63.19 63.2

Decision Tree 93.0 90.43 88.27 89.24

Logistic Regression 82.5 85.35 71.36 74.47

SVM 84.78 87.0 75.05 78.31

The second algorithm used for the evaluation of the proposed research is Naive
Bayes. It is a method of classification that is based on the Bayesian concept of conditional
independence of class membership. This indicates that the existence of one characteristic
does not have an influence on the likelihood of another characteristic being present in a
given outcome and that each predictor has an equal impact on the given outcome. This
technique is primarily used in text classification, spam identification, and recommendation
systems. It can be observed that when the Naive Bayes algorithm is run on the dataset,
75.67% accuracy is obtained. Confusion matrix Figure 2b shows the confusion matrix
obtained by applying the Naive Bayes algorithm to the data set. Experimental results
demonstrate that the precision, recall, F1-score, and accuracy scores using the NB algorithm
are 71.55%, 63.19%, 63.2% and 75.67%, respectively, as shown in Table 3.

The third classifier applied for the evaluation of the proposed research is the Decision
Tree. It is a kind of supervised learning that does not rely on parameters and may be
used for classification and regression. The goal of this project is to come up with a model
that can predict the value of a target variable by finding and using simple decision rules
that are based on the data. It can be observed that when the decision tree algorithm
is run on the dataset, 93% accuracy is obtained. Figure 2c shows the confusion matrix
obtained by applying the Naive Bayes algorithm to the dataset. The precision, recall,
F1-score and accuracy scores using the DT algorithm are 90.43%, 88.27%, 89.24% and
93%, respectively. When the dependent variable is categorical—that is, when it has binary
outputs such as “true” and “false” or “yes” and “no”—logistic regression is the method of
choice to analyze the data. It can be observed that when the Logistic Regression algorithm
is run on the dataset, 82.5% accuracy is obtained. Confusion matrix Figure 2d shows
the results of precision, recall, F1-score, support and accuracy obtained by applying the
Logistic Regression algorithm to the data set. The precision, recall, F1-score and accuracy
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obtained by applying the logistic regression algorithm are 85.35%, 71.36%, 74.47% and
82.5%, respectively.

The last algorithm used for the evaluation of the proposed research is the support vec-
tor machine, which is a popular supervised learning model used for both data classification
and regression. It works by creating a hyperplane with the greatest distance between two
classes of data points. The decision boundary is a hyperplane that separates the classes of
data points on each side of the plane. It can be observed that when the SVM algorithm is
run on the dataset, 84.78% accuracy is obtained. Confusion matrix Figure 2e shows the
results of precision, recall, F1-score and accuracy obtained by applying the Linear SVM
algorithm to the data set. These values are calculated by using Tp, Tn, Fp and Fn param-
eters. The precision, recall, F1-score and accuracy obtained using the SVM classifier are
87.0%, 75.05%, 78.31% and 84.78%, respectively. It can be evidently seen from Table 3 that
the proposed research demonstrates the highest accuracy using the Decision Tree classifier.
Figure 3 provides a graphical comparison of the precision, recall, F1-score and accuracy
results obtained by applying the different ML classifiers. It can be safely concluded that
the DT classifier outperforms the other ML classifiers in terms of classification accuracy for
sentiment analysis.
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Figure 3. Machine learning Performance on COVID-19 vaccine tweets with sentiment annotation.

4.4. Results for Dataset 2

This section presents a discussion on the experimental results obtained for dataset 2.
The dataset is partitioned into five subsets; one representing each vaccine type.

4.4.1. Results for AstraZeneca Dataset

The first classifier applied to the dataset is the Random Forest method, which achieves
an accuracy of 81.41%. The Precision, recall, F1-score, support, and accuracy statistics
produced by using the Random Forest technique on the dataset are shown in confusion
Matrix Figure 4a. The Tp, Tn, Fp, and Fn parameters are used to compute these values. The
computed scores of precision, recall, F1-score, and accuracy are 87.27%, 69.32%, 74.19% and
81.81%, respectively, as can be seen in Table 4. The second algorithm used for the evaluation
of the proposed research is the Multinomial Naive Bayes algorithm, and it results in 75.28%
accuracy. The confusion matrix for the Naive Bayes algorithm is shown in Figure 4b. The
precision, recall, F1-score, and accuracy achieved by applying the NB are 70.46%, 70.9%,
69.76% and 75.28%, respectively.
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(a) (b)

(c) (d)

(e)

Figure 4. Confusion matrix for AstraZeneca Dataset: (a) using Random Forest (b) Naive Bayes
(c) Decision Tree (d) Logistic Regression (e) SVM.
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Table 4. Machine learning performance on AstraZeneca dataset.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 81.81 87.27 69.32 74.19

Naive Bayes 75.28 70.46 70.9 69.76

Decision Tree 90.94 87.33 86.09 86.67

Logistic Regression 83.41 84.41 73.3 77.47

SVM 85.61 85.86 76.72 80.09

When the Decision Tree algorithm is applied to the dataset, the accuracy is found
to be 90.94%. The precision, recall, F1-score, support, and accuracy results obtained by
using the Naive Bayes algorithm on the dataset are shown in confusion matrix Figure 4c.
The TP, TN, FP, and FN parameters are used to calculate these values. Precision, recall,
F1-score, and accuracy are 87.33%, 86.09%, 86.67%, and 90.94%, respectively, as can be seen
in Table 4. The fourth algorithm used for the evaluation of the proposed research is the
Logistic Regression algorithm, which yields an accuracy of 83.41%. Figure 4d shows the
Confusion matrix for the LR algorithm. The matrix gives the values of precision, recall,
F1-score, and accuracy; as 84.41%, 73.3%, 77.07% and 83.41%, respectively.

The last algorithm used for the evaluation of the proposed research is the SVM, which
results in an accuracy of 85.86%. The precision, recall, F1-score, support and accuracy
results obtained by using the Linear SVM algorithm on the dataset are shown in confusion
Matrix Figure 4e. These values are calculated by using Tp, Tn, Fp, and Fn parameters.
The precision, recall, F1-score, support and accuracy scores as obtained using the pro-
posed research are 85.86%, 76.72%, 80.09% and 85.61%, respectively, as shown in Table 4.
Figure 5 shows a graphical comparison of the different algorithms for the AstraZeneca
vaccine dataset. It can be evidently seen that the highest accuracy is obtained by applying
the Decision Tree algorithm.
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Figure 5. Machine learning Performance on AstraZeneca dataset.
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4.4.2. Result of Pfizer Vaccines Dataset

This subsection presents the results obtained for the Pfizer vaccine dataset. When the
Random Forest algorithm is applied to the dataset, it achieves an accuracy of 74.42%. The
precision, recall, F1-score, support, and accuracy results obtained by using the Random
Forest algorithm on the dataset are shown in confusion matrix Figure 6a. The Tp, Tn,
Fp, and Fn parameters are used to calculate these values. Precision, recall, F1-score and
accuracy are 81.63%, 64.19%, 66.33% and 74.42%, respectively, according to this matrix as
can be seen in Table 5. The multinomial Naive Bayes algorithm results in 71.02% accuracy.
The precision, recall, F1-score and accuracy results obtained by using the Naive Bayes
algorithm on the dataset are shown in confusion Matrix Figure 6b. The values of precision,
recall, F1-score and accuracy as computed from the matrix are 67.09%, 65.13%, 65.58% and
71.02%, respectively.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e)

Figure 6. Confusion matrix for Pfizer Dataset: (a) using Random Forest (b) Naive Bayes (c) Decision
Tree (d) Logistic Regression (e) SVM.

Table 5. Machine learning performance on Pfizer vaccine dataset.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 74,42 81.63 64.19 66.33

Naive Bayes 71.02 67.09 65.13 65.58

Decision Tree 91.07 89.36 87.48 88.3

Logistic Regression 78.72 79.72 71.38 73.68

SVM 81.21 81.77 75.31 77.37

When the Decision Tree algorithm is applied to the dataset, it yields a result of 91.07%
accuracy. The precision, recall, F1-score and accuracy results obtained by using the Decision
Tree algorithm on the dataset are shown in confusion matrix Figure 6c. The precision, recall,
F1-score and accuracy obtained by applying the DT algorithm are 89.36%, 87.48%, 88.3%
and 91.07%, respectively, as can be seen in Table 5, respectively.

When the Logistic Regression algorithm is applied to the dataset, the accuracy is
found to be 78.72%. The precision, recall, F1-score and accuracy results obtained by
using the Logistic Regression algorithm on the dataset are shown in the confusion matrix
Figure 6d. The values are determined by means of Tp, Tn, Fp and Fn parameters. This
matrix tells the values of precision, recall, F1-score and accuracy as 79.72%, 71.38%, 73.68%
and 78.72%, respectively. The last algorithm used for the evaluation of the proposed
research is the SVM, which results in an accuracy of 81.21%. The precision, recall, F1-
score and accuracy results obtained by using the Linear Support Vector Machine (SVM)
algorithm on the dataset are shown in Figure 6e. The precision, recall, F1-score and accuracy
scores obtained are 81.77%, 75.31%, 77.37% and 81.21%, respectively, as shown in Table 5. A
graphical comparison of different ML algorithms is presented in Figure 7. The Decision Tree
outperforms other classifiers and achieves the highest accuracy for sentiment classification.

123



Computation 2022, 10, 141

Random Forest

Naive Byes

Decisio
n Tree

Logisti
c Regressio

n
SVM

50

60

70

80

90

A
cc

ur
ac

y%

Accuracy Precision Recall F1-score

Figure 7. Machine learning Performance on Pfizer dataset.

4.4.3. Results for Sinovac Vaccine Dataset

This subsection presents the results for the Sinovac vaccine dataset. The first algorithm
used for evaluation on Sinovac dataset is the Random Forest, and it achieves an accuracy
of 79.01%. The precision, recall, F1-score and accuracy results obtained by applying the
Random Forest algorithm to the dataset are shown in Figure 8a. The Tp, Tn, Fp and Fn
parameters are used to calculate these values. Precision, recall, F1-score, and accuracy
obtained for the RF are 85.28%, 67.28%, 70.27% and 79.01%, respectively, as summarized
in Table 6. The second algorithm used for evaluation is the Naive Bayes, which results in
an accuracy of 72.22%. Confusion matrix Figure 8b shows the results of precision, recall,
F1-score and accuracy obtained by applying the multinomial NB algorithm on the dataset.
The values of precision, recall, F1-score and accuracy as computed from the matrix are
71.3%, 66.64%, 66.64% and 72.22%, respectively.

(a) (b)

Figure 8. Cont.
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(c) (d)

(e)

Figure 8. Confusion matrix for Sinovac Dataset (a) using Random Forest (b) Naive Bayes (c) Decision
Tree (d) Logistic Regression (e) SVM.

Table 6. Machine learning performance on Sinovac vaccine dataset.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 79.01 85.28 67.28 70.27

Naive Bayes 72.22 71.3 66.64 67.06

Decision Tree 92.8 91.55 88.6 89.86

Logistic Regression 81.88 82.62 74.44 77.13

SVM 83.61 83.95 77.07 79.54

When the Decision Tree algorithm is applied to the dataset, it yields a result of 92.8%
accuracy. The precision, recall, F1-score and accuracy results obtained by using the Decision
Tree algorithm on the dataset are shown in confusion matrix Figure 8c. The Tp, Tn, Fp, and
Fn parameters are used to calculate these values. Precision, recall, F1-score and accuracy
values are 91.55%, 88.6%, 89.06% and 92.8%, respectively, according to this matrix. When
the Logistic Regression algorithm is applied to the dataset, it yields an accuracy of 81.88%.
The precision, recall, F1-score and accuracy results obtained by using the LR algorithm
on the dataset are shown in Figure 8d. This matrix gives the values of precision, recall,
F1-score and accuracy are 82.62%, 74.44%, 77.13% and 81.88%, respectively, as summarized
in Table 6.
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The last algorithm used for the evaluation of the proposed research is the support
vector machine. When SVM is applied to the dataset, it yields an accuracy of 83.61%. The
precision, recall, F1-score and accuracy results obtained by using the Linear SVM algorithm
on the dataset are shown in confusion matrix Figure 8e. These values are calculated by
using Tp, Tn, Fp and Fn parameters. This matrix tells the values of precision, recall, F1-score
and accuracy are 83.95%, 77.07%, 79.54%, and 83.61%, respectively, as shown in Table 6.
Figure 9 provides a graphical comparison of the performance of different ML classifiers. It
can be evidently seen that the highest performance for sentiment classification is obtained
using the Decision Tree classifier.
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Figure 9. Machine learning Performance on Sinovac dataset.

4.4.4. Results for Moderna Vaccines Dataset

In this subsection, a discussion on the performance of ML algorithms for the Moderna
vaccine dataset is presented. It can be seen that when the Random Forest algorithm is
applied to the dataset, it achieves an accuracy of 77.75%. The precision, recall, F1-score
and accuracy results obtained by using the RF algorithm on the dataset are shown in
confusion matrix Figure 10a. The Tp, Tn, Fp, and Fn parameters are used to calculate these
values. Precision, recall, F1-score, and accuracy are 85.18%, 64.65%, 67.87% and 77.75%,
respectively, as are shown in Table 7.

(a) (b)

Figure 10. Cont.
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(c) (d)

(e)

Figure 10. Confusion matrix for Moderna Dataset (a) using Random Forest (b) Naive Bayes (c) Deci-
sion Tree (d) Logistic Regression (e) SVM.

Table 7. Machine learning performance on Moderna dataset.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 77.75 85.18 64.65 67.87

Naive Bayes 71.95 68.49 64.79 64.91

Decision Tree 88.01 85.28 82.4 83.64

Logistic Regression 80.68 80.3 71.26 73.94

SVM 82.81 81.95 74.62 77.12

The second algorithm used for the evaluation of the proposed research is the Naive
Bayes algorithm. When NB is applied to the dataset, the accuracy is found to be 71.95%.
The precision, recall, F1-score and accuracy results obtained by using the NB algorithm
on the dataset are shown in Figure 10b. These values are calculated by using Tp, Tn, Fp
and Fn parameters. This matrix gives the values of precision, recall, F1-score and accuracy
as 68.49%, 64.79%, 64.91% and 71.95%, respectively. When the Decision Tree algorithm is
applied to the dataset, an accuracy of 88.01% is obtained. The precision, recall, F1-score and
accuracy results obtained by using the Decision Tree algorithm on the dataset are shown in
confusion matrix Figure 10c. The precision, recall, F1-score and accuracy are 85.28%, 82.4%,
83.64%, and 88.01%, respectively, as are summarized in Table 7.
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When the Logistic Regression algorithm is applied to the dataset, an accuracy of
80.68% is obtained. Figure 10d shows the confusion matrix for the LR algorithm. The
values of precision, recall, F1-score and accuracy as obtained from the confusion matrix are
80.3%, 71.26%, 73.94% and 80.68%, respectively. Finally, the SVM algorithm is applied to the
dataset and it achieves an accuracy of 82.81%. The precision, recall, F1-score and accuracy
results obtained by using the Linear SVM algorithm on the dataset are shown in confusion
matrix Figure 10e. The Tp, Tn, Fp and Fn parameters are used to calculate these values.
The computed values of precision, recall, F1-score and accuracy computed from this matrix
are 81.95%, 74.62%, 77.12% and 82.81%, respectively, as shown in Table 7. A graphical
comparison of different ML classifiers for the Moderna vaccine dataset is presented in
Figure 11. As discussed earlier, the highest performance for sentiment classification is
obtained with the Decision Tree classifier as compared to the other ML algorithms.
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Figure 11. Machine learning Performance on Moderna dataset.

4.5. Results for Sinopharm Vaccines Dataset

This subsection summarizes the results of the sinopharm vaccine dataset. When the
Random Forest algorithm is applied to the dataset, an accuracy of 83.61% is obtained. The
precision, recall, F1-score and accuracy results obtained by using the RF algorithm on
the dataset are shown in confusion matrix Figure 12a. The precision, recall, F1-score and
accuracy are 89.14%, 73.32%, 78.09%, and 83.61%, respectively, according to this matrix.
When the Naive Bayes algorithm is applied to the dataset, it yields a result of 74.48%
accuracy. The precision, recall, F1-score and accuracy results obtained by using the NB
algorithm on the dataset are shown in Figure 12b. The values of precision, recall, F1-score
and accuracy computed from the matrix are 74.6%, 73.94%, 71.8% and 74.48%, respectively,
as shown in Table 8.
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(a) (b)

(c) (d)

(e)

Figure 12. Confusion matrix for Sinopharm Dataset (a) using Random Forest (b) Naive Bayes
(c) Decision Tree (d) Logistic Regression (e) SVM.
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Table 8. Machine learning performance on Sinopharm vaccine dataset.

Classifier Name Accuracy% Precision% Recall% F1-Score%

Random Forest 83.61 89.14 73.32 78.09

Naive Bayes 74.48 74.6 73.94 71.8

Decision Tree 93.87 92.77 90.51 91.57

Logistic Regression 86.48 88.32 78.76 82.3

SVM 87.67 89.0 81.09 84.21

When the Decision Tree algorithm is applied to the dataset, it yields a result of 93.87%
accuracy. Figure 12c shows the confusion matrix for the proposed research. The precision,
recall, F1-score and accuracy values computed from the matrix are 92.77%, 90.51 %, 91.57%
and 93.87%, respectively, as shown in Table 8.

The fourth algorithm used for the evaluation of the proposed research is the Logistic
Regression. When the LR algorithm is applied to the dataset, an accuracy of 86.48% is
obtained. The precision, recall, F1-score and accuracy results obtained by using the LR
algorithm on the dataset are displayed in the confusion matrix Figure 12d. The Tp, Tn, Fp
and Fn parameters are used to calculate these values. The obtained values of precision,
recall, F1-score and accuracy are 88.32%, 78.76%, 82.3% and 86.48%, respectively. The last
algorithm used for the evaluation of the proposed research is the SVM. When the SVM algo-
rithm is applied to the dataset, it yields an accuracy of 87.67%. The precision, recall, F1-score
and accuracy results obtained by using the Linear SVM algorithm on the dataset are shown
in confusion matrix Figure 12e. The computed values of precision, recall, F1-score and accu-
racy for the SVM algorithm are 89.0%, 81.09%, 84.21%, and 87.67%, respectively, as shown in
Table 8. Figure 13 shows a graphical performance comparison of different ML algorithms
for the Sinopharm vaccine dataset. It can be evidently seen that the Decision Tree algorithm
outperforms the rest thereby achieving the highest accuracy for sentiment classification.
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Figure 13. Machine learning Performance on Sinopharm dataset.

4.6. Comparison with State-of-the-Art Research

This article presents a performance comparison of five different ML algorithms for
sentiment classification. All of these ML models were deployed using the COVID-19 vacci-
nation tweets dataset that was collected in this study and the annotated sentiment dataset.
Training and testing were carried out with the help of the annotated datasets provided
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by TextBlob. Figure 14 shows a graphical performance comparison of accuracy achieved
by different ML algorithms on all datasets used in this research. Each bar illustrates the
performance of different ML classifiers for the different tweet datasets. For example, the
first bar shows the classification accuracy of different ML classifiers for CVSA dataset.
Likewise, the other bars demonstrate the results achieved by various ML algorithms for
AstraZeneca, Pfizer, Sinovac, Moderna and Sinopharm tweets datasets, respectively. It
can be evidently seen, that the highest performance for all datasets is obtained with the
Decision Tree algorithm as compared to the other ML classifiers.
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Figure 14. Performance comparison of machine learning algorithms on datasets used in the research.

To represent the significant performance of the proposed research, this subsection
presents a comparison in the context of other studies. Table 9 demonstrates the accuracy
of results from state-of-the-art related research. As discussed earlier, the DT algorithm
achieves the highest performance in the case of all datasets used for this research. Hence,
the accuracy achieved using DT is shown in comparison with the state-of-the-art research in
Table 9. Results suggest that the proposed approach is significantly better than other studies
in terms of accuracy. Despite using the different models in other studies, the proposed
research showed superior performance with the Decision Tree classifier and obtained better
accuracy for sentiments, which is significantly higher than previous studies. The key
findings of this research can be summarized as follows:
• The ratio of positive sentiments is high as compared to the ratio of negative senti-

ments in tweets related to COVID-19 vaccinations as can be seen in Figure 15. The
highest percentage of positive opinions is observed for the Moderna vaccine based on
people’s sentiments.

• Based on data on people’s perceptions, the ratio of sentiments for positive, neutral
and negative sentiments may vary. However, on average, it may be concluded that
the number of neutral sentiments is higher than the positive and negative sentiments.

• The Decision Tree ML model proved to perform better as compared to the other four
models. Tree-based ML models can be a good choice for obtaining higher classification
performance when dealing with tweets’ textual data.
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Table 9. Performance comparison with the state-of-the-art research.

Year Reference Model Dataset Accuracy%

2021 [43] SVM Annotated COVID-19 vaccination 68.88

2021 [43] CNN Annotated COVID-19 vaccination 65.71

2021 [43] BERT Annotated COVID-19 vaccination 78.94

2021 [11] SVM Sinovac vaccine 85

2021 [11] SVM Pfizer vaccine 78

2022 This study Decision Tree AstraZeneca vaccine 91.07

2022 This study Decision Tree Pfizer Vaccine 91.07

2022 This study Decision Tree Moderna vaccine 88.01

2022 This study Decision Tree Sinovace vaccine 92.8

2022 This study Decision Tree Sinopharm vaccine 93.87

2022 This study Decision Tree CVSA 93.0
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Figure 15. Percentage of positive, negative and neutral tweets in datasets used for this research.

5. Conclusions

The WHO encourages rapid immunization of the whole population to reduce the
danger of disease transmission and death. The government authorities, medical experts,
and social workers recommend getting the vaccination, however, people have expressed
worries and misgivings about the potential for side effects and other medical consequences.
Sentiment analysis of social trends can help in effective decision making. This paper
presents a framework for analyzing people’s worldwide perceptions and attitudes towards
Covid-19 vaccines AstraZeneca, Pfizer, Sinovac, Moderna, and Sinopharm, respectively. We
have evaluated the performance of five different machine learning classifiers for sentiment
analysis. The quantitative comparisons demonstrate that the proposed research achieves
better performance as compared to the state-of-the-art research. Based on the experimental
results, the highest performance is obtained using the Decision Tree classifier, i.e., 93.0%
using CVSA dataset, 93.87% using Sinopharm dataset, Sinovac dataset 92.8%, Pfizer dataset
91.07%, AstraZeneca dataset 90.94%, and for Moderna dataset 88.01%, respectively. In
future, we aim to enhance the classification accuracy by applying different pre-processing
techniques such as creating a normalization dictionary. Another approach to enhance the
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performance can be the implication of oversampling or under-sampling techniques such
as SMOTE to handle imbalanced data. Additionally, the parameters in each classification
model can be fine-tuned to obtain an increase in classifier performance. In future, the
performance of deep learning models will be accessed for sentiment classification in order
to achieve better accuracy results.
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Abstract: Publications about COVID-19 have occurred practically since the first outbreak. Therefore,
studying the evolution of the scientific publications on COVID-19 can provide us with information
on current research trends and can help researchers and policymakers to form a structured view
of the existing evidence base of COVID-19 and provide new research directions. This growth rate
was so impressive that the need for updated information and research tools become essential to
mitigate the spread of the virus. Therefore, traditional bibliographic research procedures, such as
systematic reviews and meta-analyses, become time-consuming and limited in focus. This study
aims to study the scientific literature on COVID-19 that has been published since its inception and
to map the evolution of research in the time range between February 2020 and January 2022. The
search was carried out in PubMed extracting topics using text mining and latent Dirichlet allocation
modeling and a trend analysis was performed to analyze the temporal variations in research for each
topic. We also study the distribution of these topics between countries and journals. 126,334 peer-
reviewed articles and 16 research topics were identified. The countries with the highest number of
scientific publications were the United States of America, China, Italy, United Kingdom, and India,
respectively. Regarding the distribution of the number of publications by journal, we found that
of the 7040 sources Int. J. Environ. Res. Public Health, PLoS ONE, and Sci. Rep., were the ones that
led the publications on COVID-19. We discovered a growing tendency for eight topics (Prevention,
Telemedicine, Vaccine immunity, Machine learning, Academic parameters, Risk factors and morbidity
and mortality, Information synthesis methods, and Mental health), a falling trend for five of them
(Epidemiology, COVID-19 pathology complications, Diagnostic test, Etiopathogenesis, and Political
and health factors), and the rest varied throughout time with no discernible patterns (Therapeutics,
Pharmacological and therapeutic target, and Repercussion health services).

Keywords: COVID-19; topic modeling; latent Dirichlet allocation; machine learning; text mining

1. Introduction

In March 2020, the World Health Organization declared the coronavirus outbreak a
pandemic [1]. Since then, given the novelty of the disease, the scientific community has
mobilized rapidly, reaching a considerably high number of scientific publications. As a
result of the above, monitoring the rising database in medicine is becoming increasingly
difficult, rendering traditional standard procedures such as systematic reviews and meta-
analyses inappropriate approaches in an area as dynamic as the novel coronavirus [2].
Given the large number of publications, an approach that is more direct and has a broader
reach is required.
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Larsen and von Ins [3] stated that the worldwide increase in scientific literature can
lead to researchers feeling overwhelmed and, therefore, their ability to carry out a review
and follow-up of new research is effectively decimated.

Several comprehensive studies have been published on various aspects of the pan-
demic, including symptoms, treatments, and comorbidities [4–6]. Bibliometric analysis
of studies on the COVID-19 pandemic has also been carried out [7–10]. However, the
majority of the research looked at papers that were published during the first months of
the COVID-19 pandemic being declared. As a result, several papers released since then
have yet to be examined.

Our goals were to analyze the available scientific literature on COVID-19, identify the
research topic, and describe the evolution of COVID-19 research to date, using a machine
learning-based methodology. The significant worries of society about various facets of the
pandemic’s effects make scientific knowledge synthesis more vital than ever. Given the
growing diversity of research topics related to COVID-19, quantitative studies are needed
to better understand and answer the following concerns:

• Question 1 (Q1): What were the key publishing sources and major contributions to
COVID-19 research?

• Question 2 (Q2): What are the major research topics in this field?
• Question 3 (Q3): How do these research topics evolve with time?
• Question 4 (Q4): What are the distributions of these topics across countries and journals?

2. Materials and Methods
2.1. Data Collection

Interventional Searching was conducted on 15 February 2022, using PubMed E-utilities
using the following query: “COVID-19 (Title/Abstract) AND English (LA) AND Journal
Article (PT] AND 2020/02/01 (dp]: 2022/01/31 (dp]”. The illness COVID-19, rather than
the virus, was the focus of this research. As a result, alternative search phrases or concepts
were ignored in this inquiry. For each article, we obtained the title, keywords, abstract, date
of publication, list of author affiliations, journal name, and PubMed identification number.

We regarded the country of affiliation of the first author to be the nation of origin of
the article. If a nation’s name was not contained in the affiliation, we utilized the most
recently mentioned geographic entity and manually connected it to a country; for example,
“Bogota” was linked to “Colombia”.

We used bibliometric analysis to answer Q1. This enables the sample of publications
to be used to determine various elements of scientific production [11,12]. In this section of
the investigation, data were processed using bibliometrix [11], an open-source software
written in the R programming language [13].

2.2. Data Preprocessing

Preprocessing is the first step in text mining techniques and their application, playing
a crucial role in the entire procedure [14]. To increase the coherence of the topics, each
abstract was tokenized using bigrams which are the combination of consecutive unigrams.
Although preprocessing seems trivial, since the text is downloaded to the computer as
a readable format, it must be converted to lowercase and punctuation marks, dashes,
brackets, numbers, space blanks and other characters removed. In addition, a standard list
of words called “stopword” was identified and eliminated, since their main function is to
make a sentence grammatically correct (i.e., articles and prepositions).

Data preprocessing was carried out using the web-based tool LDAShiny [15], a package
to R programming language [13]. As a result of these operations, a document term matrix
was created (dtm).
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2.3. Identifying Research Topics

The topic model technique Latent Dirichlet Allocation (LDA) [15] was used to answer
Q2, Q3, and Q4. It is based on Bayesian models and is seen as a development of Probabilistic
Latent Semantic Analysis [16,17].

A topic may be defined as a multinomial distribution of words in the vocabulary where
each word has a different probability within each topic [18]. LDA is one of the unsupervised
text mining methods, in which themes or topics of documents can be identified from a
larger collection of compiled documents, called corpus. LDA adds a prior sparse Dirichlet
distribution on items in a document, using sampling Gibb [19] to generatively assign the
probabilities of the topics of each term, and then group the documents into their respective
topics, assuming that the documents exhibit a combination of multiple subjects in different
proportions. The goal of using LDA is to infer or estimate the latent variables, that is,
to compute their conditional distribution documents. Equation (1) shows the statistical
assumptions behind the LDA’s generative process.

p(βK, θD, zD, wD) =
K

∏
k=1

p(βK|η)
M

∏
m=1

p(θm|α)
N

∏
n=1

p(zm,n|θm)P(wm,n|zm,n, βm,k) (1)

where M denotes the number of documents, N is number of words in a given document, and
each topic k is a multinomial distribution over the vocabulary and comes from a Dirichlet
distribution βk ∼ Dir(η), the Dirichlet parameter η defines the smoothing of the words
within topics, and α is the smoothing of the topics within documents. Every document
is represented as a distribution over the topics and comes from a Dirichlet distribution
θm ∼ Dir(α). The joint distribution of all the hidden variables, βK (topics), θM (document
topic proportions within M), zM (word topic assignments), and observed variables wM
(words in documents). The per-word topic assignment zm,n, and the per-document topic
distribution θm, are the latent variables and are not observed. Moreover, the word wm,n
depends on the per-word topic assignment zm,n and on all the topics βk (we retrieve the
probability of wm,n (row) from zm,n (column) within the K × V topic matrix). We would
have to condition on the only observed variable, that is the words within the documents,
to infer the hidden structure with statistical inference. The conditional probability, also
known as the posterior, is expressed by Equation (2).

p(βK, θM, zM|wM) =
p(βK, θM, zM, wM)

p(wM)
(2)

Although the posterior cannot be computed exactly due to the denominator [16], a
close enough approximation to the true posterior can be achieved with statistical posterior
inference. Mainly two types of inference techniques can be discerned: variational-based
algorithms [20] and sampling-based algorithms [21]. An example of a sampling-based
algorithm is the Gibbs sampler [22].

A simplified geometric interpretation of LDA is presented in Figure 1 considering
only three words (w1,w2,w3) in the V-vocabulary and it is represented as a word simplex
(V-dimensional). The word simplex is related to all the probability distribution of words.
In addition, it can be seen how the topics, modeled as vocabulary distributions, are located
within the simplex word (Figure 1). Figure 1 shows only three topics T, represented as a
simplex topic of dimension (T-1). Thus, the documents modeled as distributions on the
topics, are points on the simplex topic. For example document 1 would belong to topic 1;
document 2 exhibits the same proportion in the three topics; while document 3 does not
have proportions of topic 2.
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Figure 1. Geometric interpretation of LDA as a (V-1)-dimensional word simplex with V = w1, w2
and w3, with each point representing a discrete distribution of word probabilities. A point that is
closer to one of the corners implies that the word has a higher probability mass. (Adapted from [18]).

2.3.1. Creation of LDA Model

LDA was used to extract meaningful information from the discovered articles. We
combined the titles and abstracts of each article into a single variable. This variable was
then used to serve as the text corpus for the entire data set.

Topic models are document latent variable models that leverage word correlations
and latent semantic topics in a collection of texts [20]. This concept presupposes that the
predicted number of topics k (i.e., latent variables) must be known in advance. Thus, the
selection process of the right number of topics for a given collection of articles is not trivial.
Simulations were carried out varying k from 4 to 30. 500 iterations were performed with
the inference algorithm called Gibbs sampling [19]. A topic coherence metric [20] was used
to estimate the quality of the LDA model. This is a measure of the human interpretability
of a model of topics, and is believed to be a better indicator than computational metrics
such as perplexity [23].

After determining the number of topics, we evaluated the most likely subject of each
article and designated it as the article’s primary topic.

2.3.2. Labeling Topics

Because algorithmic analyses are relatively restricted in their capacity to identify latent
meanings of human language and the topics are not semantically labeled for the LDA
model, manual labeling is regarded as a standard in topic modeling [24]. To provide a se-
mantically correct interpretation, the topic was manually labeled by experienced clinicians
and researchers independently using three sources of information: the most frequent word
lists (most likely), a sample of the titles, and the abstracts of the five articles classified with
the highest probability of belonging to a topic (Supplementary Materials, Table S1).

2.4. Quantitative Indices Used to Analyze the Trend of Topics

It is difficult to comprehend the subjects and trends intuitively due to the vast number
of articles and hence the number of words. As a result, we employ certain quantitative
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indicators given by Xiong et al. [25]. The indexes are described below. The distribution of
topics over time is obtained by

θ
y
k =

∑d∈m θdk
nm (3)

where d ∈ m represents the articles published in a given month, θdk is the proportion of the
k-th topic in each item and nm is the total number of articles published in the month [25].

Topic distribution across journals is defined as the ratio of the k-th topic in the journal

θ
j
k =

∑d∈j θdk

nj (4)

where, d ∈ j represents the articles in a particular journal, θdk the proportion of the k-th
topic on each item, and nj is the total number of articles published in the journal j.

The proportion of the k-th topic in country c is defined as the topic distribution over
countries, that is

θc
k =

∑d∈c θdk
nc (5)

where d ∈ c represents the articles in a specific country, θdk is the proportion of the k-th
topic in each article, and nc is the total number of papers from the country c.

Topic distribution over time within a specific country, is defined as

θ
c,y
k =

∑d∈c∩d∈m θdk
nc,m (6)

where d ∈ c ∩ d ∈ m represents documents produced in a certain country over a certain
month, θdk is the proportion of the k-th topic in each document, and nc,m the number of
documents from country in month m.

We used simple regression slopes for each topic to facilitate the characterization of
the topics in terms of their tendency [22]. The month was a dependent variable, and the
proportion of the topics in the corresponding month was the response variable. The slopes
derived by regression were positive or negative, and were classed as positive or negative
trends, respectively. The statistical significance level was set at 0.01.

3. Results
3.1. Search Results

The initial database containing the documents retrieved after running the search query
contained 161,421 documents; this sample was subjected to a filtering process in which
repeated and poorly classified documents were eliminated, as well as those that did not
contain a summary. There were a total of 126,334 papers in the final sample. Table 1 shows
the summary produced, comprising basic statistics on the dataset studied.

A scientific production global map shows that COVID-19 research has been undertaken
in all nations (excluding El Salvador, Central African Republic, South Sudan, Eritrea,
Somaliland, Turkmenista, and the Democratic Republic of Korea) (Figure 2).

The top ten countries were the United States of America (26,814, 21.22%), China (11,375,
9.0%), Italy (7722, 6.11%) percent), United Kingdom (7522, 5.95 % percent), India (6726,
5.32%), Canada (3591, 2.84%), Spain (3465, 2.74%), Germany (3129, 2.48%), France (3129,
2.48%) and Iran (2843, 2.25%).

The results show that the articles published during the period between February 2020
and January 2022, experienced a compound monthly growth rate close to 34.6% (from 101
to 126,334) (Table 2).

In terms of sources (of the 7040 registered), the International Journal of Environmen-
tal Research and Public Health, PLoS ONE, and Scientific Reports have published the
largest number of articles on COVID-19, having collectively published close to 5% of all
publications on COVID-19 in the study period (Table 3).

140



Computation 2022, 10, 156

Table 1. Main statistics about the COVID-19 collection.

Description Result

Main information about
data Timespan February 2020: January 2022

Sources 7040
Documents 126,334

Average years from publication 1.46

Document contents Keywords plus (id) 13,001
Author’s keywords (de) 112,867

Authors Authors 440,259
Author appearances 960,863

Authors of single-authored
Documents 5374

Authors of multi-authored
Documents 434,885

Authors collaboration Single-authored documents 6698
Documents per author 0.287
Authors per document 3.48

Co-authors per documents 7.61
Collaboration index 3.64
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Figure 2. Geographical origin distribution of the 126,334 articles published on COVID-19 analyzed.

3.2. LDA Modeling and Topics

The LDA model with the highest coherence contains 16 topics. Table 4 shows for
each of them the 15 most common terms, the label, and the number of published articles
referring to them. The topics with the highest number of articles were: t_16 (Political and
health factors), t_13 (Mental health), and t_15 (Etiopathogenesis), while the t_9 (Information
synthesis methods) had the lowest number of articles.
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3.2.1. Trend of Topics

The trend of each of the 16 topics over time was discovered. It can be observed
that the probabilities of eight of them gradually increased over time (t_2 Prevention, t_3
Telemedicine, t_4 Vaccine immunity, t_5 Machine learning, t_7 Academic parameters, t_8,
Risk factors and morbidity and mortality, t_9 Information synthesis methods, and t_13
Mental health), in five of them the probability decreased (t_6 Epidemiology, t_10 COVID-19
pathology complications, t_12 Diagnostic test, t_15 Etiopathogenesis, and t_16 Political
and health factors), while the remainder fluctuated over time (t_1 Therapeutics, t_11
Pharmacological and therapeutic target, and t_14 Repercussion health services), without
prominent trends (Figure 3).

Table 2. Main statistics about the COVID-19 collection.

Month Year Number Accumulated

February 2020 101 101
March 2020 558 659
April 2020 2082 2741
May 2020 3476 6217
June 2020 4255 10,472
July 2020 4685 15,157

August 2020 4307 19,464
September 2020 4819 24,283

October 2020 5193 29,476
November 2020 4765 34,241
December 2020 4718 38,959

January 2021 17,640 56,599
February 2021 6345 62,944

March 2021 5984 68,928
April 2021 5421 74,349
May 2021 5578 79,927
June 2021 5803 85,730
July 2021 6121 91,851

August 2021 5529 97,380
September 2021 5736 103,116

October 2021 5880 108,996
November 2021 5546 114,542
December 2021 5593 120,135

January 2022 6199 126,334

Table 3. Top 10 most important sources in terms of number of publications.

Source Abbreviation n (%)

International Journal of Environmental
Research and Public Health Int. J. Environ. Res. Public Health 3304 2.62

PLoS ONE PLoS ONE 2057 1.63
Scientific Reports Sci. Rep. 1348 1.07
Frontiers in Psychology Front. Psychol. 997 0.79
BMJ Open BMJ Open 923 0.73
Journal of Clinical Medicine J. Clin. Med. 900 0.71
Journal of Medical Virology J. Med. Virol. 865 0.68
Cureus Cureus 817 0.65
Frontiers in Public Health Front. Public Health 813 0.64
International Journal of Infectious Diseases Int. J. Infect. Dis. 786 0.62

3.2.2. Topic Distributions of Various Journals

In Figure 3, we depict the topic distribution of journals as a heatmap, with the intensity
of the pixel representing the probability that a given topic is mentioned in a certain journal.
Although the content of many of the journals included in our study overlaps to some
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extent, it is feasible to identify journals that have relatively wide scopes, while others
appear to specialize in certain topics. For instance, the journals Frontiers In Psychology and
Frontiers In Psychiatry focus on the topic t_13 (Mental health). In addition, we performed
a hierarchical cluster analysis on the contents of the selected journals by computing the
Euclidean distance between each pair of journals. Dendrogram is shown on the left panel
of Figure 4, where journals were classified into seven groups. Two of the 30 journals
considered in the analysis formed the isolated cluster 6 (Vaccines) and cluster 7 (BMJ Case
Rep.) while the remaining journals can be classified into five groups.

Table 4. 16 topics discovered from 126,334 articles published on COVID-19 in the period
February 2020–January 2022. Each topic shows the 15 most likely terms (that is, the words with the
highest probability), the label, and the number of published articles belonging to each topic.

Topic Label Top_terms Articles n (%)

t_1 Therapeutics treatment, trial, clinic, group, therapi, control, drug, effect,
treat, clinic_trial, dose, efficaci, receiv, improv, random 3671 (2.91)

t_2 Prevention
survei, worker, particip, health, risk, healthcar, associ,
prevent, cross, pandem, section, cross_section, factor,
behavior, protect

6380 (5.05)

t_3 Telemedicine
servic, women, pandem, clinic, provid, telemedicin, visit,
telehealth, health, pregnant, access, deliveri, person, consult,
medic

4857 (3.84)

t_4 Vaccine inmunity vaccin, antibodi, immun, respons, dose, igg, neutral, infect,
anti, effect, hesit, mrna, individu, receiv, level 4146 (3.28)

t_5 Machine learning model, base, predict, method, data, perform, propos, mask,
develop, learn, imag, system, valid, time, detect 6781 (5.37)

t_6 Epidemiology case, infect, countri, data, rate, number, transmiss, model,
death, popul, spread, measur, epidem, diseas, outbreak 10,784 (8.54)

t_7 Academic parameters student, pandem, educ, nurs, onlin, learn, medic, experi,
social, train, school, particip, resid, program, media 7693 (6.09)

t_8 Risk factors and morbidity
and mortality

mortal, risk, associ, sever, outcom, diseas, hospit, icu, higher,
admiss, factor, death, cohort, group, clinic 10,665 (8.44)

t_9 Information synthesis
methods

review, systemat, search, analysi, systemat_review, includ,
meta, literatur, report, meta_analysi, databas, evid, data,
pubm, identifi

1955 (1.55)

t_10 COVID-19 pathology
complications

symptom, case, diseas, sever, clinic, report, infect, ct,
children, present, group, find, pneumonia, includ, acut 7655 (6.06)

t_11 Pharmacological and
therapeutic target

protein, drug, viral, human, viru, cell, target, bind, ac, spike,
infect, potenti, activ, genom, variant 7467 (5.91)

t_12 Diagnostic test test, posit, detect, pcr, sampl, infect, rt, neg, rt_pcr, assai,
sensit, viral, diagnost, respiratori, swab 5635 (4.46)

t_13 Mental health
pandem, health, mental, anxieti, mental_health, stress,
depress, psycholog, symptom, associ, social, impact, level,
particip, increas

12,236 (9.69)

t_14 Repercusion health services pandem, period, cancer, surgeri, compar, lockdown, impact,
increas, emerg, time, surgic, decreas, number, chang, march 6412 (5.08)

t_15 Etiopathogenesis
infect, diseas, sever, respiratori, syndrom, acut, cell,
acut_respiratori, immun, respiratori_syndrom, sever_acut,
respons, system, inflammatori, associ

12,080 (9.56)

t_16 Political and health factors
health, pandem, public, system, manag, challeng, respons,
global, commun, diseas, develop, emerg, public_health,
provid, impact

17,917 (14.18)
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3.2.3. Topic Distribution over Country

Following the methodology used in the analysis of journals, in Figure 5, we can see
a heatmap with a dendrogram in the left panel. We only considered 35 countries for the
analysis, of which 30 are considered leaders in the field of scientific research based on their
publication volume according to the Nature Index [26]. In general, topics t_9 (Information
synthesis methods), t_3 (Telemedicine) and t_1 (Therapeutics) were the ones that generated
less interest from the countries evaluated, while t_16 (Political and health factors) was the
most prevalent in South Africa, Australia, Ireland, Canada, Singapore, United Kingdom
and United States of America (USA).
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We also investigated the distribution of topics by country over time to determine how
topics changed in various countries over time.

In general, t_4 (Vaccine inmunity) was the topic that showed a positive trend in all
the countries (except Ireland) considered in the analysis, while t_15 (Etiopathogenesis) and
t_16 (Political and health factors) showed a negative or fluctuating trend in the countries
analyzed (Table 5).
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Table 5. Topic trends research in COVID-19 during February 2020–January 2022. Red color indicates
increasing tendency, blue decreasing tendency, and white fluctuating or no prominent trends.

Country t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_10 t_11 t_12 t_13 t_14 t_15 t_16
USA

China
Italy

United Kingdom
India
Spain

Canada
Germany

Iran
Turkey
Brazil

Australia
France
Japan

South Korea
Saudi Arabia
Netherlands

Poland
Israel

Pakistan
Switzerland

Greece
Mexico
Egypt

Singapore
Belgium
Taiwan
Sweden

Bangladesh
Austria

South Africa
Ireland

Malaysia
Portugal

Indonesia

4. Discussion

The rapid increase in publications related to COVID-19 is unprecedented in the scien-
tific literature, even compared to the Zika virus outbreak in Latin America (January 2016),
when the WHO declared a health emergency of international concern [27]. In this case,
there were only 644 publications on PubMed for the first six months after the declaration,
which highlights the big difference with the 15,557 publications on COVID-19 between
February and July 2020. Another pertinent comparison can be made with the global pan-
demic caused by influenza A (H1N1), first detected in North America in 2009 [28]. In
fact, while the first publication of clinical trials on COVID-19 was made 44 days after the
declaration of a pandemic by the WHO [29], for H1N1, this occurred 190 days after the
declaration [28]. However, not only the number of articles published was exceptional,
but also the period of time between data collection and publication of the articles was
surprising. This faster publication procedure was largely made possible by a shorter peer
review process. Horbach [30] evidenced this in his study with the peer-review process of
14 medical publications. In fact, journal processing time was lowered by 49%. Researchers
on topics related to COVID 19 have worked beyond their means, both researching and
reviewing the literature, while it seems reasonable that journals might find it difficult
to attract reviewers with relevant experience, as they are likely to be active scientists, it
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seems that journals are finding enough reviewers willing to review articles related to the
coronavirus in a very short time [31].

Wanting to share information quickly has often led to a decrease in the evaluation
time of articles and more lax reviews, having accepted articles of lower quality, prioritizing
immediacy in information over quality [32]

The above confirms the growing public and scientific interest, given the fact that the
disease represents a major threat to public health worldwide, but also to the economic
and social consequences associated with it. Therefore, it is not surprising that COVID-19
research has seen an unprecedented increase since the beginning of the pandemic [33].

The results also suggest that the USA exceeds countries such as China, Italy, the United
Kingdom, India, Canada, Spain, Germany, France, and Iran in number of articles published.
This fact is not surprising given the amount of USA government funds that were invested
in COVID-19 research [33]. Publications from other geographic areas are substantially less
abundant, with gaps particularly visible in Africa, Latin America, Eastern Europe, and
Central Asia.

Some systematic reviews have been published on COVID-19, these require a lot of
research time and have generally focused on specific aspects of the pandemic [4–6]. Those
works also analyzed reports on COVID-19 in the media [34], social networks such as
Twitter [35], and Sina-Weibo (a Twitter system used in China) [36].

Unlike the aforementioned reviews, this study did not focus on specific aspects of
the pandemic, but instead reviewed all the scientific literature related to COVID-19 dur-
ing the two years after the pandemic was declared. In particular, LDA allowed for the
evaluation of the variation of the research in the medium term. This technique also offers
the possibility to conduct a more in-depth analysis on a particular topic identified. We
identified 16 topics (namely, t_1 Therapeutics, t_2 Prevention; t_3 Telemedicine, t_4 Vaccine
immunity, t_5 Machine learning t_6 Epidemiology, t_7 Academic parameters, t_8 Risk
factors and morbidity and mortality, t_9 Information synthesis methods, t_10 COVID-19
pathology complications, t_11 Pharmacological and therapeutic target, t_12 Diagnostic
test, t_13, Mental health, t_14 Repercusion health services, t_15 Etiopathogenesis and t_16
Political and health factors) it was possible to categorize the scientific papers on COVID-19
that were published during the first two years of the pandemic.

Älgå et al. [2] explored the scientific literature on COVID-19 (16,670 articles, using
PubMed as in our study) in the time period between February and June 2020 using LDA. In
this case, 14 topics were identified (namely, Therapies and vaccines, Risk factors, Health care
response, Epidemiology, Disease transmission, Impact on health care practices, Radiology,
Epidemiological modeling, Clinical manifestations, Protective measures, Immunology,
Pregnancy, and Psychological impact). Therefore, it was observed that some of the topics
coincide with some labeled in this study. However, there were differences regarding
the most prevalent topics. While [2] reported that the most prevalent topics were health
care response, clinical manifestations, and psychological impact, in our case they were
t_16 Political and health factors, t_13, Mental health, and t_15 Etiopathogenesis. These
differences can be explained by the time period evaluated. Furthermore, since the COVID-
19 epidemic is still ongoing, the topics of study will most likely continue to change over time.

Among the rising academic attempts to address COVID-19 problems, a large portion
of the research has naturally concentrated on elements relating to Political and health
factors, Epidemiology and Risk factors, morbidity and mortality, Mental health, and,
Etiopathogenesis.

It should be noted that the study was constrained by the exclusion of grey literature,
books, book chapters, reviews, and reports. The data was acquired entirely from the
PubMed database and only scientific articles were considered. Academics may opt to
conduct future research using other databases, such as Scopus and Web of Science, which
include non-indexed journals not included in PubMed. In this sense, future research might
compare the findings of this study to those obtained from other databases.
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In sum, the findings of this study may be used to illustrate how the medical research
community reacts and what issues are prioritized. On the other hand, it was easy to identify
how research efforts were distributed globally and how they changed over time.

5. Conclusions

Scientific research and data play a very important role in the early control and pre-
vention of disease outbreaks and epidemics. It is of great interest to quickly share all
information with the public, researchers, government organizations, and institutes, both
nationally and internationally. An example of this was the surprising amount of studies on
COVID-19 that have been published since the novel coronavirus was originally identified.

In this work, the variations in the COVID-19 study that were available over the first
two years of the pandemic were highlighted. Therefore, this study demonstrated that the
United States of America, China, and Italy have leading roles in COVID-19 research. In
addition, through LDA modeling, a list of 16 topics was obtained and important temporal
trends could be identified.

In sum, the outcomes can provide new study guidelines, as well as aid in understand-
ing research trends, in the context of worldwide occurrences, useful for academics and
policymakers. Furthermore, the results achieved showed that topic modeling is a quick
and efficient way to evaluate the progress of a huge and quickly developing a research
topic, such as COVID-19. Additionally, and perhaps even more importantly, the method-
ology used has the potential to identify topics for future research, not only in studies on
pandemics but also as a tool for the identification and review of scientific literature in other
fields which may be of great public interest.
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Abstract: The purpose of this research is to classify time-series data on the number of daily COVID-19
cases based on the dynamics. This research aims to evaluate the effectiveness of community activity
restrictions in suppressing the number of new cases of COVID-19 in cities and regencies in West
Java. We performed time-series clustering on daily positive case data for COVID-19 in 27 cities and
regencies in West Java Province, Indonesia for this study. The k-medoids clustering algorithm was
used for clustering, with shape-based lock step measures, specifically, the cross correlation-based
distance. We used daily new infected cases data for COVID-19 in 27 cities and regencies in West
Java Province during the worst situation. We used data from 1 July 2021 to 31 September 2021
and from 1 January 2022 to 31 May 2022, during the Emergency Community Activity Restriction
period (PPKM). According to our findings, the optimal number of clusters that could be formed
from the data we had was 4 clusters for the first period and 2 clusters for the second period, with
silhouette value of 0.2633 and 0.6363, respectively. For the first period, we discovered that PPKM was
successful in clusters 1 and 2, namely in 25 cities/districts in West Java, except for Bogor and Depok,
while for the second period, we found PPKM to be effective in reducing the number of COVID-19
cases throughout cities and regencies in West Java. This shows there is an improvement from the
implementation of PPKM in the first period. We also found that the cluster that was formed was not
only influenced by the effectiveness of the PPKM, but also by geography. The closer a city is to a
hotspot region for the spread of COVID-19, the earlier the increase in the number of new COVID-19
cases will occur.

Keywords: COVID-19 cases; West Java Province; k-medoids clustering algorithm; shape-based lock
step measures; cross the correlation-based distance

1. Introduction

COVID-19 was verified to have been first seen on 2 March 2020, in Indonesia. At
the time, two persons had been exposed to COVID-19 through interaction with Japanese
residents. This was discovered when a Japanese citizen was diagnosed with the coronavirus
after leaving Indonesia and landing in West Java [1]. Since the virus’s first appearance, the
number of COVID-19 cases in Indonesia has steadily increased, with 6,054,973 persons
affected as of 31 May 2021 [2]. According to the Worldometer, Indonesia is ranked 14th in
the world and 4th in Asia for COVID-19 positive cases [3]. West Java is one of Indonesia’s
provinces. According to the 2020 population census, West Java has the greatest population
in Indonesia, totaling 48,274,162 persons [4]. West Java, being the province with the highest
population, is one of the provinces that provide a significant portion of the total number of
COVID-19 cases in Indonesia. West Java reported that there have been 1,107,911 confirmed
cases of COVID-19 as of 31 October 2021 [5], with a total of 216 active cases.
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Figure 1 shows the dynamic of the COVID-19 daily new case in West Java from March
2020 to May 2022. According to Figure 1, the worst of the COVID-19 outbreak in West Java
happened between February and March of 2022. At the time, the number of daily COVID-19
cases in West Java Province reached 16,251 cases per day, on 17 February 2022; this kind of
significant increase in daily COVID-19 cases happened twice in West Java. Previously, it
happened between July and August of 2021. At the time, the number of daily COVID-19
cases in West Java Province reached 11,101 cases per day on 13 July 2021. The government
introduced emergency PPKM on 3–25 July 2021, followed by PPKM 4 levels on 26 July–
2 August 2021 [6], to reduce the number of daily instances of COVID-19, which climbed
rapidly in the period July–August 2021. However, assessing the success of this intervention
would be difficult without an analysis that describes how the COVID-19 pandemic will
behave. The COVID-19 pandemic has wreaked havoc on infrastructure, the economy, and,
most crucially, human lives. Furthermore, the impact of policies implemented may differ
in each city and district in West Java Province, depending on how the community views it,
the number of first instances when the intervention is implemented, and so on. As a result,
it is crucial to conduct a study of the impact of policies enacted by West Java’s cities and
regencies. This may be accomplished by grouping cities and regencies with comparable
dynamics of daily COVID-19 instances. Cluster analysis can be used to do this.
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Cluster analysis is a technique for identifying groups in a data collection in order to
gather data in one group that is relatively similar to other groups while having apparent
distinctions. Cluster analysis may be applied to time series data, which has somewhat
different grouping techniques and algorithms than cross-sectional data. Clustering on time-
series data is commonly used to uncover intriguing patterns in a collection of time-series
data [7,8]. The clustering of time-series data is classified into two categories: The first group
is used to detect patterns that emerge often in the dataset [9]. The second group is a strategy
for detecting patterns that appear unexpectedly in a data collection, or patterns that are
significantly different from other data in the same dataset [10]. There have been several
studies regarding cluster analysis on COVID-19 data.

In 2020, Zarikas et al. [11] conducted time-series clustering on data on COVID-19
cases with country data. Hierarchical analysis was used with the Euclidean distance
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measure. The variables used are active cases, active cases per population, and active cases
per population and per area. Zarikas et al. found that the surface area of each country
is a parameter influencing the criticality of the situation, i.e., geography matters. Later
in the same year in 2020, Alvarez et al. [12] proposed a clustering method for identifying
groups of countries with a similar spread of the coronavirus. The variable of interest is
the number of daily infections per country. The method used is a non-parametric method,
namely Hierarchical Trees (HT) and the Minimum Spanning Trees (MST). Alvarez et al.
found that there were groups of countries with differentiated contagion dynamics, both
in the number of contagions and at the time of the greatest transmission of the disease. It
is concluded that the actions taken by the countries, the speed at which they were taken,
and the number of tests carried out may explain part of the differences in the dynamics
of contagion. Abdullah et al. [13] in 2021 conducted a study on time series clustering on
Indonesian COVID-19 case data. He used confirmed, death, and recovered cases data of
COVID-19 provinces in Indonesia, with the method utilized being K-means clustering.
Abdullah et al. found that there were three provincial clusters in Indonesia based on
the spread of COVID-19 that occurred. Elsi et al. [14] in 2020 conducted a mapping of
Indonesia’s national food security during the COVID-19 pandemic. The method used
was K-medoids clustering with the variable of interest, monthly per capita expenditure
in urban and rural areas by province, and groups of goods consisting of 33 data records
(2011–2018). Elsi et al. found that 42% of Indonesia still has low food security as evidenced
by the fulfillment of higher food needs than non-food.

Based on our literature review, we did not find any time-series clustering that specifi-
cally discusses the effectiveness of policies taken in an area. Generally, research on time-
series clustering in COVID-19 only pays attention to location and compares the dynamics
of cases between regions. To evaluate the containment policy for the spread of COVID-19,
containment policy needs to be carried out simultaneously between regions, and the type
of containment policy used in each area is relatively similar. Moreover, this requires special
attention to the type of distance measures used in the clustering process.

In this study, we propose a method to evaluate the effectiveness of COVID-19 con-
tainment policies applied to an area. We propose a clustering method using shape-based
lock-step distance measures, namely cross-correlation. Cross-correlation is a measure of
distance that shows the similarity between datasets. This makes the similarity between
time-series data in one cluster maximum and minimizes the similarity between different
clusters. In addition, the nature of cross-correlation-based distance, which is a lock-step
distance measure, makes the clustering carried out to compare the raw values of the data at
the same time frame. The novelty of this research is the usage of shape-based lock-step dis-
tance measures in the clustering process. In the context of evaluating policies on handling
COVID-19, our proposed method provides a series of clusters that are generated from data
on COVID-19 new cases, on the exact date of the case of the same incident across different
places. Thus, the resulting cluster can be more accurate in describing the development of
COVID-19 cases in each formed cluster because the comparisons were made on the same
date for each region.

This study aims to evaluate the effectiveness of implementing community activity
restrictions (PPKM) in suppressing the spread of COVID-19 in 27 cities and regencies in
West Java. As a result, in this study, we used a cluster analysis with lock step distance
measures to determine the impact of the government’s policies on the cities and regencies
in West Java. This is a strategic thing to do, because we will be able to create numerous
clusters based on the peculiarities of the dynamics of COVID-19. The results of this study
can be used by the government to evaluate the effectiveness of containment policies taken
in each region and identify structural similarities in the dynamics of COVID-19 that occur in
each region. Thus, we hoped that the government will be able to evaluate the effectiveness
of the policies taken more objectively and able to formulate better policies in dealing with
the spread of COVID-19 with this information.
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2. Overview
2.1. Coronavirus Disease 2019 (COVID-19)

SARS-CoV-2 is a virus that infects the respiratory tract and produces the infectious
illness COVID-19. The World Health Organization (WHO) initially learned about this new
virus on 31 December 2019, in Wuhan, China [15]. Coronavirus is a virus that spreads
from animal to animal and can infect people. This virus’s native hosts are bats, although
numerous other animal species have been discovered as potential contributors. MERS-CoV
can be transferred to humans through camels, but SARS-CoV-1 can be transmitted through
civets [16]. A person who tests positive for COVID-19 might experience a wide range
of symptoms, from minor aches and pains to major sickness. Symptoms might emerge
anywhere between 2 and 14 days after being exposed to the virus. The most common
symptoms of COVID-19 infection are fever and cough, however, there are other signs and
symptoms to consider [17]. On 11 March 2020, WHO declared COVID-19 a pandemic [15].
According to statistics from China at the time [18], adults, particularly those with congenital
defects, have a higher risk of getting infected by severe COVID-19 cases and a higher fatality
rate than younger persons. According to data from the European Economic Area/European
Union (for countries where data are available), roughly 20–30% of confirmed COVID-19
patients are hospitalized and 2% have severe disease. People with more severe symptoms,
on the other hand, are more likely than those with less severe symptoms to get tested. As a
result, the real proportion of persons who need to be hospitalized as a percentage of the
overall number of infected people is lower than the figures reflect. Those aged 60 and up,
as well as those with a congenital illness, are more likely to be hospitalized [19].

2.2. Time-Series Clustering

Clustering is a technique for identifying groups in a data collection to obtain data
that are relatively similar in one group and have distinct distinctions between them [20,21].
Time-series clustering is a unique sort of clustering. A temporal sequence is made up of
a series of nominal symbols from a certain alphabet, while a time series is made up of a
continuous series of real value elements [22]. Because the feature values of time-series data
vary with time, they are categorized as dynamic data. This implies that the value of each
time-series point is one or more observations made chronologically. Time-series data are a
sort of temporal data that contain a lot of dimensions and a lot of spaces [23,24]. Clustering
on time-series data is commonly used to uncover intriguing patterns in a collection of
time-series data [7,8]. The clustering of time-series data is classified into two categories:
The first group is used to detect patterns that emerge often in the dataset [9]. The second
group is a strategy for detecting patterns that appear unexpectedly in a data collection, or
patterns that are significantly different from other data in the same dataset [10].

In brief, locating clusters of time-series data may help solve real-world issues in a
variety of domains, such as identifying dynamic changes in time series and detecting
connections across time series [25]. It may be used to locate firms with comparable stock
price movements in a financial database, for example. Predictions and recommendations: a
hybrid method that combines clustering and per-cluster function approximation can assist
users in making predictions and making suggestions [26–28]. For example, in scientific
databases, this can address difficulties such as predicting today’s patterns by locating the
solar magnetic wind. Pattern discovery: searching the database for intriguing patterns.
Different daily sales trends of particular items at a store, for example, can be identified in
a marketing database. In the phenomenon of COVID-19, time-series clustering has been
carried out for creating the home dwell time clusters [29], estimation of the dynamics of
COVID-19 in states [30], and also for the COVID-19 pandemic evolution [31]. This study
utilizes time-series clustering to locate cities and regencies with comparable dynamics of
daily positive COVID-19 instances, as well as how the daily case patterns are with the
introduction of community activity restrictions (PPKM).
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3. Materials and Methods
3.1. Materials

The study’s research object is daily COVID-19 infected case data from 27 cities and
regencies in West Java Province. The data were collected from 1 July 2021 to 31 September
2021 and from 1 January 2022 to 31 May 2022, during the Emergency Community Activity
Restriction period (PPKM). Pikobar-West Java COVID-19 Information and Coordination
Center [32] was the source of the data used in this study. For data management and visual-
ization, we used R software version 4.1.2 [33]. R is a programming language for statistical
computing and graphics created by statisticians Ross Ihaka and Robert Gentleman. Cur-
rently, R is supported by the R Core Team and the R Foundation for Statistical Computing
based in Vienna, Austria. For data visualization and transformation, we use ggplot2 [34]
and reshape [35] packages. As for the time-series clustering process, we use TSdist [36],
factoextra [37], and NbClust packages [38].

3.2. Methods
3.2.1. Clustering Daily Positive Case Data Using K-Medoids with Cross-Correlation
Based Distance

K-medoids is comparable to clustering or partitioning around medoids (PAM). The
k-medoids approach is based on identifying k representative items among the data set’s ob-
jects. A representative object, known as a centroid, is used in clustering. The representative
object in k-Medoids is also known as the group medoid. K-medoid can be used on objects
with very big values that vary from the data distribution to address the difficulty of utiliz-
ing k-means. This approach is preferable to most non-hierarchical clustering algorithms
based on the minimal value of the sum of the squared estimate of error because it is more
resilient (SSE) [39].

3.2.2. Calculating Cross-Correlation Based Distance

Calculating the distance metric utilized in k-medoids is the first step. We employ a
distance measure with shape-based lock step distance features in this study. We use this
metric to create clusters from raw data values and compare them with the same latency. We
employ a distance metric called time-series distance that is based on the cross-correlation
between two numerical time series. The distance between two numerical time series based
on cross-correlation is determined as follows [40],

di,j =

√√√√ 1− ρ2
i,j,0

∑max
k=1 ρ2

i,j,k
, (1)

where ρ2
i,j,k shows the cross-correlation between the two-time series xi and yj at lag k and

max is the maximum lag.

3.2.3. Determining the Number of Optimal Clusters with Elbow Methods

The elbow method was then used to calculate the number of clusters in this investiga-
tion. This approach is useful for calculating the number of clusters that should be used.
The user searches for changes in slope to discover the ideal number of clusters using the
elbow technique, in which the number of squares in each number of clusters is computed
and graphed, and the user looks for changes in slope to determine the optimal number of
clusters. The following formula is used to determine the SSE of the elbow method,

SSE =
k

∑
k=1

∑
xi∈Sk

||xi − ck||2 , (2)

where k is the number of groups in the algorithm used, xi is the number of data, and
ck is the number of cluster members in the k-th cluster. The elbow method examines
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the proportion of variance expressed as a function of the number of clusters [41]. The
basic concept is to pick a point when the increased cost is no longer worth the declining
return [42]. This is a visual method, starting with k = 2, and growing at each step by
1 step, while calculating the clusters and the costs associated with increasing the number of
clusters. At some values for k, the cost drops drastically, and after that it starts to slope, and
this is the optimal value of k. The reason is that after the k, when the value of k is increased
or the number of clusters is increased, the new clusters that are formed no longer have
a significant difference with those that have been created previously, or the new clusters
created will be very similar to some of the existing clusters [43].

3.2.4. Clustering Daily Positive Case Data Using K-Medoids

The last step is clustering using k-medoids. The steps for clustering using the k-
medoids method are as follows:

(a) Calculate the distance of each object using cross correlation-based distance with
Equation (1).

(b) Calculate vj for each object j with di = ∑n
j=1 dij

vj = ∑n
i=1

dij

di
, j = 1, . . . , n, (3)

where
dij : Cross correlation distance matrix elements
vj: Standardize the number of rows for each column j

(c) Sort vj from smallest to largest. Choose k clusters that have the first smallest vj as the
center (medoid).

(d) Allocate non-medoid objects to the nearest medoid based on the cross correlation-
based distance.

(e) Calculate the total distance from the non-medoid cluster to the center.
(f) Define a new medoid for each cluster which is an object that minimizes the total

distance to other objects in the cluster. Update the existing medoid in each cluster by
replacing it with a new medoid obtained from the existing cluster.

(g) Allocate non-medoid objects to the nearest medoid based on the cross correlation-
based distance.

(h) Calculate the total distance from the non-medoid cluster to the center.
(i) If the number of new centers differs from the total distance of the cluster centers in

the first iteration, change the center (medoid). Otherwise, the iteration is stopped and
the result becomes the final cluster.

The number of groups (k) in k-medoids is selected based on the elbow method.

3.3. Cluster Internal Validation

The intrinsic information in the data is utilized to assess the quality of the clustering
that has been done in the internal validation of the dataset, which uses the cluster partition
as input. The size of the cluster division that represents its compactness, connectivity, and
separation is chosen for internal validation [44]. Connectivity is a metric that represents
closeness [45]. Separation quantifies the distance between cluster centroids, whereas
compactness examines the homogeneity of the clusters produced by looking at intra-cluster
variation. Compactness and separation have a trend that shows the opposite trend, so the
method that is widely used is to combine the two sizes into one integrated size.

The homogeneity of the clusters created was measured using silhouette width in
this study. Silhouette width is a metric that takes into account both compactness and
non-linear separation [46]. The average silhouette width for each observation is the average
of silhouette value S(i) for every i objects that belong to a certain cluster. The silhouette
value indicates the amount of confidence in the dataset’s placement in a cluster of specific
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observations, with a value near to 1 indicating a good cluster and a value close to −1
indicating a bad cluster, with the i-th observation, defined as

S(i) =
bi − ai

max(bi, ai)
, (4)

where ai is the average distance between i and all other observations in the same cluster, and
bi is the average distance between i and observations in the nearest neighboring cluster, i.e.,

ai =
1

n(C(i)) ∑
j∈C(i)

dist(i, j) , (5)

bi =
min

Ck ∈ C\C(i) ∑
j∈C(i)

dist(i, j)
n(Ck)

, (6)

where C(i) is a cluster containing observations i, dist(I, j) is a measure of the distance used
between observations i and j, and n(C) is the cardinality of cluster C. After the cluster is
validated, then the cluster formed will be investigated and interpreted in accordance with
the phenomenon of the implementation of restrictions on community activities (PPKM)
that occurred in West Java. The data and syntax used in this research can be accessed
at https://github.com/DhikaSuryaP/COVID-19-Clustering-in-West-Java (accessed on
15 July 2022).

4. Results

The k-medoids clustering approach was employed in the cluster analysis of daily
positive COVID-19 cases in 27 cities and regencies in West Java, with the distance measure
utilized being cross-correlation-based distance. Clustering was carried out in two PPKM
periods with the worst COVID-19 case dynamics in West Java.

• The first clustering period is 1 July 2021–30 September 2021.
• The second clustering period is 1 January 2022–31 May 2022.

4.1. Optimal Cluster Number Selection

This study used daily COVID-19 positive case data from 27 cities and regencies in
West Java Province. The ideal number of clusters for daily positive case data for COVID-19
in 27 cities and regencies in West Java province was determined using the elbow method.
Figure 2 depicts the ideal number of clusters for daily COVID-19 positive cases in West
Java cities and regencies.

Figure 2 shows that the ideal number of clusters to generate in this study is four
clusters for the first clustering period and two clusters for the second clustering period.
This is proven by the total change within the sum of the square that occurs begin to dampen,
implying that the difference between the total within the sum of the square in the cluster is
no longer significant, or that the cluster that is formed no longer has a significant difference
after the numbers of clusters are enlarged by more than the ideal number. As a result, the
number of clusters produced in this study will be four for the first clustering period and
two for the second clustering period.

4.2. Clusters Internal Validation

Table 1 depicts clusters of daily positive COVID-19 cases in 27 West Java cities
and regencies.

After getting the temporary cluster in Table 1, we iterated the process three times. The
cluster’s outcome did not change until the third iteration. After data on the number of daily
COVID-19 cases in 27 cities and regencies in West Java were clustered, the clusters were
internally validated. This is done by looking at the silhouette width value to guarantee that
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the produced cluster is homogeneous. Table 2 displays the silhouette width values together
with the number of clusters that have attempted to form.
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Table 1. Clusters of daily COVID-19 cases in cities and districts in West Java.

Cluster Periods Cities/Districts

1

First Period

KAB. BANDUNG, KAB. BANDUNG BARAT, KAB. CIAMIS, KAB. CIANJUR, KAB.
INDRAMAYU, KAB. KARAWANG, KAB. PANGANDARAN, KAB. SUBANG, KAB.

SUKABUMI, KAB. TASIKMALAYA, KOTA BANDUNG, KOTA BANJAR, KOTA
SUKABUMI, KOTA TASIKMALAYA

2
KAB. BEKASI, KAB. BOGOR, KAB. CIREBON, KAB. GARUT, KAB. KUNINGAN, KAB.

MAJALENGKA, KAB. PURWAKARTA, KAB. SUMEDANG, KOTA BEKASI, KOTA CIMAHI,
KOTA CIREBON

3 KOTA BOGOR

4 KOTA DEPOK

1
Second Period

KAB. BANDUNG, KAB. BANDUNG BARAT, KAB. CIAMIS, KAB. CIANJUR, KAB.
CIREBON, KAB. GARUT, KAB. INDRAMAYU, KAB. KARAWANG, KAB. KUNINGAN,
KAB. MAJALENGKA, KAB. PANGANDARAN, KAB. PURWAKARTA, KAB. SUBANG,

KAB. SUKABUMI, KAB. SUMEDANG, KAB. TASIKMALAYA, KOTA BANDUNG, KOTA
BANJAR, KOTA CIMAHI, KOTA CIREBON, KOTA SUKABUMI, KOTA TASIKMALAYA

2 KAB. BEKASI, KAB. BOGOR, KOTA BEKASI, KOTA BOGOR, KOTA DEPOK

Table 2. Silhouette width values in the clusters tested in this study.

Number of
Clusters 2 3 4 5 6 7 8 9 10

First
Period 0.2514 0.2605 0.2633 0.1952 0.1915 0.1720 0.1765 0.1247 0.1027

Second
Period 0.6363 0.3056 0.3258 0.3339 0.3073 0.3154 0.3281 0.3016 0.2992
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The highest silhouette width value achieved by the first-period cluster was 0.2633
and the second-period cluster was 0.6363, according to Table 2. This demonstrates that the
development of four clusters for the first period and two clusters for the second period
in this study was suitable since it demonstrated that the highest degree of confidence in
cluster member placement was attained, as in the graph given in Figure 3.
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From Figure 3, it can be seen that the highest silhouette value was achieved when
the number of clusters formed was four clusters for the first period and two clusters for
the second period. After three iterations and internal validation, it was found that Table 1
shows the final cluster for the number of active COVID-19 cases in 27 cities and regencies
in West Java, meaning that for clusters that have been formed, further analysis can be done.

4.3. First Period (1 July 2021–30 September 2021) Clustering Results

Figure 4 shows the development of the number of daily positive cases of COVID-19 in
Cluster 1 for the first period.

Figure 4 shows the development of the number of daily positive cases of COVID-19 in
Cluster 1 in the period 1 July 2021–30 September 2021. This cluster is the cluster with the
most members, namely 14 cities/regencies. Characteristics that can be observed through
the graph in this cluster: it can be seen that this cluster is a cluster in which, when the
emergency PPKM was implemented, namely on 3 July 2021, the number of daily positive
cases of COVID-19 that occurred was increasing. Then, 14 days after the first time the
emergency PPKM was carried out, namely on 17 July 2021, in this cluster there were signs
of a decrease in daily positive cases of COVID-19. When PPKM 4 Level was implemented,
namely 26 July 2021–2 August 2021, in this cluster, almost all cluster members began to
experience a significant decrease in cases when compared to the worst conditions that had
been experienced before. The last characteristic of this cluster is the steady decline in cases,
which continued until 30 September 2021.
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Figure 5 shows the development of daily positive cases of COVID-19 in Cluster 2.
This cluster consists of 11 cities/regencies for the period 1 July 2021–30 September 2021.
Characteristics that can be observed through the graph in this cluster: it can be seen that
this cluster is a cluster that, when PPKM starting to be implemented, namely on 3 July
2021, was not experiencing an increase in daily positive cases, different from Cluster 1.
This cluster began to experience an increase which began on 13 July 2021, and this lasted
until 25 July 2021, then began to experience a steady decline after the Level 4 PPKM began
to be implemented, namely on 26 July 2021. In the period August 2021–September 2021,
cities and towns and cities districts that are members of Cluster 2 no longer experienced a
significant increase in cases, and were steadily decreasing. This indicates that the policies
taken were appropriate to reduce the number of daily positive cases of COVID-19 that
occurred in Cluster 2, given in Figure 6.
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Figure 6. Daily positive cases of COVID-19 in Cluster 3 for the first period.

Figure 6 shows the development of daily positive cases of COVID-19 in cluster 3.
This cluster is unique because it only consists of one city, namely Bogor City. The unique
characteristic that can be observed through the graph in this cluster is that it experienced
two peaks, namely when the emergency PPKM was implemented, on 3 July 2021 and in
the period 26 August 2021–16 September 2021. This cluster experienced a decrease when
the Level 4 PPKM was implemented, namely on 26 July 2021, and continued to decline
until 23 August 2021, but what distinguishes this cluster from other clusters is that in this
cluster, there was an increase again on 26 August 2021–11 September 2021; then, they again
experienced a decrease in cases that continued to occur until 30 September 2021. This
cluster is a cluster that experienced a second wave since the emergency PPKM and Level 4
PPKM were implemented. This indicates an ineffective implementation of PPKM in this
city, as a given in Figure 6.

Figure 7 shows the development of daily positive cases of COVID-19 in Cluster 4. This
cluster is unique because it only consists of one city, the same as Cluster 3, namely Depok
City. The unique characteristic that can be observed through the graph in this cluster is
that it can be seen that this cluster experiences a peak or worst-case scenario in different
periods when compared to other clusters. This cluster peaked on 21 August 2021–26 August
2021, and this happened suddenly. In contrast to other clusters, which in the same period
actually decreased, when the emergency PPKM and Level 4 PPKM were implemented,
this cluster experienced a fluctuating number of daily positive cases of COVID-19. This
cluster experienced a significant decline on 27 August 2021. At that time, the number
of daily cases that occurred was 110 cases, very different from the previous day where
the number of daily positive cases was 3341 cases. Furthermore, during 28 August 2021–
30 September 2021, this cluster experienced a steady decline. This cluster is unique with
peaks that occurred at different periods than other clusters, and it occurred very suddenly,
which indicates an ineffective implementation of PPKM in this city.

4.4. Second Period (1 January 2022–31 May 2022) Clustering Results

In the second period, the number of clusters formed was less than in the previous
period. During this period, two clusters were formed based on the daily number of new
COVID-19 cases in West Java. Figure 8 shows the development of the number of daily
positive cases of COVID-19 in Cluster 1 for the second period.
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Figure 8. Daily positive cases of COVID-19 in Cluster 1 for the second period.

Figure 8 shows the development of the number of daily positive cases of COVID-19 in
Cluster 1 in the period 1 January 2022–31 May 2022. In the clustering conducted in Period 2,
this cluster is the cluster with the most members, namely 22 cities/regencies. In this cluster,
PPKM began to be implemented on 4 January 2022. When PPKM was first implemented,
the number of cases that occurred was still relatively low. This is different from Period
1 where PPKM began to be implemented when COVID-19 cases began to experience a
significant increase. In this cluster, the increase in the number of COVID-19 cases began
to occur at the end of January 2022, and the peak occurred at the end of February 2022.
The daily number of COVID-19 cases began to decline in early March 2022, until finally
on 4 April 2022, PPKM was relieved by the government. Since then, the number of daily
COVID-19 cases has continued to decline until May 2022.

Figure 9 shows the development of the daily number of positive COVID-19 cases in
Cluster 2 for the period 1 July 2021–30 September 2021. In the clustering conducted in
Period 2, this cluster only consists of five cities and regencies. In this cluster, the start time
of PPKM is still the same as the previous cluster, namely on 4 January 2022. However, this
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cluster has differences from the previous Cluster 1; namely, in this cluster, it can be seen
that the increase in the number of daily cases of COVID-19 started earlier, that is, from
mid-January. In addition, in this cluster, the peak that occurred was earlier than Cluster 1,
which occurred in mid-February. The decrease in the number of daily cases in this cluster
occurred at the end of February and continued until 31 May 2022.
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The clusters formed in this study have unique characteristics and features and can
be used as an initial evaluation of the effectiveness of PPKM. This is indicated by the
differences that can be extracted from the clusters that were formed. Further discussion of
clustering results and their implications for the effectiveness of PPKM implementation is
included in the next section.

5. Discussion

In this study, we succeeded in forming clusters for daily COVID-19 cases in 27 cities
and regencies in West Java Province. We formed them based on the results of the elbow
method and validated the clustering results using silhouette width. The validation results
show that for the first and second period, the formation of four and two clusters provides
the highest level of confidence, respectively. Based on the cluster, it was found that the
use of time-series clustering was effective in extracting insight from data on the number of
COVID-19 cases that occurred during PPKM.

For the first period clustering (1 July 2021–30 September 2021). We found some insights
that could be useful for immediate use or further study. Based on the four clusters that we
formed, we found that the implementation of the emergency community activity restriction
(PPKM), and the Level 4 PPKM had succeeded in reducing the number of cases. daily
COVID-19 in 25 cities and regencies in West Java. This is reflected in Figures 4 and 5,
namely the graphs for Clusters 1 and 2. The two graphs show that there has been a
decline in cases since 2 August 2021. In these two clusters, almost all cluster members
began to experience a significant decrease in cases when compared to the worst conditions
that had been experienced previously. Another characteristic of this cluster is the steady
decline in cases, which continued until 31 October 2021. We also found that two cities
had different daily developments of COVID-19 positive cases compared to other cities
and regencies in West Java Province during the period implementation of restrictions on
community activities (PPKM). The cities of Bogor and Depok had different developments
in the number of daily COVID-19 cases compared to other cities and regencies in West
Java during PPKM. Bogor City experienced two significant spikes in cases, namely when
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PPKM was implemented and Level 4 PPKM was implemented, while Depok City faced
its worst situation 19 days after PPKM was implemented. This means that the cities of
Bogor and Depok have different daily COVID-19 case dynamics compared to other cities
and regencies, which indicates the need for different treatment for the two cities. In the
city of Bogor, it was found that the peak of cases occurred twice, namely during PPKM
and after PPKM. This indicates that the implementation of PPKM is not effective in that
city, so that a more stringent PPKM execution accompanied by an extension of its duration
is an option that can be considered for the City of Bogor. As for the City of Depok, the
highest number of cases actually occurred after the PPKM period, and during the PPKM
period, the number of COVID-19 cases in this city tended to be less. This indicates that the
implementation of PPKM in this city is inconsistent, especially in the mid-to-late PPKM
period. This means that supervision on the implementation of PPKM in this city need to be
tightened, especially during the period leading up to the end of PPKM when the number
of daily cases tends to decrease.

For the second period (1 January 2022–31 May 2022), based on the two clusters formed,
we found that there was a delay between the two clusters. In the first cluster, the increase
in COVID cases began at the end of January, while in the second cluster, the increase in
the number of cases occurred earlier, namely in mid-January. This difference turns out
to have an impact on when the peak number of cases occurs. This is shown in Cluster 1,
where the peak of new cases occurred at the end of February, while in Cluster 2 the peak
occurred in mid-February. There is a gap of one month between the start of the increase in
cases and the peak of cases that occur. One of the reasons for the difference in the start of
improvement between these two clusters is location. Members of Cluster 2 are cities and
regencies that are part of the JABODETABEK (Jakarta–Bogor–Depok–Tangerang–Bekasi)
area. At that time, Jakarta was the first location to experience an increase in the number of
COVID-19 cases in Indonesia. This is a logical reason for an earlier increase in the number
of cases in Cluster 2. This also confirms the findings of Zarikas et al. [11] which stated
that geography had an effect on the dynamics of COVID-19 cases. For the effectiveness
of the implementation of PPKM in Period 2, there was no significant difference between
Clusters 1 and 2. This is because the time since the peak occurred until the number of new
cases was relatively low, more or less the same for these two clusters, which was about
one month and there was no significant increase in cases until May 2022. In Cluster 1, new
cases began to stabilize at a low level in mid-April, while in Cluster 2, new cases began to
stabilize at a low level in early April. This shows that in this second period, all cities and
districts in West Java implemented PPKM effectively, and showed an improvement from
the implementation of PPKM in the first period.

After discussing the clusters in the first and second periods, we know that in each of
these periods, the number of clusters was different. In the first period, four clusters were
formed, while in the second period, two clusters were formed. Why does this happen? If
we try to observe the dynamics of new cases of COVID-19 that occur, in the first period,
the City of Depok and the City of Bogor had such unique dynamics that the two cities
formed their own respective clusters. The ineffective implementation of PPKM in these
two cities led to the formation of these new clusters. However, in the second period, the
implementation of PPKM in both cities improved. Thus, in the second period, the dynamics
of cases that occurred in the cities of Depok and Bogor were more or less the same as other
cities and regencies that were members of Cluster 2. This shows that the variability of the
effectiveness of containment policies affects the number of clusters formed. In the first
period, the implementation of PPKM in Clusters 1 and 2 proved effective in reducing the
number of new cases of COVID-19, while in Clusters 3 and 4, the implementation of PPKM
was not effective, and the two clusters had very different case dynamics compared to other
cities. In the second period, the effectiveness of the implementation of PPKM was more or
less the same, or PPKM is effectively applied to all cities and districts in West Java. This
resulted in fewer clusters being formed in the second period than in the first period, which
was only two clusters. The thing that distinguishes Clusters 1 and 2 in this second period is
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only geography. The results of this study indicate that the proposed clustering method is
successful in classifying cities and regencies based on the dynamics of new COVID-19 cases
that occur. The proposed method is sensitive to the effectiveness of containment policies
and also to the geography of each city and regency.

In this study, a method was proposed to evaluate the COVID-19 spread containment
policy. The proposed time-series method succeeded in providing an insightful cluster for
evaluating the effectiveness of the policy. However, it should be noted that to apply this
method to new data, there are two conditions that need to be met: (1) The policies applied,
whether the types of policies applied are relatively similar between regions, and (2) the
policies need to implemented simultaneously across regions. The proposed method is
suitable for use in the same policy conditions and carried out simultaneously in various
regions. This is evident from the proposed classification method which succeeded in
capturing features of the effectiveness of implementing PPKM in 27 cities and regencies
in West Java Province. If the two conditions mentioned above are not met, the clustering
method proposed in this study is not suitable for use.

6. Conclusions

In this study, we clustered the time-series data of daily COVID-19 cases in 27 cities
and regencies in West Java Province. We did clustering during PPKM implementation with
the worst number of new COVID-19 cases, namely 1 July 2021–30 September 2021, and
1 January 2022–31 May 2022. The distance measure that we used for time-series clustering in
this study was a type of shape-based lock-step distance measures, namely cross-correlation
distance and to determine the optimal number of clusters, we used the elbow method.
After the cluster was formed, we did internal validation for the cluster using the silhouette
width. The results of our study found that the optimal number of clusters that could be
formed from the data we had was four clusters for the first period and two clusters for
the second period. For the first period, we found that from the 27 cities and regencies that
we studied, there were 25 cities/districts that belong to Cluster 1 and 2, and they showed
that the implementation of the emergency PPKM and the Level 4 PPKM was effective
for the number of daily positive cases of COVID-19. This indicates that for the majority
of cities and regencies in West Java, PPKM is the right policy to implement. In addition,
there are two cities that have unique patterns when compared to other cities and regencies,
namely the cities of Bogor and Depok. The City of Depok showed an increasing trend in
the number of new COVID-19 cases during PPKM, while the City of Bogor experienced
an increasing trend after PPKM was implemented. This shows that the implementation
of PPKM did not succeed in reducing the number of daily new cases of COVID-19 in the
two cities. For the effectiveness of the implementation of PPKM in Period 2, there was no
significant difference between Clusters 1 and 2. This is because the time from the peak
occurred until the number of new cases was relatively low for these two clusters, about
one month, and there was no significant increase in cases until May 2022. In Cluster 1, new
cases began to stabilize at a low level in mid-April, while in Cluster 2 new cases began
to stabilize at a low level in early April. This shows that in this second period, all cities
and districts in West Java implemented PPKM well and showed an improvement from the
implementation of PPKM in the first period.

We recommend that the government pay more attention to areas that are close to
the hotspot regions for the spread of COVID-19. In this case, the most common is the
state capital or provincial capital. If the effectiveness of the PPKM determines when the
spread starts to stabilize at a low level, then the geographic location of the city and district
determines when the spread begins to accelerate. This means that if it is identified that an
area is starting to experience an acceleration in the spread of COVID-19, then other adjacent
areas need to be the first areas to implement a containment policy. This is an effort that can
be made by the government to contain the rate of COVID-19 so that the spread does not
reach a dangerous level. We hope that the government can continue to control the spread
of COVID-19 at a safe level with this information.
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The clusters show that time-series clustering can be used to evaluate policies in
different areas within the same time frame. Using the right distance measures can provide
insightful clusters for COVID-19 policy and management. While it is certainly useful, the
clusters produced in this study only differentiate between regions that have successfully
implemented PPKM and those that have not. In fact, information about the success rate of
each region can be different, and this information is strategic information to obtain because
this can be a reference for the government for the ideal implementation of PPKM. Thus, in
future research, it is very good to consider the hierarchy of the success rates of PPKM in
each region in the cluster.
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Abstract: In addition to a wide range of socio-economic impacts, traffic congestion during the
era of the COVID-19 pandemic has been identified as a critical issue to be addressed. In urban
neighborhoods, the timespan of traffic congestion hazard (HTC) after the curfew lift is subjected to
the commuters’ decisions about home-to-shopping center departures. The decision for departing
early or late for shopping depends on both the internal (commuter related) and external (shopping
center related) factors. The present study developed a practical methodology to assess the HTC period
after the curfew timings. An online questionnaire survey was conducted to appraise the commuters’
perception about departure time and to assess the impact of eight internal (family size, involvement
in other activities, nature of job, education level, age, number of vehicles, number of children, and
availability of personal driver) and three external (availability of shopping center of choice in near
vicinity, distance to shopping center, and size of the city) factors on their decision. With an acceptable
20% response rate, Chi-square and Cramer’s V tests ascertained family size and involvement in other
activities as the most significant internal factors and availability of shopping center of choice as the
primary external factor. Age, number of children, and size of the city influenced to some extent the
commuters’ decisions about early or delayed departure. Large associations were found for most
of the factors, except education level and availability of drivers in a household. Fuzzy synthetic
evaluation (FSE) first segregated the commuters’ responses over a four level-rating system: no delay
(0), short delay (1), moderate delay (3), and long delay (5). Subsequently, the hierarchical bottom-up
aggregation effectively determined the period of highest traffic congestion. Logical study findings
revealed that most (about 65%) of the commuters depart for shopping within 15 min after the curfew
lift, so HTC in the early part (the first one hour) of the no curfew period needs attention. The traffic
regulatory agencies can use the proposed approach with basic socio-demographic data of an urban
neighborhood’s residents to identify the HTC period and implement effective traffic management
strategies accordingly.

Keywords: traffic congestion; departure delay; COVID-19; traffic delay; commuter perception;
chi-square test; fuzzy synthetic evaluation (FSE)

1. Introduction

On December 2019, the authorities in Wuhan City (Hubei Province of China), reported
the novel coronavirus disease COVID-19 epidemic. This disease is resulted from acute
respiratory syndrome SARS-CoV-2 [1]. Since then, the COVID-19 has attracted global atten-
tion because of the affirmed risk of human-to-human transmission [2]. On 11 March 2019,
the World Health Organization (WHO) announced COVID-19 as a global pandemic [3]. As
of January 2022, over 352 million people have been affected by COVID-19 (SARS-CoV-2),
and around 5.6 million affected have died. The United States, with over 7 million cases
and 889,000 deaths, is on the top of the global counts, followed by India with more than
39 million cases (490,000 deaths) and Brazil with over 24 million cases (623,000 deaths) [4].
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The COVID-19 pandemic not only infected people and took lives; it significantly disrupted
all types of socioeconomic activities around the globe [5]. The fear of the virus itself, gov-
ernmental restrictions, and curfew timings have restricted the movement of citizens for
business, education, recreation, and religious activities.

The COVID-19 pandemic situation posed new inquiries to traffic engineers and plan-
ners. The pandemic situation demands contemporary transportation planning approaches
to deal with changing mobility and activity habits [6]. The situation also demands re-
gional specific planning, keeping in view the exclusive socio-economic and environmental
characteristics of the region [7]. Particularly in the early stage, many countries adopted
varying strategies to attenuate the socioeconomic and health impacts of the COVID-19
pandemic on their communities. The Kingdom of Saudi Arabia (KSA) among many other
countries also implemented precautionary measures to prevent the transmission of the
COVID-19 infection to protect the health of citizens and residents of the Kingdom. One
of these measures is forcing partial and total public curfews on certain cities. A complete
public curfew was enforced on large cities with high transmission rates of COVID-19 such
as Riyadh, while a partial public curfew was imposed on the relatively smaller regions
with low spread rate of COVID-19 such as the Qassim Region.

Despite the fact the public curfew policies are important in the age of COVID-19,
studying the impact of such policies on transportation systems has yet to be considered.
Large cities with overcrowded populations such as Riyadh City, KSA, continue to suffer
from congested roads. In the efforts to mitigate day-to day traffic congestion, different
traffic management strategies have been developed and implemented. For example, during
rush hours, the traffic department in Riyadh City controls the entrances and the exits on
main roads to regulate traffic flows and thus mitigate possible congestion. Such policies
may not be adequate during public curfews. Immediately after lifting a curfew, people rush
to the roadways to arrange their necessities on one side. On the other hand, some people
delay their shopping trips to avoid that early congestion and contribute to traffic congestion
in the last part prior to curfew. Recently, certain cities in Saudi Arabia have adopted a
partial curfew policy. The question of interest is whether there would be a sudden traffic
congestion after a public curfew is lifted or higher congestion subject to the later part of
the no-curfew duration. Information on possible traffic congestion in response to different
curfew policies will help the decision-makers in evaluating the potential congestion hazard,
revising and modifying the curfew durations, and anticipating the congested road sections
so that the public may be advised to avoid such roads during certain times.

Traffic congestion occurs when too many vehicles use common main streets and
service points with limited capacity, which can potentially lead to an increase in traffic
flow and impact commuter’s travel time [8]. The adoption of imposing partial public
curfews in cities resulted in high traffic congestion on the main streets, particularly around
shopping areas, right after a curfew is lifted. For instance, the population of Riyadh
City is approximately under 5 million with about 985,000 vehicles flooding the city main
streets daily [9]. Since post-curfew traffic may adversely impact main streets, it is of great
importance to measure the impacts of different curfew policies on traffic flows. To anticipate
the effect of the public curfew policies on the urban traffic system in Saudi Arabia, it is
important to understand different factors that affect the commuter decision about early
or delayed post-curfew departure to shopping areas. This would be of high importance
in supporting decision-making and giving more useful insights on the implementation of
suitable public curfew policies.

Since the beginning of the pandemic, several studies have been conducted on the
impacts of COVID-19 on urban traffic and transportation systems. Bucsky [10] investigated
the changes in traffic behavior in Hungary during the COVID-19 pandemic and found
significant changes in travel mode and decline in public transit users by almost 80%,
while car usage increased to 65% in response to the spread of the disease. This was
supported by Jenelius and Cebecauer [11], who found almost a 60% decrease in public
transit users in Sweden during the COVID-19 outbreak. Abdullah et al. [12] developed
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a binary logistic model to assess commuters’ travel mode choices (public and private)
during the pandemic and identified gender, income, job type, education level, vehicle
ownership, and safety precautions as important influencing factors. Other researchers
reported the impact of COVID-19 on consumer travel behavior. Consumer grocery trips
right after curfew (which was referred to as panic buying) was observed to increase during
the COVD-19 pandemic compared to other types of shopping and leisure activities [13–17].
The type of shopping was reported to be dependent on the curfew duration and restrictions.
The impact of the COVID-19 pandemic on both traffic volume and car accidents was
studied by Katrakazas et al. [15] using tracking technologies in Greece and Saudi Arabia.
Their study showed a reduction in travel volume with an almost 41% reduction in car
accidents. Similar findings were observed by Saladie et al. [16], who found a 63% reduction
in travel volume along with 74% decline in car accidents in Spain during the year of 2020.
In some of the European countries such as Sweden, Germany, and Austria, the public
preferred travelling for short distances compared to long distances. Furthermore, the
number of people travelling to commercial areas and city centers decreased in response to
the lockdowns and COVID-19 restrictions in those countries [18,19].

While the above studies focused on the impact of the COVID-19 pandemic on changes
in public travel modes and transportation safety, limited studies exist on the COVID-
19 impact on traffic congestion. Huang et al. [20] conducted a data-driven analysis of
travel behavior during the pandemic in China. Various factors were found to influence
the travel behavior and traffic congestion, such as means of transportation, distance, and
location. Muley et al. [21] studied the impact of staged and sequential COVID-19 preventive
measures on traffic mobility in several intersections in Qatar. Their study found that
although the volumes were significantly reduced to almost 30%, traffic patterns were
similar before and after the implementation of the measures. Moreover, traffic violations
and accidents showed a drop of 73% and 37%, respectively, 56t as a response to the
preventive measures. Recently, Xu et al. [22] investigated the changes in traffic patterns
before and during the COVID-19 pandemic in Shanghai, China. Their study found that the
central areas were more affected by the travel restrictions during the pandemic compared
to suburban areas, in which a decrease in the traffic congestion was observed. An analytical
framework was proposed based on the traffic characteristics and areas to help with policy
decision-making of urban road transportation systems during the pandemic. Loo and
Huang [23] studied the changes in traffic congestion patterns due to the enforced curfew in
Hong Kong by calculating a congestion index. Their study showed that under the curfew
law, morning peak-hour congestion was reduced with a significant drop in congestion
index in the central areas and urban cores.

Like other countries, after the nationwide spread of the COVID-19 outbreak in Saudi
Arabia, partial and total public curfew policies were adopted to mitigate the transmission
rate of the virus. From the review of the literature, while the majorities of the studies
focused on the impact of COVID-19 on travel modes and car accidents, none of the past
studies have identified the factors that affect the commuter decision about early or delayed
post-curfew departure to shopping areas and city centers. Hence, it is difficult for the cities’
transportation ministries to identify the high congestion periods during the time of no
curfew and subsequently plan and implement traffic management strategies.

To the best of our knowledge, no methodology in the literature assesses traffic con-
gestion during the no curfew period based on socio-demographic data of an urban neigh-
borhood’s residents. To avoid traffic congestion, the present study primarily aimed to
investigate the commuter’s decision of home-to-shopping center departure (HSD) after
a public curfew is lifted. Primary objectives of the study are to: (i) assess the impact
of different internal (commuter) and external (shopping center) factors affecting traffic
congestion through interview-based surveys, (ii) perform statistical analysis to establish the
significance of the factors on the departure delay decision, and (iii) develop a multicriteria
analysis-based approach to come up with the traffic congestion hazard period within the
no curfew timing. The results of this study are intended to support decision makers in
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anticipating possible traffic congestion due to different curfew strategies and developing or
reviewing appropriate traffic management strategies accordingly.

2. Materials and Methods
2.1. Traffic Congestion Hazard Evaluation Framework

Figure 1 presents the traffic congestion hazard evaluation framework developed in the
present study. First, potential internal (commuter related) and external (shopping center
related) departure delay factors (DF) were identified through published literature and
expert opinion in brainstorming sessions. Internal factors cover commuters’ household and
socioeconomic characteristics (e.g., age, education, and family size), while external factors
are associated with the type (commuter’s choice), location (distance from commuter’s
residence) of the shopping area, and the size of the commuter’s city. Subsequently, a
questionnaire survey was developed that encompassed all the factors and the departure
delay duration (DD) in the form of dichotomous or multiple-choice questions. After
securing ethics approval from the funding agency, the online version of the questionnaire
survey was distributed to around 300 participants. The sample size selection process
considered participants with different age groups, family sizes, job sectors, and education
levels, residing in cities of different sizes (small, medium, and large). Details for city size
classification are given in the subsequent sections. Third, the responses received were
statistically analyzed using Chi-square and Cramer’s V tests to establish the association
between the DF and DD. Fuzzy set theory has been recognized in dealing with imprecise
and subjective judgment [24,25] and was found as an appropriate approach for the linguistic
nature of available data in the present study. Hence, spatial variations of traffic congestion
during the no-curfew interval were assessed using fuzzy synthetic evaluation (FSE).
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2.2. Development of Departure Delay Factors and Questionnaire Survey

After the implementation of curfew, traffic congestion was recognized in the central
cities of almost all the provinces across KSA. Adopting a partial curfew policy may ex-
acerbate the problem of congested roads in large cities such as Riyadh City, capital of
Saudi Arabia. Nevertheless, shopping areas in small- to medium-sized cities also face
traffic congestion prone to post-curfew traffic. Although large cities like Riyadh, with
a population of around 7.4 million, are more prone to congestion, capital cities of other
provinces also face the similar issues during the no-curfew period. The cities of Buraydah,
with a population of around 0.7 million, and Madinah, with 1.52 million, were classified
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as medium-sized cities, while Hail City, with a population of 407,000, was classified as a
small sized-city [26,27].

To determine the post-curfew traffic congestion problem in shopping areas, the re-
sponse of commuters’ departure times after curfew is lifted needs to be known. In order to
understand the commuter perception of delaying the post-curfew departure time, different
internal and external DDF and expected DD were identified. Subsequently, both the DF and
DD were translated into a survey format, which was approved by the ethics department
at Qassim University, Saudi Arabia. Table 1 presents the DF, DD, and the corresponding
questions asked from the commuters. The online questionnaire survey was sent to varying
people living in Riyadh, Buraydah, Madinah, and Hail cities using an online question-
naire. Each observation in the travel survey represents the perception of one commuter
of how long he (or she) delayed their departure based on the internal factors. The survey
targeted individual households commuting from their houses between 6:00–10:00 am, the
no-curfew period.

Table 1. Internal and external factors for evaluating commuter home-to-shopping center departure
delay after COVID-19 curfew timings.

No Factors Units LD 1 MD 2 SD 3 Questions Asked

Departure delay factors (DF)

1. Internal Factors

1.1 Family size No >10 5–10 <5 How many persons live in your house?

1.2 Involvement in other
personal activities Y/N Yes - No If sometimes delay, are you involved in some

personal activities?

1.3 Nature of job - PS 4 GS 5 NPO 6 What is your job sector?

1.4 Education level - HS 7 D/G 8 HE 9 What is your education level?

1.5 Age years >50 35–50 ≤35 Which of the following age group you belong to?

1.6 Number of vehicles No >2 2 1 What is the number of cars in your household?

1.7 Number of children No >2 1–2 0 How many children are there in your house?

1.8 Availability of driver Y/N Yes - No Do you have a driver in your household?

2. External Factors

2.1 Availability of shopping
center of choice Y/N No - Yes

What is the size of the nearest shopping center to
your residence?

Which types of shopping center do you prefer to
shop from?

2.2 Distance to Shopping center Km >4 2–4 <2 What is the approximate distance from your
residence to the nearest shopping center?

2.3 Size of the city Population Large Medium Small What is the region of your residency?

Departure delay duration (DD)

3.1 Departure delay Y/N Yes - No
Do you ever delay home-to-shop centers

departure time to avoid traffic congestion after a
public curfew is lifted?

3.2 Delay time minutes >30 15–30 <15 If sometimes delay, on average how many
minutes do you delay?

1 Long Delay (LD), 2 Moderate Delay (MD), 3 Short Delay (SD), 4 Private Sector (PS), 5 Government Sector (GS),
6 Non-profit Organization (NPO), 7 High School (HS), 8 Diploma/Graduation (D/G), 9 Higher Education (HE).

A random sampling approach was used to select a representative sample. First, com-
mon characteristics (internal factors) were identified such as family size (1.1 in Table 1),
job type (1.3), age (1.4), and education level (1.5). Particular to the COVID-19 situation,
these characteristics were used in a study on the COVID-19 impact on transportation
mode selection [12]. Second, characteristics (DF) specific to the present study, such as
involvement in activities (1.2), number of vehicles (1.6), and number of children (1.7), and
availability of driver (1.8) were identified using expert opinion and personal observations.
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Finally, recent studies were consulted to identify the characteristics (external factors) af-
fecting traffic congestion in urban areas, such as size of city [28] and distance and type of
shopping center [29].

In Table 1, we tried to capture the commuter’s personal household related aspects
through the internal DF. The last column of the table presents the related questions asked
from the commuter. For example, the households with many family members may decide
for a longer delay to their home-to-shopping center departure (HSD). Similarly, older
commuters or the families with more children may also delay their departures for grocery
shopping. Generally, people working in the private sector are busier and may delay their
trips. Availability of more than one car and a driver can also relax an individual, which
delays HSD. We also thought that external factors, such as shopping center of choice
(e.g., convenient store, medium-sized market, and supermarket) and its availability in the
near vicinity, can also influence the commuter’s decision and thus included them in the
questionnaire. Finally, the information regarding the departure delay duration was also
gathered through the questions mentioned in the last column.

2.3. Statistical Analysis

The data collected through the questionnaire provided the information regarding both
the DF and DD. Statistical analysis of the collected data was performed to estimate the
percentage frequencies of all the DF for different DD (long, moderate, and short delay).
Before using this data to the proposed model for identifying the peak congestion period,
the Chi-square independence test established the level of association (weak, moderate, or
strong) between the DF and DD. An example of the null and alternative hypothesis for
family size is given in the following.

H0: The null hypothesis: Family size of the commuter is a perfectly independent factor and does
not affect the home-to-shopping center departure delay.

Ha: The alternative hypothesis: Family size of the commuter is a dependent factor and somehow
affects the home-to-shopping center departure delay.

Similar hypotheses were applicable for the remaining DD. The Chi-square method is
based on expected frequencies at which the null hypothesis holds. The expected frequencies
for all the DF against the given DD were calculated using the following relationship [30]:

eij =
oi × oj

N
(1)

where eij denotes the expected frequency, oi and oj presents the marginal column and row
frequencies respectively, and N is the total number of responses.

As the oi and oj differ, the residuals were estimated as:

rij = oij − eij (2)

A larger rij value (absolute) denotes that there is a large difference between the ob-
served responses and the null hypothesis. Subsequently, all the residuals were added to
estimate the chi-square

(
χ2) test statistic as:

χ2 = ∑
(
oij − eij

)2

eij
(3)

In the next step, the independence of the variables in the given population, in terms of
p-value, was estimated for a given χ2 and degree of freedom using the following equation.

d f = (i− 1)× (j− 1) (4)

where i and j are the number of rows and column (categories) in the contingency table.
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To reject the null hypothesis of independence, the calculated chi-squared values were
compared with the critical values from the chi-squared distribution at p < 0.05. The critical
values are 3.84, 5.99, 7.82, 9.49, 11.07, and 12.59 with corresponding df of 1, 2, 3, 4, 5,
and 6. The chi-square values higher than the critical values reject the null hypothesis
of independence.

As the performance of the chi-square test depends on an adequately large sample size,
the significance estimated by this test does not inform the degree of effect. Therefore, the
effect size can give the magnitude of effect. The strength of association between the DF
and DD was estimated using the effect size (ES) of the chi-square test for each DF using
Cramér’s V, which essentially is a kind of Pearson correlation for categorical variables as
used in the present study. It was determined by:

V =

√
χ2

n·d f
(5)

where n is the total number of responses, dividing χ2 by the number, and taking the square
root. Cohen [31] presented the interpretation of effect size using the Cramér’s V method.
For the df of 5 or higher, the fields have small association if ES < 0.04, medium association
if 0.04 < ES ≤ 0.13, and large association if ES > 0.22 [31].

2.4. Traffic Congestion Hazard Period Assessment

To identify the time segment with the highest congestion during the no-curfew interval,
the following assumptions were established through the brainstorming sessions supported
by practical observations in Saudi Arabia and news reporting by electronic and print media
during the era of COVID-19 curfews around the globe:

• Commuters with immediate (no delay) departures contributed to traffic congestion in
the earliest time segment of the no-curfew period.

• Commuters with shortly (<15 min) delayed departures contributed to traffic congestion
in the early-middle time segment of the no-curfew period.

• Commuter with moderately (15–30 min) delayed departures contributed to traffic
congestion in the middle time segment of the no-curfew period.

• Commuters with long (>30 min) delayed departures contributed to traffic congestion
in the last time segment of the no-curfew period.

The statistical analysis in the previous section established the linkage between the
DF and DD. The information obtained from survey responses was aggregated using
the multicriteria evaluation model to identify the time segment with the highest traffic
congestion hazard. The hierarchical-based Fuzzy Synthetic Evaluation (FSE) approach
presented in Figure 2 aggregated the information in the form of DF. The step-by-step
procedure given in the following was modified from Zhao et al. [25]:
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Figure 2. Hierarchical-based Fuzzy Synthetic Evaluation approach for assessing traffic congestion
period. Details of internal and external factors shown at level 1 are given in Table 1.

174



Computation 2022, 10, 132

Levels 1 and 2: Estimate the impact of internal and external factors on departure delay
The impact for each internal factor (FI) was obtained from the questionnaire survey

given in Table 1. The UoD linguistically defines a four level-rating (Sj = 0, 1, 3, 5) to evaluate
the impact as no delay (0), short delay (1), moderate delay (3), and long delay (5). The
term f I

i0 essentially describes the degree of association of each factor to these levels. The
following equation describes this step in the matrix form:

(
I I
i

)
1∗4

=
(

f I
i0, f I

i1, f I
i3, f I

i5

)
(6)

where I I
i represents the internal factor (i = 1, 2, . . . , n) and n is the total number of inter-

nal factors.
The impact of each internal factor (FI

i ) was calculated by the following equation:

FI
i = ∑4

i=1

(
Sj ∗ f I

ij

)
(7)

To calculate the overall impact of internal factors at level 2 of Figure 2, the importance
weight of each internal factor was estimated using the following equation:

wI
i, = FI

i / ∑k
i=1 FI

i (8)

The FSE method aggregates the weighted matrix given in Equation (7) and the eval-
uation matrix given in Equation (6) and presents the results in the form of the following
equation to estimate the membership functions for each internal factor, where i = 1, 2, . . . , t:

dI
tj = ∑k

i=1 wI
i ∗ f I

ij, k = 8 (9)

(
DI

t

)
1∗4

=
(

W I
i

)
1 ∗ 8
∗
(

FI
i

)
8 ∗ 4

=
(

dI
t0, dI

t1, dI
t3, dI

t5

)
(10)

Knowing the membership functions of t number of factors’ groups at level 2, the
overall impact of internal factors (FI) can be estimated as:

FI = ∑4
i=1

(
Sj ∗ dI

tj

)
(11)

Similarly, the overall impact of external factors (FE) was estimated as:

FE = ∑4
i=1

(
Sj ∗ dE

tj

)
(12)

Levels 3 and 4: Calculate the overall impact of departure delay factors and departure delay duration
on the traffic congestion hazard period

To estimate the impact of DF and DD on traffic congestion hazard period, their respec-
tive importance weights were estimated using the following equation:

wDF
Gt =

(
∑k

i=1 Fi

)
/ ∑q

t=1

(
∑k

i=1 Fi

)
t
, q = 2 (13)

where wDF
Gt are the importance weights of the two sub-groups (FI and FE) of departure

delay factors, t represents the number of groups (q = 2), and i denotes the number of factors
under FI (k = 8) and FE (k = 3).

Furthermore,
dDF

Allj= ∑q
t=1 wDF

Gt ∗dDF
tj , q = 2 (14)

(
DDF

All

)
1∗4

=
(

WDF
Gt

)
1∗2
×
(

DDF
G

)
2∗4

=
(

dDF
t0, dDF

t1, dDF
t3, dDF

t5

)
(15)

DF = ∑2
i=1

(
Sj ∗ dDF

tj

)
(16)
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Similarly, (
DDD

i

)
1∗4

=
(

f DD
i0, f DD

i1, f DD
i3, f DD

i5

)
(17)

and the impact of departure delay duration (DD) at level 3 can be estimated as:

DD = ∑4
i=1

(
Sj ∗ f DD

ij

)
(18)

Finally, the impact of DF was aggregated with the DD at level 4 to estimate the traffic
congestion hazard period (HTC) as:

HTC =
√

DF × DD (19)

3. Results
3.1. Survey Responses

The online survey was sent to around 250 respondents in June 2020. After the asked
time to return the questionnaire, a satisfactory response rate of 20% was received from
50 participants residing in the four provinces of the country [32]. As the survey responses
provided the opinion of the participants about both the departure delay and delay duration,
statistical analysis estimated the percent frequencies for all the DF against different DD.
Figure 3a–k presents the stacked bar charts for all the internal and external departure
delay factors as given in Table 1. Figure 3a shows that overall, the small-sized families
with less than 10 persons had lesser tendency to delay the HSD, while 80% of the large-
sized families with more than 10 persons delayed their HSD for over 30 min. As per
Figure 3b, the respondents busy in some work at home mostly delayed their departure, i.e.,
40% of the busy persons delayed their departure for over 30 min. It was also found that
people who work in the private sector (usually busy schedule of possible online working)
delay their shopping visits (Figure 3c). The results revealed that 80% of the respondents
working in non-profit organizations did not delay their HSD, while only 43% of public
sector employees departed immediately after the curfew lift.

Figure 3d illustrates that highly educated people have a general tendency to go early
for shopping after lifting of curfew period. Around 80% of the highly educated respondents
reported their departure within 15 min after the curfew lift. It can be seen in Figure 3e
that around 55% of people older than 35 years of age delay their HSD more than 15 min in
comparison to 30% of younger respondents. In Figure 3f, commuters having more than
one vehicle have more leisure to delay their shopping visits. Around 60% of people with
one car immediately depart after the curfew timing, while around 70% of owners with
two vehicles leave after 15 min. Larger families with more children are generally busy
and delay their HSD (see Figure 3g). For instance, around 90% families with more than
two children do not immediately depart to shop. Availability of driver is another factor that
can delay the home to shopping area departure. Figure 3h shows that 40% of households
with drivers delayed their trips for more than 15 min in comparison to 26% of households
with no drivers.

Figure 3i shows that the commuters (65%) who do not reside nearby the shopping
center of their choice usually delay their HSD, because by delaying their trip they might
face less traffic. Likewise, longer distance to the shopping center of commuters’ choice also
leads to HSD delay, as illustrated in Figure 3j. Figure 3k reveals that the citizens of smaller
cities leave for shopping within 30 min after the lift of curfew period. Finally, Figure 3l
displays that 44% of the commuters did not delay their shopping visits, while 18% of them
delayed their trips for more than 30 min. The distribution of departure delay shown in
Figure 3l and the impacts of different factors described in Figure 3a–k demand a more
detailed methodology to identify the potential period with highest traffic congestion.
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> 4 Km (n = 1)

2 - 4 Km (n = 21)

< 2Km (n = 28)

(j) Not delayed <15 15 - 30 > 30

0% 20% 40% 60% 80% 100%

High School (n = 7)

Dip/ Grad (n = 34)

Higher education (n = 9)

(d) Not delayed <15 15 - 30 > 30

0% 20% 40% 60% 80% 100%

Yes (n = 8)

No (n = 24)

(h) Not delayed <15 15 - 30 > 30

0% 20% 40% 60% 80% 100%

No (n = 33)

Yes (n = 17)

(i) Not delayed <15 15 - 30 > 30

Figure 3. Stacked bar charts showing percentage frequencies for each departure delay factor for
each departure delay duration: (a) family size, (b) involvement in other activities, (c) nature of job,
(d) education level, (e) age, (f) number of vehicles, (g) number of children, (h) availability of driver,
(i) availability of shopping center of choice, (j) distance to shopping center, and (k) size of the city;
(l) percentage distribution of departure delay.
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3.2. Statistical Analysis

Prior to applying the survey findings to assess the traffic congestion hazard period
(HTC) using the hierarchical framework presented in Figure 2, the level of association
between the DF and DD was established using the Chi-square independence test. The null
and alternate hypothesis were established between all the internal and external depar-
ture delay factors and departure delay duration. An example for family size is given in
Section 2.3. Table 2 presents the rationale to develop the null and alternative hypothesis
for all the departure delay factors. The table also presents the results of Chi-square tests,
which are described in the following section.

Table 2. Hypothesis and the level of association between DF and DD.

No Factors Rationale of the Hypothesis Chi-Square
(χ2)

Significance at
p < 0.05 Cramer’s V Association

1. Internal Factors

1.1 Family size
Commuters with large family size delay

home-to-shopping center departure (HSD)
for longer duration.

18.8 Significant 0.43 Large

1.2 Involvement in other
personal activities

Commuters involved in personal activities
delay HSD for longer duration. 16.5 Significant 0.60 Large

1.3 Nature of job Commuters working in the private sector are
busier and delay HSD for longer duration. 7.7 Not significant 0.28 Large

1.4 Education level Less educated commuters’ activities delay
HSD for longer duration. 4.5 Not significant 0.21 Medium

1.5 Age Older commuters delay HSD for
longer duration. 11.4 Not significant 0.34 Large

1.6 Number of vehicles Commuters having more than one vehicle
delay HSD for longer duration. 8.3 Not significant 0.29 Large

1.7 Number of children Households with more children delay HSD
for longer duration. 11.5 Not significant 0.34 Large

1.8 Availability of driver Presence of a driver in a household delay
HSD for longer duration. 0.8 Not significant 0.12 Medium

2. External Factors

2.1 Availability of shopping
center of choice

Non-availability of shopping center of
commuter’s choice delays HSD for

longer duration.
9.5 Significant 0.44 Large

2.2 Distance to shopping
center

Longer distance from shopping center of
commuter choice delays HSD for

longer duration.
5.1 Not significant 0.23 Large

2.3 Size of the city Citizens of larger cities delay HSD for
longer duration. 7.8 Not significant 0.28 Large

Due to space limitations, the detailed calculations for establishing the association
between family size and DD are not given here. First, the obtained data was populated in
the contingency table that shows the observed frequency of responses. Table 3 displays
the information as percentages for better understanding and was used to develop Figure 3.
There are three family size categories and four departure delay categories. The data clearly
shows that 44% of the respondents did not delay HSD, while 38% delayed their shopping
trips for more than 15 min. The table also shows that 80% of the commuters with family
size larger than 10 delayed their HSD for more than 30 min.

The subsequent step establishes the expected frequencies, which are essentially the
frequencies we expect in the observed data if the null hypothesis holds. The expected
frequencies calculated using Equation (1) are given in Table 4. Next, the residuals as
the difference between the observed and expected frequencies were determined using
Equation (2). Table 5 shows the Chi-square values for each cell of the contingency table
determined from Equation (3). The final χ2 value (sum of the columns’ total of Table 5)
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was found to be 18.8. Equation (4) estimated the degree of freedom (df = 6), which informs
the probability of finding χ2 ≥ 18.8 ≈ 0.0188. Finally, the scale of association between
the groups was found using Equation (5). Chi-square values for df = 6 and p-value < 0.05
showed that only two internal factors (family size and involvement in other activities)
and one external factor (availability of shopping center of choice) significantly depend on
departure delay duration with Chi-squared values higher than the critical values. However,
with the small number of responses (n = 50), Cramer’s V test established the magnitude of
effect for all the internal and external factors. Table 2 presents that all the factors have a
large magnitude of effect, except education level and presence of driver in a household.
Hence, all the selected factors were used for assessing the HTC with the help of the FSE
methodology described in Section 2.4.

Table 3. Observed percentage frequencies for family size (n = 50).

Departure Delay
Family Size

Total
More Than 10 (n = 5) 5 to 10 (n = 22) Less Than 5 (n = 23)

Not delayed 0% 55% 43% 44%

<15 0% 27% 13% 18%

15–30 20% 14% 26% 20%

>30 80% 5% 17% 18%

Total 100% 100% 100% 100%

Table 4. Expected frequencies for perfectly independent variables.

Departure Delay
Family Size (No of Persons)

Total
>10 5–10 <5

Not delayed 2.2 9.68 10.12 22

<15 0.9 3.96 4.14 9

15–30 1 4.4 4.6 10

>30 0.9 3.96 4.14 9

Total 5 22 23 50

Table 5. Contingency table showing calculated Chi-square values.

Departure Delay
Family Size (No of Persons)

>10 5–10 <5

Not delayed 2.2 0.6 0.0

<15 0.9 1.1 0.3

15–30 0.0 0.4 0.4

>30 10.7 2.2 0.0

Total 13.8 4.3 0.7

3.3. Assessment of Traffic Congestion Hazard Period

Equation (6) calculated the degree of association of each factor (internal of external) to
the four-level-rating (Sj = 0, 1, 3, 5) as described in Section 2.4. The term I I

i for family size
was calculated as:
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(
I I
1

)
1∗4

=
(

f I
i0, f I

i1, f I
i3, f I

i5

)
= (0.44, 0.26, 0.20, 0.10)

The impact of family size FI
1 was estimated using Equation (7) as:

FI
i =

4

∑
i=1

(
Sj ∗ f I

ij

)
= 0× 0.44 + 1× 0.26 + 3× 0.20 + 5× 0.1 = 1.36

Similarly, FI
i for all the internal factors were calculated.

Importance weights of all the internal factor were estimated to calculate the overall
impact of internal factors at level 2 of Figure 2, using Equation (8):

wI
1 = FI

i / ∑k
i=1 FI

i
= 1.36/(1.36 + 1.76 + 2.08 + 1.68 + 1.16 + 1.56 + 1.24 + 0.88) = 1.36/11.72 = 0.116

Similarly, the weights of all the internal and external factors were calculated.
Subsequently, to apply FSE, Equation (10) estimated the membership functions for

internal factors:
(

DI
1
)

1∗4 =
(
W I

1
)

1∗8∗
(

FI
1
)

8∗4
= [0.116 0.150 0.177 0.143 0.099 0.133 0.106 0.075]

×




0.44 0.26 0.2 0.1
0.44 0.26 0.0 0.3
0.44 0.02 0.32 0.22
0.44 0.08 0.40 0.08
0.44 0.30 0.22 0.04
0.44 0.16 0.30 0.1
0.44 0.24 0.30 0.02
0.44 0.48 0.0 0.08




DI
1 =

[
0.44 0.197 0.230 0.132

]

Similarly, the membership functions for external factors were estimated as:
(

DE
2
)

1∗4 =
(
WE

2
)

1∗8∗
(

FE
2
)

8∗4

=
[
0.39 0.228 0.382

]
×



0.44 0.22 0.0 0.34
0.44 0.3 0.24 0.02
0.44 0.08 0.3 0.18




DE
2 =

[
0.44 0.185 0.169 0.206

]

Then, with known membership functions of t number of factors’ groups at level 2, the
overall impact of each group (FI and FE) was estimated using Equations (11) and (12):

FI = ∑4
i=1

(
Sj ∗ dI

tj

)
= 0× 0.44 + 1× 0.197 + 3× 0.230 + 5× 0.132 = 1.547

FE =∑4
i=1

(
Sj ∗ dE

tj

)
= 0× 0.44 + 1× 0.185 + 3× 0.169 + 5× 0.206 = 1.722

At level 4, the impacts of DF and DD on HTC were aggregated by estimating their
respective importance weights using Equation (13):

wDF
FI

=
1.547

1.547 + 1.722
= 0.473

wDF
FE

=
1.722

1.547 + 1.722
= 0.527
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and
(

DDF
All
)

1∗4 =
[
0.473 0.527

]
×
[

0.44 0.197 0.23 0.132
0.44 0.185 0.169 0.206

]

=
[
0.44 0.191 0.198 0.171

]

and
DF = 1.64

Similarly, (
DDD

i

)
1∗4

=
[
0.0 0.20 0.54 0.90

]

DD = 1.64

Finally, the impacts of DF and DD were aggregated to estimate the traffic congestion
hazard period (HTC) using Equation (19) as:

HTC =
√

DF × DD = 1.64

4. Discussion

The methodology developed in the present research contains two primary phases. The
first phase identifies internal and external factors encompassing socio-economic variables of
the commuters residing in small, medium, and large cities which can affect departure (early
or late) decision. All the internal and external factors were identified through literature
and expert opinion during brain storming sessions. The results illustrated in Section 3.1
highlights some important characteristics of the commuters during pandemic restrictions.
Man-Keun et al. [33] investigated the impact of family size on grocery shopping and
found that large-sized households prefer large discount stores even if not located in the
near vicinity. Preparing for grocery shopping for large families also takes much longer in
comparison to small families in order to find several missing items to meet the needs of
family members [34]. Age, education level, and job type play an important role in decisions
to commute after curfew lift. Their findings are in line with a recent past study on selection
of traffic modes during COVID-19 by Abdullah et al. [12]. While evaluating the impact
of job sector on commuter departure decision, it was also reported that private sector
employees remained busier than public sector ones due to a faster transition and technical
support in the private sector during the COVID-19 pandemic [35].

The study considered size of the city as a factor contributing to traffic congestion after
curfew lift. High congestion has always been associated with larger cities [36]; nevertheless,
ever-increasing population, inadequate capacity of streets, and mixed land uses pose
diverse impacts of traffic in smaller cities as well, such as high accident frequencies in
urban centers [28]. The findings of the present study revealed that departure patterns
in small- and medium-sized cities are almost consistent with those in large cities during
the COVID-19 period. Another reason for such findings is that the small- and medium-
sized cities in this study are also capital cities of their respective provinces, with all the
types of commercial, public, and residential land uses as large cities. Statistical analysis
established that almost all the factors have large magnitude of effect, except education level
and presence of driver in a household.

The past studies effectively employed FSE for risk assessment based on human per-
ception and uncertain expert judgment. Akter et al. [37] used FSE and Intergovernmental
Panel on Climate Change (IPCC) methods to develop risk assessment maps. They found
that FSE eliminated the uncertainties associated with expert judgment in different IPCC
methods and generated one risk map for a known hazard domain. Zhao et al. [28] used the
FSE approach for risk assessment of green building projects in Singapore. Their approach
aggregated the likelihood of occurrence and risk criticality of risk factors. They used a
questionnaire survey method to interview experienced (over 10 years) project managers
to ascertain the risks involved in green building projects. Their approach was modified
for traffic hazard assessment in the present research. Same values of DF and DD affirm

181



Computation 2022, 10, 132

the computational accuracy of the proposed approach. Based on the UoD defined prior to
conducting the commuter survey, the calculated HTC value of 1.64 ascertains the highest
congestion after 20 min of curfew lift, where “0” corresponds to immediate home-to-
shopping center departure right after the curfew lift; “1” to a departure within 15 min; “3”
to a delay between 15 and 30 min; and “5” to a departure delay of more than 30 min.

Figure 4 illustrates a theoretical display of the highest traffic congestion hazard period
due to home-to-shopping center departure delay by commuters. Based on the questionnaire
survey, the findings of this study show that 44% of the people depart as soon as the curfew
lifts. Without much delay, an additional 20% of commuters leave their homes (within
15 min of the lift) for shopping that further increase the traffic congestion on the urban
roads and streets. In the next 15 min (between 15 and 30 min after the lift), almost 82% of
the total commuters have left their homes for shopping. The remaining 18% of commuters,
who leave their homes after half an hour, are assumed to have a mindset of using the
last part of the no curfew period. The behavior of the commuters illustrated in Figure 4
directs to the traffic congestion hazard in the early part of the no curfew period. The figure
also shows that around 60% to 80% of the residents in an area occupy the capacity of
urban streets and parking areas during his period. As per Figure 4, the highest possible
congestion can be expected after half an hour of curfew lift to the end of the first hour.
Responsible traffic agencies can adopt appropriate traffic management measures during
this part of the day during a pandemic. The measures may include the following actions
by a traffic regulatory agency [38]: reducing the need and length of a trip, promoting
nonmotorized and public transport, promoting carpooling, shifting peak-hour travel, and
diverting travel from congested locations. For the specific scenario of traffic in Saudi Arabia,
the last two measures seem more practical.
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Figure 4. A theoretical illustration of highest traffic congestion period after COVID-19 curfew timings.
Assumed no curfew period is 3 h based on 2021 no curfew timings in Saudi Arabia.

Modern transport system models (TSM) integrated with traditional approaches can
evaluate the potential effects of traffic demand variations during COVID-19. For instance,
floating car data can be used in TSM supported with big data for travel demand analysis [39].
Using the proposed methodology, the regulators can use socio-demographic data to identify
the traffic congestion hazard period after the curfew timing. The data regarding the internal
or external factors with higher significance and large effect size should be given importance.
Interestingly, such internal DF need simple and easily available data from the General
Authority of Statistics in Saudi Arabia, such as family size, nature of job, age of the
commuter, and number of children in a household. The only important external factor is
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availability of shopping center of choice in the near vicinity. As most of the cities in Saudi
Arabia possess similar cultural practices, layouts of urban streets, and types of shopping
centers, the percentages found in the present research can be used to assess these factors.
Accordingly, the traffic regulators can identify the highest congestion period in an urban
setting during the pandemic era.

The subjective organization of the proposed traffic congestion hazard assessment
framework during pandemics’ curfew periods is a limitation of the present study. Future
studies following a similar approach using larger data sets can establish the credibility of
the objective source basis and a practical reference value of the methods used.

5. Conclusions

Traffic congestion is evident after curfew lifting during the era of the COVID-19
pandemic. In an urban neighborhood, a congestion episode depends on the percentage of
commuters leaving for home-to-shopping centers over the span of the no curfew period.
The study found that departing early or delaying the shopping trip depends on certain
internal (commuter related) and external (shopping related) factors. Among internal
factors, family size and business (involvement in other activities) were found to be the
most significant factors affecting the departure delay, while availability of shopping center
of choice significantly affected the decision amongst the external factors. Age, number of
children, and size of the city also influenced the commuters’ decision about delaying the
departure. Commuters’ departure patterns in the small- and medium-sized cities (capitals
of respective provinces) were found to be consistent with large cities during the COVID-19
period, primarily due to similar commercial, public, and residential activities.

Chi-square and Cramer’s V tests established the statistical significance of the associ-
ation between the departure delay factors and the departure delay duration. Chi-square
values widely ranged between 0.8 and 18.8 for internal factors and from 5.1 to 9.5 for
external factors. Cramers’ V established large associations for most of the factors, except
education level and availability of driver in a household. Fuzzy synthetic evaluation (FSE)
can effectively ascertain the period of highest traffic congestion based on the commuters’
responses. The study revealed that traffic congestion hazard in the early part (precisely the
second half of the first hour) after the curfew lift needs particular attention of the traffic
regulatory agencies. Future studies can validate the findings of the present research by
implementing the proposed approach in different areas and conducting traffic monitoring
studies after the curfew lift during pandemics.
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Abstract: Generating dynamic operators are constructed here from the cumulative case function to re-
cover all state dynamics of a Susceptible–Exposed–Infectious–Recovered (SEIR) model for COVID-19
transmission. In this study, recorded and unrecorded EIRs and a time-dependent infection rate are
taken into account to accommodate immeasurable control and intervention processes. Generating
dynamic operators are built and implemented on the cumulative cases. All infection processes, which
are hidden in this cumulative function, can be recovered entirely by implementing the generating
operators. Direct implementation of the operators on the cumulative function gives all recorded
state dynamics. Further, the unrecorded daily infection rate is estimated from the ratio between IFR
and CFR. The remaining dynamics of unrecorded states are directly obtained from the generating
operators. The simulations are conducted using infection data provided by Worldometers from ten
selected countries. It is shown that the higher number of daily PCR tests contributed directly to
reducing the effective reproduction ratio. The simulations of all state dynamics, infection rates, and
effective reproduction ratios for several countries in the first and second waves of transmissions are
presented. This method directly measures daily transmission indicators, which can be effectively
used for the day-to-day control of the epidemic.

Keywords: COVID-19; SEIR models; dynamics generator; unrecorded infections; Richard’s curve

1. Introduction

The COVID-19 pandemic is an ongoing global disease caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus was reported to be first
identified in December 2019 in Wuhan, China [1]. It was suspected that the original
infection came from animals in the Wuhan Animal Market [2]. The number of cases grew
exponentially, with more evidence of newly infected people who had never been visiting the
market. This fact provided evidence that human-to-human transmission was the primary
source of the fast transmission [3]. Immediately, the cases spread throughout all provinces
in the country and even passed the borders through the neighboring countries. At the end
of January 2020, the government of Wuhan imposed a total lockdown, preventing people
from entering and leaving the city of Wuhan. The strict lockdown was also extended in
response to the rapid spread of the virus [4].

Effort to predict the progress of COVID-19 transmission was made using the early data
to obtain insight into infection characteristics. Zhang et al. used the stochastic model of the
SEIR (Susceptible–Exposed–Infected–Recovery) model and provided the forecasts on the
number of cases in several provinces in China, i.e., Shanghai, Beijing, Guangdong, Zhejiang,
Chongqing, and Hunan using [5]. It was estimated that the virus transmission would be
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significantly disappearing in those regions in March 2020. The compartmental model-based
predictions on COVID-19 figures were also conducted by Bertozzi et al. [6], who used the
generic SIR (Susceptible–Infected–Recovery) model. They studied the COVID-19 spread in
California and predicted the end of the first outbreak in August 2020. Not limited to that,
other work utilized the Richard’s Curve to yield the extrapolated figure of the infection
trajectories. The work conducted by Nuraini et al. predicted that the spread would reach
the peak in late March 2020 and soon decrease significantly until totally vanishing in April
2020 [7].

Learning from the experience of many countries during the first wave of transmission,
the detection of infected persons was a crucial aspect. The availability of a sufficient amount
of diagnostic tests was necessary. In the early phase of the pandemic, many developing
countries were struggling to provide the proper amount of specimens to detect COVID-19.
During the first wave transmission, as a non-manufacturer of Polymerase Chain Reaction
(PCR) Reagents for real-time COVID-19 detection and due to the limitations of world
supply, health authorities in Indonesia could not fulfill the daily PCR testing target as was
recommended by the WHO ([8,9]). The lack of testing capacity certainly implies the low
recorded cases as compared to total infections. Consequently, as many countries were
already able to contain the disease within two months, other countries, including Indonesia,
were still facing the outbreaks for a more extended period.

The complication of COVID-19 transmission is mainly related to the inability of the
authorities to record all infected people and people’s behavior toward the disease. It is a
challenge for epidemiologists to construct simple models that can accommodate the most
important phenomena. Compartmental models are very widely used in the construction of
the disease transmission [10]. The simplest compartmental model for direct transmission
is known as the SIR model, which contains susceptible (S), infectious (I), and recovered
(R) compartments. Ross already applied this model in the early 20th century [11]. SIR-
type models for COVID-19 transmission were used extensively in the early phase of
the pandemic. Typical observations in the early transmission focused on predicting the
outbreak’s peak and the disappearance of the disease by exploiting the daily COVID-19
data. Yang et al. predicted the epidemic’s future using the modified SEIR model linked with
artificial intelligence. For daily progress, Susanto et al. estimated the effective reproduction
ratio using the transmission data in Italy [12]. We have constructed, in Section 2, the basic
formulation of the generating operators for the simple SEIR dynamics, which are then
generalized to accommodate both recorded and unrecorded cases, as given in Section 3.
Using the cumulative infections data provided by Worldometers, the simulations are
conducted for country comparisons, i.e., Brazil, China, Germany, India, Indonesia, Islamic
Republic of Iran, Italy, Japan, Republic of Korea, and Singapore.

2. Generating Operator in a Simple SEIR Model

During the early transmission of COVID-19, there was pressure in each affecting
country to measure the daily reproduction ratio and predict the time when the outbreak
was slowing and disappearing. With limited data and information, the simple SEIR model
was used extensively. We formulate the concept of a generating operator to extract all states,
which was first introduced in [13].

2.1. Model Formulation

We start the SEIR transmission model of COVID-19 with susceptible compartment S,
exposed compartment under incubation period E, infected and infectious compartment I,
and recovered compartment R. The overall process of infections is shown in Figure 1.
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Figure 1. Flow diagram of the simple SEIR model.

The governing equations of the simple SEIR model are formulated as:

dS
dt

= π − a(t)
SI
N
− µS,

dE
dt

= a(t)
SI
N
− γE− µE,

dI
dt

= γE− η I − µI, (1)

dR
dt

= η I − µR,

where the parameters π, µ, γ, η, are the recruitment rate, the natural death rate, the inverse
of the incubation period, and the inverse of the recovery period, respectively. The infection
rate is given as a time-dependent parameter a(t) to accommodate the intervention process,
which is not measurable in the field. In this model, the total population is assumed constant,

i.e., N = S + E + I + R =
π

µ
. When it comes to the interaction process, we assume that the

population is well-mixed, which can be physically analogous to ‘well-stirred’ individuals
that force infected and susceptible to all-to-all interaction at all times. This assumption
simplifies the mathematics evolutionary processes, which makes the analytical solutions
possible [14].

A detailed description of parameters introduced in system (1) is given in Table 1.

Table 1. Descriptions of parameters given in system (1) and (24).

Parameters Definition Value Source

N Number of overall population adjusted [15]
π Natural recruitment rate adjusted [16]
µ Natural death rate 1

70×365 [16]
a(t) Infection rate estimated -
ω(t) Transition rate adjusted -
γ−1 Incubation period of COVID-19 1

6 [17]
η−1 Infection period of COVID-19 1

14 [18]

Note that those being labeled with ‘estimated’ in Table 1 will be evaluated using the
generating operator, while the others will be adjusted to specific regions. The transition
rate ω(t) exists in the generalized model, the values of which will be further explained in
the next section.

In the case of constant infection rate a(t) = a, the basic reproduction ratio R0, repre-
senting the average number of secondary infections caused by one infected person in the
early pandemic [19], is given as

R0 =

√
aγ

(γ + µ)(η + µ)
. (2)
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As time evolves, the basic reproduction ratio is no longer appropriate to measure the
progress of the transmission. The corresponding effective reproduction ratio, denoted with
R0E, is intended for tracking in the progress of transmission, which is given as:

R0E =

√
a(t)γ

(γ + µ)(η + µ)

S(t)
N

. (3)

The effective reproduction ratio is basically a basic reproduction ratio but with the
time-dependent transmission rate and additional term of S(t)/N. This formula is obtained
by implementing the NGM method without substituting the Disease Free Equilibrium [12].

In the following subsection, the state generating operator and a method for estimating
the transmission rate a(t) will be constructed. This construction gives a more adaptable
estimate to track the progress of transmission involving intervention in the field.

2.2. Cumulative Case Data for Constructing the Generating Operator

The inability of the timely and accurate collection of COVID-19 data in daily case
reports occurs in many countries. Discrepancies of confirmed official COVID-19 data were
reported from many countries, such as Bangladesh [20], India [21], and the USA ([22,23]).
The quality of the COVID-19 data certainly contributes to the consistency of the model and
the accuracy of prediction.

The fluctuation of the daily cases also contributes to the prediction bias due to errors
in data fitting. The choice of cumulative data for generating strategic indicators is mainly
due to the smooth profile of the data to allow accurate fitting. Detail transmission behavior
is kept within the cumulative case data, which can be recovered by identifying the proper
generating operator. The S-curve shape of the cumulative data is best fitted with (one of
them) Richard’s curve.

We start with data fitting of cumulative cases using the Generalized Linear Growth
Model (GLGM), widely known as Richard’s Curve ([24,25]). The model comprises four
parameters, denoted by Ci, i ∈ 1, 2, 3, 4. The value of C1 acts as the final epidemic size,
with limt→∞ K(t) = C1, whereas C3 represents the intrinsic growth rate. The higher this
value, the steeper the curve at the early outbreak. The other two values are C2 and C4,
which both act as the adjuster. While the former adjusts the lag phase of the curve, the latter
is strongly related to the adjustment of the initial value at t = 0 [26]. The general form of
Richard’s Curve is given by Equation (4) as follows:

K(t) = C1

(1 + C2 exp(−C3(t− C4)))
1

C2

. (4)

All the parameters that exist in the explicit formula of Richard’s Curve are extracted
by applying the optimization scheme to obtain the minimum deviation between the data
K̂(t) and the fitted formula K(t). The optimization problem on parameter estimation can
be written as

min
Ci∈D

N

∑
i=1

(
K(ti)− K̂(ti)

)2
, (5)

where D is the search domain of the parameters and N represents the length of cumula-
tive data.

The construction of the generating operator starts with the definition of the additional
compartment K(t), representing the cumulative cases at time t, which is given as follows.

K(t) = I(t) + R(t). (6)

Take the first derivative of K, then we have
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dK(t)
dt

=
dI(t)

dt
+

dR(t)
dt

= γE(t)− (η + µ)I(t)− (η I(t)− µR(t))

= γE(t)− µK(t). (7)

Solving for E(t), then we have

γE(t) =
dK(t)

dt
+ µK(t). (8)

From the result above, we can express E(t) as a function of K(t) as follows

E(t) =
1
γ

(
dK(t)

dt
+ µK(t)

)
. (9)

Further, by taking the derivative of E(t), the we obtain the daily new exposed

a(t)
SI
N

=
dE(t)

dt
+ (γ + µ)E =

1
γ

(
d2K(t)

dt2 + (γ + 2µ)
dK(t)

dt
+ µ(γ + µ)K(t)

)
. (10)

Let X (t) =

[
I(t)
R(t)

]
depicting the dynamics of active infections and total recovery

simultaneously. Thus, the third and fourth equation in system (1) can be rewritten as:

X ′(t) +AX (t) = F (t), (11)

where A =

[
η + µ 0
−η µ

]
and F (t) =

[
γE(t)

0

]
. With initial value X (0) =

[
I(0)
R(0)

]
, the solu-

tion of a system can be obtained by applied the integration factor.

X (t) = e−AtX (0) + e−At
∫ t

0
eAτF (s)dτ. (12)

Then, we have the solution for I(t) and R(t) as follows

I(t) = I(0)e−(η+µ)t + e−(η+µ)t
∫ t

0

(
dK(τ)

dτ
+ µK(τ)

)
e(η+µ)τdτ, (13)

R(t) = R(0)e−µt + ηe−µt
∫ t

0
I(τ)eµτdτ, (14)

where I(0) and R(0) is given by the data of initial active cases and total recovery. Substitut-
ing Equation (13) to Equation (14), the K(t)-related formula of R(t) is given by

R(t) = (R(0) + I(0)(1− e−ηt))e−µt +

ηe−µt
∫ t

0
e−ητ

∫ τ

0

(
dK(σ)

dσ
+ µK(σ)

)
e(η+µ)σdσdτ (15)

Assuming that the number of population, N, is constant, we have the dynamics of
susceptible individuals written as follows.

S(t) = N − E(t)− I(t)− R(t). (16)

Now, consider an equation of E in (1). We can find a(t) by manipulating the equation.
We have that

a(t) =

(
π − µS− dS

dt

)
N

SI
, (17)
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where S and I can be written as Equations (13) and (16), respectively. By that, the estimation
of all states, as well as the transmission rate, can be generated using the information of
cumulative infections. Summarizing the above construction, we formulate the generat-
ing operator

T =

[ T1

T2

]
: C1[0, ∞]× (C1[0, ∞])2 → C1[0, ∞]× (C1[0, ∞])2, (18)

Ti, i = 1, 2 for the SEIR dynamics is given as follows

T1 =
1
γ

(
d
dt

+ µ

)
(19)

T2 =
∫ t

0
eAs F̄(T1)ds, (20)

where
F̄ = (γT1, 0)T (21)

and A is given in (31). Hence, we have

T1(K(t)) = E(t) (22)

e−At(X0 + T2(K(t))) = X (t) = (I(t), R(t))T . (23)

Figure 2 this illustrates the flow of how this dynamics generator works on the estima-
tion of all state dynamics, including the time-dependent rate of transmission by means of
the empirical fit to Richard’s Curve.

Figure 2. Diagram of the approach for estimating all state dynamics of the SEIR models using the
dynamics generator.

3. Generalized SEIR for Second Wave Transmission of COVID-19

Many countries suffered badly during the second wave of COVID-19, which came
unexpectedly after the period of relaxation at the end of the first wave ([27–29]). The phe-
nomena of hospitals filling up, beds becoming scarce, and death rates exploding became
constant daily news. Most countries implemented massive PCR testing as recommended
by the WHO to isolate the positive cases in the population. Naturally, the simple SEIR
model will not be realistic in representing the transmission.
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3.1. Model Construction

We generalize the model (1) to accommodate for the intervention effect of COVID-19.
The consequence of the COVID-19 testing capacity is also taken into account by distin-
guishing the recorded and unrecorded infections. It is assumed that the recorded infected
people will have the self-awareness to lessen the contact with others than those who are
not recorded. The mathematical model of the advanced SEIR is given as follows

dS
dt

= π − a(t)
SIn

N
− µS,

dE
dt

= a(t)
SIn

N
− γE− µE, (24)

dIn

dt
= (1−ω(t))γE− η In − µIn,

dIs

dt
= ω(t)γE− η Is − µIs,

dRn

dt
= η In − µRn,

dRs

dt
= η Is − µRs.

with the assumption of the constant total population, we have

dN
dt

= π − µN = 0, (25)

and N =
π

µ
.

The two compartments I and R are split into two, with indexes n and s, which stand
for unrecorded and recorded (and isolated for treatment), respectively. In the previous
assumptions, people in the Is compartment do not have a chance to infect the susceptible
individuals due to the isolation and hospitalization. In addition, people in the In can cause
infections by making contact with people in the S compartment. Depicted in Figure 3,
people will be either identified as an unrecorded or recorded infected person once they
leave the E compartment. Infected individuals will recover after a period of time and
become immune to the virus. No difference is assumed in the infection period, which
implies the same value for the recovery rate for both recorded and unrecorded infections.
More details about the parameters of the generalized model are given in Table 1.

Figure 3. Flow diagram of the generalized SEIR Model.

In the case of constant infection rate a(t) = a and transition rate ω(t) = ω, we have
the formulation of basic reproduction number given, as follows

R1 =

√
a(1−ω)γ

(γ + µ)(η + µ)
. (26)
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for zero transition rate, ω = 0, R1 reduces to R0. Following the same derivation in the
previous section, we construct the effective reproduction ratio

R1E =

√
a(t)(1−ω(t))γ
(η + µ)(γ + µ)

S(t)
N

. (27)

Following the similar construction in Section 2, we define a new cumulative compart-
ment as in (6)

K(t) = Is(t) + Rs(t) (28)

from the first derivative of K,

dK(t)
dt

=
dIs(t)

dt
+

dRs(t)
dt

= ω(t)γE(t)− µK(t). (29)

we obtain the daily new recorded cases ω(t)E(t), in the form

ω(t)E(t) =
1
γ

(
dK(t)

dt
+ µK(t)

)
. (30)

Let X(t) =




Is(t)
Rs(t)
In(t)
Rn(t)


 depict the dynamics of active infections and total recovery simul-

taneously. Thus, the fourth and sixth equations in system (24) can be rewritten as

X′(t) + AX(t) = F(t), (31)

where A =




η + µ 0 0 0
−η µ 0 0
0 0 η + µ 0
0 0 −η µ


 and F(t) =




ω(t)γE(t)
0

(1−ω(t))γE(t)
0


. With the initial value

X(0) =




Is(0)
Rs(0)
In(0)
Rn(0)


, the solution of a system can be obtained by applying the integration

factor as follows

X(t) = e−AtX(0) + e−At
∫ t

0
eAτF(τ)dτ. (32)

The explicit form of Is, Rs, In, and Rn can be given as:

Is(t) = Is(0)e−(µ+η)t + e−(µ+η)t
∫ t

0

(
dK(τ)

dτ
+ µK(τ)

)
e(µ+η)τdτ (33)

and

Rs(t) = Rs(0)e−µt + ηe−µt
∫ t

0
Is(τ)eµτdτ. (34)

In(t) = In(0)e−(µ+η)t + e−(µ+η)t
∫ t

0

(
1−ω(t)

ω(t)

)(
dK(τ)

dτ
+ µK(τ)

)
e(µ+η)τdτ (35)
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and

Rn(t) = Rn(0)e−µt + ηe−µt
∫ t

0
In(τ)eµτdτ. (36)

Assuming the number of population, N, is constant, then

S(t) = N − E(t)− In(t)− Is(t)− Rn(t)− Rs(t). (37)

from the first equation of S in (24), we can find a(t)

a(t) =

(
π − µS− dS

dt

)
N

SIn
, (38)

with S and In given as in the previous derivation.

Summarizing from the above derivation, we generalize the construction (18)

T =

[
T1

T2

]
: C1[0, ∞]× (C1[0, ∞])4 → C1[0, ∞]× (C1[0, ∞])4, (39)

with Ti, i = 1, 2 for the generalized SEIR dynamics as follows

T1 =
1
γ

(
d
dt

+ µ

)
(40)

T2 =
∫ t

0
eAsḠ(T1)ds, (41)

where

Ḡ =

(
T1, 0,

1−ω

ω
T1, 0

)T
(42)

and A is given in (31). The five states ω(t)E(t), Is, Rs, In, and Rn are produced by these
operators as follows

T1(K(t)) = ω(t)E(t) (43)

e−At(X0 + T2(K(t))) = X(t) = (Is(t), Rs(t), In(t), Rn(t))
T . (44)

3.2. Estimation of ω(t)

Referring to Figure 3, new infections are separated into recorded and unrecorded
cases. While the former will be immediately quarantined and treated and hence unable
to infect susceptible individuals, the latter remains unidentified and then will spread the
virus. From the daily new infected persons, γE(t), the portion ωγE(t) is recorded through
testing, which will enter the Is compartment. The rest of the portion, (1− ω)γE(t) will
remain unrecorded and enter the unrecorded In(t). By that, ω, 0 ≤ ω ≤ 1 depicts the share
of the recorded newly infected population against its total. This parameter represents the
ability of the “random” selection of the test target to capture the positive cases.

The capacity of some countries to cover all infections is strongly related to their ability
to provide the testing kits [30]. In the early pandemic, many countries struggled to fulfill the
demand for COVID-19 testing kits, resulting in the low value of ω. Nevertheless, in early
2021, several countries were able to conduct more massive daily testings [31], making the
figure of testing capacity change dramatically. In response, it is reasonable to set the value
of ω to vary over time (time-dependent) and hence denoted with ω(t). The dynamics of
ω(t) will be estimated using the Infection Fatality Ratio (IFR) and Case Fatality Ratio (CFR).

In epidemiology, a CFR is the proportion of deaths from a certain disease compared
to the total number of people diagnosed/confirmed with the disease for a particular
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period [32]. Similarly, the IFR also applies to infectious disease transmission to represent the
proportion of deaths among all infected individuals, including all recorded and unrecorded
subjects [33]. This quantity is closely related to the CFR but with additional accounts for
unapparent infections among healthy people. The observed CFR in time t is defined by the
total number of deaths, D(t), divided by the total number of confirmed cases at time t, K(t),
i.e., CFR(t) = D(t)

K(t) , whereas the IFR is defined based on the total number of infections.

Formally, IFR = D̃
Ĩ , where D̃ and Ĩ denote the median of total deaths and estimated total

infections considered from the early pandemic until a certain specified time. The Ĩ will be
estimated by involving the data of total tests. The total number of infections is estimated
by assuming that each person is only tested once, and the distribution of infections among
the entire population is equal. The total infections, Ĩ , for each country follow the definition
introduced in [34], which is defined by dividing the total confirmed cases with the total
tests conducted and multiplying it with its population size, i.e.,

Ĩ =

(
K̃
T̃

)
· N (45)

where T̃ is the total tests performed until a certain specified time. Note that this method
estimates the constant value of IFR. This argument should confirm that this parameter
is a virus-related parameter, which assumes that no significant mutation affecting the
virulence will lead to a constant value of IFR [35]. The estimated constant CFR for related
diseases in some countries can be seen in [36].

Dividing the estimated IFR by the observed time-dependent CFR depicts the share of
infected individuals that were recorded. By that, the time-dependent reporting rate ω(t) is
defined as follows

ω(t) =
ˆIFR

CFR(t)
. (46)

the value of IFR is always less than that of CFR, resulting in the values 0 < ω(t) ≤ 1.
The greater the value ω(t), the more the infectious persons were isolated.

4. Numerical Simulations
4.1. Simple SEIR Model

In this section, the numerical simulations for Model (1) that resulted from implement-
ing the generating operator on the fitted cumulative function K are shown. COVID-19 data
are selected from ten countries representing different population sizes: Brazil, China, Ger-
many, India, Indonesia, Islamic Republic of Iran, Italy, Japan, Singapore, and South Korea.
The COVID-19 data are taken from the official website of Worldometer [37], consisting of
the daily number of active cases and total recovery. The data were taken during the early
transmission period ranges from late February until September 2021. In these simulations,
only the first 60 days after the initial transmission will be used and analyzed. The interval
for each country may vary depending on the initial transmission.

All biological parameters for the selected countries are chosen as the same. The natural
death rate, denoted by µ, was assumed to be µ = 1

70×365 , referring to the average human
life expectancy. As of December 2020, Our World in Data claimed that the life expectancy of
humans was about 70 years [16]. The remaining biological parameters are listed in Table 1.

4.1.1. Fitted Cumulative Data

The simulation began by estimating the closest GLGM dynamics to the provided data.
All the parameters were obtained by solving the optimization problem (5). The calculation
was conducted numerically using the built-in function in MATLAB. Notice that the global
minimizer is difficult to obtain using the numerical method. Thus, the initial guess was
varied following the Sobol sequence in 4-D so that the result would be close to the global
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minimizer. The estimated parameters for the ten observed countries are given in Table 2.
The second and third columns in the Table indicate the time interval of the data used in the
calculation. The interval varies among all countries depending on the initial transmission
of the virus. The last four columns provide the estimated Ci for each country. These values
depict the characteristics of the virus spread in each country and, hence, may differ from
one country to another, though it was the same virus that spreads. For instance, the data
fitting suggests that the value of C3 for India is significantly higher compared to that for
Indonesia. This result indicates that the spread of the virus in India is more significant
compared to that in Indonesia. This fact can be seen in Figure 4, where the graph for India
is much steeper than that for Indonesia.

Table 2. Parameter estimation of the cumulative dynamics using GLGM and the early pandemic data.

Country Start Date End Date C1 C2 C3 C4

Brazil 25 February 2020 25 April 2020 52,934 0.4448 0.1005 58.1919
China 22 January 2020 22 March 2020 77,469 1.4611 0.2683 17.9661

Germany 15 February 2020 15 April 2020 150,171 0.3334 0.1204 43.4199
India 15 February 2020 15 April 2020 29,061 0.4595 0.1104 60.8589

Indonesia 2 March 2020 1 May 2020 21,032 0.1043 0.0445 50.9905
Iran 19 February 2020 19 April 2020 80,453 1.3952 0.1428 45.6531
Italy 15 February 2020 15 April 2020 174,575 0.0264 0.0743 38.7238

Japan 15 February 2020 15 April 2020 12,102 4.1299 0.3758 52.4032
Singapore 15 February 2020 15 April 2020 9846 0.0001 0.1358 14.9104

South-Korea 15 February 2020 15 April 2020 10,298 12.0304 1.0719 70.0849

Figure 4 illustrates the estimated models of cumulative infections together with the
data for the first 60 days after the initial transmission. Overall, the general behavior of the
data was well-fitted by the rendered S-curve Richard’s model. For instance, in China and
South Korea, the cumulative infections started to ramp up rapidly in the early pandemic
yet began to decline within the first 60 days of transmission, giving us the perfect S-curve
models. The countries China, Germany, Iran, Italy, Japan, and South Korea underwent a
sharp increase in transmission and start to bend down before the end of the 60-day period.
For the rest of the countries, the total infections were stagnantly increasing and there was
no sign of sloping down within the first 60 days.
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Figure 4. Fitting results K̄ of cumulative data for several countries in the early pandemic. The red
dots represent the actual data, and the solid black lines represent the fitted model K̄.

With the direct substitution of K̄ on the right-hand side of (8), we obtain the estimate of
the daily new cases γE(t). Figure 5 illustrates the estimation of daily new cases compared to
the actual data for the ten observed countries. In general, the estimated dynamics resemble
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the real data of daily new cases. The model can also identify the peak time of the daily
new cases.
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Figure 5. Simulation results of daily new cases γT1(K̄) for several countries in the early pandemic.
Blue dots represent the actual data, and the solid black lines represent the simulation.

4.1.2. Simulation of SEIR Dynamics

Simulation of E, I and R are obtained directly from substituting K̂ into T1 and T2,
respectively. For the ten observed countries, the dynamics of EIR (Exposed–Infected–
Recovery) are given in Figure 6, omitting the S compartment form visualization due to its
scale problem.
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Figure 6. Simulation of estimated SEIR in several countries by implementing the generating operator.

Given in Figure 6, the number of exposed cases dropped significantly in China and
South Korea within the first 60 days, leaving no exposed cases in the late simulation.
The success of the two countries in controlling the disease was the result of mobility
restriction across the country [38], as well as the public participation in the implementation
of COVID-19 protocols [39]. In other countries, such as Brazil and Singapore, the virus
seems to not be rapidly spreading. However, the exposed cases gradually increased and
had no sign of significant decrease within two months. Although Model (1) does not
explicitly accommodate various interventions in the field, the time-dependent infection rate
a(t) could represent the daily measure of infection due to the unmeasurable intervention
and control.
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4.1.3. Dynamics of the Effective Reproduction Number

The basic reproduction numbers of the observed countries are given in Table 3 us-
ing Equation (2). Since the basic reproduction number calculation only applies to the
autonomous system, we drop the time dependency of the transmission rate. Thus, we use
the average number of the 60-day transmission rate. In comparison, the time-dependent
effective reproduction ratio is depicted in Figure 7 as a measure of the daily performance of
virus transmission. It is shown in Figure 7 that, except for China and South Korea, other
countries took much longer to reduce the effective reproduction ratio to below one.

Table 3. Estimated basic reproduction number R0 for the simple model.

Country R0 Country R0

Brazil 3.79 Iran 3.63
China 2.65 Italy 3.39

Germany 1.22 Japan 1.28
India 3.81 Singapore 0.74

Indonesia 3.46 South-Korea 2.74
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Figure 7. Dynamics of the effective reproduction number (R0E) for several countries.

In general, the estimated models depict the behavior of the pandemic over time.
Furthermore, the estimated parameters can be used to conduct the prediction of how
the pandemic behaves in each country. The short-term prediction can be an option since
parameters would change over time as the new data are retrieved. Moreover, extension
beyond the period of observation could not be expected for the forecast [40].

4.2. Generalized SEIR Model

This section emphasizes the implementation of the operators described in Section 3
for the generalized SEIR model, which involves the recorded and unrecorded infections.
The cumulative data were taken from [37] during the 60-day second wave period of
transmission of each of the ten selected countries. The same parameters in Table 1 were
used for simulations, and the values of ω(t) were estimated using the information of IFR
and CFR.

4.2.1. Fitted Cumulative Data

The same construction of cumulative dynamics using GLGM as performed in Section 2.2
is used for the second wave period. Table 4 shows the selected time interval for each country
in which the second wave transmission is believed to occur, together with its estimated
parameters for the GLGM. Given in Figure 8, the figures for cumulative infections were
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significantly increasing in the observed time intervals, which indicate the resurgence of the
pandemic. In addition, it is shown that the rendered model fits the provided data well.

Table 4. Parameter estimation of the cumulative dynamics using GLGM for the second transmission.

Country Start Date End Date C1 C2 C3 C4

Brazil 19 February 2021 19 April 2021 5,303,359 0.0001 0.0407 29.5592
China 1 January 2021 1 March 2021 2803 0.3080 0.1394 16.0797

Germany 25 March 2021 25 May 2021 1,033,461 0.0001 0.0559 21.1068
India 1 April 2021 31 May 2021 18,662,604 0.1584 0.0615 29.2508

Indonesia 15 June 2021 14 August 2021 2,356,958 0.1620 0.0559 32.1398
Iran 26 March 2021 24 May 2021 1,144,360 0.0001 0.0572 23.8976
Italy 1 November 2021 31 December 2020 1,440,383 0.0001 0.0616 15.6811

Japan 23 July 2021 21 September 2021 880,483 0.5768 0.0899 27.9857
Singapore 7 July 2020 4 September 2020 11,938 0.4967 0.1125 18.7243

South-Korea 24 November 2020 23 January 2021 48,828 0.2316 0.0649 26.5325
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Figure 8. Fitting results K̄ of cumulative data for the second wave transmission.

Figure 9 shows good agreement between the simulations and the data of daily new
cases. All the depicted figures are considered to be the resurgence of cases after the first hit
ends, e.g., China [41], Germany [42], Italy [43], and India [44].
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Figure 9. Simulation results of daily new cases γT1(K̄) for the second wave transmission.
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4.2.2. Estimated ω(t)

The estimation of ω(t) starts with the estimation of both IFR and CFR(t). As stated
earlier in Section 3.2, the estimated value of IFR is assumed to be constant over time,
yet the CFR depends on time. The observed time-dependent CFR, which is defined as
CFR(t) = D(t)

K(t) , is evaluated by utilizing the data retrieved from Worldometer [37]. On the
other hand, the estimation of IFR is obtained by first estimating the number of total
infections using Equation (45), implementing the data of total tests performed by each
country that is publicly provided by OurWorldinData [31].

Figure 10 shows the estimation of IFR for the ten countries. Italy and Germany have
higher IFR values than other regions, while Singapore is considered the lowest. This result
shows that even though the simple formula was claimed to underestimate the true IFR [45],
the general pattern for the observed ten countries resulted in consistent results [34].
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Figure 10. Estimated IFR for the ten observed countries. The blue boxes represents the range from
the lower to upper quartiles, with the median (red line) was chosen to represent the single point
estimated IFR. The black add signs depicts its maximum and minimum values of the estimated IFR.

Utilizing the observed CFR(t) and estimated IFR given in Figure 10, the dynamics of
ω(t) in each country’s time interval are evaluated by dividing the observed CFR by the
estimated IFR. The dynamics of ω(t) for each country are depicted in Figure 11.

Overall, other than Indonesia and Japan, the share of those being reported against
the total number of infections increased. According to ([46,47]), the number of deaths
in Indonesia was rapidly increasing from April to May 2021, making the observed CFR
increase as well [48]. Since the estimated IFR remains constant, the dynamics ω(t) were
significantly declining. The increasing CFR indicates that the total deaths increase more
significantly than the total recorded infections. Assuming those total deaths are linearly
dependent on the total infections, then the increasing CFR also indicates the number of total
unapparent infected individuals. The unrecorded infections should be increasing once the
daily test decreases. Indonesia experienced a significant decline in daily testing in August
2021, from about 160,000 to only 100,000 specimens a day, confirming the substantial drop
in transition rate ω(t) in this country. The same argument holds for explaining the slight
decline in the transition rate for Japan in the late simulation. Figure 11a,b shows how the
daily test in both countries experienced a significant decline in mid-August 2021 and May
2021, respectively. For the rest of the countries, the daily test delivered to the population is
relatively increasing, making no significant increase in the unapparent infected individuals
and decreasing the observed CFR.
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Figure 11. (a) Dynamics of estimated ω(t), 60 days after the initial second wave emerged; (b) the
daily test experienced a significant drop in Indonesia and Japan during the simulation interval (in the
red-shaded area).

4.2.3. Dynamics of the Generalized SEIR Model

Given the estimation of ω(t) and the provided cumulative data, the number of ex-
posed populations at time-t can be estimated by means of the generating operators for
the advanced model, namely T1. In addition, the other unobservable compartments are
obtained by implementing T2, resulting in an estimation of unrecorded active cases and the
total recovered. The numerical simulation comparing the figures of infected people being
recorded or not is depicted in Figure 12. In general, the number of unapparent cases is
estimated to be way higher compared to that of being identified. These results are strongly
related to the calculated values of ω(t) for each country, which are identified as very low
(around 10%), on average. On the other hand, the opposite results are found in Germany
and Italy, which is a result of the relatively higher share of recorded infections.
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Figure 12. Dynamics of exposed and infected individuals: both recorded and unrecorded cases.
Some recorded cases may not be visible due to the higher figures of exposed and unrecorded
infected individuals.

The performance of ω(t) is related to the ratio between the recorded and unrecorded
recovery. Figure 13 shows that other than China and Germany, the proportions of un-
recorded recovery are much higher than the recorded recovery. This finding is consistent
with the fact that the lower the values of ω(t) for certain countries, the higher the share of
unrecorded total recovery.
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Figure 13. Estimated dynamics of total recovery resulted from both recorded and unrecorded cases.

Finally, the estimated effective reproductive ratio is shown in Figure 14. It is shown
that in the case of second-wave transmission, the effective reproductive ratios decreased to
a level one much faster than those in the first-wave transmission. This evidence justifies
that the role of massive testing played a significant role in controlling the transmission.
Since early 2020, the evaluation of the effective reproductive ratio played a vital role in
regulating proper interventions related to COVID-19. Germany, Italy and other European
countries have been using the calculation of RE f f since the early pandemic [49], which was
also followed by other countries such as Indonesia [50] and India [51].
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Figure 14. Effective reproduction number of countries, 60 days from the initial second wave of
COVID-19 first identified.

4.3. More about the Effective Reproduction Number

Specifically, in the second transmission, it is intriguing to learn how the countries’
intervention-related parameters, i.e., ω(t) and a(t), evolve over time. Depicted in Figure 15
is the countries’ profile situated in the contour plot, which is representing the effective

reproduction number but omitting the term S(t)/N, i.e.,

√
a(1−ω)γ

(µ + γ)(µ + η)
. This formula

is nothing but the effective reproduction number, which has not taken the dynamics of the
susceptible populations into account. On day 1 of the second transmission, it is indicated
that all countries experienced significant transmission of COVID-19 with a relatively low
transition rate ω. As time evolved, all countries simultaneously moved to the left with
lower reproduction numbers, and we ended up with five countries that were assigned with
reproduction numbers higher than one at day 60. To be compared with that depicted in
Figure 14, there were only two countries that had effective reproduction numbers higher
than one at day 60. Since the reproduction numbers depicted in Figure 15 are omitting
the role of S(t)/N, there are three countries that had a significant effect of susceptible
population size on suppressing the effective reproduction number, i.e., Indonesia, Japan,
and Brazil. In other words, the three mentioned countries have passed below one in regards
to R1E because of the significant deviation of S(t) compared to N. Since the dynamics of S
at every time point are dependent on all other variables, this indicates that the unrecorded
infections and recovery have had a significant effect on these countries. Acknowledging
that these three are densely populated countries, the high estimated number of unrecorded
infections and recovery has resulted in an R1E of below one at day 60.

203



Computation 2022, 10, 107

0.250.250.250.25

0.
25

0
.2

5
0

.2
5

0.50.50.5
0.5

0.5

0
.5

0
.5

0.750.75
0.75

0.75

0.75

0
.7

5

0
.7

5

1
1

1

1

1

1

1.25

1.25

1.25

1.25

1.
25

1
.2

5

1.5

1.5

1.5

1.5

1.
5

1.75

1.75

1.75

1.
75

1
.7

5

2

2

2

2

2

2.25

2.25

2.25

2.
25

2.5

2.5

2.5

2.
5

2.75

2.75

2.
75

3

3

3

3.25

3.25 3.5

3.75

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Brazil

China

Germany

India

Indonesia

Iran

Italy

Japan

Singapore

South Korea

Figure 15. Evolution of the reproduction number in the 60-day simulation of the second transmission.
The solid black lines are the level sets of R0 taken from (27) for constant ω and a. The evolution starts
from circle-shaped graphs and ends with triangular-shaped graphs.

Lastly, the depiction of transmission given in Figure 15 also gives us insight into how
countries handle the second wave. Germany and Italy are two European countries with
high total tests. As time evolves, the snippets move to the left with a higher transition
rate ω. On the 60th day, it is clear that these two countries are separated from the rest of
the countries due to their high testing capacity. The snippets move to the left for China,
Singapore, and Iran, with the transition rate leveling off. These results are expected to
confirm the fact that the number of tests conducted was not high, but the large-scale
intervention could be more effective [52]. The rest of the countries are dominated by the
densely populated countries that were not really strict with lockdown and COVID-19
testing [53]. However, the fact that the estimated unrecorded infections and recovery are
relatively high causes the R1E to pass below one even though the transition rate remains
low or the transmission rate remains high.

5. Conclusions

This study proposes a new approach to obtain the explicit solutions for each state’s
dynamics in the SEIR models, or the so-called dynamics generator. There are three crucial
components in the construction of the dynamics generator; cumulative data, Richard’s
Curve, and the proposed compartmental models. The idea of this approach is to fit the
cumulative empirical data to Richard’s Curve (K) and then define the relations between
K and other state dynamics in the SEIR models. Using basic knowledge of linear algebra
and calculus, the generator can be constructed to generate all state dynamics in terms of
K. In other words, we have constructed a method that generates all state dynamics by
means of the empirical data of cumulative cases. Cumulative recorded data was chosen
due to its monotonic profile, which has the advantage of choosing a satisfactory fitted
cumulative function.

In terms of the compartmental models, we have demonstrated the derivation of the
dynamics generator for both simple and advanced models. The constructed dynamics
generator produces all state dynamics of the SEIR model, including the figures of the
hidden infections using the advanced model. One of the perks of using this approach is to
also evaluate the time-dependent rate of transmission, which summarizes all individuals
or governmental interventions.

Specifically for the advanced model, we estimated the rate of unrecorded cases using
the Case Fatality Rate (CFR) and the estimated Infections Fatality Rate (IFR), which is con-
structed from the daily Polymerase Chain Reaction (PCR) test. The remaining unrecorded
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states are then generated directly from the dynamics generator. It is shown that the increase
in the number of daily PCR tests significantly reduces the effective reproduction ratio and
quickly lowers the ratio to a controllable level. This method gives an important indicator
that could be used for daily control of the epidemic, even though it is hard to measure the
effect of specific interventions such as mask covering.

Eventually, we have seen that the approach is well-used to generate all state dynamics
of the SEIR models, given the cumulative data in a particular period that follows the general
S-curve. Once the data does not follow the general S-curve, such as a double S-curved-like
data, the standard Richard’s Curve will no longer be relevant. Hence, this study highlights
room for improvement by considering other explicit functions other than Richard’s Curve
that can be relevant for the non-S-curved empirical data.
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Abstract: Early prediction of mortality and risk of deterioration in COVID-19 patients can reduce
mortality and increase the opportunity for better and more timely treatment. In the current study, the
DL model and explainable artificial intelligence (EAI) were combined to identify the impact of certain
attributes on the prediction of mortality and ventilatory support in COVID-19 patients. Nevertheless,
the DL model does not suffer from the curse of dimensionality, but in order to identify significant
attributes, the EAI feature importance method was used. The DL model produced significant results;
however, it lacks interpretability. The study was performed using COVID-19-hospitalized patients in
King Abdulaziz Medical City, Riyadh. The dataset contains the patients’ demographic information,
laboratory investigations, and chest X-ray (CXR) findings. The dataset used suffers from an imbalance;
therefore, balanced accuracy, sensitivity, specificity, Youden index, and AUC measures were used to
investigate the effectiveness of the proposed model. Furthermore, the experiments were conducted
using original and SMOTE (over and under sampled) datasets. The proposed model outperforms the
baseline study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality using
the full-feature set. Meanwhile, for predicting ventilator support a highest balanced accuracy of 0.979
and an AUC of 0.981 was achieved. The proposed explainable prediction model will assist doctors
in the early prediction of COVID-19 patients that are at risk of mortality or ventilatory support and
improve the management of hospital resources.

Keywords: deep learning; explainable artificial intelligence; machine learning; mortality; prediction;
ventilator support

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) also known as COVID-19,
was first diagnosed in China in late 2019. Since then, it has infected around 222 countries
worldwide and as of 7 January 2022, the total number of cases is approximately 301,121,144,
including 92,107 patients in critical condition [1]. COVID-19 patients can be symptomatic
or asymptomatic. Symptomatic patients’ stages can be mild, moderate, or severe. Severe
cases may lead to failure of the respiratory system or mortality at the same time. Although
the probability of severe cases in patients is not high, sometimes a moderate-stage patient
may quickly experience serious complications and need immediate hospitalization and
intensive care. Because of this uncertainty, hospitals are sometimes confronted with a huge
number of COVID-19-critical patients requiring ventilator support. Similarly, due to the
unpredictable nature of COVID-19 [2], it is very crucial to develop an early warning system
to predict which patients will deteriorate.

Several artificial intelligence (AI)-based systems have been developed for early diag-
nosis using clinical data, chest X-rays (CXR) [3], CT scans [4], hybrid data [5], mortality
predictions, ventilatory support identification, contact tracing, drug discovery, perceptions
of people based on social media data analysis, etc. Studies have proven the significance of
AI techniques for combating the COVID-19 pandemic [6,7]. Therefore, early identification
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of patients who need ventilator support is very crucial for treating patients in a timely
manner, as well as for hospitals to manage their resources effectively. Furthermore, it will
also assist hospital systems to prioritize their patients. Several studies have been conducted
for the early identification of hospitalized patients who are vulnerable to deterioration and
require ventilator support, using machine learning (ML) and deep learning (DL).

However, the integration of ML and DL techniques has led to remarkable outcomes in
healthcare. These techniques have enhanced the decision-making process, but due to the
complexity of the models they engender a lack of interpretability. ML and DL techniques are
opaque and represent a form of black-box technique, and fail to provide justification for their
respective predictions or decisions [8]. Intrinsically there is a trade-off between predictive
power and interpretability; for example, DL models have high prediction accuracy, but the
complexity of the model increases the model’s opacity. Similarly, ML algorithms such as
the decision tree (DT) have good interpretability but sometimes produce low prediction
results compared to DL models [9]. The innate opaqueness of the model has raised the
need for transparent and interpretable systems that can assist healthcare professionals in
making decisions.

Nevertheless, ML and DL have high predictive power but lack interpretability [10]. To
deal with the challenges of ML and DL, recent trends have evolved towards explainable
artificial intelligence (EAI) techniques. Although EAI is not a new field, it only integrates
interpretability and transparency into the ML and DL models [11]. EAI systems lead to
better, more trustworthy, and more interpretable decisions.

Recently, research trends have moved towards EAI [12]. Accordingly, from a health-
care perspective, EAI needs to consider different data modalities to achieve the required
result [13]. This necessitates that healthcare professionals should be able to understand the
rationale behind the how and why of a particular decision. Therefore, in the current study,
EAI techniques are used to predict mortality and identify those COVID-19 patients whose
condition is rapidly deteriorating and who may require ventilator support.

Contribution

The objective of the study is twofold, i.e., to predict mortality and ventilatory support.
The main contributions of the study are:

• An attempt to propose a model with better predictive power and interpretability
compared to the benchmark study, which can help healthcare professionals to make
better and more retraceable decisions.

• The proposal of an evidence-based and interpretable decision-making system using EAI
techniques for the early prediction of mortality and susceptibility to ventilator support.

• Identification of highly significant risk factors for the early prediction of ventilatory
support and mortality.

• To the best of the author’s knowledge, very few studies have investigated EAI
for the early identification of the COVID-19 patients who are at risk for mortality
and deterioration.

• Overall, the proposed model outperformed the baseline study.

The rest of this article is organized as follows: Section 2 presents the literature review;
Section 3 shows the material and methods used in the study; Section 4 discusses the
experimental results; Section 5 contains the discussion; Section 6 concludes the paper.

2. Related Studies

Due to the integration of technology in the healthcare and electronic health records,
a huge number of studies have been conducted to combat COVID-19 from different per-
spectives such as diagnosis, triage, prognosis, epidemiology, contact tracing, drug efficacy,
genome structure analysis, etc. [14]. Furthermore, different types of data such as chest X-
rays, CT scans, and clinical data have been extensively used for the diagnosis of COVID-19
patients, early prediction of mortality, identification of patients requiring ventilator support,
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and remote triaging of COVID-19 patients. The following section discusses some of the
recent studies on early mortality prediction and ventilator support.

2.1. AI-Based Studies for Early Identification of COVID-19 Patients for Ventilator Support

Early prediction of COVID-19 patients who are at risk of deterioration can reduce the
risk of mortality and help hospitals to manage their resources. Varzaneh et al. [15] proposed
an AI-based model for early prediction of intubation in COVID-19-hospitalized patients,
using several ML algorithms such as the decision tree (DT), support-vector machine (SVM),
k-nearest neighbor (KNN), and multilayer perceptron (MLP) for the classification. However,
the feature selection was performed using a bioinspired technique, i.e., the horse herd
optimization algorithm (HOA). The study achieved an accuracy of 0.938 by integrating DT
and HOA. However, the dataset contains only 13% of patient samples for the intubation
class. Furthermore, the study has identified that in the current dataset some significant
paraclinical attributes are missing.

However, Zhang et al. [16] proposed a DL-based model to identify the at-risk COVID-
19-hospitalized patients for the mechanical ventilator (MV) after 24 h. The significance of the
study is that all relevant patient data such as laboratory results, medications, demographic
information, signs and symptoms, and all clinical procedures were used. For the data
imputation, the attention method was used. Furthermore, a comparison was made among
the ML and DL models, and it was found that the proposed DBNet outperformed with an
AUC (area under the curve) of 0.80 and an F1 score of 0.798. However, the study produced a
good outcome and utilized patient samples from multiple hospitals, but conversely, needed
huge attributes.

Similarly, Aljouie et al. [17] utilized different ML techniques to predict mortality and
identify ventilator requirement for COVID-19-hospitalized patients. The study used pa-
tients’ clinical data, laboratory results, comorbidity, and CXR findings. Feature selection
was performed with ReliefF, while extreme gradient boosting (XGB), random forest (RF),
SVM and logistic regression (LR) were used for classification. Similar to the other studies,
the dataset suffers from a class imbalance; therefore, several data-augmentation techniques
were applied. The study found that CXR data are more significant in predicting ventilatory
support as compared to comorbidity, lab results, and other demographic features. A highest
AUC of 0.87 and a balanced accuracy of 0.81 were achieved using the features selected
from ReliefF, classification with SVM, and data augmentation with random undersampling.
Similar to Aljouie, Bae et al. [18] also performed a study that predicted ventilator support
and mortality of COVID-19-hospitalized patients using CXR and radiomic features. How-
ever, the study only utilized radiomic data. Furthermore, the number of patient samples
in the study was few compared to Aljouie et al.’s study. Latent discriminant analysis
(LDA), RF, quadrant discriminant analysis (QDA), and the DL model were used for the
classification. They found that the DL model with radiomic features produced an AUC of
0.79, a sensitivity of 0.71 and a specificity of 0.71, respectively. The study was multicenter,
but the number of samples was lower.

Furthermore, Balbi et al. [19] used LR for identifying patients that required ventilator
support using CXR, demographic, clinical, and laboratory data. The objective was to
identify the significance of the features and found that along with CXR, patients’ medical
history and other vitals have significantly enhanced the prediction. Conversely, another
study [20] utilized CXR for predicting MV support using the DenseNet121 model. The
significance of the study is that the patients that require MV were identified 3 days before
the event. The model achieved an accuracy of 0.90, and a sensitivity and specificity of 0.86
and 0.84, respectively. The study was only limited to CXR for the prediction. Integration of
other clinical data at admission might improve the performance of the model.

2.2. AI-Based Studies to Predict Early Mortality in COVID-19 Patients

Similar to the proposed study, Aljouie et al. [17] and Bae et al. [18], proposed a model
for two tasks, i.e., mortality and ventilator support prediction for COVID-19-hospitalized
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patients. In the first study, the author utilized different categories of data and found that
comorbidity alone can help in predicting the mortality of COVID-19 patients. However,
in the second study, CXR and radiomic data were used and found that the integration of
radiomic data improved the early prediction of mortality. Aljouie et al. [15] achieved an
AUC of 0.83 and a balanced accuracy of 0.80 using RF. Meanwhile, in Bae et al.’s study [18],
the DL model achieved an AUC of 0.83, sensitivity of 0.79, and specificity of 0.74. As
previously discussed, the number of patient samples in Aljouie et al. was larger than that
of the Bae et al. study; furthermore, the study also utilized different types of patient data
such as clinical, comorbidity, demographic, and CXR.

Pourhomayoun and Shakibi [21] developed different ML models such as SVM, ANN,
DT, RF, KNN, and LR for the prediction of mortality in COVID-19 patients. The study
utilized a dataset from demographically different countries and a huge number of samples
as compared to the previous studies mentioned in the literature review. However, the
dataset contained huge number of missing values. They achieved an accuracy of 0.89 using
ANN. In addition, Khan et al. [22] made a comparison between the ML and DL algorithms
to predict mortality in COVID-19 patients using the dataset proposed in Pourhomayoun
and Shakibi [21]. They found the significance of the DL method in the early prediction of
mortality as compared to the ML algorithms. The DL model achieved enhanced results,
with an accuracy of 0.97, a sensitivity of 0.97, and a specificity of 1. Furthermore, the
number of features used to train the model was also reduced in the study [22].

Moreover, a study was performed to predict mortality among COVID-19 patients who
are in severe condition [23]. The study aimed to identify the risk factors based on different
categories of patient data such as clinical, demographic, comorbidity, laboratory tests,
radiological data, etc. The study was performed using a small sample size of 150 patients
in Romania. The LR model was used for the classification. The study found that D-dimmer,
C-reactive protein (CRP), and high heartbeat are the most significant mortality predictors
for COVID-19 patients. Furthermore, a correlation was found between these features and
patients that needed ICU addition and ventilation. The study identified the limitation that
some of the patients in the dataset were in severe condition due to late hospitalization.

Similarly, Pezoulas et al. [24] utilized the EAI concept to identify patients at risk of ICU
and mortality among COVID-19 patients, using several ML models such as the gradient
boosting (GB) algorithm for classification. Experiments were conducted using 214 patients
and used clinical, demographic, comorbidity, and lab results. They achieved an accuracy of
0.79 and 0.81 in predicting mortality among COVID-19 patients in ICU.

Recently, a study was made by Moulaei et al. [25] to compare the performance of
different ML techniques to predict mortality using data at the time of admission to hospital.
The dataset contained the patients’ clinical, demographic, and laboratory results. A total
of 54 features were initially selected from the dataset. Using the genetic algorithm (GA),
38 features were selected. Several ML models such as XGB, RF, MLP, KNN, NB, reinforce-
ment learning, and J48 were used for classification. They were found to outperform, with
an accuracy of 0.95, sensitivity of 0.90, and specificity of 0.95. Nevertheless, the study has
achieved significant results and used a dataset with a sample of 1500 patients. However,
the dataset suffers from a huge imbalance due to the fact that the mortality probability in
COVID-19 patients is not high. Furthermore, the dataset was collected from one center.

Nevertheless, most of the previously mentioned studies have successfully utilized
ML and DL for the early identification of mortality and ventilation support in COVID-19
patients. However, some of the studies have utilized a very limited dataset size. The largest
open-source dataset that can be utilized for the prediction of mortality and ventilation
support was proposed by Aljouie et al. [17]. Another benefit is that it does not only contain
radiological data but also contains patients’ clinical, demographic, and laboratory results
and comorbidities. Therefore, in the current study, we utilize the data introduced in
Aljouie et al.’s study. Most of the previous studies utilized ML and DL learning; however,
in the current study we will use the concept of EAI to identify the risk factors that contribute
to the identification of COVID-19 patients at risk of mortality and ventilator support. To
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the best of the authors’ knowledge, there is so far only one study (Pezoulas et al. [24]) that
has implemented EAI for the prediction of mortality. In the proposed study, we will aim to
produce a model with a better outcome compared with the baseline study. Furthermore,
we will also attempt to produce the outcome in a more interpretable format using EAI.

3. Materials and Methods

The study was performed using Python ver. 3.9.7. The libraries used during the
implementation were Tensor Flow Keras ver. 2.5.2, Dalex ver. 1.4.1, Matplotlib ver. 3.4.3,
Sklearn ver. 0.24.2, Pandas ver. 1.3.4 and NumPy ver. 1.19.5. Several sets of experiments
were conducted to determine the significance of different categories of attributes in the
early prediction of mortality and identification of at-risk patients who require ventilator
support. The study mainly consisted of two objectives: to predict the patients who will
need ventilatory support and to predict the mortality of the patients. Therefore, we carried
out experiments with three cases defined in Table 1. The first case predicted mortality,
while cases 2 and 3 predicted ventilator support for COVID-19-hospitalized patients. For
each case, three sets of experiments were performed using the full-feature set, with selected
features using the EAI feature importance method for all three cases. Meanwhile, the third
experiment for case 1 was performed using only the comorbidity feature and for cases 2
and 3 only CXR features were used. These features were used to further investigate the
findings made by Aljouie et al. [17]. They found that mortality in COVID-19 patients could
be predicted using the comorbidity feature, while CXR functions could be used to predict
ventilatory support.

Table 1. Distribution of patient samples per category for cases 1, 2, and 3.

Class Attribute Cases Target Class No of Samples Selected Features Total Number
of Samples

Vital Status Case 1

Deceased 136

Platelet_count, age, Hgb,
WBC, CXR_zone_11, gender,

CXR_zone_12, MCV,
CXR_zone_9, MCHC,

CXR_zone_10, CXR_zone_5,
CXR_zone_8, T2D,

CXR_zone_1, CXR_zone_2,
CXR_zone_6, CXR_zone_4,

CKD, Asthma

1513

Alive 1377

Ventilator Support
Status

Case 2

Mechanical
Ventilator (MV)

184 Platelet_count, age, Hgb,
WBC, MCV, MCHC,

CXR_zone_6, CXR_zone_1,
gender, asthma, CXR_zone_3,

T2D, CXR_zone_11,
CXR_zone_4, HTN,

CXR_zone_12, CXR_zone_9,
CAD, CXR_zone_10,

CXR_zone_5
1508

Noninvasive
Ventilation (NIV) 111

No Ventilatory
Support (NVS) 1213

Case 3

Ventilatory
Support (VS) 295

Platelet_count, WBC,
CXR_zone_9, CXR_zone_11,

age, Hgb, gender,
CXR_zone_12, MCHC,

CXR_zone_1, MPV, MCH,
CXR_zone_5, CKD,

CXR_zone_4, CXR_zone_10,
CXR_zone_8, MCV, HTN,

T2D

No Ventilatory
Support (NVS) 1213
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3.1. Exploratory Dataset Analysis

The study was conducted using retrospective data from COVID-19-hospitalized pa-
tients in the Kingdom of Saudi Arabia (KSA). The dataset was introduced and used in the
study by Aljouie et al. [17]. The dataset consists of 5739 patient demographics, clinical
and laboratory investigations, and CXR findings. Moreover, the dataset includes two
target attributes, namely patient outcome (deceased or alive) and ventilatory support. The
inclusion criteria for the patient sample included in the current study correspond to those
of Aljouie et al. to find the mortality and ventilatory support dataset. Table 1 shows the
number of samples per category for case 1 (target class vital status (deceased, alive)), case 2
(ventilatory support status (mechanical ventilator (MV), noninvasive ventilation (NIV) and
no ventilator support (NVS)) and case 3 (ventilation support status (ventilation support
(VS) and no ventilation support (NVS)). Five values were missing in the ventilator support
status attribute, so they were removed in cases 2 and 3.

The dataset contains demographic features (gender, age), laboratory results from
complete blood count CBC (hematocrit, hemoglobin, mean corpuscular hemoglobin con-
centration (MCHC), mean corpuscular hemoglobin (MCH), mean corpuscular volume
(MCV), mean platelet volume (MPV), red blood cells (RBC), Platelet count, red cell distri-
bution width (RDW), white blood cells (WBC), and radiological findings and comorbidity
(cancer, coronary artery disease (CAD), hypertension (HTN), asthma, chronic obstructive
pulmonary disease (COPD), type II diabetes mellitus (T2D), liver cirrhosis (LC), chronic
hepatitis B (CHB), chronic hepatitis C (HCV) and chronic kidney disease (CKD)). Age and
all CBC attributes are numeric, while the remaining attributes are categorical. The CXRs are
annotated in twelve zones, as shown in Figure 1. Initially the CXR is divided in two upper
(A) and lower zone (B) and also the junction (C). Then these zones are further divided
into twelve zones which indicate the points where the radiologist assign severity levels.
The zone attributes consist of three possible values (0–2) indicating the severity of ground
glass opacity (GGO). Zero indicates the absence of GGO. Ultimately, the dataset contains
35 predictors and 2 class attributes.
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Figure 1. Chest X-ray zone segmentation and annotation [17].

Furthermore, for the exploratory analysis of the dataset, the age attribute was dis-
cretized by applying equal-width binning. The minimum patient age in the dataset was 19
and the maximum age was 107. A bin length of 10 was used, with the first bin range being
[19–29), [29–39) and so on. The number of bins was 9. Figures 2 and 3 represent the age
distribution of the patients according to their ventilation status and vital status. As seen in
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Figure 2, the huge number of patients that need MV support were in the range of 50–59.
However, for most of the age ranges, the number of patients for the other two categories,
i.e., noninvasive ventilator (NV) and no ventilator (NO) was similar. Correspondingly,
for the mortality prediction, the maximum number of survived patients was in the range
of [49–59). However, the number of deceased patients was high, in the range of [69–79),
as shown in Figure 3. The mean age of the patients in the dataset was 54.83. Similarly,
Figure 4 indicates the distribution of comorbidity in patients according to their ventilator
support status, while Figure 5 indicates the distribution of comorbidity according to the pa-
tient’s outcome, i.e., deceased or alive. The dataset contains the sample of the hospitalized
COVID-19 patients, and it can be seen from Figures 4 and 5 that the most common chronic
diseases are hypertension and Type II diabetes. The dataset contains a huge number of male
samples as compared to female samples. Furthermore, Figure 6 represents the correlation
of CBC attributes.
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3.2. Deep Learning Model

In the last decades, DL models have been extensively used and investigated for various
prediction tasks. Instead of using handcrafted features and then applying the traditional
ML technique, DL models are better able to understand and learn complex patterns from
the data. These models are feedforward and contain three main layers, i.e., the input layer,
hidden layers, and the output layer. The input layer is used to obtain data from the source
and provide it to the model for further processing, the hidden layers are mainly used to
collect the complex pattern from the data, and the output layer is used to classify the data.
The backpropagation technique is used to update the weights of the model using a gradient
descent algorithm.

Gradient descent is a first-order derivative function used for optimization in DL. The
function measures the effect of parameter values on model performance. The gradient
descent equation is shown below:

y = x− γ∇ f (x) (1)

where y represents the current outcome, x represents the true values, and f (x) represents
the predicted outcomes. The negative sign indicates the reduction in GD, and γ represents
the gradient factor, also known as the learning rate. The GD function aims to reduce the
cost function, i.e., f (w, y) and achieve the local minima. It is an iterative function and is
represented as

∇ f (x) =
ϑ

ϑθx
x(θ0, θ1) (2)

Based on the aim of the study, we performed three set of experiments. In the proposed
study, three deep learning models were developed with slight variations in the input and
output layers, based on the number of features for the input and the number of class
labels. We used three sets of data as input to the models (full features, selected features,
and comorbidity features). The full-feature set size was 34, the input layer was defined
with 34 neurons, and the selected-feature set size was 9, so the input layer was designed
with 9 neurons, and the comorbidity-feature set size was 10, so the input layer contained
10 neurons. In addition to this output class, we have 2 output requirements, binary
and multiclass i.e., 3 classes. Therefore, the structure of the output layer was modified
accordingly: for binary classification, we used 1 neuron in the output layer, while for
3 classes, we used 3 neurons in the output layer.

The structure of the model includes 13 layers. The 12 layers were hidden layers with
1024, 1024, 512, 512, 256, 256, 128, 128, 64, 64, 32, and 32 neurons. Rectified linear unit
(ReLU) was used as the activation function for the hidden layers, while dropout layers
with a rate of 20% were added after two consecutive hidden layers in order to avoid model
overfitting. Sigmoid and softmax activation functions were used at the output layer to
perform binary and multiclass classification, respectively.

The equation for the ReLU is

ReLU(x) = max(0, x) (3)

ReLU activation function is used to deal with negative values. If the input is negative,
the output is zero, and thus the neuron does not participate in model processing for that
particular epoch. This makes the neural network sparser and more efficient. Meanwhile,
the sigmoid equation is mentioned below:

Sigmoid(x) =
1

1 + e−x (4)
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The sigmoid function provides the model with a value that is between 0 and 1. This is
useful because we can use the resulting value as a probability for a particular class.

softmax
(→

z
)

i
=

ezi

∑K
j=1 ezi

(5)

where
→
z is the input vector for the softmax function, zi is elements of the input vectors,

ezi is the standard exponential function applied to each element, and K represents the
number of classes. The softmax function turns a vector of K into values between 0 and 1.
These values are considered as probabilities.

The DL model was optimized using the Adam optimizer [26]. Model configurations
include the Adam optimization algorithm with a learning rate of 0.001. Moreover, the loss
was calculated using binary and categorical cross entropy, and the accuracy metric was
used to evaluate the model’s accuracy. To train the model, we used 200 epochs with a batch
size of 128. The structure of the model is shown in Figure 7.
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3.3. Explainability of the Proposed Model

An Agnostic modeling approach was used to incorporate the interpretability of the
proposed model without compromising the model’s performance. This method is not
model-specific; it interprets the model’s behavior without considering the internal logic of
the model [27]. In the current study, Shapley was used to find the average impact of the
attributes on model performance. Figure 8 shows the mean (SHAP) value for mortality
prediction; Figure 9 shows the mean (SHAP) value for predicting patients requiring ventila-
tory support (case 2 multi-class); Figure 10 indicates the mean (SHAP) value for predicting
patients who require ventilator support (case 3 binary class).

217



Computation 2022, 10, 36Computation 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Mean (SHAP value) for the prediction of mortality (Case 1). 

 
Figure 9. Mean (SHAP value) for the prediction of ventilatory support patients (Case 2). 

Figure 8. Mean (SHAP value) for the prediction of mortality (Case 1).

Computation 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Mean (SHAP value) for the prediction of mortality (Case 1). 

 
Figure 9. Mean (SHAP value) for the prediction of ventilatory support patients (Case 2). Figure 9. Mean (SHAP value) for the prediction of ventilatory support patients (Case 2).

218



Computation 2022, 10, 36Computation 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 10. Mean (SHAP value) for the prediction of ventilatory support patients (Case 3). 

Furthermore, the interpretability was further enhanced by using the induced deci-
sion tree for case 1, case 2, and case 3. Figures 11–13 present the decision tree for all three 
cases. Experiments were also conducted for all the three cases using DT and is included 
in Tables A1–A3 in Appendix A. The performance of DT is investigated because it is an 
interpretable model. But sometimes due to the tradeoff among the interpretability and 
model performance, as seen in the appendix the result of DT is not significant. 

 
Figure 11. Case 1: Mortality rate with binary classification. 
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Furthermore, the interpretability was further enhanced by using the induced decision
tree for case 1, case 2, and case 3. Figures 11–13 present the decision tree for all three
cases. Experiments were also conducted for all the three cases using DT and is included
in Tables A1–A3 in Appendix A. The performance of DT is investigated because it is an
interpretable model. But sometimes due to the tradeoff among the interpretability and
model performance, as seen in the appendix the result of DT is not significant.
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3.4. Evaluation Measures

The performance of the proposed model was compared using balanced accuracy,
sensitivity, specificity, Youden index, and area under the curve (AUC). There are several
evaluation measures that can be used for investigating the performance of the classifi-
cation algorithms. Among these measures, some of the measures are highly influenced
by class distribution, such as accuracy, precision, and recall [28]. Therefore, the unbal-
anced class problem uses measures such as balanced accuracy, AUC, and Youden index.
Correspondingly, balanced accuracy and AUC are also used in the baseline study.
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Sensitivity (SN) represents the true positive rate of the model and is calculated using
the following equation:

SN =
sum(correctly predicted positive class)

sum(positive class samples in the dataset)
(6)

Specificity represents the true negative rate and is calculated using the equation below:

SP =
sum(correctly predicted Negative class samples)

sum(negative class samples in the dataset)
(7)

As can be seen from Equations (6) and (7), the above measures are not affected by
class distribution.

Similarly, balanced accuracy is the mean of the sensitivity and the specificity:

Balanced Accuracy =
SP + SN

2
(8)

Likewise, the Youden index (YI) is one of the measures used specifically to deter-
mine the effectiveness of the diagnostic test. It evaluates the discriminative power of the
diagnostic test. It is computed using the equation below:

Youden Index = SP + SN− 1 (9)

The YI values range from 0–1. A smaller value indicates poor diagnostic capability,
while a value closer to 1 indicates the significance of the test.

Furthermore, the model discriminative power is further validated using AUC. As
is the case with the Youden index, the value of AUC also ranges from 0–1, with a value
closer to zero indicating poor performance and a value closer to 1 indicating significant
performance of the model.

4. Results

This section presents the results for all three cases that predict mortality and ventilator
support in COVID-19 patients. Furthermore, the dataset suffers from an imbalance, which
is why data-sampling techniques were applied, such as SMOTE with oversampling and
SMOTE with undersampling. A k-fold cross-validation technique with a value of k equal
to 10 was used to partition the data for all experiments. In the k-fold cross-validation,
the dataset is initially divided into k-segments, where (k − 1) segments are used to train
the model and one segment to test in each iteration. Furthermore, the training segments
were then divided into training and validation sets. The validation set was used for
parameter tuning. Table 2 represents the testing result of the proposed model for case 1,
i.e., to predict the patient’s vital status as surviving or deceased. Similar sensitivity is
achieved using the full- and selected-feature sets with the original dataset without any
data-sampling technique. The highest sensitivity was achieved using the full-feature set
and dataset after SMOTE undersampling. However, for other measures such as specificity,
balanced accuracy, Youden index, and AUC, the highest results were obtained using the
full-feature set after SMOTE with oversampling. A similar AUC was achieved with full and
selected features for SMOTE oversampling with the full-feature set and original dataset
with selected features. Meanwhile, the best overall AUC was obtained using selected
features and with SMOTE oversampling. In the baseline study by Aljouie et al. [17], the
best balanced accuracy of 0.78 and AUC of 0.85 was achieved using LR and oversampling
data with the comorbidity attribute. However, in the proposed study, the highest AUC
achieved was 0.875 and the balanced accuracy was 0.904 using the comorbidity attributes
and the original dataset. We found that after oversampling the dataset, a similar AUC was
achieved using comorbidity attributes.
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Table 2. Result of the proposed model for mortality prediction (Case 1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.990 0.920 0.955 0.910 0.990

SMOTE with Oversampling 0.985 0.988 0.986 0.973 0.998

SMOTE with Undersampling 0.994 0.933 0.963 0.927 0.991

Selected Features

Original Dataset 0.990 0.937 0.964 0.927 0.998

SMOTE with Oversampling 0.979 0.953 0.966 0.933 0.999

SMOTE with Undersampling 0.977 0.924 0.950 0.901 0.974

Comorbidity Features

Original Dataset 0.810 0.940 0.875 0.750 0.904

SMOTE with Oversampling 0.837 0.819 0.828 0.657 0.903

SMOTE with Undersampling 0.830 0.890 0.860 0.720 0.899

Furthermore, experiments were also conducted to identify patients who are at risk
of the ventilator support. Initially the experiments were carried out for the multiclass,
i.e., to predict patients requiring a mechanical ventilator (MV), a noninvasive ventilator
(NV), or no ventilator (NV) using all features, selected features, and CXR features. CXR
features were used because in the baseline study the author found that CXR features can
be used to predict the ventilatory support of COVID-19 patients. Table 3 presents the
performance of the proposed DL model using different-feature sets. The table contains
the testing results. Analogous to case 1, the model produced the best performance with
the full-feature set in this case. It indicates the significance of all the features in predicting
patients for ventilator support. However, in this case, SMOTE with the undersampling
dataset set achieved the best results for all evaluation measures. For mortality prediction
(case 1), a similar AUC was achieved using the full- and selected-feature sets. However,
in this case there was a significant difference in the model AUC using full and selected
features. Furthermore, the baseline study using the CXR feature achieved the highest
results, i.e., balanced accuracy of 0.52 and AUC of 0.76 using XGB and oversampling data.
However, the proposed study outperformed the baseline with a balanced accuracy of
0.838 and an AUC of 0.842 using SMOTE oversampling. We also found that the oversam-
pling technique enhanced performance with CXR features compared to the original and
undersampled datasets.

Table 3. Result of the proposed model for ventilator-support prediction (Multiclass) (Case 2).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.815 0.802 0.8085 0.617 0.835

SMOTE with Oversampling 0.837 0.937 0.887 0.775 0.907

SMOTE with Undersampling 0.969 0.989 0.979 0.958 0.981

Selected Features

Original Dataset 0.834 0.821 0.8275 0.655 0.837

SMOTE with Oversampling 0.858 0.915 0.8865 0.773 0.905

SMOTE with Undersampling 0.935 0.912 0.9235 0.847 0.932

CXR Features

Original Dataset 0.712 0.878 0.795 0.592 0.823

SMOTE with Oversampling 0.814 0.862 0.838 0.676 0.842

SMOTE with Undersampling 0.683 0.856 0.7695 0.539 0.773
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Lastly, the experiments conducted for the binary class (ventilator support vs. no
support) were performed to predict which patients would need ventilation. The result of
the proposed model is shown in Table 4 using the test set. Comparable to case 2 (multiclass),
the binary class with the undersampled data and with full features also achieved the best
results. After converting the multiclass to binary class, the performance of the model was
slightly improved. However, there was a significant difference between the full-feature
and different datasets’ results, i.e., original and over- and undersampling. Similarly, a
baseline study also achieved the highest results using undersampling data with a balanced
accuracy of 0.79 and an AUC of 0.82. They found that using XGB with the undersampled
dataset gave the best result to predict whether or not the patient was at the risk of needing
ventilator support. Meanwhile, the proposed study outperformed the baseline study with
an AUC of 0.904 and a balanced accuracy of 0.875 using the original dataset. All results
demonstrate the significance of the proposed model for all three cases.

Table 4. Result of the proposed model for ventilator-support prediction (Binary class) (Case 3).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.863 0.806 0.835 0.670 0.959

SMOTE with Oversampling 0.907 0.936 0.921 0.843 0.983

SMOTE with Undersampling 0.972 0.996 0.984 0.968 0.990

Selected Features

Original Dataset 0.936 0.975 0.955 0.911 0.982

SMOTE with Oversampling 0.914 0.963 0.938 0.876 0.958

SMOTE with Undersampling 0.948 0.985 0.966 0.933 0.984

CXR Features

Original Dataset 0.810 0.940 0.875 0.750 0.904

SMOTE with Oversampling 0.837 0.819 0.828 0.657 0.903

SMOTE with Undersampling 0.830 0.890 0.860 0.720 0.899

5. Discussion

Owing to the dynamic clinical indications of COVID-19 and sometimes a sudden dete-
rioration in the condition of moderate-stage patients, it is crucial to develop an automated
model that can preemptively predict which patients are at risk for ventilator support and
mortality. Furthermore, there is a need to provide a model that can provide a reliable
explanation to healthcare professionals. Therefore, in the proposed study, the DL model
was used along with the EAI to predict mortality and ventilator support. Several studies
have investigated the use of demographic features, lab tests, signs and symptoms, and
radiological findings for the prediction. Consequently, demographic, clinical features,
comorbidity, and CXR zone features were used in the proposed study.

Among the demographic features, age and gender were found to be significant feature.
Similarly, ref. [15–18,23] found age as one of the key features for predicting intubation
in COVID-19 patients. However, Bae et al. [18] used radiomics features and two demo-
graphic features (age and gender) to predict mortality and ventilator support. The radiomic
scores were assigned by experienced radiologists, who found that radiomic features greatly
enhanced the performance of the algorithms. Furthermore, Zhang et al. [16] included infor-
mation on medication and found that patients taking medication for respiratory disease and
pneumonia were more likely to end up on a ventilator. Conversely, Balbi et al. [19] found
that some of the patients that were diagnosed as COVID-19-negative with the RT-PCR test,
while the CXR analysis of the patients revealed pneumonia. Similarly, some of the patients
had no significant signs on the CXR but were predicted to be positive using the RT-PCR
test. Nevertheless, they found that CXR attributes can only be used for the prediction if
other features such as SpO2, PaO2, and some other clinical features are available. Likewise,
Kulkarni et al. [20] used the CXR for early detection of COVID-19 patients requiring venti-
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lator support using the DL model, and found that CXR features can be used to perform the
prediction 3 days in advance.

Conversely, [21,22] predict mortality based on demographic, comorbidity, and symp-
toms. Notwithstanding this, the studies provided significant results; however, the studies
lacked some of the significant lab tests and CXR attributes from the dataset. Correspond-
ingly, Aljouie et al. [17] also found that comorbidity alone can predict mortality in COVID-19
patients. In addition, Khan et al. [22] examined three comorbidities (cardiac problems,
diabetes, hypertension) as significant features. However, Pezoulas et al. [24] found that
some lab tests are a significant attribute in predicting mortality, while Moulaei et al. [25]
discovered that shortness of breath and extra oxygen therapy are among the top features to
predict mortality.

Nevertheless, the current study has produced significant results; however, there is
always room for further improvement. The study was conducted with a dataset from
a single center and country. Furthermore, some of the clinical attributes identified as
significant such as CPR, D-dimmer, heartbeat, SpO2, and PaO2, etc. are missing from the
dataset. In order to further validate the performance of the proposed model, it needs to be
experimented with the multicenter dataset, and other features identified as significant in
the previous literature also need to be considered. Correspondingly, the dataset also suffers
from an imbalance due to the low mortality rate among COVID-19 patients. Therefore, the
measures unaffected by class distribution were used in the proposed study. Additionally,
the impact of COVID-19 vaccination must also be considered.

6. Conclusions

To sum up, the current study investigated the application of the DL model to predict
mortality and the need for ventilator support in COVID-19 patients. The dataset includes
COVID-19 patients’ demographic information, laboratory results, comorbidity, and CXR.
To alleviate the data-imbalance issue, the SMOTE data-sampling technique was applied to
both under- and oversampling. Features were selected using the EAI feature importance
technique. The optimization of the DL model was performed using the Adam optimizer.
Several sets of experiments were performed using full features, selected features, and
comorbidity features only to predict mortality, and CXR findings to predict ventilator
support. Experimental results showed that the proposed study outperformed the baseline
study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality. When
identifying patients on ventilator support, the model achieved a balanced accuracy of
0.979 and an AUC of 0.981. Furthermore, EAI is used to incorporate interpretability into
the proposed DL model and to identify the impact of attributes on the proposed model’s
performance. Shapley was used to compute the influence of attributes, and an induced
decision tree was used to extract the rules from the model. In particular, the proposed model
can be used as a tool that can assist doctors to predict at-risk patients and aid hospitals
to manage and plan their resources effectively. Conversely, this study can potentially be
extended to examine performance using the multicenter and multicountry dataset. In
addition, some of the significant lab investigation results and COVID-19 vaccinations must
be considered.
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Appendix A. Decision Tree Results

Table A1. Case 1—Decision Tree (Binary-Class, Deceased:0, Alive:1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.884 0.250 0.567 0.134 0.567

SMOTE with Oversampling 0.817 0.752 0.784 0.569 0.784

SMOTE with Undersampling 0.905 0.184 0.544 0.089 0.545

Selected Features

Original Dataset 0.429 0.837 0.633 0.266 0.632

SMOTE with Oversampling 0.812 0.779 0.796 0.592 0.796

SMOTE with Undersampling 0.406 0.831 0.618 0.237 0.619

Comorbidity Features

Original Dataset 0.458 0.858 0.658 0.317 0.658

SMOTE with Oversampling 0.793 0.706 0.749 0.499 0.749

SMOTE with Undersampling 0.444 0.864 0.654 0.309 0.654

Table A2. Case 2—Decision Tree (Multiclass, No_Ventilator:0, NIV:1, MV:2).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.415 0.748 0.582 0.163 0.582

SMOTE with Oversampling 0.747 0.874 0.811 0.622 0.811

SMOTE with Undersampling 0.404 0.749 0.577 0.153 0.577

Selected Features

Original Dataset 0.380 0.760 0.570 0.141 0.570

SMOTE with Oversampling 0.769 0.885 0.827 0.655 0.827

SMOTE with Undersampling 0.426 0.744 0.585 0.171 0.586

Comorbidity Features

Original Dataset 0.344 0.653 0.498 -0.003 0.498

SMOTE with Oversampling 0.737 0.868 0.802 0.605 0.803

SMOTE with Undersampling 0.397 0.721 0.558 0.117 0.558

Table A3. Case 3—Decision Tree (Multiclass, No_Ventilator:0, NIV:1, MV:1).

Feature Set Technique SN SP Bal-Acc YI AUC

Full Features

Original Dataset 0.402 0.863 0.633 0.266 0.632

SMOTE with Oversampling 0.758 0.784 0.771 0.543 0.772

SMOTE with Undersampling 0.542 0.833 0.687 0.375 0.688

Selected Features

Original Dataset 0.333 0.846 0.590 0.180 0.591

SMOTE with Oversampling 0.774 0.748 0.761 0.522 0.763

SMOTE with Undersampling 0.581 0.843 0.712 0.423 0.713

Comorbidity Features

Original Dataset 0.458 0.779 0.618 0.237 0.619

SMOTE with Oversampling 0.731 0.744 0.738 0.476 0.738

SMOTE with Undersampling 0.357 0.792 0.574 0.149 0.575
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Abstract: (1) Background: The estimation of daily reproduction numbers throughout the contagious-
ness period is rarely considered, and only their sum R0 is calculated to quantify the contagiousness
level of an infectious disease. (2) Methods: We provide the equation of the discrete dynamics of
the epidemic’s growth and obtain an estimation of the daily reproduction numbers by using a de-
convolution technique on a series of new COVID-19 cases. (3) Results: We provide both simulation
results and estimations for several countries and waves of the COVID-19 outbreak. (4) Discussion:
We discuss the role of noise on the stability of the epidemic’s dynamics. (5) Conclusions: We consider
the possibility of improving the estimation of the distribution of daily reproduction numbers during
the contagiousness period by taking into account the heterogeneity due to several host age classes.

Keywords: daily reproduction number; COVID-19 outbreak; discrete epidemic growth equation;
discrete deconvolution; COVID-19 in several countries

1. Introduction
1.1. Overview and Literature Review

Following the severe acute respiratory syndrome outbreak caused by coronavirus
SARS CoV-1 in 2002 [1] and the Middle East Respiratory Syndrome outbreak caused
by coronavirus MERS-CoV in 2012 [2], the COVID-19 disease caused by coronavirus
SARS CoV-2 is the third coronavirus outbreak to occur in the past two decades. Human
coronaviruses, including 229E, OC43, NL63 and HKU1, are a group of viruses that cause a
significant percentage of all common colds in humans [3]. SARS CoV-2 can be transmitted
from person to person by respiratory droplets and through contact and fomites. Therefore,
the severity of disease symptoms, such as cough and sputum, and their viral load, are often
the most important factors in the virus’s ability to spread, and these factors can change
rapidly within only a few days during an individual’s period of contagiousness. This
ability to spread is quantified by the basic reproduction number R0 (also called the average
reproductive rate), a classical epidemiologic parameter that describes the transmissibility of
an infectious disease and is equal to the number of susceptible individuals that an infectious
individual can transmit the disease to during his contagiousness period. For contagious
diseases, the transmissibility is not a biological constant: it is affected by numerous factors,
including endogenous factors, such as the concentration of the virus in aerosols emitted
by the patient (variable during his contagiousness period), and exogenous factors, such
as geo-climatic, demographic, socio-behavioral and economic factors governing pathogen
transmission (variable during the outbreak’s history) [4–8].
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Due to these exogenous factors, R0 might change seasonally, but these factor variations
are not significant if a very short period of time is considered. R0 depends also on endoge-
nous factors such as the viral load of the infectious individuals during their contagiousness
period, and the variations in this viral load [9–15] must be considered in both theoretical
and applied studies on the COVID-19 outbreak, in which the authors estimate a unique
reproduction number R0 linked to the Malthusian growth parameter of the exponential
phase of the epidemic, during which R0 is greater than 1 (Figure 1). The corresponding
model has been examined in depth, because it is useful and important for various applica-
tions, but the distribution of the daily reproduction number Rj at day j of an individual’s
contagiousness period is rarely considered within a stochastic framework [16–20].

Figure 1. Spread of an epidemic disease from the first infectious “patient zero” (in red), located at the center of its influence
sphere comprising the successive generations of infected individuals, for the same value of the reproduction number R0 = 3,
with a deterministic dynamic (left) and a stochastic one (right), with standard deviation σ of the uniform distribution on an
interval centered on R0 and with a random variable time interval i between infectious generations (after [16]).

We therefore defined a partial reproduction number for each day of an individual’s
contagiousness period, and, assuming initially that this number was the same for all
individuals, we obtained the evolution equation for the number of new daily cases in a
population. Assuming that the distribution of partial reproduction numbers (referred to as
daily for simplicity) was subject to fluctuations, we calculated the consequences for their
estimation, and we estimated them for a large number of countries, taking a duration of
contagiousness of 3 followed by 7 days.

When this distribution is considered, it is possible to calculate its entropy as a parame-
ter quantifying its uniformity and to simulate the dynamics of the infectious disease either
using a Markovian model such as that defined in Delbrück’s approach [17] or a classical
discrete or ODE SIR deterministic model. In the Markovian case, R0 can be calculated from
the evolutionary entropy defined by L. Demetrius as the Kolmogorov–Sinaï entropy of the
corresponding random process [18], which measures the stability of the invariant measure,
dividing the population into the subpopulations S (individuals susceptible to but not yet
infected with the disease), I (infectious individuals) and R (individuals who have recovered
from the disease and now have immunity to it). In the deterministic case, R0 corresponds
to the Malthusian parameter quantifying its exponential growth, and the stability of the
asymptotic steady state depends on the subdominant eigenvalue [19,20].

1.2. Calculation of R0

In epidemiology, there are essentially two broad ways to calculate R0, which cor-
respond to the individual-level modeling and to the population-level modeling. At the
individual level, if we suppose the susceptible population size constant (hypothesis valid
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during the exponential phase of an epidemic), the daily reproduction rates of an individual
are typically non-constant over his contagiousness period, and the calculations we present
in the following define a new method for estimating R0, as the sum of the daily reproduction
rates. This new approach allows us to have a clearer view on the respective influence on the
transmission rate by endogenous factors (depending on the level of immunologic defenses
of an individual) and exogenous factors (depending on environmental conditions).

2. Materials and Methods

The methodology chosen starts from an attempt to reconstruct an epidemic dynamic
from the knowledge of the number Rikj of people infected at day j by a given infectious
individual i during the kth day of his period of contagiousness of length r. By summing
up the number of new infectious individuals Xj−k present on day j − k where started their
contagiousness, we find that the number of new infected people on day j is equal to:

Xj = Σk=1,r Σi=1 Xj−k Rikj (1)

We will assume in the following that Rikj is the same, equal to Rk, for all individuals I
and day j, then depends only on day k. Then, we have:

Xj = Σk=1,r Rk Xj−k (2)

The convolution Equation (2) is the basis of our modelling of the epidemic dynamics.

2.1. The Contagion Mechanism from a First Infectious Case Zero

Let us suppose that the secondary infected individuals are recruited from the centre
of the sphere of influence of an infectious case zero and that the next infected individuals
remain on a sphere centred on case 0, by just widening its radius on day 2. Therefore, the
susceptible individuals C(j), which each infectious on day j − 1 can recruit, are on a part of
the sphere of influence of case 0 reached at day j (rectangles on Figure 2).

Figure 2. Spread of an epidemic disease from a first infectious case 0 (located at its influence sphere
centre) progressively infecting its neighbours in some regions (rectangles) on successive spheres.

2.2. The Biphasic Pattern of the Virulence Curve of Coronaviruses

Mostly, the clinical course of patients with seasonal influenza shows a biphasic oc-
currence of symptoms with two distinct peaks. Patients have a classic influenza disease
followed by an improvement period and a recurrence of the symptoms [11]. The influenza
RNA virus shedding (the time during which a person might be contagious to another
person) increases sharply one half to one day after infection, peaks on day 2 and persists
for an average total duration of 4.5 days, between 3 and 6 days, which explains why we
will choose in the following contagiousness duration these extreme values, i.e., either 3
or 6 days, depending on the positivity of the estimated daily reproduction numbers. It is
common to consider this biphasic evolution of influenza clinically: after incubation of one
day, there is a high fever (39–40 ◦C), then a drop in temperature before rising, hence the
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term “V” fever. The other symptoms, such as coughing, often also have this improvement
on the second day of the flu attack: after a first feverish rise (39–39.5 ◦C), the temperature
drops to 38 ◦C on the second day, then rises before disappearing on the 5th day, the fever
being accompanied by respiratory signs (coughing, sneezing, clear rhinorrhea, etc.). By
looking at the shape of virulence curves observed in coronavirus patients [12–16], we often
see this biphasic pattern.

2.3. Relationships between Markovian and ODE SIR Approaches

In the following, we suppose that the susceptible population size remains constant,
which constitutes a hypothesis valid during the exponential phase of epidemic waves.
The Markovian stochastic and ODE deterministic approaches are linked by a common
background consisting of the birth and death process approach used in the kinetics of
molecular reactions by Delbrück [17], then in dynamical systems theory by numerous
authors [18–23], namely in modelling of the epidemic spread in exponential growth. In the
ODE approach, the Malthusian parameter is the dominant eigenvalue, and the equivalent
in the Markovian approach is the Kolmogorov–Sinai entropy (called evolutionary entropy
in [24–26]).

2.3.1. First Method for Obtaining the SIR Equation from a Deterministic
Discrete Mechanism

Let us suppose the model is deterministic and denote by Xj the number of new
infected cases at day j (j ≥ 1), and Rk (k = 1, . . . , r) the daily reproduction number at day
k of the contagiousness period of length r for all infectious individuals. Then, we have
obtained Equation (2) by supposing that the contagiousness behaviour is the same for all
the infectious individuals:

Xj = ∑k=1,r Rk Xj−k,

which says that the Xj−k new infected at day j − k give Rk Xj−k new infected on day
j, throughout a period of contagiousness of r days, the Rk’s being possibly different
or zero. For example, if r = 3, for the number X5 of new cases at day 5, equation
X5 = R1X4 + R2X3 + R3X2 means that new cases at day 4 have contributed to new cases at
day 5 with the term R1X4, R1 being the reproduction number at first day of contagiousness
of new infected individuals at day 4.

In matrix form, we obtain:
X = MR, (3)

where X = (Xj, . . . , Xj−r−1) and R = (R1, . . . , Rr) are r-dimensional vectors and M is the
following r-r matrix:

M =




Xj−1, Xj−2, . . . , Xj−r
Xj−k−1, Xj−k−2, . . . , Xj−k−r

Xj−r Xj−r−1, . . . , Xj−2r+1


 (4)

It is easy to show that, if X0 = 1 and r = 5 (estimated length of the contagiousness
period for COVID-19 [12–21]), we obtain:

X5 = R1
5 + 4R1

3R2 + 3R1
2R3 + 3R1R2

2 + 2R2R3 + 2R1R4 + R5 (5)

The length r of the contagiousness period can be estimated from the ARIMA series of
the stationary random variables Yj’s, equal to the Xj’s without their trend, by considering
the length of the interval on which the auto-correlation function remains more than a
certain threshold, e.g., 0.1 [4]. For example, by assuming r = 3, if R1 = a, R2 = b and R3 = c,
we obtain:

X0 = 1, X1 = a, X2 = a2 + b + c, X3 = a3 + 2ab, X4 = a4 + 3a2b + b2 + 2ac,
X5 = a5 + 4a3b + 3ab2 + 3a2c + 2bc, X6 = a6 + 5a4b + 4a3c + 6a2b2 + 6abc + b3 + c2,

X7 = a7 + 6a5b + 5a4c + 10a3b2 + 12a2bc + 4ab3 + 3b2c + 3ac2
(6)
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If R1 and R2 are equal, respectively, to a and b, and if a = b = R/2, c = 0, then, X5
behaves like:

X5 = R5/32 + R4/4 + 3R3/8 (7)

If R = 2, {Xj}i=1,∞ is the Fibonacci sequence, and more generally, for R > 0, the gen-
eralized Fibonacci sequence. Let us suppose now that b = c = 0 and a depends on the
day j: aj = > C(j), where C(j) represents the number of susceptible individuals, which can
be met by one contagious individual at day j. If infected individuals (supposed to all be
contagious) at day j are denoted by Ij, we have:

Xj = ∆Ij/∆j = (Ij+1 − Ij)/(j + 1 − j) = νC(j)Ij (8)

Let us suppose, as in Section 2.1, that the first infectious individual 0 recruits from the
centre of its sphere of influence secondary infected individuals remaining in this sphere,
and that the susceptible individuals recruited by the Ij infectious individuals present at
day j are located on a part of the sphere of centered on the first infectious 0 obtained by
widening its radius (Figure 2). Then, we can consider that the function C(j) increases, then
saturates due to the fact that an infectious individual can meet only a limited number of
susceptible individuals as the sphere grows. We can propose for C(j) the functional form
C(j) = S(j)/(c + S(j)), where S(j) is the number of susceptible individuals at day j. Then, we
can write the following equation, taking into account the mortality rate µ:

Xj = ∆Ij/∆j = νC(j)Ij − µIj = νIj S(j)/(c + S(j)) − µIj (9)

This discrete version of epidemic modeling is used much less than the classic continu-
ous version, corresponding to the ODE SIR model, with which we will show a natural link.
Indeed, the discrete Equation (9) is close to SIR Equation (10), if the value of c is greater
than that of S:

dI/dt = νIS/(c + S) − µI (10)

2.3.2. Second Method for Obtaining the SIR Equation from a Stochastic
Discrete Mechanism

Another way to derive the SIR equation is the probabilistic approach, which comes
from the microscopic equation of molecular shocks by Delbrück [17] and corresponds to a
classical birth-and-death process: if at least one event (with rates of contact ν, birth f, death
µ or recovering ρ) occurs in the interval (t, t + dt), and by supposing that births compensate
deaths, leaving constant the total size N of the population, we have:

Probability ({S(t + dt) = k, I(t + dt) = N − k}) = P(S(t) = k, I(t) = N − k) [1 − [µk + νk(N − k)−fk − ρ(N − k)]dt]
+ P(S(t) = k − 1, I(t) = N − k + 1) [f(k − 1) + ρ(N − k + 1)]dt

− P(S(t) = k+1, I(t) = N − k − 1) [µ(k + 1) + ν(k + 1) (N − k − 1)]dt
(11)

Hence, we have, if Pk(t) denotes Probability({S(t) = k, I(t) = N − k}):

dPk(t)/d = [P(S(t + dt) = k, I(t + dt) = N − k) − P(S(t) = k, I(t) = N − k)]/dt
= − P(S(t) = k, I(t) = N − k) [µk + νk (N − k)−fk-ρ(N − k)]
+ P(S(t) = k − 1, I(t) = N − k + 1) [f(k − 1) + ρ(N − k + 1)]

− P(S(t) = k + 1, I(t) = N − k − 1) [µ(k + 1) + ν(k + 1)(N − k − 1)],

and we obtain:

dPk(t)/dt = −[µk + νk(N − k)−fk − ρ(N − k)]Pk(t) + [f(k − 1) + ρ(N − k + 1)]Pk−1(t) − [µ(k + 1) + ν(k + 1)(N − k1)]Pk+1(t)
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Then, by multiplying by sk and summing over k, we obtain the characteristic function
of the random variable S. If births do not compensate deaths, we have:

Probability ({S(t + dt) = k, I(t + dt) = j}) = P(S(t) = k, I(t) = j) (1 − [µk + νkj − fk − ρj]dt)
+ P(S(t) = k − 1, I(t) = j + 1) [f(k − 1) + ρ(j + 1)]dt

− P(S(t) = k + 1, I(t) = j − 1) [µ(k + 1) + ν(k + 1)(j − 1)]dt
(12)

If S and I are supposed to be independent and if the coefficients ν, f, µ and ρ are
sufficiently small, S and I are Poisson random variables [27], whose expectations E(S) and
E(I) verify:

dE(S)/dt = fE(S) − νE(SI) − µE(S) + ρE(I)
or, if f = µ, dE(S)/dt ≈ E(I) [−νE(S) + ρ],

(13)

leading to the SIR equation for the variables S, I and R considered as deterministic:

dS/dt = −νSI + ρR, dI/dt = νSI − kI − µI, dR/dt = kI − ρR (14)

3. Results
3.1. Distribution of the Daily Reproduction Numbers Rj’s along the Contagiousness Period of an
Individual. A Theoretical Example Where They Are Supposed to Be Constant during the Epidemics

If R0 denotes the basic reproduction number (or average transmission rate) in a given-
population, we can estimate the distribution V (whose coefficients are denoted Vj = Rj/Ro)
of the daily reproduction numbers Rj along the contagious period of an individual, by
remarking that the number Xj of new infectious cases at day j is equal to Xj = Ij − Ij−1, where
Ij is the cumulated number of infectious at day j, and verifies the convolution equation
(equivalent to Equation (2)):

Xj= ∑
k =1,r

RkXj−k, giving in continuous time : X(t) =
∫ r

1
R(s)X(t− s)ds, (15)

where r is the duration of the contagion period, estimated by 1/(ρ + µ), ρ being the
recovering rate and µ the death rate in SIR Equation (14). r and S can be considered as
constant during the exponential phases of the pandemic, and we can assume that the
distribution V is also constant; then, V can be estimated by solving the linear system
(equivalent to Equation (3)):

R = M−1X (16)

where M is given by Equation (4). Equation (16) can be solved numerically, if the pandemic
is observed during a time greater than 1/(ρ + µ). We will first demonstrate an example of
how the matrix M can be repeatedly calculated for consecutive periods of length equal to
that of the contagiousness period (supposed to be constant during the outbreak), giving
matrix series M1, M2, . . . Following Equation (4), we put the values of Xi’s in the two
matrices below, with r = 3 for two periods, the first from day 1 to day 3 and the second
from day 4 to day 6.

M1 =




X4 X3 X2
X3 X2 X1
X2 X1 Xo


, M2 =




X6 X5 X4
X5 X4 X3
X4 X3 X2


, . . . ,

where, after Equation (6), M1 and M2 can be calculated from the Rj’s as:

M1 =




R4
1 + 3R2

1R2 + 2R1R3 + R2
2 R3

1 + 2R1R2 + R3 R2
1 + R2

R3
1 + 2R1R2 + R3 R2

1 + R2 R1
R2

1 + R2 R1 1


,
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and M2 is given by:



R6
1 + 5R4

1R2 + 4R3
1R3 + 6R1R2R3 + 6R2

1R2
2 + R3

2 + R2
3 R5

1 + 4R3
1R2 + 3R2

1R2 + 2R2R3 + 3R3R2
1 R4

1 + 3R2
1R2 + 2R1R3 + R2

2
R5

1 + 4R3
1R2 + 3R2

1R2 + 2R2R3 + 3R3R2
1 R4

1 + 3R2
1R2 + 2R1R3 + R2

2 R3
1 + 2R1R2 + R3

R4
1 + 3R2

1R2 + 2R1R3 + R2
2 R3

1 + 2R1R2 + R3 R2
1 + R2




Additionally, from Equation (2), if, for instance, j = 8 and r = 3, then we have the
expression below, which means that the new cases on the 8th day depend on the new cases
detected on the previous days 7, 6 and 5, supposed to be in a period of contagiousness of
3 days:

X8 = ∑
k =1,3

RkX8−k = R1X7 + R2X6 + R3X5 (17)

Let us suppose now that the initial Rj’s on a contagiousness period of 3 days, are equal
to:


R1
R2
R3


 =




2
1
2


, then matrix M defined by Mij = X7−(i+j) gives the Rj’s from Equation (16),

hence allows the calculation of Xj = Σk=1,3 Rk Xj−k.
The inverse of M is denoted by M−1 and verifies: R = M−1X, where X = (X6, X5, X4),

with X1 = 1, X2 = 2, X3 = 5, X4 = 14, X5 = 37, X6 = 98 and we obtain:

M−1
1 =




37 14 5
14 5 2
5 2 1



−1

=



−1/4 1 −3/4

1 −3 1
−3/4 1 11/4


,

and a deconvolution gives the resulting Rj’s:

−1/4 1 −3/4

1 −3 1
−3/4 1 11/4






98
37
14


 =




2
1
2


 =




R1
R2
R3


, thanks to the following calculation:

R1 = −49/2 + 37 − 21/2 = 2

R2 = 98 − 111 + 14 = 1

R3 = −147/2 + 37 + 77 = 2

We obtain for the resulting distribution of daily reproduction numbers the exact replica
of the initial distribution. We obtain the same result by replacing M1 by the matrix M2.

3.2. Distribution of the Daily Reproduction Numbers Rj’s When They Are Supposed to Be Random

Let us consider a stochastic version of the deterministic toy model corresponding to
Equation (17), by introducing an increasing noise on the Rj’s, e.g., by randomly choos-
ing their values following a uniform distribution on the three intervals: [2 − a, 2 + a],
[1 − a/2, 1 + a/2] and [2− a, 2 + a] (for having a U-shape behavior), with increasing values
of a, from 0.1 to 1, in order to see when the deconvolution would give negative resulting
Rj’s, with conservation of the average of their sum R0, if the random choice of the values
of the Rj’s at each generation is repeated, following the stochastic version of Equation (2):
Xj = Σk=1,r (Rk + εk) Xj−k, where r is the contagiousness period duration and εk is a noise
perturbing Rk, whose distribution is chosen uniform on the interval [0, 2a] for k = 1,3, and
[0, a] for k = 2. This choice is arbitrary, and the main reason of the randomization is to show
that the deconvolution can give negative results for Rk’s, as those observed for increasing
values of a, from 0.1 to 1, with explicit calculations for three consecutive periods, from day
1 to day 3, from day 4 to day 6, and from day 7 to day 9.

For each random choice of the values of the daily reproduction numbers Rj’s, we can
calculate a matrix M1 corresponding to Equation (3). Its inversion into the matrix M1

−1

makes it possible to solve the problem of deconvolution of Equation (2)—that is to say, to
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obtain new Rj’s as a function of the observed Xk’s. We can then calculate a new matrix
M2 from these new Rj’s and thus continue during an epidemic the estimation of the daily
reproduction numbers Rj’s from the successive matrices M1, M2, . . . , and observed Xk’s.

1. For a = 0.1, let us randomly and uniformly choose the initial distribution of the daily
reproduction numbers R1 in the interval [1.9, 2.1], R2 in [0.95, 1.05] and R3 in [1.9, 2.1]
as R1 = 2.1, R2 = 0.95, R3 = 2.1. Then, the transition matrix M1 is equal to:

M1 =




41.7391 15.351 5.36
15.351 5.36 2.1
5.36 2.1 1


 and we have:

M−1
1 =



−0.2154195 0.92857143 −0.7953515
0.92857143 −2.95 1.2178571
−0.7953515 1.2178571 2.705584




From X6 = 113.491, X5 = 41.7391, X4 = 15.351, resulting Rj’s are: R1 = 2.1, R2 = 0.95,
R3 = 2.1.

The next initial Rj’s are chosen as: R1 = 2, R2 = 0.95, R3 = 1.9 and we have:

X7 = 2X6 + 0.95X5 + 1.9X4 = 226.982 + 39.652 + 29.17 = 295.8

X8 = 2X7 + 0.95X6 + 1.9X5 = 591.6 + 107.816 + 79.304 = 778.72

Then, we obtain the matrices M2 and M2
−1:

M2 =




295.8 113.491 41.7391
113.491 41.7391 15.351
41.7391 15.351 5.36




M−1
2 =



−0.07779371 0.20964295 0.00524305
0.20964295 −1.0123552 1.26721348
0.00524305 1.26721348 −3.48354228




Then, the resulting Rj’s equal: R1 = 2.0279, R2 = 7.6158, R3 = −16.426.
The next initial Rj’s are: R1 = 2, R2 = 1.05, R3 = 1.9 and we have:

X9 = 2X8 + 1.05X7 + 1.9X6 = 1557.44 + 310.59 + 215.63 = 2083.66

X10 = 2X9 + 1.05X8 + 1.9X7 = 4167.32 + 817.656 + 562.02 = 5546.996

From these values of X9 and X10, we obtain the matrices M3 and M3
−1:

M3 =




2083.66 778.72 295.8
778.72 295.8 113.491
295.8 113.491 41.7391




M−1
3 =




0.02596375 −0.05192766 −0.04280771
−0.05192766 0.0256605 0.29823273
−0.04280771 0.29823273 −0.48358035




Then, the resulting Rj’s equal: R1 = 2.486, R2 = −2.33, R3 = 7.38769.

2. For a = 1, let us choose the initial R1 in [1, 3], R2 in [0.5, 1.5] and R3 in [1, 3], e.g., R1 = 1,
R2 = 1.355 and R3 = 1.1. Then, the transition matrix M1 is equal to:
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M1 =




9.101 4.81 2.355
4.81 2.355 1

2.355 1 1


 and its inverse is given by:

M−1
1 =



−1.11983471 2.02892562 0.60828512
2.02892562 −2.93801653 −1.84010331
0.60828512 −1.84010331 1.40759184




New cases are: X6 = 18.209, X5 = 9.101, X4 = 4.81, X3 = 2.355, X2 = 1, X1 = 1, and by
deconvoluting, we obtain the resulting Rj’s equal to: R1 = 1, R2 = 1.355, R3 = 1.1, i.e., the
exact initial distribution.

Let us now consider new initial Rj’s: R1 = 1, R2 = 1, R3 = 1. That gives a new matrix
M2, with new X7 and X8 calculated from the new initial Rj’s, by using the former values of
X6, . . . , X2:

X7 = X6 + X5 + X4 = 18.209 + 9.101 + 4.81 = 32.12

X8 = X7 + X6 + X5 = 32.12 + 18.209 + 9.101 = 59.43

Hence, we obtain:

M2 =




32.12 18.209 9.101
18.209 9.101 4.81
9.101 4.81 2.36


 and

M−1
2 =



−0.35061537 0.1839519 0.97925345

0.1839519 −1.47916605 2.31025157
0.97925345 2.31025157 −8.0783421




and the resulting Rj’s equal: R1 = 2.90, R2 = 5.4888, R3 = −14.696.
We calculate X9 and X10 using new initial Rj’s: R1 = 3.0, R2 = 0.5, R3 = 2.9:

X9 = 3X8 + 0.5X7 + 2.9X6 = 178.29 + 16.06 + 52.81 = 247.16

X10 = 3X9 + 0.5X8 + 2.9X7 = 741.48 + 29.715 + 93.148 = 864.343

Hence, we obtain:

M3 =




247.16 59.43 32.12
59.43 32.12 18.209
32.12 18.209 9.101


 and

M−1
3 =




0.00718287 −0.00805357 −0.00923703
−0.00805357 −0.22288084 0.47435642
−0.00923703 0.47435642 −0.80659958




and the resulting Rj’s equal: R1 = 3.66898, R2 = −33.857, R3 = 61.32.
More precise simulation results are given in Table 1, which summarizes computations

made for random choices of Rj’s distributions, for a = 0.1 and a = 1 and until time 20.
These simulations show a great sensitivity to noise, but a qualitative conservation of their
U-shaped distribution along the contagiousness period of individuals. More precisely,
because of the presence of noise on the Rj’s, we cannot always obtain positive values
from the data for the Rj’s by applying the deconvolution, which explains the presence of
negative values in empirical examples, as in the theoretical noised examples. A way to
solve this problem could be to suppose that noise is stationary during all of the growth
period of a wave, then calculate the Rj’s for all running time windows of length equal to
the contagiousness duration and then obtain the mean of the Rj’s corresponding to these
windows. As this stationary hypothesis is not widely accepted, we prefer to keep negative
values and focus on the shape of the distribution of the Rj’s.
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Table 1. Simulation results obtained for extreme noises a = 0.1 and a = 1, showing great variations of deconvoluted distribution of
daily reproduction numbers Xj’s and a qualitative conservation of their U-shaped distribution along contagiousness period.

a Initial Rj’s t Xt Xt+1 Xt+2 Resulting R’js R0 Distribution Shape, Sign R0

0.1 2.1; 0.95; 2.1 4 15.35 31.74 113.5 2.1; 0.95; 2.1 5.15 U-shape, positive
2; 0.95; 1.9 6 113.5 295.8 778.7 2.03; 7.6; −16.4 −6.77 Inverted U-shape, negative
2; 1.06; 1.9 8 778.7 2083.7 5547 2.49; −2.33; 7.39 7.55 U-shape, positive

1.9; 1.05; 1.9 10 5547 14,207 36,776 2.69; −16.7; 43.8 29.8 U-shape, positive
1.9; 0.95; 1.9 12 36,776 93,910 240,359 2.92; 1.68; −6.7 −2.1 Decreased shape, negative

1.9; 1; 1.9 14 240,359 622,149 1,605,227 2.3; −4.83; 14.3 11.8 U-shape, positive
2; 1.05; 1.9 16 1,605,227 4,331,630 11,561,153 2.76; 27; −70 −40.2 Inverted U-shape, negative
1.9; 1; 1.95 18 11,561,153 29,558,395 76,502,587 2.5; −6.48; 17.9 13.9 U-shape, positive

2; 1; 2.1 20 76,502,587 2,076,519 556,226,772 2.67; −7.6; 19.7 14.8 U-shape, positive

1 1; 1.355; 1.1 4 4.81 9.1 18.21 1; 1.355; 1.1 3.455 Inverted U-shape, positive
1; 1; 1 6 18.21 32.12 59.43 2.9; 5.49; −14.7 −6.31 Inverted U-shape, negative

3; 0.5; 2.9 8 59.43 247.16 864.34 3.7; −33.9; 61.3 31.1 U-shape, positive
2.6; 0.7; 2.6 10 864.34 2574.82 7942 3; −1.79; 7.14 8.35 U-shape, positive

2.5; 0.75; 1.5 12 7942.2 23,083.1 67,526.6 3.35; 2.54; −11.6 −5.71 Decreased shape, negative
2.4; 0.8; 2.4 14 67,526.6 199,590 588,437 2.58; −0.5; 4.8 6.88 U-shape, positive

2; 1; 2 16 588,437 1,511,517 4,010,652 2.72; −1.08; 3.19 4.83 U-shape, positive
2.3; 1.15; 2.3 18 4,010,652 12,316,150 36,415,885 2.88; −7.9; 21.7 16.7 U-shape, positive

2.8; 0.6; 2 20 36,415,885 117,375,471 375,133,150 3.7; 4.1; −17 −9.2 Inverted U-shape, negative

3.3. Distribution of the Daily Reproduction Numbers Rj’s. The Real Example of France

Figure 3 gives the effective transmission rates Re calculated between 20–25 October
2020 just before the second lockdown in France [28,29]. As the second wave of the epidemic
is still in its exponential phase, it is more convenient (i) to consider the distribution of the
marginal daily reproduction numbers and (ii) to calculate its entropy and simulate the
epidemic dynamics using a Markovian model [4]. By using the daily new infected cases
given in [30], we can calculate, as in Section 3.1, the inverse matrix M−1 for the period
from 20 to 25 October 2020 (exponential phase of the second wave), by choosing 3 days for
the duration of contagiousness period and the following raw data for new infected cases:
20,468 for 20 October, then 26,676, 41,622, 42,032, 45,422 and 52,010 for 25 October. Then,
for France between 15 February and 27 October 2020, we obtain the daily reproduction
numbers given in Figure 3 with a U-shape as observed for influenza viruses.

We have:

M−1 =




45, 422 42, 032 41, 622
42, 032 41, 622 26, 676
41, 622 26, 676 20, 468



−1

=



−0.0000163989812 −0.0000292188776 0.00007142863
−0.0000292188776 0.0000938161392 −0.0000628537817

0.00007142863 −0.0000628537817 −0.00001447698




Hence, we can deduce the daily Rj’s, i.e., the vector (R1, R2, R3):



−0.0000163989812 −0.0000292188776 0.00007142863
−0.0000292188776 0.0000938161392 −0.0000628537817

0.00007142863 −0.0000628537817 −0.00001447698






52, 010
45, 422
42, 032


 =



−0.852911911949567 −1.32717986039119 3.00228812555347
−1.51967382631645 4.26131667592337 −2.64187015405365
3.71500298367996 −2.85494447414886 −0.60849658654673




=




0.82219725466
0.0997726955533
0.2515619229844


 =




R1
R2
R3




The effective reproduction number is equal to R0 ≈ 1.174, a value close to that calcu-
lated directly (Figure 3), giving V = (0.7, 0.085, 0.215), with a maximal daily reproduction
number the first day of the contagiousness period. The entropy H of V is equal to:

H = −Σk=1,r Vk Log(Vk) = 0.25 + 0.21 + 0.33 = 0.79.
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Figure 3. Top: estimation of the effective reproduction number Re’s for 20 October and the 25 October 2020 (in green, with
their 95% confidence interval) [28,29]. Bottom left: daily new cases in France between 15 February and 27 October [30].
Bottom right: U-shape of the evolution of the daily Rj’s along the 3-day contagiousness period of an individual.

3.4. Calculation of the Rj’s for Different Countries
3.4.1. Chile

By using the daily new infected cases given in [30], we can calculate M−1 for the
period from 1 to 12 November 2020 (endemic phase), by choosing 6 days for the duration
of the contagiousness period and the following 7-day moving average data for the new
infected cases (Figure 4): 1400 for 1 November, then 1370, 1382, 1359, 1362, 1405, 1389, 1385,
1384, 1387, 1394 and 1408 for 12 November.

We have:

M−1 =




1394 1387 1384 1385
1387 1384 1385 1389
1384 1385 1389 1405
1385 1389 1405 1362
1389 1405 1362 1359
1405 1362 1359 1382

1389 1405
1405 1362
1362 1359
1359 1382
1382 1370
1370 1400




−1

=




−0.05714222 0.01016059 −0.00901664 0.01474588
0.01016059 −0.01827291 0.0106261 −0.00763363
−0.00901664 0.0106261 −0.00544051 0.02150289
0.01474588 −0.00763363 0.02150289 −0.01796266
0.00640175 0.02139586 −0.01468484 −0.00553414
0.03539322 −0.01613675 −0.00286391 −0.00509801

0.00640175 0.03539322
0.02139586 −0.01613675
−0.01468484 −0.00286391
−0.00553414 −0.00509801
−0.00305831 −0.00452917
−0.00452917 −0.00686198




237



Computation 2021, 9, 109

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 
 
 
 
 

 

0

1

1 2
3 Day j

Daily Rj’s

1 

1.

Re 

France 

Day j 

1 

1.2 

Chile 

Figure 4. Top: estimation of the effective reproduction number Re’s for the 1 November and the 12 November 2020 (in
green, with their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Chile between 1 November and 12
November [30]. Bottom right: U-shape of the evolution of the daily Rj’s along the infectious 6-day period of an individual.

Hence, after deconvolution, we obtain:

R =




−0.36256122
0.22645436
0.01488726
0.33918287
0.28557502
0.50696243




The effective reproduction number is equal to R0 ≈ 1.011, a value close to that calcu-
lated directly, with a maximal daily reproduction number the last day of the contagiousness
period. Due to the negativity of R1, we cannot derive the distribution V and therefore
calculate its entropy. As entropy is an indicator of non-uniformity, an alternative could be
to calculate it by shifting values of Rj’s upwards by the value of their minimum.

The quasi-endemic situation in Chile since the end of August, which corresponds to
the increase of temperature and drought at this period of the year [4], gives a cyclicity of
the new cases occurrence whose period equals the length of the contagiousness period of
about 6 days, analogue to the cyclic phenomenon observed in simulated stochastic data of
Section 3.2. with a similar U-shaped distribution of the Rj’s.

3.4.2. Russia

By using the daily new infected cases given in [30], we can calculate M−1 for the
period from 30 September to 5 October 2020 (exponential phase of the second wave), by
choosing 3 days for the duration of the contagiousness period and the following raw data
for new infected cases (Figure 5): 7721 for 30 September, then 8056, 8371, 8704, 9081, 9473
for 5 October.

238



Computation 2021, 9, 109

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 

Daily Rj’s 

Day j 

1 

1.2 

Re 

Russia 

Figure 5. Top: estimation of the effective reproduction number Re’s for 30 September and the 5 October 2020 (in green, with
their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Russia between 15 February and 21 November [30].
Bottom right: U-shape of the evolution of the daily Rj’s along the 3-day contagiousness period.

We have:

M−1 =




9081 8704 8371
8704 8371 8056
8371 8056 7721



−1

and




0.031553440566948 −0.027594779248393 −0.005417732076268
−0.027594779248393 −0.00482333528665 0.034950483895551
−0.005417732076268 0.034950483895551 −0.030463575061795






9473
9081
8704


 =




R1
R2
R3


,

where:
R1 = 298.905742490698404 - 250.588190354656833 − 47.155939991836672 = 1.161612144205

R2 = −261.405343820026889−43.80070773806865 + 304.209011826875904 = −0.997039731220

R3 = −51.322175958486764 + 317.385344255498631 - 265.15495733786368 = 0.90821095914

The effective reproduction number is equal to R0 ≈ 1.073, a value close to that calcu-
lated directly, with a maximal daily reproduction number the first day of the contagiousness
period. Due to the negativity of R2, we cannot derive the distribution V and therefore cal-
culate its entropy. The period studied corresponds to a local slow increase of new infected
cases at the start of the second wave in Russia, which looks like a staircase succession of
slightly inclined 4-day plateaus followed by a step: at the beginning of October, in Russia,
new tightened restrictions (but avoiding lockdown) appeared [31], which could explain
the change of the value of the slope observed in the new daily cases [30].

3.4.3. Nigeria

By using the daily new infected cases given in [30], we can calculate M−1 for the
period from 5 November to 10 November (endemic phase), by choosing 3 days for the
duration of the contagiousness period and the following raw data for the new infected
cases (Figure 6): 141 for 5 November, then 149, 133, 161, 164, and 166 for 10 November.
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Figure 6. Top: estimation of the effective reproduction number Re’s for 5 November and 10 November 2020 (in green, with
their 95% confidence interval) [28,29]. Bottom left: Daily new cases in Nigeria between 15 February and 21 November [30].
Bottom right: increasing evolution of the daily Rj’s along the 3-day contagiousness period of an individual.

We have:

M−1 =




164 161 131
161 131 149
131 149 141



−1

=




0.01796807 0.01502897 −0.03283028
0.01502897 −0.02832263 0.01575332
−0.03283028 0.01575332 0.02141264




After deconvolution, we obtain:

R =




0.16177513
0.38618314
0.58115333




The effective reproduction number is equal to R0 ≈ 1.129, value close to that calculated
directly, with a maximal daily reproduction number the last day of the contagiousness
period. The distribution V equals (0.143, 0.342, 0.515) and its entropy H is equal to:

H = −Σk=1,r Vk Log(Vk) = 0.29 + 0.37 + 0.34 = 1.

In Appendix C, Table A1 gives the shape of the Rj’s distribution for 194 countries.

3.5. Weekly Patterns in Daily Infected Cases

Daily new infected cases are highly affected by weekdays, such that case numbers
are lowest at the start of the week and increase afterwards. This pattern is observed at the
world level, as well as at the level of almost every single country or USA state. Hence, in
order to estimate biologically meaningful reproduction numbers, clean of weekly patterns
due to administrative constraints, analyses have to be restricted to specific periods shorter
than a week, or at rare occasions when patterns escape the administrative constraints.
This weekly phenomenon occurs during exponential increase as well as decrease phases
of the pandemic and during endemic periods in numbers of daily cases (Figure 6). In
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addition, the daily new infected case record is discontinuous for many countries/regions,
which frequently publish, on Monday or Tuesday, a cumulative count for that day and the
weekend days. For example, Sweden typically publishes only four numbers over one week,
the one on Tuesday cumulating cases for Saturday, Sunday and the two first weekdays.
Discontinuity in records further limits the availability of data enabling detailed analyses
of daily reproduction numbers and can be considered as extreme weekday effects on new
case records due to various administrative constraints.

We calculated Pearson correlation coefficients r between a running window of daily
new case numbers of 20 consecutive days and a running window of identical duration
with different intervals between the two running windows. These Pearson correlation
coefficients r typically peak with a lag of seven days between the two running windows.

The mean of these correlations are for each day of the week from Tuesday (data making
up for the weekend underestimation) to Monday: 0.571, 0.514 (0.081), 0.383 (0.00008),
0.347 (0.000003), 0.381 (0.000006), 0.468 (0.000444) and 0.558 (0.03916), with, in parentheses,
the p-value of the one-tailed paired t-test showing that the correlation observed with
running windows starting Tuesday are more than the others (see also supplementary
material). This could reflect a biological phenomenon of seven infection days. However,
examination of the frequency distributions of lags for r maxima reveals, besides the median
lag at 7 days, local maxima for multiples of 7 (14, 21, 28, 35, etc.). About 50 percent of all
local maxima in r involve lags that are multiples of seven (seven included).

This excludes a biological causation, except if data periodicity comes from an entrain-
ment by the weekly “Zeitgeber” of census, near the duration of the contagiousness interval.
We tried to control for weekdays using two methods, and combinations thereof. For the
first method, we calculated z-scores for each weekday, considering the mean number of
cases for each weekday, and subtracted that mean from the observed number for a day
(Figure 7). This delta was then divided by the standard deviation of the number of cases
for that weekday. The mean and standard variation are calculated across the whole period
of study for each weekday.

The second method implies data smoothing using a running window of 5 consecutive
days, where the mean number of new cases calculated across the five days is subtracted
from the number of new cases observed for the third day. Hence, data for a given day are
compared to a mean including two previous, and two later days (Figure 8).

We constructed two further datasets, where z-scores are applied in the first to data after
smoothing from the second method and are applied in the second data after smoothing
from the first method (not shown) (Figures 9 and 10).

These four datasets from daily new cases database [30] transformed according to
different methods and combinations thereof designed to control for weekday were analysed
using the running window method. Despite attempts at controlling for weekday effects,
the median lag was always seven days across all four transformed datasets, and local
maxima in lag distributions were multiples of seven. After data transformations, about
50 percent of all local maxima were lags that are multiples of seven, seven included.
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Figure 7. Confirmed world daily new cases (from [30]) as a function of days since 26 February until 23 August 2020 + indicates
Sundays, X indicates Mondays.

Figure 8. Z-transformed scores of confirmed world daily new cases [30], from Figure 6, as a function of days since
26 February 2020 until 23 August 2020 + indicates Sundays, X indicates Mondays. Z-transformations are specific to
each weekday.

Visual inspection of plots of these transformed data versus time for daily new infected
cases from the whole world shows systematic local biases in daily new infected cases
(after transformation) on Sundays and Mondays, for all four transformed datasets, with
Sundays and/or Mondays as local minima and/or local maxima, according to which
method or combination thereof was applied to the data. Hence, the methods we used failed
to neutralize the weekly patterns in daily new cases due to administrative constraints. This
issue highly limits the data available for detailed analyses of daily new cases aimed at
estimating biologically relevant estimates of reproduction numbers at the level of short
temporal scales.
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Figure 9. Smoothed confirmed world daily new cases [30], from Figure 7, as a function of days since 26 February 2020 until
23 August 2020 + indicates Sundays, X indicates Mondays. For each specific day j, the mean number of confirmed daily new
cases calculated for days j − 1, j − 2, j, j + 1 and j + 2 is subtracted from the number for day j.

Figure 10. Smoothed confirmed world daily new cases [30] applied to z-scores from Figure 8, as a function of days since
26 February 2020 until 23 August 2020 + indicates Sundays, X indicates Mondays. Z-transformations are specific to each
weekday. For specific day j, the mean number of confirmed new cases calculated for days j − 1, j − 2, j, j + 1, j + 2 is
subtracted from the number for day j.
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By smoothing on five consecutive days of raw data (confirmed world daily new
infected cases [24]) and applying the z-transformation, we obtain a better result in Figure 11
than in Figure 10 in order to neutralize the weekly pattern. The reason is that the smoothing
largely eliminates the counting defect during weekends due either to fewer hospital
admissions and/or less systematic PCR tests or to a lack of staff at the end of the week to
perform the counts.

Figure 11. Z-transformed scores of smoothed confirmed world daily new cases [30] smoothed data from Figure 9, as a
function of days since 26 February 2020 until 23 August 2020. + indicates Sundays, X indicates Mondays. Z-transformations
are specific to each weekday.

4. Discussion

The duration of the contagiousness period, as well as the daily virulence, are not
constant over time. Three main factors, which are not constant during a pandemic, can
explain this:

- In the virus transmitter, the transition between the mechanisms of innate (the first de-
fense barrier) and adaptive (the second barrier) immunity may explain a transient de-
crease in the emission of the pathogenic agent during the phase of contagiousness [15],

- In the environmental transmission channel, many geophysical factors that vary over time
can influence the transmission of the virus (temperature, humidity, altitude, etc.) [4–8],

- In the recipient of the virus, individual or public policies of prevention, protection,
eviction or vaccination, which evolve according to the epidemic severity and the
awareness of individuals and socio-political forces, can change the sensitivity of the
susceptible individuals [32].

It is therefore very important to seek to estimate the average duration of the period of
contagiousness of individuals and the variations, during this phase of contagiousness, of
the associated daily reproduction numbers [33–39]. If the duration of the contagiousness
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phase is more than 3–5 days, for example ±7 days, the periodicity of seven days observed
for the new daily cases could result of an entrainment of the dynamics of new cases driven
by the social “Zeitgeber” represented by the counting of new cases, less precise during
the weekend (probably underestimated in many countries not working at this time). That
questions the deconvolution over 3 and 5 days, giving some negative Rj. In a future work,
we will compare our results with those obtained by deconvolutions on contagiousness
durations between 3 and 12 days in order to obtain possibly more realistic values for
the Rj’s, and hence, have perhaps a double explanation for the 7 days periodicity, both
sociological and biological. Before this future work, we have extended our study using a
duration r = 3 of contagiousness to r = 7. The results are given in Appendix B: they show
the same existence of identical variations of U-shape type but they specify the values of Rj’s,
more often positive and of more realistic magnitude, while keeping a sum approximately
equal to R0.

Rhodes and Demetrius have pointed out the interest of the distribution of the daily re-
production numbers [24] with respect to the classical unique R0, even time-dependent [25].
In particular, they found that this distribution was generally not uniform, which we have
confirmed here by showing many cases where we observe the biphasic form of the virulence
already observed in respiratory viruses, such as influenza. The entropy of the distribution
makes it possible to evaluate the intensity of its corresponding U-shape. This entropy is
high if the daily reproduction numbers are uniform, and it is low if the contagiousness is
concentrated over one or two days. If some Rj are negative, it is still possible to calculate
this uniformity index, by shifting their distribution by a translation equal to the inverse of
the negative minimum value.

We have neglected in the present study the natural birth and death rates by supposing
them identical, but we could have taken into account the mortality due to the COVID-19.
The discrete dynamics of new cases can be considered as Leslie dynamics governed by the
matrix equation:

Xj = L Xj−1,

where Xj is the vector of the new cases living at day j and L is the Leslie matrix given by:

L =




R1 R2 R3 . . . . . .
b1 0 0 . . . . . .
0 b2 0 . . . . . .
...

...
. . . . . . . . .

...
...

...
. . . . . .

0 0 0 . . . br−1

Rr
0
0
...
...
0




and Xj−1 =




Xj−1
Xj−2
Xj−3

...

...
Xj−r




,

where bj = 1 − µj ≤ 1, ∀ i = 1, . . . , r, is the recovering probability between days j and j + 1.
The dynamical stability for L2 distance to the stationary infection age pyramid

P = limj Xj/Σi=j,j−r+1Xi is related to |λ − λ′|, the modulus of the difference between the
dominant and sub-dominant eigenvalues of L, namely λ = eR and λ′, where R is the Malthu-
sian growth rate and P is the left eigenvector of L corresponding to λ. The dynamical
stability for the distance (or symmetrized divergence) of Kullback–Leibler to P considered
as stationary distribution is related to the population entropy H [26–32], which is defined
if lj = ∏i=1,j−1 bi and pj = ljRj/λj, as follows:

H = −Σj=1,rpj Log(pj)/Σj=1,r jpj (18)

The mathematical characterization by the population entropy defined in Equation (16)
of the stochastic stability of the dynamics described by Equation (16) has its origin in
the theory of large deviations [40–42]. This notion of stability pertains to the rate at
which the system returns to its steady state after a random exogenous and/or endogenous
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perturbation and it could be useful to quantify further the variations of the distribution of
the daily reproduction numbers observed for many countries [43–53].

In summary, the main limitations of the present study are:

- The hypothesis of spatio-temporal stationarity of the daily reproduction numbers is
no longer valid in the case of rapid geo-climatic changes, such as sudden tempera-
ture rises, which decrease the virulence of SARS CoV-2 [4], or mutations affecting
its transmissibility.

- The still approximate knowledge of the duration r of the period of contagiousness
necessitates a more in-depth study at variable durations, by retaining the value of r,
which makes all of the daily reproduction numbers positive.

- The choice of uniform random fluctuations of the daily reproduction numbers is based
on arguments of simplicity. A more precise study would undoubtedly lead to a unimodal
law varying throughout the contagious period, the average of which following a U-
shaped curve, of the type observed in the literature on a few real patients [10,54–58].

5. Conclusions and Perspectives

Concerning contagious diseases, public health physicians are constantly faced with
four challenges. The first concerns the estimation of the basic reproduction number R0. The
systematic use of R0 simplifies the decision-making process by policymakers, advised by
public health authorities, but it is too much of a caricature to account for the biology behind
the viral spread. We have observed in the COVID-19 outbreak that it was non-constant
during an epidemic wave due to exogenous and endogenous factors influencing both
the duration of the contagiousness period and the daily transmission rate during this
phase [54–56]. Then, the first challenge concerns the estimation of the mean duration of the
infectious period for infected patients. As for the transmission rate, realistic assumptions
made it possible to obtain an upper limit to this duration [45], mainly due to the lack of
viral load data in large patient cohorts (see Figure A1 in Appendix A from [57–59]), in
order to better guide the individual quarantine measures decided by the authorities in
charge of public health. This upper bound also makes it possible to obtain a lower bound
for the percentage of unreported infected patients, which gives an idea of the quality of
the census of cases of infected patients, which is the second challenge facing specialists
of contagious diseases. The third challenge is the estimation of the daily reproduction
number over the contagiousness period, which was precisely the topic of the present
paper. A fourth interesting challenge for this community is the extension of the methods
developed in the present paper to the contagious non-infectious diseases (i.e., without
causal infectious agent), such as social contagious diseases [59–61], the best example being
that of the pandemic linked to obesity, for which many concepts and modelling methods
remain available.

Eventually, our approach using marginal daily reproduction numbers involving a
certain level of noise in the dynamics of new daily infected cases defines a stochastic
framework which describes phenomenologically the exponential phase as our results show
for countries such as France, Russia, Sweden, etc. This stochastic modelling allows a better
understanding of the role of the contagiousness period length and of the heterogeneity
(e.g., the U-shape) of its daily reproduction number distribution in the COVID-19 outbreak
dynamics [62–65]. On the medical level, the important message about the U-shape is
that COVID-19 is similar to other viral diseases, such as influenza, with two successive
reactions from the two immune defense barriers, innate cellular immunity first, which is
not sufficient if symptoms persist, then adaptive immunity (cellular and humoral), which
results in a transient decrease in contagiousness between the two phases. The medical
recommendations are, in this case, never to take a transient improvement for a permanent
disappearance of the symptoms. One could indeed, for a public health use, be satisfied
after estimating the sum of the Rj’s, that is to say, R0 or the effective Re. For an individual
health use, it is important to know the existence of a minimum of the Rj’s, which generally
corresponds to a temporary clinical improvement, after the partial success of the innate

246



Computation 2021, 9, 109

immune defenses. This makes it possible to prevent the patient from continuing to respect
absolute isolation and therapeutic measures, even if a transient improvement occurs;
otherwise, they risk, as in the flu, a bacterial pulmonary superinfection (a frequent cause of
death in the case of COVID-19). On the theoretical level, the interest of the proposed method
is its generic character: it can be applied to all contagious diseases, within the very general
framework of Equation (1), which makes no assumption about the spatial heterogeneity
or the longitudinal constancy of the daily reproduction numbers. The deconvolution of
Equation (1) poses a new theoretical problem when it is offered in this context, and our
future research will propose new avenues of research in this field.
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Appendix A

Figure A1 shows a U-shaped evolution for the viral load in real [57] and in simu-
lated [58] COVID-19 patients, and in real influenza-infected animals for the viral load and
the body temperature [59].
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Figure A1. (a) Viral load in real COVID-19 patients [10], (b) in influenza-simulated patients [57] and (c) in real influenza-
infected animals (red curve [58]), and (d) body temperature in real influenza-infected animals (red curve [58]).
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Appendix B

1. Beginning of the pandemic in France from 21 February 2020 to 9 March 2020

The numbers of new cases are:
21 February 2, 4, 19, 18, 39, 27, 56, 20, 67, 126, 209, 269, 236, 185 9 March
Then, the matrix M is defined by:

M =




236 269 209 126
269 209 126 67
209 126 67 20
126 67 20 56
67 20 56 27
20 56 27 39
56 27 39 18

67 20 56
20 56 27
56 27 39
27 39 18
39 18 19
18 19 4
19 4 2




and we have:

M−1 =


−5.884× 10−5 5.399× 10−5 −1.555× 10−4 7.241× 10−3 −5.146× 10−3 −1.255× 10−2 −1.277× 10−2

5.399× 10−5 −1.714× 10−4 7.324× 10−3 −6.862× 10−3 −1.139× 10−2 1560× 10−2 −3.242× 10−3

−1.555× 10−4 7.324× 10−3 −6.862× 10−3 −1.177× 10−2 −1.592× 10−2 −2.441× 10−3 −4.780× 10−4

7.241× 10−3 −6.862× 10−3 −1.177× 10−2 −2.164× 10−2 −6.654× 10−3 −1.0780× 10−2 −9.514× 10−3

−5.146× 10−3 −1.139× 10−2 1.592× 10−2 −6.654× 10−3 −3.692× 10−3 2.797× 10−2 2.637× 10−2

1.255× 10−2 1.560× 10−2 −2.441× 10−3 −1.078× 10−2 2.797× 10−2 2.555× 10−2 −3.125× 10−2

1.277× 10−2 −3.242× 10−3 −4.780× 10−4 9.514× 10−3 2.637× 10−2 −3.125× 10−2 −7.828× 10−4




Because, X =




185
236
269
209
126
67
20




, hence R = M−1 X =




0.239
0.052
−0.783
−0.295

1.189
3.060
3.122




and we can represent

the evolution of Xj’s on Figure A2.

Figure A2. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.

The evolution of the Xj’s along the period of contagiousness shows at day 4 a sharp
increase and a saturation.

2. Exponential phase in France from 25 October 2020 to 7 November 2020

The numbers of new cases are:
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7 November 83,334, 58,581, 56,292, 39,880, 35,912, 51,104, 45,258, 33,447, 46,185, 44,705,
34,194, 31,360, 25,123, 48,808 25 October

Then, the matrix M is defined by:

M =




58, 581 56, 292 39, 880 35, 912
56, 292 39, 880 35, 912 51, 104
39, 880 35, 912 51, 104 45, 258
35, 912 51, 104 45, 258 33, 447
51, 104 45, 258 33, 447 46, 185
45, 258 33, 447 46, 185 44, 705
33, 447 46, 185 44, 705 34, 194

51, 104 45, 258 33, 447
45, 258 33, 447 46, 185
33, 447 46, 185 44, 705
46, 185 44, 705 34, 194

144, 705 34, 194 31, 360
34, 194 31, 360 25, 123
31, 360 25, 123 48, 808




and we obtain

R =




2.867
−1.231
1.351
−2.705
−0.155
0.223
0.769




The Figure A3 shows an evolution of the Xj’s with a U-shape on the three first days
along the period of contagiousness with a sum of Rj’s equal to 1.11, close to the effective
reproduction number Re = 1.13 [28].

Figure A3. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.

3. Beginning of the pandemic in the USA from 21 February 2020 to 5 March 2020

The number of new cases are:
21 February 20, 0, 0, 18, 4, 3, 0, 3, 5, 7, 25, 24, 34, 63 5 March
Then, we have:

R =




0.466
0.584
1.547
−1.044
0.174
0.297
0.692
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The evolution of the Xj’s shows in Figure A4 a U-shape on day 4 with a sum of Rj’s
equal to 2.72, less than the effective reproduction number Re = 3.27 [28].

Figure A4. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.

4. USA exponential phase from 1 November 2020 to 4 November 2020

The numbers of new cases are:
N 14 163,961, 183,792, 167,665, 150,535, 159,565, 120,924, 108,248, 135,385, 136,292,

129,663, 113,709, 105,745, 86,030, 75,285 N 1
Then, we have:

R =




0.020
−0.439
0.583
−0.367
0.497
−0.056
1.113




The evolution of the Xj’s shows in Figure A5 a U-shape on the four last days with a
sum of Rj’s equal to 1.35, close to the effective reproduction number Re = 1.24 [28].

Figure A5. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.
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5. Beginning of the pandemic in the UK from 23 February 2020 to 7 March 2020

The number of new cases are:
23 February 4, 0, 0, 0, 3, 4, 3, 12, 3, 11, 33, 26, 43, 41 7 March
Then, we have:

R =




−0.388
−1.189
1.334
1.960
4.862
−0.170
3.479




Figure A6 shows an evolution of the Xj’s with a U-shape on the three last days along
the period of contagiousness with a sum of Rj’s equal to 9.88, higher than the effective
reproduction number Re = 2.95 [28].

Figure A6. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.

6. UK exponential phase from 17 October 2020 to 30 October 2020

The numbers of new cases are:
30 October 24,350, 23,014, 24,646, 22,833, 20,843, 19,746, 22,961, 20,484, 21,195, 26,624,

21,282, 18,761, 16,943, 16,133 17 October
Then, we have:

R =




0.020
0.334
0.462
−0.098
−0.134
−0.043
0.526




Figure A7 shows an evolution of the Xj’s with a U-shape on the five last days along the
period of contagiousness with a sum of Rj’s equal to 1.07, close to the effective reproduction
number Re = 1.06 [28].
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Figure A7. Values of the daily reproduction numbers Rj along the period of contagiousness of length
7 days.

Appendix C

Table A1 is built from new COVID-19 cases at the start of the first and second waves
for 194 countries; it shows 42 among these 194 countries having a U-shape evolution of
their daily Rj’s twice, for 12.12± 6 expected with 0.95 confidence (p < 10−12), and 189 times,
a U-shape evolution for all countries and waves (397), for 99.3 ± 9 expected with 0.95
confidence (p < 10−24). Hence, the U-shape is the most frequent evolution of daily Rj’s,
which confirms the comparison with the behavior of seasonal influenza (see Section 2.2).

Table A1. Calculation of the daily Rj’s and shape of their distribution for 194 countries and for the two first waves.

All Countries First Wave Second Wave
No Country Name R0 Rj’s U-Shape R0 Rj’s U-Shape

1 AFGHANISTAN 0.65 0.17; 0.09; 0.39 YES 0.04 −1.38; −0.36; 1.78 INCR
2 ALGERIA 1.25 3.93; −6.21; 3.53 YES 0.91 1.28; −1.06; 0.69 YES
3 ARUBA 5.46 10.31; −39.32; 34.47 YES 1.10 1.54; −1.60; 1.16 YES
4 ANDORRA 1.36 1.00; 0.79; −0.43 DECR 0.12 4.34; −1.63; −2.59 DECR
5 ANGOLA 0.63 0.33; 1.42; −1.12 INV 1.70 9.22; −1.58; −5.94 DECR
6 ANTIGUA 1.92 0.00; 1.25; 0.67 INV 2.13 −0.40; 1.33; 1.20 INV
7 ALBANIA 0.96 0.48; 0.50; −0.02 INV 0.66 1.98; −0.56; −0.76 DECR
8 ARGENTINA 0.73 0.57; −1.28; 1.44 YES 0.36 1.27; 0.75; −1.66 DECR
9 ARMENIA 4.43 17.99; −36.99; 23.43 YES 0.86 1.41; −0.97; 0.42 YES

10 AUSTRALIA 2.79 −1.02; 3.47; 0.34 YES 1.50 −0.88; 0.68; 1.70 INCR
11 AUSTRIA 1.17 −1.78; −0.05; 3.00 INCR 2.08 0.62; −3.55; 5.01 YES
12 AZERBAIJAN 1.16 1.23; −1.32; 1.25 YES 0.37 10.36; −6.45; −3.54 YES
13 BAHAMAS 0.57 −0.13; −0.98; 1.68 YES 1.22 0.22; −0.86; 1.86 YES
14 BAHRAIN 1.10 −0.74; 0.28; 1.56 INCR 1.14 1.98; −2.69; 1.85 YES
15 BANGLADESH 1.04 2.37; −2.97; 1.64 YES 0.99 0.86; −0.69; 0.82 YES
16 BARBADOS 1.86 0.86; −0.64; 1.64 YES 1.14 0.22; −0.81; 1.73 YES
17 BELARUS 1.57 −2.37; −4.58; 8.52 YES 1.07 −0.33; 0.24; 1.16 INCR
18 BELGIUM 0.43 11.66; −15.63; 4.41 YES 2.23 1.17; −2.39; 3.45 YES
19 BELIZE 0.99 0.80; 0.42; −0.23 DECR 0.51 1.77; −0.21; −1.05 DECR
20 BENIN 0.85 0.81; 0.47; −0.43 DECR 0.85 1.17; 0.22; −0.54 DECR
21 BHUTAN 15.00 14.00; 15.00; −14.00 INV 1.08 0.80; 0.57; −0.29 DECR
22 BOLIVIA 2.17 8.47; −1.17; −5.13 DECR 1.61 0.96; −0.30; 0.95 YES
23 BOSNIA 0.09 −1.06; −1.05; 2.20 INCR 1.56 −0.57; −0.51; 2.64 INCR
24 BOTSWANA 28.47 0.22; 0.00; 28.25 YES 28.43 0.22; −0.05; 28.26 YES
25 BRAZIL 0.77 0.31; 1.08; −0.62 INV 0.46 1.21; 0.16; −0.91 DECR
26 BRUNEI 1.08 0.10; −0.15; 1.13 YES 1.00 1.00; −1.00; 1.00 YES
27 BULGARIA 5.06 14.73; −66.02; 56.35 YES 0.75 1.34; −0.98; 0.39 YES
28 BURKINA FASO 1.08 0.72; −0.34; 0.70 YES 0.94 0.31; 0.24; 0.39 YES
29 BURUNDI 1.33 1.33; −0.67; 0.67 YES 2.18 0.53; 1.80; −0.15 INV
30 CABO VERDE 0.82 −0.08; −0.26; 1.16 YES 0.19 0.56; 1.37; −1.74 INV
31 CAMBODIA 0.34 0.08; 0.25; 0.01 INV 0.27 0.06; 0.15; 0.06 INV
32 CAMEROON 2.17 2.36; 1.25; −1.44 DECR 2.48 0.50; −0.25; 2.23 YES
33 CANADA 1.10 −0.55; −0.72; 2.37 YES 0.44 2.36; −0.44; −1.48 DECR
34 CAR 1.66 −0.07; 0.64; 1.09 INCR 0.33 0.44; −0.22; 0.11 YES
35 CHAD 1.19 0.77; −1.15; 1.57 YES 0.77 1.19; 0.25; −0.67 DECR
36 CHILE 1.00 0.72; 0.17; 0.11 DECR 1.64 0.37; −4.45; 5.72 YES
37 CHINA 1.10 0.90; −0.49; 0.69 YES 0.87 1.16; 0.60; −0.89 DECR
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All Countries First Wave Second Wave
No Country Name R0 Rj’s U-Shape R0 Rj’s U-Shape

38 COLUMBIA 1.00 1.75; −0.86; 0.11 YES 1.47 −1.14; 3.08; −0.47 INV
39 COMOROS 3.75 0.00; −2.75; 6.5 YES 1.65 −0.58; 1.24; 0.99 INV
40 CONGO DEM 0.03 −0.37; −0.39; 0.79 YES 0.88 0.66; 0.74; −0.52 INV
41 CONGO REP 0.92 0.92; 0.92; −0.92 DECR 0.39 −0.12; 0.19; 0.32 INCR
42 COSTA RICA 0.50 −2.79; −3.84; 7.13 YES 1.26 1.21; −0.85; 0.90 YES
43 COTE D’VOIRE 1.18 −0.49; −0.63; 2.30 YES 2.09 4.32; −7.09; 4.86 YES
44 CROTIA 0.75 0.53; 0.79; −0.57 INV 0.57 0.68; −0.64; 0.53 YES
45 CUBA 0.48 −37.25; 16.17; 21.56 INCR 0.78 0.34; −0.73; 1.17 YES
46 CURACAO 0.50 3.00; −1.00; −1.50 DECR 4.19 1.93; −4.01; 6.27 YES
47 CYPRUS 0.69 0.27; 2.49; −2.07 INV 0.45 −0.42; 1.76; −0.89 INV
48 CZECH 0.16 −0.16; 3.88; −3.56 INV 0.88 1.88; −1.41; 0.41 YES
49 DENMARK 0.80 −0.11; 0.41; 0.50 INCR 0.64 −0.03; 4.65; −3.98 INV
50 DJIBOUTI 0.17 1.23; 0.24; −1.30 DECR 0.36 0.64; 0.41; −0.69 DECR
51 DOMINICAN 1.02 1.05; −0.31; 0.28 YES 1.57 0.32; −0.06; 1.31 YES
52 DOMINICA 7.75 2.00; −4.00; 9.75 YES 0.67 −0.36; 0.72; 0.31 INV
53 ECUADOR 1.46 −0.47; 1.06; 0.87 INV 1.14 0.73; −0.14; 0.55 YES
54 EGYPT 0.84 0.30; 0.37; 0.17 INV 0.51 11.99; −3.76; −7.72 DECR
55 EL SALVADOR 1.70 −0.20; 0.59; 1.31 INCR 0.66 −0.76; −14.49; 15.91 YES
56 EQUITORIAL G. 0.38 0.85; −0.20; −0.27 DECR 1.48 0.81; −0.66; 1.33 YES
57 ERITREA 1.18 1.44; −0.05; −0.21 DECR 0.80 1.02; 0.20; −0.42 DECR
58 ESTONIA 0.87 1.96; 0.82; −1.91 DECR 3.04 −0.70; −1.80; 5.54 YES
59 ESWATINI 0.94 1.41; −1.42; 0.95 YES 0.71 −0.02; 1.52; −0.79 INV
60 ETHIOPIA 0.80 −0.56; −1.45; 2.81 YES 1.24 0.34; 0.13; 0.77 YES
61 FIJI 2.00 0.00; 1.00; 1.00 INCR 0.50 0.75; −0.50; 0.25 YES
62 FINLAND 1.14 0.91; −0.42; 0.65 YES 2.41 0.56; −2.38; 4.23 YES
63 FRANCE 1.17 0.82; 0.10; 0.25 YES 2.17 0.88; −0.86; 2.15 YES
64 GABON 0.97 0.20; 0.47; 0.30 INV 0.19 −0.51; 0.00; 0.70 INCR
65 GAMBIA 0.83 −0.25; 0.43; 0.65 INCR 0.37 −0.38; 0.00; 0.75 INCR
66 GEORGIA 1.23 0.16; 0.43; 0.64 INCR 0.79 1.52; −0.49; −0.24 YES
67 GERMANY 0.73 0.15; −1.04; 1.62 YES 0.79 1.15; −0.56; 0.20 YES
68 GHANA 1.48 0.55; 0.70; 0.23 INV 0.62 0.13; −0.81; 1.30 YES
69 GREECE 0.71 0.33; −0.27; 0.65 YES 0.71 0.95; 0.28; −0.52 DECR
70 GRENADA 14.00 −5.00; 3.00; 16.00 INCR 0.10 −0.15; 0.00; 0.25 INCR
71 GUADELOUPE 1.35 0.00; 0.76; 0.59 INV 1.35 0.00; 0.76; 0.59 YES
72 GUATEMALA 0.25 2.01; −0.70; −1.06 YES 0.27 1.19; −0.11; −0.81 DECR
73 GUIANA FRENCH 0.88 1.30; −0.38; −0.04 YES 0.43 0.99; 0.27; −0.83 DECR
74 GUINEA 0.46 0.65; −0.56; 0.37 YES 1.68 0.21; 0.68; 0.79 INCR
75 GUINEA BISSAU 1.14 0.06; 1.59; −0.51 INV 4.20 −0.11; 0.04; 4.27 INCR
76 GUYANA 2.38 −3.45; −0.20; 6.03 INCR 4.23 −0.53; 0.58; 4.18 INCR
77 HAITI 0.60 0.30; −0.13; 0.43 YES 0.61 0.32; 0.42; −0.13 INV
78 HONDURAS 0.57 −2.94; 3.12; 0.39 INV 1.64 0.13; 0.54; 0.97 INCR
79 HONGKONG 0.04 0.95; −0.69; −0.22 YES 0.24 2.50; −8.79; 6.53 YES
80 HUNGARY 0.90 0.66; −0.12; 0.36 YES 1.93 1.91; −2.72; 2.74 YES
81 ICELAND 2.28 −0.85; 3.93; −0.80 INV 0.66 0.84; 0.22; −0.40 NO
82 INDIA 0.98 1.82; 0.53; −1.37 DECR 0.96 1.08; −0.57; 0.45 YES
83 INDONESIA 0.95 0.67; 0.88; −0.60 INV 0.99 1.06; −0.03; −0.03 YES
84 IRAN 1.04 1.73; −0.67; −0.02 YES 0.90 6.62; −6.62; 0.90 YES
85 IRAQ 0.77 0.15; −0.35; 0.96 YES 0.96 0.77; −0.40; 0.59 YES
86 IRELAND 2.16 −2.83; −5.64; 10.63 YES 1.12 1.12; −0.39; 0.39 YES
87 ISRAEL 0.21 −1.39; 1.08; 0.52 INV 1.16 −0.16; 0.44; 0.88 INCR
88 ITALY 1.04 2.24; −1.85; 0.65 YES 3.69 1.65; −7.89; 9.93 YES
89 JAMAICA 0.43 0.13; 0.06; 0.24 YES 2.47 −0.34; 2.06; 0.75 INV
90 JAPAN 1.02 0.69; 0.88; −0.55 INV 1.16 0.61; 0.42; 0.13 DECR
91 JORDAN 2.53 10.82; −18.20; 9.91 YES 0.93 1.28; 0.57; −0.92 DECR
92 KAZAKHSTAN 0.60 0.53; −5.45; 5.52 YES 2.06 −0.05; 2.37; −1.26 INV
93 KENYA 1.14 0.05; 0.65; 0.44 INV 1.18 0.47; 1.34; −0.63 INV
94 KOREA REP. 1.00 0.12; 0.87; 0.01 INV 1.04 0.60; −0.03; 0.47 YES
95 KOSOVO 1.02 1.00; 1.02; −1.00 INV 0.99 1.31; −0.29; −0.03 YES
96 KUWAIT 0.88 0.5; −0.34; 0.67 YES 1.10 0.58; −0.84; 1.36 YES
97 KYRGYZSTAN 0.17 −0.73; 0.26; 1.64 INCR 1.05 0.28; −0.32; 1.09 YES
98 LAO PDR 0.50 0.50; 0.50; −0.50 DECR 0.15 0.33; 0.74; −0.92 INV
99 LATVIA 0.74 1.97; −0.76; −0.47 YES 0.50 0.40; −0.22; 0.32 YES
100 LEBANON 1.03 0.57; 0.12; 0.34 YES 0.90 0.23; 0.06; 0.61 YES
101 LESOTHO 7.08 −2.86; 7.22; 2.72 INV 1.42 0.37; 1.51; −0.46 INV
102 LIBERIA 0.31 0.18; −0.04; 0.17 YES 4.56 0.14; 4.61; −0.19 INV
103 LIBYA 0.96 0.19; −0.71; 1.48 YES 0.79 −0.42; 0.56; 0.65 INCR
104 LITHUANIA 0.83 0.56; 0.11; 0.16 YES 2.49 −0.90; −0.52; 3.91 INCR
105 LUXEMBOURG 0.24 −8.55; −3.75; 12.54 INCR 1.48 1.16; −0.91; 1.23 YES
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No Country Name R0 Rj’s U-Shape R0 Rj’s U-Shape

106 MACAO 0.29 1.14; 2.29; −3.14 INV - - -
107 MADAGASCAR 0.94 0.61; −0.16; 0.49 YES 0.75 0.38; −1.54; 1.91 YES
108 MALAWI 1.12 −0.23; 0.53; 0.82 INCR 6.46 −0.41; 0.99; 5.88 INCR
109 MALAYSIA 1.25 0.38; 2.79; −1.92 INV 1.30 −0.57; 1.82; 0.05 INV
110 MALDIVES 0.83 0.60; −0.53; 0.76 YES 1.05 −0.27; 0.70; 0.62 INV
111 MALI 0.64 0.59; 0.42; −0.37 DECR 7.78 −2.64; −4.96; 15.38 YES
112 MALTA 1.06 1.15; 0.24; −0.33 DECR 0.99 −0.73; 1.81; −0.09 INV
113 MAURITANIA 1.76 −0.94; 0.29; 2.41 INCR 1.14 0.73; −0.41; 0.82 YES
114 MAURITIUS 4.49 −4.05; 0.36; 8.18 INCR 0.35 1.41; 0.53; −1.59 DECR
115 MAYOTTE 5.46 −9.46; −2.50; 17.42 INCR 1.05 0.72; −0.17; 0.50 YES
116 MEXICO 0.86 −1.39; 3.07; −0.82 INV 2.53 −0.55; 0.10; 2.98 INCR
117 MOLDOVA 1.03 2.73; −0.67; −1.03 DECR 0.36 1.27; 0.66; −1.57 DECR
118 MONACO 3.15 0.52; −1.93; 4.56 YES 0.54 1.02; −0.12; −0.36 DECR
119 MONGOLIA 10.25 1.25; 19.25; −10.25 INV 0.68 0.91; 0.25; −0.48 DECR
120 MONTENEGRO 1.37 2.94; −3.90; 2.33 YES 0.66 2.36; 0.26; −1.96 DECR
121 MOROCCO 0.90 0.36; 1.41; −0.87 INV 0.95 0.95; −0.15; 0.15 YES
122 MOZAMBIQUE 0.72 0.92; 0.001; −0.20 DECR 0.70 2.46; −2.45; 0.69 YES
123 MYANMAR 1.12 −0.75; 1.07; 0.80 INV 1.15 −1.36; −2.17; 4.68 YES
124 NAMIBIA 0.68 1.37; −1.82; 1.13 YES 1.22 −0.26; 0.95; 0.53 INV
125 NEPAL 0.74 0.35; 0.76; −0.37 INV 0.78 0.11; 0.58; 0.09 INV
126 NETHERLAND 1.19 0.11; 0.11; 0.97 YES 1.04 1.05; −0.99; 0.98 YES
127 NEW CALEDONIA 5.00 −2.00; 2.00; 5.00 YES 1.00 1.00; −1.00; 1.00 YES
128 NEW ZEALAND 0.74 2.30; −3.40; 1.84 YES 0.72 −0.52; 0.43; 0.81 INCR
129 NICARAGUA 0.97 −0.03; 0.97; 0.03 INV 1.02 0.86; 0.14; 0.02 DECR
130 NIGER 0.63 0.28; −0.12; 0.47 YES 2.21 −0.14; 0.39; 1.96 INCR
131 NIGERIA 1.13 0.16; 0.39; 0.58 INCR 1.02 1.38; −0.65; 0.29 YES
132 MACEDONIA 0.74 1.83; −1.16; 0.07 YES 0.74 1.26; −0.10; −0.42 DECR
133 NORWAY 0.77 −0.19; −0.61; 1.57 YES 2.13 6.02; −10.80; 6.91 YES
134 OMAN 3.70 0.39; 0.12; 3.19 YES 9.80 −16.87; 39.41; −12.74 INV
135 PAKISTAN 1.22 −0.61; 1.07; 0.76 INV 1.19 0.55; −0.11; 0.75 YES
136 PALESTINE 0.96 −0.18; −0.23; 1.37 YES 1.06 −0.21; 0.18; 1.09 INCR
137 PANAMA 0.96 0.16; 0.56; 0.24 INV 0.79 1.22; −0.16; −0.27 DECR
138 PAPAU NEW G. 0.49 0.35; −1.96; 2.10 YES 0.88 −0.39; 0.04; 1.23 INCR
139 PARAGUAY 0.59 −1.52; 1.90; 0.21 INV 1.20 −3.20;3.06; 1.34 INV
140 PERU 0.89 8.30; −2.47; −4.94 DECR 0.53 3.98; −4.72; 1.27 YES
141 PHILLIPPINES 1.15 0.89; −0.08; 0.34 YES 1.54 0.07; 2.84; −1.37 INV
142 POLAND 0.92 2.32; −1.89; 0.49 YES 1.31 1.71; −1.63; 1.23 YES
143 POLYNESIA 0.66 0.22; 0.20; 0.24 YES 0.21 −1.05; 1.09; 0.17 INV
144 PORTUGAL 1.56 −1.34; −8.29; 11.19 YES 3.89 1.13; −4.00; 6.76 YES
145 QATAR 0.80 −0.84; −1.99; 3.63 YES 1.03 0.62; 0.61; −0.20 INV
146 ROMANIA 0.88 0.90; 0.06; −0.08 DECR 0.95 1.23; −0.48; 0.20 YES
147 RUSSIA 1.07 1.16; −1.00; 0.91 YES 0.87 0.83; −5.77; 5.81 YES
148 RWANDA 1.80 3.20; 2.20; −3.60 DECR 0.14 3.93; −2.75; −1.04 YES
149 SAO TOME 1.44 0.44; 0.64; 0.36 INV 2.67 2.25; −3.45; 3.87 YES
150 SAN MARINO 5.10 0.28; 1.14;3.68 INCR 0.26 −0.05; 2.32; −2.01 INV
151 SAUDI ARABIA 0.90 −1.70; 2.94; −0.34 INV 0.98 −1.05; 0.54; 1.49 INCR
152 SENEGAL 0.72 −0.19; 1.48; −0.57 INV 1.59 0.73; 0.23; 0.63 YES
153 SERBIA 1.62 −0.40; 0.47; 1.55 INCR 0.82 2.02; −0.94; −0.26 YES
154 SEYCHELLES 0.48 0.30; 0.51; −0.33 INV 0.54 0.38; −0.19; 0.35 YES
155 SIERRA LEONE 2.23 −2.93; −0.80; 5.96 INCR 1.37 0.95; −1.25; 1.67 YES
156 SINGAPORE 1.33 1.15; 0.51; −0.33 DECR 2.83 1.61; −2.44; 3.66 YES
157 SLOVAK 0.99 −2.67; 1.90; 1.76 INV 0.74 0.97; −0.73; 0.50 YES
158 SLOVENIA 0.75 1.56; −0.71; −0.10 DECR 0.64 1.47; −0.47; −0.36 YES
159 SOMALIA 1.18 −0.16; 1.51; −0.17 INV 0.29 0.86; 0.57; −1.14 DECR
160 SOUTH AFRICA 0.87 0.22; 0.73; −0.08 INV 1.49 0.20; −0.04; 1.33 YES
161 SOUTH SUDAN 0.58 0.10; 0.16; 0.32 INCR 1.72 0.63; −0.63; 1.72 YES
162 SPAIN 0.38 −0.18; 0.27; 0.29 INCR 0.51 1.21; −0.86; 0.16 YES
163 SRI LANKA 2.13 2.73; −0.75; 0.15 YES 0.79 0.42; 1.00; −0.63 INV
164 ST KITTS NEVIS 2.00 0.00; 1.00; 1.00 INCR 1.07 0.25; 0.18; 0.64 YES
165 ST LUCIA 1.13 −0.53; −0.04; 1.70 INCR 1.00 1.00; −1.00; 1.00 YES
166 ST VINCENT 0.04 −0.29; 0.24; 0.10 INV 0.69 −0.24; 0.35; 0.58 INCR
167 SUDAN 0.36 −1.46; 2.34; −0.52 INV 2.00 0.00; 2.00; 0.00 INV
168 SURINAME 10.34 2.70; 18.77; −11.13 INV 1.63 2.95; −1.25; −0.07 YES
169 SWEDEN 0.56 0.58; −1.20; 1.18 YES 1.21 0.67; −0.91; 1.45 YES
170 SWITZERLAND 1.21 1.25; 0.13; −0.17 DECR 0.28 0.89; 1.18; −1.79 INV
171 SYRIA 1.43 1.39; 4.13; −4.09 INV 0.18 0.31; −0.68; 0.55 YES
172 TAIWAN 1.88 −0.13; 1.38; 0.63 INV 0.66 −5.21; 13.83; −7.96 INV
173 TAJIKISTAN 1.02 0.71; −0.60; 0.91 YES 1.49 1.83; −0.17; −0.17 YES
174 TANZANIA 0.91 −1.50; 0.18; 2.23 INCR 1.89 3.42; 14.26; −15.79 INV
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All Countries First Wave Second Wave
No Country Name R0 Rj’s U-Shape R0 Rj’s U-Shape

175 THAILAND 0.69 0.42; 0.07; 0.20 YES 2.71 −1.77; −0.75; 5.23 INCR
176 TIMOR LESTE 5.00 1.00; 0.00; 4.00 YES 1.33 0.00; 1.00; 0.33 INV
177 TOGO 0.08 6.05; −6.18; 0.21 YES 1.14 0.18; 0.09; 0.87 YES
178 TRINIDAD 0.32 −0.26; 1.46; −0.88 INV 0.55 0.26; 0.03; 0.26 YES
179 TUNISIA 1.53 0.77; −0.04; 0.80 YES 2.77 −3.21; −2.41; 8.39 INCR
180 TURKEY 1.15 −1.50; −1.13; 3.78 INCR 2.21 19.82; −47.90; 30.29 YES
181 UAE 0.97 2.07; −1.11; 0.01 YES 1.15 1.25; −0.64; 0.54 YES
182 UGANDA 0.95 0.87; −0.37; 0.45 YES 0.64 0.44; −0.06; 0.26 YES
183 UKRAINE 0.96 1.35; −1.04; 0.65 YES 0.30 3.10; 1.07; −1.73 DECR
184 UK 0.76 −0.02; −0.76; 1.54 YES 1.03 0.43; 0.82; −0.22 INV
185 USA 8.42 31.42; −99.18; 76.18 YES 0.49 3.32; −0.38; −2.45 DECR
186 URUGUAY 0.63 0.71; 0.31; −0.39 DECR 1.03 −0.23; 0.35; 0.91 INCR
187 UZBEKISTAN 0.95 0.04; 0.10; 0.81 INCR 0.90 −0.03; −0.39; 1.32 YES
188 VENEZUELA 1.54 1.65; 2.95; −3.06 INV 0.82 1.09; −2.53; 2.26 YES
189 VIETNAM 3.29 −0.84; −0.39; 4.52 YES 1.43 0.76; −0.11; 0.78 YES
190 VIRGIN ISLANDS 0.51 0.01; −0.06; 0.56 YES 0.33 0.44; −0.22; 0.11 YES
191 WEST GAZA 1.00 −1.00; −2.00; 4.00 YES 0.98 0.59; −0.11; 0.50 YES
192 YEMEN 0.70 −0.34; 0.17; 0.86 INCR 1.50 1.00; 0.00; 0.50 YES
193 ZAMBIA 0.75 0.25; −0.13; 0.63 YES 1.12 1.11; −0.44; 0.45 YES
194 ZIMBABWE 1.44 0.24; 0.60; 0.60 INCR 1.62 1.08; −1.12; 1.66 YES
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Abstract: This paper investigates numerical properties of a flux-based finite element method for the
discretization of a SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model
for the spread of COVID-19. The model is largely based on the SEIRD (susceptible-exposed-infected-
recovered-deceased) models developed in recent works, with additional extension by a quarantined
compartment of the living population and the resulting first-order system of coupled PDEs is solved
by a Least-Squares meso-scale method. We incorporate several data on political measures for the
containment of the spread gathered during the course of the year 2020 and develop an indicator that
influences the predictions calculated by the method. The numerical experiments conducted show
a promising accuracy of predictions of the space-time behavior of the virus compared to the real
disease spreading data.

Keywords: COVID-19; least-squares finite element method; susceptible-exposed-infected-quarantined-
recovered-deceased (SEIQRD)

1. Introduction

The outbreak of the global pandemic caused by the novel virus responsible for COVID-
19 had, and still has, a great impact on the life of the global human population. Human
lives are threatened greatly by this highly infectious virus with higher probability of death
and long-term damages to individuals of higher age or with a compromised immune
system. Due to this delicate situation of global influence, various political measures have
to be taken to prevent the virus from spreading as much as possible before an effective
vaccine can be developed and distributed among the population to ensure immunity of
a substantial part of the population that eventually causes the virus to die out. The most
prominent question in the meantime, however, is that of the measures to be taken to ‘flatten
the curve’ of new infections as the virus seems to spread exponentially if exposure is not
regulated in any way. Among the measures already taken by the governments are curfews,
lockdowns of whole cities and countries, quarantines of people exposed to the virus or that
recently have been to areas with a high impact, travel restrictions, and—most commonly
propagated measure on social media—social-distancing. But, to this point, there does not
seem to be a general (political) consensus about the safest plan to slow the spread of the
virus and which measures are the most effective, imposed on the people in exactly which
level of strictness. This calls for a scientific modeling of the epidemiological behavior of
this virus to form a plausible foundation for regulations. Such a model needs to extract
some patterns thereof from the scattered data collected during the time of first notice in
late 2019 until the latest developments today and to convert them into functions that can
effectively predict new developments in the future. Regulating factors, such as exposure
and mortality rates, can hopefully be witnessed and then, in turn, used to optimize the
political measures accordingly.

The well-known epidemiological models of SIR type (susceptible-infected-recovered)
have been extensively analyzed, and we refer to Reference [1] for an overview. This model
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works with a separation of the general population that needs to be studied into certain
compartments (S, I, R) that have different roles in the spread of and affection by the virus
and have a different use in the respective models. This compartment list can be extended
to account for the further specifications of the disease, and we refer to Reference [2] for
an overview. For example, the SEIR model includes an exposed group and the SEIRD
(susceptible-exposed-infected-recovered-deceased) model separates truly recovered and
deceased. The choice of these compartments for COVID-19 modeling has been the subject
of many recent publications. The experts in modeling seem to agree that a COVID-19
model should account for asymptomatic transmission and that a quarantined group might
be relevant (see Reference [3–9]).

A further challenge is the modeling of the spatial spread of the epidemic diseases in
geographical regions. Several works, therefore, coupled the classical SIR model with inter-
city networks, as in Reference [10,11]. To this aim, the classical epidemiological models of
SIR type have been recast in the variational setting of analytical mechanics in Reference [12]
with continuum partial differential equation models with diffusion terms describing the
spatial variation in epidemics. First, mechanical and mathematical investigations in this
direction were pursued in Reference [13,14] and seem very promising. A derivation of such
a coupled system of PDEs without particular reference to an established SIR model has
been conducted in Reference [15], where the authors have shown how the epidemiological
dynamics can be expressed in PDEs step-by-step. For a mathematical analysis of a similar
SIR model, we refer to Reference [16]. Another link can be drawn to the field of machine
learning, as neural network predictors have proven themselves recently in similar fields,
such as traffic and social modeling. Deep learning structures have been used to develop
predictors for the COVID-19 virus spread. The techniques of using training data to be fed to
the neural network that automatically computes a possible prediction are a great advantage
in comparison to classical FEM methods that need a detailed model and a system of PDEs
thought-out beforehand. A work on this forecast of the regional spread and intensity of
the virus prevalence is presented in Reference [17]. Limitations, however, are exactly these
training data, or the lack thereof, as at the beginning of the pandemic there might have not
been a big enough variety of data to train the algorithm properly, and this can be linked to
a choice of which data to use to make a most fitting prediction, until newer case numbers
and their distribution are known.

In this work, we opted for a continuum partial differential equation model as in
Reference [13,14] but added the quarantined compartment. Moreover, instead of a clas-
sical variational formulation, an approximation of the solution is obtained with a mixed
formulation involving the fluxes of the variable accounting for the number of individuals
in each group. This variational formulation is chosen to be of Least-Squares type, such that
the linearization is relatively straightforward, the solving procedure involves a positive
definite matrix, and we can use the inherent error estimator for adaptive strategies. We will
map out the country of Germany with respect to accumulating regions and incorporate the
ideas of travel restrictions and contact limitations imposed on the population. A further
advantage of this approach is that it will give us the possibility to account for the political
interventions made by the government in a hope to contain the spread of the virus in
affected areas. To give an analysis of the spread of the virus under the already existing
imposed political measures, data on restrictions, such as travel and contact reduction or
bans, have been studied in the example of Germany. During early stages of the virus
development in Europe, the case counts in this country have been significantly smaller
than the ones of the neighboring countries. As respective measures of regulation have been
taken early-on in March and April with rising numbers and a successful containment of
the spread was achieved due to fast decreasing new daily infection rates, this serves as an
indicator that the political decisions taken could have been effective. Another aspect is the
division of the country in individual states, similar to the USA, with their own respective
government that could more or less individually regulate the graveness of the measures,
while the state intervened with German-wide restrictions only a few times during the time
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period of March until November. Such federal “infection containment acts” have been
imposed, for example, during the lockdown in March with rather strict almost-curfew mea-
sures and then the permission to the individual states of relaxation of these acts, e.g., of the
contact restrictions from single-household contacts to two-household rules or small groups
and then successive enlargement of the number of people allowed at public gatherings or
festivities. Eventually, the “lockdown light” has been re-inforced following the alarming
high numbers of new daily infections. The indication as “light” is a terminology chosen by
the government to contrast the “regular” lockdown in March that had stricter regulations
imposed on businesses and catering that caused the economy to recess slightly.

We aimed at presenting a solution technique to the system of PDEs constructed
by the SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model
using a Least-Squares Method to predict the regional spread of COVID-19 in the country
of Germany. We rely on data gathered by the Federal Statistical Office of Germany on
actual numbers of infections, the reduction of incoming and outgoing flights, and contact
restrictions as political reactions to contain the spread. These data serve to develop an
indicator that is a key part in our calculations and shows at which time containment
regulations gripped and give rise to a likely decrease (or increase) in subsequent new
numbers of infections and their regional spread. Interpolation is used to fit and avoid
losses of data and the resulting predicted versus real-life data will be presented in order
to show the applicability of our Least-Squares solution method. To this end, this paper is
structured subsequently in 5 more sections. In Section 2, the SEIQRD model is stated, and,
in Section 3, the Least-Squares Method and the resulting first-order system to be solved are
discussed. Following this, we develop the special discretization of the system in Section 4
and focus on the explanation of the parameters and their fitting using our indicator in
Section 5. The numerical results are presented and analyzed in Section 6.

2. Model

We opt to change the usual SEIRD (susceptible-exposed-infected-recovered-deceased)
model for epidemiological studies to a SEIQRD model that also takes into account a
quarantined compartment of the population infected with the virus.

This model assumes that the living population is divided into five compartments: the
susceptible population Spx, tq, the exposed population Epx, tq, the infected population Ipx, tq,
the recovered population Rpx, tq, the quarantined population Qpx, tq, and deceased population
Dpxq. As in the works of Reference [13,14], we do not consider the birth rate nor the general
(non-COVID-19) mortality rate and denote with npxq the sum of the living population, i.e.,

npxq “
ÿ

iPtS,E,I,Q,R,Du
φipx, tq , (1)

with the functions φi representing the respective compartments for convenience of formu-
lating the coupled PDE model. Note that, since we consider the compartment D of the
deceased population, n does not vary over the time.

We distinguish between recovery rates γi, contact rates βi, the inverse of the incubation
period σ, a backflow η, and the quarantining rate δ.

Following Reference [13], we denote by γE the asymptomatic recovery rate and recall
that it is the proportion of change in the exposed group that never enters the infected group
(as they stay undetected) towards the recovered group. In the sense of the subsequent
notations, that means that there is a decrease in the number of exposed people and an
increase of recovered people.

E
γEÝÑ R

B
Bt

φE ´“ γEE,
B
Bt

φR `“ γEE . (2)
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Similarly, γR denotes the infected recovery rate, i.e., the infected people that do show
symptoms and, therefore, enter the regulated process of quarantine as an intermediate step
(see below) before entering the recovered population.

I
γRÝÑ R

B
Bt

φI ´“ γR I,
B
Bt

φR `“ γR I . (3)

σ is the inverse of the incubation period that indicates how fast exposed individuals change
to infected individuals after known exposure to the virus.

E σÝÑ I
B
Bt

φE ´“ σE,
B
Bt

φI `“ σE. (4)

One particularity of the new virus is that as of now the status of immunity of recovered
patients is unclear. Therefore, we opt for a model that assumes that not all recovered
patients are immune; thus, the backflow ηRpx, tq is included that carries the proportion of
recovered patients that are not immune back to the susceptible individuals with rate η.

R
ηÝÑ S

B
Bt

φR ´“ ηR,
B
Bt

φS `“ ηR. (5)

We now want to consider the additional effect of the quarantine and choose a quar-
antine scheme connected to the infected, exposed and recovered, as a natural way to
symbolize that quarantined people can be both in a state of yet non-discovered infection,
being asymptomatic, healthy, or symptomatic (which means visibly showing symptoms
that a possible infection with the virus might be accounted for). This quarantine rate should
change with time and based on political decisions, as it has been mandatory for returnees
from highly affected areas to undergo self-quarantine for several days while waiting for the
result of the test that indicates the infection status. Quarantined individuals can recover or
decease, as seen below.

Q
γQÝÝÑ R

B
Bt

φQ ´“ γQQ,
B
Bt

φR `“ γQQ, (6)

I δÝÑ Q
B
Bt

φI ´“ δI,
B
Bt

φQ `“ δI. (7)

Moreover, we follow the thoughts of Reference [10] and make the deceased linearly
dependant on the quarantine, as the death of these individuals is connected to a visible
infection that needs treatment in medical facilities that impose a strict quarantine on these
patients. Thus, we get

Q
γDÝÝÑ D

B
Bt

φQ ´“ γDQ,
B
Bt

φD `“ γDQ, (8)

with the fatality rate γD.
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In order to model the tendency of outbreaks to cluster towards large population
centers, we follow the idea of Reference [13] and consider the Allee effect, which, in a sense,
defines a correlation between the density of a population and the fitness of its individuals,
with constant parameter α. We, therefore, need to consider the partial derivatives in space
and introduce the space of weak derivatives H1pΩq on a simply connected geographical
domain Ω Ă R2. For φi sufficiently smooth, the Allee effect now reads

B
Bt

φSpx, tq “ ´ f pφS, φE, φI , npxqq, (9)

with

f pφS, φE, φI , npxqq “
ˆ

1´ α

npxq
˙
pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq, (10)

where βE is the contact rate at which the exposed asymptomatic patients transmit the virus
to susceptible individuals, and β I is the symptomatic contact rate.

Note that, in order to simplify the notation, we skipped the time dependence in the
notation of the coefficients. However, those coefficients are supposed to change over time,
as we will see in Section 5.

Assuming the population fields are sufficiently smooth, the model consists of the
following system of nonlinear coupled partial differential equations over Ωˆ r0, Ts :

B
Bt

φSpx, tq “ηφRpx, tq `∇ ¨ pnpxq νS∇φSpx, tqq

´
ˆ

1´ α

npxq
˙
pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq

, (11a)

B
Bt

φEpx, tq “
ˆ

1´ α

npxq
˙
pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq

´ σφEpx, tq ´ γEφEpx, tq `∇ ¨ pnpxq νE∇φEpx, tqq
, (11b)

B
Bt

φIpx, tq “σφEpx, tq ´ δφIpx, tq ´ γRφIpx, tq `∇ ¨ pnpxq νI∇φIpx, tqq, (11c)

B
Bt

φQpx, tq “δφIpx, tq ´ γDφQpx, tq ´ γQφQpx, tq `∇ ¨ `npxq νQ∇φQpx, tq˘, (11d)

(11e)

B
Bt

φRpx, tq “γRφIpx, tq ` γEφEpx, tq ` γQφQpx, tq ´ ηφRpx, tq `∇ ¨ pnpxq νR∇φRpx, tqq (11f)

(11g)

B
Bt

φDpx, tq “γDφQpx, tq, (11h)

where the coefficients νS, νE, νI , νQ, νR, νD account for the diffusion aspect; confer with
Reference [18–21]. The model is summarized in Figure 1.
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φS

φE

φI φQ

φD

φR

βE , βI

σ

γE

γR

η

γQ

γD

δ

Figure 1. Flow chart depicting the regulating functions γk, σ, η, βi pk “ E, R, Q, D, i “ E, Iq and δ for
the respective compartments of the population φj pj “ S, E, I, R, Q, Dq.
3. The Least-Squares Method

The class of Least-Squares Finite Element Methods is based on the idea of the residual
minimization of a variational problem and as these methods rely on inner-product pro-
jections, they tend to be particularly robust and stable. While traditional finite element
methods are usually developed from a variational setting that comes almost directly from
the problem to solve at hand, Least-Squares Methods work exactly the other way round by
fixing a variational framework before and then fitting the problem into this framework. For
an introduction to this class of numerical methods, we refer the reader to Reference [22].

With the notation φ “ `
φS, φE, φI , φQ, φR, φD

˘J, ν “ `
νS, νE, νI , νQ, νR, νD

˘J,
Apxq “ npxqdiagpνq, fpφq “ p´ f pφq, f pφq, 0, 0, 0, 0qJ, as well as

B “

¨
˚̊
˚̊
˚̊
˝

0 0 0 0 η 0
0 ´σ´ γE 0 0 0 0
0 σ ´δ´ γR 0 0 0
0 0 δ ´γQ ´ γD 0 0
0 γE γR γQ ´η 0
0 0 0 γD 0 0

˛
‹‹‹‹‹‹‚

, (12)

the system can be written in a vector form as

B
Bt

φ “ Bφ` fpφq `∇ ¨ pA∇φq (13)

for φ P V “ L2p0, T, H1pΩqqq6 and with r0, Ts our time interval of interest. Defining
σ “ A∇φ leads to

B
Bt

φ “ Bφ` fpφq `∇ ¨ σ . (14)
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The components of σ then belong to the space of integrable divergence, i.e.,

σ P Σ :“ L2p0, T, pHgpdiv, Ωqq6qwith Hgpdiv, Ωq “ tτ P Hpdiv, Ωq : τ ¨ n “ g on BΩu, (15)

where a Neumann boundary condition g on the boundary Γ “ BΩ of Ω is prescribed in
the space. With f pφS, φE, φI , npxqq “

´
1´ α

npxq
¯
pβ IφSpx, tqφIpx, tq ` βEφSpx, tqφEpx, tqq and

the matrix

K “
´

1´ α

n

¯

¨
˚̊
˚̊
˝

0 βE β I 0 . . . 0
... 0 0

...
...

...
...

...
...

...
0 0 0 0 . . . 0

˛
‹‹‹‹‚

, (16)

we obtain

fpφq “
´
´φJKφ, φJKφ, 0, 0, 0, 0

¯J
. (17)

Using an implicit Euler time discretization, the first-order system reads

Rpφ, σ; φold, σoldq “
ˆ

φ´φold ´ τpBφ` fpφq `∇ ¨ σq
σ ´ Apφq∇φ

˙
“ 0 . (18)

Our Least-Squares Finite Element method consists of the least squares minimization
ofRpφ, σ; φold, σoldq in V ˆ Σ, which means we search pφ, σq P V ˆ Σ

›››Rpφ, σ; φold, σoldq
›››

2

0,Ω
ď
›››Rpψ, τ; φold, σoldq

›››
2

0,Ω
(19)

for all pψ, τq P V ˆ Σ. As the function f is a nonlinear function of φ, we will solve with the
Gauss–Newton Multilevel Method proposed in Reference [23]. In fact, the main theorem
states that if an iterative method is used which converges uniformly with respect to h, then
a stopping criterion of the form

respφpkqh , σ
pkq
h q ď λh

›››R
´

φ
pkq
h , σ

pkq
h

¯›››
0,Ω

, (20)

based on a particular residual is useful with λ independent of h. Here, this residual is
defined as the scalar product

respφpkqh , σ
pkq
h q “

´
R
´

φ
pkq
h , σ

pkq
h

¯
,J pφpkqh , σ

pkq
h qrψh, σhs

¯
0,Ω

, (21)

with J the Fréchet derivative ofR (omitting the notation of dependence on the data of the
previous step) in the direction rψh, σhs P Vh ˆ Σh in the discretization space (to be defined
in Section 4 below) that we calculate in the following. As the nonlinearity is concentrated
in the term fpφq, we introduce

R0pφ, σ; φold, σoldq “ Rpφ, σ; φold, σoldq ´ τpfpφq, 0qJ (22)

in order to simplify the notation. The variable τ is not to be confused with τ P Σ, as
t “ told ` τ indicates the time step performed by the Euler discretization in the Gauss-
Newton Multilevel Method in Reference [23].

For the derivative associated with the variable σ, we obtain

B
Bθ
Rpφ, σ ` θτ; φold, σoldq

ˇ̌
ˇ̌
θ“0

“
ˆ

τ∇ ¨ τ
τ

˙
, (23)
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and, for the linear part associated with the variable φ, we have

B
Bθ
R0pφ` θψ, τ; φold, σoldq

ˇ̌
ˇ
θ“0

“
ˆ

ψ´ τBψ
´A∇ψ

˙
. (24)

For the directional derivatives of the function f , we first state

B
Bθ

f pφS ` θψS, φE, φI , nq
ˇ̌
ˇ̌
θ“0

“
´

1´ α

n

¯
pβ IψSφI ` βEψSφEq, (25)

B
Bθ

f pφS, φE ` θψE, φI , nq
ˇ̌
ˇ̌
θ“0

“
´

1´ α

n

¯
pβEφSψEq, (26)

B
Bθ

f pφS, φE, φI ` θψI , nq
ˇ̌
ˇ̌
θ“0

“
´

1´ α

n

¯
pβ IφSψIq, (27)

such that

B
Bθ

f pφ` θψq
ˇ̌
ˇ̌
θ“0

“
´

1´ α

n

¯
pβ IpφSψI ` ψSφIq ` βEpφSψE ` ψSφEqq, (28)

and, with the matrix K and the notation from before, we obtain

B
Bθ

fpφ` θψq
ˇ̌
ˇ̌
θ“0

“
´

1´ α

n

¯

¨
˚̊
˚̊
˚̊
˝

´β IpφSψI ` ψSφIq ´ βEpφSψE ` ψSφEq
β IpφSψI ` ψSφIq ` βEpφSψE ` ψSφEq

0
0
0
0

˛
‹‹‹‹‹‹‚

, (29)

“
´
´pφTKψ`ψTKφq, φTKψ`ψTKφ, 0, 0, 0, 0

¯
, (30)

“ pφTKψ`ψTKφqp´1, 1, 0, 0, 0, 0qJ. (31)

The Fréchet derivative is now the sum of (23), (24), and (29).

J pφ, σqrψ, τs “
ˆ

τ∇ ¨ τ `ψ´ τpBψq ´ τpφTKψ`ψTKφq
τ ´ A∇ψ

˙
. (32)

4. Finite Element Discretization

In this work, we considered a fixed time step τ, while space-time adaptivity will be
considered in a follow-up paper. Therefore, in each time-step, the finite element discretiza-
tion of the Least-Squares Finite Element Method consists of considering the minimization
problem (19) in a finite-dimensional subspace Vh ˆ Σh Ď H1pΩq6 ˆ Hgpdiv, Ωq6, based on
a triangulation Th of Ω, i.e., we search pφh, σhq in Vh ˆ Σh, satisfying

›››Rpφh, σh; φold
h , σold

h q
›››

2

0,Ω
ď
›››Rpψh, τh; φold

h , σold
h q

›››
2

0,Ω
(33)

for all pψh, τhq P Vh ˆ Σh. As the Least-Squares Method does not require any compatibility
of the finite element spaces, we choose Vh “ P1pThq6 as the standard Lagrange element
and Σh “ RT0pThq6 X Hgpdiv, Ωq6 the Raviart-Thomas element space accounting for the
Neumann boundary condition prescribed by the function g. The Raviart-Thomas spaces
for arbitrary degree k and dimension n of the Ω Ă Rn are defined as

RTkpThq “ PkpThqn ` xPkpThq, (34)
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where PkpTq is the space of local polynomials of degree at most k on a triangle T P Th. For
the case k “ 0, n “ 2, this gives

RT0pThq :“  
q P P1pTq : @T P Th Da P R2 Db P R @x P T, qpxq “ a` bx

and @E P EΩ, rqsE ¨ nE “ 0u .
(35)

The local degrees of freedom of the combination P1pThq ˆ RT0pThq are pictured in
Figure 2.

Figure 2. Local degrees of freedom by using P1- and RT0 bases in the discretization of the first-order
system to be solved with the Least-Squares Method.

The inner basis functions of RT0 can be defined on the edge-path ωE “ T`E Y T´E ,
where T`E and T´E are the adjacent triangles of the edge E by the following formula:

ψEpxq :“
#
˘ 1

2|T|
`
x´ P˘E

˘
for x P T˘

0 else,
. (36)

Such a basis function is shown in Figure 3. With our computations of the Fréchet
derivative, the nonlinear least-squares problem (33) is equivalent to the variational problem

`
R
`
φh, σh

˘
,J pφh, σhqrψh, τhsq

˘
0,Ω “ 0 (37)

for all pψh, τhq P Vh ˆ Σh.

Figure 3. RT0-basis functions on a triangle patch ωT .

This is a nonlinear algebraic least-squares problem which we solved using an inexact
Gauss-Newton method similar to the one presented in Reference [23]. Successive approxi-
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mations to the nonlinear least-squares problem are, therefore, obtained by minimizing the
linear least-squares problem

Flinpδφh
, δσh ; φh

pkq, σh
pkqq “

››››R
´

φh
pkq, σh

pkq¯`J
´

φh
pkq, σh

pkq¯
ˆ

δφh
δσh

˙››››
2

0,Ω
. (38)

Recall that minimizing Flin in Vh ˆ Σh is equivalent to the variational formulation

ˆ
R
´

φh
pkq, σh

pkq¯`J
´

φh
pkq, σh

pkq¯
ˆ

δφh
δσh

˙
,J

´
φh
pkq, σh

pkq¯
ˆ

ψh
τh

˙˙

0,Ω
“ 0 (39)

for all pψh, τhq P Vh ˆ Σh. Following the suggestion of the authors, we use

respφpkqh , σ
pkq
h q “

´
R
´

φ
pkq
h , σ

pkq
h ; φold

h , σold
h

¯
,J

´
φ
pkq
h , σ

pkq
h

¯“
ψh, τh

‰¯
0,Ω

(40)

as stopping criterion, i.e., the Gauss-Newton iteration is stopped as soon as the nonlinear
residual satisfies (20), where we choose λ “ 0.2. The steps are summarized in Algorithm 1.

Algorithm 1: Gauss-Newton for minimization of the nonlinear functional.

Input: solution of the last time step pφold
h , σold

h q, parameter λ
k “ 0
φ
pkq
h “ φold

h

σ
pkq
h “ σold

h

while respφpkqh , σ
pkq
h q ď λh

›››R
´

φ
pkq
h , σ

pkq
h

¯›››
0,Ω

do
Solve (39)
φ
pk`1q
h “ φ

pkq
h ` δφh

σ
pk`1q
h “ σ

pkq
h ` δσh

k “ k` 1
end

Result: φ
pkq
h , σ

pkq
h

5. Parameter Fitting

This section is devoted to the description of the parameters βE,I , σ, γE,R,Q,D, δ, η that
are used in the PDEs (11a)–(11f). The key idea is that we assume α, βE, β I , δ is linearly
dependent on some indicator θpx, tq taking into account the political measures. Surely, the
linear dependency is an important restriction and nonlinear functions will be considered in
a follow-up paper. On the other side, the SIR-type models are based on a linear incidence
rate such that this ansatz is expected to give first adequate results. We also let γD vary
over the time, taking into account that the health system had to learn and to increase
the capacities. γD does not vary in space. We started with an ansatz corresponding to a
polynomial of degree 5, and it turned out that a polynomial of degree 3 is sufficient.

The other parameters are assumed not to be dependent on the political restriction and,
therefore, are constant in time.

For the design of this indicator, we took inspiration from the flight data found in
Reference [24] for the comparison to the numbers of the COVID-19 not-yet inflicted year
2019 in Germany and the flight reduction in the year 2020 taken from Reference [25]. This
data has been collected by the Statistisches Bundesamt (Federal Statistical Office of Germany)
and is publicly accessible.

The indicator follows the data gathered for the reduction of the number of outgoing
and incoming flights, as well as the contact reduction measures imposed by the government,
over the time period of the outbreak of COVID-19 in Germany dating from January (or
March, as the contact restraints haven been imposed later) until September 2020. The
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assumption that justifies this indicator is a correlation of the measures and the intensity of
virus prevalence within the population. Our model is fed by two aspects, the first being
the reduction of flights. This is based on the fact that following the growing international
numbers in January, the government took measures of reducing flights to contain the risk
of the residential population to be infected by travelling individuals that might come back
from a high-risk area. This also gives rise to the question of reasonable initial values for the
indicator and draws a connection between these of the compartments presented earlier in
Section 2. Figure 4 shows how drastically the number in flights decreases up to April and
then slowly increases again but stagnates in August.

Figure 4. Flight data collected by the Federal Statistical Office of Germany in Reference [25]. A value of 100% is assigned if
the number of outgoing and incoming flights in Germany for the respective region is the same as in the year 2019.

This can be linked to our second class of data, the contact restrictions. As the numbers
in infections surged in March, a lockdown was announced across Germany with the same
regulation imposed in every federal state: Only people belonging from their own household
could be met and maximum one other person in public. Big gatherings have been forbidden
completely and even travelling restrictions across the federal states (within the country!)
have been imposed via bans on touristic stays at hotels. A model that takes these travel
restrictions into account has also been considered in Reference [26]. These restrictions
have been successively loosened on a private and a public level over the course of May
and June and in July, August, and September the situation has been lead towards further
normalization by permissions for public gatherings with growing numbers of participants
of 100, 200, 350, etc. This tendency is reflected in the flight numbers, as they have been
increasing from the depression in April, while being still far away from pre-pandemic
numbers. The differences in the states can be seen while studying the respective “infection
containment acts” and press releases (given that the numbers are reflected correctly). Not
all states, however, have completely discarded the contact restraints in June and July (like
Brandenburg and Mecklenburg-Vorpommern) but stayed with a moderate permission to
meet an arbitrary number of people belonging to two households or a group of maximum
10 people from different households (like in Bavaria). These, however, are regulations
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for public meetings, but private gatherings have frequently not been observed, or no
regulations have been imposed on private premises whatsoever (Bavaria, since June).

Drawing together these two classes of data we developed an indicator, the numbers of
which can be seen in Table 1 and Figure 5. The indicator combines the contact limitations
and the travel restrictions in terms of flights to create a weighting in the sense that the
spread of the virus in already existing infections stays more close-region bound and the
number of new infections is predicted to stay lower than an uncontrollable development
without any restrictions. Thus, a value of 0.8, for example, indicates that due to travel and
contact restrictions active at that time, a reduction of the transmission rates of the virus in
our model towards 80% is used in the calculations compared to the uncontrolled case. At
the beginning of 2020, restrictions for flights from China were already in place, as well as
limitations of large events. Therefore, we chose to set this indicator to 0.8 for January in
all federal states. Depending on how fast the government of the respective state were in
implementing the measures, we let this indicator decrease until April. Note, for instance,
that Bavaria had the strictest regulation in April and has, therefore, the smaller indicator in
April. Similarly, the regulations were decreasing in July but remain very strong, and this is
the reason why this state has, again, the smallest indicator from July to September.

Figure 5. Indicator fitted to the collected data on contact restrictions and flights for comparison.
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Table 1. Value of the indicator per month and state as shown in Figure 5.

1 (Jan.) 2 (Feb.) 3 (Mar.) 4 (Apr.) 5 (May) 6 (Jun.) 7 (Jul.) 8 (Aug.) 9 (Sept.)

Berlin 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
Bremen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
NRW 0.8 0.74 0.45 0.04 0.04 0.09 0.24 0.29 0.31

Sachsen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.31
Thüringen 0.8 0.72 0.45 0.04 0.04 0.09 0.24 0.29 0.31

Hessen 0.8 0.78 0.43 0.04 0.04 0.09 0.24 0.29 0.3
Baden-Würt. 0.8 0.76 0.41 0.04 0.04 0.09 0.24 0.29 0.3

Rheinland-Pfalz 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.3
Hamburg 0.8 0.78 0.44 0.04 0.04 0.09 0.24 0.29 0.3

Niedersachsen 0.8 0.78 0.45 0.04 0.04 0.09 0.24 0.29 0.3
Bayern 0.8 0.73 0.45 0.01 0.04 0.09 0.1 0.11 0.11

Mecklenburg-V. 0.8 0.62 0.31 0.03 0.03 0.08 0.17 0.17 0.22
Saarland 0.8 0.78 0.45 0.03 0.04 0.09 0.24 0.29 0.31

6. Numerical Experiment

We performed the numerical experiment with the open source FENICS (see, e.g.,
Reference [27]). We use a finite-element spatial discretization of Germany, consisting of
an unstructured mesh containing 1773 elements. Further results with finer meshes and
adaptive mesh refinement strategies will be presented in a follow-up paper. In this project,
we restricted ourselves to the time step τ “ 0.1 day due to the fact the the coupled PDE
had to be solved many times. The initial conditions are the data from the “COVID-19
Dashboard” [28] of the Robert Koch-Institut , the leading epidemiological research institute in
Germany concerned with data gathering at this time, of February 15th in which evaluations
are based on the reporting data transmitted from the health authorities according to IfSG
(infection protection acts). Data can be individually chosen for the respective states and
regions. On the coast part of the German border, zero Neumann boundary conditions
are set, while, on the remaining part, the data from an SRI model without diffusion (nor
quarantine) are used.

The data from 15th February to 1st June was used for the calibration for the constant-
in-time parameters, i.e., σ, γE,R, η. In order to investigate the sensibility of these coefficients,
we also reproduced the calibration using less data, always starting from 15th February.
For each Bundesland (federal state), we show the results in Figure 6. For the parameter
depending on the indicator, the results of this analysis are shown in Figure 7. Figure 8
shows the evolving spatial pattern of the COVID-19 outbreak in Germany. A comparison
of the prediction and the data from RKI is shown in Figure 9.
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1

Figure 6. Values of the parameters σ, γE,R, η with different time period fitting for the respective federal states.
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Figure 7. Values of γQpθq, βE,Ipθq, δpθqwith different time period fitting for the respective federal states.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Regional spread of the virus at different time stages after initial outbreak on day 1 (D1). (a) D55, (b) D100, (c)
D150, (d) D200, (e) D235, (f) D257.
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Figure 9. Predicted number of infections in Germany versus real data from RKI.

In order to present an evaluation of the accuracy of the prediction we start by consid-
ering the error as the forecast minus the real RKI data. Unfortunately, the RKI data are not
monotone due to infrastructural and organizational reasons. For instance, reported new
infections are linked to the days of the week in a sense that the public health departments
are frequently closed over the weekends and have only started to register new cases also
during the weekends after the situation has been severely more tense. Thus, Monday
reports contain more new cases than the other days of the week up until Friday, as it can
also contain the cases to be accounted towards Saturday and Sunday.

From the RKI data, we, therefore, constructed a piecewise linear interpolation IRKI,d with

IRKI,dpxq “ RKIpx` d´ px ” 7qq
´

1´ px´dq”7
7

¯
` RKIpx` 7` d´ px ” 7qq ppx´dq”7q

7 (41)

between each weekday, as well as the average IRKI,avg7 of the last seven days. The dif-
ference between the RKI data and these interpolations, as well as the difference between
the RKI data and the prediction, are shown in Figure 10. We see that the prediction
overshoots the Thursday line, such that the error Npredicted ´ NIRKI,thursday is positive.The
forecast undershoots none of the other lines over the whole prediction time. We note
that, until the beginning of August, the forecast undershoots the avg line and the error
Npredicted´NRKI,avg7 is negative. After this time, the forecast overshoots all the RKI interpo-
lations until the end of September. The different errors are shown in Figure 11. We remark
that the error oscillates taking into account that the RKI data oscillates. Overall, the error
remains smaller than the error due to the piecewise linear interpolation of the data.
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NRKI−IRKI,monday
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NRKI−IRKI,wednesday
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NRKI−IRKI,avg7

Figure 11. Error curves for the respective day of interpolation and their average marked in green; the
calculated prediction is marked in violet.

In order to deal with these discrepancies, we computed the mean absolute percentage
error (MAPE) and root-mean-square error (RMSE) for each of the previously mentioned
interpolations of the RKI data. These quantities, obtained with

MAPE :
1

nN

ÿ |Npredicted ´ IRKI,d|
IRKI,d

RMSE :

d
1

nN

ÿ
pNpredicted ´ IRKI,dq2, (42)

are given in Table 2. These can be compared to the numbers in the work [10] to find a similar
accuracy of the prognostic. We remark, again, that the interpolation has a larger effect:

In order to study how the model is sensitive to the indicator, we perturbed the indicator
up to 10%. The results in Figure 12 indicate that small variations are acceptable, as the
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resulting data stay all in a close proximity, even so still in a reasonable range in the second
half of the timeline.

While the results of our numerical experiments look very promising, this is definitely
to be accounted to some of the specific decisions we took for tailoring our calculations.
For the indicator, we had to set a suitable initial value, for example, which represents the
percentage of non-restrictions (100% means no restrictions) at some point. In addition,
while the data we collected are a lot, only certain moments where incorporated and it is also
always unknown beforehand whether the contact restrictions, for instance, will always be
followed directly after press announcement. In this sense, the human choice is a big factor
that cannot always be considered accordingly. (We refer to the most recent developments,
as a “hard lockdown” has been imposed at the beginning of November that is still active,
but the count of new infection cases per day have not decreased to a “satisfactory level”
since. One of the reasons could be the dissatisfaction of large parts of the population with
the deemed too drastic and restrictive measures, calls for demonstrations and large (and
also private) gatherings without proper regard of the distancing measures, the loosening of
the rules during Christmas-time, and the like.)

Our employed model is largely based on the works of Reference [10,13,14] and our
Least-Squares solution technique shows a consistency with the numerical results presented
in these works. However, some adjustments have been made in order to fit the computa-
tional work more tightly to the real-life data, thus producing more promising predictions.
In Reference [13], the model successively forecasts exposed and infected cases which at this
point are of high importance to the public health institutions. Similarly to our interpolation
technique, a comparison of an “optimistic” and a “pessimistic” case can be witnessed,
with the actual real-life data lying in between. Like the authors of this work, we come
to the conclusion that this particular system of PDEs successively models the local virus
dynamics on a meso-scale level.

The question of interest for practical relevance of our work remains: Can the predic-
tions be used to influence and support political decisions in terms of virus containment?
The answer is yes, but the transmission dynamics have to be investigated more closely in
order to limit grave effects (like lockdowns) on the whole of the population. It could be
more favorable to single out so-called virus hubs and rather focus on containment strategies
in these areas while maintaining a tolerable, moderate policy for the remaining areas. To
this end, the authors of Reference [10] present a detailed work on inter-state transmission
that can be accounted to the use of the GLEAM network that serves to analyze the dynamics
more closely in heavily-affected regions due to tourism and high traffic density. In addition,
concrete rates for specific contact restrictions (that also include, for example, school closings,
which could be one of the new aspects that we could include, as well in future work) have
been used in the model, while we rely on the indicator for parameter fitting. It has to be
noted though that the problem of limited testing and the related dark figures arises, that
introduces a uncertainty in the data that is used for parameter calibration. Nevertheless,
the use of such a network in our model could lead to even more closely fitted spacial
predictions of spread and, thus, more detailed timelines, like in Figure 8, where, in part (f),
some suggested virus hubs are noticeable of the type that the authors of Reference [10] can
predict very accurately with the fine-tuning of the GLEAM network. Like in our approach,
the predictions never undershot the actual observed numbers (in the most relevant cases),
which indicated a high potential in practical use.

In Reference [14], another approach is shown that uses a machine learning technique
to simulate the spread of the virus. A Bayesian learning in OPAL (Occam Plausibility
Algorithm) is presented, where the simulation process in terms of more automatically
computing spatio-temporal evolving can be seen. Comparing the resulting correlation
and Pearson coefficients, our results show a similar accuracy, presenting two solution
techniques to such systems of PDEs. Reference [10] presents a mixture of these two suitable
techniques via a meso-scale approach, like ours, and refinement via a machine learning
technique, the GLEAM network.
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Table 2. Mean absolute percentage error (MAPE), root-mean-square error (RMSE), and Pearson
coefficients for the different days, based on the interpolation of the data for their 7-day average.

Day MAPE RMSE/Max(RKI) Pearson Coeffcient

no interpolation 0.396 46.253 0.843

Monday 2.623 1620.667 0.884
Tuesday 146.343 1564.583 0.865

Wednesday 99.048 1101.250 0.851
Thursday 59.527 731.861 0.816

Friday 2.256 1202.249 0.875
Saturday 39.708 1405.030 0.883
Sunday 99.898 651.748 0.901

Avg 2.450 11,497.504 0.864

−10% − 9% − 8% − 7% − 6% − 5%

− 4% − 3% − 2% − 1% 1% 2% 3% 4%

5% 6% 7% 8% 9% 10%

Figure 12. Sensitivity of the model towards the perturbations of the indicator.

Overall, we observe that our sensitivity analysis suggests that our indicator serves as
a good tool to tune our predictions taking into account political measures that are taken.
These predictions can in turn be used to help politicians and public health offices to take
according measures in terms of contact restrictions and medical, as well as supply resource
re-evaluation, to limit the virus spread to a tolerable amount and to anticipate spreads in
particularly affected areas due to, for example, touristic location.

For future work, we are considering a more refined tailoring of our discretization
method. A more technically challenging task due to its complexity and amount of data it
produces is to implement the successive solution of the system with more than one Euler
time step in one solution procedure. For further theoretical work, we will try to develop
more modifications to classical models in the literature to test the limits of the accuracy of
our discretization method. Works in actual simulation will be aimed at, as well.

Supplementary Materials: The following is available at https://www.mdpi.com/2079-3197/9/2/
18/s1, Table S1: RKI data.
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Abstract: The current COVID-19 pandemic, caused by the rapid worldwide spread of the SARS-CoV-
2 virus, is having severe consequences for human health and the world economy. The virus affects
different individuals differently, with many infected patients showing only mild symptoms, and
others showing critical illness. To lessen the impact of the epidemic, one problem is to determine
which factors play an important role in a patient’s progression of the disease. Here, we construct an
enhanced COVID-19 structured dataset from more than one source, using natural language processing
to add local weather conditions and country-specific research sentiment. The enhanced structured
dataset contains 301,363 samples and 43 features, and we applied both machine learning algorithms
and deep learning algorithms on it so as to forecast patient’s survival probability. In addition, we
import alignment sequence data to improve the performance of the model. Application of Extreme
Gradient Boosting (XGBoost) on the enhanced structured dataset achieves 97% accuracy in predicting
patient’s survival; with climatic factors, and then age, showing the most importance. Similarly, the
application of a Multi-Layer Perceptron (MLP) achieves 98% accuracy. This work suggests that
enhancing the available data, mostly basic information on patients, so as to include additional,
potentially important features, such as weather conditions, is useful. The explored models suggest
that textual weather descriptions can improve outcome forecast.

Keywords: COVID-19; machine learning; deep learning; NLP; weather; sentiment analysis

1. Introduction

The current COVID-19 pandemic, caused by the rapid worldwide spread of the SARS-
CoV-2 virus, is affecting many aspects of society, in particular human health (at the time
of writing, over 66 million diagnosed cases and 1.5 million deaths [1]), but also social
issues [2,3], mental health, and the economy [4]. Researchers from different scientific fields,
including immunology, genetics, and bioinformatics, are studying the pandemic to find
ways to slow its progression.

Machine learning approaches are also part of this endeavor [5–9]. For example, Shahid
et al. [10] use several models, including ARIMA, SVR, LSTM, and Bi-LSTM, for time series
prediction of confirmed cases, deaths, and recoveries in ten major countries affected by
COVID-19. Shreshth et al. [11] present a machine learning model to predict how the number
of cases of COVID-19 will develop, and to forecast when a specific country can expect to see
an end of the pandemic, using the FogBus framework. Other researchers have built machine
learning models for the classification and diagnosis of COVID-19 that are based on medical
images [12,13]. Further, Yan et al. [14] provide an interpretable mortality model that is
based on a database of blood samples from 485 infected patients in the region of Wuhan,
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China. To date, most machine learning and deep learning research [15,16] on COVID-19
build a classification model on various types of data to investigate which might be the
important features to predict a specific outcome. One potential difficulty when running
such approaches on publicly available dataset is that the features are originally collected so
as to fulfill the needs of the data provider, which then can be a source of bias, when the data
is used to address other questions. In particular, features that have high predictive value
for the outcome for an infected patient might be missing. Generally speaking, the presence
or absence of features will impact the accuracy of a model.

The COVID-19 data provided by Xu et al. [17] contain a large number of samples,
but limited features that mainly provide basic information on patients. Here, we seek to
improve the usefulness of this data by adding a number of features that might help to
increase the accuracy of a predictive model.

Research indicates that local climate plays a roles in pandemic outbreaks [18].
Lowen et al. [19] demonstrated that aerosol spread of the influenza virus is dependent
upon both ambient relative humidity and temperature, using guinea pig as a model host.
Tan et al. [20] investigated the effect of weather in four cities in China and concluded
that SARS outbreaks were significantly associated with the temperature and its variations.
For the SARS-CoV-2 virus, there are some contradicting findings. Initial studies suggested
a negative correlation between temperature and COVID-19 infection [21], or temperature-
independence [22], while other research detected a positive relation between temperature
and COVID-19 cases at temperatures below 3 ◦C [23], and also relates temperature to
decrease in spread parameters of the case dynamics [24]. Therefore, local weather factors
should be taken into consideration.

Infection and mortality rates differ between countries, as does the response to the
pandemic. A study on news platforms and social media indicates that more than half (52%)
of all news headlines evoked negative sentiments [25], on the one hand, whereas pub-
lic positive tweets outweighed negative tweets on the other hand [26]. Application of
machine learning algorithms on such data indicates a growth in fear and negative sen-
timent [27]. To explore this further, in this study we assume that a researchers attitude
toward COVID-19, optimistic or pessimistic, will reflect the situation in their country, to
some extent, and might be detectable in their publications on the pandemic.

While most previous work focuses on a single data type, in this study, we combine
multiple data types. While a number of papers focus on country-wise pandemic predic-
tion [28–30], here we develop a classification model that is based on worldwide data.

We first built an initial structured dataset on patients that tested positive for the virus,
based on the work in [17]. We then constructed an enhanced structured dataset by adding
new features based on (1) the local weather conditions when the patient was probably
infected, and (2) the average weighted average polarity score for research abstracts on the
pandemic, per country.

Another reasonable hypothesis is that the specific genome sequence of the virus that
affected a given patient may help predict the outcome for the patient. There is research
that associates genomic variations with mortality rate of COVID-19 [31], and further
research [32] shows that the SARS-CoV-2 virus carries 7.23 mutations per sample compared
to the reference, on average. There is work that attempts to predict outcome using machine
learning and deep learning methods [33,34]. Both NCBI [35] and GISAID [36,37] provide
genomic data for the virus.

Ideally, we would have liked to further enhance the initial dataset by adding virus
genome sequences to each sample. Unfortunately, these sequences are not available.
So, to explore the use of genomic sequences, we created an additional sequence dataset
that consists of unknown patients and their virus sequence, obtained from GISAID.

In this paper, we investigated the application of two algorithms—XGBoost and
MLP—to build models both on the initial structured dataset and also on the enhanced
structured dataset. In addition, we built a Bi-LSTM model on the sequence dataset. The
applied analysis pipelines are summarized in Figure 1.
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Based on the initial dataset, we confirm that age is one of the most important factors
for predicting survival. When considering the enhanced structured dataset, we find
that the weather textual description, followed by local temperature, humidity, and age,
arise as the most important features. On the enhanced data, we found that the Extreme
Gradient Boosting (XGBoost) method achieved 97% accuracy in predicting a patient’s
survival. We describe how to predict patient’s outcome using a combination of a Multi-
Layer Perceptron (MLP) and Bidirectional Long Short-Term Memory (Bi-LSTM), using
both the enhanced structured dataset, and the sequence dataset, respectively.
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Figure 1. Analysis summary. (a) The initial COVID-19 structured dataset was filtered for patients for
which the outcome has been recorded, and then, for these items, the weather was determined using
the Weather Underground website [38]. (b) The WHO, medRxiv, and bioRxiv COVID-19 literature
database were filtered and preprocessed to extract author institute/address/country, and these
were postprocessed so as to obtain a country-wise research sentiment polarity score. XGBoost and
Multi-Layer Perceptron (MLP) were trained on both the initial and the enhanced structured data,
and the accuracy of survival prediction was shown to be 94% and 97% (using XGBoost), and 98%
and 98% (using MLP), respectively. (c) Bidirectional Long Short-Term Memory (Bi-LSTM) was used
to train a classification model on the sequence dataset, the accuracy was 93%. Finally, the MLP model
and Bi-LSTM models were stacked to jointly predict outcome.

2. Materials

2.1. Data Collection

Data were collected from a number of sources.

2.1.1. COVID-19 Structured Dataset

We downloaded COVID-19 patient data provided by Xu et al. [17] from Github [39],
on 21 August 2020 (file latestdata.csv). The dataset includes patient’s basic information
features, including ID, age, sex, city, province, country, etc. All rows that do not contain
a value in the outcome column were dropped, resulting in 307,382 patient data rows out
of 2,676,311. The final dataset contained 301,363 patients from 46 countries. All further
processing was performed on this dataset.

2.1.2. WHO, medRxiv, and bioRxiv COVID-19 Literature Database

We downloaded a database of literature on COVID-19 from the World Health Orga-
nization (WHO) website [40] on 13 April 2020. Of the 5354 downloaded entries, we kept
only those whose Journal Name and DOI fields were not blank, which resulted in 4683
publications in 590 journals. This list was extended with COVID-19 SARS-CoV-2 preprints
published on medRxiv [41] and bioRxiv [42]. For this we used the bioRxiv API [43] to
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download the paper information; a total of 8076 entries were downloaded on 27 August
2020. We then analyzed these publications to determine the authors’ institute and country;
when no country was explicitly given, we used Google Maps [44] and Wikipedia [45] to
determine the country in which the author’s institute is located. This gave rise to 9577
(1501 of 4683 WHO, 8076 of 8076 medRxiv and bioRxiv) entries. Finally, we merged the
two datasets and removed all duplicates, obtaining 9542 (1484 of 1501 WHO, 8058 of 8076
medRxiv and bioRxiv, Additional File 1) entries in total.

2.1.3. GISAID CoV-19 Sequences Dataset

The GISAID sequence repository contains more than 244,000 genomic sequences for
SARS-CoV-2. We downloaded all that were labeled as complete, with high coverage, and
were found in a human host on 25 August 2020. This resulted in 4957 genome sequences
(with metadata). Further, we included the reference SARS-CoV-2 Wuhan genome (NCBI
Accession MN908947.3 [46]) to the dataset and collected the patient information from the
publication [47]. Finally, we removed all those sequences that did not have a patient status
in the metadata file. Our final dataset contained 4720 sequences (Additional File 2).

2.2. COVID-19-Enhanced Structured Dataset

In this paper, we present an enhanced COVID-19 structured dataset, which is based
on the above described initial COVID-19 structured dataset. These data were enhanced
by adding features that reflect the weather situation in the location of the infected person,
and the research sentiment in units of country, as described in the following.

2.3. Addition Feature Construction

It has been demonstrated that there is a link between environmental factors and the
development of COVID-19 [48]. It is reasonable to assume that weather plays a role in
disease progression. Therefore, we collected temperature, humidity, and textual descrip-
tion of the weather for the city where the patient lives from the Weather Underground
website [38]. Assuming that the incubation period of the virus is approximately 14 days,
we collected weather data from 14 days before the patient exhibited relevant symptoms
(as recorded in the initial structured dataset).

We also wanted to explore the assumption that researchers’ attitudes toward COVID-19,
either optimistic or pessimistic, reflect the situation in each country, to some extent,
and might be detectable in their publications on the pandemic. Therefore, we collected
journal publications from the WHO and from the medRxiv and bioRxiv COVID-19 liter-
ature database. For each abstract, we determined the author’s institution with the help
of the paper’s DOI and address by institute name. We applied sentiment analysis to ob-
tain a polarity score on each abstract, and then calculated an weighted average polarity
score for each country. Figure 2 displays the weighted average polarity score inferred for
different countries.

The weather and sentiment features were added to the initial structured dataset so as
to produce the enhanced structured dataset, as outlined in Figure 1.
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Figure 2. Sentiment polarity score. Average research sentiment polarity score of research, for different
countries. Based on a sentiment analysis of abstracts of papers published on COVID-19. One-
thousand times the real value.

2.4. Data Processing
2.4.1. Structured Data

The features present in the initial COVID-19 structured dataset include both categorical
variables and discrete variables. Each sample in the dataset contains the variables sex, age,
the time interval between the patient’s onset date, confirmed infected date and admission
date, symptoms description, presence of chronic disease, and outcome.

To this initial data, we then added local weather variables (temperature, humidity,
and climate description) and the weighted polarity score of the country’s scientific research
sentiment. The result of this is called the enhanced structured dataset.

To prepare the datasets for building classification models using both XGBoost and MLP
(as discussed below), we performed the following steps. We encoded all multi-value text
features, such as symptom description (values such as fever, cough, and sputum) or climate
description (values such as fair, light rain shower, and cloudy) into three-dimensional
embedding vectors, using label encoding on categorical variables such as sex and history
of chronic disease (Additional File 3).

We assigned the constant −999 to all missing values. After filtering for samples that
have a valid outcome value and city record, we obtained 301,363 samples. Additionally,
when we ran MLP, we treated sex and binary chronic disease as categorical features and all
others as numerical features, and we normalized all numerical features.

2.4.2. Sequence Data

We performed multiple sequence alignment of the sequence dataset using MAFFT [49],
run as follows.

mafft --retree 2 --maxiterate 1000 --thread 48 DeathAndAliveForMafft.fasta
>DeathAndAliveForMafftAlignment1000Iterate.fasta

The program required 589 walk-clock minutes to align the 4720 virus genome se-
quences. The resulting alignment length was 32,015 (Additional File 4).

Furthermore, we applied character-level one-hot encoding on each sequence, mapping
each position to a six-dimensional vector (one dimension for each of the four nucleotides,
one for the gap character, and one for all ambiguity codes). Each sequence was padded to
a fixed length of 33,100 (a multiple of 100), so as to allow us to use 100 time steps in the
model described below.
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2.5. Data Statistics

We built both a XGBoost model and an MLP model on both the initial structured
dataset and on the enhanced structured dataset, respectively.

To evaluate the methods, we split each dataset into a training set and test set in
proportion 8:2. Further, to prevent overfitting, we used cross-validation on our training
datasets, instead of splitting additional validation sets from the original dataset. As shown
in Table 1, the original dataset is typically imbalanced. To address this, we applied the
Synthetic Minority Oversampling Technique (SMOTE) [50] to the minority group of each
training set, attaining a ratio of positive to negative samples of 10:1. Note that here positive
samples refer to patients that survive.

Table 1. Sampling statistics. For the enhanced structured dataset, we report the number of positive
and negative samples both in the training set and test set, both before and after oversampling,
respectively.

Enhanced Data After Oversampling

Training Set Test Set Training Set Test Set

Positive samples 236,483 59,117 236,483 59,117
Negative samples 4607 1156 23,648 1156
Total 241,090 60,273 260,131 60,273

3. Methods and Experiment

3.1. Sentiment Analysis

A number of papers have studied the forecasting of pandemics using natural language
processing on data obtained from various social media [51–53]. Along these lines, we per-
formed sentiment analysis on the abstracts of research papers (associated with COVID-19)
using the Python package Textblob [54], which operates by analyzing text content and
assigning emotional values to words based on matches to a built-in dictionary.

3.2. Machine Learning Algorithm

Our focus was on the performance of prediction of survival of the infection, based on
either the initial or the enhanced structured dataset.

Here, we use the Extreme Gradient Boosting (XGBoost) [55] method to build a pre-
diction model. XGBoost is a powerful member of the gradient boosting family, which is
designed to perform well on sparse features, and is known to perform well on Kaggle
tasks. This approach avoids overfitting using its built-in L1 and L2 regularization on the
target function:

Obj =
n

∑
i=1

l(yi, ŷi) +
t

∑
i=1

Ω( fi). (1)

As an additive model, XGBoost consists of k base models, and in most cases we choose
the tree model as its base model. Suppose that, for the k-th of t iterations, we train the tree
model fk(x), then

ŷt
i =

t

∑
k=1

fk(xi) = ŷt
i−1 + ft(xi) (2)

is the estimated result for the ith sample after t iterations. During construction of each
tree, XGBoost minimizes the objective function, with the regularization term show in
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Equation (1) in the split phase of each node. In each tree, we calculate the Gain of the
feature and choose the tree that has the biggest value as the leaf node to be split:

Gain =
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ
− λ. (3)

3.3. Deep Learning Algorithms

To broaden our research and to allow a comparison of methods, we also built deep
learning models on both the initial and enhanced structured datasets, together with the
sequence dataset, respectively (Figure 3).

(a)

(b)
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Figure 3. Ensemble deep learning model. (a) The MLP is trained on the structured dataset. (b) The
Bi-LSTM model is trained on the sequence dataset. The two models are stacked in the prediction step.

3.3.1. Multi-Layer Perceptron

As indicated in Figure 3b, we use a simple Multi-Layer Perceptron (MLP) as neural
network structure, which has an input layer, hidden layer, and output layer, to build a
classification model on the structured dataset.

3.3.2. Bidirectional Long Short-Term Memory

Each sample in our sequence dataset has length 33,100 after alignment and data
processing. We can interpret each sequence X = (x1, x2, · · · , xn) as a time-series, where xt
is the data associated with the tth time point. Recurrent neural networks (RNN) proposed
by Elman [56] are commonly used for time series; however, they are not suitable for our
task due to the length of the alignments. Long short-term memory (LSTM) [57] is a special
variant of RNN. It uses a gate structure in the hidden layer of each time step to protect and
control the cell state.

An LSTM cell employs three gates, namely, a forget gate, an input gate, and an
output gate, operating as shown in Figure 4. An LSTM learns to memorize and forget
specific information during the training step. It provides the ability to capture long-term
dependency relationships.

Each gate employs a sigmoid function that aims at producing output values of 0 or 1,
defined as

σ(t) =
1

1 + e−t (4)
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An LSTM does not encode the information in inverse order, so it does not capture
the impact of later words on previous words. A bidirectional long short-term memory
(Bi-LSTM) overcomes this problem by combining a forward LSTM with a backward LSTM
in each time step. This design addresses the issue of bidirectional semantic dependency
during model building.

Therefore, we use a Bi-LSTM on our sequence data. Assume we are given a sequence
X = (x1, x2, · · · , xn), where xt reflects the one-hot encoding. The hidden state of each time
point is

ht = [
−→
ht ,
←−
ht ] (5)

In summary, this allows us to consider the impact of the virus sequence information
on the patient’s condition.

(a) (b)

(c) (d)

Figure 4. Operation of gates in an LSTM cell. The LSTM determines the hidden state and cell state
at the present sequence location as follows. (a) A forget gate ft controls the input of the (t− 1)th
hidden state, (b) an input gate it controls the input of xt, (c) a transitional phase calculates the tth
positions cell state, and then, finally, (d) an output gate Ot returns the tth position’s hidden state ht.

Finally, we stacked the MLP and Bi-LSTM deep learning classification models to
jointly predict whether the infected patient will survive.

3.4. Implementation

3.4.1. Machine Learning Algorithms

In this study, we ran the XGBoost algorithm both on the initial structured dataset and
also on the enhanced structured dataset, the latter additionally containing local weather
and research sentiment. To determine the model parameters with the best capacity for
prediction, we used GridSearchCV (a function of sklean) to systematically traverse multiple
parameter combinations and determine the best parameters through cross-validation.
Each subtree in our model is a complicated tree whose maximum depth is 10. Based on
the result of model tuning, we set the learning rate to 0.05 and eta to 0.2. Further, we used
1500 estimators, and gamma, alpha, and lambda equal to 0.01, 0.5, and 0.8, respectively.

Each tree was trained on half of the features and half of the samples, chosen at random.

3.4.2. Deep Learning Algorithms

In Figure 3a we show the architecture of the model that accepts aligned sequences.
It is a single Bi-LSTM with 128 hidden units and 100 time steps. After randomly dropping
1% of neurons, we use a fully connected layer and ReLU (rectified linear unit) activation
function. Output is passed through a sigmoid function.

To model datasets that include both categorical features and normalized numerical
features (Figure 3b), we used a 2-layer full connected neural network with 256 hidden units
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for each layer. To prevent model overfitting, we dropped a neuron with 5% probability
during the forward propagation. A sigmoid function was used to determine output.

During training of both models, we split validation set from training set as proportion
1:3, and to moderate bias created by imbalanced data distribution, we set the class weight
ratio between positive samples and negative samples to 1:10. After training as described
above, we stacked the two models together so as to obtained average probability, passed
through a sigmoid function (Figure 3).

4. Results

We evaluated the algorithms’ performance using multiple metrics (Table 2).

Table 2. Performance measures. We report accuracy (Acc.), area under the curve (AUC), F1 score,
recall, and precision (Prec.) for the named models and datasets. To compare the performance of
the models using the initial or enhanced structured datasets, superior values are shown in bold.
(for confusion matrices see Additional file 5).

Model Dataset Acc. AUC F1 Score Recall Prec.

XGBoost Initial structured dataset 0.94 0.61 0.97 0.96 0.98
Enhanced structured dataset 0.97 0.77 0.99 0.99 0.98

MLP Initial structured dataset 0.98 0.56 0.99 1.0 0.98
Enhanced structured dataset 0.98 0.59 0.99 1.0 0.98

Bi-LSTM Sequence dataset 0.93 0.73 0.96 1.0 0.93

4.1. Machine Learning Model

The accuracy of the model created by using the initial structured dataset (no added
features) is 94%, whereas using the enhanced structured dataset (with added features),
the model’s accuracy is 97%. As accuracy on an imbalanced dataset is limited, we display
the receiver operating characteristic (ROC) curve of both datasets in Figure 5 to provide a
further comparison. The enhanced structured dataset has significantly higher area under
the ROC curve (AUC) scores than the model built on the initial structured dataset. There
also exist tiny differences between the F1 score, recall, and precision of the two models.
The method we chose to evaluate the importance score of feature is based on counting the
number of times that a feature occurred in a tree. The feature importance for both datasets
is shown in Figure 6. For the initial structured dataset, age plays a more important role
than other features. For the model based on the enhanced structured dataset, the weather
description, temperature, and humidity are more important than age; moreover, the level
of importance of weather is higher than that of age. We visualized the frequency of the
textual weather description on survivors and non-survivors, respectively (Figure 7). The
weighted average research sentiment polarity score does not have an exceptional f score.
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Figure 5. ROC of XGBoost. XGBoost shows an the accuracy of 94% on the initial structured dataset
and an accuracy 97% on the enhanced structured dataset, with an increase of the area under the curve
from 61% to 77%.

(a) (b)

Figure 6. Feature scores on the enhanced structured dataset. (a) XGBoost processing of the initial
structured dataset identified age as an important feature. (b) XGBoost processing of the enhanced
structured dataset identified in the weather as an important feature.

(a) (b)

Figure 7. Textual weather description. (a) Word cloud visualization of the frequency of textual
weather description for survivors. (b) Word cloud visualization of the frequency of textual weather
description for non-survivors.

4.2. Deep Learning Model

As shown in Table 2, on both the initial and enhanced structured datasets, the MLP
method demonstrated higher accuracy than the XGBoost method. For both datasets,
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the accuracy using MLP is 98%. However, the ROC curve (Figure 8) indicates that the
model shows a better classification ability on the enhanced structured dataset.

Taking sequence data into account, we obtained 93% accuracy and the area under the
ROC curve is 0.73, as shown in Figure 9. Among all the models we built, the AUC score
was highest when using a Bi-LSTM on the sequence data.
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Figure 8. ROC of MLP. MLP shows an accuracy of 98% on both the initial and the enhanced structured
dataset, with an increase in area under the curve from 56% to 59%.
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Figure 9. ROC of Bi-LSTM. Bi-LSTM shows an accuracy of 93% on sequence dataset, with an area
under the curve of 0.73.

5. Discussion and Conclusions

The performance of machine learning and deep learning methods depends on the
amount and quality of available features. Our analysis illustrates that current publicly
available data can be enhanced, so as to increase the accuracy of survival prediction by
3% along with positive changes in other model validating metrics, such as AUC (16%),
F1 score (2%), and Recall (3%) in case of XGBoost. For MLP the accuracy, F1 score, Recall,
and Precision remained the same both for the initial and enhanced structured dataset,
but the AUC increased by 3%.

To further evaluate the capability of the proposed models, we repeated the construc-
tion of all models on the same datasets, however, with the roles of positive and negative
samples reversed, that is, this time considering patients who did not survive as positive
samples. We observed that for XGBoost and MLP, the models based on the enhanced struc-
tured dataset perform better than those based on initial structured dataset in all aspects
except recall (see Table 3). Further, it can be observed that even the best model has really
poor performances in detecting patients who did not survive, as witnessed by the F1 score
of 0.20.
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Table 3. Performance measures (predicting death). Considering patients that die as positive sam-
ples, we report performance as in the previous Table (for confusion matrices see Additional file 5).

Model Dataset Acc. AUC F1 Score Recall Prec.

XGBoost Initial structured dataset 0.96 0.60 0.15 0.19 0.12
Enhanced structured dataset 0.98 0.77 0.20 0.13 0.50

MLP Initial structured dataset 0.98 0.55 0.15 0.11 0.21
Enhanced structured dataset 0.98 0.59 0.13 0.21 0.10

Bi-LSTM Sequence dataset 0.93 0.64 0.21 0.35 0.14

Our study shows how one might enhance a dataset by adding informative features
that are not available in the original dataset. Here we demonstrated this for local weather
and country-wise research sentiment. Local weather conditions has been implicated as an
important feature previous studies.

Our analysis also shows that age is an important factor for survival of COVID-19 as
well. However, in the data considered here, the total number of deaths above age 60 were
793 and 2887 survived or were still alive, while in the age group between 40 and 60 there
were 421 deaths and 10,346 alive or survived. Therefore, linking mortality to a particular
age group is not appropriate based on the current data.

While this analysis suggests that elderly have a higher risk of death, which has
already been observed [58,59], saying that mortality is associated with old age is probably
generally true for any infectious disease. Age is one of the confounding factors that could
be responsible for an increased COVID-19 mortality rate [60,61].

For the model based on the enhanced structured dataset, the weather textual descrip-
tion, followed by local temperature, humidity, and age, appear as the most important
features and account for the increase in the accuracy of the model. The most apparent
difference in the weather attributes for survivors and non-survivors (Figure 7) is “smoke”.
This suggests that environmental conditions, in particular air pollution, may play a role in
determining the outcome of the disease.

In contrast, in our investigation, the research sentiment score did not show the im-
portance that we had suspected. The values of this feature are never particular high or
low, and the highest value of this feature is only 0.35, and thus the difference between the
highest score and lowest score is also small. We assume that one of the reasons for this is
that academic writing aims for a neutral tone.

The model that we developed on the virus genome dataset failed to provide added
predictive power. We suspect that virus genome data would be much more useful, if it
were available for the large, structured dataset. However, our study may provide a starting
point for further work.

Further, this analysis confirms that enhancing a dataset, rather than just analyzing
the originally given features, might lead to a better prediction of a particular outcome.
Along with some of the features which should be paid more attention while collecting
the data.

There are a number of possible directions for future work. As more viral genomes
become available, more powerful Deep Learning methods can be applied to them to help
predict patient survival. Additional features such as patient health status, weight, height,
medical history should also be integrated. The effect of climate on patient survival warrants
more investigation. Finally, methods such as a Recurrent Neural Network-based LSTM
might help to study how mutations influence the transmissibility of the virus [62].
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Supplementary Materials: Additional files, datasets and models analyzed during our study along
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COVID-19 coronavirus disease
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
ARIMA Autoregressive Integrated Moving Average model
Bi-LSTM Bidirectional Long Short-Term Memory
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
NLP Natural Language Processing
WHO World Health Organization
NCBI National Center for Biotechnology Information
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Abstract: In parallel with the vast medical research on clinical treatment of COVID-19, an important
action to have the disease completely under control is to carefully monitor the patients. What the
detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to
the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming
at reinforcing the radiography-based recognition of lung infection by COVID-19. In this regard, we
make a comparison of the noteworthy approaches devoted to the binary classification of infected
images by using DL techniques, then we also propose a variant of a convolutional neural network
(CNN) with optimized parameters, which performs very well on a recent dataset of COVID-19.
The proposed model’s effectiveness is demonstrated to be of considerable importance due to its
uncomplicated design, in contrast to other presented models. In our approach, we randomly put
several images of the utilized dataset aside as a hold out set; the model detects most of the COVID-19
X-rays correctly, with an excellent overall accuracy of 99.8%. In addition, the significance of the
results obtained by testing different datasets of diverse characteristics (which, more specifically, are
not used in the training process) demonstrates the effectiveness of the proposed approach in terms of
an accuracy up to 93%.

Keywords: COVID-19; chest X-ray; convolutional neural network; classification; deep learning

1. Introduction

The coronavirus that appeared in 2019—the severe acute respiratory syndrome (SARS-
CoV-2)—has become a matter of considerable public concern. COVID-19 leads to compli-
cations such as acute respiratory disorder, heart problems, and secondary infections in a
rather high proportion of patients, with an appallingly high mortality rate. Identifying the
infected individuals is naturally a matter of the utmost importance not only to undergo
treatment, also to be kept away from others to prevent the disease from spreading [1].
Surveillance programs, which are widely implemented, commonly employ serological tests.
However, the limited number of test kits available to many countries can be considered
as one of the issues regarding the identification of patients [2], where the identification of
patients becomes a tough challenge. Furthermore, these tests take between a few hours
and a day for the results to be provided. While some countries may lack the means to
adequately perform antibody or viral tests, in addition, these types of medical examinations
might be error-prone. Consequently, in this critical situation, what requires addressing is a
viable alternative to these tests.

The radiology gives a decisive advantage when we monitor how the disease runs its
course, and it represents a common approach due to its availability [3–5]. Hence, along
with biomedical methods—like polymerase chain reaction (PCR) that allows the diagnosis
of infectious diseases—the study of lung X-rays could prove highly beneficial, specifically
to countries with less access to biomedical facilities.
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Considering that deep learning (DL) architectures have been successfully applied
to various fields, including medical image analysis, it could even further enhance our
ability to cope with the difficulty of diagnosing the disease [6]. In fact, the capabilities
and influences of these state-of-the-art techniques are growing constantly [7–9]. At the
present time, the development of deep neural networks (DNNs), capable of detecting
COVID-19 symptoms in an accurate (and simultaneously fast) way, has become a matter of
concern to many researchers [10]. A set of studies show the ability of DNNs, specifically the
convolutional neural networks (CNNs) [11] to efficiently detect the symptoms of COVID-
19 in X-rays [12]. A series of recent studies focus on undertaking a comparative study
of pretrained DL models applied to the classification of COVID-19, by using Computed
Tomography (CT) Scans or X-rays in specific datasets [13–20]. However, the state-of-the-art
research contributions adopt, for the most part, “Transfer Learning” [21–24] as the approach
to automatic detection of COVID-19 symptoms. These contributions pursue the goal of
developing novel methods, however, they possess their own disadvantages. Regarding
these methods, in general, it must be stated the key issue is that only at the cost of high
complexity does the accuracy of these designed models improve. In other words, a great
accuracy is achieved, provided that the systems complexities increase. Otherwise, the
results would not be acceptable. The well-known networks, for instance, AlexNet [25],
variants of ResNet [26], VGG [27], GoogLeNet [28], EfficientNet [29], and DensNet [30]
prove themselves to be powerful in many applications; however, a major drawback to
them is that they usually require significant training time, causing a high cost in real-world
applications [31].

In our opinion, DL techniques represent a powerful tool for reinforcing the process of
automated (binary) classification of X-rays into normal and infected by COVID-19 images.
In this regard, the general framework of deep learning applied to the automatic detection
of COVID-19 symptoms can be named as COVID-in-Depth (CoDe).

However, since DNNs are computationally demanding and memory-hungry, a num-
ber of techniques have been introduced to tackle this issue [32]. A first approach that
can be taken is to minimize the size of DNNs, and simultaneously try to maintain the
resulting accuracy at a reasonable level. Another technique addresses this issue by reducing
the whole number of parameters [33]. A simple model helps to prevent the overfitting
when datasets are limited in size [34]. In this paper, we have tried to minimize the size
of the neural network and number of parameters. The main advantage of this network,
compared to other models, is its simplicity and low complexity, which leads to a major
reduction in computational cost, while maintaining the accuracy at a high level. Conse-
quently, the model is perfectly capable of running fast on low-performance computers with
high accuracy.

Fresh Contribution of the Paper

Motivated by these considerations, in this paper, we pursue two main goals:

1. We first draw a comparison of the state-of-the-art approaches that work towards
the goal of classifying X-rays into normal and COVID-19 categories. This provides
an overview on how the state-of-the-art approaches behave on different dataset
commonly used in the literature;

2. We also propose a variant of CNNs—a custom-designed architecture with optimized
parameters—that performs very well on a recent dataset. In our contribution, we
concentrate our concerted efforts, specifically, on reducing the network complexities,
whilst simultaneously achieving the accuracy of a superbly high level. To accom-
plish our goal, we have optimized our model for an excellent performance and a
straightforward design. Moreover, in order to assess the proposed architecture and
demonstrate its effectiveness, we test it on some additional datasets, not used in the
training phase. In similar works, it is rarely observed that a model is evaluated by
referring to large external datasets.
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Our proposed CNN-based classifier is trained from scratch, which is different from
other contributions that adopt a transfer learning approach. Specifically, the main features
of the proposed architecture are:

• A considerably high accuracy of COVID-19 identification;
• A highly reduced system complexity, compared to other state-of-the-art models;
• The usability of the model in resource-limited execution environments;
• The assessment of the proposed model by using external datasets not involved in

training process.

The rest of this article is organized as follows. Section 2 is devoted to the related
work on binary COVID-19 classification from X-rays, by using CNNs. Section 3 presents
the related information on data type, preprocessing, and data augmentation. A detailed
description of the proposed architecture is demonstrated in Section 4, while details about
experimental setup along with the results, and performance evaluation are discussed in
Section 5. In Section 6, the capability of the model will be challenged by the act of classifying
X-rays of external datasets. A comparison between state-of-the-art contributions is drawn
in Section 7. Finally, the conclusion and possible future research directions are outlined in
Section 8.

2. Related Work

The majority of previous research contributions has applied pretrained frameworks
to classification of COVID-19 infected patients. In [35], the authors utilize the AlexNet
architecture as a feature extractor, where the most efficient features are selected using
the Relief algorithm and then in the final stage, the classification of the effective features
is conducted, by using the support-vector machines (SVM) classifier. The test results
demonstrate an accuracy score of 99.18%. However, finding the optimal parameters for the
SVM, and also optimal values for the Relief algorithm, can be considered as the limitations
of this study.

ResNet-50 CNN, with conventional transfer learning scheme from ImageNet database,
has been used in [36–39]. The validation accuracy of these networks have not exceeded 98%,
and some of them present a dramatically low degree of accuracy. Moreover, ResNet-50 is
utilized as the feature extractor, and the SVM as the classifier in [40]. This work is not an end-
to-end network and the low number of COVID-19 X-rays in the dataset (25 images) causes
the result not to be so valuable, while the overall accuracy of the study is 95.38%. With
modified ResNet-18, [41] develops a deep convolutional generative adversarial network
to produce synthetic data, but is not rather able to produce unique synthetic data, since
the proposed network is trained separately for each class. The test accuracy for detection
of COVID-19 is reported to be 82.91%. A Deep Convolutional Autoencoder approach,
COVIDomaly, is proposed by [42]. After performing 3-fold cross-validation, a pooled
ROC–AUC of 0.6902 is obtained for the binary classification.

In [43], the authors perform multi-dilation convolutional layers, where the group
convlution uses several dilation rates. The training convergence of the model is very
erratic, where it fluctuates a lot after 45 epochs, and the accuracy of 97.4% is achieved for
COVID/Normal cases. The ability of capsule networks, in order to classify COVID-19 X-
rays is examined in study by [44]. The proposed method, CapsNet, achieves an accuracy of
97.24% in binary classification. In [45], the authors investigate a set of different approaches,
in which AlexNet, GoogLeNet, and RestNet-18 are used for multi-classification, where the
GoogLeNet is adopted as the main deep transfer model for classification of COVID-19 and
normal images. Although, the work achieves 99.9% in the validation accuracy, the use of a
very small dataset for the training (69 image of COVID-19 without augmentation) causes a
low-level reliability. The EfficientNet [29], based on transfer learning, shows a valuable
accuracy on several datasets. However, the authors of [46] employ a network for COVID-19
classification, obtaining a validation accuracy that does not exceed 93.9%. Among the
various applied deep transfer learning approaches, [47] achieves a high validation accuracy,
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by using Xception network (99.52%) for the training, however, the results are not efficient
enough in the test analysis (97.40%), compared to the validation accuracy.

A recent study by [48] concludes that the validity of the usual testing protocols in
most papers dealing with the automatic diagnosis of COVID-19 might be biased and learn
to predict features that predict features that are more dependent on the source dataset
than relevant medical information. The attempt, made in [49] based on a modified version
of AlexNet, results in the accuracy of 98%, while VGG-19 and DenseNet-201 [50] are not
capable of achieving higher overall accuracy than 90%. The authors of [51] utilize the
standard version of DenseNet-169 and reach a resulting accuracy of 95.72%. The standard
version of VGG-16 with synthetic data augmentation technique, for classifying COVID-19,
results in the validation accuracy rate of 95% [52]. A model, based on the combination of a
CNN and long short-term memory (LSTM), is developed by [53] to diagnose COVID-19
automatically from X-rays. This network is composed of 21 layers and achieves an accuracy
of 99.4%, with a long training time of more than 5 hours. However, their operations take
advantage of running at high speeds.

The research by [54] focuses only on the screening stage. The synthetic data, which are
generated by a conditional deep convolutional generative adversarial network (conditional
DC-GAN), is used to augment the training dataset for COVID-19 classification. The pro-
posed method attains a mean accuracy of 96.97%. In addition, the transfer learning method
is used to train four CNNs, including ResNet18, ResNet50, SqueezeNet and DenseNet-121,
to identify COVID-19 symptoms in the analyzed chest X-ray images, and three of these
networks do not exceed a sensitivity rate of 98%, while the results of the other one are
not considerable at all [55]. The VGG-19 and the MobileNet-V2 are employed by the
authors of [56] and they confirm that these two networks are not capable of classifying the
COVID-19 X-ray images. The ResNet-50 and VGG-16 produce comparatively better results
than VGG-19 and MobileNet-V2. The AUC scores of ResNet-50 and VGG-16 are evaluated
to be 0.6578 and 0.7264, respectively. The Inception-V3 produces better results than other
pre-trained networks, however, the highest AUC score in transfer learning experiments is
obtained by DenseNet-121 (0.9648). In [57], the authors proposed nCOVnet, by using neural
network-based method on VGG-16, to achieve the overall accuracy of 88.10%. However,
for the most part, the obtained results are biased due to the small amount of COVID-19
X-rays [43]. It should be considered that the proposed schemes provide performance in
different combinations of classification with balanced sets of data. Moreover, the larger
number of non-COVID X-rays are properly utilized for the initial training phase that is
effectively transferred for diagnosing COVID-19 in the final transfer learning phase.

A critical question, here, would be whether or not an automatic COVID-19 identifica-
tion, with a correlation of high accuracy and low system complexity is achievable?

3. Data Type and Preprocessing
3.1. X-ray Images DataSet

The data used in this work has been collected from “The Cancer Imaging Archive
(TCIA)” [58]—a collection of X-rays and CT images—related to patients with positive
COVID-19 tests [59]. We have separated 253 X-rays from the CTs (last modification in
September 15, 2020). The related information has been collected from 105 patients, both
females and males, with a minimum age of 19 and maximum age of 91 years old. The mor-
tality was of 10 out of 105 patients. The images, provided in the dataset, have been of very
low resolutions, and in addition, each image has been presented in a different resolution
to other ones. The original images have been in Digital Imaging and Communications in
Medicine (DICOM) format. Normal X-rays are selected randomly from the data collection
of Mendeley [60] in the ‘jpeg’ format. Age, sex and any other information regarding the
patients of this dataset is not provided due to privacy concerns. The difference of image
sizes and the need to manipulate them for some random samples are shown in Figure 1.
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Figure 1. X-ray image samples of two categories before image manipulation.

3.2. Augmentation of Images

The key problem with small and unbalanced datasets is that models trained with
them may not be generalized. Hence, these models suffer the issue of overfitting. Data
augmentation is an approach to reducing overfitting, by which we are able to increase
the amount of data, with only using available data [61]. In this paper, 100 images, with
an equal proportion of classes, is held out for testing the model, and the number of
samples of each class is balanced by increasing the number of COVID-19 chest X-rays to
500 images. The augmented images are randomly selected from the original X-rays. In
total, 1000 (500 normal + 500 COVID-19) images are employed for the training phase. On
the other hand, image preprocessing is needed, because the images are not of the same
size, as shown in Figure 1, and therefore are converted into the same size for training. In
Table 1, we present the manipulations that are applied to the X-rays, before proceeding
with the augmentation.

Table 1. Manipulation of the X-ray images before augmentation.

Rotating Rotate 30% of the images to right and left in maximum 10 degrees.

Shearing Shear in the x and y axis randomly in 20 degrees.

Cropping Crop marginal parts of the periphery X-rays.

Resizing Resize all the images in both width and height equal to 240 pixels.

Elastic distortion Carried out for 20% of images by setting the grid width and height equal to 2.

For this purpose, we have used the “Augmentor”—a Python package designed to
aid the augmentation and artificial generation of image data for machine learning tasks.
It is primarily a data augmentation tool, but also incorporate basic image preprocessing
functionality. It has an emphasis on providing operations that are typically used in the
generation of image data for machine learning problems. The visualization of X-ray images
of each class, after manipulation, is shown in Figure 2.
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Figure 2. X-ray image samples of two categories after image manipulation.

4. Proposed Method

The proposed method, framed inside the CoDe vision, is explained by discussing the
network topology and development parameters. The architecture of the model is explained
with the help of diagrams, leading to the CNN model, and its operation and evaluation
metrics will be explained later.

4.1. Architecture of the Model

The proposed model deploys Keras functional API, and its overall architecture is
presented according to the execution graph of Tensorboard in Figure 3. The learning phase
flag in the execution graph, is a ’Boolean tensor’ (0 = test, 1 = train) to be passed as input to
any Keras function that uses a different behavior at train and test time.
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Figure 3. Architecture of the proposed model.

There are 12 layers in this network including convolution, max-pooling, batch nor-
malization, dropout, activation, and fully-connected layers, whose details are summarized
in Figure 2. The kernel size of the two convolution layers, i.e., layers 2 and 6 are equal to
3. After each convolution layer, a max-pooling operation is applied to the feature maps,
but before the first max-pooling, batch normalization and then the rectified linear unit
(ReLU) activation are employed. ReLU(x) = max(0, x) is the element-wise maximum of 0
and the input tensor. The purpose of batch normalization is to normalize the activation of
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the previous layer at each batch, i.e., applying a transformation that maintains the mean
activation close to 0 and the activation standard deviation close to 1 .

The normalization operation is computed by using the following Equations (1) and
(2) [62]. Considering the intermediate activation x of a mini-batch of size, we can compute
the mean and variance of the batch:

µB =
1
m

m

∑
i=1

xi, σ2
B =

1
m

m

∑
i=1

(xi − µB)
2, (1)

and then compute a normalized version of x, including a small factor ε for numerical stability:

x̃i =
xi − µB√

σ2
B + ε

, (2)

and finally, x̃i is linearly transformed by γ and β, which are two learned parameters:
yi = γx̃i + β.

Max-pooling is for reducing the size of the feature map. The parameters for the kernel
(filter) size in this work is obtained through brute force technique, and moreover, the stride
for convolution and max-pooling operation is set at 2. A ‘valid’ padding is adopted. To
avoid overfitting, we try to keep the model as simple as possible, additionally, we use
a dropout layer to make a regularized network section for the inferences. We set the
dropout rate to p = 0.5, which yields the maximum regularization. Otherwise, in the
networks, if all the weights are learned together, normally some of the connections will
attain more predictive capability than the others. In such a scenario, as the network is
trained iteratively, these powerful connections are learned more, while the weaker ones are
ignored [11]. Over many iterations, only a fraction of the node connections is trained and
the rest stop participating. In the other words dropout works by probabilistically removing
a neuron from designated layers during training or by dropping certain connections [63].
It is worth pointing out that ‘Non-trainable parameters’, as displayed in Table 2, refer to
the number of weights that are not updated during training with back propagation which
perform like statistics in the batch normalization layer. They are updated with mean and
variance, but they are not “trained with back propagation”.

Table 2. Summary of the proposed model.

Layer Type Kernel Size Stride Output Shape

1 Input layer - - 240× 240× 3
2 Conv2D 3× 3 2 119× 119× 32

3 Batch
Normalization - - 119× 119× 32

4 Activation - - 119× 119× 32
5 Max-Pooling 2D 2× 2 1 59× 59× 32
6 Conv2D 3× 3 1 29× 29× 32
7 Max-Pooling 2D 2× 2 1 14× 14× 32
8 Flatten - - 6272
9 Dense - - 256
10 Dropout - - 256
11 Dense - - 128
12 Output - - 1

Total params: 1,649,185; Trainable params: 1,649,121; Non-trainable params: 64.

4.2. Evaluation Metrics

The performance of the proposed model is evaluated with 5-fold cross-validation. The
dataset is divided into two parts, i.e., training and hold out. The held out part is aimed at
testing the model, at the end, while the train set is divided into 5 parts. Figure 4 shows the
segmentation applied to the dataset.
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Figure 4. Schematic overview of the 5-fold cross-validation and hold out set.

The training process is carried out 5 times, and the performance of the method is
calculated by taking the average of trainings. The evaluation metrics selected in this work,
which are commonly used to measure the quality of the model, are: confusion matrix, accu-
racy, specificity, sensitivity, F1-score, the area under the (Receiver Operating Characteristic)
curve (AUC), and the Matthews correlation coefficient (MCC). The calculated parameters
of these metrics are based on true positive (TP), true negative (TN), false positive (FP), false
negative (FN) rates, as shown in Table 3.

Table 3. The performance metrics for the evaluation of the model.

Performance Metrics Formula

Sensitivity TP/(TP + FN)

Specificity TN/(TN + FP)

Precision TP/(TP + FP)

F-Score 2TP/(2TP + FP + FN)

Accuracy (TP + TN)/(TP + FN + FP + TN)

MCC (TP× TN − FP× FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

5. Experimental Phase
5.1. Primary Preparation

In the experimental setup, first, the dataset is randomly divided into two parts: 653
and 100 images of the dataset belong to the training and hold out respectively. The hold
out part is separated with the goal of testing the model after the training is performed.
The process is illustrated in Figure 5. Thereafter we perform the augmentation to raw
images in training set. All the input images are resized to 240× 240 pixel size. In the
meantime, the dataset is shuffled to overcome the negative effect of the overfitting. The
train set is split with respect to 5-fold cross-validation. Afterwards, 25% of each training
set is considered as a validation set, in order to use the early stopping strategy. The early
stopping and ReduceLROnPlateau methods are employed to monitor the improvement
of validation loss, and in the case that no improvement is verified for a ‘patience’ number
of five iterations, the learning rate (lr) is reduced at the f actor of 0.1 (lrnew = rl × f actor).
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On the other hand, if the validation loss does not improve for a ’patience’ number of
10 iterations, the training will be stopped automatically. The process is now well prepared
for the Gradient descent Optimization (SGD) of the Keras. Setting the ‘restore_best_weights’
to ‘True’, model weights are restored from the epoch with the best value of the monitored
quantity. The training is conducted for 100 epochs, with a batch size of 32. After we reach
the best weights, we implement the testing phase by the unseen hold out dataset. The
diagram of the process is illustrated in Figure 5 that highlights the division of dataset
during the processing.
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Figure 5. Schematic diagram of the process.

The experimental work is carried out by using Python programming language. Some
information about configuration of the model can be found in Table 4.

Table 4. Main information of configuring the model for training.

Programming Language API Optimization Loss Batch Size Learning Rate Epoch

Python Keras Gradient Descent
(SGD) Binary-crossentropy 32 0.01 100

5.2. Numerical Results

When the epoch number of training iterations increases, the loss value does not change
considerably, suggesting that the model converges well on a relatively optimal state without
distinct overfitting or underfitting. The training curves of the loss value and the accuracy
for the last fold of training are shown in Figures 6 and 7. The system can be considered a fit
model, since the validation error is low, while slightly higher than the training error.

The validity of implementation, associated with the performance metrics, such as
precision, recall and F1-score, is shown in Table 5. All the estimations are made through
the ‘scikit-learn’ API [64]. Approximately, for about 400 iterations in 5 times training,
the proposed model achieves almost the accuracy of 99.80%, for correct identification of
infected cases. Moreover, 100% of not infected people are correctly identified as being
healthy. The resultant precision, recall, F1-score, and AUC are all competent enough, to
validate the high efficiency of the proposed model. All the measures’ values are the average
of the 5-fold cross-validation.
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Figure 6. Visualizing the accuracy for the last fold cross-validation training.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Model Loss

Train
Validation

Figure 7. Visualizing the loss for the last fold cross-validation training.

Table 5. Performance of the model in average of 5-fold cross-validation for both classes.

Precision Recall F1-Score AUC MCC Support (Image)

Not infected 0.9980 1.0000 0.9990
Infected 1.0000 0.9980 0.9990

Average of
two classes 0.9990 0.9990 0.9990 0.9990 0.9980 200

Confusion matrices for all the 5-fold cross-validation training process are presented in
Figure 8.

The performance of the network for detecting normal and COVID-19 X-rays, corre-
sponding to the average of the 5-fold cross-validation, is shown in Figure 9. We know that
in binary classification, the recall of the positive class is also known as ‘sensitivity’, and the
recall of the negative class is ‘specificity’. Therefore, as we can see in the graph of Figure 9,
recall of the ‘not-infected’ is specificity or the true negative rate of the result.
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Figure 9. The graph of model performance in average of 5-fold cross-validation for both classes.

5.3. Hold Out Test Dataset

To ensure how well the model works, we employ 100 images belonging to the dataset,
which are randomly held out with the same original proportion. The hold out dataset is not
involved in the process of training. In total, 66 normal images and 34 images with COVID-
19 symptoms evaluate the model performance. The network is capable of identifying all the
infected patients correctly and only one misdiagnosing in normal X-rays, with the accuracy
of 99%. The confusion matrix for demonstrating the performance is shown in Figure 10,
and Table 6 represents the highly considerable performance of the model.

The area under the receiver operating characteristic curve, which is known as AUC, is
equal to 0.99.

Table 6. Model performance using hold out test data.

Precision Recall F1-Score AUC MCC Support (Image)

Hold out test data 0.99 0.99 0.99 0.99 0.99 100
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Figure 10. Confusion matrix of testing for hold out X-rays.

5.4. Comparison between Results Obtained by Using Similar Dataset

Although the access to public datasets of COVID-19 X-rays are highly limited, on
the other hand, a wide variety of datasets including normal X-rays are reachable. The
information about Uniform Resource Locator (URL) of datasets, including the amount of
X-rays, which have been employed by other similar classification networks, are presented
in Table 7.

Table 7. Available datasets and number of images.

Number Dataset URL COVID-19 X-rays Healthy X-rays

1 https://data.mendeley.com/datasets/rscbjbr9sj/2 – 1583

2 https://github.com/ieee8023/COVID-chestxray-dataset 930 –

3 https://github.com/agchung/Figure1-COVID-chestxray-dataset 55 –

4 https://github.com/shervinmin/DeepCovid 184 1898

5 https://nihcc.app.box.com/v/ChestXray-NIHCC – 84,312

6 https://www.kaggle.com/andrewmvd/convid19-x-rays 79 –

7 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia – 1583

8 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database 1143 1341

9 https://wiki.cancerimagingarchive.net/display/Public/COVID-19 253 –

The COVID-19 dataset [59] used in this work (number 9 in Table 7) is derived from
a rather new source that has not been employed by similar works yet, but the normal
X-rays are selected through a popular dataset [60] (number 1 in Table 7), and the related
article could be observed in [65]. Table 8 presents a comparison between results obtained
by several other studies that employ the same dataset of normal X-rays (with different
amounts of images) as we have utilized.

As Table 8 shows, the results obtained by the proposed model’s performance is
considerable compared to other contributions. Although it appears that the accuracy
reported by GoogLeNet in [45,66] is equal or slightly higher, however, this item could be
easily justified by considering the fact that the training process is performed based on
using a quite smaller dataset than ours, and importantly enough, without augmentation.
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In addition, the computational cost of the approaches, adopted by the authors (GoogLeNet
and VGG-16), are higher.

Table 8. Comparative analysis of binary classification of COVID-19 for the similar utilized dataset.

Network Utilized by Ref. Accuracy Sensitivity Specificity F1-Score Precision AUC Cross-Validation Number of Images
COVID-19 Normal

CapsNet [44] 0.8919 0.8422 0.9179 0.8421 0.9706 – 10-fold 231 500

CovXNet [43] 0.9740 0.9780 0.9470 0.9710 0.9630 0.9690 5-fold 305 1583

DenseNet121 [56] 0.9839 0.9392 0.9904 – – 0.9648 8-fold 225 1583

GoogLeNet [45] 0.9990 – – – – – – 69 79

VGG-16 [66] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 – 16 20

Inception-V3 [56] 0.8803 0.8794 0.9397 0.8788 0.8830 – – 231 1583

MobileNet-V2 [56] 0.8547 0.8555 0.9273 0.8545 0.8540 – – 231 1583

ResNet50 [67] 0.9934 0.9100 0.9900 0.9000 0.9000 0.9900 10-fold 239 –

VGG-19 [68] 0.9678 0.9866 0.9646 – – – 10-fold 224 504

Proposed 0.9990 0.9980 1.0000 0.9990 0.9990 0.9990 5-fold 500 500

6. Model Evaluation by External Dataset

In order to assess the proposed architecture and demonstrate its effectiveness, we aim
at testing it on some datasets not used in the training phase. It could be rarely observed
in similar works that a model is evaluated by referring to a considerably large external
dataset. However, in this contribution, with the aim of further performance evaluation and
ensuring no occurrence of overfitting, we employ other independent datasets of normal and
COVID-19 images, which have not been used in the training phase of the proposed model
and selected from those available in Table 7. The best weights, achieved by the proposed
model, are employed to measure the accuracy of the model for these unseen datasets.

6.1. External Dataset 1

As the first trial, we select two datasets that contain 744 and 1341 COVID-19 and
normal images, respectively, for a total of 2085 images. Normal chest X-rays are imported
from Kaggle repository “Chest X-Ray Images (Pneumonia)” [69] (number 7 in Table 7) and
COVID-19 images from [70] (number 2 in Table 7), both of which are vastly utilized for
binary classification, for instance, in [19,23,40,57,71]. The confusion matrix obtained by
testing our trained architecture on such datasets is presented in Figure 11.

The obtained results in terms of precision, recall and F1-score, are presented in Table 9.
The overall accuracy of the model, in the presence of the independent datasets for the
unseen 2085 images, is 92.95%.

Table 9. Performance of the model in external dataset-1 for both classes.

Precision Recall F1-Score Support (Image)

Not infected 0.9123 0.9851 0.9473 1341
Infected 0.9686 0.8293 0.8936 744

Average of two
classes 0.9404 0.9072 0.9204 2085

It is very interesting that the proposed architecture, trained on a different dataset, is
capable of achieving very good accuracy, comparable to many state-of-the-art approaches,
like those shown in Table 8.

According to the results presented in Figure 11, it is observed that the model could
identify the normal X-rays far better than the COVID-19 images. This point can be explained
by the fact that the unseen COVID-19 dataset may contain a lot of images that are related to
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patients at their early stages of the disease, and therefore, cannot be identified as COVID-
19 X-rays.
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Figure 11. Confusion matrix for the external dataset-1.

6.2. External Dataset 2

Two of the datasets, presented in Table 7, are selected here for the second trial: dataset
number 6 and 8 are COVID-19 and normal cases, respectively. In total, 1538 images are
employed in the testing process. The confusion matrix obtained by testing our trained
architecture on such datasets is shown in Figure 12.
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Figure 12. Confusion matrix for the external dataset-2.

The obtained results in terms of precision, recall and F1-score, are presented in Table 10.
The overall accuracy of the model, in the presence of this independent dataset for unseen
1583 images, is 85.96%.
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Table 10. Performance of the model in external dataset-2 for both classes.

Precision Recall F1-Score Support (Image)

Not infected 0.9936 0.8574 0.9205 1459
Infected 0.2545 0.8987 0.3966 79

Average of two
classes 0.6241 0.8781 0.6586 1538

Once again, the proposed architecture, trained on a different dataset, has been capable
of achieving good accuracy.

Contrary to the previous testing, for these datasets, it appears that the performance of
the model in identifying COVID-19 improves, which confirms the fundamental difference
between datasets. However, the overall accuracy is relatively in acceptable range.

7. Discussion

By analyzing the results, we demonstrate that the proposed model successfully iden-
tifies the symptoms of COVID-19, automatically extracting the COVID-19 images from
X-rays. The resulting ‘accuracy’ describes how effectively the values are predicted. The
‘precision’ determines the reproducibility of the measurement, or how many predictions
are correct. The ‘recall’ shows how many of the correct results are discovered. The ‘F1-score’
is the harmonic mean of precision and recall.

In Section 5.4, we have compared the most interesting contributions in binary classifi-
cations of COVID-19, in which the same dataset of normal X-rays as ours has been used.
Table 11 presents another batch of approaches, that have used other identical datasets. The
COVID-19 and normal datasets, utilized by the works presented in the Table 11, can be
seen in number 2 and 7 in Table 7 respectively.

Table 11. Comparative analysis of binary classification of COVID-19 based on similar datasets.

Network Utilized by Ref. Accuracy Sensitivity Specificity F1-Score Precision AUC

CNN–LSTM [53] 0.9920 0.9930 0.9920 0.9890 0.9850 0.9990

DarkCovidNet [72] 0.9808 0.9513 0.9530 0.9651 0.9803 –

EfficientNet [71] 0.9962 0.9963 0.9963 0.9962 0.9964 0.9949

nCOVnet [57] 0.8810 0.9762 0.7857 0.9762 0.9762 0.8800

Xception [19] 0.9900 0.9930 0.9860 0.9850 0.9830 –

Xception [47] 0.9740 0.9709 0.9729 0.9696 – –

Table 12 shows some information on the software and hardware that are used in
this work.

Table 12. software and hardware information.

OS OS Architecture Processor RAM System Type

Windows 10 AMD A8-4500M APU 1.90 GHz 6 GB 64-bit

A detailed observation of Tables 8 and 11 shows that the results obtained by the
proposed model compete with the state-of-the-art methods. In other words, the proposed
model presents a superior set of results in terms of all the validation factors. In spite
of the methods based on transfer learning with their complexities, our model delivers
a preferable performance with a high level of accuracy accompanied by its simplicity.
Those contributions that utilize the same architecture, for example, the works [24,68] in
Table 8, appear to produce a quite similar set of results. Although both the papers [19,47]
utilize the Xception network, their results appear to be different from each other. The

309



Computation 2021, 9, 3

adequate explanation concerning why the two sets of results are different is that the
authors of [19] use the Xception method, only as the base model, accompanied by a
dropout and two fully-connected layers at the end. The nCOVnet, a VGG-16-based 24-layer
network proposed in [57], and the CovXNet, with a large number of convolutional layers
introduced by the author of [43] in Table 8, utilize a very deep and complex architecture.
Even though we do not replicate the previous methods, our obtained results indicate a high
accuracy and a low complexity, compared to all other works in the literature. Obviously,
Inception, EfficientNet, ResNet, VGG, and DenseNet involve a computational complexity,
considerably greater than our proposed approach. Just for a comparison purpose, Table 13
recaps the number of the trainable parameters of the most common deep architectures used
in the approaches compared in Tables 8 and 11 [73]. Table 13 clearly shows the affordability
of the proposed idea.

Table 13. Number of trainable parameters of the most common deep models (in millions).

Model Trainable Parameters

AlexNet 62 M
CapsNet 8 M

DenseNet 25 M
GoogLeNet 4 M

Inception-V3 23.6 M
MobileNet-V2 3.5 M

ResNet18 11.5 M
SqueezeNet 27.5 M

VGG-19 138 M
Xception 22.8 M

Proposed 1.6 M

Therefore, the superior results achieved by our model, along with its simplicity and
low computational cost, confirm the efficiency with which the model is able to detect
COVID-19 X-rays, with a true positive rate of 99.80%. The accuracy of 99.90%, the AUC
of 0.9990, and also the hold out test accuracy of 99% indicate that the model is capable
of separating the two classes, indubitably. Moreover, performance of the model, in the
presence of different datasets with various characteristics, results in the accuracy of 92.95%
and 85.96%. The outcomes of the study indicate that the model is highly capable of
classifying the X-rays into COVID-19 and healthy.

8. Conclusions and Hints for Future Research

A fast diagnosis method has a key role in the control of infectious diseases and
pandemic situations like the current COVID-19. Some limitations of the PCR test reveal a
need for fast alternative methods to be able to serve the front-line experts to make them
reach a rapid and accurate diagnosis. Building DNN-based networks, which are capable
of identifying COVID-19 symptoms fast and efficiently, and, at the same time, possess
uncomplicated architectures, is a major concern to researchers. In this regard, we draw a
comparison of the noteworthy approaches devoted to the binary classification of infected
images by using Deep Learning techniques with high accuracy (a general framework that
we called COVID-in-Depth CoDe). We also propose a variant of a convolutional neural
network with optimized parameters that performs very well on a recent dataset. The model
presents the average performance accuracy of 99.90% on 5-fold cross validation, and 99.80%
for the single recognition of COVID-19. The test accuracy of 99% indicates that the model
performs with high precision.

Moreover, we utilize two external datasets to examine the performance of our model,
while the obtained results demonstrate that the model achieves 92.95% and 85.96% degrees
of accuracy. A hint that could be given here, on the further achievement is pursuing
the matter of generalization of the CoDe framework, by providing suitable datasets for
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training the model that can be large enough and well balanced. In addition, this work
can be extended, as a future work, to models capable of recognizing the stages of COVID-
19 progression.

Being still in its infancy the topic of this paper, we finally observe that the presented
results could be further developed in several directions. In this regard, the (quite recent)
contribution in [74] points out that a main promising research direction could be the ex-
ploitation of the emerging paradigm of Fog Computing for the distributed implementation
and execution of Deep-Learning based analytics engines. Hence, since technological Fog
Computing platforms are based on wireless (and possible mobile) technologies [75], a first
research direction of potential interest may concern the utilization of massive numbers of
transmit/receive antennas at the Fog nodes [76–78] for improving the (possibly, randomly
time-varying [79] and a priori unknown [80]) communication capacity of the underlying
Fog-based execution platforms, so to shorten the resulting execution time of the supported
Deep Learning engines. Motivated by this consideration, we outline a second promising
research direction, which can be focused on the utilization of the emerging paradigm of the
so-called Conditional Deep Neural Networks (CDNNs) with multiple early-exits to speed
up the overall Fog-supported COVID-19 diagnosis process [81].
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Abstract: Understanding the characteristics of public attention and sentiment is an essential
prerequisite for appropriate crisis management during adverse health events. This is even more
crucial during a pandemic such as COVID-19, as primary responsibility of risk management is not
centralized to a single institution, but distributed across society. While numerous studies utilize
Twitter data in descriptive or predictive context during COVID-19 pandemic, causal modeling of
public attention has not been investigated. In this study, we propose a causal inference approach
to discover and quantify causal relationships between pandemic characteristics (e.g., number of
infections and deaths) and Twitter activity as well as public sentiment. Our results show that the
proposed method can successfully capture the epidemiological domain knowledge and identify
variables that affect public attention and sentiment. We believe our work contributes to the field of
infodemiology by distinguishing events that correlate with public attention from events that cause
public attention.

Keywords: Twitter; machine learning; causal inference; COVID-19; sentiment analysis; social media

1. Introduction

On 11 March 2020, Coronavirus disease 2019 (COVID-19) was declared a pandemic by the World
Health Organization [1] and more than 30 million people have been infected by it as of 19 September
2020 [2]. During such crises, capturing the dissemination of information, monitoring public opinion,
observing compliance to measures, preventing disinformation, and relaying timely information is
crucial for risk communication and decision-making about public health [3]. Previous national and
global adverse health events show that social media surveillance can be utilized successfully for
systematic monitoring of public perception in real-time due to its instantaneous global coverage [4–9].

Due to its large number of users, Twitter has been the primary social media platform for
acquiring, sharing, and spreading information during global adverse events, including the COVID-19
pandemic [10]. Especially during the early stages of the COVID-19 pandemic, millions of posts
have been tweeted in a span of couple of weeks by users, that is, citizens, politicians, corporations,
and governmental institutions [11–14]. Consequently, numerous studies proposed and utilized Twitter
as a data source for extracting insights on public health as well as insights on public attention during
the COVID-19 pandemic. Focus of these studies include content analysis [15], topic modeling [16],
sentiment analysis [17], nowcasting or forecasting of the disease [18], early detection of the
outbreak [19], quantifying and detecting misinformation, disinformation, or conspiracies [20],
and measuring public attitude towards relevant health concepts (e.g., social distancing or working
from home) [21].

Despite such abundance of studies on manual or automatic analysis of social media data during
COVID-19, causal modeling of relationships between characteristics of the pandemic and social
media activity has not been investigated at all, as of September 2020. While descriptive statistical
analysis (e.g., correlation, cluster, or exploratory analysis) is beneficial for pattern and hypothesis
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discovery, and standard machine learning methods are effective in predictive modeling of those
patterns, causal inference of relevant phenomena will not be possible without causal computational
modeling. Causal modeling in the context of social media and pandemic can enable the optimization of
onset of risk communication interventions to increase dissemination of accurate information. Similarly,
it can be utilized to prevent acute propagation of negative sentiment with timely interventions.
Consequently, such causal modeling can help risk communication policies to shift from alerting people
to reassuring them. Furthermore, causal modeling enables simulation of what-if scenarios to enhance
disaster preparedness. Therefore, as public decision-making can benefit from adequate assessment of
public attention and correct understanding of underlying causes affecting it, we hereby propose causal
modeling of Twitter activity.

We hypothesize that daily Twitter activity and sentiment during the COVID-19 pandemic has a
causal relationship with the characteristics of the pandemic as well as with certain country statistics.
We propose a structural causal modeling approach for discovering causal relationships and quantifying
likelihood of events under various conditions (i.e., causal queries). To validate our approach, we collect
close to 1 million tweets with location information spanning 57 days and identify several attributes of
COVID-19 pandemic that might affect Twitter activity. We first employ a structure learning method to
automatically construct a graphical causal structure in a data-driven manner. Then, we utilize Bayesian
Networks (BNs) to learn conditional probability distributions of daily Twitter activity (number of
daily tweets) and average public sentiment with respect to several pandemic characteristics such as
total number of deaths and number of new infections. Our results show that the proposed structure
discovery method can successfully capture the epidemiological domain knowledge. Furthermore,
causal inference of daily Twitter activity with cross-validation across 12 countries show that our
approach provides accurate predictions of Twitter activity with interpretable and intuitive results.
We have released the full source code of our study (https://github.com/ogencoglu/causal_twitter_
modeling_covid19). We believe our study contributes to the field of infodemiology by proposing
causal modeling of public attention during the crisis of COVID-19 pandemic.

2. Going Beyond Correlations

Use of observational data from social media was proven to be beneficial in systematic monitoring
of public opinion during adverse health events [4–9]. Such utilization of large, publicly available
data becomes even more relevant during a global pandemic such as COVID-19, as neither enough
time nor a practical way to run variety of randomized control trials for quantifying public opinion
exist. Furthermore, as disease containment measures (e.g., lockdowns, quarantines, and curfews),
associated financial issues (e.g., due to inability to work), and changes in social dynamics may impact
mental health negatively [22–24], opinion surveillance methods that do not carry the risk of further
stressing of the participants are pertinent.

Themes of previous studies that focus on exploration of, description of, correlation
of, or predictive modeling with Twitter data during COVID-19 pandemic include sentiment
analysis [17,25–28], public attitude/interest measurement [21,29–31], content analysis [15,32–36],
topic modeling [16,26,27,37–40], analysis of misinformation, disinformation, or conspiracies [20,41–46],
outbreak detection or disease nowcasting/forecasting [18,19], and more [47–52]. Similarly, data from
other social media channels (e.g., Weibo, Reddit, Facebook) or search engine statistics are utilized
for parallel analyses related to COVID-19 pandemic as well [53–69]. While these studies reveal
important information and patterns, they do not attempt to uncover or model causal relationships
between the attributes of COVID-19 pandemic and social media activity. As correlation does not
imply causation (e.g., spurious correlations), the ability to identify truly causal relationships between
pandemic characteristics and public behaviour (online or not) remains crucial for devising public
policies that are more impactful. Without causal understanding, our efforts and decisions on risk
communication, public health engagement, health intervention timing, and adjustment of resources
for fighting disinformation, fearmongering, and alarmism will stay subpar.

316



Computation 2020, 8, 85

The task of forging causal models comes with numerous challenges in various domains
because, typically, domain knowledge and significant amount of time from the experts is required.
For substantially complex phenomena such as a pandemic due to a novel virus, diagnosing causal
attributions becomes even harder. Therefore, learning causal relationships automatically from
observational data has been studied in machine learning. One of the primary challenges for this
pursuit is that numerous latent variables that we can not observe exist in real world problems. In fact,
numerous other latent variables that we are not even aware of may exist as well. As latent variables
can induce statistical correlations between observed variables that do not have a causal relationship,
confounding factors arise. While this phenomenon may not exhibit a considerable problem in standard
probabilistic models, causal modeling suffers from it immensely.

Several machine learning methods are proposed for learning causal structures from observational
data and some allow combination of statistical information (learned from the data) and domain
expertise [70,71]. Bayesian networks are frequently utilized frameworks for learning models once
the causal structure is fixed. As probabilistic graphical models, BNs flexibly unify graphical models,
structural equations, and counterfactual logic [71–74]. A causal BN consists of a directed acyclic
graph (DAG) in which nodes correspond to random variables and edges correspond to direct
causal influence of one node on another [71]. This compact representation of high-dimensional
probability spaces (e.g., joint probability distributions) provides intuitive and explainable models for
us. In addition, BNs allow not only straightforward observational computations (e.g., calculation of
marginal probabilities) but also interventional ones (e.g., do-calculus), enabling simulations of various
what-if scenarios.

3. Methods

3.1. Data

We primarily utilized two data sources for our study, that is, daily number of officially reported
COVID-19 infections and deaths from “COVID-19 Data Repository” by the Center for Systems Science
and Engineering at Johns Hopkins University [2] and daily count of COVID-19 related tweets from
Twitter [75]. A 57 day period between 22 January–18 March 2020 is chosen for this study to represent
the early stages of the pandemic when disease characteristics are less known and public panic is
elevated. We collected 954,902 tweets that have location information from Twitter by searching for
#covid19 and #coronavirus hashtags. Similar to other studies [18,20,46], geolocation of the tweets is
inferred either by using user geo-tagging or geo-coding the information available in users’ profiles.
Timeline of daily log-distribution of collected tweet counts among 177 countries can be examined from
Figure 1. The trend shows an increasing prevalence of high daily number of tweets as the pandemic
spreads across the globe with time.

We select the following 12 countries for our causal modeling analysis: Italy, Spain, Germany,
France, Switzerland, United Kingdom, Netherlands, Norway, Austria, Belgium, Sweden, and Denmark.
These are the countries with substantial number of reported COVID-19 cases (listed in descending
order) in Europe as of 18 March 2020, yet still exhibiting a high diversity in terms of the timeline of the
pandemic. For instance, while Italy located further in the pandemic timeline due to being hit first in
Europe, United Kingdom could be considered in the very initial stages of it for the analysis period of
our study. Figure 2 depicts the cumulative number of tweet counts alongside with that of reported
infections and deaths for the selected countries. Evident correlations between these variables can be
noticed. A sharp increase in Twitter activity is observed after 28–29 February, which corresponds to
the period of each country having at least one confirmed COVID-19 case.
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Figure 1. Evolution of COVID-19 related Twitter activity between 22 January–18 March 2020.
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Figure 2. Cumulative counts of Twitter activity and COVID-19 statistics for the selected countries
during the study period.

3.2. Feature Selection

In order to characterize the pandemic straightforwardly, we calculate the following six features
(attributes) from the official COVID-19 incident statistics for each day for 12 selected countries: (1) total
number of infections up to that day (normalized by the country’s population), (2) number of new infections
(normalized by the country’s population), (3) percentage increase in infections (with respect to previous
day), and the same three statistics for deaths (4-5-6).

Recent epidemiological studies on COVID-19 reveal the following: people over the age 65 are the
primary risk group both for infection and mortality [76–79] and human-to-human transmission of the
virus is largely occurring among family members or among people who co-reside [77,80,81]. In order
to be able to test whether our approach can capture this scientific domain knowledge or not, we collect
the following two features for each country: (7) percentage of population over the age of 65 [82] and (8)
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percentage of single-person households [83]. Finally, as we know that popularity of Twitter in a country
and announcement of national lockdown (e.g., closing of schools, banning of gatherings) unequivocally
affect the Twitter activity in that country, we add (9) percentage of population using Twitter [84] and (10)
is_lockdown_announced? (3 day period is encoded as Yes if government restriction is announced [85],
No otherwise) features as well. We represent Twitter activity by simply counting the (11) number of daily
tweets (normalized by the country’s population). We also calculate the (12) average daily sentiment (in
range [−1, 1]) of English tweets (corresponding to over 80% of all tweets) by utilizing a pre-trained
sentiment classifier (DistilBERT [86]). We treat each day as an observation and represent each day with
these 12 attributes (n = 12) for structure learning, resulting in a feature matrix of dimensions 684× 12.
684 observations come from 12 countries times 57 days.

For the purpose of increasing interpretability, we discretize the daily numerical features by
mapping them to 2 categorical levels, namely High or Low. Features related to the pandemic (infections
and deaths) and Twitter activity employ a cut-off value of 75th percentile and remaining numerical
features employ a cut-off value of 50th percentile (corresponding to median). Such categorization, for
instance, turns the numerical value of “population-normalized increase in deaths of 1.7325× 10−7”
into a relatively calculated category of High for a given day. Sentiment scores are mapped to Positive
(≥0) or Negative (<0) as well.

3.3. Structure Learning and Causal Inference

In structure learning we would like to learn a directed acyclic graph, G, that describes the
conditional dependencies between variables in a given data matrix. A typical formulation of this
problem is a structural equation model (more generally a generalized linear model) in which a weighted
adjacency matrix, W ∈ Rn×n, defines the graph. This is essentially a parametric model that
enables operations on the continuous space of n × n matrices instead of discrete space of DAGs.
Such formulation enables a score-based learning of DAGs, that is,

min
W∈Rn×n

L(W)

subject to G(W) ∈ DAGs,
(1)

where G(W) is the n-node graph induced by the weighted adjacency matrix, W, and L is the score/loss
function to be minimized. Even though the loss function is continuous, solving Equation (1) is still a
non-convex, combinatorial optimization problem as the acyclicity constraint is discrete and difficult to
enforce. Note that acyclicity is a strict requirement for causal graphs. In order to tackle this problem
efficiently, we utilize the recently proposed NOTEARS (corresponding to Non-combinatorial Optimization
via Trace Exponential and Augmented lagRangian for Structure learning) algorithm for structure learning [87].

NOTEARS algorithm discovers a directed acyclic graph from the observational data by
re-formulating the structure learning problem as a purely continuous optimization. This approach
differs significantly from existing work in the field which predominantly operates on discrete space
of graphs. Re-formulation is achieved by introducing a continuous measure of “DAG-ness”, h(W),
which quantifies the severity of violations from acyclicity as W changes. Consequently, the problem
formulation becomes

min
W∈Rn×n

L(W)

subject to h(W) = 0,
(2)

which enables utilization of standard numerical solving methods and scales cubically, O(n3), with the
number of variables instead of exponentially as in other structure learning methods. We have chosen
the score to be the least squared loss (can be any smooth loss function) with l1-regularization term
to discover a sparse DAG and use a gradient-based minimizer to solve Equation (2). In our context,
we discover such an adjacency matrix that the graph it defines encodes the dependencies between our
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features in a close-to-optimal manner (finding the global optimum is NP-hard [88,89]) and is a DAG.
Efficiency of this approach enables structure learning in a scalable manner.

As NOTEARS algorithm allows incorporation of expert knowledge, we also put certain constraints
on the structure in our experiment. These constraints correspond to prohibited causal attributions
based on simple logical assumptions, for example, Twitter activity on a given day can not have a causal
effect on number of deaths from COVID-19 on that day. Full list of these constraints can be found
in Table A1 in the Appendix A. Once the structure is learned (both by data and logical constraints),
we treat it as a causal model and learn the parameters of a Bayesian network on it with the training
data in order to capture the conditional dependencies between variables. During inference on test data,
probabilities of each possible state of a node with respect to the given input data is computed from the
conditional probability distributions.

Our approach allows straightforward querying of the model with varying observations.
For instance for a given day, the probability of Twitter activity being High, when total number of
infections are Low and new deaths are High, that is,

Pr(Twitter Activity = H | Total Infections = H, New Deaths = L), (3)

can be computed by propagating the impact of these queries through the nodes of interest. By utilizing
this property of our approach, we compute marginal probabilities for gaining further insights on
likelihoods of various events.

Essentially, we expect two observations from our experiment. First, we expect the structure
learning algorithm to discover the causal relations verified by domain/expert knowledge (e.g., % of
single-person households and % of 65+ people affecting infections) and common sense/elementary
algebra (e.g., new deaths affecting percentage change in deaths). Second, we expect the calculated
likelihoods from the Bayesian network are in parallel with domain knowledge as well, for example,
high % of people over 65 increasing the marginal likelihood of deaths instead of decreasing it or high
% of single households (better social isolation) decreasing the marginal likelihood of infections instead
of increasing it. Realization of these expectations will show that the proposed method can indeed
capture causal relationships and will increase our confidence in discovered relationships between the
pandemic attributes and Twitter activity as well as confidence in corresponding likelihoods.

3.4. Evaluation

We validate our approach first by inspecting whether the expected causal relationships (e.g.,
domain knowledge on COVID-19) are captured or not. Then, we infer the Twitter activity of each
day from the learned Bayesian Network. Essentially, this corresponds to a binary classification task,
that is, predicting the Twitter activity as High or Low from the rest of the variables. We utilize a
Leave-One-Country-Out (LOCO) cross-validation scheme in which each fold consists of training set
from 11 countries (627 samples) and test set (57 samples) from the remaining country. We do not
perform standard k-fold cross-validation as we would like to measure the generalization performance
across countries and prevent overly optimistic results. Therefore, we ensure that the observations from
the same country fall in the same set (either training or test) for every fold. We evaluate the performance
of our approach by calculating the average Area Under the Receiver Operating Characteristic curve
(AUROC) of the cross-validation runs. For quantifying the causal effect of characteristics of pandemic
and relevant country statistics on Twitter activity, we report likelihoods from the model by querying
various conditions.

4. Results

The jointly (with statistical learning from data and user-defined logical constraints) discovered
causal model by the structure learning algorithm can be examined from Figure 3. Different families of
attributes are colored differently for ease of inspection—blue for COVID-19 pandemic related variables,
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yellow for country-specific statistics, green for government interventions, and red for representing
variables related to public attention and sentiment in Twitter. Daily Twitter activity is affected by 4
variables, namely Twitter usage statistics of that country, new infections on that day, new deaths on
that day, and whether national lockdown is announced or not. Similarly, 4 variables affecting the
average daily sentiment in Twitter are new infections on that day, new deaths on that day, total deaths
up to that day, and again lockdown announcements. Total number of infections did not show any
causal effect on Twitter activity or on average public sentiment.

Twitter Activity

Total Deaths

New Deaths

Total Infections

New Infections

Change in Deaths
(%)

Change in Infections
(%)

Population Over 65 
(%)

Twitter Usage
(%)

Single
Household (%)

Lockdown 
Announcement

Attributes of 
COVID-19 Pandemic

Country Statistics

Attributes of Public 
Attention on Twitter

Attributes of 
Government 
Interventions

Sentiment
Causal Relationship

Figure 3. Discovered graph depicting causal relationships between various attributes.

Leave-One-Country-Out cross-validation results in terms of AUROCs can be seen in Table 1.
Each row in the table corresponds to a cross-validation fold in which the Twitter activity in that
particular country was tried to be predicted. The Bayesian network model achieves an average AUROC
score of 0.833 across countries when trying to infer the Twitter activity from the rest of the variables for
a given day. Daily Twitter patterns of Germany, Italy, and Sweden show very high predictability with
AUROC scores above 0.97. United Kingdom shows the worst predictability with an AUROC of 0.68.

Calculation of marginal probabilities for several queries are presented in Table 2. Public attention
and sentiment-related target variables and states are set to High Twitter Activity and
Negative Sentiment.

Table 1. Area Under the Receiver Operating Characteristic curve (AUROC) result for each fold of
Leave-One-Country-Out cross-validation.

Cross Validation Test Country AUROC

Austria 0.798
Belgium 0.728
Denmark 0.831

France 0.776
Germany 0.992

Italy 0.976
Netherlands 0.746

Norway 0.907
Spain 0.766

Sweden 0.998
Switzerland 0.789

United Kingdom 0.684

Average 0.833
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Table 2. Examples of queries and computed marginal probabilities for Twitter activity and
average sentiment.

Query Variable and State Pr()

Single-person household (%) = H Total Infections = H 0.178
65+ (%) = L

Single-person household (%) = L Total Infections = H 0.241
65+ (%) = H

New Infections = H Twitter Activity = H 0.496
New Deaths = H

New Infections = L Twitter Activity = H 0.184
New Deaths = L

New Infections = H
New Deaths = H Twitter Activity = H 0.800

Twitter Usage = H
Lockdown Announcement = Yes

New Infections = L
New Deaths = L Twitter Activity = H 0.120

Twitter Usage = L
Lockdown Announcement = No

New Deaths = H Sentiment = Neg 0.624

New Deaths = L Sentiment = Neg 0.277

Total Deaths = H Sentiment = Neg 0.344

Total Deaths = L Sentiment = Neg 0.290

Lockdown Announcement = Yes Sentiment = Neg 0.501

Lockdown Announcement = No Sentiment = Neg 0.286

5. Discussion

By analyzing observational data, we attempt to discover causal associations between national
COVID-19 patterns and Twitter activity as well as public sentiment during the early stages of
the pandemic. Some of our findings are expected associations such as popularity of Twitter in a
country (Twitter usage) affecting Twitter activity. Other expected causal relationships were new
deaths affecting change in deaths and new infections affecting change in infections, due to trivial
mathematical definitions. These were captured successfully as well. It is important to note that
no causal relationship between infection statistics and death statistics was discovered which might
seem against intuition. This is because in this study we treat each day as an observation in our
modeling and do not create time-lagged version of variables. While some of our results imply expected
associations, we also observe more interesting implications that are in alignment with recent scientific
literature on COVID-19. For instance, percentage of single-person households affects the total number
of COVID-19 infections. Similarly, the percentage of 65+ population affects the percentage change in
deaths (essentially corresponding to rate of deaths). When the queries regarding domain knowledge
are examined, we see that low percentage of single-person households (less social isolation) and high
percentage of 65+ population increases the probability of total infections being high when compared
to the opposite settings. This is in line with recent scientific literature on COVID-19 transmission
characteristics [76–81].

By inferring Twitter activity, we show the generalization ability of causal inference across
12 countries with reasonable accuracy. Factors affecting Twitter activity and sentiment are
discussion-worthy as well. By observing correlations, Wong et al. hints that there may be a link
between announcement of new infections and Twitter activity [17]. Our results in Figure 3 and Table 2
suggest the same with a causal point of view. Similarly, our finding of negative impact of declaration of
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government measures on public sentiment is also in parallel with recent research. By analyzing Chinese
social media, Li et al. show that official declaration of COVID-19 (epidemic at that time) correlates with
increased negative emotions such as anxiety, depression, and indignation [56]. When new infections,
new deaths, total deaths are high and an announcement of lockdown is made, Twitter activity on
that day becomes more than 6 times more likely than when the situation is opposite (probabilities
of 0.8 vs. 0.12). High number of new deaths for a given day causes the sentiment to be much more
negative than low number of new deaths (probabilities of 0.624 vs. 0.277). Similarly, an announcement
of lockdown is causally associated with an increase in negative sentiment in Twitter (probabilities of
0.501 vs. 0.286).

As it is important to observe the countries that are ahead in terms of pandemic timeline and
learn the behaviour of the pandemic, it is equally important to understand also the public attention
and sentiment characteristics from those countries. Wise et al. show that risk perception of people
and their frequency of engagement in protective behaviour change during the early stages of the
pandemic [90]. Inference of such patterns in a causal manner from social media can aid us in the
pursuit of timely decisions and suitable policy-making, and consequently, high public engagement.
After all, primary responsibility of risk management during a global pandemic is not centralized to
a single institution, but distributed across society. For example, Zhong et al. shows that people’s
adherence to COVID-19 control measures is affected by their knowledge and attitudes towards it [91].
In that regard, computational methods such as causal inference and causal reasoning can help us
disentangle correlations and causation between the observed variables of the adverse phenomenon.

In real-world scenarios, it is virtually impossible to correctly identify all the causal associations due
to presence of numerous confounding factors. As in with all methods in machine learning, a trade-off
between false positive associations and false negative ones exists in our approach as well. While we
rely on official COVID-19 statistics, testing and reporting methodologies as well as policies can change
during the course of the pandemic. Furthermore, in the context of this study, ground truth causal
associations do not exist even for a few variables, preventing the direct measurement of performance
of causal discovery methods. We would like to emphasize that we acknowledge these and other
relevant limitations of our study. Our study has further limitations regarding the simplifications on our
problem formulation and data. For instance, we do not attempt to model temporal causal relationships
in this study, for example, high deaths numbers having an impact on the public sentiment possibly for
several following days. We have not taken into account remarks by famous politicians, public figures,
or celebrities which may indeed impact social media discussions. We have not incorporated “retweets”
or “likes” into our models either. We would also like emphasize that with this study we wanted
to introduce an uncomplicated example of causal modeling perspective to social media analysis
during COVID-19.

Future work includes investigating the effect of dynamics of the pandemic on the spreading
mechanisms of information, including relevant health topics in Twitter and other social media.
As social media can be exploited for deliberately creating panic and confusion [92], causal inference on
patterns of misinformation and disinformation propagation in Twitter will be studied as well. Finally,
country-specific models with more granular statistics of the country and time-delayed variables will
be investigated for a longer analysis period.

6. Conclusions

Distinguishing epidemiological events that correlate with public attention from epidemiological
events that cause public attention is crucial for constructing impactful public health policies. Similarly,
monitoring fluctuations of public opinion becomes actionable only if causal relationships are identified.
We hope our study serves as a first example of causal inference on social media data for increasing our
understanding of factors affecting public attention and sentiment during COVID-19 pandemic.
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Abbreviations

The following abbreviations are used in this manuscript:

AUROC Area Under the Receiver Operating Characteristic curve
COVID-19 Coronavirus Disease 2019
BN Bayesian Network
DAG Directed Acyclic Graph
LOCO Leave-One-Country-Out
NOTEARS Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian for

Structure learning

Appendix A

Prohibited causal associations are listed in Table A1 below. For example, Twitter activity can not
cause any other variable for a given day. Similarly, Twitter usage percentage or lockdown announcement
can not have a causal relationship with new deaths for a given day.

Table A1. Prohibited causal associations (constraints) for structure learning.

From To

Population Over 65 (%)
Any node Twitter Usage (%)

Single Household (%)

Twitter Activity Any node
Sentiment

Total Infections
New Infections

Twitter Usage (%) Change in Infections (%)
Lockdown Announcement Total Deaths

New Deaths
Change in Deaths (%)

Population Over 65 (%) Twitter Activity
Single Household (%) Sentiment

Twitter Usage (%) Sentiment
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Abstract: As we prepare to emerge from an extensive and unprecedented lockdown period, due to
the COVID-19 virus infection that hit the Northern regions of Italy with the Europe’s highest death
toll, it becomes clear that what has gone wrong rests upon a combination of demographic, healthcare,
political, business, organizational, and climatic factors that are out of our scientific scope. Nonetheless,
looking at this problem from a patient’s perspective, it is indisputable that risk factors, considered
as associated with the development of the virus disease, include older age, history of smoking,
hypertension and heart disease. While several studies have already shown that many of these diseases
can also be favored by a protracted exposure to air pollution, there has been recently an insurgence
of negative commentary against authors who have correlated the fatal consequences of COVID-19
(also) to the exposition of specific air pollutants. Well aware that understanding the real connection
between the spread of this fatal virus and air pollutants would require many other investigations
at a level appropriate to the scale of this phenomenon (e.g., biological, chemical, and physical),
we propose the results of a study, where a series of the measures of the daily values of PM2.5, PM10,
and NO2 were considered over time, while the Granger causality statistical hypothesis test was used
for determining the presence of a possible correlation with the series of the new daily COVID19
infections, in the period February–April 2020, in Emilia-Romagna. Results taken both before and after
the governmental lockdown decisions show a clear correlation, although strictly seen from a Granger
causality perspective. Moving beyond the relevance of our results towards the real extent of such a
correlation, our scientific efforts aim at reinvigorating the debate on a relevant case, that should not
remain unsolved or no longer investigated.

Keywords: COVID-19; air pollution; Emilia-Romagna; Granger-causality; time series; correlation

1. Introduction

Although COVID-19 has originated in Wuhan, China in late 2019, several provinces of northern
Italy have soon become among the hardest-hit regions in Europe. This virus outbreak spread with a
particular intensity to the Italian regions of Lombardy, Veneto, Emilia-Romagna, and Piedmont, in the
period from late February to late April, with a severe toll in terms of human deaths. As a simple
evidence of this disaster, it suffices to remind that the Italian Institute of Statistics (ISTAT) has recently
computed for Italy an average increase of 49.4% in the number of all the fatalities occurred during
the month of March 2020, as compared with the number of deaths of March 2019 [1]. Not to mention
that, in the same month of March 2020, the official death toll, for some given provinces, like Bergamo
and Brescia (in Lombardy), stands at more than five times the value recorded one year before, same
period [1].

While it is true that Italy had the bad luck of being the first European country to be devastated
by the outbreak, what has gone wrong has motivations in a combination of demographic, political,
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organizational, industrial, climatic factors, and low intensive care unity (ICU) capacity as well, that need
further specific investigations.

Nonetheless, while we are aware that what went wrong will be a subject of studies for years,
we are concerned, here, with the fact that COVID-19 manifests as a severe respiratory disease, mostly
pneumonia. This motivates why many researchers have focused their attention on the potential
relationship between the exposure to particulate pollution and the rapid contagion brought by this
virus. With this in view, recently, many international scientific studies were developed to investigate
the relationship between particulates of various types and the COVID-19 incidence.

Exemplar is the work by Jiang, Wu and Guan that addresses two relevant issues, with reference to
the association between particulate and COVID-19 [2]. They start from the very general consideration
that air pollutants raise concerns over their association with infectious diseases, being often the cause
of local epidemics [3,4]. This is typical with influenza, since the airborne air pollutants perform as
condensation nuclei for the virus to attach, as also confirmed by several other studies [5–9]. Owing to
this consideration, Jiang et al. proceed with the following reasoning: since COVID-19 is known to
cause human-to-human transmission by infectious secretions [10], these secretions could be transferred
in many different ways, including ambient air pollutants. Not only, Jiang, Wu and Guan also observe
that is not by chance that PM2.5 is the air pollutant constantly associated with an increased COVID-19
incidence in all the Chinese cities of their study, namely: Wuhan, XiaoGan, and HuangGang. Besides
the fact that particulate could provide condensation nuclei for viral attachment, Jiang, Wu and Guan
add a second biomedical argument which is as follows. It has been discovered that the receptor for
COVID binding is the angiotensin-converting enzyme 2, that concentrates on the type II alveolar
cells [11]. Since, type II alveolar cells are located in the alveoli, which are only reachable to particles
with diameters less than 5 micro meters, it becomes evident that very small airborne pollutants,
such as PM2.5, have the potential to penetrate, unfiltered, the respiratory tract, down to the alveolar
region [12–15].

Similarly, interesting results were found also by Pansini and Fornacca who investigated the
incidence of COVID-19 mortality rate in highly polluted areas. They focused their attention on selected
areas from different countries (including, among others, China, Italy, and US), and considered also
CO and NO2, in addition to particulates. In particular, they collected data about air quality from two
kinds of sources: ground monitoring stations and satellite. According to the analysis they performed,
they found significant positive correlations between COVID-19 infections and air quality variables. Yet,
while in China the strongest correlation was found with the (satellite-derived) CO values, in Italy and
in the US the highest correlation values, with the incidence of COVID-19, were those of NO2, derived
respectively from satellite (Italy) and ground measurements (US). One of their final observation is
that the COVID-19 mortality ratio is higher, regardless of the higher number of infections, in all those
areas with poor air quality, that is, where values of CO, NO2, and PM are constantly higher than the
acceptable limits [16].

Nevertheless, besides this set of international studies developed in this field (the interested
reader can refer also to [17,18]), we scrutinized, with special interest, just those recently conducted by
members of the Italian scientific community, for two main reasons. First, the impact of particulate
pollution was already being severely felt as a huge health problem in Northern Italy, well before the
advent of COVID19 and, second, those studies have been put at the centre of a heated debate in Italy,
and considered not convincing under different perspectives.

To be precise, (almost) all those papers at the centre of this controversy have followed two
concurrent lines of reasoning, that are typical when one wishes to infer causal relations from
data. On one side, they have tried to acquire (through experimentation) the knowledge of the
biological/chemical/physical mechanisms at the basis of the possible correlation between the particulate
and the virus spread. On the other side, they have tried to confirm the existence of a true causal relation
between the two aforementioned phenomena, using some kind of statistical hypothesis testing.
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The works conducted by Setti et al., for example, provided a quite convincing contribution to
this discussion, by both revealing that traces were found of the COVID-19 RNA in PM10 samples
in Bergamo [19], and also testing the hypothesis of such a correlation between the daily surplus of
that particulate and the consequent contagion between humans by exploiting the statistical model of
the coefficient of determination [20]. Daily infections were recorded in the period from 24 February
to 13 March, while a surplus of PM10 values was considered, on a daily basis, in the period from
9 February to 29 February.

Conticini, Frediani, and Caro, instead, without any statistical testing activity in support of
their hypothesis, argued about the fact that poor air quality can lead to a state of permanent body
inflammation and chronic respiratory difficulties, along with a hyper-activation of the immune system;
being these all circumstances that makes human lungs prone to be attacked by the virus. This is their
hypothesis explaining the high mortality rate, recorded in Emilia-Romagna and Lombardy, owing to
the virus outbreak [21].

Finally, Becchetti et al. analysed both the PM10 and PM2.5 values, although recorded on an annual
basis, and correlated them to COVID-19 infections and mortality, using a cross-sectional regression
statistical method. Theirs is a vast study, where scrutinized are also other factors, including temperature,
population density, income, number of lung ventilators, and public transport usage. Nonetheless,
the conclusion is that air pollution can be considered as a strong predictor for both virus contagions
and mortality [22]. In that paper, again, cited as mechanisms at the basis of the correlation between
the particulate pollution and the contagion are, respectively, the hypotheses that: (i) humans living in
highly polluted areas have a reduced respiratory capacity to react to the virus, and (ii) the particulate
may act as a carrier for the virus.

Unfortunately, all these papers have been severely criticized, mostly based on the considerations
that they did not contain any robust evidence of the aforementioned correlation, and that all those
discoveries boil down to vague clues, completely preliminary, not yet subject to peer-review by experts
in the field [23].

Far from taking a final position, we hold the firm view that all the authors we have cited before
share, at least, the merit of having tried to inquire into a vexed problem, that should not go unsolved,
or no longer investigated, until a final solution is found.

Hence, our contribution, here, is to provide a further investigation on the possibility that a causal
correlation exists between the two cited phenomena (i.e., pollution and spread of the infections). We,
as investigators, have to admit that we do not possess any prior knowledge of the researched correlation
at a level appropriate to the scale of this phenomenon, e.g., biological, chemical, and physical, and we
want to limit our study to an examination of the plausibility of the existence of that correlation at a
statistical level. In particular, we are interested in verifying if that correlation comes either confirmed (or
rejected) using an alternative statistical model, namely the Granger-causality hypothesis testing model.

Specifically, the Granger causality test is a statistical hypothesis test where a time series X is said
to Granger cause Y, if it can be shown, through a series of statistical tests on lagged values of X, that
those X values provide statistically significant information about future values of Y. To this aim, it is
worth mentioning that we analysed the daily values of the following air pollutants: PM2.5, PM10, and
NO2, treated as time series occurring in a given temporal period that has preceded the series of the
COVID-19 infections, in all the provinces of the Emilia-Romagna region.

Finally, it is also worth mentioning that we know very well that many believe that some results
of the Granger-causality tests can often have a low epistemic utility. Especially, in specific situations
when the theoretical background behind the cause–effect correlation is insufficient, or the validation
experiments on the field have not been yet conducted. Though, we will argue that the results of
our tests, obtained both before and after the Italian government lockdown decisions taken on 8–10
March, posit the correlational structure between pollution and infections well beyond the limit of
a weak Humean interpretation of causality [24], with possible implications of practical relevance.
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Nevertheless, our study does not have to be treated as the final proof a true causality nexus between the
two phenomena, but as an additional strong clue on a case that does not deserve to be already archived.

The remainder of the paper is structured as follows. In the next Section, we describe the
methodology behind our approach. Section 3, instead, presents and critically discusses the results we
yielded. Finally, Section 4 concludes the paper, with some final considerations.

2. Methods

We now present some preliminary information relevant to our study and a description of the data
we have used, along with some reflections on the statistical methodology we have employed.

2.1. Preliminary Information

As already anticipated, in this study we are interested in reasoning around the plausibility of a
correlation between air pollution and the spread of COVID-19 infections in the Emilia-Romagna region,
by subjecting such hypothesis to a statistical hypothesis testing from a Granger-causality perspective.

Prior to beginning, it is important to make clear that we have taken into considerations all
the provinces of the Emilia-Romagna region, in the period of interest, namely: Bologna, Ferrara,
Forlì-Cesena, Modena, Parma, Piacenza, Reggio nell’Emilia, Rimini, and Ravenna. It is worth
mentioning that this Italian region is populated by almost 4,500,000 citizens and has been one of the
more seriously affected by this virus, with a total number of infections of 26,719, and as many as 3827
fatalities, as of 9 May 2020.

Of paramount importance to view this process from the right temporal perspective, there are
also to consider the events of the chronology according to which restrictions were imposed to human
activities in those provinces (with the aim of slowing down the infective diffusion). In particular:

• on 8 March 2020: a full lockdown was imposed for Modena, Parma, Piacenza, Reggio nell’Emilia
and Rimini [25].

• on 10 March 2020: a full lockdown was imposed for the remaining provinces, Bologna, Ferrara,
Forlì-Cesena and Ravenna [26].

2.2. Data Description

The data on which we performed testing activity were essentially of two types: i) the time series
relative to the new daily COVID-19 infections, and ii) the air pollution In Emilia-Romagna, under the
form of the measurements of the following pollutants: PM2.5, PM10, and N02, taken on a daily basis at
all the aforementioned provinces (Bologna, Ferrara, Forlì-Cesena, Modena, Parma, Piacenza, Reggio
nell’Emilia, Rimini and Ravenna).

The amount of daily infections was collected using the GitHub repository of the Italian Civil
Protection, for the entire period starting on 24 February and closing on 17 April 2020 [27].

The daily values of the pollutants mentioned before, instead, were collected using the website of
the Regional Environmental Protection Agencies (ARPA) of the Emilia-Romagna region, for all the
nine provinces we have cited before [28]. Since there were multiple monitoring stations distributed
over each province, an average of the values returned by each station was computed, on a daily,
provincial basis.

More important is what follows. We have all learnt that this COVID-19 infection can be subjected
to an incubation period, whose duration can range from a few days to almost 14, before an infected
human begin to manifest some given symptoms. More precisely, authors of [29] maintain that the
median incubation period can be estimated to be 5.1 days (with a confidence interval of 95%, it takes
from 4.5 to 5.8 days), and that the 97.5% of those who develop symptoms will do so within 11.5 days
(with a confidence interval of 95%, it takes from 8.2 to 15.6 days). These estimates imply, at the end,
that the 99% of the infected population will develop symptoms within 14 days. Further, other authors
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also emphasize that a spare delay of 3.6 days can be experienced from the moment in time the result of
a virological test is performed, and the time when it is recorded in the correspondent database [30].

These are the reasons why we designed the two different time series:

• the one with the average daily pollution values (say X), and the one with the number of the new
daily infections (say Y).

• where X was anticipated in time with respect to Y of 14 days. We decided not to use an offset
of sixteen days (as resulting from the sum of 12.5 with 3.6) between (a) and (b), simply because
this minimum time difference lag was absorbed by the specific statistical methodology we have
employed (i.e., the Granger causality), where we have varied the so-called lag length parameter in
a range from 3 to 8 days (as better explained in the Section 2.4 below) [31].

Following this reasoning, the period when me measured the particulate (specifically, PM2.5, PM10,
and NO2) started on 10 February and closed on 3 April 2020. As already told, instead, the period for
measuring the infections was: 24 February–17 April 2020.

Hence, at the end, it should be clear that an offset has been put that temporally separates these two
time-series, due to the consideration that all what can happen on a given day, say x, may have its effect
in terms of manifestations of the infection after a period in time which can be as long as x + 14 days.

For the sake of conciseness, we have moved the three Figures, with all the twenty-seven graphs
showing how our time-series (PM2.5, PM10, and NO2 vs. infections) evolve in time to the Appendix A
at the end of this paper.

2.3. Methodology

As already mentioned, we have employed a Granger causality testing model to study if a causal
correlation may exist between particulate matter and the spread of new COVID-19 infections in
Emilia-Romagna [16].

This is a statistical hypothesis testing model typically used to determine if there is a causal
relationship between two time-series. In particular, a time series X is said to Granger-causes a time
series Y if the prediction of the nth value of Y, using both the past values of X and Y, provides more
information rather than the prediction based only on past values of Y [32].

This model typically rests upon two axioms. The former is that past and present may cause the
future, but future cannot cause the past. The latter is that the cause contains a unique information
about its effects. Usually, the null hypothesis of such a test is set to the fact that the time series X does
not Granger cause the time series Y, while, consequently, the unique alternative hypothesis is that the
time series X Granger causes the time series Y.

In our study, the alternative hypothesis was that the pollutants’ time series Granger causes the
time-series of the infections. Hence, our aim has been that to verify if we could reject the opposite null
hypothesis (i.e., pollution does not Granger cause infections), based on the available data.

To this aim, we set the level of significance at 5%, hence preparing to reject the null hypothesis,
only in the case that the corresponding p-values came less than 0.05. Further, as the test assumes
that both the time-series under investigation should be stationary, we check and found this condition
satisfied using the well-known augmented Dickey–Fuller method [33].

Not only. Since we have designed two time-series where the former (X = pollution) temporally
precedes the latter (Y = infection), we did not need to check if the infection Granger causes the pollution,
given that the time precedence of Y by X comes naturally.

Nonetheless, it is important to repeat, here again, a concept we have already anticipated in the
Introduction. Neither the Granger causality method, nor any other statistical test can provide a final
and convincing evidence that two phenomena are correlated, from an epistemological viewpoint,
if one has neither a clear knowledge of the motivation that causes that relationship, nor has developed
sufficient experiments at a scale that should be appropriate to the observed phenomena.
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With this regard, the Granger causality approach suffers from an additional problem. In fact,
if both X and Y are driven by a common third process, say W, one might still accept the alternative
hypothesis of Granger causality (X Granger causes Y), even though it is evident that both X and Y have
a common cause (i.e., W), that determines their mutual correlation [34].

Moving this argument at the center of our specific case, one could even argue that the human
activities (playing the role of W, here) have been the common basis for the correlation between pollution
and infections (as portrayed in Figure 1a) and, hence, a true causality relation between pollution and
infection could not be demonstrated, even when our alternative hypothesis is accepted. Nonetheless,
in the next section, we will show results, taken both before and after the lockdown decisions (when
almost all human activities were at a minimum), that do seem to confirm the existence of a causal
structure similar, instead, to that shown in Figure 1b.

Figure 1. Causality structure: (a) mutual interaction, (b) causal relation.

2.4. A Computational View

To better understand how a Granger causality testing model works from a computational perspective,
fundamental is the following explanation.

We start from two time series X and Y (i.e., pollution and infections), whose causal relationship is
to be either demonstrated or rejected. In other words, X and Y are the time series under investigation
that can be modeled with the following Granger causality equation:

Yt =
L∑

i=1

αi Yt−i +
L∑

i=1

βi Xt−i + εt. (1)

Specifically, Yt and Xt are the single elements of the two series Y and X, and, in our case, they
correspond to the values that Y and X can take on, on a daily basis. In essence, with the formula above
we can compute current values of Y, based on previous values of both X and Y. How far back one can
go with previous values of X and Y, to perform the computation of the current value of Y, is given by
the value of L, the so-called lag. To complete the formula, εt is a white-noise-random vector.

This said, now comes the turn of explaining how to use this formula for performing a Granger
causality hypothesis testing. To this aim, crucial is the role of the β coefficients. In fact, we can say that
X Granger-causes Y only if the β coefficients are not zero, since only in this case past values of X (and
Y) become useful to compute current values of Y. On the contrary, β coefficients equal to zero make a
null contribution to the final sum. It is now easy to understand that modelling a causal relationship
with the Granger formula amounts to perform a statistical hypothesis test, where the null hypothesis is
that all the β coefficients are zero:

H0 : β1 = β2 = . . . = βL = 0. (2)

The alternative hypothesis being, instead, that at least one of the β coefficients is different from zero.
From a computational perspective, at this point, in a case like that of our study, assigned all

the actual values for Y and Y, a vector autoregressive procedure (VAR) is to be run to derive the β
coefficients. Upon computation of those β coefficients, a F test procedure must be performed to check if
those computed values fit with the all zero distribution of the null hypothesis. This statistical test will
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return p-values. The higher the returned p-values, the more plausible is the null hypothesis. The lower
the p-values, the more plausible is the alternative hypothesis: that is, X Granger causes Y.

Said about the general Granger computational process, now comes the motivation why we have
chosen this procedure for our study, rather than other more traditional statistical approaches, like,
for the example, the one adopted in [5].

To better understand, consider the following example: Suppose we want to evaluate if a relation
exists between the number of viral infections happened in a specific day (e.g., 18 February) and the
amount of pollution in the air. To do that, traditional approaches would compute values, based on
measurements taken on just two days: the day of the infections vs. the day assumed to be the one when
the pollution occurred that was considered at the basis of those infections, say for example February
14th, exactly like in Figure 2a.

With the approach based on the Granger formula, instead, we can take into simultaneous
consideration multiple days, each with its amount of measured pollution. This is by virtue of the lag
factor (i.e., the L value in the Granger formula above) that allows one to go back as many days as one
wants in the computation. For example: three days, like in Figure 2b (or from 3 to 8, like in the case of
our study, see Section 2.2).

This is a prominent computational aspect that should not go neglected, since the information
on when a given infection precisely occurs comes with a large amount of uncertainty. Still more
remarkably, since COVID-19 is manifesting with variable temporal dynamics, we should adopt
flexible computational methods to study it. From this point of view, as the series shown in Figure 3
comparatively demonstrate, methods like Granger should be preferred, since they hold the promise to
analyze simultaneous contributions to the cause of a unique effect.

Figure 2. The role of the lag factor in the Granger formula: (a) without lag, (b) with lag.

Figure 3. Comparing temporal series: traditional methods (a); à la Granger methods (b).
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3. Results

We present the results returned by our Granger causality testing model, differentiating between
those illustrating the situation before the lockdown measures were adopted that contained the infection
surge, and those showing the ex-post situation.

3.1. Before the Lockdown

The following Figure 4 reports the results of our Granger causality testing campaign, conducted for
all the nine aforementioned provinces of the Emilia-Romagna (Bologna-BO, Ferrara-FE, Forlì-Cesena-FC,
Modena-MO, Parma-PR, Piacenza-PC, Ravenna-RA, Reggio nell’Emilia-RE, and Rimini-RM).

As already anticipated, we tried to verify if the series X, comprised of all the average daily values
of a given pollutant (e.g., PM2.5), measured in terms of micrograms per cubic meter, starting on day x1

and closing on day x2, Granger causes the series Y of the new daily infections, measured in terms of
infected human beings, starting on day y1 and closing on day y2, where obviously: y1 = x1 + 14 and y2

= x2 + 14, for all the days between x1 and x2.
For each of the possible combination pollutant (PM2.5, PM10, and NO2)/infections, our Figure 4

shows in the correspondent cell the p-value obtained through a pairwise series computational
comparison, using Granger. All this yields a total amount of 189 pairwise series comparisons.
In particular, to read well the results: if a cell in Figure 4 reports a p-value less than 0.005, we have a
confirmation of the causality relation between pollutant and infections (finally, note that if a cell in the
Figure reports the value of 0, this means that a p-value less than 10−4 was computed).

For an easier comprehension of the Figure, one should also notice that the time scale values
reported at the left of Figure 4 are the closing days of the two series (respectively, for pollutants and
infections), namely the values termed: x2 and y2.

Precisely, x2 ranges in the Figure from 1 to 7 March or from 3 to 9 March, depending on the specific
province under consideration with its correspondent lockdown date (8–10 March), while y2 may range
from 15 to 21 March or from 17 to 23 March, due to the 14 days-long temporal shift with which we
distanced the two series (pollution precedes infections).

To note, finally, is the fact of prominent importance that all the pairwise series comparisons whose
results are reported in Figure 4 were conducted during a period when the lockdown measures were
still inactive, since the specific series supposed as the cause of this relation (that is X, the pollutants)
starts on 10 February and closes on 7 or 9 March, depending on the province.

All this said, what is clear from an analysis of Figure 4 is that we have got a total amount of 175 (out
of 189) statistical confirmations (almost 93%) that X Granger causes Y; that is. that the pollutants under
consideration have some effect on the number of new infections, from a Granger-causality perspective.
In particular, this correlation is slightly more evident with PM2.5 (yielding 94%), rather than with PM10

and NO2 (92%). Further, to be specified is the fact that there are 189 different pairwise temporal series
comparisons, and each was performed with the Granger method explained in Section 2.4.

Nonetheless, before one can come to some final conclusion, we have to remember, here again,
the reflection we have anticipated in the previous Section, and that we can repeat, under the alternative
form of a question: What about if the human activities carried out in the period from 10 February to 7
or 9 March, were the only common cause for both pollution and infections, exactly like in the causality
scheme portrayed in the example a) of Figure 1?

If so, the value of the analysis we have conducted so far would be almost controversial. To respond
to this doubt, we ask the reader to refer to the next Subsection.
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Figure 4. Particulate matter and COVID-19 infections (before lockdown): Granger-causality and
p-values.

3.2. After the Lockdown

As already told, the causal modeling method proposed by Granger was designed to handle pairs
of variables, and consequently it may suffer from a typical limitation when a third variable is engaged
in the relation, as explained in a previous Section. In our specific case, this third variable could be
identified with all the variety of human activities that could be the common cause for both the air
pollution and the spread of infections in Emilia-Romagna.

Nonetheless, an important factor has come to the scene through which we will try to argue that
the relation identified in the previous Subsection still holds. This factor amounts to the lockdown
decisions taken either on either 8 or 10 March, depending on the specific province under investigation.

As a result of these decisions, human activities had fallen down to a minimum starting again on
either 8 or 10 March, depending on the province under consideration. This has a precise meaning with
an impact onto the rationale behind our analysis, which is as follows: All what happens after those
dates can no longer be ascribed to the activity carried out by humans (if not minimally).

Nonetheless, looking at this from an opposite perspective, one should also argue that this new
factor (i.e., the lockdown) can also have a confusing effect on the researched phenomena, since the
absence of humans in the scene could open the way to new unexpected implications, and hence to a
variety of different possible interpretations.

To avoid this possible pitfall, we have redesigned our experiments with a specific care to select
for our analysis only those provinces whose general characteristics could be considered to be more
easily observable, with less external interferences. Two design principles drove us for this new set
of experiments. The first was that to exclude from our analysis all those provinces with a too high
number of infected individuals per population, with respect to the average value of the region under
investigation. This way, Piacenza, Reggio nell’Emilia, Parma and Rimini were excluded, yielding
the highest percentages of infected individuals per population, namely: 1.509%, 0.906%, 0.723% and
0.606% (as recorded on 9 May 2020). For an analogous reason, we excluded the largest province in
the region, precisely Bologna, since it is suffering a very high number of infected individuals, which
are currently as many as 4751. For an opposite motivation, we cut off from the second part of our
study also the province of Ferrara, which for a long time, fortunately, had hit the lowest rate of infected
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individuals per population (even though it has recently recorded higher values, thus reaching currently
the percentage of 0.281%).

Finally, excluded went also the province of Forlì-Cesena, in this case due to the fact that we
measured a marked decrease in the amount of the values of the particulate measured during the new
period of investigation.

To this aim, it is interesting to notice that the difference between the amount of particulate matter
taken both before and after the lockdown, computed as an average of the daily measurements of the
two two-weeks long periods that preceded and followed the lockdown date, ranged in an interval
from +8.65 micrograms per cubic meter (Parma) to –3.33 micrograms per cubic meter (Rimini) for the
PM2.5 pollutant, and from +6.30 micrograms per cubic meter (Parma) to –10.47 micrograms per cubic
meter (Rimini) for the PM10 pollutant. (At this point, it is also interesting to remind to the reader that
the acceptable daily limit considered for PM10 pollutant is set to be 50 micrograms per cubic meter).

All this considered, both the province of Modena and Ravenna were rather stable under this
perspective, with incremental values amounting to: +7.86 (PM22.5) and +6.11 (PM2.5) micrograms per
cubic meter for Modena, and +2.09 (PM10) and −3.37 (PM10) micrograms per cubic meter for Ravenna.

In essence, our post-lockdown analysis was confined to just the two provinces of Modena and
Ravenna, because they both satisfy all the following requirements:

• a rate of infected individuals ranging from moderate to mild (Modena, 0.538% or 3792; Ravenna,
0.281% or 995);

• a quantity of infected individuals not hitting the highest values in absolute, like instead Reggio
nell’Emilia (4835) and Bologna (4751), for example;

• a relative stability in the in/decrease of the particulate matter after the restrictions imposed by
the lockdown.

Summing up, our choice towards these two provinces have been orientated by the fact that they
looked like to us as the only provinces on which the changes induced by the lockdown had a minimal
external impact, even though the human activities were prohibited. In some sense, they were those
provinces less affected by interferences whose causal factors remain unobservable and unknowable.

All this said, Figure 5 reports the results of our Granger causality analysis conducted for the
provinces of both Modena (MO) and Ravenna (RA).

For a full comprehension of the Figure, one should notice that all has remained unchanged
here, with respect to Figure 4, as to how the experiments were developed, with just these three
natural considerations:

• Each observed series closes in a period ranging, respectively, from 8 March (Modena) and 10
March (Ravenna) for the pollutants’ series, and from 22 March (Modena) and from 24 March
(Ravenna) for the infections, up to 1 April (Modena) and to 13 April (Ravenna) for the pollutants’
series, and up to 15 April (Modena) and to 17 April (Ravenna) for the infections;

• The beginning day for both series (pollution and infections) remains the same as in the comments
provided for Figure 4.

• The analysis, this time, was conducted just for the particulate matter of type: PM2.5 and PM10,

not being available at that time stable measurements for NO2.

In essence, our scientific target, here, was to verify if the pairwise series correlation observed
before was still confirmed, even if we have been adding some more 25 days at each series, with all the
25 days happened after that the lockdown took place.

To this aim, an analysis of the p - values of Figure 5 shows that we have got a total amount of 97
(out of 100) statistical confirmations (yielding a 97% value) that X Granger causes Y; that is, that some
given pollutants have some effect on the number of infections, from a Granger-causality perspective.

To be precise, interesting is the fact that a similar analysis conducted for all the other provinces
(Bologna, Ferrara, Forlì-Cesena, Parma, Piacenza, Reggio nell’Emilia and Rimini) provides a more
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controversial result, with a lower number of statistical confirmations (approximately around 50%),
probably depending on all those interferences, happened as a consequence of the lockdown, which we
mentioned before as the motivation of our decision for the exclusion.

Nonetheless, at the end of this study, we can maintain that strong statistical clues emerge in favor
of a causal correlation between pollution and infections, at least in Emilia-Romagna. This should be
confirmed by those readers who are taking into serious consideration the fact that we have conducted
a careful study, based on an analysis of time series, considered both before and after the lockdown,
and aimed at screening off all the typical limitations that can afflict the Granger causality hypothesis
testing method.

Figure 5. Particulate matter and COVID-19 infections (after lockdown): Granger-causality and p-values.

4. Conclusions

We have conducted a statistical analysis that confirms, under a Granger causality perspective,
that a causal correlation may exist between the two researched phenomena of: pollution and COVID-19
infections, in Emilia-Romagna, Italy. Here, we survey, at the end of the paper, the possible limitations
of our study (as well as, its potentials).

As to this issue of possible fallacies and limitations of our investigations, we feel necessary to
discuss, at least, on the three following points: (i) the robustness of the scientific methodology we
adopted, (ii) the choice of the Emilia-Romagna region as the primary subject of our study, and finally
(iii) the scientific validity of the data we used.

As far as the Granger causality method is concerned, we have already admitted that neither
Granger, nor any other statistical testing procedure, can provide a final evidence that the two phenomena
we have studied (i.e., pollution vs. COVID-19 infections) are definitely correlated in nature. In fact,
to achieve an ultimate knowledge of this correlation, statistical evidences, like those demonstrated in
this paper, should be always accompanied by additional experiments at a scale that is appropriate
to the observed phenomena; that is, in this case, at a biomedical, chemical or even physical level.
Apart from this issue, our study has demonstrated that using Granger may be a valid solution, over
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alternative computational methodologies, to infer statistical evidences from sets of data subjected to
high levels of temporal uncertainty [35]. In this case, in particular, fundamental has been the idea of
testing the correlation hypothesis with data taken both before and after the lockdown.

To move on to the second issue, we understand very well that the choice to limit our study to the
Italian region of Emilia-Romagna can be a source of controversy, and a limitation, as well. However,
none should forget that the COVID-19 pandemic spread to Italy very early in 2020, and that the virus
hit this nation with a number of active cases (i.e., infections), and deaths, that were unmatched in
Europe, at least at that time of the year. It is also another truth that the region hit hardest in Italy was
Lombardy (with almost the 48% of all the fatalities in Italy). Nonetheless, we all know very well that
Lombardy is still Italy’s COVID-19 hotspot, probably due to a combination of factors, including wrong
medical, governmental, and industrial policies which are controversial, yet not negligible [36].

The Emilia-Romagna region was severely devasted, too (with almost the 12% of all the fatalities
in Italy). However, regardless the size of the investigated sample, the relative absence of dispute on
external factors, like overwhelmed hospitals and controversial decision making, at both a political and
an industrial level, made this specific region a subject of study where the phenomena of interest (that
is, pollution and infections) could emerge without an annoying level of external interferences.

Finally, it is the turn of the data. First, we want to emphasize that all the used data and statistics
were publicly available, at the time of our investigation, on Italian governmental sites, precisely [1,27,28].
It is also worth noticing that all our experiments are reproducible using the data available in the public
repositories we have mentioned. Nevertheless, it is also a fact that COVID-19 infections are by now
assumed to be more widespread than initially expected, thus making many of the studies conducted
so far (including ours) a poor proxy for understanding the extension of this infection, with all the
relative implications [37]. Anyway, as already mentioned at the beginning of this paper, if we move
beyond the relevance of our results, towards the real extent of the correlation we have statistically
demonstrated, our ultimate aim is that of reinvigorating the debate on a scientific case (pollution vs.
COVID-19), that should not go unsolved or remain uninvestigated.

As a very final note, it is worth mentioning that, for the sake of completeness, we have provided a
graphical summarization of all the data we have used on our study in the Appendix A that follows
this paper.

Author Contributions: All authors contributed equally to the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We provide a summarization of all the data we used for our experiments. These graphs
simultaneously show the curves for both the pollutants (black) and the COVID-19 infections (blue).
On the x axis of all graphs reported are the timelines for the pollutants’ series (in black) and for the
infections (in blue). Figures A1–A3 are, respectively, concerned with: PM2.5, PM10 and NO2.
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Figure A1. Particulate matter (PM2.5) and COVID-19 infections (all the examined periods).

Figure A2. Particulate matter (PM10) and COVID-19 infections (all the examined periods).
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Figure A3. Particulate matter (NO2) and COVID-19 infections (all the examined periods).
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Abstract: The Nobel laureate Niels Bohr once said that: “Predictions are very difficult, especially if
they are about the future”. Nonetheless, models that can forecast future COVID-19 outbreaks are
receiving special attention by policymakers and health authorities, with the aim of putting in place
control measures before the infections begin to increase. Nonetheless, two main problems emerge.
First, there is no a general agreement on which kind of data should be registered for judging on the
resurgence of the virus (e.g., infections, deaths, percentage of hospitalizations, reports from clinicians,
signals from social media). Not only this, but all these data also suffer from common defects, linked to
their reporting delays and to the uncertainties in the collection process. Second, the complex nature of
COVID-19 outbreaks makes it difficult to understand if traditional epidemiological models, such as
susceptible, infectious, or recovered (SIR), are more effective for a timely prediction of an outbreak
than alternative computational models. Well aware of the complexity of this forecasting problem,
we propose here an innovative metric for predicting COVID-19 diffusion based on the hypothesis
that a relation exists between the spread of the virus and the presence in the air of particulate
pollutants, such as PM2.5, PM10, and NO2. Drawing on the recent assumption of 239 experts who
claimed that this virus can be airborne, and further considering that particulate matter may favor
this airborne route, we developed a machine learning (ML) model that has been instructed with:
(i) all the COVID-19 infections that occurred in the Italian region of Emilia-Romagna, one of the
most polluted areas in Europe, in the period of February–July 2020, (ii) the daily values of all the
particulates taken in the same period and in the same region, and finally (iii) the chronology according
to which restrictions were imposed by the Italian Government to human activities. Our ML model
was then subjected to a classic ten-fold cross-validation procedure that returned a promising 90%
accuracy value. Finally, the model was used to predict a possible resurgence of the virus in all the
nine provinces of Emilia-Romagna, in the period of September–December 2020. To make those
predictions, input to our ML model were the daily measurements of the aforementioned pollutants
registered in the periods of September–December 2017/2018/2019, along with the hypothesis that the
mild containment measures taken in Italy in the so-called Phase 3 are obeyed. At the time we write
this article, we cannot have a confirmation of the precision of our predictions. Nevertheless, we are
projecting a scenario based on an original hypothesis that makes our COVID-19 prediction model
unique in the world. Its accuracy will be soon judged by history—and this, too, is science at the
service of society.

Keywords: COVID-19; predictions; second wave; machine learning models; air pollution;
Emilia- Romagna; Italy
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1. Introduction

“The virus remains the public enemy number one”, World Health Organization (WHO),
Director General, Tedros Adhanom Ghebreyesus maintained at a recent press conference, and he also
added that: “If basics are not followed, the only way the pandemic is going to go, it is going to get
worse and worse and worse” [1]. These threatening words are justified in light of the current pandemic
numbers. As of 17 July 2020, global COVID-19 cases exceed 13.5 million, and 584,940 people have
died of it in almost seven months, with the current biggest rises in the United States, Brazil, India,
and South Africa [2].

When COVID-19 first struck several provinces of Northern Italy in early 2020 (especially in
Lombardy and in Emilia-Romagna), the conditions there made it a perfect storm. The virus outbreak
spread with an unusual violence (in the period from late February to April 2020), with a catastrophic toll
in terms of human deaths. Still now, several months after that last virus surge, and a severe subsequent
lockdown period, the consequences are profound. Italy counts a total number of 252,235 registered
infections, and as many as 35,231 human deaths (as of 13 August 2020) [3]. Not only that, but some
recent financial studies also estimate that Italy’s Gross Domestic Product (GDP) could drop significantly
in 2020 due to the impact of the pandemic, with some industrial sectors severely hit, including textile,
train and air transport, hotels, restaurants, entertainment, and automotive [4].

The proportion of this disaster is key to understanding why policymakers, health officials,
and media in general have an increasing interest in making use of computational models that
can forecast possible resurgences of the virus, in order to put in place containment measures [5].
Unfortunately, there are several problems here, primarily linked to collecting data, and then using
them to feed an adequate forecasting model.

Along this line of reasoning, we propose a clear direction. We do believe that a relationship exists
between particulate matter (of various types) and COVID-19 incidence, and that this favors the spread
of the contagion. We have devoted a previous study to verifying the presence of such a possible
correlation between the series of the new daily COVID-19 infections in the period February–April 2020
in Emilia-Romagna (Italy) and the correspondent series of the daily values of the PM2.5, PM10, and NO2

pollutants [6]. A specific statistical hypothesis testing method was then employed (i.e., the Granger
causality statistical methodology [7,8]), which returned a positive response to our question based on a
complex set of experiments that extended before, during, and after the lockdown periods decided by
the Italian Government on 8–10 March 2020.

Obviously, it is not our intention to run through, again, all the technical and epistemic issues
behind this hypothesis here. The interested reader can refer to [6]; nonetheless, some of the basics that
lie behind our decision to use this hypothesis to select the data used to make predictions on future
COVID-19 outbreaks need to be discussed.

First, it is out of discussion that poor air quality easily brings one to a state of permanent
inflammation and chronic respiratory difficulties, along with a hyper-activation of the immune system.
All these circumstances make human lungs prone to be attacked by respiratory viral infections [9].
Owing to this condition, it has been demonstrated that humans living in highly polluted areas have a
reduced respiratory capacity to react to virus attacks [10]. In addition to these general considerations,
which are confirmed by an impressive wealth of recent literature [11–13], more interesting is the
biological phenomenon at the center of the following controversy: Can particulate matter be a carrier
for COVID-19?

To respond to this question, it would be enough to remind a recent claim of 239 experts who
maintained that this virus can be airborne [14], united with the information of the presence of the
COVID-19 RNA, found in the particulate matter of Bergamo (Italy) [15]. All these seem to confirm
that this virus can create clusters with particulate matter, and that it can be carried by this type of
microscopic pollutants.

To close this issue: Although we are aware that there is an ongoing scientific controversy,
concerning the link between that first experimental finding (i.e., [15]) and the degree of severity with
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which a COVID-19 outbreak can spread [16], we believe that both our previous study and those
detailed in [17,18] provide a support to the hypothesis that the presence of COVID-19 on outdoor air
samples can represent a potential early indicator of the diffusion of the virus in a given area.

Hence, based on the hypothesis that this virus can be airborne and assuming that particulate matter
may favor this airborne route, we developed a machine learning model (ML, for short), with special
attention to the Italian region of Emilia-Romagna (Italy). Our model was instructed with:

• All the COVID-19 infections that occurred in Emilia-Romagna, one of the most polluted areas in
Europe, in the period of February–July 2020;

• The daily values of all the aforementioned particulates taken in the same period and in the same
region; and finally,

• The chronology according to which restrictions were imposed by the Italian Government to human
activities in the same period under observation.

Our ML model was then subjected to a classic testing procedure that has returned a promising
accuracy value of approximately 90%. Finally, the model was used to predict a possible second wave
of the virus for all the nine provinces of Emilia-Romagna, in the period of September–December 2020.

To get the predictions, input to our ML model were the daily measurements of the aforementioned
pollutants registered in the periods of September–December 2017/2018/2019, along with the hypothesis
that the mild containment measures taken by Italy in the so-called Phase 3 are obeyed [19].

Having covered the reasoning behind our choice, we shall return now to possible alternatives.
Inspired by a wealth of recent literature, new techniques have been proposed to aggregate data

that could predict the pandemic’s next moves. For example, drawing on the use of new information
technologies, including search engines, news reports, crowdsourced infoveillance, Twitter feeds,
travel data, tele-traffic measurements, and many others again, the authors of [20] exploited a Bayesian
model that calculates, in near-real time, the probability of an exponential growth or subsequent decay
of the virus spread, based on data collected in the USA, between January and June 2020. Interesting
in this kind of study is the fact that data from Twitter and Google searches emerge as the earliest
uptrend signals to anticipate a virus surge (with a median earliness of 2–3 weeks), while UpToDate
(an evidence-based clinical decision support system, developed by the health division of Wolters
Kluwer [21]) was capable of providing early signals of uptrend for deaths (earliness of 4.5 weeks).
Additionally, Google searches, united with the elaboration of some form of mobility data from citizens,
provided early downtrend signals to anticipate a virus decay (median earliness of 2 weeks).

This type of proposal appears as an advancement to the state-of-the-art, especially if one considers
that, as far as data are concerned, the problem is that virus case counts, hospitalized patients, number of
deaths, reports from clinicians, etc. all suffer from reporting delays (as well as from uncertainties in the
data collection process).

While we refrain from expressing non-positive comments on this research, we have to admit that it
is certainly true that combining many streams of real time information may lead decision makers to be
responsive to sudden changes; nevertheless, crucial remains the issue of how reliable and precise those
streams of observations are when it comes to describing a pandemic spread, especially if no working
hypothesis lies behind. Told in simpler words, the strength of the approach here is also its weakness:
What the authors of [20] are doing is observing, without making any assumptions. This could be just
a little bit extreme, since we all know that it is not the first time in the history of the science of data
that one realizes, just at the end of the process, that too many data can be a bad thing. Making useful
predictions requires something more than data, in fact—for example, some strong conceptual insights,
as discussed at length in [22].

Let us talk now about forecasting models in more detail. Once, it was the SIR (susceptible,
infectious, or recovered) model that dominated this scenery. A survey on this model is out of the
scope of this paper, and the interested reader can refer to [23]. The actual value and importance
of this traditional model is, obviously, out of the question in the epidemiological field; nonetheless,

347



Computation 2020, 8, 74

new proposals are emerging for modeling the COVID-19 pandemic that share similar goals, such as
making predictions on the disease spread, yet adopting different computational methodologies.

Among these new proposals, the lion’s share is played by machine learning models. The majority
of the ML models used in practice are supervised. Learning, with supervision, involves learning a
function that maps an input to an output based on examples of input–output pairs [24]. Providing a
very simple example: If we had a set of data, regarding children with age in the range of 0–10 years,
along with their correspondent weight, we could implement a very simple supervised ML model that
predicts the weight of a child, based on their exact age.

Returning to the use of ML models for predicting a COVID-19 emergence, exemplary is the case
of the work done in [25]. There, the authors provide a comparative analysis of various ML models
to predict COVID-19 outbreaks. After a study of different ML models, based on the collection of
data on infectious cases for 30 days from five different countries (Italy, China, Iran, Germany, and the
USA), their most prominent finding is that the multilayered perceptron (MLP) model delivers the most
accurate results, in terms of predicting an outbreak, without the assumptions that epidemiological
models typically require.

Nevertheless, a criticism that we pose to articles of similar tenor is that all these studies can be
assimilated to a process that starts from a bunch of example data and learns to point to the most
likely output; where the meaning of likely is usually vague or fuzzy [26–30] or stochastic at best [31].
While we agree on the fundamental role played by data in these models, our belief is that, at least,
a conceptual hypothesis should exist that drives one in their choice and selection.

Returning to our approach, we would like to conclude this section certain that the reader has a
clear vision of our position, before they proceed with the article. To this aim, we have already stated in
our previous work that neither Granger nor any other statistical testing procedure can provide final
evidence that the two phenomena, between which we conjecture a relationship (i.e., pollution and
COVID-19 infection spread), are correlated in nature. Additionally, the same holds for the predictions
of our ML model. Nonetheless, with our predictions, we are projecting a scenario based on an original
assumption that makes our COVID-19 ML model unique, as it selects the data to be used based on
a well-defined and unambiguous hypothesis. Whatever will happen in September–December 2020,
we will have learnt an important truth about the validity of our hypothesis—and this, too, is science at
the service of society.

The remainder of the paper is structured as follows. In the next section, we describe the
methodology behind our approach. Section 3 presents and critically discusses the results we yielded.
Finally, Section 4 concludes the paper, with some final considerations.

2. Methods

We now present, first, some preliminary information relevant to the present study, second,
a description of the dataset we used, and third, the reasoning we used to precisely decide what kind of
predictions we are looking for. Finally, we provide some reflections on how we have selected the ML
model that could fit squarely into our COVID-19 scenario of interest.

2.1. Preliminary Assumptions

As already anticipated, we have based this study on the precise idea that the correlation between
air pollution (specifically, the PM2.5, PM10, and NO2 pollutants) and the spread of COVID-19 infections
in the Emilia-Romagna region is a very plausible hypothesis. Using that hypothesis, we consequently
selected the data of interest.

We do not return, again, to this main assumption; it suffices here to remind that the presence
of COVID-19 on air samples can represent an early indicator of the diffusion of the virus in a given
geographical area [18]. To further summarize this concept, one should consider that, whatever the
origin of this virus is, there are clear indications that COVID-19 transmission occurs from infected
people, either through virus-laden droplets or aerosol transmissions. In this second case of airborne
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transportation, pollutants may help the diffusion, playing the role of additional carriers. All this is
graphically summarized, with relative simplifications, in the following Figure 1, where it is crystal
clear that the arrows in the figure should not be intended as a means to represent a direct causation,
but they amount to a simple indication of a conceptual path; that is, infection propensity is favored by
the transmission of droplets and aerosols, with air pollutants as further carriers.
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Figure 1. Infection propensity.

All this anticipated, it is also important to give some details about the Italian region we took into
consideration in our studies: Emilia-Romagna. The region is situated in the northeast section of the
country and is divided into nine provinces: Bologna, Ferrara, Forlì-Cesena, Modena, Parma, Piacenza,
Reggio nell’Emilia, Rimini, and Ravenna. It is populated by almost 4,500.000 citizens and was one of
the more seriously hit by this virus in Italy, with a total number of infections of 30,342, and as many
as 4298 fatalities, as of 13 August 2020. Its death toll linked to the virus is second, in Italy, only to
Lombardy, where, on the same date, more than 97,000 persons were registered as infected, and the
fatalities had almost reached the number of 17,000.

Relevant for considering this process from the right temporal perspective is also the chronology
according to which restrictions were first imposed to human activities in those provinces, and then
released after a substantial decay of the virus incidence. In particular, we can count four
subsequent phases:

• Phase 0: Prior to 8 March 2020, no specific restriction was imposed, which was valid for all the nine
provinces of Emilia-Romagna, except for some local control measures (for example, for schools
and universities);

• Phase 1: A full lockdown was first imposed to the provinces of Modena, Parma, Piacenza,
Reggio nell’Emilia, and Rimini, as of 8 March 2020 [32], and then extended to the remaining
provinces of Bologna, Ferrara, Forlì-Cesena, and Ravenna on 10 March 2020 [33];

• Phase 2: On 4 May 2020, the lockdown was partially released, though with several commercial
and industrial activities still suspended, as well as the obligation for people to stay in quarantine
if found or suspected ill, wear cloth face covering in public settings, wash hands frequently, etc.,
and where a social distancing of at least 1 meter and a half was difficult to maintain [34];

• Phase 3: On 14 June 2020, the lockdown was almost completely removed, with almost all activities
resuming, provided that the personal protection measures mentioned above were obeyed [19].

2.2. Dataset Description

Based on the hypothesis that a relation exists between pollutants and infections, at least in
Emilia-Romagna, the data we used to instruct our ML model were essentially of two types:

• The measurements of the particulate pollutants: PM2.5, PM10, and N02; taken on a daily basis,
for all the aforementioned provinces (Bologna, Ferrara, Forlì-Cesena, Modena, Parma, Piacenza,
Reggio nell’Emilia, Rimini, and Ravenna).

• The number of the daily COVID-19 infections, again for all the provinces mentioned above.

The amount of daily infections was collected using the GitHub repository of the Italian Civil
Protection, for the entire period, starting on 24 February and closing on 7 July 2020 [35].

The daily values of the pollutants, by contrast, were collected using the website of the Regional
Environmental Protection Agencies (ARPA) of the Emilia-Romagna region for all the nine provinces [36].
With various ARPA monitoring stations distributed over each province, an average of the values
returned by each station was computed on a daily/provincial basis. The period along which those data
were collected was from 10 February up to 30 June 2020.
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The two periods have the same temporal length, but there is a discrepancy in the starting/closing
dates. This is due to the fact that a typical COVID-19 infection can be subjected to an incubation period,
whose duration can range from a few days to almost 14 before a human begins to manifest some
symptoms. Many papers provide evidence of this fact, concluding, at the end, that 99% of the infected
population develop symptoms within 14 days [37].

Following this reasoning, the period during which we measured the particulates started on
10 February and closed on 30 June 2020, while the infections were registered in the period of
24 February–7 July 2020. Simply told, if we want to instruct an ML model with a function that maps
input (particulates) into output (infections), based on examples of the input–output pairs we have
collected, an offset has to be introduced that temporally separates these two time-series. This stems
from the simple consideration that all that can happen on a given day, say x, in terms of augmented
spread of the virus due to pollution, may have its effects in terms of manifestations of the infections up
to day x + 14.

This is not still enough, though: In fact, the function that our ML model has to learn is a little bit
more complex than usual, as we need to also take into consideration the specific period during which a
given event (for example, an infection) has occurred. It makes a great difference, in fact, whether we
consider events occurring during either Phase 0, or Phase 1, or Phase 2, or finally Phase 3. In conclusion,
in addition to the data that are part of the relationship between particulates and infections, input to
the ML model should also be the various phases through which the management of the spread of the
infections has passed.

To conclude and summarize this complex situation, the following three figures show the entire
dataset we have used, in a graphical form. All these graphs simultaneously show the curves for both the
pollutants (black, measured in micrograms per cubic meter) and COVID-19 infections (gray, measured
in units). On the x axis of all graphs reported are the timelines for the pollutants’ series (in black) and
for the infections (in gray). Important to note is the temporal offset explained above. Figures 2–4 are,
respectively, relative to PM2.5, PM10, and NO2. Moreover, in each graph, with the colors orange, yellow,
light blue, and green, the passage through the different four phases we have mentioned is demarcated.
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2.3. What Kind of Predictions Are We Looking for?

In essence, the point is: If we have an ML model that has learnt from data the possible relationship
between the presence of particulate in the air and the incidence of the virus, what kind of predictions
should we ask of our model?

Let us say that the situation could become complex. In fact, while it is true that we are interested in
knowing whether a second wave of COVID-19 could hit the provinces of the Emilia-Romagna region,
we cannot ignore that trying to extract, from an ML model, a prediction on the exact number of new
infected people, per each province, on a daily basis, is something more like a puzzle, rather than a
scientific investigation.

To simplify this problem, we resorted to a more effective procedure which was as follows. The idea
was to count the number of daily infections registered per each province, in all the nine provinces
of Emilia-Romagna, during the four days that preceded the lockdown decision taken by the Italian
Government on 8–10 March 2020 (the specific day depends on the specific province).

Once those infections counts were obtained, we computed an average value of those daily numbers
on a per-province basis for those 4 days. We then got nine numbers that were finally aggregated
on a regional basis, under the form of a further average count, thus yielding the average number
of infections per-province on a regional basis in Emilia-Romagna. The result was 17 (from now on,
the so-called threshold). Told differently, the daily number of infected people, in Emilia-Romagna,
averaged over those four days, amounts to 17 times 9 = 153.

Now, please follow the reasoning. If the Italian Government, using its own decisional models,
opted for a lockdown decision, as soon as the average regional number of daily infections on a
per-province basis in Emilia-Romagna had surpassed the threshold of 17, then we could use that
number as a key to design the predictions scheme of our ML model. Not to forget also the fact that
Emilia-Romagna was, at that time, the region with the largest number of infections after Lombardy.
Hence, the number of infections that occurred in this region has had an important role in that
lockdown decision.

To conclude this reasoning, our intention is to replace the initial idea to predict if, in a given future
day, Emilia-Romagna is under the risk of a second wave of a COVID-19 resurgence with the more
concrete and effective prediction of whether the number of infected people will surpass that threshold
of 17, on that day, on a per-province, regional basis. More precisely, we ask our ML model to compute
the probability that, in a given future day, each province in Emilia-Romagna will count a number of
infections larger than 17—and, then, we look at the regional picture with all its nine provinces, and the
probability that the number of infections for each exceeds 17. The higher this probability is, the higher
the risk of a second regional wave will be, especially if various provinces simultaneously surpass that
threshold on a certain given day.

For the sake of completeness, in Figure 5, we provide a graph with the cumulative quantities
of infected people, per day, for all the nine provinces of interest, plus the cumulative values of the
regional and the national averages, registered during the four days prior to 8–10 March 2020.

In Figure 5, one can read: Bologna, bo; Ferrara, fe; Forlì-Cesena, fc; Modena, mo; Parma, pr;
Piacenza, pc; Ravenna, ra; Reggio nell’Emilia, re; Rimini, rn; Emilia-Romagna, er; and Italy, ita.

Important to note is the fact that, in Figure 5, our regional infection average, being cumulative
over those four days, amounts to 17 times 4 = 68 (as read at the rightmost end of the figure).

By contrast, if one takes into consideration the national average, they can notice that the following
value of 8 times 4 = 32 can be computed (as read at the rightmost end of the figure). This smaller
quantity at a national level is due to the fortunate fact that many regions in Southern Italy were not
severely affected by the virus, thus providing a smaller contribution to the national average.
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and Ravenna; cumulative regional and national infections averages.

Interesting to remind is also the average number of infections per day in Lombardy, computed in
a similar way (i.e., the average per-province number of infections, on a regional basis), which was as
high as 38. This latter number is important. It is well known that in that periodm Lombardy was really
the hardest-hit Italian area, thus becoming a sort of hotspot for COVID-19 diffusion in Italy. This is
why we decided not to choose this number (i.e., 38) in our scheme. It would have been somewhat
misleading, especially in consideration of the fact that we want predictions that are valid for the
Emilia-Romagna region.

At this point, it is important to mention that, using the value of 17, we have essentially split our
initial dataset into two separate portions:

(i) The former, with all those days with a number y of daily infections, equal or smaller than 17; and
(ii) The latter, with those days registering a number of new infected people larger than 17.

Not only this, but also, to properly manage the hypothesis of a relationship between pollutants
and infection spread, crucial is also the concept of lag. In particular, with lag, we account for the
following fact: On a given day, say z, we may have registered a certain number of infections, say y.
Those y infections could have manifested themselves after exactly fourteen days, since the original
contagion happened exactly on the day: z − 14. Nonetheless, we also know that there is a degree of
uncertainty, affecting the exact number of days that should be taken into account for this count.

To take this fact into account, with a lag equal to 4, for example, we reason as if all the y infections,
which occurred on day z, originated from the contribution of pollutants that were in the air during a
longer time interval of length 4 (starting from day: z − 14), in this specific case, our interval would go
from day z − 14 up to day z − (14 − 4 + 1), that is, day: z − 11.

This is an important fact, giving rise to an important implication: With the concept of lag, which can
range from 1 to 8 in our model, we try to mitigate the uncertainty concerning the exact day when
people get infected (as also discussed in [37]).

To conclude, considering the nine provinces of Emilia-Romagna, each one observed for a period
of 135 days, the number of examples we counted where the number of daily infections was equal to or
smaller than 17 amounted to 789. By contrast, the number of examples where the number of daily
infections was larger than 17 amounted to 426.

Finally, it is important also to note that 80% of all these data were employed for instructing our
ML models, while the remaining 20% were retained to test the performance those models could reach
upon completion of the learning phase.
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2.4. Model Selection

We have reached the following point: We have collected a special set of data, based on the
hypothesis of a relation between pollutants and infections. Those data represent each single day,
with its infections and quantities of measured pollution in the air. Then, we have divided them into
two separate sets of examples, specifically: (i) the first one comprising those days with a number of
infections equal to or smaller than 17, and (ii) the second one with those days with a number of infected
people larger than 17. We have also introduced the concept of lag and have exactly computed how
large the two aforementioned sets of examples are (789 vs. 426).

What we still need to decide now is the ML model to adopt that should be instructed with all
those data.

To choose our ML model, we proceeded as follows. Without any initial preference, we tried
to instruct a wide range of possible ML models, suitable to learn the function pollutants/infections.
We started with the following ML models:

• K nearest neighbor (KNN) [38];
• Classification and regression tree (CART) [39];
• Support vector machine (SVM) [40];
• Multilayer perceptron (MLP) [41];
• Ada boosting with decision tree (AB) [42];
• Gradient boosting (GB) [43];
• Random forest (RF) [44];
• Extra tree (ET) [45].

The procedure with which we selected our ML model went through two separate and subsequent
phases, aimed at measuring their performance in terms of accuracy of the predictions they made,
more precisely, a ten-fold cross-validation and a testing phase.

First, we allowed all the eight models mentioned above to learn the function we described
before, and then we subjected each one to a classic ten-fold cross-validation procedure, yielding an F1
score. Before we proceed, we shall briefly remind what a ten-fold cross-validation procedure and a
F1-score are.

Simply put, cross-validation is a procedure that evaluates predictive models by partitioning
the original dataset into two portions. With the training portion, the model is trained, while with
the validation portion, the model is evaluated. In a ten-fold cross-validation, the original dataset is
randomly partitioned into 10 subsamples of equal size. Of the 10 portions, a single portion is kept
separate to validate the model, while the model is trained with the remaining nine portions of data.
We use the term cross as this validation procedure is reiterated 10 times, with each of the 10 portions
used exactly once to validate the model. The ten obtained results coming from the validation portions
can then be averaged to produce a final evaluation.

As regards the F1 score, in a classic classification problem (comprising true and false positives,
and true and false negatives), it is intended to be the harmonic mean of the precision and recall values,
where such a score reaches its best at 1. In turn, precision is the number of true positives divided by the
number of true positives plus the number of false positives, while recall is the number of true positives
divided by the number of true positives plus the number of false negatives (i.e., all the samples that
should have been identified as positive).

All this anticipated, in Table 1, we show the results we have obtained with 80% of our data, and a
ten-fold cross-validation conducted with all the eight ML models mentioned before. All the results are
in terms of the F1 score, which was measured on average, plus its standard deviation.

Important to note is the fact that we allowed the models to learn our function both with each
single pollutant (i.e., PM2.5, PM10, and NO2) in isolation, and then with all the pollutants considered
together; not only this, but we also varied the lag, as already anticipated, from 1 to 8.
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In essence, each cell in Table 1 tells us how accurate, on average, the prediction was that a given
model has made that the threshold of 17 infections was either surpassed or not, for a given day, with a
certain amount of pollutants in the air.

If one accurately analyzes Table 1, they can find that almost all the ML models have comparable
performances, except for CART and AB (highlighted with the red color). This convinced us to proceed
with the next step of testing, at the end of which only one model was to be selected to be used to
make COVID-19 predictions for the period of September–December 2020, excluding the CART and the
AB candidates.

Table 1. Ten-fold cross-validation for all the eight ML models: F1 score (average and standard
deviation).

Pollution Lag KNN CART SVC MLP AB GB RF ET

All

1 0.81 ± 0.03 0.75 ± 0.05 0.81 ± 0.04 0.84 ± 0.03 0.78 ± 0.05 0.81 ± 0.04 0.81 ± 0.03 0.78 ± 0.04

2 0.81 ± 0.03 0.81 ± 0.04 0.83 ± 0.03 0.84 ± 0.04 0.79 ± 0.05 0.83 ± 0.03 0.84 ± 0.05 0.83 ± 0.04

3 0.83 ± 0.05 0.78 ± 0.05 0.83 ± 0.04 0.84 ± 0.04 0.81 ± 0.04 0.83 ± 0.02 0.85 ± 0.03 0.85 ± 0.03

4 0.82 ± 0.04 0.78 ± 0.05 0.84 ± 0.04 0.84 ± 0.05 0.81 ± 0.03 0.84 ± 0.03 0.84 ± 0.03 0.85 ± 0.03

5 0.85 ± 0.03 0.82 ± 0.05 0.85 ± 0.03 0.86 ± 0.04 0.82 ± 0.05 0.86 ± 0.04 0.87 ± 0.04 0.86 ± 0.03

6 0.86 ± 0.03 0.82 ± 0.05 0.87 ± 0.03 0.86 ± 0.03 0.82 ± 0.04 0.86 ± 0.03 0.85 ± 0.04 0.88 ± 0.03

7 0.86 ± 0.03 0.83 ± 0.04 0.87 ± 0.03 0.87 ± 0.02 0.84 ± 0.03 0.85 ± 0.03 0.86 ± 0.03 0.87 ± 0.04

8 0.87 ± 0.02 0.84 ± 0.04 0.89 ± 0.03 0.89 ± 0.02 0.82 ± 0.03 0.86 ± 0.03 0.86 ± 0.04 0.90 ± 0.03

PM2.5

1 0.79 ± 0.03 0.77 ± 0.04 0.80 ± 0.04 0.81 ± 0.03 0.78 ± 0.06 0.81 ± 0.03 0.76 ± 0.03 0.77 ± 0.04

2 0.80 ± 0.04 0.78 ± 0.05 0.82 ± 0.04 0.82 ± 0.04 0.78 ± 0.04 0.82 ± 0.04 0.81 ± 0.03 0.79 ± 0.03

3 0.81 ± 0.03 0.79 ± 0.05 0.82 ± 0.03 0.82 ± 0.04 0.81 ± 0.03 0.84 ± 0.03 0.83 ± 0.03 0.82 ± 0.03

4 0.80 ± 0.03 0.81 ± 0.04 0.85 ± 0.02 0.83 ± 0.03 0.81 ± 0.03 0.85 ± 0.04 0.85 ± 0.03 0.83 ± 0.03

5 0.84 ± 0.03 0.82 ± 0.04 0.86 ± 0.03 0.85 ± 0.04 0.81 ± 0.04 0.86 ± 0.04 0.87 ± 0.03 0.85 ± 0.02

6 0.85 ± 0.04 0.84 ± 0.04 0.87 ± 0.03 0.87 ± 0.03 0.82 ± 0.04 0.87 ± 0.04 0.87 ± 0.03 0.87 ± 0.03

7 0.85 ± 0.04 0.85 ± 0.03 0.87 ± 0.03 0.86 ± 0.02 0.82 ± 0.05 0.86 ± 0.04 0.88 ± 0.03 0.88 ± 0.03

8 0.88 ± 0.03 0.84 ± 0.04 0.88 ± 0.03 0.87 ± 0.03 0.83 ± 0.05 0.86 ± 0.03 0.87 ± 0.04 0.89 ± 0.04

PM10

1 0.79 ± 0.05 0.77 ± 0.03 0.80 ± 0.04 0.81 ± 0.04 0.78 ± 0.05 0.81 ± 0.04 0.78 ± 0.05 0.79 ± 0.04

2 0.81 ± 0.04 0.79 ± 0.05 0.81 ± 0.04 0.82 ± 0.04 0.78 ± 0.04 0.82 ± 0.03 0.82 ± 0.05 0.82 ± 0.04

3 0.80 ± 0.03 0.77 ± 0.03 0.82 ± 0.03 0.83 ± 0.04 0.80 ± 0.03 0.83 ± 0.03 0.83 ± 0.04 0.83 ± 0.03

4 0.83 ± 0.03 0.78 ± 0.03 0.84 ± 0.03 0.84 ± 0.04 0.80 ± 0.02 0.85 ± 0.04 0.84 ± 0.02 0.84 ± 0.03

5 0.84 ± 0.04 0.81 ± 0.06 0.85 ± 0.03 0.86 ± 0.03 0.80 ± 0.05 0.87 ± 0.04 0.86 ± 0.03 0.85 ± 0.03

6 0.85 ± 0.03 0.82 ± 0.04 0.86 ± 0.03 0.87 ± 0.03 0.82 ± 0.04 0.86 ± 0.04 0.86 ± 0.04 0.85 ± 0.04

7 0.87 ± 0.03 0.85 ± 0.04 0.88 ± 0.03 0.87 ± 0.03 0.83 ± 0.05 0.87 ± 0.04 0.87 ± 0.03 0.88 ± 0.03

8 0.87 ± 0.02 0.85 ± 0.03 0.88 ± 0.03 0.88 ± 0.03 0.82 ± 0.04 0.88 ± 0.04 0.87 ± 0.04 0.89 ± 0.03

NO2

1 0.80 ± 0.04 0.78 ± 0.03 0.81 ± 0.03 0.81 ± 0.04 0.78 ± 0.04 0.80 ± 0.04 0.77 ± 0.03 0.78 ± 0.03

2 0.79 ± 0.03 0.76 ± 0.04 0.81 ± 0.02 0.82 ± 0.02 0.79 ± 0.05 0.81 ± 0.03 0.80 ± 0.04 0.79 ± 0.04

3 0.82 ± 0.03 0.77 ± 0.03 0.82 ± 0.03 0.83 ± 0.03 0.80 ± 0.03 0.82 ± 0.04 0.83 ± 0.02 0.83 ± 0.02

4 0.85 ± 0.02 0.80 ± 0.02 0.83 ± 0.03 0.84 ± 0.04 0.80 ± 0.04 0.83 ± 0.03 0.86 ± 0.03 0.85 ± 0.02

5 0.86 ± 0.02 0.81 ± 0.03 0.84 ± 0.03 0.85 ± 0.04 0.82 ± 0.04 0.83 ± 0.03 0.87 ± 0.03 0.85 ± 0.02

6 0.86 ± 0.03 0.83 ± 0.04 0.85 ± 0.03 0.86 ± 0.04 0.80 ± 0.04 0.84 ± 0.04 0.87 ± 0.03 0.86 ± 0.03

7 0.85 ± 0.03 0.82 ± 0.05 0.85 ± 0.02 0.85 ± 0.03 0.81 ± 0.04 0.84 ± 0.04 0.87 ± 0.04 0.87 ± 0.03

8 0.86 ± 0.03 0.81 ± 0.03 0.86 ± 0.02 0.86 ± 0.03 0.81 ± 0.04 0.85 ± 0.04 0.87 ± 0.03 0.88 ± 0.02

In this second step were, hence, included only the six models that exhibited good comparable
performances during the ten-fold cross-validation, namely: KNN, SVC, MLP, GB, RF, and ET.

All these six models were subjected to this final testing step, conducted with 20% of the dataset
we had retained for this specific aim. Results from this final testing phase are reported in Table 2.

As expected, all the six models under consideration yielded a reasonably good performance;
nonetheless, the one with the best F1 score was GB, gradient boosting, as Table 2 reveals. The simple
reason we expected quite good performances from almost all those six models is that they had already
done well during the phase of the ten-fold cross-validation. Nonetheless, gradient boosting (GB)
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manifested as the best model in this specific circumstance (with its F1 score equal to 0.893). In other
words, GB is the model that better learned the function pollution/infections on which our hypothesis is
based. Consequently, it is the best candidate for making accurate predictions for the future.

Table 2. Testing phase: gradient boosting (GB) selected by virtue of its F1 score.

Algorithm Testing

Class Precision Recall F1 Score

KNN
<=17 0.90 0.85

0.845
>17 0.75 0.82

SVC
<=17 0.95 0.87

0.890
>17 0.80 0.92

MLP
<=17 0.93 0.90

0.890
>17 0.82 0.87

GB
<=17 0.92 0,91

0.893
>17 0.84 0.86

RF
<=17 0.93 0.87

0.878
>17 0.79 0.88

ET
<=17 0.91 0.91

0.881
>17 0.83 0.84

In addition to the F1 score, where the GB surpasses all the other five candidates, with regard to the
other metrics of precision and recall, it is interesting to note that it achieves a better accuracy (91–92%)
in predicting whether a given future day will be classified in the class of those days with a number
of infections equal or smaller than 17, and a slightly lower accuracy (84–86%) in predicting whether
a given day will be classified in the class of those days with a number of infections larger than 17.
This slight difference is probably due to the fact that it has been instructed with a larger number of
examples of the former class.

To conclude this section, a simple explanation on how the GB model computationally works is in
order now.

In very simple words, the gradient boosting method tries to find an approximation to the function
F̂ that we are letting our model learn (i.e., the relationship of pollutants vs. infections). To do that,
a value is computed based on a weighted sum of M functions hi, which are, in some sense, the estimators
of the number y of infected people we expect to have for each given day, given that we have registered a
certain value x of some pollutant. All this is based on the following formula (where ai is the additional
parameter to be learnt, and ε is a given predefined constant value).

F̂(x) =
M∑

i=1

αihi(x) + ε. (1)

Technically speaking, we are minimizing loss function L, given a training set composed of couples
of known values of x (pollutant) and y (infections), where the final target is to make the estimation as
close as possible to the real value of y. All this is based on the following minimization procedure:

F̂(x) = minF Ex,y[L(y, F(x)]. (2)

With this clarified, in the next section, we present the predictions that our GB model has made,
regarding the plausibility of a second wave of COVID-19 infections in Emilia-Romagna.
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3. Results: Predictions

We come now to the final step. Upon completion of the activities that led us to instruct our
GB model using data from the period of February–July 2020, selected based on the assumption of a
relationship between pollutants and infections, we now need to ask our model to make the predictions,
on a daily and provincial basis, for the Emilia-Romagna region, for all the future days from 21 September
to 31 December 2020.

The motivation behind the choice of this precise prediction period is obvious. We are all worried
about the possibility that a second wave of COVID-19 will coincide with the end of the summer period
(21 September), when many human activities will resumed in Italy, including schools and universities,
for example. As for the closing period for our predictions, we deem it natural not to extend the scope
too much, thus reaching the end of the current year 2020.

Nonetheless, one element is still missing, which is relevant to our prediction activity. Our model
has learnt the function that maps pollutant values into the number of infected people. Nevertheless,
if we want it to try to predict what can happen on, say, day z, (with, for example, z = 21 September
2020, in the province of Bologna), we need to give our model as an input the value of the pollutants
circulating on that day z in Bologna.

Obviously, at the time we write our article, we do not have the precise value of those pollutants
for that future day z. What we can do to mitigate that factor is to try to estimate those values, based on
the amounts of pollutants circulating in the air in Bologna, as measured on the same day z some given
years ago, for example, 21 September 2019.

Put simply, we have exploited the amount of the pollution registered in some previous years
in Emilia-Romagna to have an estimate of those pollutants that need then to be given as an input to
the ML model. We have done this following two alternative strategies. In the first case, we used all
the values of the pollutants registered in the period 21 September–31 December 2019. In the second
case, we used all the values of the pollutants measured in the period 21 September–31 December,
yet averaged on three different previous years, namely: 2017–2019.

We present the obtained results in the following two subsections, in isolation.
Before we proceed, it is very important to remind that all the predictions presented in the two

following subsections were made under the hypothesis that all the control/containment measures of the
so-called Phase 3 are strictly obeyed. If those measures are not obeyed (or even partially disregarded),
our model would return predictions very different from those shown in Sections 3.1 and 3.2.

3.1. Predictions: 2019->2020

We report in Table 3 the predictions that our GB model has made based on all the assumptions
described in the previous sections, including that Phase 3 is obeyed.

Important are the following instructions to better read those results. Along the columns, we have
all the nine provinces (Bologna, Ferrara, Forlì-Cesena, Modena, Parma, Piacenza, Reggio nell’Emilia,
Rimini, and Ravenna), while on the rows, the prediction is given for each single day. A mixture of
the values of the pollutants PM2.5, PM10, and NO2 was considered as input to the model, in this case
measured in the period 21 September–31 December 2019.

Each cell in the table shows the value of the probability that the number of infections, on that
day per that province, exceeds the quantity of 17 (with the maximum probability value set equal to
1). The higher that probability, the higher the risk that we will have a number of infected people
surpassing 17, on that day in that province, thus raising the relative concerns.

In a red color, we highlighted those days, on a per-province basis, where that threshold is surpassed.
A quick comment to this table is that concerns arise, especially for two provinces (Parma and Piacenza),
in the two periods of mid-October/mid-November 2020, as well as at the end of November–end
of December 2020. Again, we insist on the fact that these predictions were obtained based on the
assumption that the personal protection measures of Phase 3 are respected.
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We have deliberately moved a more detailed discussion of these results to the final section of
this paper.

Here, we just input evidence that the following provinces seem to have the following total number
of crucial days during the observed period, whose length is 135 days:

• Bologna (0);
• Ferrara (1);
• Forlì-Cesena (2);
• Modena (1);
• Parma (16);
• Piacenza (23);
• Ravenna (0);
• Reggio Emilia (1);
• Rimini (1).

Moreover, to allow the reader to a have a simpler and more comprehensive view of the results
presented above, we have also reported them under an alternative format. In particular, in Figure 6,
we present the same results as those of Table 3, but portrayed as a heatmap. Simply put, high probability
values turn lean toward red, while low probability values are depicted in white. Different orange color
gradations represent intermediate situations. Predictions are grouped on a weekly basis, per each
province in the region.

Table 3. Predictions (2019->2020): probability values.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

9/21 0.00 0.00 0.00 0.02 0.01 0.35 0.00 0.01 0.00

9/22 0.04 0.00 0.04 0.11 0.11 0.38 0.03 0.03 0.00

9/23 0.1 0.08 0.07 0.18 0.3 0.15 0.08 0.22 0.07

9/24 0.14 0.17 0.17 0.27 0.11 0.31 0.14 0.12 0.11

9/25 0.01 0.01 0.01 0.19 0.24 0.09 0.00 0.07 0.01

9/26 0.00 0.01 0.01 0.01 0.11 0.12 0.00 0.03 0.00

9/27 0.00 0.01 0.00 0.1 0.06 0.07 0.03 0.02 0.01

9/28 0.00 0.02 0.01 0.05 0.2 0.09 0.02 0.06 0.01

9/29 0.14 0.00 0.04 0.23 0.04 0.02 0.16 0.04 0.02

9/30 0.03 0.01 0.01 0.04 0.01 0.02 0.06 0.01 0.02

10/1 0.01 0.01 0.01 0.02 0.01 0.04 0.01 0.02 0.00
10/2 0.00 0.01 0.05 0.23 0.53 0.07 0.00 0.12 0.00
10/3 0.00 0.02 0.03 0.13 0.54 0.46 0.02 0.25 0.01
10/4 0.04 0.04 0.01 0.17 0.16 0.19 0.00 0.05 0.09

10/5 0.01 0.03 0.00 0.03 0.02 0.15 0.02 0.00 0.00

10/6 0.01 0.02 0.00 0.02 0.16 0.19 0.00 0.03 0.00
10/7 0.01 0.00 0.1 0.25 0.59 0.73 0.00 0.03 0.00
10/8 0.01 0.00 0.00 0.12 0.09 0.39 0.02 0.19 0.02

10/9 0.00 0.00 0.01 0.02 0.21 0.15 0.03 0.00 0.01

10/10 0.00 0.00 0.00 0.01 0.01 0.07 0.00 0.00 0.00

10/11 0.07 0.01 0.00 0.01 0.01 0.04 0.00 0.00 0.00

10/12 0.03 0.18 0.02 0.21 0.04 0.42 0.02 0.01 0.00

10/13 0.01 0.01 0.01 0.06 0.08 0.37 0.01 0.04 0.00

10/14 0.00 0.00 0.01 0.01 0.03 0.02 0.00 0.00 0.00
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Table 3. Cont.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

10/15 0.01 0.01 0.01 0.05 0.16 0.02 0.00 0.01 0.00

10/16 0.08 0.04 0.4 0.35 0.29 0.1 0.1 0.15 0.00

10/17 0.11 0.37 0.09 0.39 0.47 0.45 0.25 0.18 0.08

10/18 0.06 0.01 0.05 0.04 0.02 0.02 0.02 0.04 0.06

10/19 0.01 0.04 0.01 0.16 0.45 0.14 0.2 0.09 0.02
10/20 0.04 0.4 0.04 0.2 0.74 0.81 0.06 0.38 0.07
10/21 0.07 0.03 0.06 0.07 0.4 0.64 0.09 0.07 0.09
10/22 0.01 0.02 0.01 0.08 0.45 0.51 0.02 0.1 0.01
10/23 0.03 0.07 0.01 0.14 0.44 0.46 0.02 0.04 0.02
10/24 0.04 0.06 0.09 0.17 0.56 0.49 0.02 0.03 0.02
10/25 0.03 0.02 0.02 0.22 0.14 0.35 0.01 0.04 0.01
10/26 0.03 0.04 0.09 0.17 0.26 0.64 0.04 0.1 0.00
10/27 0.01 0.01 0.00 0.01 0.06 0.07 0.01 0.00 0.00
10/28 0.01 0.02 0.04 0.19 0.53 0.13 0.01 0.04 0.01
10/29 0.03 0.59 0.68 0.33 0.79 0.74 0.28 0.35 0.18
10/30 0.03 0.07 0.04 0.04 0.19 0.09 0.02 0.03 0.05

10/31 0.02 0.01 0.02 0.02 0.42 0.44 0.02 0.11 0.03

11/1 0.12 0.34 0.12 0.09 0.22 0.13 0.45 0.03 0.05
11/2 0.06 0.33 0.05 0.4 0.82 0.71 0.1 0.3 0.07
11/3 0.03 0.24 0.02 0.17 0.38 0.78 0.06 0.03 0.03
11/4 0.14 0.06 0.08 0.25 0.42 0.55 0.09 0.03 0.03
11/5 0.09 0.17 0.14 0.13 0.62 0.4 0.09 0.16 0.15
11/6 0.04 0.06 0.11 0.05 0.12 0.15 0.05 0.02 0.07
11/7 0.05 0.08 0.25 0.08 0.72 0.51 0.13 0.14 0.13
11/8 0.03 0.06 0.08 0.08 0.45 0.32 0.09 0.02 0.04

11/9 0.13 0.03 0.04 0.13 0.19 0.08 0.35 0.06 0.21

11/10 0.03 0.00 0.03 0.06 0.03 0.01 0.03 0.01 0.1

11/11 0.01 0.00 0.00 0.00 0.05 0.07 0.01 0.06 0.02

11/12 0.04 0.00 0.07 0.02 0.18 0.09 0.03 0.05 0.13

11/13 0.04 0.05 0.03 0.01 0.02 0.03 0.01 0.02 0.05

11/14 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.00

11/15 0.00 0.00 0.00 0.01 0.01 0.08 0.00 0.01 0.00

11/16 0.00 0.00 0.01 0.23 0.22 0.22 0.01 0.22 0.00

11/17 0.06 0.03 0.02 0.1 0.05 0.07 0.02 0.01 0.00

11/18 0.32 0.1 0.22 0.06 0.09 0.03 0.39 0.05 0.06
11/19 0.14 0.00 0.11 0.08 0.06 0.05 0.02 0.52 0.01
11/20 0.00 0.00 0.01 0.16 0.08 0.12 0.01 0.01 0.00

11/21 0.09 0.03 0.17 0.01 0.02 0.07 0.12 0.01 0.00

11/22 0.15 0.06 0.11 0.12 0.04 0.05 0.11 0.02 0.06

11/23 0.01 0.01 0.01 0.02 0.03 0.01 0.00 0.02 0.00
11/24 0.03 0.03 0.02 0.09 0.1 0.57 0.01 0.04 0.01
11/25 0.02 0.00 0.55 0.03 0.01 0.54 0.08 0.01 0.16
11/26 0.03 0.02 0.09 0.01 0.02 0.04 0.01 0.00 0.03

11/27 0.29 0.13 0.15 0.11 0.12 0.1 0.03 0.11 0.00

11/28 0.08 0.05 0.03 0.11 0.1 0.00 0.09 0.01 0.01

11/29 0.01 0.00 0.03 0.07 0.24 0.05 0.01 0.07 0.01

11/30 0.02 0.00 0.37 0.02 0.02 0.16 0.01 0.13 0.04
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Table 3. Cont.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

12/1 0.03 0.05 0.03 0.04 0.13 0.16 0.05 0.01 0.03

12/2 0.05 0.02 0.02 0.05 0.47 0.04 0.01 0.01 0.01

12/3 0.01 0.12 0.08 0.21 0.15 0.07 0.04 0.07 0.16

12/4 0.01 0.00 0.37 0.03 0.33 0.02 0.02 0.24 0.01

12/5 0.01 0.01 0.02 0.04 0.02 0.01 0.01 0.00 0.01

12/6 0.06 0.03 0.01 0.21 0.08 0.01 0.16 0.01 0.01

12/7 0.01 0.12 0.48 0.17 0.39 0.28 0.1 0.05 0.29

12/8 0.05 0.05 0.2 0.2 0.41 0.19 0.05 0.25 0.04

12/9 0.07 0.06 0.03 0.02 0.07 0.06 0.05 0.04 0.00

12/10 0.02 0.01 0.23 0.11 0.21 0.05 0.02 0.02 0.16
12/11 0.13 0.06 0.05 0.29 0.38 0.61 0.05 0.1 0.01
12/12 0.07 0.18 0.05 0.11 0.12 0.2 0.07 0.03 0.02

12/13 0.23 0.14 0.13 0.13 0.03 0.26 0.21 0.1 0.05
12/14 0.14 0.03 0.29 0.3 0.47 0.57 0.1 0.08 0.03
12/15 0.25 0.09 0.25 0.16 0.69 0.84 0.3 0.34 0.47
12/16 0.12 0.18 0.08 0.14 0.52 0.78 0.18 0.07 0.4
12/17 0.09 0.1 0.11 0.08 0.46 0.63 0.1 0.11 0.08
12/18 0.06 0.05 0.04 0.18 0.21 0.8 0.06 0.04 0.02
12/19 0.18 0.16 0.15 0.12 0.44 0.87 0.19 0.19 0.18
12/20 0.17 0.3 0.07 0.28 0.39 0.92 0.28 0.04 0.26
12/21 0.04 0.13 0.17 0.31 0.61 0.69 0.15 0.27 0.28
12/22 0.14 0.34 0.14 0.15 0.61 0.77 0.45 0.42 0.05
12/23 0.21 0.23 0.23 0.13 0.46 0.49 0.21 0.39 0.14

12/24 0.32 0.12 0.08 0.26 0.48 0.46 0.2 0.08 0.06

12/25 0.09 0.13 0.08 0.16 0.4 0.33 0.15 0.16 0.02
12/26 0.1 0.04 0.09 0.18 0.55 0.57 0.11 0.11 0.09
12/27 0.06 0.04 0.01 0.04 0.33 0.48 0.03 0.02 0.01

12/28 0.07 0.02 0.12 0.12 0.27 0.21 0.03 0.02 0.07
12/29 0.38 0.14 0.36 0.55 0.71 0.19 0.15 0.26 0.53
12/30 0.4 0.32 0.27 0.44 0.23 0.29 0.04 0.14 0.29

12/31 0.02 0.01 0.01 0.01 0.04 0.4 0.1 0.01 0.00Computation 2020, 8, x FOR PEER REVIEW 17 of 26 
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3.2. Predictions: 2017–2019->2020

In this section, we report the predictions our GB model has made in the case that the pollutants,
at the basis of the relationship that we assume them to have, are considered as a mixture obtained
with an average of the three previous years, more specifically, 2017, 2018, and 2019, and finally
provided as input to the model. As before, the predictions are given in Table 4 on both a daily and a
per-province basis.

All the considerations we have already anticipated in the previous subsections are all still valid,
including the one on the personal protection measures.

It is worth noting here that extending to the three previous years (2017–2019) has not brought to
more positive predictions. This can be due to several factors, including the fact that 2019 may have
been a quite favorable year, in terms of registered pollution. In any case, the general trend of our
predictions comes confirmed. Two provinces, in particular, Parma and Piacenza, seem to run larger
risks in terms of the number of infections that exceed the threshold of 17. This is clearly visible both
in the probability values reported in Table 4 and in the heatmap of Figure 7. Again, we have input
evidence that during the observed period, as long as 135 days, the numbers of crucial days, on a
per-province basis, are as follows:

Bologna (1);
Ferrara (0);
Forlì-Cesena (0);
Modena (0);
Parma (29);
Piacenza (43);
Ravenna (0);
Reggio Emilia (1);
Rimini (0).

Table 4. Predictions (2017-2018-2019->2020): probability values.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

9/21 0.00 0.01 0.00 0.02 0.02 0.33 0.00 0.12 0.00

9/22 0.00 0.03 0.00 0.12 0.05 0.12 0.02 0.04 0.00

9/23 0.11 0.02 0.07 0.08 0.09 0.08 0.03 0.07 0.05

9/24 0.04 0.01 0.15 0.1 0.09 0.08 0.01 0.02 0.1

9/25 0.00 0.02 0.00 0.06 0.06 0.06 0.01 0.02 0.00

9/26 0.04 0.01 0.00 0.11 0.08 0.05 0.01 0.01 0.00

9/27 0.01 0.01 0.01 0.05 0.05 0.03 0.03 0.04 0.05

9/28 0.00 0.03 0.00 0.12 0.04 0.09 0.03 0.06 0.00

9/29 0.01 0.07 0.00 0.15 0.06 0.03 0.02 0.04 0.00

9/30 0.02 0.01 0.01 0.03 0.01 0.13 0.00 0.01 0.00

10/1 0.00 0.01 0.00 0.26 0.05 0.07 0.04 0.04 0.00

10/2 0.01 0.09 0.1 0.08 0.09 0.14 0.02 0.04 0.00

10/3 0.07 0.02 0.06 0.1 0.15 0.19 0.01 0.07 0.01

10/4 0.14 0.03 0.11 0.22 0.24 0.15 0.02 0.03 0.12

10/5 0.01 0.04 0.01 0.11 0.05 0.19 0.05 0.01 0.01

10/6 0.00 0.06 0.00 0.06 0.08 0.05 0.00 0.02 0.00
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Table 4. Cont.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

10/7 0.00 0.00 0.02 0.12 0.4 0.12 0.01 0.09 0.00

10/8 0.07 0.04 0.13 0.06 0.24 0.23 0.04 0.06 0.02

10/9 0.1 0.07 0.11 0.09 0.22 0.3 0.08 0.12 0.05

10/10 0.03 0.07 0.01 0.22 0.19 0.19 0.03 0.06 0.01

10/11 0.01 0.04 0.01 0.13 0.32 0.18 0.05 0.07 0.01

10/12 0.01 0.13 0.15 0.36 0.28 0.21 0.04 0.09 0.02

10/13 0.00 0.01 0.03 0.04 0.26 0.04 0.05 0.07 0.00
10/14 0.03 0.04 0.08 0.06 0.21 0.52 0.12 0.08 0.00
10/15 0.04 0.11 0.04 0.16 0.44 0.47 0.05 0.06 0.06
10/16 0.07 0.08 0.23 0.37 0.51 0.34 0.05 0.12 0.04
10/17 0.16 0.09 0.12 0.19 0.41 0.28 0.09 0.23 0.04

10/18 0.02 0.21 0.04 0.06 0.14 0.43 0.15 0.05 0.07
10/19 0.03 0.47 0.05 0.22 0.67 0.35 0.11 0.6 0.23
10/20 0.11 0.11 0.13 0.16 0.56 0.66 0.1 0.24 0.15
10/21 0.06 0.16 0.05 0.05 0.28 0.86 0.07 0.07 0.03
10/22 0.05 0.09 0.13 0.1 0.38 0.82 0.07 0.07 0.03
10/23 0.05 0.12 0.06 0.19 0.62 0.81 0.03 0.18 0.02
10/24 0.12 0.21 0.21 0.2 0.53 0.9 0.22 0.25 0.03
10/25 0.34 0.27 0.11 0.18 0.36 0.92 0.1 0.19 0.07
10/26 0.18 0.11 0.04 0.18 0.49 0.81 0.08 0.19 0.05
10/27 0.16 0.1 0.4 0.17 0.62 0.86 0.23 0.16 0.11
10/28 0.27 0.18 0.26 0.15 0.59 0.85 0.28 0.22 0.19
10/29 0.17 0.3 0.05 0.19 0.84 0.82 0.05 0.26 0.04
10/30 0.02 0.08 0.07 0.18 0.77 0.6 0.06 0.11 0.02
10/31 0.04 0.27 0.25 0.13 0.4 0.64 0.14 0.12 0.01
11/1 0.04 0.14 0.11 0.23 0.68 0.91 0.09 0.12 0.02
11/2 0.09 0.06 0.15 0.18 0.43 0.64 0.15 0.1 0.04
11/3 0.07 0.47 0.14 0.2 0.33 0.7 0.25 0.21 0.04
11/4 0.23 0.16 0.21 0.38 0.64 0.84 0.2 0.33 0.05
11/5 0.17 0.17 0.06 0.15 0.53 0.48 0.25 0.13 0.02
11/6 0.03 0.02 0.04 0.15 0.62 0.35 0.04 0.03 0.01
11/7 0.05 0.05 0.03 0.02 0.3 0.43 0.03 0.03 0.03

11/8 0.03 0.05 0.06 0.11 0.42 0.27 0.01 0.08 0.02
11/9 0.02 0.07 0.03 0.28 0.68 0.23 0.02 0.05 0.03

11/10 0.07 0.06 0.03 0.07 0.41 0.18 0.1 0.12 0.07

11/11 0.04 0.01 0.17 0.15 0.49 0.22 0.04 0.14 0.01
11/12 0.06 0.09 0.05 0.28 0.67 0.07 0.04 0.18 0.05
11/13 0.02 0.02 0.02 0.01 0.14 0.1 0.04 0.01 0.02

11/14 0.03 0.01 0.03 0.02 0.13 0.15 0.01 0.02 0.05

11/15 0.01 0.02 0.01 0.08 0.47 0.1 0.02 0.05 0.05

11/16 0.08 0.00 0.01 0.09 0.41 0.03 0.06 0.03 0.00

11/17 0.01 0.01 0.02 0.03 0.09 0.05 0.02 0.03 0.01

11/18 0.01 0.09 0.03 0.16 0.22 0.03 0.02 0.05 0.01
11/19 0.01 0.08 0.02 0.32 0.52 0.22 0.13 0.18 0.01
11/20 0.03 0.04 0.16 0.04 0.17 0.05 0.07 0.04 0.04

11/21 0.05 0.02 0.08 0.21 0.44 0.18 0.05 0.01 0.09

11/22 0.03 0.01 0.03 0.09 0.13 0.04 0.03 0.02 0.04
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Table 4. Cont.

Day Bo Fe Fc Mo Pr Pc Ra Re Rn

11/23 0.04 0.04 0.02 0.08 0.26 0.1 0.02 0.05 0.01

11/24 0.01 0.04 0.03 0.16 0.4 0.13 0.02 0.07 0.00

11/25 0.07 0.06 0.03 0.16 0.4 0.26 0.09 0.05 0.05
11/26 0.14 0.02 0.08 0.22 0.52 0.21 0.13 0.07 0.08
11/27 0.05 0.06 0.04 0.15 0.15 0.19 0.06 0.04 0.05

11/28 0.22 0.28 0.03 0.24 0.46 0.29 0.25 0.08 0.07
11/29 0.12 0.04 0.14 0.23 0.31 0.51 0.15 0.22 0.11
11/30 0.48 0.15 0.15 0.13 0.19 0.38 0.23 0.11 0.15

12/1 0.03 0.07 0.09 0.11 0.39 0.16 0.12 0.05 0.12
12/2 0.05 0.09 0.03 0.09 0.52 0.63 0.07 0.1 0.02
12/3 0.04 0.04 0.03 0.04 0.32 0.67 0.03 0.05 0.04
12/4 0.04 0.08 0.02 0.09 0.38 0.32 0.07 0.04 0.02
12/5 0.14 0.08 0.06 0.27 0.76 0.66 0.13 0.04 0.01
12/6 0.14 0.08 0.22 0.1 0.38 0.5 0.12 0.06 0.07
12/7 0.01 0.36 0.35 0.25 0.66 0.45 0.25 0.17 0.3
12/8 0.03 0.32 0.19 0.38 0.38 0.48 0.2 0.08 0.03
12/9 0.15 0.22 0.03 0.13 0.35 0.55 0.2 0.08 0.01

12/10 0.12 0.12 0.17 0.1 0.45 0.56 0.09 0.05 0.34
12/11 0.24 0.08 0.11 0.09 0.36 0.73 0.08 0.08 0.06
12/12 0.1 0.06 0.04 0.18 0.22 0.77 0.09 0.05 0.03
12/13 0.23 0.19 0.25 0.19 0.53 0.9 0.2 0.22 0.09
12/14 0.09 0.12 0.18 0.22 0.39 0.79 0.22 0.19 0.12
12/15 0.15 0.27 0.18 0.24 0.72 0.84 0.23 0.26 0.07
12/16 0.07 0.38 0.1 0.29 0.73 0.85 0.29 0.13 0.07
12/17 0.05 0.18 0.21 0.12 0.36 0.82 0.16 0.09 0.12
12/18 0.12 0.18 0.08 0.26 0.53 0.86 0.18 0.18 0.05
12/19 0.16 0.36 0.42 0.38 0.55 0.92 0.24 0.33 0.06
12/20 0.13 0.05 0.18 0.13 0.42 0.71 0.24 0.15 0.07
12/21 0.18 0.28 0.33 0.2 0.51 0.71 0.27 0.34 0.17
12/22 0.06 0.48 0.15 0.23 0.37 0.44 0.4 0.17 0.00
12/23 0.59 0.08 0.41 0.13 0.57 0.5 0.25 0.19 0.04
12/24 0.12 0.14 0.14 0.08 0.43 0.66 0.1 0.08 0.15
12/25 0.07 0.11 0.08 0.11 0.24 0.48 0.14 0.12 0.06
12/26 0.09 0.23 0.1 0.18 0.52 0.8 0.1 0.08 0.16
12/27 0.1 0.1 0.11 0.18 0.49 0.82 0.11 0.16 0.2
12/28 0.05 0.15 0.03 0.21 0.49 0.63 0.1 0.12 0.02
12/29 0.09 0.22 0.13 0.19 0.45 0.86 0.18 0.15 0.04
12/30 0.27 0.22 0.19 0.13 0.27 0.7 0.15 0.12 0.1
12/31 0.12 0.24 0.05 0.12 0.55 0.5 0.12 0.04 0.06

3.3. Predictions: What Happens If Personal Protection Measures Are Not Respected?

In this final section, we report on the predictions our GB model has made in the case that the
personal protection measures indicated by the Italian Government are not respected.

In some sense, this is a special kind of sensitivity analysis where we have varied the unique model
parameter that can be significantly touched (i.e., the personal protection measures).

In this specific case, we present the predictions, returned by our model, only under the form of
heatmaps, where again, exactly like before, a lot of red color in the map corresponds to a very likely
occurrence of a resurgence of the virus, on that week, in that province.

Once again, we have provided two separate sets of predictions and two correspondent heatmaps.
The first one is that where we have used only the pollution measured in the year 2019 (Figure 8),
while the second one averages the pollutants over three different years, 2017–2019 (Figure 9).
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We believe that no other comment is needed here, as the plausibility of a resurgence of the virus is
highly evident under the given circumstances. We could only add the consideration that one could
recognize that the current rising infective trend of August 2020 could be just the trigger of a new virus
explosion that those heatmaps clearly display.

4. Discussion and Conclusions

We have developed a scientific study that aims at making predictions on a possible resurgence of
a COVID-19 incidence in the Italian region of Emilia-Romagna (which was one of the most hardly hit
during the first phase of contagion in the period of February–April 2020).

We have based our study on a precise, given hypothesis, the most important being that of a
correlation existing between the presence of circulating pollutants in the air, such as PM2.5, PM10,
and NO2, and the number of infected people. Believing in the existence of this relationship, data were
collected, on a daily basis, for a period as long as mid-February 2020–end of July 2020.

These data amounted both to the measurements of the values of the aforementioned pollutants,
as well as to the registered number of infections. This was carried out for all the nine provinces
comprising the Italian region of Emilia-Romagna. Not only that, but data which were useful to
instruct our predictive models were also represented by the restrictions that were imposed to the
region of Emilia-Romagna by the Italian Government, during four different and subsequent phases,
which happened during that period.

Upon completion of the data collection activity, we moved on to the selection of a computational
model. Among many possible alternatives, we resorted to machine learning (ML) models, suitable for
learning the function we believe can be at the basis of our hypothesis. After having conducted a
numerical comparative study among several ML models, based on the available data, we found that
the gradient boosting (GB) model was the one that fit squarely to the situation under observation,
reaching an accuracy of almost 90% in a preliminary testing phase.

With that model, we then moved to the predictions, considering as possible estimates of the
pollution than could happen in the future period of 21 September–31 December 2019 the values of the
pollutants measured in previous years, namely, 2017–2019 (for the same temporal period of interest).

Relevant is also the consideration that the predictions were made by inputting to our model the
situation demarcated by the measures decided on Phase 3 by the Italian Government.

At the end of all this long process, we have got our predictions provided under the form of a
probability value. In essence, our model predicts the probability of surpassing a threshold of infected
people in a given province, and on a certain day. Based on those probability values, we finally depicted
heatmaps that could better give a general picture of the possible COVID-19 resurgence in the region
of interest.

To summarize these results, the risk of a very strong second wave of COVID-19 in Emilia-Romagna
seems moderate, even if those predictions also express the concern that at least two single provinces
(namely, Parma and Piacenza) could be subjected to a more complex situation.

To conclude the set of our predictions, we also conducted a special kind of sensitivity analysis
where our model was run, yet with a variation on the parameter concerning the use of personal
protection measures. In such a case (i.e., the personal protection measures are not adopted by people),
the situation becomes very different, and a risk of a resurgence of the virus becomes very plausible,
for almost all the nine provinces in Emilia-Romagna.

Before we can conclude this paper, we feel the duty to finally discuss possible fallacies and
limitations of our investigation regarding, at least, the three following points: (i) the scientific
methodology we adopted, (ii) the choice of the data, the adopted model, and the decisional threshold
of 17 infections, and finally (iii) the extensibility of the model to different COVID-19 situations.

As far as the scientific method is concerned, we have already discussed, at length, in a previous
paper on the hypothesis of the existence of a correlation between pollutants and infections in our
region [6]. We do not have any intention to retrace here the entire scientific path that led us to
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believe to this hypothesis. It suffices here to remind that we have already subjected that assumption
to a statistical testing procedure (i.e., a Granger causality testing), whose results were essentially
confirmative. Moreover, we know very well that, while this scientific issue is still at the center of a
controversy [46], it is also true that various papers (and numerous researchers) have claimed that this
virus can be airborne, and that particulate matter may further favor an airborne route, as various
already cited papers have confirmed.

To move on to the second point, we would like to discuss, first, the issue of the employed data.
We understand the reasons valued researchers have decided to resort to multiple sources of data to
be used as early indicators of a second wave of the virus (see [20], for example). Nonetheless, we,
as experienced data scientists, believe in the actual validity of data only when they are accompanied
by a well-defined hypothesis. This always brings to a positive result. If experimental data provide
confirmative results, in fact, one gets a kind of confirmation that can also be extended, by some measure,
to the theory in general; otherwise, the hypothesis needs to be rejected, or at least revised. On the
other side, with a lot of data, yet without a working hypothesis, one could also get good/bad results in
some circumstances, but they would ignore what the real motivations are behind that success/failure.
This justifies our approach as to the choice of our data.

As for the computational model, it should be clear that with our work, we do not want to refuse
to acknowledge the importance of more traditional predictive methodologies, such as SIR, for example.
They are well-founded epidemiologic models whose validity is out of discussion [47]. Nonetheless,
the incidence of a quite unknown virus, like COVID-19, has put all of us into the difficult position of
dealing with new alternatives. From this point of view, we are confident that ML models can provide
great help, provided that they are used by experts, who are perfectly aware of all the implications they
carry [48].

The issue regarding the threshold value of 17 infections may be the source of much controversy.
Nevertheless, first, we would like to work with a parameter that was both simple to calculate and also
a clear direct indicator of how many people got infected on a daily per-province basis. Following this
reasoning, one could suggest working with a separate prediction model for each province, based on the
average value of those infections that occurred only in that province. Nonetheless, In Emilia-Romagna,
our experience was that we had provinces (such as Ferrara, for example) with a constantly low value
of that average, even during the hardest part of the COVID-19 outbreak, while the situation in the
region was generally very bad, hence our decision to use a unique value, computed as an average
over all the total number of infected people in the region, yet to be applied to each province, as an
early indicator. To strengthen this argument, one should consider as generally alarming, and needing
to be taken into serious consideration, a situation where many provinces in a region simultaneously
reach, or surpass, a given predefined value of infections. Less worrying, by contrast, would be that
situation where just a very few of them surpass even a high value of infected people. In this case,
more plausible is the occurrence of a local isolated outbreak, whose management is usually easier.
In simpler words, this latter situation would not raise any serious concerns about the plausibility of a
second wave running over the majority of the region, and over all its provinces.

Finally, allow us to address the extensibility of our model to different COVID-19 scenarios. In some
sense, we recognize that this could be one of the main weaknesses of our approach. Just to cite one,
for example, the hypothesis that links infections with pollution can be applied just to those geographical
areas that mostly suffer from this unpleasant condition. Nevertheless, it is also true that pieces of
evidence have begun to emerge that this virus hits harder in those geographical areas where the general
climatic and environmental conditions are somewhat complex.

This said, our model could be generalized, provided that our GB algorithm is instructed, validated,
and finally tested with the values of the pollutants and the number of infections coming from the region
of interest. Not only this: As one of the inputs of the model is also the type of personal protection
measures which are adopted (or even enforced) in that given region, this parameter is also needed to
allow the model to make the predictions.
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Again, one could criticize our study on the basis of the fact that there are multiple possible factors
that have led to the devastations brought by the virus in many areas in the world. Nonetheless,
we respond to this criticism with the consideration that many traditional studies have been already
conducted that have proven to be a very poor proxy for understanding the extension of this contagion.
Our investigation, by contrast, is projecting a new scenario based on an original hypothesis that
makes our prediction model unique in the world. At the time we write this article, we cannot
have a confirmation of the precision of our predictions, but they will be soon confirmed/rejected by
history—and this, too, is science at the service of society.

We want to conclude with a final, but important, consideration. All the experiments we have
conducted are reproducible using the data available in the public repositories we have mentioned.
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Abstract: Coarse-grained (CG) modeling has defined a well-established approach to accessing greater
space and time scales inaccessible to the computationally expensive all-atomic (AA) molecular
dynamics (MD) simulations. Popular methods of CG follow a bottom-up architecture to match
properties of fine-grained or experimental data whose development is a daunting challenge for
requiring the derivation of a new set of parameters in potential calculation. We proposed a novel
physics-informed machine learning (PIML) framework for a CG model and applied it, as a verification,
for modeling the SARS-CoV-2 spike glycoprotein. The PIML in the proposed framework employs a
force-matching scheme with which we determined the force-field parameters. Our PIML framework
defines its trainable parameters as the CG force-field parameters and predicts the instantaneous
forces on each CG bead, learning the force field parameters to best match the predicted forces
with the reference forces. Using the learned interaction parameters, CGMD validation simulations
reach the microsecond time scale with stability, at a simulation speed 40,000 times faster than the
conventional AAMD. Compared with the traditional iterative approach, our framework matches
the AA reference structure with better accuracy. The improved efficiency enhances the timeliness of
research and development in producing long-term simulations of SARS-CoV-2 and opens avenues to
help illuminate protein mechanisms and predict its environmental changes.

Keywords: coarse-grained modeling; SARS-CoV-2; molecular dynamics; machine learning

1. Introduction

All-atomic molecular dynamics (AAMD) simulations have defined a foundational
basis for molecular modeling, providing both atomic- and femtosecond-level resolutions
into the dynamic evolution of systems. However, its computational cost often limits
its practical and large-scale applications beyond microsecond simulations of millions of
atoms. Multiscale coarse-grained (CG) modeling defines a well-established approach
within literature for simulating complex, high-definition systems using simplified, lower-
resolution representations, often by aggregating groups of atoms into a single CGMD
“bead,” thus increasing computational efficiency [1–4]. Popular methods of CG strive to
match structure properties or energy distributions of fine-grained or experimental data
which center around describing a new force field, consisting of the system’s parameters and
potential calculations, to reproduce the properties of all-atomic (AA) reference simulations.
In practice, the CG approaches do not aim to fully reproduce the distributions of the
reference data, instead focusing on optimizing, and thus sacrificing complexity in favor
of accessing more relevant simulation spatial and temporal scales. The optimization of
an accurate and consistent CG model remains an active and significant challenge in the
field [5–7].
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Recent advances in machine learning (ML) have proven their strength to accelerate
both in vitro and in silico biological studies [8–11]. In this work, we develop a novel physics-
informed machine learning (PIML) framework for parameterization and optimization of
CG force fields, resulting in the development of physics-informed CG models from fine-
grained molecular dynamics (MD) to enable simulation across greater spatial and temporal
scales that are inaccessible to conventional AAMD simulations. As an example, we focus on
the SARS-CoV-2 spike glycoprotein in practical application. The outbreak of SARS-CoV-2
in 2019 and its continued persistence have led to millions of deaths globally [12], prompting
investigations of its molecular structure and mechanisms of infection. The outer surface of
the virion is covered by numerous unique spike proteins, largely responsible for the binding
of the virus to the host cell receptor angiotensin-converting enzyme 2, thus mediating cell
entry [13]. Hence, understanding this protein is crucial to investigating the infectivity of the
virus and taking steps toward better therapeutics and vaccines. In this study, the protein
serves as a prime example of both a timely and significant application for our proposed
methodology. While studies are currently underway in uncovering specific mechanisms
of action of the SARS-CoV-2 virion or possible therapeutics [14,15], many practical and
large-scale applications of AAMD simulations are challenged by the computational expense
when dealing with this S-protein of over twenty thousand atoms [16].

Efforts have been made to develop CG models with the corresponding force fields
to simulate the S-protein; for instance, a hetero-elastic network model [17,18] was used to
optimize bonded energy calculations, while relative-entropy minimization was applied
to learn nonbonded interactions and an empirical approach was taken to refine the CG
model [18]. Another study [2] utilized the iterative Boltzmann inversion method (IBIM)
to reproduce the reference atomic fluctuations. We propose a novel ML-based parameteri-
zation approach that goes beyond the existing approaches by defining physics-informed
force field parameters and learning the CG free energy functions that account for the
entire network of bonded and nonbonded interactions. We unify the optimization task
for the CG force field for more efficient parameter determination. The model, trained by
a force-matching scheme, corroborates the CG forces and associated effective potential
with the AAMD simulation data. This approach, offering an easily generalizable means of
parametrization to different proteins and applications, differentiates from other schemes
that rely on empirical or user-defined parameters.

While there exist ML-based force fields in other studies, most notably CGNet [19], and
its variants CGSchNet [20], as well as TorchMD [21], they are different from our approach.
While they were developed for application on smaller proteins such as alanine dipeptide
or chignolin, this study aims to tackle a more challenging application with a significantly
larger protein, and hence we rely on ML to derive and parameterize a force field.

The interactions of the bottom-up CG model, in our approach, use a combination
of iterative and PIML strategies. The AAMD simulations, producing the ground truth,
are conducted on powerful supercomputers to help obtain massive data to derive the
associated CG model. Our main contributions are:

• An innovative application of supervised ML is proposed to derive a physics-informed
CG model.

• The supervised ML is combined with molecular dynamics towards greater efficiency,
achieving a speed-up of CGMD simulations of 40,000 over the conventional AAMD
simulations while retaining structural accuracy.

• The greater efficiency enhances the timeliness of the research in producing long-term
simulations and blazes a path for new applications and further investigation, i.e.,
protein binding and prediction of environmental changes.

The remainder of this paper is organized as follows. Section 2 describes the physics-
informed CG model and its implementation. Section 3 reports the experimental results
of the CGMD simulations and corroborates them with the AAMD simulations. Section 4
provides discussions and future direction in multiscale modeling of biomolecular systems.
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2. Materials and Methods
2.1. Coarse-Grained Structure

The full SARS-CoV-2 S-protein model was obtained from the protein data bank 6VXX
and was run through NAMD software [22,23] on the AA system consisting of 22,815 atoms
(a total of 45,153 atoms including the hydrogens). The coarse-grain structure follows the es-
tablished aggressive Shape-Based Coarse Graining (SBCG) approach [6], which reduced the
model to 60 representing particles, maintaining the homotrimeric structure with 20 atoms
per chain (Figure 1 and Table 1). Atoms were assigned to beads based on the overall
topology of the macromolecule. This involved the use of a topology-preserving neural
network, where each CG bead corresponds to a node in the network and the coordinates of
the atoms are inputted to adapt the neural network [24]. The hyperparameters used in the
SBCG GUI are as follows: initial eps = 0.3, final eps = 0.05, initial lambda = 5.0, and final
lambda = 0.01, with bonds formed from the all-atom structure. Beads are uncharged, but
the CG model is fitted to reproduce the electrostatics present in the AAMD simulations.
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Figure 1. Structural visualization for AA vs. CG model. Red, blue, and green denote 3 chains.

Table 1. Statistics for AA vs. CG model.

AA Model CG Model

Atoms 22,815 (45,153 w/hydrogens) 60

Bonds 23,385 81

Angles 31,887 159

Dihedrals 37,872 231

2.2. Coarse-Grained Force Field

Our physics-informed CG modeling follows a multiscale approach, characterized
roughly by the transfer of high resolution AA data to the CG scale through the param-
eterization of a CG model [25]. The approach is shown in Figure 2. In the first box of
“Data Collection,” spatial and temporal mapping schemes are employed to map the AAMD
simulations to the reduced-resolution CG structure, representing the ground truth. In
the second box of “Parameter Optimization,” a new CG force field is parameterized to
conform to this ground truth. This is carried out by first employing IBIM on the bonded
parameters [26,27], which iteratively scales parameters and simulates trials to match the
reference radial distribution function (RDF). Visual Molecular Dynamics (VMD) software
is used to initialize the non-bonded terms [28] based on approximated values and solvent-
accessible-surface area (SASA) calculations [29]. In the last box of “Validation Analysis,”
the learned parameters are implemented in a CGMD to corroborate the proposed method
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with the baseline reference. The simulations are evaluated in terms of simulation accuracy
and computation speed. Specific details are provided in the following sections.
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Figure 2. Illustration of the proposed CG modeling pipeline.

We converted our reference data to the CG scale to use the AAMD validation simula-
tion data for training. This reference trajectory obtained in Appendix A.1. (Appendix A)
was processed by mapping the extracted coordinate and force data to the CG scale both
spatially and temporally. Spatial mapping was conducted by computing the center of mass
and the sum of forces for each atom group, constituting a bead, according to:

XI,CG =
∑i wixi,AA

∑i wi
, (1)

FI,CG = ∑
i

fi,AA, (2)

where XI,CG and FI,CG represent the calculated position and force of bead I, xi,AA and fi,AA
represent the position and force of atom i within the atom group constituting bead I, and
wi represents the mass of atom i as a weighting factor. In addition to the spatial mapping,
temporal averaging is performed to account for the greater temporal scales used in CGMD
simulations. We averaged both coordinates and forces across the temporal dimension every
100 frames.

We initialized the parameters with traditional CG force field parameterization methods
with bonded and nonbonded potentials. The bonded potentials are based on fixed lists of
2-, 3-, and 4-body interactions (bonds, angles, and dihedrals) modeled as spring harmonics
with parameters as spring harmonic constants. The nonbonded potential is modeled with
a Lennard-Jones (LJ) potential accounting for the weak dipole attraction between distant
atoms and the hard-core repulsion between close atoms. The IBIM method is employed
to initialize the new CG model force-field parameters, specifically the bonded parameters.
Diverging from the original implementation, we incorporated the refinement of dihedral
parameters in addition to the bonds and angles. From the ground truth, we extracted
distribution functions P(x) of variable x representing the bond lengths, bond angles, or
torsion angles. The potential function U(x) is constructed using the Boltzmann relation:

U(x) = −kBTlnP(x), (3)

where kB is a parameter and T represents the temperature. Furthermore, the bonded
parameters can be modeled as harmonics:

U(x) =
1
2

k(x− x0)
2, (4)

where x0 represents the respective equilibrium measurement and k represents the harmonic
constant. Thus, the Boltzmann inversion relationship between distribution functions and
harmonic constants can be illustrated as follows:

〈x2〉 − 〈x2〉 = kBT
2k

, (5)
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where the equilibrium measurement x0 is equal to the average position 〈x〉. For a network
of these bonded interactions, these bonds, angles, and dihedrals are not independent, and
thus when parameters for each of them are derived individually using this Boltzmann
inversion relationship, the stiffness of the structure may be overestimated. Hence, there is
necessity in further optimization to better match the reference distributions.

The parameters for the non-bonded LJ potential are initialized and approximated
by VMD and are based on the SASA calculations of the beads. Further detail into this
procedure and its calculations are given in (A3) in Appendix A.

With the LJ potential, ULJ , between pairs of beads (denoted by i and j subscripts) is
defined as shown in Equation (6):

ULJ = εij



(

Rminij

rij

)12

− 2

(
Rminij

rij

)6

 (6)

The relations between the εij and Rminij pair parameters with their respective trainable
parameters for individual beads are defined below in Equations (7) and (8), respectively.

εij =
√

εi ∗ εj, (7)

Rminij =
Rmini

2
+

Rminj

2
. (8)

2.3. Physics-Informed ML Model

A force-matching approach helps preserve thermodynamic consistency by minimizing
the error between the instantaneous ground-truth forces and predicted forces [19,20,29,30].
Our PIML model defines its trainable parameters as the CG force field parameters. The
CG coordinates serve as the input to the model, and the model further predicts the total
potential energy of the system. All physically relevant invariances are thus preserved.
Leveraging an automatic differentiation function, we take the negative gradient of this
energy with respect to the input coordinates, and thus effectively obtain the instantaneous
predicted forces. The task is thus to learn the parameters to minimize the error between
these predicted forces and ground-truth forces in the loss function.

The model architecture, shown in Figure 3, is detailed further below. The model
contains an initial featurization layer that converts the input coordinates to the pairwise
distances, bond lengths, bond angles, and torsion angles, as displayed in Figure 3. The
model uses two physics-informed layers, containing the trainable parameters, for the
prediction of energy: one is the Harmonic layer comprised of bond, angle, and dihedral
terms as bonded potentials; and the other is the Lennard-Jones layer.

Within the Harmonic layer, the trainable parameters include the harmonic constants,
whereas, in the LJ layer, the trainable parameters are the bead strength εi and the minimum
radius, Rmini , for each unique bead i. There exist 471 and 40 trainable parameters that
comprise the bonded and non-bonded interactions, respectively, in the physics-informed
model. For the dihedral potentials, the periodic representation accounts for the periodicity
of dihedrals, where the phase shift angle was adjusted to fit the equilibrium value as the
potential minima. The resulting energy governing the CG force field can be calculated as:

UCG = ∑
bonds

kb(r− r0)
2 + ∑

angles
ka(θ− θ0)

2 + ∑
dihedrals

kd(1 + cos(nψ−φ)) +
atoms

∑
i<j

εij

[(
Rminij

rij

)12
− 2
(

Rminij
rij

)6
]

, (9)

where ka, kb, and kd are spring factors, r is bond distance, θ is bond angle, ψ is torsion
angle, and φ is defined as the torsion phase shift angle, which acts as an equilibrium angle
in the periodical representation.
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The force
→
F CG can be calculated by the gradient of the potential

→
F CG = −∇xUCG. (10)

with the loss function defined as

Loss =

〈(→
F CG +∇UCG

)2
〉

, (11)

where FCG represents the predicted instantaneous force, and UCG represents the CG poten-
tial. This loss as a mean-squared error function between the predicted and the mapped
ground-truth forces provides a means of minimizing their difference.

2.4. Validation and Verification

A simulation for CGMD validation is carried out using the learned parameters, to-
gether with a separate AAMD simulation, to measure the performance of our approach
across the metrics of accuracy and speed. With regards to accuracy analysis, the RDFs
are applied in providing insight into the distance distribution of particles around certain
particles. The torsional analysis is applied in the form of free energy surface plots and the
free energy was plotted along two dihedral quadruples, providing insight into the confor-
mational states. From the plots, validation simulations are compared with the ground-truth
training data using the dihedral pairs belonging to the S-protein receptor-binding domain
(RBD) and S2 domain. Additionally, root-mean-square-deviation (RMSD) and root-mean-
square-fluctuation (RMSF) are analyzed to monitor the structural stability of the compared
models throughout their respective trajectories.

In addition to the simulated accuracy, we examined the speeds to measure our model’s
efficiency. The CGMD simulation was run for one microsecond and its simulation speed
was carefully compared with the continuous AAMD validation simulation.

We extended the study to a solvated application beyond the solvent-free simulation
environment. Using the same learned forces, we explicitly solvate the CG S-protein into a
18 nm × 18 nm × 18 nm MARTINI water box [31]. In this hybrid system, each MARTINI
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water molecule is represented by a single bead (of mass 72 amu). To evaluate the accuracy of
this solvated experiment, we ran an AAMD simulation of the S-protein solvated in a water
box of TIP3 water molecules at the same 310K temperature in canonical (NVT) ensembles.

3. Results

With the learned parameters, the accuracy and speed of the CGMD simulations
vs. the AAMD validation simulations are reported. Using the 97,905 coordinates and
force frames, the parameter initialization for bonds, angles, and dihedrals, respectively,
proceeded with 3 IBIM iterations. For each iteration, the trial simulations were conducted
with 10 femtosecond timesteps, minimized for 500 picoseconds, and simulated for 4 ns.
There exist 511 total learnable parameters that are learned with the physics-informed model
configured with the Adam optimizer with a learning rate of 0.001 and a batch size of 256
for 10 epochs.

3.1. Accuracy Analysis

The CGMD and the AAMD simulations start from the same structure; the visual-
ized protein structures of the starting and ending conformations after microsecond-level
simulation in Figure 4 show their good alignment.
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Figure 4. CG structure visualization: AAMD validation simulation final frame state (left). CGMD
simulation final frame state (right).

The RDF measures the distribution of distances between the pairs of particles of two
specified atom groups. For instance, Figure 5 defines these two groups to be some given
“Atom #” and all “Atoms,” respectively. Comparing the RDFs of our CGMD simulations
with the ground-truth data, we measure the deviation between the mapped ground truth
and the proposed CGMD simulations. As illustrated in Figures 5 and 6, the proposed PIML
approach reproduces the structure in reference plots with reasonable accuracy, as it can
capture the peaks in RDF.

To quantitatively measure the accuracy of the RDF plots, we incorporate Spearman’s
correlation coefficient [32] to measure the correlation between the CGMD and reference
AAMD RDF plots. In Figures 5 and 6, the Spearman’s correlation coefficients for each RDF
plot are 0.7472, 0.6560, 0. 6278, 0.5690, and 0.9692 for atoms 7, 11, 14, and 19 and all atom
pairs, respectively. This incorporation of a quantitative metric of Spearman’s correlation
coefficient confirms this reasonable correlation in Figure 5, and strong overall correlation in
Figure 6.

Four representations are chosen in Figure 5: “Atom 7” and “Atom 14” plots present
regions on the N-terminal domain (NTD), whereas the “Atom 11” plot references a bead
located on the receptor-binding domain of the S-protein. “Atom 19” represents the base of
the S2 subunit, closer to the stalk of the S-protein.

The free energy profiles are plotted as a function of dihedral angles. The plots are used
to analyze and compare the torsion angles as a representation of the protein conformational
states. Two separate pairs of torsional angles are displayed for such analysis: one is located
on the receptor-binding domain, and the other is in the S2 subunit. Figure 7 shows that
the proposed CGMD simulations match precisely the ground-truth training data. The
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proposed physics-informed CG model captures the positions and peaks in the respective
pairs with comparable accuracy to the AA model.

Computation 2023, 11, x FOR PEER REVIEW  8  of  18 
 

 

coefficient confirms this reasonable correlation in Figure 5, and strong overall correlation 

in Figure 6. 

Four representations are chosen in Figure 5: “Atom 7” and “Atom 14” plots present 

regions on the N‐terminal domain (NTD), whereas the “Atom 11” plot references a bead 

located on the receptor‐binding domain of the S‐protein. “Atom 19” represents the base 

of the S2 subunit, closer to the stalk of the S‐protein.   

 

Figure 5. RDF plot from single reference atom comparison of the CGMD simulations vs. the AAMD 

validation simulations. In the colored beads visualizations: blue—chain A; red—chain B; green—

chain C;  orange—selected  atoms.  Spearman’s  correlation  coefficients:  (a)  0.7472;  (b)  0.6560;  (c) 

0.6278; (d) 0.5690. 

 

Figure  6.  RDF  plot  of  all  atoms  for  comparison  of CGMD  vs. AAMD.  Spearman’s  correlation 

coefficient: 0.9692. 

The free energy profiles are plotted as a function of dihedral angles. The plots are 

used  to  analyze  and  compare  the  torsion  angles  as  a  representation  of  the  protein 

conformational  states.  Two  separate  pairs  of  torsional  angles  are  displayed  for  such 

Figure 5. RDF plot from single reference atom comparison of the CGMD simulations vs. the AAMD
validation simulations. In the colored beads visualizations: blue—chain A; red—chain B; green—
chain C; orange—selected atoms. Spearman’s correlation coefficients: (a) 0.7472; (b) 0.6560; (c) 0.6278;
(d) 0.5690.
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Figure 6. RDF plot of all atoms for comparison of CGMD vs. AAMD. Spearman’s correlation
coefficient: 0.9692.
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Figure 7. Free energy profiles of RBD pair (top), NTD pair (middle), and S2 subunit pair (bottom).
Blue—chain A; red—chain B; green—chain C; orange—selected dihedral quadruplet.

Further analysis, showing the stability for the entirety of the microsecond, suggests the
proposed physics-informed CG approach is feasible for long-term modeling of the SARS-
CoV-2 S-protein. The evolution of the proposed physics-informed CG model trajectory was
analyzed by calculating the RMSD values using the starting structure as a reference frame.
The RMSD reveals the overall stability and conformational change of the whole protein.
Protein coordinates are recorded every 10 picoseconds and the RMSD was calculated on the
aligned trajectory. Figure 8 presents the RMSD of the proposed CGMD simulations along-
side the AAMD validation simulations. The CGMD RMSD remains consistent throughout
the full microsecond of simulation, indicating long-term structural stability.
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The RMSD relative errors are included as well. Each error bar is normalized and
extracted for statistics within a time period of 100 ns. All three simulations plotted below
start with the same structure, and the relative error represents the relative error of our
PIML and IBIM methods, respectively, with respect to the AAMD structures throughout
their CGMD simulations. The calculation for such relative error is defined below:

et =
|RMSDCG(t)− RMSDAA(t)|

RMSDAA(t)
(12)

where RMSDCG(t) and RMSDAA(t) represent the RMSD of the CGMD and AAMD simu-
lations, respectively, at time t.

The presented CGMD simulations appear to have greater fluctuations in comparison
with the AAMD validation simulations, which indicates the CGMD is likely exploring a
greater distribution of conformations. This is expected from the CG procedure, specifically
how the averaging procedure smooths effective potentials, and thus how it facilitates en-
hanced sampling of the underlying phase space [33]. Our CGMD appears to have reached
structures with RMSD values consistently closer to the RMSD values of the validation
AAMD simulation compared with the IBIM approach. The animated trajectories of the
AAMD validation simulation and the CGMD simulation are provided in the Supplemen-
tary Materials.

3.2. Speed Analysis

Both the AAMD validation simulations and the presented CGMD simulations are
conducted on a local cluster, where each computing node consists of two Intel Xeon
E5-2690v3 CPUs. By using the parallel NAMD package on 1 node with 24 CPU cores,
the AAMD validation simulations with 1 femtosecond as the time step size produced
0.243 nanoseconds/day while the CGMD simulations with 10 femtoseconds as the time
step size produced 9532.6 nanoseconds/day. This CGMD timestep was determined ex-
perimentally as the optimal speed that would maintain stable simulation. Specifically, we
experimented with an array of timestep sizes ranging from 4 fs to 100 fs, and we settled on
10 fs for stability and speed. The experimental outcomes indicate that the presented CGMD
validation simulations have a speed nearly 40,000 times faster than that of the AAMD
validation simulations. Detailed measurements are presented in Table 2.

Table 2. Validation simulation comparisons using 24 CPU cores.

Simulations Time Step
Size Total Steps Simulated

Time
Simulating

Time
Simulation

Speed

AAMD 1 fs 100,000 0.1 ns 35,557 s 0.243 ns/day
CGMD 10 fs 500,000,000 5 µs 45,318 s 9532.6 ns/day

3.3. Solvation Application

We assimilated our CG S-protein model with the MARTINI solvent using two sep-
arate cutoff configurations for nonbonded interactions. In this new configuration, the
nonbonded interactions within the S-protein group are configured with a cutoff of 4.5 nm
and smooth switching starting at 2.0 nm. Nonbonded interactions within the MARTINI
solvent and between the solvent and the S-protein are configured with a cutoff of 1.2 nm
and a smooth switching starting at 0.9 nm. For the RDF results as illustrated in Figure 9,
our solvated model reproduces the structure in AAMD validation simulations collected
in [14], resembling the significant peaks and retaining the overall structure of the protein.
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Figure 9. RDF plot from single reference atom comparison of the solvated CGMD simulations vs. the
solvated AAMD validation simulations. “Atom 7” and “Atom 14” reflect on the NTD, and “Atom 11”
reflects the receptor-binding domain.

4. Discussion

We presented an artificial intelligence-enabled model for multiscale CGMD simula-
tions. The PIML approach to the model parameterization includes two phases: (1) using
AAMD simulations to generate the ground truth for learning parameters and (2) using the
learned parameters to run long-term CGMD simulations. The physics-informed bottom-up
CGMD model simulations are compared with the ground truth AAMD simulations, the
gold standard in accuracy, indicating a resemblance of the conformation. The proposed CG
model is significantly faster than the AAMD simulation model. With the aggressive CG ap-
proach, the proposed model achieves nearly 40,000× the speed of the AAMD simulations.

The work underscores the following contributions toward more efficient multiscale
modeling:

• The approach demonstrates the superiority of the supervised ML in deriving a
CG model.

• In combining ML with molecular dynamics, our approach immensely accelerates
simulations compared with the conventional AA models while maintaining stability
and structural accuracy.

• The gained efficiency can elucidate protein mechanisms and render a great impact on
future simulation studies by relieving the ongoing concerns about timeliness.

The application of our model into a solvated environment was presented and no term
in our CG model was calibrated to reproduce the solvated reference. While rough structural
accuracy was preserved, most clearly seen with the RDF plots, a limitation was noticed
in our solvated simulation; the protein is observed to contract more than the reference. It
is likely that calibration to the cutoffs, as well as the switching value, could yield better
accuracy, and we intend to explore this as a future work. The proposed method underscores
an important step forward in extending these large systems to actual applications in cases
that it was not explicitly parametrized to reproduce, and in future works, we intend to
adapt this proposed approach to binding of the S-protein with the ACE-2 receptor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/computation11020024/s1.
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Appendix A

Appendix A.1. All-Atomic Simulations

To obtain the reference data, we first conducted AAMD simulations on the AiMOS
supercomputer, a heterogeneous system architecture that includes IBM POWER9 CPUs
connected to NVIDIA TESLA V100 GPUs, and the local computing cluster Seawulf at Stony
Brook University. We utilized the CHARMM-36 force field [34] in describing the system in
a vacuum canonical ensemble at 310K. Using NAMD software, conjugate gradient and line
search energy minimization (10 picoseconds) was run prior to 400 picoseconds of simulation
(1 fs timestep). From the stable simulation range, we randomly generated 200 different
initial positions and orientations to branch off into separate, unique simulations. This
was carried out to include replicas to address the chaotic component of MD simulations.
From these simulations, frames containing coordinate and force data were collected every
fs. A total of 9.7905 ns of the simulation data were accumulated, which upon mapping
yielded 97,905 frames of coordinates and forces. From here on, this data constitutes our
ground-truth data that represents the reference data the CG model aims to match.

Appendix A.2. Dihedral Potential Term

For the dihedral potentials, they can be represented in two ways: quadratic repre-
sentation of Equation (A1) and periodic representation of Equation (A2). The quadratic
form represents the dihedral potential in the same manner as bonded potentials, where
the trainable constants are analogous to spring constants. The periodic representation
accounts for the periodicity of dihedrals, where the phase shift angle was adjusted to fit the
equilibrium value as the potential minima.

UCG = ∑
bonds

kb(r− r0)
2 + ∑

angles
ka(θ− θ0)

2 + ∑
dihedrals

kd(ψ−φ)2 +
atoms

∑
i<j

εij



(

Rminij

rij

)12

− 2

(
Rminij

rij

)6

, (A1)

UCG = ∑
bonds

kb(r− r0)
2 + ∑

angles
ka(θ− θ0)

2 + ∑
dihedrals

kd(1 + cos(nψ−φ)) +
atoms

∑
i<j

εij

[(
Rminij

rij

)12
− 2
(

Rminij
rij

)6
]

, (A2)

The torsion angle distribution can be plotted to depict the unimodality in Figure A1
and thus confirm the choice of n = 1 as the multiplicity for the periodic representations.
The distributions in Figure A1 present more common conformations with the yellow
color, where the means are the respective equilibrium states. While quadratic, or n = 0
representation also fits this unimodality, we understand that long-term secondary structural
changes are unlikely to be modeled properly with this quadratic dihedral form. Thus,
we favor the use of the periodic form, which lends itself to more flexibility in case of
additional states.
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ϵ ϵ
𝑆𝐴𝑆𝐴
𝑆𝐴𝑆𝐴
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Figure A1. Randomly selected examples of torsion angle distributions for 4 dihedrals of atom indices
of (a): (0, 11, 4, 1); (b): (0, 11, 4, 9); (c): (0, 13, 11, 14); and (d): (1, 4, 9, 14).

Appendix A.3. Parameter Initialization

The traditional IBIM used to initialize the bonded parameters process follows the fol-
lowing procedure: reference distributions extracted from ground-truth AAMD simulations.
Initial bonded parameter “guesses” are obtained through the relation between references
and bonded parameters in Equation (5). A trial simulation is run by configuring a short
CG simulation with the aforementioned parameter guesses under the environment setup
specified in Section 3. Distributions are extracted and compared with the reference AAMD
distributions, and we then scale the bonded parameters accordingly to better match the
distributions. This procedure of trial simulations and scaling parameters is iterated until
the distributions match within reasonable tolerance. Our procedure involved 3 iterations
until the parameters (denoting stiffness) extracted from its distributions are roughly within
a 25% average deviation from that of reference [6]. Figure A2 illustrates the IBIM refinement
of the parameters to initialize our parameters and match the reference distributions to
reasonable accuracy after three iterations.

The nonbonded LJ parameter initialization based on SASA calculations is described as
follows [29]. In this procedure, each bead i was assigned an LJ strength εi based on:

εi = εmax

(
SASAhphob

i
SASAtot

i

)2

, (A3)

where SASAhphob
i and SASAtot

i represent the hydrophobic and total solvent-accessible
surface areas of domain i, respectively, and εmax is the user-controlled maximum energy
for the LJ potential well depth. The reasoning behind using the SASA to determine εi is to
allow hydrophobic beads to aggregate and hydrophilic beads to dissolve in the solvent,
which is implicitly present in the CGMD simulations. The user-controlled εmax was selected
to be 20 kcal/mol based on approximations from findings in previous studies [29]. It is
noted that while the user-defined constants are often tested for closest agreement with
AAMD simulations in other studies [5], they will be later refined in the methodology as
parameters by the ML model. The LJ potential radius ri (with the minimum of Rmini ) is
given by the radius of gyration of the group of atoms constituting bead i, which is increased
by a user-defined addition, e.g., an increment of 1 Å was selected in this work which
accounts for the fact that each atom has a radius typically of 1–2 Å.
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Figure A2. Illustration of IBI method’s initialization of parameters for 3 iterations. Bonds (a); angles (b);
dihedrals (c).

Appendix A.4. Parameter Learning

Figure A3 displays the loss plot over the training process. Both training and validation
losses approached convergence after 4 epochs. The optimization of each individual bonded
and non-bonded parameter over the 10 epochs is visualized in Figure A4. Hyperparameters
of the network were determined experimentally to reach lower and faster convergence of the
training loss. In our PIML, there exists two different groups of hyperparameters: the layers
and trainable parameter count that were determined by the physics knowledge and the
protein structure; and the learning rate, optimizer, learning rate decay scheduler, and batch
size which were tuned experimentally. The range of learning rates we experimented with
was 0.0005 to 0.003, and we settled on 0.001. The range of batch sizes experimented with
was 16 to 512, and we settled on 256. The learning rate decay scheduler was experimented
with along the full 10 epochs; the rate of decay ranged from 0.1 to 0.3, and we settled on 0.3.
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Appendix A.5. ML Refinement on LJ Terms

We delved further into some specific changes reflected in the RDF measurements
because of our ML design. The ML procedure indicates significant refinements in the
model parameterization, particularly on the non-bonded LJ potential terms. Within this
refinement is the very noticeable decrease in both the epsilon and the associated well-
depth terms. Upon further investigation, it is shown that the model’s calculated energies
begin as positive (repulsion) and gradually become negative (attraction) by the end of the
training, demonstrating the proper optimization to match the distances of the ground-truth
data. In comparison with the IBIM trial results, specifically on the atom pair between
atom numbers 17 and 46, the learned distances are more consistent with the ground-truth
result, as shown in Figure A5. Furthermore, the incorporation of a quantitative metric of
Spearman’s correlation coefficient, which is 0.5831 for the PIML CGMD and −0.0376 for
the IBIM CGMD, confirms this advantage.
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Appendix A.6. RMSFs for Bonded Interactions

The comparison RMSFs of our CGMD simulation and the ground-truth AAMD simula-
tions is shown in Figure A6. The results indicate that the PIML yielded a relatively accurate
fit to the AAMD fluctuations. The difference between the ground-truth and continuous
validation data in this case mainly stems from the temporal averaging in the ground-truth
data, which may have dampened some fluctuations.

Computation 2023, 11, x FOR PEER REVIEW  16  of  18 
 

 

 

Figure A5. RDF plot between the atoms 17 and 46. Blue—chain A; red—chain B; green—chain C; 

orange—selected nonbonded atom pair. Spearman’s correlation coefficients: (PIML CGMD) 0.5831; 

(IBIM CGMD) −0.0376. 

Appendix A.6. RMSFs for Bonded Interactions 

The  comparison  RMSFs  of  our CGMD  simulation  and  the  ground‐truth AAMD 

simulations is shown in Figure A6. The results indicate that the PIML yielded a relatively 

accurate  fit  to  the AAMD  fluctuations.  The  difference  between  the  ground‐truth  and 

continuous validation data in this case mainly stems from the temporal averaging in the 

ground‐truth data, which may have dampened some fluctuations.   

 

Figure A6. RMSF comparison between the proposed CGMD simulation and the AAMD validation 

simulations. 

Figure A6. RMSF comparison between the proposed CGMD simulation and the AAMD validation
simulations.

385



Computation 2023, 11, 24

References
1. Moore, T.C.; Iacovella, C.R.; McCabe, C. Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. J.

Chem. Phys. 2014, 140, 224104. [CrossRef] [PubMed]
2. Leong, T.; Voleti, C.; Peng, Z. Coarse-Grained Modeling of Coronavirus Spike Proteins and ACE2 Receptors. Front. Phys. 2021,

9, 680983. [CrossRef]
3. Yu, A.; Pak, A.J.; He, P.; Monje-Galvan, V.; Casalino, L.; Gaieb, Z.; Dommer, A.C.; Amaro, R.E.; Voth, G.A. A multiscale

coarse-grained model of the SARS-CoV-2 virion. Biophys. J. 2021, 120, 1097–1104. [CrossRef] [PubMed]
4. Izvekov, S.; Voth, G.A. Multiscale coarse graining of liquid-state systems. J. Chem. Phys. 2005, 123, 134105. [CrossRef] [PubMed]
5. Izvekov, S.; Voth, G.A. A Multiscale Coarse-Graining Method for Biomolecular Systems. J. Phys. Chem. B 2005, 109, 2469–2473.

[CrossRef] [PubMed]
6. Voth, G.A. Coarse-Graining of Condensed Phase and Biomolecular Systems; CRC Press: Boca Raton, FL, USA, 2009.
7. Liang, D.; Zhang, Z.; Rafailovich, M.; Simon, M.; Deng, Y.; Zhang, P. Beyond the Scales: A physics-informed machine learning

approach for more efficient modeling of SARS-CoV-2 spike glycoprotein. Res. Sq. 2021. [CrossRef]
8. Zhang, Z.; Zhang, P.; Wang, P.; Sheriff, J.; Bluestein, D.; Deng, Y. Rapid analysis of streaming platelet images by semi-unsupervised

learning. Comput. Med. Imaging Graph. 2021, 89, 101895. [CrossRef]
9. Zhang, Z.; Zhang, P.; Han, C.; Cong, G.; Yang, C.-C.; Deng, Y. AI Meets HPC: Learning the Cell Motion in Biofluids. In Proceedings

of the Supercomputing Conference 2020 (SC20), Atlanta, GA, USA, 16–19 November 2020. Research Posters Track. [CrossRef]
10. Zhang, Z.; Zhang, P.; Han, C.; Cong, G.; Yang, C.-C.; Deng, Y. Online Machine Learning for Accelerating Molecular Dynamics

Modeling of Cells. Front. Mol. Biosci. 2022, 8, 812248. [CrossRef] [PubMed]
11. Sheriff, J.; Wang, P.; Zhang, P.; Zhang, Z.; Deng, Y.; Bluestein, D. In Vitro Measurements of Shear-Mediated Platelet Adhesion

Kinematics as Analyzed through Machine Learning. Ann. Biomed. Eng. 2021, 49, 3452–3464. [CrossRef]
12. Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20,

533–534. [CrossRef] [PubMed]
13. Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B

betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [CrossRef]
14. Niu, Z.; Hasegawa, K.; Deng, Y.; Zhang, Z.; Rafailovich, M.; Simon, M.; Zhang, P. Modeling of the thermal properties of

SARS-CoV-2 S-protein. Front. Mol. Biosci. 2022, 9, 953064. [CrossRef]
15. Song, M.; Zhang, P.; Han, C.; Zhang, Z.; Deng, Y. Long-time simulation of temperature varying conformations of COVID-19 spike

glycoprotein on IBM supercomputers. In Proceedings of the Supercomputing Conference 2020 (SC20), Atlanta, GA, USA, 16–19
November 2020. Research Posters Track.

16. Liang, D.; Song, M.; Niu, Z.; Zhang, P.; Rafailovich, M.; Deng, Y. Supervised machine learning approach to molecular dynamics
forecast of SARS-CoV-2 spike glycoproteins at varying temperatures. MRS Adv. 2021, 6, 362–367. [CrossRef]

17. Lyman, E.; Pfaendtner, J.; Voth, G.A. Systematic Multiscale Parameterization of Heterogeneous Elastic Network Models of
Proteins. Biophys. J. 2008, 95, 4183–4192. [CrossRef]

18. Pak, A.J.; Yu, A.; Ke, Z.; Briggs, J.A.G.; Voth, G.A. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2
fusion machinery core. Nat. Commun. 2022, 13, 1002. [CrossRef]

19. Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; de Fabritiis, G.; Noé, F.; Clementi, C. Machine Learning of
Coarse-Grained Molecular Dynamics Force Fields. ACS Cent. Sci. 2019, 5, 755–767. [CrossRef]

20. Husic, B.E.; Charron, N.E.; Lemm, D.; Wang, J.; Pérez, A.; Majewski, M.; Krämer, A.; Chen, Y.; Olsson, S.; de Fabritiis, G.; et al.
Coarse graining molecular dynamics with graph neural networks. J. Chem. Phys. 2020, 153, 194101. [CrossRef]

21. Doerr, S.; Majewski, M.; Pérez, A.; Krämer, A.; Clementi, C.; Noe, F.; Giorgino, T.; De Fabritiis, G. TorchMD: A Deep Learning
Framework for Molecular Simulations. J. Chem. Theory Comput. 2021, 17, 2355–2363. [CrossRef]

22. Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2
Spike Glycoprotein. Cell 2020, 181, 281–292. [CrossRef]

23. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [CrossRef]

24. Arkhipov, A.; Freddolino, P.L.; Schulten, K. Stability and Dynamics of Virus Capsids Described by Coarse-Grained Modeling.
Structure 2006, 14, 1767–1777. [CrossRef]

25. Ayton, G.S.; Noid, W.G.; Voth, G.A. Multiscale modeling of biomolecular systems: In serial and in parallel. Curr. Opin. Struct.
Biol. 2007, 17, 192–198. [CrossRef]

26. Reith, D.; Pütz, M.; Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations: Mesoscale Potentials
from Atomistic Simulations. J. Comput. Chem. 2003, 24, 1624–1636. [CrossRef]

27. Agrawal, V.; Arya, G.; Oswald, J. Simultaneous Iterative Boltzmann Inversion for Coarse-Graining of Polyurea. Macromolecules
2014, 47, 3378–3389. [CrossRef]

28. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
29. Arkhipov, A.; Yin, Y.; Schulten, K. Four-Scale Description of Membrane Sculpting by BAR Domains. Biophys. J. 2008, 95, 2806–2821.

[CrossRef]
30. Noid, W.G.; Chu, J.-W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A.; Das, A.; Andersen, H.C. The multiscale coarse-graining

method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [CrossRef]

386



Computation 2023, 11, 24

31. Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI Force Field: Coarse Grained Model for
Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [CrossRef]

32. Spearman Rank Correlation Coefficient. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 502–505.
[CrossRef]

33. Zhou, J.; Thorpe, I.F.; Izvekov, S.; Voth, G.A. Coarse-Grained Peptide Modeling Using a Systematic Multiscale Approach. Biophys.
J. 2007, 92, 4289–4303. [CrossRef]

34. Huang, J.; MacKerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J.
Comput. Chem. 2013, 34, 2135–2145. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

387



Citation: Oluwagbemi, O.O.;

Oladipo, E.K.; Kolawole, O.M.; Oloke,

J.K.; Adelusi, T.I.; Irewolede, B.A.;

Dairo, E.O.; Ayeni, A.E.; Kolapo, K.T.;

Akindiya, O.E.; et al. Bioinformatics,

Computational Informatics, and

Modeling Approaches to the Design

of mRNA COVID-19 Vaccine

Candidates. Computation 2022, 10,

117. https://doi.org/10.3390/

computation10070117

Academic Editors: Simone Brogi and

Vincenzo Calderone

Received: 4 April 2022

Accepted: 27 June 2022

Published: 8 July 2022

Corrected: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Bioinformatics, Computational Informatics, and Modeling
Approaches to the Design of mRNA COVID-19
Vaccine Candidates
Olugbenga Oluseun Oluwagbemi 1,2,3,*, Elijah K. Oladipo 4,5, Olatunji M. Kolawole 6, Julius K. Oloke 7,
Temitope I. Adelusi 8, Boluwatife A. Irewolede 5, Emmanuel O. Dairo 5,9, Ayodele E. Ayeni 5,10,
Kehinde T. Kolapo 5, Olawumi E. Akindiya 5,11, Jerry A. Oluwasegun 5, Bamigboye F. Oluwadara 5

and Segun Fatumo 12,13,*

1 Department of Computer Science and Information Technology, Faculty of Natural and Applied Sciences,
Sol Plaatje University, Kimberley 8301, South Africa

2 Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7602, South Africa
3 National Institute of Theoretical and Computational Sciences (NiThECs), Stellenbosch 7602, South Africa
4 Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology,

Adeleke University, Ede 232104, Nigeria; koladipo2k3@yahoo.co.uk
5 Genomics Unit, Helix Biogen Institute, Ogbomoso 210214, Nigeria; boluwatifeboluene@gmail.com (B.A.I.);

edairo7538@stu.ui.edu.ng (E.O.D.); ayenieugene@gmail.com (A.E.A.); kolapokehinde95@gmail.com (K.T.K.);
akindiya.liz@gmail.com (O.E.A.); jerryoluwasegun3@gmail.com (J.A.O.);
favourbamigboye1@gmail.com (B.F.O.)

6 Department of Microbiology, University of Ilorin, Ilorin 234031, Nigeria; tomak7475@gmail.com
7 Department of Natural Science, Precious Cornerstone University, Ibadan 200223, Nigeria;

jkoloke@yahoo.co.uk
8 Computational Biology/Drug Discovery Laboratory, Biochemistry Department, Ladoke Akintola University

of Technology, (LAUTECH), Ogbomoso 210214, Nigeria; tiadelusi@lautech.edu.ng
9 Department of Virology, College of Medicine, University of Ibadan, Ibadan 200132, Nigeria
10 Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan 200132, Nigeria
11 Microbiology Programme, Department of Biological Science, Olusegun Agagu University of Science and

Technology, Okitipupa 350113, Nigeria
12 The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM,

Entebbe 7545, Uganda
13 Department of Non-Communicable Disease Epidemiology (NCDE), London School of Hygiene and Tropical

Medicine, London WC1E 7HT, UK
* Correspondence: olugbenga.oluwagbemi@fulbrightmail.org (O.O.O.); segun.fatumo@lshtm.ac.uk (S.F.);

Tel.: +27-663926506 (O.O.O.)

Abstract: This article is devoted to applying bioinformatics and immunoinformatics approaches for
the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating
SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact
that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the
end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce
threats from the pandemic include social restrictions, restrictions on international travel, and vaccine
development. In most cases, vaccine development depends on the spike glycoprotein, which serves
as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged
from mutations crossing continental boundaries, about 6000 delta variants have been reported along
the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage.
This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors
suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope
mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African
countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes.
The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a
sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly
immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The
molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of
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110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine
was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has
good population coverage, with the highest range in East Africa (80.44%) followed by South Africa
(77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa
(75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly
selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of
the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn
filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the
simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate
and adaptive immune response.

Keywords: bioinformatics; COVID-19; SARS-CoV-2; immunoinformatic; mRNA; vaccine;
modeling; computational

1. Introduction

Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome
(MERS), of the viral coronavirus family, have ravaged the world in the last two decades [1].
The World Health Organization (WHO, henceforth) declared COVID-19 a global pandemic.
This declaration was made open in the year 2020. As of 20 January 2022, 336,790,193 cases
of COVID-19 and 5,560,718 deaths [2] were confirmed. The RNA of the virus SARS-CoV-2,
of the family coronaviridae, possesses a spike (S) glycoprotein, which extends over the
surface of the virus to initiate the insemination of coronavirus into the host cells [3,4]. On
this glycoprotein, there are 14 residue-binding receptors, which communicate with the
angiotensin-converting-enzyme 2 (ACE2) receptor [5]. Coronavirus spike glycoprotein has
acceptable antigenicity and immunogenicity [3,6].

As of 5th of August 2021, over 6000 deaths were recorded within a week, with
19% increases in the confirmed cases of SARS-CoV at almost 300,000 [7,8]. About 6000 delta
variants have been recognized in more than 20 countries in Africa, with South Africa having
the greatest percentage [9].

Vaccine administration holds a great promise to successfully combat the menace
of the COVID-19 global pandemic [10–12]. The adoption of messenger RNA (mRNA)
in vaccine development is characterized with great flexibility. Messenger RNA encodes
and expresses all types of proteins, and by rule it enables the production of vaccines for
combating diverse diseases and protein replacement remedy [13]. The scientific signif-
icance of mRNA vaccine development cannot be overemphasized. The production of
the Moderna and Pfizer/BioNTech COVID-19 vaccines followed this large-scale vaccine
production pattern [14].

Messenger RNA vaccines provide a novel method of building immunity against
pathogens [15]. One of the distinct roles of mRNA vaccines in the fight against SARS-CoV-2
is the provision of the blueprint of genes for the spike protein of COVID-19 [16]. Unlike
peptide-based vaccines, mRNA vaccines do not have restraints of the MHC haplotype;
however, as an advantage, mRNA vaccines have a self-adjuvanting property, which is lack-
ing in protein-based vaccines. The mRNA also binds to pattern-recognition receptors [13].
The fundamental principle in the operations of the mRNA vaccines is to provide transcrip-
tion, which assists in encoding wanted antigens. This is closely followed by the synthesis
of RNA. The sequence that encodes the immunogens is present, and the technique can
effortlessly be implemented for mRNA production [17].

Messenger-RNA-based vaccines have been found to have better biosafety charac-
teristics in comparison to DNA-based vaccines because the translation of antigens and
immunogens occurs in the cytoplasm instead of the nucleus. Therefore, it is almost impos-
sible for mRNA to fuse into the host genome as opposed to DNA-based vaccines [10]. In
addition, mRNA is safe for use as a vector in comparison with DNA because it conveys
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a small line of sequence for translation (a transient molecule) and does not communicate
with the genes present in the host [10]. The methods of administering mRNA vaccines
vary. Moreover, the effectiveness of the vaccine is sometimes influenced by its route of
administration [18]. Furthermore, mRNA vaccines are effective and safe [18]. The most
common method of administering the mRNA vaccine is by injection [19]. Available mRNA
vaccines such as Moderna and Pfizer, 1–2 days after administering, have related side effects
such as [16], pain, redness, fatigue, fever, myalgias, and arthralgias.

Immunoinformatics is an aspect of bioinformatics that is involved with the compu-
tational analysis of biological and immunological data; it also involves the designing of
vaccine candidates by predicting the best usable antigens, adjuvant, carriers, and epitopes
for a vaccine. Immunoinformatics approaches have reduced the needed time and cost for
vaccine development [1].

The aim of this study is to apply an integrated knowledge of bioinformatics, compu-
tational informatics, and modeling approaches towards the design of mRNA COVID-19
vaccine candidates. Specifically, this study is aimed at designing a multi-epitope mRNA
vaccine based on the genome sequences of circulating SARS-CoV-2 variants in Africa.
The human leucocyte antigen (HLA) allele’s supertypes were also analyzed to ensure a
wide population coverage for the designed vaccine. This is the scientific novelty of this
research paper.

2. Materials and Methods
2.1. Study Design

The systematic workflow diagram for the mRNA vaccine design is shown in Figure 1.
The design has 13 different sections, which are as follows: (1) retrieval of the whole genome
sequences of SARS-CoV-2; (2) prediction and evaluation of CTL epitopes (See Table 1);
(3) prediction and evaluation of HTL epitopes (See Table 1); (4) prediction and evaluation of
LBL epitopes (See Table 1); (5) multiple sequence alignment (MSA) (See Figure 2); (6) dock-
ing between T-lymphocyte epitopes and MHC alleles (See Table 2); (7) population coverage
prediction (See Table 3); (8) construction of mRNA vaccine (See Figure 3); (9) prediction
of the toxicity, allergenicity, antigenicity, and physicochemical properties (See Table 4);
(10) structure modeling, assessment, and validation; (11) conformational B-cell epitopes
prediction; (12) molecular docking of vaccine with TLR receptor; (13) molecular dynamic
simulation; (13) computational or in silico simulation.

2.2. Retrieval of SARS-CoV-2 Nucleotide Sequence

The data used for this research were retrieved from the Global Initiative for Sharing
All Influenza Data (GISAID) database [20]. The data retrieved were targeted towards five
African countries, namely Angola, Botswana, Mozambique, Lesotho, and Namibia. These
data are the relevant genomic sequence data needed for the experiment and analysis. The
data retrieved for these five African countries were based on criteria such as complete
genome, low coverage exclusion, high coverage level, host, and date of submission. These
criteria were considered for retrieving our sequences, and a total of 189 SARS-CoV-2 whole
genome sequences deposited on the GISAID database between 1 December 2020 and
5 March 2021 were retrieved. Based on the criteria, three out of the five African countries
in the study area—Angola (54), Botswana (26) and Mozambique (109)—had records for
SARS-CoV-2 submitted to the GISAID database. There were no records found for the
other two African countries (Lesotho and Namibia). The retrieved nucleotide sequences
were annotated with the Wuhan reference sequence (accession number NC_045512.2)
downloaded from NCBI database to establish the existing surface glycoprotein in the
downloaded sequences.
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Table 1. Epitopes selected for vaccine construction.

Recognizing Cell Epitope Sequence

Cytotoxic T lymphocyte

WTAGAAAYY
HRHLRFLTL
YQPYRVVVL
YPQILLLVL
SPRRARSVA

Helper T lymphocyte ISFHVLTKLRLKCKL

B lymphocyte WVFITTKTTKVGWKVSSEF
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lected for vaccine design have been identified by boxes. 

Figure 2. Multiple sequence alignment of spike glycoprotein sequences. The epitope sequences
selected for vaccine design have been identified by boxes.
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Table 2. Selected T-lymphocyte epitopes and their associated MHC alleles.

T-Lymphocyte Type CTL Epitopes MHC Binding ALLELES

CTL

WTAGAAAYY
HLA-A*29:02, HLA-A*30:02, HLA-B*15:01,
HLA-B*46:01, HLA-B*58:01, HLA-B*53:01,
HLA-B*35:01, HLA-C*07:01, HLA-C*03:03

HRHLRFLTL HLA-B*48:01, HLA-C*06:02, HLA-C*07:01

YQPYRVVVL
HLA-A*02:06, HLA-A*32:01, HLA-B*48:01,
HLA-B*46:01, HLA-C*06:02, HLA-C*07:01,

HLA-C*03:03

YPQILLLVL HLA-B*51:01, HLA-B*53:01, HLA-B*35:01

SPRRARSVA HLA-B*51:01

HTL ISFHVLTKLRLKCKL HLA-DRB1*11:01

Table 3. IEDB server predicted results.

Population/Region
MHC Class Combined

Coverage Area Average Hit PC90

Central Africa 75.64% 2.21 0.41

East Africa 80.44% 2.33 0.51

North Africa 76.13% 2.29 0.42

South Africa 77.23% 2.23 0.44

West Africa 76.65% 2.22 0.43

Average 77.22 2.26 0.44

Standard deviation 1.7 0.05 0.04
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2.3. Prediction and Evaluation of Cytotoxic T-Lymphocytes (CTL) Epitopes

Innate and adaptive defenses are some of the mechanisms utilized by host cells to
neutralize viral replication [21]. One of such important adaptive defenses is the CD8+
cytotoxic T lymphocyte (CTL)’s response, which controls infection by a few mechanisms,
along with the secretion of anti-viral cytokines and Fas/FasL-mediated lysis [21]. Many
studies have featured CTL-mediated cytotoxicity, but the rate of fatality of virus-infected
cells by CTL response in vivo is yet to be understood [21]. NetCTL v1.2 server was used
to predict CTL epitopes [22]. A 9-mer CTL epitope was generated by the server for all
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the twelve major histocompatibility (MHC) class I supertypes available on its database,
which includes A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62, respectively,
with the threshold set at 0.75. Epitopes predicted in the CTL supertypes for each country
were inspected to determine overlapping epitopes. Epitopes having frequency overlap
between 60 and above for each country were subjected for further analysis. Furthermore,
the prediction of the CTL epitopes’ immunogenicity was performed by using the IEDB
analysis resources. This tool showed negative and positive values. The epitope with the
positive value was selected for further studies. Furthermore, Toxinpred [23] and AllerTOP
2.0 servers [24] were utilized to determine the toxicity and allergenicity of the immunogenic
epitopes, respectively. Those that met the criteria were subjected to antigenicity assessment
through the VaxiJen server [25]. Epitopes with value ≥ 0.5 were classified as antigenic. The
antigenic epitopes were subsequently predicted for their MHC class I allelic partners by
adopting the IEDB consensus algorithm, with human selected as the host.

Table 4. Allergenic, antigenic, physicochemical assessments, and toxicity of the vaccine construct.

Features Result Assessment

Number of amino acids 1995 Suitable
Molecular weight 223.1 kDa Average

Theoretical pI 8.69 Slightly basic
Total number of negatively

charged residues (Asp + Glu) 196 -

Total number of positively
charged residues (Arg + Lys) 223 -

Total number of atoms 312178 -
Chemical formula C9908H15532N2774O2906S97 -

Instability index (II) 48.78 Unstable
Aliphatic index 82.13 Thermostable

Grand average of
hydropathicity (GRAVY) −0.296 Hydrophilic

Antigenicity 0.5059 (VaxiJen)
0.7334 (ANTIGENPro)

Antigenic
Antigenic

Allergenicity Probable non-allergen
(AllerTOP 2.0 and AllergenFP) Non-allergen

Toxicity Non-toxin (ToxinPred) Non-toxic

2.4. Prediction and Evaluation of Helper T-Lymphocytes (HTL) Epitopes

The prediction of HTL epitopes is part of immunoinformatics approaches for vaccine
development [1]. HTL aid the activity of other immune cells by binding to specific HTL
epitopes using MHC class II molecules. Prospective HTL epitopes were predicted using
IEDB MHC-II consensus algorithm [26]. Mouse was selected as the host species, and the
epitopes were filtered using a percentile rank less than 0.25. The VaxiJen server was then
used to compute the epitopes’ antigenicity [25]. Epitopes that were non-toxic and epitopes
that were non-allergenic were selected by the ToxinPred and AllerTOP 2.0 servers [24].
After utilizing the IFNepitope [26], IL4pred [26], and IL10pred [27] servers, the remaining
epitopes were assessed for interferon- (IFN-) inducibility and interleukin-4 (IL-4) and
interleukin-10 (IL-10) inducibility. Three antigenic and cytokine-producing epitopes were
shortlisted for the construction of the vaccine.

2.5. Projection and Evaluation of Linear B-Cells Lymphocytes (LBL) Epitopes

B cells form a core component of the adaptive immune system. One of their character-
istics is the ability to identify and grant lasting protection against pathogens. They perform
these functions by expressing proteins and producing antibodies on B cells’ surfaces. They
identify antigens and bind to a section of an antigen in a very selective fashion. The
knowledge of the identification procedure is adapted in vaccine design to develop more
effective and long-lasting vaccines against pathogens [28]. IBCE-EL server [29] was utilized
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to predict the LBL epitopes in this study. Only epitopes that were positive were selected for
the prediction by the server for probable LBL and occurrence of 25 times or more across
the three countries. An in-house-developed R-script program was used to perform further
analysis on the selected epitopes. The antigenicity of possible LBL epitopes was tested by
applying the VaxiJen server [25]. The evaluation of the toxicity and the antigenic epitopes’
allergenicity was performed by using ToxinPred server and the AllerTOP 2.0 server.

2.6. Multiple Sequence Alignment of SARS-CoV-2 Nucleotide Sequence

Unlike DNA viruses, SARS-CoV-2 (an RNA virus) has great propensity of undergoing
repetitive mutation [30]. To authenticate the probability of the selected region of our epi-
topes not having undergone mutation, 100 randomly selected spike glycoprotein sequences
from the study area were fed into Clustal Omega software for analysis [31].

2.7. Designing of mRNA Vaccine

The methods adopted in the research conducted by Ahammad and colleagues [32]
were applied to construct an mRNA against SARS-CoV-2 virus. The epitopes used for
the vaccine construct were selected based on criteria such as the antigenicity, non-toxicity,
non-allergenicity, and cytokine-inducing properties (HTL only). Linkers were used to
link CTL, HTL, and LBL epitopes. These epitopes were selected to construct the mRNA
vaccine. HTL and LBL epitopes were linked by using (EAAK)2. (EAAK)2 was used to space
intra-LBL epitopes. AAY linker was used to link LBL and CTL epitopes. AAY linkers were
also used to combine intra-CTL epitopes. Adjuvants play important roles in the design of
effective vaccines for increased immunogenicity [33]. In this study, CD40 ligand (CD40L), a
co-stimulatory molecule, which functions as an agonist to the human immune receptor by
interacting with the antigen presenting cells [33], was utilized. CD40L sequence (UniProt
ID: P29965) was retrieved from the UniProt database and putatively linked together with
the HTL epitopes using the GPGPG linkers.

Furthermore, MHC I-targeting domain (MITD) was used to direct CTL epitopes
to MHC I compartment of the endoplasmic reticulum and tissue plasminogen activator
(tPA) [32]. The sequences of tPA (UniProt ID: P00750) and MITD (UniProt ID: Q8WV92)
were retrieved from the Uniprot database. It is evident that instability has been a major
problem encountered in the production of many mRNA-based therapeutics. Therefore,
it is pertinent to include elements that naturally find expressions in eukaryotic mRNA,
which is very important for mRNA stabilization [32]. We integrated the sequences of 5′ cap
and poly (A) tail of our vaccine design with the sequence of 5′ and 3′ untranslated regions
(UTRs) flanking its protein encoding ORF for mRNA molecules’ stability, accessibility of
ribosomes, and interactions with the translation machinery [34]. It has been established
that the length of poly (A) tail is significant in the translation efficiency of mRNA [32]. The
length of the poly (A) tail utilized in our study was from 120–150 base long. This range has
been considered as the optimal length according to existing studies. For instance, according
to Ahammad and colleagues [32], Poly (A) tail functions effectively alongside 5′ m7G cap
sequences within this range.

2.8. Prediction of Class I and Class II Epitopes’ Population Coverage

One of the important features of an epitope is its ability to closely bind to an HLA
molecule. Human population coverage is another significant feature that is very crucial in
selecting epitopes for vaccine design [35]. Population coverage is the expected percentage
of individuals in a population having the likelihood of inducing an immune response to
not less than one T-cell epitope in a set [36].

We utilized the IEDB population coverage tool [37] to determine the population of the
screened epitopes and their MHC alleles. This tool was used to compute the distribution
of persons predicted to respond to epitopes that have been selected with known HLA
background [37]. The genotypic frequencies of HLA were also computed. The T-cell
epitopes were queried based on certain variables such as area, ethnicity, and country [37].
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The total global population was selected, and this was followed by the selection of the
population associated with the subcontinents.

2.9. Vaccine Construct’s Predicted Antigenicity, Toxicity, Physicochemical Properties,
and Allergenicity

One of the significant features considered essential in vaccine development is the
propensity of designated vaccine candidates to possess antigenic property [33] and the
capability of inducing immune response leading to the formation of B and T lymphocytes
after administration. VaxiJen 2.0 and ANTIGENpro servers [38] were used for predicting
the antigenicity of the final vaccine construct [25].

ANTIGENpro server is dependent on sequence, alignment free, and independent
of pathogens in its predictive operations of protein antigenicity [38]. AllerTOP 2.0 [24]
and AllergenFP 1.0 servers [39] were used to check the allergenicity of the final vaccine
construct to determine if a vaccine construct is allergen or non-allergen.

AllerTOP’s prediction was based on ACC transformation and E-descriptors [24], while
AllergenFP’s prediction was based on the classification of allergens and non-allergens
datasets into five E-descriptors and then using auto-cross covariance (ACC) to transform
its strings into uniform vectors [39]. ToxinPred server [23] was used to predict the vaccine
construct’s toxicity. The operation of this server is dependent on the support vector machine
(SVM) model. This helps in toxicity and non-toxicity classification [23]. An online web
server, ExPASy ProtParam [40], was used to examine the physicochemical properties of the
vaccine construct.

2.10. Prediction of the Secondary Structure of the Vaccine Construct

Protein secondary structure helps to determine the protein folding orientation [41]. SOPMA
online server [42] was applied to assess the vaccine construct’s secondary structure [42]. The
vaccine construct’s secondary structure prediction by SOPMA yielded an accuracy of 69.5%.
Three-state structure (B-sheet, coil, and a-helix,) description was produced [43].

2.11. 3D Structural Modeling, Assessment, and Validation

The vaccine construct’s 3D structure was evaluated using the Phyre2 server [44].
Phyre2 built 3D models by utilizing and applying remote homology detection techniques
that have advanced capabilities. Phyre2 also assists with the prediction of binding sites for
ligands and the analysis of amino acids variants’ effects [44].

Despite making use of advanced template-based methods for modeling the 3D struc-
ture of an unknown protein, inaccuracies may still exist within the model structure [45].
This is expected especially when the template proteins do not share enough corresponding
homology with target proteins and thus may cause a deviation from the overall target
structure due to differences in their sequences [45].

GalaxyRefine web server [46] was used to refine the vaccine construct’s 3D structure
built by the Phyre2 server. The operations of the GalaxyRefine web server are as follows:
rebuilding of side chains, repacking side chains, and the relaxation of structure by the
molecular dynamics’ simulation. It has been proven that the web server approach has
produced the best performance according to the assessment of CASP10 [46].

ProSA-web server [47] was used to validate the refined 3D model of the vaccine
construct. This process helps to check the constructed 3D models of the vaccine structure for
any potential errors. Some of the other applications of this web server include identification
of errors in experimentally determined structures, protein engineering, and computation
of the total score for specific input structure [47]. A structure is said to contain errors if its
scores fall outside the score range of a native protein.

2.12. Prediction of Conformational B-Cell Epitope

ElliPro server was used for predicting [48] the conformational B-cell epitopes of the
final vaccine 3D model structure. As a web-based tool, ElliPro can assist with predicting
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epitope antibodies inherent in a sequence’s protein antigens. It performs implementation
of existing methods for protein structure as an ellipsoid. It computes protein residues’
protrusion indexes that lie outside ellipsoid [48].

2.13. Molecular Docking of Vaccine with TLR Receptor

Molecular docking is a significant bioinformatics technique widely adopted for the
prediction of the binding affinity and orientation between a receptor and its ligand [32].
Our study examined the possible binding affinity between the vaccine’s construct and
its receptor. ClusPro 2.0 server was used to conduct molecular docking [49]. There was
molecular docking between the refined 3D model of the final vaccine construct and an
immune toll-like receptor (TLR 4, PDB ID: 4G8A) obtained from Protein Data Bank [50].

2.14. Molecular Dynamics Simulations

The molecular dynamics was simulated by utilizing the iMODs server [51] to assess the
physical movements and stability of the vaccine’s TLR4 docked complex. The iMOD server
performs evaluation of protein stability by applying the normal mode analysis (NMA)
towards the computation of the interior coordinates. The eigenvalue, elastic network model,
covariance matrix, main-chain deformability plot, and B-factor values were used to depict
the stability of the protein [51].

2.15. Immune Response Simulation

An assessment of the immunogenicity of all the predicted conjugate vaccine peptides
and the attributes of the immune response was conducted by utilizing the C-ImmSim
online server [52]. Associated immune interactions and epitopes are predicted by the server
after utilizing a machine-learning-based technique. Three anatomical compartments are
automatically simulated. These include: (i) bone, in a situation where there is stimulation
of the hematopoietic stem cells, accompanied by the production of the myeloid cells,
(ii) thymus, and (iii) lymphatic organ. The administering of three injections having the
designed peptide vaccine was simulated at intervals of four weeks, i.e., day 0, day 28,
and day 56. This prime–booster–booster method was adopted at an interval of 4 weeks to
accomplish a lasting protective immune response.

Default parameter settings indicate the positioning at 1, 84, and 168. This implies that
each time step has an interval of 8 h. Time step 1 depicts the administration of injection
at time zero. There were administrations of three injections at intervals of four weeks.
However, there were administrations of eight injections at four-week intervals to cause
stimulation of repetitive reactions to the antigen. This scenario subjects the T-cell memory
to continuous examination. The plot analysis provided a platform to graphically interpret
the Simpson index [53].

3. Results
3.1. Prediction and Evaluation of CTL Epitopes

To obtain the best and choicest epitopes suitable for our vaccine construction from
among the large number of CTL epitopes predicted across the three countries, an overlap-
ping procedure was employed to avoid repetition of predicted epitopes.

There were 36 unique CTL epitopes of 12 MHC class I supertypes, with frequencies
above 60 times predicted by the NetCTL v1.2 server [22]. Seventeen of the epitopes
predicted, when subjected to evaluation, were positive for immunogenicity. IEDB class
I immunogenicity tool was used for this evaluation. ToxinPred [23] and AllerTOP 2.0
servers [24] predicted that of the 17 immunogenic epitopes, 16 were non-toxic and 11 were
non-allergenic. The 11 epitopes passed the three stages of prediction (i.e., immunogenicity,
toxicity and allergenicity), and they were further assessed for antigenicity by utilizing
the VaxiJen server [25]. The results predicted revealed that 5 out of the 11 epitopes were
successful in scaling above the antigenicity threshold of 0.5, which were then selected for
the vaccine construction (Table 1).
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3.2. Prediction and Evaluation of HTL Epitopes

Predicted results from the IEDB MHC-II allele tool revealed that 32 distinctive epitopes
with frequency of occurrence above 25 were predicted, and these spanned the three coun-
tries. Six of these epitopes assumed the VaxiJen threshold (≥0.5) for antigenicity. Results
from the ToxinPred server revealed that the six antigenic epitopes were non-toxic [23].
AllerTOP 2.0 server predicted two epitopes to be non-allergenic [24].

Following a careful examination of the interferon-γ (IFN-γ), interleukin-4 (IL-4), and
interleukin-10 (IL-10) inducibility using the IFNepitopes, IL4pred, and ILpred servers,
respectively, there was only one epitope that fulfilled all the criteria (see Table 1).

3.3. Assessment and Prediction of LBL Epitopes

A rigorous assessment of the translated nucleotide sequences for the possible existence
of B-cells epitopes was conducted using the BCpred server [54]. Epitopes that had percentile
ranks higher than 0.9 were selected. Further evaluation was conducted for the possible
existence of linear B cells by utilizing the IBCE-EL server. A total of 10 probable LBL
epitopes were predicted. Two of the ten epitopes predicted for possible presence of LBL
epitopes were proven to be antigenic (they met the criteria of being antigenic (≥0.5)) on the
VaxiJen server. The two epitopes were predicted to be non-toxic by ToxinPred while one
epitope was predicted to be non-allergic by the AllerTOP 2.0 server (see Table 1).

3.4. Multiple Sequence Alignment of SARS-CoV-2 Sequences

Multiple sequence alignment (MSA) of 100 spike glycoproteins of coronavirus was
conducted by using Clustal Omega. Interestingly, no mutation was observed within the
seven epitopes selected amongst the 100 SARS-CoV-2 spike glycoproteins (see Figure 2).

3.5. Designing of mRNA Vaccine

Analysis was performed on all seven selected epitopes (WTAGAAAYY, HRHLRFLTL,
YQPYRVVVL, YPQILLLVL, SPRRARSVA, ISFHVLTKLRLKCKL, and WVFITTKTTKVG-
WKVSSEF) to examine their interactions and their subsequent potentials for possible
development of an mRNA vaccine construct. The 5′ Cap, 5′ UTR, Kozak sequence, and tPA
(signal peptide) were merged with the adjuvant (CD40 ligand) and then linked to the HTL
epitope by the assistance of the GPGPG linkers from the beginning of the N-terminal of the
mRNA vaccine.

Epitopes were bonded together depending on their degree of interactional compatibil-
ity in a sequential manner with EAAKEAAK (HTL to LBL) and AAY (LBL to CTL and intra
CTL) linkers, respectively. The AAY linkers were used to connect the C-terminal end to the
CTL epitopes (see Figure 3).

3.6. Population Coverage

It is very important during epitope-based vaccine design to select epitopes that have
diverse HLA binding specificities and to ensure a broad population coverage. This is par-
ticularly paramount because an epitope can effectively evoke an immunological response
in individuals for cases that only find expression for a particular MHC molecule that forms
a complex with it [35].

Analysis on population coverage was performed with MHC class I and MHC class II
epitopes and with associated HLA alleles within five African geographic regions found in
the IEDB database. The result obtained revealed that all epitopes combined class I and II
to have an average coverage of 77.22% (Table 3). Maximum coverage (80.44%) was found
in East Africa, followed by South Africa (77.23%). West Africa and North Africa have
a coverage of 76.65% and 76.13%, respectively, while Central Africa has the minimum
coverage (75.64%), (See Table 3 and Figure 4).
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3.7. Prediction of Allergenicity, Antigenicity, Physicochemical Properties, and Toxicity of the
Vaccine Construct

The results of the allergenicity, antigenicity, physicochemical properties, and toxicity
analyses are depicted in Table 4. The mRNA vaccine candidate’s antigenicity was examined
using the VaxiJen and AntigenPro servers. Both servers revealed that the vaccine construct
has high antigenicity scores of 0.5059 and 0.7334, respectively. These results indicate the
vaccine’s ability to induce a robust immune response. Afterward, the vaccine’s allergenicity
was evaluated by the Allertop server and the AllergenFP 1.0 server to determine its nature.
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The results revealed that the vaccine construct was non-allergenic and devoid of toxicity.
Subsequently, the ExPaSy Protparam server [40] was applied to determine the vaccine’s
physicochemical behavior. The results from the assessment of the vaccine construct’s
physicochemical properties revealed that it consists of 1995 amino acids having a molecular
weight of 223.1 kDalton. Results showed that the vaccine construct has a theoretical
isoelectric point (pI) of 8.69. This indicates that it is slightly basic in nature.

The PH is defined by the theoretical pI in cases where the total charge of the peptide is
zero and computed based on the pK of all amino acids’ resident in the peptides [54]. In
addition, an index of 48.78 depicted an unstable vaccine construct. An instability score of
40 or less is a steady and a stable score [40]. Furthermore, the vaccine was characterized
with a globular structure with 82.13 as its aliphatic index score. The vaccine construct
has an estimated existence of 30 h in vitro for analysis in mammalian reticulocytes, more
than >20 h in vivo in yeast, and >10 h in vivo for Escherichia coli, which connotes the stabil-
ity of the vaccine’s in vitro and vivo phases. Furthermore, the coefficient of extinction was
computed and was 273,135 M−1cm−1, with absorption values (0.1%) (g/1) 1.224 consisting
of all cysteine pairs under aqueous conditions at 280 nm. The computed grand average
of hydropathicity (GRAVY) score was −0.296. This shows that the vaccine construct is
hydrophilic. It can foster interaction with water and blood and easily identify targets. It is
clear from physicochemical analysis results that the vaccine construct’s contents meet the
necessary criteria for vaccine formulation (See Table 4).

3.8. Secondary Structure Prediction

The vaccine’s secondary structure was analyzed using the SOPMA online server [42].
The results obtained revealed a stabilized structure for the vaccine construct with
36.44% alpha-helix, 20.45% extended strands, and 33.38% random coils. This result also
showed that the vaccine construct’s secondary structure is of good flexibility, stability, and
globular conformation (see Figure 5A,B).
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Figure 5. (A) Vaccine construct’s secondary structure. (B) Designed vaccine’s secondary structural
analysis, revealing the fluctuations of its structural atoms, within a minimal range, depicting the
stability of its structure.

3.9. Three-Dimensional Structural Modeling, Refining, and Validation

We utilized phyre2 [44] to complete the buildup of the 3D model structure of the final
vaccine construct. The modelled structure based on template c6b92A was predicted by
phyre2 to be the best template. This was based on several constructs of the 3D structural
model of the vaccine (Figure 6A). In total, 13% (250) of the amino acids residues in the
construct were modelled with 100% confidence in a single high scoring template. The
GalaxyRefine server [46] was utilized to accomplish the refinement of the 3D structural
model of the vaccine construct. The server predicted five (5) refined models. Of these
models, model 2 (see Figure 6B) was selected as our final vaccine model because of its
quality scores (see Table 5). A yellow highlight depicts predicted B-cell epitopes, which
reflects a good surface accessibility. The measurement of similarities between two protein
structures is depicted by the global distance test high accuracy (GDT-HA) score [46]. A
value of 0.9717 depicts the GDT-HA score. This is a high value, which indicates that there is
a high level of similarity between the two models. The root-mean-square deviation (RMSD)
score computes the distance between atoms. A low RMSD value depicts a better level
of stability. Acceptable RMSD score ranges from 0 to 1.2 [46]. The RMSD score of this
model is 0.364. This depicts a good level of protein structure stability. Our vaccine model’s
MolProbity score is 1.733 (a value lower than that of the initial model). This shows that
critical errors in the 3D model have been reduced. The clash score depicts all unfavorable
numbers of overlapping atoms. The model’s clash score was reduced from 48 to 10.6 (an
evidence of increased stability to high level). The surface areas of energetically favored
regions are depicted by the Ramachandran plot score. An acceptable Ramachandran plot
score is that which is greater than 85% [46].
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Figure 6. (A)Vaccine construct’s 3D crystal structure, (B) refined vaccine 3D structure model,
(C) assessment of the Ramachandran plot for the multi-epitope vaccine construct, and (D) a ProSA-
web validation of the vaccine 3D structure. The Z-score of the refined model is −7.5, which lies inside
the score range (E) residue’s score plot by ProSA-web to verify the local model quality.

Table 5. Predictions of the models’ quality scores by GalaxyRefine.

Model GDT-HA RMSD MolProbity Clash
Score

Poor
Rotamers

Rama
Favored

Initial 1.0000 0.000 2.457 48.0 0.0 95.7
Model 1 0.9707 0.353 1.527 10.2 0.4 98.4
Model 2 0.9717 0.364 1.733 10.6 1.8 98.8
Model 3 0.9658 0.371 1.570 11.3 0.4 98.8
Model 4 0.9707 0.365 1.594 12.1 0.0 98.4
Model 5 0.9697 0.359 1.545 10.6 0.4 98.4

There was an improvement in the Ramachandran plot score from 95.7% to 98.8%
after refinement. To validate the overall refined prototype vaccine quality, ProSA-web was
utilized. A Z-score of −7.5 was predicted by ProSA (see Figure 6C), which depicts a good
quality model.

The local quality of the model is also checked by ProSA. Figure 6D shows the plotted
graph of the residue scores. Negative values depict that there is an absence of erroneous
parts in the structure of the model. The results of the ProSA-web server presented a
Ramachandran plot analysis score of 97.8%, which is like that obtained by GalaxyRefine,
which can be found in Figure 6E.

402



Computation 2022, 10, 117

3.10. Conformational B-Cell Epitopes Prediction

The conformational B-cell epitope of the 3D-refined model was predicted using the
Ellipro server [48]. The server predicted eight new conformational B-cell epitopes, which
consisted of 110 residues having scores between 0.589 and 0.856. Figure 7 shows the
detailed information of the eight epitopes and the 3D model.
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3.11. Molecular Docking of Vaccine with TLR Receptor

The evaluation of interactions between a ligand molecule and a receptor molecule was
conducted through molecular docking. This was carried out to verify the binding affinity
of the docked complex. TLR4 was used as the immune receptor for this study to conduct
the molecular docking. Toll-like receptor 4 is a very significant human protein that helps
with immune response and the recognition of pathogens.

Molecular docking was performed by utilizing the ClusPro 2.0 server [49]. Molecular
docking was conducted between the final refined 3D vaccine and the TLR4 (PDB ID: 4G8A)
immune receptor. Ten different models were produced from the docking process. These
models were characterized by low-energy docked structures [49]. A selection was made of
the lowest-energy docked model. This result indicates that the vaccine model has good
binding affinity and fully occupies the receptor (see Figure 8).
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Figure 8. The docked complex of the vaccine model and the TLR4 immune receptor. The vaccine
protein is shown in blue, while the rest of the residues are the TLR4 receptor.

3.12. Molecular Dynamics Simulations

The i-Mode server was used to perform analysis of the molecular interaction of
the vaccine target with the target TLR-4 receptor. The evaluation of the vaccine–TLR-4
docked complex was carried out by using NMA. The i-Mode suite was used for simulating
access to the internal coordinates of the complexity of the system. An examination of the
trajectory of the system was performed to determine the deformability. Figure 9 depicts
the vaccine–TLR4 complex’s molecular dynamics simulation results showing the spin
prediction of the ligand–receptor interaction and other results. The results of the complex
trajectory revealed a minimal deformation in the coordinates within the range 0 to 1◦A.
This depicts that the vaccine has a steady binding with minimal deformation (see Figure 9b).
Traces of some atomic fluctuations were observed by NMR in the system trajectory of the
TLR-4 and the vaccine. Figure 9c shows the computed eigen score of 1.843800 × 10−05.
Furthermore, the covariance matrix analysis revealed the vaccine–TLR-4’s atomic pairs.
The analysis depicted the correlated segments in red color, non-correlated segments in
blue color, and the uncorrelated segments in white color. Figure 9d shows the integration
of the TLR-4 protein residues with the construct of the vaccine and the changes in the
TLR-4 binding groove. The model’s elastic network revealed pairs of atomic coordinates
through distance-based spring analysis. Each dot in the network plot represents a spring
and is colored based on the complex’s stiffness in relation with corresponding atomic pairs.
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Grey-colored spring models depict the level of compactness and stability of the binding
complex system (see Figure 9e). These important results reveal the stable binding and
complex rigidity of the vaccine coupled with some atomic fluctuations, characterized with
a low deformation index.
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Figure 9. Vaccine–TLR4 complex molecular dynamics simulation, showing (a) spin prediction of the 
ligand–receptor interaction; (b) deformability; (c) eigenvalue; (d) covariance matrix depicting the 
coupling between pairs of residues (red), uncorrelated (white), or anti-correlated (blue) motions; (e) 
elastic network analysis defining which pairs of atoms are connected by springs; (f) variance; and 
(g) B-factor. 
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Figure 9. Vaccine–TLR4 complex molecular dynamics simulation, showing (a) spin prediction of
the ligand–receptor interaction; (b) deformability; (c) eigenvalue; (d) covariance matrix depicting
the coupling between pairs of residues (red), uncorrelated (white), or anti-correlated (blue) motions;
(e) elastic network analysis defining which pairs of atoms are connected by springs; (f) B-factor;
and (g) variance.
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3.13. Immune Response Simulation

We assessed the vaccine construct’s immune response elicitation by adopting an in
silico immune simulation technique for 100 steps of simulation. This method is used
for the analysis of the capability of the vaccine construct’s immune response elicitation
and antigens, amongst others. B cells, T cells, and memory cells that generate immune
responses that fight viral infections were assessed by exploring the vaccine candidate.
Results obtained from our in silico experiments revealed the potency of our designed
vaccine candidate. Results revealed that primary and secondary immune responses were
elicited through very important players such as the T-cell populations (helper T cells and
cytotoxic T cells) and sustainable memory cells (see Figure 11). Figure 11 depicts the
induced immune cells as illustrated by the mRNA vaccine.
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Figure 10. The induced immune cells by the mRNA vaccine. (A) Antigen and immunoglobulins of 
control. (B) Antigen and immunoglobulins of vaccine construct with antibodies subdivided per iso-
type. (C) B-lymphocytes population per entity-state (showing counts for active presenting on class 
II, internalized the Ag. Duplicating and anergic). (D) B lymphocytes showing total count and 
memory cells. (E) Epithelia cells population per state (showing total count broken down to active, 
virus-infected, and presenting on class I MHC molecule. (F) Dendritic cells population per state 
(showing the total number broken down to active, resting, internalized, and presenting the Ag). (G) 
Natural killer cells population showing total count. (H) CD8 T-cytotoxic lymphocytes count per 
entity-state. (I) CD8 T-cytotoxic lymphocytes count showing total and memory. (J) CD4 T-regula-
tory lymphocytes count with both total, memory, and per entity-state count plotted. (K) CD4 T-
helper lymphocytes count subdivided per entity-state. (L) CD4 T-helper lymphocytes count with 
plot showing total and memory counts. (M) Plasma B-lymphocytes count subdivided per isotype 
(IgM, IgG1, and IgG2). (N) Cytokines plot showing the concentration of cytokines and interleukins. 
(O) Macrophages population per state (showing total count, internalized, presenting on MHC class 
II, active, and resting macrophages). 

High measures of IgM, IgG1, and IgG3 antibodies were discovered after administer-
ing the vaccine, and prolonged immune responses against the virus were evident through 

Figure 11. The induced immune cells by the mRNA vaccine. (A) Antigen and immunoglobulins
of control. (B) Antigen and immunoglobulins of vaccine construct with antibodies subdivided per
isotype. (C) B-lymphocytes population per entity-state (showing counts for active presenting on
class II, internalized the Ag. Duplicating and anergic). (D) B lymphocytes showing total count
and memory cells. (E) Epithelia cells population per state (showing total count broken down to
active, virus-infected, and presenting on class I MHC molecule. (F) Dendritic cells population per
state (showing the total number broken down to active, resting, internalized, and presenting the
Ag). (G) Natural killer cells population showing total count. (H) CD8 T-cytotoxic lymphocytes
count per entity-state. (I) CD8 T-cytotoxic lymphocytes count showing total and memory. (J) CD4
T-regulatory lymphocytes count with both total, memory, and per entity-state count plotted. (K) CD4
T-helper lymphocytes count subdivided per entity-state. (L) CD4 T-helper lymphocytes count with
plot showing total and memory counts. (M) Plasma B-lymphocytes count subdivided per isotype
(IgM, IgG1, and IgG2). (N) Cytokines plot showing the concentration of cytokines and interleukins.
(O) Macrophages population per state (showing total count, internalized, presenting on MHC class II,
active, and resting macrophages).

High measures of IgM, IgG1, and IgG3 antibodies were discovered after administering
the vaccine, and prolonged immune responses against the virus were evident through high
measures of IgG and IgM immunoglobulins. Furthermore, simulation statistics revealed
that an amino acid sequence revealed that cytotoxic T-cells’ elevation, after 13 days of
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administering vaccine, attained a maximum of 1155 cells per mm3. This value gradually de-
creased to 1120 cells per mm3 after 33 days. An increase in helper T cells to 5400–6000 cells
per mm3 was observed after 5–6 days. An elongated concentration subsisted up to 35 days.
Increased immune T cells evoked a high number of memory cells. Adaptive immunity was
strengthened against the virus infections because of high levels of HTLs and CTLs in both
active and passive states as a response to the vaccine.

Furthermore, there was an increase in the population of the B cells. Similarly, the
concentrations of IgM and IgG isotypes increased to around 460–480 cells per mm3 and was
sustained over a long period. There were also increased levels of cytokines, interleukins,
and natural killer cells by the vaccine in in silico immunization experimentation (Figure 11).
All these results depict the potency and efficacy of the designed vaccine to combat the virus.
A mechanism of action for the designed vaccine was proposed. The binding of mRNA
vaccine to MHCs and TLR receptors activates key players against the virus (Figure 11).
After vaccine administration, there was proliferation of HTLs, CTLs, and other regulatory
immune cells to destroy the virus.

4. Discussion

The outbreak of the SARS-CoV-2 virus is a major global pandemic [55]. Prior the evo-
lution of vaccines in past decades, vaccines have brought about the complete extermination
or near eradication of some infectious diseases [34]. These diseases include measles, rubella,
smallpox, mumps, polio diphtheria, pertussis, and tetanus [56]. Vaccination has been the
most successful and effective public health strategy adopted for the eradication of various
infectious diseases. Presently, vaccination has become an effective tool for preventing
diseases and drastically reducing the negative impacts of different dreaded diseases.

However, the increased transmission of COVID-19 (SARS-CoV-2) has resulted in
millions of deaths worldwide and caused wreckage on the economies of many nations of
the world [57]. These therefore call for the development of effective and safe prophylactics
or therapeutics that could be administered to either mitigate the effects of the menace caused
by the deadly virus or protect against its ever evolving and mutating new variants. Several
methods have been devised to develop an effective medical therapy, such as vaccines to
prevent virus transmission; however, many of the methods have been quite laborious and
time-consuming and may ultimately slow down efforts in the development of an effective
vaccine, thus contributing less towards mollifying the recent spread of the disease [57,58].

One of the most popular approaches adopted in the past is the conventional method
of vaccine design such as live attenuated and inactivated viral vaccines, which utilizes
the traditional vaccine development pathway, based on cultivation and inactivation of
pathogenic organisms. Although this approach has successfully provided an enduring
protection against infectious diseases, mRNA vaccines nonetheless possess great promise
for the future [59], as they have been proven to have many merits over conventional vaccine
platforms [60]. Besides safety and potency, one of the important benefits of mRNA is the
flexibility of its design. Its antigen-coding sequence (open reading frame, ORF) can be easily
modified at specific locations and/or codon-optimized to bring about improvements in
translation or help channel antigens to the right compartment [60]. Our study was centered
on designing an mRNA vaccine against COVID-19 using an array of bioinformatics and
immunoinformatics tools to predict epitopes inducing the immune system.

The first step in the design of a novel prophylactic and immunotherapeutic vaccine
involved predicting the T-cell and B-cell epitopes. Identifying epitopes is a very impor-
tant process for the development of effective antibodies that can help neutralize bioactive
proteins. Identifying the correct epitopes helps to select high affinity antibodies for im-
munotherapy and immunodiagnostics [61]. T-cell epitopes are very important for the
purpose of adaptive immune simulation, and they interact with MHC molecules [33].
Therefore, when selecting an mRNA vaccine, it is expedient to ensure that a target is
immunogenic and can elicit a protective immune response [62].
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In this study, highly immunogenic epitopes for B and T cells, humoral prime molecules,
and immunity as mRNA vaccine candidates were determined to combat COVID-19 disease.
Checking through the various parameters, five CTL epitopes, one HTL epitope, and one
LBL epitope were extracted and connected by using the EAAKEAAK and AAY linkers
(see Table 1). EAAKEAAK and AAY linkers were connected between the selected epitopes
to enable a rational design of mRNA vaccine. The GPGPG linker was also embedded
between the adjuvant and the epitope sequences to produce bioactivity improvement for
the vaccine [33].

During vaccination, quite a reasonable amount of antibody and T-cell responses are
produced, and these required administration of multiple doses of the purified antigens
to elicit sufficient antibody response [63]. To address these challenges, significant efforts
have been put in by researchers to identify components defined as adjuvants capable
of increasing the immunogenic response of antigens in vaccines. Adjuvants are very
important in increasing the potency and efficacy of a vaccine [64]. Incorporating them
into vaccine design has many advantages, which include provision of stronger immune
responses [63]. In this study, we included the co-stimulatory molecule CD40L as our
adjuvant. Its involvement in this study was considered due to its inherent efficiency to
stimulate the professional antigen-presenting cells (pAPCs), which could invariably lead
to the induction of immune response molecules. Although several studies have revealed
that mRNA possesses a self-adjuvanting property when administered naked, including
an adjuvant will nevertheless contribute more to its efficacity. CD40L is a cell-surface
interaction molecule whose expression is pronounced in a CD4+ T-cell subset [65].

Shortly after activating the T cells, its expression is induced. This depicts an early
activation marker of T lymphocytes. After a careful and detailed study of its pathway, it
was revealed that CD40L plays multiple roles in ensuring a healthy immune system. These
include enhancing antigen-specific T-cell response by activating the dendritic cells and the
induction of interleukin 12 (IL-12) production by the cells [65].

This response could be sustained for the duration of time the antigen’s presence is felt
within the system and the time it takes to interact with CD40+ target cells [65].

The previous mRNA approaches in the design of vaccines have produced remarkable
results in the past decades. Although there have been shortcomings in their production,
notably in their stability and delivery [54,66] in the production of an RNA vaccine, stability
and translation of mRNA is crucial [67]. The fact that the half-lives of mRNA molecules are
relatively short and tend to be easily degraded in the body calls the need for improvement
on the mode of mRNA vaccine production before its administration for proper stability
and the efficient promotion of mRNA therapy [68]. 5′ and 3′ UTRs Five prime and three
prime UTRs were incorporated into the vaccine ORF to ensure the sufficient production of
antigens and effective vaccination of host. The 5′ untranslated region, or 5′ caps, carry out
efficient protein production, while the 3′ untranslated region determines mRNA stability
and increased protein translation [67].

The frequent transmission of SARS-CoV-2 across the globe has created a platform for
making its RNA sequence subsequently undergo mutations, which invariably lead to the
translation of different viral proteins (Zikun et al., 2021). Although, these types of mutations
can have influence on the epitope-based vaccines, because a change in a single amino acid
can alter the results predicted from the epitope analyses (Zikun et al., 2021). However, the
proposed final vaccine candidate can tackle the mutations. A multiple sequence alignment
was performed for 100 randomly selected SARS-CoV-2 spike glycoproteins from the study
area. The results obtained showed no occurrence of mutation in the selected epitope area
(Figure 2), thereby indicating the effectiveness of our vaccine construct.

In the context of genetically heterogeneous human populations, HLA polymorphism
and its consequent population coverage has been the major concern in epitope-based
vaccine design. To address the situation, a careful consideration of the population coverage
of the T-lymphocytes epitopes is needed because individuals will likely react to different
sets of peptides from a given pathogen [69]. The coverage of the CTL and HTL epitopes
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was assessed to predict the vaccine construct’s effectiveness within the study areas. The
epitopes showed a good population coverage (77.22% in average), and a high degree
of coverage was predicted for all the regions under study (Table 3), thus indicating the
possibility that the vaccine construct can promote an immunological reaction within the
population in the study areas. These high values are needed to reduce the complexity of
including different epitopes in the vaccine development.

The physicochemical properties of the vaccine construct prove its ability to be a good
potential candidate for a vaccine. The molecular weight (MW) was 223.1 kDa, higher above
the acceptable threshold value of 110 kDa for a good vaccine candidate (Chukwudozie
et al., 2021), thus signifying the efficacy of the vaccine construct. The estimated theoretical
pI was 8.69, suggesting the vaccine to be slightly basic. The score of the instability index
(48.78) is slightly above the standard threshold. This suggests that the protein would be
unstable upon expression, therefore validating the problem of instability, which is majorly
encountered in the production of mRNA vaccines. The aliphatic index shows that the
vaccine construct is thermostable. The GRAVY score obtained (−0.296) proposes that
the vaccine construct is hydrophilic, representing its ability to be highly soluble upon
expression as seen in Table 4.

In the development of a vaccine, having the knowledge of the secondary and tertiary
structure of the target proteins is crucial to gaining a better understanding of the con-
structed vaccine candidate. The analyses of our vaccine’s secondary structure revealed that
the protein contained mainly 33.38% coils. Secondary structures have been shown to be rec-
ognized by a few innate immune receptors, and this recognition most times tends to inhibit
protein translation. To avoid being recognized by these immune receptors, incorporation of
modified nucleosides, such as 5-methylcytidine (5 mC) and pseudouridine (ψ), optimized
codons, and a cap-1 structure are important, as it may in turn improve the efficiency of
the protein. The 3D structure improved well after refinement. The Ramachandran plot
indicates that 97.8% of the residues lie within the favored regions, and 1.3% are allowed
regions with less (0.4%) residues in the outlier region. This has provided more evidence
that the model’s quality is acceptable.

The analysis of antibody–antigen interactions is a very important modeling and
docking concept required in vaccine design [49].

The application of protein docking is essential to determine the structure of the
antibody–antigen complexes. This interaction is very crucial in understanding the ba-
sic function of cells and larger biological systems in all living organisms [70]. To determine
the ability of the vaccine construct to bind with TLR on immune cells, TLR-4 was docked
with the vaccine considering its importance for easy recognition of pathogens and stimula-
tion of immune response. The results revealed a constructed vaccine with high binding
affinity towards the TLR-4. This interface of vaccine with TLR-4 significantly indicates the
probability of the vaccine to have the potential of stimulating innate and adaptive immune
response. Subsequently, in an advent to explore the stability and dynamics performance of
the TLR-4–vaccine docked complex; a molecular dynamic simulation was conducted. The
RMSD plot depicts a steady binding of the complex.

The in silico immune response simulation depicted a consistency in the immune re-
sponse. There was an increase in the generated immune responses before its repeated
exposure to the antigen. There was evident development of memory B cells and T cells,
with memory in B cells lasting several months. This indicates humoral immunity and is
essential for complimenting the immune response. Moreover, helper T cells were partic-
ularly stimulated, therefore establishing the capacity of the vaccine construct to protect
against SARS-CoV-2.

The negative impacts of COVID-19 cannot be overemphasized. Such impacts have affected
the economy of many countries [71]; stock markets have been affected by COVID-19 [72,73];
COVID-19 outbreaks have affected the mental health of many categories of people [74]; it has
had a negative impact on public health and on addressing non-COVID-19 diseases [75,76];
the COVID-19 pandemic has negatively impacted on health workers by causing anxiety
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and high levels of stress [77,78]; COVID-19 has had mental and psychological impacts on
different individuals [79–81].

Prior the emergence of the SARs-CoV-2 virus, several bioinformatics, computational
informatics, and modeling approaches have been applied towards proffering solutions to
existing infectious and non-infectious diseases such as HIV, Ebola, malaria, and hereditary
diseases, amongst others [82–91]. In this current work, bioinformatics, computational,
and modeling approaches are being harnessed towards developing a potent and effective
vaccine candidate against SARS-CoV-2 virus.

Data collection within the COVID-19 pandemic has been from different (diverse)
sources. Real-time dashboard COVID-19 data have indicated or revealed the impact of
COVID-19 on human health and human lives [92–95]. Some of the sources are in real time,
for instance web-dashboards [92–95], while others are diverse. COVID-19 data are of differ-
ent forms, namely genomic sequences of different variants of the SARS-CoV-2 virus [92–95],
chest X-rays of COVID-19 patients [96], kidney replacement therapy data for COVID-19
patients [97], lungs data of patients [98], blood data of COVID-19 patients [99–104], medical
data of patients that were infected and recovered [105], medical data of patients that were
infected and died [106], patients’ demographic data, patients’ bio-data, COVID-19 health
facility data for different regions of the world, and COVID-19 phylogenetic data, amongst
others. Genomic data collected for the SARS-CoV-2 virus were stored in bioinformatics
databases such as NCBI, EBL, and GISAID [20,107,108].

To examine the binding stability, conformation, and interaction modes of the vaccine–
TLR4 docked complex, the molecular dynamics were simulated using the online WEBGRO
macromolecular simulations platform [109]. WebGro is an entirely automated online
tool for simulating macromolecules (proteins) alone or in complexes with ligands (small
molecules) using molecular dynamics modeling [109]. For comprehensive solvated molec-
ular dynamics simulations, WebGro utilizes the GROMACS simulation program [110]. The
energy of the complex formed was first minimized using the steepest descent integrator at
every 5000 steps for molecular dynamics simulation. Afterwards, enough of an amount
of Na+ and Cl- counter ions were added to maintain a salt concentration of 0.15 M in
the complex system. The NVT/ NPT equilibration was performed at 300 K and 1 bar
pressure. In addition, leapfrog was selected as the MD integrator for a simulation time of
100 ns and 1000 frames per MD simulation [110]. To better understand the formation of the
complex, a trajectory analysis of the root-mean-square deviation (RMSD), root-mean-square
fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and
hydrogen bonds (HBs) was performed [110].

One of the main functions of the root-mean-square deviation (RMSD) is to depict the
average distance between the backbone atoms of the starting structure and the simulated
structures when superimposed [111]. As a useful parameter, the RMSD can be utilized
to study the equilibration of MD trajectories as well as checking the stability of complex
systems during simulation. This could be achieved by plotting the RMSD of the protein
backbone atoms against time to see how the structural shape of the protein changes over
time [111]. The RMSD plot was significantly dynamic, with fluctuations occurring after 5 ns.
The stable conformation was attained at a time range between 75 and 100 nanoseconds,
with no significant changes in the results (see Figure 12A).
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Figure 11. (A) RMSD study plot for 100 ns MD simulation of vaccine–TLR. (B) RMSF study plots for 
100 ns MD simulation. (C) Radius of gyration study plot for 100 ns MD simulation vaccine–TLR. 
(D) Solvent accessible surface area study plot for 100 ns MD simulation of vaccine–TLR. (E) Solvent 
accessible surface area study plot for 100 ns MD simulation of vaccine–TLR. 

Figure 12. (A) RMSD study plot for 100 ns MD simulation of vaccine–TLR. (B) RMSF study plots
for 100 ns MD simulation. (C) Radius of gyration study plot for 100 ns MD simulation vaccine–TLR.
(D) Solvent accessible surface area study plot for 100 ns MD simulation of vaccine–TLR. (E) Solvent
accessible surface area study plot for 100 ns MD simulation of vaccine–TLR.

Furthermore, the RMSF values of the protein atoms were calculated and plotted
against the residues. When evaluating the stability and flexibility of a complex system,
another important parameter to consider is the root-mean-square fluctuation (RMSF).
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This parameter is useful because it can be used to study how well the behavior of amino
acid residues in a target protein changes as it binds to a ligand [111]. Throughout the
simulation, the amino acid showed very little fluctuation (Figure 12B). Additionally, the
complex systems’ gyration radius (Rg) was investigated. This is the distance between
the rotational axis and the mass center [112]. It is essential and important to know and
understand how structural variation affects the compactness of the protein after binding
with the ligands when examining the stability and flexibility of the complex structure
during simulation [113], and this can be accomplished by analyzing the complex structure’s
radius of gyration (Rg). Higher Rg values indicate that the protein is less compact and
flexible, whereas low values indicate that the protein packing has not changed much
(see Figure 12C), thus exemplifying the high degree of compactness and stiffness. To
investigate changes in structural compactness, the Rg values of protein backbone atoms
were plotted versus time. The backbone Rg values gradually declined until they reached
10 ns. There were no significant variations in the time between 11 and 100 ns, and a nearly
constant value of about 4.0 nm was maintained, indicating that the protein packing did not
vary considerably.

Similarly, we examined the formation of hydrogen bonds in the complex structure
by plotting the number of hydrogen atoms against time. This is necessary for a better
understanding of the protein’s structural integrity, catalytic region, and protein–ligand
interaction in the complex structure [113]. Within the complex structure of the protein,
there is a significant change in the hydrogen bond interaction (see Figure 12D).

We also calculated the interaction area between the solvent and the protein complexes
to implement the solvent accessible surface area (SASA) of the complex structure. To assess
changes in surface area, the protein’s values were plotted against a function of time. SASA
is a significant parameter for determining the extent of receptor exposure to surrounding
solvent molecules during simulation [111]. SASA with a higher value indicates more
hydrophilicity [113]. The SASA complex trajectory values gradually decreased till 400 ns.
Throughout the simulation period, minute changes were noticed, except for a few time
intervals (see Figure 12E). The average SASA value was 610 nm2, with values ranging from
625–600 nm2.

5. Conclusions

In conclusion, the process involved in the production of an effective traditional vaccine
often takes several months or years of trial before it can be accomplished. Moreover,
these vaccines are quite expensive. The integration of the bioinformatics approach into the
development of vaccines has helped overcome many of these challenges by focusing mainly
on the selection of appropriate antigens or antigenic structures, carriers, and adjuvants
used in the design. In the face of the current pandemic, which has ravaged the world, the
development of vaccines is an urgent need. This is especially true for African countries,
which lack critical infrastructure for vaccine development to combat the circulating variants
within the region. Our results show that the vaccine candidate consisted of seven epitopes,
namely a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal
peptide, and linkers. The vaccine candidates’ molecular weight (MW) was predicted to be
223.1 kDa, which is greater than the acceptable threshold of 110 kDa on an excellent vaccine
candidate. The summary of the results obtained from the experiments revealed that the
vaccine candidate was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic.
The vaccine candidate has good population coverage, with the highest range in East Africa
(80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and
76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Evaluation of
the secondary structure of the vaccine construct revealed a stabilized structure showing
36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular
docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity
for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.
Bioinformatics, computational, and immunoinformatic approaches for a multi-epitope

414



Computation 2022, 10, 117

mRNA vaccine design against the circulating variants of SARS-CoV-2 within the African
population have shown that this vaccine candidate can be a useful therapeutic in fighting
the deadly virus. This is because the designed construct has been shown to meet the
requisite threshold for each of the physicochemical properties that make a candidate
vaccine effective. According to our findings, the designed construct is antigenic, non-toxic,
non-allergenic, slightly basic, thermostable with wide population coverage, and capable of
tackling any mutation. Further work can be carried out after the results and performances
from this computational research have been subjected to in vitro and in vivo validations.
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Abstract: ISGylation is an important process through which interferon-stimulated genes (ISGs) elicit
an antiviral response in the host cells. Several viruses, including the SARS-CoV-2, suppress the host
immune response by reversing the ISGylation through a process known as de-ISGylation. The PLpro
of SARS-CoV-2 interacts with the host ISG15 and brings about de-ISGylation. Hence, inhibiting
the de-ISGylation to restore the activity of ISGs can be an attractive strategy to augment the host
immune response against SARS-CoV-2. In the present study, we evaluated several phytochemicals
from well-known immunomodulatory herbs, viz. Andrographis paniculata (AG), Tinospora cordifolia
(GU), and Ocimum sanctum (TU) for their effect on deISGylation that was mediated by the PLpro of
SARS-CoV2. For this purpose, we considered the complex 6XA9, which represents the interaction
between SARS-CoV-2 PLpro and ISG15 proteins. The phytochemicals from these herbs were first
evaluated for their ability to bind to the interface region between PLpro and ISG15. Molecular
docking studies indicated that 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide (AG1),
Isocolumbin (GU1), and Orientin (TU1) from AG, GU, and TU, respectively possess better binding
energy. The molecular dynamic parameters and MMPBSA calculations indicated that AG1, GU1, and
TU1 could favorably bind to the interface and engaged key residues between (PLpro-ISG15)-complex.
Protein–protein MMPBSA calculations indicated that GU1 and TU1 could disrupt the interactions
between ISG15 and PLpro. Our studies provide a novel molecular basis for the immunomodulatory
action of these phytochemicals and open up new strategies to evaluate drug molecules for their effect
on de-ISGylation to overcome the virus-mediated immune suppression.

Keywords: innate immunity; interferon-stimulated genes (ISGs); ISGylation; phytochemicals; PLpro;
immunomodulation

1. Introduction

The host innate immune system acts as the first line of defense during viral infections.
Following the initial viral infection, a type-I interferon response is activated in the host, and
this subsequently leads to the upregulation of several interferon-stimulated genes (ISGs).
ISGs act as effectors of the interferon-mediated antiviral host immune response, which
leads to an appropriate antiviral host immune response.

Among the ISGs, ISG15 is a well-studied ISG. It is shown to be robustly induced
by type-I interferons [1] following various viral infections. ISG15 is a ubiquitin-like pro-
tein [2]. ISG15 is conjugated to target proteins upon its induction through a reaction called
ISGylation. The ISGylation of target proteins is a key mechanism through which ISG15
mediates its effect. It plays critical roles in various phases of the host innate immune
response against viruses [3]. Several important immune regulatory transcription factors
and receptors have been established as substrates for ISGylation by ISG15. ISG15 is shown
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to limit the viral replication in many viruses [4]. Hence, ISG15 is an important component
in the host immune response pathway against viruses.

Viruses have developed mechanisms to defend against the ISG-mediated immune
response. Many viruses, such as herpes simplex virus, norovirus, chikungunya virus, and
HIV evade the host immune system by counteracting the ISG15-mediated pathways [1].
Studies indicate that many viruses express proteins that possess ISG15 de-conjugating
activity [5]. De-ISGylation refers to the process of the deconjugation of ISG from target
proteins. It is considered an important means through which viruses evade the interferon-
mediated innate immune response. Even in the case of SARS-CoV-2, the PLpro protein
is shown to exhibit de-ISGylation activity, potentially leading to a diminished early-host
immune response [6]. Suppressing the early-phase host immune system by SARS-CoV-2 is
proposed as a key mechanism that can further lead to exaggerated viral replication, viral
dominance over the host, and cytokine response at the later stages of infection [7–9]. Hence,
the therapeutic strategies aimed at enhancing the early-stage host immune response against
the SARS-CoV-2 or other viruses should consider targeting the de-ISGylation mechanism.
Although vaccination is one of the effective strategies to elicit a specific (adaptive), immune
response against the viruses, additional interventions to enhance the early-phase host
innate immune response will be an added advantage.

Many medicinal herbs and their extracts have been used to treat and manage viral
infections. Various phytochemicals that are present in Andrographis paniculata (AG),
Tinospora cordifolia (GU), and Ocimum sanctum (TU) have been shown to possess an-
tiviral and immune-potentiating activity [10–12]. For example, Andrographolide can
modulate the innate and adaptive immune responses by regulating macrophage pheno-
typic polarization [11]. Furthermore, the phytochemicals from Tinospora cordifolia show
association with immune pathways and act as immunomodulators [12,13]. Previous
studies have identified phytochemicals from AG, GU, and TU as potent inhibitors of
SARS-CoV-2 [14,15]. Treatment with these herbs in the initial phases of viral infection
is shown to have beneficial effects. Most of these studies describe the immune modu-
latory mechanism of these herbs at the cellular level, involving immune cells and their
respective pathways. However, the nature of the molecular targets that are engaged by
these phytochemicals is unclear from the literature. A molecular-level understanding of
the targets that are engaged by the bioactive compounds will add value for evaluating
the immunomodulatory herbs as broad spectrum antiviral immunomodulators. Since
de-ISGylation is an important mechanism that is employed by viruses to suppress the
host immunity, we hypothesized that phytochemicals from these herbs might act on this
arm to bring about their immune-potentiating activity.

In order to evaluate this hypothesis, in the current study, we considered a protein
complex 6XA9, which represents the interaction between the SARS-CoV2 PLpro and C-
terminal of ISG15 [16]. We refer to this structure as (PLpro-ISG15)-complex throughout
the manuscript. We considered key interacting residues between PLpro and ISG15 in this
complex for evaluating the potential phytochemicals for their ability to bind to this region
and affect the protein–protein interaction. A systematic approach was followed in which
the phytochemicals from AG, GU, and TU herbs were first screened by molecular docking.
Following this, the top-ranked phytochemicals from these herbs, as per the docking scores,
were further evaluated by MD simulation for 300 nanoseconds. In addition, we analysed
MM/PBSA (molecular mechanics/Poisson–Boltzmann Surface Area) for protein-ligand
and protein–protein interactions. GRL0617, which is known to inhibit de-ISGylation, was
also included in our studies for a comparison of the parameters. Our results indicated
that 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide (AG1), Isocolumbin
(GU1), Orientin (TU1), and GRL0617 could favorably bind to the interface region between
PLpro and ISG15. Our results also indicated that among these ligands, TU1 and GU1 could
potentially disrupt the PLpro and ISG15 interactions.
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2. Results and Discussion
2.1. Screening of Phytochemicals of Andrographis paniculata (AG), Tinospora cordifolia (GU), and
Ocimum sanctum (TU) against SARS-CoV-2 PLpro ISG15 Site at UIM (PDB:6XA9)

The key phytochemical constituents of AG, GU, and TU were selected based on
the literature search, viz. PubMed (https://www.ncbi.nlm.nih.gov/pmc/) (accessed on
9 July 2021), Google Scholar (https://scholar.google.com/) (accessed on 9 July 2021), and
DOAJ (https://doaj.org/) (accessed on 9 July 2021) and are given in Supplementary Table
S1. A total of 90 phytochemicals from AG, GU, and TU were docked against the target
protein of SARS-CoV-2 (PDB) ID: 6XA9) using AutoDock Vina [17]. The AutoDock Vina
results represent the docking scores as the Gibbs free energy of binding (∆G (kcal/mol),
which approximates the sum of all interactions between ligand and receptor minus the
desolvation energies. The binding energies of the top five phytochemicals from AG, GU,
and TU in order of increasing docking scores are given in Table 1. The lesser the value, the
better the binding affinity.

Docking against SARS-CoV-2 PLpro ISG15 Interacting Site

The dual role of PLpro in viral peptide cleavage and immune regulation has made
it an important target for inhibiting SARS-CoV-2 infectivity. PLpro inhibits the host
innate immune response by reversing ISG15 modifications from the proteins. The PLpro
of the coronavirus family has a ubiquitin-interacting motif (UIM) that can recognize
and hydrolyze ubiquitin (Ub) and the ubiquitin-like protein ISG15 (interferon-induced
gene 15). However, SARS-CoV-2 PLpro preferentially catalyzes de-ISGylation over de-
ubiquitylation [18,19]. SARS-CoV-2 PLpro UIM accommodates both ubiquitin and ISG15
binding sites. In the current work, 6XA9 crystal structure (SARS-CoV-2 PLpro in complex
with ISG15 C-terminal domain) was taken for the study. This complex represents the
interaction between PLpro and ISG15. In this complex, Ser170, Tyr171, Phe216, Gln195,
Thr225, Lys232, Asn151, and Asn156 from PLpro and Trp123, and Pro130/Glu132 from
ISG15 are key interacting amino acid residues that play critical roles in de-ISGylation. In
addition, Met208, Glu167, and Arg166 are also important residues in the S2 palm domain
of the PLpro that interact with the substrate [16]. In Supplementary Figure S1, we have
mapped the respective amino acid of the interface in a 3D structure format. The rationale
of the study was to look for the phytochemicals that bind to the key residues representing
the interface between PLpro and ISG15. The effective binding of the phytochemicals to
the interface region or interfering with the PLpro and ISG15 interaction would potentially
inhibit the de-ISGylation activity.

GRL0617 binds to the ISG15 interacting site of PLpro [20]. Hence, we included this
molecule as a positive control for docking studies. Our docking results indicate that
GRL0617 shows ∆G of −8.5 kcal/mol. The top three phytochemicals from AG, 14-deoxy-
15-isopropylidene-11,12-didehydroandrographolide (−9.4 kcal/mol); Andrographolactone
(−9.2 kcal/mol); and Neoandrographolide (−9 kcal/mol) showed the highest binding affin-
ity amongst all the screened phytochemicals and were better than the control drug molecule.
The top three phytochemicals from AG are diterpenes which possess immunomodulatory
and antiviral activity [21,22]. The top-ranked phytochemicals from GU and TU were
Isocolumbin (−9.9) and Orientin (−9.4 kcal/mol), respectively.

The docking of phytochemicals shows that they form hydrogen bonds and other
non-covalent and electrostatic interactions with major amino acid residues of PLpro at the
ISG15 interacting site. The two-dimensional binding interactions of the top phytochemicals
from AG, GU, and TU with the PLpro ISG15 binding site are shown in Figure 1.
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Figure 1. Binding of (i) AU1 (14-deoxy-15-isopropylidene-11,12-didehydroandrographolide), (ii) 
GU1 (Isocolumbin), (iii) TU1 (Orientin), and (iv) GRL0617 at the ISG15 interacting site of UIM 
domain of PLpro of SARS-CoV-2. 

Figure 1. Binding of (i) AU1 (14-deoxy-15-isopropylidene-11,12-didehydroandrographolide), (ii) GU1
(Isocolumbin), (iii) TU1 (Orientin), and (iv) GRL0617 at the ISG15 interacting site of UIM domain of
PLpro of SARS-CoV-2.
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To analyze the molecular interactions (H-bond, van der Waals bonds, pi–pi interac-
tions, salt bridges) between various phytochemicals against PLpro ISG15 binding site,
LIGPLOT software (Ligplot version 4.15.0-142 generic, E.M.B.L., Hinxton, Cambridgeshire,
UK) was used [23]. The 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide
phytochemical from AG interacts with the UIM through hydrogen bond interactions with
Lys232 (PLpro), Thr125 (ISG15), and Asn151 (ISG15), whereas Met208, an important residue
in the S2 palm domain, lies in the binding pocket. (Figure 1i). Isocolumbin from GU in-
teracts with the UIM through hydrogen bond interactions with Asn151 (ISG15) and other
important amino acid residues surrounding the binding interface site (Figure 1ii). Orientin
from TU forms hydrogen bonds with Lys232 (PLpro), Glu203 (PLpro), Met150 (ISG15),
and Asn151 (ISG15), along with other non-covalent interactions that further stabilize the
binding (Figure 1iii). The positive control GRL0617 perfectly fits at the ISG15 binding site
of UIM, being surrounded by the key residues, such as Met208 (PLpro) and Gly209 (PLpro)
that stabilizes the binding of the drug molecule (Figure 1iv). Our results suggest that the
top ranked phytochemicals from AG, GU and TU interact with the critical residues of the
ISG15 binding site of UIM and, therefore, can destabilize the PLpro and ISG15 interaction,
thereby potentially inhibiting the de-ISGylation activity of the PLpro.

2.2. Physiochemical Properties Analysis of the Phytoactives Affirms Their Drug-Likeness

The ADME property of a drug is important in determining its safety and efficacy. The
molecular weight, hydrogen bond acceptors and donors, lipophilicity, etc., are important
parameters for the generation of an effective and successful drug. The Lipinski rule of
five can be applied for filtering out the best potential drug. According to the Lipinski
rule, a molecule with a molecular weight of <500 Dalton, a maximum of five hydrogen
bond donors, and 10 hydrogen bond acceptors with a log p value of <5 have a better drug-
likeness than others that fail these parameters. The drug-likeness and ADMET properties of
top-ranked phytochemicals AG1, GU1, TU1, and GRL0617 were calculated using web tools
SWISS ADME and PreADMET, and the results are represented in Supplementary Table
S2i,ii. The top-ranked phytochemical from AG or GU or GRL0617 showed a drug-likeness
property, making them potential lead molecules against the PLpro of SARS-CoV-2. Orientin
from TU has the molecular weight and LogP values within the threshold range but violates
the rule in terms of hydrogen-bonding properties. However, in vivo studies indicate that
Orientin is quickly distributed to the kidney, liver, and lung [24].

2.3. Molecular Dynamics (MD) Simulation Study

The effectiveness of the screened phytochemicals was further analyzed by performing
all-atom MD simulations for 300 ns using GROMACS. MD simulation studies provide
insights on the dynamic state of the ligands at the interaction site of the target protein
in the presence of an ionic aqueous environment. In addition, they provide an elaborate
understanding not only of the molecular dynamics of ligand-protein complexes, but also
evaluate the crucial interactions during the time scale of few nanoseconds.

2.3.1. Stability and Fluctuations of the Protein: RMSD and RMSF Analysis of the
Protein Complex

To understand the predicted binding modes of the candidate phytochemicals that
were selected from docking studies, we illustrated the detailed interactions of both the
(PLpro-ISG15)-complex and (PLpro-ISG15)-complex with the phytochemicals, viz. AG1,
GU1, TU1 or GRL0617 over the 300 ns MD simulation (Figure 2). Figure 2i–iv(A) represents
the 3D and 2D images of the phytochemicals with (PLpro-ISG15)-complex at 0 ns and
300 ns. As clear from the Figures, the phytochemicals could bind to the interface at 0 ns
and 300 ns. Once the proper binding of the phytochemicals within the interface cavity
was confirmed, the other parameters such as RMSD, RMSF, SASA, Rg, hydrogen bond,
PCA analysis, and MM-PBSA were evaluated over the entire 300 ns simulation time. PCA
analysis data can be found in supplementary information (Figure S2).
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Figure 2. (i–iv (A))—The best poses of the phytochemicals (AG1 (red), GU1 (blue), TU1 (magenta), 
and GRL0617 (green)) binding to the interface of (PLpro-ISG15)-complex at 0 ns (left) and 300 ns 
(right) during molecular dynamics (MD) simulation. Each inset shows the detailed interactions of 
each drug candidate docked to the ISG15 interacting site of the PLpro, indicating the amino acids 
involved in the interaction and the type of interaction (hydrogen bonds, hydrophilic interactions, 
salt bridges, Π-stacking, etc.). (i–iv (B)) show RMSD, and (i–iv (C)) show RMSF values over 300 ns 
simulation for different complexes with phytochemicals. 

Figure 2. (i–iv (A))—The best poses of the phytochemicals (AG1 (red), GU1 (blue), TU1 (magenta),
and GRL0617 (green)) binding to the interface of (PLpro-ISG15)-complex at 0 ns (left) and 300 ns
(right) during molecular dynamics (MD) simulation. Each inset shows the detailed interactions of
each drug candidate docked to the ISG15 interacting site of the PLpro, indicating the amino acids
involved in the interaction and the type of interaction (hydrogen bonds, hydrophilic interactions,
salt bridges, Π-stacking, etc.). (i–iv (B)) show RMSD, and (i–iv (C)) show RMSF values over 300 ns
simulation for different complexes with phytochemicals.
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In order to evaluate the stability profiles of the (PLpro-ISG15) complex with phyto-
chemicals, RMSD was calculated for Cα backbone atoms of protein over the entire period
of 300 ns simulation. RMSD values provide information on the extent of deviation of a
given protein–ligand complex, compared to a reference structure over the simulation time.
A lower deviation of the given protein–ligand complex from respective reference structures
indicates a suitable accommodation of the ligand within the binding pocket.

The time evolution of RMSD for different protein–ligand complexes relative to the
initial structure of (PLpro-ISG15)-complex is presented in (Figure 2i–iv(B)). As seen in
Figure 2, the RMSD values for the (PLpro-ISG15)-complex increased until 50 ns, after which
the values stabilized and leveled off. The same trend was observed for (PLpro-ISG15)-
AG1 and (PLpro-ISG15)-GRL0617. The average RMSD values between 50 and 300 ns for
(PLpro-ISG15)-complex, (PLpro-ISG15)-AG1, and (PLpro-ISG15)-GRL0617 were 0.44 nm,
0.39 nm, and 0.45 nm, respectively. In the case of (PLpro-ISG15)-GU1 complex, the system
equilibrated between 50 and 100 ns (RMSD = 0.40 nm) but later in the trajectory, the RMSD
values showed fluctuation. However, this structure maintained an average RMSD of 0.55
nm between 100 and 300 ns. In the case of (PLpro-ISG15)-TU1 complex, the ligand-bound
complex deviated from the (Plpro-ISG15)-complex structure, and its average RMSD value
was 0.57 nm (between 50 and 300 ns). The higher RMSD values and fluctuations in the
RMSD trajectory indicate that the binding of GU1 and TU1 might affect the protein–protein
interactions between PLpro and ISG15.

Next, in order to investigate the local fluctuations at the residue level before and after
binding with the phytochemicals, the root mean square fluctuation (RMSF) of Cα atom for
the entire 300 ns was predicted (Figure 2i–iv(C)). The residues from 1 to 314 correspond to
PLpro, and 315 to 400 correspond to ISG15. As indicated in (Figure 2i–iv(C)), there were no
significant fluctuations between residues 160–175 and 200–210. This region corresponds
to the PLpro and ISG15 interface region. On the other hand, fluctuations were observed
in the loop regions for all the complexes. In the case of (PLpro-ISG15)-complex and
the (PLpro-ISG15)-complexes with AG1, TU1, and GRL0617, there were fluctuations in
the region between 180 and 200 residues. Similarly, (PLpro-ISG15)-complex and (PLpro-
ISG15)-complex with GRL0617 showed some fluctuations in the region corresponding to
220–230 residues. However, these fluctuations were not significantly higher than those
that were observed for loop regions. The fluctuations were observed between the 310 and
320 residues, between the chains of PLpro and ISG15.

2.3.2. Compactness of Protein Complex: Radius of Gyration (Rg) and Solvent Accessible
Surface Area (SASA)

Rg is a parameter that scores for the compactness of protein. We evaluated the com-
pactness of (PLpro-ISG15)-complex upon binding with the phytochemicals over the course
of MD simulation Figure 3i(A–D). The average Rg value of (PLpro-ISG15)-complex, (PLpro-
ISG15)-complex with AG1, (PLpro-ISG15)-complex with GU1, (PLpro-ISG15)-complex
with TU1, and (PLpro-ISG15)-complex with GRL0617 were found to be 2.35 nm, 2.32 nm,
2.33 nm, 2.31 nm, and 2.31 nm, respectively. As shown in Figure 3i(A–D), the Rg values
of both (PLpro-ISG15)-complex and (Plpro-ISG15)-complex with phytochemicals did not
significantly change over 300 ns simulation, suggesting that all the systems were compact.

Flexibility and compactness are correlated with each other. The SASA is a useful
parameter for understanding the conformational dynamics of a protein in a solvent environ-
ment. In the current study, we evaluated the SASA of the selected docked complexes over
300 ns MD simulation. Figure 3i(A–D) shows the time-dependent SASA plot. The average
SASA values of (Plpro-ISG15)-complex, (Plpro-ISG15)-complex with AG1, Plpro-ISG15
complex with GU1, (Plpro-ISG15)-complex with TU1, and (Plpro-ISG15)-complex with
GRL0617 were found to be 179.77 nm2, 187.73 nm2, 190.56 nm2, 188.58 nm2 and 188.92 nm2,
respectively. All the complexes with phytochemicals showed slightly higher values of
SASA compared to (PLpro-ISG15)-complex.
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The black line represents (Plpro-ISG15)-complex without phytochemicals.

2.3.3. Interactions between the Protein–Ligand Complex: Hydrogen Bond (H-Bond)

Hydrogen bonding plays a critical role in stabilizing the protein–ligand interactions.
In our study, the number of H-bonds were calculated over a simulation time of 300 ns for
all the complexes. According to Figure 4, (PLpro-ISG15)-complex-AG1, (PLpro-ISG15)-
complex-GU1, (PLpro-ISG15)-complex-TU1, and (PLpro-ISG15)-complex-GRL0617 all had
an average of four to eight H-bonds each. In addition, the H-bond analysis indicated that
the protein–ligand complexes remained stable during simulation.

2.3.4. Binding Affinities of Phytochemicals to the Interface of PLpro-ISG15 Complex:
MMPBSA Based Calculations

A detailed understanding of the interactions between (PLpro-ISG15)-complex and the
phytochemicals (AG1, GU1, TU1, and GRL0617) is feasible by investigating the thermo-
dynamic parameters that were calculated by the simulations. The MMPBSA method has
been widely used to quantify protein–ligand affinities [25]. During 300 ns MD simulation,
we extracted an ensemble containing conformations corresponding to the last 50 ns and
investigated the details of protein–ligand interactions. The amino acids that were located
within the vicinity of 3.5 A distance from the ligand were identified in this average struc-
ture. These amino acids represent the critical residues that are involved in binding and
interactions, and they were chosen for calculating the free energy of binding. Figure 5
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provides more details on these critical residues and their binding energy contributions to
each interacting partner of (PLpro-ISG15)-complex.
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Figure 4. Number of hydrogen bonds formed between the phytochemicals (AG1 (red) or GU1 (blue)
or TU1 (magenta) or GRL0617 (green)) and the (PLpro-ISG15) complex during 300 ns MD simulation.

As detailed in this figure, GRL0617, a known inhibitor of de-ISGylation, engages
Val-202 Glu-203 Met-206 Tyr-207 Met-208 Gln-221 Ile-222 Pro-223 from PLpro, and Arg-87,
Asn-88, Asn-89, Lys-90, Gly-91, Arg-92, Thr-125, Phe-126, Glu-127, Gly-128, Thr-147, Val-
148, Phe-149 from ISG-15. Since GRL0617 is shown to compete with ISG15 for the binding
site on PLpro, the amino acids that GRL0617 binds may play an important role in inhibiting
de-ISGylation. In order to gain more insight into the similar mechanism of action for AG1,
GU1, and TU1 in comparison to GRL0617, we compared the number of amino acids shared
between different phytochemicals. As indicated in Table 2, all the phytochemicals (AG1,
GU1, and TU1) shared four amino acids, namely Glu-203, Met-206, Tyr-207, and Met-208,
in common with GRL0617 for binding to PLpro. Similarly, when compared to GRL0617, all
the phytochemicals shared Glu-127, Gly-128, Phe-149, Thr-125, and Phe-126 in common
with GRL0617 for binding to ISG15. These analyses indicate that AG1, GU1, and TU1
interact with critical residues from the (PLpro-ISG15)-complex, similar to GRL0617.
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(iv) in each case.

Table 2. Common amino acids engaged by different phytochemicals for binding to PLpro and
ISG-15 complex.

Interacting
Partner

Ligands/Phytochemicals
Bound Common Amino Acids Number of Common

Amino Acids

PLpro

AG1, GRL0617, GU1 TU1 Glu-203, Met-208,
Met-206, Tyr-207 4

AG1, GU1, TU1 Ser-170 1
AG1, GRL0617, GU1 Ile-222 1

AG1, GU1 Arg-166 1
AG1, TU1 Glu-167 1

AG1, GRL0617 Pro-223 1
GU1, TU1 Ser-245 1

GRL0617, TU1 Val-202 1
GU1 Met-169, Phe-241 2
TU1 Thr-225, Met-243 2

GRL0617 Gln-221 1

ISG15

AG1, GRL0617, GU1,
TU1

Glu-127, Gly-128,
Phe-149, Thr-125, Phe-126 5

AG1, GU1, TU1 Pro-130, Asn-151 2
AG1, GRL0617 Arg-87, Asn-88 2

GU1, TU1 Lys-129, Trp-123 2
GRL0617, GU1 Thr-147, Val-148 2
GRL0617, TU1 Asn-89 1

GRL0617 Arg-92, Gly-91, Lys-90 3

Next, to gain insight into the total binding free energy (kJ/mol) for protein–ligand
interactions, we analyzed the total binding energy (kJ/mol) of the phytochemicals binding
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to the key interacting residues from PLpro or ISG15 or (PLpro-ISG15)-complex. As indicated
in Figure 6, the binding energy for AG1, GU1, and TU1 were −17.8 kJ/mol, −36.14 kJ/mol,
and −41.9 kJ/mol, respectively. GRL0617 showed a value of −33.50 kJ/mol. Overall,
GU1 and TU1 had binding affinities that were comparable to or higher than the positive
control GRL0617.

Computation 2022, 10, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 6. Binding energies (kJ/mol) of the complexes were calculated by MMPBSA method. Key 
interacting residues from PLpro or ISG15 or (PLpro-ISG15) complexes were considered for 
calculating binding energy for AG1 (i), GU1 (ii), TU1 (iii) and GRL0617 (iv). 

2.3.5. Effect of Phytochemicals on Protein–Protein Interactions between (PLpro-ISG15)-
Complex 

As mentioned earlier, PLpro possesses de-ISGylation activity through which it 
inhibits the immunomodulatory activity of ISG15. For the effective de-ISGylation activity 
of PLpro, the interaction between PLpro and ISG15 should be maintained stably. Our 
observations with RMSD values hint that at least GU1 and TU1 may result in disruption 
of this protein–protein interaction. Work that was carried out by other researchers [26] 
used the total MMPBSA values to score for protein–protein interactions, and an increase 
in the MMPBSA for protein–protein complexes was used as an indicator of the 
destabilization of protein–protein interactions. We employed a similar approach and 
calculated the MMPBSA for the average structure for the final 50 ns during our simulation 
periods. Figure 7 provides the details on this. The binding energy for the interaction 
between PLpro and ISG15 was 437.58 kJ/mol. At the same time, binding the ligands GU1 
and TU1 to this complex increased the free energy. This indicates that the binding of GU1 
and TU1 to the (PLpro-ISG15)-complex decreased the binding affinity between PLpro and 
ISG15 proteins. The binding of GRL0617 to (PLpro-ISG15)-complex had a similar trend, 
but the effect may be less. AG1, on the other hand, did not increase the free energy of 
binding, instead it slightly decreased it. 
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2.3.5. Effect of Phytochemicals on Protein–Protein Interactions between
(PLpro-ISG15)-Complex

As mentioned earlier, PLpro possesses de-ISGylation activity through which it inhibits
the immunomodulatory activity of ISG15. For the effective de-ISGylation activity of PLpro,
the interaction between PLpro and ISG15 should be maintained stably. Our observations
with RMSD values hint that at least GU1 and TU1 may result in disruption of this protein–
protein interaction. Work that was carried out by other researchers [26] used the total
MMPBSA values to score for protein–protein interactions, and an increase in the MMPBSA
for protein–protein complexes was used as an indicator of the destabilization of protein–
protein interactions. We employed a similar approach and calculated the MMPBSA for
the average structure for the final 50 ns during our simulation periods. Figure 7 provides
the details on this. The binding energy for the interaction between PLpro and ISG15
was 437.58 kJ/mol. At the same time, binding the ligands GU1 and TU1 to this complex
increased the free energy. This indicates that the binding of GU1 and TU1 to the (PLpro-
ISG15)-complex decreased the binding affinity between PLpro and ISG15 proteins. The
binding of GRL0617 to (PLpro-ISG15)-complex had a similar trend, but the effect may be
less. AG1, on the other hand, did not increase the free energy of binding, instead it slightly
decreased it.
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In summary, our studies indicate that 14-deoxy-15-isopropylidene-11,12-didehydroan-
drographolide from AG, Isocolumbin from GU, and Orientin from TU all accommodated
favorably in the interface region of the complex between PLpro and ISG15 proteins. The
amino acids that were engaged by these phytochemicals were similar to those that were
engaged by GRL0617, indicating that these phytochemicals, similar to GRL0617, interfere
with the interaction between PLpro and ISG15 complex. The critical residues of the ISG15
interacting site of the PLpro were well engaged in the interaction with all these ligands,
as indicated by docking studies. The efficient binding of the ligands to this interface
may potentially interfere with the function of PLpro, i.e., de-ISGylation. In the case of
Isocolumbin from GU and Orientin from TU, the protein–protein interaction between PLpro
and ISG15 was affected.

3. Materials and Methods
3.1. Target Enzyme Preparation

The PDB structure of a complex between SARS-CoV-2 PLpro and ISG15 (Protein Data
Bank (PDB) ID: 6XA9) [16] was obtained from PDB (https://www.rcsb.org/) (accessed on
9 July 2021) and saved as a PDB file (.pdb). AutoDock Tools 1.5.6 was used to prepare the
protein targets [17]. Chain A representing PLpro and Chain B representing ISG15 of the
6XA9 complex were retained for the study. Where any water molecules or ligands were
removed, polar hydrogen atoms and Kollman charges were added to the protein and saved
as a PDBQT file (.pdbqt).

3.2. Ligand Preparation

The 3D structure of the phytochemical compounds (total 90 phytochemicals) was
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (accesses on 9 July 2021) in
an SDF file (.sdf) and were converted to a PDB file (.pdb) using Open Babel GUI tool [27].
The ligands were prepared by adding Gasteiger charges, merging non-polar hydrogen, and
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setting torsion root and then converted to PDBQT (.pdbqt) files using AutoDock Tools 1.5.6
and saved.

3.3. Docking and Visualization

AutoDock Vina 1.1.2 software was used for the molecular docking experiments [17].
Phytochemical compounds were used as ligands. The protein target was prepared as men-
tioned above. The grid spacing was set to 0.5 Å. The number of grid points along x, y and z
dimensions were set as 22 × 40 × 34, respectively, and centered at (x = −30.71, y = −0.002,
z = −42.148). The AutoDock Vina output file gives docking scores corresponding to Gibbs
free energy of binding (∆G) (kcal/mol) for each conformation of the ligand. It represents the
efficiency of ligand binding to the designated protein–protein interaction interface. Further,
the output file of optimal ligand conformations and their 2D interaction with interface
residues were visualized using LIGPLOT software [23]. The 3D structure representing the
key residues that were involved in PLpro and ISG15 interaction was visualized using a
Discovery Studio visualizer version v20.1.0.19295 (BIOVIA, San Diego, CA, USA) [28].

3.4. Drug Likeness Study and ADME Screening

A SwissADME web tool was used to predict the ADME parameters and drug-like
nature of GRL0617 and top screened phytochemicals from AG, GU, and TU [29]. A
PreADMET web tool was used to predict the ADMET and toxicity parameters of the
chemical compound [30]. The ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) properties were determined according to the Lipinski rule, which includes
the molecular weight, H-bond acceptors, and H-bond donors, and lipophilicity.

3.5. Molecular Dynamic Simulations and Free Energy Calculation (MM-PBSA)

A molecular dynamics simulation of the selected top protein–ligand complexes was
run using Gromacs-2019.4 [31]. For the force field coordinates, the ligand topology
was downloaded from the PRODRG server [32]. Using the steepest descent algorithm,
1500 steps were used to prepare the system with the vacuum minimized. Using a water
simple point charge (SPC) water model, complex structures were solvated into cubic pe-
riodic boxes of 0.5 nm. A salt concentration of 0.15 M was subsequently maintained by
adding appropriate numbers of Na+ and Cl− counterions. The system preparation was
referred from the previously published paper [33]. Each resultant structure from the NPT
equilibration phase was subjected to a final production run in an NPT ensemble for 300 ns
of simulation time. The six systems that were considered for simulations include:

(i) (PLpro-ISG15)-complex
(ii) (PLpro-ISG15)-complex with AG1
(iii) (PLpro-ISG15)-complex with GU1
(iv) (PLpro-ISG15)-complex withTU1 and
(v) (PLpro-ISG15)-complex with GRL0617

A trajectory analysis was performed using the GROMACS simulation package for
proteins RMSD, RMSF, RG, SASA, H-Bond, and PCA [31]. The molecular mechanics
Poisson–Boltzmann surface area (MM-PBSA) approach was employed to understand the
free energy of binding (∆G binding) between the phytochemicals and the target protein
complex over the simulation time. A GROMACS utility g_mmpbsa was employed to
estimate the binding free energy. To obtain an accurate result, we computed ∆G for the last
50 ns with dt 1000 frames [34].

4. Conclusions

The recent outbreak of SARS-CoV-2 and its subsequent mutations have posed serious
problems for disease management. Many therapeutic intervention methods employ strate-
gies to directly inhibit different classes of viral targets, such as proteases and nucleases.
However, the host immune system is of equal importance for an effective antiviral response,
which in many cases is evaded by viruses using different strategies. ISG15 is established
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as one of the key mediators of the immunomodulating effects of interferons, and ISGyla-
tion is an important host cellular defense against viruses. This is further evident by the
observations that several viruses evolved enzyme activities to execute the de-ISGylation
activity [35]. Therefore, molecules that interfere with the de-ISGylation activity can offer
a very good strategy to boost the host immune system against viruses. They can also be
effective in overcoming the virus-mediated host immune suppression. The herbs that we
considered in our current study (A. paniculata, T. cordifolia, O. sanctum) have been used
for decades as immune modulators, and several phytochemicals from these herbs act at
various levels as immunomodulators. In the current study, we provide a molecular basis
for a specific mechanism through which the phytochemicals from these herbs can augment
the host antiviral immune response. De-ISGylation activity is not restricted only to coro-
naviruses, and it appears to be a general strategy that is employed by many viruses to
overcome the host immune system. While highlighting the mechanism behind the action
of these immunomodulatory phytochemicals, our studies also provide a computational
strategy to screen for molecules interfering with ISGylation.
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ADME Absorption, distribution, metabolism, elimination
AG Andrographis paniculata
AG1 14-deoxy-15-isopropylidene-11,12-didehydroandrographolide
GU Tinospora cordifolia
GU1 Isocolumbin
ISGs Interferon-stimulated genes
MM/PBSA Molecular mechanics/Poisson–Boltzmann surface area
MD Molecular dynamics
PDB Protein data bank
SPC Simple point charge
TU Ocimum sanctum
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UIM Ubiquitin-interacting motif
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Abstract: The unprecedented global health threat of SARS-CoV-2 has sparked a continued interest in
discovering novel anti-COVID-19 agents. To this end, we present here a computer-based protocol for
identifying potential compounds targeting RNA-dependent RNA polymerase (RdRp). Starting from
our previous study wherein, using a virtual screening campaign, we identified a fumiquinazolinone
alkaloid quinadoline B (Q3), an antiviral fungal metabolite with significant activity against SARS-
CoV-2 RdRp, we applied in silico combinatorial methodologies for generating and screening a
library of anti-SARS-CoV-2 candidates with strong in silico affinity for RdRp. For this study, the
quinadoline pharmacophore was subjected to structural iteration, obtaining a Q3-focused library of
over 900,000 unique structures. This chemical library was explored to identify binders of RdRp with
greater affinity with respect to the starting compound Q3. Coupling this approach with the evaluation
of physchem profile, we found 26 compounds with significant affinities for the RdRp binding site.
Moreover, top-ranked compounds were submitted to molecular dynamics to evaluate the stability of
the systems during a selected time, and to deeply investigate the binding mode of the most promising
derivatives. Among the generated structures, five compounds, obtained by inserting nucleotide-
like scaffolds (1, 2, and 5), heterocyclic thiazolyl benzamide moiety (compound 3), and a peptide
residue (compound 4), exhibited enhanced binding affinity for SARS-CoV-2 RdRp, deserving further
investigation as possible antiviral agents. Remarkably, the presented in silico procedure provides a
useful computational procedure for hit-to-lead optimization, having implications in anti-SARS-CoV-2
drug discovery and in general in the drug optimization process.

Keywords: quinadoline B; SARS-CoV-2; RNA-dependent RNA polymerase inhibitors; virtual screen-
ing; combinatorial screening; molecular dynamics

1. Introduction

The continued rise in COVID-19 cases worldwide despite the availability of vaccines
sustains the demand to discover treatment and prophylactic regimens, particularly through
natural products’ repurposing and design [1–3]. Computational strategies play a crucial
role in accelerating the discovery of effective anti-SARS-CoV-2 agents [4–8], as in silico
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experiments are vital in the screening of biologically active compounds, offering a rapid,
low-cost, and effective adjunct to in vitro and in vivo experiments. Such methods can
facilitate the iteration of known potential compounds to further enhance their biological
and pharmacokinetic activities, capable of constructing virtually all possible permutational
derivatives from a single parent compound [9].

In COVID-19 drug discovery, several possible drug targets, comprising structural and
non-structural proteins, have been exploited in searching novel chemical entities as anti-
SARS-CoV-2 agents [10–13]. Among these targets is the RNA-dependent RNA polymerase
(RdRp), which is a multi-domain SARS-CoV-2 protein playing a crucial role in the viral
life cycle. In particular, RdRp is involved in the replication and transcription of the viral
genome [14,15]. Structurally, RdRp is deemed a conserved protein within coronaviruses
and carries an accessible region as its active site. Thus, RdRp represents an attractive
drug target to inhibit viral replication [14,16]. In our framework, we combined several
computational approaches for optimizing a previously described compound targeting
SARS-CoV-2 RdRp.

In our recent work, we performed a series of computer-based approaches, employing
RdRp as one of the target proteins against fungal secondary metabolites with profound
antiviral activity against various known pathogenic viruses. Our work allowed the identifi-
cation of quinadoline B (Q3, Figure 1), an anti-influenza (H1N1) metabolite isolated from
the mangrove-derived fungus Cladosporium sp. The fumiquinazoline alkaloid was shown
to exhibit a high binding affinity to RdRp, with dynamic stability and favorable pharma-
cokinetic properties [17]. These results inspired us to further investigate the identified
scaffold employing computational drug design methodologies, including structure-based
methods such as molecular docking and molecular dynamics, in order to enhance the
activity of quinadoline B against SARS-CoV-2 RdRp. Thus, in this study, we structurally
redesigned quinadoline B to generate a focused library of derivatives with potentially
enhanced antagonism to RdRp through combinatorial in silico techniques.
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Figure 1. Schematic representation of the computational protocol adopted in this study for finding
Q3 derivatives with improved in silico affinity for SARS-CoV-2 RdRp.

2. Materials and Methods
2.1. Computational Details
2.1.1. Ligand and Protein Preparation

Quinadoline B (Q3) was treated by LigPrep (LigPrep release 2018, Schrödinger, LLC,
New York, NY, USA, 2018) for identifying the most probable ionization state at cellular pH
value (7.4± 0.5), and minimized using MacroModel (MacroModel release 2018, Schrödinger,
LLC, New York, NY, USA, 2018) implemented in Maestro software (Maestro release 2018,
Schrödinger, LLC, New York, NY, USA, 2018), employing OPLS3 as a force field [18]. To
simulate the solvent effects, the GB/SA model was employed, selecting “no cutoff” for
non-bonded interactions. The PRCG technique (5000 maximum iterations and threshold
for gradient convergence = 0.001) was employed to minimize the potential energy.

The structure of the RdRp enzyme of SARS-CoV-2 enzyme was downloaded from the
Protein Data Bank (PDB ID 6M71 [19]; crystal structure of RdRp in complex with cofactors)
and imported into Maestro suite 2018 and prepared using the protein preparation wizard
protocol to acquire an appropriate starting structure for further in silico studies [20,21].
Using this protocol, we performed different computational steps to (1) add hydrogens;
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(2) optimize the orientation of hydroxyl groups, Asn, and Gln, as well as the protonation
state of His; and (3) perform a constrained minimization refinement using the impref utility.
At first, the protein was pre-processed by adding all hydrogen atoms to the structure,
assigning bond orders, creating disulfide bonds, and filling missing side chains and loops.
To optimize the hydrogen bond network, His tautomers and ionization states were pre-
dicted; 180◦ rotations of the terminal angle of Asn, Gln, and His residues were assigned;
and hydrogen atoms of the hydroxyl and thiol groups were sampled. Finally, a restrained
minimization was performed using the Impact Refinement (impref ) module, employing
an OPLS3 force field to optimize the geometry and minimize the energy of the protein.
The minimization was terminated when the energy converged, or the RMSD reached a
maximum cutoff of 0.30 Å.

2.1.2. Binding Site Analysis

A comprehensive analysis of the binding site of SARS-CoV-2 RdRp was performed
using the protein prepared as reported in Section 2.1.1 and the software SiteMap (SiteMap,
release 2018, Schrödinger, LLC, New York, NY, USA, 2018).

2.1.3. Molecular Docking and Ligand-Energy Evaluation

Glide software (Glide release 2018, Schrödinger, LLC, New York, NY, USA, 2018)
employing the XP-scoring function was used to perform all docking studies conducted in
this work [22]. The energy grid for docking was prepared using the default value of the
protein atom-scaling factor (1.0 Å), with a cubic box centered on the previously identified
binding site. The docked poses considered for the post-docking minimization step were
1000, evaluating the Glide XP docking score.

To improve the quality of the screening, we also evaluated the ligand binding energies
from the complexes derived by the docking calculation. For this purpose, Prime/MM-
GBSA method available in Prime software (Prime release 2018, Schrödinger, LLC, New
York, NY, USA, 2018) was used. This technique computes the variation between the free
and complex state of both the ligand and enzyme after energy minimization [23,24].

2.1.4. Q3-Focused Library Generation

The library was generated as previously reported [25], using several series of fragments
obtained from ChemDiv (https://store.chemdiv.com/ accessed on 20 March 2021) in SDF
file format. These fragments were treated by LigPrep, in order to convert the 2D structure
into the 3D one, and added to Q3 in a side chain hopping approach, considering the selected
attachment points that comprise bonds, belonging to the Q3 core structure, replaced in the
build process. This strategy allowed to obtain a Q3-focused library that consists of 991,489
compounds. This resulting library was employed in further computational experiments.

2.1.5. Evaluation of Drug-like Profile

The drug-like profile was evaluated using SwissADME [26], OSIRIS property explorer,
and our in-house cardiotoxicity tool (3D-chERGi) [27]. PAINS assessment was executed
employing SwissADME web-server [26], as previously reported [17,28].

2.1.6. Molecular Dynamics Simulation Details

Desmond 5.6 academic version, provided by D. E. Shaw Research (“DESRES”), was
used to perform MD simulation experiments via Maestro graphical interface (Desmond
Molecular Dynamics System, version 5.6, D. E. Shaw Research, New York, NY, USA, 2018.
Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, USA, 2018). MD was
performed using the compute unified device architecture (CUDA) API [29] on two NVIDIA
GPUs. The complexes derived from docking studies (Figure 2) were imported in Maestro
and, using the Desmond system builder, were solvated into an orthorhombic box filled with
water, simulated by the TIP3P model [25,30]. An OPLS force field [18] was used for MD cal-
culations. OPLS-aa (all atom) includes every atom explicitly with specific functional groups
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and types of molecules, including several biomacromolecules. A distinctive feature of the
OPLS parameters is that they were optimized to fit the experimental properties of liquids,
such as density and heat of vaporization, in addition to fitting gas-phase torsional profiles.
Moreover, it is also largely used by us for performing MD simulations of protein/ligand
complexes [25,31,32]. Na+ and Cl− ions were added to provide a final salt concentration of
0.15 M to simulate the physiological concentration of monovalent ions. Constant temper-
ature (300 K) and pressure (1.01325 bar) were employed with the NPT (constant number
of particles, pressure, and temperature) as an ensemble class. RESPA integrator [33] was
used to integrate the equations of motion, with an inner time step of 2.0 fs for bonded
and non-bonded interactions within the short-range cutoff. Nose–Hoover thermostats [34]
were used to maintain the constant simulation temperature, and the Martyna–Tobias–Klein
method [35] was applied to control the pressure. Long-range electrostatic interactions were
calculated by particle-mesh Ewald method (PME) [36]. The cutoff for van der Waals and
short-range electrostatic interactions was set at 9.0 Å. The equilibration of the system was
performed using the default protocol provided in Desmond, which consists of a series of
restrained minimization and MD simulations applied to slowly relax the system. Conse-
quently, one individual trajectory for each complex of 100 ns was calculated. The trajectory
files were analyzed by MD analysis tools implemented in the software package. The same
application was used to generate all plots concerning MD simulation presented in this
study. Accordingly, the RMSD was calculated using the following equation:

RMSDx =

√√√√ 1
N

N

∑
i=1

(
r′ i(tx)− ri

(
tre f

))2

where the RMSDx refers to the calculation for a frame x; N is the number of atoms in the
atom selection; tref is the reference time (typically, the first frame is used as the reference
and it is regarded as time t = 0); and r′ is the position of the selected atoms in frame x, after
superimposing on the reference frame, where frame x is recorded at time tx. The procedure
is repeated for every frame in the simulation trajectory. Regarding the RMSF, the following
equation was used for the calculation:

RMSFi =

√√√√ 1
T

T

∑
t=1

<
(

r′ i(t)− ri

(
tre f

))2
>

where RMSFi refers to a generic residue i, T is the trajectory time over which the RMSF is
calculated, tref is the reference time, ri is the position of residue i, r′ is the position of atoms
in residue i after superposition on the reference, and the angle brackets indicate that the
average of the square distance is taken over the selection of atoms in the residue.
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Figure 2. Putative binding mode of Q3 (cyan sticks, panel (A)) and Q3 derivatives 1–5 (colored
sticks, panel (B–F), respectively) within the SARS-CoV-2 binding site (PDB ID 6M71, orange cartoon).
Interacting amino acids are represented by lines, while the H-bonds are indicated by grey-dotted lines.
Pictures were generated by PyMOL (The PyMOL Molecular Graphics System, v1.8; Schrödinger,
LLC, New York, NY, USA, 2015).

3. Results and Discussion

SARS-CoV-2 and its predecessor SARS-CoV have significant similarities in their gene
sequence, including the spike (S) glycoprotein, RdRp, and the two cysteine proteases:
PLpro and 3CLpro [37]. Among these viral target proteins, RdRp plays a crucial role in
viral replication, and is thus considered an exceptional molecular target for developing
anti-SARS-CoV-2 drugs. Accordingly, different fungal derivatives, in particular quinaxoline
alkaloids identified from the mangrove-derived fungus Cladosporium sp., were identified
as possible SARS-CoV-2 RdRp inhibitors [17]. Among them, the ligand quinadoline B
(Q3) showed the most interesting inhibitory profile in silico against RdRp. Q3 was found
to tightly bind to the active site of RdRp by a series of polar and non-polar interactions.
Three H-bonds were observed between the following: (a) the amino group and S682
and (b) carbonyl oxygens of the quinazolinone core and Q573 and R569. The indoline
moiety was also involved in π-alkyl interactions with I494 and K577. Several van der
Waals interactions against N496, G590, A580, I589, Y689, D684, G683, K500, A685, T565,
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and L576 were also noted [17]. The identified binding mode accounted for a binding
energy of −9.5 kcal/mol, as found by AutoDock software, highlighting Q3 as one of the
most promising derivatives of the series (Figure 1). To further explore the potential of
quinadoline B as a drug prototype, in silico combinatorial techniques were employed to
generate novel derivatives and enhance the previously reported antagonistic potential
to RdRp. To this purpose, we used Schrödinger Drug-discovery Suite. As the first step,
we retrieved the previously described binding mode of Q3 within the RdRp binding
site by using Glide software (Figure S1). After establishing that the docking protocol
was able to correctly locate the quinadoline B scaffold, we deeply investigated the RdRp
binding site. The SiteMap analysis revealed the existence of a druggable sub-pocket that
can be targeted by modifying Q3 derivatives (Figure 1). In particular, examining the
orientation of the compound, we hypothesized that, by introducing appropriate moiety
to Q3, possibly linked to the NH2, it could be possible to reach the mentioned sub-pocket
at the RdRp binding site. To accomplish this task, we used an in silico structure-based
combinatorial library design approach, successfully employed by us, to generate focused
libraries targeting specific binding site regions [25]. In the first step, we downloaded several
sets of chemical fragments from ChemDiv, including high solubility fragments, natural
product fragments, low molecular weight fragments, protein–protein interaction disruptor
fragments, bioactive fragments, fluorine and bromine fragments, and other synthetic
fragments. These fragments were properly prepared (see Section 2) and added to an existing
library available from Schrödinger environment, obtaining 602,567 unique fragments to
use in the side chain hopping approach. We selected two possible attachment points on the
Q3 derivative exploiting NH2 group (Figure 1). By combining the generated fragments and
Q3 at the defined attachment points, we generated a focused library containing 991,489 Q3
derivatives.

The Q3-focused chemical library was employed in a virtual screening protocol based
on molecular docking experiments and ligand-binding energy evaluation to identify Q3
derivatives that were able to bind RdRp with greater affinity compared with the starting
compound Q3. For this purpose, compounds were docked into the binding site of SARS-
CoV-2 RdRp [17] using Glide (Glide release 2018, Schrödinger, LLC, New York, NY, USA,
2018), employing XP as the scoring function and Prime software (Prime release 2018,
Schrödinger, LLC, New York, NY, USA, 2018). The output of this step is reported in
Table 1. Only Q3 derivatives showing a GlideScore value lower than −6.22 kcal/mol were
considered. The threshold was chosen based on the value obtained by performing a docking
calculation of Q3 into RdRp. The selected chemical entities were further examined by
visual inspection to select molecules displaying a proper binding mode. By employing the
above-mentioned computational protocol, we obtained 26 compounds showing improved
affinities for the RdRp binding site with respect to the starting compound Q3 (structures
are reported in Table S1).

Table 1. Final hits and their computational parameters derived from in silico studies.

Cpd GlideScore
(kcal/mol)

∆Gbind
(kcal/mol) Main Contacts LogPo/w

a Solubility b GI abs. c PAINS d Tumorigenic e pKi hERG f

1 −8.71 −51.1
H−bonds R569, Q573,

S682, N497, S759
salt bridges K545

−3.72 High Low No No 5.03

2 −8.47 −52.3 H−bonds R569, Q573,
K545, D760 −1.82 High Low No No 5.24

3 −8.12 −43.9 H−bonds R569, Q573,
S682 −0.23 Moderate Low No No 5.06

4 −7.51 −44.8 H−bonds R569, Q573,
S682, K545 −0.27 Moderate Low No No 5.35

5 −7.46 −46.3
H−bonds R569, Q573,

K545
cation−π K500, R555

3.07 Poor Low No No 5.11
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Table 1. Cont.

Cpd GlideScore
(kcal/mol)

∆Gbind
(kcal/mol) Main Contacts LogPo/w

a Solubility b GI abs. c PAINS d Tumorigenic e pKi hERG f

6 −7.42 −41.5
H−bonds R569, Q573,

S682
double cation−π K500

2.75 Moderate High No No 5.32

7 −7.38 −40.6
H−bonds R569, Q573,

S682
double cation−π K500

1.67 Poor Low No No 5.17

8 −7.14 −41.2
H−bonds R569, Q573,

S682, D684
cation−π K500

2.45 Moderate High No No 5.51

9 −7.08 −39.1 H−bonds R569, Q573,
S682 0.80 Moderate Low No No 5.84

10 −7.03 −43.7
H−bonds R569, Q573,

A685, A688
cation−π K545

1.32 Moderate Low No No 5.63

11 −6.97 −38.8

H−bonds R569, Q573,
S682

cation−π K500
π−π Y689

2.50 Poor Low No No 4.92

12 −6.88 −40.2
H−bonds R569, Q573,

K545, R555
halogen bonds R624

3.02 Poor Low No No 5.68

13 −6.84 −42.3
H−bonds R569, Q573,

S682
cation−π K500

2.61 Poor Low No No 5.26

14 −6.81 −39.4
H−bonds R569, Q573,

S682
cation−π K500

1.10 Moderate High No No 5.15

15 −6.77 −42.9
H−bonds R569, Q573,

D684
cation−π K545

1.05 Moderate Low No No 4.93

16 −6.71 −41.0 H−bonds R569, Q573,
S682, K545 1.01 Moderate High No No 6.21

17 −6.59 −37.1
H−bonds R569, Q573,

S682
π−π Y689

2.55 Poor Low No No 5.24

18 −6.51 −47.2 H−bonds R569, Q573,
S501 1.96 Poor Low No No 5.67

19 −6.44 −41.3
H−bonds R569, Q573,

S682
salt bridges D760

0.24 Moderate High No alert:
anil_di_alk_A 5.79

20 −6.39 −33.8 H−bonds R569, Q573,
S682 1.84 Poor Low No No

21 −6.37 −34.9 H−bonds R569, Q573,
S682, K545 3.18 Poor Low No No 5.47

22 −6.36 −34.3
H−bonds R569, Q573,

S682
halogen bonds K545

0.81 Moderate Low No No 5.18

23 −6.34 −39.7 H−bonds R569, Q573
halogen bonds N497 1.53 Poor Low No No 5.60

24 −6.30 −35.4 H−bonds R569, Q573,
S682 0.14 Moderate Low No No 5.51

25 −6.29 −40.2
H−bonds R569, Q573,

R553, R555
salt bridges R553, R555

1.37 Moderate Low No No 4.89

26 −6.24 −39.5
H−bonds R569, Q573,

S682
cation−π K500

3.34 Poor Low No No 5.54

Q3 −6.22 −32.3 H−bonds R569, Q573,
S682 −0.12 Moderate High No No 5.77

a Consesus LogP (lipophilicity)—average of five predictions using different algorithms (recommended value < 5);
b water solubility assessed using three different methods; c gastrointestinal (GI) absorption; d PAINS (pan-assay
interference compounds) predict the possibility of a given compound to behave as PAINS and, consequently,
to interfere with biological assay; e tumorigenic—the evaluation was performed employing OSIRIS property
explorer [38]; f predicted activity on seven PLS factors derived from our in-house 3D-QSAR model for predicting
hERG K+ channel affinity (3D-chERGi) (pKi (M); pKi > 6, Ki < 1 µM) [27].
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The analysis of docking output demonstrated an improvement in the number of
contacts (polar and/or hydrophobic contacts) within the selected binding site for all selected
compounds along with a greater binding affinity with respect to the starting molecule. The
docking results for the five top-ranked compounds are illustrated in Figure 2 in comparison
with Q3.

Briefly, starting from compound 1, obtained by inserting a guanosine-like moiety on
Q3 scaffold, we detected the same contacts found for Q3 (H-bonds R569, Q573, and S682)
(Figure 2A and Table 1). Additionally, the novel substituent can target the hypothesized
region of the RdRp binding site, producing strong interactions with N497, S759, and K545,
by polar contacts (Figure 2B and Table 1). This molecular arrangement conferred a strong
improvement in binding affinity with respect to the Q3 derivative, showing a GlideScore
of −8.71 kcal/mol and a ∆Gbind of −51.1 kcal/mol (Q3, GlideScore −6.22 kcal/mol and
∆Gbind of −32.3 kcal/mol). Interestingly, compound 2 is also modified with a nucleotide
moiety. In this case, Q3 was modified by inserting an adenine-like moiety (Figure 2C and
Table 1). The docking output revealed that compound 2 similarly interacted within the
RdRp binding site compared with compound 1, except for the lack of H-bonds with N497
and S759 replaced with an H-bond with D760. This strong targeting observation accounted
for a significant improvement in the computational score of compound 2 (GlideScore
−8.47 kcal/mol and ∆Gbind −52.3 kcal/mol). Compound 3 lacks the previously described
contacts, maintaining only the contacts found for Q3 with the addition of an additional
H-bond with S682, strongly stabilizing the binding mode (Figure 2D and Table 1), as
highlighted by in silico scores (GlideScore −8.12 kcal/mol and ∆Gbind −43.9 kcal/mol)
compared with that found for Q3. For compound 4, the insertion of a peptidic tail allowed
to target the residue K545, in addition to the previously described contacts (H-bonds R569,
Q573, and S682) (Figure 2E and Table 1). Moreover, in this case, the inserted substituent
is well-tolerated by the RdRp binding site, as indicated by the satisfactory computational
scores found for compound 4 (GlideScore −7.51 kcal/mol and ∆Gbind −44.8 kcal/mol).
Inserting a bulky region with a stronger aromatic nature, as in compound 5, allowed
improvement of hydrophobic contacts within the RdRp binding site. In fact, compound
5 is able to form two cation-π interactions with residues K500 and R555, in addition to
the maintained contacts (Figure 2E and Table 1). Compound 5 showed a GlideScore
−7.46 kcal/mol and ∆Gbind −46.3 kcal/mol.

To validate the docking output, we conducted MD simulation on the top-five ranked
compounds (1–5), investigating the evolution of biological systems for 100 ns. In this
regard, the resulting trajectories for all complexes were completely examined through
different standard simulation parameters including root mean square deviation (RMSD)
analysis for all backbone atoms and ligands, and the root mean square fluctuation (RMSF)
of individual amino acid residue. The selected complexes showed a general stability
from the early stages of the simulation, as indicated by the results found by calculating
the RMSD for each complex. In fact, we did not observe any major expansion and/or
contraction, after the binding of these compounds during the entire simulation period
(Figure 3A–E regarding the simulation of compounds 1–5, respectively). This stability
was also substantiated by observing the RMSF calculated for the selected complexes.
RMSF indicates the difference between the atomic Cα coordinates of the protein from
its average position during the MD simulation. This calculation is mainly helpful to
characterize the flexibility of individual residues in the protein backbone. The considered
systems did not show significant fluctuation phenomena, with the exclusion of a restricted
number of residues at the N- and C-terminal regions of RdRp (Figure S2). In contrast,
the conformational alterations of critical residues in the RdRp binding cleft (lowest RMSF
values for all complexes) confirmed the capacity of compounds to form stable interactions
within the protein.
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Figure 3. RMSD calculation for each complex and for each ligand. RdRp/compounds 1–5, panel
(A–E) (blue line), respectively. Compounds 1–5, panel (A–E) (red line), respectively.

In order to better understand the behavior of compounds 1–5 in the SARS-CoV-2 RdRp
binding site, we performed a detailed analysis of the MD simulation investigating the
contacts established by compounds in the active site. The output of the analysis performed
on the complex RdRp/compound 1 is reported in Figure 4. Compound 1 maintained the
contacts found by docking calculation, interacting with R569 and Q573 during the MD
simulation, while we observed a decrease in targeting S682. The interactions found by
residues N497, S759, and K545 were evident through the time of simulation, as well as the
salt bridges. In addition, interactions with A558, T556, R555, and N496 became apparent,
while sporadic contacts were observed with residues S681, A685, and D760 considering
the 100 ns of the simulation. Analysing the trajectory of compound 2, we observed that
the main contacts established with residues R569, Q573, K545, and D760 were maintained
and N496, N497, K500, D623, and S759 were formed, although with no great potency. The
output for compound 2 is illustrated in Figure 5. Compound 3 is able to strongly interact
with S759 and D760, while less apparent contacts were detected with N496, N497, and
D684 in addition to the contacts with the residues R569, Q573, and S682 (Figure 6). The
results of this analysis for compounds 4 and 5 are found in the Supplementary Material
file (Figures S3 and S4). Compound 4 maintained the contacts through H-bonds with R569,
Q573, S682, and K545, while it formed additional contacts with N497, K500, G683, and D684
(Figure S3). Finally, compound 5 was still able to target R569, Q573, K500, and K545, while
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the interaction with R555 became sporadic. In contrast, compound 5 strongly targeted
N496 and N497 (Figure S3).
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Figure 4. Compound 1 monitored during the simulation. The contacts can be grouped by type and
summarized, as shown in the plots. Grouping protein–ligand interactions into four types: H-bonds
(green), hydrophobic (grey), ionic (magenta), and water bridges (blue). The second graph of the
picture displays a timeline representation of the contacts. Some residues make more than one specific
contact with the ligand, which is represented by a darker shade of orange.
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contact with the ligand, which is represented by a darker shade of orange.
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Figure 6. Compound 3 monitored during the simulation. The contacts can be grouped by type and
summarized, as shown in the plots. Grouping protein–ligand interactions into four types: H-bonds
(green), hydrophobic (grey), ionic (magenta), and water bridges (blue). The second graph of the
picture displays a timeline representation of the contacts. Some residues make more than one specific
contact with the ligand, which is represented by a darker shade of orange.

Overall, the MD simulation outcomes undoubtedly validated the advantageous in-
teractions of five top-ranked compounds screened compounds, showing satisfactory ther-
modynamic stability in the RdRp binding site, suggesting that they can act as possible
SARS-CoV-2 RdRp inhibitors. Furthermore, despite the fact that the addition of bulky
moiety results in compounds with a high molecular weight, they showed an acceptable
ADMET profile with logP and solubility in acceptable ranges, although the gastrointestinal
(GI) absorption was found to be low. They were also found to be non-tumorigenic and
devoid of cardiotoxicity, as assessed by our in-house tool, 3D-chERGi [27]; finally, the
selected compounds did not have substructural features that allow to behave as pan-assay
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interference compounds (PAINS) (Table 1). PAINS compounds are chemical compounds
that tend to display activity against numerous targets by nonspecific interactions or by alter-
ing the results of the biological tests. Compounds containing such moieties, which are often
present in PAINS compounds, could be false positive hits and in general should be removed
from the designed series [39]. Accordingly, our computational investigation provided five
compounds as potential RdRp inhibitors and, more importantly, suggested guidelines for
optimizing compounds considering the binding site of interest, showing improved binding
affinity with respect to quinadoline B. In fact, such a structure-based methodology can be
easily applied to other ligand–protein complexes for optimizing existing hit compounds.

4. Conclusions

In summary, we presented a computer-aided investigation for identifying possible
SARS-CoV-2 RdRp inhibitors based on the quinadoline B scaffold, previously identified
as possible RdRp ligands [17]. In particular, we used Q3 derivatives to explore the RdRp
binding site by inserting several chemical fragments, obtained from the ChemDiv database,
obtaining a Q3-focused library of over 900,000 unique structures. This library was used
in a virtual screening protocol, employing the crystal structure of SARS-CoV-2 RdRp, for
identifying Q3 derivatives with improved binding affinity with respect to quinadoline
B. Moreover, the top-ranked compounds were subjected to MD simulations, in order to
evaluate the stability of the systems during a selected time, and to deeply investigate the
binding mode of the most promising derivatives. Finally, the in silico searching protocol
allowed the identification of five compounds with improved affinity for SARS-CoV-2
RdRp, ushering interests for further investigation as possible antiviral agents. Notably, the
developed computational protocol has implications in anti-SARS-CoV-2 drug discovery
and in general in the drug optimization process, providing a convenient computational
procedure for hit-to-lead optimization.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/computation10010007/s1, Figure S1: Superposition between the
docked pose of Q3 obtained by AutoDock and by Glide into RdRp binding site; Figure S2: RMSF
calculation for each complex, selected by docking studies, after 100 ns of MD simulation; Figure S3:
Compound 4 monitored during the simulation. The contacts can be grouped by type and summarized,
as shown in the plots. Grouping protein–ligand interactions into four types: H-bonds, hydrophobic,
ionic, and water bridges; Figure S4: Compound 5 monitored during the simulation. The contacts can
be grouped by type and summarized, as shown in the plots. Grouping protein–ligand interactions
into four types: H-bonds, hydrophobic, ionic, and water bridges; Table S1: Structure of selected
compounds reported as SMILES string.

Author Contributions: Conceptualization, S.B., and A.P.M.; methodology, S.B., M.T.Q., K.I.N., V.C.,
and A.P.M.; software, S.B., M.T.Q., J.G.A., J.B.H., and S.M.T.; validation, S.B., M.T.Q., K.I.N., and
A.P.M.; formal analysis, S.B., M.T.Q., K.I.N., V.C., and A.P.M.; investigation, S.B., M.T.Q., K.I.N.,
J.G.A., J.B.H., S.M.T., V.C., and A.P.M.; writing—original draft preparation, S.B.; writing—review and
editing, S.B., M.T.Q., K.I.N., V.C., and A.P.M.; supervision, S.B., and A.P.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

451



Computation 2022, 10, 7

References
1. Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health

2020, 2, e667–e676. [CrossRef]
2. Wang, Z.; Yang, L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to

SARS-CoV-2 Infection. Front. Pharmacol. 2020, 11, 1013. [CrossRef] [PubMed]
3. Abdallah, H.M.; El-Halawany, A.M.; Sirwi, A.; El-Araby, A.M.; Mohamed, G.A.; Ibrahim, S.R.M.; Koshak, A.E.; Asfour, H.Z.;

Awan, Z.A.; Elfaky, M.A. Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro
Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches. Pharmaceuticals 2021, 14, 213. [CrossRef]
[PubMed]

4. Pitsillou, E.; Liang, J.; Karagiannis, C.; Ververis, K.; Darmawan, K.K.; Ng, K.; Hung, A.; Karagiannis, T.C. Interaction of
small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an
enzyme-linked immunosorbent assay. Comput. Biol. Chem. 2020, 89, 107408. [CrossRef] [PubMed]

5. Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr.
Comput. Aided Drug Des. 2011, 7, 146–157. [CrossRef]

6. Bharadwaj, S.; El-Kafrawy, S.A.; Alandijany, T.A.; Bajrai, L.H.; Shah, A.A.; Dubey, A.; Sahoo, A.K.; Yadava, U.; Kamal, M.A.; Azhar,
E.I.; et al. Structure-Based Identification of Natural Products as SARS-CoV-2 M(pro) Antagonist from Echinacea angustifolia
Using Computational Approaches. Viruses 2021, 13, 305. [CrossRef]

7. Hajbabaie, R.; Harper, M.T.; Rahman, T. Establishing an Analogue Based In Silico Pipeline in the Pursuit of Novel Inhibitory
Scaffolds against the SARS Coronavirus 2 Papain-Like Protease. Molecules 2021, 26, 1134. [CrossRef]

8. Fakhar, Z.; Khan, S.; AlOmar, S.Y.; Alkhuriji, A.; Ahmad, A. ABBV-744 as a potential inhibitor of SARS-CoV-2 main protease
enzyme against COVID-19. Sci. Rep. 2021, 11, 234. [CrossRef]

9. Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In silico Methods for Drug Design and Discovery.
Front. Chem. 2020, 8, 612. [CrossRef]

10. Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of Structural
and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells 2021, 10, 821. [CrossRef]

11. Quimque, M.T.; Notarte, K.I.; Adviento, X.A.; Cabunoc, M.H.; de Leon, V.N.; Delos Reyes, F.S.L.; Lugtu, E.J.; Manzano, J.A.;
Monton, S.N.; Munoz, J.E.; et al. Polyphenolic Natural Products Active In Silico against SARS-CoV-2 Spike Receptor Binding
Domains and Non-Structural Proteins—A Review. Comb. Chem. High Throughput Screen. 2022, 25. [CrossRef]

12. de Leon, V.N.O.; Manzano, J.A.H.; Pilapil, D.Y.H.t.; Fernandez, R.A.T.; Ching, J.; Quimque, M.T.J.; Agbay, J.C.M.; Notarte, K.I.R.;
Macabeo, A.P.G. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven
non-structural proteins vital in SARS-CoV-2 pathogenesis. J. Genet. Eng. Biotechnol. 2021, 19, 104. [CrossRef]

13. Fernandez, R.A.; Quimque, M.T.; Notarte, K.I.; Manzano, J.A.; Pilapil, D.Y.t.; de Leon, V.N.; San Jose, J.J.; Villalobos, O.;
Muralidharan, N.H.; Gromiha, M.M.; et al. Myxobacterial depsipeptide chondramides interrupt SARS-CoV-2 entry by targeting
its broad, cell tropic spike protein. J. Biomol. Struct. Dyn. 2021, 1–12. [CrossRef]

14. Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent
RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med. 2020, 18, 275. [CrossRef]

15. Ahmad, J.; Ikram, S.; Ahmad, F.; Rehman, I.U.; Mushtaq, M. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp)–A drug
repurposing study. Heliyon 2020, 6, e04502. [CrossRef] [PubMed]

16. Mondal, S.K.; Mukhoty, S.; Kundu, H.; Ghosh, S.; Sen, M.K.; Das, S.; Brogi, S. In silico analysis of RNA-dependent RNA
polymerase of the SARS-CoV-2 and therapeutic potential of existing antiviral drugs. Comput. Biol. Med. 2021, 135, 104591.
[CrossRef] [PubMed]

17. Quimque, M.T.J.; Notarte, K.I.R.; Fernandez, R.A.T.; Mendoza, M.A.O.; Liman, R.A.D.; Lim, J.A.K.; Pilapil, L.A.E.; Ong, J.K.H.;
Pastrana, A.M.; Khan, A.; et al. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral
attachment, replication, post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn.
2021, 39, 4316–4333. [CrossRef] [PubMed]

18. Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational
Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [CrossRef]

19. Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-dependent
RNA polymerase from COVID-19 virus. Science 2020, 368, 779–782. [CrossRef] [PubMed]

20. Di Capua, A.; Sticozzi, C.; Brogi, S.; Brindisi, M.; Cappelli, A.; Sautebin, L.; Rossi, A.; Pace, S.; Ghelardini, C.; Di Cesare Mannelli,
L.; et al. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2
inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem. 2016, 109, 99–106. [CrossRef] [PubMed]

21. Brindisi, M.; Senger, J.; Cavella, C.; Grillo, A.; Chemi, G.; Gemma, S.; Cucinella, D.M.; Lamponi, S.; Sarno, F.; Iside, C.; et al. Novel
spiroindoline HDAC inhibitors: Synthesis, molecular modelling and biological studies. Eur. J. Med. Chem. 2018, 157, 127–138.
[CrossRef]

22. Testai, L.; Piragine, E.; Piano, I.; Flori, L.; Da Pozzo, E.; Miragliotta, V.; Pirone, A.; Citi, V.; Di Cesare Mannelli, L.; Brogi, S.; et al.
The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. Oxid.
Med. Cell. Longev. 2020, 2020, 4650207. [CrossRef]

452



Computation 2022, 10, 7

23. Brogi, S.; Brindisi, M.; Butini, S.; Kshirsagar, G.U.; Maramai, S.; Chemi, G.; Gemma, S.; Campiani, G.; Novellino, E.; Fiorenzani,
P.; et al. (S)-2-Amino-3-(5-methyl-3-hydroxyisoxazol-4-yl)propanoic Acid (AMPA) and Kainate Receptor Ligands: Further
Exploration of Bioisosteric Replacements and Structural and Biological Investigation. J. Med. Chem. 2018, 61, 2124–2130.
[CrossRef]

24. Frydenvang, K.; Pickering, D.S.; Kshirsagar, G.U.; Chemi, G.; Gemma, S.; Sprogoe, D.; Kaern, A.M.; Brogi, S.; Campiani, G.; Butini,
S.; et al. Ionotropic Glutamate Receptor GluA2 in Complex with Bicyclic Pyrimidinedione-Based Compounds: When Small
Compound Modifications Have Distinct Effects on Binding Interactions. ACS Chem. Neurosci. 2020, 11, 1791–1800. [CrossRef]
[PubMed]

25. Sirous, H.; Chemi, G.; Gemma, S.; Butini, S.; Debyser, Z.; Christ, F.; Saghaie, L.; Brogi, S.; Fassihi, A.; Campiani, G.; et al.
Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based
Combinatorial Library Design Approach. Front. Chem. 2019, 7, 574. [CrossRef]

26. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]

27. Chemi, G.; Gemma, S.; Campiani, G.; Brogi, S.; Butini, S.; Brindisi, M. Computational Tool for Fast in silico Evaluation of hERG
K(+) Channel Affinity. Front. Chem. 2017, 5, 7. [CrossRef] [PubMed]

28. Zaccagnini, L.; Brogi, S.; Brindisi, M.; Gemma, S.; Chemi, G.; Legname, G.; Campiani, G.; Butini, S. Identification of novel
fluorescent probes preventing PrP(Sc) replication in prion diseases. Eur. J. Med. Chem. 2017, 127, 859–873. [CrossRef]

29. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel programming with CUDA. Queue 2008, 6, 40. [CrossRef]
30. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for

simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]
31. Brindisi, M.; Ulivieri, C.; Alfano, G.; Gemma, S.; de Asis Balaguer, F.; Khan, T.; Grillo, A.; Chemi, G.; Menchon, G.; Prota, A.E.;

et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor
agents. Eur. J. Med. Chem. 2019, 162, 290–320. [CrossRef] [PubMed]

32. Brogi, S.; Butini, S.; Maramai, S.; Colombo, R.; Verga, L.; Lanni, C.; De Lorenzi, E.; Lamponi, S.; Andreassi, M.; Bartolini, M.; et al.
Disease-modifying anti-Alzheimer’s drugs: Inhibitors of human cholinesterases interfering with beta-amyloid aggregation. CNS
Neurosci. Ther. 2014, 20, 624–632. [CrossRef] [PubMed]

33. Humphreys, D.D.; Friesner, R.A.; Berne, B.J. A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules. J. Phys.
Chem. 1994, 98, 6885–6892. [CrossRef]

34. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef] [PubMed]
35. Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189.

[CrossRef]
36. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem.

Phys. 1995, 103, 8577–8593. [CrossRef]
37. Cevik, M.; Bamford, C.G.G.; Ho, A. COVID-19 pandemic-a focused review for clinicians. Clin. MicroBiol. Infect. 2020, 26, 842–847.

[CrossRef]
38. Organic Chemistry Portal. 2021. Available online: http://www.organic-chemistry.org/prog/peo/ (accessed on 25 July 2021).
39. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening

libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [CrossRef] [PubMed]

453



Citation: Brogi, S.; Rossi, S.; Ibba, R.;

Butini, S.; Calderone, V.; Campiani,

G.; Gemma, S. In Silico Analysis of

Peptide-Based Derivatives

Containing Bifunctional Warheads

Engaging Prime and Non-Prime

Subsites to Covalent Binding

SARS-CoV-2 Main Protease (Mpro).

Computation 2022, 10, 69. https://

doi.org/10.3390/computation10050069

Academic Editor: Brendan Howlin

Received: 19 March 2022

Accepted: 27 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

In Silico Analysis of Peptide-Based Derivatives Containing
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Abstract: Despite the progress of therapeutic approaches for treating COVID-19 infection, the interest
in developing effective antiviral agents is still high, due to the possibility of the insurgence of viable
SARS-CoV-2-resistant strains. Accordingly, in this article, we describe a computational protocol for
identifying possible SARS-CoV-2 Mpro covalent inhibitors. Combining several in silico techniques,
we evaluated the potential of the peptide-based scaffold with different warheads as a significant
alternative to nitriles and aldehyde electrophilic groups. We rationally designed four potential
inhibitors containing difluorstatone and a Michael acceptor as warheads. In silico analysis, based on
molecular docking, covalent docking, molecular dynamics simulation, and FEP, indicated that the
conceived compounds could act as covalent inhibitors of Mpro and that the investigated warheads
can be used for designing covalent inhibitors against serine or cysteine proteases such as SARS-CoV-2
Mpro. Our work enriches the knowledge on SARS-CoV-2 Mpro, providing a novel potential strategy
for its inhibition, paving the way for the development of effective antivirals.

Keywords: SARS-CoV-2; main protease (Mpro); computer-aided drug design; molecular docking;
molecular dynamics

1. Introduction

Severe acute respiratory syndrome coronavirus-2, widely known as SARS-CoV-2, is
the etiological agent of COVID-19 that caused several epidemic outbreaks since its first
appearance in 2019 in the city of Wuhan, China [1]. Since then, rapid vaccination campaigns
have been implemented at the global level to protect the population from the most severe
symptoms. Moreover, very recently novel antivirals such as molnupiravir and paxlovid
(PF-07321332 + ritonavir) have been added to the COVID-19 therapeutic armamentarium
to treat the infection in patients with high risk of severe symptoms [2–5]. However, the
research of effective antivirals remains a priority, both for the current and future pandemics.
SARS-CoV-2 belongs to the Coronaviridae subfamily which is composed of alpha-, beta-,
gamma-, and delta-CoVs [6]. The SARS-CoV-2 genome comprises approximately 30,000
nucleotides that feature genes for the production of nonstructural proteins (enzymes
required for viral transcription and replication) and structural proteins. The life cycle of
the virus begins when the spike glycoprotein (S) binds the host receptor, which, in the case
of SARS-CoV-2, is the ACE2 enzyme. This interaction determines the fusion of the cell
membrane with the viral one and allows the entry of the virus inside the cell. Once inside
the host cell, the virus disassembles to release the nucleocapsid and viral RNA into the
cytoplasm. Afterward, translation of the ORF1a/b takes place to form the large replicase
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polyprotein 1a (pp1a) and pp2ab, and the replication of genomic RNA occurs. The pp1ab
polyprotein is processed by two viral proteases, 3-chymotrypsin-like protease (3CLpro or
Mpro) and papain-like protease enzyme (PLpro), to release nonstructural proteins such as
RNA-dependent RNA polymerase and helicase, which are involved in viral transcription
and replication and the structural proteins that will form the new viral particles. The
virion is assembled in the endoplasmic reticulum and Golgi and is finally released into the
extracellular compartment by exocytosis.

The Mpro enzyme as a target for developing new antiviral drugs: The Mpro enzyme
is one of the best characterized and validated as a drug target among those known for
coronaviruses [7]. Together with PLpro, it is essential for the maturation of the polyprotein,
which is translated from viral RNA and cleaved by the proteases. The Mpro enzyme
operates no less than 11 hydrolytic breaks on the polyprotein 1ab in correspondence with
specific recognition sequences. Most of the cleavage sites hold Leu-Gln ↓ (Ser, Ala, Gly) as
the recognition sequence. Hence, Mpro inhibition blocks viral replication [8].

Among the three antivirals currently approved for the treatment of SARS-CoV-2
infection, PF-07321332 (1, Figure 1) is an Mpro inhibitor [9,10]. Its structure is characterized
by a peptidomimetic scaffold bearing a nitrile moiety as an electrophilic warhead.
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Figure 1. Chemical structures of reported SARS-CoV-2 Mpro inhibitors (1–3) showing different
electrophilic warheads.

In general, the design of serine and cysteine protease inhibitors involves the insertion
of electrophilic groups (warheads) that are reversibly or irreversibly attacked by nucle-
ophilic serine or cysteine catalytic residues to form covalent adducts. The selectivity of
the inhibitors is guaranteed by warhead flanking moieties able to specifically interact
with the subsites of the enzyme mimicking the endogenous peptidic substrates. For these
reasons, serine/cysteine protease inhibitors are usually characterized by a peptidic or
peptidomimetic structure, albeit nonpeptidic Mpro inhibitors have also been reported [11].
Compounds 2 and 3 in Figure 1 are examples of different mono- or bifunctional war-
heads [8,12].

The electrophilic warhead plays a critical role in the development of Mpro inhibitors
since it has to be characterized by sufficient reactivity to react with active-site residues, but
stable enough not to engage in unwanted and aspecific reactions with other nucleophiles;
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it should be readily accommodated inside the active site and be able to appropriately
orientate the flanking moieties toward the enzyme subsites. In order to better understand
the potential binding mode of electrophilic warheads and the role of the affinity of flanking
substituents, it is important to implement appropriate computational protocols able to
fully elucidate the parameters involved in covalent and noncovalent interactions. Here, we
report an in silico protocol aimed at investigating the potential binding mode and reactivity
of two different bifunctional warheads (compounds 4–7, Figure 2). We chose to investigate
in silico bifunctional electrophilic moieties that can be functionalized at both sides in order
to engage with residues at both the prime and nonprime subsites of the enzyme or to
be exploited to modulate drug-like properties. In particular, the difluorostatone-based
warhead has been demonstrated by us and others to be able to engage in reversible covalent
interactions with different serine proteases [13–15].

Computation 2022, 10, x FOR PEER REVIEW 3 of 18 
 

 

The electrophilic warhead plays a critical role in the development of Mpro inhibitors 
since it has to be characterized by sufficient reactivity to react with active-site residues, 
but stable enough not to engage in unwanted and aspecific reactions with other 
nucleophiles; it should be readily accommodated inside the active site and be able to 
appropriately orientate the flanking moieties toward the enzyme subsites. In order to 
better understand the potential binding mode of electrophilic warheads and the role of 
the affinity of flanking substituents, it is important to implement appropriate 
computational protocols able to fully elucidate the parameters involved in covalent and 
noncovalent interactions. Here, we report an in silico protocol aimed at investigating the 
potential binding mode and reactivity of two different bifunctional warheads 
(compounds 4–7, Figure 2). We chose to investigate in silico bifunctional electrophilic 
moieties that can be functionalized at both sides in order to engage with residues at both 
the prime and nonprime subsites of the enzyme or to be exploited to modulate drug-like 
properties. In particular, the difluorostatone-based warhead has been demonstrated by us 
and others to be able to engage in reversible covalent interactions with different serine 
proteases [13–15]. 

On the other hand, Michael-based acceptor electrophilic moieties have been 
previously reported as alternatives to nitriles and aldehyde warheads. Starting from 
inhibitor 3, the structural models 4–6 used for our computational investigation were 
designed by keeping constant residues P1–P3 and replacing the Michael acceptor group 
with a difluorostatone moiety. In particular, we wanted to verify if, in our computational 
protocol, compound 6 could be potentially able to form H-bond interactions inside the S2 
subsite, similarly to what is described for reference inhibitor 2. Here, we report a 
preliminary in silico investigation aimed at assessing the potential binding mode of the 
difluorostatone/aza-Michael moieties. 

 
Figure 2. Chemical structures of potential inhibitors of SARS-CoV-2 Mpro (4–7) reported in this 
study. 

Thus, we conducted an extensive computational investigation based on molecular 
docking, molecular dynamics, and covalent docking approaches for determining the 
potential of the conceived compounds in inhibiting SARS-CoV-2 Mpro. 

  

Figure 2. Chemical structures of potential inhibitors of SARS-CoV-2 Mpro (4–7) reported in this study.

On the other hand, Michael-based acceptor electrophilic moieties have been previously
reported as alternatives to nitriles and aldehyde warheads. Starting from inhibitor 3, the
structural models 4–6 used for our computational investigation were designed by keeping
constant residues P1–P3 and replacing the Michael acceptor group with a difluorostatone
moiety. In particular, we wanted to verify if, in our computational protocol, compound 6
could be potentially able to form H-bond interactions inside the S2 subsite, similarly to what
is described for reference inhibitor 2. Here, we report a preliminary in silico investigation
aimed at assessing the potential binding mode of the difluorostatone/aza-Michael moieties.

Thus, we conducted an extensive computational investigation based on molecular
docking, molecular dynamics, and covalent docking approaches for determining the poten-
tial of the conceived compounds in inhibiting SARS-CoV-2 Mpro.

2. Materials and Methods
2.1. Computational Details
2.1.1. Protein and Ligand Preparation

Peptide-based derivatives were built in Maestro Molecular Modeling Suite (Maestro
release 2020-3, Schrödinger, LLC, New York, NY, USA, 2020) using the available drawing
tools as described [13,16]. Energy minimization was performed using the MacroModel
application with the OPLS-2005 force field [17]. The resulting compounds were treated
by LigPrep software (LigPrep release 2020, Schrödinger, LLC, New York, NY, USA, 2020)
to provide the most probable ionization state at physiological pH (7.4 ± 0.2). To simulate
solvent effects, the GBSA model was used with “no cutoff” for nonbonded interactions. The
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PRCG method (5000 maximum iterations and threshold for gradient convergence = 0.001)
was used to minimize the potential energy. The experimental structure of the SARS-CoV-2
Mpro enzyme was downloaded from the Protein Data Bank (PDB ID: 6Y2G [12]; crystal
structure of Mpro in complex with α-ketoamide-based covalent inhibitor) and imported
into Maestro Suite 2020. The first step was to break the covalent bond between C145
and the α-ketoamide derivative to restore the native arrangement of the enzyme. Next,
to refine the structure, we applied the Protein Preparation Wizard protocol available in
Maestro for performing various computational steps to (1) add hydrogens; (2) optimize the
orientation of hydroxyl groups of residues, Asn and Gln, and the protonation state of His;
and (3) perform a constrained minimization refinement using the impref utility. At first, the
protein was preprocessed by adding all hydrogen atoms to the structure, assigning bond
orders, creating disulfide bonds, and filling missing sidechains and loops. To optimize the
hydrogen bond network, His tautomers and ionization states were predicted, 180◦ rotations
of the terminal angle of Asn, Gln, and His residues were assigned, and hydrogen atoms of
the hydroxyl and thiol groups of residues were sampled. Finally, a restrained minimization
was performed using the Impact Refinement (impref ) module, employing the OPLS3 force
field to optimize the geometry and minimize the energy of the protein. The minimization
was terminated when the energy converged or the root-mean-square deviation (RMSD)
reached a maximum cutoff of 0.30 Å.

2.1.2. Molecular Docking

Glide software (Glide release 2020, Schrödinger, LLC, New York, NY, USA, 2020)
employing the SP scoring function was used to perform all docking studies conducted in
this work [18]. The energy grid for docking was prepared using the default value of the
protein atom-scaling factor (1.0 Å), with a cubic box centered on the crystallized ligand.
The docked poses considered for the post-docking minimization step were 1000.

To improve the quality of the investigation, we also evaluated the ligand-binding
energies from the complexes derived by the docking calculation. For this purpose, the
Prime/MM-GBSA method, available in Prime software (Prime release 2020, Schrödinger,
LLC, New York, NY, USA, 2020), was used. This technique computes the variation
between the free and the complex states of both the ligand and enzyme after energy
minimization [19,20].

2.1.3. Molecular Dynamics

Desmond 5.6 academic version, provided by D. E. Shaw Research (“DESRES”), was uti-
lized to perform MD simulation experiments via the Maestro graphical interface (Desmond
Molecular Dynamics System, version 5.6, D. E. Shaw Research, New York, NY, USA, 2018.
Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, USA, 2018). MD
was performed using the Compute Unified Device Architecture (CUDA) API [21] on two
NVIDIA GPUs. The Desmond system builder available via Maestro was employed for
solvating the complexes derived from the docking studies into an orthorhombic box filled
with water, simulated by the TIP3P model [22,23]. The OPLS force field [17] was used
for MD calculations as reported [23–25]. To simulate the physiological concentration of
monovalent ions, we added Na+ and Cl− ions to obtain a final salt concentration of 0.15 M.
Constant temperature (300 K) and pressure (1.01325 bar) were employed with the NPT
(constant number of particles, pressure, and temperature) as the ensemble class. The RESPA
integrator [26] was used to integrate the equations of motion, with an inner time step of
2.0 fs for bonded and nonbonded interactions within the short-range cutoff. Nose–Hoover
thermostats [27] were used to keep the constant simulation temperature, and the Martyna–
Tobias–Klein method [28] was applied to control the pressure. Long-range electrostatic
interactions were calculated by the particle-mesh Ewald method (PME) [29]. The cutoff for
van der Waals and short-range electrostatic interactions was set at 9.0 Å. The equilibration
of the system was performed using the default protocol provided in Desmond, which con-
sists of a series of restrained minimization and MD simulations applied to slowly relax the
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system. Consequently, one individual trajectory for each complex of 100 ns was calculated.
The trajectory files were analyzed by MD analysis tools available in Maestro. The same
applications were used for generating all plots regarding MD simulations presented in this
article. Therefore, the RMSD was calculated using the following equation:

RMSDx =

√
1
N ∑N

i=1 (r
′
i(tx)−ri (tre f ))

2

where RMSDx refers to the calculation for a frame x; N is the number of atoms in the atom
selection; tref is the reference time (typically the first frame is used as the reference, and
it is regarded as time t = 0); and r′ is the position of the selected atoms in frame x, after
superimposing on the reference frame, where frame x is recorded at time tx. The procedure
is repeated for every frame in the simulation trajectory. Regarding the root-mean-square
fluctuation (RMSF), the following equation was used for the calculation:

RMSFi =

√
1
T ∑T

t=1 <(r′i(t)−ri (tre f ))
2>

where RMSFi refers to a generic residue i, T is the trajectory time over which the RMSF is
calculated, tref is the reference time, ri is the position of residue I, r′ is the position of atoms
in residue i after superposition on the reference, and the angle brackets indicate that the
average of the square distance is taken over the selection of atoms in the residue.

Free-energy perturbation (FEP) was performed using the FEP module available in
the Desmond package using the complexes obtained by docking calculations, employing
the default setting of the FEP protocol. The simulation was split into 12 λ-windows, with
replica exchange attempted every 1.2 ps.

2.1.4. Covalent Docking

Covalent docking studies were executed in Maestro Suite 2020 applying the Covalent
Docking protocol (CovDock) [30] as previously reported by us [14,31]. The algorithm
utilizes both the Glide docking algorithm and Prime structure refinement. The CovDock
application considers custom reactions enclosed in a list of possible covalent reactions
(implemented in the software) using the SMARTS pattern. In this way, it is possible to
automatically recognize the reactive residue and the portion of the ligand that are involved
in the reaction. If the desired reaction is not present in that list, it is possible to write the
reaction that involves the correct atoms. In this study, since the desired reaction considering
the difluorostatone derivatives was not present in the list of reactions provided by CovDock,
the reaction of the SMARTS pattern was customized [CC(C)=O] to obtain a reliable reaction
for the compounds. Instead, the reaction involving a Michael acceptor is present in the
reaction list. To start the calculation, the reactive residue of the receptor was selected (C145)
and matched to the one defined in the custom chemistry file to specify the reaction type.
The grid center was positioned at the centroid of the selected docked ligand, and the size
of the grid box was automatically determined. No constraints were used, and the pose
prediction option was selected for obtaining more accurate output results. Following the
docking procedure, the obtained poses were filtered using default parameters, and the
scoring option MM/GBSA was selected.

2.1.5. Physicochemical Properties Evaluation

QikProp (QikProp release 2020, Schrödinger, LLC, New York, NY, USA, 2020) was
used for assessing logP and logS, while the possible pan-assay interference compounds
(PAINS) issue was evaluated employing the online server FAFDrugs4 (https://fafdrugs4
.rpbs.univ-paris-diderot.fr/ accessed on 25 February, 2022).
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3. Results and Discussion
3.1. Molecular Docking Studies

In order to assess the tendency of our conceived compounds, reported in Figure 2, to
bind the SARS-CoV-2 Mpro enzyme, we conducted a series of in silico experiments mainly
based on molecular docking and molecular dynamics (Table 1). The protein (PDB ID: 6Y2G)
and the ligands prepared as reported in the Materials and Methods section were docked
into the well-established Mpro binding site using Glide software, employing the SP scoring
function. Furthermore, we also calculated a relative binding affinity (∆Gbind) using the
MM/GBSA method. The output of this calculation is reported in Table 1, while the docking
results are illustrated in Figure 3.

Table 1. Computational analysis regarding compounds 4–7 as potential Mpro inhibitors, along with
reference compounds 2 and 3 (N3).

Compound Docking Score
(kcal/mol)

∆Gbind
(kcal/mol) QPlogP B QPlogS C PAINS D
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Table 1. Cont.

Compound Docking Score
(kcal/mol)

∆Gbind
(kcal/mol) QPlogP B QPlogS C PAINS D
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−2–6.5); B QPlogS predicted aqueous solubility in mol/dm3 (range or recommended value for 95% of known
drugs: −6.5–0.5); PAINS assessment was performed by FAFDrugs4 online server (accessed on 25 February 2022).

Based on docking results, we observed a significant binding affinity of the developed
compounds for the selected target. Considering the retrieved binding mode, we observed
that compound 4 (Table 1 and Figure 3A) spanned and interacted with all regions S1–S4 of
the Mpro binding site (S1–S4). In fact, the difluorostatone moiety established a polar contact
with the backbone of G143 (S1′ region), and the pyrrolidinone moiety strongly targeted
residues belonging to the S1 region, establishing a series of H-bonds with the backbone
of F140 and the sidechains of E166 and H163. The central region of the molecule targeted
the backbone of H164 and E166. The P1-moiety of the peptide-based derivative 4 formed
H-bonds with the backbone of E166 and with the sidechain of Q192 (S4 region).

The detailed binding mode of compound 4, represented by a ligand interaction
diagram, is visible in Figure 4A. This binding mode accounted for a docking score of
−10.779 kcal/mol and a ∆Gbind of −123.15 kcal/mol.

The introduction of the oxazole moiety to replace the methyl group of compound 4
led to the peptide-based derivative 5. As observed for its parent molecule, it can estab-
lish a strong H-bond network within the active site of the enzyme (Figures 3B and 4B).
Compound 5 could establish interactions with the backbone of G143 and C145 by its di-
fluorostatone portion, and the pyrrolidinone moiety could strongly target F140, E166, and
H163, establishing the same contacts described for compound 4. The oxazole moiety did
not form polar contacts, while it established hydrophobic interactions within the S4 region
of the enzyme. This binding mode accounted for a docking score comparable to that found
for derivative 4 (GlideScore compound 5: −10.027 kcal/mol; ∆Gbind −109.41 kcal/mol). A
further modification of the tail of compound 5 by introducing a quinoline group aimed at
maximizing the number of contacts within the S4 region of the binding site led to the design
of the peptidomimetic 6. The results of the modeling study on derivative 6 are depicted in
Figures 3C and 5A. Gratifyingly, our hypothesis was confirmed by the molecular docking
calculation. In effect, in addition to the contacts previously described for compound 5,
compound 6 could target the backbone of T190, increasing the hydrophobic contacts within
the S4 region. This binding mode, with an improved number of contacts, accounts for a
docking score of −11.269 kcal/mol and a ∆Gbind of −114.26 kcal/mol.
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Finally, we attempted to modify the head of the molecule by introducing a Michael
acceptor and replacing the pyrrolidinone group with glutamine to evaluate a different war-
head in the quinoline-based derivative. Interestingly, the resulting compound, derivative 7,
showed a comparable binding mode with respect to the previously discussed molecules.
As reported in Figures 3D and 5B, compound 7 could establish the same above-described
interactions at the S1 and S1’ regions of the enzyme, targeting G143, H163, H164, and E166.
Additionally, we observed an H-bond with the sidechain of H141. Notably, the quinoline
moiety at the S4 site established an H-bond with the sidechain of Q192. Although there
was a slight decrease in the docking score (−9.540 kcal/mol), the binding affinity (∆Gbind
of −114.04 kcal/mol) is in line with the values estimated for the discussed derivatives 4–6.
Accordingly, the docking studies confirmed the potential of the selected peptide-based
derivatives to target SARS-CoV-2 Mpro.

Because of the mechanism of the enzyme, it is crucial to evaluate the distance between
the reactive residues of the enzyme and the possible atoms of the compound susceptible to
the attack for covalent bonding. In particular, the Mpro C145 residue represents the pivotal
residue to form a covalent adduct. Therefore, we measured the distance between the
sulfur atom of C145 and the carbon atom of the compound susceptible to the nucleophilic
attack. As reported in Figure S1, the measured distances are for all compounds under
3 Å (compound 4: −2.87 Å; compound 5: −2.69 Å; compound 6: −2.84 Å; compound 7:
−2.93 Å). Remarkably, the findings agree with the possibility that these compounds can
form a covalent adduct within the active site of the enzyme, precluding its function.

To compare the mentioned results, we performed further docking calculations, using
the same computational protocol, employing two reference compounds, 2 and 3 (N3)
(Table 1). According to the crystal structures of the reference compounds, the docking
protocol was able to correctly accommodate these ligands within the Mpro binding site
(Figure S2). Furthermore, these calculations also provided computational scores (Table 1)
that can be compared to those obtained for compounds 4–7 (Table 1). The analysis of
docking scores and ∆Gbind indicated that our compounds can bind the Mpro binding
site with affinities comparable to those observed for the reference compounds 2 and 3,
establishing similar contacts, targeting crucial residues for enzyme activity. Moreover, as
reported in Figure S3, as expected, also for reference compounds, the distance between the
reactive residues of the enzyme (C145) and the possible atom of the compounds susceptible
to the attack for a covalent bonding was found to be compatible with the formation of a
covalent adduct within the active site of the enzyme, in line with the experimental activity
of reference compounds.
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3.2. Molecular Dynamics Simulations

After docking studies, we validated the retrieved binding modes by conducting MD
simulations in the explicit solvent. We employed Mpro/ligands docking-derived complexes
to investigate the evolution of biological systems for 100 ns. The resultant MD trajectories
for all complexes were deeply examined through several standard simulation parameters,
including RMSD analysis for all backbone atoms and ligands and RMSF of individual
amino acid residue. The selected complexes displayed reasonable stability from the early
stages of the simulation, as indicated by observing the RMSD. Considering the entire
simulation time, we did not observe any major expansion and/or contraction, caused
by the binding of the investigated compounds (Figure 6, regarding the simulation of
compounds 4–7). This stability was also corroborated by examining the RMSF determined
for the selected complexes. RMSF denotes the variation between the atomic Cα coordinates
of the enzyme from its average position during the MD simulation. This computation is
profitable to characterize the flexibility of individual residues of the protein backbone. The
systems under study did not show considerable fluctuation events, with the exclusion of an
extremely limited number of residues at the N- and C-terminal regions of Mpro (Figure S4).
Likewise, the conformational adaptations of critical residues in the active site (lowest RMSF
values for all complexes) confirmed the ability of compounds to form stable interactions
within the protein.
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To better comprehend the behavior of derivatives 4–7 into the SARS-CoV-2 Mpro

binding site, we performed a comprehensive analysis of MD simulations, exploring the
established contacts. In general, compound 4 (Figures 7A and S5A) maintained the contacts
found by docking calculation. Interestingly, we observed a stronger network of interactions
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at the S1′ region since contacts with S144 and the backbone of C145 were detectable.
Furthermore, the tail of compound 4, in addition to the H-bond with Q192, established
additional H-bonds with Q189 and T190 (S3 region), sometimes water-mediated. The
analysis conducted on the trajectory of MD simulation for compound 5 is illustrated in
Figures 7B and S5B. Here again, the crucial contacts established by compound 5 within the
Mpro binding site were maintained. Notably, the strong network of contacts at the S1 and
S1′ regions was conserved during the simulation with the addition of contacts with H41.
The tail becomes able to effectively target Q189, T190, and Q192 at the S3 and S4 regions,
resulting in a more tightly binding within the active site of the enzyme.
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molecular docking studies were observed. Compound 7 showed a comparable behavior 
since it can strengthen the interaction within the active site, establishing a strong network 
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Figure 7. Compounds 4 (panel A) and 5 (panel B) monitored during the simulation. The contacts can
be grouped by type and summarized, as shown in the plots. Grouping protein–ligand interactions
into four types: H-bonds (green), hydrophobic (gray), ionic (magenta), and water bridges (blue). In
the second graph of the picture is reported a timeline representation of the contacts. Some residues
make more than one specific contact with the ligand, which is represented by a darker shade of
orange. Pictures were generated by the simulation interaction diagram available in Desmond via
Maestro (Maestro, Schrödinger LLC, release 2020-3).

Additionally, the MD analysis of compound 6 (Figures 8A and S5C) and compound
7 (Figures 8B and S5D) revealed a similar trend. Regarding compound 6, interactions
with H41 at the S2 site and Q189 and Q192 at site S3 in addition to the contacts found by
molecular docking studies were observed. Compound 7 showed a comparable behavior
since it can strengthen the interaction within the active site, establishing a strong network
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of contacts at S3 with Q189 and T190 and increasing the contacts with Q192. Overall,
the MD simulation analysis indicated a high stability of the binding mode found by
molecular docking for each selected complex. In addition to the existing contacts, we found
a reasonable number of novel contacts that can further stabilize the binding modes.
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Maestro (Maestro, Schrödinger LLC, release 2020-3).

We then monitored the distance between the sulfur atom of C145 and the electrophilic
carbon atom of the ligand, susceptible to nucleophilic attack for each complex. As reported
in Figure S6, the distance between the selected atoms remained mainly constant with very
small variations, as expected due to the high stability of the complexes. Accordingly, the
measures indicated that the considered electrophilic carbon atom remained susceptible to a
possible nucleophilic attack from C145 during the simulation time.

In addition, to further validate our computational protocol, we performed MD sim-
ulations also for the ligand/enzyme complexes of the reference compounds previously
described (Figure S2). As observed for compounds 4–7, the investigated systems were
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reasonably stable with small fluctuations (Figure S7), and the contacts found by docking
studies were maintained during the MD simulations (Figure S8). As expected, the dis-
tances between the reactive residues of the enzyme (C145) and the possible atom of the
compounds susceptible to the attack for a covalent bonding were also found to be stable
during the simulations (Figure S9), indicating the reliability of the computational approach.

Finally, to further corroborate the obtained results, we performed additional calcu-
lations, using the FEP technique to compute the differences in protein–ligand-binding
free energies from MD simulations. The output of this calculation in terms of ∆∆Gbind is
reported in Table 2, with compound 2 (crystallized ligand in the structure 6Y2G, used in this
study) employed as the reference compound. As indicated by the results, compounds 4–6
showed an improved binding affinity with respect to the reference molecule (compound
2), while compound 7 showed a slight decrease in binding affinity consistent with lower
computational scores, found by other methods, with respect to the best performing com-
pounds. Notably, FEP calculation confirms the potency of compound 3 in inhibiting Mpro

with a slight improvement with respect to the value found for the 6Y2G ligand (compound
2) [8,12].

Table 2. Computational scores (covalent docking score and ∆Gbind derived from docking studies,
and ∆∆Gbind derived by FEP calculation) obtained for compounds 4–7 compared to the reference
compounds 2 and 3.

Compound
Covalent Docking

Score
(kcal/mol)

Covalent Docking
∆Gbind

(kcal/mol)

FEP/MD ∆∆Gbind
(kcal/mol)

4 −10.834 −128.29 −0.18 ± 0.11

5 −10.232 −119.17 −0.45 ± 0.21

6 −11.681 −116.49 −0.73 ± 0.32

7 −9.828 −115.96 0.12 ± 0.09

2 −10.174 −113.87 –

3,N3 −10.043 −114.74 −0.13 ± 0.12

3.3. Covalent Docking Approach

To gain further insight into the formation of the tetrahedral intermediate and predict
the binding mode of peptide-based derivatives, different molecular models of the selected
complexes were generated using a covalent docking protocol, namely CovDock, available
in Maestro. Once the correct reaction is written and the software recognizes all the residues
involved, CovDock initially combines the Glide docking algorithm and Prime structure
refinement to determine whether the ligand can be accommodated into the selected binding
site (standard docking). In this way, as a constraint, the ligand should sit in a position close
enough to the nucleophilic group of the reactive residue. The reactive residue, cysteine,
is mutated with an alanine residue to generate an initial association in which the ligand
is noncovalently bound to the target protein. Subsequently, the receptor is restored, and
the reaction occurs. Once the covalent bond is formed, the complex is minimized. Now,
the obtained poses are clustered and ranked after a complete minimization. The output
of this calculation is illustrated in Figure 9. The docked poses of compounds 4–7 into the
catalytic site of Mpro were chosen as the starting point for the covalent docking procedure.
As displayed in Figure 9, the tetrahedral intermediates can be stabilized by the formation
of novel H-bonds with specific amino acid residues, thus resulting in an overall fine-
tuning of the binding conformation of compounds 4–7 within the binding cleft and in the
generation of more stable complexes. Accordingly, based on this computational approach,
the conceived compounds can act as covalent inhibitors of SARS-CoV-2 Mpro.
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In this case, we conducted the same computational study on reference compounds.
The adopted covalent docking protocol is effectively able to correctly accommodate the
reference compounds within the Mpro binding site with high accuracy, reproducing the
crystal structure conformation of reference compounds when they are covalently bound to
the binding site (Figure S10). Remarkably, the geometry obtained for the reference ligands
covalently bound to Mpro is very close to that observed in the crystal structures [8,12].
Gratifyingly, the computational docking scores reported in Table 2 further confirmed the
susceptibility of compounds 4–7 to react within the Mpro binding site, forming a covalent
adduct with C145 due to the comparable scores found for the reference compounds.

4. Conclusions

In summary, we have described a computational protocol aimed at designing novel
SARS-CoV-2 Mpro covalent inhibitors. The work was focused on the evaluation of bifunc-
tional warheads engaging prime and nonprime subsites of the active site of the enzyme. To
this end, we designed, considering the binding site of Mpro, peptide-based inhibitors based
on the difluorostatone scaffold that has been demonstrated to be effective in inhibiting other
proteases [13–15]. In addition, a peptide-based inhibitor containing a Michael acceptor has
been designed. All these compounds were computationally investigated using several in
silico techniques such as molecular docking, covalent docking, MD simulation, and FEP, for
evaluating their potential as covalent inhibitors against SARS-CoV-2 Mpro. Computational
hints indicated that the proposed compounds can be effective in inhibiting the enzyme,
deserving further experimental studies to confirm these findings to expand the armamen-
tarium for fighting this virus. Moreover, our work provides a rational computer-driven
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approach for developing covalent inhibitors of the Mpro enzyme. This approach could also
be extended to the inhibition of other drug targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/computation10050069/s1, Figure S1: Measured distances between
the sulfur of the catalytic residue C145 and the electrophilic carbon of compounds 4 (panel A), 5
(panel B), 6 (panel C), and 7 (panel D) that can be susceptible of nucleophilic attack; Figure S2: Docked
pose of compound 2 and compound 3 (N3) (panels A,B, respectively) into Mpro-SARS-CoV-2 (PDB
ID: 6Y2G); Figure S3: Measured distances between the sulfur of the catalytic residue C145 and the
electrophilic carbon of compound 2 (panel A) and compound 3 (N3) (panel B) that can be susceptible
to nucleophilic attack; Figure S4: RMSF calculation for each complex, selected by docking studies,
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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was found to be a severe
threat to global public health in late 2019. Nevertheless, no approved medicines have been found
to inhibit the virus effectively. Anti-malarial and antiviral medicines have been reported to target
the SARS-CoV-2 virus. This paper chose eight natural eucalyptus compounds to study their binding
interactions with the SARS-CoV-2 main protease (Mpro) to assess their potential for becoming
herbal drugs for the new SARS-CoV-2 infection virus. In-silico methods such as molecular docking,
molecular dynamics (MD) simulations, and Molecular Mechanics Poisson Boltzmann Surface Area
(MM/PBSA) analysis were used to examine interactions at the atomistic level. The results of molecular
docking indicate that Mpro has good binding energy for all compounds studied. Three docked
compounds, α-gurjunene, aromadendrene, and allo-aromadendrene, with highest binding energies
of −7.34 kcal/mol (−30.75 kJ/mol), −7.23 kcal/mol (−30.25 kJ/mol), and −7.17 kcal/mol (−29.99 kJ/mol)
respectively, were simulated with GROningen MAchine for Chemical Simulations (GROMACS) to
measure the molecular interactions between Mpro and inhibitors in detail. Our MD simulation
results show that α-gurjunene has the strongest binding energy of −20.37 kcal/mol (−85.21 kJ/mol),
followed by aromadendrene with −18.99 kcal/mol (−79.45 kJ/mol), and finally allo-aromadendrene
with −17.91 kcal/mol (−74.95 kJ/mol). The findings indicate that eucalyptus may be used to inhibit
the Mpro enzyme as a drug candidate. This is the first computational analysis that gives an insight
into the potential role of structural flexibility during interactions with eucalyptus compounds. It also
sheds light on the structural design of new herbal medicinal products against Mpro.

Keywords: binding energy; eucalyptus compounds; molecular docking; molecular dynamics;
SARS-CoV-2
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1. Introduction

Unspecified pneumonia was reported in the Wuhan region of the Hubei Province, China, towards
the end of 2019. Medically, it was quite comparable to viral pneumonia. After the screening of
clinical samples, the disease control unit specialist reported that it was pneumonia associated with
the severe acute respiratory syndrome (SARS). Eventually, the World Health Organization (WHO)
officially labeled it COVID-19 and it has quickly spread from its original area to nearly all of China,
and over 200 nations and regions worldwide today. The International Committee on Virus Taxonomy
called the new coronavirus “severe acute respiratory syndrome coronavirus 2” (SARS-CoV-2) [1,2].
The SARS-CoV-2 infection leads to difficulty breathing, fever, chronic respiratory failure, and dry
cough, which might also result in death [3]. A total of 14,263,202 SARS-CoV-2 cases were recorded
as of 20 July 2020, with 220,026 new confirmed cases and 602,244 deaths worldwide [4]. Nigeria
alone recorded 36,663 confirmed cases and 789 fatalities. Cases increased exponentially between April
and June, with the highest number of cases reported on 15 June (904 confirmed cases) and 45 deaths
reported on 18 June 2020 [5].

SARS-CoV-2 is part of the Coronaviridae family that consists of the main positive-sense
single-strand RNA viruses. These viruses are categorized into α, β, γ, and δ genera. SARS-CoV-2,
SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) all belong to β-coronaviruses.
A study of the genome sequences of these viruses showed that SARS-CoV-2 encompasses a higher
nucleotide homology of 89.1% with SARS-CoV compared with MERS-CoV [1,3,6]. In spite of the scientific
community’s immediate and unprecedented research efforts worldwide, no successful antiviral or vaccine
is currently available for SARS-CoV-2. Nevertheless, substantial steps have been taken to produce
vaccines and treatment drugs undergoing early clinical studies. Antiviral medicines such as remdesivir
developed for Ebola, and anti-HIV drugs such as lopinavir and ritonavir, and popular anti-malaria
medicine hydroxychloroquine are currently in mega clinical testing for COVID-19 treatments [7]. Some
studies have revealed that chloroquine phosphate inactivates SARS-CoV-2 [8–10], and others revealed
that SARS-CoV-2 in-vitro is inhibited by hydroxychloroquine sulfate [8,10]. In addition, computational
scientists used the in-silico strategy to identify potential drug targets by investigating complex atomistic
interactions [11–15]. One of the most described drug targets for SARS-CoV-2 is the main protease (Mpro,
also called 3CLpro), an enzyme necessary for the viral replication. The Mpro works in at least 11 digestive
sites in the gigantic polypeptide 1ab (replicase 1ab, approximately 790 kDa) [16].

Based on recent economic impacts on the financial markets, vaccine manufacturing funding
appears to be a considerable investment in the coming days [17]. Natural drug treatment may help to
avert the spread of the virus in this setting. Nature offers a vast library of chemical compounds that
have yet to be researched and established as medicines for the therapy of many viral infections [18].
The eucalyptus tree is one of several plant species used in Nigeria to prevent certain diseases.
Customarily, the leaves are boiled, and the fumes are breathed to increase the respiratory tract’s
effectiveness. East Africa’s Mozambique report suggested that eucalyptus could assist in combating
malaria, flu, and even fever, reducing the transmission of the disease outbreak. However, national
health specialists in the country are often warning of eucalyptus vapor inhalation [19]. Since prehistoric
times eucalyptus has been used for many reasons because it has anti-cancer, anti-inflammatory,
antiseptic, antioxidant, and antibacterial properties. Therefore, common colds, flu, sinus congestion,
and respiratory ailments are cured with eucalyptus [20]. Bahare Salehi et al. (2019) also reported
that eucalyptus had gained a great deal of global interest due to its antimicrobial, anti-inflammatory,
and insect repellent properties for therapeutic and furniture purposes. The most significant medical
benefits of eucalyptus include improving respiratory health, boosting the immune system, lowering
blood pressure, and combating bacterial infection. Traditionally, it is being used to promote mucus
secretion in the respiratory system [21].

The head of the Indonesian Ministry of Agriculture has recently admitted that
eucalyptus-dependent treatment has been established, stating that the spread of COVID-19 has
therefore been decreased. Influenza, β, and γ coronaviruses were screened, and 80–100% of the viruses
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had been destroyed [22]. However, in less than a month, another analysis revealed that the efficacy
of eucalyptus oil in COVID-19 therapy still requires extra study, since COVID-19 (SARS-CoV-2)
was not included in earlier studies, but other forms of coronavirus were. Hence, as a result of
this limited research data, eucalyptus cannot merely be referred to as the SARS-CoV-2 drug [23].
For this research work, eight eucalyptus compounds were selected for use against the target SARS-CoV-2
Mpro. As an in-silico technique, molecular docking simulation was used to understand the positional
binding and interaction mechanisms with the target molecule. To further investigate the nature
of the interactions and the energy contribution per amino acid residue, the top three compounds
with the best (lowest in terms of kcal/mol) binding energies were subjected to classical molecular
dynamics simulations. To the best of our knowledge, this is the first computational report that explores
the potential inhibitory effects of eucalyptus compounds against the Mpro protein.

2. Methods

2.1. Ligand Preparations

The information about eight compounds selected from eucalyptus with antiviral activities was
reported from the literature [20,21,24,25]. Such compounds were found in the PubChem database [26]
and saved in .sdf format, then translated into three-dimensional structures with Avogadro software [27].
ChemSketch was used to create two-dimensional structures of the phytochemicals (Figure 1). PubChem
ID and the molecular weight are listed in Table 1.

Computation 2020, 8, x; doi: FOR PEER REVIEW 3 of 13 

eucalyptus oil in COVID-19 therapy still requires extra study, since COVID-19 (SARS-CoV-2) was not 
included in earlier studies, but other forms of coronavirus were. Hence, as a result of this limited 
research data, eucalyptus cannot merely be referred to as the SARS-CoV-2 drug [23]. For this research 
work, eight eucalyptus compounds were selected for use against the target SARS-CoV-2 Mpro. As 
an in-silico technique, molecular docking simulation was used to understand the positional binding 
and interaction mechanisms with the target molecule. To further investigate the nature of the 
interactions and the energy contribution per amino acid residue, the top three compounds with the 
best (lowest in terms of kcal/mol) binding energies were subjected to classical molecular dynamics 
simulations. To the best of our knowledge, this is the first computational report that explores the 
potential inhibitory effects of eucalyptus compounds against the Mpro protein. 

2. Methods 

2.1. Ligand Preparations 

The information about eight compounds selected from eucalyptus with antiviral activities was 
reported from the literature [20,21,24,25]. Such compounds were found in the PubChem database [26] 
and saved in .sdf format, then translated into three-dimensional structures with Avogadro software 
[27]. ChemSketch was used to create two-dimensional structures of the phytochemicals (Figure 1). 
PubChem ID and the molecular weight are listed in Table 1. 

 
Figure 1. Two molecular dimensional structures of the eucalyptus compounds used in this study: (a) 1, 8-
cineole (eucalyptus), (b) α-pinene, (c) β-pinene, (d) terpinen-4-ol, (e) piperitone, (f) allo-
aromadendrene, (g) aromadendrene, and (h) α-gurjunene. 

Table 1. PubChem ID and molecular weight of the selected compounds. 

Eucalyptol Compounds PubChem ID Molecular Weight 
(g/mol) 

1,8-cineole (eucalyptol) 2758 154.25 
α-pinene 440968 136.23 
β-pinene 440967 136.23 

Terpinen-4-ol 11230 154.25 
Piperitone 92998 168.23 

Allo-aromadendrene 42608158 204.35 
Aromadendrene 91354 204.35 
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Figure 1. Two molecular dimensional structures of the eucalyptus compounds used in this study: (a) 1,
8-cineole (eucalyptus), (b)α-pinene, (c)β-pinene, (d) terpinen-4-ol, (e) piperitone, (f) allo-aromadendrene,
(g) aromadendrene, and (h) α-gurjunene.

Table 1. PubChem ID and molecular weight of the selected compounds.

Eucalyptol Compounds PubChem ID Molecular Weight (g/mol)

1,8-cineole (eucalyptol) 2758 154.25
α-pinene 440968 136.23
β-pinene 440967 136.23

Terpinen-4-ol 11230 154.25
Piperitone 92998 168.23

Allo-aromadendrene 42608158 204.35
Aromadendrene 91354 204.35
α-gurjunene 15560276 204.35
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2.2. Protein Model Preparations

The SARS-CoV-2 Mpro 3D structure (Figure 2) with PDB ID: 6LU7 [28] was from the protein
database library (https://www.rcsb.org). The structure was imported into visual molecular software,
eliminating a ligand (N3) in complex with protein and water molecules. Hydrogen atoms were added
prior to docking to correct the ionization and tautomeric states of amino acid residues. There are three
different domains in the Mpro structure: residues from domain I (8–100), residues from domain II
(101–183), and residues from domain III (200–303). N-terminal amino acids 1 through 7 constitute
the N-finger, which plays an essential role in dimerizing and forming the Mpro active site. Domains I
and II, known collectively as the N-terminal domain, have an anti-parallel β-sheet structure with 14
β-strands. The substrate-binding site is positioned inside a cleft between domains I and II. A loop from
amino acids 184 to 199 connects the N-terminal domain and domain III, also known as the C-terminal
domain, and forms a five α-helix anti-parallel cluster [29].
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three different domains.

2.3. Molecular Docking

Molecular docking was performed using Autodock4.2 [30] to test the binding affinity of eucalyptus
compounds toward the SARS-CoV-2 Mpro protein molecule. The receptor molecule remained rigid,
and ligands were versatile to achieve a degree of freedom associated with rotational parameters. Protein
and ligand PDB were transformed into .pdbqt after merging the nonpolar hydrogen. The cubical grid
box had a size of 126 × 126 × 126 and a spacing of 0.375 Å. A rigid grid box was used for the Autogrid4
parameter. In addition to Autogrid, Autodock4 with Lamarckian genetic algorithms [31] was used to
achieve optimal docking conformations. Default docking parameters were used except for the docking
run. There was a total of one hundred docking runs per compound. The binding affinity more clearly
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explains the inhibitor’s interaction with the protein molecule. The compound’s most desirable binding
poses were examined by choosing the lowest free energy of binding (∆G) and the lowest inhibition
constant (Ki). The inhibition constant was calculated theoretically with the help of Autodock4.2.
Between a protein and ligand, a stable complex was formed, exhibiting more negative free energy from
binding and low Ki indicating high potency of an inhibitor [32]. For further analysis, three compounds
with the lowest binding energies were selected for the starting structure to set up molecular dynamics
simulations. The interactions between the compounds and the target enzyme were studied using
Ligplot+ [33].

2.4. Molecular Dynamics (MD) Simulations and Analysis

The GROMACS 2019.3 package was used to perform MD simulations using selected complexes
with the lowest binding energies. The complexes were solvated with TIP3P water molecules, which were
constrained by LINCS [34] and SETTLE [35] algorithms. Four Na+ counter-ions were added to neutralize
the simulation system’s charge, and energy minimization was performed using the steepest descent
algorithm and GROMOS54A7 force field [36] with a corresponding equilibration of 1 ns. MD simulation
was performed for 100 ns per system. Our previous MD studies described a thorough procedure [37].
Molecular mechanics of Poisson–Boltzmann surface area (MM-PBSA) techniques were used to calculate
the free binding energies of the complexes. MM-PBSA enthalpy was calculated using molecular mechanics.
The effects of both polar and nonpolar solvent components on free energy were evaluated using
the Poisson–Boltzmann equation. For the calculation of energy, the GROMACS built-in tools g_mmpbsa
and APBSA [38] were used. The last 30 ns of MD simulations were taken in each complex with 3000 frames
in each. The parameters used in g_mmpbsa calculations included a protein dielectric constant of 4, solvent
dielectric constant set to 80, vacuum dielectric constant set to 1, temperature of 303 K, and SASA constant
and surface tension set to 3.84982 kJ/mol and 0.0226778 kJ/(mol Å2) respectively.

3. Results

3.1. Molecular Docking Results

The molecular docking technique has become one of the most used methods for determining
the drug targets for ligand-based computer-aided drug discovery (LB-CADD). This approach has now
been used to analyze vast data from drug repositories and easily register, which can save enormous
resources, time, and expense associated with LB-CADD [39]. Until now, successful drug treatment for
the SARS-CoV-2 virus has not been approved, and it is urgently necessary to identify possible drug
targets. We used in-silico Autodock4 to identify possible binding sites and interaction mechanisms of
eight potential natural eucalyptus compounds against the Mpro protein of SARS-CoV-2. The tested
compounds will pave the way for the development of drugs against SARS-CoV-2. After the docking
simulation, 100 different poses of small molecules (ligands) were produced among which the pose
with the strongest binding affinity was considered the best pose.

The findings obtained after the docking analysis are described in Table 2 regarding ligand binding energy
(kcal/mol), inhibition constant (Ki), and Mpro amino acid residues interacting with natural compounds.
The active site of Mpro protein was found to bind all compounds with a range of amino acid residues engaged
in interactions. These interactions have been linked to proof of the in-silico protein-ligand interactions.
Figure 3 demonstrates the docked natural compound molecules in complexes with Mpro protein. Three of
the natural compounds, α-gurjunene, aromadendrene, and allo-aromadendrene, showed significant binding
with binding energies of −7.34 kcal/mol (−30.71 kJ/mol), −7.23 kcal/mol (−30.25 kJ/mol), and −7.17 kcal/mol
(−29.99 kJ/mol), respectively.
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Table 2. Estimated lowest binding energies of main protease (Mpro) in complex with eucalyptus
compounds obtained from molecular docking calculations along with inhibition constants
and interaction residues.

Eucalyptol Compounds Binding Energy (kJ/mol) Inhibition Constant (Ki) (µM) Mpro Residues Interacting with
Natural Compounds

1,8-cineole (eucalyptol) −26.90 19.5 His41, Met49, Tyr54, His164, Met165,
Asp187, Arg188, and Gln189

α-pinene −26.23 25.55 His41, Met49, His164, Met165, Asp187,
Arg188, and Gln189

β-pinene −26.57 22.34 His41, Met49, Tyr54, His164, Met165,
Asp187, Arg188, and Gln189

Terpinen-4-ol −23.89 65.5 His41, Met49, Pro52, Tyr54, His164, Arg188,
and Gln189

Piperitone −25.52 33.95 His41, Met49, Tyr54, Cys145, His164,
Met165, Glu166, Asp187, and Arg188

Allo-aromadendrene −29.99 5.54
His41, Met49, Tyr54, Cys145, His164,

Met165, Glu166, Asp187, Arg188,
and Gln189

Aromadendrene −30.25 5.06 His41, Met49, Tyr54, Cys145, His164,
Met165, Asp187, Arg188, and Gln189

α-gurjunene −30.71 4.15
His41, Met49, Tyr54, Cys145, His164,

Met165, Glu166, Asp187, Arg188,
and Gln189

The residue of amino acids that led to the binding of Mpro and natural molecules was achieved
through hydrophobic and hydrogen bond interactions. Molecular interactions generally play a
significant role in forming and stabilizing docking complexes [40,41]. Hydrophobic interactions
with eight amino acid residues (His41, Met49, Tyr54, His164, Met165, Asp187, Arg188, and Gln189)
have been observed involving eucalyptus with the binding energy of −6.43 kcal/mol (−26.90 kJ/mol)
(Figure 4a). The α-pinene compound made a complex through AutoDock with the binding energy
of −6.27 kcal/mol (−26.23 kJ/mol). The hydrophobic interactions were formed by seven amino acid
residues His41, Met49, His164, Met165, Asp187, Arg188, and Gln189 (Figure 4b). Nearly the same
activity with the β-Pinene compound was observed in contrast to α-pinene with the addition of
one amino acid residue, Tyr54 (Figure 4c). The binding energy of the terpinen-4-ol molecule was
−5.71 kcal/mol (−23.89 kJ/mol), His164 residue formed a hydrogen bond, and six residues of His41,
Met49, Pro52, Tyr54, Arg188, and Gln189 were associated in hydrophobic interactions (Figure 4d).
Even though the terpinen-4-ol compound had less binding energy in all, it was found relatively
useful to bind with active residues. The docked binding energy of the piperitone substrate was
−6.1 kcal/mol (−25.52 kJ/mol). At the active site of Mpro, there was one hydrogen bond formation with
His164, while eight amino acids were engaged in the formation of hydrophobic interactions (Figure 4e).
The binding energy of allo-aromadendrene was −7.17 kcal/mol (−29.99 kJ/mol) and it interacted with
nine amino acid residues (His41, Met49, Tyr54, Cys145, His164, Met165, Glu166, Asp187, Arg188,
and Gln189) in the active site of SARS-CoV-2 Mpro. These residues participated in hydrophobic
interactions (Figure 4f). The compounds aromadendrene and α-gurjunene with binding energies of
−7.23 kcal/mol (−30.25 kJ/mol) and −7.34 kcal/mol (−30.71 kJ/mol) formed van der Waals interactions
with seven specific amino acid residues (His41, Met49, Cys145, Met165, Asp187, Arg188, and Gln189).
Such molecules had the strongest binding energies in contrast with six other molecules (Figure 4g,h).
Earlier studies support our findings by reporting similar amino acid residues to SARS-CoV-2 Mpro
protein interactions with other ligands, as confirmed in our study [16,29,42–44].
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3.2. MD Simulations

Classical MD simulations are one of the computer simulation techniques for atomic resolution dynamic
molecular data [45]. The three natural compounds (α-gurjunene, aromadendrene, and allo-aromadendrene)
in complex with Mpro protein underwent MD simulations of 100 ns to evaluate the interactions in more
detail and the per residue energy contributions of each amino acid. To evaluate the stability of the selected
structures, the root mean square deviation (RMSD) of protein and ligand was calculated for 100 ns trajectories.
In addition, the root mean square fluctuation (RMSF) values for each residue were analyzed to assess
the local flexibility.

Changes were observed, as expected, for both protein conformations and positional ligand binding.
Conformational changes as a function of time were monitored by RMSD measurements, in whichα-gurjunene
induced major conformational changes. Different trends have been identified in the measurement of RMSF,
which indicate that domain I, part of domain II, and domain III regions were significantly influenced
by protein conformation variations. Aromadendrene and allo-aromadendrene RMSD values were lower
than α-gurjunene, suggesting that these ligands may stabilize protein conformations. Further, in the early
stages of MD (around 10 ns), the behavior of α-gurjunene shifted and increased suddenly from 0.2 nm to
almost 0.8 nm. In about 60 ns, the structure stabilized and had higher RMSD values than aromadendrene
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and allo-aromadendrene (Figure 5a). The overall average RMSF values were shown to be unstable at
residues (8–100), (163–200), and (200–305), respectively (Figure 5b). For α-gurjunene, a lower RMSF value
was noticed, followed by aromadendrene and allo-aromadendrene. Lower RMSF values suggest more
excellent stability and the natural compound’s possibility to inhibit the target molecule [37,46]. Changes in
ligand positioning have also been monitored by the ligand RMSD measurement, as shown in Figure 5c.
The α-gurjunene molecule (red) was transferred to domain II of the Mpro protein in the earliest stage of
MD simulation and lasted for 15.6 ns. The RMSD of the ligand reached its peak at around 4.8 nm, falling
immediately to 3.5 nm and stabilized over the remaining time (ns) and bound to domain III for the last 84 ns.
The behavior of the α-gurjunene might be due to its unique structure compared to the other two ligands.
This structural peculiarity may account for the instability of the ligand at the earlier stage of the simulation.
Although in the case of aromadendrene and allo-aromadendrene ligands, they remained intact during
the simulation time with the Mpro molecule.
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Figure 5. (a) Root mean square deviation (RMSD) of backbone carbon (Cα) atomic positions of the Mpro
relative to the starting structure measured from the 100 ns trajectories, (b) per residue root mean square
fluctuations (RMSF) of Cα atomic positions measured over the last 30 ns from protein conformations,
and (c) RMSD of ligand atomic positions relating to the starting structure measured from the 100 ns
trajectories with allo-aromadendrene (green), aromadendrene (black), and α-gurjunene (red).

MM/PBSA calculations were carried out on the last 30 ns of all simulations to examine further
inhibitory effects and the interaction networks between Mpro protein and natural molecules (ligands).
Table 3 presents a description of the MM/PBSA energy, van der Waals, electrostatic, polar, and apolar
solvation energy contributions. Figure 6 shows per residue energy contribution within the binding site
given by MM/PBSA energy decomposition. In all, the contributions of van der Waals were stronger,
suggesting substantially higher hydrophobic energy contributions with energies of−23.66± 2.04 kcal/mol
(−99.00 ± 8.53 kJ/mol), −21.23 ± 2.89 kcal/mol (−88.82 ± 12.08 kJ/mol), and −21.66 ± 2.33 kcal/mol
(−90.61 ± 9.73 kJ/mol) respectively for α-gurjunene, aromadendrene, and allo-aromadendrene.
The strongest total binding energy of −20.37 ± 2.26 kcal/mol (−85.21 ± 9.44 kJ/mol) was found in
α-gurjunene, which was higher in van der Waals energy than in aromadendrene and allo-aromadendrene
with binding energies of −18.99 ± 3.02 kcal/mol (−79.45 ± 12.62 kJ/mol) and −17.91 ± 2.12 kcal/mol
(−74.95± 8.88 kJ/mol) respectively. The results for total binding energy were lower than the experimental
binding energies of protein in complex with small organic molecules, as reported by [47]. The authors
determined the experimental binding energy values ranging from −20.80 kcal/mol (−87.03 kJ/mol) to
−37.80 kcal/mol (−158.16 kJ/mol).

Table 3. Binding energy obtained using MM/PBSA technique of each complex along with contributions
from van der Waals, electrostatic, polar and apolar solvation energies.

Complex Structures Van der Waals Energy
(±SD) (kJ/mol)

Electrostatic Energy
(±SD) (kJ/mol)

Polar Solvation Energy
(±SD) (kJ/mol)

Apolar Energy
(±SD) (kJ/mol)

Total Binding Energy
(±SD) (kJ/mol)

Mpro-allo-aromadendrene −90.61 (±9.73) −2.06 (±6.57) 27.31 (±5.34) −9.59 (±1.23) −74.95 (±8.88)

Mpro-aromadendrene −88.82 (±12.08) −3.42 (±4.77) 21.89 (±4.92) −9.11 (±1.25) −79.45 (±12.62)

Mpro-α-gurjunene −99.00 (±8.53) −0.33 (±1.91) 25.55 (±6.93) −11.42 (±1.06) −85.21 (±9.44)

We also validated the binding energies of the compounds tested in our study with some selected
co-crystallized ligands, as presented in Table 4. Compared to the estimated binding energy of
co-crystallized ligands, darunavir has a better estimated binding energy value. Based on this finding,
∆G of darunavir was used as a standard in calculating the change in binding energy (∆∆G) of other
ligands. The result showed that the selected eucalyptus compounds could be favorable inhibitors of
the Mpro enzyme. This suggests that these small molecules could serve as potential drug candidates
for SARS-CoV-2 treatment.
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with unfavorable binding energies while light green bars represent amino acids with favorable binding
energies; (right) final molecular dynamics (MD) snapshots of the major residues that contributed to
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Table 4. Estimated binding energies of co-crystalized ligands against selected eucalyptus compounds.

Ligands Estimated Binding Energy (kJ/mol) Estimated ∆∆G (kJ/mol) Reference

N3 −51.07 −44.46 [48]
Indinavir −72.11 −23.42 [48]
Darunavir −95.53 - [48]
Favipiravir −36.07 −59.46 [49]
Fosfomycin −60.63 −34.90 [49]

Aspirin −78.37 −17.16 [49]
Allo-aromadendrene −74.95 −20.58 This study

Aromadendrene −79.45 −16.08 This study
α-gurjunene −85.21 −10.32 This study
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In addition, MM/PBSA energy decomposition was used to obtain the individual contributions
of amino acids to the binding energy, revealing significant active site interaction residues.
Mpro-allo-aromadendrene bound Thr25, Leu27, His41, Met49, Gly143, Ser144, Cys145, Met165,
and Pro168 (Figure 5a). Residues such as Glu166 showed higher positive values, implying unfavorable
interactions due to the steric obstruction effect caused by repulsive forces. In aromadendrene,
the primary amino acid contributors were Thr25, Leu27, His41, Cys44, Met49, Leu50, Cys145,
Met165, Glu166, and Gln189 respectively (Figure 5b). The energy per residue was comparable to
previous analyses of MD simulations with several SARS-CoV-2 Mpro inhibitors and according to our
findings [50–52].

Mpro-α-gurjunene found Lys237, Val204, Phe230, Val233, Tyr237, Tyr239, Leu268, and Leu272
as the most desirable residues (Figure 5c). Further, the residues dominated by the amino acids
with hydrophobic and polar uncharged side chains were actively involved. Thus, the strongest
values of van der Waals interaction and the nonpolar component of the solvation energy component
correspond to the favorable strength of α-gurjunene. Nevertheless, Lys236, Lys269, Glu288, Asp289,
and Glu290 displayed unfavorable (positive) interactions, which may be attributable to steric impact
and binding opposition. The amino acid residues found in MD simulations were not identical to
docking. The principal explanation for this may be the shift of the α-gurjunene in the simulations.
This investigation is the first to elucidate the detailed atomistic interactions of eucalyptus phytochemical
compounds with the SARS-CoV-2 main protease. For the first time, some new participating amino
acids have been reported in another binding site surplus to the active site residues found in Mpro.
Eucalyptus has been a traditional medicinal plant for decades, and as a result of this study it could be
used as a potential therapeutic drug candidate to suppress the replicative function of the main protease.

4. Conclusions

Due to severe outbreaks and lack of effective drugs, the new coronavirus has become a global
concern. Therefore, recovery strategies need to be identified and tested more efficiently. In this regard,
in-silico processes are very efficient and helpful. Throughout this research, various computational
techniques such as molecular docking, MD simulations, and MM-PBSA calculations have been
used to classify novel natural compounds as potential inhibitors for Mpro, the SARS-CoV-2 protein.
Eight eucalyptus phytochemical compounds were used here for screening purposes. Based on molecular
docking assessments, all eight compounds bound to the binding pocket with strong binding affinities.
For further analysis, three molecules (α-gurjunene, aromadendrene, and allo-aromadendrene) with
the lowest inhibition constant values were chosen. Eventually, from MD simulation results, we found
that all molecules could bind to the target protein with the strongest binding affinities. Such findings
have indicated that these compounds could be considered as novel natural molecules for the possible
development of appropriate SARS-CoV-2 drug candidates. These results are in line with the recent
research that shows that eucalyptus is successful in treating the new coronavirus.
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Abstract: To date, SARS-CoV-2 infectious disease, named COVID-19 by the World Health Organization
(WHO) in February 2020, has caused millions of infections and hundreds of thousands of deaths.
Despite the scientific community efforts, there are currently no approved therapies for treating this
coronavirus infection. The process of new drug development is expensive and time-consuming,
so that drug repurposing may be the ideal solution to fight the pandemic. In this paper, we selected
the proteins encoded by SARS-CoV-2 and using homology modeling we identified the high-quality
model of proteins. A structure-based pharmacophore modeling study was performed to identify the
pharmacophore features for each target. The pharmacophore models were then used to perform a
virtual screening against the DrugBank library (investigational, approved and experimental drugs).
Potential inhibitors were identified for each target using XP docking and induced fit docking.
MM-GBSA was also performed to better prioritize potential inhibitors. This study will provide new
important comprehension of the crucial binding hot spots usable for further studies on COVID-19.
Our results can be used to guide supervised virtual screening of large commercially available libraries.

Keywords: COVID-19; SARS-CoV-2; computational chemistry; structure-based; pharmacophore;
docking; MM-GBSA

1. Introduction

Coronaviruses (CoVs) are one of the major pathogens that primarily targets the human respiratory
system which caused previous outbreaks such as the severe acute respiratory syndrome (SARS)-CoV and
the Middle East respiratory syndrome (MERS)-CoV. The novel coronavirus SARS-CoV-2 has become a
pandemic threat (COVID-19) to public health. It is a respiratory diseasecausing fever, fatigue, dry cough,
muscle aches, shortness of breath and some instances lead to pneumonia [1]. The SARS-CoV-2 genome
comprises 29,903 nucleotides, with 10 Open Reading Frames (ORFs). The 3′ terminal regions encode
structural viral proteins: whereas the 5′ terminal ORF1ab encodes two viral replicasepolyproteins pp1a
and pp1b. The proteolytic cleavage of pp1a and pp1b produces 16 nonstructural proteins (nsp1 to nsp16).
Among these, there are nsp3, the papain-like protease (PLpro) and nsp5, the 3-chymotrypsin-like
protease (3CLpro, also known as the main proteaseMpro). The viral polyprotein processing is essential
for maturation and infectivity of the virus (Figure 1) [2]. Because of the crucial roles, these two
proteases are important targets for antiviral drug design. Moreover, the virus encoded for other
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proteins that could be potential targets of antiviral drugs. The mature proteins of SARS-CoV-2 are:
host translation inhibitor nsp1 (nsp1); nonstructural protein 2 (nsp2); papain-like proteinase (PLpro);
nonstructural protein 4 (nsp4); 3C-like proteinase (3CLpro), nonstructural protein 6 (nsp6), nonstructural
protein 7 (nsp7), nonstructural protein 8 (nsp8), nonstructural protein 9 (nsp9), nonstructural protein
10 (nsp10), RNA-directed RNA polymerase (Pol/RdRp), helicase (Hel), guanine-N7 methyltransferase
(ExoN/nsp14), uridylate-specific endoribonuclease (NendoU/nsp15), 2’-O-ribose methyltransferase
(nsp16), Spike glycoprotein (S glycoprotein), protein 3a, Envelope small membrane protein (E protein),
Membrane protein (M protein), nonstructural protein 6 (nsp6), protein 7a, nonstructural protein
7b (nsp7b), nonstructural protein 8 (nsp8), nucleoprotein (NC), ORF10 protein. These proteins can
form hetero-oligomeric complexes such as: nsp7/nsp8 hetero-oligomeric complex; nsp7/nsp8/Pol
hetero-oligomeric complex; nsp10/nsp14 hetero-oligomeric complex; nsp10/nsp16 hetero-oligomeric
complex; Spike glycoprotein/hACE2 hetero-oligomeric complex.Anti-coronavirus therapies can be split
into two main approaches: the first approach is to act on the human immune system or human cells level,
and the other approach is to focus on coronavirus itself [3]. In exploring novel therapies for COVID-19,
researchers are using computational approaches to aid in the discovery of potential candidates [4].
In particular, in silico drug repurposing, also named drug repositioning, is a strategy used to identify
novel uses for existing approved and investigational drugs. This strategy offers numerous advantages
over traditional drug development pipelinesthat suffer risks failure in preclinical or early stage clinical
trials due to safety and/or toxicological issues. On the contrary, the drug repurposing strategy reduces
this risk by using drugs that have demonstrated safety records from previous trials. The real advantage
of drug repurposing is that preclinical and early stage clinical trials do not need to be repeated.
This determines cost reductions compared to traditional drug development [5–18]. The number of
in silico studies on drug repositioning against SARS-CoV2 is growing rapidly in these last months.
A major part of these studies is focused on the repurposing of approved and investigational drugs
against the 3CLpro or Mpro by using both ligand-based approaches and structure-based approaches.
Structure-based approaches are related to different docking analysis [19–29]. In another work, Battisti
and coworkers used two different approaches related to docking and pharmacophore combined with
molecular dynamics to perform virtual screening of a large database of compounds on 10 different
SARS-CoV-2 proteins [30]. To our knowledge, Touret and coworkers performed, to date, the only in vitro
screening of an FDA approved chemical library which revealed potential inhibitors of SARS-CoV-2
replication [21]. Nevertheless, the identification of potential inhibitors is still challenging for all the
researchers involved in the field. In this study, a computational analysis of the proteins encoded by the
SARS-CoV-2 genes was performed. Such an analysis was used as a starting point for a druggability
assessment and a computational drug repurposing work-frame. First, high-quality protein structures
were built employing homology modeling or exploiting existing experimental structures. Starting
from the models, a computational assessment was done to find out a druggable binding pocket for
those proteins of which catalytic site is not known in the literature. The best druggable sites found
in the previous analysis, together with the catalytic sites reported in the literature, were then used
to build structure-based pharmacophore models. In the end, these models were used to screen the
DrugBank library (approved and investigational drugs) [31] as a first screening approach.
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Figure 1. SARS-COV2 genome structure.

2. Materials and Methods

2.1. Library Preparation

A total of 8752 experimental, investigational and approved molecules were downloaded from
the DrugBank database (www.drugbank.ca). First, the database molecules were prepared using
Schrödinger LigPrep v. 2018-4. The force field adopted was OPLS3e and Epik [32] was selected as
an ionization tool at pH 7.0 ± 2.0. Tautomers generation was flagged and the maximum number
of conformers generated was set at 32. The database obtained was prepared as a Pharmacophore
Screening database, in *.lbd format, through Idbgen (extension present in the LigandScout 4.3 [17]
package), which allowed obtaining the best conformation of the ligand (at low energy) between the
200 the application can calculate. The tautomers were considered as separate molecules and those
molecules that were duplicated or whose conformation calculation had failed were eliminated.

2.2. Homology Modeling and Protein Preparation

The full SARS-CoV-2 proteome based on the NCBI reference sequence NC_045512, which is
identical to GenBank entry MN908947 and annotations from UniProt, was modeled in the
SWISS-MODEL [33] workspace (swissmodel.expasy.org/workspace). Only for 10 proteins, it was
possible to obtain high-quality models and experimental structures that were considered for
further analysis. Investigated proteins are 3C-like protease (3CLpro), papain-like protease (PLpro),
guanine-N7 methyltransferase (nsp14), uridylate-specific endoribonuclease (NendoU/nsp15), nsp4,
nsp7/nsp8 supercomplex, nsp9, nsp7/nsp8/nsp12 hetero-oligomeric complex, helicase (Hel), 2’-O-ribose
methyltransferase (nsp16).For each structure, templates with the highest identity available at the time
of this study (25 March 2020) were selected and respective models were generated.

For 3C-like protease (3CLpro) the crystal structure of the COVID-19 main protease (PDB ID: 6LU7)
was available. The structure of papain-like protease (PLpro) of SARS virus (PDB ID: 3E9S) was used as a
template of the human coronavirus papain-like model (82.86% sequence identity). This one was the best
available experimental structure at the time of the study (25 March 2020). On 27 May 2020, the crystal
structure of PLpro of SARS-CoV-2 was released (PDB ID: 6WZU). We performed the overlapping of
our model and the experimental structure. The RMSD value of 3.99 Åshows that the two structures
are identical unless few residues in the C-terminal (See Supplementary Information). For guanine-N7
methyltransferase (nsp14) we used as template the SARS-related coronavirus (PDB ID: 5C8S) that shows
95.07% of sequence identity. For uridylate-specific endoribonuclease (NendoU/nsp15), we used the
experimental structure as reported in the Protein Data Bank [34] (PDB ID: 6W01). The crystal structure
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of nsp4 from mouse hepatitis virus A59 (PDB ID: 3VCB) was used as a template of SARS-CoV-2 nsp4
(61.36% sequence identity). The crystal structure of SARS-CoV super complex of nonstructural proteins
(PDB ID: 2AHM) was chosen as a template of nsp7/nsp8 supercomplex (97.86% sequence identity).
For nsp9 the template of nsp9 from SARS-coronavirus (PDB ID: 1UW7) was used. It shares a sequence
identity of 97.35%. The X-ray structure of SARS coronavirus nsp7/8/12 (PDB ID: 6NUR) was selected
as a template of nsp7/nsp8/nsp12 hetero-oligomeric complex (96.70% sequence identity). The crystal
structure of SARS-coronavirus helicase (PDB ID: 6JYT) was used as template for SARS-CoV-2 helicase
(Hel). It shows a high sequence identity (99.83%). On 29 July 2020, the experimental structure of
SARS-CoV-2 helicase (PDB ID: 6ZSL) was released. The overlapping of our model and the experimental
structure shows a RMSD value of 4.17 Å. This means a quite identical structure unless some loops
(See Supplementary Information). The crystal structure of nsp16/nsp10 SARS coronavirus complex
(PDB ID: 2XYQ) was chosen as a template of the model of 2’-O-ribose methyltransferase (nsp16) with
93.45% sequence identity. The models obtained and the PDBs were refined using the protein preparation
wizard tool of Maestro Suite Software [35]. This tool allowed the protein structure optimization,
including missing loops, side chains and hydrogens, optimization of the protonation state in a pH
range 7.0 ± 2.0 and analysis of atomic clashes. For PDBs containing co-crystallized ligands, Epik [32]
was used to predict ionization and tautomeric state of ligand, while PROPKA was used to check for
the protonation state of ionizable protein groups. Protein was refined using restrained minimization
with OPLS3e as force field.

2.3. Pharmacophore Modeling

Pharmacophore model generation was performed using LigandScout 4.3. The structures were
imported into LigandScout. 3C-like proteinase, PLpro, nsp14, nsp15, nsp16–nsp10 are protein–ligand
complexes, while, nsp4, nsp9, nsp10–nsp14, helicase, nsp7–nsp8 supercomplex, nsp12are targets
without ligand-bound. For protein–ligand complexes, a structure-based pharmacophore model was
generated [31]. When the model showed more features, to improve the performance of virtual
screening, we considered the features for the binding, in other cases the features were omitted until
hits were found. The calculate pockets tool has been used to find the binding pockets for the structures
without ligand-bound. A grid was calculated over the entire protein structure and grid points were
evaluated according to their buriedness and their number of neighboring grid points. Isocontour
surfaces were generated. Then, a model was created by selecting the nature and number of six features
according to the features showed in the protein–ligand complexes utilizing “Create Apo Site Grids”.
Next, the pharmacophore model was generated for each one. The obtained pharmacophore models
were used as a query to screen the DrugBank library. For apo protein, such an approach allow to
evaluate if a putative binding site is suitable for ligand binding.

Pharmacophore screening was preferred to be used prior to docking for two reasons.
First, it exploits a rapid screening techniques that is crucial in the first stage of virtual screening
cascade. Indeed, this is very common to use it as a first step in virtual screening campaign on large
databases [36]. Second, the structure-based pharmacophore uses a static conformation of protein side
chains, while the docking funnel here used was set to have a gradually increasing precision with a
final step of IFD that allow user to simulate side-chains-induced fit based on the ligand.

2.4. Docking

The hits identified by the virtual screening were submitted to a docking study using Glide [37] in
standard precision (SP) with the OPLS3e [38] force field. The crystal structures were optimized using
protein preparation wizard in Maestro [35] adding bond orders and hydrogen atoms to the crystal
structure using the OPLS3e force field. Next prime [39] was used to fix missing residues or atoms
in the protein and to remove co-crystallized water molecules. The protonation state, pH 7.2 ± 0.2 of
the protein and the ligand were evaluated using Epik 3.1[32]. The hydrogen bonds were optimized
through by reorientation of hydroxyl bonds, thiol groups and amide groups. In the end, the systems
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were minimized with the value of convergence of the RMSD of 0.3 Å [40,41]. For protein–ligand
complexes, the grid boxes were built considering the ligands as a centroid. In contrast, for apoproteins,
the amino acid residues, previously identified by LigandScout as crucial, were considered for centering
the docking grid. The docking study was performed using the Glide docking tool, in extra precision
(XP) using no constraints. Van der Waals radii were set at 0.8 and the partial cutoff was 0.15 and flexible
ligand sampling. Bias sampling torsion penalization for amides with nonplanar conformation and
Epik state penalties were added to the docking score.

2.5. Induced-Fit Docking and MM-GBSA

The induced-fit protocol (IFD)—developed by Schrödinger [24]—is a method for modeling the
conformational changes induced by ligand binding. This protocol models induced-fit docking
of one ormore ligands using the following steps as also reported in [42]. The protocol starts
with an Initial docking of each ligand using a softened potential (van der Waals radii scaling).
Then, a side-chain prediction within a given distance of any ligand pose (5 Å) is performed. Subsequently,
a minimization of the same set of residues and the ligandfor each protein/ligand complex pose is
performed. After this stage, any receptorstructurein each pose reflect an induced fit to the ligand
structureand conformation. Finally, the ligand is rigorously docked, using XP Glide, into the induced-fit
receptor structure.

IFD was performed using a standard protocol and OPLS3e force field was chosen [38]. Receptor
box was centered on the co-crystallized ligands on the crucial residues identified within the binding site.
During the initial docking procedure, the van der Waals scaling factor was set at 0.5 for both receptor
and ligand. Prime refinement step was set on side chains of residues within 5Å of the ligand. For each
ligand docked, a maximum of 20 poses was retained to be then redocked at XP mode. IFD calculation
was followed by prime/MM-GBSA for the estimation of ∆Gbinding. The MM-GBSA approach employs
molecular mechanics, the generalized Born model and the solvent accessibility method to elicit free
energies from structural information circumventing the computational complexity of free-energy
simulations wherein the net free energy is treated as a sum of a comprehensive set of individual energy
components, each with a physical basis [41,43–45]. The conformational entropy change—T∆S—can
be computed by normal-mode analysis on docking poses, but many authors have reported that the
lack of the evaluation of the entropy is not critical for calculating the MM-GBSA (or MM-PBSA) free
energies for similar systems [46–49]. For these reasons, the entropy term–T∆S was not calculated to
reduce computational time. In our study, the VSGB solvation model was chosen using OPLS3e force
field with a minimized sampling method.

3. Results and Discussion

Recently, SARS-CoV-2 caused the outbreak of coronavirus disease 2019 (COVID-19) threatening
global health security. To date, no approved antiviral drugs or vaccines are available against COVID-19
although several clinical trials are underway. In this framework, computational methods offer an
immediate and scientifically sound basis to potentially design highly specific inhibitors against
important viral proteins and guide the antiviral drug discovery process [50]. In this work, SARS-CoV-2
encoded proteins were analyzed from PDB structures and homology models were generated by using
the most similar PDB crystal structures as templates. For the homology models created, starting from
the high similarity between SARS-CoV-2 proteins and some available crystal structures from SARS-CoV,
ligand coordinates of the available most similar crystals were exploited for the structure-based
pharmacophore creation. Below we report the analyzed proteins and the related pharmacophore
maps composition.

3C-like proteinase (3CLpro), also termed the main protease, cleaves most of the sites in
the polyproteins and the products are nonstructural proteins (NSPS), which assemble into the
replicase–transcriptase complex (RTC). The binding site of the main protease consists of a conserved
catalytic dyad, i.e., Cys145 and His41 with other crucial residues, which is Phe140, Leu141 Asn142,
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Gly143, Ser144, Cys145, Met165, Glu166, Gln189 and Thr190 [27] (Figure 2A). The pharmacophore
model was developed on the co-crystallized ligand (N3) that is present in the PDB ID 6LU7; this ligand
was covalently bound to Cys145. We modified N3, by breaking the covalent bond and filling in open
valence. The final pharmacophore showed 12 features: 2 H-bond acceptors (HBAs) interacting one
with Glu166 and the other with Gly143; 4 H-bond donors (HBDs) which interact, respectively, with
Phe140, His164, Glu166, Gln189 and Thr190; 4 hydrophobic features interacting with Thr25, Thr26,
Met49 and Ala191; and a negative ionizable area with Glu166 (Figure 2B,C).

Figure 2. Cont.
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Figure 2. Pharmacophore modeling of ligand–protein complexes. For each structure molecular surface
of the active site the co-crystallized ligand (A,D,G,J,M,P), structure-based pharmacophore model
(B,E,H,K,N,Q) and ligand interactions (C,F,I,L,O,R) are shown.

Papain-like protease (PLpro) cleaves the nsp1/2, nsp2/3 and nsp3/4 boundaries. It works with
3CLpro to cleave the polyproteins into NSPS [51]. It showed in the active site residues Gly164, Asp165,
Arg166, Glu168, Pro248, Pro249, Tyr 265, Gly267, Asn268, Tyr 269, Gln270, Cys271, Gly272, Tyr274 and
Thr302 (Figure 2D). The pharmacophore model was developed on the co-crystallized ligand present in
the PDB ID 3E9S. The pharmacophore map was composed of 7 features: 1 HBA with Gln270; 2 HBDs,
one with Tyr265 and the other with Tyr269; and 4 hydrophobic interactions with Leu163, Met209,
Tyr274 and Thr302 (Figure 2E,F).

Guanine-N7 methyltransferase (nsp14) is important for viral replication and transcription.
The N-terminal exoribonuclease (ExoN) domain plays a proofreading role in the prevention of lethal
mutagenesis and the C-terminal domain functions as a guanine-N7 methyltransferase (N7-MTase) for
mRNA capping [52]. The models were developed using as template the PDB ID 5C8S, which shows
nsp14 in complex with its activator Nonstructural protein10 (nsp10) and two functional ligands:
S-adenosyl-L-homocysteine (SAH) and guanosine-P3-adenosine-5,5′-triphosphate (G3A). One molecule
of nsp10 interacts with ExoN of nsp14 to stabilize it and stimulate its activity. SAH and G3A bind
the guanine-N7 methyltransferase site. The SAH binding pocket contains residues Trp292, Gly333,
Asp352, Phe367 and Tyr368 [29] (Figure 2G). The derived pharmacophore model showed 5 features:
1 HBA with Tyr368, 3 HBDs, two with Asp352 and one with Tyr368 and hydrophobic interaction
with Val290 (Figure 2H,I). The binding pocket engaging G3A contains the following residues: Trp292,
Arg310, Gly333, Pro335, Lys336, Asn386, Asn388, Tyr420 and Phe426 (Figure 2J). Therefore, the derived
pharmacophore model showed 10 features: 4 HBAs which interacted, respectively, with Cys309,
Arg310, Trp385, Asn388, 3 HBDs, two with Cys309 and one with Asn422, 3 negative ionizable features
at the 3 phosphate groups and an aromatic ring with Phe426 (Figure 2K,L).

Nonstructural protein 16 (nsp16) also termed 2’-O-methyltransferase is activated only by the
binding of nsp10. We considered the structure of the nsp16–nsp10 complex from SARS-COV-2 with
1.80 Å of resolution (PDB ID: 6W4H). This complex shows S-adenosylmethionine (SAM) in the binding
site. It forms hydrogen bonds with Asp6928, Tyr6930, Asp6897 and Cys6913 (Figure 2P). The derived
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pharmacophore model on the co-crystallized ligand showed 9 features: 4 HBAs with Gly248 and Thr341,
1 HBD with His250 and 2 negative ionizable areas with Gly248 and Lys290 (Figure 2Q,R).

Moreover, we used the nsp16–nsp10 SARS coronavirus complex (PDB ID: 2XYQ), which shows
S-adenosyl-L-homocysteine (SAH) in the binding site. SAH forms hydrogen bonds with Lys46, Asp130,
Lys170 e Glu203 (Figure 2S). The derived pharmacophore model showed 9 features: 4 HBAs with Asn43,
Leu100, Tyr132, Cys115, 4 HBDs with Gly71 and Asp99, 2 negative ionizable areas with Asp130 (Figure 2T,U).

The other pharmacophore models were developed exploring the apoprotein surfaces as
follows: uridylate-specific endoribonuclease (NendoU/nsp15) forms a hexameric endoribonuclease,
that preferentially cleaves 3’ of uridines. It is one of the RNA-processing enzymes encoded by the
coronavirus [52]. Exploring the apoprotein surface, a potential active site was found, and a pharmacophore
model was generated (Figure 3A). It contained the following residues: Thr166, Arg198, Asp267 and
Ser273. The pharmacophore model showed 3 features: 2 HBDs and one hydrophobic feature.

Nonstructural protein 4 (nsp4) is localized at the endoplasmic reticulum membrane when
expressed alone, but this protein can be recruited into the replication complex in infected cells [52].
After scanning the protein surface, a potential binding pocket was identified containing residues
Leu417, Thr460 and Arg464. The derived pharmacophore model showed 6 features: 2 HBAs, 2 HBDs
and a hydrophobic feature (Figure 3B).

Nonstructural protein 9 (nsp9), encoded by ORF1a, does not present a designated function, but is
most likely involved with viral RNA synthesis. The crystal structure suggests that the protein is
dimeric, whereas nsp9 binds RNA and interacts with nsp8 [53]. The potential identified binding site
contains the following residues: Gly38, Arg39, Ser59 and Thr64. The derived pharmacophore model
showed 6 features: 2 HBAs, 2 HBDs and one hydrophobic feature (Figure 3C).

Helicase (hel) catalyzes the unwinding of duplex oligonucleotides into single strands in an
NTP-dependent manner. The structure of SARS-CoV-2 nsp13 adopted a triangular pyramid shape
comprising five domains. Among these, there are two “RecA-like” domains, 1A (261–441 a.a.)
and 2A (442–596 a.a.) and 1B domain (150–260 a.a.) forming the triangular base, while N-terminal
zinc-binding domain (ZBD) (1–99 a.a.) and stalk domain (100–149 a.a.), which connects ZBD and 1B
domain, are arranged at the apex of the pyramid [27]. Exploring the apoprotein surface, two putative
binding sites were found, pocket A and pocket B. Pocket A contained residues from the stalk domain
(Lys139, Lys146), 1B domain (Asn179) and 1A domain (Cys309, Arg339) and domain 1B (Thr228-Thr231)
important for helicase activity. Pocket B contained residue from the N-terminal zinc-binding domain,
ZBD domain, (Ile20, Arg21, Arg22) and stalk domain (Arg129). The pharmacophore models obtained
for each pocket have the same 6 features: 2 HBAs, 2 HBDs and two hydrophobic features.

Nonstructural protein 7 and 8 (nsp7–nsp8) supercomplex are essential cofactors for Nsp12
polymerase [33]. Two putative active sites were found: pocket A and pocket B. Pocket A between
chains C, G and H, pocket B between chainG–H of nsp8. The pocket A showed as residues: Glu50 of
chain C; Thr124 and Arg190 of chain G; Glu5, Arg57, of chain H. The pocket B of chains G–H of nsp8
showed the residues: Arg57 and Asp64 of chain G; Leu122 and Thr123 of chain H. The pharmacophore
model showed 6 features each: 2 HBAs, 2 HBDs and two hydrophobic features (Figure 3F,G).

Nonstructural protein 12 bound to nsp7-8 co-factors (nsp7–nsp8–nsp12) hetero-oligomeric complex
is an RNA-dependent RNA polymerase. It is bound to its essential co-factors nsp7 and nsp8 greatly
stimulates the replication and transcription activities of the polymerase. The nsp12 contains a polymerase
domain (a.a. 398–919) that assumes a structure resembling a cupped “right hand”. The polymerase
domain consists of a finger domain (a.a. 398–581, 628–687), a palm domain (a.a. 582–627, 688–815)
and a thumb domain (a.a. 816–919). CoV nsp12 also contains a nidovirus-unique N-terminal extension
(a.a. 1–397) [27]. The putative active sites, pocket A and pocket B were found into conserved motif regions
(A–G) possessed of all polymerases [33]. Pocket A contained residues of N-terminal extension Thr246
and Arg249; pocket B contained residues of N-terminal extension Tyr129, His133, Asn138 and motif D
(Ala706–Asp711), the pharmacophore model showed 6 features: 2 HBAs, 2 HBDs and two hydrophobic
features (Figure 3H,I).

491



Computation 2020, 8, 77

Figure 3. Pharmacophore modeling of the apoproteins. The first step was to find putative active
sites, then the pharmacophore models were built in the identified pockets. Four of the structures
had two active sites. (A) Uridylate-specific endoribonuclease, nsp15; (B) nsp4; (C) nsp9; (D) Helicase
pocket A; (E) Helicase pocket B; (F) nsp7-nsp8 pocket A; (G) nsp7-nsp8 pocket B; (H) nsp7-8-12 pocket A;
(I) nsp7-8-12 pocket B.
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The identified pharmacophore models were used to perform a virtual screening against the
DrugBankdatabase of experimental, investigational and approved drugs considering as a first filter.

The hits found were submitted to docking studies to evaluate the poses and interactions at the
putative active site. First, XP docking was performed and subsequently, the highest-ranked hits were
submitted to induced fit docking analysis and MM-GBSA calculation to further filter. For just one
protein (nsp16), no hits were identified in the DrugBank database. At the end of the computational
exploration, we have identified a total of 34 hits for all the explored targets. Among these compounds,
26 are experimental drugs, 5 investigational drugs and 3 approved drugs. The summary results were
reported in the Supporting Information. In the main text, we will discuss the molecular recognition
analysis for the best binder hits for each target. The rest of the identified hits, docking scores, ∆Gbinding,
and protein–ligand interactions is reported in a table in Supplementary Information as well as 2D
ligand interaction diagrams of the best binders.

The best docked hit molecule for 3CL-protease is the experimental drug DB082309, a phenyl
pyrroline derivative (∆G = −72.56 kcal/mol). This compound is characterized by an H-bond
between the carbonyl oxygen with Asn142, but the principal contribution to the binding is given
by the ∆GvdW = −52.56 kcal/mol and the ∆Glipo = −23.65 due to the 2 aromatic rings (phenyl and
O-difluorophenyl) of the molecules which are located in two hydrophobic pockets (Leu140, Phe141,
Leu167, Pro168) and the piperazine moiety interacting with His41 and Met49 (Figure 4A).

The most promising drug candidate for papain-like protease is the experimental drug DB07358
(∆G= −50.662 kcal/mol), a benzamide derivative. In our study, the experimental drug DB07358 forms
three H-bonds with Tyr269, Gln270 and Tyr274. Moreover, the binding is characterized by a strong
pi-stacking of the thiazol moiety with the phenyl ring of Tyr269 and phenylamino moiety with the
phenyl ring of Tyr274 (∆Glipo = −19.47 kcal/mol, ∆GvdW = −38.50 kcal/mol) (Figure 4B).

Top-ranked guanine-N7-methyltransferase (nsp14) hit is the experimental drug DB02933
as known as 5’-deoxy-5’-(methylthio)-tubercidin (∆G = −65.07 kcal/mol). This compound was
previously identified as an inhibitor of the h–S-methyl-5’-thioadenosine phosphorylase and bacterial
methylthioadenosinenucleosidase. The compound 5’-deoxy-5’-(methylthio)-tubercidin showed
3 H-bond interactions with Asn386, Asn388 and Glu302, but the most contribution to the binding
energy is due to pyrrole pyrimidine moiety, which establishes strong pi-stacking interaction with
Tyr420 and Phe426 (Figure 4C).

Considering the NendoU/nsp15 protein, the most promising compound is the experimental
drug DB01792 as known Adenylyl-(3’-5’)-uridine 3’-monophosphate (∆G = −63.169 kcal/mol).
The compound showed a high number of H-bond interactions with several different residues
(Thr166, Ser197, Glu264, Asp272, Tyr278) (Figure 4D).

The experimental drug DB01859 resulted in the hit related to the nsp16. The compound is
also known as 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (∆G = −25.204 kcal/mol).
It showed 9 H-bond interactions with Gly71, Ala72, Gly81, Ser98, Asp99, Asp130 and Asp133. Residue
Cys115 showed 2 H-bonds (Figure 4E).

The top-ranked compound for nsp4 is the experimental drug sinapoyl-coA (DG = −80.73 kcal/mol).
The binding of sinapoyl-CoA in the nsp4 pocket is influenced by a high number of H-bonds with
several different residues (Leu417, Thr419, Arg464, Thr460) (Figure 4F).

The experimental drug DB02794 resulted in the best binding hit related to the nsp9. Due to
the presence in the scaffold of many oxygen atoms, DB02794 establishes many H-bond interactions
involving Lys36, Gly38, Arg39, Ser59, Asp60, Glu68. Other H-bond interactions involve some nitrogen
of the experimental drug and the residues Gly38, Ser59 and Lys92. The strong net of H-bond interactions
is reflected by a ∆Gcoul = −84.35 kcal/mol, partially compensated by a loss of binding energy due to
the solvation contribution ∆G = +68.45 kcal/mol. It is worthy to note that the next top-ranked hits
for nsp9 are 3 approved drugs (ioxilan, Pemetrexed, and isoprenaline), which could be of particular
interest due to the status “approved”, which would allow to use them in clinical trials (Figure 4G).
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Figure 4. Cont.
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Figure 4. (A) DB08239 binding pose in 3C-like protease; (B) DB07358 binding pose in papain-like
protease; (C) DB02933 binding pose in guanine-N7-methyltransferase (nsp14); (D) DB01792 binding
pose in NendoU/nsp15; (E) DB01859 binding pose in nsp16; (F) synapoylCoenzyme A binding pose in
nsp4; (G) DB02794 binding pose in nsp9.(H) DB04579 binding pose in helicase, pocket A; (I) PCI-27483
binding pose in helicase, pocket B; (J) flavin-N7 protonated-adenine dinucleotide binding pose in
nsp7-8, pocket A; (K) DB06955 binding pocket in nsp7-8, pocket B; (L) DB04579 binding pose in
nsp7-8–12, pocket A; (M) PCI-27483 in nsp7-8–12, pocket B.
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For the helicase, the apo binding pocket analysis identified 2 different putative binding sites.
The most promising candidate drug-binding pocket A is the experimental drug 4-hydroxybenzoyl-coA
(∆G = −91.90 kcal/mol). The interactions that this compound establishes with the pocket A are
characterized by several H-bonds, most of which formed by the three phosphate moieties with
Lys139, Arg339, Asn361, Arg390. Other H-bond interactions are among the hydroxyl and carbonyl
oxygens and Lys139, Glu142, Lys146, Asp179, His230, Cys309, Arg339, Arg390. Moreover, the purine
moiety establishes pi-stacking interactions with the imidazole moiety of His230. Regarding the
top-ranked compound in pocket B, this is the experimental drug DB02136, a cephalosporin analog,
(∆G = −75.81 kcal/mol). This compound interacts with the residues Ile20, Arg21, Arg22, Arg129, Glu136
forming H-Bonds with carbonyl and hydroxyl oxygen atoms, but the binding mode is strengthened by
an important contribution of ∆GvdW = −71.94 kcal/mol (Figure 4H,I).

Furthermore, for the supercomplex nsp7–nsp8, two different pockets were found. The most
promising candidate for pocket A is the experimental drug flavin-N7 protonated-adenine dinucleotide
(∆G = 78.86 kcal/mol). The flavin moiety interacts with the residue Arg57 forming 2 H-bonds.
These latter are also formed among the phosphate and Thr190, the ribose moiety and Arg190 and
the purine moiety and Ile2, Ile3, Ile4. Moreover, the binding interaction is strengthened by ionic
interactions among the NH3+ and the glutamic residues 5 and 50. The residue Arg190 interacts with
the purine moiety employing pi-stacking interactions. The top-ranked compound for pocket B is the
experimental drug DB06955 (∆G = −58.14 kcal/mol), a pyrrole-indole derivative, interacting with
Arg57, Asp64, Leu122 and Thr123 employing H-bond interactions (Figure 4J,K).

Last, but not least, for the hetero-oligomeric complex nsp7–nsp8–nsp12 two different pockets were
identified. In pocket A, the most promising compound is the experimental peptide analog DB04579
(∆G = −57.10 kcal/mol) interacting with the residues Thr246, Arg249, Leu251, Ser255 through H-bond
interactions. The most promising compound for the pocket B is the investigational drug PCI-27483,
a phenyl benzimidazole derivative to date used for the treatment of the pancreatic adenocarcinoma.
The binding mode is characterized by several H-bond interactions involving His133, Phe134, Asp135,
Asn138, Ala708, Ser709, Thr710, Lys780 and Asn781. The indole moiety is further involved in
pi-stacking interactions with Tyr129 (Figure 4L,M).

4. Conclusions

The recently emerged SARS-CoV-2 caused a major outbreak of COVID-19 and instigated a
widespread fear and has threatened global health security because there are no approved therapies
for treating. In the attempt to try to speed up the search for new inhibitors of the virus replication,
in this study, we performed a computational drug repositioning campaign on the DrugBank database
of experimental, investigational and approved drugs. The aim of using such a restricted database had
the rationale to identify potential lead compounds to quickly test in vitro and in vivo as they passed
toxicity tests. We analyzed the proteome of SARS-CoV-2 and using homology modeling we identified
the high-quality models of proteins. A structure-based pharmacophore modeling study was performed
to identify pharmacophore features for each target. Successively, the pharmacophore models were used
to perform a virtual screening against the DrugBank library. After a docking study, we identified a total
of 34 hits for all the explored targets (3CL-protease, papain-like protease, guanine-N7-methyltransferase
nsp14, nsp16, NendoU/nsp15, nsp4, nsp9, helicase, nsp7–nsp8 supercomplex and nsp7–nsp8–nsp12
hetero-oligomeric complex). Among these compounds, 26 are experimental drugs, fiveinvestigational
drugs and three approved drugs. The final selection of the potential inhibitors was made considering
the best binding energy for each compound obtained utilizing MM-GBSA calculation. Molecular
recognition analysis showed that these compounds interact with the residues found as crucial for
each target. These drugs can be further explored against the successful inhibition of COVID-19.
Moreover, a set of hot spot residues and pharmacophore features for each target, which makes
substantial contributions to the protein–ligand binding are also identified. This achievement can
facilitate us to rationally design novel selective inhibitors targeting SARS-CoV-2, not comprised in the
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DrugBank. The results of this study offer a double important hint for anti-COVID19 drug discovery
campaigns. On one side, it shows putative repurposing drugs to be adopted as a single therapy or in
combination with other therapies. On the other side, our deep studies attempted to map out the main
binding hot spots for the most important SARS-CoV-2 proteins, opening an important route to the
design of new molecules to test.
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nsp15; (b) DB01859 binding pose in nsp16; Figure S3: Ligand interaction diagram of the (a) Synapoyl Coenzyme
A binding pose in nsp4; (b) the DB02794 binding pose in nsp9; Figure S4: Ligand interaction diagram of the (a)
DB04579 binding pose in helicase, pocket A; (b) PCI-27483 binding pocket in helicase, pocket B; Figure S5: Ligand
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Abstract: Since the outbreak of the 2019 novel coronavirus disease (COVID-19), the medical research
community is vigorously seeking a treatment to control the infection and save the lives of severely
infected patients. The main potential candidates for the control of viruses are virally targeted
agents. In this short letter, we report our calculations on the inhibitors for the SARS-CoV-2 3CL
protease and the spike protein for the potential treatment of COVID-19. The results show that the
most potent inhibitors of the SARS-CoV-2 3CL protease include saquinavir, tadalafil, rivaroxaban,
sildenafil, dasatinib, etc. Ergotamine, amphotericin b, and vancomycin are most promising to block
the interaction of the SARS-CoV-2 S-protein with human ACE-2.

Keywords: COVID-19; coronavirus; protease; spike protein; computational; inhibition

1. Introduction

As of 24 May 2020, over 5 millions people in the world have been confirmed as having the
2019 novel coronavirus disease (COVID-19), an infection with Severe Acute Respiratory Syndrome
coronavirus 2 (SARS-CoV-2) (initially called 2019-nCoV before 11 February 2020) which is part of
the Coronaviridae family of positive-sense single-stranded RNA viruses that includes SARS-CoV
and MERS-CoV (Middle East Respiratory Syndrome coronavirus), both of which also cause severe
respiratory infections. The death count in China so far has been over 1700, but the number is expected
to go higher with the increasing number of confirmed and non-confirmed cases. The medical research
community is vigorously seeking a treatment to control the infection and save the lives of severely
infected patients.

Just a few weeks after the COVID-19 outbreak, the complete genome of SARS-CoV-2 was
determined and reported to GenBank (accession MN908947). Viruses were also isolated from patients
to understand the genomic characteristics and mechanism of the viral infection. As revealed by the
analysis, the SARS-CoV-2 shared 79% sequence identity to SARS-CoV. In one study, SARS-CoV-2 was
found to be closely related to two bat-derived Severe Acute Respiratory Syndrome (SARS)-like
coronaviruses, with 87.5% and 87.6% shared identity [1]. In another study, SARS-CoV-2 was 96%
identical at the whole-genome level to a bat coronavirus [2].

Despite the high sequence identity between the SARS-CoV-2 and the SARS-CoV in the open reading
frame regions, the envelop spike protein (S-protein) [3], which mediates the infection of SARS-CoV via the
human host protein ACE-2, has only about 80% shared sequence identity between the SARS-CoV and
SARS-CoV-2 [1]. Within the S-protein, the receptor docking domain has a higher divergence, with four out
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of five critical ACE-2 interacting amino acid residues replaced in the SARS-CoV-2. However, structural
modeling indicated that the four residues in the SARS-CoV-2 retain a structural conformation similar to
that of SARS-CoV, and the SARS-CoV-2 S-protein should be able to bind ACE-2 with reasonable affinity [4].
Indeed, studies by Zhou et al. using cells expressing human ACE-2 confirmed that the SARS-CoV-2
could infect cells via the same protein on ACE-2 as SARS-CoV did [2]. Thus, one option to treat the
infection is to search for an inhibitor that can prevent the interaction of the SARS-CoV-2 S-protein
with human ACE-2. The availability of the genome sequence of SARS-CoV-2 allows us to establish
structural models for the S-protein [4].

The RNA of coronaviruses encodes polyproteins that can be processed by viral proteases to yield
mature proteins. The same mechanism is shared by picornaviruses and retroviruses. Patients treated
with protease inhibitors appeared to have much better clinical outcomes than without using the inhibitors
(SARS death: 28.8% vs. 2.4%) [5]. Molecular dynamics simulations have revealed that, by molecular
docking to the active site of the main protease 3CL of SARS-CoV, both lopinavir and ritonavir could
induce conformation changes and potentially interfere with infection by SARS virus [6]. We expect the
same will apply for SARS-CoV-2. The crystal structure of the SARS-CoV-2 protease (3CLpro) was just
recently reported by Liu et al. [7]. Thus, another option to treat the SARS-CoV-2 infection is to search for
inhibitors of the SARS-CoV-2 3CLpro.

With these models and crystal data, we performed in silico studies of potential inhibitors of the
SARS-CoV-2 S-protein and 3CLpro.

2. Computational Methods

All calculations were operated on Dell PowerEdge C6220 servers. The chemical structures were
prepared by AutoDockTools-1.5.6 [8], Chimera 1.14 [9], and Avogadro [10]. The docking studies were
performed with Autodock 4.2.6, Autodock4, AutoDockTools4 [11], and Autodock Vina 1.1.2 [12].

2.1. Preparation of Receptor and Ligands

The 3CL protease’s three-dimensional crystal structure was retrieved from the Protein Data Bank
(PDB ID: 6LU7), and it was applied as the receptor for molecular docking after a cleaning with Chimera.
The ligands observed, i.e., FDA-approved drugs (2454 structures in total), were retrieved from the
BindingDB (https://www.bindingdb.org), and the structures of the ligands were further optimized
with Avogadro. The force field applied for geometry optimization was MMFF94.

The SARS-CoV-2/ACE-2 structure was retrieved using the function of the comparative modeling of
the Chimera interface with the modeler (version 9.23) [13]. For the preparation of the SARS-CoV-2/ACE-2
structure, the target template sequence was retrieved from Zhang et al.’s work and the SARS-CoV/ACE-2
(PDB ID: 6ACD) served as a template, as it was also the top candidate from Basic Local Alignment Search
Tool (BLAST) results. Because SARS-CoV and SARS-CoV-2 have an 88% similarity, the 3D structure can
be predicted with a high accuracy. Next, the sequence alignments were performed using SARS-CoV
as a template. Then, the model was built followed by refining the loops, side chain optimization,
and model optimization. When the homology model was generated, it was further validated using
the WHATCHECK/PROCHECK program [14] for basic parameters like torsion angle, rotational angle,
bond length, etc. Finally, this model was used as receptor for docking purposes. The loop refinement
and side chain optimization were performed using Chimera 1.14 by selecting the active region; all the
parameters were the default of the version.

It is noteworthy that this calculated work was performed before the crystal structure of the COVID-19
S-protein was released (6LZG, 6VW1, etc.). After the crystal structures were released, their structures
were compared with ours and the structures overlaid well (Figure 1), with 93.22% of its residues in the
allowed region and a minor difference on the top right loop, which was not a site that interacts with the
ACE-2, so a re-calculation was not conducted using the new crystal structures.
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Figure 1. The comparison of the crystal structures of the SARS-2 spike protein (6VW1, pink color) with
our homology modeling (light brown color) using the SARS-2 template.

2.2. Molecular Docking with Autodock Vina

For the SARS-CoV-2 3CL inhibition calculation, the input files for Autodock Vina were prepared
in the receptor’s original file (PDB format) and ligands files (SDF format) using AutoDockTools-1.5.6.
After minimizing, the grid box was set at 22.00 Å × 22.00 Å ×22.00 Å along the x, y, and z axis,
respectively. The docking site was defined at 1.00 Å when using the Autodock Vina. The grid box
was set into the docking site at the H41, C145, and E166 regions according to the docking site of the
coronavirus main proteinase (3CL) of Severe Acute Respiratory Syndrome (SARS). Then, the receptor
file (PDBQT format, for docking purposes) was prepared by the addition of polar only hydrogen atoms,
the removal of all water molecules, and the calculation of the Gasteiger charge. The instructed command
prompts were used for the docking process. The docking output file includes the docking energy
(in kcal/mol, which is an indication of the binding affinity/efficiency of one specific ligand to the receptor
molecule) and the interaction of the ligands with the receptor (hydrogen bond, pi-pi stacking, etc.).

For the SARS-CoV-2 S-protein inhibition calculation, the PDB files of the SARS-CoV-2 S-protein
were generated using the homology modeling method in Chimera; the template used for this was
the SARS-CoV S-protein. After minimization, the input file was prepared using AutoDockTools-1.5.6.
The grid box, which was a rectangular shaped area that covered all the possible docking sites of the
SARS-CoV-2 S-protein with its receptor ACE-2, was chosen as 22.00 Å × 42.00 Å ×22.00 Å along the
x, y, and z axis, respectively. The docking site was defined at 1.00 Å when using the Autodock Vina.
Then, the receptor file (PDBQT format, for docking purposes) was prepared by the addition of polar
only hydrogen atoms, the removal of all water molecules, and the calculation of the Gasteiger charge.

2.3. Analyzing the Docking Results with Chimera and BioLuminate

The docking results were ranked in the order from high to low in different modes according to the
docking scores (docking energy, kcal/mol). The ligands with the most negative docking scores—i.e.,
the highest affinities—were selected for the visualization of the docked complexes using Chimera [9].

The docking energies of the SARS-CoV-2 S-protein and human ACE-2 were calculated using
BioLuminate [15–17], and then compared to the docking energies of the SARS-CoV S-protein and human
ACE-2. To verify whether those ligands can be used for blocking the interaction of the S-protein with
human ACE-2, the docking energies of the SARS-CoV-2 S-protein/ligands and human ACE-2 were also
calculated. The solvation model used was VSGB [18], and the force field chosen was OPLS_2005 [19] for
all the docking energy predictions.
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3. Results

3.1. Results of the SARS-CoV-2 3CL Protease

Table 1 shows the binding affinity of several ligands with SARS-CoV-2 3CL protease sorted according
to the docking scores (binding affinities) calculated from the Autodock Vina; Figure 2 shows the docking
of those with high docking scores—Tadalafil, Dasatinib, and Saquinavir—with the protease in the docking
sites of the protease.

Table 1. Different docking scores (binding affinities) of the tested drugs for SARS-CoV-2 proteinase.

Drug Name Docking Score (kcal/mol) Usage

Saquinavir −9.5 Antiretroviral drug to treat or prevent HIV/AIDS [20]

Tadalafil −9.3 A medication used to treat erectile dysfunction (ED), benign prostatic hyperplasia (BPH),
and pulmonary arterial hypertension [21]

Rivaroxaban −9.2 An anticoagulant medication used to treat and prevent blood clots [22]

Sildenafil −8.9 A medication used to treat erectile dysfunction and pulmonary arterial hypertension [23]

Dasatinib −8.8 A targeted therapy used to treat certain cases of chronic myelogenous leukemia (CML)
and acute lymphoblastic leukemia (ALL) [24]

Vardenafil −8.7 A PDE5 inhibitor used to treat erectile dysfunction [25]

Montelukast −8.5 To treat seasonal and year-round allergies [26]

Indinavir −8.3 A component antiretroviral therapy to treat HIV/AIDS [27]

Lopinavir −8.2 Protease inhibitor

Cortisone −8.2 Can be used for a variety of conditions

celecoxib −8.1 An anti-inflammation drug

Atazanavir −8.1 An antiretroviral drug used for HIV treatment

Iressa −7.9 A drug for cancer treatment

Darunavir −7.7 An antiretroviral drug used for HIV treatment

Sorafenib −7.5 A drug for cancer treatment
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3.2. Results of SARS-CoV-2 S-Protein

We modeled ligands that may bind at a large docking area on the top of the S-protein that interacts
with ACE-2 (red cycle in Figure 3a). Table 2 shows the binding affinities of several ligands with the
highest docking scores toward the top docking side of the S-protein. Figure 3b–i shows the dockings of
several ligands with the SARS-CoV-2 S-protein.
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To understand whether these ligands are reasonably good inhibitors that block the interaction of the
SARS-CoV-2 S-protein with ACE-2, the docking energy of the S-protein/ligand complex with ACE-2 was
calculated and the results are listed in Table 3. For comparison, the docking energy between the SARS-CoV
S-protein and ACE-2 was also calculated and the score was −92.7 kcal/mol, which was close to the
−78.6 kcal/mol reported by Xu et al.’s work [4]. The docking energy between the SARS-CoV-2 S-protein
and ACE-2 was calculated to be −82.2 kcal/mol, suggesting a slightly weaker interaction than that of
the SARS-CoV S-protein with ACE-2. The observation is similar to that reported by Xu et al.’s work [4].
Table 3 shows that more than half of those ligands docking onto the SARS-CoV-2 S-protein do not
significantly change the interaction of the SARS-CoV-2 S-protein with ACE-2—i.e., they are not inhibitors
to block the interaction of the SARS-CoV-2 S-protein with ACE-2. However, ergotamine, amphotericin B,
vancomycin, zafirlukast, and lanicor showed that once they were bound to the S-protein, the interactions
of these complex with ACE-2 were no longer energetically favored interactions—i.e., these ligands acted
as desired inhibitors that can efficiently block the interaction of the SARS-CoV S-protein with ACE-2.
Among these, ergotamine and amphotericin b are most promising, since they demonstrate the highest
docking energy to the SARS-CoV-2 S-protein (Table 2). Thus, they are strongly suggested as the core
drugs for clinical trials to treat COVID-19 patients. Considering the severe and potentially lethal side
effects of amphotericin b [28], ergotamine and vancomycin seem be the top choices.

Table 2. Different docking scores of ligands for the SARS-CoV-2 S-protein.

Drug Name Docking Score (kcal/mol) Usage

Ergotamine −8.8 For treatment of acute migraine attacks [29]

Amphotericin b −8.3 An antifungal medication used for serious fungal infections and
leishmaniasis [30]

Indinavir −8.1 A component antiretroviral therapy to treat HIV/AIDS

Vancomycin −7.7 For treatment bacterial infections [31]

Lonpinavir −7.7 An antiretroviral, often used against HIV infections

Zafirlukast −7.6 For the chronic treatment of asthma

Lanicor −7.5 Used to treat heart conditions [32]

PubChem ID: 54098557 −7.5 –

Digitaline Nativelle −7.5 For treatment of congestive heart failure, also used as
angiotensin-converting enzyme (ACE) inhibitor

Rivaroxaban −7.5 To treat and prevent blood clots [33]

Tadalafil −7.5 To treat erectile dysfunction

Nelfinavir −7.3 The treatment of HIV

Montelukast −7.2 Treatment of asthma

Saquinavir −7.1 The treatment of HIV

Carfilzomib −7.1 Anti-cancer drug as proteasome inhibitor

Lapatinib −7.0 Anti-cancer drug

Atovaquone −7.0 To treat pneumocystis pneumonia, toxoplasmosis, malaria and babesia

Celecoxib −7.0 An anti-inflammation drug

Vardenafil −6.9 For treatment of erectile dysfunction

Dasatinib −6.8 To treat certain cases of chronic myelogenous leukemia

Cortisone −6.6 Can be used for a variety of conditions
Montelukast −7.2 Treatment of asthma

Saquinavir −7.1 The treatment of HIV

Carfilzomib −7.1 Anti-cancer drug as proteasome inhibitor

Lapatinib −7.0 Anti-cancer drug

Atovaquone −7.0 To treat pneumocystis pneumonia, toxoplasmosis, malaria and babesia

Celecoxib −7.0 An anti-inflammation drug

Vardenafil −6.9 For treatment of erectile dysfunction

Dasatinib −6.8 To treat certain cases of chronic myelogenous leukemia

Cortisone −6.6 Can be used for a variety of conditions
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Table 3. Docking energy of the SARS-CoV S-protein with and without ligands to human ACE-2.

Interaction of S-Protein and S-Protein/Drug Complex with ACE-2 Docking Energy (kcal/mol)

SARS-CoV S-protein (for comparison) −92.7
SARS-CoV-2 S-protein −82.2
SARS-CoV-2 S-protein/Ergotamine 56.4
SARS-CoV-2 S-protein/Amphotericin b 78.6
SARS-CoV-2 S-protein/Indinavir −61.9
SARS-CoV-2 S-protein/Vancomycin 81.7
SARS-CoV-2 S-protein/Zafirlukast 52.6
SARS-CoV-2 S-protein/Lanicor 4.2
SARS-CoV-2 S-protein/Nelfinavir −81.5
SARS-CoV-2 S-protein/Montelukast −71.3
SARS-CoV-2 S-protein/Saquinavir −48.2
SARS-CoV-2 S-protein/Carfilzomib −88.1
SARS-CoV-2 S-protein/Lapatinib −83.1
SARS-CoV-2 S-protein/Atovaquone −68.2
SARS-CoV-2 S-protein/Celecoxib −74.2
SARS-CoV-2 S-protein/Dasatinib −42.3
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Figure 3. Potentialactive siteselection and ligand-receptor interaction. (a)Thedockingsite (inside the redframe)
was chosen between the ACE-2 (light brown color) and SARS-CoV-2 S-protein (Cyan color); (b,c) Amphotericin
b docks onto the SARS-CoV-2 S-protein; (d,e) Saquinavir docks onto the SARS-CoV-2 S-protein; (f,g) Indinavir
docks onto the SARS-CoV-2 S-protein; (h,i) Ergotamine binds onto the SARS-CoV-2 S-protein.

4. Discussion

Disulfiram, lopinavir, and ritonavir are the three approved and active protease inhibitors against
SARS and MERS. Indeed, lopinavir and ritonavir were successfully used to treat a patient in Thailand in
January 2020. Our results show that among these ligands, saquinavir, tadalafil, rivaroxaban, sildenafil,
dasatinib, vardenafil, montelukast are most promising due to their higher docking scores (<−8.5 kcal/mol,
which coresponds to <1 µM IC50) than others. All of these scores appear better than that of the antiviral
drug Lopinavir (−8.2 kcal/mol). As a comparison, the docking scores reported for lopinavir with the viral
RNA polymerase is −8.3 kcal/mol [18]. It is a remarkable observation that some SARS-CoV-2 inhibitors
such as indinavir could not block the interaction of the SARS-CoV-2 S-protein with ACE-2, while other
inhibitors, such as ergotamine and amphotericin B, can effectively inhibit such interaction. This is somewhat

505



Computation 2020, 8, 53

confusing, since all of these three compounds dock on the same docking site that is marked by the red
circles in Figure 3—the grove between an extended insertion that contains the β5/β6 strands and the
receptor-binding motif (RBM) loop [28]. To comprehend what caused the significant difference, we overlaid
the structures of the three docked compounds and ACE-2 on the SARS-CoV-2 spike protein in Figure 4.
The comparison clearly shows that ergotamine (red) and amphotericin B (blue) extend further out toward
the ACE-2 and thus effectively block the interaction of the SARS-C oV-2 spike protein with ACE-2 while
indinavir (green) clings to the SARS-CoV-2 spike protein, leaving room for ACE-2 to interact with the
spike protein.
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Abstract: Some clinical studies have indicated activity of ivermectin, a macrocyclic lactone, against
COVID-19, but a biological mechanism initially proposed for this anti-viral effect is not applicable
at physiological concentrations. This in silico investigation explores potential modes of action of
ivermectin and 14 related compounds, by which the infectivity and morbidity of the SARS-CoV-2
virus may be limited. Binding affinity computations were performed for these agents on several
docking sites each for models of (1) the spike glycoprotein of the virus, (2) the CD147 receptor,
which has been identified as a secondary attachment point for the virus, and (3) the alpha-7 nicotinic
acetylcholine receptor (α7nAChr), an indicated point of viral penetration of neuronal tissue as
well as an activation site for the cholinergic anti-inflammatory pathway controlled by the vagus
nerve. Binding affinities were calculated for these multiple docking sites and binding modes of
each compound. Our results indicate the high affinity of ivermectin, and even higher affinities
for some of the other compounds evaluated, for all three of these molecular targets. These results
suggest biological mechanisms by which ivermectin may limit the infectivity and morbidity of the
SARS-CoV-2 virus and stimulate an α7nAChr-mediated anti-inflammatory pathway that could limit
cytokine production by immune cells.

Keywords: alpha-7 nicotinic receptor; CD147; docking; ivermectin; molecular modeling; SARS-CoV-2

1. Introduction

The spread of the SARS-CoV-2 pandemic around the world has spurred on a search
for suitable drugs for therapeutic applications against this viral infection. Although vac-
cination is a proven strategy for containing coronavirus disease 2019 (COVID-19), a new
challenge has developed due to the emergence of SARS-CoV-2 variants for which vaccines
have offered lesser degrees of protection. Efforts have therefore been focused on the pos-
sibility repurposing existing, approved drugs, which do not require de novo design and
lengthy testing.

Obstruction of the binding between SARS-CoV-2 spike protein and the ACE2 receptor
on target human cells has been one focus of therapeutic intervention [1,2]. Although viral
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fusion to host cells and replication occur via ACE2, SARS-CoV-2 and several other viral
strains, including other betacoronaviruses, initially attach to host cells via more abundantly-
distributed glycoconjugate host binding sites [3,4]. Notable among these are sialic acid
(SA) and the transmembrane glycoprotein receptor CD147, which are widely distributed in
blood, endothelial and several other cells in the human body [4] and provide additional
therapeutic targets. Nicotinic acetylcholine receptors, which are densely distributed in
neuronal tissue and in cytokine-secreting inflammatory cells (for example macrophages
and mast cells), may provide an additional attachment point for SARS-CoV-2 due to a
“toxin-like” epitope on the viral spike protein and may thus provide druggable targets as
well [5–7].

1.1. Binding of SARS-CoV-2 Spike Protein to Host Cell SA and CD147 Surface Molecules

The SARS-CoV-2 spike protein contains 22 N-linked glycosylation sites on each of its
three monomers, with several of these associated glycans capped with terminal SA moieties
in various forms [8–11]. Through those glycan bindings, the SARS-CoV-2 spike protein
attaches to an SA-coated nanoparticle array, which is the basis for a sensitive viral detection
technique [12]. Such a nanoarray is paralleled in densely distributed SA-tipped binding
sites of glycophorin A molecules [13–15] and CD147 receptors [16–18] at the surface of red
blood cells (RBCs), and SARS-CoV-2 was observed in the hemadsorption assay to clump
with human RBCs [19]. Clinical confirmation of viral-RBC attachments was provided
by the presence of SARS-CoV-2 spike protein punctae on 41% of RBCs from a series of
hospitalized COVID-19 patients [20]. Binding between SARS-CoV-2 spike protein and
the host cell receptor CD147 was likewise demonstrated by SPR, Co-IP and ELISA assays,
and immuno-electron microscopy [21]. Meplazumab, a humanized anti-CD147 antibody,
inhibited SARS-CoV-2 replication in vitro and reduced time to viral clearance from 13 to
3 days for COVID-19 patients in a small clinical study [21,22].

For viruses that bind to SA, including SARS-CoV-2, as noted above, that binding plays
a key role in viral infectivity, as SA on host cells typically serves as the initial attachment
point for viral spike protein [23–29]. But for such SA-binding viruses, the host limits
viral attachment to host cell infectious targets through other entities in the body having
SA-rich surfaces, including RBCs, platelets and leukocytes, along with mucins and plasma
proteins [30,31]. Some viruses, in turn, dodge that defense through the expression of
SA-cleaving enzymes that enable detachment from these blood cells and other snagging
substances [28,31–38]. In particular, the SA-cleaving enzyme hemagglutinin esterase (HE)
is expressed by the human betacoronaviruses that cause the common cold, OC43 and
HKU1, but not by SARS-CoV, SARS-CoV-2 and MERS, the three deadly strains in that viral
family [39–41]. It has been proposed that vascular occlusion, central to the morbidities of
COVID-19 [42–47], is initially triggered by the clumping and snagging of SARS-CoV-2 with
blood and endothelial cells, and that HE expressed by the common cold betacoronaviruses
may limit these morbidities [4].

1.2. The Role of CD147 in the Inflammatory Response

In addition to its SARS-CoV-2 binding capability, CD147, a transmembrane glycopro-
tein receptor encoded in humans by the BSG gene [48], is of interest as a key mediator of
inflammatory response, in particular, as related to vascular occlusion. In response to im-
munogenic stimuli, CD147 is upregulated in T cells [49,50], platelets [51,52] and endothelial
cells [53], with upregulation of CD147 in endothelial cells occurring upon exposure to active
or UV-deactivated betacoronavirus MHV-4 in vitro. CD147, in turn, has been observed to
promote adhesion by RBCs [54–56], leukocytes [52,57–59] and platelets [57,58,60] to other
blood cells and endothelial cells. Also, of particular interest are the indicated pro-infectious
roles of CD147 and its binding partner cyclophilin A for SARS-CoV-2, SARS-CoV and
other viruses [21,61–63]. In a broader clinical framework, the involvement of CD147 in the
pathogenesis of a number of diseases, including lung inflammation, atherosclerosis, heart
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failure, ischemic myocardial injury and stroke [52,56,58,64,65], further suggests that CD147
antagonists or masking agents could mitigate a COVID-19 infection.

1.3. Competitive Binding of Ivermectin to SARS-CoV-2 Spike Protein Binding Sites

Given that the attachment of the SARS-CoV-2 spike protein to host cell targets, in-
cluding ACE2, SA and CD147, is central to viral infectivity and morbidity, the capability
for competitive binding to limit such attachments has been one focus in the search for
repurposed COVID-19 therapeutics [3]. Four molecular modeling studies that collectively
screened over 800 such molecules were conducted toward that goal [66–69]. The strongest
or close to strongest binding affinity in each study was obtained for ivermectin, a macro-
cyclic lactone with multifaceted antiparasitic and antimicrobial activity which has been
distributed in 3.7 billion doses worldwide since 1987 [70–73]. Additional molecular mod-
eling studies of competitive binding to SARS-CoV-2 spike protein sites that focused on
ivermectin in particular likewise found strong binding affinities for that agent [74–79].

These findings are of interest given clinical, animal and epidemiological studies,
including most of the 20 randomized clinical trials (RCTs) conducted to date, indicating
the efficacy of ivermectin against COVID-19 [70,80,81], although interpretations of which
of these RCTs are most reliable have been controversial. Ivermectin is suitable for mass
use on a global scale, having been the mainstay of two worldwide campaigns to eliminate
two devastating scourges affecting millions, onchocerciasis and lymphatic filariasis [82].
It is safe even at much higher doses than the standard dose of 200 µg/kg [83,84], and
its limited side effects were noted in the Nobel Committee’s 2015 award honoring its
discovery and its record of improving the health and wellbeing of millions [85]. However,
a biological mechanism initially proposed for ivermectin activity against SARS-CoV-2,
entailing blockage of its transport into the host cell nucleus, was proposed in conjunction
with in vitro studies conducted at much greater than physiological concentrations and has
been questioned [86–88].

1.4. Nicotinic Acetylcholine Receptors: Anti-Inflammatory Modulation and Blockage of
Viral Bindings

Another biological mechanism of activity that may underlie the observed clinical
benefits of ivermectin treatment of COVID-19 is a potent anti-inflammatory and immune
modulatory effect mediated by its action as a positive allosteric modulator of the alpha-7
nicotinic acetylcholine receptor (α7nAChr) [89]. The core receptor of the cholinergic anti-
inflammatory pathway is α7nAChr, which is under the control of the vagus nerve [90] and
plays a crucial role in balancing of the body’s response to inflammation and sepsis [90,91].
This anti-inflammatory pathway connects the involuntary parasympathetic nervous system
innervating all major organs to cytokine-producing cells such as TNF, IL1 and IL6-secreting
macrophages, lymphocytes and mast cells [90,91], which are reported to play a major role
during the inflammatory phase of COVID-19 infection (i.e., the cytokine storm [92]). The
ivermectin-induced enhancement of this pathway might rapidly lower pro-inflammatory
cytokine levels and decrease expressions of chemokines as well as adhesion molecules at
the inflammatory sites [90,91]. Importantly, the marked increase in Ca++ current evoked
by acetylcholine (ACh) in the presence of micromolar concentrations of ivermectin (e.g., a
20-fold shift of the affinity of ACh [89]) may also potentially explain the reported clinical
activity of ivermectin during the late (i.e., inflammatory), critical phase of severe COVID-19
cases [93].

Recent in silico docking studies have indicated a potential direct interaction between
the SARS-CoV-2 spike glycoprotein and α7nAChr, due to a “toxin-like” epitope on the
spike glycoprotein, with homology to a sequence of a snake venom toxin [5,6]. Of interest,
the α7nAChr receptor, which is densely distributed on neuronal tissue, has previously
been shown to serve as the port of entry in the human body for another RNA virus
endowed with strong neurotropic action, the rabies virus [7]. The loss of smell (anosmia)
and/or taste (ageusia) are considered hallmarks of COVID-19 infection and are likely
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consequences of the direct SARS-CoV-2 infection of the olfactory and gustatory nerve [94].
Ivermectin high affinity binding to α7nAChr may therefore interfere with the attachment
and internalization of SARS-CoV-2 on the olfactory/gustatory nerves, as recently reported
in both animal models [94] and human patients [95].

1.5. Subdomains of the SARS-CoV-2 Spike Protein, S1 Region

The SARS-CoV-2 spike protein pockets selected for study as potential ivermectin
binding sites were governed by the arrangement of subdomains of interest. The SARS-CoV-
2 spike protein is a heavily glycosylated, type I transmembrane protein with 1273 amino
acid residues, assembled into trimers and attached on the virion surface, giving the virus its
distinctive “corona” or crown-like appearance. Each spike protein trimer contains a central
helical stalk consisting of three joined S2 subunits, each capped with an S1 subunit head in
a mushroom-like shape [96,97]. The ectodomain of the spike protein S1 attaches to a host
cell membrane, after which the S2 stalk engages in fusion, enabling the internalization and
replication of the virus [96–99].

That viral-host engagement proceeds, in particular, through fusion of the receptor
binding domain (RBD) of the SARS-CoV-2 spike protein S1 to an ACE2 receptor on a host
cell [97–99]. As shown in Figure 1, the S1 N-terminal domain (NTD) contains eight of the
22 N-linked glycans on the SARS-CoV-2 spike protein. These eight N-linked glycans on the
NTD form initial attachments to host cells’ glycoconjugates, including CD147 and others
which have SA terminal residues [8,18,100–104]. The RBDs of the virus, one on each spike
protein monomer S1 subunit, switch constantly between open (“up”) and closed (“down”)
configurations, with the former enabling both ACE2 binding and immune surveillance and
the latter blocking both of those functions [96,105].
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Figure 1. (A,B) Side view of SARS-CoV-2 spike protein trimer, open (PDB: 6VSB) and closed (PDB:
6VXX) configurations, respectively. Heptad repeats 2 (HR2), HR2 linker, transmembrane domain
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(TM), and cytoplasmic domain (CP) is omitted in the S2 subunit represented in A. (C) Spike protein
monomer color-coded by subdomain. (D) Sequence of full-length spike protein with domain assign-
ments, with N-terminal end to the left and C-terminal (stalk) end to the right. (E) N-linked glycans
are shown, localized in the schematic representation by arrows, for the NTD and RBD domains only.
(F) A key to the monosaccharides depicted in (E). C-E are from Aminpour et al., 2021 [3] (CC-BY 4.0);
added glycan representations in E and the glycan key, F, are from Sikora et al., 2021 [106] (CC-BY 4.0).

2. Materials and Methods
2.1. Ligand Database Preparation

A set of 15 test compounds, composed of ivermectin and 14 similar molecules, was
collected from the PubChem database and used for the docking studies. Compounds
structurally similar to ivermectin were adopted from DrugBank Online under the “similar
structures” section of the drug ivermectin [107]. This option provides users the capability
to search rapidly for structurally similar small molecules, without having to redraw the
molecule and perform additional database searches through the ChemQuery interface.
Before evaluating any interaction, the ligand set database was prepared through a “Wash”
wizard of the Molecular Operating Environment (MOE) software package. At this stage,
the 3D dominant protonation state of each molecule was generated at the physiological pH
of 7, followed by a short MOE built-in energy minimization procedure.

2.2. Protein Preparation

The crystal structure of CD147 was obtained from its Protein Data Bank (PDB: 3B5H).
Chain A has the strongest electron density and thus was used for analysis. The CHARMM-
GUI Archive of COVID-19 Proteins Library [108] was used to collect the structures of
the two spike protein conformations, i.e., the closed (PDB: 6VXX) and open (PDB: 6VSB)
states [9,109,110]. The NTD (aa 18–292) and RBD (aa 318–513) of one monomer were
considered separately in the following analysis. The atomic coordinates of three possible
conformations of α7nAChr, namely resting (PDB: 7KOO), desensitized (PDB: 7KOQ) and
activated (PDB: 7KOX), were obtained from the PDB [111]. Only the extracellular region of
the protein (aa 1–207) was considered in the docking analysis. All proteins were prepared in
MOE, adjusting their protonation state according to a physiological pH of 7 and minimizing
the potential energy.

2.3. Binding Sites

We employed the Site Finder module in MOE [112] to detect the possible binding sites
in the NTD and RBD domains of the spike protein. All the sites we identified using the
MOE software had already been reported in the literature, as we summarized them below,
so we performed our molecular modeling calculations using the sites specified in Table 1.
We manually calculated the center of the binding sites from the residues involved.

Several sialoside-, glycosylation- and ganglioside- binding sites have been reported in
the literature. Milanetti et al. [103] proposed a potential sialoside binding site containing three
divergent loop regions (site 1). They supported the hypothesis of a structural resemblance
between MERS-CoV and SARS-CoV-2 using iso-electron density mapping. Behloul et al. [113]
compared the structural features of the SARS-CoV-2 spike protein S1-NTD with BCoV and
consequently characterized a binding pocket that has the capability to bind SA species
such as Neu5,9Ac2 (site 2). Baker et al. [12] aligned the sequences of the SARS-CoV-2
spike protein, mainly focusing on human coronavirus OC43 as the SA-binding protein.
They identified a potential SA binding site, associating its glycan-binding characteristic
utilizing glyconanoparticles for the detection (site 3). Gaetano et al. [114] calculated the
druggability of all available ligand-binding pockets within the NTD segment of the spike
protein S1 using SiteMap of Schrodinger software [115]. As a result, among all of the three
hypothesized sialoside-binding pockets in the literature, site 3 by Baker et al. [12] is part
of a cavity with a druggable property identified by Gaetano et al. (site 4 in Table 1, or
site P1 as Gaetano et al. referenced in their paper [114]). Gaetano et al. also identified an
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unexpected binding pocket (site 5 in Table 1, or P2 as they referenced in their paper) within
S1-NTD. Site 5 (P2) aligns with the recent experimental findings by Bangaru et al. [116].

Table 1. Binding sites of spike NTD and RBD obtained from the literature (as reproduced from
Table 3 in Aminpour et al. [3], with reference citation numbers adjusted to this reference list).

Binding Site Reference Binding Site
Type Residues NTD/RBD

Site 1 Milanetti et al.
[103] sialoside L18-Q23, H66-T78 and

G252-S254 NTD

Site 2 Behloul et al.
[113] sialoside

E154, F157, Y160 and
the so-called stabilizing

loop (N122-N125)
NTD

Site 3 Baker et al.
[12] sialoside (R21, Q23, L24, H69,

F79, P82 and R246) NTD

Site 4 (P1) Di Gaetano et al.
[114] sialoside

R21, T22, Q23, L24, P26,
R78, P82, V83, L110, F135,

C136, N137 and R237
NTD

Site 5 (P2) Di Gaetano et al.
[114] sialoside

F92, S94, E96, K97, S98,
R102, N121, V126, I128,

M177, D178, K182,
N188, R190, F192, I203,
L226, V227 and L229.

NTD

Site 6–14 Watanabe et al.
[11] glycosylation N122, N149, N165, N17,

N61, N74, N234, N282 NTD

Site 15 Fantini et al.
[101] ganglioside Domain (111–158)- core

Q-134 to D-138 NTD

Site 16 Carino et al.
[117] -

F342 N343 A343 T345
R346–W436 N437
S438–L441 D442

S443–G446–N448–Y451
L452

RBD

Site 17 Carino et al.
[117] - S375–G404 D405–V502

G503–Q506–Y508 RBD

Site 18 Carino et al.
[117] -

E340 V341–F347
A348–N354 R355
K356–S399 F400

V401–V512

RBD

Site 19 Carino et al.
[117] - F374–N388–Y495 G496

F497 RBD

Site 20 Carino et al.
[117] -

T376 F377 K378 C379
Y380–V407

R408–I410–V433 I444
A445

RBD

Site 21–22 Watanabe et al.
[11] glycosylation N331–N3443 RBD

Sites 6 to 14 are associated with the glycosylation binding sites proposed by
Watanabe et al. [11]. Fantini et al. [101], meanwhile, proposed a new type of ganglioside-
binding domain performing molecular dynamics (MD) calculations. The results of his
simulations reveal a strong interaction between GM1 ganglioside and S1-NTD (site 15).
Finally, Carino et al. [117] utilized the Fpocket server (https://bioserv.rpbs.univ-paris-
diderot.fr/services/fpocket/, accessed 22 February 2022) and computationally identified
sites 16 to 20 in the RBD fragment of the spike protein. They also studied the bind-
ing of several triterpenoids (e.g., glycyrrhetinic and oleanolic acids) and natural bile
acids and demonstrated that their semisynthetic derivatives can reduce RBD adhesion to
ACE2 in vitro. Sites 21 to 22 belong to the set of glycosylation binding sites proposed by
Watanabe et al. [11].
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Nine different binding sites in the CD147 dimer identified by MOE (Site Finder) are
listed in Table S1 and are illustrated in Figure S1. The three potential N-glycosylation sites
of CD147 are N44 (site 8), N152 (site 3) and N186 (site 3).

The putative binding pockets of the α7nAChr (desensitized, activated, resting) and
CD147 structures were identified using the Site Finder tool in MOE, which computes the
possible binding sites of a protein from its 3D structure using a geometrical approach. For
each protein, only the sites characterized by a propensity for ligand binding (PLB) greater
than or equal to 1 were considered in the docking experiments. The α7nAChr protein is
a pentamer with a five-fold symmetry. To have a clear presentation, we summarized the
common binding sites between monomers of the α7nAChr protein, excluding the common
ones, in Table S2. In total, 37 binding sites with PLB > 1 were identified in all the three
conformations of the α7nAChr protein. The binding sites identified by MOE (Site Finder)
related to Table S2 are illustrated in Figure S2.

2.4. Molecular Docking Simulations

Docking was performed with a flexible ligand and a rigid receptor approach using the
AutoDock Vina program [118] to predict the binding pose of the ligands. In the AutoDock
Vina software, receptor–ligand binding affinities were predicted as negative Gibbs free
energy (∆G) values (kcal/mol), which were calculated on the basis of the AutoDock Vina
scoring function and classified on the basis of a numerical value referred to as the “Score”.
The interactions of inhibitors with receptor proteins are predicted on the basis of the Score;
the lower the Score (in negative value), the greater the interaction. The Vina scoring function
incorporates two features from knowledge-based and empirical potentials. A cubic box
with 30.0 Å size, required to delimit the docking area, was used on each binding pocket,
centered at their center of geometry. The maximum number of poses to be generated
for each docking calculation was set to 20. The minimum root mean square deviation
(RMSD) to distinguish between two different poses was 1 Å. Every generated pose was
energy-minimized in vacuo using Amber16 by keeping the protein fully rigid [119], with
out of box poses then being discarded. Finally, the Vina Score function was used to re-score
the poses after the minimization and the pose with the best Score was selected for each
compound–receptor pair. The DockBox package was used to facilitate the preparation of
docking inputs, the post-processing of the docking results and the rescoring procedure [120].
No constraints were applied in the docking studies. Although we minimized the ligand–
protein structures after docking, we double checked the stability of compounds by running
100 ns MD calculations in explicit solvent on the unrestrained ligand–protein complex (see
Section 2.5).

To the best of our knowledge, there are no effective therapeutics for COVID-19 which
have biological mechanisms similar to those indicated for our 15 test compounds to compare
with our docking results, which could be checked for competitive binding to the spike
protein or the other host receptors. Therefore, we have the limitation of not being able
to usefully check these results against known controls. In order to evaluate docking
parameters for a given target prior to undertaking docking calculations on unknown
ligands, however, it is always beneficial to perform control docking if the binding of known
ligands is available in the crystal structure and if they have a non-covalent nature. Therefore,
here, we also performed positive control docking calculation for the ligands that were
experimentally available in the crystal structure of the proteins that we used in our study. It
was not possible to use the NAG (N-acetyl-D-glucosamine) ligand (PDB: 6VSB) of the spike
protein as a positive control since the nature of the binding was covalent. Also, we were
not able to perform control docking on the CD147 protein (PDB: 3B5H) since there was no
known ligand available in the crystal structure. The ligand Epibatidine (PDB:7KOX) of the
alpha-7 nicotinic acetylcholine receptor was used as a control. We were able to successfully
generate the same pose (RMSD = 1.2 Å) with a binding affinity of −8.73 kcal/mol (see
Figure S3). We used decoys, which are molecules that are physically similar yet chemically
dissimilar to the active ligands [121], as a negative control for the docking calculations. We
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used a state-of-the-art benchmark, the Directory of Useful Decoys (http://dude.docking.
org, accessed 22 February 2022), to select decoys for ivermectin [122,123]. The structures of
the decoy compounds are presented in the Supplementary Information (Figure S4). The
binding affinities of the decoy compounds for the spike protein S1, CD147 and α7nAChr
binding sites are in the range of (−3.345 to −5.496 kcal/mol), (−4.217 to −5.137 kcal/mol)
and (−4.940 to −6.070 kcal/mol), respectively. The decoy compounds exhibited lower
affinities than ivermectin and the most related compounds.

2.5. Molecular Dynamics (MD) Simulations

In order to establish the stability of each docked protein-inhibitor complex, MD sim-
ulations were run in explicit solvent using the Amber16 software. The computationally
intensive all-atom MD simulations of the Open (6x) and Closed (3x) systems (each tal-
lying ∼1.7 million atoms including explicit water, ions and membrane lipids) that was
done by another research group on Texas Advanced Computing Center (TACC) achieved
benchmarks of ∼60 ns/day on 256 GPU nodes [124]. To reduce the computation time,
for NTD binding ligands, protein spike S1 was truncated from S698 to D1146, and from
P322 to C590. For RBD binding ligands, protein spike S1 is truncated from M1 to E324
and from C590 to D1146. The hydrophobic part of the α7nAChr protein (T207 to L320)
was removed in each monomer to prevent the exposure of the hydrophobic area in water.
The breaks in all of the structures were capped with MOE’s Structure Preparation. All
the residues of protein CD147 were kept. MD simulations were carried out on Compute
Canada’s Graham cluster (V100 GPUs), as well as Cedar (P100 NVIDIA GPUs), depending
on their respective availability. Each simulation was carried out on a single GPU. Using
the AmberTools 16′ leap program, each complex was solvated in a cubic box with a side
length of 12 Å using a three-points (TIP3P) water model. Na+ and Cl− ions were added
in such a way to adjust the salt concentration to the physiological value of 0.15 M and
neutralize the system. The minimization of the complexes was achieved in two steps, using
the steepest descent (5000 steps) and conjugate gradient (5000 steps) methods successively.
At first, only solvent atoms were minimized, by restraining the protein–ligand complex.
Next, the minimization was run with the same parameters without the restraint. After the
minimization step, the MD simulations were conducted in three stages: heating, density
equilibration and production. At first, each solvated system was heated to 298 K for 500 ps,
with weak restraints on all backbone atoms. Next, density equilibration was carried out
for 1 ns of constant pressure equilibration at 298 K, with weak restraints. Finally, MD
production (one trajectory per complex) were performed without any restraints for all
systems for 100 ns. The trajectory of the ligand–protein complex was visually investigated
using the VMD package (the University of Illinois at Urbana-Champaign, Urbana, IL,
USA). Time-evolutions of the RMSD of top-ranked inhibitors with respect to receptors
(spike, CD147 and α7nAChr) were calculated using the CPPTRAJ module of the AMBER16
software. Clustering analysis was carried out on the protein-bound ligand poses where
the trajectory reached a plateau using Amber’s CPPTRAJ program [67]. Consequently,
the representative pose selected from the dominant cluster was considered as a predicted
ligand pose.

2.6. Ligand Interaction Fingerprint

The Protein-Ligand Interaction Fingerprint application in the MOE software [112] was
used to outline the interactions between ligands and proteins with a fingerprint scheme.
Interactions such as hydrogen bonds, ionic interactions and surface contacts are classified
in accordance with the residue of the origin and built into a fingerprint scheme which is
representative of a given database of protein–ligand complexes.
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3. Results
3.1. Molecular Docking Analysis

We docked the 15 test compounds on the SARS-CoV-2 spike protein (open and closed
conformations), CD147 and α7nAChr (activated, desensitized and resting states). All
docking scores and binding sites are reported in Tables 2 and 3. In the following sections,
we discuss the top five spike and α7nAChr and the top six CD147 protein inhibitors, as
well as the common inhibitors within the top-ranked inhibitors for all the receptors.

Table 2. Results of the docking analysis for spike protein S1 binding sites on NTD and RBD in open
and closed positions. Scores listed are maximum absolute values for the sites listed in Table 1 for NTD
or RBD, open or closed, with the maximum for all four combinations shown in column 2. Compounds
are sorted in descending order of that maximum |Score| (column 2).

Compound
Name

Maximum |Score|
Open Closed

NTD RDB NTD RBD
Score

(kcal/mol) At Site Score
(kcal/mol) Site Score

(kcal/mol) Site Score
(kcal/mol) Site Score

(kcal/mol) Site

Ivermectin −8.948 NTD-open site 10 −8.948 site 10 −8.256 site 17 −8.205 site 4 −7.735 site 22
Moxidectin −8.902 NTD-open site 2 −8.902 site 2 −8.218 site 21 −7.659 site 2 −7.989 site 18
Doramectin −8.885 NTD-open site 2 −8.885 site 2 −8.144 site 21 −8.867 site 9 −8.216 site 19
Oleandrin −8.787 RBD-closed site 19 −7.787 site 10 −8.051 site 22 −8.083 site 14 −8.787 site 19
Selamectin −8.774 NTD-closed site 10 −8.476 site 15 −7.432 site 19 −8.774 site 10 −8.142 site 16

Okadaic acid −8.716 NTD-open site 10 −8.716 site 10 −8.067 site 21 −7.937 site 4 −8.25 site 18
Gitoformate −8.514 NTD-open site 10 −8.514 site 10 −7.669 site 21 −7.88 site 10 −7.992 site 19

Amphotericin_B −8.304 NTD-open site 15 −8.304 site 15 −7.516 site 21 −7.931 site 4 −7.332 site 21
P-57AS3 −8.045 NTD-open site 4 −8.045 site 4 −7.663 site 22 −7.704 site 5 −7.627 site 19

Eprinomectin −7.646 NTD-open site 6 −7.646 site 6 −7.584 site 21 −7.088 site 6 −7.302 site 21
Concanamycin A −7.564 NTD-open site 10 −7.564 site 10 −7.335 site 19 −7.347 site 3 −7.302 site 21

Natamycin −7.529 RBD-open site 21 −7.388 site 13 −7.529 site 21 −7.359 site 4 −6.87 site 18
Nystatin −7.333 RBD-open site 21 −7.226 site 6 −6.845 site 21 −6.867 site 14 −6.773 site 19

beta-Escin −7.324 NTD-open site 10 −7.324 site 10 −7.333 site 21 −7.264 site 4 −7.296 site 19
Fusicoccin −6.705 NTD-open site 2 −6.705 site 2 −6.123 site 22 −6.353 site 10 −6.381 site 18

Table 3. Results of the docking analysis on CD147 and α7nAChr. Compounds are sorted in descend-
ing order according to |Score| separately for CD147 and α7nAChr.

CD147 α7nAChr
Compound

Name
Score

(kcal/mol) Site Compound
Name

Score
(kcal/mol) Site

Okadaic acid −8.578 site 5 Ivermectin −10.636 Activated site 2
Doramectin −8.253 site 1 Doramectin −10.243 Activated site 2
Selamectin −8.082 site 5 Okadaic acid −10.240 Activated site 2

P-57AS3 −8.010 site 1 Moxidectin −10.142 Resting site 1
Concanamycin A −7.847 site 9 Concanamycin A −9.932 Activated site 2

Ivermectin −7.527 site 5 P-57AS3 −9.799 Desensitized site 3
Amphotericin_B −7.481 site 1 Gitoformate −9.794 Resting site 1

Moxidectin −7.469 site 1 beta-Escin −9.711 Resting site 3
Oleandrin −7.434 site 4 Natamycin −9.611 Activated site 1

Gitoformate −7.297 site 8 Oleandrin −9.465 Activated site 2
Nystatin −7.038 site 9 Selamectin −9.397 Activated site 2

Eprinomectin −6.827 site 9 Nystatin −9.214 Resting site 3
beta-Escin −6.755 site 1 Eprinomectin −8.968 Resting site 3
Natamycin −6.739 site 7 Fusicoccin −8.814 Resting site 3
Fusicoccin −5.872 site 1 Amphotericin_B −8.811 Resting site 3

All individual docking scores at all sites for ivermectin on the spike, CD147 and
α7nAChr are presented in Table S3, Table S4 and Table S5, respectively.
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3.2. Selection of the Most Promising Compounds

The top five inhibitors, in descending order of the absolute value of the Score, were
found to be as follows: for the spike protein: ivermectin, moxidectin, doramectin, oleandrin
and selamectin; for CD147: okadaic acid, doramectin, selamectin, P-57AS3, concanamycin
A and ivermectin; and for α7nAChr: ivermectin, doramectin, okadaic acid, moxidectin
and concanamycin A. The common inhibitors within the five top-ranked inhibitors were,
for the spike and α7nAChr: ivermectin, doramectin, okadaic acid and moxidectin; for the
spike and CD147: doramectin; and for CD147 and α7nAChr: okadaic acid, doramectin
and concanamycin A. The only common top inhibitor for all the receptors was doramectin.
The majority of compounds bound to the spike NTD, while the highest affinity could be
observed towards the open conformation. As for α7nAChr, the activated and resting states
were preferred with respect to the desensitized state. Moreover, compounds had higher
affinities to the activated state of α7nAChr.

All the top inhibitors considered, with the exception of oleandrin, were found to bind
to S1-NTD. Both ivermectin and selamectin bound to site 10 of S1-NTD (Figure 2A,C),
which is a glycosylation binding site (N61). Moxidectin and doramectin bound to site
2 S1-NTD (Figure 2A), which is a sialoside binding site proposed by Behloul et al. [113].
Oleandrin bound to site 19 of S1-RBD proposed by Carino et al. [117] (Figure 2B). Site 19
includes the N388 glycosylation binding site.

Figure 2. Binding poses of (A) ivermectin (dark blue), moxidectin (dark gray), doramectin (purple) on
S1-NTD open conformation; (B) oleandrin (orange) on S1-RBD closed conformation; (C) selamectin
(cyan) on S1-NTD closed conformation.

The binding poses of all the compounds with high affinity for CD147 are shown in
Figure 3. Okadaic acid, selamectin and ivermectin were found to bind to site 5, which is
located in domain A of CD147 protein. Doramectin and P-57AS3 were found to bind to site
1 of CD147, which is in the interface of domain 1 and domain 2 of CD147. Concanamycin A
was found to bind to site 9 of CD147.
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Figure 3. Binding poses of okadaic acid (green), doramectin (purple), selamectin (orange), P-57AS3
(dark green), concanamycin A (cyan) and ivermectin (dark blue) on CD147.

The binding poses of all the compounds with high affinity for α7nAChr are shown in
Figure 4. Ivermectin, doramectin, okadaic acid and concanamycin A were found to bind to
site 1 of the activated conformation of α7nAChr (Figure 4A,C). Moxidectin was found to
bind to site 1 of the resting conformation of α7nAChr (Figure 4B,D). In what follows, the
interactions of the top inhibitors for the spike, CD147 and α7nAChr will be discussed.

Figure 4. Binding poses of ivermectin (dark blue), doramectin (purple), okadaic acid (green), con-
canamycin A (cyan) on α7nAChr (A) side and (C) top view. Binding pose of moxidectin (dark gray)
on (B) side and (D) top view.
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3.3. Molecular Dynamics Simulations and RMSD Analysis

A 100ns-long MD simulation was performed to check the stability of each protein-
inhibitor complex and to discriminate between stable and unstable docked poses. The
top-docked pose (with the lowest docking Score) for each protein–ligand complex was
used as an initial structure for the simulations. The binding stability was assessed by
following the time evolution of the ligand RMSD in each trajectory, where we used the
starting structure as a reference and RMSD alignment was carried out on protein atoms.

From the RMSD analysis and a visual inspection of MD trajectories, we found that,
except for salemectin, all of the top five compounds in complex with the spike protein were
relatively stable, reaching a RMSD plateau between 2 Å and 4 Å (Figure S5). Conversely,
CD147 went through hinge movements during MD (Figure S6), which made it difficult to
align the structures and caused fluctuations and higher RMSD values. Visual inspections
and ligand–protein interaction analysis (Section 3.4) confirmed that all compounds, except
for okadaic acid, maintained their binding to the same binding site during MD simulations
(2 Å < RMSD < 6 Å) (Figure S6). Regarding α7nAChr, a common behaviour was observed
for almost all of the compounds: before MD, binding to α7nAChr occurred through
the interaction between the disaccharide group of each ligand and the activated site 2
of α7nAChr inside the pore (except for moxidectin, which bound to the outer wall of
α7nAChr). Benzofuran and spiroketal groups were pointed toward the center of the pore,
with no apparent hydrogen bonds with any residue. After conducting MD simulations, the
stable structure of compounds tended toward a conformation that maintained its binding
with activated site 2, with extra binding through the benzofuran group, by getting close
to the pore wall. Ivermectin, okadaic acid and moxidectin manifested a stable RMSD
(1.5 < RMSD < 4) (Figure S7). An abrupt shift in the RMSD of doramectin was due to the
detachment of the benzofuran group from one monomer and the attachment to another
monomer due to the symmetry of the α7nAChr protein. The new conformation still
bound, through disaccharide, with the same binding site, and it was as stable as the first
conformation. During visual inspection and through ligand–protein interactions, it was
confirmed that concanamycin underwent major binding adjustments with regard to its
initial docked conformation and ended up leaving the binding site.

3.4. Analysis of the Protein–Ligand Interactions

In stable MD trajectories, the top representative pose of each compound was selected
from the populationally dominant cluster using clustering analysis on all the trajectories
for further ligand–protein interaction analysis. The Protein-Ligand Interaction Fingerprint
module of MOE was used to summarize the interactions between ligands and proteins
with a fingerprint scheme. N61, R415, F157 and D40 emerged as main residues of the spike
protein due to their interaction with high-affinity compounds (Figure S8). As for CD147, the
residues interacting with the selected compounds were L46, K87, R85 and H32 (Figure S9).
In case of α7nAChr, four out of the five selected compounds bound to activated site 2 and
interacted with P16, N106, W85 and N100, that are exposed on the interior surface of the
protein channel. One compound, namely moxidectin, interacted with N110 of resting state
α7nAChr, which is exposed on the outer surface of the protein (Figure S10).

The interaction mechanisms of ivermectin with the SARS-CoV-2 spike protein, CD147
and α7nAChr were analysed using MOE software. Binding energies were obtained through
the GBVI/WSA forcefield-based scoring function, which uses the AMBER99 forcefield
to compute electrostatic, solvation, van der Waals and surface area contributions to the
free energy given the ligand pose. Two to four hydrogen bond acceptor interactions were
characterized in the best pose of the compounds in all receptors.
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Ivermectin remained in the same binding site for all the receptors during MD sim-
ulations (2 Å < RMSD < 4 Å). In case of the spike protein (RMSD~2.5 Å), N61 (the main
residue of the glycosylation site 10) were involved, with a binding energy of −2.9 kcal/mol,
with the benzofuran group of ivermectin and R415 were involved with the lactone group
of ivermectin, with a binding energy of −2.9 kcal/mol (Figure 5A).
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During MD simulations, CD147 went through hinge movements and gave rise to
a relatively higher (RMSD < 6 Å) value for ivermectin. Ivermectin stayed stable after
60 ns and strongly bound to CD147 through its disaccharide group, featuring E43 and K54
residues with −2.7 kcal/mol and −4.1 kcal/mol of binding energies, respectively, and a
lactone core group featuring L46 residue with −1.1 kcal/mol of binding energy (Figure 5B).

As for α7nAChr, strong hydrogen bond acceptor interactions were found with K86
(−6.8 kcal/mol of binding energy) and N106 (−3 kcal/mol of binding energy). Moreover,
it was characterized by an additional hydrophobic interaction with H85 (−2.7 kcal/mol
of binding energy) (Figure 5C). In addition to maintaining disaccharide group binding
with α7nAChr through K86 and N106, the equilibrated structure formed an extra binding
to α7nAChr through its benzofuran group with H85 compared to the initial docking
pose. Ivermectin maintained its attachment to α7nAChr at the same binding site with
(RMSD < 4 Å). The presence of the same type and number of interactions in the analyzed
proteins may support the hypothesis of a multi-targeted action of ivermectin.
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A summary of the amino acid mutations of the SARS-CoV-2 Alpha, Beta, Gamma
and Delta variants with a focus on the spike protein is presented in Table S6. We do not
expect that the given variant will have a significant effect on the binding of the selected
compounds, considering that the mutations are not directly involved in the binding sites of
ivermectin and related compounds. However, it is noteworthy to mention that allosteric
interactions should be taken in consideration for a comprehensive and accurate evaluation.

3.5. Bioactivity of the Test Agents with Greatest Binding Strength

By Lipinski’s rule of five, agents with a molecular mass greater than 500 would tend
to be suboptimally bioactive as oral agents. However, although among these test agents,
ivermectin and doramectin, for example, have molecular masses of 875.1 and 899.1, re-
spectively, both are well-absorbed with similar pharmacokinetics [125]. Ivermectin, in
particular, is distributed throughout the human body within eight hours of oral administra-
tion [83,126,127], and its success in combatting diseases affecting hundreds of millions of
people is well established [70].

3.6. Protein-Protein Interactions

The spike (PDB: 6VSB for open conformation) and α7nAChr (PDB: 7KOX) initial
structures were obtained from the RCSB Protein Data Bank. PatchDock software (bioinfo3
d.cs.tau.ac.il/PatchDock/ accessed on 2 March 2022) was used for protein–protein docking
simulations [128,129]. PatchDock is a geometry-based molecular docking algorithm aimed
at finding docking transformations that yield good molecular shape complementarity. Each
candidate model is further evaluated by a scoring function that considers both the atomic
desolvation energy and the geometric fit. The results obtained from PatchDock were further
refined with the associated server FireDock, which delivers a further refinement of both the
score function and of the complexes’ geometries. We present the highest scoring structure
in Figure 6. The best docking pose indicates the interaction between two RBD segments of
the spike trimer: from the RBD part of chain B (red) and chain C (green) to the outer surface
of two subunits (chain A (cyan) and chain E (gray) of α7nAChr pentamer). We presented
the highest scoring spike–α7nAChr complex in Figure S11. The Protein Contacts panel of
the MOE software was used to study the interaction between the atoms of proteins. The
interaction between the two proteins were evaluated using six types of contacts: Hydrogen
bonds (Hbond), metal, ionic, arene, covalent and Van der Waals distance interactions
(Distance). We identified the Van der Waals distance interactions between chain E (gray) of
α7nAChr and chain C (green) of the spike protein (Figure S11A). There is a main interaction
between the receptor-binding motif (aa 437–508) of the spike RBD and aa 186–192 of the
extracellular domain of the nAChR 9 subunit. Previously, Farsalinos et al. reported aa
189–192 of the extracellular domain of α7nAChr as part of the a region which forms the
core of the “toxin-binding site” of the nAChRs [130]. There is Van der Waals distance
interactions between chain A (cyan) of α7nAChr and chain C (green) of the spike protein
(Figure S11B). We also identified Hbond interactions between chain E (gray) of α7nAChr
and chain B (red) of the spike protein (Figure S11C) and chain A (cyan) α7nAChr and chain
B (red) of the spike protein (Figure S11D). Further details relating to the interaction between
different chains are presented in Figure S11.
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Figure 6. Spike–α7nAChr complex model. Spike protein trimer is colored in dark blue (chain A),
red (chain B) and green (chain C). α7nAChr pentamer is colored in cyan (chain A), pink (chain B),
yellow (chain C), brown (chain D) and gray (chain E). The yellow and green parts of α7nAChr are
interacting with the dark blue and gray monomers from spike protein. Chain B (red) and chain C
(green) of α7nAChr are interacting with the chain A(cyan) and chain E(gray) of spike protein.

4. Discussion

Protein–ligand docking is a powerful and popular computational tool to simulate
drug–target interactions. Several in silico studies [66–69,74–79] have explored whether com-
petitive binding at subdomains of interest on the SARS-CoV-2 spike protein by ivermectin
could explain its efficacy against COVID-19, as indicated in the several RCTs and animal
studies related above. In one of these molecular docking studies, Lehrer and Rheinstein
(2020) examined potential sites on the SARS-CoV-2 S1 RBD at which ivermectin might bind
and competitively block attachment to ACE2, limiting viral replication [74]. They identified
one such site at which ivermectin was predicted to dock with high binding energy.

The potential for competitive binding by ivermectin on the spike protein NTD, the
subdomain with the highest concentration of glycan binding sites, however, is of interest, es-
pecially given the importance of the glycan bindings of SARS-CoV-2 for initial attachments
to host cells and the possibilities for hemagglutination, as described above. In particular, the
nanometer-scale spacing and the composition of terminal sugar molecules (including SA,
galactose, mannose, fucose, N-acetylglucosamine (GlcNAc) and/or N-acetylgalactosamine
(GaMAc) for the 22 N-glycosylation sites of the SARS-CoV-2 spike protein [131]) meshes
closely with the spacing and terminal sugar composition of glycophorin A [132,133], a
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ubiquitous molecule on the RBC surface that has no known physiological purpose other
than the clearance of viruses and other pathogens [30,31,134].

Here, the AutoDock Vina program was used to perform binding affinity computations
for the 15 test compounds (ivermectin and 14 related molecules) for seven binding sites
on RBD and 15 on NTD, as identified in the literature as potential SARS-CoV-2 spike
protein binding sites of interest for druggability. The inclusion of NTD as well as RBD sites
allowed for the consideration of potential competitive binding by ivermectin and related
molecules to limit initial viral attachments to host cells and potential hemagglutination-
related morbidities. We also examined potential bindings of ivermectin to CD147, an
SA-tipped receptor that is densely distributed on RBCs, to provide some indication as to
whether ivermectin might limit glycan bindings of SARS-CoV-2 at the host cell end as well.
The potential for binding by ivermectin to α7nAChr to inhibit viral attachment to that
receptor and activate the cholinergic anti-inflammatory pathway was also explored.

We calculated binding affinities using the Vina Score value, selecting for those bindings
most likely to be physically realized. Several of the 15 test compounds, including ivermectin,
had bindings of strong or moderate affinity to sites on the spike protein, CD147 and
α7nAChr, as detailed here, but since ivermectin, a safe and widely available drug, has
been the subject of closest study for COVID-19 treatment among these compounds, the
discussion below focuses on the results for that agent and their significance.

As reported in Table S3, docking computations for ivermectin binding to the spike
protein found the strongest binding (−8.948 kcal/mol) at site 10 of S1-NTD, which is a
glycosylation binding site (N61), in the open position. A study of AutoDock binding ener-
gies calculated for a large set of HIV inhibitors and likely non-inhibitors against multiple
ligands found that the selection of binding energy <−7.0 kcal/mol identified the inhibitors
with 98% sensitivity and 95% specificity [135]. It is thus noteworthy that for the sites at the
NTD and RBD in the open position and for NTD in the closed position, most of the binding
energies were <−7.0 kcal/mol, and so, per the above, this indicates their capability to be
physiologically active. Likewise, binding affinities <−7.0 kcal/mol for ivermectin at five of
the 12 sites of CD147 and of 30 of the 37 sites of α7nAChr (for the desensitized, activated
and resting states, total) indicate a capability for physiologically-manifested binding to
these host receptors as well. Despite the above-cited indication of high sensitivity and
specificity for physiological efficacy with binding energies <−7.0 kcal/mol, it is clear that a
physiological relevance corresponding to this study’s results can only be clearly established
through follow-up confirmation with in vitro and/or in vivo findings.

When considering the binding affinities of ivermectin to NTD sites, it is significant
that glycan bindings from SARS-CoV-2 and other coronaviruses to host cells are generally
weak when univalent but orders of magnitude stronger when multivalent [4,12,29]. Thus,
ivermectin, the molecular dimensions of which span approximately 2 × 1 nm [136] (with
the length of the spike protein being ~20 nm [137,138]), could block clinically relevant
multivalent bindings from the spike protein to host cells by steric interference, even if its
actual bindings to some glycan sites on the spike protein were somewhat weaker than
predicted. It is relevant, here, that in a rough order of magnitude, considering an average
of 0.41 spike protein punctae found attached per RBC in COVID-19 patients [20] and a peak
serum concentration of 137.4 nM for ivermectin plus active metabolites after the ingestion
of ivermectin with a fatty meal at a dose of 200–350 µg/kg, which is in the range of standard
dosing, there would be about 126,000 molecules of ivermectin and active metabolites per
spike protein molecule in blood [4].

Two especially significant consequences of these predicted multiple bindings of iver-
mectin along the spike protein with binding affinities mostly less than −7.0 kcal/mol are,
first, that these could provide effective competitive binding for all variants of the virus
and, second, since multivalent bindings govern spike protein attachments to host cells, it is
noteworthy that competitive inhibitors of such multiple bindings having only moderate
binding affinities at individual viral binding sites can have strong inhibitory effects on total
attachment strength [139]. Binding affinities as computed <7.0 kcal/mol at five of 12 sites
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of CD147 further indicate the potential for ivermectin to limit glycan bindings to meshing
glycan binding sites on host cells, and also to limit inflammatory pathways mediated by
that receptor.

Previous studies using both chick and human cells have demonstrated that a micro-
molar concentration of ivermectin strongly potentiates the ACh-evoked current of the
α7nAChr receptor [89], as expressed on neuronal cells as well as on different airway cells,
such as bronchial epithelial cells and type II alveolar epithelial cells, endothelial cells and
cytokine secreting immune cells (i.e., macrophages, lymphocytes and mast cells) [140,141].
Importantly, α7nAChr is one of the main receptors under the control of the vagus nerve
used by the parasympathetic nervous system to regulate multiple physiological homeostatic
mechanisms commonly affected during SARS-CoV-2 infection, including the respiratory
rate, heartbeat, blood pressure, vessel tone, hormone secretion, intestinal peristalsis, diges-
tion and inflammation [142]. Our computational studies with ivermectin are consistent with
in vitro experimental results obtained with chick and human cells [89] and confirm high
affinity bindings to α7nAChr (i.e., Score of −10.636 kcal/mol, the highest of all the 15 test
compounds, and Score < −7.0 kcal/mol at 30 of 37 sites for all three states total). Moreover,
in agreement with previous reports [5,6], we were also able to demonstrate a potential direct
binding of the SARS-CoV-2 spike-1 protein to α7nAChr, suggesting that this ubiquitous
cholinergic receptor may represent an additional port of entry for SARS-CoV-2 into human
cells. Taken all together, our computational results demonstrating the high-affinity binding
of ivermectin to α7nAChr and a potential direct interaction of the cholinergic nicotinic
receptor with SARS-CoV-2 spike 1 on neurons, cytokine secreting cells and endothelial
cells, which might potentially explain multiple aspects of SARS-CoV-2 infection pathophys-
iology including but not limited to (a) the typical loss of smell and taste [94,95], (b) the
triggering of the life threatening cytokine storm through inactivation of the cholinergic
anti-inflammatory α7nAChr pathway on TNF/IL6/IL1 secreting macrophages [90–92]
and (c) the impairment of the endothelium dependent acetylcholine-induced vasodila-
tion caused by SARS-CoV-2 spike 1 infection of the lung vasculature [143]. Ivermectin
high-affinity binding may therefore potentially shield from infection α7nAChr-expressing
host cells while at the same time, through its allosteric agonistic function, potentiate the
activation of the cholinergic pathway and attenuate SARS-CoV-2-induced parasympathetic
dysregulation by restoring the function of these receptors.

5. Conclusions

In the present study, a computational investigation including molecular docking was
conducted to explore the potential bindings of ivermectin and 14 similar compounds to
three targets of interest (the spike, CD147 and α7nAChr) that are relevant for drug activity
against COVID-19. Strong or moderate affinity bindings were found for ivermectin to
multiple sites on the spike protein, CD147 and α7nAChr, which could provide effective
competitive bindings to all variants of the virus. According to our calculations, ivermectin
binds strongly to a glycosylation binding site (site 10: N61) of the spike protein S1-NTD in
the open position and to several other sites on S1 NTD and RBD. We also examined the
potential bindings of ivermectin to CD147. Ivermectin was found to bind to site 5, which
is located in domain A of the CD147 protein, and to other sites on CD147, indicating that
ivermectin might limit glycan bindings of SARS-CoV-2 at the host cell end as well.

Among all the targets, ivermectin has the highest affinity to the α7nAChr receptor.
Protein–protein docking results reveal a potential direct binding of the SARS-CoV-2 spike-1
protein to α7nAChr, suggesting that this ubiquitous cholinergic receptor may mediate
SARS-CoV-2 entry into cells, shedding light on multiple aspects of SARS-CoV-2 infection
pathophysiology (i.e., the loss of smell and taste, the cytokine storm and impairment
of the endothelium-dependent acetylcholine-induced vasodilation). In this context, the
high affinity of ivermectin and related compounds to α7nAChr may both prevent viral
entry and potentiate the activation of the cholinergic pathway and attenuate SARS-CoV-2-
induced parasympathetic dysregulation by restoring the function of these receptors. Our
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preliminary results warrant further in vitro and in vivo testing of the 15 test compounds,
in particular ivermectin, an available and safe drug, against SARS-CoV-2, with the hope of
containing the virus and limiting its morbidity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation10040051/s1, Figure S1: Binding sites of CD147
protein obtained from MOE (Site Finder); Figure S2: Binding sites of (A) desensitized, (B) activated
and (C) resting conformations of α7nAChr protein obtained from MOE (Site Finder); Figure S3:
Positive control docking of epibatidine of (PDB:7KOX) of the α7nAChr receptor; Figure S4: Decoy
compounds; Figure S5. Time-evolution of the RMSD of top-ranked inhibitors with respect to spike;
Figure S6. Time-evolution of the RMSD of top-ranked inhibitors with respect to the CD147 receptor;
Figure S7. Time-evolution of the RMSD of top-ranked inhibitors with respect to the α7nAChr receptor;
Figure S8. Ligand interaction plots of compounds selected for spike inhibition; Figure S9. Ligand
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Abbreviations

The following abbreviations are used in this manuscript:
α7nAChr alpha-7 nicotinic acetylcholine receptor
ACE2 angiotensin converting enzyme 2
ACh acetylcholine
BCov bovine coronavirus
CD147 cluster of differentiation 147 protein, encoded by the BSG gene
Co-IP co-immunoprecipitation
COVID-19 coronavirus disease 2019
ELISA enzyme-linked immunosorbent assay
GPU graphics processing unit
HE hemagglutinin esterase
HIV human immunodeficiency virus
IL-1 interleukin 1
IL-6 interleukin 6
MD molecular dynamics
MERS Middle East respiratory syndrome
MHV-4 mouse hepatitis virus 4, JHM strain
MOE Molecular Operating Environment
NAG N-acetyl-D-glucosamine
NTD N-terminal domain
PDB Protein Data Bank
PLB propensity for ligand binding
RBC red blood cell
RBD receptor binding domain
RCSB Research Collaboratory for Structural Bioinformatics
RCT randomized clinical trial
RMSD root mean square deviation
SA sialic acid
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SPR surface plasmon resonance
TNF tumor necrosis factor
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