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Magdiel Jiménez-Guarneros and Roberto Alejo-Eleuterio

A Class- Incremental Learning Method Based on Preserving the Learned Feature Space for
EEG-Based Emotion Recognition
Reprinted from: Mathematics 2022, 10, 598, doi:10.3390/math10040598 . . . . . . . . . . . . . . . . 126

Sur Singh Rawat, Saleh Alghamdi, Gyanendra Kumar, Youseef Alotaibi,

Osamah Ibrahim Khalaf and Lal Pratap Verma

Infrared Small Target Detection Based on Partial Sum Minimization and Total Variation
Reprinted from: Mathematics 2022, 10, 671, doi:10.3390/math10040671 . . . . . . . . . . . . . . . . 147

Syed Furqan Qadri, Linlin Shen, Mubashir Ahmad, Salman Qadri, Syeda Shamaila Zareen

and Muhammad Azeem Akbar

SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for
Vertebrae Segmentation
Reprinted from: Mathematics 2022, 10, 796, doi:10.3390/math10050796 . . . . . . . . . . . . . . . . 166

Valerio Varano, Stefano Gabriele, Franco Milicchio, Stefan Schlager, Ian Dryden

and Paolo Piras

Geodesics in the TPS Space
Reprinted from: Mathematics 2022, 10, 1562, doi:10.3390/math10091562 . . . . . . . . . . . . . . . 185

v



Sur Singh Rawat, Sukhendra Singh, Youseef Alotaibi, Saleh Alghamdi

and Gyanendra Kumar

Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and
Robust Principal Component Analysis
Reprinted from: Mathematics 2022, 10, 2829, doi:10.3390/math10162829 . . . . . . . . . . . . . . . 205

Mohammad AlElaiwi, Mugahed A. Al-antari, Hafiz Farooq Ahmad, Areeba Azhar,

Badar Almarri and Jamil Hussain

VPP: Visual Pollution Prediction Framework Based on a Deep Active Learning Approach Using
Public Road Images
Reprinted from: Mathematics 2023, 11, 186, doi:10.3390/math11010186 . . . . . . . . . . . . . . . . 227

Noor Ain Syazwani Mohd Ghani, Abdul Kadir Jumaat, Rozi Mahmud, Mohd Azdi Maasar,

Farizuwana Akma Zulkifle and Aisyah Mat Jasin

Breast Abnormality Boundary Extraction in Mammography Image Using Variational Level Set
and Self-Organizing Map (SOM)
Reprinted from: Mathematics 2023, 11, 976, doi:10.3390/math11040976 . . . . . . . . . . . . . . . . 253

Diego Teran-Pineda, Karl Thurnhofer-Hemsi and Enrique Dominguez

Analysis and Recognition of Human Gait Activity BASED on Multimodal Sensors
Reprinted from: Mathematics 2023, 11, 1538, doi:10.3390/math11061538 . . . . . . . . . . . . . . . 273

Shuangshuang Chen and Wei Guo

Auto-Encoders in Deep Learning—A Review with New Perspectives
Reprinted from: Mathematics 2023, 11, 1777, doi:10.3390/math11081777 . . . . . . . . . . . . . . . 290

vi



About the Editors

Ezequiel López-Rubio
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Abstract: Recently, with the development of computer technology, deep learning has expanded to
the field of art, which requires creativity, which is a unique ability of humans, and an understanding
of the human emotions expressed in art to process them as data. The field of art is integrating
with various industrial fields, among which artificial intelligence (AI) is being used in stage art, to
create visual images. As it is difficult for a computer to process emotions expressed in songs as data,
existing stage background images for song performances are human designed. Recently, research
has been conducted to enable AI to design stage background images on behalf of humans. However,
there is no research on reflecting emotions contained in song lyrics to stage background images.
This paper proposes a style transformation method to reflect emotions in stage background images.
First, multiple verses and choruses are derived from song lyrics, one at a time, and emotion words
included in each verse and chorus are extracted. Second, the probability distribution of the emotion
words is calculated for each verse and chorus, and the image with the most similar probability
distribution from an image dataset with emotion word tags in advance is selected for each verse and
chorus. Finally, for each verse and chorus, the stage background images with the transferred style
are outputted. Through an experiment, the similarity between the stage background and the image
transferred to the style of the image with similar emotion words probability distribution was 38%,
and the similarity between the stage background image and the image transferred to the style of
the image with completely different emotion word probability distribution was 8%. The proposed
method reduced the total variation loss of change from 1.0777 to 0.1597. The total variation loss is the
sum of content loss and style loss based on weights. This shows that the style transferred image is
close to edge information about the content of the input image, and the style is close to the target
style image.

Keywords: image style transformation; lyrics to image style; emotion; deep learning; style transfer

1. Introduction

Advances in computer technology have led to technological innovations such as
information revolution, big data processing, and active use of networks. These innovations
have increased interest in AI [1,2]. In recent years, AI has been researched in the field of art,
which requires creativity, an inherent ability of humans. The field of art has been integrated
with various industrial fields, such as AI, which is used in stage art in combination with
stage effects. When a singer dances and sings, the audience views the singer’s stage
performance in combination with stage effects. Stage effects determine the stage mood
using several important elements, such as lighting, music, acting, and stage background,
which visually convey emotions associated with the songs to the audience. Among stage
effects, stage background has been transitioning from the expression method of using
props to the expression method of media performance that uses images through large
light-emitting diode (LED) screens or projectors [3]. In general, background stage images
used in media performances are selected in advance by professional stage designers at

Mathematics 2021, 9, 1831. https://doi.org/10.3390/math9151831 https://www.mdpi.com/journal/mathematics
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the planning stage. Stage background images of the singing performance represent the
emotions expressed in song lyrics. It is difficult for computers to represent emotions that
humans have been manually designing for stage background images. Recently, research
was conducted to enable AI to design stage background images in place of humans. In
this approach, a stage background image recommendation system is used to automatically
compose stage background images according to dance styles without professional stage
designers. However, the limitation of the stage background images selected through
conventional recommendation systems is that the emotions to be represented in the song
lyrics are not reflected in the stage performance. It would be ideal to represent emotions
represented in song lyrics through stage background images during stage performances.
Research regarding the reflection of emotions contained in song lyrics in a stage background
are scarce; however, it is possible to use research that transforms background images
according to their meanings or purpose by synthesizing background images with text
or images containing the meaning to be represented. There is research that partially
transforms images using the content contained in text [4–6] and transfers the style such as
color, line, and texture of image to another image [7–11]. The existing stage background
image recommendation system recommends images for dancers, but this does not include
the characteristics of the song lyrics.

This paper proposes a method to transform the multiple styles of stage background
images based on the emotion words contained in each verse and chorus of song lyrics. First,
the lyrics selected by the user are divided into sentences. Multiple verses and choruses
are derived from the lyrics, one at a time and compared to the emotion word dictionary
to extract emotion words included in each verse and chorus. Second, the probability
distributions of the emotion words are calculated for each verse and chorus and the image
with the most similar probability distribution from the image dataset with the emotion
word tags in advance is selected for each verse and chorus. Finally, for each verse and
chorus, the stage background images with the transferred style are outputted for each verse
and chorus. The advantages of the proposed method are as follows.

• It uses emotion words contained in song lyrics to transform the style of stage background
images. Audience immersion can be increased by using stage background images to
represent emotions expressed in the song lyrics used for singing in stage performances.
Emotions that are complex to represent using computers can be represented.

• Certain emotions that are difficult for humans to determine intuitively can be repre-
sented because the proposed method can transform the style of images based on an
image with a high correlation with the emotion represented using lyrics.

The remainder of this paper is organized as follows. Section 2 introduces the stage
background recommendation system, methods of extracting the visual features of emotion
words, and image style transformation methods reported in related work, and examines
their limitations and technical constraints. Section 3 describes the method proposed to
derive emotion words contained in the verses and choruses of song lyrics to reflect the
emotions in stage background images and apply the style that is directly related to the
derived emotion words to the stage background images. Section 4 verifies whether the
stage background images are transformed according to the probability distribution of
emotion words represented for each verse and chorus. Section 5 summarizes the findings
and describes the limitations of this research and future research directions.

2. Related Work

In this section, we introduce the existing stage background recommendation system,
methods of extracting the visual features of emotion words and image style transforma-
tion methods. Song lyric-based style transformation methods are compared, and their
limitations and technical constraints are examined.

2
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2.1. Stage Background Image Recommendation System

A stage background image recommendation system recommends stage background
images by reflecting the dancer’s preferences and dance styles such as ballet, belly dance,
street dance, modern dance, tango, and waltz [3]. Dancers choose familiar or favorite stage
background images. Therefore, the stage background images can be artistic images or
actual photographs that the dancers prefer. Reference [3] proposed a model that predicts
users’ preferred images through social media. The proposed model predicts the K number
of images that the dancer (user) is most likely to use as stage background images via
three procedures. First, the features of the images shared by the dancer on social media
(Pinterest) are extracted. Second, the profile of the dancer is learned based on the features
of the shared images. Third, the interest level of the dancer in each candidate image is
predicted, and the candidate images are ranked according to the dancer’s predicted interest
level. However, because only dances are reflected, the stage background images from
the stage background recommendation system cannot represent the emotions that a stage
performance aims to express through lyrics.

2.2. Emotion Classification

To express emotions using images that are difficult to process using computers, re-
search was conducted recently to improve the accuracy of the sentimental understanding
of human emotions [12–18].

Human emotions are visualized and used in psychotherapy, image search, etc. In
general, models for representing emotions are divided into two types: categorical emotion
states (CES) models, which classify emotions into several basic categories such as fear,
amusement, and sadness, and dimensional emotion space (DES) models, which use three-
dimensional emotion space such as arousal, time, and harmony. As it is difficult to
construct a multidimensional emotion space using information about time included in
song lyrics, we used the CES method to consider images as a basic category of emotions.
The CES method is easy for users to understand and convenient for emotion classification
of images. The research in [12] used the CES method to extract principles-of-art-based
emotion features (PAEF) to classify features of emotions included in images to understand
the relationship between artistic principles and emotions. PAEF are a combination of
representation features derived from the principles of balance, emphasis, harmony, variety,
gradation, and movement. PAEF are used to classify the basic emotion words evoked in
humans through images. A psychological research classified common basic emotion words
into eight categories based on images through facial electromyography, heart rate, finger
temperature, etc. That is, emotions contained in images are classified into eight categories,
which define anger, disgust, fear and sadness as negative emotions and amusement,
awe, contentment, and excitement as positive emotions [13]. These are called images of
emotional levels, whereby an image of emotional level refers to the relationship between the
style, such as color, saturation, brightness, and contrast, and the emotional effect derived
from art theory [17]. The level of basic emotion words defined in the eight categories is
classified for images. To evaluate this, the participants looked at the images, selected the
most appropriate basic emotion category, and evaluated the emotional labels of the images.
However, because it is not possible to visualize the features of images classified with the
level of basic emotion words, there is no way of knowing the images that are appropriate
for the stage background. Therefore, it is necessary to derive a method of visualizing the
features of each basic emotion to find its relationship with the song lyrics and reflect them
in the stage background images.

2.3. Style Transfer

Style is transferred to reflect the features of each basic emotion word in the stage
background images. Usually, style transfer is used to transfer the image style. Style transfer
consists of content image and style image. Content image refers to an image that has
information such as an object or a common landscape that people can usually recognize,

3
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and style image refers to an image that has information such as color or texture that will be
combined with the content image. Style transfer transfers the style based on a convolutional
neural network (CNN) [10,11] and a generative adversarial network (GAN) [5–7]. Style
transfer based on the CNN model extracts features by separating content and style in an
image. Training is performed to extract content features from deep layers and extract style
features from middle layers through the CNN model. The GAN model is used to change
the content in detail, but in this research, the CNN model is used because it changes the
overall image style.

2.4. Comparison of Methods for Image Style Transformation

Table 1 presents the difference between the existing methods of transforming image
style and the proposed method. The research in Zhao et al. [12] investigates the concept
of the principle of art and its effect on emotion and classifies emotion images into eight
basic emotion words. However, because many images are classified for each basic emotion
word, it is difficult to find an appropriate image for the stage background image.

Table 1. Comparison of the proposed method and image synthesis methods.

Zhao et al. [12] Machajdik et al. [13] Zhao et al. [17] The Proposed Method

Training data IAPS, Art photo,
Abstract painting

IAPS, Art photo,
abstract painting

User’s metadata, IAPS,
Abstract painting, Flickr Song lyrics, Flickr

Encoding Image-based Image-based User’s metadata-based One-hot encoding,
Texture-based

Model SVM Waterfall segmentation
algorithm

Multi-Task Hypergraph
learning CNN

3. Method of Transferring Image Style Based on Song Lyrics

This section presents the proposed method to transfer stage background images using
the emotion words contained in song lyrics. The proposed method consists of the lyrics
preprocessing stage, which extracts the probability distribution of emotion words for each
verse and chorus from selected lyrics and the emotion image processing stage, which
transfers the styles of each verse and chorus images related to the extracted probability
distribution of emotion words. The proposed method transfers the stage background image
using styles of images related to emotion words extracted from each verse and chorus. The
number of images with representative emotion image styles applied is equal to the sum of
the number of verses and choruses from selected lyrics.

3.1. Overview

Figure 1 is the overview of the proposed method. The proposed method is composed
of the lyrics preprocessing stage and the emotion image processing stage. Table 2 is the
description of all stages. In the lyrics preprocessing stage, the selected lyrics by a user
are extracted into verses and choruses, and the probability distribution of emotion words
contained in each verse and chorus is extracted separately. In the emotion image processing
stage, the emotion images with tags, where the tags are matched to the corresponding
emotion images in advance, are selected from the extracted emotion words of each verse
and chorus and the stage background image is transferred to the different styles of the
selected emotion image according to each verse and chorus.

Table 2. Process for transforming stage background image style based on song lyrics.

Stage Description

Lyric preprocessing User’s selected lyrics are divided into verses and choruses, and a probability distribution of
emotion words is extracted for each verse and chorus.

Emotion image processing From emotion images with tags, the appropriate images are selected for each verse and
chorus, and styles of selected images transferred to stage background image.

4
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Figure 1. Process of applying emotions of song lyrics to stage background images.

3.2. Step 1: Lyric Preprocessing

The lyric preprocessing step is composed of a sentence divider, verse/chorus extractor
and the basic emotion words for the emotion word extractor. The sentence divider divides
the lyrics into sentences. The verse/chorus extractor extracts the selected lyrics into
verses and choruses. The basic emotion words for the emotion word extractor extracts the
probability distribution of emotion words contained in each verse and chorus. Figure 2 is
an overview of step 1.

Figure 2. Step 1: Lyric preprocessing.
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The sentence divider divides the lyrics into a set of sentences considering capital
letters. The set of sentences in the lyrics is defined as the unprocessed set LU

i . All sentences
in LU

i are processed as a set LT
i , which is classified as verses and choruses through the

classification process. This is repeated until there are no sentences left in LU
i and all

sentences in LT
i are processed.

The verse/chorus extractor executes the following processes. The user’s selected lyrics
consist of n verses and m choruses. The ith sentence inputted in LT

i is compared to the sen-
tences in LU

i , and the frequency is repeatedly checked. The set of sentences with no repeti-

tion in the lyrics as verse LVn =
[[

lV1
1 , lV1

2 , .. , lV1
i

]
,
[
lV2
1 , lV2

2 , .. , lV2
i

]
, ..,

[
lVn
1 , lVn

2 , .. , lVn
i

]]
and the set of sentences that are repeated in the lyrics are classified as chorus
LCn =

[[
lC1
1 , lC1

2 , .. , lC1
i

]
,
[
lC2
1 , lC2

2 , .. , lC2
i

]
, ..,

[
lCm
1 , lCm

2 , .. , lCm
i

]]
.

The basic emotion words for probability distribution of the emotion word extractor
compares the LVn , LCm with an Emolex (Emotion Dictionary) [19] and finds the matching
emotion words. The Emolex consists of a total of 14,182 words classified into the basic
emotion words, as shown in Figure 3, and information on whether they are positive
emotion or negative emotion is also included. All basic emotion words are expressed
by eight emotions, categorized into the positive emotions of anticipation, joy, surprise
and trust, and the negative emotions of anger, disgust, fear and sadness, as proposed by
Plutchik [20] to provide a high-dimensional emotion lexicon [19]. The extracted emotion
words in each verse and chorus are replaced with the classified basic emotion words. Each
basic emotion word is counted by the corresponding numbers, the number of anticipation
b1, that of joy b2, that of trust b3, that of surprise b4, that of anger b5, that of fear b6, that of
sadness b7, and that of disgust b8. The probability distribution of the basic emotion words is
calculated. The set that counts the number of eight basic emotion words contained in LT

i is
defined as B. The number of eight basic emotion words included in the nth verse from LVn

is stored in BVn =
[[

bV1
1 , bV1

2 , . . . , bV1
8

]
,
[
bV2

1 , bV2
2 , . . . , bV2

8

]
, . . . ,

[
bVn

1 , bVn
2 , . . . , bVn

8

]]
and

the number of eight basic emotion words included in the mth chorus from LCm is stored in
BCm =

[[
bC1

1 , bC1
2 , .. , bC1

8

]
,
[
bC2

1 , bC2
2 , .. , bC2

8

]
, ..,

[
bCm

1 , bCm
2 , . . . , bCm

8

]]
. The probability

distributions of the basic emotion words included in verses and choruses are defined as
UV = so f tmax

(
BVn

)
, UC = so f tmax

(
BCm

)
, and calculated as Equation (1).

UV = So f tmax
(

BVn
)
=

ebVn
i

∑8
j=1 ebVn

j

, i ∈ (1, 2, . . . , 8)UC = So f tmax
(

BCm
)
=

ebCm
i

∑8
j=1 ebCm

j

, i ∈ (1, 2, . . . , 8) (1)

Figure 3. Classification of the emotion lexicon.
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3.3. Step 2: Emotion Image Processing

The emotion image processing step is composed of a representative emotion images
selector and representative emotion images style transfer. The representative emotion
images selector searches and selects images with a probability distribution similar to the
UV , UC of the emotion images with tags. The representative emotion images style transfer
transfers stage background images into the styles of the selected emotion images with tags.
Figure 4 shows an overview of step 2.

Figure 4. Step 2: Emotion image processing.

The representative emotion images selector selects emotion images with tags similar
to probability distributions UV , UC contained in each verse and chorus in the lyric prepro-
cessing step. In total, 1000 emotion images with tags were downloaded from Flickr and
defined as Ii. PIi is defined as a set that counts the number of eight basic emotion words
contained in Ii. PIi is the set of the number of basic emotion words in which the ith image
was classified through peer evaluation. The probability distribution of the basic emotion
words included in the ith image is Yi and is calculated as Equation (2).

Yi = so f tmax
(

PIi
)
=

eb
Ii
k

∑8
u=1 ebu

, k ∈ (1, 2, . . . , 8) (2)

Finally, to select the emotion images with tags associated with the user’s selected lyrics,
the representative emotion images selector finds Ŷi, which has a probability distribution
that is most similar to that of U, included in UV , UC. The index i of Ŷi where the difference
in the probability distribution is the minimum, as defined in Equation (3).

î = argmin
i
(U − Vi)

2, i ∈ (1, 2, . . . , 1000) (3)

The representative emotion images style transfer transfers the styles of (n + m) emo-
tion images with tags derived from the representative emotion images selector through a
CNN model-based style transfer algorithm to the stage background image. Style is features
such as color, saturation, brightness, contrast, stroke, and texture. Figure 5 shows the
method of outputting an image with a transferred style through a CNN that extracts the
image features of content related to the stage background image and a CNN that extracts

7
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the features of style from emotion images with tags. The CNN model normalized the
weight of the network using the VGG-16 network, and average pooling was used instead
of max pooling. Style characteristics are based on the Gram matrix, ignoring spatial in-
formation, and extracting features such as texture and color. Since the correlation of the
feature maps of multiple layers, not a single layer, is viewed at the same time, static infor-
mation, not layout information that the image has globally, is obtained in consideration of
multiple scales.

Figure 5. Representative emotion image style transfer process.

Style transfer [9–11] is applied to the representative emotion images style transfer as
shown below. There are three types of input images: Stage background image related to the
selected lyrics is defined as content image IC, Ii selected from the representative emotion
images selector is defined as style image IS, and noise image is defined as noise image
IN . A noise image is a random variation of brightness or color information in images.
This paper synthesizes content of IC and style of IS on IN . The CNN model is composed
of a total of five blocks, B1, .. ,5 and one block B consists of two convolution layers and
one pooling layer. After going through one block, each content feature and style feature
are extracted. When the input is IC, the output from the second block is defined as the
content features, and when the input is IS, the output at each block is defined as the style
features. Content features should have location information of objects included in ICand
edge information of the object, and the style feature is the correlation of feature maps. The
content features of IC and the style features of IS jointly minimize the distance from the

8
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features of IN . Content loss Lc is calculated by comparing the content of features of IC

with IN as in Equation (4).

LC =
(

B2

(
IN

)
− B2

(
IC

))2
(4)

IC is feed forward through the network. Style loss LS, is calculated by comparing the
style features of IS with IN as in Equation (5).

LS =
5

∑
n=1

(
Bn

(
IN

)
− Bn

(
IS
))2

(5)

The pixel-level information disappears as the layer deepens, but the semantic infor-
mation of IC remains the same. Style features should be independent of spatial features.
Low-level convolution layers represent low-level features such as edges. This feature
maintains a higher resolution. The deeper the layer, the more difficult it is to visualize and
interpret features such as edges because they are not directly connected to IC. High-level
convolution layers capture semantic and less granular spatial information. Style features
can get information that considers multiple magnifications of the image globally. However,
artifacts occur while transferring IC into styles. This implies that IN , which is output
through the model, loses content information, including the edge information of the objects
in IC. The deformed error value of the image should be minimized with the transferred
style. Edge information of IC is recovered through the sobel edge detector [21]. The sobel
edge detector is used to reduce the generation of artifacts without losing content features,
and then α, β is calculated. α controls the preservation of the content image, and β controls
the preservation of the style image. It detects the content features of IC, making the content
features of IT even stronger. The content feature difference between IC and IT is defined as
LV and optimization is performed. In 2D images, sobel edge detection is performed in two
directions, vertical and horizontal. The total variation loss LT is calculated based on α, β,
LC, LS as in Equation (6). The noise image IN is updated through back propagation based
on the total variation loss LT .

LT = αLC + βLS (6)

Optimization proceeds with the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm [22] to find the minimum of LT .

4. Experiments

The probability distribution accuracy verification experiment and the style variation
quality verification experiment were performed. It is important that the style of the stage
background image is well transformed according to the distribution of emotion words
included in the lyrics. This paper verified whether the styles of the stage background image
change according to the probability distribution of emotion words included in each verse
and chorus and verified the CNN-based style transfer performance.

4.1. Dataset and Experimental Environment

The datasets used to verify the proposed method are the NRC Word-Emotion Associa-
tion Lexicon (Emolex) and images from Unsplash. The Emolex dataset is a list of English
words and their associations with eight basic emotion words (anger, fear, anticipation, trust,
surprise, sadness, joy, and disgust) and two sentiments (negative and positive). The anno-
tations were performed manually. It includes 6475 English words, and 281 English words
were used in the experiment. Table 3 presents the number and distribution of emotion
words for each English word to facilitate the use of the Emolex dataset in this experiment.
Unsplash is a high-quality open-access image dataset that can be used for further research
on machine learning, image quality and search engines. We downloaded 1000 abstract
images from Unsplash, and seven colleagues classified them into anger, disgust, fear, sad-
ness, amusement, awe, content, and excitement. Table 3 presents the classified results.

9
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Amusement is a compound emotion of anger and joy, awe is of fear and surprise, content
is of joy and trust and excitement is of surprise and joy. The user’s selected lyrics used in
the experiment was “Forgotten heroes” as shown in Figure 6. The Figure 6 is input to the
experiment. The experiments included Windows 10, Intel i7–7700, Nvidia Titan RTX 24 GB
graphics card and DDR4 40 GB RAM. The proposed system was developed using Python,
and the CNN model was implemented using a deep learning library called Tensorflow.

Table 3. Emotion words distribution of Emolex.

Anger Disgust Fear Sadness AnticipationJoy Surprise Trust

Quantity 3428
(16%)

3414
(15%)

3572
(17%)

3449
(15%)

2312
(6%)

2325
(10%)

2625
(10%)

2692
(11%)

Figure 6. User’s selected lyrics.

4.2. Experiment Results

Figure 7 shows the result of extracting verses and choruses from Figure 6 using the
verse/chorus extractor. Figure 6 consists of 44 sentences, and each word in each sentence
was compared to all the words in entire sentence. A total of 12 consecutive sentences that
were repeated twice were extracted as chorus and 20 non-repeated sentences were extracted
as verses. Since 44 sentences should be compared with emotion words, the sentences are
split into multiple words.

Using the basic emotion words for probability distribution of the emotion word
extractor, we compared the emotion words in the lyrics to those in Emolex, as shown in
Figure 8. When the words matched, the words in the lyrics were replaced with the basic
emotion words. As shown in Figure 8, a total of seven emotion words (alarm, watch,
youth, lately, pill, different, and show) were matched in Verse 1; a total of eight emotion
words (build, right, stand, couch, hero, old, forgot and bold) in the chorus; a total of five
emotion words (hero, old, smile, fade and visit) in Verse 2; and a total of two emotion
words (know and hope) in Verse 3. The emotion words were matched a total of 199 times
in the song lyrics including duplicates, and the searched emotion words were replaced
with the Emolex-based basic emotion words. The probability distributions of the emotion
words extractor count the total number of replaced basic emotion words and calculate the
probability distribution of each basic emotion word for each verse and chorus.

10
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Figure 7. Verse/chorus extractor.
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Figure 8. The basic emotion words for probability distribution emotion word extractor input/output.

The representative emotion image selector compares the similarity with the probability
distributions of emotion words extracted through step 1 and probability distributions of
the emotion images tags and selects the images for each verse and chorus, as shown in
Figure 9. The probability distribution that is similar to the corresponding probability
distribution is searched in the dataset of emotion images with tags. Verse 1 has the most
similar probability distribution to the probability distribution of (A) and Chorus 1 has the
most similar probability distribution to the probability distribution of (B).
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Figure 9. Representative emotion images selector input/output.

However, the disadvantage of this style transfer method is that many high-frequency
artifacts occur. The sobel edge detector extracts the edge features of content in the horizontal
and the vertical directions because the image is 2 dimension, and edge features of content
strengthen. In Figure 10a,b, the edge features of the content are extracted, and it maintains
the content edge information well. Figure 10c,d show the high-frequency composition
of the image to which the style is applied, but the content edge information is lost as
the style is transferred. Figure 11a,b maintain the content feature even when the style
is transferred by strengthening the edge feature through the sobel edge detector. As a
result, representative emotion image style transfer was output as Table 4, optimization
was performed by minimizing style loss and content loss. Figure 12 shows that the total
variation loss is minimized from 1.0777 to 0.1597.
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Figure 10. Results of losing content features problem.

Figure 11. Results of preserving the content features from sobel edge detector.
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Table 4. Comparison of edges.

Verse 1 Chorus 1

Anticip: 0.2
Fear: 0.067

Joy: 0.2
Sadness: 0.133
Surprise: 0.2

Trust: 0.2

Anticip: 0.077
Fear: 0.154
Joy: 0.231

Sadness: 0.077
Surprise: 0.231

Trust: 0.154

Figure 12. Total variation loss.

Table 5 shows the result of comparing the histogram distributions using compareHist
function. The styles of images (a), (b) with similar probability distributions of emotion
words and an image (c) with a different probability distribution of emotion words were
transferred to the stage background image, and the similarity of the images was compared.
When the distributions of the pixels of images are similar, the similarity of the images is
high, and vice versa. The similarity of images is compared using the compareHist function.
The compareHist function allows comparison of image features such as image contrast,
color distribution and brightness. (a), (b) and (c) images are compared with the target
image for similarity comparison. HISTCMP_CORREL (correlation) [23] is a correlation
expressed by calculating pixels having the same value and is calculated as in Equation (7).
The closer the value is to 1, the more similar the images are. H is a histogram, and N is the
total number of histogram bins.

d(H1, H2) =
∑J

(
H1(J)− H1

)(
H2(J)− H2

)√
∑J

(
H1(J)− H1

)2
√

∑J
(

H2(J)− H2
)2

where, Hk =
1
N ∑

T
Hk(T) (7)
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Table 5. Result of histogram comparison using compareHist function.

Target image Image with a similar
distribution (a)

Image with a similar
distribution (b)

Image with a different
distribution (c)

Emotion probability
distribution

Amusement: 0.14
Awe: 0.14

Content: 0.29
Excitement: 0.29

Sad: 0.14

Amusement: 0.14
Awe: 0.29

Content: 0.29
Excitement: 0.14

Sad: 0.14

Amusement: 0.29
Awe: 0.14

Content: 0.29
Excitement: 0.29

Anger: 1.00

HISTCMP_CORREL 1.00 0.12 0.22 0.1

HISTCMP_CHISQR 0.00 7665.83 7443.83 17,372.30

HISTCMP_INTERSECT 1.00 0.38 0.28 0.05

HISTCMP_BHATTACHARYYA 0.00 0.62 0.62 0.92

HISTCMP_CHISQR (Chi-squared distribution) [23] is the distribution of the spread of
pixel values. It is calculated as in Equation (8) and the closer it is to 0, the more similar the
images are.

d(H1, H2) = ∑
J

(H1(J)− H2(J))2

H1(J)
(8)

HISTCMP_INTERSECT (intersection) [23] computes the similarity of two discrete
probability distributions, as in Equation (9), using the possible values of the intersection
between 0 and 1. The closer to 1, the more similar the images are.

d(H1, H2) = ∑
J

min(H1(J), H2(J)) (9)

HISTCMP_BHATTACHARYYA [24] calculates the degree of overlap of two probability
distributions as in Equation (10). The closer to 0, the more similar images are.

d(H1, H2) =

√
1 − 1√

H1H2N2 ∑
J

√
H1(J)·H2(J) (10)

Table 6 shows histogram graph according to RGB distribution, hue, and value. The
horizontal axis of the graph represents the change in color tone from 0 to 255, with the
left side representing the dark area and the right side representing the bright area. The
vertical axis of the graph represents the size of the area captured in each horizontal area,
that is, the total number of pixels. This is the number of pixels in an image over a range of
256 pixel values.
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Table 6. Results of histogram graph according to RGB distribution, hue, and value.

Target image Image with a similar distribution (a)

Image with a similar distribution (b) Image with a different distribution (c)

Table 7 shows the results of inputting various lyrics. By inputting the song lyrics of
“Meant to be this way”, “Sax is my cardio” and “Heart of lion (Leo)”, the stage background
images were transformed according to the proposed method for each verse and chorus.
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Table 7. Results of inputting various lyrics.

Lyrics Verse 1 Chorus Verse 2

Forgotten hero

Meant to be this
way

Sax is my
cardio

Heart of a lion
(Leo)

Verse 1 Chorus Verse 2 Verse 3

The song lyrics “Meant to be this way” is consisted of two verses and two choruses,
and a total of 12 emotion words were extracted. In this song’s lyrics, 4 emotion words out
of 14 sentences in verse, 5 emotion words out of 14 sentences in chorus, and 3 emotion
words out of 14 sentences in verse 2 were extracted. The song lyrics to “Sax is my cardio”
is consisted of two verses and two choruses, 28 emotion words were extracted. In this
song’s lyrics, 14 emotion words out of 12 sentences in verse 1, 7 emotion words out of
8 sentences in chorus, and 7 emotion words out of 12 sentences were extracted in verse
2. The song lyrics “Heart of a lion (Leo)” is consisted of three verses and two choruses,
and a total of 32 emotion words were extracted. In this song’s lyrics, 5 emotion words
out of 8 sentences in verse 1, 10 emotion words out of 13 sentences in chorus, 3 emotion
words out of 8 sentences in verse 2 and 9 emotion words out of 8 sentences in verse 3
were extracted. The styles were transferred by selecting the images with the most similar
probability distributions for each verse and chorus through the emotion words extracted
from each song lyrics. We confirmed through the results in Table 7 that the styles are well
transformed even from complex stage background images.

5. Conclusions

This paper proposed a method to transfer stage background images into styles based
on the emotion words contained in each verse and chorus from lyrics selected by a user.
First, multiple verses and choruses were derived from the lyrics, one at a time, and
compared with the emotion word dictionary to extract the emotion words included in each
verse and chorus. Next, the image with the most similar probability distribution to the
corresponding probability distribution was selected based on the probability distribution
of emotion words included in the lyrics, and the styles were transferred to the stage
background image for each verse and chorus. In the experiment, the performance of the
style transfer was verified, and the probability distribution of the emotion words in the
transformed stage background image was verified as similar to the probability distributions
of the song lyrics. Experimental results showed that the proposed method reduced total

18



Mathematics 2021, 9, 1831

variation loss from 1.0777 to 0.1597. This result shows that the style transferred image is
close to edge information about the content of the input image, and the style is close to
the target style image. In addition, stage background image and images of transferred
styles with similar emotion words probability distributions were 38% similar, and stage
background image and image of transferred styles with completely different probability
distributions were 8% similar.

Due to the limitations of lexicon-based approaches, several aspects related to the
design of relevant emotion analysis models need to design a model in future works. The
input of the models that extract emotions by considering full sentences is sentence, but the
lyrics do not follow the complete sentence structure. It is difficult to use each structure as
an input to the previous models. In the case of a full sentence, there is a limit to the accuracy
because there is uncertainty of specifying all emotions corresponding to the words of each
sentence. Therefore, in this paper, limited emotion words were selected and utilized.
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Abstract: Object segmentation is a widely studied topic in digital image processing, as to it can be
used for countless applications in several fields. This process is traditionally achieved by computing
an optimal threshold from the image intensity histogram. Several algorithms have been proposed
to find this threshold based on different statistical principles. However, the results generated via
these algorithms contradict one another due to the many variables that can disturb an image. An
accepted strategy to achieve the optimal histogram threshold, to distinguish between the object
and the background, is to estimate two data distributions and find their intersection. This work
proposes a strategy based on the Cuckoo Search Algorithm (CSA) and the Generalized Gaussian
(GG) distribution to assess the optimal threshold. To test this methodology, we carried out several
experiments in synthetic and practical scenarios and compared our results against other well-known
algorithms from the literature. These practical cases comprise a medical image database and our
own generated database. The results in a simulated environment show an evident advantage of
the proposed strategy against other algorithms. In a real environment, this ranks among the best
algorithms, making it a reliable alternative.

Keywords: image segmentation; thresholding; cuckoo search; generalized Gaussian distribution

1. Introduction

Despite considerable advances in computer vision, object detection is still an active
topic of study [1–4]. This process is used in many fields, such as biomedical imaging,
biometry, video surveillance, vehicle navigation, visual inspection, robot navigation, and
remote sensing [1–5], to mention a few. Object identification has been considered an
essential task and one of the biggest challenges in image processing [1–3,6–8]. Several
object recognition problems are solved utilizing digital image processing techniques, where
segmentation methods are essential procedures [9–14]. Hence, optimal image segmentation
is a crucial step in image preconditioning for further analysis because it precedes processing
stages such as object extraction, parameter measurement, and object recognition [9,15].
Specifically, the thresholding methods are the most widely utilized in image segmentation
due to their simplicity and effectiveness [9,11,15–17]. In layman’s terms, these methods
aim to separate the image foreground from its background by finding a limit or threshold
in the image histogram. The challenge is, therefore, finding such a limit.

Many works in the literature have proposed a colorful palette of procedures and
metrics to tackle such a challenge [9,10,18,19]. One of the most relevant, which is also con-
sidered a traditional technique, is the Otsu algorithm that aims to maximize the difference
between the pixels belonging to the left and right sides of the threshold [20]. Other strate-
gies that are worth mentioning are the Minimum Error method [21] and the Maximum
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Entropy algorithm [22–24]. As usual, in the healthy development of computer science
procedures, these techniques have disadvantages, so improved versions have appeared.
For example, those that enhance the Otsu algorithm performance include e.g., the Valley
Emphasis [17,25], Fan-Lei [26] and Xing-Yang methods [27]. These algorithms are suitable
when the gray level histogram exhibits an evident bimodal behavior, and the optimal
threshold is located at the valley bottom [28]. However, in several image processing works,
the thresholds given by different algorithms are considered inaccurate. This is mostly due
to the histogram distributions, which represent the background and object, and are not
normal or seem to be quasi-unimodal functions [17,25–27,29,30].

To solve this inconvenience, an accepted methodology to discriminate the background
and object is to estimate the data distributions and compute their intersection [31–34].
These works present a parametric image histogram threshold method based on an approx-
imation f the statistical parameters of the object and background classes via estimation
methods, such as Expectation-Maximization (EM), Particle Swarm Optimization (PSO),
and Maximize Likelihood (ML). Even some improvements in these methods were proposed
as in [35]. However, these algorithms have some disadvantages, such as slow or premature
convergence and high sensibility in terms of the initial conditions. Additionally, these
works omitted the near-unimodal histogram testing, which is a challenging task.

This work proposes a threshold algorithm based on a mixture of General Gaussian
Distribution (GGD) functions to fit the image histogram. To do this, we implement the
Cuckoo Search Algorithm (CSA) as a solver to assess the distribution parameters’ opti-
mal configuration. We carried out several experiments to prove the benefits of using the
proposed methodology, and compared the results with those obtained with other thresh-
olding methods from the literature. Furthermore, we implemented the methodology in
two practical segmentation problems in a publicly available medical images database and
our collection of organic and inorganic products.

The rest of this manuscript is organized as follows. We begin with a brief description
of image segmentation and an introduction to the basic concepts employed in this work in
Section 2. Section 3 describes the proposed methodology based on the GG function and the
metaheuristic solver CSA. The experimental details are explained in Section 4. Subsequently,
Section 5 presents and discusses the experiment and the obtained results. Then, Section 6
highlights the most relevant conclusions obtained from the experiments and comments on
future work.

2. Theoretical Foundations

This section starts by describing the image segmentation process; then, it overviews the most
common thresholding methods, such as the Otsu, Maximum Entropy, and Kittler–Illingworth.

2.1. Image Segmentation

Image segmentation is the process of partitioning a digital image into multiple parts,
which are pixel sets, known as image objects [11]. The goal is to represent an image as
something more meaningful and straightforward to analyze [9]. For that reason, many
researchers define image segmentation as the process of labeling every image pixel accord-
ing to certain characteristics [9,16]. Several general-purpose image segmentation methods
have been developed; the simplest ones are the thresholding strategies [9,11,15,16]. The
histogram techniques are incredibly efficient compared to other image segmentation meth-
ods because they typically require only one sweep over the image pixels. In these routines,
a histogram is computed, employing the intensity values from all pixels, and its landscape
(peaks and valleys) serves to locate the possible clusters [17,25].

2.2. Thresholding Methods

These techniques are based on a threshold value to transform a gray-scale image
IIIg ∈ Z

M×N
G into a binary image IIIB ∈ Z

M×N
2 . The gray-scale image IIIg is defined with

elements (pixels) Ix,y, such as IIIg � Ix,y ∈ {0, . . . , G − 1}, where G is the number of distinct
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intensities of gray (256), and M × N is the size, given by the number of rows times the
number of columns. Some standard thresholding methods are described below.

2.2.1. Otsu Method

The Otsu method, proposed by Nobuyuki Otsu in 1979, is one of the best known and
most applied for image segmentation. This automatically selects the optimal threshold
by maximizing the between-class variance in the segmented image [20]. Consider the
gray-scale image IIIg and the occurrence probability p(g) : ZG �→ [0, 1] for a specific gray
level g in the image is determined as

p(g) =
ng

n
=

1
NM

M

∑
x=1

N

∑
y=1

δg,Ix,y , (1)

where δ{},{} is the well-known Kronecker delta, ng is the number of pixels with the same
gray level, and n is the total number of pixels in the image. These pixels are divided into
two classes, D0 and D1, based on a threshold t. Therefore, D0 and D1 consist of pixels with
levels between [0, t] and [t + 1, G − 1], respectively. The cumulative probabilities P0(t) and
P1(t) of D0 and D1, respectively, can be defined as follows,

P0(t) = Pr(D0) =
t

∑
g=0

p(g), (2)

P1(t) = Pr(D1) =
G−1

∑
g=t+1

p(g) = 1 − P0(t). (3)

In the same way, the mean levels μ0(t) and μ1(t) can be computed as

μ0(t) =
t

∑
g=0

g · p(g)
P0(t)

, (4)

μ1(t) =
G−1

∑
g=t+1

g · p(g)
P1(t)

. (5)

For both classes, minimizing the within-class variance is equivalent to maximizing
the between-class variance [18,20]. Accordingly, the between-class variance maximization
criterion is used, and is obtained with the following equation:

σ2
b (t) = P0(t)P1(t)(μ1(t)− μ0(t))

2. (6)

According to the Otsu method, this expression serves as a metric for evaluation of a given
threshold. Therefore, the optimal threshold t∗ guarantees the greatest distinction between
the two classes D0 and D1, t∗ maximizes σ2

b (t), as shown,

t∗ = argmax
0<t<G−1

{
σ2

b (t)
}

. (7)

In the simplest scenario, when a single threshold is required, the Otsu method has
an astonishing performance, with histograms of a bimodal distribution [17,18]. This is
chiefly because the method assumes that the object and background’s gray level presents a
Gaussian distribution with equal variances [17]. However, the threshold achieved with this
method is inaccurate when the histogram distribution shows unimodal or quasi-unimodal
distribution characteristics [11,17,18].

To implement the Otsu method, it is only necessary to sweep the different gray levels
and pick one that satisfies (7). Note that no optimization method is needed. Naturally, one
must take several additional conditions into account for practical cases, so the “brute-force”
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strategy may not be the best alternative. However, the Otsu method is incorporated in
almost all digital image processing software. One of the most popular methods is the
Matlab’s function, called graythresh, based on the Otsu method [20] used in this work.
Nonetheless, this function can use the histogram data or the image as input, with the latter
being the most used.

2.2.2. Maximum Entropy Method

The Maximum Entropy (MxE) method is a different and novel criterion function,
used to select an appropriate threshold. This alternative to searching an optimal threshold
was proposed using the Shannon’s entropy definition in [22–24]. According to their idea,
the histogram and the Probability Mass Function (PMF) of a gray-scale image IIIg can be
represented by h(g) and p(g), respectively, for g from 0 to G − 1. In several particular
applications, it is possible to define g between a narrower range, given by gmin ≤ g ≤ gmax.
However, if these extrema are not explicitly indicated, it is assumed that 0 ≤ g ≤ G − 1.
Thence, the cumulative probability function is defined as

P(g) =
G−1

∑
g=0

p(g), (8)

Assuming that p(g) is calculated from the histogram of the image h(g), normalizing
it by the total number of samples. In the context of image segmentation, ZM×N

f � IIIg ≤ t

and Z
M×N
b � IIIg > t, where f could represent the foreground and b the background or

vice-versa. Therefore, when an object appears to be brighter than the background, the set
of pixels with gray intensities greater than t would be defined as the foreground. Pf (g)
and Pb(g) are the probabilities of two distribution classes (D0 and D1), separated by a
threshold t, in the image histogram. Therefore, Pf (g) represents the foreground and Pb(g)
the background for the ranges 0 < g ≤ t and t + 1 ≤ g ≤ G − 1, respectively. Foreground
and background area probabilities are calculated as follows:

Pf (t) =
t

∑
g=1

p f (g), and Pb(t) =
G−1

∑
g=t+1

pb(g). (9)

Now, it is possible to calculate t based on the entropy for both the foreground and
background, such that:

Hf (t) = −
t

∑
g=1

p f (g) log p f (g), and Hb(t) = −
G−1

∑
g=t+1

pb(g) log pb(g). (10)

The total entropy H(t) for the image distribution p(g) is obtained by

H(t) = Hf (t) + Hb(t). (11)

The maximum H then corresponds to the optimal threshold value for the separation
between background and foreground, i.e.,

t∗ = argmax
0<t<G−1

{H(t)}. (12)

With this reference threshold and the histogram of the image h(g), the binarization
can be carried out to separate the object from the background.

2.2.3. Kittler-Illingworth Method

The Kittler–Illingworth method, founded on the mixture of distributions, corresponds
to a more realistic approach to practical image segmentation implementations. This is
the main reason that we selected it as the foundation of our proposed algorithm. The
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mixture comprises two Normal distributions with different means and variances, N (μ1, σ2
1 )

and N (μ2, σ2
2 ), and the proportions q1 and q2 [21]. Therefore, the mixture distribution

f (g) : ZG �→ [0, 1] described in the histogram takes the form

f (g) =
q1√
2πσ1

exp

(
− (g − μ1)

2

2σ2
1

)
+

q2√
2πσ2

exp

(
− (g − μ2)

2

2σ2
2

)
(13)

Consider a trial threshold t is given by a brightness level; then, two pixel populations
are modeled, such as p1(g) and p2(g). Similarly to the methods described above, the
brightness level g in p1(g) is less than or equal to the threshold t, whilst in p2(g), g
is greater than or equal to the threshold t. These two populations are modeled by the
Normal distributions N (μ1(t), σ2

1 (t)) and N (μ2(t), σ2
2 (t)). For the general case, when the

image has a brightness level of up to g, it is successively tested with different threshold
values. Therefore, by considering the histogram frequencies P(0), P(1), . . . , P(G − 1) for
the observed brightness values 0, 1, . . . , G − 1, a fitting criterion J(t) can be determined for
each value t, such as:

J(t) = 1 + 2
(

p1(t) log
σ1(t)
p1(t)

+ p2(t) log
σ2(t)
p2(t)

)
, (14)

since

p1(t) =
t

∑
g=0

P(g) and p2(t) =
G−1

∑
g=t+1

P(g). (15)

It is worth noting that the better the models fit the data, the smaller the criterion J(t).
Therefore, the optimal threshold value t∗ value minimizes the criterion function J(t) as

t∗ = argmin
0<t<G−1

{J(t)}. (16)

Therefore, solving the problem in (16), one can estimate the optimal threshold without
requiring additional solution methods.

3. Proposed Method

The proposed methodology employs two main procedures. The first one comprises the
fitting problem of a metamodel fm(�z; g) based on the Generalized Gaussian (GG) function
and the histogram data (�ge, �fe) from a gray image. This minimization problem is given by

�z∗ = argmin
�z∈ZD

∥∥∥�fe − �fm(�z;�ge)
∥∥∥2

2
, (17)

since�z stands the metamodel parameters. A metaheuristic solver such as the Cuckoo Search
Algorithm (CSA) is implemented to deal with such a problem. The second procedure
then utilizes the information from the optimal parameters�z∗ and the histogram data to
identify the threshold. Figure 1 illustrates the aforementioned proposed methodology.
The remainder of this section details the metamodel, the optimization algorithm, and the
threshold identification.
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Figure 1. Proposed method based on the Generalized Gaussian function as the metamodel and the
Cuckoo Search Algorithm as the optimizer.

3.1. Generalized Gaussian Function

The sum of Generalized Gaussian Distributions (GGDs) is proposed as a metamodel
according to [36]. The major feature of a GGD is its ability to approach several statistical
distributions by only varying a parameter α, such as the Impulsive (α → 0), sub-Laplacian
(α < 1), Laplacian (α = 1), Gaussian (α = 2), and uniform (α → ∞) ones. Given this
flexibility, we considered that GGDs are excellent candidates to describe the statistical
characteristics presented in an image histogram as a meta-distribution.

We assumed that the histogram for the background and object shows two principal
lobes (bimodal histogram); based on (13), it is proposed fm(g) : ZG �→ [0, 1] to approximate
two probability density functions, such as

fm(�z; g) = f1(�z; g) + f2(�z; g). (18)

In this distribution model, fk(�z; g) : ZG �→ [0, 1] is given by

fk(g) = Gk exp
(
−
∣∣∣∣ g − μk

σk

∣∣∣∣αk
)

, ∀ k ∈ {1, 2}, (19)

where g ∈ ZG, μk ∈ R, σk ∈ R+, and αk ∈ R+ are the intensity of the gray level, its mean,
scale, and shape, respectively. Moreover, �z is the parameter vector and Gk ∈ R+ is the
normalizing constant defined by

Gk =
αk

2σkΓ(1/αk)
, ∀ k ∈ {1, 2}. (20)

We consider G1 and G2 as two global constants to avoid the use of the Γ(·) function and
thus to reduce the computational complexity; i.e., they are specified in parameter vector
�z = (G1, μ1, σ1, α1, G2, μ2, σ2, α2)

ᵀ. Furthermore, we set a simple constraint to this model to
facilitate its analysis, such as μ1<μ2.

3.2. Cuckoo Search Algorithm

Cuckoo Search Algorithm (CSA) is a metaheuristic optimization method based on a
population, and Lévy flights [37]. CSA mimics the brood parasitism behavior of certain
cuckoo species, which hide their eggs inside alien nests. The general scientific community
has widely accepted this method in numerous variants and applications [38–40]. CSA can
be implemented to tackle a given minimization problem, such as

�z∗ = argmin
�z∈ZD

fobj(�z), (21)
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where�z∗ is the optimal solution and fobj(�z) is the objective function. For maximization
problems, such as those mentioned in Section 2.2, this objective function is just the negated
threshold metric.

In CSA, the population is defined as Zt = {�z1(t), . . . ,�zN(t)} ∈ Z, since i is the time
step, N is the number of agents, and D implies the dimensionality of the problem. Thus,
�zn(t) ∈ Z(t) is the n-th agent’s position in the feasible domain Z ⊆ RD at the step i. For
most problems, such a domain Z is defined as shown,

Z =
{
�z ∈ R

D :
(
∃�l,�u ∈ R

D
)[
�l � �z � �u

]}
(22)

since�l and �u are the lower and upper boundary vectors, respectively.
As first step, the population is initialized at random within the problem domain, i.e.,

Z0 � �z0
n � zd,n ∼ U (ld, ud) ∀ ld ∈�l, ud ∈ �u, and the fitness value for each agent is evaluated

such that f 0
n = fobj(�z0

n), ∀�z0
n ∈ Z0. Then, the initial best position�z0,∗ and its fitness value

f 0,∗ are found, �z0,∗ = argmin{ f (Z0)}, and the iteration counter is increased as i←i + 1.
CSA employs the Lévy flight and local random walk as its primary two search mechanisms,
which are applied iteratively until a convergence criterion, which was defined previously,
is met. Some examples of the criteria are the maximum number of steps i ≥ imax and the
best-fitness change tolerance f i,∗ − f i−1,∗ ≤ ε.

Thence, the Lévy flight for the n-th agent (�zi
n ∈ Zi) is given by

�zi
n = �zi

n + ζ�η � (�zi−1
n −�zi−1,∗), (23)

where ζ > 0 is the spatial step size, �η is a vector of i.i.d. random numbers obtained from
the Mantegna–Stanley’s algorithm [41] using the symmetric Lévy stable distribution, and
� is the Hadamard–Schur’s product.

Likewise, the second procedure, namely, local random walk, is defined as

�zi
n = �zi

n +�r � H(�r − p)� (�zi
q1

−�zi
q2
), (24)

where�r is a vector of i.i.d. random variables with U (0, 1), p ∈ [0, 1] is the probability of
change, and H : RD → ZD

2 is the element-wise Heaviside step function with H(0) = 1.
Indices q1 and q2 are mutually exclusive integers randomly selected from the population
range [1, N].

After applying each of these search mechanisms, all agents are evaluated in the
objective function, and only the new positions�zi

n better than the previous ones�zi−1
n are

preserved, i.e.,�zi
n = �zi−1

n if f i
n > f i−1

n , ∀ n ∈ {1, . . . , N}. Furthermore, once the local random
walk is performed and the population is updated, the best position�zi,∗ and its fitness value
f i,∗ are found as they were before with the initial population. Thus, the convergence criteria
are checked. If any are satisfied, the iterative procedure concludes. Otherwise, the step
counter is increased i = i + 1, and the search mechanisms are applied again.

3.3. Threshold Identification

The threshold identification procedure is somewhat similar to those described in
Section 2. The main differences are that instead of using the histogram data (ge, fe), we
evaluate a subset of gray-scale levels T ⊂ G over the fitted GGD model fm(�z∗; t). We stress
that we do not employ the direct histogram data but the fitted curves. Thus, his subset T is
obtained as follows

T = {g ∈ �ge : (�μ∗
1 + σ∗

1 /2� < g < �μ∗
2 − σ∗

2 /2�)[�μ∗
1 + σ∗

1 /2� < �μ∗
2 − σ∗

2 /2�]}, (25)

where μ∗
1, σ∗

1 , μ∗
2, and σ∗

2 are from the optimal parameter values�z∗ achieved in the optimiza-
tion procedure. The rounding operators �·� and �·� stand the floor and ceil, respectively.
This subset will be nonempty, at least in the context of the segmentation problem tackled
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in this work. Hence, the optimal threshold value using the proposed method is found
as shown

t∗ = argmin
t∈T

{ fm(�z∗; t)}. (26)

4. Methodology

We carried out a three-fold experiment procedure to study the proposed method
ThCSA and also to compare it against those methods described in Section 2.2. These
methods are Otsu, Matlab’s Otsu implementation (GrayThresh), Maximum Entropy (MxE),
Kittler–Illingworth (KI), and ThCSA. The graythresh method is omitted for simulated
comparison because it requires an image as input. We tested the methods using simulated
distributions in the preliminary experiment, which correspond to bimodal histograms
with the optimal threshold t∗r1 as a reference. The optimal threshold is obtained with
the intersection of two well-known distributions. In this work, the sum of distributions
was designated as a global histogram. For this experiment, the synthetic histogram was
considered as the sum of two distributions, not a histogram in the strict sense. Synthetic
histograms have constant parameters to simulate two distributions. Table 1 describes the
five cases that comprise this experiment. In the first experiment, we simulated a bimodal
histogram corresponding to an image with one object and a well-defined background with
two known thresholds.

Table 1. Simulated histograms utilized as study cases for the preliminary experiment. Parameters αk,
σk, and μk, ∀ k = {1, 2}, correspond to the distribution model in (19).

Simulation α1 α2 σ1 σ2 μ1 μ2

s01 1 1.62 30.61 43.60 58 183
s02 2 1.42 40.62 33.06 78 163
s03 2 1.71 46.17 48.12 56 187
s04 1 1.38 42.05 38.85 64 195
s05 2 0.97 32.58 33.81 68 175

The remainder experiments were performed following the procedure depicted in
Figure 2. First, the original image is read as an RGB image III ∈ Z

M×N×3
G and then trans-

formed to gray-scale IIIg ∈ Z
M×N
G . The gray-scale image serves to obtain the histogram

f (g), as commented in Section 2, except for the GrayThresh method, which utilizes the
image IIIg directly. Therefore, the thresholding methods are applied to achieve the binary
image IIIb1 ∈ Z

M×N
2 . Lastly, the object perimeter PIII is detected by locating the isolines of the

processed IIIb1 image. The general methodology is summarized in Pseudocode 1.

Figure 2. General diagram of image segmentation based on background and object.

The second set of experiments consisted of segmenting samples of melanoma images
collected from the PH2 Dermoscopic Image Database [42]. We selected this particular
image database mainly because the reference images of the melanoma area are provided
and supported by expert dermatologists. In addition, these images present histograms with
diversity in their statistical parameters and the distances and amplitudes of the histogram’s
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main lobes. It is worth mentioning that these samples required a special consideration
to compute the perimeter of skin lesion; this fact is detailed in the next section. The final
experiments comprised the segmentation of organic and inorganic products with a non-
uniform background. To do this, we implemented the procedure mentioned above with
three images acquired for this work.

Pseudocode 1 Proposed procedure for image segmentation and contour computing

Input: Original image III and thresholding method THRESHOLDINGMETHOD

Output: Processed binary image IIIb1 and perimeter PIII

1: IIIg ← GRAYSCALE(III) � Transform from RGB to gray-scale

2: t ← THRESHOLDINGMETHOD(IIIg) � Threshold t computed with a given method

3: IIIb1 ← BINARIZE(IIIg, t) � Binarization according to t

4: PIII ← CONTOUR(IIIb1) � Draws a contour of IIIb1

The methodology described in Figure 2 was designed to apply a traditional threshold-
ing procedure and the basic image form (a binary image) to identify the object perimeter.
The object perimeter for the second and third experiments is determined for different
reasons. The melanoma perimeter helps to provide a view of the morphological structure
of skin lesions, which can be used to support a clinic diagnosis [42]. Meanwhile, the
methodology proposed for the second experiment can be employed to distinguish between
organic and inorganic objects. This is due to the number of centroids of the identified
object perimeters.

Moreover, all the experiments were run on a machine with an Intel Core i5 @ 1.6 GHz
CPU, 4.00 GB @ 1600 MHz RAM, using the numerical platforms Matlab R2018a and R
v4.0.3. We implemented Cuckoo Search Algorithm (CSA) with a population size N of 200,
a step size ζ of 1.0, a probability change p of 0.5, a best-fitness change tolerance ε of 10−15,
and a maximum number of stagnating iterations of 2000. These values were obtained after
performing a preliminary study, which is out of this work’s scope but can be consulted
in [43].

5. Results and Discussion

The first experiment consists of implementing the proposed method and the others
from the literature (ThCSA, Otsu, MxE, and KI) on synthetic histograms (cf. Section 4).
Table 2 presents the resulting thresholds from this simulation comparison, where the
symbols ↓ and ↑ indicate the worst and the best thresholds, respectively. This is based
on the optimal threshold. In the first simulation s01, Otsu yields the closest values to the
optimal threshold. Meanwhile, ThCSA achieved a threshold value with a difference of
four gray intensity values from the optimal reference. Finally, the worst result was attained
by MxE. From the results achieved in simulation s02, it is easy to notice that Otsu, KI and
ThCSA had the same performance, closely followed by MxE. In s02, it is worth noticing
that Otsu, KI and ThCSA computed a threshold near to the optimal threshold with a
difference of two gray intensity levels, respectively. Moreover, the thresholds attained for
the simulation s03 are diverse. For this simulation, MxE outperforms the other methods
according to the optimal reference. It is noticeable that Kittler and ThCSA share the the
same threshold, with a difference of two gray intensity values from t∗r1. The worst algorithm
to assess the reference threshold was found to be Otsu, with a minimal difference of three
gray levels. Now, based on the results shown in Table 2 for simulation s04, we observe that
MxE exhibits an advantage over other algorithms for the optimal threshold. Here, Otsu
and ThCSA obtained the same level and reached second place with a difference of six gray
intensity levels. The last simulation, s05, yields interesting results. In this scenario, ThCSA
render the best threshold concerning the optimal threshold. Meanwhile, MxE and Kittler
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rank at an intermediate level according to the reference threshold. In this simulation, the
algorithm Otsu obtained the lowest performance.

Table 2. Comparison of threshold values obtained by different methods in a simulated environ-
ment. Based on the optimal threshold t∗r1, the symbols ↓ and ↑ indicate the worst and the best
threshold respectively.

Simulation t∗r1 Otsu MxE KI ThCSA

s01 120 121 ↑ 128 ↓ 113 116
s02 122 120 ↑ 119 ↓ 120 ↑ 120 ↑
s03 119 122↓ 118↑ 121 121
s04 135 129 140 ↑ 127↓ 129
s05 114 125 ↓ 119 119 118↑

Figure 3 illustrates the cases of those simulated distributions, the optimal threshold
and estimated histograms obtained by using ThCSA. In these plots, the fitted histograms
(in black solid lines) evidence an outstanding description of the global histogram, especially
regarding the reference threshold (in red dashed line). Nevertheless, we observe two issues
in these resulting histograms: In the first one in Figure 3a, the right-hand side distribution
is lower than the simulated data. Plus, in the second one in Figure 3b, an unsatisfactory
fitting of the right and left hand side peaks is evident. In Figure 3c the right-hand and
left-hand side distributions are narrower and lower than simulated histogram, respectively.

Subsequently, Table 3 shows the thresholds comparison obtained with the algorithms
implemented for segmenting four dermoscopic images, i.e., IMD002, IMD004, IMD015,
IMD021, and IMD041. As we mentioned in Section 4, we chose these figures to illustrate
histograms with different patterns. The optimal variables achieved by CSA for the GG
distributions are also presented. Recall that the α1 and α2 values describe abnormal
distributions when αk �= 2 ∀k ∈ {1, 2}. It is worth noting that the thresholds estimated
by ThCSA and Otsu for the IMD002 sample are close. Hence, the histogram of IMD002
is enveloped with a sum of non-Gaussian distribution because α∗

1 = 3 and α∗
2 = 3. In the

second test, using IMD004, ThCSA estimates a classification edge with an average variation
of ca. 29 intensities w.r.t. the other algorithms. The distributions computed have the shape
parameters α∗

1 = 1.6 and α∗
2 = 0.6, which correspond to sub-Gaussian and sub-Laplacian

distributions, respectively. For IMD015 and IMD021, ThCSA and GrayThresh achieve
similar thresholds. It can also be observed in Table 3 that the shape parameters to this
sample are located at 1 ≤ α∗

1, α∗
2 < 2, i.e., between Laplacian and Gaussian distributions.

For this experiment, the estimated characteristics can be described with the following
ranges 0.1 ≤ G∗

1 , G∗
2 ≤ 0.98, 74 ≤ μ∗

1, μ∗
2 ≤ 192, 10.34 < σ∗

1 , σ∗
2 < 25.69, and 1 < α∗

1, α∗
2 < 2.

Finally, the proposed algorithm and GrayThresh obtained the same threshold for IMD041.
These results can corroborate the flexibility of the proposed algorithm to estimate several
parameters at the same time on a different scale.

Complementing the information achieved in this experiment, as described in Figure 2,
we determine the contours PI for the medical images IMD002, IMD004, IMD015, and
IMD021. The segmentation of medical samples generates extra white corners following the
procedure depicted in Figure 2 and Pseudocode 1. For this particular case, it is required to
remove the contour located in the corner of each image. Figure 4a,c,e,g show the resulting
contours PI in RGB images, which is computed with the isolines of processed IIIb1 image
and depicted with a solid line. Therefore, the contour PI helps to determine the dark area
of melanoma samples.
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(b) s02
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(c) s03
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(d) s04
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(e) s05

Figure 3. Cases of fitted histograms utilizing the thresholding method based on Cuckoo Search Algorithm. The reference
distribution is depicted with a red dashed line.
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Table 3. Thresholds detected in medical Images with different methods and variables identified by Cuckoo Search Algorithm.

Image
Thresholds of Medical Images Optimal Variables Identified via CSA

Otsu GrayThresh KI MxE ThCSA G∗
1 G∗

2 μ∗
1 μ∗

2 σ∗
1 σ∗

2 α∗
1 α∗

2

IMD002 136 127 132 146 138 0.23 0.92 96 180 31.46 26.71 3.0 3.0

IMD004 162 127 177 169 139 0.10 1.05 91 229 35.73 17.84 1.6 0.6

IMD015 143 127 143 159 125 0.69 0.98 93 192 10.34 25.69 1.4 1.5

IMD021 120 119 123 133 112 0.1 0.84 74 158 24.29 11.85 1.6 1.0

IMD041 157 156 158 169 156 0.36 0.9 97 215 30.71 31.51 1.1 2.3

Figure 4b,d,f,h illustrate the image histogram (gray patch), fitted histogram (black
solid line), and estimated threshold (red dashed line) with ThCSA. In these images, one can
observe two principal lobes and a valley between them, where the threshold achieved with
ThCSA is located. It is also possible to appreciate the estimated distributions with several
shape parameters, which are denoted with α∗

1 and α∗
2 to the first and second lobes, respec-

tively. Additionally, we can notice some discrepancies between the estimated distributions
and the histograms in Figure 4b,d,f,h. However, the parameters estimated using ThCSA are
able to determine a threshold that achieves the segmentation of the melanoma area.

To complement the previous results, we focus on the visual and numeric comparison of
the segmentation outcomes for the medical samples. The segmentation results of IMD004 and
IMD015 using the studied algorithms in the are shown in Figure 5. Here, the Otsu methods
in Figure 5b, GrayThresh in Figure 5c, Kittler in Figure 5d, MxE in Figure 5e, and ThCSA
in Figure 5f obtained similar results for the sample IMD004 in Figure 5a. These images
display white corners in the background, i.e., additional white pixels as a component of
the skin lesion, which could be removed with additional processing. Some additional
white pixels in the segmented background can also be observed using the Kittler, Figure 5d,
and MxE, Figure 5e, methods. Based on the same algorithms, the sample IMD015, shown
in Figure 5g, is segmented. By using this sample, the algorithms obtained an equivalent
segmentation. This can be corroborated for Otsu, GrayThresh, Kittler, MxE, and ThCSA
in Figure 5h–l, respectively. Here, the segmented skin lesion is more uniform, without
extra white pixels in the background, independent of the corner area. For this sample,
all segmentations illustrated in Figure 5h–l, recognize a line of black pixels in the bottom
as background components. This error is caused by extra white pixels immersed in the
original RGB image.
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(a) IMD002 (b) α∗
1 = 3, α∗

2 = 3

(c) IMD004 (d) α∗
1 = 1.6, α∗

2 = 0.6

(e) IMD015 (f) α∗
1 = 1.4, α∗

2 = 1.5

(g) IMD021 (h) α∗
1 = 1.1, α∗

2 = 1.2

Figure 4. Contours and histograms estimated using the ThCSA algorithm. In the first column, the
contour PI is represented with a solid white line. In the second column, the image histogram, fitted
histogram, and optimal threshold are displayed with a gray patch, a black solid line, and a red
dashed line.
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(a) IMD004 (b) Otsu (c) GrayThresh

(d) Kittler (e) MxE (f) ThCSA

(g) IMD015 (h) Otsu (i) GrayThresh

(j) Kittler (k) MxE (l) ThCSA

Figure 5. Gray-scale and processed images for IMD004 and IMD015 using the thresholding methods
Otsu, GrayThresh, Kittler, MxE, and ThCSA, respectively.

Naturally, the visual comparison is insufficient to determine the best algorithm. For
this reason, the reference images of melanomas or ground-truth images are required.
Such images are provided by an expert dermatologist in [42], which are represented as
IIIbr ∈ Z

M×N
2 . IIIbr ∈ Z

M×N
2 . Table 4 shows the Jaccard index and the False Negative (FN)

pixels for all the methods. The Jaccard index is used to evaluate the image segmentation
because it measures the intersection of an obtained binary image (IIIb1 or IIIb2 ) and the
reference image (IIIbr ) divided by the union of both images [44]. The FN points are the
unmatched pixels of the segmented image and the area labeled as object IIIOr in the reference
image, where IIIOr ⊂ IIIBr . Employing the FN metric, it is possible to identify which method
locates fewer wrong pixels in the object. In Table 4, the FN values are divided by the total
number of pixels of IIIOr to avoid large numbers. These metrics are obtained for different
melanoma images IMD002, IMD004, IMD015, IMD021, and IMD041. Table 4 displays the
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best Jaccard index in bold font. According to the Jaccard index, we can appreciate that, for
IMD002, the best algorithm is MxE. This generates fewer inaccuracies regarding the FN
values. Additionally, ThCSA ranks second according to the Jaccard index. For IMD004, the
GrayThresh method is the best one. The ThCSA showed the maximal number in the FN
column, but this method is in third place. Moreover, we notice that ThCSA is better for the
sample IMD015 according to the Jaccard index, although the proposed algorithm obtained
the worst values in FN measurements. For the sample IMD021, ThCSA was better than the
other algorithms. However, the proposed algorithm obtained a low performance for FN
values. The last sample analyzed was the image IMD041. Here, the algorithms GrayThresh
and ThCSA were the best options, with the same Jaccard index and FN measures.

It is worth noting that the Jaccard indices are quite low, in the range of 0.6–0.8. This
poor performance is due to the extra white pixels located in the corners of the images. How-
ever, the Jaccard index is adequate to rank the proposed algorithm. Furthermore, Table 5
shows the computing time comparison between the implemented algorithms. From these
data, we can recognize the high computing time as a drawback of the proposed algorithm.
Nevertheless, we suggest that this comparison is unfair because all the algorithms studied
in this work were employed on different numerical platforms.

Table 4. Jaccard index and False Negative (FN) values obtained via different methods for medical samples. The best Jaccard
index is in bold font. Symbols ↑ and ↓ represent the worst and best values, respectively.

Method

IMD002 IMD004 IMD015 IMD021 IMD041

Ja
cc

a
rd

F
N

Ja
cc

a
rd

F
N

Ja
cc

a
rd

F
N

Ja
cc

a
rd

F
N

Ja
cc

a
rd

F
N

Otsu 0.6889 0.1296 0.6645 0.0421 0.7117 0.0070 0.6149 0.0206 0.6818 0.0746

GrayThresh 0.6868 0.1362 0.6664 0.0447 0.7157 0.0080 0.6176 0.0242 0.6822 0.0779 ↑
Kittler 0.6780 0.1577↑ 0.6167 0.0143↓ 0.7117 0.0070 0.6062 0.0140 0.6816 0.0707

MxE 0.6939 0.0786↓ 0.6471 0.0263 0.6244 0.0007↓ 0.5555 0.0036↓ 0.6669 0.0362 ↓
ThCSA 0.6917 0.1189 0.6601 0.1428↑ 0.7551 0.0496 ↑ 0.6256 0.0558↑ 0.6822 0.0779↑

Table 5. Computing time required to find the threshold for medical images with different methods.

Method
Computing Time [s]

IMD002 IMD004 IMD015 IMD021 IMD041

Otsu 0.03 0.04 0.02 0.03 0.4

GrayThresh 0.02 0.02 0.02 0.03 0.2

Kittler 0.01 0.02 0.01 0.02 0.2

MxE 0.04 0.04 0.03 0.04 0.04

ThCSA 1.5 1.2 1.3 1.4 1.1

Furthermore, we extend the scope of application of the proposed algorithm by study-
ing other kinds of images. To do this, we considered those with a background covering a
greater area than the object. Sometimes the objects share pixels with the background in the
gray-scale image. Figure 6 depicts three examples of this problem: one organic product
and two inorganic products. The organic one is illustrated in Figure 6a, and its histogram is
plotted in Figure 6b. The image in gray-scale, see Figure 6a, illustrates a background with
different shades of gray and a darker area, representing the organic object. The histogram
in Figure 6b shows two no uniform lobes that corroborate the color variability of the object
and background. These lobes are approximately G = 90 to G = 130 for the object, and from
G = 140 to G = 175 for the foreground. Despite fluctuations in the histogram, depicted in
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Figure 6b, the algorithm ThCSA computed a good threshold to segment the organic object,
which is bounded with a white line in Figure 6a.

Moreover, the two inorganic, which possess transparent areas, are shown in Figure 6c,e,
and their histograms in Figure 6d,f, respectively. In Figure 6c, a white line delineates partially
incomplete area of an inorganic product. This is because some object pixels are mixed with the
background; i.e., they have the same intensity level. Figure 6d shows the threshold achieved
by the ThCSA-based methodology. This threshold helps to delimit a large part of the object,
although the object’s outline is incomplete. Finally, in Figure 6e,f, we observe the most
challenging example of this proposed work. To this inorganic object, the bottom, the label,
and the screw cap are identified. The histograms (see Figure 6f) evidence where there is
little information about the object. However, the proposed methodology can compute the
corresponding thresholds to identify parts of this object.
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(a) Organic 1 (b) Histograms of Organic 1
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(c) Inorganic 1 (d) Histograms of Inorganic 1
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(e) Inorganic 2 (f) Histograms of Inorganic 2

Figure 6. Illustrative example of the proposed algorithm implemented on three images, with quasi-
modal histograms, containing either organic or inorganic products. Left column: gray-scale images
and achieved detected outlines. Right column: image and fitted histograms and detected threshold.
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6. Conclusions

In this work, we proposed ThCSA, a thresholding technique based on the General-
ized Gaussian (GG) distributions and Cuckoo Search Algorithm. We implemented this
methodology to tackle several image segmentation cases with different conditions and
compared its results with some well-known algorithms. We showed that ThCSA, Otsu,
and MxE obtain acceptable results when estimating the optimal threshold in simulated
histograms. However, Otsu and MxE achieved the worst mark in at least one simulation,
and GrayThresh was the worst at estimating the reference threshold. According to the
comparison, the proposed algorithm obtained good performances by computing thresholds
with a minimal difference and values very close to the optimal reference in most cases.
These results are closely followed by the Kittler–Illingworth (KI).

ThCSA achieved the GG function variables in real medical image-processing to deter-
mine a threshold that segments the melanoma samples. The skin lesions were bounded
with a certain precision based on the proposed methodology. Compared with the manual
segmentation (ground-truth), evaluated by an expert dermatologist, the best segmenta-
tions were rendered by ThCSA , closely followed by GrayThresh. We corroborated this
affirmation through the Jaccard indices, which can be improved with additional processing
to avoid the corners induced by the capture instrument.

Furthermore, we noticed a remarkable potential when applying ThCSA to identify
objects with no-uniform backgrounds and shared pixels. However, we found some is-
sues while delimiting the complete object by the proposed method, especially when the
background and object pixels have the same gray levels. Notwithstanding, ThCSA can
detect strategic points to locate parts of the object. This issue should be analyzed and
solved with an additional processing step. The principal disadvantage of the proposed
methodology is that it requires more processing time than the other methods. Nevertheless,
naturally, this work addressed the prototyping of an algorithm that could be enhanced
and optimized in future implementations. Therefore, considering the advantages and
disadvantages mentioned above, we finally conclude that the proposed methodology is an
excellent option to compute optimal thresholds and segment objects from its quasi-uniform
environment. This work presented an alternative thresholding tool, based on a global
optimization algorithm, to help practitioners in diverse applications, e.g., dermatologic
ones. Moreover, we plan to compare ThCSA with different image databases and employ
several metrics to measure the segmentation quality for future work. We will also optimize
the ThCSA implementation in a particular numerical platform to provide a competitive
alternative to thresholding in any practical application.
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Abstract: Various studies have been conducted for detecting humans in images. However, there
are the cases where a part of human body disappears in the input image and leaves the camera
field of view (FOV). Moreover, there are the cases where a pedestrian comes into the FOV as a
part of the body slowly appears. In these cases, human detection and tracking fail by existing
methods. Therefore, we propose the method for predicting a wider region than the FOV of a thermal
camera based on the image prediction generative adversarial network version 2 (IPGAN-2). When an
experiment was conducted using the marathon subdataset of the Boston University-thermal infrared
video benchmark open dataset, the proposed method showed higher image prediction (structural
similarity index measure (SSIM) of 0.9437) and object detection (F1 score of 0.866, accuracy of 0.914,
and intersection over union (IoU) of 0.730) accuracies than state-of-the-art methods.

Keywords: image prediction; thermal videos; deep learning; IPGAN-2

1. Introduction

Extensive research has been conducted on objection detection [1–4], tracking [5–9], and
action recognition [10–13] using conventional camera-based detection systems. However,
there are frames where a part of body of a pedestrian disappears because the part of the
body of the pedestrian is outside a camera’s field of view (FOV) when walking or running.
Moreover, there are cases in which a pedestrian comes into the FOV as a part of the body
slowly appears. These cases cause the person to be detected or not detected inconsistently.
An error also occurs in human tracking and action recognition. In a previous study, the
issue in which a part of human body disappears was examined [14], but only a small
region within an input image could be predicted. To overcome such an issue, in this
study, for the first time, an image restoration was performed, as shown in Figure 1, by
predicting the wide region outside the FOV not included in the current image (t) as in image
t’ for restoring the disappeared part of the body of a pedestrian in a thermal image. The
proposed method predicts wider regions on both sides of the FOV in a current image using
an image prediction generative adversarial network version 2 (IPGAN-2)-based method,
the preceding sequential frame, and the current frame. In this study, various experiments
were performed using the marathon subdataset [15] of the Boston University-thermal
infrared video (BU-TIV) benchmark open dataset.

In addition, this study is novel in the following four ways compared with the previous
studies.

- For thermal camera images, in this study, image prediction was performed in which,
for the first time, the occurrence of noise was minimized while wide regions to left
and right sides of the FOV in the current image were accurately generated.

- In this study, IPGAN-2 is proposed for performing image prediction.
- For improving the accuracy of image prediction, binary images corresponding to

sequential input thermal images were used as input for IPGAN-2.

Mathematics 2021, 9, 2379. https://doi.org/10.3390/math9192379 https://www.mdpi.com/journal/mathematics
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- The IPGAN-2 model proposed has been disclosed [16] for a fair performance evalua-
tion by other researchers.

Figure 1. Example of thermal image prediction.

The remainder of this study is organized as follows. In Section 2, previous studies
are reviewed. In Section 3, the proposed method is explained in detail. Experimental
results and analysis are provided in Section 4. Finally, a discussion and the conclusions are
provided in Sections 5 and 6, respectively.

2. Related Works

Previous studies on image prediction that generate the current frame or next frame
can be largely divided into five categories, as explained in Sections 2.1 and 2.2.3.

2.1. Not Using Previous Frames but Using Current Frame (Image Inpainting)

Studies (image inpainting) have been conducted on the restoration of part of a current
image by using only the current frame [17–22]. In [17], a fine deep-generative-model-based
approach with a novel coherent semantic attention (CSA) layer was used to restore a visible
light image. In [18], a visible light image was restored based on gated convolution and
SN-PatchGAN. In [19], a visible light image was restored based on the parallel extended-
decoder path for semantic inpainting network (PEPSI). In [20], a visible light image was
restored using a context encoder method based on a channel-wise fully connected layer.
A visible light image was restored in [21] using a method based on edge prediction and
image completion based on the predicted edge map. Finally, in [22], the sequential-based,
convolutional neural network (CNN)-based, and generative adversarial network (GAN)-
based image restoration methods and the datasets used were explained.

2.2. Using Current and Previous Frames
2.2.1. Prediction of Next Frame

In some earlier studies [23–25], a next frame was predicted using the current frame
and previous sequential frames. A dual-motion GAN model (ConvLSTMGAN) was
proposed [23], and image prediction was performed using a visible light image. This
method involves encoding sequential input frames using a probabilistic motion encoder
(encoder CNN). The encoder CNN consists of four convolutional layers, one intermediate
ConvLSTM layer, and two ConvLSTM layers. Furthermore, the next frame and next flow
images are generated through future-image and future-flow generators. In [24], a method
was proposed for generating the next optical flow image and next frame using a visible light
image and encoder and decoder CNN (OptCNN-Hybrid). In this method, the proposed
network was trained in a hybrid way using real and synthetic videos. In [25], a method
for generating the next frame using a visible light image and ConvLSTM was proposed.
In this study, the depth image is predicted using a current image and camera trajectory.
Moreover, the next frame is generated using depth information by creating a depth image
based on the advantages of camera scene geometry.
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2.2.2. Prediction of Next Sequential Frames

In earlier studies [26–30], the next sequential frames were predicted using the current
frame and previous sequential frames. In [26], image prediction was performed using a
visible light image and the encoder and decoder model based on long short-term memory
(LSTM) and a 3D convolution layer. In [27], the image was predicted using a visible
light image, the newly proposed PhyCell, and PhyDNet based on LSTM. In [28], image
prediction was performed using a visible light image, LSTM, and a CNN. In [29], the image
was predicted using a visible light image and the encoder and decoder model. Image
prediction was performed in [30] using a visible light image and a stochastic variational
video prediction (SV2P) method. In a review study [31], the datasets from 2004 to 2019 used
in image prediction were compared with the image prediction models that were released
between 2014 and 2020. In the survey in [32], studies on and datasets for image prediction
were explained.

2.2.3. Prediction of Small Left Region of Current Frame

In the following study, a region out of the FOV of a current frame was generated
using the current frame and previous sequential frames. In [14], image prediction was
performed in which a region out of the FOV was generated using a thermal video and GAN.
The regions outside the FOV were predicted using the image obtained from a thermal
camera that measured the heat of a human body rather than the image obtained from a
general visible light camera. However, this method created a wide image by predicting
a small region to the left of the FOV. Noise also occurred in the prediction region in
the generated image, and the region includes more noise as the size of the region being
predicted increased. Therefore, there is a limitation in the size of the region being predicted.

Table 1 provides comparisons between the proposed method and previous studies.

Table 1. Summaries of comparisons between the proposed method and previous image prediction studies.

Category

Not Using Previous Frames
but Using Current Frame

(Prediction of Removed Part
in Current Frame (Image

in painting))

Using Current and Previous Frames

Prediction of
Next Frame

Prediction of Next
Sequential Frames

Prediction of Small Left
Region of Current Frame

Prediction of Large Right
and Left Regions of

Current Frame

Methods

CSA layer [17],
gated convolution +

SN-PatchGAN [18], PEPSI
[19], context encoder [20],

edge prediction and image
completion [21], and review

[22]

ConvLSTMGAN
[23],

OptCNN-Hybrid
[24], ConvLSTM

[25]

Encoder–decoder model
[26,29], PhyDNet [27],

CNN + LSTM [28],
SV2P [30], and review &

survey [31,32]

IPGAN [14] IPGAN-2
(Proposed method)

Input High-quality and high-resolution RGB visible light image
Low-quality and

low-resolution grayscale
thermal image

Low-quality and
low-resolution grayscale

thermal image and binary
image

Output RGB visible light image An RGB thermal image A grayscale thermal image

Advantages

High performance is
achieved by restoring the
information deleted in the
current image by using the

remaining information of the
current image.

High performance is obtained when
generating the next image by using the

current image and previous
sequential images.

- Considers image
prediction besides
FOV

- Uses low-resolution,
low-quality thermal
image

- A wide image of left
and right of the FOV
is generated for
image prediction

- Noise does not occur
in the predicted
image outside the
FOV

Disadvantages
- Does not consider image prediction outside the FOV
- Does not use low-resolution, low-quality thermal image

- The size of predicted
image is limited.

- Noise occurs in the
predicted image

- Only the region to the
left of the FOV is
generated for image
prediction.

Low processing speed
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3. Materials and Methods

3.1. Overall Procedure of Proposed Method

In this section, the proposed method is explained in detail. Image region prediction
is performed in this method based on sequential thermal images using IPGAN-2. In
Sections 3.2–3.5, the IPGAN-2 architecture, postprocessing, differences between IPGAN
and the proposed IPGAN-2, and dataset with experimental setup for image prediction are
explained in detail. Figure 2a shows the overall flowchart of the proposed method and
Figure 2b shows the overall procedure of the proposed method with image examples. The
length of the sequential input images is 20 frames (t − 0, t − 1, . . . t − 19), the size of each
image is 120 × 160 pixels, and the size the output image is 200 × 160 pixels. Specifically,
the part connecting a disappeared part of a person not in the camera FOV (left region of
the FOV) and the background in the current image is generated, while simultaneously
generating a disappeared part of a person coming into the camera FOV (right region of
the FOV) to generate the output image. As shown in Figure 2b, sequential thermal images
for input and the corresponding sequential binary images are used as input for IPGAN-2.
Input images for image prediction are horizontally flipped, and IPGAN-2 is applied one
more time, during which the same model is used. In Figure 2b, red arrows represent a
horizontal concatenate operation of the three images. In Table 2, the detailed procedure of
the proposed algorithm is explained step by step.

 
(a) 

(b) 

Figure 2. Flowchart of the proposed method. (a) Overall flowchart; (b) overall procedure with image examples.
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Table 2. The proposed method detailed by using pseudo code.

Input thermal image with size of (120 × 160 × 1) = Xt−0
Input binary image with size of (120 × 160 × 1) = Yt−0
Output thermal image with size of (160 × 160 × 1) = Ot−0
Final output thermal image with size of (200 × 160 × 1) = Zt−0
IPGAN-2 model = model
Horizontal image flipping = f lip
Image cropping = crop

Algorithm procedure Output shape/dimension
A = [Xt−0, Xt−1, . . . Xt−19,]
B = [Yt−0, Yt−1, . . . Yt−19,]

A′ = f lip(A)
B′ = f lip(B)

C = concatenate(A, B, axis = channel)
C′ = concatenate(A′, B′, axis = channel)

Ot−0 = model(C)
O′

t−0 = model(C′)

O′′
t−0 = f lip(O′

t−0)

Rt−0 = crop(Ot−0, [0 : 39, 0 : 159])
R′

t−0 = crop(O′′
t−0, [120 : 159, 0 : 159])

C′′ = concatenate(Rt−0, Xt−0, axis = horizontal)
Zt−0 = concatenate(C′′ , R′

t−0, axis = horizontal)

120 × 160 × 20
120 × 160 × 20

120 × 160 × 20
120 × 160 × 20

120 × 160 × 40
120 × 160 × 40

160 × 160 × 1
160 × 160 × 1

160 × 160 × 1

40 × 160 × 1
40 × 160 × 1

200 × 160 × 1
200 × 160 × 1

3.2. Proposed IPGAN-2 Model

As shown in Figure 2b, sequential thermal images (120 × 160 × 20 pixels) and sequen-
tial binary images (120 × 160 × 20 pixels) are used as input for the proposed IPGAN-2.
The IPGAN-2 architecture is shown in Figure 3. The generator in Figure 3 includes the
concatenate layer (L2 and L31), convolution blocks (L9, L22, and L26), encoder blocks (L3,
L4, L5, L14, L15, and L16), residual blocks (L6–L8, L10–L13, L23–25, and L27–30), and
convolution layers (L17, L20, L21, L32, and L33) in order. In the concatenate layer (L2),
sequential images are applied with depth-wise concatenation to generate a multichannel
single image (120 × 160 × 40), while in the concatenate layer (L31), feature maps are com-
bined in the horizontal direction to generate a wide image. Furthermore, the discriminator
includes convolution blocks (L1–L6) and a fully connected layer (L7) in order.

Specific details of the IPGAN-2 architecture are presented in Tables 3–8. In Tables 3–6,
the filter size, stride, and padding are (3 × 3), (1 × 1), and (1 × 1), respectively. In Table 3,
two filter numbers, 128 and 64, are used in conv_block_1–conv_block_3. In Table 7, the filter
size, stride, and padding in conv_block_1–conv_block_3 are (3 × 3), (1 × 1), and (0 × 0),
while the filter size, stride, and padding in conv_block_4–conv_block_6 are (3 × 3), (2 × 2),
and (0 × 0), respectively. The layer types of Tables 3–8 are prelu (parametric rectified linear
unit (relu)), lrelu (leaky relu), maxpool (max pooling operation), tanh (hyperbolic tangent
activation function), res_block (residual block), encod_block (encoder block), conv2d (two-
dimensional convolution layer), add (addition operation), conv_block (convolution block),
dense (fully connected layer), concat (concatenate layer), and sigmoid (sigmoid activation
function). Furthermore, reshape (L19) of Table 3 is a layer that reshapes input tensors into
the given shape. As the input in Table 3, 20 sequential thermal images (120 × 160 × 1)
and 20 sequential binary images (120 × 160 × 1) were used, as in Figure 3, and the output
image was one image (160 × 160 × 1).
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Figure 3. Example of the structure of proposed IPGAN-2.

Table 3. Description of the generator of IPGAN-2.

Layer Number Layer Type Number of Filters Number of Parameters
Layer Connection

(Connected to)

0 input_layers_1–20 0 input_1–20
1 input_layers_21–40 0 input_21–40

2 concat_1 0 input_layers_1–20 &
input_layers_21–40

3 encod_block_1 64 48,640 concat_1
4 encod_block_2 64 73,984 encod_block_1
5 encod_block_3 64 73,984 encod_block_2
6 res_block_1 64 73,920 encod_block_3
7 res_block_2 64 73,920 res_block_1
8 res_block_3 64 73,920 res_block_2
9 conv_block_1 128/64 147,840 res_block_3

10 res_block_4 64 73,920 conv_block_1
11 res_block_5 64 73,920 res_block_4
12 res_block_6 64 73,920 res_block_5
13 res_block_7 64 73,920 res_block_6
14 encod_block_4 64 73,984 res_block_7
15 encod_block_5 64 73,984 encod_block_4
16 encod_block_6 64 73,984 encod_block_5
17 conv2d_1 3200 1,846,400 encod_block_6
18 prelu_1 3200 3200
19 reshape 0 conv2d_1
20 conv2d_2 64 640 reshape
21 conv2d_3 64 36,928 conv2d_2

22 conv_block_2 128/64 97,152 concat_1
23 res_block_8 64 73,920 conv_block_2
24 res_block_9 64 73,920 res_block_8
25 res_block_10 64 73,920 res_block_9
26 conv_block_3 128/64 147,840 res_block_10
27 res_block_11 64 73,920 conv_block_3
28 res_block_12 64 73,920 res_block_11
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Table 3. Cont.

Layer Number Layer Type Number of Filters Number of Parameters
Layer Connection

(Connected to)

29 res_block_13 64 73,920 res_block_12
30 res_block_14 64 73,920 res_block_13
31 concat_2 0 conv2d_3 & res_block_14
32 conv2d_4 256 147,712 concat_2
33 conv2d_5 1 2305 conv2d_4
34 tanh 0 conv2d_5

Total number of trainable parameters: 3,883,457

Table 4. Description of an encoder block of the generator.

Layer Number Layer Type Number of Filters
Layer Connection

(Connected to)

1 conv2d_1 64 input
2 prelu_1 64 conv2d_1
3 conv2d_2 64 prelu_1
4 prelu_2 64 conv2d_2
5 maxpool prelu_2

Table 5. Description of a convolution block of the generator.

Layer Number Layer Type Number of Filters
Layer Connection

(Connected to)

1 conv2d_1 128 input
2 prelu_1 128 conv2d_1
3 conv2d_2 64 prelu_1
4 prelu_2 64 conv2d_2

Table 6. Description of a residual block of the generator.

Layer Number Layer Type Number of Filters
Layer Connection

(Connected to)

1 conv2d_1 64 input
2 prelu 64 conv2d_1
3 conv2d_2 64 prelu
4 add conv2d_2 & input

Table 7. Description of the discriminator of IPGAN-2.

Layer Number Layer Type Number of Filters Number of Parameters
Layer Connection

(Connected to)

0 input layer 0 input
1 conv_block_1 32 896 input layer
2 conv_block_2 64 18,496 conv_block_1
3 conv_block_3 128 73,856 conv_block_2
4 conv_block_4 128 147,584 conv_block_3
5 conv_block_5 256 295,168 conv_block_4
6 conv_block_6 256 590,080 conv_block_5
7 dense 92,417 conv_block_6
8 sigmoid 0 dense

Total number of trainable parameters: 1,218,497
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Table 8. Description of a convolution block of the discriminator.

Layer Number Layer Type
Layer Connection

(Connected to)

1 conv2d input
2 lrelu conv2d

3.3. Postprocessing

The postprocessing method shown in Figure 4 was used in this study. As shown in
Figure 3, the final output shown in Figure 4 is obtained by cropping and combining the
predicted regions outside the FOV from the first output image obtained using IPGAN-2
and the second output image obtained by horizontally flipping sequential input images
and using IPGAN-2. The reason for using the method in Figure 4, instead of performing
image prediction for both sides of the FOV of the current image, is explained in Section 4.2
based on experimental results.

Figure 4. Example of the postprocessing.

3.4. Differences between IPGAN and Proposed IPGAN-2

In this section, the difference between the proposed method and a previous method [14]
is explained in detail. These two methods have different architectures overall. In particular,
the region in the image being predicted is different, and each step is designed differently.
Table 9 shows the overall structure of the two methods in steps. Table 10 presents the
advantage and disadvantage of the two methods.

Table 9. Comparison of overall structure of previous method [14] and proposed method.

Steps Previous Method [14] (IPGAN) Proposed Method (IPGAN-2)

Input Original thermal image (85 × 170 × 1) Original thermal image (120 × 160 × 1)

Preprocessing
Conversion of original thermal image to

three-channel color thermal image with zero
padding

Image binarization by using background
subtraction and horizontal flipping

Network
input Three-channel color thermal image (170 × 170 × 3) Original thermal image (120 × 160 × 1) and binary

image (120 × 160 × 1)

Network
output Three-channel color thermal image (170 × 170 × 3) One-channel thermal image (160 × 160 × 1)
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Table 9. Cont.

Steps Previous Method [14] (IPGAN) Proposed Method (IPGAN-2)

Postprocessing Image cropping (crop a small part of predicted
region) and combining

Image cropping (crop the entire predicted region),
horizontal flipping, and combining

Output Three-channel color thermal image (105 × 170 × 3) One-channel thermal image (200 × 160 × 1)

Table 10. Comparison of advantage and disadvantage of previous method [14] and proposed method.

Factors Previous Method [14] (IPGAN) Proposed Method (IPGAN-2)

Predicted region Only left side Left and right sides

Size of predicted
region Smaller (input of 85 × 170 to output of 105 × 170) Larger (input of 120 × 160 to output of 200 × 160)

Error Gray noise occurs over predicted region No gray noise

Processing speed Higher Lower

3.5. Dataset and Experimental Setup

The experiment in this study was conducted using the marathon subdataset of the
BU-TIV benchmark open thermal dataset [15]. The marathon subdataset was created for
the purpose of multi-object tracking and includes various objects, such as pedestrians, cars,
motorcycles, and bicycles. This dataset also consists of four videos (image sequences) with
different sizes. Images in the dataset are provided in the image format of portable network
graphics (PNG). Annotations for the object detection for the four sequences are provided.
An FLIR SC800 camera (FLIR Systems, Inc., Wilsonville, OR, USA) was used to collect
the dataset. The pixel value of a thermal image ranges between 3000 and 7000 units of
uncalibrated temperature [15]. In this study, image sequences 1 and 2 of the marathon
sub-dataset were used, and 3999 images (size of 1024 × 512 × 1, and pixel depth of 16 bits)
were used. When training the proposed model, 3999 original images are cropped to create
19,995 images in a dataset (image size of 160 × 160 × 1, and pixel depth of 8 bits) to perform
training and testing. The region in which pedestrians are running (region of interest (ROI)
of the red boxes in Figure 5) in the original image was cropped. A ground-truth (GT) image
(green boxes) and input images (blue boxes) were generated, as shown in Figure 5, by
cropping the ROI into 160 × 160.

Our network is not aware of the scenes of testing cases. Various scenes have been
used in our experiments. In the below Figure 5d,e, example images used in training and
testing phases are presented. As shown in this figure, the images used in training phase
are completely different from those in testing phase, and they were not cropped from same
scene.

The experiment was conducted as two-fold cross validation. More specifically, half
the total data were used for training, while the other half were used for testing (10% of the
testing data were used as validation data, while the remaining 90% were used as testing
data). The two datasets were switched for performing training and testing once again, and
the average of the two testing accuracy values was set as the final accuracy.

Training and testing of the proposed algorithm were performed using a desktop
computer. The desktop computer was equipped with Intel core i7-6700 CPU@3.40GHz, a
Nvidia GeForce GTX TITAN X graphics processing unit (GPU) card [33], and random-access
memory (RAM) of 32 GB. The proposed model and algorithm were implemented with
OpenCV library (version 4.3.0) [34], Python (version 3.5.4) [35], and the Keras application
programming interface (API) (version 2.1.6-tf) with a TensorFlow backend engine (version
1.9.0) [36].
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Cont.

49



Mathematics 2021, 9, 2379

 
(e) 

Figure 5. Example images of dataset: the left images in red boxes show the cropped ROI, the middle images in green boxes
represent the GT images, and the right images in blue boxes show the input images to model for image prediction. (a–c) the
procedure of making the dataset; (d) example images used in training phase; (e) example images used in testing phase.

4. Results

This section is divided into four subsections on training, testing, comparisons, and
processing time to explain the experimental results. In Section 4.1, the hyperparameters
and training loss used in the training step are explained. In Section 4.2, the results obtained
through the ablation study are compared. In Section 4.3, the results obtained using the
proposed method and the state-of-the-art methods are compared. In Section 4.4, additional
experiments using different datasets (Casia thermal image dataset C and BU-TIV marathon
thermal image dataset) for training and testing are conducted. Finally, in Section 4.5, the
processing time was measured for each component.

4.1. Training

The proposed IPGAN-2 was trained as follows. The batch size, training iteration,
and learning rate in IPGAN-2 were 1, 483,581, and 0.001, respectively. Moreover, binary
cross-entropy loss was used as generator loss and discriminator loss, and adaptive moment
estimation (Adam) [37] was used as an optimizer. More detailed information about the
search space and selected hyperparameter values is provided in Table 11. Hyperparameters
were selected based on the best accuracies of human segmentation explained in Section 4.3
using the training data. Forty sequential images (20 thermal images and 20 binary images)
of 120 × 160 × 1 pixels were used for all training and testing methods. Figure 6a shows
the training loss curves of IPGAN-2 per iteration, while Figure 6b shows the validation
loss curves of IPGAN-2 per iteration. All results converged as the iterations increased; in
particular, Figure 6b shows that IPGAN-2 was sufficiently trained without being overfitted
by the training data.

Table 11. Search space and selected values of hyperparameters.

Parameters

Weight Decay
(Weight

Regularization
L2)

Loss
Kernel

Initializer
Bias

Initializer
Optimizer

Learning
Rate

Beta_1 Beta_2 Epsilon Iterations
Batch
Size

Search
Space [0.001, 0.01, 0.1]

[“binary
cross-entropy

loss”,
“mse”,“VGG-19

loss”]

“glorot
uniform” “zeros” [“SGD”,

“adam”]

[0.0001,
0.001,

0.01, 0.1]

[0.7,
0.8,
0.9]

[0.8,
0.9,

0.999]

[1 × 10−9,
1 × 10−8,
1 × 10−7]

[1~500
K] [1,4,8]

Selected
Value 0.01

“binary
cross-entropy

loss”

“glorot
uniform” “zeros” “adam” 0.001 0.9 0.999 1 × 10−8 483,581 1
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(a) 

 
(b) 

Figure 6. Loss curves of IPGAN-2 with (a) training data and (b) validation data.

4.2. Testing (Ablation Study)

In this subsection, the results of several ablation studies using the proposed method
are explained. Identical datasets and six GAN structures were used for the experiment.
The accuracy of image prediction was measured in terms of the similarity between the
output image and the GT image. The accuracy of image prediction was measured using
three types of metric in Equations (1)–(3). In Equation (1), R and C represent the number of
rows (height) and columns (width) of the image matrix, respectively. In Equations (1) and
(3), Res and GT refer to result image and GT image, respectively. In Equation (2), PSNR is
the peak signal-to-noise ratio [38]. In the structural similarity index measure (SSIM) [39]
equation, mGT and SGT are the mean and standard deviation of the pixel values of a GT
image, respectively, mRes and SRes are the mean and standard deviation of the pixel values
of the result image, respectively, SResGT is the covariance of the two images, and St1 and
St2 represent positive constants to make the denominator nonzero.

MSE =

(√
∑R

i=1 ∑C
j=1(GT(j, i)− Res(j, i))2

)2

RC
(1)

PSNR = 10log10

(
2552

MSE

)
(2)

SSIM =
(2mResmGT + St1)(2SResGT + St2)

(mRes2 + mGT
2 + St1)(SRes2 + SGT

2 + St2)
(3)

In addition, the accuracy of human detection was measured based on true positive
rate (TPR) (#TP/(#TP+#FN)) and positive predictive value (PPV) (#TP/(#TP+#FP)) [40]
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and using accuracy (ACC) [40], F1 score (F1) [41], and intersection over union (IoU) [40],
which are expressed in Equations (4)–(6). Here, TP, FP, FN, and TN refer to true positive,
false positive, false negative, and true negative, respectively. Positive and negative signify
the pixels detected in the GT image and the pixels not detected in the GT image. TP refers
to a case where positive pixels were accurately detected, while TN refers to a case where
negative pixels were inaccurately detected. FP refers to a case where negative pixels were
falsely detected as positive pixels, while FN refers to a case where positive pixels were
falsely detected as negative pixels. Here, the symbol # indicates “the number of”.

ACC =
#TP + #TN

#TP + #TN + #FP + #FN
(4)

F1 = 2· PPV·TPR
PPV + TPR

(5)

IoU(X, Y) =
|X ∩ Y|
|X ∪ Y| =

#TP
#TP + #FP + #FN

(6)

Six methods were comparatively examined through ablation studies. In Figure 7, the
t-th image It was set as the input image (at the far left) among the 20 sequential input
thermal images.

In Figure 7a, the GT image (at the far right) included the images on both sides (left
and right of the It image) of the It image (left image). Specifically, the images on both sides
(40 × 160 × 1 and 40 × 160 ×1) of the It image (80 × 160 × 1) were predicted (pred2reg),
as shown in Figure 7a. After the images on both sides of the It image are predicted, the
regions predicted as the last are cropped to be combined with the current image It, as
shown in Figure 1. In this experiment, sequential original images (80 × 160 × 20) and
sequential binary images (80 × 160 × 20) were used for prediction. However, the output
image obtained thereby (160 × 160 × 1) differs significantly from the GT image as in the
output image Ot (middle image) in Figure 7a.

Unlike pred2reg in Figure 7b, the experiment was conducted to predict the entire Ot
image (160 × 160 × 1) (predWholeIm) from sequential input images (thermal image (80 ×
160 × 20) and binary image (80 × 160 × 20)).

In Figure 7c, after extracting feature maps from sequential binary images (80 × 160
× 20) and sequential thermal images (80 × 160 × 20) through a two-channel convolution
structure, the feature maps (160 × 160 × 64 and 160 × 160 × 64) obtained from sequential
binary images and original sequential images were combined along the depth axis (2-
chanPred) in the last convolution layer.

The following three methods were utilized as follows to improve the accuracy. In
Figure 7d, two images (40 × 160 × 1 and 40 × 160 × 1) on both sides of the current image
were predicted (singImPred) using one thermal image (80 × 160 × 1) and one binary
image (80 × 160 × 1) rather than sequential images. The output image (160 × 160 × 1)
obtained through singImPred had a clearer background than the images obtained through
previously mentioned methods but had a poorer performance in human prediction.

In Figure 7e, a method (seq&sing) was utilized where sequential images (thermal
images (80 × 160 × 20) and binary images (80 × 160 × 20)) were used to predict the
image on the left of the current image, while a current image (thermal image (80 × 160
× 1) and binary image (80 × 160 × 1)) was used to predict the image on the right of the
current image. A two-channel convolution structure was applied in the experiment, but
the predicted images on both sides were combined with the current image, as in pred2reg
in the last concatenate layer. In this method, the left predicted image (using sequential
images) has a higher result than the right predicted image (using a single image).

Figure 7f shows the result obtained through a method using a three-channel image
(pred3-chan [14]). The final result of this method has the removed part that was not
predicted well in the image generated through the GAN structure. For comparing the
output images with the GT image, as with other methods, Figure 7f shows the result before
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removing the parts that were not predicted well for the comparison. However, as explained
in pred3-chan [14], it is difficult to obtain a result similar to the GT because of gray noise.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 7. Examples of result images obtained by various methods: from left to right, input, output, and GT images obtained
by (a) pred2reg, (b) predWholeIm, (c) 2-chanPred, (d) singImPred, (e) seq&sing, (f) pred3-chan [14], and (g) predLreg.

Therefore, only the left image (40 × 160 × 1) was predicted (predLreg) among the
sequential input images (thermal images (120 × 160 × 20) and binary images (120 × 160 ×
20)) in Figure 7g. When conducting this experiment, the feature maps (40 × 160 × 64) that
were extracted similarly to L31 in Figure 3 were combined with the feature maps (120 ×
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160 × 64) along the horizontal axis to obtain the feature maps (160 × 160 × 128), and the
final output image (160 × 160 × 1) is obtained.

In the next experiment, the PSNR and SSIM of the GT image and the output image
generated by each method were compared, as shown in Table 12. As Figure 7 and Table 12
show, predLreg had the highest PSNR and SSIM accuracy among the methods. Therefore,
this study used predLreg to generate the images on both sides of the current image
through flipping, cropping, and combining operations, as shown Figures 2 and 4. Figure 8a
shows the image generated by predLreg, while Figure 8b shows the image generated by
predLRreg (proposed method). Figure 9 shows the examples of various images generated
by predLRreg (proposed method).

Table 12. Comparisons of various image prediction methods.

Methods PSNR SSIM

pred2reg 19.450 0.8156
predWholeIm 14.501 0.6395

2-chanPred 15.261 0.6121
singImPred 19.214 0.8132

seq&sing 21.340 0.8413
pred3-chan [14] 24.927 0.8403

predLreg 26.592 0.9581

 
(a) 

 
(b) 

Figure 8. Examples of result images obtained by predLreg and predLRreg (proposed method): from left to right, input, GT,
and output images obtained by (a) predLreg and (b) predLRreg (proposed method).
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(a) 

 
(b) 

 
(c) 

Figure 9. Examples of result images obtained by predLRreg (proposed method): in (a–c), from left to right, original images,
GT images, and predicted (output) images.

In the next experiment, the results of detecting humans in the original input image
and GT image were compared with the result of detecting humans in the image predicted
by the proposed method for examining the efficiency of the proposed method. For a fair
experiment, an identical Mask R-CNN [42] was used for the two methods during human
seg-mentation. Figure 10 shows the result of human segmentation using Mask R-CNN as
mask images. As shown in Figure 10, the result of human segmentation in the GT image
and the result of human segmentation in the image predicted by the proposed method are
quite similar. The segmentation result in the predicted image is closer to the segmentation
result in the GT image than in the original input image. In Table 13, the detection accuracies
measured between the result images of object segmentation with original images (or-detect)
and the result images of object segmentation with GT images are shown. Furthermore,
the detection accuracies were measured and compared between the resulting images of
object segmentation with images predicted by the proposed method (pred-detect) and the
resulting images of object segmentation with GT images. As shown in Table 13, pred-detect
was more accurate than or-detect, indicating that the result is closer to the segmentation in
the GT image when the image predicted by the proposed method was used than when the
original input image was used.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Examples of segmentation results before and after image prediction. (a–d) From left to right, the original input
images, results with original input images, GT images, results with GT images, images predicted by the proposed method,
and results with predicted images.

Table 13. Comparisons of segmentation accuracies with original images (or-detect) and with images
predicted by the proposed method (pred-detect).

Methods TPR PPV F1 ACC IoU

or-detect 0.601 0.613 0.606 0.71 0.483
pred-detect
(proposed) 0.887 0.847 0.866 0.914 0.730

4.3. Comparisons of Proposed Method with the State-of-the-Art Methods

In this subsection, the proposed method is compared with state-of-the-art methods.
When measuring accuracy, the output image obtained by the proposed method is compared
based on the similarity to the GT image. In Table 14, the conventional image prediction [26],
image region prediction [14], and inpainting [17,19,21] methods were compared with the
proposed IPGAN-2-based image prediction method. Figures 11–13 show the comparisons
of the images obtained by all the methods. For a fair performance evaluation, previous
methods [17,19,21], which typically use one image, were applied with sequential images
(thermal images (120 × 160 × 20) and binary images (120 × 160 × 20)), as in the proposed
method; accordingly, the input layers of these methods [17,19,21] were changed to the
layers 0, 1, and 2 of the proposed method shown in Table 3. To evaluate the performance of
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pred3-chan [14] against other methods fairly, the result before removing the parts that were
not predicted well was used for the comparison, as explained in Section 4.2—see Figure 7f.
Flipping, cropping, and combining were performed, as in Figure 2b, to predict the images
on both sides, and an image of 200 × 160 × 1 was generated for comparison. As shown in
Figures 11–13 and Table 14, the proposed method produced superior results to those of the
state-of-the-art methods. The proposed predLreg method in Table 12 generated only the
image to the left of the current image, while it generated left and right region images in
Table 14; thus, the PSNR and SSIM values of the proposed method in Table 14 differ from
the PSNR and SSIM values of the proposed predLreg in Table 12.

Table 14. Comparisons of accuracies of image prediction and human segmentation by the proposed method with those of
the state-of-the-art methods.

Methods
Image Prediction Mask R-CNN

PSNR SSIM TPR PPV F1 ACC IoU

Haziq et al. [26] 22.843 0.8917 0.801 0.654 0.720 0.904 0.521
Liu et al. [17] 20.557 0.8454 0.638 0.626 0.631 0.864 0.432
Shin et al. [19] 22.181 0.8781 0.687 0.631 0.657 0.866 0.502

Nazeri et al. [21] 22.112 0.8724 0.651 0.672 0.661 0.890 0.514
pred3-chan [14] 25.146 0.8711 0.792 0.714 0.753 0.901 0.536

Proposed method 26.018 0.9437 0.887 0.847 0.866 0.914 0.730

 
Figure 11. Comparisons of original images, GT images, the prediction results obtained by the state-of-the-art methods, and
the proposed method: (a) original images, (b) GT images, and images predicted by (c) Haziq et al. [26], (d) Liu et al. [17],
and (e) the proposed method.
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Figure 12. Comparisons of original images, GT images, and the prediction results obtained by the state-of-the-art methods
and the proposed method: (a) original images, (b) GT images, and images predicted by (c) Shin et al. [19], (d) Nazeri
et al. [21], and (e) the proposed method.

Figure 13. Cont.
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Figure 13. Comparisons of original images, GT images, and the prediction results obtained by the state-of-the-art methods
and the proposed method: (a) original images, (b) GT images, and images predicted by (c) pred3-chan [14] and (d) the
proposed method.

For the subsequent experiment, the performance was compared with Mask R-CNN
human segmentation. The segmentation accuracy and output images are compared in
Table 14 and Figures 14–16. Identical Mask R-CNN [42] based human segmentation was
applied for all methods for a fair evaluation. As shown in Table 14 and Figures 14–16, the
human segmentation performance was superior when the images obtained by the proposed
method were used than when the images obtained by the state-of-the-art methods were
used.

 

Figure 14. Comparisons of detection results using original images, GT images, and the predicted images obtained by the
state-of-the-art methods and the proposed method: (a) original images; detection results using (b) original images and
(c) GT images of Figures 11b, 12b and 13b; and the images predicted by (d) Haziq et al. [26], (e) Liu et al. [17], and (f) the
proposed method.

59



Mathematics 2021, 9, 2379

 

Figure 15. Comparisons of detection results using original images, GT images, and the predicted images obtained by the
state-of-the-art methods and the proposed method: (a) original images; detection results using (b) original images and (c)
GT images of Figures 11b, 12b and 13b; and the images predicted by (d) Shin et al. [19], (e) Nazeri et al. [21], and (f) the
proposed method.

Figure 16. Cont.
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Figure 16. Comparisons of detection results using original images, GT images, and the predicted images obtained by the
state-of-the-art methods and the proposed method: (a) original images; detection results using (b) original images and (c)
GT images of Figures 11b, 12b and 13b; and the images predicted by (d) pred3-chan [14] and (e) the proposed method.

4.4. Experiments Using Different Datasets (Casia Dataset C and BU-TIV Marathon Dataset) for
Training and Testing

In this section, additional experiments were conducted using Casia thermal image
dataset C [43] and BU-TIV marathon dataset [15]. These two databases were acquired
from different cameras, and they include different angle images with totally different
backgrounds and foregrounds. The Casia dataset C includes thermal videos captured in
outdoor environment using a thermal camera during nighttime. In addition, the Casia
dataset C was captured under four walking conditions, namely slow, normal, fast walking,
and normal walking with a bag. In the dataset, data of various humans including men and
women are included. The total number of subjects and image sequences in this dataset
are 153 and 1530, respectively. The pixel value of a thermal image ranges between 0 and
255. In this experiment, 2000 images (size of 320 × 240 × 1, and pixel depth of 8 bits)
were used. For experiments, 2000 images of Casia dataset C and 2000 images of BU-TIV
marathon dataset were used for training and testing. In addition, because the size of
humans (height = 115 and width = 45 pixels) in images of Casia dataset C is much greater
than that (height = 50 and width = 15 pixels) in images of BU-TIV marathon dataset, the
images of Casia dataset C and images of BU-TIV marathon dataset were resized to make
the size of humans in both datasets similar as shown in Figure 17. The experiments were
conducted by two-fold cross validation. More specifically, the Casia dataset C was used for
training, while the BU-TIV marathon dataset was used for testing in the fold-1 as shown
in Figure 17. Then, the two datasets were switched for performing training and testing
once again to perform two-fold cross validation. In Table 15, the results of fold-1 (train
data = Casia dataset C, test data = BU-TIV dataset), fold-2 (train data = BU-TIV dataset,
test data = Casia dataset C), and the average of fold-1 and fold-2 are presented. In addition,
image prediction and human segmentation results are presented in Figures 18 and 19, and
Figures 20 and 21, respectively. As shown in Table 15 and Figures 18–21, we confirm that
our method can be adopted to the case of using two different databases for training and
testing.

  
(a) (b) 

Figure 17. Example images of datasets in fold-1. (a) Example images used in training phase; (b)
example images used in testing phase.
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Table 15. Accuracies of image prediction and human segmentation by the proposed method using
two different datasets.

Results
Image Prediction Mask R-CNN

PSNR SSIM TPR PPV F1 ACC IoU

Fold-1 24.984 0.9211 0.851 0.821 0.835 0.895 0.725
Fold-2 24.028 0.9064 0.835 0.802 0.818 0.889 0.705

Average 24.506 0.9137 0.843 0.811 0.826 0.892 0.715

 

Figure 18. Example images of image prediction from fold-1: (a) original images; (b) GT images; (c)
images predicted by the proposed method.

Figure 19. Cont.
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Figure 19. Example images of image prediction from fold-2: (a) original images; (b) GT images; (c)
images predicted by the proposed method.

 

Figure 20. Example images of human segmentation from fold-1: (a) original images; segmentation
results using (b) original images and (c) GT images; and the images predicted by (d) the proposed
method.

Figure 21. Cont.

63



Mathematics 2021, 9, 2379

Figure 21. Example images by human segmentation from fold-2: (a) original images; segmentation
results using (b) original images and (c) GT images; and the images predicted by (d) the proposed
method.

4.5. Processing Time

The processing times of the proposed image prediction method and the human
segmentation method are shown in Table 16. Each component of the proposed method (as
shown in Figure 2b) is shown in Table 16 as well. The processing time was measured in the
environments described in Section 3.5.

Table 16. Processing time of the proposed method per image (unit: ms).

Methods Component Processing Time

Image prediction
IPGAN-2 (before flipping) 48.4
IPGAN-2 (after flipping) 48.4

Postprocessing 0.01
Human segmentation Mask R-CNN 54.1

Total 150.91

As shown in Table 16, the processing time of the Mask R-CNN is higher than other
components. The frame rate of the proposed image prediction method is approximately
10.33 frames per second (fps) (1000/(48.4 + 48.4 + 0.01)). The total frame rate including
both image prediction and the human segmentation method is approximately 6.63 fps
(1000/150.91). The time and space complexities of the proposed method are O(2n) and O(n)
in training phase, respectively. They are O(n) and O(1) in testing phase, respectively.

5. Discussion

As shown in Figures 11–13, the persons in the predicted region of an image may be
poorly segmented compared with the persons in the GT image. For example, it is difficult to
detect a human body part with the proposed method when the pixel values corresponding
to a human body part in the input image are similar to the pixel values corresponding to
the background. In addition, the low-resolution thermal images used in this study have
less spatial pattern information than the general visible light images, which may have
contributed to the error.

Proposed IPGAN-2 predicts images on the left side not because the movement of
humans is towards the left side. As shown in Figure 22a, IPGAN-2 predicts the left side
of the current image at t-0 when the movement is towards the left side. In addition,
as shown in Figure 22b, IPGAN-2 predicts the left side of the current image at t-0 after
flipping images when the movement is towards the right side. Finally, we combine the
two predicted regions with the current image at t-0. Thus, the prediction does not rely on
the movement direction. By predicting both left and right sides of current image, we can
increase the FOV of current image. In addition, the reason why we do not predict the left
and right-side regions outside FOV at the same time using a single IPGAN is owing to
experimental results as shown in Figure 7 in Section 4.2 (Ablation study). As shown in
Figure 7, the performance of predicting the left and right sides of the current image at the
same time (Figure 7a–d) is lower than predicting only one side of the image (Figure 7g).
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Figure 22. Example of our image prediction method.

Figure 23 shows examples of gradient-weighted class activation mapping (Grad-
CAM) [44] images extracted from Conv2, Conv3, and Conv8, which are the layers in Mask
R-CNN, which uses the images generated by IPGAN-2 as input.

 

Figure 23. Example images extracted from Mask R-CNN layers by using Grad-CAM.

As shown in Figure 23, the Grad-CAM images extracted from the convolution layer
(Conv2) of Mask R-CNN had almost no high activation regions. As convolution proceeded,
activation regions were observed in the legs and head of a person and in the edge region of
the front and back torso in the Grad-CAM images extracted from the convolution layer
(Conv3). Figure 23 confirms that activation regions were observed in a more global region,
including the torso, starting from the Conv8 layer, which signifies that more-accurate
human segmentation is possible in the output image.

In this study, we proposed a method to predict image region outside FOV to restore
a part of human body which has disappeared when a pedestrian leaves the camera FOV.
There are several reasons that we started this study. For example, in case of tracking a
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suspect in the CCTV camera system, our method helps to generate a body of the suspect
after he or she has left the FOV of camera. In addition, the proposed method helps to track
suspects continuously without losing them when a camera changes the view direction to a
suspect who left the FOV.

Moreover, we conducted various experiments (Table 12 and Figure 7) in our ablation
study to achieve good results. To validate the predicted images by the proposed method,
we conducted human segmentation using the predicted images (Tables 13 and 14, and
Figures 10 and 14–16). We measured the predicted images using SSIM and PSNR, and
measured segmentation results using TPR, PPV, ACC, F1 score, and IoU, which confirms
that the performance of our method is better than those of the state-of-the-art methods.

6. Conclusions

The IPGAN-2 method was proposed for image prediction for thermal images where
the occurrence of noise is minimized while the wide regions to the left and right sides of the
FOV in the current image are accurately generated. For improving the accuracy of image
prediction, binary images corresponding to sequential input thermal images were used
as input for IPGAN-2. For evaluating the performance of the proposed method, various
ablation studies using original one-channel thermal images and comparative experiments
using state-of-the-art methods were performed. The experimental results using an open
database showed that the proposed IPGAN-2-based method had higher image prediction
accuracy than other methods, including the state-of-the-art methods. The TPR, PPV, F1,
ACC, and IoU of human segmentation using the proposed method were 0.887, 0.847, 0.866,
0.914, and 0.730, respectively, which are better results than those of the state-of-the-art
methods. In the experimental results, the persons in the predicted region of an image may
be more poorly segmented than the persons in the GT image. This could be because the
pixel values corresponding to the human are similar to the pixel values corresponding
to the background, which hindered the distinction between the human body part and
background. Moreover, thermal images with less spatial pattern information and the
factors in low-resolution images obtained from long distance may be affected the error.

In future work, image prediction using thermal and visible light images combined
is planned to resolve such issues. For the proposed method, experiments were only
conducted in a fixed-camera setting and not in a moving-camera setting; therefore, further
experiments should be conducted to determine whether the proposed method is applicable
in a moving-camera setting. In addition, further research is planned on image prediction in
which the FOV of a visible light camera in a vehicle is expanded in four directions.
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Abstract: Object detection and recognition are crucial in the field of computer vision and are an
active area of research. However, in actual object recognition processes, recognition accuracy is often
degraded due to resolution mismatches between training and test image data. To solve this problem,
we designed and developed an integrated object recognition and super-resolution framework by
proposing an image super-resolution technique that improves object recognition accuracy. In detail,
we collected a number of license plate training images through web-crawling and artificial data
generation, and the image super-resolution artificial neural network was trained by defining an
objective function to be robust to image flips. To verify the performance of the proposed algorithm, we
experimented with the trained image super-resolution and recognition on representative test images
and confirmed that the proposed super-resolution technique improves the accuracy of character
recognition. For character recognition with the 4× magnification, the proposed method remarkably
increased the mean average precision by 49.94% compared to the existing state-of-the-art method.

Keywords: super-resolved recognition; license plate characters; data augmentation; flip loss function

1. Introduction

Object recognition is a field of computer vision focused on recognizing information,
such as a particular object area, type, or size, from a single image. The objects being
detected can vary widely, and common applications are concerned with objects such as
people or vehicles. The accurate detection of an object of interest from a single image is the
vital element of object recognition. To recognize an object of interest in a single image, it is
essential to detect a relevant object region in the image using an object detection neural
network, and then adjust the size of the detected region appropriately to match the input
size of the object attribute recognition.

However, in the process of resizing the image to match the input size of the object
recognition neural network, the input image resolution degrades, which causes a discrep-
ancy in resolution between the input images and training images used for the training of
the object recognition neural network. This problem brings about the poor performance
of the object recognition neural network because of the distortion of input images of the
object recognition neural network. In order to solve this problem, domestic and foreign
researchers focused on improving the recognition rate of the object recognition neural
network with a preprocessing method that improves the quality of the low-resolution
image, which is the input of the object recognition neural network.

Although there have been various studies aimed at improving the accuracy and speed
of object detection neural networks and object attribute recognition neural net-works
themselves, studies on techniques for upscaling low-resolution (LR) image inputs in object
recognition are still lacking. Therefore, in this paper, to address this problem of object
recognition degradation, we develop techniques for image super-resolution (SR) and object
recognition studies to transform LR images into high-resolution (HR) images through SR
techniques as a means of achieving higher recognition rates. Research using image SR
technology to improve object recognition accuracy will produce higher recognition rates
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in future real-world object recognition applications, such as a smart parking system that
can manage parking lots without a person, an intelligent transportation system that can
administrate the traffic situation efficiently, and text-to-speech.

Our contributions in this paper are summarized threefold as follows:

1. We proposed the new loss function that can augment data without the addition of
data capacity by using the flip function. It trains the parameters of the SR neural
network so that the SR result is robust to left-right reversal.

2. We proposed simple yet advanced methods of collecting data. The proposed web-
crawling method would be helpful to collect the ready-made datasets which are
available on the website. Another one is the proposed artificial license plate image
generation that will be helpful in new fields such as scene text recognition research
for data augmentation.

3. We integrated the SR network and character recognition neural network, and derived
the optimized result by learning the proposed model with self-collected training data.

2. Related Works

2.1. Super-Resolution (SR)

SR technology, which converts LR images into HR images, is a major computer vision
field. The SR method designates the original high resolution (HR) as the ground truth that
needs to be restored, improves the resolution of the LR, and makes the restored image
equal to the original HR image.

The typical criteria for measuring the quality of an SR image is the ratio of noise power
to the maximum power a signal can have. That is, the peak signal to noise ratio (PSNR)
and structural similarity (SSIM) used to evaluate the distortion of structural information.
Recently, with the growing interest in convolutional neural networks (CNNs), CNNs have
been utilized in several computer vision fields, and techniques using CNNs have been
proposed in SR fields [1–15].

CNN-based SR technology is a method of restoring LR images through multiple
convolutional layers into which LR images are inputted. Based on the loss function, it is
possible to train the CNNs to minimize their values by defining the sum (L1 loss) of the
difference between the original and predicted values, and the sum (L2 loss) of the difference
between the original and predicted values can also be minimized. SRCNN [1] was the
first method to utilize a CNN for high resolution conversion problems, outperforming
example-based learning methods (example-based SR [2]) and sparse coding methods
(sparse coding-based SR [3]) using LR–HR image pairs. At the time, the SRCNN showed
the highest performance among any high resolution conversion method. However, SRCNN
scaled LR images via linear interpolation, passing enlarged images through CNNs to obtain
a resilient image, which required substantial computing power due to the HR-domain
CNNs and had limitations in accuracy because it used only three layers of CNNs.

Accordingly, deep neural network utilization and various neural network lightening
techniques have been proposed to improve performance. Subsequently, methods such as
FSRCNN [4] and ESPCN [5] improved performance by reducing computing power and
increasing the number of CNN layers using LR images as CNN inputs and by expanding
the size of the output layers. However, as the CNN layer deepens, there is a gradual loss of
information from the front layer through each subsequent layer. Thus, several methods
have been proposed in subsequent studies to address this problem. An EDSR [6] technique
using skip connection-based residual learning (ResNet [7]) was proposed. This technique
demonstrated that batch regularization had little effect on HR image restoration problems
and eliminates them; the input images were connected directly to output terminals. Ad-
ditional methods have been proposed, such as VDSR [8], which utilizes both ResNet and
VGGNet [9] structures, and DBPN [10] and RDN [11], which utilize DenseNet [12], to
connect all networks. DBPN undergoes repeated up-sampling and down-sampling during
the learning process and learns by calculating the difference from the source at each layer
and providing feedback to reduce the reconstruction error at the next learning stage.
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In addition, even newer CNN techniques, such as DRN [13], USRNet [14], and
MZSR [15], were proposed. Unlike conventional models that typically use a single loss
value, DRN adds a double regression loss to the existing loss and combines the two loss
values to use as its loss function. Double regression loss limits the down-sampling of im-
ages restored from LR to resemble the input LR images. The USRNet and MZSR methods,
unlike other models that typically train using only the bicubic kernel, were proposed to
perform robust SR in various kernel environments. USRNet is a method of restoring images
by setting and adjusting the noise level and kernel type as hyper parameters, whereas
MZSR is a method of restoring images that is more flexible under actual blue conditions by
training on various kernels.

2.2. Object Recognition

Among the various object recognition technologies, character recognition technology
uses computer vision to detect vehicle license plate locations and recognize the vehicle
numbers, and this application is widely used for real-life services, such as smart trans-
portation and smart parking. The goal of this technology is to correct traffic regulations by
recognizing the number of vehicles that are speeding or violating signals and to accurately
recognize the number of vehicle plates that are geometrically distorted or unrecognizably
damaged. In this context, character recognition consists of a license plate detector, which
detects the area of a license plate in a vehicle image by passing the vehicle image to a
CNN, and a character recognizer, which recognizes the internal letters from the detected
license plate. Intersection over union (IoU) and mean average precision (mAP) can be
used as criteria for measuring the performance of license plate detectors and character
recognizers. IoU is a metric of evaluating a model by calculating the ratio of the intersection
and aggregation between the detection results predicted by the model and the location
of the actual object. In general, if the IoU value exceeds 0.5, then the speculative model
has properly detected the position of the object. mAP is a calculation that evaluates the
accuracy of object recognition CNNs, which is defined as the proportion of information
recognized through the CNN that matches the label of the actual object.

A wide range of research has been conducted on vehicle license plate detection and
character recognition techniques [16–20]. In Korea, a license plate database was constructed
by virtually generating an artificial license plate similar to an actual vehicle license plate
and applying six data expansion methods to the generated license plate. Accordingly, a
method was proposed to solve problems of data shortage, which is a major challenge in
training CNNs [16]. Traditional artificial data generation methods often result in models
that do not recognize license plates at various angles because they only generate images of
front-facing license plates. Therefore, a method for building a three-dimensional, rotation-
based artificial license plate database has been proposed to address this problem [17]. We
previously proposed a method to merge license plate detection and license plate recognition
into a single network to improve local binary pattern (LBP)-based cascaded detector quality
using minimal CNNs [18]. SSD [19] is a method of object recognition using a single deep
neural network, wherein the bounding box in the output space is separated using a base
space with various aspect ratios and scales, and then the final bounding box is generated.
CCPD [20] has collected more than 250,000 license plates to help address the inadequacy of
a license plate database and to address the low recognition problem and has built large
datasets that are approximately 30GB in size, providing 100,000 learning datasets and
150,000 test datasets. This is significant in addressing the problem of data scarcity in future
license plate recognition studies through the establishment of large license plate databases.

3. Proposed Method

3.1. Training SR Networks

For SR neural network training, we collected a total of 13,230 license plate images
from web crawl and by synthetic generation and divided them into a training set and a
validation set. The training set is 11,231 HR license plate images and the validation set is
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1999 HR license plate images. LR images were acquired by reducing the size of the HR
images collected through biological interpolation. Neural network parameters were trained
to restore the images via SR artificial neural networks to make them look similar to the
original. In this work, the DBPN [10] method was benchmarked, modified, and improved
for license plate image SR. The proposed method, as presented in Figure 1, underwent
repeated up-blocks and down-blocks through multiple CNN layers in the learning process.

Figure 1. Iterative up and down blocks for SR framework. Two characters were masked due to
privacy policies.

In this paper, various data extensions, such as rotations, perspective transformations,
and crops, were used for training the SR artificial neural networks. In addition, hyper
parameters were set and used (as shown in Table 1) to expand various magnifications, such
as 2×, 3×, and 4×.

Table 1. Hyper parameters of the SR framework.

Scale 2× 3× 4×
Kernel size 6 5 8

Stride 2 3 4
Padding 2 1 2

The proposed method consists of SR and character recognition. The computational
time of the proposed SR method for different scale factors of 2×, 3×, and 4× is as follows.
Given the ground-truth HR image with 144 × 96 pixels, the proposed SR method takes
0.9 ms for a LR image with 72 × 48 pixels and 2× scale factor, 1.0 ms for a LR image with
48 × 32 pixels and 3× scale factor, and 1.1ms for a LR image with 36 × 24 pixels and 4×
scale factor. The computational time of the proposed character recognition model takes
2.1 ms for a input image with 128 × 128 pixels.

Figure 2 shows the changes in the mean PSNR and mean SSIM according to the
proposed SR artificial neural network checkpoint. A total of 1999 license plate images were
used as data sets for verification. Overall, it can be seen that the value gradually increases,
then increases significantly around checkpoint 1000, and then no longer changes and is
saturated. The blue graph represents 2× SR results, the black graph represents 3× SR
results, and the purple graph represents 4× SR results.

In this work, we propose a new loss function for improving the performance of the SR
network, as depicted in Figure 3. The loss function is defined as

Losstotal = LossSR + Lossflip (1)

LossSR =
N

∑
i = 1

|yi − f (xi)| (2)

Lossflip =
N

∑
i = 1

{ f (xi), flip( f (flip(xi)))} (3)

where n denotes the number of training images, xi denotes the i-th LR training image, f (xi)
denotes the SR result of xi, and yi denotes the i-th HR training image corresponding to the
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SR image f (xi). In addition, flip(·) denotes the function that inverts left and right sides from
the input image. The flip loss function Lossflip enables us to train the parameters of the SR
neural network so that the SR result is robust to left–right reversal. As shown in Figure 3,
for flip loss calculations, the left–right inverted LR image was passed through the SR
artificial neural network to obtain an additional flipped SR. Then, we obtained a re-flipped
SR that originally reversed the restore image back to its original side and calculated the
sum of the absolute values of the original SR image and the re-flipped SR image to obtain
flip loss. Additionally, the original loss was obtained by applying the input LR image to
the SR artificial neural network and by calculating the sum of the obtained restored image
and the absolute value of the difference between it and the HR image. Finally, the total
loss was calculated by combining the flip loss and original loss. Our image SR model was
trained in the direction of reducing this total loss.

Figure 2. Trends of the average PSNR and SSIM results, according to the checkpoint.

Figure 3. Proposed loss function for the SR framework. Two characters were masked due to
privacy policies.
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3.2. Training Chracter Recognition Networks

In this study, vehicle image data was collected through a web crawl using the Beauti-
fulSoup Library. BeautifulSoup is a Python-based library that can load and store desired
data from HTML or XML web pages, allowing data to be extracted to fit a specific format.
The web crawler is a module that facilitates the viewing of all the information posted
on the browser, as well as the storage of that information locally in an easy-to-use man-
ner, As shown in Algorithm 1, the pseudocode capable for performing web crawl was
implemented to collect the necessary data.

Algorithm 1. Web-crawling code

1. N: number of pages that should be crawled
2. M: the length of the html tags that were stripped
3. For k from 1 to N do
4. try:

a. obtain uniform resource locator of page and gather all html tags of page.
b. strip all html tags and obtain car image tags of pages.
c. obtain car license plate character tags.
d. for (i = 0 to i < M):

i. if(length of car license plate character tags = 8):
ii. save car images that have 8-digit license plate.
iii. else:
iv. continue

5. except:

a. continue

During the process of collecting real-world data through web crawl, we encountered
a shortage in the Korean character data. We implemented the source code for generating
synthetic license plates using OpenCV-based traditional methods [21] to compensate for
the lack of data, as shown in Algorithm 2. Figure 4 presents an example of artificially
generated 8-digit license plates.

Algorithm 2. Artificial license plate image generation code

1. N: number of artificial license plate images that should be generated
2. L: license plate image which is empty
3. For i = 1 to N do:
4. resize the plate image L and define the character that should be generated.
5. obtain the number list and character list to be inserted in empty license plate image.
6. for j = 1 to 8 do:

a. if j = 4 do:

i. Char = character list[random(0, length of character list)]
ii. draw the Char on the empty plate image on the third position

b. else do:

i. Num = number list[random(0, length of number list)]

7. draw the Num on the empty plate image on the j-th position on the image.

74



Mathematics 2021, 9, 2494

 
Figure 4. Examples of artificial license plate images.

To perform character recognition with the developed database, we designed and
trained a two-step CNN model for vehicle character recognition. The first CNN model
is intended to detect the license plate region within the input image. This model outputs
the character region coordinates of the license plate region when passed through a neural
network. The second CNN model is for character recognition, which receives cropped
license plate images and outputs the characters, types, and locations of Korean characters
in the license plate. We designed a two-step neural network model using the Darkflow [22]
open source module with real-time character recognition, and individually trained two
neural network parameters using the data we collected through web crawl and artificial
data generation. For training the character recognition network, 122 classes were defined as
presented in Table 2. We trained the character recognition network with 11,231 HR license
plate images, which are the same in the training of the SR network, and we tested the
character recognition network with 200 HR license plate images. Among 1999 validation
images for the SR network, we selected 200 representative images as the validation set of
the character recognition and labeled each character for 200 images by ourselves to validate
the performance of the character recognition.

3.3. Integrated Framework for Improving the Recognition Accuracy

The general process of character recognition can be described as follows. The license
plate area is cropped and extracted from the entire image. The extracted license plate
image acts as input for the neural network, and the trained neural network recognizes the
positions and labels of each character. Although interpolation methods, such as bicubic
interpolation, can be used to resize the license plate to the input size of the neural network,
these methods reduce clarity during the image magnification process. To address such
problems, this work proposes a restoration preprocessing technique for images using SR.
As shown in Figure 5, the license plate image, which is an LR image, is cropped from the
car image. SR network extracts the feature of cropped license plate image, and improve
the resolution of image with iterative up and down blocks. The character recognition
network input the SR image to backbone model of character recognition neural network.
The backbone model of character recognition neural network, Focus layer and CSP1 layer,
extracts feature of input image by combining and shaping image features at different
granularities. The neck model of character recognition neural network, CSP2 layer, and
PANet aggregate image features to deliver them forward to character prediction of image.
And finally, the head model predicts the box and the class of input image. The recognition
rate can be improved by improving the clarity of the character through the proposed SR
technique before the license plates that are extracted from the vehicle image enter the input
of the character recognition neural network. Without the SR process, some characters
can become degraded and difficult to recognize when recognizing vehicle characters in
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images. The proposed technique enables such characters to have high-definition clarity.
The recognizer’s character recognition rate can be improved with characters having high
brightness, with their resolution close to that of the characters learned by the recognition
neural network. By utilizing neural network weights trained separately using only vehicle
license plate image data, which is the character class of interest, we can obtain highly
accurate vehicle license plate restoration results compared to universal SR neural networks
that cover various character classes at once.

Table 2. 122 classes for character recognition.

Class Character Class Character Class Character Class Character

0 0 31 강원 62 두 93 차

1 1 32 경기 63 드 94 처

2 2 33 경남 64 라 95 초

3 3 34 경북 65 러 96 추

4 4 35 광주 66 로 97 츠

5 5 36 대구 67 루 98 카

6 6 37 대전 68 르 99 커

7 7 38 부산 69 마 100 코

8 8 39 서울 70 머 101 쿠

9 9 40 세종 71 모 102 크

10 강 41 울산 72 무 103 타

11 경 42 인천 73 므 104 터

12 광 43 전남 74 바 105 토

13 대 44 전북 75 배 106 투

14 부 45 제주 76 버 107 트

15 서 46 충남 77 보 108 파

16 세 47 충북 78 브 109 퍼

17 울 48 가 79 사 110 포

18 인 49 거 80 소 111 푸

19 전 50 고 81 수 112 하

20 제 51 공 82 스 113 프

21 충 52 그 83 아 114 호

22 구 53 국 84 어 115 허

23 기 54 나 85 오 116 해

24 남 55 너 86 우 117 후

25 북 56 노 87 육 118 흐

26 산 57 누 88 자 119 합

27 원 58 느 89 저 120 영

28 종 59 다 90 조 121 -
29 주 60 더 91 주

30 천 61 도 92 즈
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Figure 5. Flowchart of the integrated SR and character recognition. Two characters were masked due
to privacy policies.

4. Results

4.1. Results of SR

To verify the performance of the SR neural networks trained in Section 3.1, we mea-
sured the PSNR and SSIM and compared the restored SR images after SR restoration and
the original HR images using 1999 cropped license plate images. The proposed SR method
has superior performance in restoring the quality of license plates compared to the conven-
tional method, as demonstrated in Figures 6–8 and Table 3. For example, Figure 6 compares
the results of existing SR techniques and the proposed SR method. Since the shapes of
Korean letters tend to be more complex than that of the numbers in the license plate image,
Korean letters can be more blurred than the numbers in the LR license plate image. As in
Figure 6b which is the input of the SR network, when the LR bicubic image’s quality is low
and the character is heavily blurred, the LR character is hard to restore. In Figure 6g, while
the numbers in the image are clear, other shapes are still unclear. Nevertheless, we note
that the proposed image restoration performance is superior to or equivalent to existing
state-of-the-art SR methods, and the proposed method provides much clearer results in the
boundary edge area of other characters or numbers in the license plate image. These results
allow us to qualitatively confirm that the proposed SR method has superior resolution
improvements over conventional methods. Table 3 presents the performance of several SR
techniques using the PSNR and SSIM. This quantitatively demonstrates the effectiveness
of the proposed SR method.

77



Mathematics 2021, 9, 2494

Figure 6. SR results of the first plate image (4×). (a) HR (128 × 64), (b) Bicubic, (c) DRN, (d) MZSR,
(e) USRNet, (f) DBPN, (g) Proposed. Two characters were masked due to privacy policies.

Figure 7. SR results of the second plate image (4×). (a) HR (140 × 48), (b) Bicubic, (c) DRN, (d) MZSR,
(e) USRNet, (f) DBPN, (g) Proposed. Two characters were masked due to privacy policies.

Figure 8. SR results of the third plate image (4×). (a) HR (144 × 40), (b) Bicubic, (c) DRN, (d) MZSR,
(e) USRNet, (f) DBPN, (g) Proposed. Two characters were masked due to privacy policies.

Table 3. Average PSNR/SSIM of license plates for validation.

Scale 2× 3× 4×
Bicubic 30.85 0.9297 26.09 0.7960 23.68 0.6516
MZSR 21.15 0.7056 21.27 0.5942 19.53 0.3788
DRN - - - - 25.80 0.6945

DBPN 33.72 0.9616 - - 25.41 0.7739
Proposed 33.75 0.9632 30.09 0.9181 26.99 0.8430

4.2. Results of Character Recognition

Figure 9 presents the mAP results for 200 test sets (150 new 8-digit license plates and
50 electric vehicle license plates) measured using a two-stage character recognition neural
network model. As shown in Figure 9a, due to insufficient Korean license plate data, for
some characters, such as 113(하), 115(호), and 116(허), the character recognition neural
network did not recognize Korean letter classes, and achieved an mAP score of 87.14%. To
improve this, the additional building and training using the data obtained through web
crawl and synthetic data generation achieved an mAP score of 95.30%. This was obtained
by gradually improving the character recognition rates for other classes and by recognizing
all of the problematic Korean letter classes, as shown in Figure 9b.
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Figure 9. Results of character recognition (a) without and (b) with artificial license plate generation.

Figures 10 and 11 present the results of detection and text recognition of the new
8 digits and the electric vehicle license plates, respectively. Figure 10 shows the license
plate area detection and character recognition results from the vehicle image together,
whereas Figure 11 shows the results of the character region detection and label information
recognition from the cropped license plate images. For reference, the number plate recog-
nition processing speed in the video was approximately 30 fps or higher, thus achieving
real-time processing.

In addition, the character recognition algorithm proposed in this study can be extended
to the recognition of vehicle license plate characters in other countries through re-the
training of neural networks without any change to our algorithm. Unfortunately, however,
there are few open license plate datasets due to issues such as personal information privacy,
so it cannot be applied immediately. If other foreign license plate data is available in
the future, our character recognition algorithm can be extended and applied to other
foreign characters.

 

Figure 10. Examples of plate detection results. Two characters were masked due to privacy policies.
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Figure 11. Examples of character recognition results. Two characters were masked due to
privacy policies.

4.3. Integrated Results of SR and Character Recognition

This section presents the performance improvements in character recognition from
using SR techniques. Image quality was improved using the proposed SR technique after
converting the original license plate image into 2×, 3×, and 4× LR images, which were
degraded by bicubic interpolation. As can be seen in Table 3, the images were improved
through SR. These images possessed higher PSNR values than the LR images. However,
the higher PSNR values cannot guarantee image quality, because higher PSNR values
do not necessarily mean that our proposed SR technique was effective with respect to
character recognition. This is because comparing the similarities between HR and SR
images can result in a high PSNR calculation due to superficial similarities, such as in
color or the position of letters, even if their shape is distorted in the process of improving
the quality of letters or numbers. Therefore, we aimed to verify whether the proposed
SR technique could improve the performance of character recognition by utilizing the
character recognition neural network. When measuring the recognition rate from the
license plate images in Figures 12 and 13, we observed that the data were detected by the
license plate recognizer only when the confidence of the data was over 50%. Although
the perceived confidence of images, with improved quality owing to the SR techniques,
was similar to that of the original HR images, the degree of image quality improvement
was not significant in the case of double magnification. However, with enhancement in
the image quality owing to the 3× and 4× magnification SR techniques, the recognition
rate was significantly improved, as the letters not recognized in the LR image were newly
recognized in the SR image, as observable in Figures 12 and 13. Meanwhile, in the case
of bad weather conditions (nighttime, heavy rain, heavy snow, etc.) or the angle of the
license plate in the video is rotated a lot, the proposed algorithm often gives wrong results.
The several wrong results from bad conditions such as nighttime and rotation situations
are shown in Figure 14. For example, there are some missing and false recognition results
in Figure 14b. The proposed algorithm often provides a failure case when there is a bad
weather environment or when the angle of the license plate in the image is rotated too much.
This is considered a limitation of the current algorithm, and the limitation is expected to be
resolved via the application of an additional data augmentation technique.
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Figure 12. Examples of character recognition results. Recognition results on (a) bicubic results (3×),
(b) proposed SR results (3×), and (c) HR images. Two characters were masked due to privacy policies.

Figure 13. Examples of character recognition results. Recognition results on (a) bicubic results (4×),
(b) proposed SR results (4×), and (c) HR images. Two characters were masked due to privacy policies.
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Figure 14. Failure examples of character recognition results. (a) Ground-truth labels on HR images
and (b) the proposed SR (4×) and character recognition results obtained from LR images. Two
characters were masked due to privacy policies.

The evaluation was conducted using mAP to quantitatively verify how many license
plate numbers and letters recognized in this manner were accurate. By scaling 1999 LR
license plate images through biological interpolation, mAP was measured by applying
proposed SR technology instead of biological interpolation. Comparisons were made with
the results in Figures 15–18. This demonstrates that the character recognition accuracy for
LR images was significantly lower than that for HR images.

Figure 15. mAP comparison results. (a–c) represent the mAP results on bicubic results (3×), proposed
SR results (3×), and HR images, respectively.
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The mAP did not exhibit a significant improvement for SR images because the per-
formance of the original image was not significantly different from the quality of the 2×
LR images. Meanwhile, Figure 15 shows the character recognition mAP results for 3×
LR, SR, and HR images, from left to right. From this, we can observe that all of the class
(0–121)-specific mAPs (35.56%) for the SR image results were 13.56% higher than the mAP
(22.00%) calculated for the LR images, which was closer to the mAP results (96.7%) of
the HR images. This result shows that SR is a technology that has a positive impact on
the performance of character recognition software. In addition, Figure 16 shows the mAP
results for a numeric class (0–9) for LR, SR, and HR images. The numerical class for SR
image results (0–9) mAP (71.80%) was increased by 27.90% when compared to the mAP
(43.90%) for LR images.

Figure 17 presents the results of the 4× magnification LR, DBPN, the proposed SR,
and the number recognition mAP for HR images, starting from the upper left. All class
(0–121)-specific mAPs (25.13%) for the SR image results were 20.30% higher than the mAP
(4.83%) for the LR images, and 11.55% points higher than the mAP (13.58%) for the existing
DBPN SR images. This shows that the proposed SR image was closer to the mAP result
(76.17%) from the HR image than the LR and DBPN SR images. Additionally, Figure 18
shows the mAP results for a numeric class (0–9) for LR, DBPN, proposed SR, and HR
images. The numerical class for the SR image results (0–9) mAP (61.30%) was 49.94%
points higher than that of the mAP (11.36%) for the LR images, and 41.5% points higher
than that the mAP (19.80%) for the existing DBPN SR images. Tables 4 and 5 present a
comparison of the results of character recognition of several SR techniques using mAP.
Tables 4 and 5 show the mAP comparison of various SR methods for the whole 122 classes
and for 10 classes only, respectively. The proposed method outperforms other methods of
character recognition. This quantitatively demonstrates the effectiveness of the proposed
SR method in character recognition.

Figure 16. mAP comparison results for only numbers (0–9). (a–c) represent the mAP results on
bicubic results (3×), proposed SR results (3×), and HR images, respectively.
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Figure 17. mAP comparison results. (a–d) represent the mAP results on bicubic results (×4), DBPN
results (×4), proposed SR results (×4), and HR images, respectively.
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Figure 18. mAP comparison results for only numbers (0–9). (a–d) represent the mAP results on
bicubic results (×4), DBPN results (×4), proposed SR results (×4), and HR images, respectively.

Table 4. Average mAP (%) comparison of LR license plates for validation of 122 classes (0–121).

Scale 2× 3× 4×
Bicubic 62.61 22.00 4.83
MZSR 18.24 18.53 7.65
DRN - - 14.60

DBPN 57.49 - 13.58
Proposed 64.78 35.56 25.13

Table 5. Average mAP (%) comparison of LR license plates for validation of 10 classes (0–9).

Scale 2× 3× 4×
Bicubic 85.13 43.90 11.36
MZSR 58.37 58.86 30.86
DRN - - 48.40

DBPN 85.85 - 19.80
Proposed 91.70 71.80 61.30
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5. Discussion

In this section, we discuss the strengths and weaknesses of the proposed structure in
detail. Our results show that the proposed integrated framework, super-resolved character
recognition, improves character recognition performance. For example, the proposed
method remarkably increased the mAP by 49.94% points compared to the existing state-of-
the-art method for character recognition with the 4× magnification. However, failure cases
in bad environments such as nighttime and rotation situations of our proposed framework
can be generated. This is considered a weakness of our proposed algorithm and these
shortcomings can be overcome through the data augmentation technique.

Meanwhile, image quality factors that should be considered important to recognize
characters well include sharpness, contrast ratio, color, and noise. In general, the sharper
the image, the higher the contrast ratio, the higher the color saturation, and the lower the
noise, the better the character can be recognized. An integrated criterion can be proposed
by comprehensively considering these quality factors. Additionally, the loss function
(localization loss, confidence loss, and classification loss) used for character recognition
can be simultaneously applied to the SR neural network training. As a future study, the
end-to-end training of SR and character recognition can be considered.

6. Conclusions

In this paper, we analyzed the problem of reduced character recognition caused by
differences in resolution between the test and learning image data. Both these data were
trained by character recognizers and the proposed SR technique, which can improve char-
acter recognition in LR test input environments. To verify the performance of the proposed
method, we implemented and experimented with SR and character recognition integration
systems using Darkflow-based implemented license plate recognizers, confirming that SR
techniques can help to innovatively improve license plate recognition rates. Additionally,
we confirmed that data expansion using web crawl and artificial data generation methods
can improve the performance of license plate recognizers. The license plate data set secured
through this study and the SR artificial neural network weights can be widely utilized in
areas such as smart transportation and smart parking, or any domain wherein text recogni-
tion of LR input images can be utilized. In the future, in addition to integer magnifications,
such as 2×, 3×, and 4×, further intensification studies examining minority magnification
(1.1 to 3.9) and network memory compression through the parameter sharing of weights
by magnification can be performed.
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Abstract: Among various developments in the field of computer vision, single image super-resolution
of images is one of the most essential tasks. However, compared to the integer magnification model
for super-resolution, research on arbitrary magnification has been overlooked. In addition, the
importance of single image super-resolution at arbitrary magnification is emphasized for tasks such as
object recognition and satellite image magnification. In this study, we propose a model that performs
arbitrary magnification while retaining the advantages of integer magnification. The proposed model
extends the integer magnification image to the target magnification in the discrete cosine transform
(DCT) spectral domain. The broadening of the DCT spectral domain results in a lack of high-frequency
components. To solve this problem, we propose a high-frequency attention network for arbitrary
magnification so that high-frequency information can be restored. In addition, only high-frequency
components are extracted from the image with a mask generated by a hyperparameter in the DCT
domain. Therefore, the high-frequency components that have a substantial impact on image quality
are recovered by this procedure. The proposed framework achieves the performance of an integer
magnification and correctly retrieves the high-frequency components lost between the arbitrary
magnifications. We experimentally validated our model’s superiority over state-of-the-art models.

Keywords: image super-resolution; arbitrary magnification; high-frequency attention; DCT
spectral domain

1. Introduction

Owing to convolutional neural networks (CNNs), image super-resolution shows
excellent high-resolution reconstruction from low-resolution images. In addition, research
is being conducted to improve the performance of various computer vision applications by
converting low-resolution images into high-resolution images using super-resolution.

For example, in object detection, regions of interest are detected in an image through
an object detection neural network. Subsequently, it is essential to adjust the detection
region to the size of the object attribute recognition neural network. However, real-world
images taken using CCTV cameras, black boxes, drones, etc., have small object areas,
and when the image is resized by general interpolation, it causes blur and lowers the
performance of object recognition. To solve this problem, Lee et al. [1] applied the super-
resolution approach to an image that has a small object area. By applying this approach,
object recognition accuracy was improved compared to the existing interpolation method.
However, small object areas of various sizes cannot be converted into target sizes utilizing
existing super-resolution methods. Conventional super-resolution methods restore only
integer magnifications (×2, ×4). Alternatively, the input image is enlarged or reduced
by a decimal (floating-point) magnification using the interpolation method, and then,
an arbitrary magnification is performed through a super-resolution neural network. This
method causes a loss of restoration capability and an increase in computing cost due to the
deformation of the input image. Therefore, a super-resolution neural network capable of
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arbitrary magnification is required for the task at hand. Figure 1 is an example application
of arbitrary magnification super-resolution in object recognition tasks. Object detection
results taken by CCTV cameras can have arbitrary resolutions. There is a problem when
using detection results for object recognition because most recognition models have a fixed
input size. To resolve this problem, bicubic interpolation can be considered. However,
it causes blur then lowers the performance of object recognition. Therefore, an arbitrary
magnification super-resolution is required to upscale the image with an arbitrary resolution
while preserving image quality, as shown in Figure 1. When applying our method to
the application in Figure 1, it can perform the arbitrary magnification super-resolution
with a single weight of an integer magnification model and small capacity weights for
each decimal magnification model. To this end, weights for the decimal magnification
candidates should be stored in the memory in advance.

Figure 1. Example application of arbitrary magnification super-resolution in object recognition task.

In addition, the necessity of arbitrary magnification super-resolution for other tasks is
described in the related works section. When constructing an arbitrary magnification super-
resolution, it should be magnified to the target size through the decimal magnification
by interpolation. In this case, various interpolation methods can be applied, but existing
interpolation methods expand to a state in which many low-frequency components are not
preserved. Applying this to a super-resolution model causes a decrease in image restoration
capability. Therefore, for arbitrary super-resolution, a method capable of expanding to
a target magnification while preserving the preservation of low-frequency components is
essential. We propose a method using DCT to solve this problem. We utilized the principle
that in the DCT spectrum domain, low-frequency components are concentrated in the upper-
left direction, and high-frequency components are concentrated in the lower-right direction.
In this case, while preserving a low-frequency component that greatly affects performance,
it expands in the lower-right direction, which is a high-frequency component. Using this, we
can preserve the low-frequency components and obtain an image magnified at an arbitrary
magnification in which only the high-frequency component is insufficient. From the
acquired image, we use DCT to more delicately extract high-frequency components through
the mask generated using hyperparameters. The extracted high-frequency component
is amplified through a high-frequency attention network. The amplified high-frequency
component is added to the input image, and the arbitrary magnification is completed.
The proposed high-frequency attention network gives the network a definite purpose of
high-frequency restoration by receiving high-frequency components as input. This leads to
good performance as the network is more focused on purpose.

In this study, a super-resolution network capable of arbitrary magnification is proposed
as follows: Integer scaling is performed through a super-resolution neural network, and
the space for residual scaling is expanded in the DCT spectral domain. In this case,
the expanded DCT spaces were part of the high-frequency region. Therefore, arbitrary
magnification is performed by filling in the insufficient high-frequency space in the spatial
domain through the high-frequency attention network. The arbitrary magnification model
proposed in this study has better restoration performance than other arbitrary magnification
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methods by retaining the advantages of the integer magnification model and proceeding
with additional arbitrary magnification.

The highlights of this study are summarized as follows:

• The image is enlarged to target resolution in the DCT spectral domain.
• The high frequency, which is insufficient owing to the DCT spectral domain spatial ex-

pansion, is restored through the spatial domain high-frequency concentration network.
• The proposed model preserves the superiority of the existing integer super-resolution

model. By simply adding the hybrid-domain high-frequency model without modi-
fying and additionally training on the existing integer super-resolution model, our
model’s arbitrary magnification restoration performance is better than that of
state-of-the-art models.

2. Related Works

2.1. Conventional Single Image Super-Resolution

The purpose of super-resolution is to use a low-resolution image as input and pre-
dict a corresponding high-resolution image. However, this is an ill-posed problem to
solve because various degradations occur while reducing the image quality from high
resolution to low resolution. Various studies have been conducted to address this prob-
lem. Super-resolution convolutional neural network (SRCNN) [2] showed innovative
restoration performance using a super-resolution CNN for the first time. Based on this,
studies on better super-resolution performance were conducted. A very deep convolu-
tional network (VDSR) [3] designed the model more deeply through a residual learning
strategy. An efficient sub-pixel convolutional neural network (ESPCNN) [4] overcomes
the limitation of inputting an image with a target magnification as input by implement-
ing a pixel-shuffling layer that can be learned with an upsampling module. Computing
overhead is reduced because the input images do not need to be enlarged by interpola-
tion, and a deeper network can be built using small-sized filters. Deep back-projection
networks (DBPN) [5] created a structure that repeatedly stacks the image upscaling and
downscaling layers. It showed better performance by repeatedly reducing and enlarging
the size of the input image. Residual channel attention network (RCAN) [6] introduced
a channel attention mechanism to create a deep model. Dual regression networks (DRN) [7]
improved the restoration ability by constructing a closed circuit inside the model and
adding a low-resolution domain loss function that calculates the difference from the input
image by downscaling the super-resolution result image, in addition to the existing high-
resolution domain loss function. Residual dense network (RDN) [8] learned the hierarchical
representation of all feature maps through the residual density structure. Second-order
attention network (SAN) [9] showed good performance by strongly improving the repre-
sentation of image feature maps and learning the interdependencies between feature maps.
SRGAN [10] used adversarial learning to improve super-resolution performance. This
model consists of a generator and a discriminator network, and the generator aims to create
a super-resolution output that the discriminator cannot differentiate from a sample input.
Recently, SRFlow [11], which uses a normalizing flow to predict a complex probability
distribution from a normal distribution, has been attracting attention. SRFlow transforms
a high-resolution image into a complex probability distribution and gradually differenti-
ates the probability distribution into a normal distribution of a low-resolution image by
using the Jacobian matrix. In addition, there is an affine coupling layer in SRFlow, which
divides the dimension of the input value into two, leaving one dimension unchanged and
performing shift and affine transformations on the other dimension. This transform makes
it easy to compute the inverse transform and the Jacobian determinant. This differentiation
process is learned, and when a normal distribution of a low-resolution image is processed,
it can be transformed into a complex probability distribution. Complex probability dis-
tributions generate images from probability distributions using a flow-based generative
model. The advantage of SRFlow is that it has enhanced diversity to create high-resolution
images from fewer low-resolution images than a generative adversarial network (GAN). In

90



Mathematics 2022, 10, 275

addition, the log-likelihood loss is used to prevent divergence during learning to ensure
stability, and it is easier to learn than the generator and discriminator of the GAN separately.
SRFlow-DA [12] showed improved performance by adding six more convolution layers to
extend the receptive field of the SRFlow model and removing the normalization layer that
does not fit the super-resolution structure. Noise conditional SRFlow (NCSR) [13] inserts
noise into low-resolution and high-resolution images during training and removes artifacts
caused by noise. SwinIR [14] proposed a strong baseline model for image restoration based
on the swin transformer [15]. SwinIR is composed of several residual swin transformer
blocks, each of which has several swin transformer layers together with a residual con-
nection. Through this, SwinIR showed excellent image restoration ability. A cross-scale
non-local network (CSNLN) [16] proposed the first cross-scale non-local (CS-NL) attention
module with integration into a recurrent neural network. Additionally, they combine the
new CS-NL prior with local and non-local priors. These methods present good quality
image results and have a lot of advantages, as shown in Table 1. However, due to the
various resolutions of taken images in the real world, the need for arbitrary magnifica-
tion is emerging. Despite the development of the latest super-resolution as above, these
methods have shortcomings, as shown in Table 1. To perform the arbitrary magnification
super-resolution, existing methods should utilize interpolation methods such as bicubic,
bilinear, etc. Due to this limitation, the interpolation results show poor image quality.
Therefore, to deal with this problem, we propose a super-resolution network capable of
arbitrary magnification.

Table 1. Conventional single image super-resolution methods’ advantages and shortcomings.

Method Advantages (Characteristics) Shortcomings

SRCNN Uses only three convolutional layers and enhances the performance
of super-resolution.

Perform integer super-resolution only
and should utilize interpolation methods

to perform the arbitrary
magnification super-resolution.

VDSR Cascades small filters many times; information over an image is
exploited in an efficient way.

ESPCNN Effectively replacing the bicubic filter, computing cost is reduced.

DBPN Concatenates the features of the repeated upsampling and
downsampling, super-solution performance improved.

RCAN Bypasses multiple skip connections and focuses on learning
high-frequency information.

DRN Estimates kernel and utilizes it to restore low-resolution images.

RDN Learns hierarchical representation and stabilizes the
training process.

SAN Rescales the features adaptively and learns feature expressions and
feature correlation.

SRGAN Uses adversarial learning and recovers heavily
downsampled images.

SRFlow-DA Enlarges the receptive field and takes more expressive power.

NCSR Adds the noise conditional layer and extends diversity.

SwinIR Applies a Swin transformer and utilizes interactions between image
content and attention weights.

CSNLN Finds and utilizes more cross-scale feature correlations.

2.2. Arbitrary Magnification Single Image Super-Resolution

Most of the super-resolution rely on non-learning-based interpolation when scaling
low-resolution images to decimal magnifications. ESPCNN proposed a magnification
method capable of learning by proposing a pixel-shuffling layer. Using this, VDSR can mag-
nify a low-resolution image to a target resolution and put it into a super-resolution model
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for arbitrary magnification. However, if the image is enlarged and passed through a neural
network, it requires significant computing resources, and it has to have a large model
weight for each magnification; thereby, its performance is more specialized for integer
magnification. Meta-SR [17] can perform arbitrary magnification with only one model by
replacing the enlarged part of the existing super-resolution model with an upscale module.
Meta-SR has a weight prediction layer that can be trained to predict weights expanded
by an integer magnification. This weight is applied to the upscale module and magnifies
the image by an integer magnification. In the image enlarged by an integer multiple,
a pixel value is selected according to the size suitable for arbitrary magnification by using
a suitable pixel mask. This overcomes the limitations of existing algorithms by applying
the k-neighborhood algorithm to deep learning. SRWarp [18] receives images warped by
enlargement, reduction, distortion, etc., as input values. For the input image, the backbone
extracts a feature map for each magnification (×1, ×2, ×4), and the adaptive warping
layer predicts a transform function that can restore the feature map image to its original
shape. Thereafter, multiscale blending combines the feature maps for each magnification,
which are restored to a non-warping form, using the rich information possessed by each
magnification (×1, ×2, ×4). Thus, SRWarp proposed a neural network that allows arbitrary
magnification through the multiscale blending of an image. Wang et al. [19] proposed
a plug-in module for existing super-resolution networks to perform arbitrary magnifica-
tion, which consists of multiple scale-aware feature adaption blocks and a scale-aware
upsampling layer. These methods have a lot of advantages, as shown in Table 2. However,
these arbitrary magnification methods have shortcomings that cannot preserve the integer
super-resolution performance. It is because these arbitrary magnification models replaced
the upscale module of the existing integer magnification super-resolution models with the
proposed arbitrary upscale module. Due to the replacement of the upscale module, the
restoration capability of the integer magnification super-resolution model is not maintained,
resulting in poor performance. There is a need for a method that preserves the performance
of the integer magnification model as much as possible in the arbitrary magnification model
and enables arbitrary magnification. Therefore, in order to maintain the performance of
the model, this paper proposes a high-frequency attention network capable of arbitrary
magnification without modifying the structure of the integer magnification model.

Table 2. Arbitrary magnification single image super-resolution methods’ advantages and shortcomings.

Method Advantages (Characteristics) Shortcomings

Meta-SR Upscales images with arbitrary scale factors
through a single model.

Cannot preserve the integer super-resolution performance
due to the replacement of the upscale module.

SRWarp Uses a multiscale blending and handles numerous
possible deformations.

Focuses on the warp of the image and is similar to
Meta-SR performance.

Wang et al.’s Uses multiple scale-aware feature adaption blocks
and a scale-aware upsampling layer.

Needs additional training of integer super-resolution model
due to the replacement of the existing module.

2.3. Frequency Domain Super-Resolution

Images can be transformed into various frequency domains, and studies have been
conducted to predict various frequency information that can express high-resolution images
through CNNs. Kumar et al. [20] proposed convolutional neural networks for wavelet
domain super-resolution (CNNWSR) to predict wavelet coefficients of high-resolution
images. The predicted wavelet coefficients are used to reconstruct a high-resolution image
using a two-dimensional inverse discrete wavelet transform (DWT). Frequency domain
neural network for fast image super-resolution (FNNSR) [21] and improved frequency
domain neural networks super-resolution (IFNNSR) [22] solve the super-resolution problem
in the Fourier domain. FNNSR formulated a neural network that parameterizes with point-
wise multiplication in the spectral domain using a single convolutional layer to approximate
the Rectified Linear Unit (ReLU) activation function. IFNNSR uses Hartley transform
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instead of Fourier transform and multiple convolutional layers to approximate the ReLU
activation function well. It also emphasizes the error of high-frequency components by
proposing a new weighted Euclidean loss. Aydin et al. [23] predict DCT coefficients that can
reconstruct a high-resolution image through a fully connected (FC) layer in the DCT spectral
domain after extending the input image to a target magnification through interpolation.
The loss is defined as the mean square error with the DCT coefficient for the corresponding
high-resolution image, which showed the possibility of CNN learning in the DCT spectral
domain. These methods have a lot of advantages, as shown in Table 3. Although it is
a super-resolution model that uses the frequency domain, it shows lower performance than
other spatial domain super-resolution models despite the fast speed. It is because these
frequency domain-based models do not properly consider spatial domain information. In
this paper, frequency and spatial domain are used as a hybrid to utilize the advantages of
each domain. In the frequency domain, a high-frequency component is extracted using the
principle of the DCT spectral domain. In the spatial domain, an amplified high-frequency
component can be obtained by using the extracted high-frequency component through
a high-frequency attention network. These advantages can lead to excellent performance
when performing arbitrary magnification.

Table 3. Frequency domain super-resolution methods’ advantages and shortcomings.

Method Advantages (Characteristics) Shortcomings

CNNW
SR

Predicts the wavelet coefficients of three images that can be used for
image restoration.

Provide lower performance than other
spatial domain super-resolution models

despite the fast speed.

FNNSR Applies Fourier transform to super-resolution and is faster than
the alternatives.

IFNNSR Learns the basic features in transformed images.

Aydin et al.’s Predicts DCT coefficients and reconstruct an image in the DCT
spectral domain.

2.4. State-of-the-Art Task-Driven Arbitrary Magnification Super-Resolution

Previous studies on single image super-resolution cannot deal with arbitrary mag-
nification super-resolution. To perform the arbitrary magnification super-resolution, it
should be resized by interpolation after passing through the integer super-resolution
network. However, these results do not show acceptable performance for each task.
To deal with this, recent studies were conducted in each task by adapting arbitrary
magnification super-resolution.

According to Zhu et al. [24], high-quality medical images with various resolutions are
important in the current clinical process. To acquire magnetic resonance (MR) images for
each magnification, they should scan each scale, as shown in Figure 2a. However, scanning
all medical images with arbitrary magnifying factors requires enormous acquisition time
and equipment constraints. On the other hand, as shown in Figure 2b, an arbitrary super-
resolution model can upscale to various target resolutions while preserving the high image
quality without multiple scans. Consequently, they devised an approach for medical
image arbitrary-scale super-resolution (MIASSR), in which they combined a meta-learning
method with GAN to super-resolve medical images at any scale of magnification.

According to Zhi et al. [25], it is a common requirement to zoom the image arbitrarily
by rolling the mouse wheel, as shown in Figure 3. It can be used for identifying the
object detail in the satellite image. To meet the requirement, they proposed arbitrary
scale super-resolution (ASSR) that consists of a feature learning module and an arbitrary
upscale module.

According to Truong et al. [26], a depth map allows for structural information to be
utilized in various applications, such as view synthesis or 3D reconstruction. However, the
resolution of depth maps is often much lower than the resolution of RGB images due to the
limitations of depth sensors. To solve this problem, the low-resolution depth image can be
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upscaled to target resolution through the depth image super-resolution with arbitrary scale
factors, as shown in Figure 4.

 

Figure 2. Example application of arbitrary magnification super-resolution in medical image pro-
cessing task. (a) Conventional approach to obtain arbitrary magnification MR images. (b) Arbitrary
magnification super-resolution approach to obtain arbitrary magnification MR images.

Figure 3. Example application of arbitrary magnification super-resolution in satellite image
processing task.

Figure 4. Example application of arbitrary magnification super-resolution in camera sensor depth
image processing task.

94



Mathematics 2022, 10, 275

Lee et al. [1] presented a high character recognition accuracy via integer magnification
super-resolution in low-resolution conditions. However, in the real world, detected object
areas may have arbitrary resolutions depending on the distance between the camera and
the subject, as shown in Figure 5. It is mentioned that applying an arbitrary magnification
in low-resolution conditions would provide a higher character recognition performance
than applying bicubic interpolation.

 
Figure 5. Example application of arbitrary magnification super-resolution in license plate character
recognition task. One or two characters were masked due to privacy policies.

The above studies proposed arbitrary magnification super-resolution models to solve
the limit of integer magnification and suggested the application of arbitrary magnifica-
tion super-resolution. These studies also indicate that the arbitrary magnification super-
resolution works well for the object recognition task, medical image processing, satellite im-
age processing, depth image processing, and character recognition task. In conclusion, we
note that arbitrary magnification super-resolution is required for various real-world tasks.

3. Proposed Method

This section describes the method proposed in this study for an arbitrary magnification
super-resolution. In Section 3.1, the DCT overview is first described, the proposed hybrid-
domain high-frequency attention network is described in Section 3.2, and the loss function
defined in this network is described in Section 3.3.

3.1. Discrete Cosine Transform (DCT)

A spatial domain signal can be transformed into a spectral domain signal, and the
converse also holds through. The most commonly used transform for this procedure is
the discrete Fourier transform (DFT). In DFT, even if the input signal is a real number,
the conversion result includes a complex number. A complex number can be calculated,
but computational overhead is an issue. Therefore, DCT, which decomposes a signal into
a cosine function and produces only real values from its spectral representation, is widely
used in low-cost devices. A two-dimensional spatial domain discrete signal input of size
N × M can be expressed in the frequency domain through DCT as given below.

F(u, v) = α(u)β(v)
N

∑
x=0

M

∑
y=0

f(x, y)γ(x, y, u, v) (1)

γ(x, y, u, v) = cos(
π(2 x + 1)u

2N
) cos(

π(2 y + 1)v
2M

) (2)
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α(u) =

⎧⎨⎩
√

1
N , u = 0√
2
N , u �= 0

(3)

β(v) =

⎧⎨⎩
√

1
M , v = 0√
2
M , v �= 0

(4)

f(x, y) =
N

∑
u=0

M

∑
v=0

α(u)β(v)F(u, v)γ(x, y, u, v) (5)

In Equation (1), f(x, y) is the pixel value of the (x, y) position of the input image,
and F(u, v) is the DCT coefficient value at the (u, v) position. Equations (2)–(4) show the
definitions of the cosine basis function and regularization constant, respectively. In contrast,
the signal transformed into the frequency domain can be transformed into the spatial
domain using a two-dimensional inverse DCT (IDCT), as shown in Equation (5). Figure 6a
shows a sample image and the results of the two-dimensional DCT on the image. It is
easy to observe the frequency information of various components, although not intuitively
because of the deformation of the spatial structure. Figure 6b shows the 64 8 × 8 cosine
basis functions. After expanding the image space in the DCT spectrum domain, IDCT
can be performed to generate the resulting image with the target size. In this case, when
expanding the DCT spectrum, the image may be extended in the upper-left or lower-right
direction. Because many low-frequency components are concentrated in the upper-left
direction and high-frequency components are concentrated in the lower-right direction,
depending on the area to be enlarged, the image has insufficient frequency information.
The goal of image super-resolution is to improve a blurry image into a sharp image, which
can be seen as restoring the high-frequency components that make the image sharp. In
this study, we propose a hybrid-domain high-frequency attention network for arbitrary
magnification super-resolution (H2A2-SR). First, we expand the image in the DCT spectrum
domain to the target magnification. Second, frequency bands are divided according to
hyperparameters to extract the high-frequency components. Finally, the high-frequency
attention network restores the lost high-frequency.

Figure 6. (a) 2D DCT example; (b) 8 × 8 cosine basis functions.

3.2. Hybrid-Domain High-Frequency Attention Network

In this section, the H2A2-SR framework is described. The architecture of the proposed
model is shown in Figure 7. The low-resolution image received as input is magnified
by an integer magnification close to the target magnification through the integer super-
resolution network. For example, when the target magnification is ×2.5, the integer
magnification network performs ×2 magnification, and when the target magnification is
×3.5, ×3 magnification is performed. The image magnified by an integer magnification
was converted from the spatial domain to the spectral domain through DCT. We use the
characteristics of DCT, in which the low-frequency in the upper left and the high frequency
in the lower-right direction are concentrated and expand the spatial area by the residual
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decimal magnification in the lower-right direction. According to the principle that the
spatial domain extended in the DCT spectrum has the same spatial size in the spatial
domain, the resultant image adjusted to the target magnification can be obtained when it
is re-converted to the spatial domain through IDCT. Because the high-frequency region
is arbitrarily expanded, the image acquired through this process lacks high-frequency
components. DCT follows the principle of energy conservation. When the image is
expanded or reduced in the DCT domain, the brightness of the image is restored by
multiplying it by the corresponding coefficient value. However, there is still a lack of high-
frequency components. To overcome this problem, we designed a model that focuses on
the accurate reconstruction of high-frequency components. The high-frequency attention
network uses a channel attention layer that can learn the correlation between RGB channels
to create high-frequency information and deepens the model through the residual learning
structure. As shown in Figure 8, a block unit channel attention called the residual channel
attention block (RCAB) [6] is configured. The proposed model is constructed by stacking
five RCABs in layers, and residual learning is applied to each block to determine the
correlation between each block.

Figure 7. Overall organization of the proposed H2A2-SR model.

To focus the network on high-frequency reconstruction, we extract high frequencies
by dividing the frequency domain according to the hyperparameters in the DCT domain.
As shown in Figure 9a, D denotes the index of the zig-zag scan for 10 × 10 pixels. If the
hyperparameter λ is set to 15, it is possible to extract high-frequency components except
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for components up to 15, as shown in Figure 9b. To this end, we determine a mask M by
using λ as

M(x, y) =
{

0, D(x, y) ≤ λ
1, otherwise

(6)

where x and y denote horizontal and vertical coordinates, respectively.

Figure 8. Configuration of RCAB [6] structure.

 

Figure 9. (a) Index of zig-zag scan for 10 × 10 pixels. (b) A mask obtained from the hyperparameter
λ of 15. (c) A mask obtained from the hyperparameter λ of 40. (d) A mask obtained from the
hyperparameter λ of 55.

Then, an image constructed with the extracted high-frequency components is passed
through the network. In addition, to focus the network on high-frequency reconstructions,
an expanded image with many low-frequency components is added to the result. The
overall procedure of the proposed algorithm is also given in Algorithm 1. We note that the
main contribution of our proposed method is not using RCAB but using high-frequency
images obtained in the DCT domain as inputs to pass through the high-frequency atten-
tion network. In the existing arbitrary magnification method, the computation cost and
the capacity of the model increase by passing the super-resolution neural network after
magnification to the target magnification through the bicubic interpolation method. In
addition, in actual use cases, all super-resolution networks must be trained at each arbitrary
magnification and, therefore, require a large capacity of memory. In contrast, our model
preserves the integer magnification performance by preserving its weight as it is and can
achieve high-performance arbitrary magnification by adding a relatively small capacity
network. In addition, unlike conventional methods of restoring the entire frequency band
of an image at once, better performance can be achieved by intensively restoring a target
high-frequency component.
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Algorithm 1 H2A2-SR model

INPUT: low-resolution image (L), target magnification factor (s).
OUTPUT: arbitrary magnification image result (O).
Step 1: Obtain integer magnification image (I) from L by using the baseline SR model.
Step 2: Transform I into the DCT domain.
Step 3: Expand to residual decimal magnification (r = s/(s – floor(s))) in the DCT domain.
Step 4: Multiply the energy conservation factor (r2) to the expanded image (E).
Step 5: Generate a mask (M) according to Equation (6).
Step 6: Multiply E and M for high-frequency (H) extraction.
Step 7: Convert E and H into the spatial domain through IDCT.
Step 8: Make H into 64 channels through the conv layer.
Step 9: Recover high-frequency (Hr) through 64 channels and 5 RCAB layers.
Step 10: Make Hr into 3 channels through the conv layer.
Step 11: Obtain O by adding E and the attention network’s result.

3.3. Loss Function for High-Frequency Attention Network

In the proposed model, a loss function is L defined as in Equation (7) to restore the
high-frequency component in the region extended by the DCT.

L =
1
N

‖FH2 A2−SR(FSR(xlr))− xhr‖2
(7)

where N denotes the image batch size, Fsr(xlr) denotes a model that enlarges a low-resolution
image by an integer magnification through a super-resolution network, and FH2 A2−SR
denotes a residual decimal magnification model. A loss function for network learning
is calculated using the mean square error between the arbitrary magnification super-
resolution model results and the corresponding high-resolution image.

4. Experimental Results

4.1. Network Training

In traditional super-resolution learning, each patch unit is obtained from a low-resolution
image, i.e., an input image, and a high-resolution image, i.e., a target image, and it is
learned through comparison. For example, with respect to a 60 × 60 high-resolution patch,
in the ×2 magnification model, a low-resolution input patch of 30 × 30 size was used,
and network training was performed. However, performing an arbitrary magnification is
an issue. If a pixel value is a decimal when performing an arbitrary magnification, a pixel
shift phenomenon occurs as the decimal value is discarded from the image. Therefore,
we have to cut the high-resolution image according to the arbitrary magnification and
construct the low-resolution image individually. Because this is very time-consuming, we
used the torch.nnf.interpolate function from Pytorch 1.8.0, an open-source machine learning
library in Python, to create low-resolution images inside the code. We used PyTorch 1.8.0
to implement our model and use python 3.8.8, CUDA 11.2, and cuDNN 8.2.0. In addition,
2D-DCT and 2D-IDCT were implemented using the built-in functions of torch.fft.rfft and
torch.fft.irfft, respectively. Our experiment was performed with AMD Ryzen 5 5600X 6-Core
Processor CPU, 32GB memory, and NVIDIA RTX 3070 GPU. Our model was trained by
Adam optimizer with β1 = 0.9, β2 = 0.999. β1, β2 denote exponential decay rates of the
estimated moments, as the previous value is successively multiplied by the value less than
1 in each iteration. We set the training batch size to 16, the number of epochs to 200, and
the learning rate to 10−4. Note that the optimized values were determined experimentally.

4.2. Performance Comparison of Meta-SR and the Proposed Method

In this section, we compare the performance of the proposed H2A2-SR with Meta-SR,
a model that can arbitrarily magnify images. Since Meta-SR can perform arbitrary magnifi-
cation with a single weight, Meta-SR does not require training for each magnification factor.
However, Meta-SR has limitations in image restoration performance because this method
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does not use a specialized weighting model according to the magnification factor. We
note that there is a trade-off between weight capacity and image restoration performance.
By focusing on improving image restoration performance, individual training for each
magnification factor can be considered so that arbitrary magnification super-resolution
models provide the optimized image restoration performance. Therefore, we trained the
Meta-SR network and H2A2-SR for each magnification factor. We denote the Meta-SR
network trained for each magnification factor as Meta-SR*. In addition, the results of
the original Meta-SR that have a single weight are presented in Table 4 to compare it
with H2A2-SR. Since a model that proceeds with integer magnification is required for
an arbitrary magnification model, in this study, DRN is learned for ×2 and ×3 magnifica-
tions and used as an integer magnification model. The peak signal-to-noise ratio (PSNR)
of the DRN ×2 model was 35.87 dB, and the PSNR of the DRN ×3 model was 32.22 dB.
CelebA [27] was used as the dataset, with 40,920 and 5060 samples for training and vali-
dation, respectively. While Meta-SR selects pixel values according to the appropriate size
for an arbitrary magnification from an image enlarged by an integer multiple, H2A2-SR
concentrates the purpose of high-frequency restoration on the network to further enhance
the edges and textures related to high-frequency components. It can be seen from the
images in Figure 10 that the proposed model performs well on the dataset. We additionally
present the expanded results in DCT to provide step-wise results of our method, as shown
in Figure 10. It can be seen that H2A2-SR has less image noise than any other arbitrary
magnification model. As shown in the enlarged image in Figure 10, the proposed model is
restoring the eye area such as the eyelid, iris, and pupil more clearly. In addition, in the
quantitative evaluation, H2A2-SR showed a higher PSNR value and a higher SSIM value
than the existing method, as shown in Table 4. The inference time of our model was mea-
sured from ×2 to 19 ms and ×3 to 23 ms. The size of the image passed through the model is
178 × 218, and the input is an image reduced according to the corresponding magnification.
At this time, the high-resolution image was cropped by 1 to 2 pixels depending on the scale.

Table 4. Comparison of the quantitative quality arbitrary super-resolution models in terms of PSNR
(dB) and SSIM.

PSNR (dB)/SSIM on CelebA with Arbitrary Scale Factors

Method Metric ×2.2 ×2.5 ×2.8 ×3.2 ×3.5 ×3.8

DRN + Meta-SR PSNR
SSIM

29.02
0.7268

31.37
0.7665

31.33
0.7696

27.51
0.6494

28.14
0.6533

28.00
0.6437

DRN + Meta-SR* PSNR
SSIM

33.80
0.8462

32.91
0.8142

31.80
0.7787

31.94
0.7618

31.41
0.7487

30.20
0.7024

DRN + H2A2-SR
(ours)

PSNR
SSIM

35.23
0.8766

33.98
0.8476

32.98
0.8201

32.22
0.7978

31.52
0.7788

30.77
0.7543

Meta-SR* denotes the Meta-SR network trained for each magnification factor. The bold represents the best scores.

4.3. Performance Comparison of the Existing Arbitrary Magnification Method and the
Proposed Method

For additional performance comparison with the existing arbitrary magnification
methods, the experiment was conducted using the training dataset and the test dataset
used in the existing arbitrary magnification method [17], as in the proposed method. The
proposed network was trained using the DIV2K [28] dataset, and B100 [29] was used as the
dataset for testing the trained model. To generate arbitrary magnification input images,
it was reduced using bicubic interpolation n of torch.nnf for each arbitrary magnification.
To compare with the existing state-of-the-art network capable of integer magnification,
the input image was expanded to bicubic for decimal magnification, and the image for
each arbitrary magnification was passed through our model without any modifications.
For the arbitrary magnification model, the RDN model was set as the base model for
an equal comparison. The PSNR of the RDN ×2 model is 31.22 dB, and the PSNR of
the RDN ×3 model is 27.49 dB. The base model freezes training when learning arbitrary
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magnification weights. For reference, SRWarp could not be tested because the source
code for the arbitrary magnification test is not currently available. Because there is no
other arbitrary magnification model, we magnified the low-resolution image as an input
to the state-of-the-art model in a bicubic format to match the magnification and used it
as an input value. The PSNR of the HAN [30] ×2 model is 31.39 dB, and the PSNR of
the HAN ×3 model is 27.70 dB. The PSNR of the SwinIR [14] ×2 model is 32.45 dB, and
the PSNR of the SwinIR ×3 model is 29.39 dB. The PSNR of the CSNLN [16] ×2 model
is 32.40 dB, and the PSNR of the CSNLN ×3 model is 29.34 dB. As can be seen in Table 5,
even a small range in the image, such as ×2.2 and ×3.2 magnifications, is expanded, but
the PSNR value is greatly lost. However, our proposed model is robust against scaling
for decimal magnification, so it shows an advantage of approximately 1.5 dB in terms of
average PSNR and 0.1013 in terms of average SSIM. Figure 11 also shows the comparison
of the subjective visual quality on B100 for different scale factors. In Figure 11, red arrows
were used to emphasize the improved part. We note in the figure that the proposed
model outperforms the existing algorithms in many edge regions such as the whiskers, the
window, the tree, and the statue.

Figure 10. Comparison between our H2A2-SR results and Meta-SR results: (a) bicubic results;
(b) DRN + Meta-SR results; (c) DRN + Meta-SR* results; (d) DRN + expanded results in DCT;
(e) DRN + H2A2-SR results; (f) high-resolution image.
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Table 5. Quantitative comparison of the state-of-the-art SR methods.

PSNR (dB)/SSIM on B100 with Arbitrary Scale Factors

Method Metric ×2.2 ×2.5 x2.8 ×3.2 ×3.5 ×3.8

RDN +
bicubic

PSNR
SSIM

27.34
0.8087

26.87
0.7849

26.25
0.7586

25.88
0.7086

25.33
0.6906

24.86
0.6728

HAN +
bicubic

PSNR
SSIM

28.39
0.8180

27.42
0.7852

26.51
0.7563

25.88
0.7102

25.26
0.6914

24.77
0.6731

CSNLN +
bicubic

PSNR
SSIM

29.52
0.8471

28.21
0.8072

26.28
0.7221

24.89
0.6739

24.377
0.6639

24.28
0.6543

SwinIR +
bicubic

PSNR
SSIM

28.50
0.8162

27.28
0.7954

26.75
0.7866

25.86
0.6973

25.40
0.6961

24.47
0.6639

RDN +
Meta-SR*

PSNR
SSIM

28.51
0.8262

28.19
0.8063

27.41
0.7801

27.01
0.7530

26.50
0.7315

25.95
0.7075

RDN +
H2A2-SR

PSNR
SSIM

29.52
0.8473

28.31
0.8097

27.63
0.7819

27.34
0.7638

26.81
0.7433

26.32
0.7237

Meta-SR* denotes the Meta-SR network trained for each magnification factor. The bold represents the best scores.

Figure 11. Super-resolution reconstruction results: (a) bicubic results; (b) RDN results; (c) HAN
results; (d) SwinIR results; (e) CSNLN results; (f) RDN + META-SR results; (g) RDN + H2A2-SR
results; (h) high-resolution images.

4.4. Ablation Study

For the ablation study, we compare the network with H2A2-SR and without H2A2-SR.
In Table 6, it can be seen H2A2-SR is effective as much as 4.5 dB and as low as 0.6 dB. In
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Figure 12, the results are numbered step-by-step inside the model for a better understanding.
Figure 13 shows the results of the step-by-step images. Step 1 refers to an image using
the base SR model for integer magnification. Step 2 is the result of multiplying the integer
magnification image by the energy conservation factor after extending it to the target
magnification in the DCT spectral domain. In the Step 2 image of Figure 13, it can be seen
that the image is well expanded to the target magnification by multiplying the energy
conservation coefficient. However, it can also be seen that the expression of textures or
lines, which are high-frequency components, is insufficient owing to excessive expansion.
Step 3 extracts high-frequency components from the result of step 2 with a mask generated
through a hyperparameter. Step 4 is the result of the high-frequency components extracted
in Step 3 through the high-frequency attention network. As shown in the Step 4 image
of Figure 13, it can be seen that our network effectively reconstructs the high-frequency
components of lines and textures well. In Step 5, by adding the results of Steps 4 and 2,
the model is used to reconstruct the high-frequency component well. It can be seen
that the jagged between the swimming cap and the face is eliminated, and the arbitrary
magnification is clear by effectively removing the noise around the logo of the swimming
cap. It can be seen that our H2A2-SR is effective not only at arbitrary magnification but also
in making the image clearer by restoring high-frequency components well.

Meanwhile, our method may have limitations. First, since our model is an add-on
algorithm, it depends on the performance of the adopted integer super-resolution model.
Therefore, it is important to adopt the appropriate integer super-resolution model. Second,
our H2A2-SR model requires the training process for each magnification to obtain better
image restoration performance. Therefore, our model needs memory capacity for storing
weights for each decimal magnification factor in practical applications. We note that there
is a trade-off between weight capacity and image restoration performance. To address this
trade-off issue, optimization techniques such as network weight compression or weight
sharing can be further applied.

Table 6. Quantitative comparison between our H2A2-SR with and without high-frequency
attention model.

PSNR (dB) on CelebA with Arbitrary Scale Factors

Method Metric ×2.2 ×2.5 ×2.8 ×3.2 ×3.5 ×3.8

Without high-frequency attention model PSNR 30.89 29.62 28.48 31.73 30.90 30.15

DRN + H2A2-SR (ours) PSNR 35.23 33.98 32.98 32.22 31.52 30.77

The bold represents the best scores.

 

Figure 12. Flowchart of H2A2-SR’s steps. Each number represents a step in H2A2-SR.
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STEP 1 
integer model result 

STEP 2 
expanded result in DCT 

STEP 3 
high-frequency extraction  

result 

 
  

STEP 4 
high-frequency attention 

network result 

STEP 5 
H2A2-SR result 

high-resolution image 

   

Figure 13. Result examples of H2A2-SR’s steps.

5. Conclusions

In this paper, we propose an arbitrary magnification super-resolution method to re-
construct high-frequency components using spatial and spectral hybrid domains. Through
spatial expansion in the DCT spectral domain, an image can be flexibly expanded to a target
resolution, and it is restored through a high-frequency attention network that supplements
the insufficient high-frequency components of the expanded image. Thus, the accuracy of
the existing integer magnification super-resolution model is preserved even at arbitrary
magnification, and high-performance decimal magnification results can be obtained by
adding the proposed arbitrary magnification model without modifying or re-learning the
existing model. Experimental results show that the proposed method has excellent restora-
tion performance, both quantitatively and qualitatively, compared to the existing arbitrary
magnification super-resolution methods. As a future study, it will be possible to lighten
the network by appropriately combining the weight sharing method between integer mul-
tipliers and the knowledge distillation technique. In addition, research to improve the
object recognition rate for low-resolution images by integrating an arbitrary magnification
super-resolution network and an object recognition network can be conducted.
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Abstract: Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers
and it can survive in a brutal environment. It is a significant source of carbohydrates in African
countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall pro-
duction and reducing farmers’ income. The existing Cassava disease research encounters several
challenges, such as poor detection rate, higher processing time, and poor accuracy. This research
provides a comprehensive learning strategy for real-time Cassava leaf disease identification based
on enhanced CNN models (ECNN). The existing Standard CNN model utilizes extensive data
processing features, increasing the computational overhead. A depth-wise separable convolution
layer is utilized to resolve CNN issues in the proposed ECNN model. This feature minimizes the
feature count and computational overhead. The proposed ECNN model utilizes a distinct block
processing feature to process the imbalanced images. To resolve the color segregation issue, the
proposed ECNN model uses a Gamma correction feature. To decrease the variable selection process
and increase the computational efficiency, the proposed ECNN model uses global average election
polling with batch normalization. An experimental analysis is performed over an online Cassava
image dataset containing 6256 images of Cassava leaves with five disease classes. The dataset classes
are as follows: class 0: “Cassava Bacterial Blight (CBB)”; class 1: “Cassava Brown Streak Disease
(CBSD)”; class 2: “Cassava Green Mottle (CGM)”; class 3: “Cassava Mosaic Disease (CMD)”; and
class 4: “Healthy”. Various performance measuring parameters, i.e., precision, recall, measure, and
accuracy, are calculated for existing Standard CNN and the proposed ECNN model. The proposed
ECNN classifier significantly outperforms and achieves 99.3% accuracy for the balanced dataset. The
test findings prove that applying a balanced database of images improves classification performance.

Keywords: convolutional neural network model; ECNN; deep neural network; cassava leaf disease
identification; global average election polling layer
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1. Introduction

Cassava is the main crop in Africa and many other nations. Africa is the largest
producer of Cassava crops. Cassava can be cultivated successfully in any climate, includ-
ing drought and unproductive soil. Cassava crops encounter several challenges during
production, i.e., leaf diseases and poor quality. Cassava leaf diseases are the principal cause
of production reduction, and they can directly affect farmers’ revenue [1].

Cassava leaf disease identification must be treated on a priority basis to improve
production capacity. The automatic detection of crop diseases focused on crop leaves is
critical in crop production. Furthermore, effective and accurate detection of leaf diseases
significantly affects crop productivity improvement. Cassava leaf diseases are similar to
Maize leaf diseases [2].

Early recognition of leaf disease facilitates the rescue of cultivars well before the plant
can be infected permanently [3]. A few researchers focused on building fusion plants
resistant to pathogenic organisms and created a system to recognize and anticipate crop
disease formation from leaf images [4].

Farm owners can significantly raise farm yields by using smart farming. Farmers
spend a lot of time, money, and effort in the manual identification of plant diseases, and
the results are still inaccurate. Research [5] has developed an intelligent system based on
image classification and deep-learning methods.

A deep-learning and machine-learning-based model is discussed in research [6] for
leaf disease detection. The automated machine-learning model for detecting and treating
Cassava crop diseases enables farmers and experts to increase system throughput and
accuracy. Deep-learning-based CNN classifiers can enhance leaf disease detection in all the
possible situations where image-based diagnostics with advanced training are involved.
Various portable devices are also used in leaf disease detection.

In all the instances where an intelligent classifier is installed on portable devices and
contains a novel disease, datasets can enhance detection accuracy. Portable devices, i.e.,
smartphones, drones, and laptops, can be easily tested in realistic scenarios [7].

Researchers have considered various novel techniques to resolve leaf disease detection
issues, i.e., image classification, AI, machine learning, and deep learning [8]. Data pre-
processing is an essential phase in image analysis, which includes various processes,
i.e., image optimization, color adjustment, reshaping, and feature extraction. An image
classification method must be applied with an image enhancement technique for better
outcomes [9].

A hybrid deep-learning and image-classification-based model for leaf disease detection
is discussed in [10]. However, these existing research works have several challenges, which
need immediate attention. This motivates researchers to work on Cassava leaf disease
detection [11]. These factors also encourage researchers to develop a more robust and
reliable Cassava leaf disease detection system.

This research aims to fill the gaps by presenting a better overview of leaf disease
detection and analysis in Cassava plants. This research provides a comprehensive learning
strategy for real-time Cassava leaf disease identification based on enhanced CNN models
(ECNN). The main contributions of this research are as follows:

• This research presents a complete overview of Cassava leaf diseases.
• This research presents a detailed overview of the CNN model and describes how the

CNN model can improve Cassava leaf disease detection.
• The existing Standard CNN models [12] utilize a complex set of features and a mas-

sive computational overhead. To overcome these issues, in the proposed model, we
upgraded the traditional convolution network model by adding new features.

• The proposed ECNN model utilizes a depth-wise separable convolution, which mini-
mizes the feature count and computational overhead.

• The proposed ECNN also utilizes a distinct block processing feature to process imbal-
anced images.
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• Furthermore, the proposed ECNN model utilizes de-correlation stretching with Gamma
correction. It enhances the image color segregation feature and provides a higher
band-to-band correlation.

• The proposed model utilizes a global average election polling layer to replace the fully
connected layer to decrease the number of variables. After that, ECNN utilizes a batch
normalization layer that enhances the overall computational efficiency [13].

• The proposed ECNN method is validated by calculating the standard performance
measuring parameters, and the results are compared with the existing Standard
CNN method.

The research article is organized as follows. Section 1 covers introductory work related
to the research; Section 2 covers related positions in Cassava leaf disease identification and
classification. Next, Section 3 covers materials and methods related to research. Section 4
covers the proposed ECNN model’s implementation, results, and discussion. Section 5
covers the conclusion and future work.

2. Related Work

Cassava is the most popular commercial and industrial crop in Africa and Thailand.
Due to the apparent pleasant environment and soil, it is primarily produced in these
countries. Cassava crop encounters several issues, i.e., leaf disease and fungal infection,
thus reducing production and increasing cost. Early and accurate detection of Cassava
leaf disease is a promising research area for researchers. Various research articles suggest
different methods and models to improve Cassava leaf disease detection. Existing research
has also tried to determine effective methods for improving Cassava crop production. This
section covers the existing research on Cassava leaf disease detection.

2.1. Machine Learning Based

ResNet-50- and SVM-classifier-based Cassava leaf disease model is presented in [14].
The proposed model first extracts all the relevant features and then classifies the image
dataset using an SVM classifier in the next phase. The outcomes show better accuracy and
performance by incorporating ResNet-50 and SVM classifiers.

A digital image processing model uses a hybrid transfer learning method [15]. It is
crucial to perform correct data preparation in leaf disease research. This improves plant
disease pattern recognition, forecasting, and model performance.

A hybrid model based on SVM and RF for Cassava leaf disease detection is presented
in [16]. The proposed model utilizes multiple feature selection processes, including selecting
image type, association in parameters, quality, and uniformity. The proposed classification
model achieved more than 90% accuracy compared to the existing model.

The SVM and Naive Bayes machine-learning-based model is presented in [17] to detect
plant diseases. The researcher suggested that a massive data history and machine-learning
methods play an essential role in plant disease analysis. The machine-learning method [18]
provides a valuable contribution to evaluate a considerable volume of leaf image data.
Another research [19] presented a deep-learning-based model with ImageNet for Cassava
leaf disease detection.

2.2. Leaf Shape, Colour, and Texture Based

Leaf disease detection based on leaf properties is discussed in research [20]. The
proposed model utilized complex geometries and segmentation-based methods for feature
extraction. After feature extraction, the SVM classification method was applied to classify
leaf diseases. A shape- and texture-based classification for Cassava leaf disease identifica-
tion is discussed in research [21]. The proposed model achieved more than 84% accuracy
and 88% detection rate.

A region-based detection method is discussed in research [22]. This work mainly
focused on retrieving Cassava leaf properties using a cluster center method. A bacterial and
viral infection detection algorithm is introduced in research [23]. The proposed method first
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detects leaf image texture and shape features, enhancing disease classification outcomes
and improving overall precision and accuracy.

An innovative procedure for categorizing plant leaf disease is discussed in research [24].
Often, these plants have distinctive leaves that vary by features, such as margin, color,
shape, and texture. A shape-, color-, and texture-based leaf disease classification are dis-
cussed in research [25]. This research classified diseases using combinations of two and
more characteristics, such as shape, size, color, and texture. In the proposed method,
a shape-based technique first extracts the curve receipt using leaf stem and afterward
determines the inconsistencies using a Jeffrey divergence estimate method. Leaf disease
detection based on computer vision and leaf feature analysis method was discussed in
research [26].

2.3. Neural Network Based

A deep-learning-based model to analyze Cassava leaf diseases is presented in re-
search [27]. This proposed model firstly performs a subdivision method and later applies a
classification approach to diagnose Cassava leaf disease. GoogleNet- and AlexNet-based
convolutional neural network structures were discussed in research [28] to analyze and
identify distinct CNN leaf diseases.

A neural-network-based Cassava leaf disease prediction model is described in re-
search [29]. This research utilizes various neural network models on different crops to
analyze diseases and infections. Experimental results show the strength of the proposed
model through higher recognition rates. A deep-learning-based model is described in
research [30] to predict leaf disease. This research utilizes a feature selection method to
recognize thirteen particular crop diseases. Researchers have trained CNN architecture by
utilizing the Caffe deep-learning approach.

An improved deep-learning-based model is described in research [31] to predict leaf
disease classification. This research work also covers the limitation of existing works. A
nine-layer-based convolutional neural network model is presented in [32] to characterize
Cassava diseases in plants.

A NASNet-based fully convolutional architecture is described in research [33]. This
model applied a feature selection model to recognize fungal leaf infection. The proposed
model achieved an accuracy rate of 94.1% compared to an existing model. A superficial
CNN model is presented in research [34] to identify and characterize plant leaf diseases.
In the initial phase, researchers retrieved the leaf features using the feature extraction
method and then categorized them using a feature selection method with random forest
classification methods.

2.4. Comparative Analysis

Table 1 represents the comparative analysis of various existing methods used in plant
leaf disease detection and analysis.

Table 1. A Comparative Analysis of Various Existing Research Works.

Reference Dataset Technique/Model Outcomes

[35] Online Cassava Leaf
disease dataset

DRN (Deep Residual
Neural) Network

Precision 94.24% and
AUC 90.1%

[36] Online Cassava Leaf
disease dataset

Random Forest, SVM and
SCNN (Shallow CNN)

Detection rate 91.7% and
Time 89.6%

[37] Online Cassava Leaf
disease dataset 9-Layered CNN Model Accuracy 90.48%

[38] Online Cassava Leaf
disease dataset

FR-CNN (Faster
Recurrence CNN)

Specificity rate 77.8%,
Precision rate 91.8%, and

Sensitivity rate 73.26%

[39] Online Cassava Leaf
disease dataset

SSD (Single Sot
Multi-box Method) Precision rate 90.8%
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Table 1. Cont.

Reference Dataset Technique/Model Outcomes

[40] Online Cassava Leaf
disease dataset

MNet (Mobile Net
Detector) Model

Accuracy 89.41% and
Sensitivity rate 76.96%

[41] Online Cassava Leaf
disease dataset

GoogleNet and AlexNet
CNN Model

Precision 87.9, Recall 86.58,
and F-measure 81.47%

[42] Online Cassava Leaf
disease dataset

Machine-learning methods
SVM, Naïve Bayes

Sensitivity rate 0.798,
Specificity rate 0.756, and

AUC rate 0.875

[43] Online Cassava Leaf
disease dataset CNN model Accuracy 93.5, Precision 91.9

3. Materials and Methods

This section covers the proposed model architecture and working steps.

3.1. Proposed ECNN Architecture

This research provides a comprehensive learning method for real-time Cassava leaf
disease detection based on an enhanced CNN model (ECNN). The existing Standard CNN
model is based on extensive features and a massive computational process that increases
the computational overhead. We present an enhanced CNN model (ECNN) for Cassava
leaf disease detection and an analysis for overcoming these issues. The existing Standard
CNN model is improved by adding new features and properties.

In the proposed ECNN model, a depth-wise layer separation feature is introduced,
minimizing the feature count and computational overhead. Additionally, a global aver-
age election polling layer replaces the fully connected layer and decreases the variable
count. Then, a batch normalization layer is applied to adjust computational efficiency.
The proposed ECNN model utilizes a distinct block processing feature to deal with data
imbalance. The next phase utilizes de-correlation stretching with Gamma correction fea-
ture, which improves color segregation with high band-to-band correlation features on the
image dataset.

The architecture of the proposed ECNN model involves three convolutional layers and
four fully integrated layers in the head. The first layer contains 32 (5 × 5) convolutions, in
order to know and understand more significant characteristics of workflow normalization.
This layer also contains batch sizes of (3 × 3) for the max-pooling feature. The subsequent
two and three layers consist of two main pairs of convolution layers. They mainly contain
64 features, with size (3 × 3) batch normalization features. They also contain 128 features of
size (3 × 3) for max pooling, respectively. The layers are arranged in a particular manner to
facilitate the entire learning system to learn broader and deeper characteristics by applying
the stacking of two pairs of convolution layers. Figure 1 shows the architectural features of
the proposed ECNN framework.
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Figure 1. Architecture of Proposed ECNN Model.

3.1.1. Global Average Election Polling Layer (GAEPL)

GAEPL’s objective is to standardize the entire network structure and minimize the
dimensionality from three-dimensional to one-dimensional, which minimizes the over-
fitting issues. The proposed ECNN model utilizes the pattern map feature within the
last CNN layer to aggregate all the outputs into a sequence of one-dimensional form.
After applying a GAEPL, the number of variables is considerably reduced because the
advancement of pattern maps in matrices is not required, as described in Figure 2.

Figure 2. Global Election Polling Layer.

The advantage of a GAEPL over the convolutional layers is that it can effectively
maintain the multilayer architecture by improving the connection between the pattern
maps and analogies. It also provides more convincing features and well-understood pattern
map classifications [44].

A pooling function includes sliding a two-dimensional filtration system across each
link of its feature space. It also aggregates all the features within the filter’s communication
range. For a convolution layer feature space composed of parameters (Nw: width of feature
space, Nh: height of feature space and Nc: Total number of channels/links in a feature
space, f: filter size, and s: length of stride), the measurement of results acquired straight
after a pooling layer can be defined as

[(Nh − (f + 1)/S) × (Nw − (f + 1)/s) × Nc] (1)
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Each link in the feature space is combined into a single value using the global pooling
layer function. As a result, the (Nh × Nw × Nc) feature space is adjusted to (1 × 1 × Nc).
It is the same as using only a filter with aspects (Nh × Nw), i.e., the feature map’s elements.

3.1.2. Batch Normalization Layer (BNL)

BNL is a training method for complex CNN architecture. It standardizes the number
of parameters at each level in small batches. It also improves the teaching methods and
significantly minimizes the training epochs needed to build deep convolutional networks.
Figure 3 shows the working of BNL [45].

 
Figure 3. Batch Normalization Layer in ECNN.

In CNN, the quantity of neurons in each layer is often expansive. If data transmission
at a specific layer starts shifting from one layer to another, the network size also grows,
enhancing the modeling risks. Consequently, a batch normalization process mainly aims to
relieve the above issues. A batch normalization process splits the population into small
clusters and fixes each cluster’s variables [46]. A record inside one cluster collectively
depends on the direction of the differential and minimizes unpredictability when the
value decreases. A CNN group requires fewer items than a complete dataset during the
process, which dramatically reduces the computation count. An activation function is
used in the batch normalization process. Before applying an activation function, the batch
normalization layer normalizes the input data toward all the levels and overcomes the
problem of addressing the input offset. A batch normalization process transforms the input
n as per the following formula given in Equation (2):

BN(n) = β + γ +
n − μβ

σβ
+ β (2)

where n ∈ B represents an input element toward batch normalization (BN), which is mainly
related to a small batch β, γ represents the scale variable, σβ represents the standard
deviation, and μβ represents the sample mean value.

3.1.3. Distinct Block Processing (DBP)

This research utilized an imbalanced Cassava leaf disease dataset. The data are biased
against CBSD, CBD, and CGM disease classes, and they also include Cassava leaf images
of varying sizes. The imbalanced dataset needs immediate attention, and it should be
converted into a balanced dataset for better outcomes. A distinct block technique is used to
fix this problem. Therefore, when the resolution of the source image is significantly greater
than the neural network’s potential, the block processing method is utilized [47].

On the other hand, the block processing method enables the preservation of visual
information. It has earlier been utilized effectively in numerous computer-vision-based
research works. The input data are filtered from block to block during a distinct block
operating condition. The input image is divided further into a rectangular shape, and
each block is processed independently to evaluate the correlating block image outcome
and define the image pixels. The images are separated into distinct blocks in the top left
corner. A zero-padding value is introduced to boost the series of images in less identified
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classes, and the blocks do not align to a particular object. All Cassava leaf disease class
labels contain similar images for all five classes. Different block processing methods boost
each class’s feature count.

3.2. Working of Proposed ECNN

The Cassava leaf disease detection and analysis using the proposed ECNN model
includes various phases. Each phase has its distinct features. The max-pooling layer’s goal
is to decrease the geographic capacity dimensions of all image pixels. After parameter
selection and improvement with the grid search process, the network’s head comprises four
fully linked layers of 512 neurons. The first, second, and third layers contain 1024 neurons
in this process, and the fourth layer contains 256 neurons. There is a neuron for each
classification in the output-based convolutional layers correlating to five Cassava leaf
disease classes. The dropout feature is utilized in the fully inter-linked layers to overcome
inaccuracy and overfitting issues. In particular, the fully connected layers obtain essential
information from the object through the fully connected components. To utilize these
selected features to identify and classify all the healthy and unhealthy classes from the leaf
images, the convolution layer value can be measured as Equation (3)

xl
k = f

⎛⎝ n

∑
i εMk

xl−1
j

(
n
k

)
∗ xl

jk + al
k

⎞⎠ (3)

where xl−1
j represents the feature map value of the last layer used as an output, xl

k repre-

sents the channel output value, n represents the layer number, al
k represents the offset value

related to channel, Mk represent the subset data for input.

3.2.1. Phase 1

The first phase performs image transformation, including mask segment, deskew,
gray, thresh, rnoise, canny, and sharpen. Then, to remove image imbalance, we apply a
pre-processing data phase based on Contrast Limited Adaptive Histogram Equalization
(CLAHE) method [48]. Figure 4 shows image transformation. Here, one to ten transforma-
tions are performed by various methods. In Figure 4: (1): original, (2): mask, (3): segment,
(4): deskew, (5): gray, (7): thresh, (8): rnoise, (9): canny, and (10): sharpen.

 
(1) (2) (3) (4) (5) 

 
(6) (7) (8) (9) (10) 

Figure 4. Image Transformation (Image (1,6): Original, (2): Mask, (3): Segment, (4): Deskew, (5): Gray,
(7): Thresh, (8): Rnoise, (9): Canny, and (10): Sharpen).
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Figure 5 shows the image pre-processing by using the CLAHE method. The CLAHE
method improves the performance of image processing methods in low-resolution and
low-contrast environments. The initial color image is transferred from RGB to Y.I.Q. and
H.S.I. shared spaces. In the next phase, a CLAHE method is utilized in the Y.I.Q. and H.S.I.
color spaces to produce two improved image datasets. Then, the Y.I.Q. and H.S.I. improved
images are subsequently converted to RGB color space.

Figure 5. Image Pre-Processing Model Based on CLAHE.

3.2.2. Phase 2

In this phase, we applied the SMOTE method for resampling purposes [49]. The
first phase mainly removes the skewness from the images. As discussed, the Cassava leaf
disease dataset [50] that we are using for this research is highly imbalanced. The second
phase utilized a perfect combination of existing methods: SMOTE (Synthetic Minority
Oversampling Technique), class-weight, and focal loss techniques, to enhance the volume
of the training dataset, which led to improvements in high precision. SMOTE is a method
for oversampling that generates data samples only for class labels. This method mainly
overcame the overfitting issue caused by arbitrary data.

The SMOTE method creates unique Cassava leaf disease data samples based on actual
results to remove the skewness. The SMOTE approach selects samples in the feature space
closest to them, makes a clear distinction between them in the subspace, and draws a new
sample once at the position along each path.

3.2.3. Phase 3

Phase three is mainly applied to enhance the size of the Cassava leaf image dataset. To
address the issue of a limited dataset, this phase utilizes dataset enhancement techniques,
such as random shearing, image flipping, center zooming, random scaling, height/width
shift, and random cropping. This phase also utilizes an image-flipping method, which
increases the dataset volume. It helps in the testing and training process and provides
better precision, accuracy, and performance.

4. Results and Discussion

This section covers the implementation, dataset description, result comparison, and
discussion. The python programming language implements existing Standard CNN [2]
and proposed ECNN methods. The proposed ECNN model is compared with the existing
Standard CNN architecture-based model. To implement these models, we are using a
similar type of feature. Various performance measuring parameters are calculated, i.e.,
precision, recall, f-measures, and accuracy.

4.1. Dataset

The Cassava leaf dataset is collected from the online Kaggle dataset [50]. The original
data contain 6256 Cassava leaf images with imbalanced occurrences of 316 healthy Cassava
leaves. The dataset also contains the four types of unhealthy infected Cassava leaf classes.
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Figure 6 shows the various disease classes of Cassava leaf (0: CBB, 1: CBSD, 2: CGM,
3: CMD, and 4: Healthy).

 
Figure 6. Healthy and Unhealthy Cassava Images.

Different parameters are calculated to examine the performance of the proposed
ECNN model, i.e., dropout, batch size, other numbers of epochs and precision, recall,
f-measure, accuracy.

4.2. Data Pre-Processing

In the pre-processing phase, the raw Cassava images are normalized. An imbalance
is also removed from the images. The image set is classified into two main categories:
standard (healthy) and abnormal (unhealthy). These natural-color images are divided into
five binary classes, from 0 to 4. The unhealthy Cassava images are classified into distinct
classes. The complete normalization process in data pre-processing for a data sample is
described in the Equations (4)–(6):

(γ)n =
1
n

∗
n

∑
k=0

Nk (4)

(μ)2 =
1
n

∗
n

∑
k=0

(Nk − γ) (5)

In Equations (4) and (5), Nk shows the data for a pixel, which is stored at position k,
and n shows the pixel samples. γ shows the mean data value, and (μ)2 shows the variance.
Based on Equations (4) and (5), a normalization process can be defined by Equation (6)
as follows:

N| = Nk − γ

(μ)2 + ε
(6)

In Equation (6), the N| represents the normalization value for an ith pixel, and ε is
some small random value, where ε > 0.

In Cassava leaf image data pre-processing, the images’ R, G, and B components
are decreased from their mean values in the normalization progressive enhancement de-
averaging. Moreover, there are a variety of issues with the Cassava leaf dataset. The first is
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the small dataset size, and the next is the poor contrast and resolution images. Another
challenge is associated with the skewness in the class label. The top class contains 39.4% of
this dataset, and the minor class contains 2.89% magnitude variations [51].

We focused on enhancing Cassava image contrast using the CLAHE method. The
CLAHE method can significantly improve the performance of image processing methods in
low-resolution and low-contrast environments. To increase the size of the database, various
image enhancement methods, i.e., random shearing, image flipping, central zooming,
random cropping, random scaling, shifting of image height and width, are used. An
image flipping method that helps to enhance the size of the database helps in training and
validation for testing results.

In the next phase, all the Cassava leaf images are restructured into (224 × 224) by
adjusting the width and length of the images. The images of leaf categories are restructured
further into vertically and horizontally flipped components. The Cassava image dataset
includes CMD: 2808, CGM: 923, CBB: 166, and CBSD: 1593 images. As shown in Figure 7,
these images are completely unbalanced, with a heavy bias toward CBSD and CMD Cassava
disease classes.

 

Figure 7. Cassava Leaf Dataset.

4.3. Visualization of Proposed ECNN Model

The proposed ECNN model generates 239 NN layers. Figure 8 represents the visualiza-
tion outcomes of the first five layers (layer 1 to layer 5) of the proposed ECNN model. Layer
1 represents the input image; layer 2 represents the rescaling process; layer 3 represents
normalization; layer 4 represents the stem_conv_pad; and layer 5 represents the stem_conv.
The proposed ECNN model’s structure consisted of three convolution operations and a
core of four fully linked layers.

Layer 1 contains 32 cores (5 × 5) for learning higher batch normalization characteristics,
with max pooling of (3 × 3) pool capacity. Layers 2 and 3 contain two fully connected layers
with 64 (3 × 3) and 128 (3 × 3) feature selection, batch normalization, and max pooling.
A batch normalization process enables the creation of the batches for two different sets of
convolution layers. Before completing the max-pooling process, all the layers are structured
to enhance the learning of the entire model. In the ECNN layer architecture, layer 4 shows
the “stem_conv_pad”, which describes the Keras Zero Padding 2D normalization process
outcomes, and similar layer 5 shows the “stem_conv”, which describes the Conv2D in
Keras outcomes [52].
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Figure 8. Cont.
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Figure 8. Layered Visualization of Proposed ECNN Model ((1) Layer 1: Input, (2) Layer 2: Rescaling,
(3) Layer 3: Normalization, (4) Layer 4: stem_conv_pad, and (5) Layer 5: stem_conv).

4.4. Experimental Outcomes

The existing Standard CNN model and Proposed ECNN methods are implemented
using python and Anaconda distribution in this research. The online Kaggle Cassava leaf
dataset is used for analysis. The dataset is divided into training and testing sets.

Following performance measuring, the parameters are calculated to measure the
performance of the proposed ECNN method given in Equations (7)–(11) [53–56]:

Accuracy = (TP + TN)/[(TP + TN + FN + FP)] (7)

Precision = [TP/(FP + TP)] (8)

Recall = [TP/(FN + TP)] (9)

F-Measure = 2 × [(Recall × Precision)/(Recall + Precision)] (10)

Confusion Matrix (CM) = the total of true and false forecasts is summarized with
score values divided by class. It is the main factor here for a CM.

(11)

where TP = True positive rate, FP = False positive rate, FN = False Negative, TN = True
Negative.

In this experiment, we used two scenarios for Cassava leaf disease analysis. In
Scenario 1, experimental analysis is performed on the imbalanced dataset, and in Scenario 2,
experimental analysis was performed on a balanced dataset. Accuracy rate, precision, recall,
and F-measure parameters are calculated to evaluate the training and test competitiveness
of the CNN and proposed ECNN models.

4.4.1. Scenario 1

The first scenario performs experimental analysis on an imbalanced Cassava leaf
disease dataset. The dataset is divided into 60% for training and 40% for testing pur-
poses. K-fold cross-validation is applied with k = 3 for training and testing to achieve a
higher precision.

Figure 9 represents the experimental outcome of the proposed ECNN and CNN model
for training and validation accuracy, and training and validation loss for imbalanced
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datasets. The experimental results demonstrate that the proposed ECNN model achieved
training and validation accuracy of 94.689% and a loss of 24.547%, which is better than
the existing Standard CNN model results, showing training and validation accuracy of
89.754% and a loss of 36.414%.

 
(a) (b) 

 
(c) (d) 

Figure 9. Experimental Outcome of Proposed ECNN and CNN Model on the Imbalanced Dataset
((a) ECNN Training and Validation Accuracy, (b) ECNN Training and Validation Loss, (c) CNN
Training and Validation Accuracy, and (d) CNN Training and Validation Loss).

Figure 10 represents the confusion matrix of the proposed ECNN model for various
Cassava leaf disease classes. This matrix shows the results of actual vs. predicted data. The
healthy class shows an accuracy of 99.64%, which is better than the other classes. The CMD
disease class is showing poor outcomes, at 94.69%.

Figure 10. Confusion Matrix of Proposed ECNN Model for Imbalanced Dataset.
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Figure 11 represents the experimental results of the existing Standard CNN model
and the proposed ECNN model. This graph is plotted between accuracy% and epoch
for training and testing. The proposed ECNN method shows better training and testing
accuracy for all the epoch cycles, and at epoch 300, it shows more than 99% accuracy.

 
Figure 11. Accuracy Results for ECNN vs. CNN.

Tables 2 and 3 show the experimental outcomes for various Cassava leaf disease classes
(0 to 4) for the proposed ECNN and CNN for the imbalanced dataset. These experimental
results show that the proposed ECNN model performs better in accuracy, precision, recall,
and f-measure than the existing Standard CNN model.

Table 2. Experimental Results for CNN Model for Imbalanced Dataset.

Class Type Precision% Accuracy% Recall% F-Measure%

CBB 81.256 83.659 82.224 82.154
CBSD 92.454 90.891 91.265 82.656
CGM 80.147 72.651 72.665 77.841
CMD 95.451 95.654 95.669 96.561

Healthy 70.981 68.961 69.781 69.874

Table 3. Experimental Results for ECNN Model for Imbalanced Dataset.

Class Type Precision% Accuracy% Recall% F-Measure%

CBB 91.021 92.568 84.565 84.998
CBSD 97.989 97.989 93.651 84.665
CGM 94.989 95.648 74.558 78.988
CMD 99.465 99.565 96.336 97.447

Healthy 96.981 97.778 90.145 91.407

4.4.2. Scenario 2

In the second scenario, the balanced dataset of the Cassava leaf is used. This dataset is
divided into 60% for training and 40% for testing purposes.

Table 4 shows that the proposed ECNN procedure outperformed the existing Standard
CNN model in terms of accuracy results for all the classes. The ECNN model shows
99.47% accuracy for CBB class, which is the highest in all the terms. Once we compare the
experimental results of Scenarios 1 and 2, we can see that the proposed ECNN method
shows better results for a balanced dataset than an imbalanced dataset.
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Table 4. Experimental Results for CNN vs. ECNN Model for a Balanced Dataset.

Class Type
Accuracy%

CNN Model Proposed ECNN

CBB 93.214 99.473
CBSD 91.478 98.132
CGM 89.981 99.391
CMD 93.124 98.924

Healthy 90.478 97.692

5. Conclusions and Future Work

Cassava leaf detection is a hot area of research. This research developed an ECNN
model for a high imbalance Cassava leaf dataset to predict the disease class. The existing
Standard CNN models utilize a higher extensive set of features and a massive computa-
tional process that increases the computational overhead. We upgraded the traditional
convolution network model by adding enhanced features to overcome this issue. The
proposed ECNN model utilizes a depth-wise layer separation, minimizing the feature
count and computational overhead. Additionally, to overcome the dataset imbalance factor,
this research applied improved data pre-processing methods. It reduces the error rate and
improves image quality.

The proposed ECNN model is compared with the existing Standard CNN architecture-
based model. To implement these models, we are using a similar type of feature. An
experimental analysis was performed on an online Cassava leaf dataset. This dataset
contained five classes: 0: CBB, 1: CBSD, 2: CGM, 3: CMD, and 4: Healthy. An experimental
analysis clearly shows the strengthening of the proposed ECNN model in terms of better
accuracy, precision, recall, and f-measure than the existing Standard CNN model.

In future work, we will try to improve the current research in various aspects: (a) the
dataset can be improved in terms of data size and more disease classes; (b) the ECNN
model can be improved by adding more CNN models in hybrid form; (c) the experi-
mental analysis can be performed in a real-time environment with more performance
measuring parameters.
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Abbreviations

The following are the abbreviations used in this research:

CNN Convolutional Neural network
ECNN Enhanced Convolutional Neural network
CBB Cassava Bacterial Blight
CBSD Cassava Brown Streak Disease
CGM Cassava Green Mottle
CMD Cassava Mosaic Disease
SVM Support Vector Machines
RF Random Forest
DRN Deep Residual Neural Network
SCNN Shallow CNN
FR-CNN Faster Recurrence CNN
SSD Single Sot Multi-box Method
MNet Mobile Net Detector Model
GAEPL Global Average Election Polling Layer
BNL Batch Normalization Layer
DBP Distinct Block Processing
CLAHE Contrast Limited Adaptive Histogram Equalization
RGB Red Green Blue
YIQ Y (perceived luminance), I, Q (color/luminance information) NTSC color model
SMOTE Synthetic Minority Oversampling Technique
T.P. True positive rate
FP False-positive rate
FN False Negative
TN True Negative
NN Neural Network
stem_conv_pad Zero Padding 2D normalization
stem_conv Conv2D
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Abstract: Deep learning-based models have shown to be one of the main active research topics
in emotion recognition systems from Electroencephalogram (EEG) signals. However, a significant
challenge is to effectively recognize new emotions that are incorporated sequentially, as current
models must perform retraining from scratch. In this paper, we propose a Class-Incremental Learning
(CIL) method, named Incremental Learning preserving the Learned Feature Space (IL2FS), in order
to enable deep learning models to incorporate new emotions (classes) into the already known.
IL2FS performs a weight aligning to correct the bias on new classes, while it incorporates margin
ranking loss and triplet loss to preserve the inter-class separation and feature space alignment on
known classes. We evaluated IL2FS over two public datasets (DREAMER and DEAP) for emotion
recognition and compared it with other recent and popular CIL methods reported in computer
vision. Experimental results show that IL2FS outperforms other CIL methods by obtaining an average
accuracy of 59.08 ± 08.26% and 79.36 ± 04.68% on DREAMER and DEAP, recognizing data from new
emotions that are incorporated sequentially.

Keywords: class-incremental learning; deep learning; catastrophic forgetting; emotion recognition;
electroencephalogram

1. Introduction

Emotion analysis has shown to be an important part of research fields such as human–
computer interaction and health care, in order to improve the interactive experience and
understand the behavior of patients [1,2]. Existing approaches in emotion recognition
characterize the responses of emotions in two main modalities [3,4]: behavioral and phys-
iological signals. The first type of modality includes those approaches based on facial
expression [5,6], speech emotion recognition [7] and body language. Unlike this type of
modality, the physiological signals provide a reliable way to recognize emotions since
these signals are produced by the human body that may not be susceptible to subjective
approaches based on behavioral signals [8]. In this sense, Electrocardiogram (ECG) [9],
Electromyography (EMG) [10], Electroencephalogram (EEG) [4] or even a combination
of them [11,12], have been used for emotion recognition. Among these physiological-
signal-based approaches, EEG has provided a reliable and promising indicator to identify
different emotional states, as it directly reflects brain activity [12]. Furthermore, EEG is a
non-invasive device, easy to use, and has a low cost [4,13]. Thus, EEG has been widely
used in emotion recognition systems in the last years [3,8,13–18].

Reported works have been mainly focused on extracting discriminative EEG emo-
tional features and building more effective emotion recognition systems. The collected
EEG signals are usually analyzed in three categories to extract discriminative features:
time domain (e.g., statistics of signal), frequency domain (e.g., differential entropy), and
time-frequency domain (e.g., Fourier transform). In this direction, many methods have been
proposed via machine learning to leverage the features extracted from EEG signals [17–19].
Recently, several methods are gradually moving towards the deep learning-based ap-
proaches, becoming dominant in EEG-based emotion recognition [3,8,13–16,20,21]. For
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example, different deep learning methods have been proposed to consider the spatial
information, such as convolutional neural networks (CNNs) [3,14,16], capsule networks
(CapsNets) [21] and graph neural networks (GNN) [8,13]. Likewise, attention mechanisms
and recurrent networks [15] have been used to extract spatial and temporal information as
emotion features.

Although remarkable progress has been achieved, there is a growing demand for
adaptive, scalable, and responsive deep learning methods for emotion recognition tasks.
Reported works are focused on recognizing emotions with fixed models while being unable
to incorporate other emotions into their knowledge. New emotions may be recorded over
time so that devices with pre-installed emotion recognition models may fail to recognize
this new knowledge. Whenever samples from a new emotion become available, deep
neural network models require retraining the whole model from scratch. This issue may be
infeasible both in time or storage while using all training data or when the size of the main
memory is limited [22]. Instead, the knowledge learned by a trained model should only be
modified by using samples from a new emotion. In this sense, Class-incremental learning
(CIL) provides a solution when new samples emerge, updating the knowledge of the model
according to samples from new classes, avoiding re-configure the entire system [23].

CIL methods have been widely studied in computer vision [22] since several works
have shown that deep learning models suffer from catastrophic forgetting when they are
trained incrementally [24]. The catastrophic forgetting is the performance degradation of
a neural network model affecting previously learned concepts whenever new ones are
incorporated sequentially [25]. Different approaches have rapidly emerged to alleviate
catastrophic forgetting. A first approach extends the model capacity to accommodate the
latest knowledge as new data are integrated [26,27]. Although no sample is retained during
incremental stages, these works may not scale well in specific scenarios since new weights
are added each time. A second approach [28–31] uses a fixed model to generate feature
representations across different incremental stages while multiple classifiers are trained for
new classes. Although the retraining of the entire model is avoided, the performance of
these methods depends on the quality of an initial representation, producing sub-optimal
classification results in some cases [22]. Moreover, a third approach [25,32–40], named
memory replay, stores a small set of representative samples from old classes and updates
deep learning models via Fine-tuning (FT) across different incremental stages. The memory
replay-based approach has shown better performance than previous approaches [35], but
certainly the catastrophic forgetting is still under-studied. Mainly, in EEG-based signal
recognition, Lee et al. [41] explored CIL for the imagined speech recognition task, but
the authors used one of the most straightforward memory replay-based methods under
an undemanding evaluation, as only a single incremental stage was tested for CIL. On
the other hand, no work has been reported to study the dynamic changes in class for
the EEG-based emotion recognition task. Thus, this research focuses on studying CIL for
emotion recognition from EEG signals to enable deep learning models to incorporate new
emotions into already known.

In this paper, we introduce Incremental Learning preserving the Learned Feature Space
(IL2FS), a CIL method to address the catastrophic forgetting in EEG-based emotion recogni-
tion. The proposed method aims to preserve the feature space learned over past incremental
stages, performing a bias correction on new classes, as well as encouraging the inter-class
separation and feature space alignment over old classes. Firstly, we use Weighting Aligning
(WA) [36] for bias correction on the weights at the output layer since class imbalance
is present. Secondly, we use margin ranking loss to set a margin between scores of the
ground-truth from old classes and their nearest score from any class (old or new), instead
of only ensuring a separation between old and new classes, as reported in [33]. Finally,
unlike previous CIL works for embedding networks [42–44], we propose to use triplet
loss [45] to maintain the feature space alignment of old classes. IL2FS was implemented on
a Capsule Network (CapsNet) architecture, which presents one of the best performances in
terms of accuracy for emotion recognition [21]. We evaluate and validate our proposal on
incremental learning tasks over two public datasets, DREAMER [46] and DEAP [11], using
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a reduced set of samples from old classes and the maximum number of incremental stages
that may be built for each dataset.

The main contributions of this work are:

1. We present a Class-incremental Learning method, named IL2FS, for emotion recogni-
tion from EEG signals, addressing the catastrophic forgetting problem.

2. IL2FS incorporates a strategy based on bias correction of the new classes while ensur-
ing an inter-class separation and feature alignment of the old classes. This strategy
allows better preservation of the learned knowledge for a greater number of incre-
mental stages and a reduced number of reserved samples in memory.

3. We conduct experiments on two benchmarks, DEAP and DREAMER, for emotion
recognition research. The proposed method achieves a significant improvement when
compared with existing CIL methods.

The rest of this paper is organized as follows: in Section 2, we review previous works
on class-incremental learning. Section 3 describes the proposed method in detail. Section 4
presents datasets, preprocessing procedure, neural network architecture and experimental
setup. The corresponding results are reported in Section 5. Finally, the discussion and
conclusions are reported in Sections 6 and 7.

2. Related Work

Existing works in EEG-based emotion recognition have focused on dynamic data
distribution changes, but dynamic changes in class have not been studied yet. In [41], the
authors explored CIL using a memory replay-based approach for the imagined speech task.
Even so, a simple method [47] based on fine-tuning and the nearest neighbor classifier
was adopted. Likewise, an undemanding evaluation was performed since only a single
new class was tested, while a considerable percentage of data from old classes is reserved
in memory when a new class is added. On the other hand, several CIL methods are
available in computer vision to address the catastrophic forgetting problem. Among
different approaches, reported in [22], we are interested in memory replay-based methods
since they have shown superior performance in terms of accuracy. Thus, we describe
several methods based on memory replay to deal with the catastrophic forgetting problem.
We group these methods according to the problem they address.

Less forgetting. Knowledge distillation [48] was introduced as a regularizer on the
outputs of a reference network and a new network in [49], in order to preserve the pre-
dictions of classes learned at previous CIL stages. For this, knowledge distillation aims
to keep the new network weights close to the weights of the reference network. More-
over, Hou et al. [33] presented Learning a Unified Classifier Incrementally via Rebalancing
(LUCIR), which introduces a less-forget constraint through the cosine distance, consid-
ering the local geometric structures of old classes in their feature space. More recently,
Simon et al. [25] proposed a distillation loss, named Geodesic, by adopting the concept of
geodesic flow between two tasks, that is, the gradual changes between tasks projected in
intermediate subspaces.

Bias correction. In this group, CIL methods focus on updating the neural network
weights in order to calibrate the bias produced by the class imbalance of representative
samples. Wu et al. [50] proposed Bias correction (BiC) to rectify the weights of the model
output, but a validation set is still required. In [33], authors observed that magnitudes
of the weight vectors for new classes are higher than those of old classes, then, cosine
normalization is used over the output layer to reduce the impact of imbalanced data. In
this sense, Incremental Learning with Dual Memory (LI2M) [47] corrects scores of old classes
storing their statistical information in an additional memory. Classifier Weights Scaling for
Class Incremental Learning (ScaIL) [51] rectifies the weights of old classes to make them more
comparable to those of new classes. Zhao et al. [36] proposed Weight Aligning (WA) to
correct the biased weights at the output layer once the training process has ended. For this,
only weight vectors of new classes are aligned to those of old classes using normalization.
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Inter-class separation. The knowledge distillation loss has proven to be useful while
producing more discriminative results within old classes when a bias correction is per-
formed [36]. However, distillation loss may not be sufficient to ensure an inter-class
separation between old and new classes since decision boundaries are re-configured dur-
ing training over new classes. Thus, authors in [33] introduced margin ranking loss to
encourage a margin that separates old and new classes. Chaudhry et al. [37] used bilevel
optimization to update the model with new classes, keeping predictions intact on anchor
points of old classes that lie close to the class decision boundaries.

Representative samples. Some strategies have been reported to select representative
samples of old classes in order to avoid the model from overfitting to new classes. The
baseline method, named Herding [32,52], selects the closest samples as most representative
of a class, based on a histogram of the distances to the mean sample of that class. Authors
in [53] introduced a more complex solution, named Mnemonics, which uses a strategy based
on meta-learning to update the memory via gradient descent, selecting those samples
located on boundary decisions. Generative solutions may also be found in [54,55], where
artificial samples are drawn from each incremental stage, using generative adversarial
networks (GANs). However, since GANs have proven to be difficult to optimize, they
present scalability issues.

3. Proposed Method

In this section, we introduce the proposed method in detail. First, the Class-incremental
learning setting is described. Then, we introduce an overview of the proposed method and
its components. Finally, the training algorithm of the proposed method is presented.

3.1. Class Incremental Learning Setting

This research is focused on Class-Incremental Learning (CIL) based on the memory re-
play approach [22,32], where the neural network model complexity is maintained constant
through S incremental stages, while new emotions are sequentially incorporated. In each
incremental stage, samples from new emotions and a few samples from old emotions are
available to retrain an existing neural network model.

Let X be a feature space with a label space Y belonging to classes (emotions) in C. A
labeled dataset is defined as D = {(x, y)|x ∈ X , y ∈ Y}. We assume one initial stage and S
incremental stages, where C is split into S+ 1 sets C0, C1..., CS with C = C0 ∪C1 ∪ ...∪CS and
C i ∩ C j = ∅ for i �= j. A budget is determined for the memory M = {(x, y)|x ∈ X , y ∈ Y},
which is used to store a limited amount of representative samples from old classes. In
the initial stage, a deep neural network model is trained on a labeled dataset D0. Next,
a representative set of samples E0 is selected and stored in memory M as a replacement
of D0, with |E0| � |D0|. In the incremental stage s, a deep network model is updated
using the labeled dataset Ds and memory M, that is, Ds ∪ M. Notice that M now contains
representative samples of old classes E0:s−1 from incremental stage 0 to s − 1. We assume
all training samples in Ds are available to train a neural network. In CIL, the main objective
is to use a deep network model and Ds ∪ M to accurately classify samples belonging to
old and new classes in each incremental stage s, avoiding catastrophic forgetting.

A deep neural network model is usually denoted as a labeling function f with trainable
weights Φ, such that ŷ = f (x; Φ). The function f may be represented as composite of two
functions, fenc ◦ fcls. Here, fenc represents the part of network that encodes an input x into
a latent feature representation z, that is, z = fenc(x; θ); θ is the set of trainable weights.
Then, latent features z are fed to a feature labeling function fcls with weights φ, in order
to produce a classification score ŷ, i.e., ŷ = fcls(z; φ). In CIL, the number of classes of the
model output increases at each incremental stage. Thus, the network model f is expected
to classify |Cs| more classes at incremental stage s than at stage s − 1.

3.2. Overview of the Proposed Method

The proposed method, named Incremental Learning preserving the Learned Feature Space
(IL2FS), faces the catastrophic forgetting problem aiming to preserve the learned feature
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space from old classes. For this, IL2FS performs a bias correction of new classes, while the
inter-class separation and feature space alignment of old classes are ensured. Firstly, a bias
correction is performed on the weights at the output layer via Weight Aligning [36], as
imbalanced data are present when trained over a reduced set of representative samples of
old classes. Then, an inter-class separation is encouraged between scores from old classes
and their nearest class (old or new) via margin ranking loss, instead of only encouraging
a separation between old and new classes, as reported in [33]. Finally, since that new
knowledge may modify the learned feature space at previous CIL stages, we propose to
use triplet loss [45] to preserve the feature space alignment of old classes.

The complete flowchart is shown in Figure 1 and the overall objective can be written
as follows

Linc(Ds, M, f(s−1); Φ) = β · Ltri + Lcls + α · Lmr, (1)

where Ltri is the triplet loss, Lcls is a classification loss, and Lmr is the margin ranking loss.
λ, α, β are the trade-off hyper-parameters.

Figure 1. Flowchart of the proposed method throughout S incremental stages.

As shown in Figure 1, the network model f0 is trained at stage 0 on D0, using the
classification loss. Next, the Herding method [32,52] is employed to select m representative
samples to be stored in memory M. At the incremental stage s, weights Φ are initialized
using those learned at stage s − 1. Then, the network model fs is retrained on Ds ∪ M,
using loss function Linc. Exponential Moving Average (EMA) [56] is also incorporated into
IL2FS in order to stabilize the training of fs over n training steps:

Φ(n)
EMA = (1 − λEMA) · Φ(n−1)

EMA + λEMA · Φ(n), (2)

where Φ(n)
EMA is the EMA of successive Φ weights over n and λEMA is the decay rate or

momentum. Then, at the end of the model’s training, Weighting Aligning is used to align
the norms of the weight vectors between old and new classes at the output layer. Likewise,
m representative samples are selected on Ds ∪ M, considering a balanced selection. This
procedure is repeated every time new classes emerge, which must be incorporated into an
existing model.

3.3. Bias Correction

Weight Aligning (WA) [36] has been used for bias correction, given that a class imbal-
ance is produced by using a reduced set of representative samples of old classes in new
incremental stages. Thus, WA rectifies the weight vectors at the output layer of a network
model, aligning the norms of the weight vectors between old and new classes.
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The output layer is rewritten as

W = (Wold, Wnew), (3)

where
Wold = (w1, w2, ..., wCold) ∈ Rd×Cold ,
Wnew = (wCold+1, ..., wCnew) ∈ Rd×C,

(4)

while the norms of the weight vectors are expressed as follows

‖Wold‖ = (‖w1‖, ‖w2‖, ..., ‖wCold‖),‖Wnew‖ = (‖wCold+1‖, ..., ‖wCnew‖). (5)

Then, the weights of new classes are normalized by using

W̄new = γ · Wnew, (6)

where

γ =
M(‖Wold‖)
M(‖Wnew‖) . (7)

Here, M(·) computes the mean value using these weight vectors.

3.4. Inter-Class Separation

We assume that decision regions of old classes may change during model retraining,
as representative samples of old classes are used for this process. Then, an inter-class sepa-
ration is ensured by setting a margin over class scores throughout the different incremental
learning stages.

Margin ranking loss was introduced in [33] to ensure a separation between old and
new classes (see Section 2). Unlike previous work, we use a variant of the margin ranking
loss to encourage an inter-class separation between the ground-truth score of an old class
and its nearest score coming from any class, old or new.

For each sample x in memory M, a separation is encouraged between the ground-
truth old classes and their nearest class (old or new). For each sample x in memory M, the
score ω̄(x) of the ground-truth old class is considered positive, while the maximum score
ω̄k(x) among the remaining classes is considered hard negative. We have:

Lmr = ∑
x∼{M}

K

∑
k=1

max(b − ω̄(x) + ω̄k(x), 0), (8)

where b is the margin, ω̄(x) is the score of the ground-truth class for the sample x, and
ω̄k(x) is the nearest class score for x.

3.5. Feature Space Alignment

We incorporate triplet loss [45] to leverage the less forgetting, preserving the alignment
of the feature space of classes learned at previous incremental stages. Note that existing
strategies are mainly focused on maintaining the same output predictions of old classes
(see Section 2). On the other hand, previous works in CIL [42–44] have mainly used triplet
loss to train embedding networks and ensure an inter-class separation. However, unlike
previous works, we incorporate triplet loss to preserve the feature space alignment of
old samples, producing near feature representations from fenc(S−1) and fenc(S) for the same
processed sample. Here, fenc(S−1) is the model learned at the last incremental stage (s − 1)
and fenc(S) is the new model to train in the current stage s. Representations from different
samples, processed by fenc(S−1) and fenc(S) , are pushed away from each other by a small
margin. Note that class labels for the processed samples are not used in our proposal, as an
inter-class separation is not pursued.
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More specifically, we use triplet loss to push latent feature representations zs−1 =
fenc(S−1) (x1) and zs = fenc(S) (x1) close to each other for the same sample x1. Meanwhile,
the latent features zs−1 and zs, produced by fenc(S−1) and fenc(S) , but coming from samples
x1 and x2, are pushed away from each other by a margin.

The triplet loss is defined as follows

Ltri = ∑
x∼{M}

max(d(za, zp)− d(za, zn) + a, 0), (9)

where za is the anchor input, zp is a positive input of the same label as za, while zn is a
negative input of a different label as za; a is the margin and d is the cosine dissimilarity
measure. Anchor-positive pairs are formed by latent features generated by fenc(S−1) and
fenc(S) for the same sample, while anchor-negative pairs are formed by latent features
generated by fenc(s−1) and fenc(S) for a pair of different samples. fenc(S−1) processes all
samples within the current batch to generate their respective latent feature representations.
After, each featured sample is labeled according to its index into the batch of samples.
This procedure is repeated for all samples but using fenc(S) ; later, featured samples are
concatenated with those obtained by fenc(S−1) . Then, the multi-similarity miner [57] is used
to generate anchor-positive pairs (za, zp) and anchor-negative pairs (za, zn) over labeled
feature representations in order to preserve the feature alignment of old classes.

3.6. Training of IL2FS

Algorithm 1 presents the training procedure of IL2FS at incremental stage s. First, the
set of weights Φ is initialized using weights Φ(s−1) (line 1). Next, we compute latent features
for x using the reference model and current model (lines 7–8). Featured samples are labeled
according to their indices into the dataset (lines 9–10). Anchor-positive and anchor-negative
pairs are generated using the Multi-similarity miner (line 11) to be employed in triplet loss
Ltri. Then, scores for ground-truth old classes and their nearest classes are computed in
order to be used in margin ranking loss Lmr (lines 12–14). After, neural network model fs
is trained using the loss function Linc (line 15). Note that Linc is composed of classification
loss Lcls, triplet loss Ltri and margin ranking loss Lmr. The EMA weights Φ(n)

EMA are
computed from Φ(n) (line 16). After training fs, weight vectors of the output layer are
rectified employing the Weighting Aligning method (line 18). Finally, the memory M
is updated by selecting m representative samples on Ds

⋃M by means of the Herding
method (line 19).
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Algorithm 1 Training algorithm of IL2FS at incremental stage s.

Inputs: Ds – training labeled dataset from new classes; M – memory containing represen-
tative samples from old classes; f(s−1)(·; Φs−1) – reference model trained at incremental
stage s − 1; λmr, α, β – trade-off hyperparameters; λEMA – decay rate; η – learning rate;
n – number of epochs.

Output: fs(·; ΦEMA) – a trained neural network model; M – updated memory with repre-
sentative samples from old classes.

1: Initialize Φs with Φ(s−1).
2: xold, yold ← M
3: xnew, ynew ← Ds
4: x ← xold ∪ xnew
5: y ← yold ∪ ynew
6: repeat
7: zre f ← fenc(S−1) (x) � Compute features for samples using the reference model
8: zcur ← fenc(S) (x) � Compute features for samples using the current model
9: vre f ← GenerateLabels(zre f ) � Assign labels based on indices into the dataset

10: vcur ← GenerateLabels(zcur)
11: za, zp, zn ← MultiSimilartyMiner(zre f ∪ zcur, vre f ∪ vcur) � Generate

anchor-positive and anchor-negative pairs
12: ω̄(x) ← f(s−1)(xold) � Compute scores for samples from old classes using the

reference model
13: ω̄a(x) ← fs(x) � Compute scores for all samples using the current model
14: ω̄k(x) ← NearestClass(ω̄(x), ω̄a(x)) � Obtain scores from the nearest classes to old

classes
15: Φ(i) ← Φ(i−1) − η · ∇[β · Ltri(z

a, zp, zn; Φ(i−1)) + Lcls( fs(x), y; Φ(i−1)) + α ·
Lmr(ω̄(x), ω̄k(x); Φ(i−1))]

16: Φ(i)
EMA = (1 − λEMA) · Φ(i−1)

EMA + λEMA · Φ(i)

17: until n epochs are reached
18: ΦEMA ← WeightingAligning(ΦEMA) � Bias correction
19: M ← Herding(Ds

⋃M). � memory is updated using the Herding method
20: return fs(·; ΦEMA), M

4. Experimental Design

This section first describes two public datasets used in our experiments. Then, the neu-
ral network architecture, comparison methods and implementation details are introduced.
(Code is available at https://github.com/mjmnzg/IL2FS. Accessed on 11 January 2022).

4.1. Datasets

Experiments were performed on two public datasets, DREAMER [46] and DEAP [11],
since they are benchmarks for emotion recognition research [3,14,15,21]. DREAMER is a
multi-channel dataset containing records of nine emotions from EEG signals per subject.
Likewise, DEAP is a large-scale dataset containing EEG signals with different emotional
evaluations. More importantly, both datasets were selected since a high number of classes
may be obtained from EEG data, making it useful for the analysis of the catastrophic
forgetting problem in emotion recognition.

The DREAMER dataset comprises EEG data from 23 subjects (14 male and nine
female). EEG data were collected while the subjects watched 18 film clips, which contain
cut-out scenes to evoke nine emotions: calmness, surprise, amusement, fear, excitement,
disgust, happiness, anger, and sadness. The length of each film clip is between 65 to 393 s
(M = 199 s). EEG signals were recorded at a sampling rate of 128 Hz using an Emotiv
EPOC system that uses 16 electrodes, following locations according to the International
10–20 systems: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4, M1, and M2.
Sensor M1 acts as a ground reference, while M2 is a feed-forward reference; then, the
remaining 14 electrodes were recorded and used for feature extraction. EEG data from
all subjects have 18 experimental EEG trials, two per elicited emotion. Each EEG trial
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begins with a neural film to help the subjects return to the neutral emotion state, while data
serve as a baseline. EEG signals of each trial were filtered with Hamming bandpass linear
phase FIR filters to extract frequencies inside the ranges of interest (4–30 Hz). Likewise,
artifacts were removed by using artifact subspace reconstruction (ASR) [58]. At the final
step, the Common Average Reference (CAR) method [59] was applied to compute the
average value over all electrodes and subtracts it from each sample of each electrode. In our
experiments, we adopt a discrete categorization instead of a dimensional categorization,
with nine classes available.

The DEAP dataset contains EEG and peripheral physiological signals from 32 subjects
while watching 40 music videos. EEG signals were collected using a cap of 32 electrodes,
placed according to the international 10–20 system [60]. For this, a sampling rate of
512 Hz was used, then downsampled to 128 Hz. We used the pre-processed data (https:
//www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html. Accessed on 1 June 2021),
where each trial contains 60 s of recorded signals under stimulation and 3 s of baseline
signals in a relaxed state. A bandpass filter from 4.0–45.0 Hz was applied over EEG signals,
and eye artifacts were removed as in [11] using independent component analysis (ICA).
EEG data were averaged to the common reference. Subjects rate their levels of arousal,
valence, linking, and dominance from 1 to 9 for each music video. In our experiments, we
adopt a multi-class categorization scheme, combining discrete ratings of valence, arousal
and dominance. Firstly, we divide each emotion dimension into two categories using a
rating of 5 as threshold: low/high valence, low/high arousal and low/high dominance.
Secondly, we label each EEG trial used as a combination of binary categorization in three
dimensions. For instance, its label is 0 when the rating is low for the three dimensions, while
the label is 1 when the rating for valence and arousal is low, but the rating for dominance is
high. Finally, the recognition task is a multi-class classification composed of a maximum of
8 classes, given that not all subjects rate for every level of arousal, valence and dominance.

4.2. Preprocessing

We applied the preprocessing procedure of baseline removal on EEG signals as in
the works reported by [3,15,21,61] since this method highlights the effects of stimulated
emotions. We begin by using a non-overlapping window to slice baseline signals into N
segments of 1 s for each trial and C electrodes. From the set of N segments, we obtain
the mean segment, which represents the base emotional state without stimulation. Next,
the mean segment is subtracted from the EEG signals under stimulation. The obtained
differences represent the electrical changes in the brain under stimulation. Following this
pre-processing, 1080 EEG samples are obtained for each subject in DREAMER, where
60 segments are obtained from each experimental trial; 18 experimental trials per subject. In
this direction, each trial in DEAP is divided into 60 segments, each one containing 128 sam-
pling points. Then, we obtain 2400 EEG samples for each subject since there are 40 trials
per subject. Finally, each EEG sample in DREAMER and DEAP is a 32 × 128 matrix and
14 × 128 matrix, composed of the number of electrodes and sampling points, respectively.

4.3. Neural Network Architecture

We adopted a Capsule Network (CapsNet) architecture [21], which showed one of
the best accuracy performances for EEG-based emotion recognition research. Figure 2
presents the CapsNet architecture and Table 1 describes the implementation details. Unlike
the original CapsNet architecture, we add a module based on an attention mechanism,
which includes a Channel-Attention block [62] into the modules from Convolutional to
PrimaryCaps. In addition, the bottleneck layer proposed in [21] was removed since it
dramatically increases the resources used in memory. To train CapsNet, the classification
loss Lcls uses the margin and reconstruction losses, as suggested in [63]. For this purpose,
CapsNet employs a separated margin loss Lk for each class k. On the other hand, recon-
struction loss Lrec uses the sum of squared differences between the outputs of a decoder
and the input EEG signal values. This decoder consists of 3 fully-connected layers that
model the EEG signals.
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Table 1. Specifications of the Capsule Network architecture. We include a Channel-Attention block
before the PrimaryCaps module. The decoder setting for reconstruction loss is shown at the bottom.

Id Modules Layers (Input ID) Hyperparameters Output Shape

I1 Input – – DREAMER: 14 × 128
DEAP: 32 × 128

C2 Convolutional Convolution-2D (I1)

DREAMER: 64 filters,
size = 6, stride = 1,
activation = ReLU

DREAMER:
64 × 123 × 9

DEAP: 64 filters,
size = 9, stride = 2,
activation = ReLU

DEAP: 64 × 60 × 12

A3

Channel-Attention

Average pooling (C2) Size = 1, stride = 1

C4 Convolution-2D (A3)
32 filters, size = 1,

stride = 1,
activation = ReLU

C5 Convolution-2D (C4) 64 filters, size = 1,
stride = 1

M6 Maxpooling (C2) size=1, stride=1

C7 Convolution-2D (M6)
32 filters, size = 1,

stride = 1,
activation = ReLU

C8 Convolution-2D (C7) 64 filters, size = 1,
stride = 1

S9 Sum (C5, C8) –

A10 Activation (S9) Sigmoid
DREAMER:
64 × 123 × 9

DEAP: 64 × 60 × 12

C11
PrimaryCaps

Convolution-2D (A10)

DREAMER: 8 × 16
filters, size = 6,

stride = 2
DEAP: 8 × 16 filters,
size = 9, stride = 2

R12 Reshape (C11) – DREAMER: 1088 × 8
DEAP: 832 × 8

E13 EmotionCaps Dynamic routing (R12) 16 units 16 × 16
N14 Norm Normalization (E13) – 16

O15 FC Fully connected (N14) Dynamic outputs DREAMER: 9
DEAP: 8

Decoder

F1 FC1 Fully connected (O15) 256 units 256
F2 FC2 Fully connected (F1) 512 units 512

F3 FC3 Fully connected (F2)
DREAMER: 14 × 128

units DREAMER: 14 × 128

DEAP: 32 × 128 units DEAP: 32 × 128

4.4. Comparison Methods

We compared IL2FS with eight popular and recent CIL methods based on memory
replay: Fine-tuning (FT) [51], Fine-tuning+Nearest Centroid Classifier (FT+NCC) [41,51],
Less without Forgetting (LwF) [49], Incremental Classifier and Representation Learning
(iCARL) [32], Mnemonics [53], ScaIL [51], Weighting Aligning (WA) [36], and
Geodesic+LUCIR [25]. We selected such CIL methods in our comparison since they arise
as promising solutions to address the catastrophic forgetting problem in emotion recog-
nition. All comparison methods were downloaded from repositories of original authors
and then adapted for our experiments, except FT and FT+NCC, which do not represent a
challenge to implement as they are basic methods. Note that all CIL methods use the same
preprocessing procedure and the CapsNet architecture described in the previous sections.
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Figure 2. Diagram of the Capsule Network architecture.

4.5. Implementation Details

We first configured the hyper-parameters for the classification loss of the CapsNet
architecture. Thus, the margins m+ and m− for the separated margin loss Lcls were set to
0.9 and 0.1, as suggested in [21,63]. Likewise, the reconstruction loss Lrec was scaled by 0.3
during training; this value was selected from {0.01, 0.1, 0.2, 0.3, and 0.5}.

Concerning the specific configuration of our proposed method, we adopted a mean
layer instead of a normalization layer (N14) in the CapsNet architecture. For Ltri, we used
a margin a = 0.1 since a feature space alignment is pursued between extracted features
from a reference network model and a new network model; a larger margin showed to
affect the classification results negatively. To ensure an inter-class separation via margin
ranking loss Lmr, we used a margin b equal to 5, which was selected from {1, 3, 5, 8, and 10}.
Finally, for trade-off hyper-parameters, we used α = 1 and β = 0.1, which were selected
from {0.01, 0.1, 1, and 2}. We use a momentum λEMA = 0.995 to place a greater significance
on the most recent values.

Table 2 describes the specific hyper-parameters of CIL methods used in our comparison.
Similar to our proposal, all hyperparameters were selected via grid search in combination
with coordinated descent [64] in order to ensure the best configuration. Specifically, we
select a small finite list of values for each hyper-parameter and each value is changed at a
time while the rest of the hyper-parameters remains fixed.

Table 2. Hyper-parameter setting. a,b are margins; λ, λo, λdis, λmr, are the trade-off hyperparameters
for each CIL method.

Methods Hyper-Parameters

FT, FT+NCC, ScaIL -
LwF, iCARL T = 2, λo = 1
Mnemonics λdis = 0.5, λmr = 1, b = 5

WA T = 2, λ = 0.4
Geodesic+LUCIR λdis = 1, λmr = 1, b = 5

Regarding the training algorithm of the CIL methods, we used Adam optimizer
employing a mini-batch size of 10; a larger size showed to reduce the classification results
using an incremental learning evaluation. For DREAMER, we set a learning rate of 0.001
up to epoch 30, when it decays to 0.0001, keeping this value until epoch 50 when the
training concludes. For DEAP, we set an initial learning rate of 0.001 up to epoch 15,
when it also decays by a factor of 10, and then holds this value until the end of epoch 20.
Other learning rates (0.1, 0.01, 0.001, 0.0001) were evaluated, but they did not improve
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the accuracy performance. An L1 regularizer was incorporated to CapsNet with a weight
decay of 0.0004 for the Adam algorithm.

Our proposal and the comparison methods were implemented with PyTorch and
trained on an Intel(R) Core (TM) i7 PC with an Nvidia GTX 1080 graphics card and Ubuntu
v20.04 LTS.

4.6. Evaluation

As reported in [22,32], we follow the standard evaluation protocol used for the CIL
setting based on the memory replay approach. The Holdout method is applied for a given
dataset to build the training and testing data for each available class. Likewise, classes are
arranged in a fixed random order. Each method is trained in a class-incremental way on
available training data, as described in Section 3.1. At the end of each incremental stage,
the resulting classifier is evaluated on testing data for already trained classes. Note that
the testing dataset is not revealed to the CIL methods during training in each incremental
stage to avoid overfitting. At the end of S incremental stages, we obtain S classification
accuracies, averaged and reported as the final result.

We adopted an instantiation of the above protocol for each subject’s data on the
DREAMER and DEAP datasets, considering the most challenging scenario possible. Firstly,
we start from a model trained on two classes, while remaining classes in DREAMER and
DEAP come in 7 and at most six incremental stages, respectively. Secondly, we set the
memory size M to approximately 1% of the full training set from each subject in order to
store representative samples from old classes. We used 90% of the data of each class for
training, while the rest of the data was used for testing. Thus, about ten samples can be
stored in memory for DREAMER through 7 incremental stages, while at least 28 samples
can be stored for DEAP during six stages. Note that not all subjects in DEAP rate the
same levels of arousal, valence and dominance, producing an imbalanced dataset; an
oversampling was applied using a random selection. Classes from incremental stages
are arranged in sequence with a fixed random order. We performed five repetitions with
different partitions of data and different classes, using different random seeds; a stratified
sampling was performed with respect to the classes. From accuracy results by training
in a class-incremental way, we compute the average and standard deviation over the
incremental stages as final results. We assumed that training and testing datasets are
independent and identically distributed, i.e., both datasets were drawn from the same
distribution. Thus, we did not consider any change of distribution.

5. Results

Table 3 shows the average accuracy and standard deviation for all methods over
DREAMER. We observed that IL2FS achieved the best average accuracy (59.08%) with one
of the lowest standard deviations (8.26). Notice that IL2FS outperformed the second-best
method (Mnemonics) by 8.96 percentage points (pp). Statistical differences were computed
among the evaluated methods on the average accuracy of the 23 subjects. The Friedman
test was applied, followed by Wilcoxon signed-rank as post hoc with the Finner correc-
tion. Friedman’s test showed significant differences among CIL methods (χ2(8) = 169.99,
p = 0.0). The Wilcoxon test indicated that the difference between IL2FS and CIL methods
was statistically significant (p < 0.05).

Table 4 shows the average accuracy and standard deviation for all methods on DEAP.
We can see that IL2FS achieved the best average accuracy (79.36%) with the lowest standard
deviation (4.68). The second-best method was Geodesic+LUCIR, obtaining an average
accuracy of 8.94 percentage points shorter than IL2FS. Friedman’s test indicated significant
differences among compared methods (χ2(8) = 230.03, p = 0.0). Wilcoxon signed-rank
test revealed that differences between IL2FS and CIL methods are statistically significant
(p < 0.05) for the given dataset.
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Table 3. Accuracy and standard deviation for CIL methods on the DREAMER dataset using approxi-
mately 1% of the training size. The best results are in bold.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

1 44.08 ± 13.86 48.63 ± 13.37 44.78 ± 10.25 48.26 ± 09.95 51.94 ± 14.00 40.09 ± 11.21 47.65 ± 14.92 53.29 ± 16.29 64.58 ± 12.02
2 35.82 ± 13.87 38.31 ± 14.31 37.27 ± 15.84 39.95 ± 16.19 47.86 ± 17.64 30.56 ± 11.64 39.83 ± 19.94 42.54 ± 14.50 53.64 ± 11.78
3 32.51 ± 11.59 34.93 ± 09.87 33.32 ± 12.91 37.31 ± 13.34 42.54 ± 12.50 29.96 ± 11.96 35.33 ± 14.45 44.37 ± 14.46 54.43 ± 11.12
4 53.96 ± 11.88 56.55 ± 11.41 54.23 ± 14.23 56.84 ± 14.47 60.72 ± 15.30 40.09 ± 08.64 55.13 ± 16.93 60.16 ± 13.10 64.08 ± 09.19
5 38.76 ± 14.35 41.65 ± 13.52 35.65 ± 15.67 37.73 ± 16.52 51.42 ± 16.95 29.24 ± 10.62 39.87 ± 17.65 51.13 ± 17.09 60.74 ± 12.52
6 35.80 ± 13.39 38.47 ± 13.38 36.38 ± 15.31 40.12 ± 15.06 44.35 ± 14.42 34.98 ± 09.59 37.01 ± 16.35 42.08 ± 12.74 53.31 ± 12.94
7 32.77 ± 11.33 35.89 ± 11.14 31.71 ± 11.98 35.87 ± 13.15 42.01 ± 13.49 27.76 ± 08.13 34.81 ± 14.29 45.17 ± 14.06 56.34 ± 10.35
8 33.77 ± 11.41 36.90 ± 11.63 31.03 ± 11.29 33.39 ± 11.84 41.25 ± 12.33 27.18 ± 10.71 34.57 ± 12.06 43.31 ± 13.65 49.98 ± 10.66
9 28.69 ± 08.12 32.11 ± 09.09 28.75 ± 11.89 32.67 ± 11.03 37.97 ± 13.07 25.95 ± 09.10 30.72 ± 14.50 39.73 ± 13.10 49.07 ± 12.59

10 35.62 ± 13.81 38.06 ± 14.24 36.46 ± 15.85 38.56 ± 15.54 40.70 ± 13.61 28.70 ± 08.46 38.47 ± 13.67 40.54 ± 12.53 51.48 ± 11.21
11 35.91 ± 10.19 39.53 ± 10.20 33.02 ± 13.70 36.61 ± 12.86 41.62 ± 12.32 34.08 ± 13.04 36.83 ± 12.10 46.29 ± 13.24 56.08 ± 14.38
12 45.95 ± 09.95 50.54 ± 10.42 46.08 ± 12.05 49.81 ± 12.10 56.21 ± 14.50 37.23 ± 09.55 51.48 ± 15.69 57.70 ± 13.65 66.81 ± 09.14
13 46.41 ± 15.88 48.24 ± 16.25 45.25 ± 16.26 48.39 ± 15.22 57.09 ± 14.84 39.42 ± 09.57 52.48 ± 16.78 55.51 ± 15.10 68.07 ± 11.11
14 45.27 ± 12.84 48.52 ± 11.64 46.56 ± 18.02 49.50 ± 17.38 54.18 ± 16.59 38.57 ± 14.70 50.10 ± 21.21 51.96 ± 17.24 60.94 ± 13.67
15 64.27 ± 11.47 66.17 ± 11.13 66.48 ± 10.64 69.18 ± 09.85 72.71 ± 12.81 56.49 ± 09.08 69.19 ± 11.46 71.30 ± 11.16 81.16 ± 07.11
16 34.37 ± 14.03 37.87 ± 13.67 32.26 ± 11.43 35.40 ± 09.38 42.87 ± 12.67 29.04 ± 08.59 35.41 ± 14.72 43.04 ± 15.06 50.80 ± 12.11
17 37.99 ± 12.40 41.80 ± 11.50 38.42 ± 12.16 42.11 ± 11.88 45.49 ± 14.32 31.50 ± 11.78 40.99 ± 13.49 46.73 ± 13.16 53.91 ± 09.47
18 50.14 ± 16.92 52.06 ± 17.31 48.56 ± 15.28 51.88 ± 15.45 57.97 ± 17.41 41.17 ± 13.13 52.66 ± 17.81 56.76 ± 15.63 62.78 ± 11.35
19 57.42 ± 12.95 61.90 ± 11.30 56.79 ± 15.52 59.20 ± 15.40 65.67 ± 11.72 50.43 ± 10.23 61.13 ± 16.25 66.94 ± 10.98 71.56 ± 09.73
20 27.09 ± 13.44 28.79 ± 12.87 29.47 ± 15.63 31.08 ± 14.62 35.81 ± 13.15 23.91 ± 09.11 32.62 ± 15.21 35.83 ± 13.98 49.75 ± 14.18
21 41.34 ± 10.87 43.63 ± 10.44 39.95 ± 13.04 42.68 ± 12.74 48.10 ± 12.20 31.82 ± 07.02 42.34 ± 15.87 48.22 ± 10.99 54.25 ± 12.23
22 57.39 ± 12.71 61.14 ± 11.34 55.15 ± 14.11 57.58 ± 13.71 66.89 ± 10.40 47.36 ± 08.72 57.42 ± 16.16 64.07 ± 10.88 68.49 ± 13.69
23 43.66 ± 15.63 45.99 ± 14.33 38.93 ± 16.62 41.39 ± 16.67 47.38 ± 16.08 32.77 ± 10.21 40.98 ± 17.76 45.17 ± 16.29 56.66 ± 12.17

Avg. 41.69 ± 09.80 44.68 ± 09.91 41.15 ± 09.85 44.15 ± 09.85 50.12 ± 09.31 35.14 ± 08.20 44.22 ± 10.22 50.08 ± 09.31 59.08 ± 08.26

Table 4. Accuracy and standard deviation for CIL methods on the DEAP dataset using approximately
1% of the training size. The best results are in bold.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

1 57.65 ± 13.84 64.62 ± 11.95 55.14 ± 12.12 62.57 ± 12.48 74.60 ± 17.04 53.14 ± 11.94 61.80 ± 17.93 75.06 ± 13.42 86.47 ± 06.85
2 56.83 ± 16.68 61.35 ± 15.75 56.30 ± 18.12 58.82 ± 18.08 64.09 ± 17.77 54.10 ± 05.81 59.24 ± 19.92 62.53 ± 16.90 74.33 ± 10.94
3 56.23 ± 09.27 60.40 ± 08.77 59.29 ± 12.84 63.56 ± 12.33 63.78 ± 15.90 52.40 ± 06.23 62.50 ± 12.58 67.24 ± 14.66 74.31 ± 09.64
4 58.44 ± 15.77 63.74 ± 15.60 60.47 ± 15.14 65.21 ± 16.46 62.51 ± 18.69 57.31 ± 03.44 60.78 ± 17.60 69.60 ± 14.88 75.91 ± 12.26
5 57.34 ± 13.39 63.42 ± 12.05 55.10 ± 11.90 59.98 ± 11.68 66.71 ± 17.31 51.64 ± 09.14 60.28 ± 14.03 69.12 ± 12.86 78.55 ± 08.14
6 55.84 ± 14.10 63.04 ± 12.13 56.09 ± 15.08 63.04 ± 14.71 72.35 ± 15.76 51.28 ± 08.98 60.66 ± 17.94 72.20 ± 16.01 83.16 ± 06.61
7 64.44 ± 16.04 70.54 ± 14.46 62.59 ± 17.69 69.65 ± 14.68 75.40 ± 15.97 59.38 ± 04.19 67.31 ± 19.10 79.58 ± 14.97 85.28 ± 06.72
8 60.46 ± 14.56 67.00 ± 12.39 60.82 ± 14.35 66.61 ± 13.25 70.96 ± 16.66 53.71 ± 03.99 64.64 ± 15.48 71.79 ± 12.41 82.59 ± 06.95
9 52.65 ± 15.77 59.46 ± 16.01 52.85 ± 15.62 59.02 ± 15.60 65.73 ± 17.89 48.87 ± 04.24 55.72 ± 16.74 64.45 ± 13.76 78.22 ± 10.15

10 72.54 ± 11.89 78.08 ± 10.06 70.43 ± 11.95 74.33 ± 11.30 72.70 ± 13.22 62.91 ± 04.42 74.19 ± 12.94 82.04 ± 09.11 85.71 ± 05.15
11 52.94 ± 19.03 59.58 ± 17.35 55.42 ± 18.49 63.22 ± 18.36 64.73 ± 21.20 52.12 ± 07.23 57.57 ± 20.20 66.36 ± 19.73 77.96 ± 10.11
12 68.06 ± 16.98 72.76 ± 15.16 68.35 ± 16.77 74.88 ± 15.33 71.02 ± 17.65 69.16 ± 09.76 70.10 ± 15.46 76.61 ± 14.52 79.11 ± 11.29
13 46.32 ± 12.19 52.48 ± 11.53 45.36 ± 13.13 50.33 ± 12.75 64.25 ± 16.59 38.55 ± 02.58 48.49 ± 17.13 59.71 ± 15.87 74.74 ± 12.02
14 51.04 ± 15.11 58.49 ± 13.71 49.41 ± 16.74 55.65 ± 16.96 64.15 ± 14.57 45.08 ± 03.87 51.73 ± 15.93 63.48 ± 15.68 75.37 ± 10.65
15 51.02 ± 13.96 57.96 ± 13.57 53.10 ± 15.41 59.35 ± 15.51 71.36 ± 15.69 53.49 ± 04.22 54.30 ± 16.34 63.75 ± 15.15 80.50 ± 08.37
16 61.86 ± 09.81 67.57 ± 09.20 62.10 ± 09.96 67.35 ± 09.11 61.78 ± 19.88 54.16 ± 05.12 63.79 ± 11.46 70.24 ± 13.35 82.10 ± 10.33
17 49.18 ± 10.97 55.58 ± 11.15 49.45 ± 13.83 55.88 ± 12.93 61.75 ± 16.90 42.52 ± 04.61 50.79 ± 13.57 62.45 ± 12.58 68.84 ± 10.02
18 63.45 ± 09.97 69.54 ± 09.27 61.68 ± 08.82 67.09 ± 08.02 76.78 ± 15.31 66.03 ± 07.85 67.34 ± 14.30 74.56 ± 13.68 79.82 ± 06.34
19 61.31 ± 12.87 66.52 ± 12.27 62.42 ± 13.45 67.94 ± 10.48 71.57 ± 17.28 59.35 ± 04.81 66.83 ± 13.87 71.54 ± 16.72 82.06 ± 08.84
20 68.44 ± 15.69 73.53 ± 13.52 66.13 ± 17.82 70.82 ± 15.53 67.01 ± 19.20 61.15 ± 05.18 70.73 ± 16.44 74.44 ± 15.08 82.96 ± 09.52
21 69.70 ± 14.88 74.58 ± 13.07 69.10 ± 13.62 73.16 ± 13.39 70.00 ± 21.43 67.61 ± 07.90 72.44 ± 16.90 77.39 ± 15.35 79.11 ± 10.35
22 66.38 ± 09.98 73.02 ± 10.07 64.10 ± 12.25 69.00 ± 11.38 70.31 ± 13.68 58.79 ± 06.31 69.03 ± 14.77 72.83 ± 09.96 80.14 ± 08.90
23 47.61 ± 12.34 55.60 ± 11.60 47.39 ± 09.88 56.89 ± 12.95 77.79 ± 15.13 48.54 ± 05.05 55.51 ± 17.85 69.97 ± 09.84 83.30 ± 06.33
24 66.44 ± 15.95 71.95 ± 13.35 68.02 ± 18.04 73.78 ± 16.02 72.32 ± 18.86 66.30 ± 09.06 70.66 ± 18.62 74.67 ± 15.46 84.28 ± 07.59
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Table 4. Cont.

Geodesic
Subj. FT FT+NCC LwF iCARL Mnemonics ScaIL WA +LUCIR IL2FS

25 49.94 ± 12.30 57.68 ± 10.63 52.73 ± 10.53 60.48 ± 09.41 63.30 ± 16.39 47.68 ± 04.95 52.64 ± 13.20 62.91 ± 12.41 76.20 ± 10.29
26 48.79 ± 08.93 54.62 ± 09.74 47.65 ± 08.71 52.85 ± 08.86 60.39 ± 15.62 48.20 ± 08.45 51.76 ± 09.78 59.99 ± 11.23 66.78 ± 10.25
27 54.70 ± 11.18 64.47 ± 09.56 49.45 ± 07.82 66.25 ± 08.30 80.64 ± 12.15 54.49 ± 10.94 60.36 ± 15.18 74.16 ± 11.72 80.90 ± 06.87
28 57.35 ± 10.50 64.41 ± 09.25 57.00 ± 11.46 64.69 ± 10.14 69.88 ± 14.89 55.19 ± 07.71 60.71 ± 16.05 71.67 ± 11.63 77.46 ± 09.02
29 73.05 ± 07.99 77.94 ± 06.10 72.27 ± 07.88 77.25 ± 08.10 78.84 ± 11.28 73.64 ± 08.85 74.40 ± 08.67 82.36 ± 09.38 85.87 ± 05.34
30 69.05 ± 13.69 74.11 ± 11.48 69.88 ± 13.77 74.64 ± 12.90 75.45 ± 15.11 67.46 ± 03.91 72.50 ± 12.96 80.69 ± 11.56 83.45 ± 08.12
31 61.55 ± 14.27 66.49 ± 13.00 62.38 ± 12.17 66.14 ± 11.69 67.71 ± 17.99 57.06 ± 04.07 64.61 ± 14.79 69.30 ± 13.98 77.63 ± 09.48
32 47.53 ± 09.34 54.37 ± 09.16 46.70 ± 10.90 55.44 ± 12.88 71.31 ± 14.29 46.57 ± 06.33 50.94 ± 15.02 60.83 ± 10.50 76.49 ± 09.43

Avg. 58.69 ± 07.83 64.84 ± 07.24 58.41 ± 07.76 64.56 ± 07.00 69.41 ± 05.48 55.56 ± 08.20 62.01 ± 07.60 70.42 ± 06.50 79.36 ± 04.68

Comparison with baseline. Figure 3 presents a comparison of IL2FS and existing
CIL methods concerning the baseline approach (CapsNet-wo-memory), that is, when
CapsNet did not include any data from old classes in a CIL training. In addition, we also
included the average accuracy when CapsNet is trained using all training samples from old
classes (CapsNet-Full) in each incremental stage. We observed that CapsNet-wo-memory
obtained the worst accuracy results when samples of old classes are not available in the
memory, suggesting the presence of catastrophic forgetting. However, CapsNet improved
its accuracy performance when samples of old classes were employed during Fine-tuning
(FT). Note that IL2FS and advanced CIL methods improved the average accuracy of FT
by incorporating a specific strategy to address the catastrophic forgetting problem, except
ScaIL and LwF. Finally, we observed that IL2FS is still exposed to catastrophic forgetting as
CapsNet-Full achieved 90.63% and 98.17% on DEAP and DREAMER.

(a) (b)

Figure 3. Comparison of CIL methods with baseline approaches on (a) DREAMER and (b) DEAP.
CapsNet-wo-memory represents the average accuracy obtained by CapsNet when data from old
classes are not included in the memory during the CIL training. CapsNet-Full indicates the average
accuracy using all training samples from old classes in each incremental stage. Mnem and Geo+LUC
indicate Mnemonics and Geodesic+LUCIR, respectively.

5.1. Ablation Studies

In this section, we present an analysis with respect to the number of reserved samples
from old classes. After, we study the impact of the number of new emotions incorporated
into the neural network model. Finally, we analyze the impact of each component of IL2FS.
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5.1.1. Effect of the Number of Reserved Samples

Figure 4 shows the comparison of IL2FS with CIL methods, when the memory of
old samples has a size close to 1%, 2%, and 5% of the size of the full training set for each
subject on DREAMER and DEAP. As expected, CIL methods improved their accuracy
performance when more samples were stored in the memory. However, we can see that
IL2FS still maintains the best average accuracy for different sizes of the reserved samples.
For DREAMER, 66.73% and 75.06% were obtained by IL2FS when the memory is close to 2%
and 5% of the size of the full training set. For DEAP, IL2FS achieved average accuracies of
85.35% and 90.73% using memory sizes of 2% and 5%, respectively. Note that our proposal
obtained a greater gain in average accuracy than the comparison methods when a smaller
number of samples from old classes is reserved in the memory.

(a) (b)

Figure 4. Effect of the number of reserved samples in memory: (a) DREAMER and (b) DEAP.

5.1.2. Effect of the Number of Incremental Stages

Figure 5 shows the average accuracy of IL2FS for each incremental stage in comparison
to CIL methods on DREAMER. We reported the average accuracy of CIL methods over all
subjects, employing memory sizes of 1% and 5% of the size of the full training dataset. Ac-
curacy results for CapsNet-wo-memory and CapsNet-Full were also included as baselines.
We observed that a CIL strategy helps reduce catastrophic forgetting by improving the
accuracy performance of CapsNet-wo-memory. However, note that CIL methods decrease
their accuracy performance when the number of stages is increased. It is worth mentioning
that IL2FS achieved the best average accuracies throughout different incremental stages. In
addition, IL2FS obtained a greater gain than existing methods during the last incremental
stages because fewer samples from old classes can be stored in the memory.

(a) (b)

Figure 5. Effect of the number of incremental stages on the DREAMER dataset, using memory sizes
of (a) 1% and (b) 5% of the full training dataset of each subject. We reported average accuracy in each
incremental stage over all subjects.
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5.1.3. Effect of Each Component of IL2FS

The proposed method comprises three main strategies: weight aligning for bias cor-
rection, margin ranking loss for inter-class separation and triplet loss for a feature space
alignment of old classes. Table 5 shows the average accuracy over all subjects for each eval-
uated dataset. Note that Fine-tuning achieved an average accuracy of 41.69% and 58.69%
over DREAMER and DEAP, respectively. By using weight aligning for bias correction,
the average accuracy is improved by 4.86 and 3.99 percentage points over the DREAMER
and DEAP datasets. A variant of margin ranking loss was incorporated to encourage a
separation between each ground-truth old class and its nearest class (old or new). This
modification allowed IL2FS to outperform Fine-tuning+Weight aligning by 10.22 and 15.33
percentage points over DREAMER and DEAP, respectively. In addition, triplet loss was
used to keep a similar alignment of the feature space of old classes. From experiments, we
found that by encouraging such alignment, an improvement of 2.31 and 1.35 percentage
points is observed in average accuracy on DREAMER and DEAP, respectively.

Table 5. Effect of each component of IL2FS on DREAMER and DEAP. The best results are in bold.

Method DREAMER DEAP

Fine-tuning (FT) 41.69 ± 09.80 58.69 ± 07.83
FT+Weight Aligning 46.55 ± 09.01 62.68 ± 07.29
FT+Weight Aligning+Margin ranking loss 56.77 ± 08.47 78.01 ± 04.25
FT+Weight Aligning+Margin ranking loss+Triplet loss (IL2FS) 59.08 ± 08.26 79.36 ± 04.68

6. Discussion

Experiments showed that a standard deep learning model for emotion recognition
(CapsNet) degrades its accuracy performance when trained in a class-incremental way
over only samples from new emotions. This problem, known as catastrophic forget-
ting, is presented because previously learned emotions are negatively affected when new
ones are incorporated into the classifier model. Thus, unlike previous works as reported
in [3,8,13–16,20,21], this research is focused on studying the catastrophic forgetting problem
in EEG-based emotion recognition.

By incorporating existing CIL methods to CapsNet, we showed that classification
results of the baseline approach (CapsNet-wo-memory) can be improved, suggesting
that CIL methods can help mitigate the catastrophic forgetting in EEG-based emotion
recognition. However, experimental results on two public datasets showed that existing
CIL methods do not ensure high average accuracies. Thus, a CIL method was developed
and validated to address the catastrophic forgetting problem.

Previously, Lee et al. [41] studied the CIL over the imagined speech task from EEG
signals. Authors used fine-tuning and the nearest neighbor classifier to address the catas-
trophic forgetting, however, they stored 20% of the full data of every old class in each
incremental stage. Furthermore, only one incremental stage was used for CIL evaluation,
while more stages are needed to observe the negative impact of catastrophic forgetting.
On the other hand, our experiments consider a rigorous evaluation over two datasets for
emotion recognition, including popular and recent CIL methods in our comparison. Based
on our results, we found that IL2FS outperformed existing CIL methods on two public
datasets: DREAMER and DEAP. Note that we integrated a weighting aligning as the WA
method for bias correction, but an inter-class separation and a feature space alignment
were also considered by IL2FS, outperforming WA by 14.28 pp and 17.35 pp on DREAMER
and DEAP, respectively. Like IL2FS, the Mnemonics and Geodesic+LUCIR methods ensure
an inter-class separation via margin ranking loss, but IL2FS encourages the separation
between old classes and their nearest one, including old or new, instead of only ensuring
a separation between old and new classes. Although Mnemonics and Geodesic+LUCIR
also consider strategies for bias correction and an alignment of output predictions, our
proposal outperformed Mnemonics by 8.96 pp and 9.95 pp on DREAMER and DEAP, while
Geodesic+LUCIR was outperformed by 9 pp and 8.94 pp, respectively. In addition, note
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that comparison methods, such as LwF, iCARL, WA, Mnemonics, and Geodesic+LUCIR,
use different strategies to align the output predictions of old classes to leverage the less
forgetting. Unlike these works, IL2FS incorporates triplet loss to preserve the feature space
alignment of old classes instead of the output predictions.

Regarding the evaluation which varies the number of reserved samples and the
number of incremental stages, IL2FS showed a clear advantage compared to existing
methods when the number of reserved samples in the memory is reduced. This issue is
also observed when a greater number of CIL stages are achieved since a lower number of
samples per class may be stored in memory. The above indicates that IL2FS preserves the
learned knowledge better than compared methods throughout different incremental stages
on the most challenging scenario possible for the evaluated datasets. On the other hand,
as expected, every evaluated method improved its accuracy performance whenever the
number of reserved samples in the memory is increased. However, by using a memory
size near 5%, IL2FS still obtained the best average accuracy on the DREAMER, while it is
similar with respect to the existing CIL methods for the DEAP dataset.

Concerning the effect of each component of IL2FS, weight aligning improved the
average accuracy over the Fine-tuning method, which indicates that performing a bias
correction is important to reduce the catastrophic forgetting problem in EEG-based emotion
recognition. Then, margin ranking loss was incorporated to ensure an inter-class separation
between each old class and its nearest class (old or new). Previous work in [33] showed that
a separation between old and new classes might be sufficient to help reduce the catastrophic
forgetting. However, we found that this strategy [33] on IL2FS obtained a similar average
accuracy on DREAMER (58.55 ± 7.33% vs. 58.74 ± 07.56%), but the accuracy performance
is drastically reduced on DEAP (53.36 ± 08.84% vs. 79.36 ± 04.68%). These results suggest
that it is preferable to encourage an inter-class separation between each old class and its
nearest class (old or new) instead of only ensuring a separation between old and new
classes. Finally, unlike previous CIL works [42–44] where triplet loss is mainly used to train
embedding networks and provide an inter-class separation, we used such loss function to
maintain the same aligning of the feature space learned at previous incremental stages. For
this, IL2FS aims to produce near feature representations coming from a reference model
and a new model for the same processed sample, while features from different samples are
pushed away from each other by a small margin. This strategy showed to be beneficial for
the CIL task in two emotion recognition datasets.

The presented study may contribute to designing and building more adaptive and
scalable classifiers, as our study showed a first Class-incremental Learning solution to
avoid reconfiguring the entire system when new emotions are incorporated sequentially.
For this, we consider an evaluation of the most challenging scenario that may be built over
the two public datasets for emotion recognition. However, our study did not consider other
CIL settings and evaluation protocols. Furthermore, other preprocessing procedures and
neural network architectures were also not explored.

7. Conclusions

In this paper, we presented IL2FS, a CIL method to address the catastrophic forgetting
in EEG-based emotion recognition from EEG signals. IL2FS aims to preserve the feature
space learned over previous incremental stages, performing a bias correction of new classes
and ensuring the inter-class separation and feature space alignment from classes learned
at previous incremental stages. The proposed method was incorporated into a Capsule
Network architecture for EEG-based emotion recognition. Our experiments showed that
IL2FS achieved the best average accuracy over two public emotion datasets, outperforming
popular and recent CIL methods under different memory sizes. Furthermore, Friedman
and Wilcoxon’s tests showed that IL2FS significantly outperformed existing CIL methods
over the evaluated datasets, using the standard protocol for CIL methods based on memory
replay. By using IL2FS, better preservation of the learned knowledge is possible when
presented with a greater number of incremental stages and a reduced number of reserved
samples in memory. In this direction, new emotions may be incorporated into an existing
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deep neural network classifier without retraining from scratch, employing a set of represen-
tative samples of emotions previously learned in a sequential way. However, the presented
results suggest that the proposed solution is still exposed to catastrophic forgetting for a
high number of incremental stages and limited memory size.

As future work, we are interested in studying the negative effect of batch normalization
layers since a bias may be produced over learned statistics from old classes by training over
imbalanced data.
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NCC Nearest Centroid Classifier
GAN Generative adversarial network
GNN Graph Neural Network
iCARL Incremental Classifier and Representation Learning
IL2FS Incremental Learning preserving the Learned Feature Space
LI2M Incremental Learning with Dual Memory
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Abstract: In the advanced applications, based on infrared detection systems, the precise detection of
small targets has become a tough work today. This becomes even more difficult when the background
is highly dense in addition to the nature of small targets. The problem raised above is solved in
various ways, including infrared patch image (IPI) based methods which are considered to have the
best performance. In addition, the greater shrinkage of singular values in the methods based on IPI
leads to the problem of nuclear norm minimization (NNM), which leads to the problem of incorrectly
recognizing small targets in a highly complex background. Hence, this paper proposed a new
method for infrared small target detection (ISTD) via total variation and partial sum minimization
(TV-PSMSV). The proposed TV-PSMVS in this work basically replaces the IPI’s NNM with partial
sum minimization (PSM) of singular values and, additionally, the total variance (TV) regularization
term is inducted to the background patch image (BPI) to suppress the complex background and
enhance the target object of interest. The mathematical solution of the proposed TV-PSMSV approach
was performed using alternating direction multiplier (ADMM) to verify the proposed solution. The
experimental evaluation using real and synthetic data set was performed, and the result revealed
that the proposed TV-PSMSV outperformed existing referenced methods in the terms of background
suppression factor (BSF) and the signal to gain ratio (SCRG).

Keywords: infrared search and (IRST) track system; infrared patch (IPI) image; signal to clutter ratio
(SCR) gain (SCRG); robust principal component analysis (RPCA); nuclear norm minimization (NNM);
total variation (TV)

MSC: 65D18

1. Introduction

Early warning systems, video surveillance systems, military services and infrared
search and track systems (IRST) are all examples of applications that use infrared small
target detection (ISTD) technology. The object of interest usually remains in the complex
background and is tough to detect due to the low noise ratio [1,2]. In general, ISTD
approaches can be classified into two categories: sequential detection (SD) methods and
single-frame detection (SFD) methods. To estimate the precise location of small targets, SD
approaches such as 3-D matching filters [3,4] use both spatial and temporal information
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in the image. On the other hand, SFD algorithms are more reliable and efficient. TDMMS
(two-dimensional least-mean squares) [5] max-mean and max-mean filters [6,7], and other
SFD algorithms are the common examples. A human visual system (HVS) [8,9] based on
ISTD has been recently introduced where the target is considered to be the most prominent
object. Local contrast measure (LCM) [2] and its extended version are the highly researched
saliency-based approaches.

Another type of technique treats the detection of small targets as a binary classification
issue. Some of the well-known approaches in this class [10,11] are principal component
analysis (PCA) [12] and its extended version [13]. Wang et al. [14] built a large sea-sky
background dictionary to overcome the dictionary sample difficulties. Wang et al. [15]
employed the parameter of study weight to bifurcate the object of interest from the back-
ground. The first work using patch image was coined by Gao et. al. and gave an IPI model
to handle the problem of ISTD [1]. This IPI based model assumes that the background
patch image has the non-local self-correlation characteristic. Continuing this work, Y. He
et al. [16] presented a method based on sparse and low-rank representations for ISTD.
Inspired by this, Zhang et al. [17] proposed a block-diagonal adaptive target-constrained
representation method for sparse target separation and low-rank backgrounds.

The current IPI-based methods are affected by a difficult problem called l1-norm
sparsity issue, as a result of which these methods cannot accurately detect the background
and sometimes fail to classify the target component in the target image. Dai et al. [18] has
proposed a new method using the structural information of the background image, which
has better performance than other methods. However, this method requires calculating
the weight of the column, which is a difficult task. Dai et al. [19] again created a new
non-negative IPI model that uses the partial sum of the least sum of the singular values to
correctly and accurately estimate the background and preserve the large singular values.

The main drawback of this strategy is the difficulty in determining the energy con-
straint ratio as well as the ranking of the metrics. To overcome which Gao et al. [20]
Reweighted IPI (ReWIPI) was proposed to restrict the background patch image while
preserving the background edge information, which is based on the work of [21]. Similar
work was proposed in [22] However, even this may result in incorrect singular value
decomposition (SVD) calculations due to poor weight adjustment.

In [23], a proposal that used TV regularization and principal component pursuit
(TV-PCP) to provide intrinsic smoothness to the background patch image and another
method [24] based on the LP norm and TV was also proposed. Work on small target
detection method based on the TV norm is mentioned in [25]. Some recent developments
in IPI based approaches are also available in the literature, including reweighted IPI and
tensor model with both nonlocal and local prior information [26] and non-convex rank
approximation minimization [27,28]. Due to the small size of the target and the fact that the
background seems to be highly diversified in character, the small target recognition task
is extremely tough. However, current IPI approaches have had a lot of success in recent
years. Nonetheless, our findings revealed significant flaws that may have hampered the
performance of these cutting-edge approaches.

The initial flaw with these approaches was the improper estimate of background patch
images (BPI) using NNM, due to l1-norm-based sparsity issues. Another difficulty was
the constant weighting option, which controls the background versus target patch image
trade-off. Inconsistency is caused by both the low rank qualities of the background and
the sparsity property of the small target image. Such a result, having a global constant
weighting parameter, as in [19], is not a smart idea. Taking these problems into account,
Dai et al. [18] provided a proposal based on an adaptive column-wise weight parameter.
However, the performance of this method suffers due to additional processing required for
calculation of column-wise weights. As the present IPI approach uses NNM to restrict the
background patch image, edges in a highly varied background might be falsely recognised
as a target point owing to excessive shrinking of singular values. To solve this issue, the
PSMSV has been substituted for the NNM in the current IPI model, since it preserves the
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important features present in the background scene. The reason for using PSMSV is that it
preserves the large singular values and only minimize variance in the residual rank, which
basically minimize the noise variance of observed data and not the whole data matrix.
Second, the TV regularisation term was used to the IPI model’s background patch image in
order to keep strong edges while enhancing the small target.

In this study, a TV-PSMSV-based approach is proposed, which combines TV regular-
isation with PSMSV. Further, the mathematical solution of transformation optimization
using ADMM of the proposed method is presented and, finally, experimental evaluation
was used for the verification of performance.

The following is a summary of the research work’s main contribution:

1. An ISTD method called TV-PSMSV has been introduced in which a TV term was
inducted to the BPI model to obtain more detailed features in the scene. Moreover,
the PSMSV was adopted to limit BPI.

2. The suggested TV-PSMSV model used an ADMM-based method to address image
transformation optimization.

3. The suggested model was experimentally evaluated using standard data sets; the
findings revealed that it outperforms the referred state-of-the-art technique [1,18–20].

The remainder of the paper is laid out as follows. The technique of the suggested
method is detailed in depth in Section 2. Section 3 describes the proposed method’s
experimental findings using the original, noisy, and synthetic images of infrared image
sequences, as well as its comparison to existing baseline approaches. In Section 4, the final
conclusion is outlined.

2. Materials and Methods

This section presents the proposed TV-PSMSV method, the second part of the section
outlines the TV-PSMSV model, the last subsection introduces mathematical transformation
and optimization of the image using ADMM technology.

2.1. Total Variation (TV)

An approach based on total variation regularisation was introduced by Rudin et al. [29]
is used in numerous applications of image processing. The TV model demonstrated how
the TV standard may preserve the edges and corners of an image without sacrificing any
details. Let U ∈ Rx×y indicate an image, and Equations (1) and (2) define the discretised
anisotropic TVA and isotropic TVI of an image, respectively (2).

TVA(U) =
x

∑
i=1

y−1

∑
j=1

∣∣Ui,j − Ui,j+1
∣∣+ x−1

∑
i=1

y

∑
j=1

(1)

TVI =
x−1

∑
i=1

y−1

∑
j=1

( ∣∣Ui,j − Ui,j+1
∣∣2+∣∣Ui,j − Ui+1,j
∣∣2

) 1
2

+
y−1

∑
j=1

∣∣Ux,j − Ux,j+1
∣∣+ x−1

∑
i=1

∣∣Ui,y − Ui+1,y
∣∣ (2)

Let, DiU∈ R2 represent the discrete gradient of U at pixel I; image U is vectorized as
a column vector and Di represents the gradient operator of image. Then TV(U) can be
finally represented as given in Equation (3):

TV(U) = ∑
i

‖Di(U)‖2. (3)

2.2. TV-PSMSV Model

Single frame images are represented in the following way:

fo(x, y) = fB(x, y) + fT(x, y) + fN(x, y) (4)
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where fo, fB, fT , fN are the original, background, target, noise image, and (x,y) is position of
pixels in the image sequentially. Gao et al. [1], firstly, adopted (Equation (4)) in the (IPI)
model-formulated target background method as below:

D = T + B + N, (5)

where, D, B, T, and N are the input patch-image, BPI, and the target patch-image (TPI) and
the noise patch-image (NPI), respectively. The low-rank BPI matrix B and the sparse TPI
matrix T are decomposed from the matrix D. (Equation (5)) can be transformed into an
optimization problem as stated below, and this is inspired by the method in [30].

min
B, T

‖B‖∗ + λ‖T‖1,

s.t ‖D − T − B‖F ≤ δ
(6)

Here, symbol ‖.‖∗ represents the NN of the matrix which can be calculated as the
sum of singular values, symbol ‖.‖1 represents the l1-norm and it is calculated by formula
‖X‖1 = ∑

ij

∣∣Xij
∣∣, the symbol ‖.‖F represents the Frobenius norm, which is calculated using

the formula ‖X‖F =
√

∑
ij

X2
ij, symbol λ stands the weighting parameter and δ is the noise

level of images.

2.2.1. Background Patch Image (BPI)

The BPI is derived from a combination of low-rank subspace clusters as described in [1],
and NNM is used to calculate the BPI. Current target-background separation approaches,
such as IPI [1], WIPI [18], and [19], use NNM to restrict the BPI. Because NNM treats all
singular values the same, it shrinks them with the same threshold. As a result, instead
of using NNM, the proposed method used PSMSV [31] to estimate background owing
to inadequate samples. This is because PSMSV retains the larger singular values and
minimises noise.

Using PSMSV, the BPI matrix B may be defined as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
|‖B‖∗ − ‖PN B‖∗| =

∣∣∣∣∣min(m, n)
∑

i=1
σiB − N

∑
i=1

σiB

∣∣∣∣∣
=

min(m, n)
∑

i=N+1
σiB = ‖B‖∗,≤r

= ‖B‖p=N ,

(7)

where symbols representation as follows:
σiB—the ith singular value of B (arranged in descending order), r—the upper limit

ratio of σN(B) and σ1(B) is equal to σN(B)
σ1(B) , ‖B‖p=N—the target rank of B.

2.2.2. Target Patch-Image (TPI)

Infrared images do not have a defined size for the small target. As a result, the
detection system may consider the TPI to be a sparse matrix. The l1-norm may be used to
calculate TPI in an infrared image, as demonstrated below in Equation (8).

‖T‖1 =

(
∑
ij

∣∣Tij
∣∣) (8)

2.2.3. Noise Patch-Image (NPI)

It is reasonable to consider that the NPI follows the Gaussian noise distribution as
described in Equation (9).

‖D − T − B‖F ≤ δ (9)
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Here, ‖.‖F stands for Frobenius Norm, and δ values varied depending on the image.
Finally, in addition to PSMSV, the TV regularisation term was included with the BPI.

The following is the formulation of the suggested PSMSV-TV model:

min
B,T

‖B‖∗,≤r + λ1TV(B) + λ2‖T‖1,

s.t D = B + T + N, ‖N‖F ≤ δ
(10)

where TV(.) represents the TV norm and λ1, λ2 are the constant parameter. The Equation (9)
can be written as below:

min
B,T

‖B‖∗,≤r + λ2‖T‖1 + λ1 ∑
i
‖DiB‖2,

s.t D = T + N + B, ‖N‖F ≤ δ
(11)

Here, Di is the gradient operator.
Finally, the proposed model applied a post-processing method on the TPI, to detect

the object effectivily.

2.3. Mathematical Solution of the PSMSV-TV Model Using ADMM

We may further reformulate the aforementioned minimization issue given in Equation (11)
by breaking it into sub-problems by using splitting variables as given below:

min
Z1,Z2,Z3

‖Z1‖∗,≤r + λ2‖Z3‖1 + λ1 ∑
i
‖zi‖2

s.t Z1 = B, Z2 = [z1; z2; z3 . . . . . . ; zmn], zi = DiB,
Z3 = T, D = N + T + B, ‖N‖F ≤ δ

(12)

The formulation of augmented Lagrangian function of above Equation (12) is derived
in Equation (13).

LA= min
P1,P2,P3

‖P1‖∗,≤r + λ1 ∑i ‖pi‖2 + λ2‖P3‖1+〈L1, Z1B〉 + β
2‖P1 − B‖F

2

+∑i〈li , pi − DiB〉+ βi
2 ‖pi − DiB‖F

2+〈L3, P3T〉 + β
2 ‖P3 − T‖F

2+

〈L4, D − N − T − B〉+ β
2 ‖D − N − T − B‖F

2

(13)

The standard trace inner product for the matrix of vectors is denoted by. The La-
grange multipliers are L1, L2, L3 and L4 and the penalty parameter is >0. Each variable
T, B, P1, P2, and P3 in Equation (13) are vectorized to column vectors for simplicity. The
optimization problem of image matrix is mathematically solved using the ADMM [30,32];
it is solved in every iteration by minimising each of the T, B, P1, P2, and P3 variables while
leaving the other variables constant. Lastly, the Lagrange multipliers have been modified
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L1
k+1 ← L1

k + γβ
(

P1
k+1 − Bk+1

)
L2

k+1 ← L2
k + γβ

(
P2

k+1 − DBk+1
)

L3
k+1 ← L3

k + γβ
(

P3
k+1 − Tk+1

)
L4

k+1 ← L4
k + γβ

(
P4

k+1 − Bk+1 − Tk+1 − Nk+1
) (14)

Here γ > 0 represent step length.
The P1 sub-problem can be represented using given below Equation (15)

P1
k+1arg min

Z1

LA

(
P1, P2

k, P3
k, Bk, Tk)

= arg min ‖Z1‖∗,≤r
Z1

+〈L1, P1 − B〉+ β
2 ‖P1 − B‖F

2

= arg min
Z1

‖P1‖∗,≤r +
β
2 ‖P1 −

(
Bk − L1

k

β

)
‖

F
2

(15)
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This sub-problem can be solved by applying the Theorem 1 as given below:

Theorem 1. Let us considerX, L ∈ Rm×n, τ > 0, and l = min(m, n), which can be decomposed
by SVD. L can be considered as two matrices, L = L1 + L2 = UL1 DL1 Vl1

T + UL2 Dl2 VL2
T; here,

UL1 , VL1 are singular value matrices corresponding to N highest singular values by SVD, and
UL2 , VL2 from (N + 1)th to the last singular values. Finally, the PSVM problem for singular values
may be described as shown in Equation (16):

arg min
1
2

X

‖X − L‖F
2 + τ‖X‖p=N (16)

The partial singular value thresholding operator may be used to describe the optimal
solution of Equation (15), which is defined as:

PN,τ [Y]= UY
(

DY1 + S τ

[
DY2

]
VY

T)
= Y1+UY2 S τ

[
DY2

]
VY2

T .
(17)

Here
DY1 is equal to diag(σ1, . . . ., σN,0, . . . , 0),

DY2 is equal to diag(0, . . . , 0, σN+1, . . . ., σl,)
(18)

In addition, S τ [x] = sign(x).max(|x| − τ, 0) is the thresholding operator [33–35]. It
may be phrased as follows for the P2 sub-problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

P2
k+1 ← arg min

Z2

LA

(
P1

k, P2, P3
k, Bk, Tk

)
= arg min

P2

∑
i

(
‖pi‖2 +

〈
li K, zi − DiBK〉

+ βi
2 ‖pi − DiBK‖F

2

) (19)

Because it is a l2 optimization problem, the sub-problem (19) may be mathematically
solved using a 2-D shrinkage-like formula [36].{

pi = max
{
‖DiB − li

βi
‖

2
− 1

βi
, 0
}

.

(
Di B− li

βi

)
‖Di B− li

βi
‖

2

, (20)

The reformulation for the P3 sub-problem can be solved using the Equation (21):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P3

k+1 ← arg minLA

(
P1

k, P2
k, P3, P2

k, Bk, Tk
)

P3

= arg minλ2‖P3‖1,+〈L3, P3 − T〉+ β
2 ‖P3 − T‖F

2

= arg min
Z3

λ2‖P3‖1 +
β
2 ‖P3 −

(
Tk − L3

k

β

)
‖

F
2

(21)

The Equation (21) can be further solved by given below Equations (22) and (23).

P3
k+1 = Th λ2

β

(
Tk − L3

k

β

)
(22)

Thε(W) =

⎧⎨⎩
w − ε w > ε
w − ε w < −ε
0 otherwise

(23)

where Thε(.) represent the thresholding.

152



Mathematics 2022, 10, 671

For N sub-problem, the solutions may be represented as given in Equation (24)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nk+1 ← arg min
N

〈Lk
4, D − Bk − Tk − N〉

+ β
2 ‖D − B − Tk − N‖F

2

= ‖N −
(

D − Tk − Bk + L4
k

β

)
‖

F
2

s.t. ‖N‖F ≤ δ

(24)

The Equation (24) can be further solved by given below Equation (25).

Nk+1 = PΩ

(
D − Tk − Bk +

L4
k

β

)
(25)

where Ω denotes the sphere of the ‖.‖F ≤ δ, and the PΩ is the projection onto the matching
sphere.

For the B sub-problem, the solutions may be represented as given in Equation (26)

Bk+1 ← ∂LA
∂B

= 0 (26)

Equation (26), for example, may be rewritten as:

− ∂LA
∂B

= L1
k + β

(
P1

k+1 − B
)
+ ∑

i

[
Di

Tli + βiDi
T(pi − DiB)

]
+ L4

k + β
(

D − Tk+1
)

(27)

Bk+1 =

(
∑
i

βDi
T Di + 2β

)−1

⎡⎢⎣ L1
k + L4

k +

(
∑
i

[
βiDi

T(pi − DiB) + Di
Tli

])
+β

(
P1

k+1 − T + D
)

⎤⎥⎦ (28)

Sub-problem may be handled in the same way as B sub-problem:

Tk+1 ← ∂LA
∂T

= 0 (29)

Tk+1 =
Lk + β

(
D − Bk+1

)
+ βp3

k+1 + L4
k

2β
(30)

2.4. Modelling for Small Target Extraction from Background Image

The entire target-background extraction process using the PSMSV-TV paradigm is
depicted by Figure 1 and is described as given below steps:

A: Creation of patch image from Input:

This is the initial phase, when an infrared patch image called D was created using the
original image fD from the image sequence. A sliding window moved from left to right
first and then moved down from top to bottom to create the patch-images.

B: Target background separation:

In the second phase, the input patch image was processed using Algorithm 1 to
fragment it into two matrices; the first one was a B and the second was a T.

C: Regeneration of the target and background image:

In the third phase, the proposed method reconstructed the fT , and the fB from the
target patch images and the background. The whole process could be accomplished using
the technique outlined in [1].
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D: Segmentation process:

Now the final touch was initiated, where some final-processing to enhance the quality
of target image was performed for the adaptive thresholding scheme was run as described
in [1] and it was calculated using given Equation (31):

tup = max
(

vmin, fT + kσ
)

(31)

Here σ, fT is the standard deviation and the average of the k and fT respectively, and
vmin is taken as an empirical constant value.

Figure 1. The proposed TV-PSMSV process.

Algorithm 1: The PSMSV-TV Method.

Input: Input is the original IPI D,β,γ,λ1,λ2,ratio r, tol
Output: Tk, Bk

1: Initialize: Bk = zeros(m, n), Tk = zeros(m, n), P1 = P3 = zeros(m, n), L1 =
L3 = zeros(m, n), L2 = zeros (2, mn), P2 = zeros (mn, 2),γ = 1.5, tol = 10−5,

2: while (not converged) do:

3: P1
k+1=PN,β−1

(
Bk − L1

k

β

)
4: P2

k+1 is calculated using Equation (19)

5: P3
k+1 = Th λ2

β

(
Tk − L3

k

β

)
6: Bk+1 is solved by Equation (28)
7: Tk+1 is solved by Equation (30)

8: Nk+1 = PΩ

(
D − Tk − Bk + L4

k

β

)
9: Update Li(i = 1, 2, 3, 4) according to Equation (14)

10: Convergence checking ‖D−Tk−Bk‖2
F

‖D‖F
< tol

11: k++
12: end while.
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3. Experimental Result Analysis

In the experimental analysis, the performance of the proposed TV-PSMSV was evalu-
ated against the referenced existing methods. This involved standard dataset preparation
and comprehensive experimentation on real, noisy, and synthetic image sequences in a
variety of background environments.

3.1. Dataset Preparation

The dataset for experimental evaluation consisted of 1080 infrared images with various
backgrounds such as sea, sky, cloud, and ground; dataset description was presented in
Table 1. We began by experimenting with single item infrared pictures. Second, the
suppression capacity of the proposed technique was proven using picture sequences with
Gaussian noise. We employed synthetic image sequences to assess the robustness of the
proposed technique. In addition, we addressed how characteristics such as image patch
size and sliding step size affected the outcomes. The proposed strategy has been compared
with eight baseline approaches: max-mean filter [6], max-median filter [6], top-hat filter [37],
IPI [1], RPCA [18], NIPPS [19], RIPT [26] and TV-PCP [23] on six distinct original infrared
images. The parameter settings for all of the baseline techniques are listed in Table 2. The
ADMM was used here to solve the procedure. All of the algorithms were implemented in
MATLAB 2015a on a PC with a configuration of 2.2 GHz processor, and 4GB of RAM.

Table 1. Summery of taken dataset.

Infrared Real
Sequences #

Image Size
No of

Frames
Target Characteristics Target Type

Background
Characteristics

# 1 256 × 200 30
The target is small in
size, yet it has a great

imaging range.
A small ship Blurred sea-sky

backgrounds.

# 2 256 × 200 250
The target is small in
size, yet it has a great

imaging range.
An airplane High dense clouds with less

local contrast

# 3 256 × 200 250

The target is small in
size, yet it has a great

imaging range and SRC
value is low.

An airplane With varying background

# 4 128 × 128 100

The target is small in
size, yet it has a great

imaging range and SRC
value is low

A Helicopter Changing background

# 5 128 × 128 200 Small size with 1 or
2 target A ship Changing background

# 6 280 × 228 250

The target is small in
size, yet it has a great

imaging range and SRC
value is low

A man walking
through the forest

Background with
heavy clouds.

Table 2. Summery of parameter settings for evaluation.

No. Methods Parameter Values

1 Max-Mean Filter [5] Filter size 5 × 5
2 Max-Median Filter [5] Filter size 5 × 5
3 Top-Hat filter [37] Structure shape is 3 × 3

4 NIPPS [19] Patch size = 50 × 50, sliding step = 10, ρ = 1.5, λ =
L√

min(m,n)
, r = 10−3, L = 2, tolerance error, ε = 10−7,

5 RPCA [18] sliding step = 10, Patch size = 50 × 50, tolerance error ε = 10−7, λ = 1√
m
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Table 2. Cont.

No. Methods Parameter Values

6 IPI model [1] sliding step = 10, Patch size = 50 × 50, tolerance error ε = 10−7,
λ = 1√

m ,

7 RIPT [26]
Patch size is 50 × 50, sliding step is 10, λ = L√

min(m,n)
, L = 1, h = 1,

ε = 10−7

8 TV-PCP [23]
Patch size is 50 × 50, sliding step is 14, lambda = 0.005, maxIter = 250,

Tol = 5 × 106, beta = 0.025, gama = 1.5, lambda2 =
1/(sqrt(min(mm, nn)), ρ = 1.5

9 ISTD based on TV-PSMSV sliding step = 14, Patch size = 50 × 50, β = 0.025, λ1 = 0.005,
λ2 = L√

min(m,n)
, r = 10−3, L = 2, γ = 1.5, tolerance error ε = 10−5

3.2. Experimental Evaluation Using Real Image Sequence
3.2.1. Evaluation of Background Suppression of Images Sequences

This section shows the experimental results of each strategy on taken dataset of six
different image sequences with different complex backgrounds. In Figures 2 and 3, the
suggested TV-PSMSV technique is displayed alongside the max-mean filter, max-median
filter [6], top-hat filter [37], IPI [1], RPCA [16], NIPPS [20], RIPT [27] and TV-PCP [23]
approaches. In the Figure 2 the experimental results of Max-mean, Max-median,Top-hat
and IPI methods are presented. The top hat, max-mean, and max-median methods are
simple and easy to implement. Due to this reason, these methods demonstrated strong
detecting skills when the background was moderately sluggish and smooth. However, they
exhibited poor capability when the background was quite strong and dense.

Figure 2. Following rows (a–e) depicts the background suppression result on six original image
sequences: (a) Original six image sequences (b) Max-mean (c) Max-median and (d) Top-hat (e) IPI.
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Figure 3. Following rows (a–e) depicts the Background suppression result on six original image
sequences: (a) RPCA, (b) NIPPS, (c) RIPT, (d) TV-PCP, (e) PSMSV-TV.

As it can be observed from the Figure 3 that, the RPCA approach has shown good
performance, but its shortcoming is that it had a fixed regulating value, making background
prediction problematic at times.. The NIPPS approach utilises the partial sum minimization
of singular values in place of the NNM in the IPI to contrain the background. Due to this,
this method was also capable of suppressing background effectively. In addition to this,
the model just minimised the noise variance without taking into account the entire data
matrix, which makes this model different from the others. Although the IPI method could
detect the target object quite well, this method lacked its performance due to the presence
of heavy noise and l1 norm sparsity. Thus, the detection of a non-target object may be seen
in the target image.

The RIPT method has impressed well in terms of target detection and background
suppression ability. RIPT did not do well in the presence of noise. Although the TV-PCP
method performed well, it still had issues in non-smooth background. Motivated by
the work in TV-PCP [23], the inner smoothness and the sharp edges information of the
background could be extracted by introducing the TV norm. Therefore, the suggested
approach could smooth the background beautifully, allowing strong edges and buildings
to be very easily predicted, allowing the true target to be identified smoothly. Furthermore,
there may be clutter in the background of the image whose grey level was comparable to
the potential target, making it harder to recognize the target object. As a result, the 3D
grey map in Figure 4 could better assist in predicting the position of the small target in
the image.
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Figure 4. Target background separation result is presented in column (a–e). (a) original images
(b) Low rank background (c) sparse target (d) 3-D mesh of (a,e) 3-D mesh of (c).

3.2.2. Evaluation of Background Suppression for Noisy Images Sequences

The next experiment was conducted in the context of noisy images. Figure 5a depicts
the original image sequences, whereas Figure 5b,c depict images with Gaussian noise of 10
and 20 standard deviations (sd.), respectively. It can be seen from the findings in Figure 5d,e
that the suggested technique performed better than the mentioned methods in terms of
background suppression and small target detection in noisy images.
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Figure 5. Experimental result in case of noisy images, (a) Real images, (b) Noisy images with standard
deviation (sd.) of 10, (c) Background suppression Figure 4b, (d) Noisy images with standard deviation
(sd.) of 20, and (e) Background suppression Figure 4d.

3.2.3. Experimental Evaluation on a Synthetic Image Sequences

In the third evaluation, the performance of the proposed TV-PSMSV method is val-
idated against the synthetic image sequences. A dataset of synthetic image sequences
was prepared with varied backgrounds applying real infrared images. The small targets
with variable size were embedded into the background at different random locations. The
synthetic dataset preparation process was clearly defined in [1]. During the experiment
evaluation, one and four target image sequences were identified. In addition, the proposed
TV-PSMSV’s ability to decrease background noise was evaluated; results are shown into
the Figure 6.
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Figure 6. Experimental result in case of synthetic images, (a) Background, (b) One Target, (c) Result
of Figure 5b, (d) Four targets, and (e) Result of Figure 5d.

3.3. Evaluation Metrics Indicators

In order to assess the outcome of the presented TV-PSMSV approach, two standard
classical evaluation metrics were considered, namely: SCRG and background suppres-
sion factor (BSF). Detailed description of these indicators is outlined in [38] and can be
represented as shown in Equation (32):

BSF =
Cin
Cout

, SCRG =

(
S
C

)
out(

S
C

)
in

(32)

Here, C and S denote the clutter standard deviation and signal amplitude, and the
original input and the output target image are represented by in and out, respectively.
The experimental results values of BSF and SCRG are shown in Table 3 for all referenced
methods along with TV-PSMSV on six different image sequences. The largest and second
largest value of these indicators is shown in the table with red and blue colour. From the
indicator mentioned in the table, it can be observed that the proposed TV-PSMSV method
had the best result of BSF for the sequences 1 to 4 and 6 and second-highest value for the
5th sequence.
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Table 3. Observed values of BSF and SCRG.

ISTD
Evaluation
Indicators

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Top Hat
BSF 0.488 2.339 0.512 2.354 0.923 0.923

SCRG 1.281 5.733 7.376 53.302 3.081 24.651

Max-Median
BSF 1.296 3.895 0.747 3.249 1.167 1.195

SCRG 1.608 1.708 5.415 36.456 2.117 17.393

Max-Mean
BSF 1.383 3.387 0.863 3.816 1.861 1.255

SCRG 1.529 1.580 6.461 51.109 3.117 17.867

IPI
BSF 5.025 4.057 1.481 13.778 29.862 10.410

SCRG 0.047 3.450 5.665 263.310 125.505 195.948

RPCA
BSF 3.799 25.882 3.073 6.468 0.494 3.790

SCRG 10.739 60.950 36.166 76.236 0.683 90.559

NIPPS
BSF 4.604 6.169 2.687 6.726 7.413 7.576

SCRG 2.792 6.298 23.787 168.042 30.018 4.700

RIPT
BSF 3.507 7.124 3.101 2.874 0.896 14.874

SCRG 2.122 4.835 9.308 1.233 0.062 0.038

TV-PCP
BSF 1.403 4.948 1.776 3.002 1.477 3.026

SCRG 0.857 2.694 6.726 27.870 0.033 14.284

TV-PSMSV
BSF 12.043 25.905 15.147 21.218 19.065 24.915

SCRG 14.384 62.224 95.985 189.954 2.061 218.774

Similarly, for the sequences 1 to 6, the suggested method’s SCRG value was the greatest.
Therefore, it can be concluded that the suggested strategy of TV-PSMSV outperformed the
mentioned current methods in terms of enhancement as well as background suppression.

The receiver operation curve (ROC) is a second statistic that may be used for the
experimental evaluation of various approaches. The connection between the probability
detection Pd as well as false alarm rate Pf is represented by this curve [39] which may be
expressed by using Equations (33) and (34)

Pd =
Number o f detected pixels
Number o f real target pixels

, (33)

Pf =
Number o f f alse alarms

Total number o f pixels
in the whole image

(34)

All of the aforementioned metrics were evaluated in a small local region with a
rectangular size of dimensions a × b, background rectangle size of dimensions (a + 2d)×
(b + 2d), and here, d is taken as a constant equal to 20 pixels.

The output of the presented technique against the baseline approaches can be seen
in Figure 6, which is represented by an ROC curve. Figure 7a shows that the IPI and
RPCA methods produced better results than the proposed method. The suggested methods
improved detection ability because of TV term introduced in the BPI, which smooths the
background and successfully detects the target. In addition, NIPPS did not get a decent
outcome for sequence 1. Figure 7b shows that the TV-PSMSV did not produce good results
when related with the RPCA method. Figure 7c shows that the TV-PSMSV technique
had the highest performance, followed by IPI, and that the rest of the other methods
performed poorly. Figure 8a shows that the suggested TV-PSMSV method, when compared
to other methods, produced good results; however, NIPPS had weak detection ability. The
suggested TV-PSMSV approach had the best detection rate, followed by IPI, as shown in
Figure 8b. Finally, because of adding the TV term with the input scene, it can be observed
from Figure 8c that the suggested technique had strong detection ability.
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Figure 7. ROC graph of dataset image sequences (a–c).

Figure 8. ROC graph of dataset image sequences (a–c).

3.4. Parameter Analysis

This section evaluates three critical characteristics that is mainly used to test the
robustness of the proposed TV-PSMSV technique under various background scenarios are
discussed in the next section. These characteristics are patch size, step size, and regulating
parameter. We must use these parameters to achieve greater performance, as they may not
provide the global best solution. Evaluation results of Figure 9 shows the ROC curves for
four separate images with 4 varying characteristics.

3.4.1. Image Patch-Size

Patch size is thought to be a crucial factor in detection of performance. We know that
fine-tuning the patch parameter increases the sparsity of the target. However, this will very
certainly increase the computational cost of the method. In the experiment, we tested patch
sizes of 20, 30, 40, 50, and 60 and generated the ROC curve for the four image sequences,
which can be seen in Figure 9a. The ROC curve shows that adjusting the image patch size
had an impact on both detection performance and computational complexity. Patch size 30
is thought to be ideal in the method.

3.4.2. Step-Size

Similarly, the step size must be adjusted properly. In the experiment, the patch size
was set to 30 × 30, and then step sizes of 6, 8, 10, and 12 were explored. The ROC curve
on step size shows that adopting a small step increases computation time and reduces the
algorithm’s detection performance. Reduce calculation time by increasing the step size to a
large amount. Figure 9b indicates that a step size of 10 is the optimum option.
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Figure 9. Experimental result of ROC curve for infrared image sequences 1–4 (a) Results under
different patch size (b) Results under different step size. (c) Results under different controlling
parameter.

3.4.3. Controlling Parameter λ

The controlling parameter λ = L√
min(m,n)

is another key parameter that helps to

balance the BPI and TPI. A larger λ value would over-shrink the small target, while a
small value would leave residue in the complex background image, thereby increasing the
number of false alarms. L = 0.5, L = 1, L = 1.5, and L = 2 are the four values we chose for
L. Figure 9c shows the experimental results for various L values (c). When compared to
various L values, the ideal value at L = 1 yields an excellent performance.

3.4.4. Computational or Running Complexity

Table 4 depicts the running time along with the execution cost of one scene out of the
whole dataset as in Figure 2a. The total computation cost of the top-hat method with the
size of the structure element as K2 and the size of the image as M × N is O (K2logK2MN),
whereas the execution cost of the max-mean and max-mean methods here is O (M × N ×
K2). The execution cost of all competing approaches based on the IPI model is O (M × N2),
where the patch image size is M × N and it depends on the cost of the SVD of each step in
the algorithm.

Table 4. Comparative summary of time and computing cost.

Method Top-Hat Max-Median Max-Mean RPCA NIPPS IPI RIPT TV-PCP TV-PSMSV

Time (s) 0.868 6.65 7.69 8.77 4.11 11.51 1.93 392.77 242.69

Computational
Cost O (K2 M × N log K) O (M × N × K2) O (M × N × K2) O (M × N2) O (M × N2) O (M × N2) O (M × N2) O (K × M × N2) O (K × M × N2)

The cost for the NIPPS, RPCA,RIPT and IPI is O (m × n2) and for TV-PCP and the
finally for proposed TV-PSMSV method, the cost of ADMM to updating every sub problem
and the multipliers for running patch size of m × n is O (m × n). In addition, the cost of
executing a 2-D TV regularisation is O (m × n log (m × n), while the cost of running a full
SVD is O (m × n2). As a result, the total calculation cost is O ((m × n) + (m × n log (m × n)
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+ (m × n)2); in the worst case, the cost will be O (m × n2 × k), where k denotes the number
of time running the process. Because of the induction of TV regularisation, the suggested
TV-PSMSV has a substantially higher cost of running per image than the other baseline
approaches due to the introduction of TV regularization.

4. Conclusions

In the present work a model, namely, TV-PSMSV is presented, which is used in the
ISTD system. This model addressed the issue of employing NNM for restricting the BPI
in existing IPI-based approaches. In TV-PSMSV, NNM was substituted with PSMSV to
constrain the BPI due to over-shrinkage of singular values. Secondly, to take care of the
strong edges in the background of the input scene and to improve the object of interest, a
TV regularisation term was inducted into the BPI. Finally, the ADMM approach was used to
solve the target-background separation procedure. Experimental outcome demonstrate that
the presented TV-PSMSV method yielded better results in stronger background suppression
and detection ability than previous baseline approaches. In the near future, this work can be
extended into more robust tensor-patch images-based models to improve existing IPI-based
approaches.
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Abstract: Precise vertebrae segmentation is essential for the image-related analysis of spine patholo-
gies such as vertebral compression fractures and other abnormalities, as well as for clinical diagnostic
treatment and surgical planning. An automatic and objective system for vertebra segmentation is
required, but its development is likely to run into difficulties such as low segmentation accuracy
and the requirement of prior knowledge or human intervention. Recently, vertebral segmentation
methods have focused on deep learning-based techniques. To mitigate the challenges involved, we
propose deep learning primitives and stacked Sparse autoencoder-based patch classification modeling
for Vertebrae segmentation (SVseg) from Computed Tomography (CT) images. After data prepro-
cessing, we extract overlapping patches from CT images as input to train the model. The stacked
sparse autoencoder learns high-level features from unlabeled image patches in an unsupervised
way. Furthermore, we employ supervised learning to refine the feature representation to improve
the discriminability of learned features. These high-level features are fed into a logistic regression
classifier to fine-tune the model. A sigmoid classifier is added to the network to discriminate the
vertebrae patches from non-vertebrae patches by selecting the class with the highest probabilities.
We validated our proposed SVseg model on the publicly available MICCAI Computational Spine
Imaging (CSI) dataset. After configuration optimization, our proposed SVseg model achieved im-
pressive performance, with 87.39% in Dice Similarity Coefficient (DSC), 77.60% in Jaccard Similarity
Coefficient (JSC), 91.53% in precision (PRE), and 90.88% in sensitivity (SEN). The experimental results
demonstrated the method’s efficiency and significant potential for diagnosing and treating clinical
spinal diseases.

Keywords: stacked sparse autoencoder; deep learning; unsupervised learning; CT images; vertebrae
segmentation; SVseg; image patch; MICCAI-CSI dataset; sigmoid classifier

1. Introduction

Vertebrae segmentation is an essential step for spine image analysis and modeling
such as spinal abnormalities identification, image-based biomechanical model analysis,
vertebrae fracture detection [1], intervertebral disc labeling, and image-guided spine inter-
vention [2]. Spine analysis requires precise vertebral segmentation; for example, image-
guided vertebrae intervention often involves precision to the submillimeter level. Manual
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segmentation of vertebrae is a subjective and time-consuming process, so fully automatic or
semi-automatic techniques are needed for many clinical applications. In the diagnosis and
treatment of spinal diseases, medical imaging techniques have been used extensively [3].
When assessing spinal health, computer tomography (CT) and magnetic resonance imaging
(MRI) are usually the first option to give better spinal anatomy views. However, segmenting
individual vertebrae from 3D scans is a tedious and time-consuming process. Computa-
tional techniques can be used for automatic quantitative analysis of spine images to enhance
physicians’ capability to improve spinal healthcare. Recently, many vertebrae segmentation
methods for computed tomography (CT) have been proposed [4]. However, it remains a
challenging task due to the architectural variation of the spine across the population, the
complex shape and pathology, the same structures being in close vicinity, and the spatial
relationships between the ribs and vertebrae.

To handle this challenge, several approaches for segmenting vertebrae have been
proposed. For example, vertebrae segmentations were obtained by many methods of
unsupervised learning, such as region-based segmentation like a watershed, graph-cut,
and boundary adjustment, region growing, and adaptive threshold. Level set techniques
have been used to deal with the topologically merging complexity and break in the ver-
tebrae. Willmore flow [5] is included in a level set method in guiding surface modeling
evolution. The combination of region and edge-based level set functions for CT vertebrae
segmentation is proposed in [6]. The authors of [7] used the watershed algorithm, curved
reformation, a vertebral template, and a directed graph to segment the spinal column.
Another approach [8] employed watershed and mathematical morphology for vertebrae
segmentation. Kim and Kim [9] presented a fully automatic method based on 3D fence
construction to separate vertebrae. Then a final segmentation was obtained by applying
a region-growing algorithm within a constructed 3D fence. Many methods incorporated
prior knowledge about vertebrae anatomies like geometric models, a probabilistic atlas,
and statistical shape models that estimate the vertebrae mean shape and variation from a
segmented training set. These approaches are often sensitive at calculating the initial pose,
which is performed either automatically or manually. Automatic initialization has been
presented via detecting the vertebrae and intervertebral disk in [7]. The manual initializa-
tion is achieved by pacing seeds within the vertebral body [10] or drawing a bounding box
to confine the searching range [11]. A single framework has also been proposed integrating
the vertebrae’s identification, detection, and segmentation [12]. The technique in [13]
was based on the detection of the edge and fair registration methodology of a deformed
surface for the vertebrae in the thoracic region. The method in [14] was proposed to incor-
porate statistics on shape and pose in a multivertebrae model for lumbar segmentation.
Kadoury et al. [15] presented an articulated spine model of each vertebra using high-order
Markov random fields. A landmark-based shape representation model was built using
transportation theory for CT vertebrae, and alignment to a specific vertebra was obtained
using game theory in [16]. Zhang and Wang [17] proposed the vertebrae segmentation
method from CT images in three parts: an adaptive threshold filter;, Point++-based single
vertebrae segmentation, and edge information based converge segmentation that enhances
the segmentation accuracy.

One limitation of the approaches described above is that they were trained using
hand-crafted features such as local intensity features, which are incapable of encoding more
representative features of vertebrae images. As a result, they may be unable to handle more
complicated cases where spine pathologies and curvatures are present. In recent years, deep
learning has become a research hotspot in medical image analysis [18] because of its high
feature extraction ability [19–24]. Deep neural networks (DNNs) often use successful tools
as an extractor of high-level features. Sekuboyina et al. [25] developed a multilabel FCN
model for segmentation of lumbar vertebrae. Probability maps are generated using CNN,
which indicates the vertebral body’s location and then used these maps to guide a deformed
model in [26]. A method [27] is proposed to detect the vertebrae centroids by using an FCN
to get a probability map for each vertebra, which is the message-passing technique to extract
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the plausible set of centroids. Chen et al. [28] used CNN to detect vertebrae and trained
the model with a technical loss term to distinguish neighboring vertebra. A deep learning-
based methodology for spine segmentation from CT images was proposed for thoracic and
lumbar segmentation, and features were directly learned from image patches in [29,30]. A
statistical model for CT cervical vertebra segmentation was proposed in [31] to reconstruct
the boundary between adjacent vertebrae by an intervertebral fence model, and a VGG-Net
like convolutional network was used to train the model. Similarly, the segmentation of
cervical vertebra was achieved using the FCN in [32]. A deep learning-based method was
proposed in [33] to identify and localize vertebrae that used FCNN to extract short-range
contextual information and RNN to extract long-range contextual information.

Related Work

Recently, advancements in deep learning (DL) have led to increased use of DL al-
gorithms [34], particularly stacked sparse autoencoders (SSAEs) for automated medical
image segmentation, classification [35], and detection [36–41]. The deep-stacked autoen-
coder (SAE) framework of deep learning was used for liver segmentation in [42]. SSAE
was used to develop breast cancer segmentation [43] from histopathological images and
prostate segmentation from MRI in [44]. The liver disease diagnosis method was presented
from ultrasound images by feature representation with a stacked sparse auto-encoder
(SSAE) in [45]. Although state-of-the-art approaches have produced acceptable results in
vertebrae segmentation, they have complicated network designs that are computationally
expensive [46]. So, we need to further improve vertebrae segmentation results by reducing
complex network architecture. In this study, we propose a stacked sparse autoencoder-
based Vertebrae segmentation (SVseg) model from CT images. We extract overlapping
patches from CT images as input to train the model. The stacked sparse autoencoder
learned high-level features from unlabeled image patches in an unsupervised way. To
enhance the learned features’ discriminability, we further refined the feature representa-
tion in a supervised learning fashion. These high-level features were fed into a logistic
regression classifier to fine-tune the model. A sigmoid classifier was added to the network
to discriminate the vertebrae patches from nonvertebrae patches by selecting the class
with the highest probabilities. To summarize the abovementioned works, unsupervised
pretraining and supervised fine-tuning optimize deep-learned features for a specific task,
such as vertebrae segmentation, thereby improving final performance.

To the best of our knowledge, our proposed SVseg Model was used here for the
first time to segment CT vertebrae images. Transfer learning (TL) [47] can be used to
analyze medical images. Pretraining a deep learning network on the source domain [48]
and fine-tuning it based on the target domain’s instances is a common transfer learning
strategy. Transfer learning, on the other hand, requires a sufficient amount of training data
to avoid overfitting. Additionally, transfer learning cannot substitute for the necessary data
collection, which may be ineffective at improving the performance of a classification task.
Hence, SSAE + sigmoid classifier-based modeling is the best choice in our work. Unlike
convolutional neural net (CNN)-based feature representation, which contains subsampling
and convolutional tasks for feature extraction, our proposed SVseg method has a full
connection model to learn high-level features. The method has an encoder–decoder archi-
tectural structure, where the encoder network presents pixels’ intensity as modeled through
lower dimensionality attributes, while the decoder portion reconstructs the intensity of the
original pixel by using lower-dimensional features. SSAE is a full connection methodology
that extracts a single global weight matrix for feature representations, while CNN is a par-
tial connection technique to stress the importance of locality. For our application, the size
of vertebrae and nonvertebrae patches was set to 32 × 32 pixels—useful for building a full
connection model. We used SSAE rather than CNN for our classification-based vertebrae
segmentation modeling. The method is evaluated using a dataset from the CSI MICCAI
workshop on spine and vertebrae segmentation [49]. The experimental performance shows
that the proposed method is more efficient and accurate than earlier presented methods.
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The main contributions of our paper are:

• To create the overlapping patches, spine CT images are divided into square patches
of the same size. To address the issue of class imbalance, we generated a balanced
training set using a random undersampling function for negative samples (nonverte-
brae patches).

• Image patches are transformed into the matrix. The SVseg model is capable of learning
high-level structural information from a large number of unlabeled image patches
in an unsupervised way by SSAE. Thus, SSAE is capable of converting input pixel
intensities to structured vertebrae or nonvertebrae representations.

• We constructed a four-layer SSAE architecture with a logistic regression classifier to
fine-tune the model in a supervised manner. The results were produced in the form of
a matrix containing values of 1 and 0, indicating whether or not the associated patches
are vertebrae.

• We validated our proposed SVseg model on the publicly available MICCAI CSI dataset,
which achieved the highest performance of 87.39% in DSC, 77.60% in JSC, 91.53%
in PRE, and 90.88% in SEN, compared with classical segmentation approaches and
well-known vertebral segmentation methods.

The remainder of this paper is structured as follows. Section 2 presents a brief descrip-
tion of the proposed methodology, composed of four procedures. Section 3 describes the
experimental setup, dataset, and evaluation metrics. Section 4 contains the experimental
results and a discussion. Finally, Section 5 concludes the work and gives suggestions for
future work.

2. Methodology

As shown in Figure 1, the proposed method is composed of four procedures: (i) data
preprocessing; (ii) SVseg model pretraining; (iii) SSAE + SC for supervised SVseg model
designing; and (iv) testing.

2.1. Data Preprocessing

In the data preprocessing, the noise of the whole CT volume was filtered out by ap-
plying a rough threshold window. On the dataset, a slice-by-slice process was performed.
The vertebrae have higher intensities in images than other tissues but are similar to dif-
ferent bone structures like ribs, so the algorithm learned the difference between vertebrae
structures from other bony structures. A Gaussian filter with a sigma value of 1.5 was
applied to control CT images’ smoothness as a preprocessing step for obtaining accurate
segmentation and attenuating the effects of noisy pixels. The CT images of the spine were
divided into 32 × 32 pixel overlapped patches. To create the overlapping patches, we used
certain stride pixels. An image patch contains a total of 1024 pixels, and if these pixels are
equal to or greater than 50%, then the patch is labeled 1 (vertebra patch); otherwise, it is
labeled 0 (nonvertebra patch). There was an imbalance in the number of training patches
between the two classes used for classification. Most training patches are labeled “0” be-
cause the vertebrae area in the images is smaller than the background area, which can lead
to background bias. To solve this dilemma, it is necessary to strike a balance between the
sizes of the positive and negative training image patches. We generated a balanced training
set using a random undersampling function for negative samples (nonvertebrae patches).
This improves the network’s accuracy and convergence rate during model training [50].
Figure 2 illustrates the data preprocessing.

2.2. SVseg Model Pretraining

In this work, we introduced a stacked sparse autoencoder [51] (SSAE) for high-level
feature learning from overlapping image patches during training. An SSAE is an unsu-
pervised technique of deep learning that contains basic layers for feature learning. In the
following section, we first discuss the basic feature learning algorithm by sparse autoen-
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coder and then introduce the stacking of sparse autoencoder; finally, we used a sigmoid
classifier layer with unsupervised SSAE for fine-tuning the SVseg model.

 

Figure 1. The flowchart of the proposed SVseg model (training stage and testing stage): SVseg consists
of four steps: (i) data preprocessing; (ii) SVseg model pretraining; (iii) SSAE + SC for supervised
SVseg model designing; and (iv) testing.

The fundamental unit for SSAE, autoencoder (AE) works for feedforward nonlinear
neural network training. It is composed of three fundamental layers: an input, a hidden
layer, and an output layer structure. There are a number of nodes that make up each
layer of AE; these nodes establish full connections between the nodes of adjacent layers.
Basically, the autoencoder consists of the encoder–decoder processing step, as shown in
Figure 3. The input vector presentation is encoded in the encoding stage to link the input
layer and the autoencoder’s hidden layer. In contrast, the autoencoder implies the input
vector reconstruction from encoded features learning in the hidden layers in the decoding
stage. The autoencoder’s purpose is to determine the input data representation that could
be used to create the best reconstruction. A concatenated vector feature of an image patch
was fed into AE in our method. Input image patches xi were given to AE in the training,
and reducing the error factor for all network connection weights was performed as follows:

ArgMinW,b, Ŵ,b̂

N

∑
i=1

∣∣∣xi − (Ŵ(σ(Wxi + b)) + b̂)
∣∣∣ 2

2
. (1)
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In Equation (1), w, b, and σ are the weights, biases, and activation function of autoen-
coder parameters. Given an input vector xi, the autoencoder first encodes this input into
the representation hi = σ(Wxi + b), where hi is the xi responses of hidden-layer neurons
and h is the dimension that corresponds to the number of neurons in the hidden layer.
The autoencoder decodes the original input from the encoding learning throughout the
decoding process, Ŵhi + b̂. For effective feature extraction from input image patches,
the autoencoder requires that the hidden layer dimension be less than the input layer’s
dimensions; otherwise, error minimization would lead to a trivial solution. The authors
of [52] determined that the feature learning of the autoencoder is similar to that of PCA.

 

Figure 2. Examples of data preprocessing: 2D axial (512 × 512 pixels) slices are extracted from the 3D
CT volume, a threshold window is applied, and a Gaussian smoothing filter is used on these slices;
then images are divided into 32 × 32-pixel square patches (vertebrae and nonvertebrae patches).

Rather than a limitation of hidden layer dimension, an alternate approach called
sparse autoencoder (SAE) imposed sparsity regularization on the autoencoder’s hidden
layers. SAE implements the regularization of the hidden layer’s responses to avoid trivial
solutions that the basic autoencoders tend towards. Those basic autoencoders required the
hidden layer’s dimension to be less than the input layer’s dimension. Precisely, to make
infinitesimal, the sparsity regularization is imposed on the autoencoder. To create a balance
between the hidden layer’s sparsity and reconstruction power, for every input node, only
the most suitable hidden nodes responses that drive the SAE to represent the training set in
sparse features. It can be stated as follows:

ArgMinW,b,Ŵ,b̂

N

∑
i=1

∣∣∣xi − (Ŵ(σ(Wxi − b)) + b̂)
∣∣∣ 2

2
+ δ

M

∑
j=1

KL(ρ|ρj) (2)

KL
(

ρ
∣∣∣ρj

)
= ρ log

ρ

ρj + (1 − ρ) log
1 − ρ

1 − ρj , (3)

where δ shows the balancing parameter between sparsity and reconstruction and the di-
mensions of the hidden layer are defined by M. The term KL

(
ρ
∣∣ρj), known as the Kullback–

Leibler equation [53] (Equation (3)), shows the divergence in two Bernoulli distributions
that have the probability ρ and ρj. The sparsity is minimized when ρj is close to ρ for
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each hidden neuron j. From the image patches of vertebrae, the low-level features can
be learned by SAE. However, due to variations in the appearance of vertebrae, low-level
feature learning is insufficient. In contrast, abstract high-features are more robust to CT
images’ inhomogeneity. Based on human perception, we applied SSAE for high-level
feature learning based on low-level feature representation. The stacking of multiple SAEs,
known as SSAE, contracts deep hierarchies. To learn abstract high-level features from input
images patch, we stacked the SAE to feed the low-level SAE output layer as an input layer
for the high-level SAE. This SSAE network uses an unsupervised method for pretraining
the SVseg model. From input overlapping patches, the SSAE was trained without utilizing
the label data.

Figure 3. Architecture illustration of high-level feature learning of vertebral input image patches
using an autoencoder with encoder and decoder networks.

2.3. SSAE + SC for Supervised SVseg Model Designing

Since SSAE is trained in an unsupervised manner, the high-level feature representation
is only data-adaptive, and not necessarily discriminative enough for separating the vertebra
from background patches. To discriminate learned features [54,55], a supervised fine-tuned
approach SSAE+SC (sigmoid classifier) [56] was used, as shown in Figure 4.

The proposed SVseg model contains four network layers: one input layer, two hidden
layers, and one sigmoid layer. The training procedure consists of different stages. Firstly,
a sparse autoencoder (SAE) was imposed on the overlapped patches in training data
for primary feature learning h(1)(x) by the adjustment of weight W1. After that, input
pixels were given to this trained SAE for representation activations h(1)(x). The secondary
presentation h(2)(x) learning was obtained by using the primary representation as an input
to the other SAE by the adjustment of the W2 weight. These secondary representations
h(2)(x) were used for the sigmoid layer as input and to learn the mapping of h(2)(x) to
labels by the adjustment of the W3 weight. Finally, one input and two hidden layers were
stacked for making SSAE and a final sigmoid layer was added an output layer capable
of detecting the vertebrae from the background. The SVseg model included the bottom-
up training of SSAE in an unsupervised way, followed by a sigmoid classifier that used
supervised learning for top layer training and fine-tuned the entire deep framework.
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Figure 4. Illustration of unsupervised SSAE fine-tuned by adding a sigmoid classifier (output layer)
for the supervised SVseg model design to classify the image patches into vertebrae or nonvertebrae.

The number of nodes in the sigmoid layer was determined to be equal to the number
of labels. The sigmoid layer in our method had two nodes, one for vertebra and the other
for the background. The sigmoid layer predicts the likelihood of the label of the input data
xi based on learned features, the second hidden layer representation h(2)i . Other classifiers
such as SVM and MLP can also be used. The SVM classifier calculates a posterior probability
score for a pixel belonging to the target or background class. A probability image was
created by reconstructing the score vector, which requires a high degree of generalization.
On the other hand, a multilayer perceptron (MLP) is a feedforward neural network with a
large number of layers and many nodes in each layer that cannot overcome the problem of
overfitting and are stuck in local minima. However, sigmoid logistic regression allowed us
to optimize the whole deep framework jointly through fine-tuning. The sigmoid classifier
that generalizes logistic regression is shown in the below equation:

σ(x) =
1

1 + e−x , (4)

where x is the input and σ is the sigmoid output function [56] in Equation (4). For fine-
tuning, the weights and biases of the sigmoid layer and SSAEs were optimized together,
and the sigmoid layer was used for classification. The cost function can be minimized
using a gradient descent-based model [51]. For every input xi, the two output values
are calculated and these values are the classification probability of the input. This paper
considers two class classification problems, and the label of the patch is {0, 1}, where 1 and
0 refer to vertebrae and nonvertebrae patches, respectively. It should be noted that the label
information is not used in the SSAE learning procedure because SSAE learning is a method
of unsupervised learning. After the high-level feature learning, the sigmoid layer (output
layer) is fed the learned high-level representation of vertebrae structures along with its
label (Figure 4). The trained model is then fed test patches, which return a 0 or 1 value
indicating whether the input image patch represents a vertebra or not.
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2.4. Testing

After training, the SVseg model is ready to test unseen vertebrae patches for model
validation. Test image patches were fed to the SVseg model and produced a predicted value
of one or zero, interpreted as the probability of corresponding to vertebra or background.
Based on these results, a binary segmented image was obtained after reconstruction of
the predicted patches. Due to the high contrast between vertebra, ribs, and other skeletal
structural tissues, some background pixels were misclassified as vertebrae, while some
vertebrae pixels were misclassified as background. Thus, these outliers were removed
by applying morphological operations [57] such as dilation, erosion, and hole filling to
improve the segmentation accuracy in postprocessing.

3. Experimental Setup

We intended to compare our proposed SVseg model with other segmentation algo-
rithms. Our model’s performance was evaluated on the public dataset of segmentation
challenge in MICCAI Computational Spine Imaging (CSI) 2014 [49].

3.1. Dataset

The datasets were collected at the Medical Center at the University of California,
Irvine (Orange, CA, USA) [49]. The dataset contained a total of 15 CT images, 10 CT
images (5595 slices) for the training, and five CT images (3418 slices) for the testing. Each
CT scan covered the whole lumbar and thoracic spine and included complete vertebrae
segmentation masks. The scanning settings were: slice thickness of 0.7–2.0 mm, voltage of
120 kVp, a kernel for soft tissue reconstruction, and intravenous contrast. The axial in-plane
resolution varied between 0.3125 and 0.3613 mm2.

3.2. Experiments

A given set of hyperparameters initialized the SSAE network. These parameters
included framework parameters, weights of the sigmoid layer, number of layer’s hidden
neurons, target activation ρ for hidden neurons, sparsity penalty β, and L2 regularization λ.
A random search [58] was used to find the optimal network structure in terms of perfor-
mance. First, we tried to define the spectrum of hyperparameters, and then we selected
the values randomly. We trained our framework with these selected values and repeated
this process until we found the best productivity. For evaluation, the dataset was split
into three subgroups Itrain, Ivalid, and Itest. From the 20 training CT images, we generated
651,712 overlapping image patches (325,856 vertebrae patches + 325,856 nonvertebrae
patches). We randomly selected 80% of the patches for I_train and 20% for I_valid. The size
of each slice was about 512 × 512 pixels. Training set I_train and I_valid contained 525,568
and 126,144 sample patches, respectively, which were used to train the SVseg model. The
mini-batch size was set to 64 for efficient training, and I_train was divided into 8212 mini-
batches and I_valid into 1971 mini-batches. The proposed method contained four network
layers: one input layer with 1024 neurons; two hidden layers with 729 and 196 hidden
neurons, respectively; and one sigmoid layer consisting of two neurons corresponding to
the number of classes. Many experiments were conducted to determine the SVSeg model’s
number of hidden layers and the number of nodes in each hidden layer. The performance of
the models was monitored in each experiment until the SVseg model achieved its optimal
performance (two hidden layers, the first with 729 nodes and the second with 196 nodes).

Figure 5 shows the visualization of the first and second hidden layers’ feature pre-
sentations by the four-layered SSAE based on the visualization model [59]. These features
demonstrate that the model is capable of revealing vertebrae and nonvertebral structures
from training patches. The learned feature representation in the first hidden layer (with
729 (27 × 27) nodes) indicates the vertebrae’s detailed boundary features and other struc-
tures as shown in Figure 5a, while feature representation in the second hidden layer (with
196 (14 × 14) nodes) expresses the high-level feature learning of vertebrae as shown in
Figure 5b. The 6 × 6 zoomed image of the SSAE’s first hidden layer indicates weights at
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the left side, and the boundary and corner of vertebrae at the right side in Figure 6. Each
square represents the weight between a single hidden node and the corresponding pixel in
the original image. In the weight matrix, a gray pixel represents zero, whereas a white pixel
represents a positive value. According to these findings, SVseg appears to be capable of
learning useful high-level features that can be used to better describe vertebrae structures.
The hyperparameters were selected to minimize the discrepancy between input and its
reconstructions. In our work, this disparity was calculated as the mean square error (MSE).
MSE is calculated between the input and reconstructed input from the AE decoder. Its
gradually decreasing values relate to its saturation with respect to the number of epochs
during the training phase.

Figure 5. Visualization of high-level feature presentation extracted from input pixel intensities of our
proposed two-hidden-layer SVseg model with sparsity constraint of 0.15 and sparsity regularization of
0.20. (a) The learned feature representation in the first hidden layer with 729 nodes. The learned high-
level feature representation in the second hidden layer with 196 nodes is shown in (b). As anticipated,
(a) illustrates detailed border features of vertebrae and other tissue, whereas (b) illustrates high-level
vertebral features.

Figure 7 shows the SVseg model pretraining learning curve in an unsupervised fashion,
where 100 epochs are used and no label data are provided. After the pretraining, the
supervised SVseg model learning curve, MSE of training, and validation corresponding
to a number of epochs are shown in Figure 8. Figure 8a shows the best fit curve for our
model training with MSE of 0.034 for training and MSE of 0.038 for validation. The learning
curve diverges rapidly before 700 epochs and then stabilizes after 2500 epochs. Figure 8b
depicts the problem of overfitting caused by a deviation in the validation curve from the
training curve. Figure 8c,d shows the poor training MSE graph with a low learning rate
and small batch size, respectively. The heuristic approach was used to obtain the correct
training curve, as illustrated in Figure 8a. Therefore, initialization of weight is important in
deep learning.
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Figure 6. The visualizations of SSAE’s first hidden layer expresses the learned feature representation
(center image). The 6 × 6 zoomed image shows the weights of first hidden layer (left image), and
four random weights from the 729-node hidden layer (right images).

 
(a) (b) 

Figure 7. Pretraining graph of SSAE for the unsupervised analysis of two hidden layers: (a) first
hidden layer with 729 nodes; (b) second hidden layer with 196 nodes; 100 epochs are used.

3.3. Evaluation Metrics

In this study, the Dice similarity coefficient (DSC) [60], Jaccard similarity coefficient
(JSC) [61], precision (PRE), and sensitivity (SEN) were used as quantitative assessment
metrics to evaluate segmentation performance [20,29]. We evaluated true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) by comparing the true
labels with predicted labels:
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DSC =
2|A ∩ B|
|A|+ |B| =

2TP
2TP + FP + FN

(5)

JSC =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
. (8)

 

Figure 8. Learning curves of SSAEs model during different experiments. (a) Best fit curve for our
model training with MSE of 0.034 for training and MSE of 0.038 for validation; 4000 epochs were
used and the mini-batch size was set to 64 for efficient model training. The learning curve diverged
rapidly before 700 epochs and then stabilized after 2500 epochs; (b) depicts the problem of overfitting
caused by a deviation in the validation curve from the training curve; (c,d) show poor training MSE
graphs with a low learning rate and small batch size, respectively.

4. Results and Discussion

To demonstrate the efficiency of the SVseg model, the model was compared to five
other state-of-the-art models. We, therefore, compared the SVseg to other models to
evaluate the segmentation efficiency. The training procedures of AE + SC, StAE + SC,
SAE + SC, 3SAE + SC, and 4SAE + SC were similar to the techniques used for SVseg, as
shown in Figure 4.

(i) Autoencoder plus sigmoid classifier (AE + SC): The sparsity constraint on the
hidden layer of AE as controlled by the parameter σ in Equation (2). If the sparsity constraint
was removed by σ = 0 in Equation (2), the sparse AE was transformed into a single-layered
AE. The input x of the sigmoid classifier in Equation (4) was learned via single-layer AE,
and the SC was trained for model fine-tuning. Then, SC was used with AE to determine if
a vertebra was present or absent inside each image patch.
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(ii) Stacked Autoencoder plus sigmoid classifier (StAE + SC) is a neural network
composed of many layers of basic AE with each layer’s outputs connected to the inputs
of the subsequent layer. StAE is a two-layered fundamental AEs model. SC’s input x
in Equation (4) is a feature learned from the pixel intensities of an image patch using a
two-layer AEs.

(iii) Sparse autoencoder plus sigmoid classifier (SAE + SC): In this approach, the input
x of SC in Equation (4) is a feature learned from the pixel intensities of an image patch
using a single layer of Sparse AE.

(iv) Three-layer sparse autoencoder plus sigmoid classifier (3SAE + SC): This model is
composed of three Sparse AE layers, with the outputs of each layer connected to the inputs
of the subsequent layer. The first and second hidden layers have the same nodes as in our
SVseg, and the third layer has 49 hidden nodes.

(v) Four-layer sparse autoencoder plus sigmoid classifier (4SAE + SC): This network
is composed of four sparse AE layers and has the same parametric settings as the SVseg
model but the third and fourth layers have 49 and 16 hidden nodes, respectively. An SC
layer is attached at the end of network for fine-tuning. The 4SAE + SC model uses the same
method for training as shown in Figure 4.

The quantitative performance of SVseg and different models was analyzed using the
metrics in Equations (5)–(8), respectively. Table 1 indicates the means of DSC, JSC, PRE, and
SEN of SVseg and comparative models. Table 1 shows that the SVseg model results give
superior segmentation performance compared to the other models in all metrics. While
the results tend to favor “deeper” architecture over “shallow” architecture in encoding
high-level features from pixel intensities, the 3SAE + SC and 4SAE + SC models’ poor
performance compared to the SVseg model suggests that adding more layers may cause an
overfitting problem. Figure 9 shows the visualization of vertebrae segmentation results,
randomly selected from five test cases based on our SVseg model.

Table 1. Performance evaluation metrics (DSC, JSC, PRE, and SEN) of SVseg with various models
AE + SC, StAE + SC, SAE+SC, 3SAE + SC, and 4SAE for vertebrae segmentation on MACCAI
CSI dataset.

Methods DSC (%) JSC (%) PRE (%) SEN (%)

AE + SC 78.91 65.17 82.57 79.61
StAE + SC 83.39 71.51 88.17 85.71
SAE + SC 81.41 69.65 85.83 78.63
3SAE + SC 85.12 74.09 90.59 88.41
4SAE + SC 84.73 73.51 85.33 90.13

SVseg (proposed) 87.39 77.60 91.53 90.88

4.1. Computational Cost

The experiments were carried out on a 1.80 GHz i7 CPU, 32 GB RAM, NVIDIA
GeForce MX250 GPU using MATLAB 2018a environment. In this study, we compared
SVseg’s computational efficiency to that of five other state-of-the-art approaches. Table 2
shows the execution times for each model. Regarding training time, the two autoencoder-
based models that do not include sparsity required less training time than the three models
with sparsity. In addition, as the number of layers in the architecture increased, more time
was needed for training. In terms of run-time execution, our proposed SVseg model was
more efficient than the other five models.
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Figure 9. Visualization of vertebrae segmentation results, randomly selected from five test cases of the
thoracolumbar spine database (mid-axial slices). The first row shows the segmentation superimposed
on the image, the second row shows segmented images, and the last row shows ground truths.

Table 2. The execution time of AE + SC, StAE + SC, SAE + SC, 3SAE + SC, and 4SAE + SC trained on
the training dataset and the time required to evaluate them on a test image of 512 × 512 pixels.

Methods Training Time (h) Segmentation Time (s)

AE + SC 21.05 16
StAE + SC 22.16 19
SAE + SC 23.07 13
3SAE + SC 26.47 23
4SAE + SC 37.22 23

SVseg Model 22.35 12

4.2. Discussion

As shown in Table 3, we also compared our SVseg model with classical segmentation
algorithms including U-Net [62], DeepLabv3+ [63], MultiResUNet [64], Densely-UNet [65],
and other well-known vertebrae segmentation methods. Table 3 indicates that the proposed
SVseg model outperformed all the other models in terms of DSC and JSC. Compared
with the classical U-Net [62], DeepLabv3+ [63], MultiResUNet [64], Densely-UNet [65],
SpineParseNet [20], Mask R-CNN [66], and multiscale CNN [67] our SVseg model was
significantly better by (3.79, 5.78), (13.86, 19.46), (1.90, 3.05), (4.23, 6.43), (0.07, 0.11), (18.19,
24.45), (0.89, 2.93) on average (DSC%, JSC%), respectively.

The SVseg model also achieved the best results compared with well-known vertebrae
segmentation methods. For example, a mean 86.17% DICE score was reported for vertebrae
segmentation using (D-TVNet) based on U-Net [68]. The experimental results showed
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that D-TVNet was unable to determine the critical points for measuring the spine curve
angle using segmented bones. Additionally, when the noise was significant, and the bones
not sharp, this method was ineffective at identifying them. While the D-TVNet method
is capable of removing some noise from images, it can also accidentally remove relevant
bones in some cases. In [29], a deep learning approach was proposed for automatic CT
vertebra segmentation and achieved a 86.1% DICE score. The starting thoracic vertebrae
have a lower DICE due to the influence of the ribs and intervertebral discs. This method
segmented several bones not seen in the label annotations, resulting in misclassification
and a low DICE score. These variables contributed to error segmentations. A deep learning
patch-based technique for cervical vertebra segmentation in X-ray images was proposed
in [32] with a DICE score of 84%, but this framework has a number of flaws. By eliminating
outlier centers away from the vertebral curve, the center localization structure can be
strengthened even further. The current framework for center localization was limited by
the fact that it does not know which center belongs to which vertebra. In another paper [69],
a DICE score of 87% was obtained using a deep learning approach on the thoracolumbar
spine from CT images, but this approach omits information about a spine’s structural
consistency. The result is odd behavior in which this method fails to segment parts of a
vertebra, or, in some cases, entire vertebrae at the beginning or end of a spine. It should
be investigated how such global systemic regularity can be imposed during the training
phase. Table 3 shows that SVseg achieved the highest mean DSC and JSC for segmentation
of vertebrae compared to all methods.

Table 3. The SVseg model achieved the highest mean DSC (%) and JSC (%) compared with classical
segmentation algorithms and also other vertebrae segmentation methods.

Methods Backbone DSC (%) (JSC) (%)

Classical U-Net [62] U-Net 83.60 71.82
DeepLabv3+ [63] DeepLabv3+ 73.53 58.14

MultiResUNet [64] U-Net 85.42 74.55
Densely-UNet [65] 3DU-Net 83.16 71.17
SpineParseNet [20] 3D-GCSN, 2DResUNet 87.32 77.49
Mask R-CNN [66] ResNet 101 69.20 53.15

Multiscale CNN [67] FCN 86.50 74.67
D-TVNet [68] U-Net 86.68 76.49
PaDBN [29] DBN 86.10 75.59

S. Al Arif et al. [32] U-Net 84.00 72.41
A. Sekuboyina et al. [69] U-Net 87.00 76.99
SVseg Model (proposed) SSAE 87.39 77.60

The above results and discussion prove that our proposed approach has the benefits
of automatically learning high-level features from data images, rather than relying on
handcrafted feature extraction, which often necessitates advanced engineering skills. SSAE
differs from an autoencoder (AE) because it imposes sparsity on the mapped features,
preventing the problem of trivial solutions when the dimensionality of hidden features
exceeds the dimensions of input features. After stacking, SSAE can learn high-level features,
similar to other deep learning techniques. Our SVseg model has the ability of high-level
feature extraction by unsupervised learning, followed by training the sigmoid classifier
in a supervised manner. The model was evaluated on a publicly CSI MICCAI dataset for
training and testing.

As a result, the SVseg model achieved excellent segmentation of the vertebrae from
CT images. To avoid potential issues caused by the limited amount of training data, we
pretrained the model layer-by-layer, which allowed it to learn the hierarchy of features one
layer at a time. Specifically, the previous layer’s learned features were fed into the next layer
during each layer’s training. Secondly, the entire model was refined by only a few iterations
during the fine-tuning stage, which is important for mitigating the overfitting problem.
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Thus, our model enhanced the accuracy and practicality of segmentation findings, enabling
spine clinical diagnosis to be supported without relying on a complex network design.

We can also use transfer learning to avoid overfitting problems [47,70]. We can use
other human organs’ CT images to initialize our model in the unsupervised pretraining
process, obtaining a more general CT image appearance. We believe that, by performing
this initialization, we will be able to improve the fine-tuning process and, as a result,
overcome the small sample problem. In the fields of machine learning and computer vision,
similar methods have been commonly used [47,70]. However, our model takes a long
time to segment the vertebrae since it is implemented in MATLAB. Using Keras with a
TensorFlow backend in Python is an option to improve the time efficiency of our approach.
This will result in a decrease in computational time.

5. Conclusions

In conclusion, we proposed the SVseg model for CT image-based vertebrae segmenta-
tion. To overcome the difficulties of robust feature presentation caused by the large diversity
of vertebra appearance, we proposed deep feature extraction by the SSAE architecture. The
supervised sigmoid classifier fine-tunes the learned features from pretraining to estimate
the target image’s vertebrae likelihood map. In this study, we found that the supervised
fine-tuning step was positively impacted by sparsity regularization during training. The
sparsity target forced the filters to collect more distinct features from image patches during
the training phase. Our proposed method was tested on the publicly available CSI MIC-
CAI dataset. When compared to other classical segmentation algorithms and well-known
vertebrae segmentation methods, our model performed better in terms of segmentation
accuracy. Finally, the SVseg model outperformed a variety of state-of-the-art methods in
terms of vertebrae segmentation accuracy, both qualitatively and quantitatively. To better
characterize vertebrae, we intend to extend our proposed model to other imaging modali-
ties in the future and incorporate it with other deep learning feature extraction methods.
Additionally, further validation, improvement, and implementation of our approach for
additional applications like 3D medical image segmentation and multiclass classification
will be our future focus.
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Abstract: In shape analysis, the interpolation of shapes’ trajectories is often performed by means
of geodesics in an appropriate Riemannian Shape Space. Over the past several decades, different
metrics and shape spaces have been proposed, including Kendall shape space, LDDMM based
approaches, and elastic contour, among others. Once a Riemannian space is chosen, geodesics
and parallel transports can be used to build splines or piecewise geodesics paths. In a recent
paper, we introduced a new Riemannian shape space named TPS Space based on the Thin Plate
Spline interpolant and characterized by an appropriate metric and parallel transport rule. In the
present paper, we further explore the geometry of the TPS Space by characterizing the properties
of its geodesics. Several applications show the capability of the proposed formulation to conserve
important physical properties of deformation, such as local strains and global elastic energy.

Keywords: shape analysis; geodesics; thin plate spline

MSC: 53Z50

1. Introduction

In shape analysis, the interpolation of shapes’ trajectories is often performed by means
of geodesics in appropriate Riemannian Shape Spaces. Different proposed metrics and
shape spaces include Kendall shape space [1,2], LDDMM-based approaches [3–6], and
elastic contour [7]. Once a Riemannian space is chosen, geodesics and parallel transports
can be used to build splines or piecewise geodesics paths [1,8,9]. If the torsion of the
connection defined on the Riemannian space does not vanish, then a difference can appear
between geodesics and autoparallel lines [10]. In recent papers [11–14], the present authors
introduced and developed a new Riemannian shape space named TPS Space based on the
Thin Plate Spline interpolant and characterized by an appropriate metric and a parallel
transport rule, and the efficiency of this TPS parallel transport was compared with other
methods in [14]. One of the main features of the TPS connection is its independence from
the path. In fact, TPS parallel transport is named Direct Transport. This feature leads to
a flat space (vanishing Riemannian Curvature) with torsion. In previous contributions,
the geodesics of the TPS Space have never been studied. The present paper aims at
studying the characterization of geodesics and parallel lines in the TPS space together with
numerical techniques to compute them. Looking for geodesics’ computation is of particular
importance in a variety of morphological analyses, such as in spline regression, which have
applications in a wide range of shape analysis tasks spanning fields from medical/clinical
investigations to biological research. As will be clarified in the following pages, in a
connection with torsion, geodesics and autoparallel lines can coincide; however, this is not
a rule [10,15]. In particular, it happens only if the torsion is completely skew-symmetric. On
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the other hand, the TPS connection is defined by directly assigning a parallel transport rule
without analytically defining the corresponding covariant derivative, ∇. For this reason,
it is not possible to calculate the Christoffel symbols of the connection or the components
of the torsion to establish whether it is completely skew-symmetric [15]. In the following,
we exploit the qualitative definitions of Direct Transport and TPS metric in 2D to build the
geodesics and the autoparallel lines of the TPS space numerically. In particular, geodesics
are built by minimising the length of the path connecting two given points (the initial
and final shapes), while autoparallel lines are calculated via shooting from a point (the
initial configuration) and a vector (the initial deformation velocity). Our set of examples
allows the geometry of the TPS Space to be explored by characterizing the properties of its
geodesics and parallel lines. The paper is organised as follows:

• In Section 2, the general definitions of the two families of curves in Riemannian spaces
are summarized.

• In Section 3, the main concept defining the TPS Space are recalled.
• In Section 4, the novel contribution of this paper is presented, that is, the construction

of and comparison between autoparallel and geodesic lines in TPS Space.
• In Section 6, the numerical results are shown in order to discuss and compare the main

features of autoparallel and geodesic lines in TPS Space.

2. Geodesics in Riemannian Manifolds

In this section, we sketch several concepts in differential geometry, referring to [10,15,16]
for details.

In differential geometry, a Riemannian manifold (M, g) is a smooth manifold M
equipped with a positive-definite inner product g on the tangent space TpM at each
point p.

A connection on the manifold is a rule allowing for parallel transport vectors along
a smooth curve γ(t) ∈ M. This rule allows for the comparison of vectors belonging to
different tangent spaces.

To be more precise, any parallel transport rule τb,a along a path from a to b has to fulfill
the following properties:

τb,a : TaM → TbM , is linear, and non-singular.

Va �→ Vb ;

moreover, for any point c on the path

τb,c ◦ τc,a = τb,a (1)

It follows from this that τa,a is the identity on TaM, and τa,b = (τb,a)
−1.

This procedure defines the connection, inducing a covariant derivative, ∇, that can be
then calculated by the following limit:

∇Vp U = lim
h→0

τ−1
h,0 Uγ(h) − Uγ(0)

h
(2)

A vector field V is said to be parallel along the curve γ if the following holds:

∇γ̇V = 0. (3)

A connection is considered compatible with a metric g if the parallel transport is an
isometry, i.e., if ga(Va, Wa) = gb(τb,a(Va), τb,a(Wa)) for each pair of vectors Va, Wa along
each path.

In terms of connection, this means that:

g(∇XY, Z) + g(∇XZ, Y) = X · g(Y, Z) (4)
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The torsion of the connection ∇ is a tensor field defined as

∇VW − ∇WV − [V, W] , (5)

with [·, ·] the Lie bracket.
A connection is called symmetric when the torsion is null for all V, W. A funda-

mental result of Riemannian Geometry is the existence of a unique symmetric connection
compatible with the metric g, named the Levi–Civita (LC) connection, which we call ∇g.

In its more general meaning, a geodesic is a curve γ(t) ∈ M the tangent field γ̇(t) of
which is parallel along the curve itself:

∇γ̇γ̇ = 0. (6)

In other terms, a geodesic is the curve on the manifold where one walks, maintaining
the same direction, according to the given parallel transport rule. In this general sense, the
geodesic can be called an autoparallel line [10].

On the other hand, if the connection is the Levi–Civita one, the geodesics acquire
an additional property. Given two points, p, q, belonging to a convex neighbourhood of
(M, g), a geodesic from p to q is the shortest path joining p and q according to the metric g.
The distance d(p, q) between p and q can be calculated as

∫ q
p

√
g(γ̇(t), γ̇(t))dt.

In this paper, following [10], by geodesics we mean only those geodesics of the Levi–
Civita connection, ∇g; we refer to the geodesics of a different connection, ∇, as autoparal-
lel lines.

In general, the difference between a Levi–Civita connection, ∇g, and any connection
∇ is a (2, 1) tensor field D [15]:

∇XY = ∇g
XY + D(X, Y) X, Y ∈ TM (7)

The symmetric and the antisymmetric part of D have direct geometric meanings:

• A connection ∇ is torsion-free if and only if D is symmetric.
• A connection ∇ has the same geodesics as the Levi–Civita connection ∇g if and only

if D is skew-symmetric.

As a consequence of (4), the connection ∇ is compatible with the metric g if and only
if D belongs to the space

Dg := TM ⊗ (Λ2TM) =
{

D ∈ ⊗3TM|D(X, V, W) + D(X, W, V) = 0
}

(8)

Finally, by means of (6)–(8), we find that a connection ∇ on (M, g) is both metric
and geodesic-preserving if and only if its torsion lies in Λ3TM, i.e., if it is completely
skew-symmetric. In this case, 2D = T and

∇XY = ∇g
XY +

1
2

T(X, Y, −) (9)

3. Geometry of the TPS Space

In the present section, we summarize the formulation of the TPS Space presented and
developed in [11–13]. Both the metric g and parallel transport are based on the interpolation
function called Thin Plate Spline (TPS). Then, in order to introduce the Riemannian structure
of the TPS Space, we need to first summarize the formulation of the TPS. Furthermore, in
order to introduce the metric g we need to explain strain energy, bending energy, and body
bending energy and how they are used to build g.
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3.1. Thin Plate Spline

Let Em be the m-dimensional Euclidean space and ΩX, ΩX′ ⊂ Em be two regular
regions representing the undeformed (source) and deformed (target) configurations of a
body (Figure 1), respectively. We label as x the points in ΩX and as x′ the points in ΩX′ .
The displacement field is represented by the following difference vectors:

u(x) = x′ − x (10)

If the configurations are sampled in k points (landmarks), then ΩX and ΩX′ are named
k-configurations and represented by the k × m matrices X and X′, respectively. The displace-
ments experienced by the k landmarks can be collected in the k × m matrix U = X′ − X.
Because translations do not affect the shape, they are filtered out by centring configurations
in the origin of Em. The set of all centred k-configurations is named Centred Configuration
Space CCk

m. Given a configuration X, the corresponding centred configuration can be repre-
sented in two different ways: by a k × m matrix obtained as XC = CX or, alternatively, by a
(k − 1)× m matrix XH = HX , where C = Ik − 1

k 1k1T
k , Ik is the k × k identity matrix and 1k

is a k × 1 column of ones, while H is the Helmert sub-matrix. The jth row of the Helmert
sub-matrix H is obtained by

Figure 1. Example of a 2D configuration made by six landmarks, with the first five lying on the
boundary and one, x6, inside the region Ω.

(hj, ..., hj, −jhj, 0, ..., 0), hj = −(j(j + 1))−1/2

and thus, the jth row consists of hj repeated j times followed by jhj and then k − j − 1 zeros,
j = 1, ..., k − 1. The notable property HT H = C can be used to switch from one parametriza-
tion to the other. In the following we use only centred configurations; we therefore remove
the subscript, C or H, by specifying, when necessary, which parametrization we are using.
Let X, X′ ∈ CCk

m be a pair of centred configurations. The Thin Plate Spline (TPS) Φ is a
function that interpolates, in Em, the deformation from X to X′. The TPS is parametrized
by the pair (AX , WX) where AX ∈ GL(m) is a linear transformation of Em represented by a
m × m matrix and WX is a k × m matrix. Given a point x ∈ Em and a centred configuration
X ∈ CCk

m, we obtain
x′ = Φ(x) = AXx + WT

Xs(x) (11)

where s(x) = (σ(x − x1), ..., σ(x − xk))
TC is a (k × 1) matrix, xi ∈ X is the position of the

i-th landmark, and

σ(h) =
{ ||h||2 log(||h||2) if ||h|| > 0;

0 if ||h|| = 0.
for m = 2

σ(h) =
{ −||h|| if ||h|| > 0;

0 if ||h|| = 0.
for m = 3
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Equation (11), applied landmark-wise to X, reads:

X′ = XAT
X + SXWX , with (SX)ij = Cikσ(xk − xl)Clj . (12)

Because X and X′ are centred, Equation (12) represents m × (k − 1) interpolation con-
straints, while the matrices (AX , WX) consist of m × m + k × m = (m + k)m parameters. In
order to solve the interpolation problem we need to introduce m × (m+ 1) more constraints
on WX , uncoupling the affine and non-affine parts:

1T
k WX = 0 , XTWX = 0 . (13)

For a given pair (X, X′) there exists a unique set of parameters for the pair (AX , WX)
that solve the problem (12), constrained with (13):

AT
X = Γ21XX′ , WX = Γ11XX′ , (14)

where

Γ21X =
(

XTS−1
X X

)−1
XTS−1

X

Γ11X = S−1
X − S−1

X XΓ21X

are a m × k and a k × k matrices, respectively, which only depend on the source configuration
X. We note that the inverse of the singular matrix SX is obtained by means of the Helmert
matrix as

S−1
X = HT

(
HSX HT

)−1
H (15)

Finally the target X′ can be represented as the deformation of X:

X′ = X Γ21XX′ + SXΓ11XX′ = XAT
X + SXWX . (16)

The k × k matrix Γ11X is called the Bending Energy matrix and is used to extract the non
linear part of the deformation. Because it vanishes on affine deformations, its eigenvectors
associated with non vanishing eigenvalues are only (k − 1 − m). These are called principal
warp eigenvectors, and represent the principal modes of deformation of the shape X [11].

3.2. Energies

It has been proven [17] that TPS is the only interpolating function that minimizes the
bending energy J, which gauges the second derivative of the displacement field:

J =
∫
Rm

∇2u · ∇2u (17)

Note that the bending energy is defined as an integral on the whole, Rm. In [12], in
order to provide a mechanical interpretation of bending energy, the concept of body-bending
energy was introduced, allowing the integration to be performed entirely inside the body:

JΩ =
∫

Ω
∇2u · ∇2u (18)

The body-bending energy is slightly smaller than the bending energy, and the decay
ρ = J/JΩ can be used to quantify the difference. Both J and JΩ can be used as pseudo-
metrics on TCCk

m, as they measure the difference between two configurations and vanish
in affine deformations. In order to endow X ∈ CCk

m with a Riemannian metric we need
a non-singular distance. Here, we propose slightly modifying the Dirichlet Energy used
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in the deformable templates method [18] to obtain the following expression for the strain
energy, ϕ, stored by the body:

ϕ =
1
2

∫
Ω

E · E (19)

where

E =
∇u + (∇u)T

2
(20)

is the strain tensor (in the case of small displacements). We note that ϕ vanishes on the
rotational part of the local deformation. On the other hand we stress that (19) is a global
measure that should be calculated via integration, starting from local measures, by means
of a discretization of the whole domain Ω. In [12] it is shown that (19) can be calculated
directly as a global quantity starting from landmark displacements, at least for bilinear
deformations in 2D. In fact, in that case, when a rectangle bends in a generic trapezoid the
deformation can be parametrized as follows:

u = (A − I)x + [(χ ⊗ e1 ⊗ e2)x]x (21)

where χ = χ1e1 + χ1e2 are the bending with respect to the two axes, A is a linear trans-
formation, and I is the (m × m) identity matrix. Then, the strain energy can be calculated
as the sum of one contribution depending on the norm of A and a second contribution
proportional to the bending energy, J. The proportionality coefficient depends only on
geometrical quantities of Ω:

ϕ =
1
2
A(A − I) · (A − I) +

Ip

4ρA J (22)

where Ip and A are the polar inertia and the area of Ω, respectively. In the next section, we
show that both J and (A − I) · (A − I) can be calculated by means of the TPS parameters
Γ21X and Γ11X . Then, the expression (22) can be globally calculated starting from landmark
displacements by means of TPS.

3.3. TPS Metric

In [11], it is shown that the value of the bending energy J associated with a displace-
ment, U, of a configuration, X, obtained using the quadratic form

J(U) = νπTr(UT BU). (23)

where ν = 16 for m = 2 and is ν = 8 for m = 3. For this reason the matrix B := Γ11X
is called the Bending Energy Matrix of X. This fact allows us to evaluate the bending
energy directly by means of a closed form expression, avoiding the need to discretize the
configuration in a huge number of triangles. Furthermore we note that the Bending Energy
Matrix depends only on X and can be used as a pseudo-metric on TCCk

m. Let two given
configurations, X and X′ = X +U, related landmark-wise by a bilinear deformation as (21);
then, the strain energy (22) can be calculated as

ϕ(U) =
1
2
A Tr(UTΓT

21XΓ21XU) +
4πIp

ρA Tr(UT BU) (24)

and the average strain energy on the body can be obtained as

ϕ(U) = ϕ(U)
A = 1

2 Tr(UTΓT
21XΓ21XU) +

4πIp
ρA2 Tr(UT BU) (25)

While this expression is valid only for bilinear deformations, it can be generalized by
assuming certain approximations concerning, in particular, the decay, ρ. In [13], it is further

190



Mathematics 2022, 10, 1562

shown that for the body-bending energy calculation it is possible to define a symmetric
matrix, BΩ, such that the following holds:

JΩ(U) = Tr(UT BΩU) (26)

Then, in general, the decay, ρ(U), is not isotropic and can be calculated by means of
the Rayleigh quotient:

ρ(U) =
J(U)

JΩ(U)
=

16πTr(UT BU)

Tr(UT BΩU)
(27)

In the two-dimensional case, the BEB matrix BΩ is defined as follows:

BΩ = Γ11XCΩ Γ11X + Γ11XC∂Ω Γ11X (28)

(CΩ)ij = 8αiσ(xi − xj) (29)

(C∂Ω)ij =
k−q

∑
p=1

∫ 1

0

[
∇2si(xp + ζ�p)∇sj(xp + ζ�p)

− si(xp + ζ�p)div
(
∇2sj(xp + ζ�p)

) ]
· ∗(�p)dζ

where s(x) = (σ(x − x1), ..., σ(x − xk))
T and the values of the angles αi are

αi =

{
2π if xi ∈ Ω;
arccos( �i

‖�i‖ · �i+1
‖�i+1‖ ) if xi ∈ ∂Ω. (30)

while �i = (xi+1 − xi) , ∗(�p) is the vector �p rotated clockwise by π/2, q is the number of
landmarks that does not lie on the boundary ∂Ω, and (k − p) is the number of landmarks
lying on ∂Ω (see Figure 1). As ρ can assume different values depending on the direction of
the deformation, while we need a metric depending only on X, in the following we assume
an isotropic decay ρ̄:

ρ̄ =
16π

(k − z)
Tr

(
B B−1

Ω

)
(31)

where z ≥ (m + 1) is the number of vanishing eigenvalues of
(

B B−1
Ω

)
. Then, in the

following, we approximate the calculus of the BEB by assuming

BΩ # ρ̄B (32)

Finally, we generalize (25), defining the distance between two generic configurations
X and X′ (called Γ-Energy), as follows:

Γ(X, X′) := Tr
(
(X′ − X)T G (X′ − X)

)
(33)

where

G := μ1ΓT
21XΓ21X + μ2Γ11X μ1 =

1
2

and μ2 =
4πIp

ρ̄A2 (34)

We note that Γ21X, Γ11X, μ2 depend only on the source configuration, X. From a
mechanical point of view, we can define the Γ-energy Γ(U) as the average strain energy
ϕ(Ũ), evaluated on a more simple deformation Ũ characterized by the same uniform
component Ũu = Uu of U and a bilinear deformation Ũnu storing the same body bending
energy of Unu, i.e., such that JΩ(Ũnu) = JΩ(Unu). In [12], it is shown that the Γ-energy
is a good approximation of the strain energy for more general deformations as well as
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bilinear ones. Then, the TPS Space [11–13] can be defined as the CCk
m equipped with the

TPS metric tensor:
g(U, V) := Tr

(
UT G V

)
(35)

In particular, the affine and non-affine components of the metric are defined by the
sub-metrics

gu(U, V) := Tr
(

UT Gu V
)

gnu(U, V) := Tr
(

UT Gb V
)

(36)

where
Gu := μ1ΓT

21XΓ21X Gnu = μ2Γ11X (37)

Alignments: OPA and MOPA Techniques

After the TPS metric tensor G is introduced, we introduce a technique for managing
rotations in order to align two configurations, X and Y, based on minimization of the
distance, defined as

d(X, Y) = inf
Q∈SOm

√
Tr((YQ − X)TGα(YQ − X)) .

The aligned configuration, Ŷ, is obtained by means of an optimal rotation, Q̂, minimiz-
ing d.

Ŷ = YQ̂

where Q̂ = argmin g((YQ − X), (YQ − X)). According to this definition, Q̂ turns out to
be the rotational component of the polar decomposition of YTGX. When α = 0, we obtain
the rotational component of YTX, the classical Ordinary Procrustes Analysis (OPA). When
α = 1, then YTGX = AX. In the latter case, we define the alignment Modified OPA, or
MOPA [11].

3.4. TPS Direct Transport

The connection called the TPS connection was introduced in [11] and developed in [13].
It has the following properties:

1. It is compatible with the TPS metric;
2. It is compatible with the decomposition provided in (12);
3. It is independent of the path.

We assume all the configurations to be centred and represented by Helmertized land-
marks; then, if not otherwise specified, each matrix is a (k − 1)× m matrix. Furthermore,
deformation vectors have a subscript denoting the starting point, that is, the source config-
uration; for details, see [11].

Let X and Y be two source configurations and let VX and VY be the two associated
deformation vectors, provided by

VX = X′ − X = X(AT
X − I) + SXWX ,

VY = Y′ − Y = Y(AT
Y − I) + SYWY . (38)

We can then say that VY is the parallel transport of a given VX , that is, VY = τY,X(VX),
if and only if the uniform part of VY equals that of VX

AY = AX ; (39)

and the non uniform part WY of VY solves the linear systems

YTWY = XTWX = 0 QYET
YWY = QXET

XWX , (40)
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where the (k − 1)× (k − 1 − m) body principal warps matrix EX collects all the body prin-
cipal warps of X and QX is a suitable (k − 1 − m) × (k − 1 − m) orthogonal matrix (i.e.,
QT

XQX = I) defined on each configuration X and representing a rotation or reflection of
the principal warps. After being chosen, a configuration P as a Pole for the space QX is
estimated, minimising the Euclidean distance ‖EXQB

X − EP‖ between the rotated principal
warps of X and the corresponding basis on the pole, P.

The principal warps matrix can be built as follows:

• Perform a TPS analysis on X and find the SX and Γ11X ;
• Perform an eigenvalue analysis on Γ11X and obtain Γ11X = ΓΛΓT , where Γ is the

(k − 1)× (k − 1) matrix containing the eigenvectors γi in column and Λ is the diag-
onal (k − 1)× (k − 1) matrix of the eigenvalues λ1, . . . , λk−1 ordered by increasing
magnitude (the first m eigenvalues will be equal to 0);

• Drop the first m columns from Γ by obtaining the (k − 1)× (k − 1 − m) matrix Γ̄,
containing the principal warp eigenvectors by column;

• Drop the first m rows and the first m columns from Λ by obtaining the (k − 1 − m)×
(k − 1 − m) matrix Λ̄;

• Define the (k − 1)× (k − 1 − m) matrix EX = SX Γ̄Λ̄1/2.

The same steps must be used to build the principal warps matrix EY on the target
configuration.

The first equation of (40) constrains Wb to be orthogonal to the affine part, while
the second defines the isometry in the subspace of the non-affine deformations. This last
requirement implies the conservation of the total bending energy. The system (40) can be
written as ⎡⎣ YT

QYET
Y

⎤⎦ [
WY

]
=

⎡⎣ XT

QXET
X

⎤⎦ [
WX

]
.

This can be re-written as
WY = M−1

Y MXWX

And so:

VY =

(
YΓ21X +

√
μ2(X)

μ2(Y)
SY M−1

Y MXΓ11X

)
VX , (41)

It is worth noting that Equation (41), characterizing VY as the parallel transport of VX ,
depends only on quantities related to the startpoint, X, and endpoint, Y, of the transport,
and does not depend on the path. For this reason, the TPS connection is characterized by
vanishing curvature and non-vanishing torsion. Moreover, it is easy to check that (41) is
compatible with the TPS metric G and with the decomposition provided in (12).

4. Geodesics and Autoparallel Lines in TPS Space

In the present section, we introduce the main contribution of the present paper, that
is, to show the most important features of the geodesics and autoparallel lines in the TPS
space and compare the two families of lines.

In the previous section, the TPS connection has been defined by directly assigning
the parallel transport rule (41) without analytically defining the corresponding covariant
derivative ∇. For this reason, it is not immediately necessary to calculate the Christoffel
symbols of the connection or the Christoffel symbols of the corresponding Levi–Civita
connection ∇g, nor the components of the torsion for the purpose of establishing whether
it is completely skew-symmetric [15] and thus whether or not the autoparallel lines and
geodesic lines coincide.

After VX , VY in (41) is substituted with Ẋ0, Ẋ(t) and X, Y with X0, X(t), we obtain

Ẋ(t) =

(
X(t)Γ21X0 +

√
μ2(X0)

μ2(X(t))
SX(t)M−1

X(t)MX0Γ11X0

)
Ẋ0, (42)
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Equation (42) can be integrated to shoot the autoparallel line starting from X0 with initial
velocity Ẋ0. In the general case, this integration is not simple because it involves the
construction and inversion of the matrix MY and alignment with the pole, P. Fortunately,
the integration of (42) is not as complicated in the case of purely affine deformations. In the
next Section 4.1, we show the analytical solution of geodesic and autoparallel lines for the
case of purely affine deformations. Then, in Sections 4.2 and 4.3, we exploit the qualitative
definitions of Direct Transport and TPS metrics in 2D to numerically build the geodesics
and autoparallel lines of the TPS space, respectively, in the general case. In particular,
geodesics are built by minimising the length of the path connecting two given points (initial
and final shapes), while autoparallel lines are calculated via shooting from a point (initial
configuration) and a vector (initial deformation velocity).

4.1. Analytical Solution for the Affine Subspace

A trajectory of affine transformations of X0 can be represented as

X(t) = X0 AT
X0
(t) (43)

with AX0(t) ∈ SL(m)∀t and A(0) = I

X0 = X(t)A−T
X0

(t) (44)

Ẋ(t) = X0 ȦT
X0
(t) = X(t)A−T

X0
(t)ȦT

X0
(t) (45)

Ẋ(0) = X0 A−T
X0

(0)ȦT
X0
(0) = X0 ȦT

X0
(0) (46)

The trajectory is an autoparallel line if and only if

Ẋ(t) = τX(t),X0
Ẋ(0)∀t ∈ [0, 1] (47)

that is, by means of the (39)

Ẋ(t) = X(t)A−T
X0

(t)ȦT
X0
(t) = X(t)ȦT

X0
(0) (48)

that is,
ȦX0(t)A−1

X0
(t) = ȦX0(0) (49)

we note that this equation is the same as that characterizing the autoparallel lines in GL(m).
The solution is as follows:

X(t) = X0 exp
[
tȦX0(0)

]T t ∈ [0, 1] (50)

as is well known, in GL(m) geodesics and autoparallel lines coincide [15,19]; then, this
property holds for TPS-geodesics and TPS-autoparallel lines as well in the case of affine
deformations. The geodesic from X0 to X1 can be calculated as

X(t) = X0 exp
[
t log

(
Γ21X0 X1

)]
t ∈ [0, 1] (51)

4.2. Geodesics Calculation: Objective Function Optimisation and Equality Constraints

Given two configurations X0, X1, we calculate the geodesics from X0 to X1 by ex-
ploiting the property of minimizing the Riemannian distance. The geodesic trajectory
{X(t)|t ∈ [0, 1], X(0) = X0, X(1) = X1} can be calculated by minimizing the functional:

d(X0, X f ) =
∫ 1

0

√
g(Ẋ(t), Ẋ(t))dt (52)
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In addition, we require that the curve has a constant speed,
(

g(Ẋ, Ẋ)
)·

= 0, and we enforce
this constraint by adding a Lagrange multiplier, k, to the objective function:

f (X(t)) = d(X0, X f ) + k
∫ 1

0

(
g(Ẋ, Ẋ)

)·dt = 0 (53)

The optimization problem is solved numerically by discretizing X(t) in a finite number
n of steps Xi using Algorithm 1, sketched below.

Algorithm 1: geodesic algorithm.

Result: Geodesic path with initial configuration X0 and final configuration X f
using n discretization steps.

1 initialization: X0, Xn = X f , n;
2 for i ← 1 to n do
3 Set Vi = Xi+1 − Xi

4 Set di =
√

g(Vi, Vi)
5 Set ddi = di − di−1
6 end

7 Return f = ∑n−1
i=1 di + k ∑n−1

i=1 dd2
i ;

Then, the objective function is minimized by the R optimizer Solnp, R package version
1.16 [20]. The solver is an indirect solver implementing the augmented Lagrange multiplier
method with an SQP interior algorithm.

4.3. Autoparallel Lines Calculation Algorithm via Shooting

Autoparallel lines do not minimize any distance, and are built directly by means
of the parallel transport rule (41) via shooting. Let Xo ∈ M be the initial configuration
and V ∈ TM be the initial deformation velocity; V can be called shooting vector and the
path X(t) such that X(0) = X0, Ẋ(0) = V, ∇Ẋ Ẋ = 0∀t ∈ [0, 1] is called shooting path of
Xo and V. In order to interpolate between X0 and X1 with an autoparallel line, shooting
should be used iteratively to find a shooting vector V such that a shooting path starting
at X0 and with V as shooting vector reaches X1 in a unit time (see [7]). In the present
work, we are interested in comparing the behaviour of geodesics and autoparallel lines;
thus, we avoid the iterative procedure by limiting ourselves to implementing a single
shooting procedure starting from a configuration Xo and a deformation Vo and then using
Algorithm 2, sketched below.

Algorithm 2: shooting algorithm.

Result: Shooting path with initial position X0 and initial velocity V0 using n
discretization steps.

1 initialization: X0, V0, n;
2 for i ← 1 to n do
3 Set Xi = Xi−1 + Vi−1 /* update configuration */

4 Set Vi = τXi ,Xi−1(Vi−1)/* update velocity via PT */

5 end
6 Return X;

5. Examples

We propose five experiments aimed at finding TPS geodesics and comparing them
with original shapes, shapes inputted in the optimizer, and shapes from geodesic shooting.
For each experiment, eight shapes were generated.
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1. Affine case, spherical: in this simple case, the starting rectangle experiences only a
size increase.

2. Affine case, general: in this case, the rectangle undergoes only a pure affine transfor-
mation.

3. Non-affine case bending: in this case, the rectangle experiences pure bending parame-
terized according to the parameters specified below.

4. Non-affine case bending+size: in this case, the rectangle experiences pure bending
parameterized according to the parameters specified below, with the addition of a
size increase.

5. Non-affine case bending+general affine component: in this case, the rectangle experi-
ences pure bending parameterized according to the parameters specified below, with
the addition of the same parameters of affine transformation as in case 2.

5.1. Dataset

A set of parametric shape paths were generated, starting from a rectangle 1 × 3, by
means of the following formula:⎛⎝x(t)

y(t)

⎞⎠ =

(
F11(t) F12(t)

F21(t) F22(t)

)⎡⎣1 + χ(t) xo

χ(t)

⎛⎝ sin(χ(t) yo)

cos(χ(t) yo)− 1

⎞⎠⎤⎦ . (54)

where F11(t), F22(t), F12(t), F21(t) parametrize the affine transformations and χ(t) is the
amount of bending. Each experiment is articulated in the following steps:

1. A parametric trajectory X(t) is generated by the mean of the (54). In this way, the
initial and final points, X(0) and X(1), are identified.

2. Linear interpolation between X(0) and X(1).
3. The geodesic Y(t), such that Y(0) = X(0) and Y(1) = X(1) are calculated following

the procedure sketched in Section 4.2. The distance, d(X(0), X(1)), and the initial
tangent, Y′(0), are calculated.

4. The autoparallel line Z(t), starting from X(0), is built by shooting Z′(0) = Y′(0) by
means of Direct Transport for a distance of � = d(X(0), X(1)), following the procedure
sketched in Section 4.3.

For all cases, we computed the linear interpolation between the first shape (the un-
deformed rectangle in all cases) and the last shape of any experiment. These linearized
shapes (eight shapes) were the input for the optimizer, imposing as equality constraints the
maintenance of the first and last shapes in order to force the geodesic to pass between these
shapes. Finally, we performed a common Principal Component Analysis (PCA) for each
experiment except for the first (which was trivial in terms of pure shape change), including
all of the four sets of shapes: original, linearized, optimized, and shooted.

In each one of the experiments, we checked:

• The trend of the Γ-energy.
• The trend of the components of the Γ-energy.

5.2. Affine Case: Spherical

A parametric trajectory of eight configurations was generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:
F11(t) = F22(t) ∈ [1, 2]; F12(t) = F21(t) = 0; χ(t) = 0. Figure 2 and Table 1 show the results
for the size-only case. Geodesic searching via optimization satisfactorily recovers both
the size change and the equally spaced Γ-energy steps between consecutive shapes. The
non-affine component of the Γ-energy, db, is of course equal to zero. Optimized geodesics
and shooting quietly coincide. Figure 3 shows scatterplots of Table 1 values.
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(a) (b) (c)

Figure 2. Affine spherical case results. (a) Left panel: geodesic trajectory shapes (black) plotted against
the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes (black) plotted
against the shapes found via linear interpolation between the first and last shapes of the parametric
dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against autoparallel trajectory
(red) built via shooting of the first two configurations of the geodesic.

(a) (b) (c)

Figure 3. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.

Table 1. Values of the energies for the affine spherical case; du represents the affine component of the
Γ-energy, db the non-affine component and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.082 0.000 0.082 0.029 0.000 0.029 0.029 0.000 0.029

0.049 0.000 0.049 0.029 0.000 0.029 0.029 0.000 0.029

0.033 0.000 0.033 0.029 0.000 0.029 0.029 0.000 0.029

0.024 0.000 0.024 0.029 0.000 0.029 0.029 0.000 0.029

0.018 0.000 0.018 0.029 0.000 0.029 0.029 0.000 0.029

0.014 0.000 0.014 0.029 0.000 0.029 0.029 0.000 0.029

0.011 0.000 0.011 0.030 0.000 0.030 0.029 0.000 0.029

5.3. Affine Case: General Case

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [−0.2, 1.2]; F12(t) ∈ [−0.2, 1.2];

F21(t) ∈ [−0.2, 1.2]; F22(t) ∈ [0, 0.6];

χ(t) = 0.

Figure 4 and Table 2 show the results of the general affine-only case. Optimized
geodesics correctly recover the original parameterized deformation, with equally spaced
gamma-energy steps between consecutive shapes and db equal to zero. Figure 5 shows
scatterplots of Table 2 values. Figure 6 shows the first two PCs resulting from PCA per-
formed on all four types of datasets of the general affine case (parameterized, linearized,
optimized geodesic, shooting).
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(a) (b) (c)

Figure 4. Affine general case results. (a) Left panel: geodesic trajectory shapes (black) plotted against
the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes (black) plotted
against the shapes found via linear interpolation between the first and last shapes of the parametric
dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against autoparallel trajectory
(red) built via shooting of the first two configurations of the geodesic.

(a) (b) (c)

Figure 5. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 6. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the
general affine case. PC1 explains 97.2% of total variance, while PC2 explains 2.66%. Black refers to the
optimized shapes, red to the linearized, green to the original shapes, and cyan to the shooted shapes.

Table 2. Values of the energies for the affine general case; du represents the affine component of the
Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.020 0.000 0.020 0.010 0.000 0.010 0.010 0.000 0.010

0.015 0.000 0.015 0.010 0.000 0.010 0.010 0.000 0.010

0.011 0.000 0.011 0.010 0.000 0.010 0.010 0.000 0.010

0.009 0.000 0.009 0.010 0.000 0.010 0.010 0.000 0.010

0.007 0.000 0.007 0.010 0.000 0.010 0.010 0.000 0.010

0.006 0.000 0.006 0.010 0.000 0.010 0.010 0.000 0.010

0.005 0.000 0.005 0.010 0.000 0.010 0.010 0.000 0.010
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5.4. Non Affine Case: Bending

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) = 0; F12(t) = 0;

F21(t) = 0; F22(t) = 0;

χ(t) ∈ [0, 1.5].

The results of the general non-affine case are shown in Figures 7–9 and Table 3. This
simulation is particularly challenging due to the particular non-affine transformation expe-
rienced by the rectangle. Despite this, the geodesic optimization finds shapes characterized
by approximately equally spaced steps in terms of both gamma energy and its two com-
ponents, du and db. The PCA scatterplot in Figure 9 shows coherent behaviour for all
datasets except, as expected, for the linearized shapes.
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Figure 7. Non-affine case bending-only results. (a) Left panel: geodesic trajectory shapes (black)
plotted against the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes
(black) plotted against the shapes found via linear interpolation between the first and last shapes
of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against
autoparallel trajectory (red) built via shooting of the first two configurations of the geodesic.

(a) (b) (c)

Figure 8. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.

Figure 9. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the pure
bending case. PC1 explains 91.11% of total variance, while PC2 explains 6.50%. Black refers to the
optimized shapes, red to the linearized, green to the original shapes and cyan to the shooted shapes.
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Table 3. Values of the energies for the non-affine case of bending: du represents the affine component
of the Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.033 0.042 0.075 0.005 0.072 0.077 0.005 0.106 0.111

0.034 0.070 0.104 0.003 0.072 0.075 0.005 0.106 0.111

0.033 0.215 0.248 0.002 0.071 0.073 0.005 0.107 0.112

0.001 0.084 0.085 0.001 0.068 0.069 0.005 0.110 0.115

0.006 0.084 0.090 0.001 0.062 0.063 0.005 0.114 0.119

0.020 0.195 0.214 0.002 0.059 0.061 0.005 0.115 0.120

0.008 0.129 0.137 0.003 0.061 0.064 0.005 0.114 0.119

5.5. Non-Affine Case: Bending and Scaling

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [1, 2]; F12(t) = 0;

F21(t) = 0; F22(t) ∈ [1, 2];

χ(t) ∈ [0, 1.5].

Adding a significant size change to the previous experiment led to the results shown
in Figures 10–12 and Table 4. The equal spacing of the Γ-energy of the optimized geodesics
is rather acceptable, while its behaviour in the PCA space behaves more coherently than
that of the parametrized or shooted shapes.

(a) (b) (c)

Figure 10. Non-affine case bending+size results. (a) Left panel: geodesic trajectory shapes (black)
plotted against the original parametric shapes (red). (b) Center panel: geodesic trajectory shapes
(black) plotted against the shapes found via linear interpolation between the first and last shapes
of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes (black) plotted against
autoparallel trajectory (red) built via shooting of the first two configurations of the geodesic.

(a) (b) (c)

Figure 11. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 12. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from
the bending+size case. PC1 explains 79.36% of total variance, while PC2 explains 17.54%. Black
refers to the optimized shapes, red to the linearized, green to the original shapes and cyan to the
shooted shapes.

Table 4. Values of the energies for the non-affine case of bending and scaling; du represents the affine
component of the Γ-energy, db the non-affine component, and dtot the total Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.060 0.37 0.431 0.017 0.120 0.137 0.017 0.150 0.167

0.003 0.41 0.412 0.003 0.128 0.131 0.017 0.150 0.167

0.147 0.42 0.571 0.007 0.115 0.122 0.017 0.150 0.168

0.028 0.04 0.073 0.021 0.101 0.122 0.017 0.159 0.177

0.021 0.03 0.056 0.029 0.087 0.116 0.017 0.155 0.172

0.036 0.07 0.104 0.025 0.091 0.115 0.017 0.176 0.193

0.012 0.03 0.040 0.044 0.065 0.110 0.017 0.175 0.193

5.6. Non-Affine Case: Bending and General Affine Component

A parametric trajectory of eight configurations is generated by applying (54) to the
initial rectangular shape by selecting eight values of the parameters in the following ranges:

F11(t) ∈ [−0.2, 1.2]; F12(t) ∈ [−0.2, 1.2];

F21(t) ∈ [−0.2, 1.2]; F22(t) ∈ [0, 0.6];

χ(t) ∈ [0, 1.5].

The last experiment is represented by a combination of non-affine and affine com-
ponents. Results relative to this deformation are shown in Figures 13–15 and Table 5.
Optimized geodesics struggle to find proper shape at fourth and fifth step of the deforma-
tion series; in the end, however, the final series results behave consistently in terms of both
equal gamma energy spacing and general morphology.
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Table 5. Values of the energies for the non-affine case of bending and general affine deformation;
du represents the affine component of the Γ-energy, db the non-affine component, and dtot the total
Γ-energy.

LINEAR GEODESIC A-PARALLEL

du db dtot du db dtot du db dtot

0.037 0.196 0.233 0.004 0.096 0.100 0.004 0.110 0.114

0.017 0.453 0.470 0.005 0.097 0.101 0.004 0.110 0.114

0.039 0.689 0.729 0.005 0.100 0.104 0.004 0.113 0.117

0.010 0.158 0.168 0.001 0.108 0.110 0.004 0.120 0.123

0.012 0.152 0.164 0.013 0.101 0.114 0.004 0.114 0.117

0.025 0.289 0.315 0.028 0.089 0.117 0.004 0.115 0.119

0.009 0.124 0.132 0.017 0.103 0.120 0.004 0.128 0.132

(a) (b) (c)

Figure 13. Non-affine case, bending+general affine component, results. (a) Left panel: geodesic
trajectory shapes (black) plotted against the original parametric shapes (red). (b) Center panel:
geodesic trajectory shapes (black) plotted against the shapes found via linear interpolation between
the first and last shapes of the parametric dataset (red). (c) Right panel: geodesic trajectory shapes
(black) plotted against autoparallel trajectory (red) built via shooting of the first two configurations of
the geodesic.

(a) (b) (c)

Figure 14. Trend of the energies for different interpolations: (a) Left: linear interpolation (b) Center:
geodesics interpolation. (c) Right: autoparallel interpolation. Blue refers to du, red to db, grey to dtot.
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Figure 15. PC1-PC2 scatterplot of the PCA perfomed on the four set of shapes resulting from the
bending+general affine component case. PC1 explains 62.61% of total variance, while PC2 explains
25.48%. Black refers to the optimized shapes, red to the linearized, green to the original shapes and
cyan to the shooted shapes.

6. Discussion

The set of performed numerical analyses, together with the analytical results of
Section 4.1, showed that: The TPS geodesics are able to catch important qualitative be-
haviours of the parametric deformations. In particular, in each example the horizontal sides
of the initial rectangle remain straight for the whole path while the vertical sides bends,
exactly as happens in the parametric path. For affine deformations, TPS geodesics coincide
with TPS autoparallel lines and both coincide with the LC geodesics of the group GL(m).
For non-affine deformations TPS geodesics and TPS autoparallel lines do not coincide.
In particular, the autoparallel lines are not very similar, expecially in the last steps, to
the parametric path. This was expected for the procedure of shooting used here. On the
other hand, certain qualitative behaviours are lost, as was expected. TPS Autoparallel
lines conserve the percentage of affine and non-affine energies, while this does not hap-
pen in optimized geodesic. Future directions of the present work will involve the use
of 3D data. This will certainly depend on the possibility of its being independent of the
body-bending energy matrix computation. Three-dimensional data offer many practical
applications, spanning a wide range of scientific disciplines such as cardiology [11,12],
vertebrate paleontology [21,22], and paleoanthropology.
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Abstract: The target detection ability of an infrared small target detection (ISTD) system is advan-
tageous in many applications. The highly varied nature of the background image and small target
characteristics make the detection process extremely difficult. To address this issue, this study pro-
poses an infrared patch model system using non-convex (IPNCWNNM) weighted nuclear norm
minimization (WNNM) and robust principal component analysis (RPCA). As observed in the most
advanced methods of infrared patch images (IPI), the edges, sometimes in a crowded background,
can be detected as targets due to the extreme shrinking of singular values (SV). Therefore, a non-
convex WNNM and RPCA have been utilized in this paper, where varying weights are assigned to
the SV rather than the same weights for all SV in the existing nuclear norm minimization (NNM) of
IPI-based methods. The alternate direction method of multiplier (ADMM) is also employed in the
mathematical evaluation of the proposed work. The observed evaluations demonstrated that in terms
of background suppression and target detection proficiency, the suggested technique performed
better than the cited baseline methods.

Keywords: infrared search (IRST) and track system; RPCA; NNM; IPI; signal to clutter ratio (SCR);
SCR gain (SCRG)

MSC: 65D18

1. Introduction

The various target detection applications that exist today are early warning, infrared
search and tracking systems (IRST), and medical imaging; all rely heavily on the capa-
bility of ISTD. Due to the poor SCR, it is challenging to compute imaging distance, size,
and texture [1–3]. Many researchers have performed exceptionally well in the past. So far,
algorithms have been in two categories: sequential and single-frame detection [4]. The first
category makes use of both spatial and temporal information, which is not easily available
in real-time applications, and therefore, performance is lacking for methods based on such
approaches. On the other hand, the detection algorithm must be extremely fast and accurate
in locating the target.

As a result, the single-frame detection approach plays an important role and is heavily
used. The motivation for the proposed approach is the existence of weakness in the existing
IPI models. Although the infrared patch-image (IPI) model has proven successful in target
background separation due to a quality that allows it to fit with reality, its performance
is due to the effectiveness of patch-image dimensionality. The sparsity measure owing to
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the l1-norm, on the other hand, shows less responsiveness in the case of a highly complex
background with sharp edges than in the case of a smooth background. As a result, these
strong edges may be sparse under l1-norm reduction, implying that the strong edges
may appear as targets under the constant global threshold of the IPI model, potentially
increasing the false alarm rate. The existing IPI model has a low number of patches with
strong edges, and thus, the strong edges could be viewed as an outlier. This is because
nuclear NNM shrinks all SV by applying the same threshold and treats them equally.
Furthermore, large SVs in a patch image convey more information than small SVs. Hence,
we should punish the larger SVs less than the smaller SVs.

WNNM, on the other hand, gives different weights to SV according to importance
to retain large SVs, which provide more edge information. In this work, the WNNM
has been used in place of the NNM in the existing IPI model to constrain the complex
background patch image (BPI) due to l1 norm minimization. The proposed model presented
is addressed using the ADMM approach.

This study makes the following contributions:

� The infrared patch-image model via IPINCNWNNM–RPCA was proposed and was
solved by the ADMM method.

� Extensive simulation was carried out that shows that the proposed scheme not only
has good detection capabilities but also has good background estimation capabilities.

The structure of the remaining work is as follows: the materials and the procedures are
presented in Section 2. In Section 3, the suggested IPNCWNNM–RPCA model is discussed
in detail. The experimental evaluation and their interpretation are presented in Section 4,
and the study closes in Section 5.

2. Materials and Methods

In the single-frame detection approach, several methods have been presented in the
past: background perception, object saliency recognition, pattern classification, and IPI.
A detailed summary of these critical methods is presented in Table 1 with their advantages
and disadvantages.

2.1. Methods Based on Background Assumptions

This group of algorithms assumes that the background transition is slow and that the
local region’s pixel correlation is fairly strong. These methods are very simple and easy
to execute. The two-dimensional least (TDLMS) mean square [5], max–median, and max–
mean [6] algorithms fall into this category, but these are not efficient in dense clouds.
Improved approaches such as the edge-directed TDLMS filter [7] have been developed.

TDLMS based on neighborhood analysis [8] and an edge component-based bilateral
filter [9] that predicts edge direction and maintains edges have shown better results. Top-
hat filter and toggle-contrast filter [10,11], both based on morphological processes, suffer
from the same issue discussed above.

2.2. Methods Based on Object Saliency Identification

These approaches use the difference of Gaussian presented by Wang et al. [12] to
compute the saliency map. The weighted local coefficient of variation (WLCV) was pre-
sented by Rao et al. [13]. Chen et al. [3] presented a local contrast measure (LCM) that
computes the saliency map. The improved version (ILCM) was proposed by Han et al. [14].
This category includes methods that consider the target more critical than the background.
In addition, these methods are based on human visual phenomena. The work proposed
in [15,16] uses the Laplacian of Gaussian (LOG) in target detection. The work proposed
in [12] uses difference of Gaussian (DOG) for the saliency map calculation, and in another
work, Han et al. [14] proposed the upgraded DOG filter to compute the saliency map. More
work is available in the literature that fits this category [17,18].

206



Mathematics 2022, 10, 2829

2.3. Pattern Classification Based Methods

The approaches under this class are binary classification methods where the back-
ground and the targets are separated based on the patch information. These methods are
inspired by the work of M. Turk and A. Pentland [19] and J. Write at al. [20] and founded
on the principle of face recognition using PCA. The leading methods for projection are
PCA [21], probabilistic PCA [22], nonlinear PCA [23], and sparse [24,25] representation.
From the vast background, Wang et al. [25] constructed a method. The target and the
background patch were separated using an adaptive weight in [26]. One distinct problem
with these methods is the need for dictionary samples, which take a long time to process,
and they also need a large dataset to perform.

2.4. Patch Image-Based Methods

The motivation for this class is the work in BM3D [27] and BM4D [28]. The method of
this category creates dataset patches. The first study in this approach for target background
separation was by Gao et al. [1]. By applying this technique, low-rank and sparse matrices
were recovered by turning the IPI model into an optimization problem. This technique has
the benefit of not requiring the usage of substantial dictionary samples.

Although the IPI model produces positive results, it has a serious problem with the
l1-norm sparsity minimization, which involves a trade-off between reducing the dim target
and maintaining the strong edges of the image. Y. He et al. [29,30] conducted two other
works based on the low-rank and sparse representations paradigm. Dai et al. [31] developed
a new non-negative IPI model that estimates the background correctly and precisely while
preserving. Similar work was proposed by Rawat et al. in [32], and Dai et al. [33,34] pro-
posed an approach in which the prior structural knowledge is embedded in the background
image. This approach leads to the complexity of calculation and has the rank computation
issue. To tackle this, Gao et al. [35] suggested reweighted IPI (ReWIPI), which is based
on the work in [36] to confine the BPI while keeping the background edge information.
However, due to insufficient weight adjustment, this may give inaccurate SVD estimates.

In [37], a suggestion was made to add inherent smoothness to the BPI using TV regu-
larization, and principal component pursuit (TV–PCP) and non-convex rank approximation
minimization [38–40] are some recent breakthroughs in IPI-based techniques. Small target
recognition is exceedingly difficult due to the object’s small size. Current IPI tactics, on the
other hand, have performed nicely; however, some issues need to be addressed.

Table 1. Details of the key state-of-the-art target detection methods.

References
Publication
Year

Method Name Advantages Disadvantages

Methods based on Background spatial consistency

M.M. Hadhoud and
D.W. Thomas [5] 1998 TDLMS

This method is very simple to use
for purposes like reducing noise
and improving the object of interest.

In a noisy environment,
it fails to perform.

S.D. Deshpande et al. [6] 1999 Max–median and
max–mean

These methods are very simple to
use for purposes like reducing
noise and improving the object
of interest.

In addition to the
targets, these methods
also enhance the
strong cloud.

T.-W. Bae et al. [7] 2012 TDLMS
edge-directional filter

Applies filtering to preserve the
edges by estimating the direction.

In a noisy environment,
it fails to perform.

Y. Cao et al. [8] 2008
Neighborhood-based
analysis of
TDLMS filter

The process computes the edge
direction and preserves the edge
based on neighbor information.

In a noisy environment,
it fails to perform.

T.-W. Bae & K.-I.
Sohng [9] 2010

Bilateral filter
according to edge
component

The process estimates the edge
information based on
bilateral filters.

In a noisy environment,
it fails to perform.
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Table 1. Cont.

References
Publication
Year

Method Name Advantages Disadvantages

R. Fortin and J. Rivest
M. Zeng et al.,
X. Bai et al.
[10,11,41,42]

1996, 2006,
2012, 2010

Morphological-based
methods, top-hat filter,
and toggle contrast

These methods are very simple
to use.

It is necessary to have a
well-designed filter that
can meet the
desired qualities.

Methods based on Target saliency

Kim et al. [15] and
Shao et al. [16] 2012 LOG

The primary purposes of these
methods are to reduce noise and
improve the object of interest.

Does not work well
with very small or
insignificant objects.

Wang et al. [12] 2012 Difference of Gaussian Improves the target intensity and
suppresses the clutter.

Does not work well
with very small or
insignificant objects.

Han et al. [14] 2016 Gabor filter Improves the target intensity and
suppresses the clutter.

Does not work well
with very small or
insignificant objects.

Chen et al. [3] 2014 LCM Utilizes the local
contrast information.

Does not work well
with very small or
insignificant objects.

Rao et al. [13] 2021 WLCV Utilizes the weighted saliency
map information.

Does not work well
with very small or
insignificant objects.

Yu et al. [17] 2022 Multiscale local
contrast learning

Utilizes the local
contrast information.

Does not work well
with very small or
insignificant objects.

Y. Wei et al. [18] 2016 MPCM
Utilizes the multi-patch
information and the local
contrast information.

Does not work well
with very small or
insignificant objects.

Small Target detection using patch-level

T. Hu et. al. [21],
Y. Cao, [22],
Liu et al. [23]
C., Z.-Z. Li et al. and
Wang et al. [24,25]

2010, 2008,
2005, 2012,
2014, 2015

PPCA, NLPCA, KPCA,
(SR), and sea-sky
background dictionary

Perform well when it comes to
targeting background
classification under noise.

The downsides of these
systems include that
each overlapped patch
must be projected into
a dictionary and that
reconstructing the
object of interest is a
time-consuming process.

Small Target detection using patch-image level

Gao et al. [1],
Rawat et al. [31–34]
Gao et. [35,37–39]

2013, 2022,
2017, 2017,
2017, 2017,
2017, 2019,

IPI, TV-PSMSV, NIPPS,
ReWIPI), RIPT, TV-PCP,
NRAM, PSTN

In a complex clutter scene, these
approaches display significant
target- background suppression.

Compositionality is
high in this case.
Second, the l1
norm-based approach
is used.

3. The Proposed Method

A single-frame image can be modeled in the following way:

fD(a, b) = fT(a, b) + fB(a, b) + fN(a, b) (1)

where fD(a, b)—real image, fB(a, b)—background image, fT(a, b)—target image, fN(a, b)—
noise image, and (a, b)—location of pixels coordinates in the taken image. The performance
of RPCA in separating the background and the target image [43] motivated Gao et al. [1] to
design an IPI model. The RPCA technique is used to reformulate target and background
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separation into an optimization problem by dividing the background into a low-rank
matrix and the target into a sparse matrix. The sparse target image patch matrix T and the
low-rank BPI matrix B are the two matrices that make up the patch-image matrix D in the
IPI model. These matrices are then separated using RPCA as follows:

min
B,T

‖B‖∗ + λ‖T‖1, s.t D = B + T (2)

where, ‖.‖∗ is the matrix’s nuclear norm, which is calculated by adding SV, and ‖.‖1 is the
l1-norm, which is defined by ‖X‖1 = ∑ij

∣∣Xij
∣∣. A method known as accelerated proximal

gradient [20] can be used to solve the convex optimization issue described in [1].
Although the IPI model has proven successful in target background separation due to

a quality that allows it to fit with reality, its performance is due to the effectiveness of patch-
image dimensionality. The sparsity measure owing to the l1-norm, on the other hand, shows
less responsiveness in the case of a highly complex background with sharp edges than in
the case of a smooth background. As a result, these strong edges may be sparse under
l1-norm reduction, implying that the strong edges may appear as targets under the constant
global threshold of the IPI model, potentially increasing the false alarm rate. We know that
the IPI model has a low number of patches with strong edges, and thus, strong edges could
be viewed as an outlier, which is a goal. This is because NNM shrinks all singleton values
with the same threshold and treats them all equally. Furthermore, large single values in
a patch image convey more information than tiny SVs; hence we should punish larger
SVs less than small SVs. As previously stated in section two, WNNM is utilized in place
of NNM, which assigns various weights to different SVs in order to retain the large SVs,
which provide more edge information. As mentioned in Equation (1), the infrared image
in the patch domain can be modeled as a linear combination of background and the target
image patch as given below; for simplicity, we are neglecting the noise component:

D = B + T (3)

3.1. Background Patch-Image

Figure 1a, where the SVs of all BPIs trend towards zero, illustrates the BPI’s strong
association with both local and nonlocal patches, as was already indicated. The BPI
is created using the nuclear norm. However, because the nuclear norm handles all SV
identically, it is not always viable to anticipate the background patch picture using it.
As a result, they shrink at the same rate, and high SVs, which contain more information,
are penalized more severely than small SVs. As a result, instead of using the nuclear norm
to assign weights to all the SV, we used the weighted SV threshold procedure to obtain the
best background patch image.

(a) 

(b) 

Figure 1. Characteristics of the background patch images with a low rank: (a) four different representa-
tional background images and (b) singular value distribution of corresponding background images.
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Background matrix B’s weighted nuclear norm is defined as:

‖B‖w,∗ = ∑
i

wiσi(B) (4)

where w = [w1 . . . . . . . . . wn]
T is a weight that is allocated to i, and wi ≥ 0 is a nonnegative

weight that is assigned to σi(B).

3.2. Small Target Patch-Image

The target size changes from 2 × 2 to 9 × 9, and its brightness is not fixed as it is with
infrared photographs. Because the target is tiny in relation to the total image, we may think
of the target patch image as a sparse matrix. The l1 norm can be used as ‖T‖1 and here
‖T‖1 = ∑ij

∣∣Tij
∣∣.

3.3. Background Separation Solution for Small Target

The proposed IPI model employing weighted nuclear norm minimization via resilient
principal component analysis can be offered as a result of reformulating Equation (2):

min
B,T

‖B‖w,∗ + λ‖T‖1, s.t D = B + T (5)

where λ is the parameter for weighting. ADMM is used to solve Equation (6), and its
augmented Lagrange function is as follows:

L(B, T, Y,μ) = ‖B‖w,∗ + λ‖T‖1 + tr
[
YT(D − B − T)

]
+

μ

2
‖D − B − T‖2

F (6)

Here, Y is the Lagrange multiplier, μ is the scalar quantity, and tr[.] is the trace
operator. We can minimize L with respect to B and T using the inexact augmented Lagrange
multiplier (IALM):

Bk+1 = arg minL(Bk

B
, Tk, Yk,μk) (7)

= arg min‖B‖w,∗+
B

μ

2
‖D + μk

−1Yk − Tk+1 − B‖2
F

Tk+1 = arg minL(Bk+1

T
, T, Yk,μk) (8)

= arg min λ‖T‖1+
T

μ

2
‖D + μk

−1Yk − Bk − T‖2
F

Yk+1 = Yk + μk

(
D − Bk+1 − Tk+1

)
(9)

The WNNM here can be addressed using the weighed nuclear norm proximal (WNNP)
operator by changing it into a quadratic programming form with linear constraints:⎧⎨⎩ X̂ = prox‖.‖w,∗ (Y)

= arg min‖Y − X‖2
F

T
+ ‖X‖w,∗ (10)

Theorem 1. As Y ∈ RmXn without loss of generality, assume that m$ n, and let Y = UΣVT is

the evaluated SVD of Y, here Σ =

(
diag(σ1, σ2, σ3 . . . . . . σn)

0

)
∈ RmXn. The global optimum of

WNMP problem (11) can be expressed as X̂ = UD̂VT where D =
(

diag(d1, d2, d3 . . . . . . dn)
0

)
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is a diagonal non-negetive matrix and (d1, d2, d3 . . . . . . dn) is the ultimate answer to the convex
optimization problem in Equation (11):

min
d1, d2, d3, . . . . . . dn

n
∑

i=1
(σi − di)

2 + widi,

s.t d1 ≥ d2 ≥ . . . . . . dn ≥ 0
(11)

The closed-form optimum solution of WNNP can be obtained by weighted singular
value threshold operation:

proxλ‖.‖w,∗ = D(Y) = US w
2
(Σ)VT (12)

where Y = UΣVT is the evaluated SVD of Y, S w
2

(Σ) is the soft threshold operator, and w is a
weight vector.

S w
2
(Σ) = S(Y) = max

(
Σii − wi

2
, 0

)
(13)

Bk+1 = Dμk
−1

(
D − Tk+1 + μk

−1Yk
)

(14)

Tk+1 = Sμk
−1

(
D − Bk + μk

−1Yk
)

(15)

Theorem 2. The sequences
{

Xk
}

and
{

Ek
}

created by the algorithm below should satisfy the
following conditions if the weights are arranged in increasing order:

(1) lim
n→∞

‖ Xk+1 − Xk‖2
F = 0

(2) lim
n→∞

‖ Ek+1 − Ek‖2
F = 0

(3) lim
n→∞

‖Y − Ek+1 − Xk+1‖2
F = 0

where min
X,E

‖X‖∗ + λ‖E‖1,

s.t Y = X + E
(16)

The symbol in the algorithm ‖.‖2 represents spectrum norm, vec(.) represents the
vector operator of the matrix, and ‖.‖in f is the infinite norm of a vector.

In this work, we have utilized a reweighting approach as given below and utilized in
the algorithm to improve the sparseness:

wi
l =

C
σi(Xl) + θ

(17)

Here, C represents a positive regularization parameter and θ represents a small positive
to take care of the dividing by zero problem.

σi(X∗) =
{

0 i f c2 < 0
c1+

√
c2

2
i f c2 $ 0

Where X∗ = UΣVT
(18)

3.4. Separation Model for Target-Background Model

Figure 2 above depicts the target-background division paradigm in its entirety. The en-
tire procedure can be summarized as follows:
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Figure 2. The proposed IPNCWNNM–RPCA model’s process.

3.4.1. Creation of the Patch-Image Form Input

This is the initial phase, when an infrared patch image called D is created using the
original image fD from the image sequence. A sliding window moves from left to right
first and then moves down from top to bottom to create the patch images.

3.4.2. Target-Background Separation

In the second phase, the input patch image is processed using Algorithm 1 to fragment
it into two matrices, first B and then T.

3.4.3. Regeneration of the Target and Background Images

In the third phase, the proposed method reconstructs fT , and fB from the target patch
images and the background. The whole process can be accomplished using the technique
outlined in [1].

3.4.4. Segmentation Process

Now the final touch is initiated where some final processing to enhance the quality of
target image is performed to run the adaptive thresholding scheme as described in [1].

The adaptive threshold evaluation is performed using Equation (19):

tup = max
(

vmin, fT + kσ
)

(19)

where fT , σ represents the average and the standard deviation of fT , and k, respectively,
and vmin denotes the constant, which is taken as an empirical value. If fT(x, y) > tup, then
pixels are part of the target image; otherwise, they are the part of the background image.
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Algorithm 1 Solving IPNWNNM-RPCA via ADMM

Input: Real patch image D, weighting parameter λ, w.

Output:
(

Bk, Tk)

Initialize: B0 = T0 = 0, Y0 = D
max(‖D‖2, M‖ vec(D)‖in f )

,

ρ = 1.05, ε = 10−7, k = 0, θ > 0,μ0 = 1
‖D‖2

,μmax = 107;

While (not converged) do

1. Correct the other and Change the B by

Bk+1 = Dμk
−1

(
D−Tk+1 + μk

−1Yk
)

;

2. Correct the other and Change the T by

Tk+1 = Sμk
−1

(
D − Bk + μk

−1Yk
)

;

3. Correct the other and Change the Y by

Yk + μk

(
D − Bk+1 − Tk+1

)
;

4. Update by μ

μk+1 = ρ ∗ μk;

5. Check convergence condition

‖D−Bk+1−Tk+1‖2
F

‖D‖F
< ε

6. Update k

k++;
end

4. Experimental Result Analysis

This section presents a detailed experimental evaluation of the IPNCWNNM–RPCA
model and finally compares its performance with that of the referenced state-of-art methods.

4.1. Parameter Settings, Baseline Methods, and Evaluation Indicators Metrics

We analyzed real infrared single images and sequences with a range of backgrounds,
including water, sky, cloud, and land, using the proposed IPNCWNNM–RPCA model as
well as six additional cutting-edge techniques. Additionally, the approach described in [1]
is used to make the synthetic images.

Figure 3 shows representative images from the image sequences, whereas Table 2
provides a detailed description of these images. Table 3 gives the detailed parameters for
several baseline approaches. The ADMM is used to solve all of the infrared patch-based
approaches. All of the algorithms were developed in MATLAB 2015-a on a computer with
a 2.4 GHz processor and 8-GB of RAM.

 

Figure 3. (a–f) are the six real infrared image sequences.
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Table 2. Summary of the real image sequence data.

Sequences Target Type Image Size No of Frames Background Image Features Target Image Features

1 Small ship 256 × 200 30 Dense sea-sky

• Small size (SS)
• Varying size
• Large imaging

distance (LID)

2 An airplane 256 × 200 250
High dense clouds with less
local contrast

• Small size
• Varying size
• LID

3 Two target 256 × 200 250 Changing background

• LID
• SS
• Low SCR

4 Copter 128 × 128 100 Changing background

• LID
• Low SCR
• SS

5 Ship 128 × 128 200 Changing background
• SS
• A one-to-two target

6 An airplane 280 × 228 250
High dense clouds with less
local contrast

• LID
• SS

Table 3. Summary of the different parameters used in the evaluations.

Sr. No. Techniques Parameters

1 Max–median [6] Filter = 5 × 5

2 Max–mean [6] Filter = 5 × 5

3 IPI [1] Sliding step = 10, tolerance error ε = 10−7, Patch size = 50 × 50, λ = 1√
m

4 NIPPS [31] Sliding step = 10, Patch size = 50 × 50,
r = 10−3, L = 2, ε = 10−7, λ = L√

min(m,n)
, ρ = 1.5

5 Top-Hat [11] Filter shape = square, square size = 3 × 3

6 RPCA [26] sliding step = 10, Patch size = 50 × 50, ε = 10−7, λ = 1√
m

7 RIPT [35] λ = L√
min(m,n)

, Patch size = 50 × 50, L = 1, h = 1, ε = 10−7, sliding step = 10

8 PSTN [39]
λ = L√

(max(n1,n2)∗n3)
, Patch size = 40 × 40, L = 0.6, ρ = 1.05,

sliding step = 40, ε = 10−7

9
Infra small target detection based
on nonconvex LP norm
minimization (IPCWLP–RPCA [41]

tolerance error ε = 10−7, C =
√

m, θ = 0.005, ρ = 1.05,
Patch size is 50 × 50, λ = 1√

m , sliding step is 10

10 Our Method
λ = 1√

m , Patch size = 50 × 50, C =
√

m, sliding step = 10, ε = 10−7,
θ = 0.005, ρ = 1.05

4.2. Evaluation Indicators

This section describes how the background of an image can be suppressed as well as
the target in an image can be improved. The suggested method’s performance is validated
using two standards, namely, SCRG and BSF. These indicators are described in depth in [44]
and can be stated as follows:

BSF =
Cin
Cout

, SCRG =
(S/C)out
(S/C)in

(20)
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where S and C denote the signal amplitude and clutter standard deviation (SD) and in and
out in the formula denote the input original image and output target image, respectively.
Before and after the image is analyzed, SCRG reports the signal’s amplification result.
When no information about the target is available, BSF assigns a level of suppression. As
a result, it is expected that both indicators will have a high value in order to improve
efficiency. The response of various methods can be validated using a metric known as ROC.
The changing connection between the likelihood of target detection Pd and the false alarm
rate Pf is shown by this curve [45], and it may be put this way:{

Pf =
Number of false alarms

Total count of pixels in the complete image

Pd =
Count of detected pixels

Count of original target pixels
(21)

As illustrated in Figure 4, all of the aforementioned indicators are computed in a small
local region. If a tiny target’s size is a × b, the background rectangle’s size is (a + 2d) × (b + 2d),
where d is a constant equal to 20 pixels.

 

Figure 4. The infrared target and local background area.

4.3. Results of Experiments on Single Infrared Images

In the outcome analysis, we used a dataset containing more than 1500 single infrared
images with different backgrounds. Each image has a maximum of two targets, and we used
them to demonstrate the background suppression capabilities of different approaches in
different background environments. Figure 5a–e show representative images and findings
from different perspectives. When the background image is smooth, as in the images
shown in Figure 5b–d, the max–mean, max–median, and top-hat approaches can identify
the target. However, they fail to enhance the target when the background is complex,
as seen in Figure 5e. In addition, the top-hat approach relies on good filter selection to
properly detect the target; otherwise, it will fail. Similarly, baseline approaches such as
IPI as shown in Figure 5e identify the target pretty effectively. However, when there is
much clutter in the background, the methods fall short because they overshrink the image,
causing the non-target element to be recognized instead of the genuine target.
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Figure 5. The target detection performances of the various methods on the image sequences presented
in rows (a–e): (a) real image sequences; (b) max–mean; (c) max–median; (d) top-hat; (e) IPI.

The RPCA method as shown in Figure 6a is capable of detecting the target. However,
its performance is hampered by the global threshold-holding parameter. NIPPS shown in
Figure 6b outperforms other baseline approaces in terms of compassion. However, it suffers
in a complicated background because the rank of the patch image matrix must be predicted
accurately. Although RIPT and NRAM, shown in Figure 6c,d, performed very well, these
methods fail to perform well in the presence of heavy noise. Moreover, these methods
suffer from a matrix rank issue.

 

Figure 6. The target detection performance of the various methods on the image sequences presented
in rows (a–e): (a) RPCA; (b) NIPPS; (c) RIPT; (d) IPCWLP–RPCA; (e) our method.

The suggested IPNCWNNM–RPCA technique as presented in Figure 6e smooths the
clutter background by employing weighted nuclear norm singular value minimization,
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in which each singular value is given a variable weight, and highly informative SVs are
shrunk less while less informative single values are shrunk more.

As a result of our method, strong edges such as corners and buildings may be predicted
with ease, and the true candidate target can be identified quickly. The receiver operating
curves (ROC) for the dataset’s single infrared image are presented in Figure 7a–f, indicating
that our method has a better response when compared with other referenced methods.

Figure 7. (a–f) are the Receiver operating characteristic curves (ROCs) for the six image sequences
from Figure 5a.

In comparison with the other methods, the proposed IPNCWNNM–RPCA has im-
pressive background suppression and target identification capabilities. The highest BSF
and SCRG are in bold in Table 4, and the second highest values are in blue. Because time is
such an essential component for any technique, IPNCWNNM–RPCA is slower than the
other IPI-based methods. This is because a significant amount of time is spent creating
patch images and reshaping them. The computing times for each approach are indicated in
Table 5. Nonetheless, we will work to reduce this time constraint in the future.

Table 4. BSF and the SCRG values obtained using the various approaches for each of the test images
in Figure 4a. The best outcomes are indicated in bold.

Detection Methods
Evaluation
Indicators

Image6 Image5 Image4 Image3 Image2 Image1

Max–Median
BSF 1.914 1.861 3.816 1.934 3.404 1.354

SCRG 1.863 3.117 51.109 16.001 6.358 5.881

Top Hat
BSF 0.528 0.923 2.354 0.882 1.573 1.104

SCRG 2.938 3.081 53.302 9.440 4.024 6.546

Max–Mean
BSF 1.521 1.167 3.249 1.714 1.795 1.185

SCRG 6.640 2.117 36.456 10.211 2.532 4.460

RPCA
BSF 0.952 0.494 6.468 7.443 0.681 0.489

SCRG 2.274 0.683 76.236 73.628 0.279 3.166

IPI
BSF 22.280 29.862 13.778 8.799 13.565 3.219

SCRG 115.118 125.505 263.310 113.135 34.854 0.013
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Table 4. Cont.

Detection Methods
Evaluation
Indicators

Image6 Image5 Image4 Image3 Image2 Image1

NIPPS
BSF 36.604 7.413 6.726 3.898 39.983 3.955

SCRG 182.053 30.018 168.042 55.151 80.137 15.629

RIPT
BSF 13.638 26.180 10.155 10.340 5.210 4.734

SCRG 71.826 107.088 196.948 87.306 16.036 18.458

IPCWLP—RPCA
BSF 1.60 2.55 1.37 3.23 1.40 1.29

SCRG 9.31 96.89 115.04 74.74 7.69 188.50

IPNCWNNM–RPCA
BSF 40.290 101.232 3.226 15.132 2.551 1.600

SCRG 194.540 14.860 74.835 125.127 106.124 21.213

Table 5. Comparative analysis of the costs and time involved in the computations.

Detection
Methods

Top Hat Max–Mean Max–Median I PI RPCA NIPPS RIPT NRAM PSTN IPCWLP-RPCA
IPNCWNNM–

RPCA

Complexity O (k2log k2M × N) O (k2M × N) O (k2M × N) O (m × n2) O (m × n2) O (m × n2) O (m × n2) O (m × n2)

O(d1 d2d3
(d1 d2

+d2 d2 +
d1 d2))

O (k × m × n2) O (m × n2)

Time (s) 0.968 7.70 6.84 12.64 10.86 5.15 1.95 3.89 0.35 11.78 10.52

4.4. Computational Complexity

The computational cost of running sequence No. 2 in Figure 5a is given in Table 5.
The computing costs for the top-hat approach with a structuring size of k2 and an image
size of M × N is (k2log k2MN), and the max–mean and median are provided as M × N × k2,
respectively. We can observe that the SVD operations in the algorithm require a significant
amount of time in all of the IPI model-based techniques. The cost of IPCWLP–RPCA is
(k × m × n2), and for RPCA, IPI, NIPPS, and our technique, it is therefore given by
O (m × n2) for the image patch size of m × n.

4.5. Infrared Image Sequences Yielded Experimental

The proposed method has been tested on various real infrared image sequences in a
variety of environments. The targets in these image sequences are small and monotonous
and have poor contrast. Furthermore, the images have sharp edges, which makes detection
challenging. Eight state-of-the-art techniques, including max–mean [6], max–median [6],
top-hat [11], IPI [1], NIPPS [31], RPCA [26], RIPT [35], and NRAM [38], have been compared
with the proposed method in order to validate its efficacy. The Figure 8a displays the initial
infrared image sequences, while Figures 8b–e and 9a–e exhibit the results of the various
baseline techniques.

Max–mean and max–median can find the small target when there is a smooth back-
ground but not when there is a complex background. Similarly, the top-hat technique is
effective against a clean background but fails against one that is complex. Second, because
the top-hat filter’s mask is determined by the target’s size, it is difficult hard to create a
mask that matches the target’s size. IPI-based approaches are very effective at detecting
tiny targets. However, they fail to perform better in cluttered backgrounds because they are
unable to distinguish between real targets and strong edges, which they may incorrectly
recognize as a target due to l1-minimization.

The global weighting parameter is used in the RPCA method, which makes it difficult
to detect small targets in a cluttered background. Furthermore, the NIPPS approach is
reliant on knowing the rank of the matrix ahead of time, which is not always easy to
predict. The suggested technique used weighted nuclear norm minimization, which gives
SVs various weights and penalizes less informative SVs more than more informative SVs.
Second, there are no restrictions on rank prediction ahead of time.
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Figure 8. The target detection performances of the various methods on the image sequences presented
in rows (a–e): (a) real image sequences; (b) max–mean; (c) max–median; (d) top-hat; (e) IPI.

 

Figure 9. The target detection performances of the various methods on the image sequences presented
in rows (a–e): (a) RPCA; (b) NIPPS; (c) RIPT; (d) NRAM; (e) our method.

As a result, compared with existing baseline approaches, the suggested method not
only suppresses the strong clutter background but it detects the small target better. The dif-
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ferent SCRG values for the image sequences from the six state-of-the-art approaches and
the suggested method are shown in Table 6.

Table 6. SCRG values for the test images shown in Figure 8a.

Detection Methods Evaluation Indicators Image6 Image5 Image4 Image3 Image2 Image1

Max–Median
BSF 1.255 1.861 3.816 0.863 3.387 1.383

SCRG 17.867 3.117 51.109 6.461 1.580 1.936

Top Hat
BSF 0.923 0.923 2.354 0.512 2.339 0.488

SCRG 24.651 3.081 53.302 7.376 5.733 1.412

Max–Mean
BSF 1.195 1.167 3.249 0.747 3.895 1.295

SCRG 17.393 2.117 36.456 5.415 1.708 1.765

RPCA
3.790 0.494 6.468 3.073 25.882 3.701

SCRG 90.559 0.683 76.236 36.166 60.950 12.672

IPI
BSF 10.410 29.862 13.778 7.680 52.274 8.698

SCRG 195.948 125.505 263.310 79.869 112.307 17.799

NIPPS
BSF 7.576 7.413 6.726 2.687 6.169 4.453

SCRG 4.700 30.018 168.042 23.787 6.298 0.621

RIPT
BSF 14.874 0.896 3.125 3.101 7.124 3.440

SCRG 0.038 0.062 24.799 9.308 4.835 0.476

NRAM
BSF 3.026 1.477 3.002 1.776 4.948 1.401

SCRG 14.284 0.033 27.870 6.726 2.694 0.404

IPNCWNNM–RPCA
BS 18.138 41.475 14.482 8.678 4.022 5.564

SCRG 27.860 0.394 134.26 95.494 89.265 18.298

The best SCRG shows that the target can be improved and is easily visualized.
The largest SCRG and BSF are bold, while the second highest values are in blue. SCRG and
BSF should be high enough for improved detection.

For the different real image sequences, Figure 10 shows the ROCs of the six approaches
and the proposed method. Figure 10a shows that the proposed method has performed
effectively and has achieved probability 1 for image sequences 1. The NIPPS approach
has a low detection rate and has the lowest reaction in Figure 10b, whereas IPI comes in
second. Figure 10c shows that the suggested method is late when compared with the IPI
method, and again NIPPS has a low detection rate. Finally, we can see in Figure 10d,e the
comparison of the proposed approach with the other methods. Moreover, from Figure 10f,
it can be seen that our approach has performed nicely, although the IPI approach produces
a strong response. In sum, the suggested method has responded nicely in easing the
detection of the target object in the image.

Compared with the existing baseline approaches, the suggested method not only
suppresses the strong clutter background but detects the small target better. The different
SCRG values for the image sequences from the six state-of-the-art approaches and the
suggested method are shown in Table 6.

4.6. Simulation Results for the Infrared Image Sequences with Noise

In the presence of noise, the proposed approach was tested on image sequences.
Figure 11a depicts the original image sequences, while Figure 11b,c depict images with the
noise of 10 and 20 standard deviations, respectively. Figure 11d,e show that in the presence
of noise, the suggested technique suppresses the background and correctly detects the
small target.
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Figure 10. (a–f) are the ROC curves of the six image sequences from Figure 8a.

 

Figure 11. Background suppression results with noise images. (a) Original images with noise.
(b) Noise images with a SD of 10. (c) Images after background suppression of Figure 8b. (d) Noise
images with a SD of 20 (e) Images after background suppression of Figure 8c.
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4.7. Simulation Results When Infrared Image Sequences Are Synthetic

On test datasets of infrared image sequences, we tested the suggested method’s
performance. Actual infrared BPIs were used to construct a total of 100 synthetic test image
sequences, each with 50 different-sized targets positioned at random locations throughout
the background and varying clutter backgrounds. The whole preparation method for
synthetic datasets is provided in [1]. In the assessment procedure, one and four target
image sequences were employed. The original BPI sequences are shown in Figure 12a.
Figure 12b depicts a single target in the original background, while Figure 12c depicts the
outcome of the suggested method on a synthetic image. Figure 12d depicts the four targets
in the real background, while Figure 12e depicts the outcome of the suggested method on a
synthetic image. In the case of synthetic image sequences, we may say that the suggested
technique is robust enough to detect the small targets.

 

Figure 12. Experimental results for the synthetic image sequences (a) Background—synthetic image
sequences. (b) Images with one target and (c) background suppression of Figure 9b. (d) Images with
four different small targets. (e) Background suppression of Figure 9d.

4.8. Parameter Analysis

Three factors that are crucial for the robustness of the recommended technique un-
der various background conditions have been used in this section: step size, patch size,
and regulatory parameters. It is essential to make these adjustments in order to achieve the
greatest outcomes. It is also crucial to remember that the criteria do not always produce
the best overall outcome. ROC curves made for various picture sequences may be used to
assess the effectiveness of the proposed approach utilising these parameters, as illustrated
in Figure 13 in the section below.
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Figure 13. ROC curves of infrared sequence: (a) ROC curve of patch size for sequence; (b) ROC curve
of step size for sequence; (c) ROC curve of controlling parameter for sequence.

4.8.1. Patch Size

We used varied patch sizes in the experiment to see how our approach performed,
and we discovered that raising the patch size improves the target’s sparsity while simulta-
neously increasing the computation cost. During the experimental observation, we utilised
patch sizes of 20, 30, 40, 50, and 60, taking into account the appropriate patch size for an
enhanced response of the proposed model. The ROC curves for the two image sequences
were produced, as seen in Figure 13a. The ROC curve demonstrates that increasing the
image patch size significantly affects both detection effectiveness and computational cost.

Due to the loss of nonlocal information, patch size 60 with the proposed technique
has inferior detection performance, which will surely make it more difficult to distinguish
between the target and background. This suggests that for optimum performance, a patch
size of 40 × 40 is ideal.

4.8.2. Step Size

The step size has to be tuned in the same manner as the patch size. During the exper-
imental observation, the patch size was set to 40 × 40, and the step size was changed in
increments of two units, yielding step sizes of 10, 12, 14, 16, and 18, respectively. The ROC
curve on step size for the two picture sequences shown in Figure 13b indicates that using a
small step can increase computation time and also negatively affects the detection perfor-
mance of the suggested approach. Additionally, increasing the step size helps speed up
processing. Our findings have led us to the conclusion that 12 is the ideal step size.

4.8.3. Controlling Parameter λ

For the proposed method, λ = L√
(max(n1,n2)∗n3)

, and lambda, L, is an important

regulating parameter that controls both the background patch picture and the target patch
image. A large L can cause an issue with overshrinking, but a small value will maintain
the residue in the background picture and may even provide a misleading alert. In this
experiment, we employed four distinct L values: L = 0.6, L = 0.8, L = 1.0, and L = 1.2.
Compared with the other values, L = 0.8 generated superior results, as evidenced by the
created ROC curves for two picture sequences utilizing these values shown in Figure 13c.
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5. Conclusions

Due to the l1 norm problem, the IPI model has difficulty constraining the background
using the basic nuclear norm minimization. Because of this flaw, the non-target edges in the
backdrop are mistaken for target spots. To overcome this problem and properly constrain
the background patch image, the existing IPI model has been utilized in this work, which
employs WNNM in conjunction with RPCA. In this model, the weights are applied to each
singular value, and larger singular values are penalized less than smaller ones.

As a result, the provided model improves target recognition and background sup-
pression. In comparison with the state-of-the-art approaches, the experimental findings
show that the current IPNCWNNM–RPCA not only suppresses the clutter background but
efficiently detects the object. The proposed model could further be improved in future by
using the tensor norm instead of the nuclear norm or the WNN.
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Abstract: Visual pollution (VP) is the deterioration or disruption of natural and man-made landscapes
that ruins the aesthetic appeal of an area. It also refers to physical elements that limit the movability
of people on public roads, such as excavation barriers, potholes, and dilapidated sidewalks. In this
paper, an end-to-end visual pollution prediction (VPP) framework based on a deep active learning
(DAL) approach is proposed to simultaneously detect and classify visual pollutants from whole
public road images. The proposed framework is architected around the following steps: real VP
dataset collection, pre-processing, a DAL approach for automatic data annotation, data splitting as
well as augmentation, and simultaneous VP detection and classification. This framework is designed
to predict VP localization and classify it into three categories: excavation barriers, potholes, and
dilapidated sidewalks. A real dataset with 34,460 VP images was collected from various regions
across the Kingdom of Saudi Arabia (KSA) via the Ministry of Municipal and Rural Affairs and
Housing (MOMRAH), and this was used to develop and fine-tune the proposed artificial intelligence
(AI) framework via the use of five AI predictors: MobileNetSSDv2, EfficientDet, Faster RCNN,
Detectron2, and YOLO. The proposed VPP-based YOLO framework outperforms competitor AI
predictors with superior prediction performance at 89% precision, 88% recall, 89% F1-score, and
93% mAP. The DAL approach plays a crucial role in automatically annotating the VP images and
supporting the VPP framework to improve prediction performance by 18% precision, 27% recall, and
25% mAP. The proposed VPP framework is able to simultaneously detect and classify distinct visual
pollutants from annotated images via the DAL strategy. This technique is applicable for real-time
monitoring applications.

Keywords: AI-based visual pollution prediction (VPP); deep active learning (DAL); deep learning;
simultaneous VP detection and classification

MSC: 68T45

1. Introduction

In the beginning of 2018, the Kingdom of Saudi Arabia (KSA) launched the Quality
of Life (QoL) project under the Saudi Vision 2030 framework, contingent on the usage
of advanced AI technology to improve the quality of life of its residents by establishing
a more comfortable environment for their contemporary lifestyles. The program aims
to increase inhabitant engagement with numerous social and cultural activities based on
entertainment, culture, tourism, sports, and other sectors able to nurture an increased
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quality of life. Heightened participation in such activities is predicted to have a positive
economic and social impact by allowing for the establishment of numerous jobs and a
diverse range of activities being made available to Saudi residents [1]. As such, the cur-
rent standing of Saudi cities could be elevated to make them among the world’s most
livable cities [2]. The community targeted for this program consists of individuals residing
within the boundary of Saudi Arabia, including, but not limited to, citizens, residents,
visitors, and tourists. As an integral part of the KSA 2030 vision, a strategic economic and
social reform framework, municipalities across thirteen provincial regions in Saudi Arabia
have launched intensive remedial policies in an effort to secure high living standards for
residents of the Kingdom. As we know, the continuation of expansive and invasive anthro-
pogenic influences on the natural environment endangers all living organisms. As defined
by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES), the five significant ecosystem propulsors and biodiversity losers in dire need
of swift and effective change are (1) climate change, (2) direct exploitation, (3) pollution,
(4) biological invasions, and (5) sea-use change [3]. As such, they are reversing the sig-
nificant environmental damage engendered by man, which is unequivocally the primary
source of discussion in influential environmental discourses throughout recent history.

As defined by toxicity-based literature, pollution is an offshoot of industrial and
economic progression, with acute consequences for the environment and its inhabitants.
Abiotic drivers, or the non-living components of an ecosystem, precipitated through human
activity result in inexhaustible levels of pollution released into both untouched and man-
made ecosystems. The degree of such drivers is, of course, in direct relation to the distance
between natural and urban areas—an interval that continues to diminish as the demand
for ecosystem inputs increases in direct correlation with the growth of human popula-
tions. Although much research on air, water, and land pollution exists, sensory pollution,
or human-induced stimuli that interfere with the senses, is a relatively unevaluated phe-
nomenon with severe repercussions. This pollution of “disconnection” has recently evolved
to include visual pollution (VP)—disturbances or obstructions in the natural environment.
Visual pollutants are the final benefactors to multimodal environmental deterioration when
examined alongside other forms of sensory pollution in urban environments. Visual pol-
lution (VP), as detailed in this study, refers specifically to disruptive presences that limit
visual ability on public roads, with an emphasis on excavation barriers, potholes, and
dilapidated sidewalks.

Visual pollution appears in digital images with varying irregular shapes, colors, and
sizes, as observed in Figure 1. This particular form of pollution is a relatively recent
concern when considering the current plethora of contaminants habitually spotlighted in
the academic literature [4]. Several factors, however, have driven an upsurge in visual
pollutants; the incessant construction of new buildings, the inevitable deterioration of
asphalt roads as well as sidewalks, and even weather conditions, for instance, are directly
connected to the rise in VP.

It is important to adhere to and follow government rules for the construction of
buildings or any other civil works in neighborhoods to minimize the occurrence of visual
pollution. In an effort to mitigate the adverse effects of such disagreeable elements, the
government of Saudi Arabia has launched several field campaigns that manually inspect
the country for visual pollutants and alert all construction protocol violators to swiftly
rectify any virulent activities in order to avoid disciplinary action [1]. However, this
non-automatic process is highly time-consuming, economically unfeasible, and mentally
as well as physically draining for employees. As such, our team endeavors to architect
AI technological processes applicable to real-time investigations of three distinct visual
pollutants: (1) excavation barriers, (2) potholes, and (3) dilapidated sidewalks. Identifying
and predicting VP, in particular, can be achieved by training convolutional neural networks
(CNNs) with various layers of artificial neurons in the context of image recognition and
vision computing [5]. Prior to You Only Look Once (YOLO) [6], all multi-stage object
detectors (R-CNN, Fast R-CNN, Faster R-CNN, and others) that exhibited state-of-the-art
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(SOTA) accuracy used regions to localize targets rather than assessing whole input images.
The YOLO architecture consists of a single neural network with a neck, a head, and a
backbone, with varying numbers of outputs in the head. When applied to real-time data,
these algorithms can also trade-off between accuracy and speed, resulting in unreliable
models. On the other hand, YOLO is a series of contemporary object detection models that
predicts bounding boxes and classification probabilities from complete images in single
evaluations. Because of its speed, precision, more robust network architecture, and efficient
training method, this model eventually superseded most traditional SOTA algorithms [7].
In recent years the YOLO detection series has been proven to be a great resource for cutting-
edge real-time object detection, as well as to have a significant amount of financial potential.
To use YOLOv5 for visual pollution detection we would need to train a YOLOv5 model
to recognize specific types of visual pollution, such as excavation barriers, potholes, or
dilapidated sidewalks. This could be done by collecting a dataset of images that contain
these types of visual pollution and using them to train the model. Once the model has been
trained, it can be used to detect and classify visual pollution in new images or video frames.
One potential application of this approach could be to use YOLOv5 for the automated
monitoring of public spaces for visual pollution, such as streets, parks, or sidewalks. This
could help identify areas where intervention is needed to address visual pollution and
improve an environment’s appearance. It could also be used to monitor the effectiveness of
efforts to reduce visual pollution over time. Due to its high speed and performance, we
employed the YOLO architecture as an objective backbone detector for the current study.

Figure 1. Examples of the three categories central to this study: (a,b) represent the barrier category,
(c,d) illustrate the sidewalk category, and (e,f) depict the pothole category. All RGB images were
collected from Saudi Arabia.

229



Mathematics 2023, 11, 186

The objective of this study is to assist government organizations with AI-based technol-
ogy that automatically predicts and recognizes visual pollution without user intervention.

The major contributions of this work are summarized as follows:

• The proposed AI-based real-time visual pollution prediction (VPP) aims to simultane-
ously detect and categorize visual pollution (VP) from color images.

• An end-to-end AI-based framework is trained and evaluated using a private dataset
in a multi-class classification scenario to simultaneously predict various pollutants.

• A new private VP dataset is collected by the Ministry of Municipal and Rural Af-
fairs and Housing (MOMRAH), Saudi Arabia. This dataset has various VP classes
and is called the MOMRAH benchmark dataset: excavation barriers, potholes, and
dilapidated sidewalks.

• Deep active learning (DAL) supports MOMRAH experts in automatically annotating
the VP dataset for multiple tasks: detection with a bounding box and classification
with a class label. The annotation process is conducted at an object level, not just at an
image level. This is because some images carry multiple and different objects at once.

• A comprehensive training process is conducted to optimize and select the optimal
solution for the proposed VPP. We perform various emerging AI predictors, which are
MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, YOLO-v7, and YOLOv5.

• An ablation or adaptation study is conducted to check the reliability of the proposed
AI-based VPP framework when unseen images from different sources are used.

The rest of this paper is organized as follows: A review of the contemporary literature
relevant to this study is presented in Section 2. Technical details of the proposed VPP
framework are presented in Section 3. The results of the experimental study are reported
and discussed in Section 4. Finally, Section 5 presents our conclusions.

2. Related Works

The concept of visual pollution (VP) was identified in the mid-twentieth century, along-
side ongoing investigations of the malicious nature of air and water pollution. Contrary to
the plethora of academic literature concentrated on air and water pollutants, however, is
VP, a relatively unexplored issue essential to providing comfortable living environments
in a modernizing world. Initially, researchers defined VP as the impairment of a region’s
visual quality caused by unnecessary advertisements and signage [8]. Lately, however, this
concept has been expanded to include any element that results in landscape-based chaos; a
myriad of factors, including perpetual construction, the inevitable demise of asphalt roads,
erosion, and even a lack of commitment by residents in following garbage management
protocols all coincide with the current interpretation of VP [9]. Exposure to VP has also
been proven to beget several adverse mental and physical consequences. According to
research on the effect of VP on human physiology and psychology, the absence of VP can
reduce the perception of pain by increasing cortisol production in the body [1]. Recent
emphasis has been placed on managing visual pollutants via identification-based software,
such as a geographic information system (GIS), through which methods of cartographic
visualization can be adopted in mapping and, correspondingly, reducing VP [10]. Simul-
taneously, Delphie and ordering weighing methods have also been used in the academic
literature to manipulate a number of visual pollutants [10].

In addition, the analytical hierarchy process (AHP) is considered a multi-criteria
decision-making technique for dealing with subjective and numerous contradictory criteria
for investigating the effects of VP [8]. Artificial intelligence (AI) technology has recently
garnered attention in several research fields, including medicine and healthcare [11–14],
weather forecasting [15], energy control systems [16], army studies [17], and air as well as
water pollution prediction [10]. The colossal success AI technology has had in such topics
makes it highly effective in tackling various practical issues [13,18]. Deep learning feature
extraction, in particular, is key in architecting a convolutional neural network (CNN) able to
predict any feature-based anomaly. Figure 2 follows a contemporary timeline of advanced
AI-based techniques used for object detection mentioned in [19].
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Figure 2. State-of-the-art AI-based object detection techniques [19].

In 2011, Koch et al. presented a two-stage method to detect fissures in images of
asphalt roads [20]. Firstly, the image is segmented into two defect and non-defect regions,
and any potential pothole shapes are determined via geometric characteristics based on
said defect regions. The textural characteristics of the extracted regions are then compared
with the textures of the remaining normal regions. If the textures of the defect regions
are coarser and grainier than the normal surface, the region is classified as a pothole. An
accuracy of 86%, precision of 82%, and recall of 86% were observed. N. Ahmed et al.,
on the other hand, used a deep convolutional network made up of five convoluting and
max-pooling layers to classify VP into four categories: billboards and signage, network
and communication towers, telephone and communication wires, and street litter [5]. They
collected a dataset of 200 images per category from the Google Images search engine and
achieved 95% training accuracy and 85% validation accuracy in their results. Shu et al.
adopted a similar deep learning technique via the YOLOv5 model to detect pavement
cracks from a dataset of 400 street view images in multiple Chinese cities [21]. A detection
accuracy of 70% with a speed detection ability of 152 ms was encountered in identifying
cracks in both paved and non-paved street images. Yang et al. proposed a more contem-
porary detection methodology based around a feature pyramid and hierarchical boosting
network (FPHBN) to detect fissures [22]. This method can integrate contextual information
from low-level and high-level features in a feature pyramid to generate accurate maps
for fissure detection. They achieved an acceptable average intersection over union (AIU)
of 0.079, but the execution time for a single image was high—approximately 0.259 s. An
ensemble learning methodology was used by Liu et al. to visually detect smoke in an
effort to reduce the air pollution produced by industrial factories [10]. Three different
CNN architectures with five, eight, and eleven convolutional as well as pooling layers were
trained separately using two different visual smoke datasets. Smoke was then detected via
the ensemble majority voting strategy. The average detection results over two different
datasets were obtained with an overall accuracy of 97.05%, precision of 99.86%, recall of
96.16%, and an F1-measure of 97.97%. Wakil et al. developed a visual pollution assessment
(VPA) tool for predicting VP in an urban environment in Pakistan [23]. Their proposed
VPA tool has assisted regulators in assessing and charting VP consistently and objectively,
while also providing policymakers with an empirical basis for gathering evidence, hence
facilitating evidence-based and evidence-driven policies that are likely to have a significant
impact, especially in developing countries. In 2021, Wakil et al. presented a web-based
spatial decision support system (SDSS) to facilitate stakeholders (i.e., development control
authorities, advertisers, billboard owners, and the public) in balancing the optimal posi-
tioning of billboards under current governing regulations [24]. The SDSS system has been
functional in identifying urban hot spots and exploring suitable sites for new billboards,
therefore assisting advertising agencies, urban authorities, and city councils in better plan-
ning and managing existing billboard locations to optimize revenue and improve urban
aesthetics [24]. Chmielewski et al. proposed a methodological framework for the measure-
ment of VP using tangential view landscape metrics accompanied by statistically significant
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proofs [9]. The visible area metrics were found to be highly sensitive VP indicators; the
maximum visible distance metrics provided evidence for the destructive effect of outdoor
advertisements (OAs) on view corridors [9]. In this paper, an end-to-end deep learning
predictor is adopted, trained, and evaluated based on real datasets generated from the
KSA. The proposed prediction framework aims to simultaneously detect and classify visual
pollutants in three categories: excavation barriers, potholes, and dilapidated sidewalks.

3. Materials and Methods

The schematic diagram of the proposed VPP framework is demonstrated in Figure 3.
The proposed framework is able to directly predict the VP objects from the whole input
image without user interactions and interventions. This is key to developing a rapid frame-
work for real-time predicting purposes. Accurate and rapid object prediction is crucial for
real-time AI applications. In this paper, a comprehensive experimental study is conducted
and compares the performances of several object detection methods: MobileNetSSDv2 [25],
EfficientDet [26], Faster R-CNN [27], Detectron2 [28], and YOLO [6,12–14,29,30]. The best
predictor is selected to achieve the best prediction performance in a compact structure, which
is determined to be YOLOv5. Thus, the proposed VPP has a compact, lightweight deep
structure and could predict even multiple objects at once. Generally, deep learning detectors
consist of two main parts: the CNN-based backbone used for deep feature extraction, the
head predictor used to predict the class type, and the bounding box coordinators for the
objects [6]. Recently, deep learning detectors are developed by inserting some different
deep layers between the backbone and the head, and this part is called the neck network [6].
The VPP has a deep learning backbone for extracting deep high-level features based on
the concept of deep learning convolutional networks. Indeed, many deep networks in the
literature are used and have their capabilities for deep feature extraction proven, such as
VGG [31], ResNet [32], DenseNet [33], Swin Transformer [34], CSP with SPP [35], and others.

 
(a) (b) (c) 

Figure 3. Abstract view of the proposed visual pollution predictor (VPP) framework based on the
YOLOv5 predictor. The process consists of three steps: (a) feeding an input image, (b) using a YOLO
prediction model, and (c) outputting a prediction with localization and classification.

The neck network is then a key link between the backbone and heads, and is designed
to better use the extracted deep features via the backbone network. It includes several
bottom-up and top-down deep learning paths for reprocessing and rationally using the
extracted features from the backbone network. Here, the output has multiple predictors,
or factors, for detection and classification tasks. Afterward, predictor layers are used to
predict the object’s existing probabilities. For detection, the bounding box predictors are the
center coordinators (x,y), width (w), and height (h). For classification, different neurons are
assigned to predict a VP object’s type to be a barrier, pothole, or sidewalk. All predictors
are stored in a tensor of prediction, as shown in Figure 3.
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3.1. Visual Pollution Real Dataset: MOMRAH VP Dataset

The dataset is collected from different regions in the Kingdom of Saudi Arabia (KSA)
via the Ministry of Municipal and Rural Affairs and Housing (MOMRAH) as a part of
a visual pollution campaign to improve Saudi Arabia’s urban landscape. To collect this
dataset, Saudi citizens and expatriates are requested to take pictures of visual pollutants
by using their smartphones and upload them to the government-created Balady mobile
application [4]. Our team received official permission from Saudi Arabia’s MOMRAH
to use the collected data for this study. The VP real dataset is called the MOMRAH VP
dataset, and it has 34,460 RGB images for three different classes, which are excavation
barriers, potholes, and dilapidated sidewalks. The MOMRAH dataset is publicly published
to enrich the research domain with a new VP image dataset [36]. The data distribution over
three different classes is shown in Figure 4. Fortunately, some images have more than
one object, and this helps to increase the number of training object ROIs. Thus, the total
number of object ROIs per class are recorded to be 8417 for excavation barriers, 25,975 for
potholes, and 7412 for dilapidated sidewalks. Unfortunately, this dataset lacks annotation
labels for both detection and classification tasks since it is collected for the first time as a raw
dataset. To annotate all of the images for detection (i.e., bounding box) and classification
(i.e., classification label) tasks, a deep active learning strategy is used, where the initial
1200 VP images (i.e., 400 images per class) are manually annotated by four experts. The
DAL strategy of the data annotation is presented in Section 3.3.

 

Figure 4. Visual pollution real dataset (i.e., the MOMRAH VP dataset) distribution over three different
classes: excavation barriers, potholes, and dilapidated sidewalks. The dataset per class is split into
70% for training, 10% for validation, and 20% for testing.

3.2. Data Pre-Processing

The following pre-processing steps are performed to prepare the dataset for fine-
tuning the deep learning models within the proposed framework: irrelevant image removal,
normalization, resizing, and data splitting. Experts investigate the raw RGB images in the
MOMRAH VP dataset in-depth, and irrelevant, inaccurate, or unreliable images related
to the visual pollution topic are immediately excluded. Some examples of irrelevant
and excluded images are depicted in Figure 5. Since the normalization process could
improve the overall prediction performance, the VP images are normalized to bring their
intensity into the range of [0, 255] [13,18]. Meanwhile, all images are resized using bi-cubic
interpolation to scale their intensity pixels into the same range of 460 × 600.
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Figure 5. Some examples of the irrelevant images that are excluded during the pre-processing step.

3.3. Deep Active Learning (DAL) for Automatic Data Annotation

Active learning provides an effective method for people to help annotate data, as par-
ticipants only need to inspect the data they are interested in, while a learning algorithm can
automatically adaptively choose and prioritize other data for annotation. Data annotation
is especially expensive for object detection tasks. Each object detection frame typically has
tens of thousands of pixels, and annotators have to label them manually with boxes around
the objects. Annotation can be as simple as drawing a bounding box, but is still highly
time-consuming. In addition to the costs, monitoring and controlling the quality of the
annotations are more challenging. To summarize, human-in-the-loop may be necessary
for general object detection systems, but it is expensive and more difficult in regard to
controlling the quality of annotations.

Active learning uses annotated data to reduce the amount of work required to accom-
plish a target performance. It is used for object classification, image segmentation, and
activity recognition. Active learning begins by training a baseline model using a small, la-
beled dataset, which is then applied to an unlabeled dataset. It estimates, for each unlabeled
sample, whether this sample contains essential information that the baseline model has not
yet learned by using various query selection strategies (random, uncertainty (entropy), and
more). Once the samples containing the most important information have been identified
and labeled by the trained model and verified by a human, they can be added to the initial
training dataset to train a new model that is anticipated to perform better.

Several different strategies can be used for active learning. One common strategy is
called “query by committee,” which involves training a committee of multiple models on
the available labeled data and then having each model make predictions on the unlabeled
data. The model then selects the data points on which the models disagree the most and
requests labels for those points in order to resolve the disagreement. This method, query by
committee, can be effective because it allows the model to focus on the most informative
and uncertain data points, leading to faster and more efficient learning. Another common
strategy is “uncertainty sampling”, which involves selecting data points for which the
model is least certain of the correct label. In this method, data points with the highest
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entropy (a measure of uncertainty) or data points closest to the model’s decision boundary
are selected. Other active learning strategies can be used, such as “representative sampling”,
in which the model selects data points that are representative of the overall distribution of
the data, or “variance reduction”, in which the model selects data points that are expected
to have the most significant impact on reducing the variance in the model’s predictions. In
this work, we employed the representative sampling technique using the visual similarity
algorithm provided by the Voxel51 brain module.

The proposed deep learning VPP framework is developed to detect and classify the
VP objects into three classes: excavation barriers, potholes, and dilapidated sidewalks. To
train and develop such a VPP framework, all images in the dataset must be annotated for
detection and classification tasks. For the classification task, all images are annotated by
four experts in the ministry of MOMRAH by providing an associated class label for each
image. For the detection task, a detection label must be represented as a bounding box to
surround the whole object (i.e., ROI) inside the image with the coordinators of the start point
(x1, y1), end point (x2, y2), width (w), and height (h), as shown in Figure 3a. To perform
this labeling, four experts are requested in parallel to manually annotate the best and
most clear 400 images from each class by using the CVAT toolbox [37]. Since the labeling
process is challenging and time-consuming, the deep active learning (DAL) strategy is
mainly involved and used to automatically annotate the rest of the VP images. The primary
process of the DAL strategy is depicted in Figure 6. The deep active learning strategy is
performed with the following steps: First, we select the best clear 400 images from each class,
and four experts become involved to manually annotate the object localization by using the
CVAT toolbox. Second, the best deep learning detector model is selected to be trained based
on the annotated small dataset (i.e., 400 images per class). Third, the trained DL model is
used to test the most relevant and similar images among the remaining unlabeled ones.
Fourth, based on the query strategy, the most relevant and exciting samples are selected via
the visual similarity approach to be checked by expert-in-the-loop. The selection procedure
is usually carried out by checking the high similarity among the initial samples in the first
round and the remaining unlabeled ones. The high-similarity instances are selected to
be systematically verified and reviewed by an expert. Indeed, the experts interact with
machine-in-the-loop to check, modify, and confirm the automated labeling process. The
experts have to check that all of the images received some label boxes and manually adjust
the boxes’ locations and class labels, add some other boxes for the unseeing objects, or even
delete the wrong detected boxes. Fifth, after the experts complete the labeling correction
process for the first round, the AI model is retrained again using the new trusted labeled
images (i.e., 400 + new confirmed subset). Finally, the VP images with lower similarity
ratios that could not be labeled in the first round are used as a testing set for the second
round of the DAL cycle. This way, the automatic DAL process is repeated until the stopping
criteria are satisfied by correctly annotating all of the VP images.

Figure 7 shows some examples of the deep active learning procedure for annotating
the images and building a benchmark dataset. Once the DAL process is completed and a
benchmark dataset is built, the images per class are randomly split into three different sets:
70% for training, 10% for validation, and 20% for testing. The training and validation sets
are used to train and fine-tune the AI models, while the evaluation strategy is performed
using the isolated testing set.
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Figure 6. Deep active learning (DAL) strategy for the automatic data annotation process.

 

Figure 7. Some examples of the deep active learning (DAL) procedure for image annotation. The
first row shows the automatic annotation via a machine during the first round, while the second row
depicts the same images but with an expert’s interventions and label corrections. Examples from the
three categories of excavation barriers, potholes, and dilapidated sidewalks are shown in numbers (a–e).
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3.4. Training Data Enlargement via an Augmentation Strategy

Training data augmentation is a well-proven technique used to enlarge the number of
training images for model generalization, avoid over-fitting, and solve the class imbalance
problem [38]. To effectively fine-tune deep learning models, a large number of images
is required [12,39]. The effectiveness augmentation strategy is mainly used to expand
the nature of the dataset. Thus, the deep learning model could be more robust due to
the varying image conditions. Augmentation based on the image photometric and/or
geometric distortions is recently used to increase the number of training images [6]. For
photometric distortion, we imperially adjust the images’ hue, saturation, and value by
0.015, 0.7, and 0.4, respectively. For geometric distortion, 0.9 random scaling, 0.1 translation,
and 0.5 rotation lift-right are used. Moreover, the recent augmentation methods of Mosaic
and MixUp are used with probabilities of 1 and 0.1, respectively [6]. Finally, a total VP
training augmented dataset of 41,804 images is generated to fulfill the requirements of deep
learning models: 8417 excavation barriers, 25,975 potholes, and 7412 dilapidated sidewalks.

3.5. The Concept of VP Object Detection—VPP-Based YOLO

The AI-based deep learning method “You Only Look Once (YOLO)” has different
architectures, such as YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Basically, all ver-
sions of YOLOv5 use the deep learning architecture of the cross-stage partial network
(CSP) Darknet with spatial pyramid pooling (SPP) layers [35] as a backbone, a path ag-
gregation network (PANet) [40] as a neck, and head detectors [41]. The difference among
these versions basically depends on the number of feature extraction modules and the
size as well as number of the convolution kernels at each specific location inside the deep
network [6]. The schematic diagram of the YOLOv5 is depicted in Figure 8. We select
the YOLO predictor since it has an excellent reputation as a one-stage detector with very
high prediction speed [6,13,42]. Indeed, the YOLO predictor is mainly used as a detection
method regression methodology. It can handle whole input images and predict both object
localization as well as object classification type [41–43]. As shown in Figure 8, YOLOv5
consists of backbone, neck, and detector networks, or head predictors, representing the
final prediction output.

 

Figure 8. Schematic diagram of VPP-based YOLOv5 to detect and classify the real VP public road
images. The * indicates the convolutional process.
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In order to adapt to different augmented images, YOLOv5 has the capability to
integrate an adaptive anchor frame calculation on the input images. Thus, YOLO could
automatically initialize the anchor frame size when the input images are changed and
fed to the deep networks [42]. CSP and SPP are utilized for extracting deep feature maps
using multiple convolutional and pooling layers for the backbone network. In fact, the
CSP network is used to accelerate the learning process, while SPP is used to extract deep
features from different scales of the specific feature maps. Both CSP and SPP networks are
used to increase the prediction accuracy compared to older versions of YOLO [35]. Indeed,
many deep networks in the literature are used and have proven their capabilities for deep
feature extraction, such as VGG [31], ResNet [32], DenseNet [33], and Swin Transformer [34].
The feature pyramid deep learning structures of the feature pyramid network (FPN) and
the pixel aggregation network (PAN) are consecutively used for the neck network. The
FPN conveys the strongest semantic deep features from the top to the lower feature maps.
Simultaneously, the PAN is used to convey the strong localization of deep features from
lower to higher feature maps. Indeed, both deep learning networks are jointly utilized to
strengthen the extracted feature. Thus, the detection performance is increased due to the
benefits of both the FPN and PAN. For the final detection procedure, the head predictor is
utilized to detect the final target objects with different feature maps’ sizes [6]. The head
output is mainly designed to detect the final object localization and predict the object type
inside the inputted whole image.

3.5.1. Hyperparameters’ Evolution

In deep learning, hyperparameters are parameters set prior to formal training. Appro-
priate hyperparameters could enhance a model’s performance. The YOLOv5 algorithm
had 23 hyperparameters that were primarily used to set the learning rate, loss function,
data enhancement parameters, and others. It was necessary to retrain the appropriate
hyperparameters, since all of the data in this study were significantly different from those
of the public dataset. YOLOv5 was able to perform hyperparameter optimization by using
a genetic algorithm that primarily employed mutation to produce offspring based on the
optimal combination of all predecessors, with a probability of 0.90 and a standard deviation
of 0.20. In this study, 320 generations of iterative training were set, and the model’s F1 and
mAP were used to evaluate and determine the optimal hyperparameters. The optimality
of the corresponding hyperparameters is denoted by the maximum value of the fitness
function in the evolutionary process.

3.5.2. Transfer Learning

Transfer learning, a popular technique in deep learning, could improve the efficiency
and robustness of the model training. Typically, external convolutional networks are
employed primarily for extracting generic features and concentrating on individual recog-
nition, such as color, shape, and edges. Deeper networks place a greater emphasis on
learning task-specific characteristics, primarily for classifying targets. Through the char-
acteristics of transfer learning, the detection algorithm utilized the pre-trained weight
during training, eliminating the need for random initialization. This training method could
decrease the model’s search space and increase training efficiency. The YOLOv5 algorithm
utilized the pre-trained weight from the COCO dataset, which contained 1.2 million targets
in 80 categories. Although the pre-training weight contained many general features, the
COCO dataset differed significantly from this study’s recognition target. Therefore, it was
necessary to determine if transfer learning could detect potholes, sidewalks, and barrier
detection by using the model’s mAP.

3.6. Experimental Setting

For training, the strategy of multi-scale training is used to learn prediction across
different resolutions of the inputted VP images [40]. Moreover, a mini-batch size of 32 and
a number of epochs of 100 are utilized for training and validating the proposed AI models.
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A stochastic gradient descent (SGD) optimizer is used with an initial learning rate of 0.01,
a final one-cycle learning rate of 0.1, a momentum of 0.937, a weight decay of 5 × 10−4,
warmup epochs of 3, a warmup momentum of 0.8, and a warmup initial bias learning rate
of 0.1. The predicted box loss gain, class loss gain, and object loss gain are designed to be
0.05, 0.3, and 0.7, respectively. Moreover, the IoU training threshold and anchor-multiple
thresholds are adjusted to be 0.2 and 4, respectively.

3.7. Implementation Environment

The comprehensive experimental study is achieved by using a PC with the follow-
ing specifications: an Intel(R) Core(TM) i7-10700KF CPU @ 3.80GHz, 32.0 GB of RAM,
six CPUs, and one NVIDIA GeForce RTX 3060 GPU.

3.8. Evaluation Strategy

We used the standard evaluation parameters regarding training loss, validation loss,
precision, recall, and mean average precision (mAP). The loss of YOLOv5 was used to
evaluate the inconsistency between the model prediction results and the ground truths, and
it was composed of three components: bounding box loss, object loss, and classification loss.
In order to prevent the under-fitting or over-fitting of the VPP model, training loss (loss of
the training set) and validation loss (loss of the validation set) would be observed during
the training process to obtain the optimal detection model. The mAP metric comprises
the product of the accuracy and recall of the detected bounding boxes and ranges from
0 to 1, with higher values denoting superior performance. The mAP may represent the
model’s global detection performance, especially in comparison to F1. The mAP can be
obtained by calculating the area under the corresponding precision–recall curve, which is
the standard metric for evaluating an object detection algorithm. In evaluating an object
detection algorithm, the mAP is frequently used as the primary performance metric. Based
on the principle of IoU, the mAP is an excellent indicator of the network’s sensitivity. IoU
is the ratio of the overlap area between the ground truth and its predicted areas to the
union area. Precision and recall are calculated using true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) based on the multi-class confusion matrix. The
weighted average of precision and recall are utilized to calculate the F1-score (F1).

4. Experimental Results and Discussion

The experiment of this study is conducted via three evaluation scenarios. First, the
dataset initially labeled by experts (i.e., 400 images per class) is used to select the best pre-
diction AI model for our proposed VPP framework. The best AI model is also tested and
verified with various activation functions to achieve the best prediction performance. Si-
multaneously, the trainable hyperparameters of the selected model are carefully optimized
via different initialization strategies. Second, once the deep learning model is selected
and optimized, the deep active learning (DAL) strategy is used to automatically annotate
the remaining raw VP images in our private MOMRAH dataset. Finally, the proposed
VPP framework is trained and evaluated using the big data of the labeled VP images over
three trails. Meanwhile, the prediction performance of the VPP framework is directly com-
pared with that of other state-of-the-art prediction models using the same MOMRAH dataset.

4.1. The Optimization Results of the Proposed AI-Based VPP Framework

A comprehensive experimental study is conducted to optimize the capability of the
proposed AI-based VPP framework for selecting the best solution that leads to optimal
prediction performance. To perform this study, the initial curated benchmark dataset
(i.e., 400 images per class) annotated by the experts is used. We sequentially investigate
three factors that could support the proposed framework, providing better prediction
performance. First, various depth and width deep learning networks are investigated
using four different YOLO architectures, which are YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. This is to select the optimal version of the YOLO detector that could achieve
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the best evaluation performance. Second, once the optimal YOLO version is selected,
six activation functions are used and investigated: LeakyReLU, ReLU, Sigmoid, Mish, SiLU,
and Tanh. Finally, we investigate three different initialization methods for the trainable
hyperparameters of the best AI predictor selected in the first step. All of the experimental
results regarding this optimization strategy are presented in the following sections.

4.1.1. Evaluation Results Based on the Various YOLO Structures’ Depth and Width

By evaluating four various YOLO networks, we find that YOLOv5x achieves the
best prediction performance and outperforms the other architectures. This could be due
to its largest convolutional deep learning structure compared with the smaller versions
(i.e., YOLOv5s, YOLOv5m, and YOLOv5l), since it is known that deeper and wider deep
learning models can achieve better performance. To achieve this finding, all deep learning
YOLO predictors are separately trained and tuned using the initial curated dataset, which
consists of 400 VP images of each class (i.e., excavation barriers, potholes, and dilapidated
sidewalks). All models are trained using the same training settings of 250 epochs and the
default hyperparameter initialization method. Figure 9 depicts the optimized loss function
performance over 250 epochs during the training time of all of the deep learning models. It
is shown that all versions of the YOLO detectors could learn well and achieve better loss
values by increasing the number of epochs. YOLOv5x is optimized well, achieving the
lowest loss function compared with the other YOLO versions, while YOLOv5s is fine-tuned
and achieves the lowest performance in terms of all of the loss functions, as shown in
Figure 9. Figure 10 shows the evaluation metrics of precision, recall, and mAP, which were
recorded for the same training settings of the four versions of the YOLO detectors. It is
clearly shown that all of the evaluation metrics during the training time improve with an
increase in the training epochs. This means that the deep learning detectors learned well
without any over-fitting to the seen training data.

Figure 9. Training parameter optimization results of the proposed VPP framework based on various
deep learning YOLO structures (i.e., YOLOv5s, YOLOv5m, or YOLOv5l) in terms of train/valid
detected box, object, and cls loss functions.
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Figure 10. Evaluation performance of the proposed VPP framework based on various deep learning
YOLO structures (i.e., YOLOv5s, YOLOv5m, or YOLOv5l) in terms of precision, recall, and mAP.

The best detection performance of all varieties of the YOLO detectors over three trials
are presented in Table 1. It is obviously shown that YOLOv5x could achieve the best
prediction performance, with 70% precision, 62% recall, an F1-score 66%, and 67% mAP.
On the other hand, YOLOv5x is the heaviest deep learning model, with a model size of
169.26 MB and 88,453,800 trainable parameters. This means that its volume and number of
parameters could characterize the model’s complexity, requiring more GPU memory and a
long time for fine-tuning all of the parameters. In contrast, YOLOv5s has the smallest deep
learning architecture, with a model size of 14.08 MB and 72,318 parameters. Comparing the
aforementioned experiments, it is clear that YOLOv5x is a superior deep-learning model
that could achieve the best prediction performance over three classes of potholes, sidewalks,
and barrier detection.

Table 1. The evaluation performance of all versions of the YOLO detectors as an average over three trails.

AI Model Precision Recall F1-Score mAP

YOLOv5s 0.65 0.50 0.57 0.55
YOLOv5m 0.69 0.57 0.62 0.61
YOLOv5l 0.72 0.59 0.65 0.65
YOLOv5x 0.70 0.62 0.66 0.67

4.1.2. Evaluation Results of the Best YOLO Candidate with Various Activation Functions

Once YOLOv5x is selected as the best candidate for the proposed VPP framework, we
conduct another optimization study to select the optimal activation function that could
support YOLOv5x, achieving better prediction results. Six activation functions are used to
achieve this goal: LeakyReLU, ReLU, Sigmoid, Mish, SiLU, and Tanh. YOLOv5x is sepa-
rately trained and evaluated six times according to each activation function. Meanwhile,
YOLOv5x is fine-tuned using the initial curated dataset over 250 epochs with the default
hyperparameter initialization strategy. The training and evaluation results over 250 epochs
using all of the activation functions are compared, as shown in Figures 11 and 12.
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Figure 11. Training and validation loss functions of the proposed VPP framework based on the
best candidate of the selected YOLOv5x over 250 epochs. The deep learning YOLOv5x is separately
trained using six different activation functions: LeakyReLU, ReLU, Sigmoid, Mish, SiLU, and Tanh.

Figure 12. Evaluation prediction performance of the proposed VPP framework using different
activation functions of LeakyReLU, ReLU, Sigmoid, Mish, SiLU, and Tanh.
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From the empirical results, the selected activation functions of LeakyReLU, Sigmoid,
Mish, and SiLU could similarly support the YOLO model to achieve better prediction
performance than Tanh and ReLu. The worst evaluation performance is achieved using
the Tanh activation function. To conclude, we choose to use the Mish default activation
function for conducting the rest of our experiments in this study.

4.1.3. Influence of Hyperparameter Optimization on Prediction Performance

To further improve the prediction performance of YOLOv5x, an additional experimen-
tal study is conducted to investigate the most efficient training hyperparameter initialization
strategy. The YOLOv5x model is separately trained using three different hyper-parameters
and initialization strategies, which are hyp.scratch-low (https://github.com/ultralytics/
yolov5/blob/2da2466168116a9fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-low.yaml
(accessed on 23 June 2022)), hyp.scratch-med (https://github.com/ultralytics/yolov5
/blob/2da2466168116a9fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-med.yaml
(accessed on 23 June 2022)), and hyp.scratch-high (https://github.com/ultralytics/yolov5
/blob/2da2466168116a9fa81f4acab744dc9fe8f90cac/data/hyps/hyp.scratch-high.yaml
(accessed on 23 June 2022)). YOLOv5 has around 30 hyperparameters utilized for a variety
of training configurations. These values are specified in *.yaml files located in the/data
directory. Better initial predictions will provide better ultimate outcomes; thus, it is essential
to establish these parameters correctly before evolving. The same training settings and
deep learning YOLOv5x structure are used for each instance of training. By conducting
this study, the training and validation loss function values could be reduced with the best
evolved hyperparameters that can also support YOLOv5x to achieve better prediction
performance results. Figures 13 and 14 depict the training evaluation results of YOLOv5x
using various hyperparameters and initialization strategies.

Figure 13. Training and validation loss functions of the proposed VPP framework over 250 epochs.
The deep learning YOLOv5x is separately trained using three different hyperparameters and initial-
ization strategies: hyp.scratch-low, hyp.scratch-med, and hyp.scratch-high.
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Figure 14. Evaluation prediction performance of the proposed VPP framework using three different
hyperparameters and initialization strategies: hyp.scratch-low, hyp.scratch-med, and hyp.scratch-high.

The quantitative average evaluation results of the best YOLO model using three
hyperparameters and initialization strategies are summarized in Table 2. As a result of
varying training settings, the prediction performance in terms of mAP is increased from
53% using hyp.scratch-low to 71% with hyp.scratch-high. Indeed, the hyperparameter
optimization process shows a significant improvement with 18% mAP of the prediction
performance. It is important to investigate the multiple factors that could evolve the
hyperparameters to boost the model’s prediction performance.

Table 2. The evaluation performance of YOLOv5x with three different hyperparameters and initial-
ization strategies.

AI Model Precision Recall F1-Score mAP_0.5

hyp.scratch-low 0.61 0.50 0.55 0.53
hyp.scratch-med 0.70 0.58 0.63 0.62
hyp.scratch-high 0.74 0.66 0.70 0.71

By using such training remedies and training setting optimization the prediction
performance of the proposed VPP framework is significantly improved. Comparing the
results in Tables 1 and 2, we can clearly show an improvement in performance by 15% and
5% in terms of F1-score and mAP, respectively.

4.2. Prediction Evaluation Performance during the Deep Active Learning (DAL) Strategy

After selecting the best AI model (i.e., YOLOv5x) and optimizing the model’s training
activation functions and hyperparameters, the DAL strategy is used to automatically
annotate the reset of the unlabeled VP images in our MOMRAH private database. For the
DAL query image selection strategy, we use the visual similarity approach of voxel51 brain,
which can easily query and sort images to automatically find similar image examples with
initial annotated ones through an app’s point-and-click interface.

For the first DAL cycle, the new subset of unlabeled images is selected based on higher
similarity with the previous labeled set, which is the initial annotated VP images. The
new subset of selected images is then automatically labeled via the DAL strategy based on
the previous fine-tuned AI model using the initial annotated images. Then, the new and
initial labeled image sets are merged and used to fine-tune the deep learning model again
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for the next DAL cycle. This means that the number of annotated images for the coming
DAL cycle will be increased, which makes the prediction results better than those of the
previous cycle. For each DAL cycle, we select 500 new images based on high similarity
with the previous labeled images. As shown in Figure 15, the prediction performance of
the AI model is dramatically increased with an increase in the number of labeled images of
each DAL cycle. Indeed, the visual similarity approach is compared with other approaches,
such as random sampling and entropy-based sampling for instance selection and finding
images or objects within similar examples. For each selection approach the DAL strategy
based on YOLOv5x is separately conducted, and the prediction results over all of the
cycles are presented in Figure 15. This means that YOLOv5x is fine-tuned for each DAL-
based query selection approach using the same deep learning structure and optimized
training settings as concluded in Section 4.1. Each point in Figure 15 represents the mean
of three trials utilizing different shuffled initial labeled images. In the last active learning
cycle, the prediction performance of 89% mAP is achieved using the visual similarity
approach, which is better than the random baseline approach by 9.88%. The entropy
selection approach achieves prediction performance with mAP of 85.05%, outperforming
the random baseline approach with mAP of 80.65%. Indeed, the entropy method could not
capture the uncertainty of bounding box regression, which is the essential part of object
detection. Thus, we decide to use the annotation results using the visual similarity selection
approach to conduct our experimental results in this study. We can conclude that the query
selection approach plays a crucial role in improving the final prediction performance of the
proposed VPP framework.

Figure 15. Active learning results of the object detection via the proposed VPP framework used to
automatically annotate the VP objects in the VP images in our MOMRAH database.

4.3. Prediction Evaluation Results Using the Whole Annotated Dataset

Another study is conducted after annotating all of the VP images in our MOMRAH
database. This is to investigate the capability of the proposed AI-based VPP framework using
the manipulated MOMRAH big data and check the prediction performance improvements.
Figures 16 and 17 illustrate the prediction behavior of the proposed AI framework using
the best AI model (i.e., YOLOv5x). Up to the tenth epoch, the loss values of the box, object,
and classification loss functions decrease dramatically for the validation dataset, exhibiting a
rapid decline. Meanwhile, the prediction performance reached its peak in terms of evaluation
metrics with 88% precision, 89% recall, and 92% mAP. Such performance is achieved as the
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best training weights, which are fine-tuned at epoch number 50 by using the early stopping
strategy. The prediction performance is improved in comparison with the small initial dataset
by 18% precision, 27% recall, and 25% mAP. This means that the DAL annotation process of
the VP images is a key to achieving such promising evaluation performance.

Figure 16. Training and validation loss functions of the proposed VPP framework based on YOLOv5x
over 50 epochs using whole DAL-annotated VP images.

Figure 17. Evaluation prediction performance of the proposed VPP framework based on YOLOv5x
using whole DAL-annotated VP images.
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4.4. Evaluation Comparison Results

This section presents an evaluation comparison of the proposed VPP framework using
various state-of-the-art AI-based object detectors: MobileNetSSDv2 [25], EfficientDet [26],
Faster R-CNN [27], Detectron2 [28], and YOLO [6,12,14,29,30]. All of these AI detectors are
trained and evaluated using our annotated MOMRAH dataset in a multi-class prediction
scenario. Meanwhile, the same training settings are used to fine-tune these deep learn-
ing detectors. Such target detection methods are selected to find the optimal prediction
performance of the proposed VVP framework applicable for real-time VP applications.
Table 3 shows the evaluation comparison results of the proposed VPP framework based on
five different AI detectors. It is clearly shown that the optimal prediction performance is
achieved using YOLOv5x, with 88% precision, 89% recall, and 92% mAP. Comparing the
detection capabilities of several object detection methods, the proposed method achieved
the best balance between detection performance and detection speed, while also being
hardware-friendly and hence more practical. After optimization, the proposed VPP frame-
work could recognize 319 frames per second (FPS), which is better than other predictors.
Recently, YOLOv7 was released after we finalize our methodology and experimental stud-
ies; however, we also evaluated it as the most current version of YOLO [7], which provided
good performance in terms of mAP and FPS. In the future, YOLOv7 will be considered
as the backbone of the suggested framework for more prediction improvements. Such
impressive results provide us with evidence that the proposed VPP framework based on
the YOLO predictor is the best solution, since it shows an encouraged capability to be
applicable for real-time applications.

Table 3. Direct evaluation prediction performance of the proposed VPP framework using our
annotated MOMRAH dataset. Different state-of-the-art deep learning object detectors are used for
this study: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, and YOLO.

AI Predictor Precision Recall F1-Score mAP@0.5
Inferencing
Time (Msec)

FPS

MobileNetSSDv2 0.70 0.58 0.63 0.62 600 13.2
EfficientDet 0.74 0.66 0.70 0.72 583.1 8.32

Faster R-CNN 0.84 0.77 0.80 0.80 540.2 98.2
Detectron2 0.87 0.86 0.86 0.89 342.0 120.2
YOLOv5x 0.88 0.89 0.88 0.92 22.7 319
YOLOv7 0.89 0.88 0.89 0.93 18.5 325

Moreover, some qualitative evaluation results are demonstrated in Figure 14 to show
the performance of the proposed VPP-based framework using different AI predictors. The
final model predictor could correctly identify all types of visual pollution. Therefore, such
a sophisticated detective system might be used in real-time monitoring applications. As
shown in Figure 18 and Table 3, the proposed VPP framework has the best prediction
performance using the YOLOv5x perdition model. The lowest evaluation performance is
recorded using MobileNetSSDv2, since an average of 62% mAP is achieved. Meanwhile,
the predictors YOLOv5x and Detectron2 have almost similar prediction behaviors, with
slightly better performance in the case of YOLO by 1% precision, 3% recall, and 3% mAP.
As is presented in the last row of Figure 18, the proposed VPP framework has the capability
to predict multiple objects in a simultaneous manner regardless of the class type. Both
potholes and barriers are perfectly predicted via YOLOv5x with very high confidence
scores of 93%, while EfficientDet fails to detect pothole objects. In cases where the input
frame has no objects (i.e., not polluted), the VPP framework will still work and tell us that
there is no pollution on this image. Therefore, no object bounding box or confidence score
will be generated. This is a general aspect of any machine-based learning system (robotics,
CAD systems, VP frameworks, and so on).
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Figure 18. Qualitative evaluation results of the proposed VPP framework for VP detection and
classification using AI predictors: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2, and
YOLO. The prediction object surrounding the box with its confidence score is superimposed on the
original image for each AI predictor. The confidence score or classification probability is highlighted
inside a small white box besides a detected object.

For indirect comparison with the existing research findings, we summarize in Table 4
some relative studies that have been conducted for VP prediction. Major research studies
were conducted to identify solely potholes from road images. For our study, we propose
a comprehensive AI-based framework to predict multiple objects simultaneously, such
as excavation barriers, potholes, and dilapidated sidewalks. Additionally, we show our
performance using precision, recall, and F1-score alongside the impressive mAP evaluation
index, which is important for providing us with an impression about model prediction
reliability and feasibility. Such an indirect compression always lacks a fair work comparison
since the datasets, execution environments, parameter settings, and AI models are totally
different. However, our study is compared with recent AI studies to understand the
objective of the research area and investigate the work limitations as well as future work.
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Table 4. Comparison evaluation results of the proposed VPP framework against the latest works
available in the literature.

Reference Dataset Target Classes Methodology
Evaluation Performance (mAP) (%)

Precision Recall F1-Score mAP

Aparna et al.
(2019) [43]

Road thermal
images Pothole Classification via

CNN-based ResNet 81.15 - - -

M. H. Yousaf
et al. (2018)

[44]

Private dataset:
120 pavement

images
Pothole Classification via

SVM 71.59 - - -

Ji-Won Baek
et al. (2020)

[45]

Private road
damage images Pothole YOLO-based

algorithm 83.45 - - -

Pham et al.
(2020) [28]

2020 IEEE Global
Road Damage Cup

Challenge

Longitudinal crack,
transverse crack,

alligator crack, and
pothole

Faster-RCNN - - 51.40 -

Proposed *
Private

MOMRAH
Dataset

Excavation
barriers, potholes,
and dilapidated

sidewalks

Simultaneous
detection and

classification via
AI-based VPP

framework

89.0 88.0 89.0 93.0

* The evaluation result of the proposed VPP is recorded using YOLOv7.

4.5. Work Limitation and Future Work

The scarcity of annotated VP images in a multi-class manner for both detection and
classification tasks is always a challenge for supervised AI models. The deep active learning
strategy is used for the automatic labeling process but still needs a lot of labor attention,
concentration, and effort, since experts must be involved with the machine to correct the
automatic labels. Including more classes in our dataset is another challenge, since the
individuals that collect the VP images always have different mobile phones with different
camera settings, which leads to diversity in image settings.

We have a future plan to continue improving prediction performance using advanced
AI approaches such as explainable AI (XAI) to also provide explainable results besides
label predictions. Meanwhile, the latest emerging AI techniques, such as transformer-based
and knowledge distillation, could be good candidates for more prediction improvement
once they are integrated with YOLO in a hybrid scenario, as in our preliminary study [46].
Another plan is to increase the number of classes of visual pollution (VP) to improve the
proposed VPP framework to be able to predict several objects in different environments.

4.6. Ablation Study

Our private dataset is publicly published with three classes of excavation barriers,
potholes, and dilapidated sidewalks. Unfortunately, we could not find similarly catego-
rized public datasets from different sources with multiple classes to perform an ablation
study using multiple classes. However, to conduct an ablation study using unseen VP
images from different resources, we found a public dataset called “Pothole detection
dataset” [47] but with a single pothole class with 1482 VP images. The proposed VPP frame-
work is re-tested and verified using all VP pothole images. We achieved 81% precision,
75% recall, and 70% mAP, which is more reasonable and acceptable performance, as shown
in Figure 19. Moreover, transfer learning is a recent emerging strategy that is expected to
assist in producing better predication evaluation results than those received by training
from scratch. As mentioned above, transfer learning is a great technique for rapidly re-
training a model on new data while retraining the whole network. The proposed model is
initialized with weights from a pretrained COCO model (YOLOv5X), where the backbone
layers serve as feature extractors by passing the freeze argument while training. Therefore,
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the domain adaptations are automatically archived when evaluating the trained model on
different datasets.

Figure 19. Precision–recall curve on a public dataset which only has images of potholes.

5. Conclusions

This paper proposes an AI-based VPP framework to detect and classify different
VP objects in a multi-class simultaneous and classification scenario. To train and evalu-
ate the proposed VPP model, the deep active learning (DAL) approach plays a crucial
role in annotating our MOMRAH dataset’s VP images. The DAL strategy is applied via
three different query image selections: random, entropy-based, and visual similarity, achiev-
ing mAP performances of 80.65%, 85.05%, and 89%, respectively. Using annotated big data
via DAL, the prediction performance of the proposed VPP framework is improved by 18%
precision, 27% recall, and 25% mAP. Indeed, the VPP framework is constructed based on
five state-of-the-art AI predictors: MobileNetSSDv2, EfficientDet, Faster RCNN, Detectron2,
and YOLO. A comprehensive experimental evaluation study is conducted to select the
best AI predictor. The derived evaluation results show that VPP-based YOLO outperforms
other predictors, achieving mAP of 92% compared with the figures of 62%, 72%, 80%, and
92% for MobileNetSSDv2, EfficientDet, Faster RCNN, and Detectron2, respectively. Based
on the recognition objects, the hyperparameters of the best detector are determined via a
comprehensive optimization strategy where transfer learning is used to improve predic-
tion performance. This study compared the backbone of YOLOv5 networks with various
widths and depths, and the results demonstrated that, under identical setting conditions,
YOLOv5x had superior usability in terms of detection performance, model weight size, and
detection speed. This method achieved an optimal balance between detection performance
and detection speed while being hardware-friendly, making it more applicable. Over public
roads, the optimized YOLOV5x achieved 92 percent mAP in detecting barriers, potholes,
and sidewalks.
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Abstract: A mammography provides a grayscale image of the breast. The main challenge of analyzing
mammography images is to extract the region boundary of the breast abnormality for further analysis.
In computer vision, this method is also known as image segmentation. The variational level set
mathematical model has been proven to be effective for image segmentation. Several selective types of
variational level set models have recently been formulated to accurately segment a specific object on
images. However, these models are incapable of handling complex intensity inhomogeneity images,
and the segmentation process tends to be slow. Therefore, this study formulated a new selective
type of the variational level set model to segment mammography images that incorporate a machine
learning algorithm known as Self-Organizing Map (SOM). In addition to that, the Gaussian function
was applied in the model as a regularizer to speed up the processing time. Then, the accuracy of the
segmentation’s output was evaluated using the Jaccard, Dice, Accuracy and Error metrics, while the
efficiency was assessed by recording the computational time. Experimental results indicated that
the new proposed model is able to segment mammography images with the highest segmentation
accuracy and fastest computational speed compared to other iterative models.

Keywords: active contour; mammography images; selective segmentation; SOM; variational level set

MSC: 68U10; 00A71

1. Introduction

Nowadays, cancer has become a leading cause of death worldwide. The Ministry
of Health [1] stated that breast cancer is a serious disease that primarily affects women.
Breast cancer is a type of cancer that is found in the breast tissue and happens when cells
in the breast grow in an uncontrolled way. Spreafico et al. [2] stated that this cancer can
affect both males and females, however, it is more common among females compared to
males. Mammography, MRI and ultrasound are several types of breast cancer diagnostic
techniques that function to detect breast abnormalities at an early stage and help to improve
the chance of successful treatment [3]. Among all those techniques, mammography, which
is a breast cancer screening technology that provides grayscale images of the breast, is the
gold standard technique used for early-stage detection of breast abnormalities.
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In medicine, segmentation plays an important role and has been widely developed in
medical imaging technologies such as mammograms since it is an automated diagnostic
system that can extract the boundary of the abnormality region [4]. Segmentation is also
known as the process of splitting or extracting an image into several segments or objects
that helps to reduce the image’s complexity for subsequent analysis. The variational
segmentation approaches were normally derived in a level set mathematical framework by
minimizing the cost energy function using calculus of variations [5,6], while non-variational
segmentation approaches were usually based on the heuristic approach [7]. There is a wide
range of literature on the non-variational (non-level set) segmentation method in extracting
the abnormality region using mammography images. For instance, the fuzzy technique [6],
Intuitionistic Fuzzy Image Processing [8], clustering-based methods [9–12] and neural
network [13]. Other than that, deep learning methods such as the U-net model [14] are
frequently used for mammogram image segmentation [15]. The non-variational approaches
had tremendous use and success in the past and can obtain fast solutions; however, they
are too reliant on the amount of data [16], which is hard to implement when the amount
of time needed is short, with drawbacks in terms of accuracy since it was based on the
heuristic approach [7].

On the other hand, variational level set-based segmentation approaches are more struc-
tured and capable of achieving high speeds, accuracy and performance stability according
to [7,17]. According to [18], variational level set-based segmentation techniques can be
divided into two main categories: level set-based global segmentation (global variational)
and level set-based selective segmentation (selective variational). Global segmentation
necessitates segmenting the boundary of all objects in an input image. Meanwhile, selective
segmentation only segments the desired object from an input image according to specific
geometrical restrictions.

In the literature, well-known global variational active contour models were imple-
mented by [19] on grayscale mammography images. Meanwhile, in 2017, Ciecholewski [20]
applied the Active Contour Without Edges (ACWE) model [21] but was unable to produce
a satisfactory result when faced with a strong intensity inhomogeneity of images. Because
of that, the authors in [22] combined the ACWE model with the Fuzzy C means clustering
method to handle the intensity inhomogeneity of images and reduce the presence of noise.
Other than that, Somroo and Choi [23] introduced a novel shifted Heaviside signed pres-
sure force (SPF) function. However, the SPF function fails to segment the targeted object
that is near the neighbor object or the boundary is fuzzy. Two other related works on the
level-set global segmentation method using mammography images are [24,25].

Indeed, all the studies mentioned above are for level set-based global segmentation,
as all features in an image should be segmented. However, the result produced by global
segmentation may have poor segmentation quality when the targeted abnormality regions
have almost similar intensities or are very close to healthy tissue boundaries, have fuzzy
contours, low contrast and the presence of noise [26]. Therefore, variational level set-based
selective image segmentation is more convenient to implement as this method aims to ex-
tract a single target object from an image using additional geometric constraint information.

Selective segmentation is concerned with segmenting or extracting a specific object
in a given image, depending on minimal user input [27–29]. There is scarce research
involving variational level set-based selective segmentation for grayscale mammography
images. The related research on level set-based selective models for grayscale images was
introduced by [26,30,31]. Other than that, according to [31,32], the state-of-the-art model in
selective segmentation is the Interactive Image Segmentation (IIS) model [33]. In [33], they
introduced the IIS model with two sets of geometric constraints, namely geometric points
for the inside and outside of a targeted object. This model is capable of segmenting both
grayscale and vector-valued images. The most recent and effective research on selective
segmentation techniques was proposed by [34]. They reformulated the model that was
completed by [18] by incorporating an image enhancement technique in the fitting term
to segment mammography images. While the result was successful, the total variation
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(TV) term used in the formulation is computationally expensive, which will slow down
the segmentation process [35]. In addition, their model cannot segment mammography
images with complex intensity inhomogeneity.

One effective approach to segment an image with intensity inhomogeneity is to
incorporate an unsupervised neural network machine learning algorithm, namely the Self-
Organizing Map (SOM), in a variational level set formulation called SOMCV as proposed
by Abdelsamea et al. [36]. Although the SOMCV model was formulated in a global
segmentation framework, we found that the SOMCV is capable of selectively segmenting
a targeted object in an image due to the advantage of using SOM in the formulation. This
can be achieved by placing the initial contour relatively close to the targeted object.

Therefore, with these problems and motivations, the aim of this study is to formulate
a new selective type of the variational level set model to segment mammography images
that incorporates the ideas of selective segmentation from [34] and the idea of using
the unsupervised neural network algorithm, SOM, from [36]. The next section of this
paper provides a brief overview of the models that are related to this study, followed by
formulations of the proposed models. Then, the experimental outcomes of the existing and
proposed models are presented.

2. Review of the Existing Models

This section provides a brief review of the models that are significant to this study.

2.1. Chan and Vese (CV) Model

Active Contour Without Edges by [21], which is formulated based on [37], is very
important in variational image segmentation. In this model, it is assumed that the image
u0 = u0(x, y) is constructed using two regions where the intensities of unknown values
d1 and d2 are approximately piecewise constant, separated by an unknown curve or contour
D. Let the image domain be Ω. Assume the detected object is represented by the region Ω1
with the value d1 inside the curve D, whereas the intensity of u0 is approximated by the
value d2 in Ω2 = Ω\Ω1, outside the curve D.

The level set technique, developed by [38], is applied, in which the unknown curve
D is represented by the zero level set of the Lipschitz function ϕ. Thus, the CV model is
defined as:

min
ϕ,d1,d2

CV(ϕ, d1, d2),

CV(ϕ, d1, d2) = μ
∫

Ω|∇H(ϕ)|dΩ + α+
∫

Ω(u0 − d1)
2H(ϕ)dΩ

+α− ∫
Ω(u0 − d2)

2(1 − H(ϕ))dΩ

(1)

Here, the non-negative parameters μ, α+ and α− represent the weights of the reg-
ularizing term and the fitting term, respectively. They introduce a Heaviside function,
H(ϕ(x, y)), and a Dirac delta function, δ(ϕ(x, y)), with small (near zero) constant ε for curve
stability [39]. Then, keeping d1 and d2 consistent in CV(ϕ, d1, d2) leads to the following
Euler Lagrange (EL) Equation for ϕ:⎧⎨⎩ μδ(ϕ)∇.

( ∇ϕ
|∇ϕ|

)
− α+δ(ϕ)(u0 − d1)

2 + α−δ(ϕ)(u0 − d2)
2 = 0 in Ω,

δ(ϕ)
|∇ϕ|

∂u0

∂
→
n
= 0 on ∂Ω.

(2)

where |∇ϕ| is the norm of the gradient of the level set function ϕ, also known as the TV
term. The finite difference method is then applied to solve the EL equation. Nonetheless,
the CV model produces unsatisfactory results when segmenting a targeted object in intense
inhomogeneity vector-valued images and has a high computational cost due to the existence
of a highly non-linear curvature term ∇.

( ∇ϕ
|∇ϕ|

)
, as shown in Equation (4).
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2.2. SOM-Based Chan–Vese (SOMCV) Model

Abdelsamea et al. [36] successfully developed a global segmentation model based on
the unsupervised neural network SOM approach, called the SOM-based Chan–Vese model
(SOMCV). It works by directly incorporating information from the prototype neurons in
a trained SOM to decide whether to shrink or expand the existing contour during the
iterative optimization process.

During the training process, the neurons of each SOM are topologically arranged in
the corresponding map based on their prototypes (weights), and the neurons at a certain
geometric distance from them are moved toward the current input using the classical
self-organization learning rule of the SOM, expressed by:

sp(t + 1) := sp(t) + η(t)gcp(t)
[
u(tm)

0 (xt, yt)− sp(t)
]
, (3)

where η(t) is the learning rate defined as:

η(t) := η0 exp
(
− 1

κη

)
, (4)

The intensity u(tm)
0 (xt, yt) of a randomly-extracted pixel (xt, yt) of a training image is

applied as the input to the SOM at time t = 0, 1, 2, . . . t
(tm)

max − 1, where t
(tm)

max is the number
of iterations in the SOM’s training. The function gcp(t) is a neighborhood kernel at time
t of the neuron p around the Best-Matching Unit (BMU) neuron c defined as

gcp(t) := exp

(
−

∣∣∣∣mb − mn
∣∣∣∣2

2m2(t)

)
, (5)

where mb, mn ∈ R2 are the location vectors of neurons b and n in the output neural map,
and m(t) is a time-decreasing neighborhood radius which is expressed as follows:

m(t) := m0 exp
(
− t

κm

)
, (6)

where m0 > 0 is the initial neighborhood radius of the map and κm > 0 is another time
constant. Once the SOM’s training has been achieved, the trained network is adapted online
in the testing session to estimate and describe globally the foreground and background
intensity distributions of an identical test image u0(x, y) during the evolution of the contour
D. For each neuron p, the quantities

s+k := argminp
∣∣sp − mean(u0(x, y)|(x, y) ∈ in(D))

∣∣, (7)

s−k := argminp
∣∣sp − mean(u0(x, y)|(x, y) ∈ out(D))

∣∣, (8)

which are the distances of the associated prototype sp from the mean intensities of the
current foreground and background approximations, respectively, are also calculated
repeatedly throughout the testing session. Therefore, the energy function of the proposed
SOMCV model is defined as:

ESOMCV(ϕ) := α+
∫

Ω
e+H(ϕ(x, y))dΩ + α−

∫
Ω

e−(1 − H(ϕ(x, y)))dΩ. (9)

where α+, α− ≥ 0, ϕ is the segmentation curve, H is the Heaviside function, e+(x, y, D) :
=

(
u0(x, y)− s+k (D)

)2 and e−(x, y, D) :=
(
u0(x, y)− s−k (D)

)2. The model can be itera-
tively solved using the finite differences method.
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2.3. Primal-Dual Selective Segmentation 2 (PD2) Model

Recently, Ghani et al. [34] developed a selective segmentation model, namely the
Primal-Dual Selective Segmentation 2 (PD2). This model is an improvement on the prior
model proposed by Jumaat and Chen [18], termed the Primal-Dual Selective Segmentation
(PD) model. The PD model may yield disappointing results for low-contrast images.
Therefore, Ghani et al. [34] modified the PD model by replacing the fitting term with an
image enhancement algorithm which can enhance low-contrast images. Now, we will
introduce the PD model.

Assume u0 = u0(x, y) as the image in domain Ω. Here, the marker set
A =

{
mj =

(
xj, yj

) ∈ Ω, 1 ≤ j ≤ n
}

is introduced to generate the polygon S with marker
points n(≥ 3) that will be set close to the targeted object. Rd(x, y) functions as the Euclidean
distance of each point (x, y) ∈ Ω from its nearest points of (xs, ys) ∈ S:

Rd(x, y) =
√
(x − xs)

2 + (y − ys)
2. (10)

Then, the PD model is defined as:

min
a,b∈[0,1]

{PD(a, b) = μ
∫

Ω
|∇a|gdΩ +

∫
Ω

rb dΩ + θ
∫

Ω
Rdb dΩ +

1
2τ

∫
Ω
(a − b)2dΩ} (11)

where μ, θ and τ indicate the weightage parameters used to control the TV function, |∇a|g,

distance function, Rd and penalty term, (a − b)2, respectively. In addition, the function r
is defined as the fitting term where r = (k1 − u0)

2 − (k2 − u0)
2, b is a dual variable and

g(x, y) is known as the edge detector function. k1 and k2 are the unknown constants that
specify the average intensity of input image inside and outside the contour a.

Let uHS be the output image by applying the image enhancement approach that will
enhance the contrast of an input image so that the hidden information can be revealed for
a better segmentation result. The modified PD model, termed PD2, is defined by replacing
the fitting term, u0, in Equation (11) with an image enhancement algorithm (uHS) as follows:

PD2(a, b) = μ
∫

Ω

(
|∇a|g +

[
(k1 − uHS)

2 − (k2 − uHS)
2
]
b + θRdb +

1
2τ

(a − b)2
)

dΩ. (12)

Equation (12) is solved using an alternating minimization approach.

3. The Proposed Models

The PD2 model [34] may lead to a slow segmentation process due to the existence of the
total variation function. Moreover, this model cannot handle images with complex intensity
inhomogeneity. Therefore, the main idea of this study is to formulate a new selective type
of the variational level set model to segment mammography images that incorporate the
ideas of selective segmentation from [34] and the idea of using SOM from [36].

Thus, the variational energy functional minimization problem of the proposed model,
termed the Selective Self-Organizing Map (SSOM), is defined as:

ESSOM(D) := α+
∫

in(D)

(
u0(x, y)− s+k (D)

)2dxdy + α− ∫
out(D)

(
u0(x, y)− s−k (D)

)2dxdy
+

∫
inside(D) θRd(x, y)dxdy.

(13)

The functions s+k and s−k are similarly defined as given in Equation (7) and (8), respectively.
The parameters α+, α− ≥ 0 represent the weights of two image energy terms inside and
outside the contour, respectively, while θ > 0 is known as the area of parameter of the
distance fitting term. The value of θ in each image changes according to the targeted object.
If the area parameter is set to a value that is too large, the outcome will just be the polygon
S, which is undesirable. To compute Equation (13) in whole image domain Ω, the contour
curve D is then replaced with the level set function ϕ, obtaining:
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min
ϕ

ESSOM(ϕ) := α+
∫

Ω H(ϕ)
(
u0(x, y)− s+k (D)

)2dΩ

+α− ∫
Ω(1 − H(ϕ))

(
u0(x, y)− s−k (D)

)2dΩ +
∫

Ω θH(ϕ)RddΩ,
(14)

where ϕ(x, y) and Sd(x, y) are replaced with ϕ and Rd, respectively, for simplicity. The
Heaviside step function H and Dirac function δ are defined as

H(ϕ(x, y)) =
1
2

[
1 +

2
π

tan−1
( ϕ

ε

)]
(15)

δ(ϕ(x, y)) = H′(ϕ(x, y)) =
ε

π(ε2 + φ2)
, (16)

where ε is a constant used to avoid values of H and δ that tend to be zero, which potentially
leads to the failure of the object to be extracted if it is far from the initial contour.

3.1. Derivation of Euler Lagrange (EL) Equation

The optimization problem of the energy function in Equation (14) can be solved
using the Calculus of Variation technique to obtain the EL equation, ∂ESSOM(ϕ)/∂ϕ. The
evolution of the level set function ϕ(x, y) should satisfy the EL equation. To derive the EL
equation, let the integrand I1(ϕ) = H(ϕ), I2(ϕ) = (1 − H(ϕ)) and the Taylor expansion
equation at i = 0 be defined as follows:

f (i) = f (0) + f ′(0)a + O
(
i2
)

=
(
x2 + y2)q

+ q
(
x2 + y2)q−1

(2xg1 + 2yg2)i + O
(
i2
) (17)

Afterwards, by adding the variation ην to the level set function ϕ such that ϕ = ϕ+ ην,
where ν in an arbitrary test function and η is a close-to-zero real parameter, it becomes

I1(ϕ + ην) = H(ϕ + ην), I2(ϕ + ην) = 1 − H(ϕ + ην). (18)

Next, we differentiate I1(ϕ + ην) = H(ϕ + ην) and I2(ϕ + ην) = 1 − H(ϕ + ην) with
respect to η as follows:

d
dη

I1(ϕ + ην) =
d

dη
H(ϕ + ην) = H′(ϕ + ην)ν = δε(ϕ + ην)ν, (19)

d
dη

I2(ϕ + ην) =
d

dη
(1 − Hε(ϕ + ην)) = −Hε

′(ϕ + ην)ν = −δε(ϕ + ην)ν. (20)

Therefore, applying Taylor expansion, which is Equation (17), at η = 0 will give

I1(ϕ + ην) = I(ϕ) + I′(ϕ)η + O
(

η2
)
= Hε(ϕ) + δε(ϕ)νη + O

(
η2

)
, (21)

and

I2(ϕ + ην) = I2(ϕ) + I2
′(ϕ)η + O

(
η2

)
= (1 − Hε(ϕ))− δε(ϕ)νη + O

(
η2

)
. (22)

Now, the first variation of ESSOM(ϕ) in Equation (14) is defined as

∂ESSOM(ϕ)

∂ϕ
= lim

η→0

ESSOM(ϕ + ην)− ESSOM(ϕ)

η
= 0 (23)

258



Mathematics 2023, 11, 976

Before the evaluation of Equation (31), we initially compute∫
Ω

ESSOM(ϕ+ηv)−ESSOM(ϕ)
η dΩ

= 1
η

∫
Ω

[
α+

(
u0(x, y)− s+k (D)

)2(Hε(ϕ) + δε(ϕ)vη + O
(
η2) − Hε(ϕ)

)
+α−(

u0(x, y)− s−k (D)
)2(1 − Hε(ϕ)− δε(ϕ)vη + O

(
η2) − (1 − Hε(ϕ))

)
+θRd

(
Hε(ϕ) + δε(ϕ)vη + O

(
η2) − Hε(ϕ)

)]
dΩ

(24)

Simplifying Equation (24), it becomes∫
Ω

ESSOM(ϕ+ηv)−ESSOM(ϕ)
η dΩ = 1

η

∫
Ω

[
α+

(
u0(x, y)− s+k (D)

)2(
δε(ϕ)vη + O

(
η2))

+α−(
u0(x, y)− s−k (D)

)2(−δε(ϕ)vη + O
(
η2))

+θRd
(
δε(ϕ)vη + O

(
η2))]dΩ

(25)

Next, we evaluate Equation (23) using information from Equation (25):∫
Ω

[
δε(ϕ)ν

(
α+

(
u0(x, y)− s+k (D)

)2 − α−(
u0(x, y)− s−k (D)

)2
+ θRd

)]
dΩ = 0 (26)

The integrand in Equation (26) will be zero if

δε(ϕ)ν
(

α+
(
u0(x, y)− s+k (D)

)2 − α−(
u0(x, y)− s−k (D)

)2
+ θRd

)
= 0 (27)

Finally, since it should be satisfied with the arbitrary function ν, the EL equation for the
SSOM model is

− δε(ϕ)
(
−α+

(
u0(x, y)− s+k (D)

)2
+ α−(

u0(x, y)− s−k (D)
)2 − θRd

)
= 0 (28)

Hence, applying the gradient descent method will obtain the following gradient descent flow:

∂ϕ

∂t
= −∂ESSOM(ϕ)

∂ϕ
= δε(ϕ)

(
−α+

(
u0(x, y)− s+k (D)

)2
+ α−(

u0(x, y)− s−k (D)
)2 − θRd

)
(29)

Equation (29) is solved and discretized using the forward finite differences method. Here,
∂φ
∂t is denoted as the progression of the level set function ϕ(x, y) with respect to artificial
time t. Note that the direction of the progression of ϕ(x, y) is in the opposite direction of
the EL equation, i.e., −∂ESSOM(ϕ)/∂φ, which is the steep descent direction of the energy
function ESSOM(ϕ).

In order to preserve the regularity of the function ϕ(x, y), which is essential to produce
a smooth segmentation contour, we replaced the traditional TV regularized term used in
the PD2 model with the Gaussian function Gσ = e−(x2+y2)/2σ2

, where σ is represented as
the standard deviation, which controls the smoothness of the contour.

The Gaussian function is convolved with the level set function ϕ(x, y), and the respec-
tive output in each iteration is used as the initial condition for the next iteration. As a result,
the requirement to solve the highly non-linear curvature term, which is computationally
expensive, can be eradicated thus making the evolution of the function ϕ(x, y) in our
proposed SSOM model significantly more efficient.

3.2. A New Variant of the SSOM Model

Mammography images are known to be low contrast, which can lead to unsatisfactory
segmentation results. Given a grayscale mammography image, its histogram consists
of its intensity value, which is a graph indicating the number of times each intensity
value occurs in the image. We can deduce a great deal about the appearance of an image
from its histogram. For example, Figure 1 indicates a mammography image with its
histogram profile.
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(a) (b) 

Figure 1. A mammography image (a) with its histogram profile (b).

Based on Figure 1, the mammography image in Figure 1a has low contrast because its
intensity values are clustered at the upper end as indicated in the histogram in Figure 1b.
A low-contrast image may affect the segmentation output. In a well-contrasted image,
the intensity values would be well spread out over much of the intensity value (gray
levels) range.

We can spread out the intensity values in a specified range by applying the piecewise
linear function defined as

y =
d − c
b − a

(x − a) + c (30)

Based on the function, pixel values less than a are all converted to c, and pixel values greater
than b are all converted to d. The output intensity, y between c and d is computed based on
the Equation (30). Here, x is the input intensity between a and b. This procedure has the
effect of stretching or spreading the intensity values of the input image to the interested
output intensity values. In this study, we set a as the bottom 1% of all input intensity values,
b as the top 1% of all input intensity values, while c and d equal are 0 and 1, respectively.
These settings show satisfactory results as demonstrated in [34].

Figure 2 demonstrates the output intensity, the corresponding histogram of the
mammogram image in Figure 1a and the output image after applying the piecewise
linear function.

   

(a) (b) (c) 

Figure 2. The output intensity (a), the corresponding histogram (b) and the output image (c).

As shown in Figure 2a, the input intensity values of the mammography image in
Figure 1a are transformed according to the piecewise linear function. The results of the
transformation are indicated as the output intensity in Figure 2a. The corresponding
histogram of the transformation is illustrated in Figure 2b. Based on the histogram, we can
observe that the intensity values after the transformation are more spread out compared to
the original histogram profile in Figure 2b. This indicates that the output image has greater
contrast than the original as shown in Figure 2c.

Here, by applying the idea of spreading out the intensity values using the piece-
wise linear function of Equation (30), we proposed a modified version of SSOM termed
the SSOMH (Selective Self-Organizing Map Histogram)-based segmentation model. Let
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u0 = u0(x, y) be indicated as an input image while uHS is indicated as an output image after
applying the piecewise linear function. Then, the modified model is defined as follows:

ESSOMH(D) := α+
∫

in(D)

(
uHS(x, y)− s+k (D)

)2dxdy,+α− ∫
out(D)

(
uHS(x, y)− s−k (D)

)2dxdy
+

∫
inside(D) θRd(x, y)dxdy,

(31)

The contour curve D is then replaced with the level set function ϕ, obtaining:

ESSOMH(ϕ) : = α+
∫

Ω H(ϕ)
(
uHS(x, y)− s+k (D)

)2dΩ
+α− ∫

Ω(1 − H(ϕ))
(
uHS(x, y)− s−k (D)

)2dΩ +
∫

Ω θH(ϕ)RddΩ.
(32)

Then, the associated EL equation by calculus of variation is defined as follows:

− δε(ϕ)
(
−α1

(
uHS(x, y)− s+k (D)

)2
+ α2

(
uHS(x, y)− s−k (D)

)2 − θRd

)
= 0. (33)

with the following gradient descent flow:

∂ϕ

∂t
= δε(ϕ)

(
−α1

(
uHS(x, y)− s+k (D)

)2
+ α2

(
uHS(x, y)− s−k (D)

)2 − θRd

)
(34)

Finally, Equation (34) is solved and discretized using the forward finite differences method.

3.3. Steps of the Algorithm for the Proposed SSOM and SSOMH Models

This algorithm shows the steps involved in implementing the new proposed models,
the SSOM model and the SSOMH model, to compute the solution using MATLAB R2017b
software with an 11th Gen Intel(R) Core(TM) i5-1155G7 CPU @ 2.5 GHz and 8GB installed
memory (RAM). The description of Algorithm 1 will be as follows:

The stopping criteria used for both models are set as the value of tolerance
tol = 1 × 10−5 and maximum number of iterations, t(evol)

max = 100. Next, Algorithm 2 is
discussed, which is known as the SSOMH model. All steps in Algorithm 2 are equivalent
to Algorithm 1 except for Step 8 and Step 11. The model is minimized based on Equation
(32) while in Step 11, the evolving level set function is based on Equation (34). Algorithm 2
is described as follows:

3.4. Convergence Analysis

Based on the proposed SSOM model in Equation (14), let Ω = {ϕ|∇ESSOM(ϕ) = 0}
be the solution set. Our method’s gradient algorithm can be thought of as a synthetic
mapping A = MP. Here, P(ϕ) = (ϕ, −∇ESSOM(ϕ)) is a mapping from Rn to Rn × Rn,
while M is a mapping from Rn × Rn to Rn. Thus, the point ϕk can be obtained as well as its
negative gradient by mapping P to a given point ϕ as follows:

− ∇ESSOM

(
φk

)
= δε(ϕ)

(
−α+

(
u0(x, y)− s+k (D)

)2
+ α−(

u0(x, y)− s−k (D)
)2 − θRd

)
. (35)

To prove the convergence of Algorithm 1, we need to show that these five sufficient
conditions are met

1. M is a closed mapping;
2. P is continuous;
3. A is closed at ϕ(∇ESSOM(ϕ) �= 0);
4. ESSOM(ϕ) is a decent function of A and ϕ;

5. The sequence
{

ϕ(k)
}

is contained in a compact set, T.
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Algorithm 1: Algorithm for the SSOM Model.

1. Procedure

• Input
- Training and testing grayscale mammography images.
- Number of neurons and network topology.
- Iterations number t

(tm)

max for neural map training.
- Maximum iterations number t

(evol)
max for the evolution contour.

- η0 > 0; initial learning rate.
- m0 > 0; initial neighborhood radius of the map.
- κη , κm > 0; time constant in learning rate and contour smoothing parameter.
- α+, α− ≥ 0, weights of the image energy terms inside and outside the contour,

respectively.
- σ > 0; Gaussian contour of the smoothing parameter.
- β > 0; binary approximation constant of the level set function.

• Output
- Segmentation result.

TRAINING SESSION
2. Initialize the weights of the neurons in the output layer at random.
3. Repeat
4. Choose a pixel xt at random in the image domain Ω and determine the winner neuron to

the input intensity J(tm)(xt)
5. Update the weights of neuron sp using Equations (3)–(6).

6. Until the learning of weights (prototypes) is complete (i.e., reached the iterations number t
(tm)

max ).
TESTING SESSION

7. Choose a subset Ω0 (e.g., square) in the image domain Ω with boundary Ω0
′. Then, initialize the

level set function as:

ϕ(x, y) =

{
β, (x, y) ∈ Ω0\Ω0

′,
0, (x, y) ∈ Ω0

′,
−β, (x, y) ∈ Ω\(Ω0 ∪ Ω0

′).

8. Minimize the functional SSOM based on Equation (14).
9. Repeat

10. Calculate s+k and s−k from Equations (7) and (8).
11. Evolve the level set function ϕ based on the finite difference of Equation (29).
12. Perform the update at each iteration of the finite difference framework to reinitialize the

current level set function to be binary.

ϕ ← β(H(ϕ)− H(−ϕ)),

Then, regularize the obtained level set function via convolution:

ϕ ← Gσ ∗ ϕ,

13. Until the evolution of the curve converges (i.e., a sufficient stopping criterion is met,

‖ φn+1 − φn ‖ / ‖ φn ‖ ≤ tol or reaches maximum iterations number, t(evol)
max ).

14. End procedure.

Algorithm 2: Algorithm for SSOMH Model.

1. Step 1 to Step 7 is identical to Algorithm 1.
2. For Step 8, minimize the functional SSOMH based on Equation (32).
3. Then, follow Step 9 and Step 10 from Algorithm 1.
4. Next, evolve the level set function ϕ based on the finite difference approximation of Equation (34).
5. For Step 12 to Step 14, the flow is similar to Algorithm 1.

We now verify these conditions. Firstly, through mapping M, given a current point ϕk

and a direction d = −∇ESSOM

(
ϕk

)
, we can obtain an updated solution: ϕk+1 = ϕk + dΔt,

where the energy ESSOM

(
ϕk+1

)
is lower than the point ϕk from the previous iteration.

When ∇ESSOM(ϕ) �= 0, M is a closed mapping by Lemma 1 from [40].
Next, the mapping P is continuous because the energy function ESSOM(ϕ) is continu-

ous and differentiable. The mapping A is closed at ϕ(∇ESSOM(φ) �= 0), according to Infer-
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ence 1 from [40]. When ϕ /∈ Ω, we obtain d = −∇ESSOM(ϕ) �= 0 and ∇ESSOM(ϕ)Td < 0,
indicating that ESSOM(ϕ) is a decent function of A and ϕ.

Furthermore, the evolution of our algorithm’s level set function can be described in
the following limits:

ϕ(x, y) =

⎧⎨⎩
ϕ(x, y) i f |ϕ(x, y)| < L
−L i f ϕ(x, y) < −L
L i f ϕ(x, y) > L

,

where L is a positive number. As a result, we can define a compact set:

T :
{

ϕ(ϕ1, . . . , ϕN) : ϕ ∈ RN , |ϕi| ≤ L∀i ∈ [1, N]
}

,

where N denotes the number of pixels in the input image. The sequence
{

ϕ(k)
}

is obviously
contained in T. Thus, Algorithm 1 is convergent according to Lemma 3 from [40]. To prove
the convergence of Algorithm 2, a similar approach is taken. The differences are only:
(1) the term ESSOM is changed to ESSOMH and (2) Equation (35) is replaced by the following
Equation (36):

− ∇ESSOMH

(
φk

)
= δε(ϕ)

(
−α+

(
uHS(x, y)− s+k (D)

)2
+ α−(

uHS(x, y)− s−k (D)
)2 − θRd

)
. (36)

The proof is completed. �

4. Experimental Results

In this section, the accuracy and efficiency of the SSOM model and the SSOMH model
will be compared with the iterative models and deep learning-based method. The iterative
models are the SOMCV model, the PD2 model and the state-of-the-art IIS model, while
the deep learning method is U-Net. The SSOM, SSOMH, PD2, and U-Net algorithms are
implemented using MATLAB, while the IIS model is implemented using software provided
by the authors [33].

To test the performances of all methods, two experiments were conducted. The first
experiment was on segmenting the region of interest (ROI) images from the INbreast
database, while the second experiment was on segmenting ROI images from the CBIS-
DDSM database. Both datasets are publicly available datasets of breast cancer abnormalities
with ground-truth annotations from [41,42], respectively. Due to the limited number of
ROI in each dataset, we have augmented the original ROIs by applying the Contrast
Enhancement method and rotating them with the angles Δ = {0◦, 90◦, 180◦, 270◦}. Thus,
a total of 500 ROIs for each database were prepared. There were 400 ROIs (80%) used for
training, 50 ROIs (10%) used for testing and 50 ROIs (10%) used for validation.

In each experiment, the parameter’s value, η0 = 0.1, σ = 1, and the parameter’s
weight, α+ = α− = 1 are fixed for all problems. In addition, r0 := max

(tm)
(J, K)/2, where J

and K are the numbers of the row and column of the neural map, t(tm)
max = 100, t(evol)

max = 100,
κm := t(tm)

max / ln(m0) and β = 1. A 1-dimensional neural map is preferable and has been
chosen for the SOM network of grayscale images (i.e., J = 5, N = 1). These settings are
suggested by [36] to produce a good result. In addition, the same parameter values are
used for all models to avoid bias.

For the selective segmentation models, the value of the parameter θ that functions
to restrict only the target object will be different for each trial. In this study, the value
of θ varies between 18 and 10,000. The third experiment in this study was conducted to
demonstrate the sensitivity of this parameter to our proposed model.

4.1. Segmentation Results of Test Images from the INbreast Database

In this first experiment, the segmentation performance for all models was compared
using two methods. The first method is a qualitative method in which the performances
are evaluated using visual observation, while the second method is a quantitative method
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in which the computation time, Dice similarity coefficients (DSCs), Jaccard similarity
coefficients (JSCs), also known as IoU, Accuracy and Error metrics of the output images in
the models are calculated using the following formulas:

DSC = 2×TP
(2×TP+FP+FN)

, JSC = DSC
2−DSC

Accuracy = (TP+TN)
(FN+FP+TP+TN)

, Error = (FP+FN)
(TP+FN+FP+TN)

(37)

where TP is true positive (foreground pixels of the segmented image are completely
extracted), FP is false positive (background pixels of the segmented image are wrongly
retrieved as foreground), FN is false negative (foreground pixels of the segmented image
have been mistakenly erased), and TN is true negative (background pixels of the segmented
image have been completely removed).

Basically, a low value of computing time indicates efficient processing time. For the
metrics evaluations, high values of JSC, DSC and Accuracy approaching to 1 indicate
that the model is accurate at segmenting the input images, while smaller values of Error
approaching to 0 show better segmentation results of the test images. The DSC and
JSC coefficients are known as an overlapping metric between two data sets, while the
Accuracy and Error metrics are determined by the closeness and the wrong predictions of
the segmentation results, respectively [43]. The result was scaled from 0 to 1.

Figure 3 demonstrates the results of the segmentation performed using each model
for 4 chosen image samples out of 50 test images from the INbreast database. To remove
unnecessary information and speed up the segmentation process, the images are cropped
to the ROI with a size of 256 × 256 pixels.

Original  
Images with 

Markers 

Ground 
Truth SOMCV IIS U-NET PD2 SSOM SSOMH 

     

   

   

1 1(1) 1a 1b 1c 1d 1e 1f 
        

2 2(2) 2a 2b 2c 2d 2e 2f 
        

3 3(3) 3a 3b 3c 3d 3e 3f 
        

4 4(4) 4a 4b 4c 4d 4e 4f 

Figure 3. Segmentation Results of Four Samples of Test Images (INbreast Database) for the SOMCV,
IIS, U-NET, PD2, SSOM and SSOMH Models.

Based on Figure 3, the first column demonstrates the original images with green
markers indicating the targeted object. The second column shows the ground-truth images
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as benchmarks for the segmentation output. The results for the SOMCV, IIS, U-NET, PD2,
SSOM and SSOMH models are indicated in the third, fourth, fifth, sixth, seventh and eighth
columns, respectively. The findings were presented in the form of binary images. As we
can see, the result for SOMCV was over-segmented mainly because the targeted region is
too close to the surrounding healthy breast tissues. The result generated using U-Net is
better than SOMCV; however, we lack the large dataset required to produce the impressive
results that deep learning approaches typically produce.

The IIS produces a smooth result, but some regions are under-segmented due to
inhomogeneous intensity. The segmentation region generated using the PD2 model has
many small particles and is less smooth compared to SSOM and SSOMH due to intensity
inhomogeneity of the mammography images. Note that the segmentation result of the
SSOM model is almost identical to the SSOMH model thanks to the unsupervised neural
network, SOM and distance fitting term in the variational level set formulations in the SSOM
and SSOMH models, which is vital to segment an image with intensity inhomogeneity and
to capture the boundary of abnormality region, respectively.

In addition, we also provide a quantitative evaluation of the segmentation accuracy
based on the JSC, DSC, Accuracy and Error metrics. Table 1 shows the average values
of JSC, DSC, Accuracy and Error of the segmentation results for each model using the
INbreast Database. The data in Table 1 are visualized in Figure 4.

Table 1. Average Values of JSC, DSC, Accuracy and Error for All Models.

Model JSC DSC Accuracy Error

SOMCV 0.434 0.584 0.735 0.265
IIS 0.801 0.887 0.961 0.040

U-NET 0.519 0.674 0.847 0.153
PD2 0.819 0.899 0.962 0.038

SSOM 0.883 0.937 0.976 0.024
SSOMH 0.884 0.938 0.977 0.023

 
Figure 4. Average Values of JSC, DSC, Accuracy and Error for All Models.

Based on Table 1 and Figure 4, the JSC, DSC and Accuracy metrics of the SSOMH
model achieved the highest values with the lowest value of the Error metric, which indicates
the highest segmentation accuracy in segmenting the targeted objects compared to the
SOMCV, IIS, U-NET, PD2 and SSOM. Again, this is evidence of the advantage of using
the combination of SOM-based machine learning approach, distance fitting term and the
idea of spreading out the intensity values using a piecewise linear function as applied in
this model.
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In addition, a quantitative analysis of the segmentation speed is also performed in
this experiment. We clarify that the efficiency comparison on IIS cannot be performed
because the interactive software provided by the authors [33] used for implementing the IIS
model does not have any built-in functions or tools for recording time processing. Table 2
illustrates the computation speed of segmentation results for each model.

Table 2. Average Computation Time for All Models.

Model
Computation Time (Seconds)

Training Testing

SOMCV 0.05 1.67
U-NET 327.00 0.76

PD2 Not Related 71.03
SSOM 0.05 1.42

SSOMH 0.05 1.39

Based on Table 2, the U-Net method achieved the fastest computational speed in the
testing phase but the slowest speed during the training phase. Note that the computation
time for SOMCV, SSOM and SSOMH during training are the same, while the testing speeds
are almost similar because the Gaussian function was used in the models to efficiently
speed up the computation time. In addition, the PD2 model has the slowest testing speed
in segmenting the region, which is due to the computationally expensive TV term in the
model that slows down the segmentation process.

Therefore, based on the experiments above, the proposed SSOMH model is more
recommended than the SSOM model due to its efficiency and effectiveness in segmenting
breast abnormality with inhomogeneous intensity. The SSOMH model is able to increase
the contrast of the test images to reveal detailed information about hidden abnormalities
present in the given images for better segmentation. Thus, the SSOMH is chosen to be
compared with the SOMCV, IIS, U-Net and PD2 models in the next experiment.

4.2. Segmentation Results of Test Images from the CBIS-DDSM Database

In this second experiment, 50 mammography images of size 256 × 256 pixels from the
CBIS-DDSM database were tested. The SSOMH is compared with SOMCV, IIS, U-Net and
PD2 models. Figure 5 demonstrates 4 samples of input images (out of 50 test images) with
green markers indicating the targeted object and the ground truth images as benchmarks
for the segmentation. The results were presented in the form of binary images.

By visual observation, the result of the SOMCV model was over-segmented while the
U-Net and IIS were under-segmented for test images 2, 3 and 4. The PD2 and SSOMH
models could selectively segment the targeted region; however, the result delivered us-
ing SSOMH is smoother compared to PD2. In addition, the quantitative evaluation of
the segmentation result based on the JSC, DSC, Accuracy and Error metrics are also pro-
vided. Table 3 below shows the average values of JSC, DSC, Accuracy, and Error of the
segmentation results for each model using the CBIS-DDSM database, which are visualized
in Figure 6.

From Table 3 and Figure 6, the SSOMH model achieved the highest values of the
JSC, DSC and Accuracy metrics and the lowest value of Error, which indicate the highest
segmentation accuracy in segmenting the targeted objects compared to the SOMCV, IIS,
U-NET and PD2 models. The lowest values of JSC, DSC and Accuracy are obtained with
the SOMCV model.
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Original  
Images with 

Markers 

Ground 
Truth SOMCV IIS U-NET PD2 SSOMH 

       

1 1(1) 1a 1b 1c 1d 1e 
       

2 2(2) 2a 2b 2c 2d 2e 
       

3 3(3) 3a 3b 3c 3d 3e 
       

4 4(4) 4a 4b 4c 4d 4e 

Figure 5. Segmentation Results of Four Samples of Test Images (CBIS-DDSM Database) for the
SOMCV, IIS, U-NET, PD2, SSOM and SSOMH Models.

Table 3. Average Values of JSC, DSC, Accuracy and Error for All Models.

Model JSC DSC Accuracy Error

SOMCV 0.425 0.576 0.695 0.304
IIS 0.449 0.616 0.778 0.222

U-NET 0.569 0.712 0.893 0.107
PD2 0.768 0.867 0.945 0.055

SSOMH 0.856 0.920 0.964 0.036

Similar to the first experiment on the INbreast Database, a quantitative analysis on the
segmentation speed is also performed in this experiment for all tested models, except the
IIS model, when segmenting test images using the CBIS-DDSM database, as illustrated in
the following Table 4.

Based on Table 4, the result for U-Net is consistent with the previous experiment
1 where the method achieved the fastest testing time but was slower during the training
phase compared to the other models. On the other hand, the computation time of the
testing phase for SOMCV and SSMOH is comparable to U-Net. The segmentation time for
PD2 is slower compared to the other models.
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Figure 6. Average Values of JSC, DSC, Accuracy and Error for All Models.

Table 4. Average Computation Time for All Models.

Model
Computation Time (Seconds)

Training Testing

SOMCV 0.05 1.79
U-NET 307.00 0.73

PD2 Not Related 98.54
SSOMH 0.05 0.8

4.3. Results of SSOMH Model with Different Values of Area Parameter θ

In this final experiment, the important area parameter θ is tested to determine how it
affects the segmentation accuracy of the recommended SSOMH model. Figure 7 demon-
strates the segmentation results of the SSOMH model for test image 3 from Figure 3 with
different values of θ.

      

 

 

(a) (b) (c) (d) (e) 

     

 

 

(a1) (b1) (c1) (d1) (e1) 

Figure 7. Segmentation Results for SSOMH Model with Different Values of θ.

We set the values of parameter θ for (a–e) to 100, 300, 1000, 2000 and 4000, respectively.
The respective results are indicated in (a1–e1). By visual observation, (c1) with θ = 1000
shows a better segmentation result compared with (a1,b1,d1,e1) according to the benchmark
in Figure 3. In addition, the quantitative evaluation of the segmentation accuracy is also
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provided based on the JSC, DSC, Accuracy and Error metrics. Figure 8 illustrates the values
of JSC, DSC, Accuracy and Error for different values of θ.

 
Figure 8. Performance Evaluations of the SSOMH Model with Different Values of θ.

Figure 8 shows the JSC, DSC, Accuracy and Error metrics for different values of θ. It
can be observed that the image with θ = 1000 has the highest JSC, DSC and Accuracy values
with the lowest Error values, indicating more accurate segmentation results compared to
the images with the other θ values shown above. Thus, the values of θ should be controlled
using trial and error to achieve accurate segmentation, which is the main limitation of the
proposed model. As a general guide, the value of θ should be large when the targeted
object is too close to the normal tissue, while a smaller value of θ s required for a clearly
separated object.

5. Conclusions

In this research work, we focused on the extraction of the abnormality region in mam-
mography images using the selective segmentation technique. Two models were proposed,
namely SSOM and SSOMH. Both models adopted the idea of using distance fitting terms
to capture the targeted region, the SOM machine learning-based approach to segment
images with intensity inhomogeneity and a Gaussian function for curve regularization in
the formulations. In the SSOMH model, the idea of spreading out the intensity values using
a piecewise linear function is applied to increase the contrast of the mammography images.
To minimize the energy functions of the SSOM and SSOMH models, the Euler–Lagrange
equations were established using calculus of variations. Then, the equations were solved in
MATLAB software using the gradient descent algorithm. The efficiency of each model was
evaluated in terms of computational time, and segmentation accuracy was measured by
evaluating the JSC, DSC, Accuracy and Error values for each image.

Based on the first experiment using the INbreast database, it is recommended to
use the SSOMH model to segment mammography images due to its efficiency and high
accuracy compared to the SSOM model. In the same experiment, SSOMH outperformed the
SOMCV, IIS, U-Net and PD2 models in terms of Accuracy. Similar observation can be made
in the second experiment using the CBIS-DDSM database. Based on both experiments, we
found that U-Net has faster testing time but a slower training time compared to SSOMH.
However, the segmentation process of SSOMH was faster than the other iterative models
(SSOM, SOMCV and PD2).

As demonstrated in the last experiment, this study has the drawback that the param-
eter of θ must be manually set because each image requires a distinct set of values. The

269



Mathematics 2023, 11, 976

parameter must be adjusted one at a time using a process of trial and error until the targeted
segmented image is achieved.

For future research, it is recommended to investigate how to choose a suitable value
of the parameter θ. On the other hand, the recommended model, i.e., the SSOMH model,
can be extended into a vector-valued (color) framework and a three-dimensional (3D)
framework for segmentation of color and 3D mammography images, respectively. The
reason is that vector-valued (color) and 3D images provide more significant details that are
beneficial in the evaluation of medical and non-medical images. Moreover, as the SSOMH
model is non-convex, it may be sensitive to initialization. Future directions will try to
formulate a convex formulation of the model.
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Abstract: Remote health monitoring plays a significant role in research areas related to medicine, neu-
rology, rehabilitation, and robotic systems. These applications include Human Activity Recognition
(HAR) using wearable sensors, signal processing, mathematical methods, and machine learning to
improve the accuracy of remote health monitoring systems. To improve the detection and accuracy of
human activity recognition, we create a novel method to reduce the complexities of extracting features
using the HuGaDB dataset. Our model extracts power spectra; due to the high dimensionality of
features, sliding windows techniques are used to determine frequency bandwidth automatically,
where an improved QRS algorithm selects the first dominant spectrum amplitude. In addition,
the bandwidth algorithm has been used to reduce the dimensionality of data, remove redundant
dimensions, and improve feature extraction. In this work, we have considered widely used machine
learning classifiers. Our proposed method was evaluated using the accelerometer angles spectrum in-
stalled in six parts of the body and then reducing the bandwidth to know the evolution. Our approach
attains an accuracy rate of 95.1% in the HuGaDB dataset with 70% of bandwidth, outperforming
others in the human activity recognition accuracy.

Keywords: multimodal sensor; motion classification; computational intelligence; complex feature
extraction; activity recognition; QRS algorithm

MSC: 68T10

1. Introduction

Human gait is a natural activity that people do every time to move from one point to
another, involving muscles, nerves and brain activities. Human joints are a fundamental
part of human movement, and therefore, a gait analysis is needed to study kinetics and
kinematics [1,2], which are examined by physiotherapists, orthopedists, and neurologists
to analyze and assess the status, treatment, and rehabilitation of patients [3]. Extrinsic and
intrinsic factors (both psychological and physical) influence daily human activities; hence,
determining normal gait parameters is very difficult [4]. In addition, there are a wide
range of applications in different fields, such as neurology for monitoring neurological
symptoms [5], or rehabilitation and physical therapy for the detection of gait disorders [6,7].

Physical activity monitoring via body-worn devices has recently been increased by
sensor technologies (multimodal fusion sensors). They help vulnerable people maintain or
increase the quality of individual and social lives through activity tracking [8]. The devel-
opment of automatic information systems and improved methods to analyze biosignals
with AI in this area is a way to contribute to more efficient health care.

The devices used to acquire body signals are classified into three approaches: non-
wearable sensor (NWS), wearable sensor (WS), and hybrid system [2]. Nevertheless, WS
is most commonly used due to its low cost, small dimensions, and high precision. These
sensors are installed in the body to acquire the gait biosignal information during personal
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daily activities. WS includes force sensors, accelerometers, gyroscopes, extensometers,
inclinometers, goniometers, active markers, electromyography, etc. To optimize the func-
tionalities of such sensors (accelerometers, gyroscopes, and magnetometers), they are
fused into a single unit called Inertial Measurement Units (IMUs) with multimodal fusion
sensors technologies.

Extensive research has used body-worn inertial sensors and fortified the development
of original Human Activity Recognition (HAR) applications. These applications include
health rehabilitation, well-being assistance [9], smart homes and biofeedback systems [8],
gait analysis [10–13], motion symmetry study [14], or for monitoring human activities [15,16].
Each of these applications requires continuous monitoring and tracking [17–21].

Feature extraction and selection algorithms are meant to sort pertinent features or
suppress redundant information to increase activity recognition accurately and efficiently.
These relevant features are commonly based on time-domain, wavelet and statistical
analysis, with several IMU sensors installed in the body [22]. The frequency spectral of
accelerometers has helped researchers predict vibrations in building structures [23] or
turbines [24] and recognize the running path of dogs [25]. In addition, selection techniques
to identify the most relevant features in datasets are needed to simplify the learned models
and decrease the computational complexity and improve the model’s efficiency for recogni-
tion tasks. Using expensive industrial IMU sensors and extracting more complex features
such as entropy [26,27] or frequency measures [20,28] brings promising results.

In this paper, we propose a novel methodology based on the frequency domain and
bandwidth reduction of IMU accelerometer signals for HAR applications. The main objec-
tive is to analyze the minimum amount of features necessary to obtain good performance
in the model training and decrease the computational time of the signal processing and
classification. For that purpose, a new signal preprocessing methodology is presented
based on the frequency domain analysis, and functional transforms are included to re-
duce the computational complexity due to the high dimensionality of features. Only
accelerometer signals are considered, since it is the most relevant feature that allows dis-
tinguishing between activities, but also, we want to demonstrate the effectiveness of our
proposal with less information, which could be of interest in some treatments where a
simple sensor is needed to be implanted for a treatment. The proposed method is applied
successfully to a public benchmark dataset named the Human Gait Database (HuGaDB)
for performance evaluation.

The rest of the paper is organized as follows. Section 2 addresses briefly a literature
review. In Section 3, our proposed methodology is presented. Section 4 analyzes and
discusses the experimental results. Finally, the conclusion and future research are presented
in Section 5.

2. Related Work

Wearable sensors (WS) are used in recent advances because researchers have suc-
cessfully implemented body-worn devices to monitor personal locomotion behaviors and
recognize human activity. The most common WS uses an accelerometer and gyroscope
integrated into one wearable inertial mobile unit (IMU). Another type of WS based on the
electrical current associated with muscular actions is also used in combination with IMUs
for HAR [22]. These WS named electromyography (EMG) measure the myoelectric signals
produced by muscular actions, hence their importance in activity recognition. A study on
the fusion of EMG and IMU sensors for HAR is presented in [22], showing the potential of
incorporating EMG signals in activity recognition.

A motoring real-time personal locomotion is introduced in [8], wielding three inertial
sensors at different body locations (wrist, thigh, and chest). Data were processed through
Gaussian and zero-phase filters. A hierarchical feature-based technique is used to extract
features based on stochastic gradient descent optimization methods, achieving an accuracy
rate of 92.50% in their experiments using the HuGaDB dataset. In [5], a technique to extract
features using Discrete Fourier Transforms is proposed to estimate the mean power in
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selected frequency bands for ataxic gait assessment recognition. The accelerometric data
were acquired by 31 time-synchronized sensors (perception neuron system) located at
different body parts. Different classifiers were used for evaluation, such as support vector
machines, Bayesian, nearest neighbors, and neural network methods, with the highest
accuracy of 98.5%. The data comprised 13 normal and 12 ataxic individuals, and the entire
study was conducted in a clinical environment. Deep learning techniques were applied to
predict falls in older adults [9]. Data were collected on fall risk factors in the elderly using
WS (accelerometers), questionaries, and physical tests. The dataset consisted of 296 older
adults wearing a triaxial accelerometer on their lower back for a week and the following six
months in which fall incidences and descriptions were obtained. Researchers used the raw
accelerometer data (without making the preprocessing step) as input to an LSTM classifier,
obtaining a time reduction and an AUC (Area Under the Curve) of 0.75.

In summary, most of the works conclude that the more sensors and extracted features
from data, the better the accuracy of the computer classification algorithm. Nevertheless,
sensors installed on the human body produce less comfort for the patient (ergonomic),
make it more challenging to perform human activities, increase noise, and require more
time to (pre/post)process data and analyze the activities in real time [29].

3. Methodology

This section presents the mathematical techniques we propose to classify human gait
signals. Figure 1 illustrates the proposed method workflow. The first step is collecting the
raw data to preprocess it, removing noise and undesired signals, then extracting relevant
features, and finally training and testing a human activity classifier.

Figure 1. Flow chart of the proposed methodology.

This work intends to start from the raw accelerometer signal in our proposed method-
ology. This approach was used by other works, such as in [9], where they obtained good
results in processing time, or in [30], where nuances could be unintentionally removed
from the raw features when the parameters are extracted. We intend to model a classifier
with less data and less processing time. For instance, Figure 2a illustrates a raw signal
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containing two activities, and Figure 2b presents only one signal corresponding to the
walking activity from the right shin. As in [9], we use the raw acceleration data directly as
input to study and transform the signal.
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Figure 2. Raw signal from X-axis accelerometer of the right shin: (a) whole raw data, (b) walking
subsample.

Feature extraction is a commonly used technique to clear data and focus only on
the relevant features by reducing the dimensionality. Several methods proposed in the
literature focused on extracting signal features, such as those based on time–frequency
domain, and many other techniques that allow the reduction of data dimensionality [31].

In this work, a total of six sensors were installed on different parts (feet, shins, and
thighs) of the legs, each containing a 3-axis accelerometer X, Y and Z (18 total signals). All
information of the signals is converted into the frequency domain using FFT to reduce the
size, eliminate useless data, and facilitate the training process of the classifiers.

3.1. Signal Preprocessing

There are methods for feature extraction based on the time, frequency, and time-
frequency domain, which are usually applied to the raw data. In this work, we propose a set
of signal processing steps to obtain relevant features, which are summarized in Algorithm 1.

Algorithm 1 Features extraction from acceleration signal
Input: acc = acceleration data (x,y,z) from each part of the body
fc2 = max bandwidth frequency
Output: Feature vector of the selected frequency bandwidth
Method: IMU_features(x,y,x)

1: raw_data ← acc
2: while iteration=1,2,. . . , Npatients do
3: filtered_data ← Highpass_filter(raw_data)
4: angle_data ← Resultant_angle(filtered_data)
5: fft_data ← ExtractFFT(angle_data)
6: norm_data ← Normalize(fft_data)
7: extrap_data ←Freq_norm(norm_data)
8: fc1 ← QRS(extrap_data)
9: feature_vector ← get(extrap_data, fc1, fc2)

10: end while
11: return: feature_vector
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3.1.1. Noise Filtering

First, the high-pass Chebyshev filter filters the direct current (DC) noise. The approxi-
mation of the gain response as a function of angular frequency w is indicated in Equation (1).
The high-pass filter of eighth order, cutoff frequency of 0.4 Hz, and attenuation of 80
are applied.

Gn(ω) =
1√

1 + 1
ε2T2

n (ω0/ω)

(1)

where ε is the ripple factor, ω0 is the cutoff frequency and Tn is a Chebyshev polynomial of
the n-th order.

As an example, in Figure 3a, we can see the signal spectrum with one pulse at 0 Hz
(DC noise), and the pass-high filter removes the noise (Figure 3b).
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Figure 3. Signal in the frequency domain of X-axis accelerometer in right foot (walk activity). (a) Raw
data. (b) Spectrum after pass-band filter. (c) Spectrum after FFT and normalization.

3.1.2. Resultant Angle

The number of features is a crucial stage of feature selection, where the information in
the feature matrix will influence the discrimination ability of the deep features. If the signal
is considerably large, then a data reduction technique is helpful to simplify the input while
preserving the properties of the signal. In those cases, besides complicated data analysis,
the proposed method may be incompatible with the dataset, and the proposed classifier
may be generalized to a limited dataset.

As was denoted at the beginning of the Section, we have 18 signals, 3 axes for each of
the 6 sensors. A common practice is to create the feature vector Fk containing the filtered
signal for the 3 axes:

Fk = [ f k
X , f k

Y, f k
Z], k = 1, . . . , 6. (2)
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However, there is much redundant information that slows down the training of the
classification model. For that reason, we computed the resultant angle of the accelerometer’s
specific forces [32]:

AngleX = arctan

(√
f 2
X

f 2
Y + f 2

Z

)
(3)

where fX , fY, fZ are the gravity forces, i.e., the accelerometer signals. fX is in the numerator
since the principal signal would be the X-axis.

Applying Equation (3) to our filtered signals and translating into Equation (2), we
reduce the size of the feature vector of each body accelerometer.

Fk = Anglek
X (4)

3.1.3. Frequency Domain Analysis

In this research, the Fast Fourier Transform (FFT) has been used to convert the received
resultant signals into the frequency domain. Specifically, the Discrete Fourier Transform
(DFT) [31,33,34] is applied to improve the computational complexity. The frequency content
of the input signal x is then extracted using the following transformation:

X(k) =
N−1

∑
n=0

xnexp
[
−i2π

nk
N

]
(5)

where X = FFT(x), xn is the n-th element of an input signal, k is the frequency sample,
and N is the transformation length.

FFT’s performance depends on the signal’s length, and to improve its speed, the
Cooley/Tukey algorithm is used through the Matlab fft function, which exploits the sym-
metries to reduce a large DFT into smaller DFTs. This process helps reduce computational
complexity from O(N2) to O(NlogN), improving speed [33]. Our research used the entire
IMU signal for the FFT operation and transformed it separately for each patient.

3.1.4. Power and Bandwidth Normalization

After applying the FFT, the signal is normalized in the range [0,1] by applying

Xpower_norm =
|X f f t|

max(|X f f t|) (6)

Figure 3c depicts the resulting signal.
In the same way, the signal was normalized in the power spectrum, and it is con-

venient to equalize the signal in the frequency axis. This way, all samples fall into the
power spectrum, helping the classifier have homogeneous training. For that purpose,
the maximum frequency for all the data samples is found, and then, linear extrapolation
is computed:

FMAX = max
({Fj, j = 1, . . . , M})

X f req_norm = linear_extrap(Xpower_norm, FMAX)
(7)

where F represents the set of frequency values of a sample, and M represents the total
number of samples.

Figures 4 and 5 present a detailed spectral analysis (evolution of spectral components)
as the relative power along the frequency. This figure shows an example of the processed
accelerometer signal of the walking activity.
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(a)

(b)

(c)

Figure 4. Right Walk Activity Spectrum. (a) Foot Spectrum. (b) Shin Spectrum. (c) Thigh Spectrum.
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(a)

(b)

(c)

Figure 5. Left Walk Activity Spectrum. (a) Foot Spectrum. (b) Shin Spectrum. (c) Thigh Spectrum.
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3.1.5. Mean Relative Power QRS Detection

As it was exposed in [31], the first and second dominant frequency amplitudes hold
the most information about the signal, so we propose a method to extract those amplitudes
based on QRS complexes and use them as the inputs of the classification models.

The key element of extracting these frequency amplitudes is setting, and appropriate
threshold tolerance, which is used by the QRS algorithm [35]. This technique is used
in spectrum analysis to recognize QRS complexes, reducing false detections caused by
interferences in ECG signals. Figure 6 shows an example of the QRS detection, where R is
the peak of the principal spectrum, Q is the start of the peak signal, and S is the end of the
peak signal, which will be unnecessary for our application, as explained later.
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Figure 6. Example of the QRS calculation in the first spectrum.

However, peak detection is a very critical step, since information can be lost if an
adequate threshold is not set up correctly. For instance, in [36], a modified version of the
QRS algorithm with an adaptative threshold is presented, defining two kinds of peaks:
signal and noise peak. If a peak value is larger than the threshold, it is marked as a QRS
complex, and then, the signal peak is updated.

This solution has a problem with the noise peak because it detects some spectra as
noise, and the signal amplitude is not constant, such as the ECG signal. For instance,
a threshold of 0.257 when calculated with the data in Figure 7 loses the information of
other spectrums.

The Pan and Tompkins algorithm inspires our proposal to detect the QRS complex [35].
First, a differentiation provides complex slope information, and then, an amplitude squar-
ing function and a moving window integrator are applied. The following paragraphs will
describe the process in detail:

1. Differentiation. After filtering and normalizing, the signal is differentiated as follows:

y(nT) =
1
8
[−x(nT − 2T)− 2x(nT − T) + 2x(nT + T) + x(nT + 2T)] (8)

where T is the sampling period.
2. Squaring. It amplifies the slope of the frequency response.

y(nT) = [x(nT)]2 (9)
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3. Moving-Windows Integration. To obtain waveform feature information:

y(nT) =
1
N
[x(nT − (N − 1)T) + x(nT − (N − 2)T) + · · ·+ x(nT)] (10)

Figure 7. Example of the selected bandwidth, where fc1 = Q and fc2 = 100%.

After that, the Mean Relative Power signal is used to initialize the threshold. This
measure aims to vary the bandwidth of our spectral signal so that only the desired signal
information is considered. Equation (11) calculates the average power in a window selected
by the desired frequencies:

Pw =
∫ f

− f
| X( f ) |2 d f (11)

As shown in [5], each of the selected spectral features of a signal segment of N samples
is evaluated and divided by the first half-part signal (N/2 samples) in order to keep the
most significant information. Equation (12) computes the discrete Mean Relative Power in
a specified frequency band:

MPrel =
∑k∈φ |X(k)|2
∑N/2

k=0 |X(k)|2 (12)

where φ is the set of indices for which the frequency values fk = k
N fs ∈ [ fc1, fc2]. In the

given case, we study the accelerometric spectral features in the [0%, 100%] range.
Therefore, the MPrel is used as signal peaks instead of using both the integration

waveform signal peak and the noise-filtered signal peak for the threshold initialization as
in [35].

MVAL = MPrel(signal)

SPKI = 0.13 ∗ MVAL

THRESHOLD = 0.25 ∗ SPKI + 0.75 ∗ NPKI

(13)

where signal refers to the integration waveform and filtered signal, respectively; SPKI
is the estimate of the signal peak, NPKI is the noise peak, and THRESHOLD is the
applied threshold.

The rest of the detection procedure follows the original QRS algorithm. Once the
peaks are detected, the initial frequency fc1 is set, and the rest of the bandwidth is the signal
extracted to be used for the next step:

fc1 = Q (14)
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where Q is the Q-element of the QRS complex of the first peak. As an example, in Figure 6,
the point Q is automatically found by the proposed methodology, and we set the value to
fc1. On the other hand, fc2 will define the last point of the bandwidth frequency. Figure 7
shows a fc2 reaching 100% bandwidth.

3.2. Sliding Bandwidth Analysis

The selected frequency range is varied to reduce the number of features and sensors.
The bandwidth is located within the range fc1 to fc2 of each frequency analysis, as shown
in Figure 7, and these sets are expressed in Equation (15):

BW = fc2 − fc1 f or fc1 ≤ fc2 ≤ 100% (15)

Therefore, the power spectra analyzed vary according to the length of BW:

PS = [X(k)]θ (16)

where θ ∈ [ fc1, fc2] is the set of indices for which the frequency values vary within the
bandwidth.

4. Experimental Results

4.1. Dataset Description

The Human Gait Database [37] is commonly used in research for human activity
recognition (HAR), gesture recognition (GR), and gait analysis (GA). This dataset has
been used in many works because they represent the inertial movement of a person and
help to develop models before installing them in wearable sensor systems. The dataset
comprises 18 healthy participants who were split into two groups: 15 participants to create
and validate the model and 3 participants to test the model. This way, the information
the classification models test will be completely independent of the one used for training,
assuring a fair comparison.

In total, six inertial sensors (IMU) (each IMU sensor has a three-axis accelerometer
and three-axis gyroscope) and electromyography (sEMG) sensors were placed on the right
and left thighs, shins, and feet. The total number of signals collected is 38:36 from the IMU
sensor and 2 from the sEMG sensor. This database contains 12 activities: Walking with ID
(1), Running with ID (2), Going up with ID (3), Going down with ID (4), Sitting with ID (5),
Sitting down with ID (6), Standing up with ID (7), Standing with ID (8), Bicycling with ID
(9), Up by elevator with ID (10), Down by elevator with ID (11), and Sitting in the car with
ID (12).

4.2. Classification Experiments

The proposed method was applied to accelerometric raw data on the HuGaDB dataset.
After the initial spectral preprocessing, we set the frequency fc2 to 100% to check the
performance of the classifiers with the total bandwidth. For the experiments, Discriminant
Analysis (DA), Support Vector Machine (SVM) and Neural Network (NN) classification
models were employed. The code was written in Matlab (R2021b). The method was applied
on each axis, receiving signals from the right and left legs.

As mentioned, the dataset contains information on six different sensors, which is
summarized in Table 1.

Table 1. Acceleromether used in the body.

Left Right

Data Feet Shins Thighs Feet Shins Thighs

k 1 2 3 4 5 6
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In order to carry out the classification experiments, all preprocessed accelerometer
signals are concatenated into an activity vector.

Aj = [{Fk}]j, k = 1, . . . , 6. (17)

where j represents the number of sample activities, the training data comprises a set
of signals for N = 15 persons that carried out several activities. These activities are
previously identified in the whole signal and separated into different M samples. The set
of samples {Aj}j=1,...,M and their respective true class labels will form the training data.
After preprocessing the dataset, the total number of training samples after preprocessing
the dataset is 152, where M = 122 (from 15 participants) will be used for training and 30
will be used for testing (from 3 participants).

First, the performance achieved using the maximum bandwidth was compared. Here,
10-fold cross-validation was carried out to train the models and make a preliminary se-
lection among several classifiers, using 75% of the data for training and 25% for testing
(from 15 participants, as indicated in Section 4.1). After that, the unseen test set (from three
participants) was used to compute the real performance. Each instance is represented by
the patient, for a total of 18 patients within each activity, meaning that each class keeps the
same amount of class instances for both the train and test sets.

The results of the different classifiers are compared in Table 2. In addition, we com-
pared our performance with a state-of-art method that used a similar sensor and data
configurations to our experiments [8] to have a fair comparison. We did not compare
our approach with other published work on a combination of sensor signals. Hence, our
methodology yielded an accuracy of 95.10% using NN and 91% using SVM compared to
the 5% and 4% less accuracy, respectively, obtained by the competing method. In addition,
our method was applied with a Discriminant Analysis classifier, achieving 95.5% accuracy,
being chosen as the best for our proposal. The methodology proposed in [8] is still worse
with 92.5% accuracy.

Table 2. Accuracy Experiments using HuGaDB and Frequency Features.

Method DA (%) SVM (%) NN (%)

Gochoo et al. [8] - 85.68 91.23
Ours 95.50 91.00 95.10

The rest of the experiments will focus on modifying the bandwidth to analyze the
impact of applying the proposed method with less information.

4.3. Bandwith Analysis

This analysis aims to reduce the sample data (8022 features per sample) used to
train the classifiers. Each activity contains 56.35 samples per second, and the acquisition
time varies. We study the accelerometric power spectral in [ fc1, fc2], where fc1 is detected
automatically and fc2 will vary for training. The bandwidth extension has been studied
in these three classifiers, reducing the bandwidth by 10% each time, starting from the
endpoint of the spectrum, fc2 = 100%.

Figure 8 summarizes the accuracy obtained for each bandwidth. It can be observed
that the precision of the DA classifier does not change up to a bandwidth of 70%. In
addition, it can be observed that the NN classifier has good precision in the range of 90%
to 50%, although it slowly decreases when the bandwidth is shortened. Lastly, the SVM
classifier presents the worst overall performance, although it is quite robust to the reduction
of training data, having even better performance with only 30–50% of the bandwidth. From
these results, we can extract that using 70% of the bandwidth with the DA classifier
produces the same accuracy as if 100% bandwidth is used. Therefore, data can be reduced
to 5615 features to improve the training time of the classifiers, obtaining the same outcomes.
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Figure 8. Evolution of accuracy over different bandwidths.

Figure 9 depicts the behavior of the classifiers when changing the bandwidth for each
type of activity. Each of the classifiers has obtained excellent performances for most of
the activities. For instance, walking, going up the stairs, and going up with the elevator
only needed a primary spectrum in the 20% window of bandwidth, independently of the
classifier; however, other activities need a wider bandwidth to be recognized. However, to
obtain excellent general performance, more data are required. The DA classifier, shown in
Figure 9a, can perfectly recognize up to nine activities with 70% bandwidth. SVM and NN
(Figure 9b,c) reflected similar performances except for the elevator and going downstairs.
However, they improve the recognition of the car-sitting activity, reaching 100% accuracy
with 40% and 50% bandwidth, respectively.

Focusing on the type of activity, the elevator is the most critical one. It is interesting
to see that for the SVM, 60% of the bandwidth is necessary to reach 80% accuracy, but for
NN, 70% of the data is needed. The DA cannot detect this activity properly, but the action
of sitting has a perfect detection with only 30% of the bandwidth. On the other hand, the
run and bicycle are better classified by the NN, which means that it works better with
complex signals.

(a)

Figure 9. Cont.
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(b)

(c)

Figure 9. Human Activities Accuracy with Bandwidth Select. (a) DA—Discriminant Analysis Classi-
fication. (b) SVM—Support Vector Machine Classification. (c) NN—Neural Network Classification.

5. Conclusions

This paper presents a new methodology based on the frequency domain. Features
were extracted from the raw data of IMUs by varying the frequency window to optimize
the number of relevant features. All the information provided by the raw accelerometer
signals was optimized and transformed using the proposed methodology. In addition,
a modified QRS algorithm is proposed to automatically find the first frequency and the
beginning of the bandwidth.

The standard HuGaDB dataset was used with the best classifiers found in the literature
for HAR problems (DA, SVM, and NN). Experimental results show the improved accuracies
achieved (Table 2) when the proposed methodology is applied. These results were achieved
using the whole frequency spectrum. Additionally, the performance of our proposal was
analyzed for reduced bandwidths and studied in detail for the different activities to be
recognized. SVM is the most robust classifier, producing a similar performance for reduced
bandwidths, although DA achieves the best accuracy for reduced bandwidths (up to 70%).
Regarding the recognition of the different activities, both Up Elevator and Down Elevator
are the activities with the worst accuracy. In the end, activity recognition varies depending
on the bandwidth used due to where the most significant information is placed in the
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frequency spectrum. For instance, Walking and Running activities are easily recognized,
even with 20% of the bandwidth, because the relevant information of these activities is in
the first power spectrum.

Future works will include more types of signals as part of the input for training by
creating an adequate methodology to preprocess and join the signals to achieve better
outcomes than state-of-art methods. In addition, another important study to carry out is
the reduction of the number of sensors, determining which positions and how many of
them are enough to provide good classification results.
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HuGaDB Human Gait Database
NWS Non-Wearable Sensor
WS Wearable Sensor
IMU Inertial Measurement Units
HAR Human Activity Recognition
EMG Electromyigraphy
PAMAP2 Physical Activity Monitoring for Aging People
SGD Stochastic Gradient Descent
FARAO Fall Risk Assessment in Older Adults
AUC Area Under the Curve
GR Gesture Recognition
GA Gait Analysis
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
DSP Digital Signal Process
DC Direct Courrient
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BW Bandwidth
DT Data Transform
DA Discriminant Analysis
SVM Support Vector Machine
NN Neural Network
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Abstract: Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure, which can
be used to realize transfer learning and plays an important role in both unsupervised learning and
non-linear feature extraction. By highlighting the contributions and challenges of recent research
papers, this work aims to review state-of-the-art auto-encoder algorithms. Firstly, we introduce the
basic auto-encoder as well as its basic concept and structure. Secondly, we present a comprehensive
summarization of different variants of the auto-encoder. Thirdly, we analyze and study auto-encoders
from three different perspectives. We also discuss the relationships between auto-encoders, shallow
models and other deep learning models. The auto-encoder and its variants have successfully been
applied in a wide range of fields, such as pattern recognition, computer vision, data generation,
recommender systems, etc. Then, we focus on the available toolkits for auto-encoders. Finally, this
paper summarizes the future trends and challenges in designing and training auto-encoders. We
hope that this survey will provide a good reference when using and designing AE models.

Keywords: auto-encoder; deep learning; artificial intelligence; survey
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1. Introduction

Deep neural networks (DNNs), usually referred to as deep learning [1], are a cutting-
edge area of machine learning on the forefront of artificial intelligence (AI). They are
based on algorithms for learning multiple levels of representation in order to model com-
plex relationships among data. Higher-level concepts and features are thus defined in
terms of lower-level ones. Neural networks had traditionally been trained with the back-
propagation (BP) algorithm, which is so named because this algorithm propagates the
error in the neural network’s estimate backward from the output layer towards the input
layer [2]. We can use BP to adjust the model parameters along the way. Unfortunately,
there were several weaknesses with the BP algorithm which did not work well for DNNs.
These included the tendency for the algorithm to fall into poor local minima when the
DNNs were initialized with random weights. This is mainly because local optima and
other optimization challenges are widespread in the non-convex objective function of the
DNNs [3]. The severity will increase essentially as the depth of the network increases. The
requirement for labeled datasets is another problem because most data are unlabeled. In
2006, the optimization difficulty associated with DNNs was empirically alleviated when
Ref. [4] proposed the Deep Belief Network (DBN), which was a significant advance in deep
learning (DL). This class of deep generative models, with a new learning algorithm that
greedily trains one layer at a time, exploits an unsupervised learning algorithm for each
layer called the Restricted Boltzmann Machine (RBM) [5]. Meanwhile, Ref. [6] exploited
the same principle to pre-train the network, and then the RBMs were “unrolled” to create a
deep auto-encoder (AE).
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Specifically, an AE is one of the basic building blocks, which can be stacked to form
hierarchical deep models to organize, compress, and extract high-level features without any
labeled training data. It allows for unsupervised learning and non-linear feature extraction.
There are some historical contexts of the AE. In the 1980s, the AE was also called an “auto-
associator” as described by Ref. [7]. They proposed that the optimal parameter values
can be obtained by applying the usual BP or can be derived using standard linear algebra.
Then, in 2006, Ref. [8] verified that the principle of the layer-wise greedy unsupervised
pre-training can be applied when an AE is used as the layer building block instead of the
RBM. In 2008, Ref. [9] showed a straightforward variation of ordinary AEs—the denoising
auto-encoder (DAE)—that is trained locally to denoise corrupted versions of the inputs.
Ref. [10] introduced a sparse auto-encoder (SAE), which is another variant of the AE.
Sparsity is a useful constraint when the number of hidden units is large. In Ref. [11], Rifai
et al. presented a novel method for training a deterministic AE. They show that by adding
a well-chosen penalty term to the traditional reconstruction cost function, they can achieve
results that equal or surpass those attained using DAE as well as other regularized AEs on
a range of datasets. This penalty term corresponds to the Frobenius norm of the Jacobian
matrix of the encoder activations with respect to the input. Lately, various approaches for
AEs have been extensively studied and discussed [12–16]. Among those, Ref. [16] proposed
the “k sparse auto-encoder (kSA)”, which is an AE with a linear activation function, where
in hidden layers only the k highest activities are kept. Based on Ref. [16], two novel feature
aggregation algorithms, called Database-adaptive kSA aggregation and Per-data adaptive
kSA aggregation, realize more accurate local feature aggregation. The two algorithms
have jointly optimized codebook learning and feature encoding. The AE and its various
variants have been widely applied in AI, such as image classification [17–19], saliency
estimation [20,21], medical image analysis [22], and many more.

• Importance of this survey. There are plenty of studies that have been performed in
the field of deep learning-based AEs. However, as far as we know, there are very few
reviews that have shaped this area well by positioning the existing works and current
progress. Although some Refs. [23,24] have attempted to formalize this research field,
but few try to summarize the current efforts in depth or elaborate on the outstanding
problems in this field. This survey will seek to provide a comprehensive summary of
the current research on deep learning based on AEs and to point out future directions
along this dimension. Because of the rising popularity and potential of AEs in deep
learning, this survey will be of high scientific and practical value. We have analyzed
these works based on AEs from different perspectives and put forward some new
insights in this area. To this end, nearly 300 studies are shortlisted and studied in
this survey.

• How were the papers collected? In this survey, we collected over three hundred related
papers. We used Google Scholar as the main search engine. Additionally, we used
the database, Web of Science, as an important tool to discover related papers. We also
focused on some high-quality academic conferences such as NIPS, ECCV, ICML, ICLR,
CVPR, IJCAI, ICCV, AAAI, etc., to find recent works. The major keywords we used
included auto-encoder, deep learning, neural networks, overview, etc.

• Contributions of this survey. This survey provides an overview of various AE methods
and their applications; particularly, these can be applied in the computer vision
domain. It is intended to be useful for computer vision and general neural computing
researchers who are interested in state-of-the-art DL. In addition, one of our main goals
is to thoroughly review the literature, clarify less understood challenges, and offer
learned lessons from existing works. To summarize, there are three key contributions
of this survey: (1) we conducted a literature review of AE models and highlighted
many influential research prototypes; (2) we provided an overview and summary of
the state of the art; and (3) we discussed promising future extensions in this research
field to highlight the vision and expand the horizons of research on AEs.
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• Paper Organization. The basic AE and its variants will be discussed in Section 2.
In this section, we have introduced the basic AE as well as its basic concept and
structure. Additionally, different variants as well as their developments were listed. In
Section 3, we analyze and study AEs from three different perspectives. In Section 4,
the relationships between AEs, shallow models, and other DL models are described.
Section 5 discusses the basic AE and its variants that have successfully been applied in
a wide range of fields, such as pattern recognition, computer vision, data generation,
recommender systems, etc. In Section 6, we focus on the available toolkits for AEs.
Finally, this paper summarizes the future trends and challenges in designing and
training AEs.

2. Methods and Recent Developments

In recent years, AEs have been extensively studied in the field of AI. Therefore, a large
number of related works have emerged. In this section, we divide these models into two
major categories: the basic AE and its variants. In addition, we will further review each
technology of these models and their recent developments.

2.1. The Basic AE

The idea of AEs has been part of the historical landscape of neural networks for
decades. So, what is an AE? The basic AE is an auto-associative neural network, and it
derives from the multi-layer perceptron, which attempts to reproduce its input, i.e., the
target output is the input [7]. Ref. [25] proposed another explanation: an AE network can
convert an input vector into a code vector using a set of recognition weights. Then, a set of
generative weights are used to convert the code vector into an approximate reconstruction
of the input vector. We can use the basic AE as a building block to train deep networks.
Being associated with a basic AE, each level of a deep network can be trained separately.

2.1.1. Structure and Objectives

The basic AE is composed of an input layer, a hidden layer, and an output layer (see
Figure 1).

 x

Figure 1. An example of the basic AE with 6 input units and 4 hidden units (features). From left to
right, respectively, the input layer, the hidden layer, and the output layer. xi is an input unit, yj is
a hidden unit, and zi is an output unit. The number “1” denotes bias. Connections are exclusively
drawn between different layers.

An AE takes an input vector and then maps it to the hidden representation y ∈ Rd′

using the deterministic mapping y = fΘ (x) = sf (Wx + b). W is a d′ × d weight matrix, b is a
bias vector, and sf is the encoder activation function (typically the element-wise sigmoid
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or hyperbolic tangent non-linearity or the identity function, if staying linear). The latent
representation y, or the hidden representation, is then mapped back (with a decoder) into a
reconstruction vector z ∈ Rd (z is the same shape as x). The mapping is performed using a
similar transformation, e.g., z = gΘ (y) = sg(W′y + b′), where θ = {W, b, W′, b′} and sg is the
decoder activation function. In addition, z can be seen as a prediction of x given the hidden
representation y. This process can be summarized as follows: each input xi is thus mapped
to a corresponding yj which is then mapped to a reconstruction zi, such that zi ≈ xi. It is a
good approach for the weight matrix W′ to be optionally constrained by W′ = WT. In this
way, the number of free parameters is reduced, which simplifies the training [26]. This is
referred to as tied weights.

The set of parameters θ of such a model is optimized so that the loss function is
minimized, as shown in Equation (1):

θ∗ = argmin
θ

∑ L(x, z) (1)

where L is a loss function. The method for choosing sg and L depends largely on the input
domain range and nature [27]. L can be chosen as the traditional mean squared error (MSE),
which can be expressed as Equation (2). This, coupled with a linear decoder (i.e., sg(a) = a),
is a natural choice for an unbounded domain. Conversely, if inputs are bounded between 0
and 1, using sg (sigmoid) can ensure a similarly bounded reconstruction. In addition, if the
input x is interpreted as either a sequence of bits or a sequence of bit probabilities (i.e., they
are Bernoulli probability vectors), then the cross-entropy (CE) can be used [8], as defined in
Equation (3).

L(x, z) =
1
2∑

i
(xi − zi)

2 (2)

L(x, z) = −∑
i

xi log zi + (1 − xi) log(1 − zi) (3)

In particular, there are two properties that make it reasonable to interpret the CE as a
cost function [28]. First, it is non-negative, that is, L(x, z) > 0. Second, the CE tends toward
zero as the neuron becomes better at computing the desired output, z, for all training inputs,
x. Provided the output neurons are sigmoid neurons, the CE is nearly always the better
choice. However, if the output neurons are linear neurons, then the MSE will not give rise
to any problems with a learning slowdown. In this case, the MSE is, in fact, an appropriate
cost function to use [28].

Recent Refs. [29,30] use another kind of cost function called exponential (EXP) cost,
which is inspired by the error entropy concept. This is a parameterized function, which
holds an extra parameter (tau), namely,

L(x, z) = τ exp(
1
τ ∑

i
(xi − zi)

2) (4)

This cost can be flexible enough to emulate the behavior of the classic costs mentioned
above and to exhibit properties that are preferable in particular types of problems, such as
good robustness to the presence of outliers [29]. In these works, the authors compare the
performances of MSE, CE, and EXP costs when used for the pre-training of deep networks
whose hidden layers are regarded as stacked AEs. Additionally, Ref. [29] also uses the three
costs in the supervised fine-tuning of deep networks. Various combinations of pre-training
and fine-tuning costs are compared in terms of their impact on classification performance.

In 1994, Hinton and Zemel applied the Minimum Description Length (MDL) principle
to derive an energy-based objective function for training an AE [25]. They developed a
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stochastic Vector Quantization (VQ) method, which is very similar to a mixture of Gaussians,
where each input vector is encoded with:

Ei = − log πi − k log t +
k
2

log 2πσ2 +
d2

2σ2 (5)

where πi is the weight of the ith Gaussian; k is the dimensionality of the input vector; t is
the quantization width; d is the Mahalanobis distance to the mean of the Gaussian; and
σ2 is the variance in the fixed Gaussian used for encoding the reconstruction errors. They
define Ei to be the energy of the code. Using only this scheme to encode wastes bits because,
for example, there may be vectors that are equally distant from two Gaussians. The amount
wasted is:

H = −∑ pi log pi (6)

where pi is the probability that the code will be assigned to the ith Gaussian. So, the true
expected cost is obtained as:

F = ∑
i

piEi − H (7)

Note that F has exactly the form of Helmholtz free energy. The probability distribution
that minimizes F is:

pi =
e−Ei

∑j e−Ej
(8)

This study also demonstrates that an AE can learn factorial codes using non-equilibrium
Helmholtz free energy as an objective function. More details can be found in [25]. We argue
that the loss functions mentioned above are based on a common underlying principle.
At a high level, they can be viewed as a scalar-valued energy function E(x, t) (t is the
model parameters) that operates on input data vectors x. The function E(x, t) is designed to
produce low energy values when x is similar to some training data vectors and high energy
values when x is dissimilar to any training data vector.

2.1.2. Training

‘Training’ is the learning process in artificial neural networks (ANNs); it is usually im-
plemented using examples and achieved with iteratively adjusting the connection weights.
Training algorithms for ANNs fall into two major categories—gradient-based and non-
gradient-based. AEs may be thought of as being a special case of feed-forward networks
and can be trained with all of the same techniques. In this section, we will focus on gradient-
based methods as they are more commonly used in recent times and usually converge
much faster as well [31,32].

As mentioned in Section 2.1.1, our discussion has centered on implementing the
functions that compute L(θ; x) with the parameters set θ. Therefore, the goal of the training
process is to find a θ such that L(θ; x) approximates the function we are trying to model.
Let ∇L(θ; x) denote the gradient of L(θ; x) with the parameters θ. The gradient does
not have a closed form solution. Instead, it can be efficiently implemented using the BP
algorithm, which is the workhorse of learning in neural networks. The parameters θ of
an AE can be most commonly trained with the optimization algorithms following the
gradient computed using BP. In Ref. [33], the authors introduce three BP-based optimizers—
Stochastic Gradient Descent (SGD), limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS), and Conjugate Gradient (CG), which can be used to optimize AEs.

A widely used heuristic for training neural networks relies on a framework called
SGD [34]. In neural networks, the loss function is highly non-convex; however, we can
still implement the SGD algorithms and find a reasonable solution. The insight of the
SGD is that the gradient is an expectation, which may be approximately estimated using
a small set of samples [35]. Specifically, during each step of the algorithm, we can pick
out a small number of examples D = {x1, . . . , xm} drawn uniformly from the training set.
We refer to them as a mini-batch. Additionally, we usually choose m as a relatively small
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number of examples, which ranges from one to a few hundred (according to the value
of m, a recent work [36] divides SGD methods into two types: single and mini-batch).
Additionally, m usually stays the same as the training set size M grows. We may fit a
training set with billions of examples using updates computed on only a hundred examples.
This step is repeated for many small sets of examples from the training set until the average
of the loss function stops decreasing. In recent years, several algorithms have been most
commonly used for optimizing SGD including Momentum, Adam, Adagrad, Adamax,
Nadam, Nesterov Accelerated Gradient Descent, and RMSprop [37]. These algorithms can
further improve the empirical performance of SGD [38].

In Ref. [39], the loss function of AE is optimized with the L-BFGS algorithm [40],
which is also called the SQN method. It is almost identical in its implementation to the
BFGS method. The only difference is in the matrix update: the BFGS corrections are stored
separately, and when the available storage is used up, the oldest correction is deleted to
make space for the new one. All subsequent iterations are in this form: one correction
is deleted and a new one is inserted [41]. It is a variant of BFGS; however, it reduces the
computational cost of BFGS from O(n2) to O(mn) space and time per iteration (where n
denotes the number of variables in a system and m is the number of updates allowed in
L-BFGS). In this case, m is specified by the user [42]. In practice, we rarely want to use
m greater than 15 and always take the empirical value of m as 5, 7, or 9 [41]. m is much
smaller compared to a very large number of variables about n. The computational cost of
L-BFGS reduces to linear complexity O(n). We now turn to an analysis of an alternative
optimization algorithm—Conjugate Gradient (CG)—that is one of the most widely used
methods in optimization. In 1952, Ref. [43] developed the linear CG for solving large
systems of linear equations. It is the most popular iterative method that is effective for a
system of the form:

Ax = b (9)

where A is a symmetric and positive definite matrix, x is an unknown vector, and b is
a known vector. If A is positive-definite as well as symmetric, the problem of solving
Equation (1) can be stated equivalently as the following minimization problem:

min
x

1
2

xT Ax − bTx (10)

Based on this, the work in [43] can also be regarded as a method for finding the
minimum of the quadratic function. Then, the authors in [44] extended the linear CG to
solve the minimum of general functions and hence, nonlinear optimization was achieved.
Later, some important global convergence results for CG methods were given by Polak
and Ribiere [45], Zoutendijk [46], Powell [47], and Albaali [48]. CG methods comprise a
class of unconstrained optimization algorithms that are characterized by simplicity, modest
demands on memory required, and strong local and global convergence properties [49].

We will now analyze the different strengths and weaknesses of these three types of
optimization methods in detail. SGD methods have the merits of easy implementation;
however, they have many disadvantages [31,50]. One key disadvantage is that they require
much manual tuning of optimization parameters such as convergence criteria and learn-
ing rates. Another weakness of SGD is that they are inherently sequential. Hence, it is
very difficult to parallelize them using GPUs or distribute them using computer clusters.
Comparatively, L-BFGS and CG methods can only work with batch leaning, which use the
full training set to compute the next update to parameters at each iteration. As available
datasets grow ever larger, such batch optimizers are conventionally considered to become
increasingly inefficient. Thanks to the availability of fast network hardware, such as large
amounts of RAMs, multi-core CPUs, GPUs and computer clusters, these batch methods can
be fast [31]. In addition, when the dataset is large, we can use mini-batch training to solve
the weakness of batch methods. L-BFGS and CG methods with the presence of a line search
procedure are usually much more stable to train and easier to check for convergence [50].
This has already been shown in DL. Here, the authors present experiments carried out
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on training the basic AE and sparse auto-encoder (SAE) [31]. Mini-batch L-BFGS and CG
with line search converge faster than carefully tuned plain SGDs. Compared to L-BFGS,
CG performs better because computing the conjugate information can be less expensive
than estimating the Hessian. They also reported the performance of different optimization
methods on a sparse AE. The results also show that L-BFGS and CG are much faster than
SGDs. However, the difference is more significant than in the case of standard AEs. This is
because L-BFGS/CG prefers larger mini-batch sizes, and hence, it is easier to estimate the
expected value of the hidden activation [31].

In the preceding paragraphs, we have discussed many BP-based optimization tech-
niques commonly used in AEs. Unlike general feed-forward networks, AEs may also be
trained using recirculation [51]: a learning algorithm measures the gradient by measuring
the effect of a small difference in the input. Although recirculation is regarded as more
biologically plausible than BP, it is rarely used for machine-learning applications.

In the past, many genetic algorithms (GAs) have been successfully applied to training
neural networks [52–55]. Specifically, GAs have been used as a substitute for the BP-based
optimization algorithm or used in conjunction with BP to improve overall performance.
In [56], David et al. extend previous works and propose a GA-assisted method for a deep
AE. The experimental results indicate that this GA-assisted approach improves performance.
The improved performance in the GA-assisted AE could arise from a similar principle of
dropout [57] and dropconnect [58] since mutation randomly disables some of the weights
during training. Learning rules are the heart of ANN training algorithms. In traditional
ANN training, learning rules are previously assigned, such as the generalized chain rule of
the BP network. When using GA, we can apply it to design the learning rules of ANNs.
Because AEs are feed-forward ANNs, these learning rules also can be applied to AEs.

2.1.3. Taxonomy of the Basic AE

As discussed in Section 2.1.1, the general structure of a basic AE consists of three
layers: an input layer, a hidden layer forming the encoding, and an output layer whose
units correspond to the input layer. Since the outputs are equal to the input, this amounts
to learning an approximation of the identity function. However, copying the input to
the output may sound pointless, and we are generally not interested in the output of the
decoder. Instead, training the AE is completed to perform the input copying task to make
the hidden representation y take on useful properties [33]. For that reason, we can place
various constraints on the network, as described below in more detail, and we call these
regularized AEs. One constraint is to limit the number of units in the hidden layer, which
forces the network to learn a compressed representation of the input. An AE whose hidden
dimension is less than the input dimension is called under-complete [33] (also dubbed
“narrow” [59] or “bottleneck” [60]). This method allows for the discovery of the most
salient features from the dataset that rely on fewer hidden layer units. In the case of a linear
AE (linear encoder and decoder) with a traditional MSE function, minimizing Equation (1)
learns the same subspace as Principal Component Analysis (PCA) [61,62]. The same is true
when using a nonlinear function (such as sigmoid) in the encoder, but it is not true if the
weights W and W′ are tied, since W cannot be forced to be small and W′ large to achieve a
linear encoder [27] (Section 4.1.1 describes the relationship of dimension reduction between
AE and PCA in more detail). This AE can obtain a more powerful nonlinear generalization
of PCA when equipped with nonlinear encoder functions f and nonlinear decoder functions
g. Regrettably, if the encoder and decoder are allowed too much capacity, this AE will fail
to learn anything useful other than the ability to copy its input to its output [33].

If the hidden code is allowed to have dimensions equal to the input, or in the over-
complete case (or so-called “wide AE”) where the hidden units have dimensions greater
than the input, a similar problem will occur. In these cases, rather than limiting the
number of hidden units, regularized AEs can provide alternative constraints. These include
sparsity in the representation, robustness to noise, or to missing inputs and smallness in the
derivative of the representation. Recent research has demonstrated that these alternative
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constraints are very successful, even when the network is over-complete [27]. In summary,
using comparisons of the size of the hidden layer and the input layer, the basic AE structure
can be divided into two categories: the narrow AE and wide AE (also known as under-
complete and over-complete, respectively). Using various means in the different forms, we
can achieve regularized AEs. In addition to the old bottleneck AEs with fewer hidden units
than input, there are other forms of regularize AEs, which will be discussed next.

2.2. Regularized AEs

As described in the previous section, using various regularizers in different forms,
we can achieve regularized AEs (also called “variants of the AE” [63]). These regularizers
include: a sparsity regularizer, a contractive regularizer, or a denoising form of regular-
ization, etc. In an AE network, inputs x can be mapped to an internal representation
f (x) using the encoder function f, and then f (x) is mappeds back to the input space using
a decoding function g (detailed above). The regularizer basically attempts to force f to
throw away some information present in x or at least represent it with less precision. This
means that the r (or f ) has to be as simple as possible, i.e., as unresponsive to x as possible,
and as constant as possible. In regularized AEs, the derivatives of f (x) or r(x) along the
manifold in the x-directions must remain large, while the derivatives of f (x) or r(x) in the
x-directions orthogonal to the manifold can be very small. Since a regularized AE with
a non-linear encoder is allowed to choose different principal directions, it can capture
non-linear manifolds [64].

In Table 1, we list the well-known regularized AEs along with some representative
works and briefly summarize their characteristics and advantages. In the next sections, we
will describe each of these variants and their most recent developments.

Table 1. Various regularized AEs.

Method Remark References

Sparse Auto-encoder 1. Imposes a sparsity constraint on the hidden units
[65]2. Learns useful representations/features for images/audio domains

k-sparse Auto-encoder In hidden layers, only the k highest activities are kept, and the others are set to zero [16,66]

FC-WTA Auto-encoder Using mini-batch statistics to directly enforce a lifetime sparsity in the activations of
the hidden units [67]

Denoising Auto-encoder An explicit denoising criterion helps to capture interesting structure in the input [68,69]
Variational Auto-encoder Elegant theory, but tends to generate blurry samples when applied to natural images [70,71]

Ladder Variational
Auto-encoder

Providing advanced predictive log-likelihood and a tighter lower bound on the
true log-likelihood [72]

Triplet-based
Variational Auto-encoder Incorporating deep metric learning to learn latent embedding in VAE [73]

Conditional Variational
Auto-encoder A VAE architecture conditioning on another description of the data, y [74–76]

Wasserstein
Auto-encoder

Using the optimal transport cost between the model distribution and the
target distribution [77–79]

Contractive Auto-encoder Adding the Froenius norm of the Jacobian matrix of the encoder activations to the
reconstruction cost [80,81]

What and Where
Auto-encoder

Providing a unified approach to unsupervised, semi-supervised, and
supervised learning [82]

Convolutional
Auto-encoder Extending the AE using convolution operation [83–86]

Adversarial
Auto-encoder

Training an auto-encoder with an adversarial loss to match the distribution in the
latent space to an arbitrary prior [87,88]

Sequence-to-sequence
Auto-encoder

1. Based on Recurrent Neural Networks (RNNs)
2. Learn fixed-length representations of variable-length input [89–91]

2.2.1. Sparse Auto-Encoder

Sparsity has become an interesting concept recently. It is a useful and desirable con-
straint when the number of hidden units is large (even larger than the number of input
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values), allowing the discovery of interesting structures in the dataset and avoiding simply
learning the identity function of the encoder–decoder architecture [92,93]. Why use a sparse
representation (“representation” is also known as the feature vector or the code)? It has pre-
sented several potential advantages in a number of recent studies [94–96]. Particularly, they
are robust to noise. In addition, they are advantageous for classifiers because classification
is more likely to be easier in higher dimensional spaces. Furthermore, this may explain
why biology seems to follow sparse representations. Interest in sparse representations is
inspired in part by evidence that neural activity in the brain seems to be sparse. Hence, this
has burgeoned the seminal work on sparse coding [97]. Sparsity is a special regularization.
SAE introduces sparsity regularization into AE by penalizing either the hidden unit biases
or the activations of the hidden units to be sparse [27,98]. The former is completed to make
these additive offset parameters more negative, whereas the latter is completed to make
them closer to their saturating value at 0 [27]. These two sparse regularization methods can
also be called parameterization sparsity and representational sparsity, respectively, which
are ascribed to parameter regularization and representational regularization, respectively.
With respect to parameter regularization, we can add a parameter norm penalty Ω(θ) to
the objective function L. We denote the regularized objective function by L̃:

L̃(θ; x, y) = L(θ; x, y) + αΩ(θ) (11)

where α ∈ [0, ∞) is a hyper-parameter that weights the relative contribution of the norm
penalty term. Setting α to 0 means no regularization. Larger values about α will result in
more regularization. When the regularized objective function L̃ is minimized, both the
original objective L on the training data and some measure about the size of parameters θ
(or some subset of the parameters) will be reduced. In Refs. [28,33], the authors put forward
a different view from Refs. [27,98]—a parameter norm penalty Ω is usually chosen. In
this way, only the weights of the affine transformation at each layer are penalized, and
the biases are left to be unregularized. Therefore, the vector w is used to denote all of the
weights that should be affected by a norm penalty. If there is no bias parameter, then θ is
just w. L2 regularization and L1 regularization are two common methods to penalize the
size of the model parameters. In comparison to L2 regularization, L1 regularization results
in a solution that is sparser. It induces parameterization sparsity—meaning that many of
the parameters become zero (or close to zero) [33]. Formally, L1 regularization on the model
parameter can be defined as:

Ω(θ) = ‖w‖1 = ∑
i
|wi| (12)

Representational sparsity, on the other hand, describes a representation in which many
elements in the representation are zero (or close to it). Representational regularization is
finished with the same types of mechanisms that are used in parameter regularization [33].
When the activations about hidden units are directly penalized, we can add a penalty on
the representation to the loss function L, which is expressed as Ω(y). As mentioned before,
we use L to represent the regularized loss function. As mentioned before, we use L̃ to
represent the regularized loss function:

L̃(θ; x, y) = L(θ; x, y) + αΩ(y) (13)

where α ∈ [0, ∞) weights the relative contribution of the penalty term and the larger
value α corresponds to more regularization. Here, an L1 penalty also can be used on the
elements of the representation to induce representational sparsity: Ω(y) = ‖y‖1 = ∑i|yi|.
In addition to the L1 penalty, Kullback–Leibler (KL) divergence penalties are also useful for
representations with elements constrained to lie on the unit interval. It can be computed as:

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
(14)
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where KL(ρ‖ρ̂j) is the KL divergence between a Bernoulli random variable with mean ρ

and a Bernoulli random variable with mean ρ̂j. Further, let ρ̂j =
1
n

n
∑

k=1

[
yj(x(k))

]
∀j = 1 . . . S

be the average activation of hidden unit j averaged over the training set. Hereinto, yj(x)
denotes the activation of this hidden unit when the network is given a specific input x and
S is the number of hidden notes. We would like to enforce the constraint ρ̂j = ρ, where ρ is
a sparsity parameter. By setting ρ to be a small value near zero, the activations of many
hidden units can be close to or equal to zero, resulting in sparse connections between layers.
In Refs. [10,99], the authors depict a kind of sparse AE which comprises parameterization
sparsity and representational sparsity. The overall cost function is now:

L̃(θ; x) =
1
M

M

∑
k=1

L(x(k), z(k)) + α
s

∑
j=1

KL(ρ‖ρ̂j) + β‖W‖2
2 (15)

Recall that the first term describes the discrepancy between the input x(k) and re-
construction z(k) over the entire data. In the second term, KL(ρ‖ρ̂j) is used to induce
representational sparsity. The third term is a parameter regularization term (also called a
weight decay term) that tends to decrease the magnitude of the weight and helps preventing
overfitting. Here:

‖W‖2
2 =

nl

∑
l=1

sl−1

∑
i

sl

∑
j
(w(l)

i,j )
2

(16)

where nl is the number of layers and Sl is the number of neurons in layer l. w(l)
i,j represents

the connection between the i-th neuron in layer l-1 and the j-th neuron in layer l.
From the above, and after noting that in order to learn sparse representations, a term

about enforcing sparsity can be added to the loss. This term usually penalizes those active
code units and aims to make the distribution of their activities reach a high peak at zero
and have heavy tails. One disadvantage of these methods is that some measures may need
to be taken in order to prevent the model from always activating the same several units
and collapsing all other units to zero [94].

An alternative approach is to place a non-linear module (dubbed the “Sparsifying
Logistic”) between the encoder and decoder [94]. We can understand this non-linearity
in two different ways. Let us consider the k-th training sample and the i-th component
of the code zi(k) with i ∈ [1. . . τ]. τ is the number used to represent the components of
the code vector. Let zi(k) be its corresponding output after this non-linear module. The
transformation performed with this non-linearity is given by:

zi(k) =
ηeβzi(k)

ςi(k)
, i ∈ [1. . . τ] with ςi(k) = ηeβzi(k) + (1 − η)ςi(k − 1) (17)

Let us assume that η ∈ [0, 1] and β > 0. Additionally, ςi(k) is the weighted sum of
values of eβzi(ϕ) corresponding to the previous training samples ϕ with ϕ ≤ k. In this
sum, the weights are exponentially decaying, which can be seen by unrolling the recursive
expression of the denominator in Equation (16). This non-linearity can be seen as a kind
of weighted “softmax” function over consecutive samples of the same code unit. The
sparseness of the code is controlled by the parameter η. By dividing the right-hand side of
Equation (16) by ηeβzi(k), we have:

zi(k) = [1 + e−β(zi(k)− 1
β log( 1−η

η ςi(k−1)))
]
−1

, i ∈ [1. . . τ] (18)

At this point, the Sparsifying Logistic that tracks the average input can be viewed
as a logistic function with an adaptive bias. A larger β will turn the non-linearity into a
step function and make zi(k) a binary code vector. In this non-linear module, sparsity is a
“temporal” property that characterizes every single unit in the code rather than a “spatial”
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property that is shared by all the units in a code. Spatial sparsity often requires some type
of special normalization to ensure that the “on” components of the code are not always
the same. In contrast to spatial sparsity methods, this framework tackles the problem in a
different way—when encoding different samples, each unit must be sparse independently
from the activities of the other components in the code vector.

In the following, we use the feature distribution view to analyze the sparsity of an AE.
Ref. [100] analyzes two desirable properties of the feature distribution: population sparsity
and lifetime sparsity. The first describes codes in which few neurons are active at any time,
and the later describes codes in which each neuron’s lifetime response distribution has
high kurtosis [101]. To investigate the effectiveness of sparsity by itself, Makhzani et al. [16]
propose the “k-sparse auto-encoder”, which is an AE with a linear activation function,
where in hidden layers, only the k highest activities are kept, and the others are set to zero.
This is performed by sorting the activities or by using ReLU hidden units with adaptively
adjusted thresholds until the k largest activities are identified. This is different from the
traditional methods [10,99] that reconstruct the input from all of the hidden units. This
algorithm is also typically seen as enforcing population sparsity.

A “lifetime sparsity” penalty function proportional to the KL divergence between
the target sparsity probability (ρ) and the hidden unit marginals (ρ̂) is added to the cost
function: λKL(ρ‖ρ̂). A major drawback of this algorithm is that it only works for certain
target sparsity, and the tuning of the λ parameter is a laborious task that requires expert
knowledge. In addition, KL divergence was originally proposed for sigmoidal AEs, and it
is not clear how to apply it to ReLU AEs where ρ̂ could be larger than one (in which case,
the KL divergence cannot be evaluated) [67]. For this reason, Ref. [67] proposes a Fully
Connected Winner-Take-All (FC-WTA) AE, which aims for any target sparsity rate and
has no hyper-parameter to be tuned (except the target sparsity rate). This approach uses
mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden
units. FC-WTA imposes sparsity (lifetime sparsity) across training examples, whereas
k-sparse AEs impose sparsity (population sparsity) across different channels. When low
sparsity levels are the goal, the latter uses a scheduling technique to avoid the problem of
a dead dictionary atom. However, FC-WTA will not encounter this problem because no
matter how aggressive the sparsity rate is (no scheduling required), all the hidden units
will be updated when visiting every mini-batch.

Earlier, we discussed and analyzed the sparsity of AEs from different views. In sum-
mary, sparse over-complete representations can be regarded as an alternative “compressed”
representation. Because there are a large number of zeros, it has implicit direct compress-
ibility. This is different from an explicit lower dimensionality [96]. If the representation
learned by an AE is sparse, then the AE cannot reconstruct every possible input pattern
well. The reason for this is that the number of sparse configurations is necessarily smaller
than the number of dense configurations. In addition, the number of configurations in
sparse vectors is much less than when less sparsity (or no sparsity at all) is applied, so the
entropy of sparser codes is smaller [102].

2.2.2. Denoising Auto-Encoder

As previously mentioned, one strategy to avoid simply copying the input is to con-
strain the representation: the traditional bottleneck and sparse representations. Ref. [96]
has explored and proposed a very different strategy, which is a both more interesting and
more challenging objective. The authors change the reconstruction criterion by cleaning
partially corrupted input or, in short, “denoising”. Denoising is advocated and investi-
gated as a training criterion for learning to extract useful features. This conception leads
to a very simple variant of the basic AE. Denoising auto-encoders (DAEs) are trained to
reconstruct clean “repaired” input from corrupted versions. First, we need to corrupt the
initial input vector x into x̃ using stochastic mapping x̃ ∼ qD(x̃|x ), where qD denotes a
stochastically corrupted process. Each time a training example x is presented, a different
corrupted version x̃ is generated according to qD(x̃|x ). With the basic AE, the corrupted

300



Mathematics 2023, 11, 1777

input x̃ is then mapped to hidden representation y = fθ(x̃) = s f (Wx̃ + b) from which we
reconstruct z = gθ(y) = sg(W ′y + b′). Just as in the case of the basic AE, the weight matrix
may also optionally be tied to weights. In Ref. [103], the authors justified the use of tied
weights between the encoder and decoder within the Score Matching (SM) framework
presented. Parameters θ are trained to force z as close as possible to the uncorrupted input
x. As previously mentioned, the considered reconstruction error L(x, z) can be MSE, with
an affine decoder, or the cross-entropy loss, equipped with an affine+sigmoid decoder.
Ref. [96] also claims that denoising, that is, restoring the values of corrupted elements, is
only possible due to the dependencies between dimensions in high dimensional distribu-
tions. In addition, it is probably less suitable for very low dimensional problems. It has
been proven that DAEs can be viewed as an empirically successful alternative to Restricted
Boltzmann Machines (RBMs) trained with contrastive divergence for pre-training deep
networks [9,96,104].

In the corruption process, there are several types of noise such as salt-and-pepper
noise for gray-scale images, additive isotropic Gaussian noise, and masking noise (salt
or pepper only). The last type of noise has been used in most simulations [105]. Noise
injection, which can be much more powerful than simply shrinking the parameters, is
a way to improve the robustness of neural networks. Injecting noise in the input to a
neural network can also be seen as a form of data augmentation, which is a particularly
effective technique for a specific classification problem—object recognition [33]. This well-
known data augmentation method uses stochastically “transformed” patterns to augment
the training data, such as transforming original bitmaps using small rotations, scalings,
and translations to augment a training set [106,107]. However, the difference between
this technique and noise injection in DAE lies in the fact that the latter does not produce
extra labeled examples for supervised training, nor does it use any prior knowledge of
image topology.

Noise injection in the input data is the key ingredient of a DAE. We can extend this
idea to apply noise to the hidden units and visible units of a neural network. This creats a
computationally inexpensive but powerful regularization—dropout [108,109]. The term
“dropout” means dropping out units (visible and hidden) in a neural network. Dropping a
unit out means temporarily removing it from the network together with all its incoming
and outgoing connections. The choice of which units to drop is random. Similar to the
DAE, it also can be considered as a process of constructing new inputs by multiplying with
noise. As noise is applied to the hidden units, dropout can be seen as performing dataset
augmentation at multiple levels of abstraction [33].

DAEs also can be analyzed from the following theoretical points of view: the manifold
learning perspective, information-theoretic perspective, and stochastic operator perspec-
tive [97]. Recently, Ref. [110] proposed a different probabilistic interpretation of the DAE,
which is valid for any data type, any corruption process, and any reconstruction loss (so
long as it can be viewed as a log-likelihood). In addition, Ref. [104] relates the DAE to
energy-based models (EBMs), which are a rich class of probabilistic models. These models
define a probability distribution using an exponentiated energy function. Using linear
reconstruction and squared error to train a DAE is equivalent to learning an energy-based
model, and its energy function is very close to that of a Gaussian RBM. The training uses a
regularized variant of the score-matching parameter estimation technique [111], which is
called denoising score matching. Finally, Ref. [62] summarized and extended the existing
results from Vincent [104]. They further proved that a DAE with arbitrary parametrization
with small Gaussian corruption noise is a general estimator of the score. Meanwhile, we
also can demonstrate denoising as a learning criterion that can be seen as a dynamical
system from the view of the AE [112].

2.2.3. Variational Auto-Encoder

In just four years, the variational auto-encoder (VAE), which is proposed by Ref. [113],
has been a slightly more modern and interesting work. So, what is a VAE? It is a model
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with added constraints on the encoded representations being learned. More precisely, it
can learn a latent variable model for its input data. Ref. [33] has also demonstrated that
“besides SAE and DAE, VAE is the most naturally interpreted as regularized AE. Almost
any generative model with latent variables and equipped with an inference procedure to
compute latent representations of a given input may be considered as a particular form
of AE”. Moreover, VAE is built on top of neural networks, which are appealing and can
also be trained with SGD [114]. Instead of letting these neural networks learn an arbitrary
function, we can learn the parameters of a complicated distribution modeling its input data.
By sampling points from this distribution, we can generate new input data samples: a VAE
is also a generative model, which emphasizes the connection with the AE. Additionally, a
VAE is the descendant of the Helmholtz machine [33].

How does a VAE work? The underlying process can be divided into four steps,
which are shown schematically in Figure 2. Let us consider a high-dimensional dataset

X =
{

x(i)
}N

i=1
considering of N i.i.d. samples of some continuous or discrete variable x.

First, an encoder network qφ(z
∣∣x) (also dubbed a “recognition model”) turns a given data

point x into two parameters in a latent space, which we note as z_mean and z_log_sigma.
Here, the unobserved variables z have an interpretation as a code or latent representation,
and qφ(z

∣∣x) is an approximation to the intractable true posterior pθ(z|x) . Ø and θ are,
respectively, the recognition model parameters and generative model parameters. Then,
we randomly sample similar points z from the latent normal distribution that is assumed to
generate the data using:

z = z_mean + exp(z_ log _sigma/2) ∗ ε (19)

where ε ∼ N(0, I). This operation is called the “reparameterization trick”, which can
further improve the efficiency in the variational inference of a Gaussian posterior over
model parameters [115]. It is a popular regularization method that provides a Bayesian
perspective of dropout [116]. Lastly, a decoder network pθ(x|z) maps these latent space
points back to the original input data. By context, we can learn that VAE can be understood
from two perspectives: neural networks and graphical models.

 

 

 

 

 

 

    

 

 
Figure 2. The architecture and operation flows of a VAE.

As previously discussed above, the VAE is a type of AE. However, there remain some
differences between a VAE and an AE. The traditional AE learn an arbitrary function to
encode and decode the input data, whereas the VAE learn the parameters of a probability
distribution modeling the data. Hence, the VAE is a modern version of the AE [82,117].
Recently, some descendants of VAE have been proposed. Ref. [72] proposed the Ladder
Variational Auto-encoder, which can recursively correct the generative distribution using a
data dependent approximate likelihood in a process. Compared to the purely bottom-up
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inference in a VAE, it provides advanced predictive log-likelihood and a tighter lower
bound on the true log-likelihood. A novel integrated framework called the Triplet based
Variational Auto-encoder (TVAE) was proposed in [73]. In this model, the authors con-
structed a new loss function (as shown in Equation (20)) that combines a triplet loss and
standard evidence lower bound (ELBO) of plain a VAE. In Equation (20), Lrec and LKL are
the reconstruction loss and the KL Divergence loss, respectively. Thereinto, Ltriplet denotes
the triplet loss. Compared to the traditional VAE, TVAEs are better at encoding more
semantic structural information in the latent embedding.

LTVAE = Lrec + LKL + Ltriplet (20)

In addition to these varieties, there is another extension of the VAE called the Condi-
tional Variational Auto-encoder (CVAE) [75]. Compared to the traditional VAE, it is a more
advanced model capable of modeling the distribution of high dimensional output space as
a generative model conditioned on the input observation. Taking image generation as an
example, the CVAE can generate diverse human faces given skin color.

2.2.4. Wasserstein Auto-Encoder

Ref. [77] proposed a new family of regularized auto-encoders called the Wasserstein
auto-encoder (WAE). There are some similarities and differences between the WAE and
VAE depicted in the last section. Similar to the VAE, the loss function of the WAE is
composed of two terms: the reconstruction cost and a regularizer. The first reconstruction
term aligns the encoder–decoder pair so that the decoder can accurately reconstruct the
encoded image based on the measurement of the cost function. The second regularization
term forces the aggregated posterior q(z) to match the prior distribution p(z) instead of
requiring point-wise posteriors q(z|x = x(i)) to match p(z) for all data points x(i) at the
same time. This point is different from the VAE. The authors have proposed two different
regularizers. When the reconstruction cost is the squared cost and the regularizer is the
GAN objective, the WAE coincides with the adversarial auto-encoder (AAE) [13], which we
will more formally introduce in Section 2.2.8. Unlike the VAE, the WAE aims at minimizing
optimal transport (OT) between the probabilistic latent variable model distribution and
the unknown data distribution. The WAE shares many of the properties of the VAE, such
as the encoder–decoder architecture, stable training, and good latent manifold structure.
However, the WAE can generate samples with better quality.

Ref. [78] has applied a WAE to the problem of disentangled representation learning.
With satisfactory results on a benchmark disentanglement task, the potential of the WAE
is demonstrated and proven. Ref. [79] also studied the role of latent space dimensionality
in WAE. Using experimentation on synthetic and real datasets, it was demonstrated that
random encoders are better than deterministic encoders.

2.2.5. Contractive Auto-Encoder

Another breakthrough development in the AE field was the contractive auto-encoder
(CAE1) proposed by Refs. [11,118]. We can achieve this model by adding a well-chosen
penalty term to the traditional reconstruction cost function. Further, this penalty term
corresponds to the Frobenius norm of the Jacobian matrix of the encoder activations with
respect to the input. The resulting CAE1 can then be expressed as:

JCAE(θ) = ∑
x∈D

L(x, g( f (x))) + λ‖J f (x)‖2
F (21)

where L is the reconstruction error, which can be chosen as MSE or CE loss (see Section 2.1
for a longer discussion). J f (x) = ∂y

∂x (x) is the regularization term that corresponds to the
Jacobian of the hidden representation y with respect to the input x. Additionally, λ is a
hyper-parameter controlling the strength of the regularization. In Ref. [27], the authors
listed several core differences between the CAE1 and DAE. First, CAE1 only contract the

303



Mathematics 2023, 11, 1777

encoder function f (·) rather than the whole reconstruction function. From another point of
view, a DAE is actually a particular kind of CAE1 with very small Gaussian corruption and
MSE loss [62]. Second, the hyper-parameter λ controls the norm of the Jacobian penalized;
it adjusts the trade-off between reconstruction and robustness (while in the DAE, the two
are mingled). Additionally, the CAE1 and VAE also have certain features in common. These
two kinds of models impose constraints on the output of hidden neurons.

Ref. [80] proposed a simple and computationally efficient method to extend the CAE1

method. This improved method not only penalizes the first order derivative (Jacobian) of
the mapping but also the second order (Hessian). This improvement can help to stabilize
the learned representation around training points.

2.2.6. What-Where Auto-Encoder

In 2016, Ref. [82] presented a novel architecture called the “stacked what-where auto-
encoder” (SWWAE). The idea of “what” and “where” has been proposed previously in
cognitive neuroscience. The “what” pathway is involved with object and visual identi-
fication. The “where” pathway is used to process the object’s spatial location relative to
the viewer. The authors have put the idea of “what” and “where” into the model of the
SWWAE. In this model, each pooling layer produces two sets of variables, namely, “what”
and “where”. The former is fed to the next layer. Its complementary variable, the “where”,
is fed to the corresponding layer in the decoder. The SWWAE integrates discriminative and
generative pathways and provides a unified approach for supervised, semi-supervised,
and unsupervised learning. The loss function of the SWWAE depicted in Equation (22) is
composed of three parts:

L = λNLLLNLL + λL2recLL2rec + λL2MLL2M (22)

where LNLL denotes the classification loss, LL2rec is the reconstruction loss at the input level,
and LL2M is intermediate reconstruction terms. λ weights the losses against each other.

Contrary to the traditional AE, SAE, and DAE mentioned above, this model includes
a supervised loss, which can help factorize the data into semantically relevant factors of
variation. Additionally, the SWWAE uses the reconstruction term as a regularizer.

2.2.7. What-Where Auto-Encoder

In the previous section, we depicted the loss function of the SWWAE using Equation
(22). If we set LNLL = 0, then the SWWAE is equivalent to a deep convolutional auto-
encoder (CAE2). So, what kind of structure is the CAE2? It equips the convolutional neural
network (CNN) as encoders and decoders. Ref. [84] developed the CAE2 with logistic
sigmoid units for feature learning. However, the learning properties of this model were
not fully studied, and the connections to other related models were not mentioned. Hence,
Ref. [119] proposed a convolutional sparse auto-encoder (CSAE) and built its connections
to convolutional sparse coding (CSC). The proposed CSAE includes three basic modules:
encoder, sparsifying, and decoder. Contrary to Ref. [84], this model has added a sparsifying
module, which can quickly predict the sparse feature maps. Additionally, they also built
connections between the CSAE and CSC. In Ref. [85], the authors developed several deep
CAE2 models using the Caffe deep learning framework and evaluated their experiments
with MNIST.

Comparing the CAE2 with the well-known SAE and DAE, there are some advantages.
First, this model can scale well to realistic-sized high-dimensional inputs. Both the SAE
and DAE, however, are common fully connected deep networks. Hence, these two models
introduce computational complexity and force each feature to be global. Additionally, the
CAE2 is different from the traditional AE as it can preserve spatial locality because the
weights are shared among all locations in the input.
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2.2.8. Adversarial Auto-Encoder

In Section 2.2.4, we referred to the AAE proposed by Ref. [13]. The AAE is a proba-
bilistic AE that incorporates adversarial training [120] to match the aggregated posterior
q(z) of the hidden code vector z with an arbitrary prior distribution p(z), such as a mul-
tivariate standard normal distribution. Hence, this probabilistic AE is trained with dual
objectives: a traditional reconstruction error criterion and an adversarial training criterion.
The architecture of the AAE is shown in Figure 3. AAE is trained with SGD in two phases:
the reconstruction phase and the regularization phase. In the former phase, the encoder
and decoder are updated to minimize the reconstruction error of the inputs. In the latter
phase, the adversarial network firstly updates its discriminative network to discriminate
the positive samples (generated using the prior distribution p(z)) from the negative samples
q(z). The generator of an AAE (which is also the encoder of AE) is updated to confuse the
discriminative network. Once the training procedure is complete, the decoder of the AE
will act as a generative model mapping the imposed prior p(z) to the data distribution.

  

  

  

Figure 3. The architecture of an AAE [13]. The red rectangle is a standard AE with an encoder
and decoder to reconstruct an image x from a latent code z. The encoder of the AE q(z|x) is also
a generator of the adversarial network. The blue rectangle describes the discriminative network,
which is used to predict whether a sample arises from the hidden code of the AE or from a sampled
distribution p(z).

Variation and adversarial are the two key methods for regularizing the encoding
space. The AAE is similar to the VAE. The latter uses a KL divergence to impose a prior
distribution on the hidden code vector, while the former uses adversarial training to match
the aggregated posterior of the hidden code vector to an arbitrary prior. Compared with
the VAE, the AAE has the following characteristics. We must have access to the functional
form of the prior distribution p(z) to backprop through the KL divergence. While in
an AAE, we only need to be able to draw a sample from the prior to induce the latent
distribution to match the prior. Further, the adversarial method allows the encoder to be
more expressive than the variational method [88]. In Section 2.2.2, we analyzed the benefits
of the denoising criterion [96], but no corruption process was introduced for the AAE.
Hence, Ref. [87] combined regularization and denoising and used adversarial training
to shape the distribution of latent space. They incorporated denoising into the training
and sampling of an AAE, thus formulating two improved versions of the denoising AAE:
iDAAE and DAAE.

2.2.9. Sequence-to-Sequence Auto-Encoder

In the above sections, we described several types of regularized AEs. The input of
these AEs are vectors or 2D images. If our inputs are sequences, how can we complete the
task? A general framework has been proposed to encode a sequence using a sequence-to-
sequence auto-encoder (SA), in which a Recurrent Neural Network (RNN) is used to encode
the input sequence into a fixed-length representation and then another RNN to decode this
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representation out of that input sequence. This network is trained to minimize the root
mean squared error (RMSE) between the input sequence and the reconstruction [89]. In
Ref. [90], the authors proposed the use of a SA to represent variable-length audio segments
with vectors of fixed dimensionality. To learn more robust representations, they further
apply the denoising criterion to SA learning. The input acoustic feature sequence x is
randomly added with some noise to yield a corrupted version x̃. Here, the input to SA
is x̃, and SA is expected to generate the output y closest to the original x based on x̃. The
SA incorporated into this denoising criterion is referred to as the denoising sequence-to-
sequence auto-encoder (DSA).

Ref. [121] presented the AUDEEP, which is the first Python toolkit based on TensorFlow
for deep unsupervised representation learning from acoustic data. This toolkit used a
deep recurrent SA approach built of long short-term memory cells or gated recurrent
units. Further, Bowman et al. [122] drew the ideology of “variation” into the SA and
trained a sequence-to-sequence VAE successfully. This model can generate sentences from
a continuous latent space. When applying attention mechanisms [123] to sequence-to-
sequence VAE, however, “bypassing” has arisen. In Ref. [91], the authors proposed a
variational attention mechanism to address this problem. In the future, we can further
integrate other deep representation learning algorithms to extend SAs.

3. Analyses of AEs

3.1. Energy Perspective

AEs not only have a variety of forms but also can be analyzed and studied from
different perspectives. Now, we will analyze AEs from the energy point of view. What
does “energy” mean here? Ref. [124] proposed that the essence of the energy-based model
is to build a function that maps each point of an input space to a single scalar, which
is called “energy”. Many unsupervised models can be viewed as a scalar-valued energy
function E(X) that operates on input data vectors X [59]. As a kind of unsupervised learning
method, AEs also can be regarded as the energy function E(X). This function E(X) associates
low energies to input points X that are similar to training samples and high energies to
dissimilar points. AEs can extract representations Z (or codes) from which the training
samples can be reconstructed. In the energy function, Z can be seen as a deterministic latent
variable. From the perspective of energy, AEs can be seen as using an energy function of
the following form:

E(X) = min
Z∈ζ

E(X, Z) (23)

There are several common activation functions (sigmoid, hyperbolic tangent, linear
activation, square activation, rectified linear, and modulus activation) for AEs. According
to each activation function, Ref. [125] derived the respective energy functions.

3.2. Manifold Perspective

A manifold is a connected region. Mathematically, it is a set of points associated with a
neighborhood around each point. From any given point, the manifold locally appears to be
a Euclidean space [35]. Manifold learning is capable of finding a low-dimension basis for
describing high-dimension data. Additionally, it can uncover the intrinsic dimensionality
of high-dimension data. Many machine learning algorithms exploit the idea of a manifold.
As one of the machine learning algorithms, AEs are no exception. If you have an AE, it
will be trained in a manifold fashion such that similar input data results in output neuron
values that are at a low distance from each other. The space spanned by the output neuron
variables can be considered to be a learned manifold for the input data space.

Similar to the traditional AE, it takes an input and the input goes through an encoder,
which gives a low dimensional output y (more details can be found in Section 2.1). This
output y can be interpreted as coordinates of the manifold. How does y denote the coor-
dinates of a dimensional manifold? Ref. [81] introduces a sensitivity penalization term
in the objective function, measured as the Frobenius norm of Jacobian of the non-linear
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mapping of the inputs: ‖J f (x)‖2
F. The Jacobian J f (x) = ∂y

∂x (x) measures the sensitivity of y
locally around x. It encourages the model to be invariant to local changes in x, except for
the changes following tangent vectors. In practice, it is easier to train a DAE, which inserts
noise before the inputs are fed into the encoder. The corrupted inputs will be much more
likely to be outside and farther from the manifold than the uncorrupted ones, generally
on or near the manifold. The purpose of the DAE is that the stochastic operator p(x|x̃)
learns a map tending to go from lower probability points x̃ to high probability points x.
While x̃ is farther from this manifold, p(x|x̃) will learn to make bigger steps to reach the
manifold. That way, the DAE can learn features that are more robust to small perturbations
of the input.

Further, Ref. [126] has taken advantage of the manifold learning perspective of the VAE
to analyze brain MRI images. Different from other AEs, this proposed method inherently
has generative properties. The author has taken advantage of this capability to construct
brain images given manifold coordinates.

3.3. Information Theoretic Perspective

Despite the great success of DNNs in practical application, there is still a lack of
theoretical and systematic methods for their analysis. As a special type of DL architecture,
the idea of AEs is similar to the idea of encoding information in information theory [127].
In this section, we will illustrate an advanced information-theoretic methodology to under-
stand the design of AEs. In order to define a measure of the efficiency and reliability of the
signal, Shannon first invented information theory [128]. In this theory, Mutual Information
I and Kullback–Leibler (KL) divergence play a very important role. The former is used
to measure the information shared between two variables (the original message and the
received one) in the signal transmission case. The latter is used to evaluate the difference
between two different probability distributions. Ref. [96] provide a description of AEs from
the view of information theory. The authors observed that minimizing the expected recon-
struction error of an AE is equivalent to maximizing a lower bound on mutual information
I(x; y), where x, y denote the input and hidden representation, respectively. Equally, the
objective of the DAE is that y captures as much information about x as possible, even if x is
a result of corrupted input. As described in the last section, this output y lives in a manifold
embedded in a subspace of the input space x. The purpose of this projection from the input
dimension space to the hidden manifold is to preserve as much information as possible.

Additionally, we also can analyze the CAE from an information theory perspective. In
the case of a sigmoid nonlinearity, the penalty on the Jacobian norm can be expressed in
the following simple form:

‖J f (x)‖2
F =

d′

∑
i=1

(yi(1 − yi))

2 d

∑
j=1

W2
ij (24)

We observe that the Froebenius norm is an approximation of the absolute value of the
determinant, and the CAE1 representation can be described as low entropy. Indeed, by
changing variables in Equation (24), in the case of a complete representation, the entropy of
the representation y is a linear function of the log-determinant of the Jacobian of W [129].
Meanwhile, Ref. [114] listed the core equation of the VAE (as shown in Equation (25)) and
gave the information-theoretic interpretation:

log p(x)− KL [q
(
z
∣∣x) || p(z|x)] = Ez∼q[logp(x

∣∣z)]− KL[q(z
∣∣x)∣∣∣∣p(z)] (25)

where p, q, x, and z have the same meaning as in Section 2.2.3. We can regard log p(x) as
the total number of bits required to construct x. Viewing the r.h.s of Equation (25), there
are two steps to construct x. In the first step, we use some bits to construct z. The bits
required to construct z are measured using a KL[q(z|x)||p(z)]. In the second step, we use
p(x|z) to measure the amount of information required to reconstruct x from z under an
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ideal encoding. Accordingly, the total number of bits (log p(x)) is the sum of these two steps
minus a penalty we pay for q being a sub-optimal encoding (KL[q(z|x)||p(z|x)]).

4. Relationships with Other Models

There is a connection between AEs and other machine learning algorithms. Here,
we will summarize the existing relationships by analyzing the relationship with shallow
models and deep models.

4.1. Relationship with Shallow Models

Until recently, shallow structured architectures have been exploited in many fields.
Examples of shallow architectures are linear or nonlinear dynamical systems, support
vector machine (SVM), logistic regression, principal components analysis (PCA), restricted
Boltzmann machine (RBM), independent component correlation algorithm (ICA), etc. In
this section, we will analyze the relationships between AEs and shallow architectures.

4.1.1. Relationships with PCA

In this subsection, we will present the connection between PCA and the traditional AE,
which is closely related to PCA but much more flexible. Early in 1982, Ref. [130] illustrated
the connection between PCA and neural network representations. They showed that a
simplified neural network with a linear activation function could be seen as a principal
component analyzer. PCA, formalized by Hotelling [131], is a traditional feature extraction
method. We can use PCA to learn a linear transformation h = f (x) = WTx + b of the original
data x ∈ Rdx, the matrix W (dx × dh) forms an orthogonal basis for the dh orthogonal
directions of greatest variance in the training data. These uncorrelated dh features are the
components of representation h.

We will analyze traditional AE and PCA from the following points. Firstly, like PCA,
traditional AE is also an unsupervised learning algorithm. Secondly, when used with linear
neurons and MSE, a narrow AE can learn the same subspace as PCA. This is also true
for another kind of narrow AE, which has a single sigmoidal hidden layer, linear output
neurons with squared loss, and untied weights [27,132]. Although these AEs will not learn
the exact same basis as PCA, their weight matrix W will span the same subspace. In 2006,
Ref. [6] described a nonlinear AE using an adaptive and multilayer encoder network to
learn a low-dimensional code and a similar decoder network to recover data from the code.
It is a nonlinear generalization of PCA that works much better than PCA. Additionally, this
nonlinear AE takes advantage of learning non-linear manifolds, while PCA only learns
a linear manifold in a higher-dimensional space. Thirdly, although PCA and the narrow
AE differ in the specifics of architecture, both of them can be viewed in light of the energy-
based framework. PCA is an encoder–decoder architecture that minimizes the energy
loss (mean square reconstruction error), without requiring an explicit contrastive term
to pull up the energies of unobserved patterns. The energy of the narrow AE is simply
described as E(x) = |Dec(Enc(x) − x)|2. Because of the limitation in the entropy of the
code, we can simply pull down on the energy of the training samples without having to
pull up on the unobserved points again [59]. Additionally, Ref. [133] and Ref. [134] further
used experiments to visualize the comparison results on reducing the dimensionality
between AE and PCA. Both PCA and AE mentioned above for dimensionality reduction
ignore considering any data relations. Hence, a Generalized Auto-encoder (GAE) has been
proposed, which extends the traditional AE to take full advantage of data relations and
uses the relations to pursue the manifold structure [135]. They also have derived a variant
called GAE-PCA, which is the formulation of traditional PCA with a zero mean.

Recently, many research teams have begun to use a combination of AEs and PCA for a
field of application. Ref. [136] has proposed a feature learning method that combines an
SAE with a CNN and multiple layers of PCA to form a hierarchical model for American
sign language (ASL) finger-spelling recognition. Ref. [137] investigated initializing deep
AEs using PCA and further studied the stability of the features. Experimental evaluations
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further shows the impact of PCA-based initialization for classification tasks. Additionally,
an SSAE-based network with SVM and PCA is proposed to improve the accuracy of fault
diagnosis in power systems [138].

4.1.2. Relationships with RBM

RBM was initially introduced as Harmonium by Paul Smolensky in 1986 [139]. It is a
variant of Boltzmann machines and can learn a probability distribution over a set of inputs,
which plays an important role in DL. It only has an input and hidden layer, as shown in
Figure 4. Due to this restriction, their neurons must form a bipartite graph: there are no
connections between nodes within the visible neurons or hidden neurons.

...

...
 

Figure 4. The network structure of the RBM.

There are some relationships between AE and RBM. The latter is an especially popular
AE in DL [140]. Overall, these two kind of models are identical because they learn a good
model based on the training data [125]. For an AE with sigmoid hidden units, the energy
function is identical to the free energy of an RBM. These two kinds of models are both
unsupervised learning methods. Both can be understood in terms of encoder and decoder
architectures but with different constraints on the code and learning algorithms. Ref. [35]
also analyzed the other existing connections between AE and RBM. When applying score
matching to RBM, its cost function is identical to the reconstruction error combined with a
regularization term, which is similar to the contractive penalty of the CAE. The authors
also have illustrated that the gradient in the reconstruction error used in training AEs
provides an approximation to the contrastive divergence training of RBMs. As a variant
of the AE, the DAE shares this property with RBMs, and they are closely related to each
other [141]. Firstly, the DAE is a simple and competitive alternative to the RBM used by
Hinton [6] for pre-training deep networks [104]. Secondly, using Gaussian noise and MSE
as the reconstruction cost to train a DAE (sigmoidal hidden units and linear reconstruction
units) is equivalent to training an RBM with Gaussian visible units [103]. Thirdly, with
denoising, the DAE features performed similarly or better than those of the RBM [27].

4.1.3. ICA

Independent component analysis (ICA) is a computational and statistical technique
used to reveal hidden factors that underlie sets of random variables, measurements, or
signals. It can be interpreted as a form of the feed-forward neural network [142]. Like
AE, ICA also can be used as a generative model for the observed multivariate data, which
are typically given as a large database of samples. In this generative model, it is assumed
that the data variables are linear mixtures of some unknown latent variables, which are
supposed non-Gaussian and mutually independent. They are also called the independent
components of the observed data [143]. Additionally, similar to AE, ICA and its variants
have also been successfully used for unsupervised feature learning. ICA is not only sensitive
to whitening but also difficult to learn an over-complete basis set. Ref. [144] proposed
Reconstruction ICA (RICA) that not only addresses these shortcomings but also reveals
strong connections with the AE. If adding a regularization term in the form ∑t ∑j g(Wjx(t))
to an AE (with a linear activation and tied weights), where g is a nonlinear convex function,
an efficient algorithm for learning RICA will be obtained.
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4.1.4. PSD

Predictive sparse decomposition (PSD) is a practically successful model that is a hybrid
of sparse coding and an AE [145]. When computing the learned features, PSD uses a fast
non-iterative approximation to replace costly and highly non-linear encoding steps in
sparse coding. PSD can also be seen as a kind of AE. This model consists of an encoder f (x)
and a decoder g(h) that are both parametric. The training process of PSD is to minimize:

‖x − g(h)‖2 + λ|h|1 + γ‖h − f (x)‖2 (26)

where h is controlled by the optimization algorithm. Meanwhile, the parametric encoder f
is used to compute the learned features, which is a differentiable parametric function. Like
the AE, PSD can be stacked and used to initialize a deep network [35]. Additionally, it is
also an unsupervised feature learning method, which can be applied to object recognition
in images and videos [146,147].

4.2. Relationship with Shallow Models

The stacked auto-encoder (SAE2), DBN, and CNN are the three main networks used
in DL [8]. These models have been applied to fields such as computer vision, automatic
speech recognition, natural language processing, bioinformatics, and audio recognition
where they have been proven to produce the most advanced results in a variety of tasks. In
this section, we will analyze the relationship between the SAE2, DBN, and CNN.

4.2.1. Relation to DBN

Lately, the RBM and AE have been largely used as building blocks in DL architectures
that are called DBN and SAE2, respectively. Prior to the introduction of DBN in 2006 [148],
deep models were considered too difficult to optimize. Refs. [8,148] introduced a greedy
layer-wise unsupervised training algorithm that can be applied to the DBN. This algorithm
can be simply described as follows [26]: Firstly, train the first layer as an RBM. Secondly, use
the first layer’s internal representation as input data for the second layer. Thirdly, iterate
the second step for the desired number of layers. Lastly, after adding a further layer (e.g., a
simple linear classifier), we can fine-tune all the parameters in the deep network using a
supervising training criterion.

Similar to the DBN, the layer-wise training criterion is also applicable to the SAE2.
After the first k layers are trained, we can use the internal representation of the k-th layer to
train the (k + 1)-th layer. Once all the layers are pre-trained, a classification layer is added,
and SAE2 can be fine-tuned using exactly the same method as for the DBN. Additionally,
both the DBN and SAE2 are unsupervised learning methods, and they both belong to the
generative model.

4.2.2. Relation to CNN

CNNs have achieved breakthrough performance in many computer vision and ma-
chine learning tasks. Many excellent papers [107,149–151] have been published on this
topic. In addition, many high-quality open-source CNN software packages have been made
available. In the following sections, we will discuss this powerful architecture in detail.

As shown in Figure 5, a CNN is typically composed of multiple alternating con-
volutional and pooling layers, followed by one or several fully connected layers. This
hierarchical structure allows the CNN to extract more and more abstract representations
from the lower layer to the higher layer. Convolution and pooling are the key components
of CNNs. Many researchers have added these two modules into an AE to construct the
CAE2 mentioned in Section 2.2.7. The type of CAE2 is not unique. Ref. [152] proposes a
CAE2 to support unsupervised image feature learning for lung nodules using unlabeled
data. This proposed structure adds a reconstruction input for the convolution operation.
The procedure of the convolutional conversion from the input on feature maps to the
output is called the convolutional decoder. Then, the output values are reconstructed using
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the inverse convolutional operation, which is called a convolutional encoder. Moreover,
using the standard unsupervised greedy training for AE, the parameters of the encoder
and decoder operation can be calculated. Refs. [84,119,153] also used this kind of CAE2

similar to [152].

Figure 5. The typical architecture of a CNN.

Another mechanism for the CAE2 is to extract random image patches from input
images, and then use these patches to train an AE. Once the training is complete, we
can use the filters in a convolutional fashion to obtain representations of images. The
works [19,154,155] utilized this kind of architecture. As discussed in Ref. [67], the key
problem with this architecture is that if the receptive field selection is small, it will not be
able to capture relevant features (imagine the extreme of 1 × 1 patches). If we increase the
size of the receptive field, a very large number of features are needed to explain all the
position-specific variations within the receptive field.

4.3. Relationship with Matrix Factorization

In this section, the relationship between matrix factorization (MF) and AE will be
analyzed. Firstly, we will describe the relationship between the non-negative matrix
factorization (NMF) and AE. Secondly, the relationship between the truncated Singular
Value Decomposition (TSVD) and AE will be analyzed.

4.3.1. Relation to NMF

MF and AEs are among the most successful approaches to unsupervised learning [156].
The goal of MF is to decompose a matrix into several matrices. There are several matrix
factorization methods, such as triangular factorization, full rank factorization, QR factoriza-
tion, NMF, and singular value decomposition (SVD). Consider a data matrix V ∈ Rm×n

with only non-negative elements and m dimensions and n data points. If defining two
matrices, W ∈ Rm×r and H ∈ Rr×n, they also have only non-negative elements. NMF can
reduce the dimensionality of V using the approximation V ≈ WH. r is a preset dimension
reduction parameter (m and n are much larger than r). A one-hidden layer AE can be used
to perform NMF. Both NMF and AE can produce a lower dimensional representation of
some input data [157]. Additionally, the authors of [157] have proposed an architecture
called PAE-NMF, which utilizes the ideas behind the VAE to perform NMF. The model pro-
posed in this paper provides advantages both to the VAE and NMF. For the VAE, by forcing
a non-negative latent space, many of the beneficial properties of NMF can be inherited. For
NMF, a probabilistic representation of the vectors h is used to model the uncertainty in the
parameters of the model due to the limited data.

4.3.2. Relation to tSVD

tSVD is another matrix factorization method that produces a low-rank approximation
to a matrix. We need to compute the SVD of the matrix A and then truncate the less-
significant singular values. The SVD of the matrix A is given by:

A = UDVT (27)
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Suppose that A is an m × n matrix. Then, U is defined to be an m × m unitary matrix
(i.e., UTU = I), D to be an m × n matrix, and VT to be an n × n unitary matrix (i.e., VTV = I).
Conventionally, the entries along the diagonal of D (the singular values) are sorted in
non-increasing order. Pick the k largest singular values and then define the tSVD matrix as:

Ã = UkDkVT
k (28)

where Uk(Vk
T) is the first k columns of U (VT) and Dk is our k by k matrix of top eigenvalues.

If xi (i = 1, 2, . . . , m) is a row of A, zi = xiVT
k can be deemed as the encoding of xi, and

x̃i = ziVk corresponds to the decoder function. Analyzing from this point, tSVD and a
traditional AE (with linear activation and only one hidden layer) are identical [158]. In
other words, the tSVD is a degenerate form or a special linear case of a traditional AE [159].

5. Application Domains

AEs are often used for effective encoding of the original data or learning a representa-
tion, in the form of input vectors, at the hidden layers. Additionally, AE is an unsupervised
feature extraction method. In this section, we will demonstrate a plethora of applications
for AEs in various real-world domains, such as computer vision, speech recognition, fault
diagnosis, anomaly detection, etc. To do so, Figure 6 summarizes the taxonomy of the
application domains of AEs, which will be described in this section.

 

 

 

 

 
 

 

 

 

 

  

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

Figure 6. The taxonomy of the application domains of AEs.

5.1. Computer Vision

Computer vision is the science and technology that makes computers accurately
understand and efficiently process visual data such as videos and images. As a scientific
discipline, computer vision is concerned with the theory for building artificial systems that
obtain information from real-world, high-dimensional data. The ultimate goal of computer
vision is to give machines the perceptual capability of humans [160]. In the following
section, we will provide a general review of several application domains of computer vision
for AEs including image processing, video processing, and the 3D model field.
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5.1.1. Image Processing

(1) Image classification

Image classification is one of the most important and widely used research directions
in the field of computer vision and AI. Its research goal is to classify images into different
pre-defined categories according to their attributes. Image representation is the basis of
image classification. In order to better represent images and realize automatic classification,
it is very important to extract a good feature description for the images. As AEs are effective
feature-learning methods, they are widely used in image classification. Ref. [133] used a
traditional AE with a single hidden layer to reduce the dimensionality and further used
it for the classification of the MNIST and Olivetti face datasets. Both these two datasets
contain gray-scale images. Because the traditional AE is a fully connected network, the
authors resized the images of the Olivetti face dataset from 64 × 64 to 28 × 28 (the same
size as MNIST) to reduce the computational complexity. As described before, an AE can be
stacked to build a deep network to obtain high-level features. Refs. [64,161] presented a
stacked SAE1 for the classification of nuclei patches in breast cancer histopathology. They
extracted two categories of 34 × 34 patches from the histopathology images: nuclei and non-
nuclei patches. The authors used these two kinds of patches to construct the training set
and testing set. Similarly, Ref. [162] also used the stacked SAE1 to train with unsupervised
learning for extracting features of halftone images. The halftone image classification phase
consists of three modules: effective image patch extraction, feature extraction with a stacked
SAE1, and majority voting for halftone image classification. In order to reduce the run-time
of training and improve the image-correct classification rate, they proposed an effective
patch extraction method. Each halftone image in the training set is segmented sequentially
into patches with a size of 16 × 16. Another research team proposed a method called the
stacked DAE, which is a direct variant of the stacked basic AE [96]. Further, the stacked
DAE was tested on MINIST. Being similar to the method based on the stacked SAE, the
training and testing datasets fed into the models are relatively low in resolution, such as
small image patches and low-resolution images (e.g., hand-written digits). The AE, SAE,
and DAE used in papers [64,96,133,161] are common fully connected networks, which learn
features by first encoding the vector-form input data and then reconstructing it, and cannot
scale well to realistically sized high-dimensional inputs (e.g., 256 × 256 images) in terms of
computational complexity [84]. Additionally, they both ignore the 2D image structure.

To solve this problem, Ref. [163] proposed a kind of CAE2 that first extracted patches
from the input images and used patch-wise training to optimize the weights of a basic
SAE in place of convolutional training to learn weights. The weights are then reorganized
as convolutional kernels, which are used to convolve the RGB input images for more
abstract feature maps, thus still reserving the local relevance of images. At that time, this
research achieved state-of-the-art performance on benchmark datasets such as CIFAR-10
and NORB using only a single layer of features (73.4% and 97.2%, respectively). Ref. [35]
utilized this CAE2 with a single layer of features for natural scene classification. This idea
is analogous to Coates et al.’s work [163]. A similar method is used for remote sensing
image classification as reported in [19]. While these works [19,35,163] only adopted a single
layer of features, the authors of [154] stacked DAEs in a convolutional way to generate
a hierarchical model. This stacked convolutional DAE achieved superior classification
performance to state-of-the-art unsupervised networks. Due to the depth structure, this
model outperforms the single-layer model of [163] on the CIFAR-10 dataset (ranging from
73.4% to 80.4%).

In addition to using a single type of feature to classify image data mentioned above,
multiple features can be combined for more comprehensive information. Feature fusion
aims to combine the strengths of complementary cues such as local and holistic features,
which can be combined at the feature or rank level. These attempts can be used for both
natural images and medical images. Inspired by this, Ref. [164] extracted both holistic
architecture features and high-dimensional local appearance features from detected cells
using a stacked SAE1. Then, a graph-based, query-specific fusion approach was used to
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integrate the strengths of local or holistic features. This fusion of heterogeneous features
significantly improves the accuracy by around 10%, i.e., achieving 91.67% overall accuracy
on a histopathological image-guided diagnosis of intraductal breast lesions. Similarly,
considering that hyperspectral imagery (HSI) is intrinsically defined in both the spectral
and spatial domains, Ref. [165] further established two stacked SAE-based feature learning
approaches for sparse spectral feature learning and multi-scale spatial feature learning,
respectively. Compared to traditional handcraft features, this learned spectral–spatial
feature representation is highly discriminative and has more potential turns for HSI classi-
fication. Similar to Ref. [165], the method introduced by Ref. [166] also used spatial and
spectral information, which was merged using the SAE2. Unlike Ref. [165], this architecture
mixed the traditional feature extraction method and DL architecture. PCA is introduced to
condense the whole image, reduce the data dimension to a reasonable scale, and reserve
spatial information simultaneously. A series of SAE2s with different depths were trained,
which further proves that the depth of the features affects classification accuracies. There
are many studies [167–170] that have combined traditional feature extraction methods
(such as HOG, ICA, the Gobor filter, and so on) with the AE. At the same time, a growing
number of scholars have integrated other DL methods into AEs. In Ref. [171], the authors
proposed a novel approach based on convolutional features and SAE for scene-level land
use (LU) classification. This approach first generated an initial feature representation of the
scenes under analysis from a CNN, which was pre-learned on a large amount of labeled
data from an auxiliary domain. Then, these convolutional features are input into a SAE1

for learning a new suitable representation in an unsupervised manner. In another work, a
novel VAE was developed using the Deep Generative Deconvolutional Network (DGDN)
as a decoder of the latent image features and using a CNN as an image encoder. A CNN
was used to approximate a distribution for the latent DGDN features [172].

In addition to integrating the theories of CNNs into AEs, another branch of research
has emerged. Extreme Learning Machine (ELM) theories and learning mechanisms have
been used in more and more AE algorithms. Ref. [173] originally proposed the Extreme
Learning Machine Auto-encoder (ELM-AE) and Sparse Extreme Learning Machine Auto-
encoder (SELM-AE) with orthogonal and sparse random hidden neurons. Unlike the
tied weight auto-encoder (TAE), the hidden neurons in ELM-AE and SELM-AE do not
need to be tuned. Additionally, the input weights and biases in additive neurons are
initialized using orthogonal and sparse random weights, respectively, which were used to
retain the Euclidean information in the data of the hidden layer. Due to only calculating
output weights, the proposed linear and nonlinear ELM-AE and SELM-AE have lower
computational complexity. The performance comparison of classification on the USPS,
CIFAR-10, and NORB Datasets shows that ELM-AE and SELM-AE learn features that are
discriminative and sparse. In Ref. [174], the authors presented a method that used ELMs as a
stacked supervised AE. In the process of implementing the algorithm, the authors randomly
project the ‘label pixel’ outputs from an ELM module to an independent set of hidden units
in the next ELM module. Furthermore, the ELM is known to be relatively fast to train
compared to iterative training methods such as the AE. For the reasons above, this work
gained the best of both worlds: fast implementation and lower error rates. This method
used standard benchmark datasets for multi-class image classification (MNIST, CIFAR-
10, and SVHN). In the field of remote sensing image classification, Ref. [175] proposed
a method called SAE-ELM that was based on the ELM. Different from Ref. [173] and
Ref. [174], the authors chose ELM as a base classifier to improve the learning speed of
the algorithm. Finally, the Q statistic is adopted to determine the final ensemble-based
classifier. The common feature of these three papers is that they all take advantage of
the fast-learning speed of ELM. Different from the single-task AE listed above, Ref. [176]
developed a multi-task AE architecture consisting of three layers with multiple separated
outputs. Each output corresponds to one task. This multi-task AE can learn features that
are robust to the variability in real-world images, so it can be well generalized in various
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fields. Comparing the classification performance with several single-task AE models, this
multi-task AE provides better performance.

In this subsection, we have analyzed the literature based on AEs for image classifica-
tion (e.g., natural images, medical images, natural scene images, and remotely sensed scene
images). We can conclude the following rules:

1. Compared with traditional hand-crafted features, these networks based on AEs pro-
vide an automatic method to learn discriminative features from the image and over-
come the weaknesses of some traditional feature extraction methods.

2. A series of AE models with different depths have proved that the depth of the network
also plays an important role in classification accuracies.

3. The fusion of various features is widely used in image classification. Similarly, image
features extracted using AE models can not only be fused with those extracted using
traditional methods but also can be combined with those extracted using other DL
methods. Feature fusion can further improve the accuracy of image classification.

4. It is very important to study the architecture design of an AE according to different
classification tasks.

(2) Saliency detection

Traditional saliency detection methods, relying on contrast inference and hand-designed
features, have been categorized into two sub-fields: 1© eye fixation prediction and 2©
salient object detection [21]. Eye fixation prediction focuses on human fixation locations
compared to salient object detection, which tends to extract whole meaningful objects.
With the rise of DL, many novel frameworks have used deep networks to learn saliency
detection models from raw image data, and some of the works have used AEs. Ref. [21]
adapted the stacked denoising auto-encoder (SDAE) for learning both optimal features
and contrast inference mechanisms from image data to predict human eye fixations. In
the first learning stage, they developed a layer-wise unsupervised learning scheme to
train the SDAE for obtaining robust representative features. In the second learning stage,
the contrast inference component and contrast integration component were embedded in
another unified SDAE network, while these two components were processed separately in
the traditional methods. Ref. [21] focused on saliency fixation prediction. However, this
model cannot be directly applied to saliency object detection. Again, this research team
developed the SDAE for saliency object detection by first modeling the background and
then separating salient objects from the background [177]. Different from the previous
works focusing on the way to calculate the similarity or distinctiveness between a certain
image patch and the image boundary, this work pays more attention to exploring the
background prior using the SDAE. Rather than using the shallow reconstruction residual,
they used the deep reconstruction residual generated with the SDAE to measure the saliency.
The similarity between these two papers [21,177] is that the SDAE is used to learn optimal
image features rather than to design hand-crafted features. Additionally, the SDAE is not
only used for feature extraction but also for contrast inference, contrast integration, and the
background prior. Additionally, sparsity is considered when training SDAE models, and
the effectiveness of the KL divergence used in the sparsity constraint was also demonstrated
in [177]. Compared to Ref. [177], Ref. [178] developed two individual SAE2 models for
adaptive background search and foreground estimation, respectively. One model was called
the background search stacked auto-encoder (BS-SAE), which could adaptively extract the
rough background region of an image. Using the trained BS-SAE model, one can obtain
the feature representation of each image patch, and using softmax regression (SR), one can
measure the probability of each image patch being background. Hence, this trained BS-SAE
model can infer the background region from the holistic view rather than the regional
view or local view. Another model was described as the foreground estimation stacked AE
(FE-SAE), where the residual information was also inspired by [177]. This FE-SAE model
was constructed by the background superpixels, which had a low reconstruction residual,
while these belong to the background. Those belonging to the foreground would have
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a high reconstruction residual. Further, utilizing the capacity of data reconstruction for
AEs, the saliency map can be generated using this FE-SAE. In Ref. [20], the authors were
also inspired by the powerful data reconstruction ability and feature learning of the SAE2.
Hence, they constructed a stacked AE-based center–surround (C-S) inference network to
model the human visual perception process and to estimate bottom-up saliency.

To obtain a unified reconstruction pattern for the current image, this model was trained
with the data sampled randomly from the entire image to obtain a unified reconstruction
pattern. Because global competition in sampling and learning processes are integrated into
the nonlocal reconstruction and saliency estimation of each pixel, this model can achieve
better detection results in comparison to those models with separate consideration of local
and global rarity. This C-S inference network also used the relation between reconstruction
residual and saliency. Different from Refs. [21,177,178], an extra inference layer was added
on the top of the AE to provide ways to explore the C–S contrast relationship. Additionally,
the authors have trained RBMs to initialize this SAE2.

AEs can be used not only for conventional saliency detection but also for an interesting
and emerging topic, co-saliency detection. It aims at simultaneously extracting common
salient objects in multiple related images. The authors of Ref. [179] proposed a novel co-
saliency detection approach using two individual SDAE models. The SDAE not only has the
advantage of learning more abstract feature representations based on its deep architecture
but also has the advantage of out-of-distribution data for knowledge transferring. So,
one SDAE is built as a transfer learning framework, which can be effective for predicting
intrasaliency. They first attempted to leverage the deep reconstruction residual obtained in
the highest hidden layer of another SDAE to discover the deep intersaliency. Compared
with the previous works in this subsection, SDAEs used in this paper are not only for the
generation of the robust intrasaliency prior but also for mining deep intersaliency patterns.

In this subsection, we analyzed the literature based on AEs for image saliency detec-
tion. From these analyses, we can draw the following conclusions: 1. AEs have multiple
merits: the ability to learn more abstract feature representations with the deep architecture,
the ability of data reconstruction, and the advantage of out-of-distribution data for knowl-
edge transfer. Hence, they can be applied to the saliency detection model. 2. Multiple
independent AEs can be constituted into a whole saliency detection model. 3. In the process
of designing a saliency detection model, the reconstruction residual of AEs is an important
factor to be considered.

(3) Image restoration

Observed image signals are often corrupted by acquisition channels or artificial editing.
The goal of image restoration techniques is to restore the original image from a noisy version.
Image restoration is a well-studied problem in computer vision and image processing,
including image denoising, inpainting, super resolution, and so on. Image denoising
methods can be utilized for an image corrupted by additive white Gaussian noise, which
is a common result of many acquisition channels. When some pixel values are missing
or when we want to remove more sophisticated patterns, such as superimposed text or
other objects from an image, image inpainting methods can be put to use. In reference [39],
the authors took advantage of the DAE for image denoising and blind inpainting. They
proposed a new training scheme for the DAE, which improved the DAE performance
in the tasks of unsupervised feature learning. After training the first layer, the hidden
layer activations of both the clean input and the noisy input are calculated to serve as the
training data for the second layer. Compared to traditional linear sparse coding algorithms
on the denoising task additive white Gaussian noise, this non-linear method achieves
better performance. In addition, this approach is capable of tackling the complex blind
inpainting problem. Furthermore, the denoising performance can be improved by adding
more hidden layers of the DAE, especially when the level of noise is high. When there
is no prior information on the target image and only the noise image is available, a DAE
also can perform blind image denoising well [180]. Based on Ref. [39], Ref. [181] proposed
a simple sparsification of the latent representation found by the encoder. This proposed

316



Mathematics 2023, 11, 1777

method gives the advantages of both denoising a small image patch and denoising a
larger image consisting of those patches. When test samples are corrupted with noise, this
method improves even the classification performance. Different from the Refs. [39,180,181]
listed above, Ref. [182] demonstrated that a convolutional denoising auto-encoder (CDAE)
could also be used for the efficient denoising of medical images. In Ref. [183], the authors
proposed a CAE2 for image restoration, which was unlike the network architecture of [182].
It is an encoding–decoding framework with symmetric convolutional–deconvolutional
layers. Considering that deeper networks tend to be more difficult to train, multiple skip-
layer connections were proposed to symmetrically link convolutional and deconvolutional
layers. Hence, the training converges became much faster, and better performance was
achieved. Compared with the previous works in this subsection, this work has more
powerful multi-functions. It achieved better performance than state-of-the-art methods
for image denoising, image super-resolution, JPEG deblocking, and image inpainting.
Ref. [184] argue that conventional neural networks do not consider that similar visual cues
in the human brain can stimulate the same neuron to induce similar neurological signals.
As a result, these models are unstable regarding their internal propagation. The stacked
non-local AE, which exploited self-similar information in natural images for stability, were
constructed. Further, this proposed model was applied to image denoising and image
super-resolution. Experiment results revealed that this model outperforms the plain SAE2.

(4) Image retrieval

Content-based image retrieval has been the subject of growing concern in the multime-
dia field for over two decades. The traditional image retrieval framework is involved with
multiple modules, including feature extraction, codebook learning, feature quantization,
image indexing, etc. Those modules are individually designed and independently opti-
mized for the retrieval task. Before image retrieval, users need to express their imaginary
intention into some concrete visual query. The quality of the query has a significant impact
on the retrieval results [185]. Generally, there are several kinds of query formation, such as
sketch map by query, example image by query, context map by query, color map by query,
etc. Ref. [186] proposed deep conditional generative models based on AAEs and VAEs
for the zero-shot sketch-based image retrieval task. The workflow of the network is first
taking the sketch feature vector as an input and then making full use of deep conditional
generative models to generate a number of possible image vectors by filling the missing
information stochastically. Lastly, they take advantage of these generated image feature
vectors to retrieve images from the database. In Ref. [186], the authors made full use of
the advantages of VAEs as a powerful generative model. However, the traditional VAEs
are prone to the phenomenon of “posterior collapse”. Hence, Ref. [187] studied the use
of the Vector-Quantized Variational Auto-encoder (VQ-VAE) for representation learning
in image retrieval. The VQ-VAE provides an unsupervised model for learning discrete
representations by combining vector quantization and the AE. They further modified the
VQ-VAE by introducing a product quantizer (PQ) into the bottleneck stage such that an
end-to-end unsupervised learning model could be formed for the image retrieval task. This
“end-to-end” mechanism is an improvement compared with the traditional image retrieval
framework. Compared with directly matching real-valued codes or pixel intensities, binary
codes had a lot of advantages for content-based image retrieval [188]. Hence, the authors
used very deep AEs initialized with DBNs to map small color images to short binary
codes. The above references focus on plain RGB images retrieval, an unsupervised feature
learning framework based on AE is proposed to learn sparse feature representations for
content-based remote-sensing imagery retrieval (CBRSIR) in [189]. Using the ReLU function
and the soft threshold function to realize sparsity, the authors argued that this proposed
framework requires fewer parameters than the SAE1. They also demonstrated that this
proposed framework was more effective than traditional BOVW using several performance
metrics. Both Refs. [188,189] utilized the basic AE. The authors of Ref. [190] proposed a
multiple input multiple task deep auto-encoder (MIMT-DAE), which was combined with
the wavelet transformation. For this proposed method, the image is first processed using
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wavelet transform and decomposed into wavelet coefficients. The wavelet coefficients
then become the input for the MIMT-DAE. The result of retrieval performance shows that
this combination of wavelet transformation and MIMT-DAE increases the performance
of image retrieval for shape and texture compared to a traditional single input single task
deep AE with far fewer training parameters required.

5.1.2. Video Process

In the field of computer vision, various AE models have been widely used in the video
field, including video classification, video object tracking, video abnormal detection, etc.
Table 2 lists the specific application field of AEs for video, the characters, and the areas for
improvement. With the rapid progress of storage devices, the internet, and social network,
a great deal of video data are generated. To bridge the semantic gap between low-level
features and high-level semantics, automatic video annotation and classification technology
have become an important technology to improve the efficiency of video retrieval [191].
In Ref. [192], the authors considered three modalities in videos, i.e., image, audio, and
text. Hence, they proposed a multimodal feature learning mechanism based on the stacked
CAE1 for video classification. One stacked CAE1 was built for each single modality, whose
outputs would be joint together and fed into another multimodal stacked CAE1. Compared
to other deep and shallow models, the experimental results showed multimodal integration
playing important role in video semantics classification. Similarly, Ref. [193] also com-
bined both audio and visual features and learned two separate models trained on audio
and visual data of the video. The difference is that three unsupervised feature learning
algorithms (RBM, ISA, and deep SAE1) have been used. A deep convolutional RBM was
used to model the audio data and a stacked ISA network was used to extract features from
visual data. Finally, they jointly trained audio and visual features using a deep-stacked
SAE1 with discriminative fine-tuning. This confirms the conclusion made in [192] that
combining multi-features can obtain better accuracy (97.22% with 40 training examples)
as compared to a single type of feature (92.65% with audio only and 88.86% with visual
feature only). Fusing multiple modalities also can be used for video event detection [194].
Further, the authors argued that the conventional video representation methods extracted
each modality ineffectively. Based on unconstrained minimization and using the conjugate
gradient method with a linear search for optimization, a regularized multi-modality AE
was developed for video event detection. The superiority of considering multi-modality
in the task of video event detection also exists. Compared with traditional reconstruct
Independent Components Analysis (RICA), this method is a significant improvement as it
captures the relationships between audio and visual modalities from the same category
of videos. Because modern editing software provides powerful and easy-to-use tools to
manipulate videos, video forgery detection is becoming an important issue in recent years.
In Ref. [195], the authors proposed a method to perform forgery detection using an AE and
RNN. In this work, the AE can be used not only for image-based salient object detection
(SOD) but also for video-based SOD. Ref. [196] considered some inherent correlations
between image-based and video-based SOD, and then proposed an unsupervised baseline
approach for video-based SOD using saliency guided stacked AEs. There are many forms of
feature information present in video data. Above, we discussed the image, text, and audio
features in video data. Beyond that, it also has object identity information which is largely
static across multiple video frames, object pose, and style information which continuously
transforms from frame to frame. Recently, there is a rising interest in disentangled represen-
tations. For video sequence modeling, an ideal disentangled representation would be able
to separate time-independent concepts (e.g., the identity of the object in the scene) from
dynamical information (e.g., the time-varying position and the orientation or pose of that
object). Hence, Ref. [197] leveraged a hierarchical VAE for disentangling the object identity
and pose information of unsupervised video data. Differing from the conventional VAE, a
prior over latent frame features was defined for entire frame sequences, not just individual
frames. This prior includes two parts: information that remains relatively constant in the
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whole video and information that changes temporally. This work could be extended to use
a prior with multiple factors, so each factor changes at varying rates from fast to slow to
static. Ref. [198] also argue that a VAE model can learn a latent representation of the data,
which is split into a static and dynamic part, allowing us to approximately disentangle fea-
ture representations. The previous approaches designed the probabilistic graphical model
carefully to achieve a disentangled representation. In Ref. [198], the authors explicitly used
a latent variable to represent the invariant information through the sequence and a series of
latent variables associated with each frame to represent dynamical information. A VAE was
used to focus on learning the distribution of the video content and dynamics to generate
future sequences without conditioning on the observed sequences. In this work, predicting
future frames without conditioning is also different from the traditional method.

There are some other researchers working hard on video object tracking. Visual track-
ing refers to the automatic estimation of the trajectory of an object as it moves around in
a video. Wang and Yeung used the merits of DAE that robust features are learned [199].
An SDAE was trained offline to learn generic image features from a large image dataset
as auxiliary data. The knowledge learned was transferred from the offline to the online
tracking process. During the online tracking process, adding an additional classification
layer to the encoder part of the trained SDAE resulted in a classification neural network.
This network achieved very encouraging results with low computational costs. However,
only a linear classifier for simplicity was utilized in this current tracker. As in other discrim-
inative trackers, classifiers can be extended to be more powerful for further performance
improvement. Inspired by the success of the SDAE and online AdaBoost, a novel object-
tracking approach was proposed by combining a family of DNN classifiers using online
AdaBoost [200]. Similar to [199], this work also used an SDAE to learn multi-level feature
descriptors from an auxiliary image dataset. The difference is that each layer of the SDAE
represents a different level of feature space, which is subsequently transformed into a
discriminative object/background DNN classifier by adding an additional classification
layer. Then, an online AdaBoost feature selection framework is proposed to combine these
layered classifiers for online updating to robustly distinguish the target from the back-
ground. This approach has two advantages. First, the SDAE is used to automatically learn
useful generic image features at different levels. Second, boosting further automatically
determined the most suitable level of features for appearance modeling.

Ref. [201] also presented an SAE2 to learn generic invariant features offline for visual
object tracking. In addition, a logistic regression classifier was used to distinguish the object
from the background. Unlike [199], this work adopted tracked image patches as training
data instead of an auxiliary image dataset. Different from the traditional SAE1, which
enforces sparsity in the hidden layer, this proposed SAE performed subspace pooling on
the hidden layer activations and enforced sparsity in the pooling layer, in a way identical
to ISA. Then, it trains a second AE with the convolved activations of the first AE just
mentioned to learn more complex invariance on larger image patches. Additionally, a
temporal slowness constraint is incorporated to the proposed AE for learning generic
invariant representations.

Different from those generic object trackers mentioned above, the authors considered
motion blur in real videos and proposed a blur invariant object tracker [202]. The SDAE
was adopted to learn a robust appearance model. However, compared with some real-
time trackers, it is still a bit slow, and there is still a large space to speed up the tracker
by optimizing the appearance model. Ref. [203] introduced a new tracking framework
based on a context-aware correlation filter. This tracker can achieve high computational
speed. The main contribution to high computational speed was the proposed deep feature
compression, which was achieved using multiple expert AEs. In the pre-training phase,
an expert AE was trained for each category. During the tracking phase, selecting the best
expert AE for a given target, only this AE was used. In order to obtain high tracking
performance, an external denoising process and a new orthogonality loss term for the
pre-training and fine-tuning of expert AEs were used. The framework not only achieved
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high computing speed but also could run in real-time with a fast speed of over 100 fps.
Additionally, this work also considered the solution to the blurriness problem. Generally
speaking, as an excellent unsupervised feature extraction model, the theory of the AE is
intuitive and graceful. Hence, it has been widely used in video processing and achieved
performance results.

Video abnormal detection is one of the key components in video surveillance appli-
cations. It has gained more and more attention and became an important research topic
in computer vision. The methods for abnormal detection can be divided into the unsu-
pervised method and the supervised method. Due to the lack of human supervision, it
is challenging to learn a normal distribution when only normal data samples are given
and then identify the samples that do not conform to the normal distribution as anoma-
lies. The AE is a powerful unsupervised learning tool due to its great fitting ability and
high-dimensional data modeling ability. It is widely used in video abnormal detection.
In [204], the optical flow of the original video sequence is firstly calculated and visualized
as an optical flow image, which is then fed into a deep AE. Then, the deep AE extracts
the features from the training samples and compresses them into three vectors, which are
drawn in a 3-dimension coordinate axis. Finally, the normal and abnormal samples are
collected, respectively, on this coordinate axis. Different from Ref. [204], Ref. [205] used a
different video reprocessing strategy that was used to generate cubic patches. This method
used different feature descriptors for local and global anomalies. They first generated local
descriptors and used sparse DAE for global descriptors. Gaussian classifiers were used
to classify the local and global descriptors separately, and a fusion technique was used to
aggregate the results of both. There is a criterion for AE to identify anomalies. The AE is
expected to produce higher reconstruction errors for the abnormal inputs than the normal
ones. However, this assumption is not always valid in practice because sometimes the AE
“generalizes” very well and can reconstruct the anomaly well, resulting in the omission of
anomaly detection.

To alleviate the disadvantage of anomaly detection based on AE, Ref. [206] have
developed an improved AE called memory-augmented AE (MemAE) by adding a storage
module to the original AE. Given an input, this suggested MemAE first used an encoder to
obtain the encoded representation and then used the encoding as a query to retrieve the
most relevant patterns in memory for reconstruction. Because of the memory training of
the typical normal mode, the normal sample could be reconstructed well, and the error in
the abnormal reconstruction could be increased, so that the reconstruction error could be
used as the standard of abnormal detection. Ref. [207] also agree that in the testing phase,
a well-trained AE has more reconstruction error on an anomaly patch than on a normal
patch. However, more than this, if a sparse AE is learned based on normal training patches,
it is expected that the representation of the given patch to the AE is sparse. If it is not sparse
enough, it is considered a good candidate for an exception. The authors took into account
two factors about the reconstruction error and sparse representation, and they introduced
two novel cubic patch-based anomaly detectors where one runs based on reconstituting an
input video patch and another one was based on the sparse representation of an input video
patch. In order to be faster, the two detectors are combined into a cascade classifier. Similar
to Ref. [207], Ref. [208] also trained multiple AEs for feature learning. One AE took the
cropped images containing objects as input, and it could inherently learn latent appearance
features. The other two AEs took the gradients as the input that capture how the object
moved before and after the detection moment, respectively. These AEs learn latent motion
features. Because most existing approaches lack prior information regarding abnormal
events, they are not fully equipped to differentiate between normal and abnormal events.
Different from these existing methods, this work formalized abnormal event detection as a
one-versus-rest binary classification problem. In the inference phase, each test sample x
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was classified with the k binary SVM models. The highest classification score was used as
the abnormality score s for the respective test sample x:

s(x) = −max
i

{gi(x)}, ∀i ∈ {1, 2, . . . , k} (29)

where gi(x) denoted the score of an independent binary classifier. Equally, Ref. [209] used
two Gaussian Mixture Fully Convolutional Variational Auto-encoders (GMFC-VAEs) to for-
mulate a two-stream network to combine the appearance and motion anomalies. They used
RGB frames for the appearance anomaly and dynamic flow images for the motion anomaly,
respectively. Different from those methods mentioned above, this network was trained
exclusively on the normal samples that could be associated with at least one Gaussian
component of the GMM. Then, if a test sample could not be associated with any Gaussian
component, it would be identified as anomaly. Their method was based on the Gaussian
Mixture VAE, which was a model for probabilistic clustering within the framework of the
VAE. Based on that, a fully convolutional network (FCN) without a fully connected layer
was used for the encoder–decoder structure. Therefore, the GMFC-VAE has been formed.
Both the qualitative and quantitative results on two challenging datasets showed the supe-
riority of this method. Ref. [210] also used multiple AEs and the idea of high reconstruction
error of abnormal patches. In the training phase, this method adaptively learnt multiple
AEs to reconstruct normal patterns at local regions. Given an unknown patch x in the test
phase, with the learned AEs M = {M1, . . . , MK}, the reconstruction errors with each model
in M were computed. If there existed a model Mi in the M fitted reconstruction error upper
bound, this patch x was regarded as normality. We have analyzed that AEs have been
widely used in video abnormal detection as described above. Multiple AEs can be used in
a framework to improve the detection performance. Additionally, we can carefully analyze
the characteristics of existing video anomaly detection methods to improve present AEs.

Table 2. Various AE models used in video field.

Reference Method Task Characters

Ref. [192] Stacked CAE2 Video classification Multimodal integration
Ref. [193] RBM, ISA, deep SAE1 Sport Video classification Combining multiple DL architectures
Ref. [194] Regularized multi-modality AE Video event detection Multimodal integration
Ref. [195] AE, RNN Video forgery detection Combination of AE and RNN
Ref. [196] Saliency guided SAE2 Video-based salient object detection A video-based SOD dataset was built

Ref. [197] Hierarchical VAE Disentangling space and time
in video

Using VAE to decompose the static and temporally
varying semantic information in video

Ref. [198] VAE, RNN Structured sequence modeling Using VAE for learning disentangled representations
of high-dimensional time series

Ref. [199] SDAE Video Object tracking Offline training+online tuning

Ref. [200] SDAE Video Object tracking Using an online AdaBoost feature selection framework
to update the ensemble of the DNN classifiers

Ref. [201] SAE, CAE2 Object tracking Temporal slowness constraint is incorporated to an AE
to facilitate representation learning

Ref. [202] SDAE Severely blurred object tracking Proposing a blur invariant object tracker without
deblurring image sequences

Ref. [203] AE Object tracking Utilizing multiple expert AEs
Ref. [204] Deep AE Abnormal detection Using optical flow and deep AE

Ref. [205] Sparse denoising AE Abnormal detection
1. Using the descriptors to model Gaussian classifiers
2. Using the Mahalanobis distance metric to learn the

minimum threshold to define abnormality
Ref. [206] Memory-augmented AE Abnormal detection Adding a storage module on the original AE
Ref. [207] AE, SAE1 Abnormal detection Presenting a cascade classifier with two stages

Ref. [208] Object-centric CAE2 Abnormal detection Formalizing abnormal event detection as a
multi-class problem

Ref. [209] Gaussian mixture VAE Anomaly Detection and
Localization

Building upon a two-stream network framework to
employ RGB frames and dynamic flows, respectively

Ref. [210] Adaptive multiple AE Anomaly Detection Adaptive multiple AE is used to handle the inter-class
variation in normal events
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5.1.3. The 3D Model Field

In computer vision and pattern recognition, sometimes we need to build and process
3D models. The AE and its variants, with various characters, also can be used in the 3D
model field. In Ref. [211], a novel 3D object retrieval method was proposed based on
the stacked local convolutional auto-encoder (SLCAE). This approach applied the greedy
layer-wise strategy to train SLCAE and used a gradient descent method for training each
layer. It only needed the depth image of 2D views projected from 3D objects. It was
view-based and shared the benefits of view-based 3D object analysis: flexible and easy
implemented. Ref. [15] proposed a new method to learn the DL representation for 3D
shape retrieval using a DBN-initialized AE. By combining the global DL representation
achieved with the AE with traditional local descriptor representation, this method obtained
state-of-the-art 3D shape retrieval performance. While Ref. [15] used feature fusion strategy,
Ref. [212] proposed a rapid 3D feature learning method named the convolutional auto-
encoder extreme learning machine (CAE-ELM), which combined the advantages of the
CNN, AE, and ELM. This designed architecture performed better and faster than other
methods. Complex geometric variations of 3D models often bring great challenges in 3D
shape retrieval. Ref. [213] developed a novel 3D shape feature learning method based on a
discriminative deep AE, which were insensitive to geometric deformations of shapes. The
Fisher discrimination criterion was utilized on the neurons in the hidden layer to develop
a deep discriminative AE. A multi-scale shape distribution was computed to input into
this network. Finally, concatenating the outputs from the hidden layers of the network
at different scales, a global shape descriptor for retrieval was formed. Differing from all
the methods stated above in terms of using the unsupervised property of the AE, a new
supervised deep AE for depth image-based 3D model retrieval was investigated [214]. This
supervised deep AE was achieved by combining the supervised classification information
with the reconstruction error for joint optimization. The objective function of this supervised
AE was defined as follows:

Es = αE1 + βE2 (30)

where the reconstruction error term E1 is the sigmoid cross entropy loss function from
the AE and the classification loss term E2 is the softmax loss function from the classifier.
Appropriate supervision in back-propagation provided by the AE can help the retrieval per-
formance. All the papers listed above in this subsection used the AE as a feature extraction
tool. Ref. [12] argued that the traditional feature aggregation algorithms (such as Bag-
of-Features [215], Locality-constrained Linear coding [216], or Fisher Vector coding [217])
were not necessarily optimal in terms of accuracy because their codebook learning and
the feature encoding steps were processed separately. Hence, they proposed two feature
aggregation algorithms based on k-Sparse AE: DkSA and PkSA. Multiple local features
and benchmark datasets were provided for 3D model retrieval to evaluate DkSA and PkSA
quantitatively. AEs also can be used for 3D face generation and reconstruction. The learned
3D representations of human faces are very useful for computer vision problems, such as
3D face tracking and reconstruction from images [218]. Traditional models use higher-order
tensor generalizations or linear subspaces to learn a latent representation of a face. Because
of this linearity, they are unable to capture extreme deformations and non-linear expres-
sions. To address this, Ref. [218] introduced convolutional Mesh AE (CoMA) combining
the convolutions and mesh sampling operations to learn a non-linear representation. The
experiments demonstrated that CoMA was significantly better than the latest model in
the application of 3D face reconstruction, and the model parameters used were reduced
by 75%. Because a 3D face provides more semantic information than a 2D image, 3D face
reconstruction from a 2D face image is of great significance for the applications of face
detection and recognition. Ref. [219] developed a deep learning framework for 3D face
reconstruction. A CAE adds smoothness to the original AE, which makes the learned
features robust to minor variations in data such as illumination changes and complex
surface shapes unrelated to salient facial features. The authors took advantage of this
advantage and stacked a CAE to form two deep AEs for learning the subspace from both
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the 2D image set and the 3D face set. Then, a one-layer neural network was exploited to
model the mapping from the 2D subspace to the 3D subspace. The experiments showed
that the proposed method yielded the best quantitative and qualitative results.

5.2. Recommender System

With more and more access to the internet, personalization trends, and changes in
computer users’ habits, recommender systems (RS) have became prevalent and effective
tools of information filtering [220]. They have been widely used to provide users with
personalized products and services. Although existing RSs can produce proper recom-
mendations successfully, they still face challenges when dealing with the complexity, huge
volume, and dynamics of information. In order to address the problem, many recent
researchers have improved RSs by integrating DL models. As a typical DL method, AEs
have been widely used for their excellent performance in data dimensionality reduction,
feature extraction, and data reconstruction. At the same time, integrating AEs into RSs can
understand the needs of users and the characteristics of the project better, so as to improve
the recommendation quality [221]. The growing number of studies on AE-based RSs shows
the important role about AEs in RS research. These existing studies can be mainly divided
into two categories: models that rely solely on AE and integration models. Integration
models can be further divided into two subcategories: integrated AEs with traditional RSs
and integrated AEs with other DL models. The former can be further divided into loosely
coupled models and tightly coupled models.

Following this classification scheme mentioned above, we have elaborated on some
important research prototypes of AE-based RSs and summarized their contributions
and characteristics.

• Models that rely solely on AEs. Ref. [222] proposed an Auto-encoder-based Collabo-
rative Filtering (ACF), which is the first collaborative recommendation model based
on an AE. Instead of directly using the original partially observed vector rui as input
data, rui is first converted into a vector only represented by 0 and 1, and then this
vector is used as input data. ACF uses RBM to pre-train the model to prevent local
optimum. However, there are some disadvantages to ACF. First, it is good at handling
integer ratings instead of non-integer ratings. Second, the decomposition of some
observed vectors increases the sparsity of input data, resulting in lower prediction
accuracy. Different from ACF, AutoRec [223] directly takes user rating vectors r(u) or
item rating vectors r(i) as input data to obtain the reconstructed rating at the output
layer. Because of two types of inputs, AutoRec has two types of variants: item-based
AutoRec (I-AutoRec) and user-based AutoRec (U-AutoRec). A partially observed vec-
tor r(i) = (R1i, . . . , Rmi) ∈ Rm denotes the ratings of item i given by users. Each user
u ∈ U = {1 . . . m} can be represented by a partially observed vector. AutoRec takes
each partially observed vector r(i) (or r(u)) as input, projects it into a low-dimensional
latent space, and then reconstructs r(i) (or r(u)) in the output space to predict missing
ratings for recommendations. The reconstruction of input is:

h(r(i); θ) = f (W·g (V·r(i) + μ) + b) (31)

where f (·) and g(·) are activation functions. θ = {W, V, μ, b} are the parameters of
the model. AutoRec has used an AE with a single, k-dimensional hidden layer. The
parameters θ are learned by optimizing the objective function (see Equation (32))
for I-AutoRec:

min
θ

n

∑
i=1

‖r(i) − h(ri − h(ri; θ))‖
2

2

+
λ

2
· (‖W‖2

F + ‖V‖2
F) (32)

This objective function can be optimized by resilient propagation or L-BFGS. The
experiment further illustrated the impact of different combinations of activation functions
on the performance of AutoRec. Increasing the number of hidden neurons would improve
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the result. This is because expanding the dimension of the hidden layer allows this model
to have greater ability to simulate the input features [224]. Both these two models are
mainly used for rating and learning a non-linear representation of the user-item matrix, and
then reconstructed it by determining the missing values. Different from these two models,
Ref. [225] proposed collaborative DAE, which was mainly used for ranking prediction.
Similar to the standard DAE, the collaborative DAE consists of three layers: input layer,
hidden layer, and output layer. The input of collaborative DAE is a user partial observed
implicit feedback yu, where yu = {yu1, yu2, . . . yuI} is the I-dimensional feedback vector of
user u on all the item. The main difference between the collaborative DAE and standard
DAE is the user-specific input between the input layer and the hidden layer. This input
has been corrupted by Gaussian noise forming ỹu, and then collaborative DAE maps the
input into a latent representations zu. SGD is applied to learn the parameters of this model.
Different from the above three studies, Zhuang et al. [226] proposed the dual-AE, which is a
new representation learning framework. In this framework, the new hidden representations
of users and items are simultaneously learned using AEs. Additionally, the deviations in the
training data are minimized by the learned representations of users and items. Considering
that the optimization problem based on this framework is an unconstrained optimization,
a new gradient descent method was developed to learn hidden representations.

• Integrated AEs with traditional RSs. In order to improve the recommendation per-
formance, many researchers are trying to combine AEs with traditional RSs. In this
subsection, we will focus on analyzing several important research prototypes for
integrating AE with traditional recommendation models. There are many traditional
recommendation methods, such as MF, SVD, probability matrix factorization (PMF),
factorization machine (FM), and Latent Factor Model (LFM). MF is most widely used
in integration models therein. Ref. [227] proposed the Stacked Discriminative denois-
ing auto-encoder-based recommender system, which integrated the SDAE with an
MF-based recommender system to incorporate side information with rating infor-
mation effectively. The previous works have shown that by learning the corrupted
versions of training data, the SDAE can improve the performance of the models. The
authors of [228] have stacked multiple block models of marginalized DAEs to form
a DL architecture. Compared to the conventional DAE, the marginalized DAE has a
lower computational cost. A basic block model of this method consists of the input,
hidden and output layers, and the matrix factorization of the user-item matrix X.
This proposed method coupled the user latent factor matrix with the deepest hidden
layer in the marginalized DAE, thus it can correctly capture the complex relationships
between the selections made by social friends and those made by the user. Different
from Refs. [227,228], Ref. [229] used AE and PCA to extract potential contexts from
original data for a potential context-aware recommendation system. These explicit
contexts are then integrated into MF process to generate recommendations. Ref. [230]
combined an LFM and DAE to form a new architecture, which could recommend
multi-items more accurately than traditional methods. In this hybrid recommender
system, extended LFM and DAE were utilized to deal with user behavior features and
to process visual features, respectively. In addition, some researchers also combined
AEs with PMF for RSs [231–233].

• Integrated AE with other DL methods. The flexibility of the AE makes it possible
to combine multiple neural building blocks to form a more powerful hybrid model.
In Ref. [234], the authors proposed a Collaborative Knowledge Base Embedding
(CKE) model for jointly learning the latent representations in collaborative filtering
(CF) and the items’ semantic representations from the knowledge base. The textual
knowledge, structural knowledge, and visual knowledge in the knowledge base were
fully exploited. In this hybrid RS, the SDAE and SCAE were used to extract items’
textual representations and to find the latent representation from the visual knowledge,
respectively. Unlike Ref. [234], Ref. [235] utilized deep generative modeling (DGM) to
construct a new set of model-based CF. CF always faces sparse information because of
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the limited user responses and the vast combinations of users and items. Additionally,
VAE is known to find a richer representation, which can meaningfully improve the
performance on the task of CF with auxiliary information. They have applied VAE with
GAN-style learning and conditional VAE with the ladder structures for collaborative
filtering to deal with auxiliary information. This method shows that GAN-style
learning can be also applied to a CF field in addition to the image processing field.
There will be more possible combinations of AEs and other DL methods but not all
have been exploited.

AEs have a straightforward structure, and they are appropriate for feature engineering,
dimensionality reduction, and missing value estimation. Among all DL models, AEs are
more popular in RS, especially for handling with sparsity and scalability [236]. Based on
Ref. [237] and the above references in this subsection, we have summarized the architecture
of AE-based RSs, as shown in Figure 7.

 

Figure 7. The architecture of AE-based RSs.

5.3. Pattern Recognition

Pattern recognition (PR) refers to the process of processing and analyzing various
forms of information, which is an important part of information science and AI. Patterns
can also be divided into abstract and concrete forms. The former belongs to the category
of concept recognition, such as consciousness, thought, and discussion. It is another
branch of AI. The latter is to classify and identify the specific pattern objects such as voice
waveform, seismic wave, EEG, ECG, photo, picture, text, symbol, and biological sensors.
With the rapid industrial development, ever increasing requirements on the capability of
information retrieval and processing has brought new challenges for PR. In recent years, the
development in DL architectures has provided novel approaches for solving the problems
of PR. In this subsection, we will mostly analyze how to apply AEs to solve the multiple
problems in PR field.

5.3.1. Face Recognition

In the face recognition community, one sample per person (OSPP) face recognition
is a challenging and opening problem. Because only one sample is available for each
subject, lacking samples is the key reason for the failure of most algorithms in OSPP. In
Ref. [238], Zhang et al. proposed a new algorithm based on deep AE to generalize intra-
class variations of multi-sample subjects to single-sample subjects and reconstructed new
samples. Specifically, a generalized deep AE (GDA) is first trained with all images in
the gallery, and then a class-specific deep AE (CDA) is fine-tuned for each single-sample
subject with its single sample. Samples of the multi-sample subject, which is most like the
single-sample subject, are input to the corresponding CDA to reconstruct new samples.
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Additionally, the minimum L2 distance, PCA, sparse represented-based classifier, and SR
are used for classification. Inspired by the DAE, Ref. [239] have proposed a supervised AE
to build the deep neural network for OSPP. The formulation about this supervised AE is
as follows:

min
W,b f ,bg

1
N ∑

i
(‖xi − g( f (x̃i))‖2

2 + λ‖ f (xi)− f (x̃i)‖2
2) + α(KL(ρx‖ρ0) + KL(ρx̃‖ρ0)) (33)

where x̃i and xi denote each probe image in this dataset and its corresponding gallery
image, respectively. Additionally,

ρx =
1
N ∑

i

1
2
( f (xi) + 1) (34)

ρx̃ =
1
N ∑

i

1
2
( f (x̃i) + 1) (35)

KL(ρ‖ρ0) = ∑
i
(ρ0 log(

ρ0
ρj

) + (1 − ρ0) log(
1 − ρ0
1 − ρj

)) (36)

The activation functions utilized here are the hyperbolic tangent, i.e., h = f(x) = tanh(Wx + bf),
and g(h) = tanh(WTh + bg). Compared to the basic AE, there are two differences. First, all
the faces with variances are forced to be mapped with the canonical face of the person. This
strategy is conducive to remove the variances in face recognition. Second, the supervised
AE can impose the similarity preservation constraints on the extracted features. Hence,
the features corresponding to the same person are made to be similar. It can extract
more robust features for face representation. Based on Ref. [239], Ref. [240] has applied
the performance of stacked supervised AEs (SSAE) for OSPP from video sequences. In
this architecture, a single image sample or its descriptor in the gallery can represent
each enrolled person. Conversely, the probe may consist of multiple samples per person
(MSPP) collected along the video sequence. Compared to other OSPP methods, this
method combining SSAE and MSPP probes has better performance. In the face recognition
field, age-invariant face recognition is a challenge and difficult problem because a person
shows different appearances at different ages. At the same time, it has become more and
more important. It has a wide range of applications, such as finding missing children,
identifying criminals, and verifying passports. Based on the fact that age variation is
a non-linear but smooth transformation and the powerful ability of AE to learn latent
representation from input data, Ref. [241] proposed a new neural network called the
coupled AE network. This model has configured two identical AEs and two single-hidden-
layer neural networks as a bi-directional bridge. Given the training facial images of different
persons, T = {xi

1, xi
2}(xi

1, xi
2∈Rn, i = 1, 2, 3, . . . , N), N is the total number of training image

pairs. x1 and x2 represent the younger and older facial image inputs of the same person.
These two images were input to these two AEs, respectively. Then, two shallow neural
networks as a bridge were adopted to connect these two AEs. Because any neural network
with a single hidden layer can complete any complex smooth function, these two shallow
neural networks have been used to complete the aging and de-aging process. Further, a
nonlinear factor analysis method (see Equation (37)) is applied to the hidden layers:

x = σ(I, A, ξ) (37)

where x denotes inputs and σ(·) is a nonlinear function. The representation of a face image
can be decomposed into three components nonlinearly using Equation (37): I, A and ξ.
I denotes an age-invariant identity feature, A represents the identity-independent age
feature, and ξ represents noise which could be any factors deviate from this model. Using
this method, we can nonlinearly separate identity features to be age-invariant from one
given face image. The experimental results show that it can deal with the age-invariant
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face recognition effectively. The position variation in face recognition is mainly considered
and analyzed in Ref. [242]. The authors argue that the facial appearance variations caused
by poses are even larger than that caused by identities. Pose variation is one of the
largest challenges in face recognition. Similar to age variation, pose variations change
non-linearly but smoothly. Inspired by the impressive ability to handle the non-linearity
of AE, the authors proposed a progressive deep structure called the Stacked Progressive
Auto-Encoders (SPAE). Each shallow progressive AE in this stacked network is designed
to achieve part of the global non-linearity. To be specific, each shallow progressive AE is
expected to map the face images at large poses to a virtual view at smaller ones. At the
same time, these images are kept unchanged at smaller poses. Then, stacking multiple
shallow AEs can convert non-frontal face images to frontal ones progressively. This process
makes the pose variations narrow down to zero step by step. Finally, the outputs of the
topmost hidden layers in this stacked network are the pose-robust features, which contain
very small pose variations. These features can be combined with fisher linear discriminate
analysis for face recognition.

Based on the analysis of above the literature, it can be seen that: firstly, modules
different from the basic AE can be constructed. Then, these modules can be stacked to form
a depth network for face recognition. Secondly, this constructed depth network can aim at
one aspect of lighting, expression, disguise, and pose in face recognition only. Similarly,
these factors can also be considered comprehensively.

5.3.2. Speech Emotion Recognition

Automatic emotion recognition from speech is a typical problem of wide interest
with implications on understanding human behavior and interaction. A classical emotion
recognition system involves using high dimensional features on a dataset. These methods
have the disadvantages of a limited dataset and difficult analysis in the high dimensional
feature space. Ref. [243] solved these issues using the AAE framework. There are two
reasons why they used AAE. Firstly, the code vectors learned with AAE can be obtained in a
low-dimensional subspace. However, these code vectors do not lose the class discriminabil-
ity, which can be obtained in the higher dimensional feature space. Secondly, the method
using AAE to generate samples synthetically is proven to be promising for improving
the classification of data from the real world. Different from Ref. [243], which used AAE
to generate samples for the scarcity of emotional speech data, the authors of Ref. [244]
proposed another way to alleviate this issue. They used unsupervised feature learning
techniques, such as DAE, VAE, AAE, and AVB, to learn features from widely available
general speech and utilized these features to train emotion classifiers. These unsupervised
methods just mentioned can capture the intrinsic structure of the data distribution in the
learned feature representation. Hence, this work designed a CNN-based automatic speech
emotion recognition (SER) system. The authors first made the systematic exploration of
the four kinds of unsupervised learning techniques just mentioned to improve recognition
accuracy. Ref. [245] also focused on the problem of the relatively small emotional speech
datasets. They argued that prior works on representation learning for SER did not take
full advantage of additional unlabeled speech data and the merit of unsupervised learning
on the AE. A large dataset and integrating representations generated with an AE into a
CNN-based emotion classifier have improved the recognition accuracy of the presented
SER model. Although DL algorithms have the capability for more accurate predictions,
Ref. [246] argue that there are still two main problems. First, the labelled speech data is
scarce, as analyzed in the previous literature. Even if they contain the trustable labelled
speech utterance, there still exits some segments with strong emotion express in same
emotion utterance. Second is how to balance the short-term characterization at the frame
level and long-term aggregation at the utterance level. Inspired by the recent success of the
SAE structure with deep semi-supervised learning and the idea of attention mechanisms
in neural machine translation, the authors proposed an SAE with an attention mecha-
nism for speech emotion recognition. The purpose of this framework can benefit from
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labeled and unlabeled data with the SAE and apply the attention mechanism focusing on
speech frames with strong emotional information. Other speech frames without carrying
emotional content will be ignored. Hence, this SAE can reduce the required amount of
effective labeled data. Compared with existing speech emotion recognition algorithms, the
experimental results show that it can provide significantly higher accuracy in the prediction
of emotion status.

According to the analysis in this subsection, we can see that it is usually relatively
difficult to acquire the labeled data for an emotional speech database. Accordingly, we need
experts with psychological expertise to solve this problem. This will increase the difficulty
level in both expense and time consumption. In this situation, we can make full use of
the potential of AEs with unsupervised feature learning. Further, other machine learning
methods should be explored to combine existing AE models.

5.3.3. Facial Expression Recognition

Facial expression recognition (FER) is the most important way of human emotion
expression. In the past decades, it has been a very important research area in computer
vision and image recognition. The main goal of FER is to recognize the human emotional
state (such as anger, contempt, fear, disgust, sadness, happiness, and surprise) based on the
given facial images. However, it should be pointed out that FER with high accuracy is still
a challenging task. This is mainly related to different lights, postures, and environments.
In general, FER consists of three main steps. The first step is to use image processing
technology to detect a human face from the whole image. In the second step, key features
are extracted from the detected face. Finally, the machine learning model is used to classify
the images [247]. Recently, many types of DNN-related algorithms have been successfully
applied to facial expression recognition tasks. The traditional DNN has the problems of
learning difficulty and high computing complexity. However, the AE has the ability to
reconstruct data so that data could be better represented, which can improve the efficiency
of data learning. Additionally, enforcing sparsity to AE can reduce the computational
complexity. Ref. [248] proposed an SR-based deep sparse auto-encoder network to rec-
ognize facial expressions. Firstly, the regions of interest (such as eyebrows, eyes, and
mouth) are selected for extracting the facial expression image feature. Then, the greedy
pre-trained network produces the initial weights layer by layer. Next, it optimizes the
sparse parameters, the hidden layer nodes, and the number of hidden layers to determine
the best topology of the network. Finally, SR is used to classify expression feature. The
main feature of this reference is that the preliminary application experiments are applied in
the developing emotional social robot system (ESRS) with two mobile robots, which can
recognize emotions such as happiness and anger. Ref. [247] developed a state-of-the-art
face detection method for face detection and extraction. Histogram of oriented gradients
(HOG) features are computed from the cropped images. Then, the SAE2 is used to reduce
high-dimensional HOG features for lower dimensions. Finally, they applied SVM on these
lower dimension features to classify the facial expressions. In this work, the SAE2 is used
as a tool for feature dimension reduction. Similar work has been completed by Ref. [249].
Three different descriptors (HOG, local binary pattern (LBP), and a gray value) are utilized
for extracting features, respectively. Then, PCA is used to compress these local features
to make them practical and efficient to apply. Finally, the features compressed by PCA
are input to the deep SAE2. Similar to Ref. [247], Ref. [249] also used local descriptors to
extract features. The difference is that the role of the deep SAE2 here is feature encoding.
Another interesting work was performed by Ref. [250]. The authors follow the idea that
initializing a CNN with filters of a stacked CAE2 significantly improves the performance of
the CNN. As opposed to traditional CNN models, this method proposed here provides
better classification performance and has an additional advantage of learning relatively
fast. The analysis of references in this subsection demonstrates that AEs can be used for
feature extraction, reduction, and encoding in facial expression recognition. Due to the
structural characteristic of AEs, they also can be used for pre-training.
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5.4. Data Generation

In recent years, the development in DL has promoted the progress of generative
models, which can capture the distributions of high-dimensional datasets and generate
new samples. Ref. [251] proposed a method that uses a VAE as an encoder and deems GAN
as a high-quality generative model. In this model, the feature representations learned in
the GAN discriminator are used as basis for the VAE reconstruction objective. Compared
to element-wise errors used in the traditional VAE, feature-wise errors can capture the data
distribution better while offering invariance towards translation. Thereby, element-wise
errors are replaced with feature-wise errors. This method outperforms VAEs with element-
wise similarity measures in terms of visual fidelity. To make a VAE generate high quality
images, some approaches have been proposed to increase the network depth to improve
the capacity of decoder networks. However, deeper networks are difficult to optimize.
Thankfully, the deep residual blocks can solve this problem, allowing for increasing the
capacity of the decoder. Additionally, a VAE with residual blocks in the decoder network
can generate high quality images. However, it still suffers from the effect of L2 loss. In
Ref. [252], the authors proposed framework to generate high quality images. To make the
decoder generate better images, this multi-stage VAE concatenates the original decoder
network fθ1(·) with the residual block network fθ2(·) to increase the capacity of model. In
the first stage, fθ1(·) is computed with a CNN to generate a coarse image using a L2 loss
function. The subsequent stage uses fθ2(·) to take the generated blurry image as input and
forms a high-quality image. Because fθ2(·) is independent of the VAE model, it can use
other loss functions to solve the problem of the effect of L2 loss. fθ2(·) can be considered as
a super-resolution module.

5.5. Other Applications

In addition to the domains listed above, there exist substantial studies on other do-
mains, which also apply AEs and their variants. Ref. [117] take advantage of VAEs to
observe phase transitions. The weights and latent parameters of the VAE can store informa-
tion about macroscopic and microscopic properties of the underlying systems. Ref. [253]
proposed a natural language-based text-instruction intention understanding method using
the stacked DAE. A novel variable-wise weighted stacked auto-encoder (VW-SAE), pro-
posed by Ref. [254], exacts hierarchical output-related feature representation layer by layer
for soft sensing applications. Moreover, Ref. [255] use the CAE2 for page segmentation
of historical handwritten documents available as color images. In the text classification
domain, a semi-supervised sequential variational auto-encoder (SSVAE) has been proposed
for the semi-supervised text classification problem. Surprisingly, AEs can also be used for
modeling graphs [256]. As a part of the theoretical basis of machine learning and AI, the
research of AEs is of great significance. Furthermore, their applications in various fields
also have very important practical values. In addition, AEs are also applied to the parallel
basic research fields such as clustering. In the last two years, AEs have been applied to
some new research fields. Ref. [257] analyzed the flow-based characteristics of the network
traffic data and proposed a new intrusion detection method. This method leverages a deep
metric learning methodology that originally combines autoencoders and Triplet networks.
Ref. [258] proposed a Crystal Diffusion Variational Autoencoder (CDVAE) for the material
design community. The CDVAE can capture the physical inductive bias of material stability
to generate the periodic structure of stable materials.

6. Available Deep Learning Toolkits

From the analysis and description in Section 5, we can conclude that AEs can dominate
many applications of AI. At the same time, with the rapid development in academic
research, there are many DL open-source development toolkits. In this section, we will
list some popular DL toolkits which are available for AEs. The candidates are listed in
alphabetical order: Caffe, CNTK, Deeplearn4J, Keras, MXNet, Pytorch, PaddlePaddle,
TensorFlow, Theano, and Torch. It goes beyond the scope of this paper to discuss all these
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packages in detail. Hence, we only summarize these toolkits from different perspectives
(name, developer, language, supporting system, whether supporting multi-cards on single
machine, characteristics, and the literature on AEs using the corresponding framework) in
Table 3.

Table 3. Summary of deep learning toolkits for AEs.

Name Developer Language Platform
Supporting
Multi_Card

Key Features Website

Caffe
Berkeley Vision

and
Learning Center

C++,
Python, Matlab

Linux, Windows,
Mac OS X

√ Excellent convent
implementation;

adding many extensions

http://caffe.
berkeleyvision.org/
accessed on 2 April

2023

CNTK Microsoft
Research

C++, Python,
BrainScript Linux, Widows

√
Known in the speech

community;
not usable for a variety

of tasks

https://docs.
microsoft.com/en-

us/cognitive-toolkit/
accessed on 2 April

2023

Deeplearn-
ing4J Skymind Java, Scala,

Clojure

Linux, Windows
Mac OS X,
Android

√
Applicable to

distributed clusters;
providing

business support

https://
deeplearning4j.org/
accessed on 2 April

2023

Keras François Chollet
et al. Python Linux, Windows,

Mac OS X ×
User friendliness;

modularity;
easy extensibility

https://keras.io/
accessed on 2 April

2023

MXNet

Distributed
Machine
Learning

Community

C++, Python,
Matlab, Julia, Go,

R, Scala,
JavaScript

Linux, Windows,
Mac OS X

Android, iOS

√ Hybrid front-end;
distributed training;
8 language bindings

https://mxnet.io
accessed on 2 April

2023

PaddlePaddle Baidu C++, Python Linux, Windows,
Mac OS X

√ Agile framework;
support ultra-large-scale

training

https://www.
paddlepaddle.org.cn/

accessed on 2 April
2023

Pytorch Facebook Python Linux, Mac OS X
√

Scalable distributed
training;

well supported on major
cloud platforms

http://pytorch.org/
accessed on 2 April

2023

Tensorflow Google C\C++, Python,
Go, R

Linux, Windows,
Mac OS X

√ High degree of flexibility;
portability

https://www.
tensorflow.org

accessed on 2 April
2023

Theano University of
Montreal Python Linux, Windows,

Mac OS X ×
Tight integration

with NumPy;
speed and stability

optimizations

http://www.
deeplearning.net/
software/theano/

accessed on 2 April
2023

Torch

Ronan Collobert,
Soumith Chintala,
Clement Farabet,

Koray
Kavukcuoglu

Lua, LuaJIT, C
Linux, Windows,

Mac OS X,
Android, iOS

√

Amazing interface to C
via LuaJIT;

a powerful N-dimensional
array;

embeddable with ports to
iOS and

Android backends

https://torch.ch/
accessed on 2 April

2023

Matlab MathWorks Inc
C, FORTRAN,

C++, JAVA,
Python

Linux, Windows,
MacOS

√ Computational efficiency;
easy to use; widely used;

graphics processing

https:
//www.mathworks.

com/products/
matlab.html

accessed on 2 April
2023

OpenCV Gary Bradski

C++, Python,
Java, MATLAB,

OCTAVE, C#, Ch,
Ruby, GO

Linux, Windows,
Android, Mac OS,

iOS, Android

√ Cross-platform; free;
fast and easy to use

https://opencv.org/
accessed on 2 April

2023

330



Mathematics 2023, 11, 1777

There is not a single criterion for determining the best toolkit for DL. Each toolkit was
designed and built to address the needs perceived by the developer(s) and also reflect their
skills and approaches to problems [259]. All of the DL toolkits are in development. We can
choose toolkits by comparing the current performance and function, but more importantly,
we can compare the development trend in these different toolkits. DL is currently in a
vigorous development stage, so we should pay more attention to the activeness of these
toolkits in the open source community to select toolkits [260]. Only the toolkits with high
community activity can keep up with the development speed of DL itself, so they will not
face the risk of being eliminated in the future. Figure 8 compares some indicators of the
activity in each of the DL frameworks listed above on GitHub as of March 2023. From
the figure, it can be seen that Tensorflow is far more active than other toolkits in terms
of the number for Star, Fork, and Watch. It can be seen that there are many people who
actually use this toolkit. This is thanks to the full support of a large number of developers
and Google.

 

Figure 8. Comparison of different deep learning tools on GitHub.

7. Future Trends

With the deepening in the era of big data, DL is more and more widely used in
academia and industry. As a typical model of unsupervised learning in DL, AEs can process
a large number of unlabeled data to save human and material resources and provide a
good feature learning ability. In this paper, we provide a comprehensive survey of the AE
and its variant models. We have mainly introduced the basic theory and features of these
various variant models, discussed AEs from different perspectives, and also presented
relationships with shallow models and deep models. In particular, we have compared the
available DL toolkits for AEs. The various applications show that the research on AEs
has become one of the current research hotspots. However, there is still a long way to go
in order to fully realize its potential while coping with many unsolved challenges. Now,
we will discuss several important open issues and point out the corresponding possible
directions for addressing them in the future.

• Constructing a hybrid model based on AEs

Based on the basic AE and its various variants, we can build different hybrid models
by combining AEs with other methods. Specifically, there are two main mixing methods.
First, the traditional shallow models are integrated with AEs. Although the traditional
shallow models depend on the artificial designing feature, they also have the advantages of
simplicity and strong interpretability. Therefore, the combination of AE models and these
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existing shallow models can integrate the advantages of these methods. Although there
have some relevant studies [261,262], this direction is still worth researcher’s attention.
Secondly, other excellent DL models can also be integrated with AEs, such as CNN [263]
and GAN [264]. This can improve the overall performance of the model.

• Integrating the attention mechanism into AEs

The human visual attention mechanism is a very important working mechanism in
the human visual system, which can greatly improve the working efficiency of the human
visual system by allocating different computing resources to different regions in the visual
scene [265]. Combining a visual attention mechanism with a DNN can form DL models
based on the attention mechanism. At present, the visual attention mechanism has been
applied to some DL models, such as RNN, MLP, CNN, etc. Among these models, the
RNN based on attention can better model the long-term memory in the sequence data, and
CNN based on attention can identify the most relevant information from the input data.
At present, integrating the attention mechanism into DL models has had great success in
natural language processing, computer vision, and other fields. Applying the attention
mechanism to AEs can help AEs learn the most informative features of the dataset. At
present, some researchers have applied the attention mechanism to AEs. Ref. [91] put
forward a variational attention mechanism for the variational encoder–decoder, where
the attention vector is also modeled as Gaussian distributed random variable. Ref. [196]
proposed an unsupervised baseline approach for video-based salient object detection using
saliency-guided stacked AEs. However, there are few related studies. Hence, more in-depth
and extensive studies are needed in the future.

• Integrating a supervised learning mechanism into AEs

AEs can reduce irrelevant and redundant data using unsupervised learning. In other
words, it can reduce the dimensions and better process the data with high dimensions.
Ref. [266] believes that the more information used in the model, generally speaking, the
better performance it can obtain. They found that the use of tag information was often
ignored in the frequently used DL methods at home and abroad. The authors have proposed
that supervised learning can effectively enhance the discriminability and performance of the
model on the basis of making full use of label information. It can obtain better results than
unsupervised learning. Ref. [267] constructed a new deep AE model based on supervised
learning for image reconstruction. Ref. [268] proposed supervised AE to improve the
generalization performance of the model. In order to make up for the limitations of
unsupervised learning on feature expression ability and make better use of the efficient
feature coding ability of AE, we can combine the advantages of supervised learning to
build a new AE model.

• Building AE structures fitting neuroscience and cognitive science

The AE is a kind of artificial neural network. Ref. [269] thinks that compared with the
ANN, the local error driven and associated biological realistic algorithm (Leabra) model
proposed by O’Reilly and Munakata is more in line with biological neurology. In the
Leabra model, the complex neurons make bidirectional connectivity, lateral connectivity,
and inhibition mechanisms better implement in one and the same nervous system. In the
collected references, there are only two papers [270,271] that use inhibition mechanism in
an AE. In the future, this neuroscientific AE will be a very worthy research direction. In
addition, in the field of cognitive science, we have seen some preliminary attempts. For
example, Ref. [82] proposed the stacked what and where AE. In this model, the filters can
focus on learning the shapes (i.e., “what”) because the location information (i.e., “where”)
is encoded into feature maps, which reduces the redundancy among the filters. Hence,
this model achieves better results in image classification. Ref. [272] propose that neural
computing science is a research method based on research results, hypotheses, or models
on neurophysiology and cognitive science. Using mathematical methods to study neural
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information processing mode will have broad application prospects, so more research
content still needs to be further explored.

• Using a better optimization algorithm to adjust the parameters

The method to adjust the parameters in the machine learning field is a new topic
in computer science. There are a large number of parameters that need to be adjusted
in DNNs. At present, the setting of hyper parameters in AE models mainly depend on
manual parameter adjustment. It is necessary to adjust hyper-parameters using trial and
error to determine the network performance. When there are many hyper-parameters in
the model, the situation becomes more complex. When one single parameter achieves
the optimal effect, it cannot guarantee the optimal performance after the combination of
multiple parameters. Optimization methods, such as the PSO [273], are therefore required
to avoid this problem. According to the statistics of the existing references, only one uses
the optimization technique to learn the hyper-parameters automatically [274]. In the future,
we can combine the optimization algorithms with AE models to learn the hyper parameters
automatically for better performance.

8. Conclusions

This study is first to introduce the basic theory and features of various variant models
of AEs. We also provide insight on AEs from various perspectives, including the energy
perspective, manifold perspective, and information theoretic perspective. In particular, we
also have presented relationships with shallow models and deep models. Additionally, we
have summarized its application in various fields and compared available DL toolkits for
AEs. Finally, future trends in AEs are analyzed. We hope that this survey can provide a
good reference when using and designing AE models.
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