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Abstract: We are currently living in the era of big data. The volume of collected or archived geospatial
data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and
auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms,
and cutting-edge cloud computing have also recently been developed. While new opportunities
are provided by these geospatial big data and advanced computer technologies for LULC mapping,
challenges also emerge for LULC mapping from using these geospatial big data. This article summa-
rizes the review studies and research progress in remote sensing, machine learning, deep learning,
and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges,
and future directions of using geospatial big data for LULC mapping. More research needs to be
performed for improved LULC mapping at large scales.

Keywords: land use and land cover mapping; remote sensing; machine learning; deep learning;
geospatial big data

1. Introduction

Accurate and timely land use and land cover (LULC) maps are important for a variety
of applications such as urban and regional planning, disasters and hazards monitoring,
natural resources and environmental management, and food security [1–3]. LULC map-
ping may help tackle many significant large-scale challenges, such as global warming,
the accelerating loss of species habitat, unprecedented population migration, increasing
urbanization, and growing inequalities within and between nations [4,5]. Therefore, it is
important to produce accurate LULC maps.

The land use concept and the land cover concept, though related, are distinctly differ-
ent [6]. Land cover mainly refers to direct observations of terrestrial ecosystems, natural
resources, and habitats on the Earth’s surface, while land use generally describes a certain
land type produced, changed or maintained by the arrangements, activities, and inputs
of people. Land use relates to the purpose for which land is utilized by people, but land
cover specifies landscape patterns and characteristics. Examples of land use may include
multi-family residential homes, state parks, reservoirs, and shopping centers. In contrast,
examples of land cover may include forests, wetlands, built areas, water, and grasslands.
However, land use and land cover are often used as interchangeable terms in existing
research literature. In this article, we discuss LULC mapping without making a specific
differentiation between land use and land cover, and the mapping includes both.

Remotely sensed satellite imagery is a valuable source for LULC mapping [7–9]. Many
studies have attempted to extract LULC information from remotely sensed imagery [2,10].
Advances in remote sensing technologies have resulted in improvements in spectral, spatial,
and temporal resolutions of satellite imagery, all of which benefit LULC mapping. LULC
mapping is currently experiencing a transformation from the coarse and moderate scales to
much finer scales in order to provide more precise land knowledge. Although remotely
sensed imagery has been used in LULC mapping since the launch of Landsat 1 in 1972 [11],
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it is still difficult to capture complex and diverse LULC information and patterns by using
remotely sensed imagery alone [12]. Ancillary data are typically needed as a supplement
to remotely sensed imagery in order to accurately identify LULC information, especially
the land use information related to socioeconomic aspects [13].

With the development of GPS and data acquisition techniques, the merging of big
data with spatial location information—such as social media data, mobile phone tracking
data, public transport smart card data, Wi-Fi access point data, wireless sensor networks,
and other sensing information generated by Internet of Things devices—may provide
useful ancillary data for LULC mapping [14]. Compared to traditional geospatial data
acquisition, these geospatial big data are normally obtained at a lower cost and have
different coverages and better spatio-temporal resolutions. They contain abundant human
activity information and may thus be used to compensate for the lack of socioeconomic
attributes of the remotely sensed imagery data for accurate LULC mapping [15]. In fact,
the aforementioned geospatial big data were integrated with remotely sensed imagery and
other source data for accurate LULC mapping in many studies [16,17].

We are currently living in the era of big data. The volume of collected or archived
geospatial data, including remotely sensed data, is increasing from terabytes to petabytes
and even to exabytes [18]. For example, the European Space Agency (ESA), the Na-
tional Aeronautics and Space Administration (NASA), the United States Geological Survey
(USGS), and the National Oceanic and Atmospheric Administration (NOAA) provide a
huge amount of freely available remotely sensed data and other Geographic Information
System (GIS) data for LULC mapping. Social media sites, such as Facebook, Twitter, and
Instagram, are generating an enormous volume of data with geospatial location information
that can be used for LULC mapping nowadays [19]. Progress in data access and algorithm
development in the era of big data provides opportunities for developing improved LULC
maps [20]. Figure 1 illustrates the major opportunities of LULC mapping in the era of big
data. Databases that offer free access to LULC maps at the global scale have emerged. For
example, as a free search engine, “Collect Earth” developed by the Food and Agriculture
Organization (FAO) can help derive past and present LULC change information [21].

Figure 1. Major opportunities of LULC mapping in the era of big data.

While these geospatial big data provide new opportunities, challenges remain in stor-
ing, managing, analyzing, and visualizing these data for LULC mapping [22]. Geospatial
big data not only have various forms but are also often associated with unstructured data
that are difficult to manage [23]. It is extremely difficult to integrate, analyze, and transform
these heterogeneous geospatial big data from different sources into useful values for LULC
mapping. Traditional LULC classification or mapping solutions and software face excessive
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challenges in dealing with these large and complex geospatial big data. New approaches
are needed to efficiently process and analyze these data to reveal patterns, trends, and
associations related to LULC mapping [24].

Lately, advanced machine learning techniques, especially deep learning (DL), have
been developed for large-scale LULC mapping based on multispectral and hyperspectral
satellite images or the integration of satellite imagery with other geospatial big data [25].
Deep learning has demonstrated better performance compared to traditional methods,
such as random forest (RF) and support vector machine (SVM), e.g., [26–28]. Nevertheless,
there are still many issues in applying advanced machine learning or deep learning for
accurate LULC mapping using geospatial big data.

The Special Issue “Feature Papers for Land Innovations—Data and machine learning”
targets contributions to spatial data science for obtaining, processing, analyzing, harnessing,
and visualizing social, economic, environmental, and other land-related data. Particularly,
the Special Issue focuses on research in geospatial artificial intelligence and machine
learning techniques for dealing with spatial big data. This includes remotely sensed data
and social media data. A number of literature review articles related to LULC mapping
have been published in the fields of remote sensing, machine learning, deep learning, and
geospatial big data since 2015, e.g., [12,13,15,16,18,29–47]. This article summarizes these
recent review studies and recent research progress in remote sensing, machine learning,
deep learning, and geospatial big data for the Special Issue. As a review article for this
Special Issue, the purpose of this paper is to briefly review LULC mapping in the big
data era. The method and materials are briefly introduced in Section 2. LULC mapping
using remotely sensed imagery is reviewed in Section 3. LULC mapping by integrating
geospatial big data and remotely sensed imagery is examined in Section 4. Advanced
machine learning, deep learning, and cloud computing for large-scale LULC mapping are
summarized in Section 5. Challenges and future directions for the use of geospatial big
data for LULC mapping are identified in Section 6. Finally, a brief conclusion is provided
in Section 7 at the end of the paper.

2. Method and Materials

We conducted a search of “review articles” from 2015 to now using Google Scholar
with combinations of the following keywords: “land use”, “land cover”, “mapping”, “clas-
sification”, “remote sensing”, “geospatial big data”, “deep learning”, “machine learning”,
“cloud computing”, and “cyberinfrastructure”. In case we missed some review articles,
we also carried out another search of “any type articles” from 2015 to now using Google
Scholar based on combinations of the above keywords. We sorted the search results by
relevance. We went through the searched results and selected papers based on their scopes,
objectives, and characteristics. Table S1 lists the cited publications since 2015 based on five
grouped themes associated with LULC mapping: meta-analysis, remote sensing, big data,
machine learning (especially deep learning), and advanced cyberinfrastructure (especially
cloud computing). Please note: * indicates a review paper.

3. LULC Mapping from Remotely Sensed Imagery Data

As mentioned previously, remote sensing has become one of the most important meth-
ods for LULC mapping [48,49]. Many existing LULC maps were made by the classification
of remotely sensed satellite imagery data [50]. Remotely sensed data have multi-source,
multi-scale, high-dimension, and non-linear characteristics [51]. Since the advent of re-
mote sensing technology, many satellites have been launched. Every day, a large set of
spaceborne and airborne sensors provide a massive amount of remotely sensed data. At
present, there are more than 200 on-orbit satellite sensors capturing a large amount of
multi-temporal and multi-scale remotely sensed data. For example, NASA’s Earth Observ-
ing System Data and Information System (EOSDIS) managed more than 7.5 petabytes of
archived remotely sensed data and archived a daily data increase of four TB in 2013 [52].
Many satellite imagery data providers release timely remotely sensed data to the public
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without any cost. USGS, NASA, NOAA, IPMUS Terra, NEO, and Copernicus open access
hubs are among the most popular open access remotely sensed data providers.

In the past, many LULC maps were made from coarse spatial resolution satellite
imagery data such as advanced very-high-resolution radiometer (AVHRR) and moderate-
resolution imaging spectroradiometer (MODIS) [53]. Advances in remote sensing technol-
ogy and the launch of sensors with moderate spatial resolutions, such as Landsat, Satellite
Pour l’Observation de la Terre (SPOT), and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), have contributed to enhanced LULC mapping, e.g., [54,55].
Lately, detailed LULC maps have been produced from high-resolution imagery data such
as QuickBird, IKONOS, and WorldView, which can provide more detailed spatial and
spectral information for LULC mapping, e.g., [56–58]. With these high-resolution remotely
sensed data, it is possible to identify the detailed geometries, textures, sizes, locations, and
adjacent information of ground objects at a much finer scale for LULC mapping [59].

In addition to the different spatial resolutions, the remotely sensed data for LULC
mapping also have different spectral and temporal resolutions. Many satellite sensors
produce imagery data with very-high spectral resolutions [32]. For example, the Hyperion
sensor consists of 220 spectral bands, the AVIRIS system provides 224 spectral bands,
the WIS instrument has 812 bands, and the hyperspectral imager equipped in HJ-1A
has 128 bands. Furthermore, remotely sensed data may come from different types of
satellites. Some satellites use optical sensors such as SPOT, Landsat, and IKONOS; some
use microwave synthetic aperture radar (SAR) sensors such as TerraSAR, Envisat, and
RADARSAT; while others use multi-mode sensors such as MODIS. While the optical
satellite imagery data face challenges in producing LULC maps under cloudy weather
conditions, microwave SAR data allow LULC mapping under all weather conditions,
including the constantly cloudy weather situation [60–62]. From a temporal resolution
perspective, these satellites also have different capabilities to revisit an observation area.
Some satellites have a short revisit period of one day (e.g., MODIS and WorldView), while
other satellites have a long revisit period of 16 days (e.g., Landsat). Figure 2 shows different
types of remotely sensed satellite imagery for LULC mapping. Teeuw et al. [63], Navin and
Agilandeeswari [64], and Pandey et al. [40] provided detailed tables for the characteristics
of different types of remotely sensed data.

 

Figure 2. Different types of remotely sensed satellite imagery for LULC mapping.

As illustrated in Figure 3, more types of remotely sensed data have emerged to provide
additional observations for LULC mapping [51]. These remotely sensed data provide
observations to differentiate LULC types with complex structures, which are difficult to
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differentiate in the past. For example, as a unique measure of human activities and socio-
economic attributes, remote sensing-based nighttime lights (NTL) imagery is especially
useful for urban LULC mapping at different spatial and temporal scales, e.g., [65,66]. Light
detection and ranging (Lidar) is another type of remotely sensed data for detailed LULC
mapping, e.g., [67]. Unlike optical data, airborne Lidar data can capture highly accurate
structural information to differentiate LULC types with different structures, components,
and compositions [68]. In addition, street-view imagery from Google, Baidu, and Tencent
also functions as an additional type of remotely sensed data for LULC mapping, e.g., [69,70].
In contrast to the overhead view captured by most other remote sensing methods, street-
view imagery data provide street-level or eye-level observations along the road networks.
By providing information about what people typically see at street level on ground, street-
view imagery data provide crucial information on the functions of objects conventionally
hidden from the view above, e.g., [71]. For example, street-view imagery data have been
used for level II or III land use classification (e.g., differentiation of commercial buildings
and residential buildings by using text information on buildings from street-view imagery
data [72]. Street-view imagery can also be used for ground truth purposes. Recently,
unoccupied aerial system (UAS) platforms with small-sized and high-detection-precision
sensors have also started producing massive high-resolution images as well, and have been
extensively used for high-resolution LULC mapping, e.g., [73,74]. Currently, the amount of
data collected by UAS is about to explode.

 

Figure 3. More types of remotely sensed imagery for LULC mapping.

Because of the diversity and high dimensionality of remotely sensed data, LULC
mapping from remotely sensed big data becomes complex. It is challenging to identify the
right datasets and combine them to make detailed LULC maps at large scales. Although
the multi-source optical and microwave remotely sensed data allow us to obtain LULC
information from multiple viewpoints, they sometimes cause confusion in deciding which
type is the most appropriate for particular LULC mapping. In addition, because of the
data representation challenge, it is difficult to integrate the various remotely sensed data
with different features (e.g., spectral signatures in optical imagery and electromagnetic
radiations in microwave imagery) from various sources. Traditional pixel-level, feature-
level, and decision-level fusion cannot be used to integrate remotely sensed imagery with
different scales and/or formats [18]. New approaches need to be developed to fuse remotely
sensed imagery with other geospatial big data, such as photos from a social network and
crowdsourcing spatial data, for LULC mapping.
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4. LULC Mapping from Integration of Geospatial Big Data and Remotely Sensed
Imagery Data

Although remotely sensed data have become one of the most important data sources
for LULC mapping, these have limitations [42,75]. Remotely sensed data are valuable to
extract natural and physical land cover information based on spectrum, texture, geometry,
context, and temporal information, but they have limitations in capturing the patterns of
human activities and socioeconomic environments and describing indirect anthropogenic
differences among different land use classes [13]. For example, while the spectral informa-
tion of remotely sensed imagery data is effective to extract land cover information such as
water area, forest land, and built-up area, it is almost impossible to distinguish some land
use classes such as some industrial land, residential land, and commercial land using the
spectral information of remotely sensed data alone [72].

With the development of mobile positioning techniques, wireless communication, and
the Internet of Things, new emerging types of social sensing big data are providing com-
plementary information to differentiate some land use classes caused by human activities
and socioeconomic environments [9]. Examples of these emerging social sensing big data
include mobile phone data, geo-tagged photos, social media data, traffic trajectories, and
volunteered geographic information (VGI) data [76]. These emerging social sensing big
data are able to more effectively capture human activities and dynamic socioeconomic
environments, and are regarded as complements of remotely sensed imagery data for
effectively LULC mapping [77,78]. For example, Geo-Wiki is a crowdsourcing platform for
LULC mapping and other tasks, which was used to derive the global LULC reference data
via four campaigns [79]. Flickr offers online services for the sharing of digital photos with
geographic locations based on social networks, which was used to identify socioeconomic
and human activities in LULC mapping [19]. OpenStreetMap (OSM) (as a VGI database)
allows the adding, editing, and updating of basic geographic map information with users’
experience and knowledge, which was also used to uncover some land use types and
patterns, e.g., [80,81]. The points of interest (POIs), as one of the most common categories of
crowdsourced data, were explored for land use classification by many scholars, e.g., [82–84].
In addition, a large amount of GPS traffic trajectory data also further enriched the remotely
sensed data in excavating human activities at a fine scale for accurate LULC mapping [85].

These emerging social sensing big data improved the existing LULC maps by provid-
ing more detailed socioeconomic information and finer spatio-temporal resolutions [86].
Many studies have been conducted to integrate the social sensing big data with remotely
sensed data for LULC mapping at different scales and locations, e.g., [87–89]. For example,
Hu et al. [90] developed a protocol to identify urban land use functions over large areas
using satellite images and open social data. Yin et al. [91] employed both the decision-level
integration and feature-level integration of remotely sensed data with social sensing big
data for urban land use mapping. Integrating data from these social sensing big data with
remotely sensed data may provide a more comprehensive picture of LULC patterns, as
shown in Figure 4.

In addition to the integration of remotely sensed data and social sensing big data
for LULC mapping, other auxiliary datasets may also be used for LULC mapping [92].
For example, census data including demography, employment, education, housing, and
income information may provide valuable information to reveal spatial differences in
socioeconomic statures across different land use types, e.g., [24]. Municipal data such as
water consumption data may offer important information to identify the socioeconomic
functions of land uses and help classify mixed patterns of land uses [93]. In addition,
topographic information such as elevation, slope, and aspect information extracted from
digital elevation or digital terrain models (DEMs/DTMs) may also be combined with
remotely sensed data to increase the accuracy of urban land use classification, e.g., [94].

Ubiquitous sensor networks can constantly obtain spatio-temporal data in days, hours,
minutes, seconds, or even milliseconds. These spatio-temporal data allow people to acquire
multi-dimensional dynamic information about various land entities and human activities,
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which may be used for making or updating LULC maps. LULC mapping is expanding from
professional aspects to public aspects with the development of The Internet of Things (IoT)
and Volunteered Geographic Information (VGI), as evidenced by Geo-Wiki and My Maps
feature in Google Maps. However, the non-professional characteristics of IoT and VGI
often make the data obtained from them contain data uncertainty such as data loss, noise,
inconsistency, and ambiguity [95]. Therefore, it is important to develop quality assurance
procedures such as data cleaning and quality inspection for high-quality LULC mapping.

Figure 4. LULC mapping from the integration of geospatial big data and remotely sensed data.

It is still challenging to integrate multi-source remotely sensed data, social sensing big
data, and other auxiliary datasets for LULC mapping because of intensive computing and
the heterogeneity in spatial data structures, formats, resolutions, scales, and data quality.
Novel machine learning including deep learning and cloud computing approaches are
urgently needed for LULC mapping.

5. Machine Learning and Cloud Computing for LULC Mapping

Machine learning is a data analysis method and a subset of artificial intelligence
based on the idea that computer systems can learn from data to identify patterns and
make decisions with minimal human intervention. There are many different machine
learning approaches for LULC mapping [96,97], such as support vector machine (SVM),
random forest (RF), and K-nearest neighborhood (KNN). The strengths of machine learning
include the capacity to handle data of high dimensionality and to map LULC classes
with very complex characteristics. With growing volumes and varieties of the available
aforementioned remotely sensed imagery and geospatial big data, cheaper and more
powerful computational processing tools, and affordable data storage, machine learning has
become more popular than ever for analyzing bigger and more complex data and delivering
more accurate LULC mapping results at larger scales [10]. Machine learning provides the
foundation for autonomously solving data-based LULC mapping problems [98].

Supervised learning, unsupervised learning, and semi-supervised learning are the
three main types of machine learning methods for LULC mapping, as shown in Figure 5.
Supervised learning algorithms are trained using labeled LULC examples and apply what
has been learned in the labeled LULC example data to predict the labels of new LULC
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data. By inferring methods such as regression and gradient boosting, supervised learning
methods use patterns to predict the values of the labels on unlabeled LULC data [99].
Popular supervised learning methods include support vector machine (SVM), random
forest (RF), classification and regression tree (CART), radial basis function (RBF), decision
tree (DT), multilayer perception (MLP), naive Bayes (NB), maximum likelihood classifier
(MLC), and fuzzy logic. Unsupervised learning algorithms are used with data that have
no historical LULC labels and computers infer a function to describe a hidden structure
from unlabeled LULC data. Unsupervised learning methods are used when it is unclear
what the LULC mapping results will look like and computers need to dig through hidden
layers of LULC data and cluster data together based on the similarities or differences
of LULC classes. Popular unsupervised learning methods include self-organizing maps,
k-means clustering, nearest-neighbor mapping, affinity propagation (AP) cluster algorithm,
ISODATA (iterative self-organizing data), and fuzzy c-means algorithms. Semi-supervised
learning is similar to supervised learning. However, it uses both labeled and unlabeled data
for training—usually a small amount of labeled data with a large amount of unlabeled data.

 

Figure 5. Types of traditional machine learning approaches for LULC mapping.

Recent advances in machine learning for LULC mapping have been accomplished
via deep learning approaches [100,101]. As illustrated in Figure 6, deep learning is a
subfield of machine learning. All deep learning is machine learning, but not all machine
learning is deep learning. Deep learning emerged because shallow machine learning cannot
successfully analyze big data for LULC mapping. While basic machine learning models
do become progressively better at performing their specific functions as they take in new
emergent data, they still need some human intervention. Deep learning algorithms in
layers can build an “artificial neural network” (Figure 7) that is able to learn and make
intelligent classification decisions on its own [102]. Figure 8 illustrates the differences
between traditional machine learning and deep learning. For traditional machine learning,
feature extraction and classification are separate processes and humans are needed to
perform feature extraction. With a deep learning model, feature extraction is integrated
with classification and a classification algorithm can determine whether a class prediction is
accurate through its own neural network—beyond the training data and without requiring
human help. Deep learning algorithms can be considered as a both sophisticated and
mathematically complex evolution of machine learning algorithms [103]. Deep learning
algorithms analyze data with a logic structure similar to how a human would draw LULC
mapping conclusions. When fed training data, deep learning algorithms would eventually
learn from their own errors whether a LULC class prediction is good or whether it needs
to adjust.
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Figure 6. Deep learning is a subfield of machine learning.

Figure 7. A simple artificial neural network.

 
Figure 8. Differences between traditional machine learning and deep learning.
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In recent studies, deep learning outperformed other machine learning algorithms in
some LULC mapping problems, particularly in detecting fine-scale types such as small arti-
ficial objects [29,104,105]. Deep learning algorithms have been used to automatically extract
spatial features from very-high-resolution satellite images such as IKONOS, WorldView-3,
and SPOT-5, e.g., [101].

There are several different types of deep learning algorithms for LULC mapping,
among which the most popular algorithms include convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). CNNs are some of the most popular neural
network architectures because they can extract low-level features with a high-frequency
spectrum, such as the edges, angles, and outlines of LULC objects, whatever the shape,
size, or color of the objects are. Therefore, CNNs are well suited for LULC mapping [106].
Some popular CNN architectures used in the literature are LeNet5, AlexNet, VGGNet,
CaffeNet, GoogLeNet, and ResNet models. RNNs have built-in feedback loops that allow
the algorithms to “remember” past data points. RNNs can use this memory of past events
to inform their understanding of current events or even predict the future. RNNs are
mainly designed to process time series data and are suitable to detect LULC changes [29].

By performing complex abstractions over data through a hierarchical learning process,
deep leaning algorithms have shown great potential for analyzing big datasets for LULC
mapping [16]. The hidden layers in deep leaning approaches can discover class structures
and patterns in big data and extract valuable class knowledge. Deep learning is also able to
handle nonlinear and highly complex big data more effectively than conventional machine
learning methods [43,100]. However, compared to traditional machine learning approaches,
deep learning requires a vast amount of training data and substantial computing power [27].
A deep learning algorithm requires much more data than a traditional machine learning
algorithm to properly conduct LULC mapping. Due to the complex multi-layer structure,
a deep learning system needs a large training dataset to eliminate fluctuations and make
high-quality class interpretations [43]. Without a large set of training data, deep learning
may show a similar or worse performance than classical machine learning techniques such
as SVM [107].

The emergence of cloud computing infrastructure and high-performance GPUs (graphic
processing units, used for faster calculations) helped to solve the expensive computational
problem faced by deep learning [108]. The storage and processing requirements of big
data for LULC mapping are greater than that available in traditional computer systems
and technologies [109]. The existing cluster-based high-performance computing (HPC)
with plenty of computational capacities can be used for storing large remotely sensed data
and other big data for LULC mapping. However, it is still challenging to process these big
remotely sensed data and other big data for large-scale LULC mapping because system
architectures and the tools of the existing cluster-based HPC have not been optimized
to process such data. The cluster systems or peta-scale supercomputers are not good at
loading, transferring, and processing extremely big remotely sensed data and other data
for LULC mapping. A potential solution to this problem is cloud computing. Cloud
computing satisfies the two main requirements of LULC mapping using big data analytics
solutions: (1) scalable storage that can accommodate growing data; and (2) a high processing
capability that can run complex LULC mapping tasks in a timely manner. Cloud computing
makes deep learning more accessible, making it easier to manage large datasets and train
algorithms for distributed hardware, and deploy them efficiently [110]. It provides access
to special hardware configures, including GPUs, field-programmable gate arrays (FPGAs),
TensorFlow processing units (TPUs), and massively parallel high-performance computing
(HPC) systems.

Cloud computing has been used for storing big remotely sensed data and other data
for LULC mapping with good scalability [111]. Three main types of cloud computing
services have been used [112]: (1) infrastructure-as-a-service (IaaS), which allows renting IT
infrastructures. Servers, virtual machines with storages, networks, and operating systems
are completely provided and managed by a cloud provider. Users can pay for what they
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use; (2) platforms-as-a-service (PaaS): this service is an on-demand style of service where
users can obtain a complete development environment required for software applications;
(3) software-as-a-service (SaaS): using SaaS, it is possible to deliver software applications
over the Internet, such as the ‘on demand’ or ‘subscription’ services.

Google AppEngine, Microsoft Azure, and Amazon EC2 are the most popular cloud
providers and offer pay-as-you-go clouding computing for storing, processing, and visu-
alizing big remotely sensed data and other data for LULC mapping. GoogleTM devel-
oped a geospatial data analysis platform—Google Earth Engine (GEE)—capable of storing
and analyzing vast amounts of remotely sensed data for rapid LULC mapping at large
scales [113,114]. GEE provides users with free access to numerous remotely sensed datasets
including Landsat, Sentinel, and MODIS images. GEE has already proven its capacities for
LULC classification and change detection, e.g., [115–124]. Microsoft Azure Cloud Services
and Amazon Web Services (AWS) have also been used to improve LULC mapping and
monitoring [125]. Microsoft Azure Cloud Services have established artificial intelligence
(AI) for an Earth initiative to address environmental challenges. However, Azure only
offers Landsat and Sentinel-2 products for North America and MODIS imagery. Amazon
Web Services offer open data from more satellites such as Sentinel-1, Sentinel-2, Landsat-8,
and China–Brazil Earth Resources Satellite program (CBERS-4), NOAA image datasets, as
well as global model outputs.

In addition to machine learning and cloud computing approaches, other advanced
cyberinfrastructure techniques, such as novel scalable parallel file systems capable of
storing and managing massive data, and NoSQL (Not Only SQL) databases for managing
big unstructured or non-relational data have also been developed for LULC mapping with
complex characteristics [126].

6. Challenges and Future Research Directions

Despite recent progress, LULC mapping continues to face challenges. There are still
many issues remaining to be further explored for LULC mapping, as shown in Figure 9.

Figure 9. Major challenges of LULC mapping.

First, fine-scale LULC maps with global coverage remain scarce, particularly for
developing countries, many of which are experiencing rapid LULC changes. Although
many global LULC maps have been developed by different agencies, most of these maps
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have coarse spatial resolutions [127,128]. For example, the NASA MCD12Q1 dataset has a
500 m resolution, the LULC maps from the European Space Agency (ESA) Climate Change
Initiative (CCI) dataset have a 300 m resolution, and the Copernicus Global Land Service
(CGLS) Land Cover dataset has a 100 m resolution. There is a lack of detailed LULC maps at
the global scale. To the best of our knowledge, the Esri global LULC Maps and the European
Space Agency (ESA) WorldCover LULC Maps are the only available global LULC maps
with a high (10 m) resolution. The Esri global LULC Maps were derived from ESA optical
earth observation data Sentinel-2 imagery for 2018~2022. The ESA WorldCover LULC Maps
were produced based on the use of both SAR data Sentinel-1 and optical data Sentinel-2 for
2020. However, there were no historical global LULC maps with a high resolution. Spatial
resolution influences various aspects of landscape classification and may significantly affect
landscape metrics and landscape pattern analysis [129,130]. Although very-high-resolution
images are available for developing detailed LULC maps, they have proven challenging for
creating global maps because of the high cost associated with these very-high-resolution
images and their incomplete data coverage and small spatial extent (one image only covers
a very small study area). In addition, variations of radiometric properties among different
sensors, the influence of different acquisition conditions, and different classic atmospheric
perturbations also cause challenges in using these very-high-resolution images for detailed
LULC mapping at the global scale. Obtaining cloud-free images is challenging and there
are often unavailable data in certain seasons, times, or locations. Therefore, there is a lack
of well-annotated fine-scale LULC maps at the global scale and even at the country level
for some developing countries. Because high-resolution images have only been available
recently, there is a lack of well-annotated fine-scale historical LULC maps for change
detection.

Second, existing LULC datasets are often inconsistent and variable in time, space,
formats, formal validation, or map legends [23,131]. There are various or inconsistent
definitions of LULC classes. Different methods and incompatible classification systems
are used by different source agencies [132]. It is difficult to compare different legend
information from various classification schemes. The land surface is heterogeneous and
the mapping standards to acquire, represent, and generalize land characteristics are about
as diverse as the land surface itself [133,134]. For example, according to Cruz et al. [135]
in Wisconsin, counties and municipalities may maintain different land use codes for their
land parcels. This case is particularly interesting because both the city of Madison and the
Fitchburg Township are in the same county—Dane county. LULC data have variations
in the semantic contents among different research projects and research teams [133]. In
addition, different spectral and spatial sensor characteristics, acquisition geometries or
illumination conditions, or atmospheric settings also lead to inconsistencies in developing
LULC products derived from multi-sensor approaches. It is, therefore, still challenging to
combine different LULC products for practices or other applications.

Third, despite more observations from very-high-resolution satellite images, crowd
sources and other geospatial big data, accurate training sample data for advanced machine
learning or deep learning still remain comparably scarce [43,136]. Currently, field surveys,
the visual interpretation of high-resolution images, crowdsourcing technology, and existing
labeled land use datasets are common methods to obtain reference or training sample
data for LULC mapping. However, all of these methods have some limitations. For
example, many sample data generated through visual interpolation contain errors. Field
surveys are the most accurate method of generating training sample data; however, it is a
labor-intensive and time-consuming task. It is expensive to obtain ground truth data via
field survey. In addition, the field survey cannot be conducted in all locations because of
inaccessibility issues.

Crowdsourcing technology is one of the latest techniques to obtain sample data, but
the spatial and temporal sample data created by this technology may be ad hoc, the quality
may be highly variable, and some sample data may contain many uncertainties and errors.
The existing labeled LULC datasets can help obtain sample data but they normally have
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low accuracies and coarse resolutions. Therefore, all of the common methods of obtaining
sample data for LULC mapping have some issues. There is a lack of reliable training sample
data for LULC mapping using advanced machine learning or deep learning approaches
for many locations of the world, especially for some developing countries. In addition,
some existing sample data may have imbalance issues [137]. For example, the sample
data produced by crowdsourcing technology or geospatial big data such as social media
data or Google Street View data only represent human activities well in urban areas [138].
These would perform poorly in measuring land use classes that represent the human
activity characteristics in rural areas, where there are low populations and activity densities.
Nevertheless, advanced machine learning or deep learning classification methods need a
large set of reliable and balanced training sample data, which should cover different classes
and areas well, to produce accurate maps, because these methods need to train, test, and
classify LULC classes based on the training sample data. A large number of parameters
used by these advanced classification methods need to be fine-tuned using a great amount
of training sample data. However, obtaining sufficient high-quality training sample data
remains a critical issue.

Fourth, mixed LULC pixels also pose great challenges for LULC mapping [16]. Because
of the insufficient spatial resolution of remotely sensed imagery, it is quite difficult to differ-
entiate the mixed LULC pixels in the past. With advances in remote sensing techniques,
the very-high-resolution images with distinct spatial, temporal, spectral, radiometric, and
angular characteristics are emerging and they are available for detailed LULC mapping.
However, the mixed LULC problem still exists because LULC classification algorithms
compatible with these super-high-resolution multispectral images are still underdeveloped.
Various subpixel analysis approaches, such as variations in spectral mixture analysis (SMA),
support vector machine (SVM), import vector machine (IVM), convolutional neural net-
works (CNNs), and deep learning-based subpixel mapping network (DLSMNet) have been
developed to solve the mixed LULC problem, e.g., [139–142]. However, these subpixel
analysis approaches have still experienced some difficulties in handling the spectral hetero-
geneity of diverse landscape features. Recent studies have been working on addressing
the mixed LULC problem by combining remotely sensed imagery with other ancillary
data such as road network data, social sensing data, as well as other environmental and
socioeconomic data [143]. However, the data availability limited the large-scale implemen-
tation of these kinds of approaches. Although advanced deep learning approaches can
transform multispectral image pixels into high-level abstract features and thus may reduce
some mixed pixel problems, the model interpretability of these deep learning approaches
is a big challenge due to the “black box” nature of the training procedure. In addition, the
model transferability is also an important issue faced by these advanced machine learning
or deep learning approaches. Because LULC classes are different across different regions,
the model developed for one study area using local training data may not be appropriate
for classification in other study areas.

Based on the review, although a large set of LULC maps exist, these maps are often con-
nected to considerable uncertainty due to the positional inaccuracy, unreliable input data,
and processing algorithms limitations. More research is needed in the future to develop
improved LULC maps. A few general recommendations for future research directions of
LULC mapping, as illustrated in Figure 10, are suggested in the paragraphs below.

First, more research on fusing multiple big datasets from different sources and across
scales for detailed LULC mapping at large scales needs to be done. Specifically, the joint use
of multipl150e remotely sensed datasets (lidar, radar, and optical data), big geospatial data
such as social media data, other physical and socioeconomic big data such as census data,
and sampling survey data may help improve LULC mapping at multiple scales. Big data
fusion is necessary for obtaining the full picture of LULC situation. The fused big datasets
will typically have better spatial, temporal, spectral, as well as radiometric resolutions
and coverages. However, these multiple big datasets usually have the aforementioned
heterogeneous problems, such as different spatial and temporal resolutions, formats, and
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semantics. Therefore, it is usually difficult to ensure that the satisfactory mapping results
in a heterogeneous environment. Because of the variances in shape, color, size, and other
properties of objects for each class, it is a challenge to use a universal scale parameter
for classification. A cross-scale mapping strategy that can is compatible across pixel-,
object-, and parcel-scale may be highly necessary. A cross-scale mapping strategy may
solve the aforementioned mixed LULC problem via diverse outputs of classification maps
that can include the compositions and proportions of mixed LULC pixels. The cross-scale
approach, however, may require a great deal of time and effort to determine the appropriate
parameters. More research needs to be performed using the cross-scale mapping strategy
to fuse multiple big datasets from different sources.

Figure 10. Future research directions of LULC mapping.

Second, novel approaches need to be developed to make full use of existing labeled
maps for detailed LULC mapping. Numerous global LULC maps often can be accessed for
free. However, most LULC maps typically have a much lower resolution than the current
very-high-resolution satellite imagery and also contain many noises; thus, they cannot be
directly considered as ground truth or training sample data for detailed LULC mapping
using advanced machine learning or deep learning approaches. However, these coarse
resolution maps do contain some valuable class information, and thus they may be utilized
as indirect auxiliary training data for the same purpose. However, current studies to utilize
these existing LULC products are still limited and more strategies or methods need to be
designed and developed for this purpose.

Third, as mentioned before, it is still a challenge to obtain enough high-quality ground
truth data or training sample data for using advanced machine learning or deep learning
for LULC mapping. Existing sample data are not only limited in number but are also
limited in terms of variety. The sample data are often not sufficient to train a generalized
machine learning or deep learning model, because they are specific to time and location.
The classifier trained using one dataset normally does not perform well over other datasets.
To improve the performance of a deep learning model, image transformations such as
flip, translation, and rotation may be adopted to generate additional and more diversified
training data from original data. Transfer learning is another way proposed to deal with
the challenge of limited training data [144]. The transfer learning method employs a
pre-trained LULC classifier to extract an initial set of representations for a new LULC
dataset. Unsupervised learning can also be used to tackle the problem of lacking labelled
LULC training data [43]. The use of crowdsourcing sample collections or an open science
framework that supports the integration of citizen science and IoT may as well generate
more labeled samples. However, all of these methods have limitations. More research needs
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to be performed to explore these various approaches to obtain enough sample data for
LULC mapping. In addition, more research is necessary to determine how to keep the good
performances of deep learning methods using fewer training samples. Additionally, more
attention from the scientific community is also needed to address the LULC class imbalance
issue. LULC classes are normally imbalanced with some majority classes dominating a
study area while some minority classes only occasionally occur at some locations. Therefore,
some of the classes may have fewer samples than the others, and it is easy to obtain a
sample dataset that misses some minority classes. The class imbalance issue may affect the
classification accuracy of advanced machine learning or deep learning methods. Future
research should pay more attention to the class imbalance issue.

Fourth, more research needs to be performed for automatically creating and updating
spatially explicit LULC maps with moderate or high resolutions at the global scale. Cur-
rently, most of the available moderate-resolution LULC maps are only available for limited
spatial and temporal coverage [3], such as USGS NLCD and LCMAP, BaseVue, Globel-
Land30, and GlobeLand10. Although the Esri global LULC Maps and the ESA WorldCover
LULC Maps have high 10 m resolution and the recent iMap series of products are available
globally at a seasonal cadence with a 30 m resolution, these maps have limited temporal
coverage: the Esri Maps cover time periods of 2018~2022 and the ESA Maps only cover the
year 2020. In addition, these maps only generated broad classes such as water, trees, grass,
crops, scrub/shrub, built area, bare ground, snow/ice, and clouds (unclassified). They
lack detailed LULC information, such as Level II LULC classes, to differentiate residential,
commercial, and industrial land uses. More research is necessary to generate historical
global LULC maps or detailed global LULC maps with Level II or higher level LULC
information and fill the data gaps in some locations, particularly those regions or countries
where data are extremely deficient.

Fifth, more research is necessary to validate big LULC mapping results. At present,
it is still difficult to compare the different LULC mapping results. There is no specifically
acceptable accuracy assessment metrics or standards for the evaluation of LULC mapping
results. The overall accuracy, user accuracy, and the Kappa coefficient of the confusion
matrix are popular methods to validate the mapping results with the ground truth data.
However, these evaluation methods are imperfect and only provide evaluations from some
perspectives while ignoring other perspectives. For example, many existing LULC mapping
studies are only concerned with overall accuracy while ignoring the poor accuracies of rare
classes [145]. The confusion matrix is entirely devoid of spatial context [146]. Kappa indices
may be misleading and/or flawed for some practical applications in remote sensing [147].
Accuracy validation efforts and standard assessment systems are needed to accurately
assess LULC mapping using heterogeneous big data sources.

Finally, research on data access using advanced cyberinfrastructure technologies is
also needed. Efforts to develop protocols and platforms to compile, share, visualize, and
distribute large LULC datasets including their associated biases and errors over the Internet
are urgently needed. Traditional cyberinfrastructure technologies have met a few limits
due to the constant growth of data. For example, when LULC data become extremely large,
human eyes have difficulty in extracting meaningful information for visualization. It is
challenging to present too many data on a limited screen. It is even more challenging to
present huge data on mobile devices due to smaller screens and resolutions. The traditional
methods of building tile and pyramids are not efficient for visualization at a satisfying
speed [148]. We need to explore novel ways to display and visualize large data using
various abstraction techniques.

The field of computer vision has seen rapid progress in the last decade, which is
in a large part growing to the growth of deep learning. Computer vision tasks such
as image classification, object detection, and image segmentation also saw prominent
achievements brought by deep learning techniques. Although computer vision tools and
methods have been adopted for a wide variety of applications, these tools and methods
have yet to be unified and integrated with traditional methods of spatial analysis to deal
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with geographic/spatial data [149]. Because several factors such as the lack of large-
scale annotated sample data and disparate object sizes of remote sensing imagery, the
applications of advanced computer vision techniques to the remote sensing domain has
lagged behind greatly [150]. The extraction of meaningful LULC information from remotely
sensed imagery can be aided by techniques in computer vision [151]. Computer vision
methods with neural networks as the underlying framework can be used to identify LULC
spatial features and patterns. Computer vision algorithms may also be used to remove noise
and enhance satellite and aerial imagery data for LULC classification, change detection,
and data fusion. Novel tools and approaches that combine cutting-edge computer vision
technology and remotely sensed imagery need to be developed in the near future for
LULC mapping.

7. Conclusions

Accurately mapping LULC information is important for many applications such as
natural resource and environmental management, urban planning, biodiversity conserva-
tion, and health promotion. With the advent of remote sensing and computer technologies,
massive data have been generated. New and improved remote sensing earth observations
and emerging social sensing big data and auxiliary crowdsourcing datasets together offer
great data sources for LULC mapping [152,153]. The recent innovative machine learning
and deep learning algorithms as well as cutting-edge cloud computing have proven their
powerful capabilities to process big remotely sensed data and other geospatial big data of
high dimensionality for LULC mapping [154,155].

Despite considerable recent progress, LULC mapping still has challenges to deal
with, including data gaps, inconsistent and heterogeneous data, imbalanced and scarce
sample data, mixed LULC, and the model interpretability and transferability issues of
advanced machine learning or deep learning approaches. More research is necessary in the
future in the following fields for improved LULC mapping: fusing multiple big datasets
from different sources using cross-scale approaches, developing novel approaches to make
full use of the existing LULC maps, obtaining high-quality sample data, automatically
creating and updating LULC maps with moderate or high resolution at the global scale,
improving accuracy assessment methods, and developing advanced cyberinfrastructure
technologies for sharing, visualizing, and distributing large LULC datasets over the Internet
for various applications.
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Abstract: Wind energy is critical to traditional energy sources replacement in France and throughout
the world. Wind energy generation in France is quite unevenly spread across the country. Despite
its considerable wind potential, the research region is among the least productive. The region is a
very complicated location where socio-environmental, technological, and topographical restrictions
intersect, which is why energy production planning studies in this area have been delayed. In this
research, the methodology used for identifying appropriate sites for future wind farms in this region
combines GIS with MCDA approaches such as AHP. Six determining factors are selected: the average
wind speed, which has a weight of 38%; the protected areas, which have a relative weight of 26%;
the distance to electrical substations and road networks, both of which have a significant influence
on relative weights of 13%; and finally, the slope and elevation, which have weights of 5% and 3%,
respectively. Only one alternative was investigated (suitable and unsuitable). The spatial database
was generated using ArcGIS and QGIS software; the AHP was computed using Excel; and several
treatments, such as raster data categorization and weighted overlay, were automated using the
Python programming language. The regions identified for wind turbines installation are defined by a
total of 962,612 pixels, which cover a total of 651 km2 and represent around 6.98% of the research area.
The theoretical wind potential calculation results suggest that for at least one site with an area bigger
than 400 ha, the energy output ranges between 182.60 and 280.20 MW. The planned sites appear to be
suitable; each site can support an average installed capacity of 45 MW. This energy benefit will fulfill
the region’s population’s transportation, heating, and electrical demands.

Keywords: spatial energy planning; France; GIS; MCDA-AHP; suitability map; onshore wind farms

1. Introduction

Increased energy consumption in developed and developing countries as a result
of prolonged economic growth [1] may lead to fast resource depletion, environmental
degradation, biodiversity loss, and climate change [2–4]. Therefore, governments are re-
quired to focus their efforts on reducing greenhouse gas emissions and other environmental,
social, and economic problems [5–7], as well as converting energy supply to green energy
production methods.

Indeed, France generates electricity, heat, and transportation using a variety of energy
sources. This energy mix includes nuclear, fossil fuels, and renewable sources. According
to the Minister of Environmental Transition’s key energy numbers for 2021/2020, nuclear
accounts for 40% of energy, oil for 28%, and natural gas for 16%. However, in France,
renewable energy accounts for just 13% of total energy consumption [8]. Due to its support
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for activities concerned with the energy and ecological transition, as well as its obligations
to reduce the dangers associated with global warming, France would want to see the 30%
renewable energy target reached by 2030 [8].

Previous investigations have demonstrated that wind power is one of the most promis-
ing renewable energy sources [9–12]. It is becoming increasingly popular worldwide
due to its several benefits, including simple access to efficient multi-megawatt wind tur-
bines [13]. Furthermore, wind energy sources will supply more power than any other
form of energy source by 2050 in the European Union’s renewable energy decarbonization
scenario [14]. In addition, due to variables such as the availability of stronger and longer-
lasting winds and land for installation, wind energy has recently become an important
component of France’s increasing renewable energy sector. Currently, there are already
11,625 onshore wind turbines in France. Thus, wind power has increased its proportion of
the country’s energy output from 2.2% 10 years ago to 7.9% in 2020, up from 6.1% in 2019
(https://www.revolution-energetique.com/, accessed on 2 July 2022). In addition, most
wind turbines are unevenly spread across the Hauts-de-France and Grand-Est regions (as
illustrated in Figure 1). Nonetheless, some regions, such as Aquitaine, Auvergne-Rhône-
Alpes, and Provence-Alpes-Côte d’Azur, have insufficient infrastructures.

Figure 1. France’s situation in Europe (a), Wind turbine geographical distribution in France (b) [15].

Many studies have reported significant environmental, social, economic, political,
legal, and technological issues associated with wind farms sitting around the world [16]. To
address these limits, geographic information systems (GIS) and hierarchical multi-criteria
analysis (AHP) methodologies have been frequently adopted. These methods have recently
been applied in various studies, including the identification of suitable sites for sitting solar
farms [17–21] and suitable sites for marine wind farms [16,22–27].

Unfortunately, no study has been conducted in France on the application of multicri-
teria analysis approaches combined with GIS. However, there are studies that have been
conducted on territories in Europe such as Greece [28,29] or southern Spain [30].

Different scenarios were considered. The result is a site suitability index map ranging
from inadequate to highly suitable, which seems impractical for a sensitivity analysis of
the overall site suitability index. Uncertainty is often inherent in such cases and leads to
decision-making problems and inconsistency between decision makers’ preferences [31].
All this research has highlighted the capabilities of GIS-based multi-criteria analysis ap-
proaches to site selection for onshore wind farms while considering regulations, legislation,
and other constraints.

The results vary from one study area to another depending on the area of the study
area, its topography, its natural resources (wind, temperature, etc.), and the criteria chosen
for the study and the weights assigned to the criteria.
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We conducted this study with the aim of identifying suitable sites for the planning
of future wind farm construction projects in an area that is extremely complex due to the
existing constraints in the region, considering environmental or topographical factors. The
proposed methodological approach can be applied to any region of the world by adapting
the characteristics considered. The implementation of the proposed methodology could
facilitate the achievement of national objectives in the energy sector and encourage energy
interdependence between many geographical areas in France.

Thus, our study area choice is influenced by previously mentioned reasons, such
as the lack of wind farms in this region, which has a high population and high-power
consumption (including heating), as well as environmental and relief limits that make it
difficult to find suitable sites. The research aims are as follows: (1) to promote the use
of GIS-based multi-criteria analysis methodologies in decision-making processes; (2) to
contribute to the country’s growth by providing cartographic and documentary materials
related to wind projects; (3) to provide users with a Python code template that combines
each component of the multi-criteria analysis technique for choosing potential onshore
wind farm locations. By replacing the criteria, this code can be used for any research that
involves decision making. Some of the pre-processing activities must be performed using
GIS software such as QGIS or ArcGIS because they are not included in the source code.

It is hoped that this research will contribute to France’s efforts in spatial energy
planning. Effective wind farm siting options, as outlined in this study, could help the state
meet its energy goals and policies.

2. Study Area

The research area is in southeast France (Figure 2a), which is part of the Provence-
Alpes-Côte d’Azur region and covers 80% of the Var department. Moreover, it is bounded
to the west by the Bouches-du-Rhône department, to the north by the Alpes-de-Haute-
Provence department, to the east by the Alpes-Maritimes department, and to the south by
the Mediterranean Sea (Figure 2b). It has an area of 11,208 km2 with a perimeter of around
424 km (Figure 2c).

Figure 2. Study area’s geographical location (a), on a national scale, (b) on regional and departmental
scales, and (c) on a local scale.
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The study area is known for its Mediterranean climate, of the Trewartha Cs or Köppen
Csa type on the coast. Although it is a maritime climate, the annual temperature range is
between 11 and 14 ◦C (Figure 3). The average annual rainfall is between 45 and 95 mm
(Figure 3). The dominant winds are the Mistral (especially in Provence) and the Tramontane
(especially in Languedoc) whose power comes from the channeling effect of the surround-
ing massifs to the north and west (Alps, Pyrenees, and Massif Central). Generally, these
winds dry the air and clear the sky, and their intensity is very variable from one place to
another, depending strongly on the sheltering or accelerating effect of the neighboring
massifs [32]. In recent years, the average annual wind speed has been between 5.2 and
5.9 m/s (Figure 3). Interannual mean temperature (◦C) and precipitation (mm) data were
collected from the Climatic Research Unit Time Series (CRUTS) database at the University
of East Anglia (CRU TS v. 4.01, https://www.cru.uea.ac.uk/, accessed on 10 July 2022,
Harris et al., (2014)). Wind speed data were downloaded from the “Power Data Access”
site via the link (https://www.uea.ac.uk/web/groups-and-centres/climatic-research-unit/
data, accessed on 15 July 2022).

Figure 3. Average annual variability of climate data (precipitation, temperature, and wind) in the
study area over the last 20 years.

France’s southeast is one of the country’s most heavily populated regions. According
to INSEE’s 2019 census statistics (Figure 4), the research’s area population distribution
is heterogeneous, reaching around 5200 inhabitants/km2 in the south (along the coast-
line), particularly in important towns such as Marseille, Toulon, and Aix-en-province.
In contrast, population density in the region’s north is modest, with values lower than
100 inhabitants/km2. Consequently, the high population density in southeastern France
leads to high energy and electricity usage. However, with only one wind farm, as indicated
in Figure 1, satisfying electricity needs using wind is not possible, prompting us to identify
potential places for further wind project execution.
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Figure 4. Research area’s population density (inhabitants/km2).

3. Methodology

To map suitable sites for wind farm construction in southeast France, we adopted the
methodology presented in Figure 5.

3.1. Data Collection

This research’s approach mobilizes the whole set of data that determines onshore
wind project placement planning. The data collected covers socioeconomic, environmental,
and technical parameters (Table 1).

Table 1. Data collection and their sources.

Data File Format Source

Wind speed Grid Global Wind Atlas 3.0 [33,34]

Digital elevation (STRM) Grid
U.S. Geological Survey available at

https://earthexplorer.usgs.gov,
accessed on 15 July 2022

Protected area Shapefile BD TOPO IGN [35]

Road network Shapefile BD TOPO IGN [35]

Electrical Substation Shapefile BD TOPO IGN [35]

27



Land 2022, 11, 1839

Figure 5. Study flowchart illustrating modeling strategy.

The average wind speed raster data with a spatial resolution of 300 m was obtained
from the “Global wind speed” website (https://globalwindatlas.info/, accessed on 15 July
2022). These data are based on ten years of hourly measurements recorded at a height of
100 m (2001–2010). Subsequently, the digital terrain model (DTM) retrieved from the USGS
website was employed to generate a mosaic of two DTM rasters covering the whole research
region with a spatial resolution of 30 m. Moreover, the IGN 2021 topo database [35] was
used to collect information on protected areas (urbanized areas, industrial or commercial
areas, infrastructures and equipment, continental waters), road networks (departmental,
national, highways, railroads), and electrical substations. All data are resampled in 26 m.

3.2. GIS-Based Spatial Database Creation

Elevation is an important criterion; however, in numerous studies, high altitudes have
not been indicated for wind projects [36–38]. The researchers mentioned have proposed
that locations below 1000 m be considered extremely appropriate for wind projects.

This is due to access issues and a lack of basic infrastructure in higher places. Thus, to
reduce the high expenses connected with construction, regions lower than 1000 m in height
appear to be the most efficient and appropriate. As shown in Figure 6a, elevations above
1000 m account for less than 30% of the research region’s total area.

28



Land 2022, 11, 1839

Figure 6. (a) Elevation map (m); (b) average wind speed map (m/s); (c) slope map (◦); (d) road
network; (e) locations of power plants and substations in the study area.

Wind speed: Average wind speed has been the most essential and weighted parameter
in wind farm location evaluation studies, as reported in most previous studies [24,28,39,40].
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This parameter is directly related to the project’s profitability [41]. In our wind farm siting
analysis, areas, sites having an average annual wind speed of less than 5 m/s at a height
of 100 m above mean sea level were considered inappropriate for wind farm sitings, as
recommended by [28,42]. Nonetheless, several studies suggest that an annual average
wind speed of more than 6 m/s is required for a functional wind farm installation [43,44].
Conversely, extremely high wind speeds can damage the wind turbines and the project
execution in general.

Slope: A slope map in degrees is produced by combining two SRTM rasters acquired
from the USGS website. This criterion can be applied to exclude areas with steep slopes of
greater than 15 degrees and high relief. These are typically inaccessible and so unsuitable
for wind turbines. The highest slopes, as illustrated in Figure 6c, are in the research’s area
northeast, towards the province of Alpes de Haute, and also surround the shoreline in
the south.

Indeed, our choice of 15% (maximum limit of suitable slopes) has already been defined
by research works [45,46]; others have adopted a constraint of 25% [47], while some [48,49]
have raised the constraint threshold to 30%. In addition, some researchers have considered
areas with slopes greater than 10% as infeasible areas for wind turbine installation [50,51].
Selection of land having a slope of less than 15% is planned to facilitate crane and truck
accessibility to sites and to reduce installation and maintenance costs due to turbulence.

Protected area: Wind farm construction is controlled by various laws, most notably the
French energy code, the urban planning code, and the environmental code. Any prospective
wind project needs to evaluate its environmental impact by including parameters such as
landscape impact, biodiversity, noise, and dangers to nearby inhabitants. The protected
areas in this study, which include urban areas, wetlands, biodiversity parks, and water
surfaces (Figure 7), were gathered from the IGN’s BD 2021.

Figure 7. Protected areas of the study area.
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The study area is characterized by the presence of forests, pastures, beautiful land-
scapes, biodiversity parks (fauna and flora), NATURA 2000 protected sites [52,53], and the
most important large urban agglomerations. These areas of environmental interest were not
absolutely excluded according to the literature but also according to the national legislation
(the minimum distances were determined after the decision approving the environmental
conditions (“DAEC”)). To avoid the destruction of these spaces and the negative impact of
wind farms on the nature of these areas, a minimum distance of 2000 m is required [54,55].

Road network: This was generated using data from the IGN 2021 database (Figure 6d).
The road’s proximity is a critical parameter in various studies. It is particularly relevant for
studies related to the search for suitable sites for a large project implementation requiring
massive equipment to keep transportation costs, as well as construction and maintenance
costs, low [24,39,40,56].

Electrical substations: Close proximity to electrical substations minimizes wire costs,
prevents power losses, and simplifies installation and maintenance processes [57]. Figure 6e
represents electrical substations in the research area.

3.3. MCDM Using an AHP Approach

Suitable site selection for implementation of a sensitive project such as a wind farm is
always difficult since it requires a combination of various parameters and criteria defining
the project location. Therefore, decision-making solutions to overcome these obstacles have
been developed by integrating all of these determining criteria. Generally, the multi-criteria
decision-making (MCDM) approach is always applied to address problems with many
stakeholders, criteria, and objectives [58]. Moreover, this approach has been widely applied
in various fields, including the energy sector to plan renewable energy projects [59–62].
The analytic hierarchy process (AHP) is a well-known MCDA approach that was initially
proposed by [63] and has subsequently been greatly improved.

The methods for weighting the criteria in the MCDA are diverse. Some of these meth-
ods include AHP, fuzzy measures [64], Analytic Network Process (ANP) [65], Swara [66],
entropy [67], Dematel [68], and standard deviation [69]. Although these methods are quite
limited, AHP is one of the most essential and widely used methods in MCDA. The AHP
method is similar to Swara’s in that the expert’s opinion specifies the importance and
prioritization of alternatives. As for the entropy method, there are two different views of
this method. According to some studies, entropy is reliable and effective [70]. However,
from another point of view, entropy results do not always take into account the importance
of the indices [71]. Dematel is similar to the Swara method, except that the Dematel ap-
proach is used to solve extremely complex problems. In the Dematel decision process, the
expert opinion is used to develop the pairwise comparison matrix, and it has three main
characteristics. The attributes are compensatory and independent of each other. Qualita-
tive attributes are transformed into quantitative attributes [66]. The Swara and Dematel
methods have been widely used in MCDA problems, especially in the renewable energy
sector [72–74]. In this study, the AHP method was employed to address site selection
problems for several reasons:

It is commonly used for its ease of design and implementation. It is highly compatible
with GIS, which is widely used for planning and spatial analysis of site selection problems.
The consideration of the consistency and inconsistency of alternatives is one of the main
advantages of this method [60].

AHP can be combined with other methods of multicriteria analysis, genetic algorithms,
neural networks, etc. [60]. It also takes into account quantitative and qualitative criteria to
interpret the problem [75].

The AHP method can apply various sensitivity analyses to the criteria. AHP facilitates
the decision-making process, using pairwise comparison between criteria [60]. For site
selection problems, in which the main objective is to select the best locations, simple
approaches such as AHP are satisfactory, and more complex approaches such as Fuzzy-
AHP do not necessarily lead to distinct results [76].
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AHP is a structured decision support method that is primarily focused on sophisticated
computations with matrix algebra [77,78]. Through this approach, a decomposition of a
complicated decision-making issue into a top-down hierarchical structure can be carried
out in most cases. In recent years, as geographic information system technologies have
improved, GIS integration with MCDA approaches has become increasingly popular. This
integration is adaptable and suited to the qualitative and quantitative investigation of
multi-criteria issues with a geographical component.

In this research, we developed the decision process required for the usage of the AHP
approach. This approach is provided in four steps, each of which requires clear problem
identification or study’s objective.

Step 1: Deconstruct the decision-making problem and explain its main characteristics
or components (criteria, sub-criteria, options, etc.). Then, using a limited number of levels,
create a linear hierarchy of concerns (Figure 8). Each level has a set number of selection
criteria. The aim is expressed at the most fundamental level. Subsequently, the second and
third layers comprise the criterion and sub-criteria. The bottom of the hierarchy is allotted
to alternatives.

Figure 8. Hierarchical structure of wind farm-related factors and site selection criteria.

Step 2: Design the judgment matrix and pairwise comparison matrices for each
criterion. Based on the Saaty scale (Table 2), the pairwise comparisons are grouped into a
matrix using the following criteria:

A = [aij] =

C1
C2
...

Cn

⎛
⎜⎜⎜⎜⎜⎝

C1 C2 · · · Cn
1 a12 · · · a1n

1/a12 1 · · · a2n
... · · · 1

...
1/a1n 1/a2n · · · 1

⎞
⎟⎟⎟⎟⎟⎠ (1)

In relation to the comparisons of two criteria C1 and C2, we designate an important
value of the evaluation element “a”. We place the “a” value in the cell column “i” and
line “j” of an important criterion. Then, we need to place the value ratio “1/a” in the cell
considered less important of the comparison. C1, C2, and Cn are the comparison criteria
in row “i” and column “j”, which correspond to the comparison values Ci and Cj. The
entries aij are often taken from the ratio scale (1/9-9) [79]. The matrix’s element semantic
description is provided in Table 3.
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Table 2. Saaty’s comparison scale.

Rating Scale Definition Description

1 Equal importance Two requirements are of equal values

3 Moderate importance on one
over another

Experience slightly favors one requirement
over another

5 Essential of strong importance Experience strongly favors one requirement
over another

7 Very strong importance A requirement is strongly favored, and its
dominance is demonstrated in practice

9 Extreme importance the evidence favoring one over another is of
the highest possible order of affirmation

2, 4, 6, 8 Intermediate values between
the two adjacent judgement When compromise is needed

Table 3. Pairwise comparison matrix.

Criteria (1) (2) (3) (4) (5) (6)

Slope (1) 1 2 1/6 1/5 1/4 1/4

Elevation (2) 1/2 1 1/7 1/6 1/5 1/5

Wind speed (3) 6 7 1 2 4 4

Distance to protected areas (4) 5 6 1/2 1 3 3

Distance from power stations (5) 4 5 1/4 1/3 1 1

Distance to Roads (6) 4 5 1/4 1/3 1 1

Total 20.5 26 2.31 4.03 9.45 9.45

Using the evaluations provided in the previous step, each hierarchy element’s relative
relevance was determined. Furthermore, the eigenvector problem is addressed to establish
each matrix’s element priority.

First, compute the sum of each jth column value as follows:

Sum(i) = ∑n
i=1 aij (2)

Subsequently, a normalized comparison matrix n × n aij* is generated, in which each
aij in the matrix is divided by the sum of its jth column, as expressed in Equation (3):

aij∗ = aij
sum(i)

(3)

The weights’ ith criterion is then computed as follows:

Wi =
∑1

j=1 aij

n
for all k = 1, 2, 3, ..., n (4)

Step 3: The individual criteria weights are calculated using the eigenvalue procedure’s
pairwise comparison matrices. The eigenvalue λmax is calculated by multiplying each
column value by the criteria weight as follows:

ai = [
n

∏
i=1

wiaij] = [dij]n − n (5)
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Then, using the following equation, we determine the weighted sum value Sw by
adding the sum of each preceding matrix’s rows ai:

Swi = ∑n
j=1 dij (6)

Eventually, for each row, the ratio between the weighted value sum Sw and the
weighting criterion is calculated as follows:

Ratio i =
Swi
wi

(7)

By averaging the ratio i we obtain the highest eigenvalue max.
Step 4: Calculate the consistency ratio CR (Equation (8)). The final criteria weights

are validated using this ratio. Discrepancies in the comparison matrix are identified at this
stage:

CR =
CI
RI

(8)

where the consistency index CI is calculated as follows:

CI =
γmax − n

n − 1
(9)

The value of the RI varies with the size of the matrix. Table 4 shows the RI values
according to the number of criteria chosen.

Table 4. Random Consistency Index (RI), [80].

n 2 3 4 5 6 7 8 9 10 11

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

The RC should be lower than 10% to determine that the pairwise comparison evalua-
tions are consistent. If this is not the case, the matrix should be updated, and the element
values re-evaluated.

The weighted findings (Table 5) indicate the most important parameters in wind farm
development. The wind’s existence is the greatest driver of wind energy, with a relative
weight of 38% (Table 4), followed in second place by protected regions with a relative
weight of 26%. However, distances to power plants and road networks have a significant
influence, with relative weights of 13% each, while slope and elevation have the lowest
relative weights of 5% and 3%, respectively. Despite their low weights, these criteria should
be considered in all wind projects to avoid or minimize potential negative impacts. This
weighting choice is based on our study area’s good knowledge.

Table 5. Evaluation criterion weighting.

(1) (2) (3) (4) (5) (6) Weight %

Slope (1) 0.05 0.08 0.07 0.05 0.03 0.03 5.03

Elevation (2) 0.02 0.04 0.06 0.04 0.02 0.02 3.47

Wind speed (3) 0.29 0.27 0.43 0.50 0.42 0.42 38.96

Distance to protected
areas (4)

0.24 0.23 0.22 0.25 0.32 0.32 26.24

Distance from power
stations (5)

0.20 0.19 0.11 0.08 0.11 0.11 13.15

Distance to Roads (6) 0.20 0.19 0.11 0.08 0.11 0.11 13.1
Consistency measure = 6.26, CR = 0.04, CI = 0.05.
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After completing all of the AHP calculation processes, the following step is to nor-
malize the criteria (Table 6). The vector data are then converted to a raster format, and the
matrices are reclassified into two groups (adequate: code 1; and inadequate: code 0).

Table 6. Standardization table for selected criteria.

Criteria Suitable: Score 1 Unsuitable: Score 0

Slope <15 degrees >15 degrees

Elevation <1000 m >1000 m

Wind speed >5 m/s <5 m/s

Distance to protected areas >2000 m <2000 m

Distance from power stations <1500 m >1500 m

Distance to roads <2000 m >2000 m

3.4. Weighted Superposition

The weighted overlay tool is one of the most frequently used methods for solving
multi-criteria problems, such as site selection and suitability models. For instance, users
can use this functionality to combine several spatial layers with varied weights to produce
a final result. Each raster layer is assigned a weight in the suitability analysis. The raster
layer values are re-ranked on a scale (two classes in our case). In this study, the weighted
overlay analysis was utilized to identify the most suitable and appropriate sites for future
wind farm siting based on the AHP-derived weights assigned to each evaluated parameter.
According to Equation (10), all selected criteria in raster format that have been reclassified
to equal size (number of columns equal to the number of rows) (Figure 9) are combined
into a single raster layer (Figure 10). Weighted overlay is defined as follows:

WOA = ∑n
i=1 Wi ∗ Ri (10)

where Wi is the weight of a specific choice criterion, Ri is the criterion’s matrix layer, and n
is the number of decision criteria.

In total, 962,612 pixels define the wind turbine installation sites. The research area has
a total size of 9319 km2. The detected locations cover an area of 650,725,712 m2, or 651 km2.
This accounts for roughly 6.98% of the study area’s surface.
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Figure 9. Each weighted criterion’s reclassified rasters (in blue: appropriate, in white: inappropriate).
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Figure 10. Reclassified raster’s weighted overlay map.

4. Results

AHP factor weights were computed using technical, environmental, and economic
requirements for wind turbines in France. Factor weights used to evaluate appropriate
sites for wind farm installation are shown in Figure 11. As can be seen in Figure 9, wind
speed is the most important factor, with a weight of 38%. It is followed by the respect for
buffer zones around protected areas (urban areas, wetlands, biodiversity parks, etc.) with
a weight of 26%, and the proximity of electrical substations and the road network with
a weight of 13% each. Slope and elevation are ranked last, with weights of 5% and 4%,
respectively. It should be noted that the eigenvalue max (max = 6.26) is calculated after
computing criteria’s weights. CI and CR values are 0.05 and 0.04, respectively. The CR
value is 10%, suggesting that the research was satisfactory.

Figure 11. Decision criteria priority weights for selecting suitable sites for future wind projects.

Figure 12 depicts the appropriate location distribution for planning future onshore
wind farms in various research regions’ departments. Figure 10 only shows locations greater
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in size than 400 hectares and the road network and the electricity substation’s locations.
Furthermore, calculating the eligible site’s surface shows that 74.62%, or 35,127.92 hectares,
is in the Var department, which controls more than 80% of the study area’s surface. Only
10%, or 4962 hectares, of Alpes-de-Haute-Provence department is suitable for future wind
farm development, compared to 13.70%, or 6449 hectares, in Bouches-de-Rhones. In the
Alpes-Maritimes, however, 1.45%, or 535 hectares, is protected (Figure 13).

Figure 12. Maps showing potential locations for future onshore wind farms in southern France’s
Provence-Alpes-Côte d’Azur region.

Figure 13. Suitable site percentage distribution (%) for future wind project implementation
by department.
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Figure 14 demonstrates that 1121 hectares, or 12.07% of the area suitable for future
wind farm construction, have an average wind speed greater than 5 m/s, which is required
for wind turbine development. Furthermore, 11.24% of the area, or 1044 hectares, is located
lower than 1500 m above sea level, while just 8% is on slopes less than 15 degrees; 5.92% is
next to roadways, 2.34% is near electrical substations, and 7.91%, or 735 hectares, is outside
of protected areas.

Figure 14. Representation of the percentage regions in the “appropriate = score 1” class for each
criterion for potential wind farm locations.

On Google Earth imagery, the selected appropriate site locations for wind farm devel-
opment were projected (Figure 15). Four locations were recommended, and their selection
was based on their unique characteristics (area, location, elevation, slope, wind speed,
accessibility, closeness to electrical substations, etc.) as well as their proximity to populous
regions while respecting buffer zones relative to protected areas. Onshore wind turbines in
France typically have a power range of 1.8 to 3 MW, with rotor diameters ranging from 80
to 110 m and total heights ranging from 80 to 155 m. In fact, a 2 MW wind turbine generates
4200 MWh per year, which is roughly equivalent to the average electricity consumption of
over 800 French households [8]. France is classified by the International Electrotechnical
Commission (IEC) as having strong winds with high average turbulence intensity. Some
wind turbine types that are easily useable in the French market have been chosen in ac-
cordance with IEC design criteria. Table 7 contains detailed information about the wind
turbine types and their attributes.

Table 7. Theoretical potential of wind energy on highly suitable land.

Manufacturer
Wind Turbine

Model
Rotor

Diameter (m)
Capacity (MW)

7 d × 5 d
Area (Km2)

Area Factor
(MW/Km2)

Theoretical
Wind Power

Potential
(MW)

Vesta V110-2.0 110 2.0 0.424 4.72 182.60

GE 1.6 to 82.5 WT 82.5 1.6 0.238 6.72 259.98

Vent Inox 93 RD + 80 HH 93 2.0 0.303 6.60 255.26

ReGen
Powertech VENSYS-77 77 1.5 0.207 7.25 280.20

Surface in km2 of the selected sites very suitable (Figure 11) = 38.67 km2.
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Figure 15. Example of the most suitable sites selected and their characteristics (geographical coordi-
nates of their centroids, area in hectares, perimeter in km, average wind speed, and average altitude)
for the development of onshore wind farms.

Theoretical wind power potential may be evaluated using Equation (11) based on
wind turbine output capacity, rotor diameter, and total area of appropriate land [81–83].

TWPP = TA ∗ AF (11)

TWPP is theoretical wind power potential (MW), TA is the total area of the four
appropriate locations (km2) (Figure 13), and AF is the area factor (MW/km2). Our compu-
tations were performed on wind turbines that were situated 7d × 5d apart, where d is the
rotor diameter.

Based on the theoretical wind potential calculations, the four proposed sites for future
wind turbine installations may generate between 182.60 and 280.20 MW of electricity.
This energy benefit will suit the study region’s population demands in terms of power
consumption, heating, and transportation.

5. Discussion

In 2021, the wind sector in France grew in relevance, accounting for 7% of the coun-
try’s net power generation. Furthermore, wind power now accounts for 7.7% of total
consumption [32]. More than half of France’s wind farms are concentrated in two re-
gions: Hauts-de-France and Grand Est (Figure 16), with an almost complete absence in the
country’s southeast.
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Figure 16. Wind farm point density in France’s spatial distribution.

Wind power production (wind farms), according to the International Energy Agency, is
very unevenly distributed among areas. Despite the study region possessing the country’s
most populated cities, it has the lowest energy productivity (201 GWh in 2021). However,
the study region (Provence-Alpes-Côte d’Azur, region code: 13) ranks second to last in
terms of wind energy generation [60], with 77 wind turbines and a very low installed
capacity of 99 MW, compared to demand (Figure 17).

Figure 17. Wind turbine distribution by region and their installed capacity in metropolitan France
(1: Hauts-de-France; 2: Grand Est; 3: Occitanie; 4: Nouvelle-Aquitaine; 5: Centre-Val de Loire;
6: Bretagne; 7: Pays de la Loire 8: Bourgogne-Franche-Comté; 9: Normandie; 10: Auvergne-
Rhone-Alpes; 11 Guadeloupe; 12: Auvergne-Rhone-Alpes; 13: Provence-Alpes-Cote d’Azure;
14: ile-de-France).
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The study area’s onshore potential is greatly limited by certain constraints, including
the requirement to avoid exclusion zones imposed by environmental protection areas,
historical perimeters, and the requirement to build more than 500 m from homes, as
well as habitat dispersion, which reduces the percentage of territory eligible for wind
power. This research was conducted for all of these reasons. In addition, it may assist
various governmental agencies, policymakers, researchers, and investors in planning and
developing wind energy projects in this difficult location.

Regarding criteria, the Ministers of Ecological Transition, Territorial Cohesion, and En-
ergy Transition previously investigated a set of documents and reports on technical require-
ments, regulations, and environmental and urban planning issues related to wind turbine
development in France, which served as the foundation for our criteria and constraints.
The thresholds, on the other hand, must be closely tied to certain location characteristics.
As a result, the criteria suggested in this study were used with considerable caution. They
are currently being explored by wind planning professionals. Practical experience in the
subject field is also advantageous for the assessment of visual findings [30].

In addition to the French regulations concerning the determining criteria for land
use planning of future wind farm projects, a consultation of confidential reports and a
discussion with experts and former researchers in the field of wind farm planning was
carried out. The values for each criterion were selected according to French legislation.
As no studies have been published on this topic in France, we also based our selection on
research undertaken in Europe (e.g., Greece) as mentioned above. Other means can be
used to define the important criteria, such as filling in questionnaires by experts in the field.
Interviews with experts could also be an effective solution for the determination of criteria.

Furthermore, restriction criteria for onshore wind farm planning in France are well
defined; only one scenario is required in this case: average wind speed greater than 5 m/s,
altitude less than 1500 m, slope less than 15%, proximity to roads (2 km) and electrical
substations (1.5 km), and at least 2 km from protected areas.

Unsurprisingly, as shown in Figure 18a, there is a substantial correlation between areas
of high average wind speed and selected site locations as suitable for wind farms. Indeed,
the project limits were previously chosen based on a wind speed map in France, which is a
region where the average yearly wind speed (at least 50 m above ground level) exceeds
5 m/s. These locations are all accessible by national, regional, or occasionally freeway
roads, and the majority of them are near electricity substations (Figure 18d). Furthermore,
30% of the locations are at high altitudes (over 1500 m) (Figure 18c). This is due to the
high wind speed in these high-altitude areas, as well as high weight assigned to the wind
parameter, and the low weight assigned to the elevation parameter. The selected sites are
more than 2 km away from the protected regions (Figure 18e). Since the Southern Alps
surround the northern and northwestern parts of the research region, various sites are on
steep slopes. Nonetheless, we were able to choose really good locations on moderate slopes
(Figure 15). Other criteria, such as acceptance of these installations by populations and
associations; administrative procedures and their validation by local authorities; energy
demand in these territories; and pre-existing installation replacement, can all have an
impact on decisions to install wind turbines. Indeed, the criteria required for wind farm
construction, namely minimum average wind speed required, minimum acreage required,
closeness of highways and electrical substations, and distance from protected areas, are
all gathered at the identified sites. Some research employed the same choice criteria with
various limitation levels based on the area and state restrictions. For example, [30] used
the same criteria but with different limitation values because the study was conducted
in Spain. Nonetheless, three situations were investigated, each with distinct limitation
values and weights for the criterion. This scenario-based method is useful when there
is little information or rigid wind-level limitations. However, [61] conducted a study to
identify viable places for developing onshore wind projects in a rural zone using only four
characteristics (urban area or habitat, vegetation, slope, and wind speed). Furthermore,
they investigated three scenarios. The multi-criteria analysis technique used, however,
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is fuzzy rather than AHP. In summary, the multi-criteria technique used in the research
varied, as did the number of scenarios examined, the number of criteria addressed, and
weights assigned to the criteria. According to the findings of all studies on decision making
for project implementation or multi-factor problem solving using GIS-based multi-criteria
analysis approaches [62,84,85], when no restriction values are well defined by the state or
agreed upon by experts in the field in question, it is recommended that several alternatives
be implemented.

Figure 18. Suitable site locations for future wind energy projects about each decision parameter:
(a): average wind speed; (b): accessibility to roads; (c): elevation; (d): proximity to substations;
(e): buffer to protected areas; (f): slope.

The number and total area of suitable sites vary by region. For example, in our case,
only 7% of the total area of the study area is suitable for the development of future wind
projects. Even though it is a difficult location with various environmental, topographical,
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and urban restrictions, research and planning for wind farms in this area with great wind
potential are still on hold. However, based on the theoretical wind potential calculation
equation (Equation (10)), each of the sites depicted in Figure 18 produces an average of
45 MW, which is more than adequate to fulfill the demands of the local population.

6. Conclusions

This research aimed to offer a method for identifying potential sites for future wind
energy projects based on geographic information systems (GIS) and multi-criteria decision-
making (AHP), as well as to contribute to the literature on renewable energy planning. To
the best of the author’s knowledge, this is the first research of its kind in France. Thus,
this research was carried out in a region of France’s southeast that has high wind energy
potential but is also the least productive. Another reason for choosing this region was
to overcome the numerous constraints that limited the region’s energy output. For wind
farm siting, six criteria were adopted, practically addressing in full the economic, technical,
and socio-environmental challenges associated with these facilities and uses. Most of the
criteria were based on worldwide literature, in addition to French wind turbine legislation.

According to the findings, many sites were identified as suitable for wind farms. Visual
and manual analyses were performed on these sites to choose those with an area larger than
400 ha, a high average wind speed, accessibility by roads, proximity to electrical substations,
and a distance from protected areas. Four sites with an average installed capacity of 45 MW
were selected and must be confirmed by the appropriate state authorities. The decision
tool provided in this article may be utilized in any part of the world by adapting it to the
specific characteristics of each territory, as well as the distinct needs and policies.

Although the results presented in this paper are specific to France, the methodology
presented provides an interesting reference model that can be transposed and adapted with
relative ease. This assumes that the different constraints and criteria are adapted to the
specific needs of energy planners and to the particularities of each study area.

Despite the quality and reliability of the IGN database used, the methodology followed
(including the choice of the MCDA method), and the analysis performed in this work,
certain aspects are to be recommended for future projects, such as taking into account the
knowledge of the study area and the regulations put in place by the government concerned,
and the relevant choice of determination (decision) criteria and their weightings, which
often vary between experts’ opinions and from one country to another.

The spatial resolution of the data used is also an important element, especially for
topographic data (DEM) and wind data.

In addition, a validation of the identified suitable sites could lead to a more robust and
real interpretation of the results, either through aerial photography (drone) or a field visit
to these sites.

Future studies could consider extending the proposed method to investigate the theo-
retical energy potential of wind generation in order to benefit from their complementarity
and overcome the inherent intermittency of renewable energies. This study can also be
the starting point for a project to install wind turbines or solar panels in the study area
by simply replacing the wind variable with the temperature variable. Furthermore, this
study can also contribute to the creation of new investments and, consequently, new jobs in
the region.
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Abstract: This study modelled the relationships between vegetation response and available wa-
ter below the soil surface using Terra’s moderate resolution imaging spectroradiometer (MODIS),
Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). The Soil & Water
Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater
analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years
(2001–2010) of monthly streamflow data. The average Nash-Sutcliffe efficiency during the calibration
and validation was 0.54 and 0.51, respectively, indicating that the model performances were good.
Nineteen years (2002–2020) of monthly MODIS NDVI data for three different types of vegetation
(forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA,
machine learning tool with a selection of two supervised machine learning algorithms, i.e., support
vector machine (SVM) and random forest (RF). The modelling results show that different types of
vegetation response and soil water content vary in the dry and wet seasons. For example, the model
generated high positive relationships (r = 0.76, 0.73, and 0.81) between the measured and predicted
NDVI values of all vegetation in the sub-basin against the groundwater flow (GW), soil water content
(SWC), and combination of these two variables, respectively, during the dry season. However, these
relationships were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively,
in the wet season. Our models also predicted that vegetation in the top location (upper part) of the
sub-basin is highly responsive to GW and SWC (r = 0.78, and 0.70) during the dry season. Although
the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for
the growth of the grass vegetation type. The results predicted that the growth of vegetation in the
top-point location is highly dependent on groundwater flow in both the dry and wet seasons, and any
instability or long-term drought can negatively affect these floodplain vegetation communities. This
study has enriched our knowledge of vegetation responses to groundwater in each season, which
will facilitate better floodplain vegetation management.

Keywords: ArcSWAT; machine learning; floodplain vegetation; MODIS NDVI; groundwater

1. Introduction

Floodplain vegetation plays an important role in catchment hydrology and energy
flow. Floodplain vegetation distribution is directly influenced by several factors, including
rainfall, temperature, and groundwater [1]. Rainfall, temperature, and groundwater are
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highly variable in arid and semi-arid regions [2]. The annual rainfall in arid regions is much
less than the annual potential evapotranspiration and surface water flows (i.e., surface
runoff), which provides limited water supply for vegetation systems [3]. Therefore, ground-
water becomes the only water source in arid regions affecting the spatial and temporal
distribution of soil water content (SWC) which, in turn, affects the growth of vegetation [4].
An accurate understanding of the distribution of SWC in arid regions is important since wa-
ter deficit is gradually becoming one of the major factors limiting agricultural productivity
and ecological development [5]. As one of the driest continents in the world, Australia has
been facing severe droughts over the last 50 years, noticeably in the south-eastern part of
the country [6]. This area will become drier in the coming decades due to increasing annual
average temperatures and decreasing rainfall [7]. Therefore, understanding the vegetation
response to SWC is critical for sustainable ecosystem improvements in arid regions [8].

SWC can be estimated using both direct and indirect methods. The direct method,
such as the oven drying technique, is widely used because of its reliability and simplicity [9];
however, the direct method is labour-intensive, time-consuming, and costly for continuous
application in large catchments. On the other hand, hydrological simulation and remote
sensing techniques can be used for the same purpose at a catchment or global scale [10].
SWC can also be estimated for previous years using remote sensing techniques, which is
not possible to obtain from experimental measurements [10]. Therefore, model-simulated
results can fulfil temporal and spatial data requirements and improve SWC and vegetation
response relationship studies.

The SWC also influences vegetation productivity and water stress [11,12]. The amount
of soil water availability in drought regions for vegetation intake affects the length of the
growing period [13]. However, groundwater is the main source of water for vegetation
growth in arid regions [14]. Any changes in the groundwater tables decrease the accessibil-
ity of the dependent vegetation and may create water stress [15]. Moreover, water stress
can trigger a longer growing period and photosynthesis reduction, thereby resulting in
reduced productivity and increased vegetation mortality [12]. The reduction in accessible
soil water availability under a changing climate may exaggerate ecological droughts during
the plantation season [16]. Researchers have identified that the change in groundwater
depth affects the vegetation physiology and dynamics [17,18]. Another study also focused
on individual vegetation responses by examining the leaf, tree, canopy, and population [19].
However, according to our knowledge, accessible water in soil and vegetation response
modelling is still lacking. This research focuses on SWC that is accessible to floodplain
vegetation and understanding their relationship in a seasonal context.

The Soil and Water Assessment Tool (SWAT) is a physically based and semi-distributed
hydrological model widely used for quantitative hydrological modelling [20,21]. Many
researchers have used SWAT for evaluating soil water at the catchment scale [22–24].
Previous studies have shown that changes in the water balance components, specifically
soil water storage, evapotranspiration, land use/land cover dynamics, and water yield,
are more sensitive under wet climate and heterogeneous soils [25,26]. The SWAT model
has also been successfully applied in the U.S. to estimate SWC for drought monitoring
and predicting crop production [27]. However, the SWAT application in the Australian
region is limited [28]. In our study, a SWAT model was used to estimate SWC for the
Burrinjuck Dam sub-catchment within the Murrumbidgee River catchment. The suitability
of the model simulation for long-term SWC datasets was assessed using a combination of
physically measured and remotely sensed data. This type of simulation helps to correlate
with long-term historical vegetation data.

The Normalised Difference Vegetation Index (NDVI), which can be derived from
remote sensing, is frequently applied for studies on vegetation dynamics over large
scales [29–32]. Researchers used NDVI to understand the relationships between terrestrial
vegetation and climate [31]. Several studies found a linear relationship between NDVI
and climate variables in arid regions [33–35]. Relationships also were investigated for
NDVI and groundwater levels and groundwater flow discharge [36–38]. However, none of
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these previous studies analysed the relationship between NDVI and hydrological model
simulated SWC in an arid region.

This study aims to analyse and model the relationships between seasonal SWC vari-
ability and floodplain vegetation responses using MODIS-derived NDVI data and machine
learning algorithms for 20 years (2001–2020). The specific objectives of this study are
the following: (a) to understand the relationship between different types of vegetation
responses (NDVI) and groundwater variables as simulated by the SWAT model at the basin
level; (b) to assess the correlation between the vegetation response (as measured by NDVI)
and SWAT-simulated variables at different positions (top and bottom) within the sub-basin;
and (c) to model seasonal vegetation responses to groundwater variables at the basin level
using the WEKA machine learning tool developed by the University of Waikato, New
Zealand [39,40].

The WEKA tool is a collection of machine learning algorithms for data mining activi-
ties that supports data pre-processing, clustering, classification, regression, and visualiza-
tion [41]. This software can be run under the General Public License (GNU) with a selected
classifier compared to other data mining tools [42].

The results of this study provide qualitative information on catchment hydrology and
water resources on temporal and spatial dimensions at the sub-catchment level. A calibrated
model at this scale can be used for various analyses such as sedimentation, water pollution,
and future stream flow prediction. This study also contributes to developing sustainable
water resource management for the dry and wet season in an efficient way. The modelling
results may be used to improve domestic agricultural production by selecting appropriate
crops and plants that can grow commercially in similar regions. An understanding of
seasonal vegetation water requirements from this study can be implemented to review the
floodplain water management policies for better water management.

2. Materials and Methods

2.1. Study Area

The study area resides within the Upper Murrumbidgee catchment (Figure 1) in the
south-east of the Murray Darling Basin (MDB), in south-eastern Australia. The Burrin-
juck Dam catchment area size is 13,000 km2 (approx.) which is one-seventh that of the
Murrumbidgee River catchment [43]. The latitude and longitude of the study area are
34.53◦ S–35.14◦ S and 148.31◦ E–148.55◦ E. The Burrinjuck Dam is situated within the upper
catchment of the Murrumbidgee River basin, which was built (1910–1927) to develop an
irrigation project after the devastating drought in 1902. The Murrumbidgee River rises at
an altitude of around 1500 m in Kosciuszko National Park and flows approximately 316 km
before entering Burrinjuck Reservoir at an altitude of 370 m (approx.). The topography of
the Burrinjuck Dam area consists of gentle and moderate slopes and the elevation varies
from 370 to 934 m [44]. The upper mountainous section of the Murrumbidgee River flow is
regulated by dams for hydroelectric power generation and water supply [45]. The main
land use in this part is forest and pasture. However, this area also contributes to agricultural
production by growing wheat and cereals [46]. Having a diverse climate in the upper and
lower Murrumbidgee, the mean annual rainfall varies 350 mm in the Riverina plains and
1700 mm in the Snowy Mountains [47]. According to the Köppen-Geiger climate classifica-
tion system, the climate of the study area is temperate, without a dry season mostly hot
summer with average 22 ◦C temperature in the hottest months [48]. The Burrinjuck Dam
and surrounding area contribute to the maximum river flow by adding 24% of the total
rainfall as runoff [49]. The climate has enriched the Burrinjuck reserve possesses a high
diversity of vegetation types and ecosystems.
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Figure 1. Study area of the Burrinjuck Dam sub-catchment of the Murrumbidgee River catchment
within the Murray-Darling Basin region.

2.2. Methods

Figure 2 presents an overview of the research methods applied in this study. The
SWC and groundwater flow (GW) were simulated in ArcSWAT. The datasets used in
this study were obtained from various local and international data portals, such as the
Australian Bureau of Meteorology (BOM) and U.S. Geological Survey (USGS). We used
the ArcGIS tool [50] and Microsoft Excel [51] for spatial and attribute data pre-processing
and formatted the data to apply in the ArcSWAT hydrological model. We analysed the
model output data using the WEKA machine learning tool [52] with different vegetation
responses as measured by MODIS NDVI values. Different machine learning algorithms
have been applied to model the relationships between vegetation types, and their location
within the sub-basin and seasonal groundwater variability.

 

Figure 2. An overview of the research methodology for vegetation responses and groundwater
variables modelling using machine learning algorithms.
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2.3. Hydrological Model Setup

An ArcSWAT interface of the SWAT2012 model was used in this study [21]. We
installed compatible ArcGIS version 10.6 on a desktop to run SWAT2012 from the user
interface. The SWAT model is a continuous physically based distributed parameter model
that operates on a daily time-step. This model is capable of simulating catchment hydrol-
ogy, land use impact on water, sediments, plant growing, agricultural-chemical yields,
etc., within agricultural watersheds [21,53]. SWAT divides the watershed into multi-
ple sub-basins based on spatial characteristics. These sub-basins are further subdivided
into hydrological response units (HRUs) that consist of unique land use, soils, and slope
characteristics [54]. Each HRU is simulated for SWC, groundwater flow, nutrient cycles,
sedimentation, crop growth, and management practices [44]. The simulated results from
the HRUs represent the sub-basin scale. SWAT [53] simulates the hydrological cycle based
on the following daily water balance equation:

SWt = SW0

t

∑
i=0

(
Rday − Qsur f − Ea − Wseep − Qgw

)
i

(1)

where SWt is the ultimate water content in (mm), SW0 is the amount of water content
on the first soil of the day i (mm), t is time (days), Rday is the amount of rainfall on day
i (mm), Qsurf is the amount of surface runoff on specific day i (mm), Ea is the amount of
evapotranspiration on day i (mm), Wseep is the amount of water percolated into the vadose
zone from the soil profile on day i (mm), and Qgw is the amount of return flow on day
i (mm).

The SWAT model was delineated from a 30 m resolution digital elevation model (DEM)
(Figure 3). A threshold drainage area of 1342 km2 was selected based on the DEM and
Murrumbidgee River network to divide the watershed into 43 sub-basins, which were later
categorised into 350 HRUs depending on land cover and land use, soil types, and slope.
The model was run for 20 years of data, starting from 2001 and ending in 2020. The SWC
data for Australia was obtained from the Australian Water Resource Assessment Landscape
water balance model (AWRA-L), which was calibrated against the streamflow data. It is not
best practice to use data from a different model simulation to run a hydrological model as it
may not provide good modelling results. To avoid this confusion, the model was calibrated
and validated against observed streamflow data instead of SWC.

Figure 3. Cont.
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Figure 3. In the above figure four images are captured: (a) Study area soil map, (b) Land use/land
cover map, (c) DEM, and (d) Delineated watershed.

2.3.1. Data Preparation

A combination of climatological and land properties data were required to develop
a semi-distributed model using the ArcSWAT interface (Appendix A). Some data such
as DEM, soil, land use, and weather data are mandatory to run the dynamics of the
watershed; however, streamflow, reservoir information, sediment, water quality, chemical,
and pesticide data are non-mandatory. The data used in this study and their sources are
listed in Table 1.

Table 1. The datasets used in this study including their descriptions and sources.

Data Frequency Description Source

Precipitation Daily Station gauged, temporal Bureau of Meteorology
Temperature Daily Station gauged, temporal Bureau of Meteorology

Evapotranspiration
Wind speed

Daily
Hourly

Satellite-derived, 0.05 degree
(approximately 5 × 5 km)
Station gauged, temporal

Bureau of Meteorology
Bureau of Meteorology

Runoff Daily Satellite-derived, 0.05 degree
(approximately 5 × 5 km) Bureau of Meteorology

Streamflow (discharge) Daily Station gauged, temporal NSW Office of Water
MODIS NDVI 16-Day 250 m spatial resolution U.S. Geological Survey

DEM - 30 m spatial resolution U.S. Geological Survey
Soil Map - 250 m spatial resolution Digital Atlas of Australian Soil

Land cover/land use map - 50 m spatial resolution NSW Office of Environment and Heritage

2.3.2. Study Period

The study period (2001–2020) was selected to include a long-term drought (2001–2006)
and flooding (2007–2010) phases. Both dry and wet phases were included in the study to
ensure any long-term change in the vegetation condition was identified in the NDVI data.
The annual data were divided into two seasons: (i) dry and (ii) wet, which were categorised
based on rainfall and temperature anomalies. The average dry season (Oct–Mar) and wet
season (Apr–Sep) rainfall are 52.4 mm, 66.45 mm and 70.74 mm, 73.91 mm in the drought
and flooding periods, respectively.
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2.3.3. DEM

The sub-basin parameters (gradient and length of the slope) and stream network
characteristics (slope, width, and length of the channel) were obtained from the DEM
file. For this study, we used a 30 m resolution DEM downloaded from the Shuttle Rader
Topography Mission (STRM) using the USGS data portal [55]. DEM for the Burrinjuck Dam
study area was masked for the SWAT application (Figure 3c).

2.3.4. Land Use/Land Cover Data

The land use data for the study area used in the ArcSWAT HRU delineation was
developed by the NSW Office of Environment and Heritage. These satellite imagery data
were derived for the period of 2001 to 2005 and verified with Google Earth and a field
survey of specific land cover types. The raster files were processed in ArcGIS to reclassify
for the SWAT model (Figure 3b).

2.3.5. Soil Data

The SWAT model requires soil information of the basin area including a database table
of soil texture, pH number, available water content, hydraulic conductivity, bulk density,
and organic carbon content for each soil type [44,56]. The soil map of the study area was
downloaded from the Digital Atlas of Australian Soil [8] (Figure 3a). A ‘usersoil’ database
table was prepared for this study from the available soil information and lookup tables,
and then replaced the default ‘usersoil’ table in the SWAT database.

2.3.6. Climate Data

The climate data we used in this study included daily rainfall, temperature (maximum
and minimum), wind speed, solar radiation, and relative humidity. They were obtained
from the Australian Bureau of Meteorology [57]. The climate data was obtained for a period
of 21 years (from 2000 to 2020) in daily time series format. These data were processed
using the Microsoft Excel tool to fill 0.2 of the missing data by the linear interpolation
method [58].

2.3.7. Sensitivity Analysis and Hydrological Model Calibration

We applied sensitivity analysis following the guidelines explained in the previous
studies [59], using the SWAT Calibration and Uncertainty Programs (SWAT-CUP). The
SWAT-CUP has five algorithm options for model calibration (SUFI-2, PSO, GLUE, ParaSol,
and MCMC), 11 functions (mult, sum, R2, chi2, NS, br2, ssqr, PBIAS, KGE, RSR, MNS) and
integrated features such as plot visualisation [60]. The sensitivity analysis was done using
SUFI-2, considering the one-at-a-time method of 15 parameters related to the processes
of streamflow, recharge, evapotranspiration, percolation, and infiltration from the list
to identify the most sensitive ones for the model simulations at the Burrinjuck Dam.
According to previous studies [61], the Curve Number for moisture condition II (CN2) and
the coefficient of water percolation to the deep aquifer (RCHRG_DP) were identified as the
two most important sensitive parameters. Based on the literature review, among the two
sensitive parameters, CN2 was chosen for the model calibration of this study. However,
some other parameters such as the surface runoff lag coefficient (SURLAG) and Manning’s
roughness coefficient (CH_N2) were also analysed, which were not as sensitive as in the
previous modelling done by Saha and Zeleke [44]. The fact is that the previous study was
done in the Yass River gauging station, which was upstream of the Burrinjuck Dam basin,
while the present study focuses on the whole basin. Acquiring knowledge from several
previous studies that applied the SWAT model close to the study area helps parameter
selection for sensitivity analysis. Thirteen parameters were chosen to do sensitivity analysis
(Table 2) based on previous SWAT model applications in the Kyeamba Creek basin [28] and
Yass River basin [44]. The difference in basin scale could interfere in the sensitivity analysis.
Therefore, the parameters used for calibration in this study are not necessarily the same
proposed by Saha [44].
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Table 2. The table below shows the number of parameters applied, their definitions, and ranking in
the SWAT-CUP simulation.

Parameter Definition Value Range Unit Method Par.inputfile Ranking

Initial SCS runoff curve number for
moisture condition 35–89 % r CN2 1

Effective hydraulic conductivity in the main
channel alluvium 0–500 mm/h v CH_K2.rte 13

Manning’s n value for the main channel 0–0.3 — v CH_N2.rte 12
Base flow alpha factor 0–1 days v ALPHA_BF.gw 5

Groundwater delay 30–500 days v GW_DELAY.gw 10
Groundwater “revap” coefficient 0.02–0.2 — v GW_REVAP.gw 11

Threshold depth of water in the shallow
aquifer for return flow to occur 0–5000 mm H2O v GWQMN.gw 3

Threshold depth of water in the shallow
aquifer required for “revap” to occur 0–1 mm H2O v REVAPMN.gw 8

Soil evaporation compensation factor 0–0.65 - v ESCO.bsn 2
Average slope length 10–150 m r SLSUBBSN.hru 9

Surface runoff lag coefficient 0.05–24 — v SURLAG.bsn 15
Available water capacity of the soil layer −0.5–0.5 mm H2O/mm r SOL_AWC.sol 4

Depth from the soil surface to layer bottom −0.5–0.5 mm r SOL_Z.sol 6
Peak rate adjustment factor for

sediment routing 1–2 - r ADJ_PKR.bsn 14

Maximum canopy storage 0–100 mm H2O v CANMX.hru 7

In this study, we used the sequential uncertainty fitting algorithm (SUFI-2) and se-
lected the Nash–Sutcliffe model efficiency (NS) coefficient as a target function for calibration
procedures. In the calibration process, SUFI-2 captures the uncertainties of the model run.
The six parameters applied in the calibration process were selected from the sensitivity
analysis table based on their ranking (Table 2). A researcher [61] found that the calibration
process and uncertainties are closely related, and identifying these relationships are im-
portant. In the SUFI-2 interface, the input parameter uncertainty is expressed as ranges,
whereas the output parameter’s uncertainties are expressed from the 95 PPU (95% proba-
bility distribution), which is calculated using Latin American hypercube sampling from
the cumulative distribution of an output variable at 2.5% and 97.5%. The adjustment
between the simulation results and observed data can be done by the p-factor (the fraction
of measured data bracketed by the 95PPU band) and the R-factor (ratio of the average
width of the 95PPU band and the standard deviation of the measured variable) known
as statistical indices [61]. The p-factor value > 0.7 and R-factor value <1.5 are desirable for
streamflow discharge depending on the situation [62].

The SWAT model was calibrated (2004–2007) and validated (2008–2010) with a warm-
up period of three years (2000–2002). The calibration and validation processes were done in
monthly timestep at two different points within the watershed, starting from the upstream
of the streamflow station (Yass station) and then to the downstream station (Burrinjuck
Dam station).

2.3.8. Hydrological Model Performance Evaluation

In this study, we assessed model calibration performance using the coefficient of
determination (R2), Nash-Sutcliffe efficiencies (NSE), and percent bias (PBIAS) quantitative
statistics, which were used in previous studies [56,63,64]. Moreover, we applied 15 param-
eters in the SWAT-CUP simulation and ranked them following the model performance
acceptance guidelines documented by Arnold et al., [21], which are presented in Table 2.
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The Nash–Sutcliffe simulation efficiency (NSE) coefficient is a dimensionless statistic,
indicating the accuracy of simulated versus observed data against the 1:1 line [65]. NSE is
the most widely used statistical indicator for hydrological model performance, in which
the NSE value 1 represents observed and simulated values as the same, while negative
NSE value means simulations are extremely poor. NSE is defined as:

NSE = 1 − ∑n
i=1(Qobs, i − Qsim, i)2

∑n
i=1

(
Qobs, i − Qobs

)2 (2)

where n is the number of time steps, Qobs, i is the observed flow at time step i (daily here),
Qobs is the mean of the observed flow, and Qsim, i is the simulated flow. The range of NSE
is [−∞,1], where 1 represents a perfect match between the observed and simulated flow.

A hydrological model with higher R2 is considered as a good result [66]. R2 is de-
fined as:

R2 = {
∑n

i=1

(
Qobs

i − Qsim
)(

Qsim
i − Qsim

)
∑n

i=1

(
Qobs

i − Qobs
)2

∑n
i=1

(
Qobs

i − Qobs
)2 }2 (3)

where, Qobs
i and Qsim

i are representing the measured and simulated data for ith observation

and Qobs and Qsim are the mean of the measured and simulated data, respectively.
The percent bias (PBIAS) determines the average tendency to be greater or smaller

simulated values than their observed data [63]. The maximum PBIAS value is zero, indicat-
ing the simulation is exactly the same as the observed data. In general, a smaller PBIAS
value signifies accurate model simulation. PBIAS is calculated as:

PBIAS =
∑n

i=1

(
Qobs

i − Qsim
i

)
∗ 100

∑n
i=1 Qobs

i
(4)

where Qobs
i and Qsim

i are representing the measured and simulated data for the ith observa-
tion, respectively.

2.3.9. Remote Sensing Data

Moderate resolution imaging spectroradiometer (MODIS) data are available from the
U.S. Geological Survey website for free of cost [55]. We used the MODIS (Terra) 16-Day
Global 250 m composite product of MOD13Q1 (version V006) to identify the vegetation
condition. The NDVI values were selected from the available vegetation indices in the
MOD13Q1 product from imagery acquired during the period 2001 to 2020. We have
selected six plots of different vegetation types (average size between 1 and 2 km2) within
the study area (such as grass, shrub, and tree). These plots were selected randomly (i.e.,
stratified random sampling) based on the specific vegetation type dominant in the selected
plot area. We also selected point areas (500 m radius) at the bottom and top of each sub-
basin (Figure 4). A total of 60 areas (point area) were calculated for 40 sub-basins (three
sub-basins were too small to create a point). These plots have been converted into polygons
in the Google Earth Pro and then saved as KML files, which were later processed into
shapefiles in ArcGIS [50]. A pre-processing tool called the Application for Extracting and
Exploring Analysis Ready Samples (AppEEARS) was selected to obtain pre-processed
NDVI time-series data for those shapefiles prepared earlier.
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Figure 4. The vegetation NDVI was also calculated for the point area with a radius of 500 m selected
both from the top and bottom location within all sub-basins. The above figure only shows the point
locations of sub-basin 1 and 2.

2.3.10. Normalised Difference Vegetation Index (NDVI)

The NDVI data were processed using the AppEEARS tool [67]. The MODIS sensor
captures a range of broad spectrum of reflected sunlight from tree leaves. The healthy
vegetation mostly absorbs light from the red spectrum and reflects light from the near-
infrared (NIR) spectrum. NDVI utilises the contrast of strong reflectance in the near-infrared
region and the strongly absorbed reflectance in the red wavelength region. The NDVI
calculation was performed applying the difference between the red and near-infrared bands
and normalising it over the sum of the red and near-infrared bands (Equation (5)).

NDVI =
(Near In f rared − Visible red light)
(Near In f rared + Visible red light)

(5)

Three types of vegetation indices were obtained using the Google Earth map and U.S.
Geological Survey website. Firstly, the plots were selected for forest type vegetation within
the watershed in Google Earth Pro and saved into KML files. These KML files were then
processed in ArcGIS to convert into shapefiles and later used to obtain 20 years (2001–2020)
of NDVI data from USGS. These similar steps were followed to obtain NDVI data for shrub
and grass type vegetation within the watershed. We also calculated NDVI for each of the
43 sub-basins for the same period (2001–2020).

2.3.11. Machine Learning Algorithms for Data Analysis

A machine learning (ML) algorithm is a set of computational codes that can process a
large amount of data in a complex way [68]. It is also known as data-driven methods that
build models based on evidence obtained from a sample data set. The algorithms read and
processed data to learn the maximum possible patterns about the data [49]. In this study,
we applied the Waikato Environment for Knowledge Analysis (WEKA) tool, developed by
the University of Waikato, New Zealand [39,40]. Firstly, the WEKA tool was set up to run a
random forest model using 43 different datasets. These datasets included the combination
of SWC, groundwater flow towards stream, and different types of vegetation responses
(NDVI values). Each dataset was initially set for linear regression to find the collinear and
non-collinear variables. Secondly, the machine learning tool was prepared to run a support
vector machine (SVM) model using the same datasets.

The performance of all models was assessed in two ways: (a) using a 10-fold cross-
validation, which is a leave-one-out approach, and (b) using the 80 and 20 per cent split-
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sample method. These two approaches were performed to compute the root mean square
error (RMSE) and correlation coefficient (r) between the SWAT output variables (SW and
GW) and predicted vegetation response (NDVI value) of each model. We selected models
with higher correlation coefficient (r) values and smaller RMSEs to analyse the relationship
against soil water content (SWC) and groundwater flow (GW). We also analysed these
relationships based on rainfall intensity such as dry season (October to March) for less
intensity and wet season (April to September) for high intensity.

3. Results

3.1. Hydrological Model Calibration and Validation

Table 2 shows the sensitivity ranking of the different model parameters and their
ranges applied during the calibration. The model was calibrated and validated at two
different stations (Figure 5), for which the results are listed in Table 3. The results explained
that manual calibration performed better than auto-calibration. The 0.51 NSE value for the
manual calibration performance parameters can be marked as ‘satisfactory’ for the SWAT
model developed in the study area. The model in the study area was able to simulate about
51% of the variance on observed streamflow data.

 

Figure 5. In this study, the SWAT-CUP tool was applied for the model calibration and validation at
two different locations based on the available station, (i) Burrinjuck Dam, and (ii) Yass River station.

Table 3. The table below shows the number of parameters applied, their definitions, and ranking in
the SWAT-CUP simulation.

Scenario NSE R2 PBIAS

Default 0.25 0.36 73.2
Manual calibration 0.51 0.72 54.2

SUFI-2 0.41 0.55 68.2

The statistical indicators reflected a regression between observed and simulated stream-
flow for those two points with NSE 0.51, PBIAS 54.2, R2 0.72, p-factor 0.63 and NSE 0.54,
PBIAS 58.6, R2 0.73, and p-factor 0.68, respectively. The hydrographs show that the ob-
served and simulated values have a noticeable difference in the plots. Additionally, the
model slightly overestimated the low flow during the calibration and validation periods.

3.2. Relationships of Vegetation Responses and Groundwater

The average monthly SWC and groundwater data were presented in Table 4. The
average correlation coefficient of different vegetation types and SWAT model output vari-
ables over the study period in shown in Figure 6. The different correlation patterns of
vegetation types of responses and SWC (SWC) suggested that vegetations were influ-
enced considerably by SWC. The linear regression results show that shrub vegetation
NDVI is highly correlated (R2 = 0.82) to SWC than forest and grass type vegetation NDVI
(R2 = 0.78, and R2 = 0.72, respectively). However, grass type vegetation response is higher
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(R2 = 0.59) to groundwater (GW) compared to forest vegetation (R2 = 0.24) and shrub
vegetation (R2 = 0.25).

Table 4. ArcSWAT produced simulated soil water content (SWC) and groundwater flow (GW) data
presented as average monthly for the study area.

Variable January February March April May June July August September October November December

SWC 86.28 98.54 93.18 96.25 112.64 130.79 131.11 129.71 122.23 106.23 100.48 78.14
GW 6.07 3.72 5.10 4.59 4.60 9.13 21.15 29.00 28.73 24.57 15.01 10.96

 

Figure 6. The forest, shrub, and grass type vegetation NDVI datasets are plotted against
model-simulated surface runoff and groundwater flow (GW) to calculate the co-efficient of
determination (R2).

The WEKA modelling results show that sub-basin NDVI (including all vegetation
types within the sub-basin no 28) was highly responsive (r = 0.78) compared with forest
NDVI (r = 0.61) when the ML algorithms were applied against SWC and GW (Table 5).
Similarly, sub-basin NDVI (including all vegetation types within the sub-basin no 19 and
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28) was highly responsive (r = 0.76 and r = 0.74 respectively) than shrub and grass type
vegetation (r = 0.67 and r = 0.56 respectively) (Tables 6 and 7).

Table 5. The WEKA-generated modelling results for forest, sub-basin, top-point, and bottom-point
NDVI against SWAT-simulated variables, soil water content (SWC), and groundwater flow (GW).
The r represents the correlation coefficient.

Sub-Basin GW SWC SWC and GW

# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.373 0.064 91% 0.592 0.055 79% 0.610 0.055 78%
RF 0.219 0.076 110.42% 0.446 0.067 91% 0.540 0.060 85%

SB_NDVI
SVM 0.597 0.075 80% 0.710 0.066 70% 0.781 0.059 62%
RF 0.484 0.088 94% 0.604 0.079 84% 0.736 0.064 68%

TP_NDVI
SVM 0.471 0.072 89% 0.624 0.063 78% 0.660 0.061 75%
RF 0.407 0.080 98% 0.624 0.063 78% 0.631 0.064 79%

BP_NDVI
SVM 0.267 0.072 96% 0.513 0.064 85% 0.521 0.063 85%
RF 0.132 0.085 113% 0.330 0.078 104% 0.434 0.070 93%

Table 6. The WEKA machine learning produced modelling results for vegetation NDVI from shrub,
sub-basin, top point, and bottom point against the SWAT variables soil water content (SWC) and
groundwater flow (GW). The r represents the correlation coefficient in the below results.

Sub-Basin GW SWC SWC and GW

# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.533 0.059 82% 0.681 0.051 70% 0.671 0.052 72%
RF 0.596 0.056 77.96% 0.625 0.055 74% 0.626 0.054 74%

SB_NDVI
SVM 0.579 0.073 82% 0.689 0.064 72% 0.759 0.058 65%
RF 0.462 0.084 94% 0.577 0.076 85% 0.685 0.066 74%

TP_NDVI
SVM 0.674 0.078 74% 0.697 0.075 71% 0.812 0.061 58%
RF 0.609 0.087 82% 0.571 0.090 86% 0.772 0.067 64%

BP_NDVI
SVM 0.247 0.082 97% 0.456 0.075 89% 0.451 0.075 89%
RF 0.041 0.098 117% 0.267 0.091 108% 0.363 0.082 97%

Table 7. The WEKA machine learning modelling results for grass type vegetation NDVI (sub-basin
combined, vegetation located at the top point, and vegetation located at the bottom point) against
SWAT variables. The correlation coefficient (r) for the random forest and support vector machine
algorithms are listed in the below table.

Sub-Basin GW SWC SWC and GW

# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.4642 0.1116 84.57% 0.5342 0.105 79.28% 0.5629 0.1024 76.98%
RF 0.4876 0.1094 83.15% 0.4607 0.112 82.75% 0.4955 0.1088 80.10%

SB_NDVI
SVM 0.6004 0.1071 80.63% 0.649 0.1007 75.75% 0.7431 0.0889 66.92%
RF 0.5369 0.1171 88.10% 0.4353 0.1299 97.78% 0.6522 0.1025 77.11%

TP_NDVI
SVM 0.6528 0.1276 75.90% 0.6729 0.1238 73.62% 0.7883 0.1035 61.55%
RF 0.581 0.1422 84.62% 0.4665 0.1605 95.47% 0.7031 0.121 71.97%

BP_NDVI
SVM −0.0069 0.1265 101.07% 0.1134 0.1242 99.19% 0.2045 0.1223 97.67%
RF −0.0646 0.1519 121.35% 0.0884 0.1438 114.89% 0.1552 0.1312 104.79%

3.3. Vegetation Responses Considering Their Location within the Watershed

The results shown in Figure 6 were calculated from the average data for 40 sub-basins.
The monthly average correlation coefficient result shows that vegetation in the top-point
location in a sub-basin is more sensitive (R2 = 0.77) to SWC when compared with vegetation
in the bottom point location (R2 = 0.72). On the other hand, vegetation in the bottom point
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location is more correlated to groundwater (R2 = 0.62) than vegetation in the top point
location (R2 = 0.57).

The average correlation coefficient of top-point (distant from outlet) and bottom-point
(close to outlet) NDVI and SWC is shown in Figure 7. The modelling results show that
vegetation in the top-point location of the sub-basin has moderate r values against GW
and SWC (0.67 and 0.69 respectively) compared with vegetation in the bottom location
(0.25, and 0.46 respectively). Moreover, the result shows strong correlations for the top
point vegetation NDVI against these two variables (r = 0.81 and r = 0.79, respectively)
(Tables 6 and 7). The negative value of r (−0.0069) shows that vegetation in the bottom
location of sub-basin #23 has no response to the GW (Table 7).

 

Figure 7. The NDVI collected from the top-point and bottom-point areas as vegetation response are
plotted against the Soil Water Content (SWC) and groundwater flow (GW) to calculate the co-efficient
of determination (R2).

3.4. Seasonal Vegetation Responses

The results of the linear correlation analysis for different vegetation types for two
distinct seasons are shown in Figure 8. The correlation results show that shrub and forest
vegetations are highly correlated (R2 = 0.89 and R2 = 0.82, respectively) to SWC during the
wet season compared with grass type vegetation (R2 = 0.47). However, grass vegetation
shows a better response during the dry season (R2 = 0.52) compared with the shrub and
forest (R2 = 0.45 and R2 = 0.43, respectively).

The vegetation responses were observed for different locations within the sub-basin
(Figure 9). The regression analysis shows that vegetation in the top point and bottom point
locations of the sub-basin are highly correlated to GW in the dry (R2 = 0.79 and R2 = 0.84,
respectively) and wet season (R2 = 0.81 and R2 = 0.85, respectively). However, vegetation
in these two locations is moderately correlated to SWC during the wet season (R2 = 0.66
and R2 = 0.71, respectively) than the dry season (R2 = 0.51 and R2 = 0.54, respectively).

The WEKA modelling results show that shrub vegetation is moderately responsive to
GW and SWC (r = 0.62 and r = 0.63, respectively) in the dry season. However, forest and
grass type vegetation are less responsive to GW and SWC (r = 0.52, r = 0.48, r = 0.27, and
r = 0.38, respectively) in the dry season (Table 8). All three types of vegetation were less
responsive to GW and SWC in the wet season.

In contrast to the sub-basin level, the vegetation NDVI is highly responsive to GW
and SWC (r = 0.75 and r = 0.73, respectively) in the dry season. Furthermore, the sub-basin
NDVI shows a strong relationship with SWC and GW (r = 0.81) (Table 8) in the dry season,
and moderate relation (r = 0.62) in the wet season (Table 9). This result clearly indicates
that the vegetation in the sub-basin is positively influenced by groundwater flow both in
the dry and wet seasons.
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 Forest−NDVI  Forest−NDVI 

 Grass−NDVI Grass−NDVI

Shrub−NDVI Shrub−NDVI

Figure 8. The vegetation responses (NDVI) against the SWC in dry and wet seasons in the study area
are plotted to calculate the co-efficient of determination (R2).
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Figure 9. Seasonal vegetation responses (NDVI) from different locations (top point and bottom point)
against soil water content (SWC) and groundwater flow are plotted to identify the co-efficient of
determination (R2).

Table 8. The below table shows the modelling results for different types of vegetation responses and
vegetation located at different points in the sub-basin. This result shows the relationship during the
dry season. The r value shows the correlation coefficient of the modelling results.

Sub-basin GW SWC SWC and GW
# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.527 0.053 0.837 0.481 0.056 0.871 0.594 0.051 0.792
RF 0.581 0.053 0.828 0.317 0.068 1.074 0.560 0.054 0.844

SB_NDVI
SVM 0.730 0.058 0.674 0.570 0.071 0.815 0.782 0.054 0.625
RF 0.702 0.062 0.716 0.434 0.084 0.974 0.750 0.058 0.666

TP_NDVI
SVM 0.564 0.068 0.817 0.539 0.070 0.840 0.649 0.063 0.753
RF 0.592 0.069 0.826 0.379 0.085 1.017 0.637 0.065 0.777

BP_NDVI
SVM 0.362 0.061 0.921 0.368 0.061 0.917 0.403 0.060 0.901
RF 0.420 0.063 0.944 0.254 0.073 1.099 0.403 0.062 0.935
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Table 8. Cont.

Sub-basin GW SWC SWC and GW
# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.629 0.048 0.777 0.631 0.048 0.799 0.666 0.046 0.766
RF 0.627 0.048 .76.60% 0.604 0.050 0.784 0.633 0.048 0.771

SB_NDVI
SVM 0.755 0.052 0.650 0.731 0.054 0.676 0.812 0.046 0.580
RF 0.736 0.054 0.671 0.744 0.053 0.660 0.763 0.510 0.636

TP_NDVI
SVM 0.780 0.060 0.594 0.697 0.075 0.713 0.729 0.066 0.687
RF 0.777 0.060 0.623 0.789 0.059 0.605 0.789 0.059 0.605

BP_NDVI
SVM 0.424 0.062 0.892 0.322 0.065 0.958 0.442 0.061 0.893
RF 0.184 0.071 1.070 0.269 0.068 1.023 0.254 0.068 1.031

Sub-basin GW SWC SWC and GW
# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.271 0.094 0.967 0.382 0.090 0.920 0.412 0.088 0.902
RF 0.301 0.100 1.023 0.212 0.108 1.115 0.473 0.087 0.897

SB_NDVI
SVM 0.696 0.088 0.728 0.571 0.098 0.811 0.756 0.078 0.648
RF 0.572 0.101 0.837 0.442 0.116 0.956 0.730 0.083 0.682

TP_NDVI
SVM 0.708 0.109 0.709 0.575 0.124 0.808 0.763 0.100 0.649
RF 0.553 0.133 0.860 0.503 0.140 0.907 0.737 0.103 0.671

BP_NDVI
SVM −0.128 0.116 1.025 −0.206 0.116 1.026 0.008 0.123 1.092
RF −0.111 0.138 1.225 −0.139 0.138 1.227 −0.202 0.118 1.043

Table 9. The below table shows the modelling results for different types of vegetation responses and
vegetation located at different points in the sub-basin. This result shows the relationship during the
wet season. The r value shows the correlation coefficient of the modelling results.

Sub-basin GW SWC SWC and GW
# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.163 0.050 98% 0.372 0.047 93% 0.356 0.048 0.934
RF 0.230 0.055 107% 0.182 0.058 114% 0.242 0.053 1.035

SB_NDVI
SVM 0.501 0.060 86% 0.623 0.054 78% 0.710 0.049 0.699
RF 0.530 0.066 94% 0.458 0.067 96% 0.640 0.055 0.785

TP_NDVI
SVM 0.246 0.057 96% 0.371 0.054 92% 0.358 0.055 0.927
RF 0.361 0.058 99% 0.060 0.071 121% 0.092 0.076 1.288

BP_NDVI
SVM 0.089 0.058 99% 0.245 0.057 97% 0.203 0.057 0.981
RF 0.159 0.063 108% 0.028 0.071 121% 0.048 0.066 1.120

Sub-basin GW SWC SWC and GW
# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.346 0.045 93% 0.431 0.044 90% 0.445 0.043 0.892
RF 0.460 0.044 90.10% 0.501 0.042 87% 0.474 0.043 0.889

SB_NDVI
SVM 0.478 0.062 87% 0.630 0.055 77% 0.623 0.056 0.778
RF 0.568 0.060 84% 0.637 0.055 77% 0.629 0.055 0.779

TP_NDVI
SVM 0.612 0.072 79% 0.612 0.072 79% 0.749 0.060 0.658
RF 0.640 0.072 79% 0.578 0.078 85% 0.676 0.068 0.746

BP_NDVI
SVM −0.037 0.076 101% 0.173 0.075 99% 0.114 0.076 1.013
RF −0.002 0.087 116% 0.118 0.086 114% 0.142 0.079 1.052

Sub-basin GW SWC SWC and GW
# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.228 0.120 97% 0.350 0.117 94% 0.339 0.117 0.946
RF 0.159 0.138 111% 0.071 0.145 117% 0.063 0.138 1.117

SB_NDVI
SVM 0.470 0.102 88% 0.519 0.099 85% 0.601 0.092 0.795
RF 0.460 0.109 94% 0.337 0.119 102% 0.510 0.103 0.885

TP_NDVI
SVM 0.621 0.109 78% 0.567 0.115 82% 0.709 0.098 0.701
RF 0.608 0.116 83% 0.353 0.142 102% 0.627 0.111 0.795

BP_NDVI
SVM 0.197 0.115 98% −0.281 0.117 100% 0.173 0.117 0.995
RF −0.062 0.144 123% −0.174 0.148 126% −0.043 0.134 1.143
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The vegetation in the top-point location within the sub-basin is also highly responsive
to GW and SWC (r = 0.78 and r = 0.70, respectively) than vegetation in the bottom-point
location (r = 0.42 and r = 0.32, respectively) in the dry season. The vegetation in the top-
point location has a higher r value (r = 0.79) when correlated against GW and SWC in the
dry season. However, vegetation in the top-point location has moderate responses to GW
and SWC (r = 0.64 and r = 0.61, respectively), and highly responsive (r = 0.75) against these
two variables together (Table 9).

4. Discussion

4.1. Relationship between Vegetation Responses (NDVI) and ArcSWAT Model Simulated Soil
Water Content (SWC) and Groundwater Flow (GW) Considering Vegetation Types and
Their Locations

This study presents a robust analysis of the relationships between groundwater avail-
ability and vegetation responses vigour in the floodplain zone. The hydrological model
simulated different groundwater variables by calculating a range of meteorological vari-
ables, which were later analysed in relation to NDVI using different machine learning
algorithms. Among random forest (RF) and support vector machine learning (SVM) algo-
rithms, the SVM represented higher r values (r = 0.78, r = 0.75, r = 0.74 etc.) compared with
RF (r = 0.73, r = 0.68, and r = 0.65 etc.) when analysed by different types of vegetation. A
previous study also mentioned outperformance of random forest in terms of vegetation
and water relationship modelling. Before the analysis, the SWAT model calibration was
completed and produced the 0.51 NSE value. This might reflect the high volume of ground-
water loss and disconnection of the deep aquifer in SWAT [10]. We found that the simulated
variables (SWC and GW) and vegetation NDVI relationships vary with vegetation types
when we applied data from the same sub-basin (watershed). The shrub-type vegetation
is highly correlated to SWC over forest and grass vegetation; however, grass vegetation
shows a high correlation to GW compared to forest and shrub vegetation [69]. The first
objective of this study to understand different types of vegetation responses to SWC and
groundwater is thus successful. Previous studies have found a strong correlation between
different types of vegetation and SWAT-simulated SWC [32]. However, in their studies,
different types of floodplain vegetation such as forest, shrub, or grass vegetation responses
have not been included.

We also noticed from our study that the vegetated location within the sub-basin also
impacts these relationships to SWC and GW. The vegetation located in the top point within
the sub-basin, which are distant to the water outlet or stream, showed higher response
to SWC (r = 0.69, 0.78 etc.). The SWC volume rate is usually high near the water outlet,
and that is why the vegetation located in the bottom point zone can easily access SWC
for their growth. This saturated soil enables surface and sub-surface flows and activates
connectivity between soils and streams [68,70]. Moreover, vegetation located in the top
point showed higher response to GW (R = 0.62) than vegetation located in the bottom point.
The modelling results also showed the correlation coefficient (r) value has increased by
42% against GW for vegetation located at the top point compared to the bottom point. The
correlation coefficient (r) was highly positive (0.81) for top-point vegetation when SWC and
GW variables were considered together as relationship predictors. This means vegetation
located in the top point can grow well when SWC and groundwater flow increases within
the sub-basin.

4.2. Seasonal Variability in Each Vegetation Type

In the seasonal domain, the vegetation responses become stronger in the wet season
when rainfall increases in the study area. As rainfall is the main source of water in the area
of interest, the average SWC and GW values increased by 22% and 32.68%, respectively,
during the wet season. Considering the inter seasonal water variability, the vegetation
responses to SWC and groundwater flow varied over different types of vegetation. We
found the grass vegetation response decreased by 10.6% in the wet season compared to the
dry season. This variation may also be related to inter-seasonal temperature differences.
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During the wet season, the average temperature in the study area is 18.45 ◦C (average
from 2001 to 2020), which negatively impacts vegetation growth in winter months [4,70].
However, forest and shrub vegetation types are highly responsive to the sub-basin’s SWC
during the wet season. Therefore, forest and shrub responses were increased by 48.8% and
49.43%, respectively, in the wet season when compared to the dry season.

Similarly, we analysed vegetation responses and groundwater relationships against
SWC and groundwater flow during the dry season using machine learning algorithms. The
vegetation NDVI (including all vegetation in the sub-basin) against GW and SWC produced
highly positive correlation coefficient values (r) (0.76, and 0.73 respectively). However,
when the model was run against GW and SWC together, the r value becomes higher (0.81).
The overall RF model performance was 7.3% better against runoff over the SVM classifier.
The result shows that the RF classifier performs better than the SVM algorithm in the
predictions. This result supports the findings of other studies where RF is widely used for
crop mapping, urban studies and particularly for land use/land cover applications [71].
In this study, the WEKA model produced different r values when we applied a combined
vegetation NDVI dataset at the sub-basin level. For example, the values of r between the
sub-basin NDVI and GW, SWC were 0.75, 0.73, and 0.81, respectively. This means that
vegetation in the sub-basin within a floodplain is highly responsive to groundwater flow
and SWC during the dry season.

Not surprisingly, we found that shrub and forest type vegetation are highly responsive
to GW (r = 0.63 and 0.58, respectively) compared to grass (r = 0.30). These results support
that woody vegetation type is highly responsive to groundwater, while the non-woody
vegetation type immediately responds to rainfall by seed or rhizome regeneration [72].
However, both shrub and forest vegetation were moderately responsive to SWC and GW
(r = 0.66 and 0.59, respectively). This means tree and shrub vegetation can grow well when
SWC and groundwater flow increase after the rainfall in dry season. Moreover, this study
suggests the grass vegetation type is highly dependent on groundwater during the dry and
winter season for their growth, and any instability or long-term drought can negatively
affect these floodplain vegetation communities.

A comprehensive documentation of different types of vegetation and groundwater
relationships can be prepared for efficient floodplain vegetation management based on the
results of this study. Agricultural production in similar regions around the world can be
increased by selecting appropriate crops based on their seasonal response to groundwater.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Conclusions

The analytical results show that the vegetation system is highly dependent on ground-
water hydrology during the dry season in this study area, especially shrub and grass type
vegetation that are located distant from the water outlet in the HRU. This suggests that
small- and medium-rooted vegetation, for instance, quince, feijoa, wheat, and oats etc., can
grow well in similar floodplains globally, with possible implications for water management
during the dry season.

The results of the study conclude the relationship between floodplain vegetation and
catchment hydrology is two-way, and any change in the environment can directly influence
the vegetation response to groundwater. For example, suitable growing temperature and
available water can boost vegetation growth which, in turn, contributes to increasing the
potential evapotranspiration rate. On the other hand, grass type vegetation growth helps
to increase the infiltration. The hydrological simulation results suggested that rainfall
dominates the study area catchment water balance, in which groundwater flow increases
in the wetting period between April and September. Any changes in groundwater in the
basin area can directly impact vegetation conditions, which need to be included in future
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studies applying LAI in the hydrological modelling. As rainfall dominates the catchment
hydrology, any future changes in the rainfall pattern need to be considered carefully for
better floodplain management. Measuring the field soil moisture data and applying that
data for model calibration could be another option to compare model simulation to support
the output results.

In summary, this study contributes scientific insight into groundwater-vegetation rela-
tionship and outlines a methodology for modelling the relationship in contrast to seasonal
groundwater variations. The research outcomes can potentially support sustainable flood-
plain vegetation system development in arid environments. However, there are still some
drawbacks. This study considered vegetation types and their distance from the streamflow
while assessing their responses to the groundwater variables. There could be other factors,
e.g., vegetation density and depth of root can be included in the future studies.

Further research should consider improving the modelling results applying more data
for intense rainfall and drought years. Thus, the multiple regression including a time lag,
temperature, or rainfall frequency as well as future climate projections may give better
understanding on ecosystem hydrology.
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Appendix A

 

Figure A1. ArcSWAT interface shows the model set up in the Burrinjuck Dam sub-basin study area
which is applied to understand the catchment hydrology.
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Abstract: In a digitalized era and with the rapid growth of computational skills and advancements,
artificial intelligence and Machine Learning uses in various applications are gaining a rising interest
from scholars and practitioners. As a fast-growing field of Artificial Intelligence, Machine Artificial
Intelligence deals with smart designs, data mining and management for complex problem-solving
based on experimental data on urban applications (land use and cover, configurations of the built
environment and architectural design, etc.), but with few explorations and relevant studies. In
this work, a comprehensive and in-depth review is presented to discuss the future opportunities
and constraints in meeting the next planning portfolio against the multiple challenges in urban
environments in line with Machine Learning progress. Bringing together the theoretical views with
practical analyses of cases and examples, the work unveils the huge potential, but also the potential
barriers of the complexity of Machine Learning to urban planning strategies.

Keywords: case-study analysis; machine learning; urban planning

1. Introduction

Digitalization is gaining rising interest in all fields of daily life, being favored by the
increasing computational capacities and the emergence of efficient algorithmic processes
which facilitate data mining. In line with this, Machine Learning (ML) as an intersection of
informatics and statistics is a promising challenge for more evidence-based decisions [1] to
fill in the gap of existing technological tools and instruments for spatiotemporal require-
ments. Bhavsar et al. [2] define ML as a collection of data-driven models to automate data
through significant patterns, while the first attempts to develop machines to imitate living
behavior dates to the 30s by Ross [3]. In 1959, Samuel approaches the concept as the ‘field of
study that provides computes with the ability to learn without being further programmed’ [4].

As living laboratories in a multidimensional context with tremendous environmental
and social challenges, cities are being more and more implicated in these applications,
especially those oriented towards meeting the complex ambitions of sustainability, re-
silience and climate adaptation, to cite some of them, and dealing with a noticeable mass
of data ([2,3]). At the same time, rapid urbanization challenges and quality of life (QoL)
degradation puts pressure on planners to channel the growth and provide monitoring
strategies, while the traditional methods (e.g., surveys, etc.) are time-consuming with
insufficient outcomes. Advancements in urban geography and relevant sciences, com-
monly geographical information systems (GIS) tools, use simulations to evaluate and
analyze the complex interactions in a city with limited efficiency to simulate scenarios for
future growths [4,5] and visualize spatial, demographic and other relevant data to benefit
from digital innovations and patterns. These are the key transformations needed for the
abovementioned roadmaps.

Combined with the technology and software advancements, ML and the field of
Artificial Intelligence (AI) are being prioritized and becoming more and more essential
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for cities’ operations towards smart solutions, e.g., optimization of energy performance or
waste management, etc. ([6,7]). They are adopted widely for diverse tasks of the digital
society while reducing the human effort [8], a recognition of the achievements in data
acquisition and the practical use of algorithmic approaches [9]. Many scholars have already
stressed the importance of ML for accurate predictions and correlations between spatial
indicators (e.g., [10,11]).

As ML transcended the conventional techniques of modeling, a huge potential of
big data management to address complex city problems is presented at the crossroads of
modern urban planning challenges to make up their dynamics [12,13]. Broadly speaking,
ML consist of a group of different models and patterns with the ability to minimize error
using repeated processes from data collection, analysis and monitoring [14]. Based on
the existing definitions, Machine Learning consists of a set of techniques to automatically
detect and predict data or perform decision-making processes under an important level
of uncertainty [15]. Hence, ML consists of methods leading to evidence-based processes
to meet the standards and quality of a complex problem. Its rapid evolution and growth,
with the parallel emergence of its potential, will equal the challenges of modern cities
in several fields (mobility, energy, etc.). More and more cities are being included in this
dynamic, which concerns the drivers of the urban functionalities or decision-making
processes optimizing performance and leading to automation. Overall, the existing ML
demonstrations on urban and spatial problems consist of spatiotemporal subjects [16];
however, their implication has not yet been fully explored, despite their large repertoire [17].

Despite the technological achievements and the progress in ML uses, data availability
remains a sophisticated task and not equally distributed in every corner of the world. Lack
of standards, the topics of private life and confidentiality, spatial granularities or even the
lack of synergies and the nature of the heterogeneous data hinder the ML operation. On
the other hand, the applications of ML algorithms on specific fields, such as geography,
demonstrate the complexity of benchmarking the relevant studies due to the type of data
used for the ML analyses or the missing parameters [18].

Hence, the objective of this work is to provide a critical review of the literature on
ML methods and urban modelling applications at the crossroads of urban complexities
as a promising research area for the years to come, associated with their advantages and
opportunities for the favor of efficient data management [19]. At the same time, the aim of
the work is to identify the gaps and significant constraints regarding this enterprise and to
define future directions with a comprehensive benchmarking analysis and in-depth reviews
to evaluate the future challenges. We also discuss the potentials and constraints of ML
with a portfolio of analyzed examples to identify the future directions for ML applications
sufficient to meet next generation planning strategies. Overall, the work addresses the
unexplored gaps in ML’s role in urban analysis in a scoping review and unveils the most
prominent approaches.

The remainder of the paper is organized as follows (Figure 1). Section 2 broadly
describes the taxonomy of the contents of the review for urban applications related to ML
uses. In Section 3, different challenges are discussed with respect to the built environment,
land uses and the transportation, to cite the most important among them. Section 4 provides
a portfolio of concrete examples and cases to retrieve lessons learnt, and Section 5 concludes
the review.
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Figure 1. Paperwork plan and structure.

2. Materials and Methods

Methodologically, the chart of the study is organized in the conventional flow of a
scoping review including the planning criteria for the selection of the relevant documenta-
tion, the identification and screening of the relevant scientific sources and the analysis and
crossing of findings.

As keywords core to the study, ML and urban applications remain vast and inadequate
for the consolidation of accurate outcomes. To identify an initial branch of sources, the Sco-
pus platform was used to include a broad, transversal coverage to guarantee reproducible
and accurate results using the bibliometric approach provided by the VOS viewer tool.
More than 2000 scientific sources were detected in the Scopus platform.

For this scope, the work focuses on:

• The investigation of the spatial and temporal distribution of the selected sources with
necessary filtering of the key information of title, authors, years and keywords and
focusing mainly on English-language publications;

• The identification of sources by type of data provided (e.g., open or not);
• The chronological constraint from 2000 onwards;
• The identification of specific keywords and research areas (computer science, engi-

neering, environmental and among others) (Figure 2).

While spatial data mining has been accelerated through technological advancements,
the availability is not equally allocated throughout the world (Figure 5) ([20,21]). Comple-
mentary to this, Casali et al. [18] spatialized 159 related scientific documents distributed in
different countries of the world and over time confirmed the discrepancies between them
(Figure 3); most of the cases appeared in China and US, followed by the UK and overall
only 31% were detected in Europe.
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Figure 2. Machine learning on research areas (database: Scopus, authors’ elaboration).

Figure 3. Spatial and temporal distribution of papers on ML related to urban applications by country
and year [18].
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3. Taxonomy of ML Methods for Urban Applications

Artificial Intelligence, globally, is divided into different parts, namely knowledge
representation, genetic algorithms, Artificial Neural Networks (ANN), data mining, etc.
The fields of urban planning and engineering are set to expand globally due to their strong,
fast-growing relationship to data mining, especially in the smart cities’ fields [21].

Despite the ML type and use, the quantity and type of data affect their accuracy and
efficiency and enable (or not) the path towards the solution and alternative developments.
In this process, Bhavsar et al. [2] underline the importance of problem definition for the
appropriate application of ML methods (Figure 4). In reality, problem identification is
a complex process depending on different factors, such as data mining, user skills and
perceptions, etc.

Figure 4. Machine learning algorithm steps.

Generally speaking, the ML methods are categorized based on the type of ‘learning’.
The most commonly known as follows [2]:

3.1. Supervised Learning

Supervised learning methods deal with a function (or an algorithm) to compute
outputs based on given information and present data (e.g., the number of dwellings per
ha). This information will be used for an automated process to minimize the possible
risks of a prediction error, expressed as the difference between the real (data) and the
computed values. Examples of this ML are the binary classifications (True or False), etc., or
regression problems.

3.2. Unsupervised Learning

On the other side, unsupervised learning methods depend only on the unlabeled data
and aim to identify hidden patterns of data. An example of this category is clustering,
which focuses on the data grouping based on similarities or the method of association for
the trends’ identification concerning a specific problem.

3.3. Machine Learning Algorithms: An Overview

However, the classification and taxonomy of ML require a thorough analysis of a set
of attributes when discussing urban developments. Although there are many areas of
focus, ML use has a major driver on land use and cover as great support for sustainable
development. Nonetheless, despite the rise of smart cities and related concepts and the

76



Land 2023, 12, 83

advancement of big data, etc., there is little evidence regarding classification, simulation or
predictions [22]; this section is an step towards the development of this ground.

Murphy [23] proposes three main types of ML methods, namely supervised (predic-
tive) learning to identify a mapping from outputs to inputs considering a specific set of
input-outputs, unsupervised learning, where only the inputs are given, and reinforcement
learning, which is less commonly used and explain how to perform with the occurrence of
given occasional rewards (Figure 5).

Figure 5. Taxonomy of ML common practices [23].

Emerging methods, such as convolutional neural networks (CNN), proved their effi-
ciency in extracting features from spatial data [24], and recurrent neural networks (RNN)
are promising approaches to accurate urban simulations. Examples of successful applica-
tions are found in various studies applied to road extraction from the wider perspective of
both 2D optical remote sensing images and 3D point clouds commonly used for road data
acquisition developed by Chen et al. [25,26]. In the same study, a comprehensive approach
to the definition of morphological feature-based tools for road shape features is designed
including support vector machines (SVM) ([27]). In the same study, Chen et al. provided
three classifications for road area extraction based on traditional methods for identifying of
road features (e.g., Lu et al. [28], Perciano et al. [29], etc.) or deep learning [30]).

Ensemble-based methods, such as random forests (RF) and similar methods, are
boosted for the problem–solution studies of smart urban forms (e.g., [31–34]). On the other
hand, ML methods are commonly used as a promising area to achieve smarter and more
inclusive urban configurations in the tissues of modern cities [35].

3.4. Decision-Making Urban Planning Processes

Decision-making processes are fundamental in urban planning strategies, consisting,
as they do, of simplified approaches to reality to enable decisions and interactions and allow
planners to adjust or modify them in vitro using parametric proposals. Decision-support
systems (DSS) facilitate the integration of models and enable the interactions between the
diverse parameters to adjust or test solutions and evaluate the consequences leading to
desirable and viable solutions. For the special case of predictive modeling, ML has been
used for the identification of urban patterns and related indicators. Taking a quick look at
the existing literature and the Scopus database correlations, one identifies of 585 documents
for ML and the decision-making processes published in the United States and China, as
presented in Figure 6.

Among the decision-making tree algorithms, the CART (Classification and Regression
Tree) and ID3 (Iterative Dichotomizer 3) are the most commonly used for the land-use
classifications acting as a random subset of the predicting parameters. On the other side,
random forest (RF) has the particular functionality of both classification and regression
analyses and handles an important volume of indicators [36]. In ML use, the DSS processes
are usually represented in modeling for predictive forms to enable the decision and improve
the design of the forms (Figure 7) [35].
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Figure 6. Correlations of ML and secision-making processes, Scopus database.

Figure 7. A cycle of ML application for urban form decision support system [35].

4. Review on Urban Applications

Within the wide access and implication of ‘big data’ and the increasing adoption
of urban studies, numerous comprehensive insights are appearing in the literature for
studying their potential for shaping the future urban environments in different sectors. The
issue is the core of modern planning strategies aiming at digitalization and sustainable
challenges. Specifically, to overcome the challenge of land use and cover, planners are
integrating an ever-increasing complexity to qualify the dynamics and to manage the
complexity [35].

Several ML algorithms have been tested for their performance on different forms of
databases respecting the land-use management and/or simulation of land-use planning
processes, with the more popular ones, supporting vector machines, neural networks,
Markov random or GANS, experimenting on different datasets individually and in combi-
nation [37]. At the time being, there is a rising interest in ML use and applications.

Wu and Silva [38] reviewed the AI-based approaches in the projections of land use
and their dynamics for spatial planning, Abdulijabbar et al. [39] related them to the mo-
bility problems-solutions, while Yigitcanlar et al. [40] tackle the theme of ‘sustainability’.
Nevertheless, AI-based applications in urban contexts remain limited to supporting city
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planning due to the dynamic systems the urban settlements present and the increasing
amount of big data mining to obtain new knowledge. AI-based tools move from static to
dynamic flows to forecast urban growth and enable spatiotemporal modelling [41] with
the typical example being the agent-based modelling (ABM) method for the simulation
of bottom-up processes to predict future city development. Patel et al. [42] recommended
the GIS integration agent-based modelling for testing informal settings’ policies in real-life
urban environments, while Patt [43] investigated their applications with a focus on the
public space networks.

To identify some representative scientific paradigms and trends, Table 1 summarizes
the AI-based approaches in urban fields and explores the linkages of different factors, while
the following sections focus on particular applications.

Table 1. Examples of AI-based approaches in city planning.

Urban Theme Scope AI-Based Tools Reference(s)

Polycentricity Flow analysis and linkages,
spatial simulations

Artificial neural networks, fuzzy
logic, agent-based models e.g., [31,32]

Spatial structures and
dynamic analyses

Study on the functional structures of the city,
mobility configurations,
land-use identification

Artificial neural networks, fuzzy
logic, agent-based models e.g., [33,34]

Flows’ analyses Analysis of different types of flows in cities
(e.g., energy, mobility, etc.)

Stochastic simulation models,
artificial neural networks e.g., [44–50]

Typo-morphological analysis Analysis of urban structure, form and space Stochastic models,
Artificial neural metworks e.g., [51–53]

4.1. Machine Learning and Built Environment

Using ML to improve data collection and management is the priority of their users
towards the solutions to complex problems, such as urban themes. Their power is incor-
porated for building energy efficiency, allowing the analytics of its operations and the
identification of solutions to issues of performance and systems’ behavior to reduce the use
and improve the overall energy management. A typical representation of the ML use in
buildings’ optimization techniques is found in Kwok and Lee’s work [54], as is the use of
artificial neural networks (ANN) regarding the cooling predictions and increasing the level
of accuracy with the use of fixed schedules and historical data related to the occupancy.
Discussing the correlation of ML and energy, the building energy simulation (BEM) has
a major role in low energy configurations and the development of advanced skills and
knowledge towards clean energy [55].

Schoenfeld [56] cites the optimization in:

• Forecasting energy consumption to reveal trends and predict future energy uses
and assist energy planning, management or conservation to reduce the energy de-
mand and the CO2 emissions [57] and alternative evaluations for an optimized op-
eration to improve demand and supply balances [58]. Nonetheless, the demand for
data collection (especially via intelligent sensors/meters) is evident. To that point,
Ahmad et al. [59] underline the evolution of energy metering in technological terms,
while Chammas et al. [60] analyze the importance of wireless networks and IoT-based
methods for energy monitoring and relevant solutions. The literature unveils a signifi-
cant number of studies related to forecasting activities and prediction performances;
for example, Zhaond Liu [61] with respect to a highly-accurate prediction model for
the building energy load with dynamic simulations;

• Detection and prediction of faults, in which traditional models do not provide pre-
emptive interventions;

• Seasonality modeling, i.e., correlating themes to seasonal conditions.

The interest in ML use in buildings operations is rising and the AI-based solutions for
the conception (design) and operation are found in numerous scientific works (e.g., [62–65]).
On the other side, AI drives smart development and enables the advanced use of technolo-
gies for buildings’ operation and maintenance, examples are found in the HVAC systems
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or the lighting (e.g., [29,30]). Much research is being explored in AI use and integrated
systems on the themes of energy efficiency, thermal comfort, etc. Tien et al. [55] visualize
the transition from traditionalal to intelligent techniques (Figure 8).

Figure 8. Evolution from traditional to smart techniques on buildings [55].

In line with construction and design, building information modeling—commonly
acknowledged as BIM—is becoming the architectural norm to promote innovative and
optimized designs with automated processes [66]. Nonetheless, this transition took ap-
proximately 25 years to be integrated into the market [67]; Gholizadeh et al. [68] explored
the difficulties on this path, explaining that, as late as 2017, only three up to fourteen BIM
functions were widespread in practical applications. The methodologies proposed are
promising and incorporate both the design/conception and the construction processes for
information delivery as a backbone to transcend organizational boundaries and mediate
the gaps. The progress is notable considering that, in the absence of BIM and automated
processes, scholars proposed stand-alone systems to represent the buildings; examples
include HI-RISE for preliminary structural designs of tall buildings [69], SPEX for sizing
structural cross-sections [70] or EIDOCC for the design of reinforced concrete [71]. Later on,
natural language processing (NLP) was applied in design codes and regulations without
further commercialization (e.g., [45,46]).

BIM enabled the automated project performance monitoring and control systems
within the introduction of new concepts, e.g., ‘Construction 4.0’ or Digital Twins with
diverse challenges from technical or conceptual standpoints, such as the integration of
process information for comparison with monitored data and the need for sophisticated
and complex approaches to its management (e.g., [72,73]) or ineffective production for
planning and control systems [74].

Complementary to the cited approaches, Liu et al. [75] introduce the three-dimensional
approach by three different methods: original building plans, field surveys and remote
sensing technologies for the 3D interpretation of architectural features and extrapolation
of relevant data and information, such as aerial images [76], light detection and ranging
(LIDAR) data (e.g., [77,78]), satellite imagery [79] or even grouping-based stereo [80] or
mono images using shadows or digital surface models [81].

4.2. Machine Learning and Land Use

Urban planning tools employ land use and cover to provide historical insights as a base
for future urban development [82]. The land-use analysis uses remote sensing geographical
information systems (GIS) to simulate the changes and reach a strategic decision for the
designated area ([68,69]). Spatiotemporal land-use simulations as reproducible approaches
for estimations and future land transitions are driving forces to support land-use policy
decisions ([83–85]). These are relevant methods to this topic, commonly acknowledged
with rising scientific research (e.g., [86–89]) and used is the cellular automata (CA) for
the generation of urban patterns and nonlinear stochastic processes [90] and complicated
interpretations of the complexity of the bottom-up model leading to the ignorance of
land-use demand estimations [91].

On the other side, Machine Learning is becoming an imperative methodology to mon-
itor ([92–94]) and forecast ([95–97]) the land-use challenges in urban areas. Undoubtedly,
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statistical and spatial analyses proved their popularity (e.g., [98,99]). For many years,
land-use mapping and modelling of geographical, demographical and relevant data have
implicated ML as a vital tool to compose models to recognize urban configurations and
minimize prediction errors utilizing learning strategies and related drivers [100].

In reality, data-driven models by ML have recently been recognized as powerful means
for parametric approaches to land-use distribution (e.g., [101,102]) with multiple benefits,
especially in dealing with massive amounts of information and numerous variables. The
ability to model sophisticated and non-linear problems [103] used to be dependent on the
SVM and the random forest (RF) [104].

Land administration is a core topic in urban planning strategies, which requires multi-
faced information on built and non-built-up areas, functionalities, typologies and green
and public spaces, to cite some of them. Dealing with this data is a sophisticated process,
which includes open-source data provided by various repositories, commercially available
satellite images, aerial photographs, cadastral boundary extractions, 3D modelling, etc.
Nonetheless, the first stage of the territorial analysis usually demands demographic and
statistical analysis of a given population with the need for a comprehensive geospatial
database to assess the existing land use and estimate the future projections and the potential
possible changes. Depending on the research scope, Chaturvedi and De Vries [11] provide
a relevant classification in Table 2 [11].

Table 2. Land use planning indicators with measurements, data required and applications (adapted
by [11]).

Theme Indicators Data Application

Urban expansion Density, demographic profile,
built/non-built

EO-based data (e.g., classified images,
building footprints)

Classification and
simulation (CNN, etc.)

Land restrictions Land-use/cover, built/non-built-up
spaces

A master plan, land-use
regulations

Classification, and extraction of
EO products (e.g., DEM),

Land distribution Policies, demographics Census, socioeconomic data spatial logistic regression, Cellular
automata

Zoning Land-use distribution Master Plan, classified
images Planned development

Land-use changes Settlement patterns, urban growth
processes, population growth Spatiotemporal EO data Spatial metrics,

agent-based modelling

Despite the support of evidence-based algorithmic processes, few provide supportive
studies on the land-use theme; examples are found in Shafizadeh-Moghadam et al. [105]
of the benchmarking land-use probability models. Karimi et al. [106] detailed the use of
ML in land-use changes since 2011 in cellular automata, regression models, artificial neural
networks, agent-based models, true-based models and support vector machines (SVM).
ML also gained wide acceptance in transportation systems but with significant limitations
due to its dependency on agents’ predictions. Table 3 overviews the ML models on land
use based on this study.

Table 3. Machine Learning use in land-uses strategies (adapted by Karimi et al. [106]).

Machine Learning Use Scope Reference(s)

Cellular automata model (CA) Land-use analysis related to transport and mobility systems (e.g.,
roads, railways, etc.) and population density issues e.g., [107,108]

Artificial neural networks (ANN) Annual population growth and land-use
typologies e.g., [83,84]

Linear regression models Population density, land-use typology, economic centers analysis e.g., [85,86]
Agent-based models (ABM) Accessibility to functions and city infrastructure e.g., [87,88]

Decision tree model (DT) Land typologies, proximities to amenities, densities of
residential, commercial e.g., [109–115]

Support vector machines (SVM) Land-uses typologies, built and unbuilt areas e.g., [116–120]
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Nonetheless, an important challenge on this subject is the artificial absence of data
handled by classification models with the commonly acknowledged MAXENT model (max-
imum entropy) as an advanced ML method originated from information theory ([121,122]).
The cutting-edge method that the model proposes evaluates the spatial distribution and
was first adopted for the early monitoring of illegal land development in line with the
probability analysis and scenario development [123] based on the maximum entropy prin-
ciples mainly used for the estimation of sustainable natural habitats and the occurrence
probability of species, employing one-class classification of remote sensing imageries [124].
Overall, the maximum entropy algorithms minimize the amount of information and are
used in ecological modelling (e.g., [121–125]).

• An overview of the correlations of the existing works and studies of ML and urban
fields to identify the authors’ names per year (1.372 documents) (Figure 9).

Figure 9. Bibliometric analysis of ML and urban applications (authors per year), Scopus database.

• An overview of the correlations of the existing works and studies of ML and urban
fields to identify the number of citations per country (1.372 documents) (Figure 10).

Figure 10. Bibliometric analysis of ML and urban applications (citations per country), Scopus database.

5. Examples of Case-Studies

Two typical examples of the existing case-studies portfolio of urban applications and
ML implications are provided in this section, proving the importance of ML solutions to
urban planning problems.

5.1. Shanghai Urban Drainage Masterplanning

Dealing with the challenges of rapid urbanization and urban growth (15 million people,
a number that has tripled since 1990) to the impermeable area of the territory, Shanghai
faces the threat of green space reduction and, consequently, of the rise of stormwater runoff.
Considering the previous experiences of urban flooding in recent years, the city proposes
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in its master plan for a horizon of 2035 an upgraded drainage system. Drawing upon
its expertise and successful practices, ARUP, in a collaboration with the Shanghai Urban
Construction Design and Research Institute, tailored a strategy to review the traditional
approaches of drainage in the city being concentrated on the sensitive and integrated
urban design and decentralized infrastructure by applying remote sensing imagery and
ML technologies after a comprehensive territorial analysis of the elements concerning the
urban fabric of the city (Figure 11) [126].

Figure 11. Land characterization of urban typologies of Shanghai.

In 2017, the design of the drainage masterplan had the specific objective of providing
climate change adaptability and flood management strategies for the highly populated city
center with three core objectives: reducing flooding, restoring clean water and delivering
solutions to enhance the QoL in the city and the wider environment. The strategy meets
the masterplan ambitions based on the following principles [127]:

• Integrated: considering the existing strategies in line with the ‘Sponge City’ and four
elements: (a) a critical overarching system of governance mechanisms for collaboration
and synergies; (b) green spaces to promote nature-based solutions (NBS); (c) blue
equipment for flood defenses and relevant infrastructure; and (d) ‘grey’ equipment for
drainage treatment (e.g., pumps, etc.);

• Adaptive: development of flexible approaches for risk management and uncertainties;
• Smart: integration of intelligent and digitalized models for optimization and data treat-

ment of sophisticated scenarios based on planning strategies alongside the stormwa-
ter conditions.

Within the ML use, the concept was based on machine learning, artificial intelligence
and open-source observations to identify urban typologies and NBS to address the diverse
challenges proposing integrated models to improve stormwater management. Based on
this approach, remote sensing tools were used for the city scanning and the classification
of 12 categories required flooding protection to provide the necessary approaches for
targeted water management, which facilitated the decision-making processes around the
nature-based solutions beyond economics (Figure 12).

5.2. MassMotion Pedestrian Simulation

Another interesting application developed by ARUP (and commercialized through
Oasys, 2014) is the MassMotion simulation for pedestrian movements in a city within ML
use and the BIM tools use in a human-oriented design and approach. The goal of this
application is to simulate people’s movements and optimize the users’ journeys in the
city in an ‘intelligent’ way using real-time data, developing at the same time the ability to
develop and test multiple alternatives and scenarios in graphical structures and allowing
optimal decision in city planning.

Along with a 3D interface, the tool replicates the city models considering a series of
actors (agents) and their interactions with the possible planning strategy and evaluates
their roles in diverse simulation scenarios. Each of these agents has a specific origin and
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destination and an outset of microsimulations is performed with the ability to consider
alternative solutions adapted to the specific problem [128].

Figure 12. Machine Learning use the master planning area in different urban configurations.

Montjoy [129] characterized MassMotion as one of the world’s most advanced simula-
tion tools at the conception phase with strong visualization capabilities. As a stand-alone
software, MassMotion illustrates the flows and densities in peak hours, considering crucial
factors such as the speed, direction, etc., and creates geometrical models and designs for
the planning of the studied transportation hubs; for example, those of the new Trondheim
Central station (Norway) project; it defines of future conditions by developing optimized
adjustments and validates the possible scenarios to obtain a well-functioning and human-
centered station. Examples of this action are the analysis of the pedestrian patterns for
the detection of congestion hotspots or crowded spaces, visibility and safety issues and
the vertical and horizontal connections. The project lays on the flexibility of the design
choices for future expansions by using forecasted passenger data of the related functions in
complex 3D environments (Figure 13).

Figure 13. MassMotion applications in 3D complex environments.

6. Conclusions

As living laboratories, cities are facing tremendous complexities in accommodating
a growing population and meeting the challenges of climate change and equal living
for their citizens. Urban efficiency is being leveraged by uncertain environments with
increasing transformations.

Being at the intersections of computer science, statistics and informatics, ML methods
lead to more evidence-based solutions and decision-making processes along with the
proposal of the dynamics of urban drives. They meet the challenge of ‘big data’ with a
huge potential for smart and sustainable planning leading to resilient and inclusive urban
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configurations. From these perspectives, ML addresses socioeconomic issues including
the challenges of inclusiveness, poverty, and environmental and sustainability issues. The
smart city indicators related to digital integration and data management shaping a city
more intelligently and autonomously could estimate and evaluate its evolutionary trends
(e.g., land-use evolution and definition of estimated needs), anticipate phenomena (or
crises) and regulate them accordingly to better direct the growth in a long-term horizon.
ML provide new opportunities to better monitor, understand and predict the future and
guarantee the wellbeing of future generations

In this digitalized era, and with the rapid growth of computational skills and ad-
vancements in artificial intelligence, ML uses in various applications are gaining a rising
interest from scholars and practitioners and gaining popularity in many research fields.
A particular lever of their implications is being developed in the framework of smart city
development and urban design with the use of geospatial data in different aspects of the
urban system consisting of multiple tangible (e.g., land use and coverage) and intangible
aspects (e.g., social inequalities).

Reflecting the increasing interests in ML uses, several approaches have been proposed
in the existing literature towards the direction of enhancing urban dynamics that go beyond
the traditional techniques of urban modelling, which is an indispensable tool for planning
decision support. A remarkable potential for addressing urban challenges is found in ML
methods (e.g., land use/cover, energy efficiency, etc.) consisting of spatiotemporal analyses.

The key contribution of this paper has been to provide a critical angle on the ML
taxonomy with respect to its use of the urban planning sector, the methods and tools for
urban problems and associated challenges and future research directions. It discusses two
representative examples of city applications developed by ARUP. In a scoping review, the
authors discussed the insights from an urban planning view to identify the gap in specific
applications concerning built and urban environments. They also provided an overview of
the existing aspects of the field along with systematic reviews and a thorough bibliometric
analysis through a database search (Scopus) to ensure the highest academic standards and
the validity of the relevant outcomes, screening and review conduct in charting the main
components of the topic.

The ML integration into urban planning strategies will meet the evolutionary chal-
lenges in its analysis, simulation and monitoring of the future urban form and its applica-
tions. However, there is still an uneven distribution in this area with limited studies that
address the challenges and gains of its use for future urban developments. New methods
are needed to link the research on ML and urban science with the use of big data and
evidence-driven shifts in order to connect these analytic frameworks and support further
synergies and in-depth explorations of the practical issues of city challenges, and to increase
reproducibility with the construction of a common language and protocols.
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Abstract: Urban agglomeration is an essential spatial support for the urbanization strategies of
emerging economies, including China, especially in the era of mediatization. From a hybrid space
perspective, this paper invites TikTok cross-city check-in records to empirically investigate the ver-
tical and flattened distribution characteristics of check-in networks of China’s three major urban
agglomerations by the hierarchical property, community scale, and node centrality. The result shows
that (1) average check-in flow in the Yangtze River Delta, Beijing-Tianjin-Hebei, and Pearl River Delta
network decreases in descending order, forming a Z-shaped, single-point radial, and N-shaped struc-
ture, respectively. (2) All three urban agglomerations exhibit a nexus community structure with the
regional high-flow cities as the core and the surrounding cities as the coordinator. (3) Geographically
proximate or recreation-resource cities have a high degree of hybrid spatial accessibility, highlighting
their nexus role. Finally, the article further discusses the flattened evolutionary structure of the
check-in network and proposes policy recommendations for optimizing check-in networks at both
the digital and geospatial levels. The study gains from the lack of network relationship perspective
in the study of location-based social media and provides a novel research method and theoretical
support for urban agglomeration integration in the context of urban mediatization.

Keywords: urban network; hybrid space; TikTok; three major urban agglomerations of China

1. Introduction

In the context of rapid globalization, urban agglomerations, as an advanced form of
regional urbanization, formulate multiple cities into a mega-city system with continuous
spatial patterns and close functional connections. Promoting the development of urban
agglomeration has been considered an essential part of urbanization strategies in China and
even in emerging economies worldwide. Meanwhile, with the innovation of communica-
tion and information technology, the dominant urban network is no longer “local space” but
“flow space” [1]. The interaction between local space and flow space gradually transforms
the traditional hierarchical structure into a networked one [2], which further brings about
changes in spatial form, structure, and function of cities and regions [3], and the resulting
network organization eventually becomes an essential structural element of the economic
and social system. With the signing of the United States-Mexico-Canada Agreement and
the official implementation of the Horizon 2020 plan, economic and scientific cooperation
between different countries and cities has been promoted, further strengthening urban
network development [4,5]. Similarly, China has also implemented regional integration and
spatial network development policies in major urban agglomerations such as the Yangtze
River Delta Integration and the Pearl River Delta Integration [6,7]. These phenomena reflect
the importance of strengthening urban networks for spatial optimization and the high-
quality development of urban agglomerations. Therefore, identifying the flow network

Land 2023, 12, 134. https://doi.org/10.3390/land12010134 https://www.mdpi.com/journal/land
91



Land 2023, 12, 134

characteristics of urban agglomerations is vital for optimizing the regional spatial structure
and promoting regional collaborative development.

Castell [8], Hall [9], and Taylor [10] have laid the theoretical foundations for the study
of urban agglomeration networks. Related research has focused on transport, economic,
innovation, and tourism networks. Road [11,12], rail [13–15], and airflow [16,17] data were
used to characterize transport networks. Corporate headquarters branch [18,19], listed
companies’ off-site investment data [4], and energy consumption [20] data were used to
characterize economic networks. Academic papers [21,22], invention patents [23], logistics,
and transportation [24] were used to represent the innovation network structure. Ques-
tionnaires [25], online travelogue texts [26], online travel booking data [27,28], and taxi
tracks [29] were used to characterize the tourism flow network. Multiple factor flows are
used to synthetically describe the structure of urban networks within urban agglomera-
tions and provinces [30–33]. These studies explore the overall topological features and
spatial structure characteristics of urban networks and identify the characteristics of urban
networks, such as scale-free, small-world, hierarchical hierarchy, and spatial agglomera-
tion [34,35]. Chinese research mainly focuses on the major urban agglomerations, such as
the Yangtze River Delta, the Pearl River Delta, and the Beijing-Tianjin-Hebei region. It is
found that the structural characteristics of different types of flow networks exhibit different
spatial patterns. Still, the three major urban agglomerations’ structures show a shift from a
hierarchical system to a flat network and present a multi-core network shape [36,37]. Some
scholars have also suggested after comparative analysis that the Yangtze River Delta cities
have the most robust horizontal connections and the strongest integration, the Pearl River
Delta is the second, and Beijing-Tianjin-Hebei is the weakest [38]. In conclusion, the above
studies have explored the urban network structure characteristics of urban agglomerations
from a multidimensional perspective. As SMPs are increasingly integrated into residents’
daily lives and influence their travel patterns, it is necessary to dissect the mobility patterns
of media users in urban agglomerations and thus examine the impact of social media
platforms on regional integration.

The theory of hybrid space offers a new perspective on the urban agglomeration
network. With the increasing popularity of information and communication technologies,
location-based social media platforms (SMPs) have become one of the most common virtual
spaces in everyday life, linked to physical space through various geo-tagged and real-time
logging data, delimiting neospatiality with its logic and structure [39]. Souza introduces
the concept of hybrid space at the beginning of the 21st century and pointed out three
main characteristics of hybrid space as mobile and social space, namely the blurring of the
physical-digital spatial boundary, the physical carrying-in of the static-mobile interface,
and the reconfiguration of urban space [40]. Similarly, Soja proposes a triadic dialectic of
‘history-society-space’ and constructs the third space theory [41]. He points out that the
third space is a hybrid space that transcends physical space (the first space) and imaginary
space (the second space) and is composed of sensory experiences, intuitive experiences,
and abstract symbols. He asserts that the third space is characterized by complete openness,
reconstruction, and the transcendence of relations of production and space [42]. The
theory of hybrid space and third space lays the foundation for the spatial epistemology
of media and communication geography. Along with the multi-functional development
of short video applications, they can satisfy not only the essential functions of browsing,
entertainment, and recording daily life, but also multiple functions such as socializing with
fans, professional learning, and live shopping. As a result, short video applications such
as Tik Tok, Auto Quicker, and Xiaohongshu are rapidly overtaking Weibo, WeChat, and
traditional news media in terms of downloads and views. The third space it represents
breaks the long-standing binary separation between immaterial media texts and material
geographical landscapes, integrating into the space of everyday life and completing the
reproduction of spatial relations.

Hybrid spaces influence the spatial dynamics of cities and the correlation between
multiple geospatial units by shaping “communication networks”. Social annotative, or
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“check-in” behavior, is a typical spatial, social practice shaped by such correlation. Check-in
users obtain urban spatial information in digital space and then take videos in geospatial
space and upload them to digital space, thus forming a set of check-in behaviors. In this
process, check-in users, on the one hand, descend from digital space to geographic space,
driving the infiltration and interaction between digital space and geographic space; on the
other hand, they move from one space to another, strengthening the geographic interaction
between different urban spaces, and even between different cities. Previous studies have
used the number of geo-tagged images, records, comments, and check-ins to capture
people’s activities in physical space. Paldino et al. analyzed the number of geo-tagged Flickr
images [43], and Sulis et al. used spatial information recorded by Twitter to characterize
the spatial distribution of Londoners’ activities [44]. Several studies in China have also
used geolocation tags [45,46] on social networking sites, the inter-city Baidu index [47,48],
Baidu Post Bar [49,50], and Douban [51] to characterize the urban network patterns [52]
constructed by information flow. Studies on check-in behavior generally regard it as a
representation of spatial vitality, focusing on identifying the spatial characteristics of user
activity [53,54] and followership [55], but neglecting the impact of SMPs on geospatial
interactions. SMPs change the popularity of geographic space but also the mobility of
people between different geographic spatial units, shaping the spatial interaction pattern
between cities. With location-based social media embedded in daily life, social platforms
such as TikTok and Instagram have gradually replaced television advertisements as a
channel for people to obtain spatial information about cities. Social-targeted behaviors
such as visiting and check-in have become increasingly popular, intensifying the shaping
of inter-city connectedness. Therefore, we consider the hybrid space a valuable addition to
describing the urban network. It is necessary to analyze how check-in behavior shapes the
interactions between cities to respond to the increasing mediatization of cities.

Given this, the current paper adopts a hybrid space perspective to construct urban as-
sociation networks in three major urban agglomerations using cross-city check-in data from
Tik Tok and uses social network analysis to analyze the hierarchical attributes, community
scale, and node centrality of cross-city check-in networks, based on which, it attempts to
summarize the spatial organizational patterns of check-in networks.

The significance of this paper is mainly reflected in the following aspects. This paper
constructs a framework for analyzing urban networks based on a hybrid spatial perspective
and conducts a comparative study with three major urban agglomerations as a case study,
which provides a new view and method for the analysis of urban networks and urban
agglomeration integrations, and provides theoretical support for promoting the synergistic
regional development of urban agglomerations. In addition, this paper introduces Jitterbug
cross-city punch card data to characterize inter-city association patterns. It verifies the
method validity, which gains from the lack of spatial interaction in geographic annotation
behavior research, and provides new data and methods for media geography research.

The remainder of the paper is structured as follows: Section 2 introduces the study
area of this paper, the data sources, and the methods used in this paper. Section 3 shows
the results of these methods. In Section 4, we have a further discussion of these research
results. Section 5 is the conclusion of the paper.

2. Data and Methods

2.1. Study Area

The area of this paper is the three major urban agglomerations in China, i.e., the
Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Beijing-Tianjin-Hebei
(BTH) (Figure 1). Among the 19 urban agglomerations in China, the YRD, PRD, and BTH
are the three most economically active urban agglomerations, with high shares of tertiary
industries, penetration rates of geographic media facilities, and increased numbers of
media users. According to the “Statistics Yearbook of 2021 China’s Top nineteen Urban
Agglomerations (Giant Engine Urban Institute)”, the YRD, PRD, and BTH urban agglom-
erations rank among the top three in terms of TikTok online prosperity. This shows that
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the three major urban agglomerations are more mature in terms of hardware and software
for location-based social media, which is a typical model for examining the movement of
people between cities in a hybrid space.

Figure 1. Location of three major urban agglomerations of China.

2.2. Data Sources

This paper chooses the TikTok short video platform (www.douyin.com accessed on
1 August 2022) as the location-based social media check-in data source. TikTok is currently
one of China’s most popular platforms for producing and disseminating short videos. As of
June 2022, the number of active users of TikTok was 697.93 million, which ranked first in the
sector. With the increase in mobile phone penetration, short videos have become one of the
critical digital scenarios for users to access information, and the public has accepted TikTok.
To strengthen offline-online interaction and promote the physical tourism industry, the
TikTok platform has launched a series of online and offline check-in activities over the past
few years, attracting a large number of users to spontaneously share and spread the word,
leading to the creation of urban online scenes and boosting the “check-in economy” with
recreational activities as the primary purpose. Based on this, this paper writes a crawler by
Python and obtained 263,791 check-in records within the three major urban agglomerations
from 1 August to 7 August 2022 (Table 1). We pay particular attention to only the check-in
locations and origin city attached to check-in users rather than the videos themselves.
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Table 1. Cross-city check-in data samples.

Oid Date User_City Check-In_City

1 2022/8/1 Zhaoqing Zhuhai
2 2022/8/1 Foshan Zhaoqing
3 2022/8/1 Jiangmen Guangzhou
4 2022/8/1 Guangzhou Shenzhen
5 2022/8/1 Shenzhen Guangzhou
6 2022/8/1 Dongguan Huizhou
7 2022/8/1 Foshan Guangzhou
8 2022/8/1 Guangzhou Foshan
9 2022/8/1 Zhongshan Huizhou
10 2022/8/1 Guangzhou Foshan

The process of check-in behavior is usually as follows: after being attracted to a
scenario on an Internet platform, media users tend to travel to the physical space recorded
in the digital space. Then the users usually record the interaction between humans and
the physical space along with the geographic location in a short video and upload the
SMPs again, thus completing the “check-in” of a geospatial space (Figure 2). Therefore, the
check-in behavior is an offline representation of virtual space, which connects the virtual
and physical spaces and enhances the geographical interaction between different cities.
During this process, users wander through virtual and physical spaces and create more and
more artworks online, eventually improving the vitality of urban spaces and influencing
the correlation between multiple geospatial units.

 

Figure 2. Diagram of the check-in process.

2.3. Methods

The technical route of this study is shown in Figure 2 below. According to Figure 3,
our work was divided into three parts: data collection, check-in network modeling, and
network characteristics evaluation.

2.3.1. Modeling the check-in network

Drawing on the current research on travel flows based on travelogue data, we propose
the following methods to model a check-in network:

(1) Address resolution. Based on the check-in data, we locate the city from where the
check-in users originate

(
Cityorigin

)
and the city to which the check-in location belongs

(Citytarget). City names are geocoded through the AMap Web API (https://restapi.
amap.com/v3/geocode/geo?parameters, access date: 21 September 2022) to get
latitude and longitude coordinates.

(2) Data filtering. The data from the same city as Cityorigin and Citytarget are eliminated,
and the 23,301 records from different cities are retained as cross-city check-in data.
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(3) Network modeling. We aggregate cross-city check-in data according to city units and
transform it into an OD matrix. Point O is the city from which the check-in users origi-
nated (Cityorigin), point D is the city to which the check-in location belongs (Citytarget).

 

Figure 3. The technical route diagram.

Finally, the matrix was fed into the Gephi software to generate a graphical network
of check-in flows. The network type is a directed, weighted network. The network nodes
are the municipalities within the study area. The network edge weights are the check-in
flows delivered from one city to another, characterized by the sum of the above check-
in frequencies.

2.3.2. Evaluating the Characteristics of the Check-In Network

This paper mainly adopts the social network analysis (SNA) method to evaluate the
check-in network characteristics. SNA method is a quantitative analysis method developed
on the mathematical method and graph theory, which conceptualizes each subject in the
social relationship into independent points, converts various relationships between subjects
into lines, and analyzes the laws and characteristics of social structure through different
quantitative data of nodes and networks [56]. This method has been widely used in the
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urban network, urban cluster structure, and population mobility. The check-in network
studied in this paper is a mobile network of cross-city check-in holders, which belongs to
one of the types of population mobility networks, and what it characterizes is the spatial
interaction between cities in a diverse spatial perspective and explores the structure of
urban clusters, which applies to the network research paradigm.

Integrating a hybrid space perspective with existing spatial network research, this
paper selects indicators related to the social network analysis method to examine the check-
in networks of the three major urban agglomerations in terms of hierarchical property,
community range, and node centrality, respectively.

The traditional vertical town system has been impacted in the information age and
evolved into a flat structure. In a hybrid spatial perspective, the network of punching
streams is influenced by both digital and geographical space; the check-in behavior is more
likely to be embedded in the short-distance recreation function, which is more susceptible
to the geographical distance factor. Therefore, it needs to be further examined whether the
urban spatial network constructed by the check-in flow is a vertical-distributed structure or
has shifted to a flattened one. This paper examines the vertical and flattened distribution of
the check-in network by analyzing hierarchical and community characteristics, respectively.
In addition, based on the overall network characteristics portrayed above, this study
conducts individual network characteristics through node characteristics analysis.

1. Hierarchical property

The weighted degree is a fundamental indicator of complex networks. The weighted
degree in a check-in network indicates the total number of check-in flows generated in
the city. The weighted degree distribution refers to the probability of the weighted degree
of the network nodes. In this paper, we analyze the hierarchical properties among the
nodes by examining the scale-free property of the weighted degree distribution. The scale-
free property means that most nodes in a complex network have minimal weighting, but
conversely, a few nodes have a tremendous amount of weighting. Existing research on
urban networks has found that innovation, trade, enterprise, and tourism flow networks
are scale-free. Still, it remains to be examined whether check-in networks have this property.
In this paper, we use a power function in the logarithmic form to fit the scale-free property
of check-in networks. The algorithm is as follows:

Kh = P
(
K∗

h
)a (1)

ln Kh = ln P + a ln K∗
h (2)

where Kh denotes the weighted degree of node h; K∗
h denotes the ranking of the weighted

degree values of node h; P is a constant; and a denotes the slope of the weighted degree
distribution curve. The larger the value of a, the more pronounced the network hierarchy is.

Further, the natural discontinuity method is used to classify the node weighting degree
and edge weights. A spatial network map is drawn based on ArcGIS to analyze inter-city
check-in flows’ spatial vertical distribution characteristics.

In addition, we used the average weighted degree, the average degree, and the number
of nodes to examine the size of the network. The average weighted degree is the average
sum of the weighted degrees of the entire network and characterizes the average amount
of punching traffic formed by each node. The average degree is the average of the whole
network of degrees, representing the average number of cities connected per city.

2. Community scale

A community is a structural unit within a network, with relatively dense connections
between nodes within a community and sparse connections between communities, creating
a parallel rather than vertical structure. Analyzing the community structure of the check-in
network identifies the well-connected urban assemblages in a diverse spatial perspective. It
reveals the degree of flattening of the check-in network structure. The modularity algorithm
is commonly used to classify communities, which is an efficient and accurate method for
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medium-sized networks but fails to consider weighted information. This paper uses a
weighted modularity algorithm for community segmentation of check-in networks. Q-
value is a metric to evaluate the results of community segmentation. A higher Q-value
means the more significant the module segmentation feature. This means the more obvious
division between communities and the more flattening of the check-in network. A value
greater than 0.3 is generally considered to be a significant degree of network modularity.
The algorithm is as follows.

Q = 1
2m ∑i,j

[
wij − ki

kj

]
δ(ci, ci) (3)

where Q is the module degree value, wij is the edge weight between city i and j; ki and kj are
the degree values of city i and j in the unweighted network; ci and cj are the communities
into which city i and j are divided; m = 1

2 ∑i,j wij is the sum of all weights in the network.
In addition, this paper examines the small-world phenomenon of the check-in network

through the average clustering coefficient and the average path length. The network struc-
ture of sparse random long connections accompanied by rich partial connections revealed
by the small-world phenomenon is essentially an interpretation of community structure.
Established research has commonly examined whether the small-world properties of real
networks are significant by comparing them with stochastic models. Specifically, a network
is said to have a small-world phenomenon if its average clustering coefficient is much
larger than a random network. In contrast, its average path length is comparable.

3. Node centrality

This paper applies weighted degrees to examine the intensity of check-in flows. It
assesses whether cities prefer to export or receive check-in flows in a cross-city network
by comparing the weighted indegree with the weighted-out degree. The activities carried
out by the cross-city check-in flows regulate income distribution by tourism consumption.
The difference is that, in a hybrid space perspective, the outward flow of check-in from
the city reflects the flow of economic factors. It can also be interpreted as a flow of media
resources. As a participant in mobile social media, the act of check-in across cities can
be interpreted as carrying media resources into another city and sharing media resources
through the act of check-in. Thus, the weighted out-degree is a measure of a city’s capability
to export check-in users or media resources, while the weighted in-degree is the one to
attract check-in users or provide check-in users places to the outside world.

Based on existing research, Node Symmetry is applied to reflect the inflow and outflow
of individual nodes.

NSIi =
Sin

i − Sout
i

Sin
i + Sout

i
(4)

Sin
i denotes the weighted in-degree of node i and Sout

i denotes the weighted out-degree
of node i. If NSIi is greater than 0, it means that the city is an input-flow city; if NSIi is
equal to 0, it means that the city is a balanced-flow city; if NSIi is less than 0, it means that
the city is an output-flow city.

Compared to the city delivering the check-in flow, the city receiving the check-in flow
is where the check-in behavior occurs. In the node evaluation of the urban network, the
weighted in-degree can be used to assess the visibility of a city in digital space as it more
intuitively characterizes the frequency of completion of check-in behavior. However, the
weighted in degree only takes into account the total volume aggregated by a city, but not
the number of cities towards that city, thus losing the overall network perspective in terms
of examining the importance of city nodes. This feature has been confirmed in numerous
network studies and is also reflected in check-in networks. In detail, a node may gather a
large amount of check-in flow that originates from one city while not connected to other
cities. It is structurally at the edge of the network. Such nodes do not significantly shape
the network’s structure, and their importance is relatively limited.
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The PageRank algorithm avoids the isolated perspective of the weighted in degree
described above and examines the node’s importance in link quantity and quality. It is,
therefore, widely used for identifying core nodes in directed networks such as virtual com-
munities, academic collaboration networks, and social networks. The PageRank algorithm,
proposed by Google, is an algorithm for ranking the importance of web pages. The core
idea is that the extent of a page on the World Wide Web depends on the number and volume
of the other pages pointing to it and that pages pointed to by multiple high-importance
pages will also have high priority. The algorithm measures the extent of a node by its
PageRank value (PR). The formula is as follows:

PRi = ∑
j∈Bi

PRj
Nj (5)

where i and j denote nodes, PRi and PRj denote their PR values, Bi denotes the set of nodes
pointing to node i, and Nj denotes the number of nodes pointed to by node j. PageRank
defines a random wander model, a first-order Markov chain, on a directed graph that
describes the behavior of random wanderers visiting individual nodes at random along
the directed graph. Through iteration, a stable PR is eventually computed for all nodes in
the network. Based on this, the PageRank algorithm can be understood as modeling the
probability of a user’s attention reaching each web page on the Internet.

This algorithmic mechanism for modeling the flow of attention has theoretical appli-
cability to the analysis of check-in networks. In a hybrid space perspective, digital space
overlaps with geographical space. The media user’s attention first flows in the digital space,
then descends to the geographic space through the check-in behavior to transform into a
check-in flow. As the check-in behavior is completed, it is uploaded to the digital space
again to enhance the attention of the check-in place. Accordingly, the PageRank algorithm
can be applied to the check-in network to simulate the probability of a media user arriving
in each city in an urban agglomeration and completing a check-in behavior. The higher the
PR of a city, the greater the mixed spatial accessibility.

3. Results

3.1. Hierarchical Attributes

The hierarchical characteristics of the three city clusters are prominent. In terms of
statistical indicators, the highest average weighted degree of the check-in network of the
three urban agglomerations is in the YRD, with BTH and the PRD in decreasing order,
while the most apparent vertical hierarchical feature of the network is in BTH, with the PRD
and YRD in decreasing order. Spatially, the check-in network of YRD shows a Z-shaped
skeleton with Suzhou, Shanghai, and Hangzhou as the core. The PRD check-in network
shows an N-shaped structure with Guangzhou and Shenzhen as the core. The BTH check-in
network shows a Beijing single-point radiation-type core skeleton. The specific results are
as follows.

First, the highest average weighted degree of the check-in network of the three urban
agglomerations is the YRD, with BTH and the PRD in decreasing order (Table 2). Each YRD
city is connected to an average of 10.077 cities in the check-in network, and the average
check-in flow of each city is 433, which is much higher than that of BTH (293.357) and
PRD (264.556). The weighted degree distributions of the three networks all conform to
the power-law distribution (R2 > 0.8), indicating that they are scale-free networks. It also
illustrates the fact that a small number of cities create large-scale check-in flow, while the
majority of cities create only a minimal amount. In addition, the distribution fit coefficients
of check-in networks of YRD, PRD, and BTH are 0.91903, 0.96918, and 1.02552, respectively,
indicating that the vertical hierarchy of the network is most clearly characterized by BTH,
with the PRD and YRD diminishing in that order (Figure 4).
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Table 2. Topological eigenvalues of check-in network of three major urban agglomerations.

Eigenvalues YRD PRD BTH

Number of nodes 26 9 14
Average degree 10.077 5.111 6

Average weighted degree 433 264.556 293.357
Fit coefficient (a) −0.91903 −0.96918 −1.02552

Figure 4. Fitting results of the weighted degree distribution of check flow network of three major
urban agglomerations.

Further, we divide the nodes and edges into five levels according to the weighted de-
gree and edge weight by the natural breakpoint method and draw the networks’ topological
map and spatial distribution map based on Gephi and ArcGIS, respectively (Figure 5).

In the YRD check-in network, the first level nodes include Shanghai (3112), Suzhou
(2859), and Hangzhou (2121), and the first level edges include Shanghai-Hangzhou (403)
and Shanghai-Suzhou (388), which forms the open triangle pattern. At the second level,
Hangzhou connects to Huzhou, Shaoxing, and Jiaxing, strengthening the internal check-in
connection of Zhejiang Province cities. The third level emerges with cities south of the
Yangtze River in Jiangsu Province, such as Nanjing (1535), Yancheng (973), Changzhou (840),
and Nantong (735), as well as Zhejiang Province cities, such as Ningbo (911) and Jinhua
(771), generating check-in flow among cities within each province. The fourth level mainly
includes check-in connections among existing nodes. At the same time, Anhui Province
cities such as Hefei and Wuhu also emerge and form less intense check-in connections with
Suzhou Province cities such as Nanjing, Chuzhou, and Suzhou. Chizhou and Tongling
appear in the fifth level, complementing all YRD cities.

In the PRD check-in network, Guangzhou-Foshan forms the first level with an edge
weight of 799. At the second level, Shenzhen, as the core, connects to Dongguan and
Huizhou with edge weights of 545 and 481, respectively. At the third level, Guangzhou
forms the two-way links with Shenzhen-Dongguan and Foshan. Huizhou also establishes
connections with Guangzhou and Dongguan, strengthening the relationship between the
central and eastern cities. At the fourth and fifth levels, Zhuhai, Jiangmen, and Zhongshan
emerge, yielding a relatively lower check-in connection.

In the BTH check-in network, Beijing, as the core, connects to Langfang and Baoding
with edge weights of 417 and 282, respectively, forming the first and second levels. At the
third level, Beijing complements the two-way links with Langfang and Baoding on the one
hand. It connects to Shijiazhuang, Tianjin, Chengde, Handan, and Zhangjiakou on the other
hand. At the fourth level, Beijing complements the two-way connection with Qinhuangdao,
Cangzhou, and Xingtai. At the fourth and fifth levels, relationships are formed mainly
among nodes outside Beijing.
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Figure 5. Topology and spatial distribution of the check-in networks of three major urban agglomera-
tions (a), YRD; (b), PRD; (c), BTH.
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In general, the check-in network of YRD is spatially centered on Suzhou-Shanghai-
Hangzhou, forming a Z-shaped spatial structure. The PRD network forms the N-shaped
spatial structure, with Guangzhou and Shenzhen as the dual cores. The BTH check-in
network forms a single-point radial spatial structure with Beijing as the core.

3.2. Communities Scale

The three check-in networks show obvious small-world characteristics, but the flatten-
ing characteristics are immature, and the community division needs to be further clarified.
The community division of the three major urban agglomerations shows a spatial structure
with the regional high check-in flow cities as the core and the neighboring cities as the
coordinator. The specific results are as follows.

First, a small-world network has a similar average shortest path and a more significant
clustering coefficient when compared with a random network of the same size [57]. The
check-in networks of three urban agglomerations show small-world characteristics (Table 3).
Specifically, the average clustering coefficients of the YRD, BTH, and PRD networks are
0.658, 0.626, and 0.597, respectively, which are larger than the average clustering coefficients
of the random networks. The average path lengths of the YRD, BTH, and PRD networks are
1.6, 1.556, and 1.361, which are smaller than those of the random networks. It means that the
networks are characterized by high aggregation and high topological accessibility, which
further confirms the small-world characteristics of the three check-in networks. Among the
three agglomerations, the average clustering coefficient of the check-in network of YRD is
the largest, indicating it has the most significant small-world characteristics and the highest
degree of flatness.

Table 3. Small-world of check flow network of three major urban agglomerations.

Index YRD BTH PRD

Average clustering coefficient 0.658 (0.377) 1 0.626 (0.435) 0.597 (0.586)
Average path length 1.6 (1.623) 1.556 (1.571) 1.361 (1.375)

1 The eigenvalues of the actual network and the eigenvalues of the zero model are shown in parentheses. The
zero model is a random network with the same number of nodes and edges as the actual network, computed
by Gephi.

Second, we used the weighted modularity community detection algorithm for the
three check-in networks. The urban communities in each network were obtained, as shown
in Figure 6, and the community attributes were shown in Table 4. The modularity of the
three networks is below 0.3, indicating that the communities are not clearly divided, which
further reflects that none have significant flat distribution characteristics.

 

Figure 6. Community distribution of three major urban agglomerations.
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Table 4. Community statistics of three major urban agglomerations.

Urban
Agglomeration

Community
Number

Number of
Nodes

Density Flow Flow Ratio Core City

YRD 1 11 0.82 4519 39.96% Shanghai, Suzhou, Nanjing
YRD 2 8 0.75 2688 23.77% Hangzhou
YRD 3 7 0.355 522 4.62% Hefei
PRD 1 6 0.835 2569 39.95% Guangzhou
PRD 2 3 1 1728 26.87% Shenzhou
BTH 1 11 0.59 3421 83.01% Beijing
BTH 2 3 0.665 125 3.03% — —

The modularity of the YRD network is the highest (0.278). It emerges three major
communities based on provincial boundaries. Specifically, there are 11 cities in community
1, with nearly 40% of the YRD check-in network. In this community, Shanghai is the core
and connects cities in Jiangsu Province. In addition, Chuzhou in Anhui Province is also
integrated into this community by emerging a close connection with Nanjing. In community
2, there are 8 cities and 23.77% check-in flow. Hangzhou is the center, connecting cities in
Zhejiang Province. Community 3 has a shallow check-in flow (4.62%). As the center of the
community, Hefei connects cities in Anhui Province.

The PRD check-in network has a low modularity (0.195) and forms two communities
on the east and west sides of the Pearl River Estuary. Community 1 emerges the trian-
gle structure of Shenzhen-Dongguan-Huizhou with 26.87% of the PRD check-in network.
Other cities from the PRD form community 2 with 39.95% check-in flow. In this commu-
nity, Guangzhou-Foshan-Zhaoqing is the core triangle, connecting Zhuhai, Zhongshan,
and Jiangmen.

The BTH check-in network has the lowest modularity (0.058), forming two significantly
unbalanced communities. Beijing, as the core, coordinates and organizes the surrounding
cities, creating community 1 with high check-in flow (83.01%). Anyang, Xingtai, and
Handan are not included in community 1 because they are at the periphery of the urban
agglomeration but form community 2 with a low check-in flow (3.03%).

3.3. Node Centrality

Through the node centrality analysis, we found that megacities such as Beijing, Shang-
hai, Guangzhou, and Shenzhen perform as an outward export type, sending many media
resources outward and promoting the integration of urban agglomerations. Cities with geo-
graphical proximity to the core nodes or specific recreational resources, such as Dongguan,
Foshan, and Chengde, have a stronger weighted indegree and present inward aggregation
type. These cities have hybrid spatial accessibility. The specific results are as follows.

4. Node weighted degree and NSI

This paper assesses a city’s ability to generate check-in flow by node weighted de-
gree and evaluates whether a city is an inward aggregator or outward exporter by nodal
symmetry (NSI) (Table 5). Shanghai and Hangzhou are the two centers of check-in flow
generated in YRD with a weighted degree of 2208 and 1588, respectively. The difference
is that Shanghai shows apparent spillover, with the weighted out-degree (2208) being
much higher than the weighted in-degree (904), with an NSI of −0.419, while Hangzhou is
relatively balanced (−0.111). The check-in flow of Suzhou, Nanjing, and Wuxi are above
1000, with Nanjing showing some spillover (−0.165) and the other two cities showing a
not-so-subtle aggregation phenomenon (0.05). Yancheng, Hefei, Ningbo, and Jiaxing all
have a weighted degree above the average value (870). In contrast, the weighted degree
of other cities is relatively low, most of which show strong aggregation characteristics,
especially Zhoushan (0.785), Huzhou (0.575), Nantong (0.376), and Zhenjiang (0.359). These
cities have created many internet-famous spots with their high-quality tourism resources
and become important nodes for gathering check-in flow.
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Table 5. Node attributes of check-in network of three major urban agglomerations.

YRD 1 PRD

City WID 2 WOD 2 WD 2 NSI PR City WID WOD WD NSI PR

Shanghai 904 2208 3112 −0.42 0.091 Guangzhou 1243 2003 3246 −0.234 0.214
Hangzhou 1271 1588 2859 −0.11 0.109 Foshan 1254 754 2008 0.249 0.158

Suzhou 1116 1005 2121 0.052 0.082 Dongguan 1059 821 1880 0.126 0.14
Naning 641 894 1535 −0.17 0.058 Shenzhen 777 1649 2426 −0.359 0.136
Wuxi 654 585 1239 0.056 0.054 Huizhou 974 310 1284 0.517 0.112

Yancheng 389 584 973 −0.2 0.032 Zhongshan 445 222 667 0.334 0.085
Hefei 430 497 927 −0.07 0.036 Jiangmen 233 223 456 0.021 0.056

Ningbo 510 401 911 0.12 0.056 Zhuhai 221 154 375 0.178 0.049
Jiaxing 501 405 906 0.106 0.035 Zhaoqing 225 295 520 −0.134 0.046

Changzhou 539 301 840 0.283 0.044 Average value 715 715 1429 0.077 0.111

Jinhua 408 363 771 0.058 0.037 BTH

Nantong 506 229 735 0.377 0.035 City WID WOD WD NSI PR

Huzhou 570 154 724 0.575 0.041 Beijing 664 1668 2332 −0.43 0.223
Shaoxing 473 197 670 0.412 0.042 Langfang 539 464 1003 0.074 0.081

Taizhou-J 3 246 284 530 −0.07 0.024 Baoding 474 499 973 −0.025 0.072
Taizhou-Z 3 291 204 495 0.176 0.029 Shijiazhuang 318 358 676 −0.059 0.063
Zhoushan 431 52 483 0.785 0.045 Tianjin 339 224 563 0.204 0.059

Wuhu 225 229 454 −0.01 0.022 Zhangjiakou 386 52 438 0.762 0.065
Chuzhou 223 224 447 −0 0.02 Chengde 346 77 423 0.635 0.155
Yangzhou 172 269 441 −0.22 0.016 Handan 202 209 411 −0.017 0.042

Anqing 161 222 383 −0.16 0.017 Xingtai 206 142 348 0.183 0.039
Xuancheng 190 158 348 0.092 0.018 Tangshan 166 128 294 0.129 0.051
Zhenjiang 210 99 309 0.359 0.021 Cangzhou 141 152 293 −0.037 0.029
Maanshan 77 101 178 −0.14 0.013 Qinhuangdao 248 18 266 0.864 0.081
Chizhou 104 57 161 0.292 0.012 Hengshui 92 64 156 0.179 0.022
Tongling 68 0 68 1 0.01 Anyang 0 66 66 −1 0.011

Average value 435 435 870 0.122 0.038 Average value 294 294 589 0.105 0.071
1 The weighted degree refers to the total weighted degree, which is the sum of the Weighted in-degree and
Weighted out-degree. 2 WID refers to Weighted in-degree, WOD refers to Weighted out-degree, WD refers to
Weighted degree. 3 Two cities in the YRD are called Taizhou. In order to distinguish, Taizhou in Zhejiang Province
is named Taizhou-Z, and Taizhou in Jiangsu Province is named Taizhou-J in this paper.

In PRD, Guangzhou (3246) and Shenzhen (2426) have the highest weighted degree
and both show strong spillover characteristics (−0.234, −0.359), indicating that a large
number of check-in flows are delivered to other cities in PRD from these two cities. Due
to the geographical proximity to Guangzhou and Shenzhen, Foshan and Dongguan have
a high check-in flow, which is 2008 and 1880, respectively, and show strong aggregation
characteristics (0.249, 0.127). The weighted degrees of other cities are below the average
value (1429), among which Huizhou, Zhongshan, and Zhuhai show strong aggregation
characteristics, especially Huizhou with weighted indegree and NSI as high as 974 and
0.517, respectively. These cities are the strongest aggregation in PRD, reflecting tourist cities’
ability to gather social media resources from outside.

The only core node in BTH is Beijing, with a weighted degree of 2332. It far exceeds
those of Langfang (1003), Baoding (973), and Shijiazhuang (676). In addition, Beijing also
shows significant spillover characteristics (−0.431), while the check-in flow of Langfang
and Baoding is relatively balanced, with no obvious spillover or aggregation characteristics.
The other cities are all weighted below the average value (588). It is worth noting that
the other cities, although all weighted below the mean (588), generally show a strong
aggregation. In particular, Zhangjiakou (0.762), Chengde (0.636), and Qinhuangdao (0.865),
although not sending strong outward check-in flows (<450), attract a large number of media
users originating from Beijing through their positioning as suburban Beijing tourist cities.
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5. PageRank

PageRank (PR) is applied to simulate the probability of media users arriving and com-
pleting the check-in behavior in each city and further examine the hybrid space accessibility
of each city. In YRD, the PR of Hangzhou is the highest (0.109), indicating that media
users in YRD have the highest probability of arriving in Hangzhou for check-in activities.
Suzhou, Nanjing, Ningbo, Wuxi, Zhoushan, Changzhou, Shaoxing, and Huzhou follow
with Hangzhou, with PR above the average (0.047), among which Zhoushan, Changzhou,
Shaoxing, and Huzhou are all weighted below the average. It indicates that although these
cities do not generate a very high check-in flow, they are the media resource input for many
cities with a large amount of check-in flow.

In the PRD, Guangzhou has an absolute advantage in PR (0.214), gathering a wide
range of check-in flow from various cities. Foshan (0.159) and Dongguan (0.140) have
a high PR by gathering check-in flow from Guangzhou and Shenzhen, reflecting the co-
location effect of Guangzhou-Foshan and Shenzhen-Dongguan. On the contrary, although
Shenzhen’s weighted degree is significant, it only has a small amount of check-in flow from
big weighted degree cities due to its outward-oriented export characteristics. It leads to
Shenzhen’s lower PR (0.137) than Foshan and Dongguan’s.

With the highest PR of 0.224, Beijing is the primary node for gathering check-in flow
from other cities in the BTH region. Although Chengde and Qinhuangdao have a lower
weighted degree, they attract check-in flow from several high check-in flow nodes through
their high-quality tourism resources. Their PRs are second only to that of Beijing, with
0.156 and 0.081, respectively. In contrast, although Langfang and Baoding both have higher
weighted degrees, they are less connected to other nodes as most of the check-in flow
originates from Beijing only. They are at the edge of the network structure and therefore
do not lead in PR. The other cities have lower PR than the average (0.071) and thus lower
accessibility in the hybrid space due to the long geographical distance from Beijing and the
lack of recreational resources to attract mobile media.

4. Discussion

4.1. Key Findings and Significance of This Study

As mobile Internet devices represented by cell phones are increasingly integrated into
people’s daily lives, social media platforms, such as TikTok and Facebook, have become
virtual places to experience, shape, and communicate city imagery. It leads to an increase
in the popularity of geo-tagging and the dissolution of the boundaries between urban
geospatial and digital spaces, resulting in hybrid spaces. Existing studies have focused
on the impact of SMPs on urban spatial dynamics while neglecting the ability to influence
cross-city connections at a more macroscopic scale. On the other hand, the integration of
urban agglomerations is the current theme of regional research. In the face of the increasing
trend of urban mediatization, it is necessary to examine the impact of geo-tagged behavior
on regional integration. We invite the TikTok data to conduct the check-in networks of
YRD, PRD, and BTH. The structural features of the check-in networks are examined in
terms of hierarchical attributes, community scale, and node centrality. The study yields
some interesting findings:

The first important finding of this paper is that YRD, PRD, and BTH respectively ex-
hibit Z-shaped, N-shaped, and single-point radial spatial distribution as well as the vertical
hierarchical characteristics of check-in networks. This spatial distribution is similar to the
urban network structure of the three major urban agglomerations in terms of service [36]
and finance [37]. In terms of urban system structure, the YRD has the most robust flattening
characteristics, followed by the PRD and BTH. This is consistent with the results of compar-
ative studies on integrating the three major urban agglomerations [51,58]. The innovative
finding of this paper is that the flatness is weaker, and the vertical distribution feature is
stronger in the check-in network compared to the demographic migration network, such
as the tourism network [38]. This may be because check-in behavior is more in line with
the characteristics of short-distance leisure behavior, and the distance friction effect of
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the check-in network is more significant. The behavior of check-in users is motivated by
recording geospatial experiences to build virtual personality and media image. In this
quality, the urban spatial experience is as important as arriving at the destination and
recording electronically. Therefore, geographic distance becomes an essential influencing
factor. This is a powerful response to the question of the death of geography. The second
important finding of this paper is that the megacities such as Beijing, Shanghai, Guangzhou,
and Shenzhen perform as an outward export type, sending many media resources out-
ward and promoting the integration of urban agglomerations. Cities with geographical
proximity to the core nodes, such as Dongguan, Foshan, and Chengde, have a stronger
weighted indegree and present inward aggregation type. This is somewhat inconsistent
with the role exhibited by mega-cities in existing tourism networks [38,59]. According to
the established theories, the hub role and agglomeration effect of core cities in the network
are the fundamental driving force for their growth into mega-cities, which attract more
flows than those sent outward [60,61]. While the innovative finding of this paper is that
cities with high check-in flow tend to send outward check-in flow more than gathering
check-in flow. Guangzhou, Shenzhen, Shanghai, and Beijing all demonstrate the diffusion
effect. This is a manifestation of shared media resources. When high-ranking cities send
check-in flow to low-ranking cities, they also send media resources. With the geo-tagging
behavior of check-in in high-ranking cities, low-ranking cities will further expand their
visibility in digital space. It is helpful to promote the balanced development of cities in
urban agglomerations.

In addition, this paper also found that cities with high-quality tourism resources can
break the geographical proximity effect to a certain extent and be fed into the check-in flow
by multiple cities, thus becoming essential nodes in the check-in network. This feature
can be seen when comparing the node characteristics of Chengde and Langfang in the
BTH check-in network. Langfang gathers a large number of check-in flow from Beijing
through its proximity to Beijing but is not strongly connected to other cities except Beijing.
In contrast, although Chengde is relatively far from other cities, it plays a pivotal role in
the network structure by attracting check-in flow from many cities through its high-quality
tourism resources. It is essential to notice that Zhuhai, a famous tourist city in PRD, is
recognized as a core node in established tourism flow network studies but is at the edge of
the network in this study. This is partly due to its distance from Guangzhou and Shenzhen.
On the other hand, it is because of the significant decline in tourism activities in Macau
due to the COVID-19 epidemic, and as the spatial hinterland of Macau tourism, Zhuhai’s
tourism industry is also more significantly affected, especially the number of cross-city
types of tourism activities is sharply reduced.

4.2. Spatial Organizational Pattern of Three Major Urban Agglomerations

The spatial organization patterns of the check-in networks of three urban agglom-
erations are plotted (Figure 7) to analyze whether the spatial structures of the urban
agglomerations maintain a vertical distribution structure or have shifted to a flattened
distribution from a hybrid space perspective. In general, the check-in networks of the three
urban agglomerations still maintain a vertical structure with a strong hierarchy but also
show a tendency to evolve into a flattened structure. The YRD urban agglomeration has
the strongest characteristics of a flat structure, the BTH urban agglomeration has the most
significant vertical structure, and the PRD is in the middle of the two.

The YRD presents a composite spatial organization model with multi-level cores. As
the first spillover core of YRD, Shanghai spreads the check-in flow to all cities in the YRD
in a hierarchical manner, forming a composite spatial organization model of one main
and many vice. Hangzhou, Suzhou, Nanjing, and Hefei are the major cities that carry the
check-in flow from Shanghai, playing the role of the regional core hub of Zhejiang Province,
Suzhou Province, and Anhui Province. Among them, Hangzhou, as the capital of Zhejiang
Province, promotes the descending of the check-in flow inside the province, gathering the
check-in flow and then passing it to normal node cities such as Huzhou, Jinhua, Shaoxing,
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and Jiaxing. Because the check-in flow among general nodes is small, Zhejiang Province
constitutes a spatial organization pattern of monocentric diffusion. In contrast, Jiangsu
Province presents a polycentric network structure since cities in the province are closely
connected and have a balanced check-in flow intensity. In Anhui Province, Hefei is the core
city, but it has a low card flow with the neighboring cities, and the peripheral nodes are
less connected, which constitutes a monocentric discrete spatial organization pattern.

Figure 7. Spatial organizational patterns of three major urban agglomerations.

The PRD presents a balanced double-group model with a double-core structure.
Guangzhou and Shenzhen, as the dual cores, coordinate the surrounding cities to form a
relatively balanced double cluster model, namely the Pearl River west coast cluster with
Guangzhou as the core and the East Coast Cluster with Shenzhen as the core. Foshan,
Dongguan, and Huizhou carry the main check-in flow from the core cities because of their
geographical proximity, while other cities such as Zhaoqing, Jiangmen, and Zhongshan are
at the edge of the network due to their distance from the core nodes.

The BTH presents a core-periphery model with a single-center radial structure. Beijing,
as the core of BTH, connects with other cities, which presents the single-center radial
structure. The intensity of check-in flow decreases with the geographical distance from
Beijing, forming the core and the periphery communities.

5. Conclusions

The widespread application of SMPs has changed the mobility between cities in hybrid
spaces. This paper proposes a method and analysis system for the construction of urban
punching flow networks from the perspective of hybrid space and conducts an empirical
study on three major urban clusters in China using Jitterbug cross-city punching data. The
hierarchical attributes, community scope, and node centrality are analyzed, and the vertical
and flat distribution characteristics are examined. The results are as follows.

(1) The highest average weighted degree of the check-in network of the three urban
agglomerations is the YRD, with BTH and the PRD in decreasing order. The most apparent
vertical hierarchical feature of the network is BTH, with the PRD and YRD in decreasing
order. In terms of space, the YRD check-in network presents a Z-shaped skeleton with
Suzhou-Shanghai-Hangzhou as the core. The PRD check-in network presents an N-shaped
structure with Guangzhou and Shenzhen as the dual-core. The BTH check-in network
presents a Beijing single-point radial core skeleton.

(2) The three check-in networks show prominent small-world characteristics, but the
community division needs to be further clarified and the flattening characteristics are still
immature. The community division of the three major urban agglomerations shows a
spatial structure with the regional high check-in flow cities as the core and the neighboring
cities as the coordinator. Among them, the YRD forms three communities based on the
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provincial boundary effect, the PRD forms two communities on the east and west sides of
the Pearl River Estuary, and BTH creates a core community and a peripheral community.

(3) Due to the enormous population scale, SMPs penetration rate, and many internet
celebrity spaces, megacities such as Beijing, Shanghai, Guangzhou, and Shenzhen are
the core nodes of each check-in network. Generally, they perform as an outward export
type, sending many media resources outward and promoting the integration of urban
agglomerations. Cities with geographical proximity to the core nodes or specific recreational
resources, such as Dongguan, Foshan, and Chengde, have a stronger weighted indegree
and present inward aggregation type. These cities have a solid hybrid spatial accessibility
and act as network hubs to shape the formation of check-in networks by gathering media
resource inputs from multiple cities.

The primary significance of this paper is as follows. (1) We introduce the hybrid space
perspective to study urban agglomeration integration and respond to the increasing trend
of mediatization. (2) We introduce the cross-city check-in data of TikTok and conduct a
modeling method and framework for the check-in network, which provides new data and
methods for inter-city association pattern research and communication geography. (3) The
structure of check-in networks in three major Chinese urban agglomerations is studied in
comparison, providing theoretical support for the integration of urban agglomerations.

In addition, suggestions can be made to optimize the check-in network and enhance the
integration pattern of urban agglomerations at digital and geospatial levels. (1) On the one
hand, by actively releasing short videos on the theme of cultural tourism, tourism resource-
based cities can portray cities’ leisure and cultural labels to enhance the visibility and
attractiveness of cities in the digital space. On the other hand, through short video content
or short video recommendation mechanism, cities can strengthen the virtual connection
of specific city combinations in the digital space and deepen the intention of co-location,
thus promoting media users to travel between cities. (2) In the geographic space, on the
one hand, the attractiveness of cities to media users is enhanced by creating high-quality
recreational spaces, and the conversion mechanism of online enthusiasm-offline vitality is
strengthened. On the other hand, the transportation infrastructure is optimized to improve
inter-city accessibility, thus reducing the frictional effect of geographical distance and
promoting the offline mobility of media users across cities.

This study also has some limitations that are worth exploring further. First, in terms
of data, although TikTok is the SMPs with the largest share of users in China, there is
other software such as RED and Kuaishou. The number of users in the software is also
large, and there are differences in user characteristics. For example, female users dominate
RED, and users in small cities and rural areas dominate Kuaishou. Therefore, using only a
single software may miss certain media users, resulting in inaccurate study results. We will
combine data from multiple SMPs for future analysis. Second, in terms of methods, the
node centralities metrics used in this paper need to fully reveal the importance of each node
in the check-in flow network. In the node centrality analysis, the metrics used in this paper
mainly examine the importance of cities in terms of check-in flow. However, examining
the nodes’ characteristics from the topological structure features is also essential. Other
node centralities metrics in SNA can be used in the future to fully reveal the functions
played by cities in the check-in network. For example, intermediary centrality can be used
to analyze the hub role of nodes in the network, and proximity centrality can be used to
analyze the topological accessibility of nodes in the network. Third, it should be clarified
that check-in activity represents only one type of spatial activity and is more inclined to
describe leisure and recreational activities. It cannot fully characterize the spatial activities
of urban agglomerations. This type of data can be combined with other types of activity
data for further study. In addition, this study has only described and summarized the
network characteristics of check-in flow. It is hoped that methods such as ERGM can be
introduced in future studies to analyze the mechanism further. In addition, this paper
selects a specific time cross-section, which can be extended to multiple time cross-sections.
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Abstract: Rural–urban immigration, regional wars, refugees, and natural disasters all bring to
prominence the importance of studying urban growth. Increased urban growth rates are becoming
a global phenomenon creating stress on agricultural land, spreading pollution, accelerating global
warming, and increasing water run-off, which adds exponentially to pressure on natural resources
and impacts climate change. Based on the integration of machine learning (ML) and geographic
information system (GIS), we employed a framework to delineate future urban boundaries for future
expansion and urban agglomerations. We developed it based on a Time Delay Neural Network
(TDNN) that depends on equal time intervals of urban growth. Such an approach is used for
the first time in urban growth as a predictive tool and is coupled with Land Suitability Analysis,
which incorporates both qualitative and quantitative data to propose evaluated urban growth in
the Greater Irbid Municipality, Jordan. The results show the recommended future spatial expansion
and proposed results for the year 2025. The results show that urban growth is more prevalent in
the eastern, northern, and southern areas and less in the west. The urban growth boundary map
illustrates that the continuation of urban growth in these areas will slowly further encroach upon
and diminish agricultural land. By means of suitability analysis, the results showed that 51% of
the region is unsuitable for growth, 43% is moderately suitable and only 6% is suitable for growth.
Based on TDNN methodology, which is an ML framework that is dependent on the growth of urban
boundaries, we can track and predict the trend of urban spatial expansion and thus develop policies
for protecting ecological and agricultural lands and optimizing and directing urban growth.

Keywords: machine learning; Artificial Neural Network (ANN); GIS; urban growth; land suitability
analysis; Time Delay Neural Network (TDNN)

1. Introduction

The urbanization process means transforming rural society into an urban one accom-
panied by changes in the landscape. However, urban expansion denotes transforming
vacant land or natural environment to constructed urban fabrics including residential,
industrial and infrastructure development [1].

In the year 1800 CE, the global urban population was about 3%; however, in the 1950s,
this had increased to 30%, while studies in the 2000s indicated that more than 47% of the
world’s population was living in urban areas [2]. Based on both World Bank statistics for
2015 and the United Nations 2014 revision, the urban population now constitutes about
53.857% of the global population. In the study area of Jordan, the urban population reached
83% in 2014, which is an alarming percentage [3]. Estimates for 2050 indicate a further 12%
increase in urban population globally, with Jordan specifically facing a 6% increase. More
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developed regions are no exception, with the urban population expected to reach 89% by
2050 in Jordan [3].

Understanding the urbanization process is no easy task, since it has evolved over the
years as a result of a complex network of changes in human behavior or land use policy
in addition to societal pressures and activities in cities making difficult any measured
urban development, such as the effects of ethnicity, religion, culture, and lifestyle on spatial
growth in urban areas [4].

Some countries were aware of the urban growth early in the 20th century. For example,
the UK introduced laws that, if implemented, would ensure a greenbelt policy is followed
to control sprawling [5]. More studies in America and China referred to it as an urban
development boundary (UDB) providing guidelines for the decision-makers to control
and plan urban boundaries [6]. The urban growth boundary (UGB) became the focus of
many studies especially the ones using artificial intelligence [7]. Some studies refer the
expansion to the growth in economic urban activities, while others consider it the main
result of population growth [8]. Regardless of the reasons, the negative consequence is the
encroachment of agricultural and ecological land usage, culminating in urban sprawl [9].
The outstanding growth in relation to the demand for expansion made it necessary to
plan for future growth, and models such as Future Land Use Model (FLUS), Markov,
Patch-generating Land Use Simulation (PLUS) and Artificial Neural Network (ANN) are
employed to predict Land Use Land Cover (LULC) change [7,9–11]. Some Remote Sensing
(RS) research offers essential information on LULC change in connection to Land Surface
Temperature (LST) that is valuable for predicting changes that may impact climate change
and assist policymakers in developing effective land resource management plans [12,13].

Over the years, urban growth models have proven to be effective in describing and
predicting urban development, providing sufficient information to help planners make
informed decisions about urban planning. An Artificial Neural Network (ANN) is used
to find the urban growth boundary and is increasingly used in many fields because of
its powerful attributes and software flexibility, especially since urban growth is highly
non-linear through time [7,14].

Tayyebi et al. [7] used ANN for a comprehensive study of Tehran, Iran, to predict
growth boundaries to limit urban expansion, upgrade urban services, ensure landscape
maintenance, and aid environmental protection. Planners employed neural networks,
remote sensing systems models, and geographic information systems to predict future
urban growth boundaries for 2012 given a set of variables such as roads, slopes, green
spaces, service stations, elevation, aspect, and built areas.

Another study in Iran [15] utilized ANN to study changes in land use in previous
years in the city of Kermanshah and to predict future changes. In addition to data for
the past 19 years, satellite images were used for each of the years 1987, 2000, and 2006.
ANN and the Markov model were used to predict land use for the next 19 years, from
2006 to 2025. Others developed a methodology for delineating an urban development
boundary based on the Minimum Cumulative Resistance (MCR) model and CA-Markov
model [16,17]. Aithani et al. [18] generated urban growth zonation maps using feedforward
ANN for Dehradun city. However, Al-Kheder in [19] utilized a fuzzy logic-based intelligent
system to model urban growth using satellite images.

Suitability analysis can be defined as a model used to select a suitable spatial site
to perform a particular function; it is one of the most important functions of geographic
information systems (GIS), assisting in the choice of the site by applying specific parameters
in making the selection, which describes the study area landmarks (terrain, road network,
etc.), thus contributing the data required for spatial site suitability analysis. Some studies
coupled GIS with genetic algorithms to optimize specific land uses based on demand and
allocation criteria [20].

The present research focuses on suitability analysis to investigate and determine the
optimum sites for urban growth of the city of Irbid, following input of the required data.
GIS tools can identify and calculate the weights of the urban growth factors based on
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their importance, wherein lies the main challenge to achieving the appropriate analysis, in
determining the relative weights.

In the available literature, studies have made use of the suitability analysis tool to deter-
mine sites best suited for population expansion and urban growth [21,22]; for determining
the most suitable areas for rangelands [23]; and for determining the suitability trends for
settlement [24]. In all of these studies, researchers used a wide range of factors depend-
ing on the nature of the study area and the elements influencing growth [19,25,26]. The
determination of urban growth-dependent factors is based on choosing the most suitable
direction, including physical factors (slope, elevation), environmental and topographical
factors (such as agricultural land, valleys), accessibility factors (distance from main streets),
as well as consideration of economic and social factors.

The study by Berry et al. [27] used suitability analysis to focus on increasing sea levels
as a result of global climate change. Suitability analysis was based on the map overlay,
with the integration of sea level rise expectations based on several factors: elevation, slope,
distance to coast, rock type, land cover, and sea level rise.

Raddad in [28] conducted a study that employed suitability analysis to evaluate
the most feasible places for development in the southeast Jerusalem region. Built-up ar-
eas, geopolitical categorization, agricultural land, the separation wall, settlement areas,
highways, terrain, heritage, and water sensitivity zones were identified as the primary de-
terminants influencing urban growth. He utilized Arc GIS processing modules to generate
final suitability maps based on these variables. This study, however, reveals an anomaly in
the spatial dimension of population distribution in Irbid, where expansion is taking place
at the cost of agricultural land.

One of the main causes of this fast-growing urban expansion is the increasing number
of refugees that immigrate to Jordan from neighboring countries suffering war and turmoil.
They are mostly concentrated in GIM due to its location in the north of Jordan. Jordan
refugee statistics for 2021 were 3,047,612.00 granted asylum, making up a percentage of
33.6% of the local residents [29]. Another cause of urban expansion is the local authority’s
decision to subdivide agricultural lands in the 2000s in Irbid and change the use to resi-
dential and services to absorb the increased number of refugees and locals returning home
following the Iraq war. Another recent wave of refugees followed the Syrian war from 2011
onward. This has caused far more expansion than is needed in the next 50 years. This could
not have happened without the Cities, Villages, and Buildings Planning Law No. 79 of 1966,
which established zoning plans (Al-Tantheem) by the Ministry of Municipalities and Towns.
This usually refers to zones on a municipal zoning map that are changed on a regular
basis. The Al-Taqseem Law of 1968 established subdivision plans (Al-Taqseem), which are
implemented per basin. Unfortunately, zoning is not a requirement for permission, and
Al-Taqseem can be used in both zoning-enforced and unzoned regions [30]. Therefore,
choosing Irbid to implement this AI methodology will be a beneficial task to develop and
provide service to this municipality in particular.

The primary objective of this study is to increase and broaden our understanding of
spatial urban growth extent. It focuses on anticipating urban expansion so that strategies for
land preservation and land use modification may be developed. The framework integrates
machine learning (ML), geographic information systems (GIS), and image analysis for this
purpose. The framework suggested is based on a Time Delay Neural Network (TDNN)
that is dependent on equal time intervals of urban growth. In addition, it takes into account
characteristics that influence land use change, such as soil fertility, the location of town and
city centers, built-up areas, streams, and slopes. The ML-based prediction model is paired
with Land Suitability Analysis, which includes both qualitative and quantitative data, in
order to suggest analyzed urban expansion in the Greater Irbid Municipality, Jordan.

This paper is organized as follows: Section 2 covers the method, Section 3 illustrates
and explains the prediction results and the suitability analysis, Sections 4 and 5 present the
discussion and conclusions.
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2. Methodology

Artificial neural networks (ANN) resemble the brain in two ways. 1—The network ac-
quires knowledge from its surroundings via a learning process. 2—The strength of interneu-
ron connections, termed “synaptic weights”, is employed to store gained information [31].
ANN is composed of several layers, an input layer, one or more hidden layers and an
output layer [7]. The training is achieved by exposing the network to examples of similar
problems, and the network adapts itself (learns). After sufficient training, the neural net-
work can model the problem data to the solutions, and it is then able to offer a solution to
the problem [32]. During the training, the network predicts output and compares it with
the correct available answer; if there is an output error, it works to modify the weights (w)
of the links of each layer of the network and reprocesses the output. Time Delay Neural
Network (TDNN) is among the ANNs. The TDNN consists of the lapped time delay with
focused memory structure in the input layer of the network [33], where equal time intervals
may be used as input data. Up to now, this network has not been used in urban growth
forecasting, and it is worth investigating, especially where the data corresponded with
equal intervals.

TDNN is a non-linear predictor that can train networks faster and easier with the least
prediction errors [34]. This is completed based on the tapped delay line with a focused
memory structure in the input layer of the network [33]. The more training it receives, the
more accurate it can be.

As previously mentioned, this research aims to predict the boundary of the city of
Irbid in 2025 by using TDNN and determining the best places for future urban growth of
the city of Irbid based on selected criteria, namely: slope, soil fertility, streams, built-up area,
and distance from the city center. The (TDNN), like other neural networks, consists of three
layers: an input layer, an output layer and middle hidden layers. It relies on data input for
specified time periods. In this research, the time period is optimized to be 10 years between
the first and the second input; the Matlab software toolbox is utilized to implement and
train the TDNN for prediction.

To predict the extent of urban growth in 2025 using (TDNN), training data were
extracted from maps obtained from the Irbid municipality, as shown in Figure 1. The base
of the analysis was Irbid Tal at the city center, which represents the kernel for the historical
urban growth of the city. The growth maps from the center in each phase were used as
input layers in the TDNN. Maps for the suitability analysis layers were created in GIS and
other related software. The use of the TDNN allowed for working on a two-dimensional
time series: one dimension is the time, while the other is the angle. In other words, the
network would build its prediction based on an awareness of the growth radiuses (ρ) of all
the angles (θ) rather than one angle only starting from the city center. The growth radius is
transformed into the percentage of growth by dividing the new radius over the older one
each time as follows:

Gr =
ρc

ρp
(1)

where Gr is the growth percentage, ρc is the current radius, and ρp is the previous radius.
In this series, each radius is normalized relative to the previous one, where if we had the
value 2 for example, this meant that the current radius was twice the previous one. The
values ranged between 1 and 6.9. The average in most years was about 1.98. The TDNN
used in this work was a two-step time delay, which meant that the network takes the last
two consequent radiuses and predicted the third one, as shown in Figure 2.
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Figure 1. Study area. Map of Greater Irbid Municipality and City of Irbid boundaries (GIM, 2013) [35].

Figure 2. General structure for the TDNN [36].

To achieve the objectives of the TDNN network in providing the optimized in-
put/output relationship for the predicted growth percentage Gi+1, the output layer collects
the weighted inputs from the last hidden layer, and each hidden layer collects the weighted
output from the previous layer until the first hidden layer, which collects the weighted
inputs to the network as in Equations (2) and (3) [36].

Gi+1 = Fo(∑h
0 who Ah + bo) (2)

Ah = Fh(w1hGi−1 + wjhGi + bh) (3)

where Gi+1 is the growth percentage predicted by the network, Fo is the activation function
of the neuron in the output layer, Fh is the activation function of the neuron in the hidden
layer, w is the weight for the link to be optimized during training between the neurons,
and bo and bh are the neuron bias for the output and hidden layers, respectively. Ah is the
collected output from the hidden layer, h is the number of neurons in the hidden layer, and
the number of inputs of the network is j. To reach the optimal weight during the training
process, the backpropagation training approach is utilized, which is considered among
the most popular approaches for multilayer NN weight optimization [36]. The objective
function is to minimize the Mean Square Error (MSE) [37] between the terms of the actual
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2D input series of the training data (Ga) and the equivalent estimation of the network (Ge)
as in Equations (4) and (5) [36,38].

MSE =
1
m ∑m

x=1 e2(x) (4)

e = Ga − Ge (5)

where e is the error, and m is the length of the series for each angle in the training data.
Following the usage of neural networks in the prediction of the boundary of the city

for 2025 (Figure 3), suitability analysis was performed to determine the most suitable areas
for urban growth based on several criteria (topographical maps, soil fertility maps, distance
from the city center, built-up areas, and maps indicating streams). Maps are created using
GIS software (Figure 4).

 
Figure 3. General structure of the proposed framework based on Time Delay Neural Network (TDNN).

Streams are important determinants that must be considered in order to preserve
ecological corridors [28]. Distance from the major urban center and town agglomeration;
closeness to services; level of city compactness; and physical limits to urban sprawl were
all mentioned by [39,40]. Due to the importance of these factors, towns with a population
of more than 11,000 people, based on Jordan’s Department of Statistics report in 2015, were
adopted as towns with urban centers (Table 1).

Table 1. Towns for which urban centers have been adopted in the suitability analysis [41].

Towns Population Numbers Towns Population Numbers

Alhusun 37,141 Beit ras 18,019

Alsareeh 19,227 Hawara 12,801

Iydun 18,592 Bushra 11,377

Additionally, slope is one of the most important factors affecting planning and the
direction of urbanization. Steep slopes are considered unsuitable for urban expansion
because planning and construction are very expensive in these areas. Therefore, areas
with a gradient of up to about 10% are suitable for residential development [28,42,43].
The increase in the urban built-up area makes it imperative to include this as a factor to
encourage urban growth in vacant land [24]. Areas rich with fertile soil and agricultural
land are worth protection and preservation [24]. After considering the previous literature
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and the considered variable weights, this research classified the variables and discussed
each one based on the requirement of the place as well (Table 2).

Figure 4. Variables affecting urban expansion in Irbid.

Table 2. Criteria classes and weighting.

Criteria Classes References Weight Weight Range Note

Slope (degree)

0–10%

10.1–20%

20.1–30%
>30%

[24]
[44]
[43]

[28]

0.22

0.3

0.22
0.04

0.195

The slope factor in this research
was given a weight based on the
rate of the weight for the same

factor in similar research. So, the
weight = 0.19
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Table 2. Cont.

Criteria Classes References Weight Weight Range Note

Distance from the main
urban center and town

agglomeration

Main urban center
0–2000 m
2000–3000
3000–4000

Town center
0–500 m

500–1000 m
1000–1500 m

[39]

[40]

0.22

0.26

0.24

Due to the population density of
many towns in the study area, the
urban center of the towns with a
population of more than 11,000
was taken into consideration,

including Huwwara, Al-Sareeh,
Bushra, Idun, Beit-ras, and

Al-Huson. To keep the towns and
cities compact and prevent urban

sprawl, the weight = 0.25

Streams (m)
Buffering the water
course with 40 m on

either side of the
center line.

0–40 m

>40

[28]

[45]

0.04

0.11

0.07

The study area is interspersed
with many streams that have

negative effects, especially
flooding in the winter, so the
weight = 0.11 based on [45].

Soil fertility

Fertile
Moderate

Low

[40]

[22]

0.09

0.21

0.15

This factor was given the highest
weight since the study area is rich
in fertile soil and agricultural land

and is being engulfed by urban
growth. This is one of the most
important factors that should

control the future growth process
so the weight = 0.3

Built-up area

Built-up

Vacant land

[24]

[45]
[43]

0.13

0.15
0.12

0.133

The built-up area factor gained a
weight of 0.15 based on [45].

The aim was to move away from
the built-up area as it constituted

an obstacle to growth

3. Results

3.1. Phases of Urban Expansion

The map of urban expansion of the Greater Irbid Municipality (GIM) is analyzed
by separating each phase of the expansion using GIS tools (Figure 5 [46]). Earlier stages
(1924–2001) were excerpted from GIM. Earth Explorer is the source for checking the later
stages for specific years. We adopted and digitized the years 2005, 2010, and 2015.

The growth radius (ρ) was collected from the city center (Tal Irbid) to the boundary of
each stage at a succession of equal angles (θ). This research experimented with a succession
of 5 degree angles constituting a sum of 72 wedges, as shown in Figure 6.

The TDNN is adopted for the prediction process in the following years: (1955, 1965,
1975, 1985, 1995, 2005, and 2015). However, as a result of emigration in 1967, the population
density increased, and urban expansion increased rapidly. There was a large difference
between urban expansion in 1965 and 1975, which created illogical TDNN results. To
eliminate the sudden jump, another experiment was performed by taking the years (1975,
1985, 1995, 2005 and 2015) as shown in Figure 7. Before the prediction process, the network
was trained on the years 1975, 1985, 1995, and 2005 to predict 2015. However, in order
for the data to be suitable for prediction, the growth radius was transformed into the
percentage of growth by dividing the new radius over the older one each time, as in
Equation (1). The average in most years was about 1.98. However, noticeably, in 1995–2005,
larger values were registered, which was possibly because of the increased immigration to
Jordan in this period due to the regional turmoil and instabilities in neighboring countries.
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Phase Year Area (m2) Phase Year Area (m2) Phase Year Area (m2) 
1 1924 285.739 K 6 1970 658.860 K  11 1994 1480.731 K 
2 1953 596.792 K 7 1978 6134.087 K 12 2000 2443.510 K 
3 1955 2770.525 K 8 1985 2999.913 K 13 2001 82312.254 K 
4 1960 3286.844 K 9 1986 474.657 K  
5 1967 11396.903 K 10 1990 2820.436 K 

Figure 5. Growth stages of greater Irbid municipality (GIM, 2005) [46].

 

Figure 6. The succession of growth radiuses at θ = 5-degree angle for the 2010 stage using GIS.
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Figure 7. The succession of growth radiuses at θ = 5-degree angles for the years: 1975, 1985, 1995,
2005, and 2015, (a–e) respectively.

The general shape of the neural network and its components is shown in Figure 8; the
number of inputs is 72 and the number of outputs is 72, which is equivalent to (360/5 = 72).
Several iterations were made to reach the optimum network with the least error value
starting from different random initial weights; 70% of the data was used for training. Finally,
the network that had the least error consisted of two hidden layers; the first hidden layer
consisted of five neurons and the second consisted of 71 neurons with the minimum MSE
as shown in Figure 9.

Figure 8. The general structure of TDNN.

Figure 9. The mean square error of the network during the training epochs.
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Another measure of how well the neural network has fit the data was the regression
plot as shown in Figure 10. The regression plot illustrated the plot of the expected output
based on associated target values. If the network had learned to fit the data well, the
linear fit to this output–target relationship should closely intersect with the bottom-left and
top-right corners of the plot [47].

Figure 10. The regression plot measure of the suitability of TDNN.

Figure 11 illustrates a third measure of how well the neural network has fit data; the
error histogram plot showed how the error sizes were distributed. Typically, most errors
were near zero, with very few errors far from that. The value at the bottom of the blue
rectangle is the error value. The value on the vertical axis is the number of times this error
value appeared among the data.

Figure 11. The error histogram measure of the suitability of the TDNN for data.

For presentation purposes, GIS was used to illustrate the existing and predicted maps.
Each radius was drawn with an angle above the layer of 2015, as shown in Figure 12. As it
is noticed, the results indicated that urban expansion was more prevalent in the eastern,
northern, and southern areas and less in the west due to the presence of some valleys in
this area.
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Figure 12. Prediction map for 2025 resulting from the use of TDNN.

Additionally, the urban growth boundary map illustrated that the continuation of
urban growth in these areas will further impinge upon and diminish agricultural land,
especially in the southern and eastern regions [48,49]. Unless prevented by urban devel-
opment policies with firm and timely interventions of the concerned authorities, urban
growth will continue to invade agricultural land.

3.2. Suitability Analysis

After obtaining the prediction map, the suitability analysis phase begins. Each variable
is classified in a separate map (urban buffer, built-up area, soil fertility, streams, and slope)
(Figure 13). The maps were reclassified and given weights depending on their importance
and impact and depending on previous literature (Table 3). A multi-criteria analysis was
made to create suitability maps by combining factors and weighting them. The resulting
map was classified into three classes, namely: low suitability, moderate suitability, and
high suitability for urban expansion (Figure 14).

Table 3. Criteria reclassification and weighting.

Criteria Classes Reclassified Weight

Slope (degree)

0–10%
10.1–20%
20.1–30%

More than 30%

4 (the best slope for growth)
3
2

0 (building restricted and challenging)

0.19

Distance from the main
urban center and

town agglomeration

Main urban center
0–2000 m
2000–3000
3000–4000

>4000

Town center
0–500 m
500–1000

1000–1500
>1500

4 (the best for growth)
3
1
0

4
3
1
0

0.25
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Table 3. Cont.

Criteria Classes Reclassified Weight

Streams (m)
Buffering the water
course with 40 m on

either side of the
center line.

0–40 m
More than 40

0
4 0.11

Soil fertility
Fertile

Moderate
Low

0
2
4

0.30

Built-up area Built up
Vacant land

0
4 0.15

Figure 13. The factors after reclassified.
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Figure 14. The result of combining factors and suitability analysis.

3.3. Juxtaposing the Suitability Analysis and the TDNN Map

Factors with higher weights (white color) were a major influence to make the region
suitable for growth. The results indicated that many of the areas suitable for urban growth
are located around urban centers (Figure 14). Therefore, we recommend that the city
grows vertically and fill the vacant city parcels with more development. This will create a
more compact urban fabric while preserving agricultural lands. Most of the areas located
between 52 degrees and 120 degrees (2 and 1) and 282 degrees and 300 degrees (4 and 3)
had a medium suitability (Figure 15). They grow from the city center toward the north or
south in general. The eastern areas are more suited for agricultural land because of the
soil fertility and their nature as plains. This answers the research question concerning the
preferred direction of urban growth and land suitability for urban growth.
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Figure 15. The result of suitability analysis overly and TDNN prediction for 2025. Line color
representation: blue is the expected urban growth extent, yellow are the lines delimiting the preferred
angle of growth between the arrows 1&2 and 3&4. Delimited angles between 2&3 and 1&4 define the
unwanted growth direction avoiding fertile soils (117◦) and rugged terrains (142◦) respectively.

4. Discussion

If we want to be governed by this predictive study and maintain more resilient urban
growth, we must create policies to control the urban edge, the permissible areas of growth,
and the tolerable densities. We must think of re-zoning the city and nominate the types
of buildings that suit the multi-cultural melting pot we are experiencing in this part of
the world. As it seems, there will be more people to settle in secured urban areas, and we
must be prepared to handle forecasts. We must think of our future and long-term interests
in growing our foods in the places most suited for that and in the places that have the
ability to grow abundant amounts of basic foods to create food security. With the United
Nation’s sustainable development goals (SDGs), this issue has an enormous importance
for the coming generations: in particular, Zero Hunger (SDG 2), Sustainable Cities and
Communities (SDG 11), Climate Action (SDG 13), and Life on Land (SDG 15) [50].

If we continue conducting business as usual, we will end up with overly expanded
metropolitan areas, unaffordable infrastructures, the loss of agricultural lands, and most
probably, loss of identity. There is an opportunity to develop a better organized spatial
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strategy that considers both the scope and capacity of urban growth as well as the need
for urban green spaces to accommodate expanding populations. This is an opportunity to
preserve ecological corridors, renovate heritage buildings, and organize land uses.

It is in our interest to encourage people to live in their home towns and prevent rural
urban migration, which is another cause of this outstanding urban growth. Since most
people tend to have daily commutes to obtain services at their urban centers, it is wise
to serve them in their hometowns and prevent excessive commuting and the tendency
to immigrate to urban areas to fulfill consumption aspirations. A study concentrating on
the rural–urban relationship in the north of Jordan revealed that the commutes were not
based on obtained jobs at the urban center but rather in search of attractive and necessary
services [51]. Therefore, most of this sprawling is not essential. If we are discussing policies,
we also have to consider providing services especially entertainment and shopping in
addition to job opportunities at key rural locations to prevent the rural–urban migration
and the fast-growing urban areas.

This study demonstrated how the TDNN predictive tool, coupled with suitability
analysis, can predict and weigh urban growth. This is similar to other methods but with
more precise outputs as a result of the self-learning tool and the suitability analysis. The
machine learning tools allow self-correction and adaptation to change. The more it learns,
the more precise the prediction. When such tools are accessible to decision makers, they
can modify and study growth and manage city requirements with great precision. Giving
building permits, preparing infrastructures, proposing services, and many other land uses
will be made easier for them. With such predictive tools that are able to learn and evolve
every day, we can also plan for resource management to lead a more resilient growth.

5. Conclusions

The purpose of this research is to predict the boundary of urban growth in GIM in 2025
by using ANN as a model, specifically TDNN to support the planning process and help
decision-makers see the future status of the city. This was expected to aid them in the future
expansion of the city and prepare for greater sustainability in the foreseeable future. The
research is based on the analysis of the urban expansion map throughout history, using the
resulting data from the analysis as input for TDNN, and by employing suitability analysis
of the resulting expected growth. Results indicated that urban growth will be significantly
southward, with little northward and eastward, and very limited westward. The results
showed that 51% of the region is unsuitable for growth, 43% is moderately suitable and
only 6% is suitable for growth. The ML model is very useful in determining the future of
the city based on learning from previous spatial urban growth.

We note from the analysis that the eastern and southeastern areas are generally unsuit-
able for urban growth due to the fertility of the land there and the presence of agricultural
land in abundance in addition to the increased distance from the city center. The area in
the proximity to the city center was suitable for growth despite the presence of a built-up
area. Suitability was strongly affected by other factors, such as the soil, which despite being
fertile has not so far been used as agricultural land because of urban growth.

Since the more suitable lands for urban expansion are the lands within the urban areas
and in close proximity to their centers, the results highlight the importance of densification
in this case. Densification will save agricultural land and create more sustainable and
manageable urban growth. Smaller towns also act as sub-centers that will help with
densification and more controllable urban growth. Encouraging growth on the hillier sides
of the city toward the southwest is another foreseen alternative. The more challenging
slopes will provide more bare land than agricultural lands with moderate suitability for
urban growth. This will result in a more linear city footprint but a more resilient existence
in this part of the country. The waves of refugees in this part of the world keep coming to
Jordan as things escalate within the Middle East region. Enforcing policies to direct growth
appears to be critical for the city in order to control its excessive urban growth activities
and create a more resilient future with a served city limit and reduced sprawl. Based on
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the demonstrated results, this work can be further extended in the future and applied to
other growing cities.

Author Contributions: The work was developed and implemented as part of the thesis work by
L.M.K. and supervised by the project advisors; A.A.G. and M.A.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shenghe, L.; Sylvia, P. Spatial Patterns and Dynamic Mechanisms of Urban Land Use Growth in China: Case Study in Beijing and
Shanghai; IIASA Interim Report; IIASA: Laxenburg, Austria, 2002.

2. United Nations. Department of Economic and Social Affairs. Population Division Population Distribution, Urbanization, Internal
Migration and Development: An International Perspective; United Nations: New York, NY, USA, 2011.

3. United Nations. World Urbanization Prospects, United Nations, 2014 revision, Department of Economic and Social Affairs; United
Nations: New York, NY, USA, 2015.

4. Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling.
Remote Sens. Environ. 2003, 86, 286–302. [CrossRef]

5. Han, A.T.; Go, M.H. Explaining the national variation of land use: A cross-national analysis of greenbelt policy in five countries.
Land Use Policy 2019, 81, 644–656. [CrossRef]

6. Zheng, B.; Liu, G.; Wang, H.; Cheng, Y.; Lu, Z.; Liu, H.; Zhu, X.; Wang, M.; Yi, L. Study on the Delimitation of the Urban
Development Boundary in a Special Economic Zone: A Case Study of the Central Urban Area of Doumen in Zhuhai, China.
Sustainability 2018, 10, 756. [CrossRef]

7. Tayyebi, A.; Pijanowski, B.; Tayyebi, A. An urban growth boundary model using neural networks, GIS and radial parameterization:
An application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [CrossRef]

8. Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on
the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [CrossRef]

9. Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and Future Land Use Characters of a National Central City in Eco-Fragile
Region—A Case Study in Xi’an City Based on FLUS Model. Land 2021, 10, 286. [CrossRef]

10. Xu, T.; Zhou, D.; Li, Y. Integrating ANNs and Cellular Automata–Markov Chain to Simulate Urban Expansion with Annual Land
Use Data. Land 2022, 11, 1074. [CrossRef]
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Abstract: In this paper, we describe two related scripting methods of cartographic data processing
and visualization that provide 2D and 3D mapping of Japan with different algorithm complexity. The
first algorithm utilizes Generic Mapping Toolset (GMT), which is known as an advanced console-
based program for spatial data processing. The modules of GMT combine the functionality of
scripting with the aspects of geoinformatics, which is especially effective for the rapid analysis of
large geospatial datasets, multi-format data processing, and mapping in 2D and 3D modes. The
second algorithm presents the use of the R programming language for cartographic visualization
and spatial analysis. This R method utilizes the packages ‘tmap’, ‘raster’, ‘maps’, and ‘mapdata’
to model the morphometric elements of the Japanese archipelago, such as slope, aspect, hillshade
and elevation. The general purpose graphical package ‘ggplot2’ of R was used for mapping the
prefectures of Japan. The two scripting approaches demonstrated an established correspondence
between the programming languages and cartography determined with the use of scripts for data
processing. They outperform several well-known and state-of-the-art GIS methods for mapping
due to their high automation of data processing. Cartography has largely reflected recent advances
in data science, the rapid development of scripting languages, and transfer in the approaches of
data processing. This extends to the shift from the traditional GIS to programming languages. As a
response to these new challenges, we demonstrated in this paper the advantages of using scripts in
mapping, which consist of repeatability and the flexible applicability of scripts in similar works.

Keywords: terrain modelling; script; geoscience; R language; generic mapping tools; computer
science; data visualization; 3D modelling; cartography
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MSC: 97Pxx; 97P40; 97P50; 97M50; 97P10; 91D20; 68P05; 92F05

JEL Classification: C60; C61; Q50; Q51; Q55; Q56

1. Introduction

Cartographic visualization is an important component of many Earth science appli-
cations. In numeric land modelling, the discriminative power of 2D and 3D mapping is
a key factor in the topographic analysis of land features since it provides the most direct
and quickest way to evaluate geospatial information. During the last four decades, a
variety of Geographic Information Systems (GIS) have been developed, with commercial
ArcGIS software certainly being the most widely used. Land surface modelling in GIS
shows that qualitative data analysis, cartographic visualization and the interpretation of
the topographic features visualized on maps activate the evaluation of spatial heterogeneity
and the variability of the objects and environmental processes on the Earth.

Land 2023, 12, 261. https://doi.org/10.3390/land12010261 https://www.mdpi.com/journal/land
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The performance of various GIS is, in many cases, tailored to their specific tasks,
among which vector and raster spatial data processing is arguably the most prominent
and important functionality of these software. For instance, some are better suited for
image processing, such as Erdas Imagine [1], Idrisi GIS [2,3], Integrated Land and Water
Information System (ILWIS) GIS [4], and ENvironment for Visualizing Images (ENVI) GIS,
while others are best at vector data analysis and visualization, e.g., ArcGIS [5–9]. Most of
these GIS are based on a standard interface with a restricted functionality that requires
the manual processing of data, although recently machine learning techniques have been
applied to spatial data modelling [10] and image analysis [11,12]. However, while these
methods drive the geospatial analysis to gather explicit information on the terrain structure
and morphometric variations, the core question emerges as the cartographic approach
underlying the computational complexity of geoinformation processing. This raises the
multi-disciplinary goal of succeeding in improving the cartographic workflow over the
performance of the conventional algorithms. For instance, the use of scripts, besides the pre-
defined algorithms in GIS, can result in an enlarged cartographic workflow functionality
for data being modelled.

GIS-based mapping is a tedious and time-consuming process for cartographic perfor-
mance as it may involve a large number of separated tasks and operations that are normally
made using different commands in the menu toolbar. For this reason, the workflow is split
into various steps of data processing. Better still, however, is using the full functionality
of the programming and machine learning, applications of scripting languages for plu-
gins, and auxiliary tools that ensure data processing using scripts [13]. Spatial analysis
can benefit from the automation of cartographic processes because scripting enables the
repeatability of the process. The advanced modelling enables the performance of a more
comprehensive analysis of various factors affecting land surfaces and processes.

On the other hand, the importance of machine learning for topographic and geo-
morphological mapping is well known since it is less error-prone and time-consuming
compared to the traditional state-of-the-art GIS. At the very least, this can be a use for
scripting for data visualization, such as in Generic Mapping Tools (GMT) [14,15]. Despite
certain difficulties in mastering the program, such as its high learning curve, console-based
non-visual operation mode, and complex steps of fine-tuning map elements, GMT nev-
ertheless provides a much more powerful functionality of cartographic workflow and
increased flexibility in data processing. Furthermore, it yields deep insights into how to
process geospatial information in relation to the individual traits of datasets, including
the transformation of coordinate systems and georeferencing, extracting attributes and
labelling, processing binary formats for gridded datasets, modelling elevation data for
morphometric analysis, reading interleaved data formats in one script, and many more.

In this paper, we extend this idea of using scripts to the morphometric mapping of
Japan by incorporating several libraries of R and modules of GMT for cartographic data
processing. We propose a scripting framework that, by facilitating the mapping process
using powerful methods of programming, can plot 2D and 3D maps more effectively than
standard techniques of GIS. We devise a systemic way to use and process geoinformation
derived from raster grids for visualising morphometric elements and parameters of terrain
and use them to develop a series of scripts that could be extended to other regions to
improve cartographic performance in 2D and 3D modelling.

The accurate visualization of complex terrain models can lead to the increased preci-
sion and efficacy of maps. Cartographic layout is usually seen as the final stage of spatial
analysis summarising and presenting the results in a graphical form. That said, scripting by
R land GMT largely facilitates visualization since similar parts of scripts may be reused. The
contribution of the paper is twofold. First, we demonstrated that script-based visualization
offers the increased precision of the morphological analysis through automation of data
processing. Second, a marked improvement in the development of cartographic methods is
observed, since using R and GMT in a mapping workflow paved the way for the machine
learning methods in geospatial data analysis.
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1.1. Background and Motivation

Topography is an important characteristic of the land surface, which is reflected in the
landscape and associated with numerous environmental factors. Specifically, the geomor-
phic and topographic features control and affect vegetation coverage [16,17], habitats and
landforms [18,19], hydrology, soil distribution, and local micro-climate settings that are
dependent on the topographic exposure, slope steepness, and curvature of the relief. Spatial
characteristics that can be retrieved from the topographic and land surface maps have many
applications, such as environmental management [20], flood monitoring [21], hydrological
and fluvial modelling in riverine ecosystems [22,23], analysis of coastal processes [24], soil
management practices, and analysis of crop yields [25–27]. Moreover, land surface maps
present a background for the analysis of the correlation between the geomorphology and
geology [28] and geophysical and geographic factors and processes [29].

Topographic mapping based on the digital elevation model (DEM) is considered one
of the most important issues of cartography and is often used as background information
for spatial analysis in the geosciences. An inherent research step in the computations of a
terrain analysis based on DEM is the use of modelling methods where GIS is traditionally
applied. A variety of existing GIS software can be used for the spatial data visualiza-
tion and topographic analysis considered a background for both socio-geographic and
physical-geographic mapping. Since the onset of the development of GIS, technical meth-
ods of cartographic visualization and approaches to terrain analysis have been constantly
improved.

One of the key components in GIS software and cartographic data processing is map
projection. Mapping lands evokes a distortion in their angle, area, and shape depending on
the type of map projection, which may be of the conic, azimuthal, cylindrical or miscella-
neous types [30]. As a result, minor distortions arise when transforming the coordinates
into various types of projections. Therefore, various projections can be better adjusted to
map specific study areas depending on their locations and spatial extent.

For instance, the Albers conic equal-area projection is mostly used to plot areas with
large longitudinal extents, e.g., Canada and USA. The polyconic projections have true scales
on the parallels represented as non-concentric circular arcs. This makes this projection
class neither equal-area nor conformal with the least distortion on the parallels having
their centres along a central meridian. Likewise, the Lambert conic conformal projection is
suitable for regions with a W-E extent with a true scale on the two standard parallels. The
equidistant conic projection keeps a balance between the conformal and equal-area types
with minimised distortion over the study area and a true scale along all the meridians and
standard parallels.

Large regions with a global extent are better mapped using the Lambert azimuthal
equal-area or stereographic equal angle projections, while northern regions, such as Scandi-
navian areas, can be effectively plotted using the polar stereographic projection, where map
boundaries are represented by lines of constant longitude and latitude. In this study, we
used the cylindrical Mercator projection for plotting a topographic map that is conformal
in type with an inserted small global map in a perspective projection.

1.2. Related Work

Various publications focused on Japan were published that, in particular, aimed to
understand how the geomorphology of the Japanese Alps is linked to the geologic and
surface structures [31], rock glacial processes and distribution of vegetation [32], or reflected
in the adjacent bathymetry [33]. Multivariate methods of spatial analysis extract local or
regional terrain features from spatial data using coordinates that locate them. Thus, a
variety of analytic techniques involves methods of quantitative analysis for detecting
and describing spatiotemporal information for a deeper understanding of land surface
processes. These can be used as the advanced tools enabling the performance of a terrain
analysis on the highly heterogeneous morphological setting of Japan, as reflected in relevant
works [34–38].
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By choosing a proper GIS, data handling can yield a large number of extended features.
However, providing a standardised solution for selecting a proper GIS is a challenge
since, in most cases, it has a similar functionality of both raster and vector data analysis.
Nevertheless, whichever GIS is chosen, it requires active work in an interface menu with the
manipulation of input data and modelling to present a cartographic visualization. Another
point is the issue of open source availability, which has restricted access for commercial
GIS. The increasing variety of GIS necessitates that alternative tools with more flexible
and varied approaches to cartographic visualization and geospatial modelling should be
explored. Scripting approaches can provide a substitute functional tool for cartographic
visualization and geospatial modelling. Examples of scripting toolsets in cartography
include the Geographic Resources Analysis Support System (GRASS) GIS [39,40] and GMT
used in topographic and geomorphic mapping [41,42].

1.3. Contribution

This paper presents an application of the GMT cartographic scripting toolset [43] and
the R language [44] for the spatial analysis and terrain mapping of Japan. We demonstrate
the main advantages of both methods, which consist of their straightforward and logical
language syntax, a scripting approach, and open-source access. We use the powerful
functionality of several GMT modules for the fine-tuning of the cartographic visualization,
as well as R packages to process both tabular and geospatial data directly from a console.
We considered the existing cases of using R libraries for geospatial data processing and vi-
sualisation. For instance, special packages for geographic data processing include gstat [45],
RStoolbox [46], terra, and raster [47].

This study makes a technical contribution to the development of cartographic methods
by adapting the R language for mapping instead of the traditional GIS. We combined the
GMT scripting toolset and R language for spatial data visualization and morphometric
analysis in a cartographic framework, which included following general steps: (1) process-
ing the data of the General Bathymetric Chart of the Oceans (GEBCO), Earth Topography
Global Relief Model (ETOPO1) and ETOPO2 by GMT for 2D and 3D mapping by scripts;
(2) the importing of Shuttle Radar Topography Mission (SRTM90) DEM by R; (3) visualis-
ing a DEM using the ‘raster’ package; (4) computing the topographic surface parameters
of slope, aspect, and hillshade using R scripts; and (5) cartographic visualization by the
‘tmap’ package of R with additional cartographic elements (legend, histogram, grid, ticks,
annotations, compass directions, and a bar scale).

The structure of this document is as follows. First, we discuss the key issues relevant to
the morphometric modelling based on DEM in a cartographic analysis of the geospatial data.
Specifically, slope, aspect, hillshade and elevation are reviewed as essential elements of the
terrain analysis. Second, we present a case of the Japanese archipelago as an example for
mapping and briefly outline the major geographic features and morphology of the Japanese
Alps. Third, we point out that our combination framework can be easily extended to other
regions with heterogeneous terrain morphology with minor modifications of the scripts. To
this end, we provide technical notes on scripts, followed by a methodological description
of the performed morphometric analysis using R and GMT. The full scripts are listed in
the Appendix as a technical cartographic reference for similar studies. Furthermore, the
methodological part demonstrates several screenshots of the performed scripting process in
the RStudio environment, where maps of slope, aspect, hillshade and elevation are plotted,
and the GMT for 2D and 3D modelling.

The results present the computed and visualized maps of the Japanese archipelago
made by a GMT scripting toolset and in RStudio. The latter ones include the morphometric
elements (slope, aspect, hillshade, and elevation) with statistical elements of data distribu-
tion as histograms and a map of prefectures of Japan visualized by the ‘ggplot2’ graphical
package of R. A discussion of the machine-based approach to cartographic modelling
and visualization follows the Results section. Finally, we provide conclusions regarding
the advantages of using GMT and R in cartography compared to the state-of-the-art GIS
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techniques based on a standard graphical user’s interface and ways of modelling geospatial
data by scripting languages from the console.

2. Materials and Methods

The key methods included the GMT with diverse modules and packages of Rm,
including ‘tmap’ for thematic mapping and ‘ggplot2’, ‘ggmap’ [48], ‘maps’ and ‘mapdata’
for the data capture and thematic regional mapping of prefectures of Japan. The package
‘mapdata’ contains the base location of the binary files of prefectures boundaries of Japan
used by the map drawing functions. The ‘raster’ package was used for morphometric
analysis, which also included the depending packages, such as ‘sp’, a package which
operates with classes and methods for spatial data, and ‘sf’, a package operating with
‘Simple Features’ as object classes in an R syntax.

2.1. Study Region

The study region is Japan, shown in Figure 1.

Figure 1. Topographic map of Japan. Data source: GEBCO. Software: GMT, version 6.1.1. Cartogra-
phy source: authors.

The geology of Japan is characterised by an early stage of mountain range formation
comprising young and active island arcs [49]. As a result of complex tectonic movements,
uplift, and denudation processes, the Japanese Alps consist of a mountain range cut
by river and glacial valleys, running through the main island of Honshu. During the
Quaternary period, the major axis of the Japan Alps experienced more than 2000 m of uplift,
which, together with the denudation processes, resulted in the exposure of the Takidani
Granodiorite. The regions is divided into three major parts: the Northern, Central, and
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Southern Alps. The northern region located in the Nagano, Toyama and Gifu prefectures
includes the Hida Mountains with high seismicity along one of major Quaternary faults,
the Atotsugawa fault, with repetitive earthquakes [50].

The geologic structure of the Hida terrane shows a complex geologic structure with
gneisses formed from Permo-Carboniferous clastic sediments during a single metamor-
phism at ca. 250 Ma [51]. The Northern Japanese Alps are characterised by lateral and
terminal moraines and outwash terraces of glacial origin. The Central Alps include the
Kiso Mountains located in the Nagano prefecture [52] and are characterised by a granite
structure. The highest peak of the Japanese Alps is recorded in Mt. Kita (3193 m) in the
Southern Alps, or Akaishi Mountains.

The Japanese Alps had long been exploited, and their geologic structure, geomorpho-
logic setting [53], and tectonic evolution [54] have been reconstructed. In addition to the
environmental value and strong effects on the climate and vegetation setting of Japan, the
Japanese Alps contribute to the economy of the country, being a source of natural mineral
resources such as timber and minerals, as well as habitat for diverse species and vegetation,
including medical herbs. Moreover, rice paddy fields are cultivated on the slopes of the
mountains. Finally, the Alps are considered a potential source of geothermal energy [55].
All these factors make the Japanese Alps a key land surface object for nature and the society
of Japan.

2.2. Datasets Preprocessing

The geospatial data processing was performed in RStudio environment, Figure 2.

Figure 2. Geodata processing in RStudio environment. (Left): (1) loading packages, (2) obtaining
data, (3) inspecting data.frame. (Right): (1) setting up coordinate system, (2) calculating terrain
characteristics (slope, aspect, hillshade) by ‘raster’ package, (3) visualizing maps on a screen in
RStudio. Source: authors.

The workflow included the following general scheme: (1) loading packages, (2) ob-
taining data, (3) inspecting data.frame, (4) setting up the coordinate system, (5) calculating
terrain characteristics (slope, aspect, hillshade) by the ‘raster’ package, (6) visualizing maps
on a screen in RStudio, (7) plotting cartographic aesthetics in the ‘tmap’ package, and
(8) mapping the prefectures of Japan in the ‘ggplot2’ package. The data for the terrain
analysis include digital elevation models (DEM) from the Shuttle Radar Topography Mis-
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sion (SRTM). The SRTM is widely used in research [56] due to its acceptable resolution
(30 m × 30 m) and open-source availability: the National Aeronautics and Space Adminis-
tration (NASA) Shuttle Radar Topography Mission (SRTM) provided DEMs for over 80%
of the land surface on the Earth. The slope, aspect, hillshade and elevation maps were
plotted using the RStudio environment [57] using the ‘raster’ package as implemented
by [58]. Specifically, the following workflow was used for data pre-processing. The data
were captured using the ‘getData()’ function of the ‘raster’ package of R from the available
geospatial datasets of the University of California, Davis campus, CA, U.S.

The data were then reprojected to the Lambert conformal conic projection (LCC) by
the following function: crs(alt) < −” + proj = lcc + lat_1 = −30 + lat_2 = 40 + lon_0 =
140 + datum = WGS84”. The coordinate system is an important aspect of geographic
data which is implemented in the R environment by a PROJ library [59]. It should be
specially mentioned that the SRTM shows elevation data not as a bare-earth model but as a
surface, which includes dense canopy forests and built-up areas in the estimation of the
terrain. Although such nuances might be worrying in hydrological modelling, the SRTM is
generally acceptable for country-level mapping, as in our case for mapping Japan using
SRTM DEM.

2.3. Methods
2.3.1. 3D Modelling by GMT Scripts

Scripting by Generic Mapping Tools (GMT) followed the existing cartographic experi-
ence [60] with the use of a 3D package for the terrain modelling of Japan, as seen in Figure 3.

Figure 3. A 3D model of the land surface of Japan. Plotting is performed with rotation of
165/30° based on Earth topography one minute (ETOPO1) grid representing global relief. Soft-
ware: GMT, version 6.1.1. Map source: authors.
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It should be noted that 3D modelling is an important approach to data processing,
with many applications in engineering and natural sciences [61–64]. Most 3D modelling
approaches in mapping address the problem of the visualization of the land surface in
the forms of multiple views of the terrain by 3D data acquisition, e.g., light detection and
ranging (LiDAR) [65,66]. The high cost of special hardware for obtaining LiDAR data and
substantial manual processing reduce the operational flexibility of such approaches and
limit their availability as practical applications for topographic mapping .

In this part, we present 3D terrain modelling based on the GMT open soft toolset.
Such approach makes 3D mapping a more practical routine and enables many applications
in Earth science with advanced cartographic data visualization of the terrain. Here, the
3D shapes of the terrain are presented in perspective projections for data interpolated by
splines with heights obtained from the 3D coordinates of the raster grids of the ETOPO1
and ETOPO2 datasets. The differences in the local ruggedness of the terrain as represented
by ETOPO1 and ETOPO2 are visualised and compared in 3D perspective plots with a
rotated azimuth view. The algorithms included the ‘grdview’ module of GMT, as shown in
scripts in the Appendix A.

2.3.2. Mapping the Prefectures of Japan

To illustrate the location of various prefectures of Japan, we used the "ggplot2" pack-
ages of R for plotting the regions of prefectures using arguments in the dataset for visu-
alization. The data were captured by the ‘maps’ package of R [67] and ‘mapdata’, which
provide the map databases, including the data on Japan: its prefectures, areas, etc. The
advantage of this approach consists of the integrated use of ‘mapdata’ with the ‘ggplot2’
package of R. The ‘ggplot2’ package is a common graphical package designed for general
purpose scientific visualization; however, it is applicable for cartographic purposes as well.
Here, the main elements, i.e., the polygons of the prefectures in Japan, were plotted using
the ‘geom_polygon′ function, which operates with data frames containing the coordinates
of polygons and values associated with each of them:

geom_polygon(data=japan, aes(x=long, y=lat, fill=region, group=group)

The annotations of the axes were added using the ‘xlab’ and ‘ylab’ functions. The color
scales were defined in the RColorBrewer and extended from the default, fixed number of
colors to the number of prefectures in Japan, which was inspected by the ‘length’ function,
as follows:

length(unique(japan$region))

Afterwards, the number of colors in the color palette was defined using the ‘colour-
Count’ function:

colourCount = length(unique(japan$region))

Following that, the color palette was expanded to the required number (47 prefectures
of Japan) by the use of the ‘colorRampPalette’ function, as follows:

colorRampPalette(brewer.pal(name="Spectral", n = 8))(47).

Now, when the color palette was adjusted to the dataset, the map of prefectures of
Japan was colored by assigning each individual color to each of the 47 prefectures, as
follows:

scale_fill_manual(values = getPalette(colourCount)).

Other, additional cartographic elements included adding the titles, subtitles and
captions by the ‘labs’ function, which enables the modification of the labels, annotations
and captions. The rest of the aesthetics were added using theme() function, as shown in
Figure 4, which provides an illustration of the script on the left and the resulting output
map on the right part of the menu. These include, among others, plotting the legend, its
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orientation and annotations, defining the text size and font characteristics, selecting the
color of background, and choosing the types of grid ticks and the frequency of breaks on a
cartographic grid. The final map is shown in Figure 4.

The map of the prefectures of Japan (Figure 4) presented the visualization of the
47 prefectures made using the ‘ggplot2’ package of R, as well as the ‘mapdata’ and ‘maps’
packages used for data capture and processing. Each prefecture was colored as single-
colored polygons modified from the default palette of R (‘Spectral’) using the palette
extension by the ‘colorRampPalette’ function.

Figure 4. Mapping the prefectures of Japan. (a) Script used for mapping by ‘ggplot2’, ‘ggmap’, ‘maps’
and ‘mapdata’ packages. (b) Map of the prefectures of Japan. Source: authors.

2.3.3. Mapping Morphological Features

Modeling slope, aspect, and hillshade is a technique for visualising terrain determined
by DEM as a numerical data source. Here, the slope and the aspect were plotted first as
major features. Following that, we visualised the hillshade, which is a derivative from
the slope and an aspect of the elevation. The parameters of hillshade were adjusted and
visually changed using various illuminating positions of the light source as degrees of
simulated sun angle rotation. The four derivatives of the SRTM90 DEM grid were modelled
and visualized using R as follows: slope, aspect, hillshade, and elevation.

The slope gradient, aspect and hillshade were defined by the algorithm of the ‘raster’
package of R at any point of the input raster grid (SRTM90) using local neighbourhood
analysis. These variables are automatically defined by the machine using values of altitude
(elevation) and its derivatives at or around each cell point on a raster grid representing the
land surface. The ‘alt’ has a formal class ‘RasterLayer’ of package ‘raster’ with 12 slots.

Slope

The terrain characteristics of slope were calculated and modelled using the ‘raster’
package of R using the following sequence of commands. First, the color palette of R was
created for visualization: cols < −rainbow(255). Second, the slope and aspect were com-
puted by following: slope = terrain(alt, opt = “slope”). Third, the slope was visualised:
plot(slope, col = cols, main = ‘Slope′, xlab = “lon”, ylab = “lat”). Here, ‘alt’ represents the
abbreviation of ‘altitude’.
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Aspect

The aspect was modelled using the function ‘terrain’ with the option ‘aspect’ as follows:
aspect = terrain(alt, opt = “aspect”), followed by the definition of colors:
cols < −terrain.colors(255). Afterwards, using the same function plot() as for the slope
modeling, the map of the aspect was plotted using the following snippet of code: plot(aspect,
col = cols, main = ‘Exposure′, xlab = “lon”, ylab = “lat”). The full script of R is provided
in the Appendix A.5.

Hillshade

The topographic hillshade represents a remarkable phenomenon in cartography that
occurs when shadow caused by the elevation cue three-dimensional shape perception.
Various techniques exist to produce a monochrome 3D view of a terrain relief with the
relative position of the artificial illumination representing the shadows from the natural
sun. The effects from this shading are well reflected in a highly rugged terrain such as
Japan, where high-elevation land surface uses strong luminance contrast, while low heights
use low contrast. In attempts to visualise reliefs using the shading effects of a monochrome
palette, efforts have been made since the onset of the GIS development and are considered
in this work. The computation of hillshade was carried out using the following algorithm:
hill = hillShade(slope, aspect, angle = 40, direction = 270). The color palette was applied
using the code snippet: cols < −topo.colors(255). Plotting the map was carried out using
the plot function as described above.

Cartographic Processing

Mapping the morphological parameters in the ‘tmap’ package [68] included the pro-
cessing of the computed raster layers by a specifically designed cartographic package where
more elements could be added to the layout and more control over their aesthetics was
available. The package used a function tmap_style, where the general style of the layout
was defined. Then, tm_shape was used to control the main data: the name of the raster, title,
and subtitle. The tm_raster function was applied to process the color scale of the numeric
variables (values of slopes in degrees), labels, and other cartographic details in the legend;
see Figure 5.

Figure 5. (a) Visualized plots of slope exposure. (b): Elevation of the terrain of Japan by ‘raster’
package of R. Source: authors.

The tm_scale_bar and tm_compass functions show the parameters of the annotations
of the auxiliary elements on the map. Thus, the tm_layout function controls the variety of
the cartographic aesthetics necessary for proper visualization, such as the fonts and ticks
or color of panel labels. The elements of the map affect the perception of the cartographic
layout, which is crucial for overall visual appreciation by the reader. Therefore, map
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elements were adjusted using relevant functions of the package. The final map was
visualized in an RStudio environment by calling the raster for inspection (here, ‘map1’) and
saved using the tmap_save function: tmap_save(map1, “Slope_Japan.jpg”, height = 7). The
same procedure was repeated with all the other three files (slope, aspect, and hillshade).
The script visualized in RStudio is presented in Figures where the left parts demonstrate
the script and the right part shows the output maps.

3. Results

The results of the geospatial modelling of Japan are structured into the 2D and 3D plots
made using GMT, the regional mapping of prefectures performed by R, and morphological
mapping (slope, aspect, and hillshade sections). Various R packages were used in the
workflow, as described above and presented in the Appendices. The slope gradient, being
a derivative of the altitude, presents a scale-dependent variable which changes according
to the reduced or increased DEM resolution. Since the input data of this research are a 30*m
SRTM DEM, the results of the slope modelling refer to the given resolution.

Marked physiographic variations in the Japanese Alps control the type and distribution
of morphometric parameters in the following two regards. First, the heights change between
the Hokkaido, Kyushu and Honshu Islands, with the highest elevation points in the central
part of the Honshu (Mt. Fuji). Therefore, the variation of topographic ruggedness and slope
steepness is primarily controlled by the geographic location, with the largest difference
between the extreme highest and lowest points in the Central Alps. Second, the largest
earthquake recorded in Japan, the Tohoku earthquake recorded ca. 371 km NE of Tokyo in
2011 (Miyagi prefecture, see the map in Figure 4), affected the topography of the country
and increased slope instability and the risk of landslides.

The comparison of the exposure (Figure 5, left) and elevation maps (Figure 5, right)
shows the trends in the North-South-West-East directions with regard to the topographic
altitude of the land surface. The functional options related to the visualization by RStudio
are discussed in previous sections. The presented maps are based on the ETOPO1 and
ETOPO2 data with 1 and 2 arc second resolution, respectively, used for 3D modelling by
GMT, as shown on the surface plot of the land relief of Japan with varied rotation. The
3D mesh model with isolines drawn on top of the surface is based on ETOPO2, and the
grey-shaded topographic ‘waterfall’ plot based on the ETOPO2 grid with a view rotation of
115/30° as shown in Figure 6.

A 3D map with a view rotation of 65/30°is presented in Figure 7. The SRTM90 DEM,
which shows the morphometric models, represents the slope, aspect, and hillshade relief
in the land surface of Japan. The number of pixels (over 16,000 on a raster grid) was the
greatest in the ‘gentle’ slope level (yellow color) compared to the others: 12,000 pixels for
the ‘moderate’ slope (orange color), over 10,000 for the ‘strong’ slope (light red color), and
8000 for the ‘very strong’ slope (magenta color); three bins are covered by the class ‘extreme’
slope (purple color), and the rest (blue color) are represented by the less than 3000 pixels
group, that is, the steepest mountain slopes.

The slope map shows the steepness of the mountain sides in the Japanese Alps in the
Northern, Central and Southern Alps. The highs and hills in the raster grids are visualised
in different sub-regions of Japan. The slope directions (Figure 8) revealed the following
variations in the data: ‘gentle’, ‘moderate’, ‘strong’, ‘very strong’, ‘extreme’, and ‘steep’
slopes of the mountainous regions of Japan.

The aspect map (Figure 9) demonstrates that slope orientation, according to the
compass direction (W-E-S-N), differs in various parts of the mountains chains of the
Japanese Alps.

Thus, in the central part of the area (around 36° N), many slopes have a primarily west
orientation (as shown by a red color), which is correlated to the geographic distribution of
the Central Alps. However, in other parts, the southern (yellow color) and eastern (orange
color) orientations demonstrate the prevailing values. Similarly, the northern orientation
(green color) of the slopes contributes the least in the examined dataset.
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Figure 6. Japan: 3D topographic mesh model with isolines drawn on top of surface based on ETOPO2,
with rotation of 115/30°. Software: GMT, version 6.1.1. Map source: authors.

Furthermore, the relationship of the slope aspect and elevation values indicating the
altitude of the mountains might be the points of correlation. This should be emphasised
since the impact of the geomorphic patterns on the morphometric characteristics helps
detect the trends, showing the relief in the Japanese Alps. The hillshade map (Figure 10)
shows a complex model based on the previously created maps of slope and aspect.
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Figure 7. Japan: 3D grayshaded topographic waterfall plot based on ETOPO2 with rotation of 65/30°.
Software: GMT, version 6.1.1. Map source: authors.

Figure 8. Slope steepness in Japan. (a) Script for plotting by ‘raster ’ and ‘tmap’ packages. (b) Map in
RStudio. Source: authors.
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Figure 9. Aspect exposure of slopes in Japan. (a) Script by ‘raster ’ and ‘tmap’ packages. (b) Map
prepared in RStudio. Source: authors.

Figure 10. Terrain hillshade in Japan. (a) Script used for plotting using ‘raster ’ and ‘tmap’ packages
of R. (b) Map in RStudio. Source: authors.

The levels of illumination were set at angle = 40°and azimuthal direction = 270°. The
elevation map was used as a basis for the relief overlaid by the hill shading. The results of
the regional mapping of prefectures performed by R are shown in Figure 11.

144



Land 2023, 12, 261

Figure 11. Japan: map of prefectures. R, v. 4.2.2 (RStudio v. 2022.12.0+353). Map source: authors.

4. Discussion

The results of the SRTM90 DEM modelling identified major morphometric character-
istics, such as slope, aspect and hillshade and demonstrated the uneven elevation in the
topographic maps made using R scripting. Using a variety of R packages implies both the
processing of data, exploration of data frames, manipulation of its structure and spatial data
analysis (e.g., using the ‘raster’ package), and the cartographic aesthetic visualization of the
layouts supported by specially designed packages such as ‘tmap’, ‘maps’ and ‘mapdata’.

The analysis of topographic attributes and DEM is of fundamental importance for
reconstructing the genesis and development of landforms and, more generally, the ge-
ological setting of a specific area. The new ways of measuring, sensing, and analysing
relief morphology carried out in Japan suggest that the range of the relief is reinforced
by the high-elevation landforms, as well as external factors such as geomorphological
processes and the climate, which contribute to eroding and modifying them. In fact, a
strong correlation between geomorphology, topography and climate is commonly known,
as also reported in Japan [69]. As proof of this, they pointed out that the climatic changes
since the Late Glacial period have been responsible for the passage from the glacial to
the permafrost environment in the current alpine zone, leading to modifications in the
geomorphological processes and in the relief of the northern Japanese Alps.

Other important findings in geomorphic studies in Japan are well summarized by [70],
who noted extensive sedimentation in mountain piedmonts and coastal fluvial plains and
abundant sediment in steep watersheds. They furthermore pointed out the occurrence
of hydro-geomorphological events in the areas of earthquakes and volcanic eruptions,
as well as the post-glacial development of hillslope and flood processes along alluvial
fans strongly controlled by the climate. In addition to the environmental factors, the
relief directly influences the social-economic patterns through the possibility of road and
building constructions and the potential triggering of landslides, which depend on the rock
properties and slope steepness.

The geomorphic processes are largely driven by the gravity of the Earth and controlled
by the slope steepness of the relief. As a result, the intensity of the surface processes, such as
landslides, is affected by the displacement gradients connected to the geometric curvature
and ruggedness of the relief. In such a way, practical applications of land surface maps in 2D
and 3D representations enable the evaluation of the slope steepness quantitatively. In turn,
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the information retrieved from the calculated rates at which landslides are dismantling
mountain slopes can be used for hazard and risk assessment for practical purposes of
engineering geology, as well as for estimating potential slope instability [71]. Furthermore,
other applications of land surface maps include the evaluation of environmental risks
caused by climatic factors, such as precipitation intensity and the repeatability of rainfall
or downpours [72,73] and visualising water surface dynamics in the context of flood and
drought applications [74]. Finally, risk assessment and management in mountainous
regions should consider other natural events, such as earthquakes or typhoons [75–77].

Due to the importance of topographic data visualization and the need for updated
maps based on high-resolution data, there are many research reports on methods of to-
pographic and bathymetric mapping and DEM applications for geospatial mapping. The
latter includes, for instance, land surface classification based on DEM, reliefs, and geomor-
phological modelling using various GIS and geomorphometric computations of slope and
aspect, as well as issues concerning the visualising methods of hillshade and DEM [78–80].
Since morphometric studies should always be supported by a spatial topographic represen-
tation, the questions of technical tools of mapping always remain actual for DEM-based
studies. Our research contributed to this topic and showed that the integrated use of GMT
and R in morphometric studies is an effective approach both for thematic mapping and for
spatial analysis.

Graphics and maps, when created well, can provide eye-catching and detailed in-
formation on the land surface. This is why graphical approaches and methodologies of
cartographic visualization are of high importance in Earth sciences. Despite a specific
language syntax and approaches to data analysis that require mastering the tool, the GMT
scripting toolset and R language are shown to be very promising tools for geospatial vi-
sualization, morphological modelling, and mapping, supporting the research in various
aspects due to their different functionality.

Cartographic data visualization, regardless of what GIS software is used, is an integral
part of the complex workflow of geospatial research. To mention some steps in a simplified
process of geospatial data analysis using cartographic tasks, this includes data capture, pre-
processing, projecting, analysis of content of the datasets, modelling variables, visualising
and plotting the maps with controlled layout, and others. Applying the methods of scripts
extended to the machine learning approaches to a cartographic workflow facilitates the
process of spatial analysis. Specifically, it helps to increase the accuracy and precision of the
final results and maps and significantly decreases the time of data processing due to the
automation of geospatial data processing. Moreover, we have shown that the use of scripts
and programming methods are more efficient and therefore more suitable for cartographic
workflow due to repeatability. Our methods could be easily extended to also use other
datasets and geographic extent of data. In fact, the computational procedure adopted here
to investigate the setting of reliefs and mapping land features in 2D or 3D models could be
applied to any target scales, be it global downscaled modelling or upscaling to regional
(prefecture-level) and local (city-level) terrain models.

5. Conclusions

In this paper, we have designed adaptive script-based algorithms for plotting morpho-
logic maps using GMT and R that are able to visualise maps accurately and effectively. Our
two algorithms provide a tradeoff between the computational approach of R for geospatial
data processing and the cartographic performance of GMT. For future relevant works, we
suggest that one chooses the appropriate algorithm based on their mapping goals and
available dataset. Both programs have free access as open-source tools and extensive
functionality for geographic data analysis and visualization. The presented methods can
be used and adopted to other regions and areas with changed relevant coordinates and
modified attributes for 3D modelling (e.g., elevation range). We have shown that the use of
both these tools for mapping is a very effective approach for spatial analysis that can be
used instead of or besides GIS, as a complimentary script-based method.
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We furthermore identified the existing challenges such as the need to use, install, and
load a variety of packages in R to fit in various tasks, such as: geomorphometry, classic
mapping, spatial analysis, data capture, and data conversion. In contrast, GMT enables us
to perform all the steps of a cartographic workflow in the same session by calling necessary
modules. On the one hand, using scripts can be an easier approach compared to GIS, but on
the other hand, it can be a challenge, since it requires finding a suitable package, installing
and activating it, and using it by applying its specific functions and syntax using GMT or R.

The integration of our method based on the GMT and R algorithms for processing
various geospatial data is straightforward since many data formats can smoothly be im-
ported and processed both by GMT and R. Furthermore, R has certain embedded datasets
that we used for plotting the prefectures of Japan and for visualising physical features of
relief. Working on grey-level images for 3D modelling by GMT enabled us to detail the land
surface features and demonstrated the high accuracy of the ETOPO grids. With respect to
our work, which exploited script-based mapping, we have designed and presented a series
of thematic maps on Japan that can be applied for other regions and countries.

As we have shown in this study, the use of GMT and R for 2D and 3D mapping
in geographic analysis is highly effective and recommended, especially for perspective
visualization of the terrain. However, we should also notice that this method is not yet
as popular as traditional GIS. This can be explained by the non-trivial approach of using
scripts and programming techniques in mapping and cartographic data processing, as well
as certain skills required for coding and mastering the syntax of both the tools. Nevertheless,
the improved workflow of mapping and results suggests that both GMT and R are effective
for geosciences and recommended for mapping purposes.
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Appendix A. GMT Scripts

Appendix A.1. GMT Script for 2D Mapping of Japan

Listing 1. GMT script for topographic map.

1 #!/bin/sh

2 # Purpose: shaded relief raster map of Japan using GEBCO 15 arc sec

3 # GMT modules: gmtset , gmtdefaults , grdcut , makecpt , grdimage , psscale ,

grdcontour , psbasemap , gmtlogo , psconvert

4 # Extract a subset of GEBCO for the Japan trench area

5 gmt grdcut GEBCO_2019.nc -R128 /150/30/46 -Gjp_relief.nc

6 gmt grdcut ETOPO1_Ice_g_gmt4.grd -R128 /150/30/46 -Gjp_relief1.nc

7 gmt grdgdal -Ainfo jp_relief.nc

8 # actual_range ={ -9759.701171875 ,3700.7421875}

9 exec bash

10 # Make color palette

11 gmt makecpt -Cglobe.cpt -V -T -9759/3700 > myocean.cpt

12 # Generate a file

13 ps=Topo_JP.ps

14 # Make raster image

15 gmt grdimage jp_relief.nc -Cmyocean.cpt -R128 /150/30/46 -JM16c -P -I+a15+ne0

.75 -Xc -K > $ps

16 # Add color legend

17 gmt psscale -Dg125 .0/30+ w15.0c/0.4c+v+o0.3/0i+ml -R -J -Cmyocean.cpt \

18 --FONT_LABEL =10p,0,black --FONT_ANNOT_PRIMARY =8p,0,black \

19 -Bg2000f100a1000+l"Topographic color scale ‘globe ’" \

20 -I0.2 -By+lm -O -K >> $ps

21 # Add isolines

22 gmt grdcontour jp_relief1.nc -R -J -C2000 -W0.1p -O -K >> $ps

23 # Add coastlines , borders , rivers

24 gmt pscoast -R -J -Ia/thinner ,blue -Na -N1/thin ,red -W0.1p -Df -O -K >> $ps

25 # Add grid

26 gmt psbasemap -R -J --MAP_FRAME_AXES=wESN --FORMAT_GEO_MAP=ddd:mm:ssF \

27 --FONT_TITLE =14p,0,black --MAP_TITLE_OFFSET =0.8c \

28 -Bpxg8f2a4 -Bpyg6f3a3 -Bsxg4 -Bsyg3 \

29 -B+t"Topographic map of Japan" -O -K >> $ps

30 # Add projection scale

31 gmt psbasemap -R -J --FONT =10p,0,dimgray --MAP_TITLE_OFFSET =0.3c \

32 -Lx14c /-0.5i+c50+w500k+l"Mercator projection. Scale (km)"+f \

33 -UBL/-5p/-40p -O -K >> $ps

34 # Add directional rose

35 gmt psbasemap -R -J \

36 --FONT=9p,Palatino -Roman ,white --MAP_TITLE_OFFSET =0.3c \

37 -Tdx14 .6c/9.3c+w0.3i+f2+l+o0.15i -O -K >> $ps

38 # Texts

39 gmt pstext -R -J -N -O -K \

40 -F+f11p ,0,white+jLB >> $ps << EOF

41 133 41 S E A O F J A P A N

42 144.05 37.5 P A C I F I C O C E A N

43 EOF

44 gmt pstext -R -J -N -O -K \

45 -F+f11p ,0,black+jLB -Gwhite@70 >> $ps << EOF

46 142 43.4 HOKKAIDO

47 130 32.5 KYUSHU

48 EOF

49 gmt pstext -R -J -N -O -K \

50 -F+f13p ,0,black+jLB+a-320 -Gwhite@70 >> $ps << EOF

51 137.9 35.7 H O N S H U

52 EOF

53 # -R128 /150/30/46

54 gmt pstext -R -J -N -O -K \

55 -F+f11p ,21,black+jLB -Gwhite@70 >> $ps << EOF

56 139.53 35.0 Yokohama

57 EOF

58 gmt psxy -R -J -Sc -W0.5p -Gyellow -O -K << EOF >> $ps

59 139.63 35.44 0.20c

60 EOF

61 gmt pstext -R -J -N -O -K \
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62 -F+f12p ,21,black+jLB -Gwhite@70 >> $ps << EOF

63 135.50 34.25 Osaka

64 EOF

65 gmt psxy -R -J -Sc -W0.5p -Gyellow -O -K << EOF >> $ps

66 135.50 34.69 0.20c

67 EOF

68 # repeated with relevant coordinates for all the cities

69 gmt pstext -R -J -N -O -K \

70 -F+f15p ,0,black+jLB -Gwhite@70 >> $ps << EOF

71 139.79 35.66 Tokyo

72 EOF

73 gmt psxy -R -J -Ss -W0.5p -Gred -O -K << EOF >> $ps

74 139.69 35.69 0.30c

75 EOF

76 # insert global map

77 gmt psbasemap -R -J -O -K -DjBR+w3.2c+stmp >> $ps

78 read x0 y0 w h < tmp

79 gmt pscoast --MAP_GRID_PEN_PRIMARY=thinnest ,lightgray --MAP_FRAME_PEN=thin ,

white -Rg -JG140 /37N/$w -Da -Gseashell3 -A2000 -Bga -Wfaint -EJP+gyellow

-Sroyalblue3 -O -K -X$x0 -Y$y0 >> $ps

80 gmt psxy -R -J -O -K -T -X-${x0} -Y-${y0} >> $ps

81 # Add GMT logo

82 gmt logo -Dx6 .7/ -1.8+o0.1i/0.1i+w2c -O -K >> $ps

83 # Add subtitle

84 gmt pstext -R0 /10/0/15 -JX10 /10 -X0.5c -Y8.2c -N -O \

85 -F+f10p ,0,black+jLB >> $ps << EOF

86 3.0 11.0 GEBCO DEM Global Relief Model 15 arc sec resolution grid

87 EOF

88 # Convert to image file using GhostScript

89 gmt psconvert Topo_JP.ps -A0.2c -E720 -Tj -Z

Appendix A.2. GMT Script for 3D Mapping of Surface Plot of Japan

Listing 2. GMT script for 3D surface plot of Japan.

1 #!/bin/sh

2 # Purpose: 3D surface grid plot , 165/30 azimuth , from ETOPO1 for Japan

3 # GMT modules: grdcut , grd2cpt , grdcontour , pscoast , grdview , logo , psconvert

4 # Cut grid

5 gmt grdcut ETOPO1_Ice_g_gmt4.grd -R128 /150/30/46 -Gjp_relief1.nc

6 gdalinfo -stats jp_relief1.nc

7 # Minimum = -9651.000 , Maximum =3481.000 , Mean = -2429.672 , StdDev =2497.488

8 gmt makecpt -Cturbo.cpt -V -T -9651/3481 > myocean.cpt

9 # generate a file

10 ps=JP_3D.ps

11 # -B1/1NESW

12 gmt grdcontour jp_relief1.nc -JM10c -R128 /150/30/46 \

13 -p165 /30 -C500 --FONT_ANNOT_PRIMARY =8p,0,blue --MAP_FRAME_AXES=WESN \

14 --MAP_FRAME_PEN=brown --FORMAT_GEO_MAP=ddd:mm:ss \

15 --MAP_GRID_PEN_PRIMARY=thin ,dimgray \

16 -Gd3c -Y3c -Bpxg4f2 .0a2.0 -Bpyg4f2a2 .0 -Bsxg1 -Bsyg1 \

17 -U/-0.5c/-1c/"Contour: ETOPO 1 arc minute resolution grid" -P -K > $ps

18 #Add coastlines , borders , rivers

19 gmt pscoast -R -J -p165 /30 -P -Ia/thinner ,blue \

20 -Na -N1/thin ,gray -W0.1p -Df -O -K >> $ps

21 #-Bpxg2f0 .5a1 -Bpyg2f0 .5a1 -Bsxg2 -Bsyg1

22 # add color legend

23 gmt psscale -Dg122 .0/30.0+ w8.0c/0.4c+v+o0 .0/0.5c+ml \

24 -R -J -Cmyocean.cpt \

25 --FONT_LABEL =8p,0,dimgray --FONT_ANNOT_PRIMARY =7p,0,black --

MAP_ANNOT_OFFSET =0.1c \

26 -Bg500f100a1000+l"Color scale legend: depth and height elevations (m)." \

27 -I0.2 -By+lm -O -K >> $ps

28 # Add 3D

29 gmt grdview jp_relief1.nc -J -R -JZ3.0c -Cmyocean.cpt \

30 -p165 /30 -Qs -N -9651+ glightgray \

31 -Wm0 .07p -Wf0.1p,red \

32 -B2 .0/2.0/3000:"Bathymetry and topography (m)":ESwZ -S5 -Y5.0c \

149



Land 2023, 12, 261

33 --FORMAT_GEO_MAP=ddd:mm:ss --FONT_LABEL =8p,0,darkblue --

FONT_ANNOT_PRIMARY =8p,0,black \

34 --MAP_FRAME_PEN=black -O -K >> $ps

35 # Add GMT logo

36 gmt logo -Dx10 .5/ -5.5+o0.0c/-0.5c+w2c -O -K >> $ps

37 # Add title

38 gmt pstext -R0 /10/0/10 -Jx1 -X-0.8c -Y0.0c -N -O -K \

39 -F+f12p ,25,black+jLB >> $ps << EOF

40 -0.5 9.0 Japan: 3D topographic surface plot based on ETOPO1

41 EOF

42 gmt pstext -R0 /10/0/10 -Jx1 -X0.0c -Y0.0c -N -O\

43 -F+f10p ,0,black+jLB >> $ps << EOF

44 -0.5 8.5 Perspective view , azimuth rotation: 165/30\232

45 -0.5 8.0 Base map: 2D relief contour plot

46 EOF

47 # Convert to image file using GhostScript (portrait orientation , 720 dpi)

48 gmt psconvert JP_3D.ps -A1.2c -E720 -Tj -P -Z

Appendix A.3. Modified GMT Script for 3D Mesh Model of Japan (Lines 29–34 of the
Previous Script)

Listing 3. GMT script for 3D mesh model of Japan.

1 #!/bin/sh

2 # Add 3D

3 gmt grdview jp_relief2.nc -J -R -JZ3.0c -Cmyocean.cpt \

4 -p115 /30 -Qsm -N -9651+ glightgray \

5 -Wm0.07p -Wf0.1p,red \

6 -B2 .0/2.0/3000:"Bathymetry and topography (m)":ESwZ -S5 -Y5.0c \

7 --FORMAT_GEO_MAP=ddd:mm:ss \

8 --FONT_LABEL =8p,0,darkblue \

9 --FONT_ANNOT_PRIMARY =8p,0,black \

10 --MAP_FRAME_PEN=black -O -K >> $ps

11

Appendix A.4. GMT Script for 3D Grayscale ‘Waterfall’ Model of Japan

Listing 4. GMT script for 3D grayscale ‘waterfall’ model of Japan.

1 #!/bin/sh

2 # Purpose: 3D grayscale ‘waterfall ’ model of Japan , 65/30 azimuth , from

ETOPO2 for Japan

3 # GMT modules: grdcut , grd2cpt , grdcontour , pscoast , grdview , logo , psconvert

4 exec bash

5 # Cut grid

6 gmt grdcut ETOPO2v2g_f4.nc -R128 /150/30/46 -Gjp_relief2.nc

7 gdalinfo -stats jp_relief2.nc

8 # actual_range ={ -9787 ,2832}

9 # Add 3D

10 ps=JP_3D_wf.ps

11 # -B1/1NESW

12 gmt grdcontour jp_relief2.nc -JM10c -R128 /150/30/46 \

13 -p65 /30 -C500 --FONT_ANNOT_PRIMARY =8p,0,blue --MAP_FRAME_AXES=WESN \

14 --MAP_FRAME_PEN=brown --FORMAT_GEO_MAP=ddd:mm:ss \

15 --MAP_GRID_PEN_PRIMARY=thin ,dimgray \

16 -Gd3c -Y3c -Bpxg4f2 .0a2.0 -Bpyg4f2a2 .0 -Bsxg1 -Bsyg1 \

17 -U/-0.5c/-1c/"Contour: ETOPO 2 arc minute resolution grid" -P -K > $ps

18 #Add coastlines , borders , rivers

19 gmt pscoast -R -J -p65 /30 -P -Ia/thinner ,blue \

20 -Na -N1/thin ,gray -W0.1p -Df -O -K >> $ps

21 # Add 3D

22 gmt grdview jp_relief2.nc -J -R -JZ2.0c -Cmyocean.cpt \

23 -p65 /30 -Qmx -N -9787+ glightgray -Wm0.07p -Wf0.5p,red \

24 -B2 .0/2.0/4000:"Bathymetry and topography (m)":ESwZ -S5 -Y3.0c \

25 --FORMAT_GEO_MAP=ddd:mm:ss --FONT_LABEL =8p,0,darkblue \

26 --FONT_ANNOT_PRIMARY =8p,0,black --MAP_FRAME_PEN=black -O -K >> $ps

27 # Add GMT logo

28 gmt logo -Dx10 .5/ -3.5+o0.0c/-0.5c+w2c -O -K >> $ps
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29 # Add title

30 gmt pstext -R0 /10/0/10 -Jx1 -X-0.8c -Y0.0c -N -O -K \

31 -F+f12p ,25,black+jLB >> $ps << EOF

32 -0.5 8.5 Japan: 3D perspective waterfall plot based on gridded ETOPO2 data

33 EOF

34 gmt pstext -R0 /10/0/10 -Jx1 -X0.0c -Y0.0c -N -O\

35 -F+f10p ,0,black+jLB >> $ps << EOF

36 -0.5 8.0 Perspective view , azimuth rotation: 65/30\232

37 -0.5 7.5 Base map: 2D relief contour plot

38 EOF

39 # Convert to image file using GhostScript (portrait orientation , 720 dpi)

40 gmt psconvert JP_3D_wf.ps -A1.2c -E720 -Tj -P -Z

41

Appendix A.5. R Script for Plotting Prefectures of Japan

Listing 5. R script for plotting prefectures of Japan.

1 setwd("/Users/pauline/")

2 # load packages

3 library(showtext)

4 library(ggplot2)

5 library(ggmap)

6 library(maps)

7 library(mapdata)

8 # get and inspect the data

9 japan <- map_data("japan")

10 # Compactly display the internal structure of an R object

11 str(japan)

12 # indicate column with regions as factor value (variable)

13 japan$region =as.factor(japan$region)

14 str(japan)

15 dim(japan)

16 head(japan)

17 tail(japan)

18 # check up available fonts

19 library(showtext)

20 font_families ()

21 font_paths()

22 font_files()

23 # regions Japan , expanding color palettes (1)

24 # inspect number of variable (prefectures of Japan)

25 length(unique(japan$region))

26 # 47

27 #expanding color palettes (1)

28 colourCount = length(unique(japan$region))

29 colorRampPalette(brewer.pal(name="Spectral", n = 8))(47)

30 getPalette = colorRampPalette(brewer.pal(9, "Spectral"))

31 # plotting map

32 gg1 <- ggplot () +

33 geom_polygon(data = japan , aes(x = long , y=lat , fill = region , group =

group),

34 color = "blue", linetype = 1, size = 0.2 ) +

35 coord_fixed (1.3) +

36 xlab("Longitude") +

37 ylab("Latitude") +

38 scale_fill_manual(values = getPalette(colourCount)) +

39 labs(title="Japan",

40 subtitle = "Mapping: R",

41 caption = "Packages: ggmap , ggplot2 , mapdata , maps") +

42 theme(legend.title = element_text(colour="blue", size=16, face="bold"),

43 plot.title = element_text(family = "Chalkboard", colour="blue", size

=16, face="bold"),

44 plot.subtitle = element_text(family = "Chalkboard", colour="blue",

face = "plain", size = 14),

45 plot.caption = element_text(face = "italic", size = 10),

46 legend.box = "vertical",

47 legend.box.background = element_rect(colour = "honeydew4",size =0.2),

48 legend.background = element_rect(fill = "white"),
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49 panel.grid.major = element_line("white", size = 0.3, linetype = "

solid"),

50 panel.grid.minor = element_line("white", size = 0.2, linetype = "

dotted"),

51 axis.text.x = element_text(family = "Arial", face = 3, color = "

gray24",size = 10, angle = 15),

52 axis.text.y = element_text(family = "Arial", face = 3, color = "

gray24",size = 10, angle = 90),

53 ) +

54 scale_x_continuous(breaks = c(seq(120, 150, by = 5))) +

55 guides(fill = guide_legend(ncol = 2,

56 title = "Prefectures", title.position = "top"))

57 gg1

58 # regions Japan , expanding color palettes (2nd variant)

59 length(unique(japan$region))

60 # 47

61 nb.cols <- 47

62 mycolors <- colorRampPalette(brewer.pal(8, "Set1"))(nb.cols)

63 # Create a ggplot with 47 colors

64 # Use scale_fill_manual

65 gg1 <- ggplot () +

66 geom_polygon(data = japan , aes(x = long , y=lat , fill = region , group=

group),

67 color = "blue", linetype = 1, size = 0.2 ) +

68 coord_fixed (1.3) +

69 xlab("Longitude") +

70 ylab("Latitude") +

71 scale_fill_manual(values = mycolors) +

72 labs(title="Japan",

73 subtitle = "Mapping: R",

74 caption = "Packages: ggmap , ggplot2 , mapdata , maps") +

75 theme(legend.title = element_text(colour="blue", size=16, face="bold"),

76 plot.title = element_text(family="AquaKana", face="bold", colour=

"blue", size =16)) +

77 guides(fill = guide_legend(ncol = 2,

78 title = "Prefectures", title.position = "top"))

79 gg1

80 # Other filling , e.g., transparent

81 ggplot () +

82 geom_polygon(data = japan , aes(x=long , y = lat , group = group), fill = NA,

color = "red") +

83 coord_fixed (1.3)

84 ggplot () +

85 geom_polygon(data = france , aes(x=long , y = lat , group = group), fill = NA ,

color = "red") +

86 coord_fixed (1.3)

87 # color

88 gg2 <- ggplot () +

89 geom_polygon(data = japan , aes(x=long , y = lat , group = group),

90 fill = "pink", color = "blue", linetype = 1, size = 0.2) +

91 coord_fixed (1.3) +

92 xlab("Longitude") +

93 ylab("Latitude") +

94 labs(title="Japan",

95 subtitle = "Mapping: R",

96 caption = "Packages: ggmap , ggplot2 , mapdata , maps")

97 gg2

Appendix A.6. R Script for Terrain Mapping of Japan

Listing 6. R script for terrain maps.

1 # Set working directory

2 setwd("/Users/pauline/")

3 # load packages

4 library(sp)

5 library(raster)

6 library(ncdf4)

7 library(RColorBrewer)
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8 library(sf)

9 library(tmap)

10 # check up available fonts

11 library(showtext)

12 font_families ()

13 font_paths ()

14 font_files ()

15 # get the data

16 alt = getData("alt", country = "Japan", path = tempdir ())

17 # coordinate system

18 crs(alt) <- "+proj=longlat +datum=WGS84 +no_defs"

19 # Default CRS arguments: +proj=longlat +datum=WGS84 +no_defs

20 crs(alt) <- "+proj=lcc +lat_1 =-30 +lat_2 =40 +lon_0 =140 +datum=WGS84"

21 crs(alt)

22 # -- Calculate terrain characteristics: SLOPE , ASPECT , HILLSHADE -- #

23 cols <- rainbow (255)

24 # Slope

25 slope = terrain(alt , opt = "slope")

26 cols <- bpy.colors (255)

27 plot(slope , col=cols , main=’Slope’, xlab = "lon", ylab = "lat")

28 # Aspect

29 aspect = terrain(alt , opt = "aspect")

30 cols <- terrain.colors (255)

31 plot(aspect , col=cols , main=’Exposure ’, xlab = "lon", ylab = "lat")

32 # Hillshade

33 hill = hillShade(slope , aspect , angle = 40, direction = 270)

34 cols <- rev(topo.colors (255))

35 cols <- topo.colors (255)

36 plot(hill , col=cols , main=’Hillshade ’, xlab = "lon", ylab = "lat")

37 # Elevation

38 cols <- rainbow (255)

39 plot(alt , col=cols , main=’Elevation ’, xlab = "lon", ylab = "lat")

40 mymaps <- tmap_arrange(slope , alt)

41 mymaps

Appendix A.7. R Script for Mapping Slope of Japan

Listing 7. R script for mapping slope map of Japan.

1 # Set working directory

2 setwd("/Users/pauline/")

3 # load packages

4 library(sp)

5 library(raster)

6 library(ncdf4)

7 library(RColorBrewer)

8 library(sf)

9 library(tmap)

10 # tmaptools :: palette_explorer ()

11 # initial mode: "plot"

12 # current.mode <- tmap_mode ("plot")

13 # slope

14 tmap_mode("plot")

15 map1 <-

16 tmap_style("albatross"

17 ) +

18 tm_shape(slope , name = "Slope", title = "Slope",

19 raster.downsample = T,

20 ) +

21 tm_raster(

22 title = "Slope (0\u00B0 -90\ u00B0)", palette = "-plasma",

23 style = "quantile", n = 6, breaks = c(5, 15, 30, 60, 75, 90),

24 labels = c("gentle", "moderate", "strong", "very strong", "extreme",

"steep"),

25 legend.show = T,legend.hist = T, legend.hist.z = 0,

26 ) +

27 tm_scale_bar(

28 width = 0.5,

29 text.size = 1.5, text.color = "darkgoldenrod1",
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30 color.dark = "lightsteelblue4", color.light = "white",

31 position=c("left", "bottom"), lwd = 1,

32 ) +

33 tm_compass(

34 type = "radar", position=c("right", "bottom")

35 ) +

36 tm_layout(scale = .8,

37 main.title = "Slope: terrain analysis based on SRTM90 DEM of Italy.

Mapping: R",

38 main.title.position = "center",

39 main.title.color = "black", main.title.size = 1.4,

40 title = "Data: SRTM90 DEM",

41 title.color = "darkgoldenrod1",

42 title.size = 1.2, title.position = c("left", "top"),

43 panel.labels = c("R packages: tmap , raster , sp , sf"),

44 panel.label.color = "darkslateblue",

45 panel.label.size = 1.2, legend.position = c("right","bottom"),

46 legend.bg.color = "grey90", legend.bg.alpha = .2,

47 legend.frame = "gray50", legend.outside = FALSE ,

48 legend.width = 0.9, legend.height = .5,

49 legend.hist.height = 0.3, legend.title.size = 1.2,

50 legend.text.size = 0.6, legend.text.fontface = "plain",

51 legend.text.fontfamily = "Helvetica",

52 inner.margins = 0.1,

53 ) +

54 tm_graticules(

55 ticks = T, lines = T, labels.rot = c(15, 15),

56 col = "azure3", lwd = 1, labels.size = 1.2

57 )

58 # plot map

59 map1

60 tmap_save(map1 , "Slope_Japan.jpg", height = 7)

Appendix A.8. R Script for Mapping Aspect of the Terrain in Japan

Listing 8. R script for mapping aspect of the terrain in Japan.

1 # Aspect

2 tmap_mode("plot")

3 map2 <-

4 tmap_style("albatross"

5 ) +

6 tm_shape(aspect , name = "Aspect", title = "Aspect",

7 raster.downsample = T,

8 ) +

9 tm_raster(

10 title = "Aspect (West -East -South -North)", palette = "Spectral",

11 style = "sd", labels = c("West", "East", "South", "North"),

12 legend.show = T, legend.hist = T, legend.hist.z = 0,

13 ) +

14 tm_scale_bar(

15 width = 0.5,

16 text.size = 1.5, text.color = "darkgoldenrod1",

17 color.dark = "lightsteelblue4", color.light = "white",

18 position=c("left", "bottom"), lwd = 1,

19 ) +

20 tm_compass(

21 type = "radar", position=c("right", "bottom")

22 ) +

23 tm_layout(scale = .8,

24 main.title = "Aspect: terrain analysis based on SRTM90 DEM of Italy.

Mapping: R",

25 main.title.position = "center",

26 main.title.color = "black", main.title.size = 1.4,

27 title = "Data: SRTM90 DEM. Aspect (W-E-S-N)",

28 title.color = "darkgoldenrod1",

29 title.size = 1.2, title.position = c("left", "top"),

30 panel.labels = c("R packages: tmap , raster , sp , sf"),

31 panel.label.color = "darkslateblue",
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32 panel.label.size = 1.2, legend.position = c("left","top"),

33 legend.bg.color = "grey90", legend.bg.alpha = .2,

34 legend.frame = "gray50", legend.outside = FALSE ,

35 legend.width = .3, legend.height = .5,

36 legend.hist.height = .3, legend.title.size = 1.2,

37 legend.text.size = 1.2, legend.text.fontface = "plain",

38 legend.text.fontfamily = "Helvetica",

39 inner.margins = 0,

40 ) +

41 tm_graticules(

42 ticks = T, lines = T, labels.rot = c(15, 15),

43 col = "azure3", lwd = 1, labels.size = 1.2

44 )

45 # plot the map

46 map2

47 tmap_save(map2 , "Aspect_Japan.jpg", height = 7)

Appendix A.9. R Script for Mapping Hillshade in the Terrain of Japan

Listing 9. R script for mapping hillshade in the terrain of Japan.

1 # hillshade

2 # tmaptools :: palette_explorer ()

3 tmap_mode("plot")

4 map3 <-

5 tmap_style("albatross") +

6 tm_shape(hill , name = "Hillshade", title = "Slope",

7 auto.palette.mapping = FALSE ,) +

8 tm_raster(

9 title = "Histogram \n(data distribution)",

10 palette = "cividis", style = "kmeans",

11 legend.show = T, legend.hist = T,

12 legend.hist.z=0,

13 ) +

14 tm_scale_bar(

15 width = 0.25,

16 text.size = 1.2, text.color = "darkgoldenrod1",

17 color.dark = "lightsteelblue4", color.light = "white",

18 position=c("right", "bottom"), lwd = 1) +

19 tm_compass(

20 type = "radar", position=c("left", "bottom")) +

21 tm_layout(scale = .8,

22 main.title = "Hillshade: Terrain analysis based on SRTM90 DEM of

Japan. Mapping: R",

23 main.title.position = "center",

24 main.title.color = "black",

25 main.title.size = 1.4, title = "Hillshade (0\u00B0 -90\ u00B0)",

26 title.color = "darkgoldenrod1",

27 title.size = 1.2, title.position = c("left", "top"),

28 panel.labels = c("R packages: tmap , raster , sp , sf"),

29 panel.label.color = "darkslateblue",

30 legend.position = c("left","top"), legend.bg.color = "grey90",

31 legend.bg.alpha = .2, legend.frame = "gray50",

32 legend.outside = FALSE , legend.width = .3,

33 legend.height = .5, legend.hist.height = .2,

34 legend.text.size = 1.0, legend.text.fontface = "plain",

35 legend.title.size = 1.2,

36 inner.margins = 0) +

37 tm_graticules(

38 ticks = TRUE , lines = TRUE ,

39 col = "azure3", lwd = 1,

40 labels.size = 1.0,

41 labels.col = "black")

42 # plot the map

43 map3

44 tmap_save(map3 , "Japan_Hillshade.jpg", height = 7)
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Appendix A.10. R Script for Mapping Elevation Heights over Japan

Listing 10. R script for mapping elevation heights over Japan.

1 # elevation

2 tmap_mode("plot")

3 map4 <-

4 tmap_style("white") +

5 tm_shape(alt , name = "Elevation") +

6 tm_raster(

7 palette = terrain.colors (10),

8 title = "Elevation (m asl)",

9 legend.show = TRUE) +

10 tm_scale_bar(

11 width = 0.25,

12 text.size = 0.5,

13 text.color = "black",

14 color.dark = "black",

15 color.light = "white",

16 position=c("left", "bottom"),

17 lwd = 1) +

18 tm_compass(position=c("left", "bottom")) +

19 tm_layout(scale = .8,

20 legend.position = c("left","top"),

21 legend.bg.color = "grey90",

22 legend.bg.alpha = .2,

23 legend.frame = "gray50")

24 # plot the map

25 map4

26 tmap_save(map4 , "Japan_Elevation.jpg", height = 7)

References

1. Iwahashi, J.; Kamiya, I.; Matsuoka, M. Regression analysis of Vs30 using topographic attributes from a 50-m DEM. Geomorphology
2010, 117, 202–205. [CrossRef]

2. Shoyama, K. Assessment of Land-Use Scenarios at a National Scale Using Intensity Analysis and Figure of Merit Components.
Land 2021, 10, 379. [CrossRef]

3. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

4. Babiker, I.S.; Mohamed, M.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in
Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [CrossRef]

5. Ohta, R.; Matsushi, Y.; Matsuzaki, H. Use of terrestrial cosmogenic 10Be to quantify anthropogenic sediment yield from
mountainous watersheds: Application in reconstructing environmental change in the Tanakami Mountains, central Japan.
Geomorphology 2022, 405, 108201. [CrossRef]

6. Ikemi, H. Geologically constrained changes to landforms caused by human activities in the 20th century: A case study from
Fukuoka Prefecture, Japan. Appl. Geogr. 2017, 87, 115–126. [CrossRef]

7. Iwahashi, J.; Kamiya, I.; Yamagishi, H. High-resolution DEMs in the study of rainfall- and earthquake-induced landslides: Use of
a variable window size method in digital terrain analysis. Geomorphology 2012, 153–154, 29–38. [CrossRef]

8. Nakayama, T.; Osako, M. Development of a process-based eco-hydrology model for evaluating the spatio-temporal dynamics of
macro- and micro-plastics for the whole of Japan. Ecol. Model. 2023, 476, 110243. [CrossRef]

9. Hanaoka, K.; Nakaya, T.; Yano, K.; Inoue, S. Network-based spatial interpolation of commuting trajectories: application of a
university commuting management project in Kyoto, Japan. J. Transp. Geogr. 2014, 34, 274–281. [CrossRef]

10. Thongthammachart, T.; Araki, S.; Shimadera, H.; Matsuo, T.; Kondo, A. Incorporating Light Gradient Boosting Machine to land
use regression model for estimating NO2 and PM2.5 levels in Kansai region, Japan. Environ. Model. Softw. 2022, 155, 105447.
[CrossRef]

11. Alifu, H.; Vuillaume, J.F.; Johnson, B.A.; Hirabayashi, Y. Machine-learning classification of debris-covered glaciers using a
combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data. Geomorphology 2020, 369, 107365.
[CrossRef]

12. Carrasco, L.; Fujita, G.; Kito, K.; Miyashita, T. Historical mapping of rice fields in Japan using phenology and temporally
aggregated Landsat images in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 191, 277–289. [CrossRef]

13. Naghibi, S.A.; Hashemi, H.; Pradhan, B. APG: A novel python-based ArcGIS toolbox to generate absence-datasets for geospatial
studies. Geosci. Front. 2021, 12, 101232. [CrossRef]

14. Farag, T.; Sobh, M.; Mizunaga, H. 3D constrained gravity inversion to model Moho geometry and stagnant slabs of the
Northwestern Pacific plate at the Japan Islands. Tectonophysics 2022, 829, 229297. [CrossRef]

156



Land 2023, 12, 261

15. Lemenkova, P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. Data
2022, 7, 74. [CrossRef]

16. Hara, Y.; Oki, S.; Uchiyama, Y.; Ito, K.; Tani, Y.; Naito, A.; Sampei, Y. Plant Diversity in the Dynamic Mosaic Landscape of an
Agricultural Heritage System: The Minabe-Tanabe Ume System. Land 2021, 10, 559. [CrossRef]

17. Gomez, C.; Hayakawa, Y.; Obanawa, H. A study of Japanese landscapes using structure from motion derived DSMs and
DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology.
Geomorphology 2015, 242, 11–20.

18. Kim, M.; Rupprecht, C.D.D.; Furuya, K. Residents’ Perception of Informal Green Space—A Case Study of Ichikawa City, Japan.
Land 2018, 7, 102. [CrossRef]

19. Sasaki, K.; Hotes, S.; Ichinose, T.; Doko, T.; Wolters, V. Hotspots of Agricultural Ecosystem Services and Farmland Biodiversity
Overlap with Areas at Risk of Land Abandonment in Japan. Land 2021, 10, 1031. [CrossRef]

20. Otani, S.; Kurosaki, Y.; Kurozawa, Y.; Shinoda, M. Dust Storms from Degraded Drylands of Asia: Dynamics and Health Impacts.
Land 2017, 6, 83. [CrossRef]

21. Hooke, J.M. Changing landscapes: Five decades of applied geomorphology. Geomorphology 2020, 366, 106793. [CrossRef]
22. Siakeu, J.; Oguchi, T.; Aoki, T.; Esaki, Y.; Jarvie, H.P. Change in riverine suspended sediment concentration in central Japan in

response to late 20th century human activities. CATENA 2004, 55, 231–254. [CrossRef]
23. Nakayama, T. For improvement in understanding eco-hydrological processes in mire. Ecohydrol. Hydrobiol. 2013, 13, 62–72.
24. Ito, S.; Onitsuka, T.; Kuroda, H.; Hasegawa, N.; Fukuda, H.; Gouda, H.; Akino, H.; Sonoki, S.; Endo, K.; Takayama, T.; et al.

Evaluation of seafloor environmental characteristics of harvesting ground of a kelp Saccharina longissima using GIS in the Pacific
coastal area of eastern Hokkaido, Japan. Reg. Stud. Mar. Sci. 2022, 55, 102527. [CrossRef]

25. Tabuchi, K.; Murakami, T.; Okudera, S.; Furihata, S.; Sakakibara, M.; Takahashi, A.; Yasuda, T. Predicting potential rice damage
by insect pests using land use data: A 3-year study for area-wide pest management. Agric. Ecosyst. Environ. 2017, 249, 4–11.
[CrossRef]

26. Priya, S.; Shibasaki, R. National spatial crop yield simulation using GIS-based crop production model. Ecol. Model. 2001,
136, 113–129. [CrossRef]

27. Sasai, T.; Nakai, S.; Setoyama, Y.; Ono, K.; Kato, S.; Mano, M.; Murakami, K.; Miyata, A.; Saigusa, N.; Nemani, R.R.; et al. Analysis
of the spatial variation in the net ecosystem production of rice paddy fields using the diagnostic biosphere model, BEAMS. Ecol.
Model. 2012, 247, 175–189. [CrossRef]

28. Matsu’ura, T.; Kimura, H.; Komatsubara, J.; Goto, N.; Yanagida, M.; Ichikawa, K.; Furusawa, A. Late Quaternary uplift rate
inferred from marine terraces, Shimokita Peninsula, northeastern Japan: A preliminary investigation of the buried shoreline
angle. Geomorphology 2014, 209, 1–17. [CrossRef]

29. Imaizumi, F.; Nishiguchi, T.; Matsuoka, N.; Trappmann, D.; Stoffel, M. Interpretation of recent alpine landscape system evolution
using geomorphic mapping and L-band InSAR analyses. Geomorphology 2018, 310, 125–137. [CrossRef]

30. Ghaderpour, E. Some Equal-area, Conformal and Conventional Map Projections: A Tutorial Review. J. Appl. Geod. 2016,
10, 197–209. [CrossRef]

31. Matsuoka, N. A multi-method monitoring of timing, magnitude and origin of rockfall activity in the Japanese Alps. Geomorphology
2019, 336, 65–76. [CrossRef]

32. Fujino, M.; Sakakibara, K.; Tsujimura, M.; Suzuki, K. Influence of alpine vegetation on water storage and discharge functions in
an alpine headwater of Northern Japan Alps. J. Hydrol. X 2023, 18, 100146. [CrossRef]

33. Kariya, Y. Geomorphic processes at a snowpatch hollow on Gassan volcano, northern Japan. Permafr. Periglac. Process. 2002,
13, 107–116. [CrossRef]

34. Oguchi, T. Geomorphology and GIS in Japan: Background and characteristics. GeoJournal 2000, 52, 195–202. [CrossRef]
35. Oguchi, T. Geomorphological debates in Japan related to surface processes, tectonics, climate, research principles, and interna-

tional geomorphology. Geomorphology 2020, 366, 106805. [CrossRef]
36. Matsu’ura, T. Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation

in an oblique subduction zone. Geomorphology 2015, 234, 133–150. [CrossRef]
37. Niwa, Y.; Sugai, T. Millennial-scale vertical deformation of the Hachinohe coastal plain (NE Japan). Geomorphology 2021,

389, 107835. [CrossRef]
38. Hattanji, T.; Kodama, R.; Takahashi, D.; Tanaka, Y.; Doshida, S.; Furuichi, T. Migration of channel heads by storm events in two

granitic mountain basins, western Japan: Implication for predicting location of landslides. Geomorphology 2021, 393, 107943.
[CrossRef]

39. Lemenkova, P. NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by
Means of GRASS GIS and GDAL Library. Geomat. Environ. Eng. 2020, 14, 25–45. [CrossRef]

40. Lemenkova, P. GRASS GIS for classification of Landsat TM images by maximum likelihood discriminant analysis: Tokyo area,
Japan. Geod. Glas. 2020, 51, 5–25. [CrossRef]

41. Lemenkova, P. Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from
TerraClimate. ISPRS Int. J.-Geo-Inf. 2022, 11, 473. [CrossRef]

42. Lemenkova, P. Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate
Data. Geosciences 2022, 12, 140. [CrossRef]

157



Land 2023, 12, 261

43. Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem.
Geophys. Geosyst. 2019, 20, 5556–5564. [CrossRef]

44. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2022.
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Abstract: This study proposes an artificial intelligence approach to assess watershed morphometry
in the Makran subduction zones of South Iran and Pakistan. The approach integrates machine
learning algorithms, including artificial neural networks (ANN), support vector regression (SVR),
and multivariate linear regression (MLR), on a single platform. The study area was analyzed by
extracting watersheds from a Digital Elevation Model (DEM) and calculating eight morphometric
indices. The morphometric parameters were normalized using fuzzy membership functions to
improve accuracy. The performance of the machine learning algorithms is evaluated by mean
squared error (MSE), mean absolute error (MAE), and correlation coefficient (R2) between the output
of the method and the actual dataset. The ANN model demonstrated high accuracy with an R2 value
of 0.974, MSE of 4.14 × 10−6, and MAE of 0.0015. The results of the machine learning algorithms
were compared to the tectonic characteristics of the area, indicating the potential for utilizing the
ANN algorithm in similar investigations. This approach offers a novel way to assess watershed
morphometry using ML techniques, which may have advantages over other approaches.

Keywords: watershed morphometry; fuzzy analytic hierarchy process; artificial neural networks;
support vector regression; multivariate linear regression; tectonics; Makran

1. Introduction

Watershed morphometry is a crucial factor in determining the impact of tectonic
processes on the landscape. By analyzing the shape and geometry of watersheds at a
regional scale, we can identify the relative significance of tectonic deformation versus
erosion in landscape evolution [1,2]. Understanding the impact of these geological forces
on the morphology of watersheds and the development of drainage systems is essential,
as it can have implications for sediment supply to river reaches and increase the risk of
landslides [3]. Furthermore, by quantifying the morphotectonic situation of watersheds,
we can gain insight into their evolution and assess the role of regional tectonic control
in shaping their development [2,4–6]. Recent studies (e.g., [7–10]) have expanded our
understanding of the relationship between morphotectonic factors and the development
of drainage systems and landscapes, building upon the foundational work of Horton [11],
Strahler [12], and Hack [13]. Through a quantitative assessment of watershed development
in relation to regional tectonics, we can better understand the morphotectonic situations
and their implications for the broader landscape [14].
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The utilization of Geographic Information System (GIS), satellite remote sensing
data processing, particularly Global Digital Elevation Models (DEMs), along with the
application of Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process
(FAHP) techniques, can facilitate the determination of comprehensive geomorphometric
analyses (e.g., [15–17]).

Due to the inhomogeneity of geological landscapes and vast data, we need complicated
models and methods to study geological features. Numerous complex mathematical
approaches have been implemented to overcome this issue. To this end, multiple types
of research have been conducted using AHP, FAHP, Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), and machine learning algorithms. Some of them are
combined (hybrid methods) to take advantage of the best parts of each and obtain the best
results [18–20].

The use of a Geographic Information System (GIS), a digital database management
system specifically designed for handling large-scale and spatially diverse data from
various sources, has the potential to reveal the drainage patterns of watersheds [21,22] and
is well-suited for advanced zoning applications.

A notable benefit of the Analytic Hierarchy Process (AHP) is its foundation in pairwise
comparisons, which effectively facilitate the computation of criteria weights. In addi-
tion, the AHP calculates inconsistency indices; ratios of a decision maker’s inconsistency.
Nevertheless, decision makers must occasionally perform a huge number of pairwise com-
parisons, and this condition, particularly with fuzzy AHP, makes using the AHP procedure
impracticable [23]. When the researcher is confident in the certainty of the collected data,
the classical Analytic Hierarchy Process (AHP) outperforms the Fuzzy Analytic Hierarchy
Process (FAHP). However, in cases where the data is uncertain, the FAHP technique is ad-
vised [21]. The Fuzzy Analytic Hierarchy Process (FAHP) approach is used in this study to
evaluate the weight criteria related to active tectonics based on morphometric parameters.

Artificial intelligence algorithms have attracted increasing attention in recent years
as solid computational tools to simulate complicated phenomena in various academic
domains [24–27]. Among the various methods of machine learning, artificial neural net-
works are considered the backbone of machine learning algorithms. This method’s key
advantages are its learning capability based on the training process, which eliminates the
requirement for statistical assumptions for the source data, and its ability to cope with non-
linear situations. Researchers in numerous scientific and engineering fields are interested
in ANN models since they can correlate huge and complicated multi-parameter datasets
without a prior understanding of the relationships between the parameters [28]. Applying
machine learning in combination with GIS to analyze morphometric parameters allows
us to understand the evolution of watersheds and provides a clear picture of landscape
evolution [27].

A few investigations have used geomorphic indices of drainage basins by calculating
their arithmetic mean or considering a weight for each index in the AHP to map out a
relative tectonic activity (e.g., [15,27,29]), but no study employing artificial intelligence has
been published on this subject as of yet. Considering that the morphometry of watersheds
can reveal the relative tectonic activity of an area over a long period, this paper attempts
to investigate a new method to combine the traditional FAHP technique with artificial
intelligence algorithms as an innovation in morphotectonic evaluation. This research
employs several geomorphic indices to assess the regional tectonic activity across such a
broad area. The main goal of this study is to use machine learning algorithms and FAHP to
identify which of the 423 drainage basins studied in the Makran subduction zone are more
affected by tectonic features.

2. Materials and Methods

2.1. Study Area

The Makran subduction zone with east-west trending is located in southern Pakistan
and Iran. This zone indicates a convergence zone where the Oman oceanic plate subducts
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beneath the Eurasian continental plate. The subduction probably started during the Late
Cretaceous [30]. The western boundary of Makran is often called the Oman Line and
Minab-Zendan Fault system, which runs northward and separates a highly seismic region
in Zagros [31] from a region of low seismic activity in Makran to the east [32,33]. The
eastern boundary of Makran is defined by a transfer zone consisting of three individual
faults, namely the Ornach-Nal, Ghazaband, and Chaman faults [34,35].

In contrast to the majority of accretionary complexes in the world, the Makran ac-
cretionary wedge lacks an obvious trench [36]. The lack of a trench in this region may be
because the angle of the subduction slab at the accretionary front is low, which may be
caused by the presence of 7 km thick sediments with low compaction [37]. The seaward
70 km of the forearc comprises semi-consolidated and unconsolidated sediments with high
pore fluid pressures and low seismic velocities. These sediments are capable of causing
and failing large tsunamigenic slides [38].

The convergence rate decreases east to west along the Makran boundary [39]. In
Makran, the average convergence rate is 4 cm/year, decreasing from 4.2 cm/year in
the east to 3.65 cm/year in the west. Furthermore, GPS measurements suggest that the
highest subduction rate of the Oman oceanic plate beneath the Eurasian plate occurs
in the east at about 2.7 cm/year. In comparison, the lowest rate occurs in the west at
about 1.95 cm/year [40]. Compared to other subduction zones, such as the Cascadia
subduction zone at 35 mm/year [41], the Mexico subduction zone at 41 mm/year [42],
the Sumatra subduction zone at 65 mm/year [43], the south Chile subduction zone at
70 mm/year [44], the Japan subduction zone at 80 mm/year [45], and the Tonga subduction
zone at 160 mm/year [44], Makran is considered a relatively slow subduction zone.

Zarifi [46] states that the compressional stress direction along the Makran zone is
rotating. The stress field in the eastern Makran is influenced by the collision between
the Indian and Eurasian plates, while the western Makran stress field is affected by the
Arabia-Eurasian collision. Eastern and western parts of the Makran subduction zone
exhibit distinctive seismic behavior. The eastern region of Makran displays more seismic
activity than the western region [38]. The plate boundary in western Makran lacks well-
documented great instrumental and historical earthquakes. In contrast, eastern Makran
was ruptured by thrust faulting during the 1945 earthquake and currently experiences
earthquakes of varying magnitudes [38].

The main deformation phase from the Late Miocene to the Late Pliocene occurred
by imbricating fans at the front of the Makran accretionary prism [47]. The seabed’s
current geometry suggests that most of these imbricated fans remain active and that the
accretionary prisms continue to be impacted by ongoing deformation from some branches
of the imbricated fans. Following the Pliocene, the Makran coast and the mid-slope region
experienced normal faulting, uplifting, and ductile flows [47].

The Makran subduction zone, like many other subduction zones around the world,
has active mud volcanoes, some of which have formed along anticlinal axes [48]. As the
largest mud volcanoes in the world [48], the mud volcanoes in Makran result from mud
diapirism, providing evidence for the tectonic expulsion of mud and fluids seaward of the
accretionary front. This confirms that tectonic forcing plays a significant role in forming
mud volcanoes in Makran [49].

2.2. Extracting the Geomorphic Parameters

In this study, the morphotectonic zoning method was implemented in two steps.
The watersheds of the research region were first determined using the Japan Aerospace
Exploration Agency’s ALOS World 3D30m images (AW3D30), Ver.3.2 [50], with a resolution
of 30 m (Figure 1). Numerous studies have demonstrated that AW3D30 DEM data can be
compared to other open-source DEMs, such as SRTM and ASTER, with the advantage of
being more accurate in delineating river basins and presenting drainage networks [51,52].
Next, ArcGIS Pro was used to evaluate the morphometric parameters and all physiographic
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indices to determine the watersheds with higher uplift. The eight indices employed in the
morphotectonic process are shown in Figure 2.

Figure 1. Location of Makran subduction zone and border of 423 extracted watersheds. The number
labels show the randomly selected watershed used in AI.

Figure 2. Decision tree developed for morphotectonic zoning of Makran region.

2.3. Calculating Criterion Weights by FAHP

The Analytical Hierarchy Process (AHP) provides a systematic approach for evaluat-
ing complex decisions by combining qualitative and quantitative factors within a single
framework, resulting in a prioritized list of alternatives [53]. Despite its widespread use,
there have been concerns raised by researchers regarding certain limitations of the AHP,
such as ambiguity in standardizing non-commensurate criteria (i.e., criteria that cannot be
compared due to differences in size, type, or scale) and the influence of personal assess-
ments [54]. These limitations can significantly impact the results of the AHP [55–57]. To
address these issues, the Fuzzy Analytical Hierarchy Process (FAHP) has been developed
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to overcome the limitations and flaws of the AHP [58–60]. In this context, FAHP was
employed to assess the weighting criteria related to morphotectonic zoning.

Mohebbi Tafreshi et al. [61] presented a fuzzy modelling method consisting of the
following steps. The initial step in fuzzy models involves standardizing parameters using
a fuzzy membership function. The experts’ opinions are utilized to assign fuzzy values
to raw input values using a transformation function, where values close to 1 are deemed
more suitable for the desired outcome, and values close to 0 are considered less suitable.
The fuzzy logic extension of the ArcGIS Pro 2.8 software (version 10.8) offers various fuzzy
membership functions. The selection of the fuzzification function is based on the nature,
significance, and relation of each criterion to the goal. For this preliminary analysis, the
Linear and Gaussian functions were chosen from the seven available fuzzy membership
functions to standardize the factors.

The fuzzy linear transformation function applies a linear transformation between the
minimum and maximum values specified by the user. Any value below the minimum
will be assigned a 0 (definitely not a member), and any value above the maximum will
be assigned a 1 (definitely a member). On the other hand, the fuzzy Gaussian function
transforms the original values into a normal distribution [62].

The process of identifying the critical factors in the morphotectonic analysis was initi-
ated by conducting a literature review, which resulted in identifying the most important
indices, as shown in Figure 2. The relative significance of each parameter was then esti-
mated through the use of the Analytic Hierarchy Process (AHP) and a constructed pairwise
comparison matrix (8 × 8) based on the input factors, as determined by Saaty’s scale
(Table 1). It is worth noting that the likelihood of inconsistencies in pairwise comparisons
increases with the number of comparisons made, as stated in reference [63]. To account for
this, AHP incorporates a consistency index (CI) to evaluate the calculated weight matrix.
The weight is deemed acceptable if the CI is less than 10% (Table 2). Finally, the calculated
weights were normalized to a scale between 0 and 1 to facilitate the integration of the
weighted map layers.

Table 1. Saaty’s 1–9 scale of relative importance [63].

Intensity of Importance Interpretation

1 Equal importance
3 Moderate importance
5 Essential
7 Extreme importance
9 Extreme importance

2, 4, 6, 8 Intermediate values between adjacent scale values

Table 2. Pairwise comparison matrix for standardizing factor scores.

Linear and Areal Aspects Hi Bs Cb Er Rn Rs Cc Ff Score

Hypsometric integral (Hi) 0.5 0.5 2 0.5 0.5 2 2 0.136
Basin shape (Bs) 2 2 2 2 2 2 0.037

Circularity basin (Cb) 0.33 0.5 2 2 0.5 0.123
Elongation ratio (Er) 2 2 2 2 0.084

Ruggedness number (Rn) 2 3 2 0.078
River sinuosity (Rs) 0.5 0.5 0.297

CoefficientCompactness (Cc) 0.5 0.050
Form factor (Ff) 0.197

CI 0.03

2.4. Description and Application of the Criterion

Morphometric analysis of watersheds as a prerequisite of hydrological studies would
be a valuable method to make informed management choices based on a more comprehen-
sive view of the drainage network’s behavior and the morphology of the watershed.
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In this study, eight linear and area-based indices of watersheds are evaluated. These
indices provide a broad overview of the drainage basin network with regard to morphology
and relief. These indices assess the stream network’s complexity, texture, and distortion due
to neotectonic disturbances [64]. The extracted values are valuable in understanding the
development of the drainage network concerning lithology and landscape. These indices
are explained in detail as follows.

2.4.1. Hypsometric Integral (Hi)

The hypsometric curve represents the elevation distribution concerning the drainage
area at various levels, including regional and continental scales [65,66]. The hypsometric
integral (Hi) calculates the uneroded volume of a basin by determining the area under the
hypsometric curve [67]. This can be computed through Equation (1).

Hi =
Havg−Hmin

Hmax−Hmin
(1)

A value of Hi greater than 0.6 signifies a tectonically active region with significant
uplift and steep topography [68–70]. On the other hand, a mature drainage basin ex-
hibits a moderate-to-low Hi value [71]. In this study, a fuzzy linear membership function
was utilized, where a Hi value of 0.65 was assigned the highest weight, and the weight
progressively decreased to zero as the Hi value approached 0.04.

2.4.2. Basin Shape (Bs)

The shape of drainage basins in active tectonic zones is generally elongated, but over
time it tends to become more circular [67]. The Basin Shape Index (Bs) is calculated using
Equation (2) [72,73] to describe this change.

Bs =
Bl

Bw
(2)

This index is based on the length (Bl) and width (Bw) of the basin, measured from the
headwater to the mountain ridge and at the broadest point, respectively. These values are
calculated using the minimum bounding geometry script. Basins that have lower Bs values
are considered more circular in shape and are usually associated with low tectonic activity.
On the other hand, steep basins that have high tectonic activity are elongated [29,74]. The
most significant weight is assigned to Bs values around 7.9 using the increasing fuzzy
linear membership, and as the Bs value decreases to 0.16, the weight decreases until it
reaches zero.

2.4.3. Circularity Basin (Cb)

The concept of the circulatory basin (Cb) was introduced by Miller [75] and Strahler [76]
and it is defined as the ratio of the area of the basin (A) to the area of a circle with the same
perimeter as the basin Equation (3).

Cb =
4πA
P2

(3)

where A represents the area of the basin and P is the basin’s perimeter. The circularity
index ranges from 0 for a straight line to 1 for a perfect circle. The more circular the shape
of the basin, the higher the value of Cb. Factors such as the length, frequency of streams
(Fs), geological structures, land cover, climate, relief, and slope of the basin all play a role in
determining the circulatory ratio, making it a key factor in determining the stage of a basin.
Low, medium and high Cb values correspond to a basin’s youthful, mature, and ageing
periods [77,78]. In this context, the decreasing fuzzy linear membership assigns the lowest
weight to a Cb value close to 0.3, and as the Cb value decreases to 0.03, the weight also
decreases until it reaches zero.
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2.4.4. Elongation Ratio (Er)

The elongation ratio (Er) measures the shape of a drainage basin, representing the ratio
of the diameter of a circle with the same area as the basin to the basin’s length [79]. A value
of 1 indicates a perfectly circular shape, while a lower value suggests a more elongated and
tectonically impacted basin (as described in Equation (4)).

Er =
2
√

A
π

L
(4)

In this study, the highest and lowest Er values were found to be 0.17 and 0.06, respec-
tively. Using the increasing fuzzy linear membership, the highest weight was assigned
to an Er value close to 0.17, steadily decreasing as the Er value decreased to 0.06 and
reached zero.

2.4.5. Ruggedness Number (Rn)

The Ruggedness Index, which combines two factors: relief (H) and drainage density
(Dd), indicates the steepness and length of slopes. The calculation of the Ruggedness Index
is carried out using Equation (5a–c).

Rn = Dd ·H (5a)

Dd =
∑ Li

A
(5b)

H = Hmax − Hmin (5c)

Where Li is the length of the river, and A is the area of the watershed. Hmax and Hmin
are the highest and lowest elevations of the watershed. The Rn close to 473 is allocated the
highest weight utilizing the rising fuzzy linear membership. As the Rn value approaches 1,
the weight drops until it reaches zero.

2.4.6. River Sinuosity (Rs)

The morphology of rivers that interact with an active fault zone tend to become uneven
due to changes in slope and variations in curvature, leading to increased meandering [80].
Hence, the sinuosity of a river (Rs) can be a valuable indicator of tectonic activity in a
drainage basin. A highly sinuous river suggests stability, while a straight river profile
suggests ongoing tectonic activity. The formula in Equation (6) can be used to calculate the
sinuosity of a river, where c represents the channel length, and v represents the straight
length of the valley. Utilizing a decreasing fuzzy linear membership, the highest weight
is assigned to the Rs value closest to 1.03, while the weight decreases as the Rs value
approaches 2.58.

Rs =
C
V

(6)

2.4.7. Compactness Coefficient (Cc)

The compactness coefficient, also known as the Gravellus Index, evaluates the basin’s
shape irregularity. The more irregular the shape, the higher the value of Cc [81]. This value
can be a good indicator of the area’s tectonic activity level Equation (7).

Cc = 0.2821
P

A0.5 (7)

where P is the perimeter and A is the area of the watershed. With the use of increasing
fuzzy linear membership, a Cc value close to 5.03 is given the lowest weight. As the Cc
value decreases to 1.83, the weight decreases until it reaches zero.
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2.4.8. Form Factor (Ff)

As Horton [11] defined, the form factor represents the relationship between a basin’s
area and length, squared. The equation for calculating the form factor is shown in
Equation (8).

Ff =
A
L2

b
(8)

Here, A is the basin area in square kilometers, and L2
b is the square of the basin length.

A perfectly circular basin will have a form factor value lower than 0.78. Basins with a lower
form factor are considered to be more elongated and potentially influenced by tectonic
activity. Using the decreasing fuzzy linear membership, a form factor value close to 0.61
will be given the lowest weight. As the form factor decreases to 0.05, the weight will
increase until it reaches one.

2.5. Machine Learning Algorithms

Traditionally, geological research has faced challenges with data sources that are
complex and imprecise due to the size and complexity of geological objects [82]. However,
with advancements in science and technology, new methods have emerged that enhance
the precision of geological data and increase the amount of available information.

Artificial intelligence (AI) is a field within computer science that focuses on developing
intelligent systems created by humans. It can be separated into two types: strong AI and
weak AI. Weak AI views the creation of reasoning and problem-solving machines as
impossible, while strong AI aims to build machines with the ability to think and make
decisions. The study of AI encompasses various areas, such as expert systems, machine
learning, natural language processing, computer vision, and recommendation systems.
Machine learning explicitly explores how computer systems can improve automatically
through experience and the fundamental laws that govern all learning systems, including
humans, organizations, and computers.

Machine learning algorithms allow us to gain new insights and capabilities. The
advent of deep learning has revolutionized the field of AI by addressing the challenges
faced in traditional machine learning, such as limited model options, time-consuming
training processes, and the complexity of determining model parameters. As a result, deep
learning has become a pivotal area of AI advancement.

Representation learning enables machines to automatically identify patterns in raw
data and learn the necessary representations for detection or classification. Deep learning
methods are a type of representation learning that involve multiple levels of abstraction cre-
ated by combining simple, nonlinear modules. As these modules are layered, increasingly
complex functions can be learned and implemented.

The advancement of big data and AI has opened new opportunities in the field of
geology in recent years. Thanks to increased computing power, particularly the progress
in GPU technology, the limitations of big data and AI in terms of computing have been
significantly reduced. This expands the potential applications and growth prospects of
geology. AI is commonly utilized for geological surveys and resource exploration, such as
mineral recognition and geochemical anomaly detection. This article delves into the topic
of big data and AI in geology.

2.5.1. Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are computational systems that draw inspiration
from functioning biological nervous systems such as the human brain. ANNs comprise
many interconnected computational nodes, called neurons, that work together to learn
from inputs and optimize the output.

The input, typically a multidimensional vector, is fed into the input layer and dis-
tributed to the hidden layers. These layers make decisions based on the previous layer and
assess the impact of random changes on the final output, a process referred to as learning.
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When multiple hidden layers are stacked, it is called deep learning. ANNs have several
key features, including the ability to learn and adapt, generalize information, and process
and analyze information uniformly and with error tolerance. These features make ANNs
powerful tools for pattern recognition, classification, and nonlinear function estimation.

Activation functions are used in ANNs to transform the input into an output, which
is then supplied as the input to the next layer. The weights of the connections between
neurons in the layers are adjusted during the training phase, allowing the network to learn
the patterns between inputs and outputs. ANNs can be divided into two learning models:
supervised and unsupervised. In supervised learning, the network is trained with proper
outputs for each input pattern. The weights are adjusted to minimize the error between the
network output and the actual value. In unsupervised learning, the network discovers the
relationship between the data patterns without needing actual responses.

ANNs can also be divided into two categories: recurrent and feed-forward networks.
Recurrent networks have a feedback loop, while feed-forward networks do not. The
neurons in each layer provide information to both the previous and the subsequent layers.

The ANNs offer these hypotheses:

• Data processing occurs in the units known as neurons. The neurons (or artificial
neurons) present a model of brain neurons.

• The exchange of data is facilitated through communication between neurons.
• There is a weight for communicative ways between neurons.
• Every neuron utilizes a nonlinear function to process its inputs (weighted data),

producing a specific output [82].

It is possible to identify a neural network via the communicative model between
different layers of the network, the number of layers, the number of neurons, the neuron’s
operational function, and the learning algorithm. However, no general principle is available
regarding the standard size of the network components. It is an innovative approach in
most cases where the multilayered networks have a different amount of neurons in each
layer, and different activation functions and various learning rates do the training of these
networks. Then, it is followed by a selection of the best network. The network training
in the learning phase takes place via the adjustment of weights so that outputs can be
predicted or classified based on a set of inputs [83].

In this paper, the input parameters of the neural network included Basin Shape,
Circularity Basin, Coefficient Compactness, Elongation Basin, Form Factor, Hypsometric
Integral, River Sinuosity, Drainage Density, and Number Ruggedness, and the FAHP
outputs were considered as the network output parameters. The data on these parameters
were divided into training, testing, and data validation. A total of 80% of these data were
used for training, 10% of data for validation and the other 10% for testing.

2.5.2. Support Vector Regression (SVR)

Considering a data set with N elements {(Xi, yi)}N
i=1, where Xi = [x1,i, . . . , xn,i] ∈ Rn

and Xi represents the ith element in a space with n dimensions, yi (yi ∈ R) indicates the
actual value for Xi, the definition of a nonlinear function is as follows: ϕ: Rn → Rnh. For
mapping the entry data, Xi represents an Rnh space of high dimension known as feature
space, which specifies the nonlinear transformation ϕ. Hence, a linear function f in a
high-dimensional space, and consequently, the entry data, Xi can be related to output yi.
Equation (9) presents the linear function, i.e., SVR.

f(X) = WT·ϕ(X) + b (9)

where b ∈ R and W ∈ Rn, and f(X) is the foretold value. As indicated in Equation (10), the
empirical risk is minimized by the SVR.

Rreg(f) = C ∑N
i=1 Θε(yi − f(Xi)) +

1
2
||WT || (10)
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where the cost function is represented by Θε(yi − f(Xi)), regarding the ε-SVR, as shown in
Equation (11), a loss function ε-insensitive is utilized:

Θε(y − f(X)) =

{
|y − f(X)| − ε If|y − f(X)| ≥ ε

0 In another case
(11)

The nonlinear function ϕ is determined using Θε in the Rnh space for finding a
function with the ability to fit present training data with a deviation equal to or below ε.
Using the mentioned function, the training error is minimized between the data training,
and Equation (12) provides the function ε-insensitive [84].

min
W,b,ξ∗ ,ξ

Rreg(W, ξ∗, ξ) =
1
2

WTW + C ∑N
i=1(ξ

∗
i + ξi) (12)

The training errors of f(X) and Y are punished by Equation (12) via the function ε-
insensitive. Using the parameter C, the compromise between the points meeting condition
|f(X) − y| ≥ ε in Equation (11) and the model complexity (vector W) is determined. With
C → ∞, a small model margin is observed that is adjusted to the data. When C → 0, there
is a large model margin, which is why it softens. Lastly, ξi represents errors more minor
than −ε and ξi

∗ indicates training errors larger than ε.
For solving the regression problem, the internal product of Equation (9) can be replaced

by kernel K() functions. Thus, this operation can be performed in a higher dimension by
low-dimensional space data input regardless of knowledge of the transformation ϕ [85].

2.5.3. Multivariate Linear Regression (MLR)

The regression method is applied to two theories. Firstly, regression analysis is
typically utilized for prediction and forecasting, and its application significantly overlaps
the machine learning field. Secondly, it is possible to use regression analysis sometimes
for determining causal relationships between the dependent and independent variables.
Regression alone presents just relationships between a fixed dataset of different variables
and a dependent variable.

Based on the regression models, the dependent variables are predicted by the indepen-
dent variables. The value of the dependent ‘y’ variable is estimated by regression analysis
because of the range of independent variable ‘x’ values. This articlediscusses polynomial
and linear regression, which fit better into the predictive model. Regression could be
multiple regression or a simple linear regression [86].

Simple linear regression is a statistical method used to model the relationship be-
tween a dependent variable and a single independent variable. An equation represents it,
y = β0 + β1x + ε, where y is the dependent variable, x is the independent variable, β0 and
β1 are coefficients, and ε represents the error term. The goal of simple linear regression
is to determine the strength and direction of the relationship between the dependent and
independent variables and estimate the effect of the independent variable on the dependent
variable [86].

Multivariate linear regression is a statistical method for predicting the result of an
answer variable, which uses some explanatory variables, as shown in Equation (13). Multi-
ple Linear Regression (MLR) aims to establish a linear association between the dependent
variable y and one or more independent variables x, which will then be analyzed.

β̂ =
(

XTX
)−1

XTy (13)

2.6. Integrating the FAHP and ML Algorithms

We first used the FAHP model to generate a target database suitable for our ML. This
database served as the basis for training and testing the algorithms. Next, we randomly
selected 212 out of 423 watersheds across our study area for training and testing the
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algorithms. By randomly selecting the watersheds, we ensured a representative sample
of the study area. Here, raw data from eight different morphometric indices were used to
train and test the machine learning algorithms, as shown in Figure 2. These indices were
selected based on their relevance and importance in the morphotectonic characterization
of watersheds. We then used these raw data as input features for the machine learning
algorithms to generate predictions for the target database. Using a representative sample
of the study area and including relevant input features, we aimed to create a distinct
training network and improve the accuracy and precision of our predictions and our cost-
effectiveness. Three distinct ML algorithms, namely, ANNs, SVR, and MLR methods, were
employed for each set. It is important to note that the training and testing set includes
212 watershed indices. After optimizing and obtaining the best algorithms using statistical
equations, the method was generalized for the whole domain.

To assess the effectiveness of the ANNs, SVR, and MLR techniques, Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Correlation Coefficient (R2) were utilized as
performance metrics. These metrics are described in Equation (14a–c) [82].

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (14a)

MAE =
1
N ∑N

i=1|yi − ŷ i| (14b)

R2 = 1 − ∑i(yi − ŷ i)
2

∑i(yi − y )2 (14c)

We used ANN for regression here and utilized the supervised method. Also, we
use L2 (ridge) regularization to avoid overfitting. To have a faster converging, we need
zero-centered data points, and each dimension should be scaled according to its standard
deviation. Thus we normalize our data.

Figure 3 shows the performance of the ANN method for the training and validation
sets. From epoch 200 and on, the trend was deemed acceptable. After completing the
learning process, the ANN model demonstrated high accuracy with an R2 value of 0.974,
MSE of 4.14 × 10−6, and MAE of 0.00151.

Figure 3. Training and validation loss for ANN model.
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After developing and training the SVR model with the value of 0.947, MSE and MAE
obtained 8.12 × 10−6 and 1.94 × 10−3, respectively.

After developing and training the MLR model with the value of 0.967, MSE and MAE
obtained 5.06 × 10−6 and 1.61 × 10−3, respectively.

According to the simulation results obtained, there is a good agreement between
the results obtained from ANN, SVR and MLR models but ANN model outperformed
the other models. All three algorithms demonstrated similar error patterns in our study,
with samples 16 and 96 displaying particularly large prediction errors. We have further
investigated the reason for these high prediction errors and found that the location of
these two samples may have contributed to the discrepancies. Specifically, sample 16 is
located in the northernmost part of the study area, where geological and climatic conditions
differ significantly from the rest of the watersheds. Similarly, sample 96 is situated in
the southernmost part of the study area, which also has distinct geological and climatic
conditions compared to the majority of the watersheds.

These differences in geological and climatic conditions may have played a role in the
higher prediction errors observed for samples 16 and 96. Our findings suggest that when
analyzing and predicting data in areas with distinct geological and climatic conditions,
particular attention should be paid to samples that are situated in the outlier regions of
the study area. By doing so, we may better understand and account for the differences in
geological and climatic conditions and obtain more accurate predictions.

Overall, our study highlights the importance of considering the spatial distribution of
data and the potential impact of varying geological and climatic conditions when making
predictions. Further research may be necessary to determine how these findings can
be applied in other contexts or how they can inform the development of more accurate
predictive models.

3. Results and Discussion

ML techniques use algorithms to learn from data and make predictions or decisions
without being explicitly programmed. Meanwhile, the fuzzy technique assigns degrees
of truth to statements or rules, making it useful in assessing morphometry in watersheds
where data such as rainfall patterns or soil properties can be difficult to quantify accurately.
These techniques are useful in engineering problems where the relationship between input
and output variables is complex and challenging to model analytically, such as landslides
and mass movements [87,88].

However, both techniques have limitations in practical applications. Fuzzy logic
relies heavily on expert knowledge to define rules and membership functions, resulting in
models that are challenging to interpret and validate. ML techniques are limited by the
quality and quantity of available data and the choice of algorithm and parameters used.
Overfitting or underfitting data can result in poor predictive performance on new data.
Successful application requires careful consideration of their limitations and appropriate
use of available data and expertise.

Our study divided the dataset into three groups: a training dataset that accounted for
80% of the collected data, a validation dataset that accounted for 10%, and a testing dataset
that comprised the remaining 10%. The performance of the machine learning methods on
both the training and testing data is depicted in Figures 4–6. These figures compared the
target (FAHP output) and output (predicted by algorithms) values and calculated the model
error. Numerical results closely matched those obtained from the ANN, SVR, and MLR
methods (Table 3). However, the ANN model showed superior performance compared to
the other methods.
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Figure 4. ANN performance for training, validating and testing data.

 

Figure 5. SVR performance for training, validating and testing data.
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Figure 6. MLR performance for training, validating, and testing data.

Table 3. Performance of the machine learning algorithms.

Methods MSE MAE R2

ANN 4.14 × 10−6 0.00151 0.974
SVR 8.12 × 10−6 0.00194 0.947
MLR 5.06 × 10−6 0.00161 0.967

We investigated the potential of coupled artificial intelligence algorithms and FAHP
to predict the watershed’s behavior in response to the region’s tectonics. After selecting
the best from among the ANN, SVR and MLR methods, the model was applied to whole
watersheds in the Makran Subduction zone (Figure 7).

Figure 7. The result of applying the best method for whole watersheds in Makran subduction zone.
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Mapping the results acquired by artificial intelligence algorithms for analog interpreta-
tion and comparing them with tectonic features and seismic events indicates the acceptable
accuracy of the algorithms used. As shown in Figure 7, the findings measured for each
watershed are illustrated in the range of low- to high levels of tectonic activity, which
correlates well with the tectonic situation. On the west side of the figure, the location of the
Minab fault zone is in good agreement with the area marked on the map as a zone with
relatively high tectonic activity. Additionally, this region experiences the effects of two
unique geological occurrences: the convergence of the Iranian and Arabian tectonic plates
in the west and the subduction of the Oman sea plate beneath the Iranian continent in the
east, both ongoing processes. On the eastern side of the region, it is observed that tectonic
activity is estimated to be relatively high based on morphometric parameters.

This area aligns with the Chaman fault zone in Pakistan and marks the eastern bound-
ary where the Oman oceanic plate is subducting beneath the Iranian continental plate.
Moreover, instrumental epicenters also confirm the higher activity of this zone. The note-
worthy point in this figure is the presence of instrumental epicenters in the central region,
which are consistent with the results obtained using AI approaches, albeit with a slight
shift to the left.

It is affected by the inclination of seismic faults, earthquakes, the geometry of the
subducted oceanic plate, and instrumental error. The development of morphometric
indicators can be affected by various factors, including geological heterogeneity, land use,
and climate conditions. While high erosion rates in certain geological layers may contribute
to the lack of clear development of tectonic indicators in some watersheds, it is important
to note that this is only one potential explanation among many. Other factors, such as high
levels of sedimentation, variations in precipitation patterns, and land use changes, could
also contribute to the observed variability in technical indicator development. Additionally,
interactions between multiple factors may contribute to the observed patterns.

Furthermore, it should be noted that seismic instrument data belong to only the last
hundred years, whereas the morphometric features date back several million years which
makes it more reliable. To better understand the underlying causes of the variability, it may
be necessary to conduct further analyses that consider these different factors and potential
interactions. It is also important to consider the limitations of the data and methods used
in the study, as these may affect the accuracy and reliability of the technical indicators.

4. Conclusions

In conclusion, the morphometric analysis of watersheds in a region has the potential
to reveal insights into long-term tectonic activity, and the present study aims to develop
a novel approach to enhance this analysis. The proposed method leverages advanced
machine learning techniques to reduce computational cost and time, especially in the case
of large-scale regions. In this study, we examined the morphometry of watersheds in the
Makran subduction zone using three artificial intelligence methods: ANN, SVR, and MLR.
The results of our analysis indicate that the ANN method is the most accurate of the three,
with a value of 0.974. The MSE and MAE values of the ANN method were also found to be
lower compared to the other methods. Based on these findings, it can be concluded that
the ANN approach can be effectively utilized in the morphometric analysis of watersheds
and provides better results than previous techniques.
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Abstract: With the increasing construction activities in dry or degraded lands affected by wind-
driven particle action, the deterioration of metal structures in such environments becomes a pressing
concern. In the design and maintenance of outdoor metal structures, the emphasis has mainly been
on preventing corrosion, while giving less consideration to abrasion. However, the importance of
abrasion, which is closely linked to the terrain, should not be underestimated. It holds significance
in two key aspects: supporting the attainment of sustainable development goals and assisting in
soil planning. This study aims to address this issue by developing a predictive model that assesses
potential material loss in these terrains, utilizing a combination of the literature case studies and
experimental data. The methodology involves a comprehensive literature analysis, data collection
from direct impact tests, and the implementation of a machine learning algorithm using multivariate
adaptive regression splines (MARS) as the predictive model. The experimental data are then validated
and cross-verified, resulting in an accuracy rate of 98% with a relative error below 15%. This
achievement serves two primary objectives: providing valuable insights for anticipating material loss
in new structure designs based on prospective soil conditions and enabling effective maintenance of
existing structures, ultimately promoting resilience and sustainability.

Keywords: wind erosion; degraded land; metal structures; abrasion; machine learning

1. Introduction

Wind erosion is a natural process that involves removal, transport and deposition
of coarse and fine particles, primarily sand, by the wind [1]. Differences in atmospheric
pressure generate air movements capable of eroding surface materials (also known as abra-
sion) when velocities reach sufficient levels [2]. The scientific community has increasingly
recognized the significance of wind erosion due to its impact on soil health, agricultural
production, climate and structures resilience [3]. Efforts have been devoted to simulating
and predicting wind-driven effects, including soil erosion, to control land degradation and
implement appropriate agricultural management practices [4]. Various methods, ranging
from empirical equations for average soil erosion [5,6] to advanced models predicting crop
yields and conservation of natural resources [7–9], have been developed.

However, wind erosion is gaining increasing relevance in other fields that have not
been extensively studied. The durability of metal structures is greatly influenced by
damage caused by wind erosion, particularly in degraded areas where wind-driven particle
movement is more intense [10]. While the degradation of metal structures in outdoor
conditions, both chemically and physically, is directly influenced by their geographical
location [11], the attention has predominantly been on studying corrosion [12–14], with
less emphasis on terrain-related abrasion, which holds relevance for achieving sustainable
development goals and effective land planning.

Identifying and determining suitable soils for construction would facilitate their
classification, allowing for redirection to alternative uses or assigning specific wear values,
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aligning with the objectives of sustainable development, and minimizing material wastage.
This process results in significant economic, social, and environmental losses, affecting
various metal constructions.

Windblown sand transport is characterized by three types of movement based on grain di-
ameter (d): suspension (d < 0.07 mm); saltation (0.07 < d < 0.5 mm); and creep (d > 0.5 mm) [15]
(Figure 1). Among these, saltation plays a crucial role in the total mass of sand transported,
driven by wind shear forces on the land surface that lead to the rebound of sand particles and
horizontal sand mass flow in the downwind direction [16,17].

 

Figure 1. Windblown sand transport modes.

Although wind erosion can occur in all climates, it is more prevalent in semi-arid
and arid environments characterized by extensive land degradation or dry conditions [18].
As a result, metal structures were historically not exposed to this problem. However, the
proliferation of constructions in these areas, including new cities [19] and the development
of renewable energy projects [20,21], has brought wind erosion into focus. Approximately
one-fifteenth of the Earth’s surface is susceptible to significant sand blowing [16] and the
expansion of wind erosion-prone areas is expected due to climate change [22].

Factors influencing the movement of sand and hazardous particles by wind include
specific particle size distribution, extensive plain lands without vegetation or wind barriers,
high wind speeds combined with low relative humidity and elevated concentrations of
total suspended particulate matter [23]. In contrast, as height increases, the negative impact
of the process becomes less severe due to its inherent characteristics, as higher altitudes
result in fewer particles reaching the area [24,25]. The parameters that influence erosion
can be categorized into three main groups.

1. Impact conditions, which include the velocity and angle of impact;
2. Characteristics of the eroding particle, such as its size, shape, and other parameters;
3. Properties of the material being eroded, including its ductility, hardness, density, and

other relevant factors.

Understanding how land conditions affect infrastructure in the long term is crucial
for the design and maintenance of both new and historic buildings. The maintenance
of structures in aggressive environments, such as the north-west coast of Egypt exposed
to sandstorms, presents significant challenges [26]. Wind erosion implications for high-
speed lines in Saudi Arabia are also garnering attention [27]. Researchers at the Inner
Mongolia University of Technology have studied the impact of wind erosion on steel
structure coatings in central and western regions of Mongolia affected by sandstorms [28,29].
However, the design, analysis, and evaluation of wind erosion processes are still in the
early stages of study.

Common responses to wind erosion include increasing protection and coating of
materials, which is prevalent in the wind and aeronautics industry, with research exploring
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multilayer coatings and alloys [30,31]. Prior knowledge during the design or engineering
phase is essential for sustainability as it facilitates calculations that help to mitigate the
economic and environmental implications of excessive material waste [32]. Other stud-
ies have focused on soil treatment solutions, such as protective barriers [33] or surface
treatments [34–36], but implementing these solutions on larger surfaces is challenging.
The current approach to studying wind erosion often relies on localized and case-specific
investigations, compounded by a lack of standardized terminology in the literature. These
factors pose challenges in unifying the research efforts and effectively addressing the issue.
Therefore, it is imperative to establish methods for determining and predicting the extent of
wind erosion-induced abrasion on structures to enable the implementation of appropriate
preventive measures.

The objective of this study is to develop a predictive machine learning model capable
of determining the erosion rate experienced by metal structures based on their geographical
location. By integrating data from various sources, including existing studies and exper-
imental data, the model aims to provide insights into potential degradation associated
with the surrounding land. These insights enable to design environmentally conscious
structures, optimize material usage, and extend the lifespan of metal structures through
careful maintenance planning and preventive measures.

This paper presents a detailed description of the methodology employed, starting with
the creation of a robust database serving as the foundation for training the predictive models.
The database comprises information sourced from existing studies in the literature. Given
the limited literature data available, a specific and comprehensive dataset was generated,
incorporating a wider range of materials and measurable variables obtained through direct
impact tests conducted in a laboratory setting. Subsequently, the modelling techniques and
evaluation methods utilized throughout this study are elucidated. Finally, the results are
thoroughly analysed, and the conclusions drawn from this research are presented.

2. Materials and Methods

The methodology employed in this study is outlined in Figure 2 and encompasses
three key phases. The initial phase involved the creation of a database, which serves as the
key point for the application of predictive algorithms that facilitate the estimation of erosion
rates for specific metals under different conditions and types of terrain. Subsequently, in the
second phase, the model was developed based on the analysis of the compiled data. Finally,
in the third phase, the model’s efficacy was evaluated through validation procedures, and
the obtained results were assessed.

Figure 2. Overall process followed.

2.1. Phase 1: Database Creation

For this first phase, two main sources of data were used: external data derived from
international literature, and internal data acquired from experimental laboratory tests. The
first source involved assembling the cases and analysis of the relevant information in the
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literature related to the study topic. Additionally, several laboratory tests were carried out
in order to expand the information with our own experimental data.

2.1.1. Literature Review

Erosion is a phenomenon influenced by multiple factors, including the properties
of both the material being eroded and the material causing the erosion, as well as the
conditions under which the phenomenon occurs. Table 1 summarises the most significant
variables considered in the literature.

Table 1. Most significant variables of the direct impact test.

Process Parameters Eroded Material Parameters

Impact angle [37] Hardness [38]
Particle diameter of impacting particles [39] Fracture toughness [38]

Impact velocity [40] Elastic modulus [37]

However, to attempt a macroscopic approach and ensure that the model is truly useful
and applicable to any case study, the variables that form the model should be readily
available or easily obtainable. Therefore, the variables collected were selected based on
their availability and significance according to the literature.

1. Material hardness (HL): Studies agree that material hardness is a highly influential
variable in calculating wind erosion [41];

2. Particle velocity (v): It is key point to determine the force with which particles impact
the structure, as abrasion increases with higher particle velocities [41];

3. Amount of erodent material (m): The quantity of material impacting the structure
directly influences the level of abrasion [41];

4. Impact angle (θ): Studies have shown that for ductile materials as metallic structures,
the highest abrasion damage occurs at impact angles between 15 and 30 degrees and
decreases towards 90 degrees [42];

5. Erosion rate (ER): The majority of scientific literature describes wind erosion using
the erosion ratio which is usually measured as follows (1) [43,44]:

ER =
Mass o f material lost due to erosion

Mass o f material eroded
(1)

Measuring the impact in this way, instead of using mass loss, has the advantage
of allowing better comparison of erosion between different materials [45]. At this point,
all experimental studies in the literature that aim to characterize the effect of different
parameters on erosion and erosion resistance of various materials were collected. These
studies typically involve conducting tests with sand or other particles and measuring the
impact [42,46].

The database consists of 778 data points. The dataset, comprising data from different
laboratory tests, undergoes thorough pre-processing to handle missing values, outliers, and
inconsistencies. Standardisation of measurement units is applied to facilitate meaningful
comparisons, while min-max scaling rescales the variables for analysis. Categorical data
are appropriately encoded, and the normalized data from various sources are integrated
into a unified dataset stored as relational data in a CSV (comma-separated values) format.

2.1.2. Experimental Test

Experimental data were obtained by conducting various laboratory tests. The analysed
and collected variables were the same as those identified as relevant in the literature review.
The procedure for obtaining each of these experimental data is specified below.
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Material Hardness (HL)

Hardness tests were performed on plates made of different materials using the Leeb
hardness test. The Leeb hardness (HL) [47] relates the rebound velocity to the impact
velocity of a spherical device, with a diameter of 3 mm or 5 mm (2).

HL =
rebound velocity
impact velocity

× 1000 (2)

The tests were performed according to the following standards: ASTM A956/A956m–
17a, Standard Test Method for Leeb Hardness Testing of Steel Products and ISO 16859-
1/2/3:2015, and Metallic materials–Leeb hardness test [48,49].

Particle Velocity (v)

Velocity can be adjusted based on factors such as the pressure of the compressor,
atmospheric pressure, and the diameter of the nozzle. By measuring the air velocity, we
can estimate the particle velocity and determine its range of values. According to studies in
the literature, the relationship with the velocity of the carrier fluid itself is estimated to be
less than one-third [42].

Amount of Erodent Material (m)

The material impacting the structure can be estimated based on the concentration of
erodent material in the air (expressed in micrograms per cubic meter) (ma), multiplied by
the wind velocity (in meters per second) (vw); the duration of impact per year (in hours)
(d); and the surface area (in square meters) (s) (3). At a laboratory level, the amount of sand
is determined via weighing.

m = ma ∗ vw ∗ d ∗ s (3)

Impact angle (θ)

The impact angle (θ) can be determined by comparing the orientation of the structure
with the dominant wind direction. At a laboratory level, the impact angle can be set by
sample’s colocation.

Erosion Rate (ER)

Erosion rate was determined by conducting direct impact tests according to the ASTM
G76-2013 standard [50]. A total of 216 tests were conducted, involving 12 different types of
materials, including bare steel, stainless steel, galvanized steel, aluminium, and tinplate.
Each material underwent 3 repetitions of the test. The tests were performed using 3 batches
of 300 g of sand, resulting in a total of 900 g of eroding particles. Two different sizes of sand
were used (150 and 300 μm).

All these tests were carried out in a sandblasting cabin (CHC60, PA, Spain) equipped
with a sandblasting gun operated with ceramic nozzles. The required airflow rate of
340 L/min was achieved using a compressor (METALWORKS 458804090, PA, Spain).
Figure 3 shows an outline of the testing procedure. To separate the sand into different
particle sizes, a sieve shaker (CISA BA200N, PA, Spain) was employed.

Figure 3. Schematic representation of laboratory tests performed.
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The plates were weighed before and after each sand batch using Laboratory Precision
Balance (Raswag AS 310 R2 PLUS, PA, Spain) to determine the mass loss. By comparing
the final weight with the initial weight, the mass loss caused by the impact was determined,
providing valuable information about the energy absorption capacity of the samples and
the erosion ratio (ER).

2.2. Phase 2: Modelling

Once all the data are collected, complementing the information from the literature
with experimental test, the modelling stage began. The collected data from both sources
underwent a thorough cleaning and pre-processing process to ensure data quality and
consistency. An exploratory analysis was conducted to understand the data structure and
identify patterns. Relevant variables were selected for predictive models. Two methods
are used to determine the importance of each variable in the model: generalized cross-
validation (GCV) and residual sum of squares (RSS).

- Generalized cross-validation (GCV): It involves fitting the model with all variables, cal-
culating GCV scores by temporarily excluding each variable, and ranking them based
on their scores. Variables with higher GCV scores are considered more important;

- Residual sum of squares (RSS): It calculates the sum of the squared differences be-
tween the observed values and the predicted values obtained by the model. The RSS
represents the overall amount of unexplained variation in the data. A lower RSS
indicates a better fit of the model to the data.

The database was then prepared for model construction by partitioning the data and
handling missing values. These steps ensured the integrity of the data and facilitated the
construction of accurate predictive models.

The modelling stage is carried out using the MARS algorithm (multivariate adaptive
regression splines). This algorithm is an effective tool for constructing accurate and robust
predictive models from complex datasets. MARS algorithm enables the identification of
nonlinear and nonparametric relationships among variables, which is particularly useful
in the study of direct impact where relationships can be highly nonlinear. This machine
learning technique combines linear regression with non-linear functions called splines. It
begins by constructing an initial linear model and then adds splines to capture non-linear
relationships in the data. It uses an iterative approach to improve the fit and selects the
most relevant variables [51]. Ultimately, a flexible model is obtained that combines both
linear and non-linear terms to predict a continuous response variable [52].

The MARS algorithm is capable of predicting the amount of material that can be lost
due to abrasion, as shown in Equation (4) in the following form:

Loss (g) = f (v, θ, m, HL) (4)

where

- v : Particle velocity (m/s);
- θ: Impact angle (◦);
- m: Mass of sand (g);
- HL: Material hardness.

2.3. Phase 3: Validation

Validating the obtained results is crucial to ensure the reliability and generalizability
of the developed models. In this methodology, two validation phases are conducted: data
validation and model validation.

2.3.1. Data Validation

To validate the obtained results, it is proposed to employ an empirical semi-mechanistic
erosion equation [37]. This formula is based on theoretical principles and physical laws
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related to direct impact. By comparing the data with the values calculated, the consistency
and validity of the obtained results can be evaluated.

The erosion damage is caused by two mechanisms: cutting (ERC) (5) and deformation
(ERD) (6). Therefore, the total erosion damage is given by the sum of both terms.

ERC =

{
C1Fs

U2.41sin(θ)[2 Kcos(θ)−sin (θ)]
2K2 θ < tan−1(K)

C1Fs
U2.41cos2(θ)

2 θ > tan−1(K)
(5)

ERD = C2Fs
(U sin(θ)− Utsh)

2

2
(6)

where

- Utsh is the threshold velocity below which deformation is negligible;
- Fs is the angularity factor of the particle, ranging from 0.25 for completely rounded

particles to 1 for very angular particles. In this case, Fs was considered as 0.5;
- K is the ratio between the contact area in the x-direction and the contact area in the

y-direction of the particle with the material. In most materials eroded by sand, it is 0,
so is the ratio used in this study;

- C is the cutting constant, which depends on the hardness of the material. It has been
shown to be proportional to the inverse square root of materials hardness [42];

- U is the initial velocity of the particle. According to experimental studies, the average
relationship between particle velocity and gas velocity is 3.1739 [42];

- θ is the impact angle, considered perpendicular in this case.

2.3.2. Model Validation

Cross-validation is a widely used technique for evaluating the performance of predic-
tive models. In this context, the dataset is divided into training (75%) and testing (25%)
subsets. The model is trained using the training subset, and its performance is evaluated
using the testing subset. This process is repeated several times (6 blocks), alternating the
training and testing subsets, and an average performance measure is calculated to assess
the model’s generalization capability, based on the following.

- The root mean square error (RMSE) measures the average magnitude of the residuals
(differences between predicted and actual values). A lower RMSE indicates a better fit
between the model and the observed data;

- Relative error measures the percentage difference between the predicted and actual
values, providing insight into the relative accuracy of the model’s predictions;

- Absolute error represents the absolute difference between predicted and actual values,
giving an indication of the magnitude of the prediction errors;

- Mean directly compares the values, indicating the overall bias of the model.

3. Results

The results are presented in detail throughout the different phases of the
proposed methodology.

3.1. Phase 1: Database Creation

After an exhaustive study of the scientific literature and analysis of direct impact tests
from research such as [46,53,54], the data and variables that align with the context of the
object of this study are collected, analysed, identified, and added. A total of 778 initial
data points were collected before eliminating and cleaning the database. The collected
parameters and the range of values studied are summarised in the following Table 2.
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Table 2. Values in the study variables: range, mean and standard deviation (Sd).

Material
Hardness [-]

Particle Velocity [m/s]
Amount of

Erodent Material [g]
Impact Angle [◦]

Range Mean Sd Range Mean Sd Range Mean Sd Range Mean Sd

395–710 193.64 87.49 9.2–32.56 19.35 7.29 300–1800 670.65 343.25 15–90 49.22 25.71

The distribution of these variables is shown in the form of box plots in Figure 4.

 
(a) (b) (c) (d) 

Figure 4. Variable distribution: (a) material hardness, (b) particle velocity, (c) amount of erodent
material, (d) impact angle.

On the other hand, the experimental tests were conducted under normal pressure and
temperature conditions. The eroding material particles, in this case sand, had diameters of
150 μm and 300 μm and were propelled at a velocity ranging between 13 and 14 m/s.

Upon the completion of the impact tests, clear surface deformation was observed in
the samples. Furthermore, evident surface changes were measured, indicating the influence
on the structure and external appearance of the samples, suggesting the need for further
detailed analysis. Some examples of the experimental test results are shown in Figure 5.

Before After Before After 

 
(a) 

 
(b) 

Figure 5. Metal samples before and after direct impingement tests. (a) Stainless steel, (b) galvanized steel.

It was observed that some plates, such as aluminium, showed mass gains of up to
0.05%. This phenomenon can be attributed not only to the absence of significant wear
but also to the embedding of sand particles in the material. This phenomenon was also
observed in tinplate samples. The remaining plates exhibited mass losses ranging from
approximately 0.20% to 0.30%, except for galvanized steel, which showed losses of 0.99%.

The radial chart in Figure 6 displays the average values of each of the 12 materials
under different test conditions. Mass loss after impact for the three defined amounts of
sand, as well as the total mass loss, is shown in four different colours. In this following
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chart, the axes extend outward from the centre and the magnitude of the mass loss is
represented on each axis using dots or lines.

Figure 6. Representation of the average mass change in each study condition.

By comparing the mass losses among the different amounts of sand (300 g (Δm1),
600 g (Δm2) and 900 g (Δm3)), patterns or trends can be identified. The chart shows that as
the amount of sand increases, the mass loss also increases, except for materials where sand
particles become embedded due to their low hardness. Additionally, the chart presents the
total mass loss as a consolidated measure across all amounts of sand.

On the other hand, Figure 7 provides information about the distribution and variability
of hardness values. It can be observed that the majority of values are within a close range,
with a single outlier, corresponding to aluminium.

Figure 7. Representation of the hardness distribution of the tested materials.

The Pearson correlation coefficient obtained between mass change and hardness is
0.28, indicating a moderate positive correlation between hardness data and mass loss. The
p-value of 0.361 suggests that this correlation is not statistically significant at a significance
level of 0.05. It is important to note that other factors or variables not considered in
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this analysis could have a more relevant influence on the results. Therefore, further
comprehensive studies are recommended to better understand the nature and strength of
the relationship between the variables in question.

3.2. Phase 2: Modelling

Once the database is prepared, the predictive algorithm is applied to create a model
for predicting the material loss (mass loss) that a metal structure will experience under
those conditions.

Two methods are used to determine the importance of each variable in the model:
generalized cross-validation (GCV) and residual sum of squares (RSS). The most significant
variables, in order, are shown in Table 3.

Table 3. Importance of each variable determined via GCV and RSS.

GCV RSS

Velocity 100 100
Impact Angle 76.2 76.2

Amount of Sand 62.9 62.9
Material Hardness 27 27.8

Velocity of impact is the most relevant factor according to both methods. Furthermore,
the values obtained for each of the variables according to the two methods are similar and
coherent with each other. Hence, these variables can be deemed as valid and integrated
into the predictive model.

3.3. Phase 3: Validation

Figure 8 displays the results after validating the data obtained empirically through
experimental trials and the data calculated using well-established equations in the scientific
community. The dashed line represents the ideal situation for these values. Each set of
experiments samples is represented by a unique colour. It can be observed that there are no
significant deviations between the theoretical and practical values, and the differences are
acceptable (R2 = 0.9207). Therefore, these results can be considered valid and incorporated
into the predictive model.

Figure 8. Comparison between experimentally and theoretically obtained results.

In Figure 9, the predicted values are represented on the vertical axis, while the actual
values are shown on the horizontal axis.
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Figure 9. Abrasion model results.

Ideally, the points in this plot should be distributed along the diagonal line, indicating
an exact correspondence between the model’s predictions and the actual values. In this
case, a high correlation is observed between the predicted and actual values, as most of the
points are close to the diagonal line (R2 = 0.9083). This demonstrates that the MARS model
is capable of generating accurate estimations of mass loss based on the study parameters.

The proximity of the points to the diagonal line also suggests that the model generalizes
well, meaning it can provide accurate predictions even for data not used during the model’s
training. This ability to generalize is essential to ensure the applicability and reliability of
the model in practical situations.

The residuals represent the differences between the predicted and actual values of
mass loss based on the study parameters. In a precise and reliable model, the residuals
should be randomly distributed around zero and show no systematic trend.

In Figure 10, a homogeneous distribution of residuals around zero is observed, indi-
cating that the MARS model can capture the variability in the data, adequately adjusting to
the patterns of mass loss.

Figure 10. Residual plot of the MARS model.
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The root mean square error (RMSE) used in this case to measure the differences
between the predicted values of the model and the actual values has a value of 0.005587.
Table 4 shows a comparison between the relative error, absolute error, the percentage
predicted through the model, and an example of what it would be using the mean value.

Table 4. Relative error, absolute error, and mean error of the model.

Relative Error (%) Absolute Error Mean (%) Model (%)

1 0.000292 1.12 25.7
5 0.00146 15.08 77.09
10 0.00292 38.55 94.41
14 0.004088 58.1 97.77
20 0.00584 85.47 98.88
25 0.0073 86.59 100
Inf Inf 100 100

These results provide an assessment of the model’s performance in predicting the abra-
sion values. The RMSE value indicates the average difference between the predicted and
actual values, with lower values indicating better accuracy. The table presents the relative and
absolute errors for different percentages, comparing the model’s predictions to the mean value.
It can be observed that the model’s predictions have significantly lower errors compared to
using the mean value, demonstrating its effectiveness in estimating the abrasion values. For a
relative error of less than 15%, the model shows an efficiency of 98% accuracy.

4. Discussion

4.1. Interpretation of Results

The results of this study highlight the importance of considering the conditions and
characteristics of the surrounding terrain when designing and maintaining outdoor metal
structures on dry and degraded lands. This study emphasizes that wind erosion can
lead to significant degradation of metal structures in such environments, a factor often
overlooked during the design process. The developed predictive model incorporating data
from various sources provides valuable insights into the potential material degradation
and erosion experienced by these structures. The findings underscore the significance of
including terrain-related parameters as essential factors in the design and maintenance
practices for outdoor metal structures.

The compilation of a comprehensive database from the existing literature and the
inclusion of experimental data from direct impingement tests on metal plates subjected to
high-pressure air and sand impacts the study’s findings. The experimental tests revealed
mass losses ranging from 0.20% to 0.99% for different metal plates. It was interesting to
observe that certain plates, such as aluminium and various types of tinplate, showed mass
gains, likely due to minimal wear and the embedding of sand particles. These observations
underscore the complexity of abrasion processes and highlight the need for a more nuanced
understanding of material responses under different impact conditions.

4.2. Implications and Applications

The study’s implications are significant for the construction industry and outdoor
metal structure maintenance. By incorporating information about the land and drylands
circumstances and environmental factors into the design process, engineers and designers
can better anticipate and mitigate potential material loss and degradation. Understanding
the impact of wind-driven particle action on metal structures will facilitate more informed
decision-making in product development and material selection, ultimately leading to
more durable and resilient structures.

The developed predictive model using the multivariate adaptive regression splines
(MARS) algorithm holds great promise for practical applications. The model’s accuracy in
predicting material mass loss based on parameters such as hardness, impact angle, impact
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velocity, and sand quantity makes it a valuable tool in assessing material performance and
durability under different impact conditions. Designers and engineers can use this model
to optimize the design of metal structures and select appropriate materials, considering the
specific environmental conditions they will be exposed to. Moreover, the model’s efficiency
of 98% accuracy for a relative error of less than 15% indicates its reliability and suitability
for real-world applications.

4.3. Limitations and Future Research

The present study offers valuable insights into the relationship between terrain con-
ditions and material degradation, focusing on outdoor metal structures in a controlled
environment. Although this study acknowledges certain limitations, it could be further
enhanced to explore the significance of its findings in dryland regions, where the impact of
environmental factors is more pronounced.

One aspect that could be clarified is how dryland conditions were specifically modelled
in the lab. Understanding the methodology used to replicate these conditions would add
depth to the study and provide insight into the relevance of the findings to real-world
desert environments.

To enhance the study’s applicability, future research should consider in situ challenges
that may be encountered in actual deserts. Factors such as extreme temperature fluctuations,
the presence of abrasive particles in winds, and limited water resources for structure
maintenance can significantly affect material degradation in dryland areas.

Moreover, investigating the long-term performance of the predictive model under
cyclic weather patterns and varying wind velocities in dryland conditions would provide
valuable information about its practical reliability.

Overall, expanding the study to encompass a broader range of dryland scenarios
and addressing the in situ challenges faced in actual deserts would contribute to a more
comprehensive understanding of material degradation in these regions.

5. Conclusions

With the proliferation of constructions on dry and degraded lands, it is crucial to
consider the conditions and characteristics of the surrounding terrain when designing
and maintaining outdoor metal structures due to the potential problems caused by wind
erosion. However, these parameters are often overlooked during the design process. To
address this issue, this study emphasizes the importance of incorporating information
about land circumstances in the design and maintenance of metal structures exposed to
outdoor conditions.

By developing a predictive model that considers data from diverse sources, it provides
valuable insights into the potential degradation and erosion experienced by such structures.
The findings underscore the need to include terrain-related parameters as essential factors
in the design and maintenance practices for outdoor metal structures.

A comprehensive database was compiled from the existing literature and supple-
mented with experimental data collected for this study. The tests evaluated the mass loss
experienced by metal plates subjected to high-pressure air and sand impacts using direct
impingement tests. Sample plates exhibited mass losses ranging from 0.20% to 0.99%.
Notably, some plates, such as aluminium and different types of tinplate, showed mass
gains, likely due to minimal wear and sand particle embedding.

Based on the literature review and experimental data, a predictive model was developed
using the multivariate adaptive regression splines (MARS) algorithm. This model accurately
predicted material mass loss based on parameters such as hardness, impact angle, impact
velocity, and sand quantity. The practical application of the MARS model was demonstrated
in assessing the material performance and durability under different impact conditions, aiding
in informed decision-making for product development and material selection. For a relative
error of less than 15%, the model shows an efficiency of 98% accuracy.
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Future research should focus on studying the influence of wind speed and its parame-
terization in this context, further enhancing our understanding of material degradation,
and enabling more precise modelling and predictions.
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Abstract: Generative design based on machine learning has become an important area of application
for artificial intelligence. Regarding the generative design process for residential site plan layouts
(hereafter referred to as “RSPLs”), the lack of experimental demonstration begs the question: what
are the design preferences of machine learning? In this case, all design elements of the target
object need to be extracted as much as possible to conduct experimental studies to produce scientific
experimental results. Based on this, the Pix2pix model was used as the test case for Chinese residential
areas in this study. An experimental framework of “extract-translate-machine-learning-evaluate”
is proposed, combining different machine and manual computations, as well as quantitative and
qualitative evaluation techniques, to jointly determine which design elements and their characteristic
representations are machine learning design preferences in the field of RSPL. The results show that
machine learning can assist in optimizing the design of two particular RSPL elements to conform
to residential site layout plans: plaza paving and landscaped green space. In addition, two other
major elements, public facilities and spatial structures, were also found to exhibit more significant
design preferences, with the largest percentage increase in the number of changes required after
machine learning. Finally, the experimental framework established in this study compensates for the
lack of consideration that all design elements of a residential area simultaneously utilize the same
methodological framework. This can also assist planners in developing solutions that better meet the
expectations of residents and can clarify the potential and advantageous directions for the application
of machine learning-assisted RSPL.

Keywords: machine learning; generative design preference; planning design elements; Pix2pix
model; residential site layout planning; experimental framework

1. Introduction

With the growth of computer science, machine learning-based generative design has
become popular. This gives us new ways to learn about the generative design process
for RSPLs. Generative design is performed using a computer that generates new design
solutions in a given design space structure via random noise sampling. Machine learn-
ing, as a data-driven approach, is considered an effective method to apply to generative
design [1,2]. The current generative design, which is built on machine learning, has met
the need for devising a great number of design ideas. However, in the age of big data,
most automatic design methods only look at quantitative goals and constraints and ignore
qualitative design information, which is hard to describe mathematically [3,4].

Mining the generative design preferences of machine learning in the field of plan
layout can help determine the design inspirations of machine learning in the field of RSPL
design to explain the benefits of a machine learning-assisted plan layout. Generative design
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preferences can guide planners in developing solutions that better meet residents’ expecta-
tions. In recent years, investigation into the independent learning of generative preference
design has begun regarding machine learning-assisted plan layouts. This investigation
has two main paths for applying technical means and innovating research perspectives:
(1) Machine learning is a technical tool used for solving research problems. For example,
satellite images were used to identify land use changes [5], crime was assessed through
street images [6], COVID-19 plan distribution states for urban security risk assessment
were identified [7,8], and remote sensing images were used to detect forest carbon stocks
to predict their carbon sink development [9]. (2) Machine learning provides innovative
perspectives on extracting design elements to facilitate decisions. For instance, Silva et al.
used convolutional neural networks and YOLO algorithms to identify sites and extract
required elements (e.g., vegetation strips and buildings) to improve decision making for
urban design development [10]. Moreover, Chinazzi et al. employed machine learning
models to create a new method for generating scientific maps of knowledge, providing a
scientific method for classifying urban planning and other fields [11]. Additionally, the
creation of urban knowledge systems has been seen as an innovative result of the mutual
representation of artificial intelligence techniques and the extraction of targets [12]. These
earlier works have shown a strong link between machine learning and plan structure
in recognizing, perceiving, evaluating, and predicting. Additionally, they showed that
machine learning offers new ways to use technology to extract design elements to help
plan layouts during autonomous learning exploration. This process allowed planners to
determine the best practices for machine learning to assist with plan layout.

Each design element of an RSPL can be a generative design preference for machine
learning in residential layout planning and can exhibit an application value. Residential
design elements refer to each component of an RSPL, including design elements such as
housing, roads, landscapes, and green spaces. These are indispensable and important
components in the planning and design of residential spaces. Existing research of machine
learning-assisted RSPLs only involves the study of individual design elements. For example,
Xinyu Cong used CGAN to generate residential area layouts [13], Dai et al. used the Gray
Wolf optimization algorithm model to improve the impact of community public space
promotion from a child’s perspective [14], and Elariane used a machine learning model
to evaluate real estate website API data to determine the characteristics of long-term
rental apartment homes [15]. Therefore, we attempt to apply machine learning to RSPLs
through an experimental study of the totality of the design elements in residential planning,
allowing machines to learn autonomously to determine their preferred designs of interest
and their characteristic properties.

In the current artificial intelligence boom, generative adversarial networks have de-
rived many new development-powered models such as CycleGAN [16], Pix2pix_HD [2],
Pix2pix, etc. However, after combing through the literature regarding the strengths and
weaknesses of each generative adversarial network model (as shown in Table 1), it was
found that the Pix2pix model outperforms the others in the image transcription and classi-
fication tasks [17]. The Pix2pix model was proposed by Phillip Isola et al. in 2017 based on
GANs, the earliest image recognition and generation applications. The most significant
difference between the Pix2pix model and previous GAN-derived models is that Pix2pix
optimizes the original input method to an imaging approach, enabling the image-from-
to-image learning process [18]. Its discriminator Patch design can reduce the dimension
of the input image significantly, reducing the number of parameters and increasing the
operation speed. This study then generates a one-to-one site plan of the settlement to
discover its design preference through labeled graphs. The Pix2pix model principle is to
realize one-to-one image mapping. In addition, the external sites of residential areas have
different shapes and scopes. In contrast, the Pix2pix model has no limitations regarding
image scale and size, thus allowing for an increase in the scalability of the Pix2pix model.
Therefore, the Pix2pix model was selected for the research in this paper. However, at the
same time, the Pix2pix model has the disadvantage of generating fuzzy and conflicting
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images. The existing research provides the following solutions: (1) increase the details of
labeled maps and (2) improve the quality of the parameters.

Table 1. Comparison of the advantages and disadvantages of generative adversarial modeling.

Model Advantage Disadvantage Reference Sources

Pix2pixGAN A generalized approach to
image-to-image translation

Generates images with blurred,
conflicting characteristics

Fu, B., et al. [19]
Zhao, C. W., et al. [20]

CycleGAN Solves the problem that the Pix2Pix
model requires image pairing Low quality of generated images Zhu J Y, et al. [21]

Pix2pix_HD Higher quality of generated images Still needs pair data Chen, J. S., et al. [22]

StarGAN Realization of multi-domain style
image transformation

The image’s label is entered into the
model so that the attributes can

be modified

Shen, Y., et al. [23]
Choi Y, et al. [24]

InfoGAN
The characteristics of the generated data

are controlled by setting the implicit
encoding of the input generator.

Training is unstable, and its performance
is susceptible to the prior distribution

and the number of noisy hidden
variables selected.

Wan, P., et al. [25]
Chen X, et al. [26]

LSGAN Solves the problem of training instability Lack of diversity in generated images Mao X., et al. [27]

ProGAN Generates high-resolution images Very limited ability to control specific
features of the generated image Karras T., et al. [28]

SAGAN Generated images more closely resemble
the original image

Poor quality of images for generating
local autocorrelation Zhang H., et al. [29]

Current research on applying the Pix2pix model has not been extended to other
residential design elements. The application of the Pix2pix model was initiated at the
beginning of Chaillou’s implementation of the apartment plan design process, involving
‘building plan contour’, ‘layout within the contour’, and ‘addition of furnishings’, using
multiple Pix2pix optimization models [30]. Pix2pix models were later optimized to evaluate
automated building simulation applications [31]. For example, David Newton explored
the challenge of generating layouts for Corbusier-style houses with a limited sample
size. He expanded the scope of analysis by introducing noise and rotation to enhance the
training effectiveness of GAN models [32] Yu et al. utilized traditional Chinese architectural
datasets to generate and identify building facades [33]. Additionally, Mostafavi et al.
employed machine learning to predict illumination and spatial daylight autonomy based
on residential building spatial layouts [34]. However, previous studies demonstrate that
the Pix2pix model has not been widely used in the design of RSPLs. While Gu D. et al. used
the Pix2pix model to evaluate wind damage to residential building windows for protection
against wind damage [35], their study focused solely on a single residential element. Few
studies have extended the application of this model to other residential design elements
and explored its diverse potential within the realm of RSPL.

Previous research has confirmed that machine learning can assist in generating and
optimizing RSPLs. However, given a machine in a residential site scheme, it is unclear
what the preferred design of machine learning in a residential site scheme is. This makes it
hard to determine where the benefits of machine learning-assisted RSPL lie. Integrating the
widespread use of large-scale data-assisted plan layouts and extracting the characteristics
of the design elements of residential site schemes allows researchers to look into empirical
methods to understand the potential for its use in “RSPL” from a machine learning point
of view. Thus, this will contribute to the urban planning discipline. Given the above, this
study presents an experimental framework for exploring Chinese residential areas. This
stems from the diversity of residential types in Chinese residential areas, reflecting the
universality of the research results. The proposed experimental framework was applied for
experimental demonstration with the Pix2pix model as the chosen generative adversarial
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network model. This provides a method for exploring design preferences in residential
layout planning and extending the application of the Pix2pix model in RSPLs.

The rest of the paper is organized as follows: Section 2 presents the experimental
framework for this study, including the residential area design element extraction process
and the data processor for analysis using this framework. To verify the effectiveness of
machine learning for residential layout planning, its learning results and limitations in this
study, as well as insights for future work are evaluated and discussed in Section 3; Section 4
illustrates the analysis and the conclusions.

2. Materials and Methods

2.1. Study Area

The sources of the residential schemes for this study were CAD drawings of completed
residential schemes collected from major Chinese design websites (shown in Appendix A
Table A1). From these sources, we selected 300 design schemes for the experiment from
residential areas in various provinces in China. The residential schemes we chose were all
established settlements with a size ranging from 40 to 80 hectares and a predominantly
rectilinear dwelling arrangement. The housing types were categorized based on their
height: low-rise, multi-story, medium-high-rise, and high-rise. The plans of some of
the residential schemes are illustrated in Figure 1. On average, the selected sample had
10.7 floors, a mid-level building density of 31.3%, an average floor area ratio of 1.9, and an
average study area of 67.86 hectares (as shown in Table 2). We simplified the schemes and
corrected them for code non-compliance and apparent errors.

Figure 1. Scheme plans for residential areas.
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Table 2. Summary of basic information in residential schemes.

Basic Information Characteristics Classification of the Basic Information Characteristics Count

Floors

The highest number of floors 32 F

The lowest number of floors 1 F

Average floors 10.7 F

Building density
Maximum building density 39.4%

Minimum building density 20.1%

Average building density 31.3%

Plot ratio

Maximum floor area ratio 4.4

Minimum floor area ratio 0.7

Average plot ratio 1.9

Floor area

Maximum floor area 87.3 ha

Minimum floor area 41.6 ha

The average floor area 67.86 ha

2.2. Methodological Framework

To explore the “machine learning generative design preferences in RSPL.”, a frame-
work of “extraction-translation-machine learning-evaluation” was proposed (shown in
Figure 2). The experimental framework is as follows: in the first step, design elements in
China’s Urban Residential Planning and Design Standard GB 50180-2018 [36] (hereafter
referred to as “CURPADS”) were summarized into five categories: housing, green space,
supporting facilities, roads, and other elements. In the second step, we translated the
scheme into an image recognized by the Pix2pix model using an RGB color block assign-
ment of the image. The Pix2pix model was used in the third step to learn the residential area
scheme, aiming to obtain an optimal parameter performance and a sample augmentation
solution. Subsequently, the results of the generated solutions were evaluated through
standard and design dimensions in the fourth step. The evaluation process represents the
preferred design determination process.

2.3. Step 1: Extraction

Based on the current classification of “CURPADS”, design elements of housing, green
space, and other design elements (including square, water, inlet, and outlet), supporting
facilities (commercial and other supporting facilities) and road elements were extracted as
the design elements of RSPL that needed to be learned via machine learning for in-depth
analysis in this study (as depicted in Figure 3). “CURPADS” has modified the requirements
for the residential environment and supporting facilities. It incorporates housing, green
space, and public space to enhance the quality of the residential environment, and it divides
supporting facilities into different levels to align with the creation of residential areas of
varying scales. In the latest residential design process, there is greater emphasis on im-
proving the quality of the environment within residential areas while meeting mandatory
design standards. Simultaneously, the quality of residential planning and design is ensured
through a scientifically sound, green, and ecologically balanced spatial structure. “CUR-
PADS” serves as the standard observed in Chinese residential planning and design. The
residential design elements derived from it represent the accumulated practical experience
of Chinese residential planning and hold significant importance.
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Figure 2. Experimental framework [36].

Figure 3. Classification of residential planning and design elements.
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2.4. Step 2: Translation

Since the Pix2pix model performs image-to-image recognition, the residential design
elements must be translated into residential images for machine learning. This is accom-
plished by translating the settlement design elements through assigning different RGB
color values into images easily recognized and learned by the machine (as in Table 3). The
final results of the labeled images are shown in a JEPG format with 512 pixels by 256 pixels
and a resolution of 300 dpi.

Table 3. Different RGBs for different design elements.

Extraction Elements Function Type of Elements RGB Value

Housing

Villa (1–3 F) R:80 G:120 B:80

Low-rise (4–6 F) R:255 G:0 B:255

Mid-rise (7–11 F) R:150 G:100 B:75

Mid-rise (12–18 F) R:180 G:0 B:255

High-rise (over18 F) R:255 G:150 B:150

Commercial supporting facilities R:150 G:255 B:255
Supporting facilities

Other supporting facilities R:255 G:150 B:0

External road R:255 G:0 B:0
Road

Internal road R:150 G:150 B:150

Green space Greenery landscape R:150 G:255 B:150

Water R:0 G:0 B:255

Site R:0 G:0 B:0

Square R:150 G:150 B:0
Other

Inlet and outlet R:255 G:255 B:0

2.5. Step 3: Machine Learning
2.5.1. Pix2pix Model

The model used for this machine learning is Pix2pix, which operates with the under-
lying logic of a U-NET architecture [37] and consists of 16 layers of convolutional neural
networks for the generator and a PatchGAN architecture [18], as well as five layers of
convolutional neural networks for the discriminator (shown in Figure 4). The generator
extracts the input image information containing various elements through a convolutional
neural network. It conducts it through 16 different layers of neural networks, one layer
at a time, to translate the image information into computer language before passing it to
the next layer. Later, after receiving the training data forward propagated by the inputter
through the deconvolution layer, the generated image is transmitted to the discriminator
and bridged to the input image to determine the similarity of the generated image to the
input image.

Figure 4. Model architecture diagram of Pix2pix.

2.5.2. Learning Process

To maintain the optimal learning effect of machine learning during the experiment, the
Pix2pix model needs to be optimized via multiple debugging. A machine learning process
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under the computational mutual feedback system (shown in Figure 5) was proposed. This
process comprises two parts: one is the tuning calculation, i.e., the parameter adjustment to
determine its optimal parameters, and the other is the mutual data feed, i.e., the internal
data augmentation to optimize its learning results.

Figure 5. Flowchart of the calculated mutual feeding system.

• Parameter adjustment:

Parameters: loss function, hyperparameters, and metrics. The loss function referred
to a function within the model, and the hyperparameters and metrics were used to tune
the model and measure its performance, respectively. A total of five groups of tuning
experiments, A, B, C, D, and E were carried out in this experiment.

Hyperparameters can influence the training and output performance of the model.
Two main parameters were involved in this experiment: Epoch and Decay.

a. Epoch. The Pix2pix model learns all samples once during the learning process. A
complete cycle is called one Epoch, through which the whole training process of the model
is divided into several segments, and more iterations indicate a better learning effect. In
this study, we selected epoch values of 100, 300, 500, and 700 for setting.

b. Decay. The decay degree represents the decay rate of the learning rate during the
iterative process, and its purpose is to prevent overfitting. The optimal learning rate, which
was immense initially and gradually decreased during the training process, could better
approximate the optimal point. In the current work, we selected 50, 200, 250, 150, and
100 decay values for the setting.

Metrics were employed to evaluate the performance of different model algorithms.
PSNR, SSIM, and LPIPS were chosen as the metrics for this experiment.

c. PSNR: Peak signal-to-noise ratio is a reference value of image quality that measures
the difference between the maximum signal and background noise. It is the most common
and widely used objective evaluation index for images and is usually defined by the sum
mean square error (MSE) of the image. In detail, MSE is expressed as

MSE =
1

H × W

H

∑
x=1

W

∑
y=1

(X(x, y)− Y(x, y))2 (1)

H aH and W represent, respectively, the length and width of the image, X denotes the
original image, and Y indicates the generated image. X(x, y), Y(x, y) represents the (x, y)
pixel value of the image X, Y in coordinates. PSNR is defined as [38]
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PSNR = 10·log10

(
MAX2

L
MSE

)
(2)

where MAXL is the most probable maximum pixel value of the image. In the default red,
green, and blue (RGB) images, this value equaled 255. MSE indicates the mean square error
between the original and generated images. PSNR is measured in decibels (dB), and one of
the objectives to this study is to generate image results with a high PSNR.

d. SSIM. The structural similarity index measure was used to compare the proximity
of the original sample to the generated sample image with respect to brightness, contrast,
and structure [39]. The SSIM algorithm was designed to consider the variation of structural
information in the image in human perception [40]. The model also introduced perceptual
phenomena and structural information related to perceptual variation. Structural infor-
mation refers to the fact that pixels have internal dependencies on each other, especially
spatially close pixel points [41]. These dependencies carry essential information about the
visual perception of the target object, and therefore SSIM is more suitable than PSNR to
evaluate the perceptual effects of images. Its definition is shown as

SSIM(x, y) =

(
2μxμy +C1

)(
2σxy +C2

)
(
μ2

x + μ2
y +C1

)(
σ2

x + σ2
y +C2

) (3)

where μx is the mean of x; μy indicates the mean of y; σx and σy are the variances of x and
y; σxy is the covariance of x and y; and C1 and C2 are constants. The proposed Pix2pix
model aims to make the SSIM value as close to 1 as possible.

e. LPIPS. Learning Perceptual Image Block Similarity, also known as “loss of percep-
tion”, was adopted to measure the difference between two images [42]. This metric learns
the reverse mapping of the generated image to Ground Truth, forcing the generator to learn
to reconstruct the reverse mapping of the real image from the fake image and prioritize
perceptual similarity between them. LPIPS is more consistent with human perception than
traditional methods (like L2/PSNR, SSIM, and FSIM). On the other hand, LPIPS can better
reflect the perception advantage [43] of the images generated by GAN. A lower value
of LPIPS indicates that the two images are more similar, and vice versa, the greater the
difference. For a given neural network F, Figure 6 can represent how LPIPS is computed.

Figure 6. LPIPS operation process analysis.

The image was inputted to network F. Each convolutional layer was feature extracted
and cell normalized in the channel dimension. For the L layer, the result would be written
as ŷι, ŷι

0 ∈ RHι×Wι×Cι . Meanwhile, each channel was scaled using the vector W and L2
distance was calculated. Finally, the perceptual distance result was obtained by averaging
in the spatial dimension and summing in the channel dimension with the expression of
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d(x, x0) = ∑
ι

1
HιWι

∑
H,W

‖ Wι

⊙(
ŷι
HW − ŷι

0HW
) ‖2

2 (4)

• Data Enhancement:

Data augmentation refers to making a limited amount of data produce more value
without substantially increasing the data [44]. In this work, the solution with a better
effect on the generation side of experimental groups A, B, C, D, and E was added to the
original sample to achieve sample augmentation. Combining the original sample and the
generated sample increases the diversity of the data set, improves the generalization ability
and robustness of the training model [45], and thus enhances the value of the existing
data. For the screening of sample set augmentation, the following process was mainly
adopted: (1) an overall judgment was made about whether the scheme was complete
and whether each design element in each scheme was easily distinguishable, etc., (2) a
judgment of each design element was performed (Figure 7). If a design element could not
be judged, other design elements would be combined to make a comprehensive judgment.
If the generated images conformed to the judgment process, they would be mixed into the
original sample set. Otherwise, the solution would be filtered and discarded. Finally, we
selected 285 images from the 1500 generated results (experimental groups A, B, C, D, and
E) and blended them into the original sample set for data enhancement.

Figure 7. Sample set expansion and screening process.

2.6. Evaluation

Since machines cannot judge the quality of image design, each result in machine
learning requires metrics for evaluation. According to Recio et al., it was found that in
emotion, the high arousal effect performance of positive words leads to a faster visual
perceptual response [46] and more easily obtained merits of the target object at the visual
level. In addition, the positive evaluation words mentioned in the book “Designing Cities:
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Basics-Principles-and Practice” were the first to utilize this evaluation in urban design [47]
and were able to precisely identify design solutions. Hence, based on this reference, an
evaluation scale for a design dimension was proposed in this study. The evaluation of
this study was divided into two dimensions: the design dimension and the standard
dimension. The design dimension proposes diversity, simplicity, relative property, and
totality to evaluate the square paving, green landscape space, commercial facilities, and
other public facilities (as shown in Table 4). For the standard dimension, three aspects of
plot ratio and building density, as well as the proportion of square paving, green landscape
space, commercial facilities, and other public facility activity-occupied land, were selected
to evaluate the results.

Table 4. Classification of the evaluation dimensions.

Evaluative Dimension

Evaluate Elements
Square Paving

Landscape Green
Space

Commercial
Facilities

Other Public
Facilities

Design dimension

Diversity 1©Structured; 2©Detailed; 3©Various;
Simplicity 1©Well-balanced; 2©Self-existed; 3©Concise;

Relative property 1©Sequential; 2©Heterogeneous;
Totality 1©Compact; 2©Unified; 3©Balanced; 4©Uniform;

Standard dimension Plot ratio Density of the building The proportion of paved plazas/landscaped green
areas/commercial facilities/other public facility activity sites

3. Results and Discussion

3.1. Optimal Parameter Determination

We compared the experimental results in the five groups of parameters by selecting
one of the residential area schemes (as in Figure 8). It was found that the PSNR and SSIM
index scores reached the highest level in experimental group E, while the LPIPS index
showed the lowest also in experimental group E. Subsequently, the generated results from
the five experimental groups were compared using the mean opinion scoring method,
which is a subjective image quality assessment index that rates the visual perceptual quality
of the generated images on a scale from 1 (worst quality) to 5 (best quality). The final
score is calculated as the arithmetic mean of the scores provided by all the raters. In this
case, the highest mean score for Group E was 3.7, based on the ratings from 30 raters (see
Appendix A Table A2). Based on these results, Group E is considered to have performed
the best. Additionally, this group had the highest number of iterations, and the degree of
decay was maintained in a gradually decreasing state. Consequently, these parameters will
be used in the subsequent model training for scheme learning.

3.2. Generative Preference Design Element Determination

Once the parameters for extracting the generative design preferences of machine
learning in the design elements of “RSPL” were determined, a visual method was employed
to quantitatively compare the number of element changes between the original sample
A1 and the generated sample B1 (as shown in Table 5). Since not all residential schemes
contain all design elements, it is necessary to perform a classification count before tallying
the number of element changes. The statistics are as follows: water and supporting
infrastructure are classified to initially count the number of original sample sets with
or without such elements. Subsequently, the number of schemes with or without these
elements was counted through machine learning to discern the differences.

For example, in the original sample A1, the percentage of residential schemes with
other supporting facilities was 39.7%. However, in sample B1, which was generated
after machine learning, the percentage of residential schemes with commercial supporting
facilities increased to 62.1%. Conversely, the proportion of residential schemes without
other facilities in the original sample A1 accounted for 60.3%, while in sample B1 generated
by machine learning, the proportion of residential schemes without commercial facilities
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decreased to 39.7%. This indicates that the number of residential schemes with other
supporting facilities increased after machine learning.

Figure 8. Partial table for generating the sample set.

Since spatial structure, landscaped green space, and road design elements are present
in each sample, statistical classification is necessary for these three design elements based on
their types. In this study, both elements were categorized into three groups: concentrated,
dispersed, and centralized-dispersed, using a visual method. Statistics were conducted
based on the difference in the number of types before and after their generation. For
instance, in the original sample A1, 52.7% of residential schemes in green landscape
regions were decentralized. After machine learning, 55.1% of residential schemes with
decentralized landscape green areas were generated in sample B1. The proportion of
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residential schemes with concentrated landscape green space increased from 8.5% to 11.6%.
However, the proportion of residential schemes with scattered landscape green space
decreased from 38.3% to 33.3%. In the original sample A1, 29.7% of residential schemes
featured axial roads, while 41.8% featured axial roads in machine-learned sample B1.
Furthermore, the residential schemes in sample B1 generated by machine learning reached
41.8%. In contrast to the residential schemes with an axial-ring road (17.3% to 0.7%),
the proportion of residential schemes with a ring road increased from 53.0% to 57.5%.
According to the above methodologies, only public facilities and spatial structure differed
above 10% in the number of changes in all categories.

Table 5. Comparison of element classification and quantitative statistical results.

Extraction Elements
Classification of

Elements

The Proportion of
Elements in the

Original Sample A1

The Proportion of
Elements in the

Generated Sample B1

Water
Yes 60.6% 54.4%

No 39.4% 45.6%

Supporting facilities

Commercial
supporting facilities

Yes 60.3% 78.6%

No 39.7% 21.4%

Other supporting
facilities

Yes 39.7% 62.1%

No 60.3% 37.9%

Road network structure

Axis 29.7% 41.8%

Ring 53.0% 57.5%

Axis-ring line 17.3% 0.7%

Space structure

dispersed 32.0% 58.2%

concentrated 28.0% 15.4%

centralized-dispersed 40.0% 22.8%

Landscape greening structure

dispersed 52.7% 55.1%

concentrated 8.5% 11.6%

centralized-dispersed 38.8% 33.3%

Based on the methodological statistics mentioned above, it is evident that machine
learning exhibits a preference for designing two major elements: other public facilities and
spatial structure. Delving deeper into the reasons for their prominence, our concept of
other public facilities in this study is defined as independent and large-area facilities such
as kindergartens, elementary schools, and cultural activity centers. These facilities offer
certain advantages in the image translation process when compared to other public facilities:
(1) There are no additional elements surrounding them that could cause interference. In
fact, our original sample set indicates that most elements of other public facilities exist
in isolated corners and do not blend with other elements, minimizing interference with
machine learning; (2) Due to their larger size, other public facilities are also represented
by RGB pixel values in the original sample set; (3) These facilities tend to exhibit better
contrast, resulting in improved machine learning results due to more pronounced shaping.
This study assessed spatial structure based on the combination of square paving and green
landscape elements. Furthermore, these two elements exhibited various characteristics,
such as fragmented connectivity, scattered distribution, and a substantial plan area, during
our labeling process. A combination of square paving and green landscape was utilized
to evaluate spatial structures. Machine learning for spatial structure design elements
tends to generate decentralized spatial structures. The learning effect is more favorable
because these two elements exhibit diverse characteristics, including fragment connectivity,
scattered distribution, and a large plan area. While Ma et al. concluded that uniformly
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distributed spatial facility service components were crucial in shared rental housing [48], a
thorough analysis of the generated sample set by machine learning yielded a programmatic
surface effect that prefers a balanced layout for each design element. This confirms that the
results align with the flat characteristics of an RSPL [49].

3.3. The Design Dimension Determines Preferred Generative Design Features

Among the 12 display schemes selected (as in Figure 9), we chose two for successive
comparative evaluations of the machine learning process. The original sample for Scheme
52 featured a core spatial structure comprising water and a square, with supporting facilities
distributed to the right and left of the entrance. In contrast, the generated result sample
52-B1 exhibited significantly higher building density. Furthermore, it used other supporting
facilities and water as the core spatial design elements within the residential area. Some
commercial facilities were added to the south side to complement the design along the
residential interface, but the design of the square landscape green space needed to be
incorporated. On the other hand, the generated sample 52-B2 featured a core residential
space composed of water, square landscaping, and other supporting facilities. It positioned
commercial facilities and a larger other supporting facility on the side of the main road.
The original sample 92 had a simpler design, with only water and small squares as the core
space, along with some small supporting facilities distributed along the residential area. In
sample 92-B1, the core residential space consisted of a large square and green area, which
required more control over its scale due to its substantial size. The core residential space in
sample 92-B2 was formed by other supporting facilities and a square landscape. While the
inner ring road from the original sample was retained, a portion of the open square was
designed by extending it along the left side of the main road towards the exterior. Upon
comparing the two solutions above, it became evident that the generated sample B2 placed
greater emphasis on shaping spatial structure and green landscape space compared to B1.
Additionally, the overall solution was more mature, encompassing all the elements of a
residential planning study. Its spatial structure and green landscape space were shaped
with greater flexibility and diversity than the original sample, featuring better scale control
and a more complete form.

After comparing and evaluating the generated results from parameter set E (B1) with
the generated results (B2), which were obtained by mixing the training of the newly gener-
ated sample set of 285 solutions, it was evident that, from an overall perspective of diversity
and contrasting learning, the design dimension was more effective in generating samples
B1 and B2. This suggests that machine learning can generate innovative solutions and
provide design ideas, aligning with the concept that machine learning can generate innova-
tive building graphics and section designs through 3D models, as previously confirmed
by other studies [50]. The results also verified that positive terms used for evaluating
the solutions generated at the diversity level were primarily “structured” and “formally
diverse”. “Structured” implies that machine-learned solutions produced monocentric or
polycentric spatial structures, while “diverse” signifies the diverse spatial structures formed
by combining amenities, squares, and green spaces. It was noteworthy that the positive
word “diverse” appeared more frequently in the sample B2 generation than in sample B1,
suggesting that the performance of the data-enhanced design solutions was more inspir-
ing to designers. At the “relative property” level, the positive words for the generated
schemes were mainly “heterogeneous”. Interestingly, some of the solutions that exhibited
“sequential” positive words in generation sample B1 transformed into “heterogeneous” in
generation sample B2 (as shown in Figure 10). This indicates that after data enhancement,
machine learning for scheme results displayed more design flexibility and showcased the
innovative potential of square pavement and landscaped green space to conform to the
building layout. For example, Schemes 212 and 109 demonstrated the design flexibility of
paving and landscaping in response to the building layout.
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Figure 9. Partial display table for generating the sample set.

The results of this study primarily emphasize the autonomous exploration of RSPL
in generative design preferences. In contrast, earlier studies focused on analyzing how
machine learning can assist in optimizing and reconfiguring the spatial structure of planned
designs [51]. This novel approach to applying machine learning in plan layouts allows
for a more robust exploration of the potential of machine learning-assisted applications
in RSPLs.

3.4. Standard Dimension Determines Generative Preferred Design Features

By analyzing the 12 selected display solutions and considering specification indicators
such as plot ratio, building density, and active land use proportion, it became evident that
the building density in the original sample set A1 and the generated sample sets B1 and B2
is identical and complies with the relevant design specifications (Figure 11a). However, the
fluctuation range of the building density of the generated sample B2 is smaller than that
of both the original and generated sample B1 (ranging from 25% to 39%). In contrast, the
building density in the original sample A1 exhibits a fluctuation range between 20% and
39%. Although this plot ratio is lower than the original sample set, its fluctuation range
is also smaller, maintained between 1.1–and 3 (as shown in Figure 11b). In contrast, the
plan area ratio of the original sample A1 and the generated sample B1 has a fluctuation
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range exceeding 3. This phenomenon is presumably linked to the selection of more mid-
rise building height solutions, indicating that the machine learning-generated solutions
predominantly feature mid-rise building heights. Nevertheless, it is also confirmed that the
performance of the machine-generated residential area scheme becomes more stable after
data enhancement.

Figure 10. Evaluation results via graphs in the design dimension (Figure 9).

(a) (b)

Figure 11. (a) Graphs of building density generated for some of the display samples in Figure 9;
(b) Graphs of a plot ratio generated for some of the display samples in Figure 9.

Regarding the machine learning effect on the land of each activity, the generated
square pavement and green landscape space became more or less concurrent compared to
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the original sample. In contrast, the commercial and other supporting facilities appeared
smaller or converged than in the original sample (Figure 8). However, according to the
statistics presented in Table 2, the commercial facilities and other supporting facilities in
the generated sample B1 increased compared to the original sample. It is important to note
that these statistics pertain to the proportion of occupied land, demonstrating that the scale
of commercial facilities and other supporting facilities in the generated samples B1 and
B2 is smaller than that in the original sample. This aligns with the previously explained
machine learning-generated design scheme, which pursues a more balanced layout effect.
When comparing, it becomes apparent that a significant portion of the square paving and
landscaped green space in generated sample B2 converged to a greater or lesser extent
when compared to generated sample B1. Commercial facilities tended to be fewer or more
condensed, while other supporting facilities mostly remained unchanged (Figure 12). It
appears that the machine learning effect may have been more successful in replicating the
commercial facilities lined up along the street in the machine learning scheme, as most of
the generated schemes did not exhibit this particular performance characteristic. This could
be attributed to the fact that most of the commercial facilities in this study were commercial
facilities lined up along the street. However, the results of our generation sample B2 were
influenced by a mixture of the five groups A, B, C, D, and E with better experimental results,
which were then re-generated. Consequently, the likelihood that the machine needed to
learn about commercial facilities increased. This might explain why the generated sample
B2 had fewer converging commercial facilities compared to the generated sample B1.

Figure 12. Each element of the active land proportion separately shown in part in Figure 9.
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As mentioned earlier, following machine learning, residential design elements exhibit
varying effects, with other public facilities and spatial structures proving to be the most
influential and displaying diverse characteristics. Therefore, it is crucial to explore how
to fully harness the potential and direction of applying design elements related to other
public facilities and spatial structures. “CURPADS” focuses more on creating living circles
in residential areas. It advocates the division of amenities into internal communities and
settlements [52,53] and attaches more attention to public facilities to guide and define
the division of residential communities. This study confirmed that the amenities in the
generated scheme fulfill the role of guiding the spatial structure of the settlement that
machine learning can achieve. Consequently, the machine learning preference design
was considered to optimize the creation of living circles in residential areas. In studies
concerning the configuration and layout of public facilities and green landscape spaces in
urban planning, Khodaparasti et al. introduced an “integrated location-allocation” model
to optimize the equity and efficiency of medical service facility locations [54]. Wang et al.
used machine learning algorithms and POI data to select the location of elderly facilities in
Wuhan [55]. The green space network of Lijiang City was constructed by Ren et al. using
satellite images to design green space as a multimodal space of points, linear bars, and
irregular shapes [56]. Also, the studies above can be used to analyze the design preferences
and characteristics of residential areas found in this study. This allows for the studies
above of public facilities, landscape green space layout, and different types of spaces to
help create urban public facilities and landscape green spaces. As a result, their application
potential would be expanded while contributing to the development of the urban planning
discipline. In the future, we can explore additional applications of the Pix2pix model within
RSPL as a specific application area, thus uncovering further value-added possibilities for
the Pix2pix model.

Finally, this paper not only explores generative design preferences at the plan image
design level but also considers how to enable the machine to discover generative design
preferences for spatial design from the spatial planning level, which is a topic for future
research experiments. Ideally, in the future, we will continue to optimize the performance
of the Pix2pix model to enhance the stability of its training, leading to improved image
resolution in generated designs. This will increase the generalizability of the Pix2pix model
and expand its application value in the field of RSPL on a larger scale. In addition, we
attempted to optimize the algorithm for LPIPS metrics to derive a machine learning visual
perception evaluation metric that aligns more closely with human design thinking. The goal
is to use this as a classification basis to score generated balanced layout surfaces, conduct
an in-depth classification study of their balanced layout characteristics, and explore the
applicability of balanced layout effects in various urban design schemes.

4. Conclusions

In this study, we conducted an experimental exploration of machine learning genera-
tive design preferences in RSPL using the Pix2pix model. The aim was to uncover machine
learning’s generative design preferences in RSPL and assess its feature performance, with
the potential to enhance applications in residential planning and urban planning devel-
opment. By analyzing design and feature performance choices, government authorities
can identify the most promising urban planning areas. The following conclusions and
reflections can be drawn from this experimental study on a case study of residential areas
in China:

1. The experimental framework of the “extraction-translation-machine learning-evaluation”
proposed in this study addressed the deficiency of simultaneously considering all
design elements of residential areas within the same methodological framework.
This methodological framework integrated both machine and manual computations,
as well as quantitative and qualitative evaluation techniques, to jointly determine
research outcomes and comprehensively characterize the scientific nature of this study.
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Furthermore, this experimental framework established a methodological paradigm
for machine learning-assisted plan layout explorations.

2. Machine learning favors the generation of a balanced layout and showcases the
innovative design potential of various elements in harmony with housing design
components. When comparing the residential area before and after machine learning,
it was observed that the generated plan exhibited less fluctuation in terms of building
density, floor area ratio, and active land ratio compared to the original plan. Further-
more, the comparison of two design elements, square paving and green landscape
space, reveals that machine learning aligns well with the building layout and offers
innovative and diverse design perspectives. This, in turn, provides inspirational ideas
for residential area layout design and promotes the enhancement of environmental
quality within the residential area.

3. Machine learning exhibits a more pronounced generative preference for two design
elements: other public facilities and spatial structures. When comparing the generated
designs before and after machine learning, there was an increase in the number of
design elements. RGB pixels were assigned to form large blocks of other public
facilities and spatial structures that were connected and distributed in fragments.
Furthermore, the machine-learned design element of other public facilities highlights
the master-centered nature of the site. In the process of learning spatial structure,
both monocentric and polycentric characteristics of residential spatial structures were
generated, resulting in various forms of spatial structure design. Ultimately, this can
aid planners in developing schemes that better align with residents’ expectations. It
also contributes to the discipline of urban planning by offering design ideas for the
layout of urban infrastructure, public facilities, landscaped green spaces, and diverse
spatial configurations.
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Appendix A

Table A1. Residential schemes collection website source.

Residential area scheme
collection website source

https://www.om.cn/ accessed on 9 April 2022

https://www.doczhi.com/ accessed on 16 April 2022

https://www.gstarcad.com/ accessed on 23 April 2022

https://www.znzmo.com/ accessed on 28 April 2022

Table A2. Five sets of experiment generated results were scored.

Score Information
Group A Score Group B Score Group C Score Group D Score Group E Score

Score Identity Number

Non-urban
planning major

students

1 3.6 2.8 3.8 3.2 4.2

2 1.5 2.7 3.1 3.4 3.9
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Table A2. Cont.

Score Information
Group A Score Group B Score Group C Score Group D Score Group E Score

Score Identity Number

Non-urban
planning major

students

3 3.5 2.9 3.2 2.3 3.4

4 2.5 2.3 2.7 3.0 3.2

5 3.9 3.7 4.0 4.2 4.5

6 2.6 2.6 3.3 3.6 3.8

7 3.7 3.4 3.8 4.1 4.8

8 1.9 2.3 3.4 3.7 4.4

9 2.8 2.9 3.5 3.1 3.6

10 3.8 4.2 4.1 4.3 4.7

11 2.7 3.6 3.4 3.8 4.1

12 1.6 2.4 3.0 3.3 3.7

13 0.8 1.3 2.5 2.7 3.1

14 2.1 2.5 2.8 3.1 3.4

15 1.1 1.6 2.1 2.6 2.9

Urban planning
major students

16 2.0 1.8 2.3 3.5 3.9

17 2.3 3.0 3.8 3.2 4.2

18 1.7 2.9 2.3 3.7 3.8

19 2.6 2.1 3.7 3.1 3.9

20 1.9 2.8 3.6 4.3 4.7

21 2.3 2.4 3.3 3.7 3.9

22 2.6 2.7 3.1 3.8 4.1

23 1.2 2.1 2.7 3.3 3.7

24 2.5 2.9 2.4 3.1 3.5

25 2.8 3.6 3.4 4.1 4.3

26 2.4 3.2 3.9 4.5 4.7

27 1.4 2.2 2.7 3.0 3.3

28 2.2 3.6 3.4 4.2 4.6

29 1.8 2.5 3.3 2.2 3.6

30 0.9 1.8 2.9 2.7 3.2

average value 2.25 2.3 3.35 2.95 3.7

References

1. Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative adversarial networks (GAN) based efficient sampling of chemical
composition space for inverse design of inorganic materials. NPJ Comput. Mater. 2020, 6, 84. [CrossRef]

2. Atance, S.R.; Diez, J.V.; Engkvist, O.; Olsson, S.; Mercado, R. De novo drug design using reinforcement learning with graph-based
deep generative models. J. Chem. Inf. Model. 2022, 62, 4863–4872. [CrossRef]

3. Tang, Z.; Ye, Y.; Jiang, Z.; Fu, C.; Huang, R.; Yao, D. A data-informed analytical approach to human-scale greenway planning:
Integrating multi-sourced urban data with machine learning algorithms. Urban For. Urban Green. 2020, 56, 126871. [CrossRef]

4. Zhao, X.; Zhang, T.; Xiao, W. An Automated Design Method for Plane Trusses Based on User Preference Information. Appl. Sci.
2023, 13, 1543. [CrossRef]

5. Frimpong, B.F.; Koranteng, A.; Atta-Darkwa, T.; Junior, O.F.; Zawiła-Niedźwiecki, T. Land Cover Changes Utilising Landsat
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Abstract: Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule har-
vest. Traditional methods for determining CGM range from manual scouting, destructive laboratory
analyses, and weather-based dry down estimates. Such methods are either time consuming, expen-
sive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing
that precision harvest management could be critical for extracting the maximum crop value, this
study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel)
multispectral imagery and machine learning techniques. Aerial imagery data were collected in the
2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs)
were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-
edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as
subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index
(GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio
Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant
Index (VARI) had the highest correlations with CGM (r: 0.68–0.80). Next, two state-of-the-art statisti-
cal and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares
Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest
(RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models × two input groups
(REFs and REFs+VIs) × 10 train–test data split ratios (starting 50:50)) were formulated and evaluated
for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test
data split ratio. However, the impact was not significant for the input groups. For validation over
the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input
variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated
for the test dataset, an increase in the train–test split ratio decreased the performances of the other
ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with
REFs+VIs as the input variables. The 95:5 train–test ratio showed the best performance across all
the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was
identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the
study indicate that the integration of aerial remote sensing and ML-based data-run techniques could
be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest
scheduling and management strategies for the growers.

Keywords: aerial multispectral sensing; corn grain moisture; machine learning; precision harvest

1. Introduction

Grain moisture is critical for determining optimum harvest schedules for crops, which
has economic implications during harvest and storage. Markets and safe storages require
crops to be harvested at a grain moisture content between 13 to 15.5%, depending on
the crop, its variety, and storage duration [1]. Harvesting below this range leads to yield
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losses due to grain shrinkage, lodging, and grain dropping during harvest as well as bird
interference. On the other hand, harvesting at a moisture level above this range risks fungal
infection during storage, requires additional costs and infrastructure for artificial drying,
and eventually discounted prices at sales points. Under both situations grain yield, quality,
and net returns are at risk [2]. Corn grain moisture (CGM) decreases from about 85% during
the silking stage to 30% at around maturity through dehydration [3]. This dehydration
occurs in two steps in the field: (i) during maturation, and (ii) post-maturity [4]. As the
grain approaches physiological maturity (i.e., maturation dehydration), the assimilates
of starch and protein displace water molecules within the grain [1,5,6]. During the post-
maturity stage, the grain moisture is lost through exchange with the atmosphere, and this
dehydration is influenced by air temperature, relative humidity, and husk weight and
thickness [6].

Conventionally, corn growers assess grain moisture indirectly by spotting the milk
line and black layer around the grain to determine harvest dates. Among direct methods,
cup-shaped capacitive units and portable grain analyzers are used in fields [7]. Another
traditional technique is oven drying [4]. Researchers have also developed moisture de-
tection techniques based on the electrical and dielectric characteristics of the grains [8,9].
For non-invasive estimation, generalized growing degree days-based models are used
to determine grain moisture and dry down periods (GDDs) [1]. However, this approach
provides minimum accountability of localized soil factors, crop varieties, crop management
practices, and tillage practices that may impact CGM at spatiotemporal scales. Nonetheless,
all these methods are either destructive, time consuming, spatially inaccurate, subjective, or
expensive, therefore they are prone to errors or limitations [6–8,10]. Given these limitations,
there is a great need for techniques that not only determine CGM non-destructively but are
high-throughput in nature as well as account for spatial variability.

Remote sensing is a convenient, timely, high-throughput, and precise technique for
the non-destructive assessment of crop physiology and health such as for water [11],
chlorophyll or nitrogen, disease infection, and pest infestation, among others, for different
crops [12]. This makes remote sensing an extremely useful tool for guiding precision
agriculture operations [1]. Pertaining to corn or field crops, research has been maximally
restricted to the use of remote sensing with vegetation indices (VIs) or machine learning
(ML) techniques for yield predictions [13–16]. Whereas very limited explorations have been
conducted for estimating CGM using remote sensing. One study so far utilized satellite-
based remote sensing imagery for estimating CGM in China using vegetation indices (VIs)
as inputs to the crop-physiological model and observed R2 values of up to 0.9 [16]. However,
satellite-based remote sensing is highly restricted due to fixed data acquisitions, spatial
resolutions, and cloud cover issues especially in coastal ecosystems [17–19]. On the other
hand, small unmanned aircraft system (SUAS) platforms are widely adopted for precision
agriculture operations due to the advantages of providing on-demand data at the desired
spatial resolution, and avoidance of atmospheric and cloud interferences [12,15,20,21].

The advancement of data-run techniques such as ML has revolutionized precision
agriculture operations significantly in recent years by broadening the horizons for crop
health estimations as well as yield forecasting [15]. Some of the most widely used ML
models include the support vector machine (SVM), random forest (RF), k-nearest neighbor
(KNN), and artificial neural network (ANN), among others [15]. These models deploy an
approach of supervised learning, which are trained to approximate complexities between
the input and output variables. This enhances robustness and generalizability of ML for
estimations compared to other conventional statistical or empirical models. ML is also
capable of handling overfitting, remains unaffected by collinearity, number, or non-normal
distribution of the variables, and does not require scale normalizations [22].

Given the restricted research of using high-resolution remote sensing and ML mostly
for yield predictions, this study addresses an important gap of estimating CGM using
SUAS-based multispectral imagery and a range of statistical and ML models. This would
eventually help determine precision corn harvest schedules for the growers. It is also
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important to note that ML techniques have been restrictively evaluated for the number
of variables, and a typical range of training–testing data-split ratios. Most of the studies
generally consider 70:30 or 80:20 train–test splits, which may or may not serve for the
small–medium datasets [16]. Therefore, this study also evaluates the influence of those
two factors on CGM estimation accuracies. Specific objectives are (1) evaluating aerial
multispectral imagery-derived reflectance (REFs) and VIs for assessing CGM, (2) estimating
CGM using a range of statistical as well as state-of-the-art ML models, and (3) evaluating
the performance of those models when using only REFs and a combination of REFs and
VIs as input variables at multiple train–test data split ratios. These evaluations will be
validated over the entire dataset (100%) as well as train and test datasets independently.

2. Materials and Methods

2.1. Experimental Details

The study was conducted at an experimental farm of the Tidewater Agriculture
Research and Extension Center (TAREC) of Virginia Tech (36◦41′7.22′′ N, 76◦45′57.232′′
W), located in Suffolk, VA, USA. The corn seeds were planted between 25–28 April 2022,
into a total of 116 plots of 4 rows each that were 30-ft long. These plots were applied with
29 distinct rates and compositions of fungicides at a reproductive growth stage for disease
control and to achieve variability in crop vigor for CGM estimation modeling. The crop
was harvested on 21 September 2022 (79 DAP (days after planting)) using a plot combine
harvester that recorded yield and grain moisture contents for two middle rows of each
plot. The combine harvester is equipped with a capacitive-type grain moisture sensor to
measure grain moisture and a load sensor to measure yield. No irrigation was applied
during the course of the trial.

2.2. Aerial Image Acquisition

Aerial imagery was acquired at vegetative stage-R5 on August 25, 2022 using a DJI Phantom
4 Multispectral quadcopter drone (SZ DJI Technology Co., Shenzhen, China, Figure 1). Imagery
data were acquired earlier than the harvest date (i.e., 21 September 2022) to evaluate the feasibility
of CGM estimation before the actual harvest operation was deployed. In addition, this is also the
stage after which the crop started senescing. The SUAS was equipped with a five-band multispec-
tral imaging sensor with blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red (650 nm ± 16 nm),
red-edge (RE: 730 nm ± 16 nm), and near-infrared (NIR: 840 nm ± 26 nm) wavelength sensors
of 2.08 megapixels each. DJI Ground Station Pro (DJI GS Pro, version 2.0.17, SZ DJI Technology
Co., Shenzhen, China) was used as the ground station control software to set up the SUAS flight
mission for an altitude of 25 m above ground level (AGL). This provided multispectral images at
a spatial resolution of 1.3 cm/pixel. The multispectral imaging sensor was also configured to
capture images at 80% front and 75% side overlaps for seamless orthomosaicing during
stitching operations. The SUAS had a real time kinematic (RTK) sensor to receive geolo-
cation corrections for each image as well as a skyward facing downwelling light sensor
to record light irradiance during each capture. This light information is used along with
the images of a calibrated reflectance panel (6×, Sentera, Inc., St. Paul, MN, USA) that
were captured after each flight for radiometric calibration of imagery from the mission.
This process eliminates any inconsistencies induced within images due to sunlight fluctu-
ations during the flight mission (Figure 1). The imaging flight was conducted near solar
(±2 h) noon period for high-quality crop feature retrieval. The SUAS has an SD card for
the storage of acquired imagery.

2.3. Image Analysis
Pre-Processing and Feature Extraction

Initially, multispectral snapshots (1125 images: 225 per waveband) were transferred
from the SUAS SD card to a photogrammetry and mapping software platform (Pix4D
Mapper, Pix4D, Inc., Lausanne, Switzerland). In this platform five seamless multispectral
reflectance orthomosaics pertaining to each type of sensor (blue, green, red, RE, NIR) were
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obtained as a result of sequential image stitching operations (Figure 2), which include
keypoint feature extraction and matching, imagery optimization, georectification, point
cloud generation, orthomosiacing, and radiometric calibration.

Figure 1. Corn trial plots at Tidewater Agricultural Research and Extension Center in Suffolk, VA,
imaged using aerial multispectral platform.

Figure 2. Flowchart showing steps of aerial multispectral image analysis and estimation of corn grain
moisture using statistical and machine learning model.

The obtained REF orthomosaics were further processed in QGIS using the “Raster
Calculator” toolbar (Figure 2) to obtain 24 VIs (Table 1). These VIs were selected for their
significance reported in characterizing crop health under a broad range of growth and
agroclimatic conditions. The soil background was segmented out from each VI raster using
the histogram separation method [23,24]. Next, a shapefile polygon layer was created,
where rectangular areas of interest (AOI) of equal dimensions were drawn around the two
central rows of each trial plot. Using this shapefile and the “Zonal Statistics” toolbar, mean
REF and VI values for each AOI (of all non-zero and not-a-number pixels) were extracted,
which were then exported in the “*.xls” format for further analysis (Figure 2).
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Table 1. Vegetation indices extracted from aerial multispectral imagery for corn grain moisture assessments.

Vegetation Index Equation Reference

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [25]
Infrared Percentage Vegetation Index (IPVI) (NIR)/(NIR + R) [26]
Green Normal Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [27]
Green Difference Vegetation Index (GDVI) NIR − G [28]
Enhanced Vegetation Index (EVI) 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) [29]
Leaf Area Index (LAI) 3.618 × EVI − 0.118 [30]
Modified Non-Linear Index (MNLI) (NIR2 − R) × (1 + L)/(NIR2 + R + L) [31]
Soil Adjusted Vegetation Index (SAVI) 1.5 × (NIR − R)/(NIR + R + 0.5) [32]
Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR − R)/(NIR + R + 0.16) [33]
Green Soil Adjusted Vegetation Index (GSAVI) (NIR − G)/(NIR + G + 0.5) [32]
Green Optimized Soil Adjusted Vegetation Index
(GOSAVI) (NIR − G)/(NIR + G + 0.16) [32]

Modified Soil Adjusted Vegetation Index (MSAVI2) (2 × NIR + 1 − sqrt ((2 × NIR + 1) 2 − 8 × (NIR −
R)))/2 [34]

Normalized Difference Red-edge Index (NDRE) (NIR − RE)/(NIR + RE) [35]
Green Ratio Vegetation Index (GRVI) NIR/G [28]
Green Chlorophyll Index (GCI) (NIR/G) − 1 [36]
Green Leaf Index (GLI) ((G − R) + (G − B))/((2 × G) + R + B) [37]
Simple Ratio (SR) NIR/R [38]
Modified Simple Ratio (MSR) ((NIR/R) − 1)/(sqrt (NIR/R) + 1) [39]
Renormalized Difference Vegetation Index (RDVI) (NIR − R)/sqrt (NIR + R) [40]
Transformed Difference Vegetation Index (TDVI) 1.5 × ((NIR − R)/sqrt (NIR + R + 0.5)) [41]
Visible Atmospherically Resistant Index (VARI) (G − R)/(G + R − B) [42]
Wide Dynamic Range Vegetation Index (WDRVI) (a × NIR − R)/(a × NIR + R) [43]

R, G, B, RE, and NIR are pixel values of the spectral responses in red, green, blue, red-edge, and near-infrared images.

2.4. Data Analysis and CGM Estimation

A dataset containing CGM measurements (%) along with five REF and 24 VI features
was derived for 116 plots. Firstly, data normality was checked, and all the data followed a
normal distribution. Then, a Pearson correlation analysis was conducted to identify the
association between the CGM and all the derived REF and VI features.

Next, four ML models and two statistical models were formulated for CGM estimation.
These models include stepwise linear regression (SLR), partial least-squares regression
(PLSR), random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM),
and artificial neural network (ANN). In SLR, the variable with the maximum sum of
squares of regression is selected first, and then binary regression is formed by selecting
an additional variable from the remaining variables. This process repeats until all non-
significant variables are eliminated that could induce cofounding effects [44,45]. PLSR
combines basic multiple linear regression functions and performs correlation and PCA
to eliminate collinearity between variables and maintains relationships with dependent
variables, i.e., CGM [46,47]. PLSR also has the capability of avoiding non-normal data. RF is
a highly used ML model for agricultural operations that assembles multiple decision trees
to estimate a result. The strength of RF is its ability to handle complex datasets and mitigate
overfitting for predictive modeling. In this study, the RF model was initially tested with
1000 trees for all dependent variables and optimum trees were identified in the ranges of
300–400 where the prediction accuracy was almost saturated. This hyperparameter tuning
was achieved by setting “five variables selected at random” as candidates for each iteration
of tuning [48]. KNN performs its function by approximating the association between
the independent and dependent variables by averaging the observations in the same
neighborhood. In this study, for KNN, repeated cross validation was adopted with three
repeats or iterations for up to 30 neighbors. Once the least mean square error was obtained
for a particular number of neighbors, that number was used for final model training [49].
SVM identifies a hyperplane in an n-dimensional space that distinctly classifies the data
points. This hyperplane is developed iteratively such that the misclassification error is
minimal while predicting continuous outputs [50,51]. ANN is a supervised ML model that
comprises node layers, namely, an input layer, one or more hidden layers, and an output layer.
The structure of ANN is inspired by the brain where each node connects to another with an
associated weight and threshold. If the output of any node is above the threshold, that node
gets activated and sends the data to the next layer of the network. This process repeats for
user-defined iterations until the network’s output error reaches the desired value [50,52]. The
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major advantage of ANN over other statistical or linear models is that it flexibly computes the
complicated or non-linear relationships between the input and the outputs. In this study, two
hidden layers were selected with ten and three nodes, respectively.

Prior to implementing these models, significant variables that would be used as
inputs were identified among the derived 29 REF and VI features. This was completed
to complement reduced overfitting and enhanced robustness of ML models for CGM
estimation. For this, firstly a principal component analysis was conducted to identify the
collinear variables. Two primary axes that explained the main variability, intercorrelations,
and dominating pattern of VIs in the data matrix were used to generate the PCA biplots for
dimensionality reduction. Next, a pair-wise correlation analysis was conducted between
all REF and VI features to reduce the number of variables. A threshold of 0.99 was defined
in this pair-wise correlation analysis and variables with correlations above this threshold
were identified and variables with largest mean absolute correlation were removed.

In the next step, two groups of input variables, (1) REFs and (2) REFs+VIs, as well as
ten training–testing datasets were defined. These training–testing datasets were based on
ten split ratios starting from 50:50 up until 95:5 at a 5% increment of the training dataset.
These sets of train–test splits were developed to identify and evaluate appropriate training
data sizes for the best model performance, especially for small- to medium-sized datasets as
in this study (i.e., total 116 data points). For evaluating the estimation model performances,
the trained models were implemented on the entire dataset, the testing dataset, as well as
the training dataset. Metrics of Pearson correlation (r) and relative root mean square error
(rRMSE, %, Equation (1)) were computed to evaluate the model performance and accuracy of
CGM estimation. All the ML and statistical modeling, metrics (r and rRMSE) computations,
and other analyses were performed with the R statistical computing software (version 4.3.1;
RStudio, Inc. Boston, MA, USA) with all statistical analyses inferred at 5% significance.

rRMSE (%) = 100 ×
√

∑n
i=1(CGME−CGMm)2

n
mean(CGM m)

(1)

where CGME is the estimated CGM and CGMm is the measured CGM.

3. Results

3.1. Crop Reflectance and Vegetation Index Feature Evaluation

Pearson’s correlation (r) analysis (Figure 3 and Table 2) showed that CGM had strong
and significant correlations with REFs in RE, and NIR, and the derived 24 VIs (0.68–0.80).
The correlation with REFs in the red band was moderate (r = −0.52). Among the VIs, the
highest correlation was observed for GNDVI (r = 0.80) and the lowest for VARI (0.68).
Correlations with the REFs in blue and green wavebands were the lowest (−0.27 and 0.05).

Figure 3. (a) Principal component analysis biplot of 24 vegetation indices and five reflectance features
accounting for a total of 95.60% of the variability in the data, (b) intercorrelation heat map between
spectral features, and (c) final selected input features after dimensionality reduction.
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Table 2. Correlations of reflectance and vegetation indices with corn grain moisture.

Vegetation Index Pearson Correlation (r)

Blue −0.27
Green 0.05
Red −0.52
Red Edge 0.66
Near Infrared 0.74
Normalized Difference Vegetation Index (NDVI) 0.77
Infrared Percentage Vegetation Index (IPVI) 0.77
Green Normal Difference Vegetation Index (GNDVI) 0.80
Difference Vegetation Index (DVI) 0.76
Green Difference Vegetation Index (GDVI) 0.76
Enhanced Vegetation Index (EVI) 0.77
Leaf Area Index (LAI) 0.77
Non-Linear Index (NLI) 0.78
Modified Non-Linear Index (MNLI) 0.76
Soil Adjusted Vegetation Index (SAVI) 0.77
Optimized Soil Adjusted Vegetation Index (OSAVI) 0.78
Green Soil Adjusted Vegetation Index (GSAVI) 0.78
Green Optimized Soil Adjusted Vegetation Index (GOSAVI) 0.79
Modified Soil Adjusted Vegetation Index (MSAVI2) 0.77
Normalized Difference Red-edge Index (NDRE) 0.76
Green Ratio Vegetation Index (GRVI) 0.79
Green Chlorophyll Index (GCI) 0.79
Green Leaf Index (GLI) 0.69
Simple Ratio (SR) 0.77
Modified Simple Ratio (MSR) 0.78
Renormalized Difference Vegetation Index (RDVI) 0.77
Transformed Difference Vegetation Index (TDVI) 0.78
Visible Atmospherically Resistant Index (VARI) 0.68
Wide Dynamic Range Vegetation Index (WDRVI) 0.78

R, G, B, RE, and NIR are reflectance in red, green, blue, red-edge, and NIR images. Correlation coefficients are
significant at p < 0.001.

3.2. Non-Invasive CGM Estimation with ML
3.2.1. Input Feature Selection

In the PCA, two primary PCs comprising 24 VIs and five REFs accounted for the
variability of 86.75% and 8.85% (Total = 95.60%, (Figure 3a)). The eigenvectors for the
REF in blue, green, and red wavelengths tended towards the top of the biplot (Figure 3a),
so they could be inferred to have more influence on PC-2 while the REFs in RE and NIR
wavelengths, as well as all other VIs, formed a dense cluster towards the extreme left,
top-left, or lower-left region, so they could be inferred to have more influence on PC-1.
The PCA could also visualize numerous VIs that completely coincided or were colinear
with other VIs. This observation was also supported by Figure 3b that shows complete
intercorrelations (i.e., r = 1) between such VIs. Next, using the function “findCorrelation”
in RStudio, we were able to identify the groups of VIs that had complete intercorrelations
and among them drop VIs that had the largest mean absolute correlation. The function
considers the absolute values of pair-wise correlations between variables and removes the
variable with the largest mean absolute correlation. This is similar to removing variables
that have lower loadings (determined through PCA) or less representation of the variability
in data compared to its collinear variable(s). The process determined five REFs and six VIs
that were not collinear and included B, G, R, RE, NIR, IPVI, NDRE, GCI, GLI, SR, and VARI.
These were finally used for CGM estimation through statistical and ML models (Figure 3c).

3.2.2. Using Reflectance Features as Inputs

The CGM through statistical and ML models was initially estimated using only the
REF features as the predictor variables (Table 3). For validation over the test dataset,
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SLR performed the best at a 50:50 split (r = 0.74, rRMSE = 2.43%), followed by PLSR,
SVM (50:50), RF, and KNN, and ANN was the weakest performer at the same split ratio
(r = 0.61, rRMSE = 4.43%). For validation over the train dataset, RF performed best at a
95:5 split (r = 0.96, rRMSE = 1.31%), followed by ANN (70:30), PLSR (75:25), KNN (75:25),
and SVM (70:30). SLR was the weakest performer at a 75:25 split (r = 0.8, rRMSE = 2.37%).
For validation over the entire dataset, RF (r = 0.94, rRMSE = 1.51%) performed the best
followed by ANN, PLSR, SLR, SVM, while KNN (r = 0.79, rRMSE = 2.6%) was the weakest
at a 95:5 split.

Table 3. Comparison of model analysis using reflectance and a combination of reflectance and VIs at
different train–test ratios.

Parameters Dataset: Entire Dataset: Test Dataset: Train

Train:Test
Ratio

Input
Group

Best
Model

r
rRMSE

(%)
Best

Model
r

rRMSE
(%)

Best
Model

r
rRMSE

(%)

50:50
REFs

RF
0.86 2.14 SLR 0.74 2.43

RF
0.96 1.59

REFs+VIs 0.87 2.08 SVM 0.70 2.58 0.97 1.34

55:45
REFs

RF
0.87 2.11 SLR 0.74 2.51 RF 0.96 1.47

REFs+VIs 0.87 2.08 SVM 0.69 2.68 ANN 0.97 1.26

60:40
REFs

RF
0.88 2.05 SLR 0.70 2.27

RF
0.96 1.47

REFs+VIs 0.88 2.03 SVM 0.67 2.64 0.97 1.26

65:35
REFs

RF
0.88 2.02 SLR 0.66 2.67

RF
0.96 1.41

REFs+VIs 0.88 2.02 SVM 0.64 2.78 0.97 1.22

70:30
REFs

RF
0.89 1.95 SLR 0.61 2.76

RF
0.96 1.43

REFs+VIs 0.89 1.93 SVM 0.60 2.92 0.97 1.21

75:25
REFs

RF
0.89 1.92 ANN 0.62 2.82

RF
0.96 1.35

REFs+VIs 0.90 1.86 SVM 0.60 3.08 0.97 1.17

80:20
REFs

RF
0.91 1.86 PLSR 0.65 2.70

RF
0.96 1.34

REFs+VIs 0.92 1.73 SLR 0.71 2.74 0.96 1.21

85:15
REFs

RF
0.93 1.69 PLSR 0.62 2.82

RF
0.96 1.33

REFs+VIs 0.92 1.65 SLR 0.67 2.69 0.97 1.20

90:10
REFs

RF
0.94 1.55 PLSR 0.43 2.91

RF
0.96 1.32

REFs+VIs 0.94 1.45 SLR 0.51 2.84 0.97 1.16

95:5
REFs

RF
0.94 1.51 KNN 0.69 3.25

RF
0.96 1.31

REFs+VIs 0.95 1.37 SLR 0.77 2.59 0.97 1.17

REFs is the reflectance-only input group, REFs+VIs is the reflectance and selected vegetation indices input group.

3.2.3. Using Reflectance and Vegetation Index Features as Inputs

In the second stage of CGM estimation, five selected REFs and six VIs as a result of
dimensionality reduction process were used as the inputs (Table 3). For the validation over
the test dataset, SVM performed the best at a 50:50 split (r = 0.70, rRMSE = 2.58%), followed
by RF, SLR, ANN, and PLSR, and KNN was the weakest performer at the same 50:50 split
(r = 0.62, rRMSE = 2.69%). For the validation over the train dataset, RF performed best
(r = 0.97, rRMSE = 1.17%), followed by ANN, SLR, PLSR, and SVM at a 95:5 split while
PLSR was the weakest performer at that split (r = 0.82, rRMSE = 2.54%). For the validation
over the entire dataset, RF at a 95:5 split (r = 0.95, rRMSE = 1.37%) performed best followed
by ANN, SLR, SVM, and PLSR, while KNN (r = 0.77, rRMSE = 2.74%) was the weakest
performer at a 95:5 split.

3.2.4. Impact of Training and Testing Data Split Ratios

As the training dataset size increased for training the models, the CGM estimation
accuracy also increased when validated over the train and entire datasets (rtrain: 0.61–0.97,
rRMSEtrain: 1.15–2.86%, rentire: 0.76–0.95, rRMSEentire: 1.37–3.31%) also increased
(Figures 4b,c and 5, Table 3) and decreased when validated over the test dataset (rtest:
−0.17–0.77, rRMSEtest: 2.27–5.59%, Figures 4a and 5, Table 3). For the train–test split ratio
of 95:5, the accuracy of CGM estimation was the best and RF was the best performing
model when validated over the train and entire datasets (rtrain = 0.97, rRMSEtrain = 1.17%,
rentire = 0.95, rRMSE entire = 1.37%, Figure 4b,c and Figure 5, Table 3) with REFs+VIs as the
input group. In addition, SLR performed the best at a 95:5 split ratio when validated over
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the test dataset with REFs+VIs as the input group. At the same split ratio, even when using
REFs as the input group and validation over train and entire datasets, RF performed the
best (rtrain = 0.96, rRMSEtrain = 1.31%, rentire = 0.94, rRMSEentire = 1.51%). SLR performed
the best (r = 0.74, rRMSE = 2.43%) with REFs as the input group and SVM performed the
best (r = 0.70, rRMSE = 2.58%) with REFs+VIs as the input group for the train–test split
ratio of 50:50 when those models were validated over the test dataset. ANN also improved
its performance at a train–test split ratio of 55:45 when using REFs+VIs as the input group
and was validated over the train dataset (rtrain = 0.97, rRMSEtrain = 1.26%, Table 3). When
validated over the test dataset, ANN improved its performance for the split ratio of 75:25
and with REFs as inputs (rtest = 0.62, rRMSEtest = 2.82%).

Figure 4. Plots showing measured and estimated CGM using REFs+VIs as input group for models
validated over (a) the test dataset at 50:50, (b) train dataset at 95:5, and (c) entire dataset at 95:5 splits.
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Figure 5. Plots of (a) Pearson correlation (r), and (b) Relative root mean square error (rRMSE) summa-
rizing the performance of six corn grain moisture estimation models for ten train–test data split ratios,
and for two input groups (REFs, REFs+VIs) over three validation datasets (entire, test, train).

4. Discussion

Among the REFs in five wavebands, NIR had the highest correlation with CGM
(r = 0.74) depicting sensitivity to the chlorophyll light absorption feature of plants [53].
Correlations with REF in blue and green (r = −0.27, r = 0.05) wavebands were the lowest,
possibly due to a low signal-to-noise ratio [44,54]. Among the total 24 derived VIs, GNDVI
had the highest correlation with CGM, followed by GCI, GRVI, GOSAVI, and WDRVI,
among others (r = 0.78–0.80), while VARI had the lowest correlation (r = 0.68). GNDVI is
derived using NIR (840 ± 20 nm), which is more sensitive to chlorophyll content, supporting
a strong correlation [44]. On the other hand, VARI had low correlation due to its nonlinear
mathematical operation as well as its derivation using blue and green wavebands that had
low correlations with CGM. VIs such as IPVI and GCI had stronger correlations with CGM
as those take into consideration the dynamic variations in the visible–NIR region pertaining
to canopy water, chlorophyll, and nitrogen contents [55]. In this study, GCI and GNDVI
outperformed VIs that use reflectance in the red band such as IPVI, NDVI, TDVI, RDVI,
and others, as the reflectance in the green band (560 ± 10 nm) is relatively more sensitive to
chlorophyll and crop moisture contents [16,42]. This was also corroborated by observations
made by Kayad et al. [56] where VIs computed using green band reflectance outperformed
others in estimating corn grain yield. These VIs may also perform well for CGM estimation
using simple or multiple linear regression or other statistical models (Table 2) as also
supported by previous studies [16]. Nonetheless, using REF or VI feature as independent
inputs may lack robustness when evaluated under other agroclimatic conditions [57,58].
Therefore, this study advanced research towards the estimation of CGM using statistical and
ML models as those have the capability to robustly approximate complex and non-linear
relationships between the inputs (VIs or REFs) and outputs (i.e., CGM).

From the process of conducting PCA and eliminating collinear variables, blue, green,
red, RE, NIR, IPVI, NDRE, GCI, GLI, SR, and VARI were identified as not to have absolute
correlations (i.e., r = 1) among each other. IPVI had collinearity with NDVI but was
selected over the latter for its capability to overcome the limitations of NDVI, which can
become saturated for higher biomass, and is also subjected to relatively higher noise
from atmospheric and soil background conditions [19]. Studies have also reported IPVI
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to perform superior to NDVI for estimating crop nitrogen status and grain yield across
different growth stages [21,59]. Although GNDVI had a higher correlation with CGM
compared to GCI, it was not selected most probably due to it having a higher mean absolute
correlation compared to GCI [60]. An only study conducted thus far for CGM estimation
reported canopy chlorophyll content representing LAI as a strong input variable [16].
Most of the crop health status estimations such as chlorophyll content, water content,
or yield have utilized not only the REFs as inputs to ML or statistical models but also
the VIs [16,58]. Studies that have performed predictive modeling using ML have neither
evaluated inter-correlationships between the input variables (i.e., VIs) nor eliminated the
collinear variables before estimating the output [61,62]. This may often lead to model
overfittings, compromised robustness, and require extensive computations from a user’s
practical standpoint [63]. Most of the ML-based prediction studies have by default utilized
70:30 or 80:20 as the train–test data split ratios for model training and validations [5,64].
However, the consideration of the entire data size as well as impact of varying training data
proportions to identify the best train–test data split ratio have been minimally assessed.
This may also impact model over-fitness and robustness [50].

For these reasons as well as by identifying our dataset to be of medium size, our
study not only eliminated the collinear input variables but also identified the best train–test
split ratio(s) for statistical or ML models for CGM estimation. It was observed that model
performances improved (Figure 5) when validated over the train and entire datasets, for
increasing proportions of training data [16,62]. This observation was consistent when
using both input groups, REFs or REFs+VIs. Although REFs+VIs improved the model
performance compared to REFs as inputs, the impact was not significant (p = 0.374, Table 4).
Apparently, in the maximum cases irrespective of both input groups, ML models outper-
formed statistical models for estimating CGM (Figure 5) when validated over the training
and entire datasets.

Table 4. Effect of input parameters on performance of models for corn grain moisture estimation.

Variable p Value (r) p Value (rRMSE)

Model <0.001 <0.001

Train–test split <0.001 0.619

Dataset <0.001 <0.001

Input group 0.374 0.725

Train–test split: Dataset <0.001 <0.001

Train–test split: Input group 0.189 0.290

Dataset: Input group 0.450 0.002

Train–test split: Dataset: Input group 0.204 0.544
Where Dataset (train, test, entire), Input groups (REF, REF+VIs), and Model (SLR, PLSR, ANN, SVM, RF, KNN).

Interestingly, SVM and SLR at a 50:50 split ratio when validated over test datasets
using either of the input groups performed the best as those have been reported for smaller
datasets [50]. SVM is computationally expensive to work with large data as the algorithm
often fails while determining optimum boundary hyperplanes, making it more accurate
and robust for small data sizes, which has also been supported by other studies [65,66]. By
removing the collinearity of inputs, the cofounding effects on the estimation of CGM was
also eliminated, thereby improving performances of statistical models such as SLR and
PLSR [67]. This study’s data size was relatively small compared to what ANNs generally
require, and this was the reason why ANN was the least good performer amongst all
other evaluated models in this study [50,62,68]. Overall, RF performed the best compared
to all other models as it is capable of withstanding the overfitting problem unlike other
statistical linear models, and it was relatively less reliant on dataset size compared to other
ML models [53,69]. This is because RF is a decision-tree-based model that employs several
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sub-models and bagging techniques, for increased stability and resilience of the prediction
outcomes [70].

This study demonstrated the feasibility of SUAS and integrated ML techniques for
CGM estimation, which has not been explored thus far. The performance of the model
may further be improved by collecting data over multiple cropping seasons as well as
agroclimatic conditions. Identifying the earliest stage where accurate CGM could be
predicted as well as their translation to satellite imaging platforms are the next goals in
our efforts. Those estimates can be later converted into maps (raster or shapefiles) for the
corn growers who can develop precision harvest scheduling and management strategies
for enhanced crop value.

5. Conclusions

This study investigated the use of aerial multispectral imagery for assessing CGM as
well as estimating it using state-of-the-art ML and statistical models. To the best of our
knowledge, this was the first investigation of its kind to estimate grain moisture contents.
Using Pearson correlation, the REFs and VIs derived from the SUAS imagery data were
found to have a strong correlation between CGM and GNDVI, GCI, and IPVI, among others
with the highest correlations (r: 0.68–0.80). PCA and pairwise correlation analysis identified
REFs in blue, green, red, RE, NIR and VIs such as GCI, IPVI, NDRE, GLI, SR, and VARI as
potential inputs to estimate CGM using statistical and ML models.

All four evaluated ML models and two statistical models for estimating CGM im-
proved in performance with the increase in size of training datasets. While most ML
models performed well overall, RF was observed to be the most stable (r: 0.86–0.97,
rRMSE: 2.14–1.17%). It was observed that the input groups (only REFs or REFs+VIs) for
CGM estimation did not impact model performances. However, the train–test split ratios
did impact the model performances significantly with 50:50, 50:45, 60:40, 80:20, and 95:5
being among the split ratios that yielded strong performances. The 95:5 train–test split
ratio was the best when models were validated over the train and entire datasets while the
50:50 split ratio was the best when models were validated over the test dataset. The statistical
models i.e., SLR and PLSR, also yielded comparable performances to most of the ML models
(r: 0.61–0.74, rRMSE: 2.76–2.43%) while ANN could not be the best-performing model of the
study except at a 55:45 split ratio and for validation over train and entire datasets.

Overall, our study demonstrated that aerial multispectral imagery when integrated
with ML models could suitably estimate CGM even for small–medium dataset sizes. These
computations are critical for the corn growers to non-invasively as well as spatially map
CGM status for scheduling and managing harvest schedules and resources. We will be
further evaluating the models tested in the study over different growth stages to identify
the earliest time when CGM near optimum harvest could be estimated. Moreover, these
models could be translated in the form of webtools that farmers could utilize for planning
and executing precision operations on the ground and for extracting the best economic
value of their crop.
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