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State-of-the-Art Metabolomics and Lipidomics in Life Sciences:
Methods and Applications

Xinyu Liu 1,2,* and Cora Weigert 3,4,5,*

1 CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China

2 Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
3 Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry,

University Hospital Tübingen, 72076 Tüebingen, Germany
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Tel.: +86-411-84379532 (X.L.); +49-7071-2985670 (C.W.)

This Special Issue was initiated to celebrate and congratulate Prof. Guowang Xu
and Prof. Rainer Lehmann on their long-standing, fruitful Sino-German scientific co-
operation and their close friendship. Their interdisciplinary interaction in the field of
high-resolution analytical chemistry and life sciences has existed for decades. The first
joint publications addressing biomedical topics and the development of new capillary elec-
trophoresis approaches date back to 1998 [1,2]. Two reviews and twelve original research
articles were accepted for publication in this Special Issue. The articles address different
aspects of life science research, from microbes, plants and animals to humans applying
metabolomics or lipidomics, and new biomarkers, protocols, strategies or bioinformatic
tools are reported on.

The Sino-German scientific cooperation between the Dalian Institute of Chemical
Physics of the Chinese Academy of Sciences and the University of Tuebingen was originally
initiated in the 1970s by Prof. Peichang Lu, the pioneer of chromatography in China, and
Prof. Ernst Bayer, a pioneer of gas chromatography in Europe. Since then, a lively, regular
scientific exchange between Dalian and Tuebingen developed. In the mid-nineties, Prof.
Guowang Xu and Prof. Rainer Lehmann started their joint research activities during Prof.
Xu’s two-year research stay in Tuebingen as a Max-Planck-Institute fellow.

First, as mentioned above, their joint bioanalytical interest was the development of
new applications of capillary electrophoresis for the analysis of human body fluids for
diagnostic purposes. Later on, high-resolution mass spectrometric profiling in a biomed-
ical context increasingly became the focus of their joint research interest. In particular,
the comprehensive investigation of metabolite and lipid profiles by metabolomics and
lipidomics analyses has remained a core theme of their cooperation. In addition to various
body fluids, other sample materials like biopsies from various tissues, human primary
cell culture samples, etc., were analyzed to investigate pathomechanisms and to identify
diagnostic biomarkers of metabolic diseases (prediabetes and diabetes) and various cancer
diseases. Additionally, multi-omics approaches were applied in systems medicine studies.
An important aspect of their work has been addressing sample quality, considering the
error-prone preanalytical phase from “bed to bench”, including the identification of a
sample quality biomarker allowing analytical (bio)chemists to assess the quality of blood
samples without knowledge about the preceding blood collection and blood handling
process. Other cornerstones of their joint research activities include the development of
new methods and analytical strategies to either facilitate or increase the identification of

Metabolites 2024, 14, 8. https://doi.org/10.3390/metabo14010008 https://www.mdpi.com/journal/metabolites
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metabolites or the coverage of metabolomics and lipidomics approaches, as well as the
optimization of sample preparation procedures.

In total, more than 50 joint publications in high-ranking international journals like
Diabetes Care, Clinical Chemistry, Analytical Chemistry, etc., have been published by this
Sino-German collaboration. The research performed through this collaboration has been
regularly supported by joint funds from the national science foundation China (NSFC),
the German research foundation (DFG), the Humboldt foundation, as well as from the
Chinese Academy of Sciences (CAS). The funding has enabled the exchange of many young
scientists between Dalian and Tuebingen, which has built a solid base for continuous
and successful cooperation between the CAS Key Laboratory of Separation Science for
Analytical Chemistry from the DICP in Dalian and the Institute for Clinical Chemistry and
Pathobiochemistry at the University Hospital in Tuebingen.

The 14 publications in this Special Issue cover several thematic aspects of the Sino-
German scientific cooperation and are briefly highlighted in the following paragraphs in
the order of appearance in the Special Issue.

Jinzhi Xu et al. (2023) (contribution 1) identified lipid metabolism reprogramming
due to stemness acquisition in pancreatic ductal adenocarcinoma (PDAC) cancer stem
cells (CSCs) using lipidomes combined with the transcriptome analysis of PDAC tumor-
repopulating cells (TRCs, a novel CSCs model). The results were supported by the analysis
of data obtained from PDAC patients from The Cancer Genome Atlas (TCGA) database.
The research also highlighted SPHK1 (sphingosine kinases 1) as the important enzyme
involved in the up-regulation of sphingolipid metabolism. Hence, SPHK1 may have a
relevant role in PDAC CSCs and may be an appropriate therapeutic target candidate.

Yifei Zhan et al. (2023) (contribution 2) discovered a common molecular mechanism
of metabolic acidosis and myocardial damage in neonatal pneumonia. Applying UPLC-
HRMS-based untargeted metabolomics, a total of 23 and 21 differential metabolites were
found in the comparison of serum samples of pneumonia and samples of pneumonia with
the two complications, respectively. The 14 identical molecules found in both disease states
were found to be related to sphingolipid, porphyrin, and glycerophospholipid metabolisms,
which offers valuable information for the rapid and accurate identification, classification,
staging and, most probably, disease diagnosis and therapy of complications of neonatal
pneumonia.

Tianfu Wei et al. (2023) (contribution 3) integrated multidisciplinary data to provide
an in-depth view of the relationships between genes and metabolites. With this strategy,
a prediction model of hepatocellular carcinoma based on nucleotide metabolism was
developed. A pattern showing the nucleotide metabolism of patients with hepatocellular
carcinoma was elucidated, which created new perspectives for the clinical treatment of
hepatocellular carcinoma.

Sijia Zheng et al. (2023) (contribution 4) established valid associations of metabolites
in human urine with the metabolism of gut microbiota, which serves as a new biomarker
profiling strategy in gut microbiome research. Considering that bowel evacuation was a
simple and efficient approach to reveal gut microbiota-related metabolites, a non-targeted
modifying group-assisted metabolomics approach was used to investigate urine samples
collected in two independent experiments at various time points, before and after laxative
use, to drastically reduce the gut microbiome. Additionally, fasting over the same time
period was performed as a control experiment. Finally, the levels of 331 urinary metabo-
lite ions were significantly affected by the depletion of the fecal microbiome, including
100 with specific modifying groups, 32 of which were structurally elucidated. The applied
strategy has the potential to generate a microbiome-associated metabolite map of urine,
and presumably other body fluids as well.

Yixuan Guo et al. (2023) (contribution 5) aims to identify metabolic differences in
ankylosing spondylitis (AS) patients at different stages of the disease using an untargeted
metabolomics approach based on the gas chromatography–mass spectrometry of serum.
The findings of the study indicate that patients in acute stage and remission stage have
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specific metabolic characteristics. In particular, 2–hydroxybutanoate and hexadecanoate
had good efficacy with regard to the stage division of AS. This research may contribute
to the understanding of the pathogenesis of ankylosing spondylitis and to the staging
treatment of this chronic disease.

Xiaojing Jia et al. (2023) (contribution 6) explored the impact of omega-3 polyun-
saturated fatty acids (PUFAs) on inflammatory bowel disease (IBD) using Mendelian
randomization. Increased genetically predicted eicosapentaenoic acid (EPA) concentrations
are associated with decreased IBD risk, mediated through lower linoleic acid and histidine
metabolites. To date, limited evidence has supported the effects of total omega-3, α-linolenic
acid and docosahexaenoic acid on IBD risk. Robust colocalization in the fatty acid desaturase
2 (FADS2) region suggests FADS2 gene mediation. Overall, the study highlights EPA as the
key active component of omega-3 PUFAs in reducing IBD risk and suggests FADS2 gene
involvement, offering insights for targeted intervention strategies.

Liming Gu et al. (2023) (contribution 7) identified a panel of potential plasma metabolic
markers for radiation-induced lung injury (RILI) via correlation analysis between the lung
tissue and plasma metabolic features and evaluated the radiation injury levels within
5 days following whole-thorax irradiation (WTI) in a rat model. Moreover, the data imply
disorders of the urea cycle, intestinal microbiota metabolism and mitochondrial dysfunction.
This research unveils metabolic traits associated with WTI, providing new perspectives on
potential therapeutic measures.

Ming Yang et al. (2023) (contribution 8) developed a rapid and highly sensitive
detection method for volatile organic metabolites (VOMs) in urine based on the integration
of high-pressure photoionization mass spectrometry (HPPI-TOFMS) and dynamic purge-
injection technique. Nine differential metabolites in the urine samples between breast
cancer patients and healthy controls were successfully identified through statistical analysis
of the HPPI MS data. The results demonstrate the good sensitivity and specificity of the
method and provide a promising avenue for the development of a new non-invasive
diagnostic tool for breast cancer.

The work of Shan Zhang et al. (2023) (contribution 9) compared the differences in the
sensory features and chemical profiles of the two grades of premium Dianhong congou
black tea (DCT) produced in southwest China and identified the correlations of critical non-
volatile compounds and flavor characteristics in these DCTs. This study also highlighted
the promising perspective of the integration of metabolomics, electronic tongues, chromatic
differences and human sensory evaluation in the analysis of food flavor.

Runze Ouyang et al. (2023) (contribution 10) illustrated the gut microbiota-dependent
crosstalk between breast milk N-acetylneuraminic acid (Neu5Ac) and infant growth. The
research demonstrates the negative association between breast milk Neu5Ac and infant
obesity risk. The data show Neu5Ac-related alterations to infant gut microbiota and bile
acid metabolism, and similar associations were found in mice colonized with infant-derived
microbiota. Finally, this study identified the mediator between breast milk Neu5Ac and the
risk of infant obesity.

Jun Zeng et al. (2023) (contribution 11) analyzed the antiallergic activities of two
representative dietary polyphenols, curcumin and epigallocatechin gallate (EGCG), and
elucidated their effects on the cellular lipidome in the progression of degranulation. This
work contributes to further understanding of the molecular mechanism of antigen stim-
ulation and curcumin/EGCG involvement in antianaphylaxis and helps to guide future
attempts to use dietary polyphenols in this context.

Xiaoshan Sun et al. (2023) (contribution 12) introduces a novel serum metabolome
characterization method employing direct-infusion high-resolution mass spectrometry,
thereby addressing limitations in metabolite assignment. Different from conventional
database search, this strategy utilizes a reaction network along with mass accuracy and iso-
topic pattern filters to achieve unequivocal formula assignments. The developed approach
proved database-independent and rapid, assigning unique monoisotopic features in the
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serum. Its merits lie in the comprehensive and reliable formula assignment, exhibiting
strong potential for large-scale metabolomics studies.

In a review by Yilan Ding et al. (2023) (contribution 13), the authors conducted an
in-depth literature search on specific amino acids as potential biomarkers for the onset
and progression of diabetes. They described underlying mechanisms, signaling pathways,
and metabolic implications, providing valuable insights into preventive and therapeutic
interventions. Additional clinical research and therapeutic strategies targeting distinct
amino acids were discussed, aiming to prevent or slow down the progression to type 2
diabetes in the prediabetic stage.

Shuling He et al. (2023) (contribution 14) performed a systematic, comprehensive
literature analysis of metabolomics approaches studying diabetic retinopathy. An overview
providing insights into relevant metabolites and metabolic pathways was given. A gap
in knowledge in the existing literature was detected with respect to data from large-
cohort or multicenter studies, as well as data from platforms applying various analytical
metabolomics approaches to study diabetic retinopathy. In addition, future metabolomics
research directions with regard to diabetic retinopathy are discussed.

From these contributions and also based on the most recent developments in
metabolomics research, we can draw the following conclusions:

1. Analytical challenges to investigate metabolomes and lipidomes in life sciences still
exist, such as limitations in metabolite and lipid coverage, a still high number of un-
knowns in non-targeted approaches and further improvements in analytical sensitivity.
However, based on the ongoing continuous improvements and new developments
in chromatographic and mass spectrometric techniques, an increasing amount of
information on metabolomes can be gathered.

2. Metabolomics and lipidomics analyses can be applied to evaluate the important
metabolic effects and functions of molecules and nourishments like dietary polyphe-
nols, polyunsaturated fatty acids, etc., to evaluate the interfering effects of drugs and
lifestyle on health.

3. In biomedical and disease-related research fields, metabolomics analysis enables
us to study metabolic reprogramming, define potential prospective or prognostic
diagnostic biomarkers or subclassify patients in precision medicine by metabolite
pattern to allow individualized treatment. However, to draw reliable conclusions
based on valid results which reflect the situation in the population, samples of large-
scale multi-center studies should be investigated. In this context, a big analytical
challenge which needs to be solved is the application of very robust, sensitive and
highly reproducible metabolomics methodology, suitable for the analysis of thousands
of samples with different pre-analytical quality levels. The comparability of data
between laboratories is a fundamental requirement, and quantitative metabolomics
will become increasingly important.

4. Metabolomics analysis contributes substantially to deepening the understanding of
metabolic mechanisms on the cellular level via investigations like isotope labeling
experiments to study dynamics of metabolism or via single-cell metabolomics, which
has recently become a hot topic in the breakdown of cell heterogenicity in tissues to
elucidate cell type-specific metabolic functions.

5. Traditionally, to study tissue metabolism, homogenates are analyzed, leading to the
spatial loss of information. Now, to eliminate this limitation, mass spectrometric imag-
ing or laser microdissection instruments are in use, which are increasingly bringing
spatial metabolomics into focus. It is foreseeable that in the near future, with improve-
ments in sensitivity, resolution and speed, spatial and single-cell metabolomics will
create new perspectives and play a significant role in the fields of life sciences and
biomedical research.

6. Finally, it should be emphasized that a person´s health state is influenced by various
factors, and the environment will decide a person´s health. Therefore, a recent
research direction, i.e., the combinational use of metabolomics and exposomics, is a

4
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fascinating new research field and will be one of the key strategies used to shed light on
the assessment of risks and causes of disease. Additionally, and highly relevant in this
context, multi-omics applications are already well established in the study of complex
diseases, especially chronic diseases, and contribute to our understanding of them.
However, currently, a significant challenge is the evaluation and interpretation of these
data, as well as the integration of these multi-omics data to support clinical decision-
making processes. For this purpose, important contributions from the application of
artificial intelligence approaches can be expected from interdisciplinary collaborations.

7. In summary, metabolomics and lipidomics are now well established and frequently
applied technologies in life sciences and health promotion, but many bottlenecks still
need to be broken by intense, interdisciplinary interaction between scientists from
different fields, including analytical (bio)chemists, biologists, bioinformaticians and
clinicians.

Funding: This work was supported by the DFG/NSFC Sino-German mobility program (M-0257) to
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Abstract: Cancer stem cells (CSCs) are considered to play a key role in the development and progres-
sion of pancreatic ductal adenocarcinoma (PDAC). However, little is known about lipid metabolism
reprogramming in PDAC CSCs. Here, we assigned stemness indices, which were used to describe
and quantify CSCs, to every patient from the Cancer Genome Atlas (TCGA-PAAD) database and
observed differences in lipid metabolism between patients with high and low stemness indices. Then,
tumor-repopulating cells (TRCs) cultured in soft 3D (three-dimensional) fibrin gels were demon-
strated to be an available PDAC cancer stem-like cell (CSLCs) model. Comprehensive transcriptome
and lipidomic analysis results suggested that fatty acid metabolism, glycerophospholipid metabolism,
and, especially, the sphingolipid metabolism pathway were mostly associated with CSLCs properties.
SPHK1 (sphingosine kinases 1), one of the genes involved in sphingolipid metabolism and encoding
the key enzyme to catalyze sphingosine to generate S1P (sphingosine-1-phosphate), was identified to
be the key gene in promoting the stemness of PDAC. In summary, we explored the characteristics
of lipid metabolism both in patients with high stemness indices and in novel CSLCs models, and
unraveled a molecular mechanism via which sphingolipid metabolism maintained tumor stemness.
These findings may contribute to the development of a strategy for targeting lipid metabolism to
inhibit CSCs in PDAC treatment.

Keywords: pancreatic ductal adenocarcinoma; cancer stem-like cells; lipid metabolism reprogramming;
sphingolipid metabolism; SPHK1

1. Introduction

Pancreatic cancer is one of the most fatal cancers, ranking the seventh leading cause of
cancer-related deaths worldwide [1], and has been predicted to become the second most
common cause of cancer-related deaths by 2030 [2]. As the most common histological type,
pancreatic ductal adenocarcinoma (PDAC) accounts for the majority of the incidence and
mortality of pancreatic cancer cases [3]. Its strong heterogeneity endows PDAC with the
feature of high lethality, which is thought to be closely related to a small group of cells that
are characterized by self-renewal, unique plasticity and metabolism, and high proliferative
capacity [4,5], known as cancer stem cells (CSCs) [6,7]. Therapy resistance of PDAC
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CSCs [8] is also mainly responsible for the limited survival benefit of chemotherapeutic
agents, targeted therapy and immunotherapy for PDAC patients [9,10]. Thus, an in-depth
understanding of CSCs in PDAC is urgently needed and may provide a foundation to
explore new therapeutic strategies for clinical practice.

Metabolic reprogramming is one of the major hallmarks of tumorigenesis [11]. PDAC
cells rely on altered metabolism pathways, including enhanced aerobic glycolysis [12,13],
deregulation of lipid metabolism [14,15], raised branched-chain amino acids and glutamine
routes [16,17], and increased nucleotide metabolism [18,19], to support their unlimited
proliferation and metastasis [20]. Recent studies suggest that due to the heterogeneity
of tumors, unique metabolism characteristics play a distinctive role in maintaining the
pluripotency and tumorigenic capacity in PDAC CSCs [21,22]. PDAC CSCs are supposed
to facilitate the metabolic flip from glycolytic to oxidative [21,23]. In addition, glutamine
dependence is not limited to PDAC cells, as CSCs also rely on glutamine metabolism to
promote tumor growth [24,25]. It is well acknowledged that CSCs can reprogram their
cellular metabolism to support their continuous proliferation and tumorigenesis [20,26,27],
while the understanding of the lipid metabolism disorder in CSCs is limited and unilateral.
Several lipid metabolites [28,29] or lipid-metabolism-related genes (LMRGs) [30–32] have
separately been reported to play important roles in maintaining the stemness and enhancing
tumor metastasis. It is worth noting that tumor metabolic remodeling is a dynamic process;
thus, studying changes in metabolic pathways may be more appropriate than directly
studying the role of specific metabolite differences. Observed changes due to stemness
acquisition in CSCs often encompass large numbers of structurally related lipids, and recent
developments in technologies, such as lipidomic and machine learning, enable researchers
to explore the lipid metabolism pathways and more comprehensively underline altered
lipid metabolism in tumorigenesis [33]. In an attempt to explain the lipid metabolism
characteristics of PDAC CSCs, only one institution has carried out a proteomic analysis and
subsequently a comprehensive proteomic and lipidomic report on pancreatic cancer stem-
like cells (CSLCs). They have reported that fatty acid synthesis, especially biosynthesis
of unsaturated FAs, and mevalonate pathways, with downregulation of LDHA (Lactate
Dehydrogenase A) and upregulation of genes involved in FA elongation, are essential in
PDAC CSLCs [34,35]. Despite multi-omics characterization of PDAC CSCs suggesting the
importance of lipid metabolic alterations, explorations on further characterization are still
deficient. On the one hand, studies of lipid metabolism in PDAC CSCs were performed
only on one traditional CSCs model. On the other hand, it appears that CSCs are extremely
reliant on the enzymes involved in the lipid metabolism, but there is currently no research
on transcriptomics that combines the stemness phenotypes of the patient’s tumor and the
CSCs model.

In this study, we explored the difference in the lipid metabolism in patients with
high and low stemness indices using single sample gene set enrichment analysis (ssGSEA)
algorithms based on the data from the Cancer Genome Atlas (TCGA). Then, to overcome
the limitation of the traditional CSCs model by sorting CSC of PDAC based on the identified
“stem cell surface markers”, we used 3D soft fibrin-gel as the culture medium to select
malignant tumor cells with high tumorigenicity in PDAC by adjusting the mechanical
stress, defined as tumor-repopulating cells (TRCs), which has been successfully applied in
many tumors, such as liver cancer, melanoma, lung adenocarcinoma, etc. [36,37]. Lipidomic
combined with transcriptome analysis has been carried out and the results suggested that
fatty acid metabolism, sphingolipid metabolism and glycerophospholipid metabolism
alterations were mostly observed in PDAC TRCs. Further investigations revealed that
SPHK1, encoding the key enzyme SPHK1 (sphingosine kinases 1) to catalyze sphingosine
to generate S1P (sphingosine-1-phosphate) in sphingolipid metabolism, contributed to
promote the stemness of PDAC, which may be a promising therapeutic target in PDAC.
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2. Materials and Methods

2.1. Patients’ Data Collection and Analysis

The mRNA expression profiles and clinical features of PDAC patients were down-
loaded from the TCGA data portal (https://portal.gdc.cancer.gov/, accessed on 20 Novem-
ber 2022). The stemness indices were assigned to every PDAC patients from TCGA (tumor,
n = 179), which were calculated by using ssGSEA algorithms [38] and one-class logistic
regression machine learning (OCLR) algorithms [39]. The stemness gene set was obtained
from Miranda’s studies and applied to the ssGSEA algorithm to calculate ssGSEA-based
stemness indices (Table S1) [38]. The mean (the standard error of the mean (SEM)) of the
stemness indices using the ssGSEA algorithm was 2.069 (0.011), and patients with stemness
indices of less than 2.058 (mean-SEM) and over 2.080 (mean + SEM) were classified into
the low stemness group and the high stemness group, respectively. PDAC is formally
staged using a tumor node metastasis (TNM) system based on the eighth edition of the
American Joint Committee on Cancer Staging Manual [40]. Student’s t-test was used to
assess the relationship of clinical information and stemness indices and the results were
plotted using the “ggplot2” (http://cran.r-project.org/package=ggplot2, accessed on 25
November 2022) package. The Kaplan–Meier (K–M) curve was plotted using the “survival”
package (https://cran.r-project.org/package=survival, accessed on 25 November 2022) to
achieve the survival analysis of patients with high or low stemness indices. The “DESeq2”
R package was employed to identify the differential expressed genes (DEGs) between pa-
tients with high or low stemness indices. Enrichment analysis of the DEGs was conducted
as follows.

2.2. Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses
were performed by using the “clusterProfiler” [41] package of R and visualized by apply-
ing the “ggplot2” package. Enrichment gene sets, including c2.cp.kegg.v7.4.symbols and
h.all.v7.5.1.symbols, were obtained from the Molecular Signatures Database (MSigDB) [42].
Gene set variation analysis (GSVA) was utilized to calculate the enrichment score of these
oncogenic signatures [43]. The correlation between SPHK1 and pathway scores was an-
alyzed via Spearman correlation. The “pheatmap” R package was used for clustering
heatmaps with standardization processing “scale = row”.

2.3. Cell Line and Cell Culture

PDAC cell lines (MiaPaCa-2, PANC−1) were obtained from the American Type Cul-
ture Collection (ATCC) and were preserved at the Liver Cancer Institute, Zhongshan
Hospital, Fudan University (Shanghai, China). All cells passed conventional quality control
tests, which was consistent with the findings reported by the ATCC. The culture condi-
tions for the cell lines were complete medium, consisting of Dulbecco’s modified Eagle’s
medium (DMEM; GNM12800-2, GENOM, Jiaxing, Zhejiang, China) supplemented with
10% fetal bovine serum (FBS; 10270-106, Gibco, Grand Island, NY, USA) and 1% penicillin-
streptomycin (1719675, Gibco, Grand Island, NY, USA), in a humidified ThermoForma
incubator (Thermo Fisher Scientific, Waltham, MA, USA) with 37 °C and 5% CO2, as
described in a previous study [44].

2.4. Culture of PDAC TRCs

A previous study showed that TRCs cultured in the 3D fibrin gels represented an
available CSLCs [37]. Thus, we cultured PDAC-TRCs as previously described [36]. Specifi-
cally, MiaPaCa-2 or PANC−1 cells were trypsinized and resuspended in complete medium,
and then mixed with an equal volume 2 mg/mL salmon fibrinogen (SEA-133, Sea Run
Holdings Inc., Freeport, ME, USA) diluted with T7 buffer (50 mM Tris-HCl, 150 mM NaCl,
pH 7.4). Next, 100 U/mL thrombin (SEA-135, Sea Run Holdings Inc., Freeport, ME, USA)
diluted with T7 buffer was added at a 1:50 ratio to the cell suspension to form cell mixture.
The complete medium was added to cell plates after incubation for 30 min in a humidified
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ThermoForma incubator (Thermo Fisher Scientific, Waltham, MA, USA) with 37 ◦C and
5% CO2, and the cells were sequentially cultured for 72 h. The resulting PDAC-TRCs were
used for subsequent experiments.

2.5. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

The mRNA of 2D−cultured cells or PDAC TRCs was extracted by using an RNAeasyTM

kit (R0026; Beyotime Biotechnology, Shanghai, China) according to the manufacturer’s
recommended procedure, and then reversely transcribed into cDNA by using Hifair® V
one-step RT-gDNA digestion SuperMix Kit (11141ES60, Yeasen, Shanghai, China) accord-
ing to manufacturer’s instructions. Then, the conditions of qRT−PCR were set as follows:
initial denaturation at 95 ◦C for 5 min; and 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s,
which was performed using SYBR Green kit (11202ES08) on QuantStudio5 fluorescence
quantitative PCR system (Applied Biosystems, Foster City, CA, USA). The sequences of
all primers were displayed in Table 1. The 2ΔΔCT method was used to calculate the rela-
tive gene expression change with β-actin as the internal normalization. Each experiment
was performed with three independent replicates, and the results were displayed as the
mean ± SD.

Table 1. The sequences of all primers.

Name Forward Primer Reverse Primer

β-actin CCACGAAACTACCTTCAACTCC GTGATCTCCTTCTGCATCCTGT
Sox2 CCTACAGCATGTCCTACTCGCA CTGGAGTGGGAGGAAGAGGTAAC
CD24 CTCCTACCCACGCAGATTTATTC AGAGTGAGACCACGAAGAGAC
CD133 GTACAACGCCAAACCACGACT CGCACACGCCACACAGTAA
ESA CACCAGTCTTCTTACCAAACACG AGTCCATTAGGCAGTATCTCCAAG
SPHK1 CAGCTCTTCCGGAGTCACGT CGTCTCCAGACATGACCACCA

2.6. RNA Interference

To silence the expression of SPHK1, the cells were transfected with siRNA by applying
riboFECTTM CP (C10511-05, RIBOBIO, Guangzhou, Guangdong, China). The targeted
sequence of siSPHK1 was GAGGCUGAAAUCUCCUUCATT.

2.7. Western Blotting

Western blotting was performed as described in our previous study [45]. Rabbit
monoclonal to SPHK1((ab302714)) was purchased from Abcam.

2.8. Transwell Assays

Transwell assays were used to assess the invasion and migration ability of PDAC
TRCs. For migration assays, 10,000 cells were placed into the upper chamber with DMEM
medium, while for invasion assays, 10,000 cells were plated into the upper chamber, which
was precoated with Matrigel (356234, BD Biosciences, San Jose, CA, USA) diluted at 1:8
with DMEM medium. Then, 800 μL of DMEM medium containing 20% FBS was added
to the lower chamber and the cells were cultured for 48 h. Then, the cells in the upper
chamber were carefully removed. The cells passing through the membrane filter were
stained with 0.1% crystal violet solution (V5265, Sigma, St. Louis, MO, USA) and recorded
by using a microscope and counted using Image J software (National Institutes of Health,
Bethesda, MD, USA). Each experiment was performed with three independent replicates,
and the results were displayed as the mean ± SD.

2.9. Reagent and Intervention Process

S1P (HY-108496) was purchased from MCE. The preparation of stock solution and
storage were conducted according to the manufacturer’s recommended procedure. When
PDAC TRCs transfected with si-SPHK1 were cultured in 3D gel for 5 days, exogenous S1P
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(10 μM) was supplemented and the growth of TRCs was continuously observed. In the
Transwell assays, 10 μM S1P was added to the lower chamber in the testing group.

2.10. Subcutaneous Tumors in Mice

Four-week-old male nude (nu/nu) mice were obtained from the Shanghai Institute of
Material Medicine (Shanghai, China), Chinese Academy of Science. All mice were randomly
allocated to 2D group or TRC group (n = 18 for each group). For subcutaneous tumors,
single-cell suspensions of PANC−1 and PANC−1 TRCs were injected with gradient cell
density (2 × 104, 2 × 105, 2 × 106, n = 6 for every group) on the right side of the armpit of
the nude mice. The animal study protocols were performed in accordance with the Guide
for the Care and Use of Laboratory Animals stipulated by the National Academy of Sciences
and the National Institutes of Health (NIH publication 86-23, revised 1985) and approved by
the Animal Care and Use Committee of Zhongshan Hospital, Fudan University, Shanghai,
China (Approval No. 2020-135 and date of approval 2 November 2020).

2.11. RNA-Seq

The total RNA of 2D−cultured cells or PDAC TRCs (three replicates for each cell type)
was extracted by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and the quantity
and purity were monitored using NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA)
as well as Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). OligodT-magnetic-beads
(25-61005, Thermo Fisher, Waltham, CA, USA)-enriched mRNAs were fragmented. cDNAs
were synthesized from the fragmented RNA using a Reverse Transcriptase (Invitrogen
SuperScript™ II Reverse Transcriptase, Carlsbad, CA, USA), and then sequenced using
Illumina Novaseq™ 6000 (LC Bio Technology Co., Ltd., Hangzhou, Zhejiang, China). The
obtained RNA-Seq raw data were uploaded to the Sequence Read Archive (SRA) database
of the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/, accessed on 20 October 2023) with the accession number PRJNA-1020096.

2.12. The Procedure for LC-MS-Based Lipidomic Analysis

The samples of 2D−cultured PANC−1 cells or PANC−1 TRCs (four biological repli-
cates for each cell type) were collected and were added into 1 mL of pre-cooled methanol
with an internal standard (1 μg/mL of tridecanoic acid and n-valine). After vortexing
for 1 min, the mixtures were stored at −80 ◦C ThermoForma incubator (Thermo Fisher
Scientific, Waltham, MA, USA). Then, the sample preparation, lipidomic data acquisition,
data preprocessing, and peak annotation were performed as described in our previous
study [46].

2.13. Bioinformatics Analysis of Lipidomic Data

The lipid profile levels obtained above were loaded into an open access tool BioPAN,
on LIPID MAPS Lipidomic Gateway (https://lipidmaps.org/biopan/, accessed on 25 July
2022) [47]. BioPAN calculates statistical scores for all possible lipid pathways to predict
which are active or suppressed in PANC−1-TRCs samples compared to the PANC−1 cells
samples. In brief, BioPAN workflow utilizes Z-score, which takes into account both the
mean and the standard deviation to assume normally distributed data of lipid subclasses
and determines a reaction or pathway to be significantly modified at a p-value < 0.05
(equivalent to Z-score > 1.645). The calculation of the Z-score was detailed by Gaud et al. [48].

2.14. Statistical Analysis

All plots and statistical analyses were conducted using R 4.3.1 and GraphPad Prism
9.5.0. Student’s t-tests (two-tailed) and one-way analysis of variance (ANOVA) were
used to compare the means of two or more samples. The predictable value of SPHK1
expression was assessed using univariate and multivariate Cox analysis. As for the cellular
experiments, each experiment was performed with at least three independent replicates,
and the results are displayed as the mean ± SD. A p-value of less than 0.05 was considered
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statistically significant, unless otherwise indicated. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****,
p < 0.0001; ns, not significant.

3. Results

3.1. Correlation between Stemness Indices via ssGSEA Algorithms and Clinicopathological
Characteristics of PDAC Patients

At first, we calculated the stemness indices using ssGSEA algorithms for each patient
in TCGA-PDAC patients (n = 179) using RNA-seq data (Table S1). Then, according to the
stemness indices, we ranked the patients from low to high (Figure 1A) and investigated
the relationship between the indices and clinicopathological features including age, sex,
pathological grade of tumor, N stage, T stage and TNM stage (Figure 1B–G). The results
showed that patients with a higher pathological grade (Figure 1D, G2 vs. G1, p = 0.0018, and
G3 vs. G1, p = 0.0016) or patients diagnosed with a higher T stage (Figure 1F, T3/4 vs. T1/2,
p = 0.039) had significantly higher stemness indices. Moreover, the patients were divided
into high (n = 82) and low stemness groups (n = 82) according to the aforementioned
method, and survival analysis was conducted to compare these two groups. The K-M
curve results showed that patients in the high stemness group suffered shorter median OS
(high stemness group vs. low stemness group, 17.0 vs. 34.8 months, p = 0.0011, Figure 1H)
and median DFS (high stemness group vs. low stemness group, 13.1 vs. 20.4 months,
p = 0.0007, Figure 1I). Cox multivariate analysis with significant factors obtained from the
univariate analysis (p < 0.05) was carried out to further assess the relationship between
tumor stemness and patients’ OS (Table 2) and it was found that patients belonging to the
low stemness group was an independent favorable prognosis factor for PDAC (HR = 0.594,
95% CI, 0.379–0.932, p = 0.023). However, the stemness indices using OCLR algorithms
(Table S2) were not associated with patients’ OS (p = 0.15) and tumor dedifferentiation, as
reflected in the histopathological grade (Figure S1). Taken together, these data suggested
that the stemness indices using the ssGSEA algorithms could effectively distinguish PDAC
patients and were consistent with the degree of tumor dedifferentiation and prognosis.
Thus, we assumed that these stemness indices could be used to better describe and quantify
CSCs in patients’ tumors.

Table 2. Univariate and multivariate Cox regression analysis determined the independent prognostic
role of stemness.

Variable n Univariate Cox Analysis Multivariate Cox Analysis
HR 95% CI p HR 95% CI p

Age
Old
(> 65) 86 1 NA

Young (≤65) 78 0.775 0.506–1.190 0.241

Sex
Female 89 1 NA
Male 75 0.799 0.523–1.220 0.300

TNM Stage
I 20 1 NA
II 134 2.11 0.965–4.620 0.062
NA 8

Grade

G1 29 1 1
G2 86 1.980 0.987–3.960 0.055 1.501 0.746–3.018 0.255
G3/4 47 2.590 1.250–5.340 0.010 * 1.807 0.876–3.726 0.109
Gx 2

Lymph
node stage

N0 45 1 1
N1/2 114 2.100 1.230–3.580 0.007 * 1.875 1.052–3.343 0.033 *
Nx 5

Tumor
stage

T1/2 28 1 1
T3/4 134 2.020 1.040–3.930 0.038 * 1.237 0.597–2.563 0.567
Tx 2

Stemness
index

High 82 1 1
Low 82 0.486 0.313–0.756 0.001 * 0.594 0.379–0.932 0.023 *

HR, hazard ratio; CI, confidence interval; NA, not available; * means p < 0.05.
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Figure 1. Correlation between stemness indices using ssGSEA and clinical features in PDAC patients.
(A) An overview of the distribution of relative stemness indices in PDAC patients (n = 179) and the
classification of stemness groups (high stemness > mean + SEM, n = 82; low stemness < mean—SEM,
n = 82; NA~ mean ± SEM, n = 15). (B–G) Boxplots of stemness indices for PDAC patients stratified
by clinical features including age, sex, pathological grade of tumor (2 Gx removed), N stage (5 Nx
removed), T stage (2 Tx removed) and TNM stage (8 NA removed). OS K-M curve (H) and DFS
K-M curve (I) showed the outcomes of PDAC patients in the high stemness group and low stemness
group. (J) Venn diagram shows the overlapped genes between LMRGs and DEGs of the two stemness
groups. (K) GO and (L) KEGG enrichment analysis of the overlapped genes. *, p < 0.05; and
**, p < 0.01; Student’s t-test. ssGSEA, single sample gene set enrichment analysis; PDAC, pancreatic
ductal adenocarcinoma; DFS, disease-free survival; K-M curve, Kaplan–Meier curve; OS, overall
survival; LMRGs, lipid-metabolism-related genes; DEGs, differential expressed genes; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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3.2. Difference in Lipid Metabolism in Patients with High and Low Stemness Indices

More and more studies have shown that the dysregulation of lipid metabolism may
be one of the most unique metabolic hallmarks of cancer, providing important targets for
therapeutic interventions. To comprehensively elucidate the functional roles of deregulated
lipid metabolic genes in PDAC patients, we selected 1543 LMRGs whose GO annotations
included lipid-metabolism-related pathways. About 4.7% (205/4369) DEGs between tu-
mors with high (n = 82) and low (n = 82) stemness indices are LMRGs (Figure 1J). To
understand the characteristics of the lipid metabolism of PDAC, GO and KEGG enrich-
ment analysis (Figure 1K,L and Tables S3 and S4) were performed and several specific
genes and lipid metabolic pathways were identified, including fatty acid metabolism, glyc-
erolipid metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, etc.
(Tables S3 and S4).

3.3. Characteristics of PDAC TRCs as an Available CSLCs Model

In order to better study the characteristics of the lipid metabolism of PDAC CSCs,
we cultured human PDAC cell lines in 3D soft fiber gel to obtain PDAC TRCs, PANC−1
TRCs and MIA PaCa−2 TRCs, based on the method that our research team has previously
confirmed to culture CLSCs in other tumor species [36,37]. PANC−1 TRCs and MIA
PaCa−2 TRCs gradually formed clone spheres in 3D soft fiber gel, and the morphological
changes from day 1 to day 5 are shown in Figure 2A. The qRT-PCR experiment results
showed a significant increase in the expression of classic CSC surface markers CD133,
CD24, ESA, and Sox2 in PANC−1 TRCs and MIA PaCa−2 TRCs compared to PANC−1
and MIA PaCa−2, respectively (Figure 2B). The transwell assays showed that PANC−1
TRCs and MIA PaCa−2 TRCs migrated to and invaded the lower chamber earlier than
PANC−1 and MIA PaCa−2, and PANC−1 TRCs and MIA PaCa−2 TRCs exhibited more
cell migration and invasion than their control groups within the same period of time
(Figure 2C). These results proved that PANC−1 TRCs and MIA PaCa−2 TRCs captured a
stronger tumorigenesis and metastasis ability than PANC−1 and MIA PaCa−2 in vitro.

In order to verify the malignant biology of TRCs in vivo, we constructed a subcuta-
neous tumor model in nude mice. PANC−1 cells and PANC−1 TRCs were inoculated with
gradient cell density on the right side of the armpit near the back of the nude mice, and
the tumorigenesis was observed daily. As shown in Table 3, the tumorigenesis rates of
PANC−1 TRCs reached 83.3% at one month, while no tumor was observed in the 2 × 104

PANC−1 group (Figure 2D and Figure S2A). Moreover, it was observed that the tumor
formation time was earlier, and the tumor volume in the PANC−1 TRC group was larger
after the same observation time (30 days) (Figure 2D and Figure S2B), further confirming
the notable self-renewal and tumorigenic properties of PDAC TRCs.

Table 3. Comparison of subcutaneous tumor development between PANC−1 and PANC−1 TRCs in
nude mice.

Number of Cells PANC−1 TRCs PANC−1 Cells

2 × 106 100.0% (6/6) 66.7% (4/6)
2 × 105 100.0% (6/6) 66.7% (4/6)
2 × 104 83.3% (5/6) 0

3.4. Identification of Lipid Metabolism Pathways in PDAC TRCs via RNA-seq

Since PDAC TRCs were proved to present CSCs features, PANC−1 TRCs and MIA
PaCa−2 TRCs were used to explore the lipid metabolism characteristics of PDAC CSCs
in gene expression level. About 7125 DEGs between PANC−1 and PANC−1 TRCs, as
well as 9999 DEGs between MIA PaCa−2 and MIA PaCa−2 TRCs, were detected via
RNA-seq (Figure 3A,B). As shown in Figure 3C, genes in set 2 (n = 531) were the LMRGs
among DEGs of PANC−1 and PANC−1 TRCs, and genes in set 3 (n = 666) were the
LMRGs among DEGs of MIA PaCa−2 and MIA PaCa−2 TRCs. Genes in set 4 (n = 306)
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represented the overlapped genes between LMRGs set and the set 1 (common DEGs of
TRCs and normal 2D−cultured cells, n = 3864). The top three altered KEGG pathways of
PANC−1 TRCs LMRGs (Figure 3D and Table S5) were fatty acid metabolism, sphingolipid
metabolism and fatty acid degradation pathways, and the related LMRGs’ expression
is shown in Figure 3F. When comparing MIA PaCa−2 TRCs with MIA PaCa−2, the top
three altered KEGG pathways (Figure 3E and Table S6) were the glycerophospholipid
metabolism, fatty acid metabolism and sphingolipid metabolism pathways, and the related
LMRGs’ expression is shown in Figure 3G. It was obvious that fatty acid metabolism, and
sphingolipid metabolism were commonly detected as the most altered pathways. Overall,
the lipid metabolism pathways’ alteration in PDAC TRCs in different cell lines was similar,
and the involved LMRGs may be different types of one genotype. In addition, the overlap
of DEGs (set 4, n = 306, Figure 3C) with consistent trends in the two cell lines was analyzed
for KEGG enrichment, and the results showed that glycerolipid metabolism, fat acid
degradation, and sphingolipid metabolism pathways were the most significant changes in
the lipid metabolism pathways (Figure S3 and Table S7). Despite numerous DEGs and lipid
metabolic modifications in the common consistent trends set or between individual cell
lines, each of our analysis identified sphingolipid metabolism as a key element regulating
the phenotypes shift between TRCs and normal 2D−cultured cancer cells.

3.5. Alteration in Lipid Metabolism in PDAC TRCs via Lipidomic Analysis

Due to the similarity between the enrichment results of differential LMRGs in PANC−1
and PANC−1 TRC and the results of common differential LMRGs in the two cell lines,
lipidomic analysis based on LC-MS was performed in PANC−1 TRC and PANC−1 to
explore the differences in lipid metabolism products and further understand the lipid
metabolism characteristics of PDAC CSCs. Principal component analysis (PCA) revealed
a difference in lipidome in two groups (Figure S4). Thirteen types of lipids, including
435 lipid metabolites, were detected. In addition to varying trends in fatty acids with
different chain lengths, it was also found that sphingosine (SPB), ceramide (Cer), phos-
phatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), and
triglycerides (TG) significantly increased in TRCs, while dihydroceramide (dhCer), diglyc-
erides (DG), and lysophosphatidylcholine (LPC) significantly decreased in TRCs. The
lipidomic analysis was performed via BioPAN [48], which combined current knowledge
of lipid metabolism and predicted genes to compare two biological conditions to identify
activated or suppressed pathways using Z-score values (Table S8). The results of fatty
acid metabolism were showed in Figure 4A. In general, palmitic acid (FA 16:0) and stearic
acid (FA 18:0) were the most common FA in PANC−1 and PANC−1 TRC. Meanwhile, the
longer chain FA and the extremely long chain fatty acids (FA 24:1) were found significantly
increased in PANC−1 TRC. Consistent with this finding, the BioPAN network map of FA
metabolism showed that the elongation of FA was the most significantly activated pathway
in the FA metabolism pathway, including the monounsaturated fatty acids (FA (18:1) →
FA (20:1) → FA (22:1) → FA (24:1), Z-score = 5.965), saturated fatty acids (FA (16:0) → FA
(18:0) → FA (20:0) → FA (22:0) → FA (24:0) → FA (26:0) → FA (28:0), Z-score = 3.516), and
polyunsaturated fatty acids [FA (20:4) → FA (22:4) → FA (24:4) → FA (24:5) → FA (24:6),
Z-score = 2.737]. In sphingolipids metabolism (Figure 4B), active reaction chains (dhCer →
Cer → SPB, Z-score = 5.171; SM → Cer → SPB, Z-score = 4.704) and suppressed reaction
chains (SPB → Cer → SM, Z-score = 4.577) jointly lead to a significant accumulation of
sphingosine in PANC−1 TRC. The reaction chain of PE generated by DG and PS in the
glycophoric metabolism reaction is activated, while the reaction chain of PE as a substrate
(PE → PC → LPC, Z-score = 4.224, PE → PC → PS, Z-score = 3.869) is suppressed, leading
to an increase in PE in PANC−1 TRC (Figure 4C). Furthermore, we validated and analyzed
the predicted genes in the BioPAN analysis with RNA-seq data. It was found that these
elongations of very-long-chain FA genes ELOVL2, ELOVL6, and ELOVL7 were significantly
overexpressed in TRC groups. DEGS2 actively catalyzing dhCer → Cer → SPB reaction
chains, and CERS5 suppressing the generation of Cer by SPB, and ASAH1 involved in both
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reactions were significantly overexpressed. These results were consistent with the genes
predicted as active or suppressed in BioPAN. The results of metabolite differences (Z-score)
in lipidomic, and consistency between changes in metabolic genes and metabolites, high-
lighted that the up-regulation of the sphingolipid metabolism pathway played the most
special role in the lipid metabolic remodeling process of PDAC TRCs.

Figure 2. CLSCs’ characteristics of PDAC TRCs. (A) Morphology of PDAC TRCs growing in 3D soft
gel fibers at days 1–5. (B) q-RT PCR showed expression of CSCs surface markers in PDAC TRCs
and normal PDAC cells (mean ± SD, n = 3, t-test). (C) Transwell experiment showed migration and
invasion abilities of PDAC TRCs and normal PDAC cells (mean ± SD, n = 3, t-test). (D) Morphology
of subcutaneous tumors and tumorigenesis ability in nude mice of PDAC TRCs and normal PDAC
cells (n = 6 for every gradient cell density in each cell type). *, p < 0.05; **, p < 0.01; ***, p < 0.001; and
****, p < 0.0001; ns, not significant. CLSCs, cancer stem-like cells; TRCs, tumor-repopulating cells;
ESA, erythropoiesis-stimulating agent; Sox2, sex-determining region Y-box 2; q-RT PCR, quantitative
reverse transcription polymerase chain reaction.
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Figure 3. Identification of lipid metabolism reprogram pathways in PDAC TRCs via transcriptome
analysis. (A) Volcano plots of DEGs of PANC−1 and PANC−1 TRCs (up-regulated genes in red and
down-regulated in blue, n = 7125). (B) Volcano plots of DEGs of MIA PaCa−2 and MIA PaCa−2
TRCs (up-regulated genes in red and down-regulated in blue, n = 9999). (C) Venn diagram shows the
overlapped genes between LMRGs and the DEGs of TRCs and the source normal 2D cells. Genes
in set 2 (n = 531) were the LMRGs among DEGs of PANC−1 and PANC−1 TRCs and genes in set 3
(n = 666) were the LMRGs among DEGs of MIA PaCa−2 and MIA PaCa−2 TRCs. Genes in set 4
(n = 306) represented the overlapped genes between LMRGs set and the set 1 (common DEGs of
PDAC TRCs and normal 2D−cultured cells, n = 3864) (D) Top 10 entries in KEGG enrichment
pathway of genes in set2. (E) Top 10 entries in KEGG enrichment pathway of genes in set 3.
(F) Heatmap of genes enriched in top 3 entries in KEGG enrichment pathway of genes in set 2
(relative high expression in red and relative low expression in blue). (G) Heatmap of genes enriched
in top 3 entries in KEGG enrichment pathway of genes in set 3 (relative high expression in red and rel-
ative low expression in blue). PDAC, pancreatic ductal adenocarcinoma; TRCs, tumor-repopulating
cells; DEGs, differential expressed genes; LMRGs, lipid-metabolism-related genes.
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Figure 4. Lipid network generated using BioPAN software combined with alternation metabo-
lites and related genes in PANC−1 TRCs compared to the normal 2D−cultured PANC−1 cells.
(A) BioPAN fatty acids networks. FA graphs exported from BioPAN tool for PANC−1 TRCs com-
pared to PANC−1. Green nodes correspond to active FAs and green shaded arrows to active pathways.
Reactions with a positive Z score have green arrows, while negative Z scores are colored purple.
Pathways options: PANC−1 TRCs condition of interest, PANC−1 control condition, lipid type,
active status, subclass level, reaction subset of lipid data, p value 0.05, and no paired data. LMRGs
of DEGs in red (up−regulated) of PANC−1 TRCs compared to PANC−1 cells using RNA−seq
were consistent with the genes predicted as active (arrow) in BioPAN. (B,C) BioPAN lipid networks.
Lipid network graphs exported from BioPAN for PANC−1 TRCs compared to PANC−1. Green
nodes [glycerophospholipid metabolism in circle (B) and sphingolipid metabolism in square (C)]
correspond to active lipids and green shaded arrows to active pathways. Reactions with a positive Z
score have green arrows while negative Z scores are colored purple. Pathways options: PANC−1
TRCs condition of interest, PANC−1 control condition, lipid type, active status, subclass level, reac-
tion subset of lipid data, p value 0.05, and no paired data. LMRGs of DEGs in red (up−regulated)
or in blue (down−regulated) ofPANC−1 TRCs compared to PANC−1 cells using RNA−seq were
consistent with the genes predicted as active (arrow) or suppressed (Long line truncated by short
dash) in BioPAN. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant; t-test. TRCs,
tumor-repopulating cells; FA, fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated
fatty acid; SFA, saturated fatty acid; Cer, ceramide; dhCer, dihydroceramide; SPB, sphingosine; SM,
sphingomyelin; LPC, lysophosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphoserine;
LPE, lysophos-phatidylethanolamine; PC, phosphatidylcholine; CL, cardiolipin; TG, triglycerides;
DG, diglycerides.
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3.6. Identification of SPHK1 as a Key Lipid-Metabolism-Related Stemness Gene in PDAC

Taking into account the comprehensive integrated transcriptomic and lipidomic analy-
sis, the up-regulation of the sphingolipid metabolism pathway was found to be the most
significant lipid metabolic remodeling process of PDAC TRCs. This finding was also sup-
ported by patient data analysis. The LMRGs in DEGs of PDAC patients in the high stemness
group and in the low stemness group were enriched in the sphingolipid metabolism bi-
ological process via GO analysis and the sphingolipid metabolism pathway via KEGG
analysis (Figure 1J,K). To identify the key genes of PDAC CSCs’ sphingolipid metabolism,
the 25 common genes of sphingolipid metabolic process among GO enrichment results
(Figures 5A and S3A) were further screened using the thresholds (|logFoldChange| > 1
and FDR < 0.05). A total of 14 LMRGs were significantly differently expressed between
PANC−1 TRC and PANC−1 (Figure 5B), and 8 of them were significantly different in the
high stemness group and in the low stemness group, among which only the expression
differences in SPHK1, SPTLC3, HEXB, GAL3ST1, and ASAH1 were consistent in the CSLCs
model and patients’ grouping by stemness indices (Figures 5C and S5). Moreover, survival
analysis (Figure 5D) showed that patients with high expression of SPHK1 suffered a shorter
median OS (p = 0.029) and shorter median disease-free survival (DSS, p = 0.0069) than those
with low expression, and that patients with SPTLC3 high expressed had poor median OS
(p = 0.0086) and median DFS (p = 0.0015). No significant survival difference was found to
be in association with the expression of HEXB, GAL3ST1, and ASAH1 (Figure S5B). The
expression level of SPHK1 (p = 0.007) was significantly positively correlated with the tumor
proliferation signature instead of SPTLC3 (p = 0.616) using ssGSEA analysis (Figure 5E). In
addition, a positive correlation between the expression of SPHK1 and malignant biological
signaling pathways of CSCs including TGF-beta, P53 pathways, and EMT markers [49] was
observed as well (Figure 5F). Accordingly, SPHK1 was considered as a key LMRG involved
in stemness and prognosis in PDAC.

3.7. SPHK1 Promotes the Malignant Behaviors of PDAC-TRC by Promoting Stemness

Finally, the biologic function of SPHK1 was evaluated in PDAC-TRC. The expres-
sion of SPHK1 was silenced using siRNA in PANC−1 TRC as well as MIA PaCa−2 TRC,
being validated via qRT-PCR and Western blotting (Figure 6A,B). Silencing SPHK1 sig-
nificantly inhibited the clonogenicity of both PANC−1 TRC as well as MIA PaCa−2 TRC
(Figure 6C), and significantly decreased the migration and invasion ability of PANC−1
TRC as well as MIA PaCa−2 TRC (Figure 6D). By the fifth day of cultivation of PDAC
TRCs transfected with siSPHK1, exogenous supplementation of S1P was performed, which
recovered the clonogenic ability of TRCs. Exogenous supplementation of S1P to normal
2D−cultured PANC−1 and MIA PaCa−2 cells also resulted in enhanced migration and
invasion (Figure S6). These results suggest that SPHK1 played a crucial role in promoting
malignant behaviors in PDAC TRC. In addition, we evaluated the effect of SPHK1 on
promoting stemness in PDAC TRC. Silencing SPHK1 significantly decreased the expression
of multiple CSCs biomarkers, such as CD133, CD24, Nanog and Sox2 (Figure 6E), which
were up-regulated in PDAC TRC compared to 2D−cultured PDAC cells. Taken together,
SPHK1 may drive the malignant behaviors of PDAC-TRC by promoting stemness.
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Figure 5. Identification of the key stemness LMRGs in PDAC. (A) Heatmap of gene expression (rela-
tive high expression in red and relative low expression in blue) which were enriched in sphingolipid
metabolic process by GO enrichment analysis. (B) Volcano plot of the lipid-relative DEGs between
PANC−1 TRC and PANC−1. Plots in red (up-regulated) or in blue (down-regulated) with gene
names representing significant DEGs (|logFoldChange| > 1 and FDR < 0.05) enriched in sphingolipid
metabolic process. (C) The correlation between the five genes (SPHK1, SPTLC3, HEXB, GAL3ST1,
and ASAH1) and stemness indices by ssGSEA (****, p < 0.0001; t-test). (D) OS and DFS curves of
PDAC patients from TCGA clustered by the expression of SPHK1 and SPTLC3 with quartile as group
cutoff. (E) The correlation between the two genes (SPHK1 and SPTLC3) and tumor proliferation
signature using ssGSEA analysis. (F) The correlation between SPHK1 and TGF-beta, P53 pathways,
and EMT markers using ssGSEA analysis (n = 179, Spearman correlation analysis). SPHK1, sphingo-
sine kinases 1; PDAC, pancreatic ductal adenocarcinoma; GO, Gene Ontology; DEGs, differential
expressed genes; SPTLC3, serine palmitoyltransferase 3; HEXB, beta-hexosaminidase; GAL3ST1,
galac-tose-3-O-sulfotransferase 1; ASAH1, N-acylsphingosine amidohydrolase 1; ssGSEA, single
sample gene set enrichment analysis; DFS, disease-free survival; OS, overall survival; TGF-beta,
transforming growth factor-beta; EMT, epithelial mesenchymal transition.
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Figure 6. Effect of silencing SPHK1 by transfected siRNA to PDAC TRCs compared to the negative
control (NC). (A) The mRNA level of SPHK1 in PDAC TRCs transfected with siSPHK1 and NC via
qRT-PCR (mean ± SD, n = 3, t-test). (B) The expression of SPHK1 in PDAC TRCs transfected with
siSPHK1 and NC via Western blotting. (C) Effect of silencing SPHK1 compared to NC on the colony
growth of PDAC TRCs (mean ± SD, n = 3, t-test). (D) Effect of silencing SPHK1 compared to NC
on the migration and invasion ability of PDAC TRCs via transwell assay (mean ± SD, n = 3, t-test).
(E) Effect of silencing SPHK1 compared to NC on the expression of CSCs markers (ESA, CD133, Sox2
and CD24) detected via qRT-PCR (mean ± SD, n = 3, t-test). *, p < 0.05; **, p < 0.01; ***, p < 0.001; and
****, p < 0.0001; ns, not significant. SPHK1, sphingosine kinases 1; PDAC, pancreatic ductal adenocarci-
noma; TRCs, tumor-repopulating cells; qRT-PCR, quantitative reverse transcription polymerase chain
reaction; S1P, Sphingosine 1-phosphate; CSCs, cancer stem cells; ESA, erythropoiesis-stimulating
agent; Sox2, sex-determining region Y-box 2.
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4. Discussion

CSCs are thought to contribute to tumor heterogeneity, which is an essential and
distinct feature of PDAC. The stemness indices calculated using the ssGSEA algorithm
rather than OCLR algorithm were applied in our study to describe and quantify CSCs.
Transcriptome and lipidomic analysis on PDAC TRCs, proved to be an available CSCs
model, found that the up-regulation of the sphingolipid metabolism pathway played the
most special role in the lipid metabolic remodeling process. Finally, we identified SPHK1 as
the key stemness gene involved in sphingolipid metabolism. This understanding of CSCs
and lipid metabolism reprogramming paved the way for developing novel therapeutic
strategies of PDAC, and SPHK1 might be an appropriate target candidate.

CSC represents a small group of cells with infinite proliferative capacity, which is
considered the main cause of metastasis and therapeutic resistance [38]. Therefore, the
targeted eradication of CSCs will be an important progress in PDAC treatment. However,
it how to best define CSCs and the extent to which different tumor types can develop
to tumor mass are still controversial. Despite these controversies, increasing evidence
suggests that stem-cell-associated features, often referred to as “stemness”, are biologically
important in cancer [50], and are strongly related to poor outcomes in a wide variety of
cancers [51,52]. An innovative OCLR on transcriptome was used to obtain the stemness
indices (mRNAsi), which has been proven to stratify recognized undifferentiated BRCA,
AML, and gliomas [39]. However, in our study, the stemness indices using OCLR failed
to find an association with tumors’ undifferentiated state and patients’ outcomes. The
possible reason may be related to Alex Miranda’s findings in reproducing the OCLR
algorithm, as the OCLR algorithm precludes an unbiased assessment of the relationship
between stemness and tumor immunity [38]. Therefore, we adopted the ssGSEA algorithm
mentioned in Alex Miranda’ report to calculate the stemness indices. The results showed
that higher stemness indices were correlated with more advanced clinical stages, a higher
degree of oncogenic dedifferentiation, and worse outcomes, and that the classification of
patients into high and low stemness group accordingly could be an independent prognostic
predictor. Since the stemness indices using the ssGSEA algorithm can stratify recognized
undifferentiated cancers, they were used to provide an approach to explore comprehensive
lipid metabolism pathways on undifferentiated cancers in patients. Although it is currently
unclear whether the stemness indices obtained from a large number of tumor samples
represent a rare true CSCs population, our findings may advance the development for
quantitating PDAC stemness, and provide a basis for the therapeutic targeting of the
stemness phenotype itself.

In this study, we have mapped the specific lipid metabolism features of PDAC TRCs
by combining the changes in lipid metabolites via lipidomic analysis and the expression of
genes encoding metabolic enzymes via transcriptomic analysis. To understand the relation-
ship of the stemness phenotype itself and the lipid metabolism, 3D soft fibrin gel [36] was
used to culture PDAC TRCs by adjusting matrix stiffness, a significant physical property of
ECM, which exerts a vital role in PDAC stemness regulation [53]. The results of malignant
behaviors and overexpressed CSCs’ makers verified PDAC TRCs as an available CSLCs
model. Of note, we not only showed the enhancement of fatty acid prolongation in PDAC
CSCs consistent with previous studies [34,35], but also found the unique changes in sphin-
golipid metabolism in PDAC CSCs for the first time. Sphingolipids are not only important
structural components of biological membranes, but also bioactive molecules that play a
predominant role in signal transduction, cell growth, differentiation, and programmed cell
death and thus affect tumor suppression or survival [54]. De novo sphingolipid begins
with the condensation of serine and palmitoyl-CoA by serine palmitoyltransferase (SPT) to
form dhCer, and endogenous ceramides synthesized after dihydroceramide desaturation
by dihydroceramide desaturase (DES). Ceramide is also generated via sphingomyelin
hydrolysis by sphingomyelinases (SMases) and via glucosylceramide breakdown. In ad-
dition, the salvage pathway for ceramide generation utilizes the recycling of sphingosine
by CERS1–6 [55,56]. Ceramide is a core molecule in sphingolipids’ metabolism. Although
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cellular stress can induce the accumulation of ceramide and mediate cancer cell death [57],
the active metabolism of ceramide has been confirmed in various tumors [58,59]. Ceramide
can be converted to ceride-1-phosphate (C1P) [60] and SM [58], respectively, and is also
utilized as a precursor for the generation of glycosphingolipids (GSL) including glucosylce-
ramide and lactosylceramide [61]. Ceramide is hydroxylated by ceramidases (CDases) to
yield sphingosine, which is phonologically late, by SPHK1 (also known as SK1) or SPHK2
(also known as SK2) to generate S1P [62]. In our study, we observed a slight increase
in ceramide levels in TRCs, which may be related to the active metabolism of ceramide
due to its role as a substrate for generation of sphingolipids with pro-survival functions.
Different from the previous study’s results that the increasing GSL [61] and C1P [60] in
PDAC contribute to malignant metastasis and tumor progression, the significantly elevated
sphingosine was observed in PDAC TRCs. The accumulation of sphingosine was the result
of the significantly inhibited salvage pathway with the significantly activated sphingosine
generation pathway. In addition, our study found a significant decrease in dhCer.

It is hypothesized that CSCs, due to their unlimited proliferation, are in a long-term
high demand for energy and cell division substances, resulting in significant changes in
enzyme quantity instead of enzyme activity through which bio-reactions in the normal cells
may be precisely regulated. Our results demonstrated that the significantly changing lipid
reaction chain is coordinated with the trend of changes in key genes involved. For example,
we observed the enhanced DEGS2's consumption amount of dhCer as reported in colorectal
cancer [63], the significantly inhibited salvage pathway by overexpressed CERS5, and the
activated sphingosine generation pathway by overexpressed ASAH1. Moreover, we found
that SPHK1, the gene encoding the key enzyme catalyzing S1P from sphingosine, was
observed to be overexpressed not only in PDAC TRCs but also in PDAC patients with high
stemness indices, and overexpressed SPHK1 predicted worse prognosis of PDAC patients.
The findings were consistent with the quantification of SPHK1 in PDAC specimens via
immunohistochemistry, indicating high SPHK1 expression is independently associated
with lymphatic invasion and unfavorable prognosis in PDAC patients [64]. Overexpression
of SPHK1 facilitates the retention of endothelial progenitor cells at the progenitor stage [65]
and promotes the proliferation of neural progenitor/stem cells [66]. And the involvement
of the SPHK1 in CSC functioning has been recently investigated in several malignancies,
including glioblastoma [67], melanoma [68], hepatocellular carcinoma [69], and breast
adenocarcinoma [70]. Therefore, we hypothesized that SPHK1 plays an important role in
maintaining the stemness of PDAC. The ssGSEA analysis demonstrated that the expression
level of SPHK1 was significantly positively correlated with TGF-beta, P53, EMT, and
tumor proliferation signals, in accordance with the results that SPHK1 are involved in
CSCs markers expression, and the sphericity, migration, and invasion abilities of PDAC
TRCs. Another study also demonstrated that SPHK1 upregulation may play a potential
role in early neoplastic transformation of inflammatory lesions in long-standing chronic
pancreatitis patients [71]. Mebendazolee was proved to be used as a potential therapeutic
agent for treating PDAC, because it selectively inhibited SPHK1 more than SPHK2 and
regulated the levels of sphingolipids [62]. In addition, the inhibitor of SPHK1 was reported
to be effective in the combination treatment of PDAC [72], and can enhance the therapeutic
effect of gemcitabine [73].

Nevertheless, limitations exist in this study. First, although this study has compre-
hensively considered the transcriptome of patients’ tumors and the transcriptome and
lipidomic characteristics at the cell level, our findings still need to be further verified in
preclinical models such as PDX or PDO considering the unique tumor microenvironment
of PDAC. Secondly, it is necessary to further explore the stemness phenotype of PDAC by
combining single cell sequencing or metabolomics, which can more accurately reflect the
role of lipid metabolism in PDAC. Finally, the treatment of CSCs remains at the theoretical
level; therefore, targeted treatment of SPHK1 or sphingolipid metabolism should be more
considered in combination therapy for exploration.
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5. Conclusions

In this study, we explored the lipid metabolism reprogramming pathway in PDAC
with high or low stemness indices. The sphingolipid metabolism pathway was associated
with tumor stemness and SPHK1 was found to play an important role in promoting
stemness and malignant behaviors in PDAC-TRC. Furthermore, SPHK1 was strongly
correlated with patients’ prognosis and a malignant-tumor-behavior-related signature
in PDAC patients. These findings provide a novel strategy for targeting tumor lipid
metabolism to inhibit CSCs in PDAC.
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Abstract: Pneumonia is a common clinical disease in the neonatal period and poses a serious risk
to infant health. Therefore, the understanding of molecular mechanisms is of great importance for
the development of methods for the rapid and accurate identification, classification and staging,
and even disease diagnosis and therapy of pneumonia. In this study, a nontargeted metabonomic
method was developed and applied for the analysis of serum samples collected from 20 cases in
the pneumonia control group (PN) and 20 and 10 cases of pneumonia patients with metabolic
acidosis (MA) and myocardial damage (MD), respectively, with the help of ultrahigh-performance
liquid chromatography–high-resolution mass spectrometry (UPLC–HRMS). The results showed
that compared with the pneumonia group, 23 and 21 differential metabolites were identified in
pneumonia with two complications. They showed high sensitivity and specificity, with the area
under the curve (ROC) of the receiver operating characteristic curve (ROC) larger than 0.7 for each
differential molecule. There were 14 metabolites and three metabolic pathways of sphingolipid
metabolism, porphyrin and chlorophyll metabolism, and glycerophospholipid metabolism existing
in both groups of PN and MA, and PN and MD, all involving significant changes in pathways closely
related to amino acid metabolism disorders, abnormal cell apoptosis, and inflammatory responses.
These findings of molecular mechanisms should help a lot to fully understand and even treat the
complications of pneumonia in infants.

Keywords: UPLC–HRMS-based metabolomics; chemometrics; pneumonia; metabolic acidosis;
myocardial damage

1. Introduction

Neonatal pneumonia is a common disease in very young infants. It is the leading
cause of death in high under-5 mortality rate (U5MR) countries [1] and the major single
killer of children outside the neonatal period [2]. Atypical clinical manifestations and the
rapid onset and progress of neonatal pneumonia often result in associated complications
such as respiratory failure, which presents a serious threat to children’s health. Thus, early,
accurate diagnosis and timely and effective treatment are particularly important.

However, due to the various causes of pneumonia infections, the symptoms of pneu-
monia are diverse and difficult to diagnose [3–5]. X-ray, CT examinations, and lung ultra-
sonography have been implemented for the diagnosis of pneumonia, but these methods
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have several disadvantages, such as the limited accuracy of imaging diagnosis, incon-
veniences, and high costs, resulting in a great challenge in current clinical practice [6,7].
Furthermore, there is also a lack of clinically reliable means for the prediction, classification,
or effective screening of patients who require a higher level of care, making the appropriate
triage of newborns with pneumonia rather problematic. Therefore, a thorough investiga-
tion of the molecular mechanisms of neonatal pneumonia is highly in demand, which will
provide an in-depth understanding of the causes, identification and prevention approaches,
and clinical management for patients.

Metabolomics, which bridges the gap between scientific interests and biological find-
ings, is a strategy to understand and diagnose diseases, and reveal the mechanisms of
disease occurrence and development. By obtaining the results of small molecule changes in
metabolic phenotypes, it is possible to discover and explain the internal mechanisms that
lead to diseases, and this is very important for early detection and treatment, leading to
a decline in prevalence [8,9]. For example, Li et al. performed ultrahigh-performance liq-
uid chromatography–tandem mass spectrometry analysis of metabolites in urine samples
of healthy children and children with mycoplasma pneumoniae pneumonia in children
(MPPC) [10]. In their study, acetyl phosphate and 2, 5-dioxovalerate were recognized for
the first time as potential biomarkers for early diagnosis of MPPC. A similar approach
was used by Del Borrello et al. to successfully reveal metabolic changes in community-
acquired pneumonia (CAP) [11]. Three metabolites, sphingosine, lactate, and DHEA-S,
were discovered to represent a panel of potential small molecule biomarkers for assessment
of the severity of CAP [12]. The suitability of a new set of serum biomarkers, consisting
of two proteins and three metabolites, for the identification of CAP and the recognition of
severe pneumonia was proved by Wang et al. [13]. In these reports, the mechanisms were
interpreted, and the development and evolution of diseases were explained based on the
information obtained from the metabolomic analysis results.

The above studies have demonstrated the applicability of metabolomics for the
pathogenic diagnosis of pneumonia and the assessment of pneumonia severity. How-
ever, the integrated and common molecular mechanisms of pneumonia with complications
failed to be thoroughly investigated previously. Metabolomics-oriented research into the
distinction between neonatal pneumonia and pneumonia complications is relatively rare,
and clinical diagnosis, classification, and staging for pneumonia complications are also
very limited.

In this work, a nontargeted metabolomics method using ultrahigh-performance liquid
chromatography–high-resolution mass spectrometry (UPLC–HRMS) was established at
first. The metabolites in serum samples collected from the control group suffering from
pneumonia only (PN group), from patients suffering from pneumonia, metabolic acidosis,
and other medical conditions except for myocardial damage (PN&MA group), and from
patients suffering from pneumonia and myocardial damage (PN&MD group) were then
fully investigated and compared with the PN group statistically. A comprehensive analysis
of differences in the identified metabolites between PN, MA, and MD was performed for
the discovery of key compounds involved in pneumonia complications. The common
metabolite molecules were recognized and elucidated. The changes in these compounds
and their metabolic pathways in neonatal pneumonia complications were further explored.

2. Materials and Methods

2.1. Sample Collection

This study was approved by the Ethics Committee of Changzhou Maternal and Child
Health Hospital (CMCHH), Changzhou, China (approval number: 2019017). The blood
samples of newborns were collected from December 2019 to September 2020 at CMCHH.

In this study, serum samples of 20 patients in PN group, 20 patients in PN&MA
group, and 10 patients in PN&MD group were collected for nontargeted metabolomic
analysis. The details of all the samples are shown in Figure 1. Most samples of patients
with complications of MA or MD had other medical conditions. The details are given in
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the left column of the figure. The full names of all diseases with abbreviations are given in
the Supplementary Material Table S1.

Figure 1. Clinical information of samples in groups PN, PN&MA, and PN&MD, respectively.

After collection, each blood sample was placed in a vacuum blood collection tube
containing a procoagulant, left to stand for 1 h at room temperature, and centrifuged for
10 min at a speed of 3000 r/min. The supernatant was then placed in a centrifuge tube and
stored in a refrigerator at −80 ◦C.

2.2. Materials

Methanol of chromatographic grade was purchased from Beijing Zhenxiang Company.
All internal standards (IS) were obtained from the same company and prepared into a
mixed standard solution with methanol. The final concentration of each standard in the
mixed standard solution is given in Table 1.

Table 1. Each IS and its corresponding concentration in the prepared mixed standard solution.

No. Compound Name Concentration (μg/mL)

1 choline-d4 2.0
2 cannitine C2:0-d3 0.16
3 phenylalanine-d5 3.5
4 FFA16:0-d3 2.5
5 FFA18:0-d3 2.5
6 cannitine C10:0-d3 0.1
7 cannitine C8:0-d4 0.1
8 CA-d4 1.85
9 CDCA-d4 1.5
10 cannitine C16:0-d3 0.15
11 LPC 19:0 0.75
12 SM d30:1 0.75
13 glutamic acid-d3 0.15
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2.3. Sample Preparation

The serum samples were prepared on ice. First, 50 μL sample was pipetted into a
1.5 mL centrifuge tube (Oxygen, Doral, FL, USA), 200 μL cold methanol was added, and it
was shaken for 4 min at a speed of 1500 r/min on a Vortex Mixer T1 (Titan, West Springfield,
MA, USA). The mixed solution was then left to stand for 10 min at a temperature of −20 ◦C
prior to centrifugation for 15 min at 4 ◦C and 14,000 r/min. After this, 200 μL of super-
natant was taken into a new centrifuge tube, while the remaining supernatant was used
to prepare the quality control (QC) sample solution. The samples were then concentrated
and stored at −40 ◦C. Prior to analysis, the lyophilized samples were redissolved in 100 μL
methanol/water (80/20, v/v) solution, followed by shaking and centrifugation opera-
tions (1500 r/min). The supernatant was subject to analysis by UPLC–HRMS (Q-Exactive,
Thermo Fisher, Waltham, MA, USA) in both positive and negative modes.

2.4. UPLC–HRMS Analysis

The UPLC–HRMS analysis was performed using a BEH C8 column (2.1 × 100 mm × 1.7 μm,
Waters, Milford, MA, USA) in positive mode and an HSS T3 column (2.1 × 100 mm × 1.8 μm,
Waters, USA) in negative mode. The flow rate was 0.35 mL/min on both columns. The mobile
phases A and B were 0.1% formic acid in water and 0.1% methanol in acetonitrile, respectively. The
gradient program started with 5% B and held for 1 min. Then, it was linearly changed to 100% B in
10 min and held for 2 min. The column temperature was set at 50 ◦C.

The ion source was operated with a spray voltage of 3.8 kV in positive mode and
−3.0 kV in negative mode. The ion transfer capillary temperature was set at 320 ◦C. All the
samples were analyzed in a nontargeted full scan acquisition mode from 70 to 1050 m/z at a
resolution of 70,000. The MS2 measurement was performed in independent data acquisition
(IDA)-based auto-MS2 mode, and the MS/MS fragments were acquired at a resolution of
17,500.

2.5. Data Processing and Statistical Analysis

The nontargeted raw data obtained from UPLC–HRMS analysis was first converted
into mzML format using One-MAP/PTO software v2.8, which is freely available from
www.5omics.com, accessed on 3 January 2023. It was further used to recognize and extract
the MS characteristics of metabolites buried in the same sample and then to match the
primary MS of the same substance in each sample to an Excel file for the generation of
peak tables, which were the basis for the subsequent statistical analysis. The MS2 data
were obtained from mgf files, in which the retention times and MS1 and MS2 information
of MS features in peak tables were all included. Afterward, the peak lists in the table
were preprocessed, such as filling in the missing values and sample normalization. The
data quality was evaluated and calibrated by using One-MAP from www.5omics.com to
improve the data quality. The peak table, together with the MS2 data matched, was then
imported into .mgf format for annotation of each MS feature and discovery of differential
metabolites. The annotation was attained according to the qualitative characteristics of
each compound built in the database of One-MAP.

The recognition of differential metabolites between different clinical groups was
achieved with the help of a combination of univariate and multivariate analysis. For
univariate statistical analysis, a volcano plot with information combination of fold change
(FC) > 1.5 and p < 0.05 was used to effectively identify those differential components with
statistically significant changes amongst different groups. For multivariate analysis, partial
least squares discriminant analysis (PLS-DA) was applied to model the main potential
variables and then screen the characteristic ions/metabolites that differed in the group
with the values of variable importance in the projection (VIP) larger than 1.0. The relative
levels of metabolite differences in each group were expressed as upward and downward
changes in the multiplicity of change to visually represent the variation in differential
metabolites between the experimental and control groups. Metabolic enrichment analysis
was also performed on the basis of the aforementioned results of annotation and differential
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discovery of metabolites. The pathways to which these metabolites corresponded were
determined, and the clinical interpretation and potentials were explained afterward. Both
the groups of PN and PN&MA and PN and PN&MD were fully investigated following the
strategies and methods introduced above.

3. Results

3.1. Metabolic Profiling Analysis

The typical total ion chromatograms (TICs) of serum samples in groups PN, PN&MA,
and PN&MD obtained in positive mode are shown in Figure 2a–c, respectively. The
corresponding TICs measured in negative mode are shown in Figure 2d–f, respectively.
The horizontal axis in Figure 2 represents the retention time in minutes, while the vertical
axis represents the peak intensity. It is obvious that all the samples were well separated
under the experimental conditions described in Section 2.4 in both positive and negative
modes.

Figure 2. TICs of representative samples in groups PN (a,d), PN&MA (b,e), and PN&MD (c,f),
respectively: (a–c) TICs measured in positive mode; (d–f) TICs measured in negative mode.
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It is well known that both QC samples and IS compounds can provide important
information for data quality evaluation and analysis in metabolomics studies and can
be further used for data calibration to improve data quality if required. Figure 3a,b il-
lustrate the distribution of relative standard deviations (RSDs) of mass spectral features
in QC samples before data calibration in positive and negative modes, respectively. It
can be observed that the data quality of the QC samples was relatively satisfactory. The
percentage of MS features in QC samples with RSDs lower than 30% was greater than
75%. On the other hand, the PCA results of QC samples showed good consistency in both
positive and negative modes, as given in Figure 3c,d. This indicated a high quality of
UPLC–HRMS measurement.

Figure 3. Quality evaluation based on QC samples and ISs. (a,b), (c,d), and (e,f) correspond to the
results of RSD distribution of QC samples before data calibration, PCA evaluation results of QC
samples, and RSD distribution of ISs in positive and negative mode, respectively.

The IS compounds can be used to maintain overall data quality during the experimen-
tal process, although some of the ISs may not be stable during the whole procedure, due
to which the data quality was reduced. The ISs with RSD values below 30% in positive
mode accounted for 84.6%, as given in Figure 3e. Among all the ISs, the RSD of cannitine
C2:0-d3 and glutamic acid-d3 were relatively high. In negative mode, as shown in Figure 3f,
the percentage of ISs with RSDs lower than 30% was 44.4%, which was not as good as
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in positive mode. This was probably due to the suitability of these components to be
ionized by positive ion sources. Combining the results of the data quality analysis as
described above, the accuracy and reproducibility of the experimental analysis proved that
the proposed approach was feasible for the present study.

3.2. Discovery of Differential Metabolites and Further Analysis of Metabolic Pathway

The processes for nontargeted metabolomics data analysis were previously introduced
in Section 2.5. Due to the large variance in the interfering diseases in the samples, some
of them exhibited outliers in the analysis, but a trend of separation was still observed.
The annotation results are given in the Supplementary Material Table S2. In Figure 4a,b,
univariate volcano plots of univariate analysis were obtained with statistical p-values lower
than 0.05 and FCs larger than 1.5 in both positive and negative modes, respectively. In
positive mode, the results of PLS-DA modeling revealed a significant difference between the
PN&MA group and PN controls, as shown in Figure 4c. It is obvious that samples collected
from healthy children and patients were discriminated with 100% accuracy. Similarly, a
consistent pattern was also observed between these two groups in negative mode, as given
in Figure 4d. With the help of univariate and multivariate analysis, a total of 23 metabolites
were discovered to be significantly different in the PN and PN&MA groups. The permu-
tation test plots with number of running time equal to 200 ensured the credibility of the
proposed model, which are shown in Figure 4e,f. These results of the distribution of R2 and
Q2 values indicated that the model was reliable and could be used for predictive analysis.

Figure 4. The results of univariate and multivariate analysis of PN and PN&MA groups. (a–f) were
volcano plots, PLS-DA score plots, and permutation analysis obtained in positive and negative
modes, respectively.
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In addition, the specificity and sensitivity of the ROC model evaluation in positive and
negative modes reached 100% and 100%, and 95% and 80%, respectively. Figure 5 shows the
ROC curves of each differential molecule, with AUC values above 0.7, for discrimination of
PN and PN&MA groups, which indicated a high sensitivity and a good specificity of the
23 differential molecules for discrimination analysis.

Figure 5. The results of ROC analysis of all the differential molecules obtained from PN and PN&MA
groups. (a–d) correspond to the results obtained from different components, as shown in each figure.

Figure 6a,b are volcano plots in positive and negative modes obtained from univariate
statistical analysis with p-values lower than 0.05 and FCs larger than 1.5. In terms of the
processes for data analysis introduced above, the PLS-DA models of PN and PN&MD
groups indicated a significant difference in positive mode, as shown in Figure 6c. An
apparent separation between them in negative mode is presented in Figure 6d, and samples
in the two groups are marked in red and black, respectively. With the results of PN
and PN&MA given above, it can be concluded that the two types of samples can be
discriminated with 100% accuracy. A total of 21 differential metabolites with statistically
significant changes were discovered after analysis. The results of the permutation test
with number of running time equal to 200 proved that the model was robust and reliable,
as shown in Figure 6e,f. The specificity and sensitivity of the ROC model evaluation in
both positive and negative modes reached 100%. Figure 7 shows the ROC results of all
the differential molecules discovered in the PN and PN&MD groups, which are presented
in Figure 7a–d with a total of 21 metabolite molecules, as introduced above. All the AUC
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values were above 0.75, which also indicated the high sensitivity and specificity of specific
metabolite molecules for disease recognition.

Figure 6. The results of univariate and multivariate analysis of PN and PN&MD groups. (a–f) are
volcano plots, PLS-DA score plots, and permutation analysis obtained in positive and negative
modes, respectively.

Figure 7. Cont.
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Figure 7. The results of ROC analysis of all the differential molecules obtained from PN and PN&MD
groups. (a–d) correspond to the results obtained from different components, as shown in each figure.

3.3. Study of Common Differential Molecular Characteristics between PN&MA and PN&MD

A deeper commonality analysis of the differential metabolites found in the PN&MA
and PN&MD groups was performed. A total of 14 overlapping differential metabolites
in these two groups with the same up- and downregulation trends were recognized. The
changes in concentrations of these substances may be strongly correlated with the sever-
ity of pneumonia, as shown in Figure 8a,b. Figure 8c,d are the differential metabolite
network diagrams of the PN&MA and PN&MD groups. Among the common differen-
tial metabolite, farnesol, oleic acid, phlorisovalerophenone, methylisoeugenol, ferulate,
4-Heptyloxyphenol, bilirubin, sphingosine, ramifenazone, and Phe-Phe showed a signifi-
cant correlation. Figure 8e,f are the enrichment pathway diagrams of differential metabolite
molecules of the PN&MA and PN&MD groups, respectively. It can be seen that three
common pathways were involved, including porphyrin and chlorophyll metabolism, sph-
ingolipid metabolism, and glycerophospholipid metabolism.

Figure 8. Cont.
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Figure 8. (a) A Venn diagram of differential metabolites found in PN and PN&MA groups and PN
and PN&MD groups; (b) the up–down bar charts of the molecules found in (a); (c,d) the correlation
network of differential molecules found in PN and PN&MA groups and PN and PN&MD groups;
(e,f) the findings after metabolic pathway enrichment by using the differential molecules introduced
in (c,d).

4. Discussion

This study identified 14 common differential metabolite molecules and three common
pathways in the pneumonia group with metabolic acidosis and myocardial damage com-
pared with the pneumonia group. These findings contribute to a better understanding of
the molecular mechanisms underlying pneumonia with metabolic acidosis and myocar-
dial damage. Furthermore, they provide guidance for the identification and validation of
biomarkers for pneumonia complications and offer insights into the subsequent clinical
application of hierarchical diagnosis and personalized treatment. However, it is important
to note that the study has limitations such as the limited number of serum samples and a
lack of specific differentiation between various types of pneumonia pathogens. Therefore,
further study of large-scale population verification is necessary.

Bilirubin participates in porphyrin and chlorophyll metabolisms. The main source
of bilirubin is aging red blood cells. The aging red blood cells are first damaged and
transformed into biliverdin with heme from other sources by heme oxygenase. Afterward,
biliverdin reacts with biliverdin reductase to give bilirubin, which is involved in porphyrin
metabolism in the body [14]. The decrease in bilirubin content in the PN&MD group
may be due to the poor function of the mononuclear phagocytic system in newborns.
It is possible that aging red blood cells cannot be phagocytosed or that engulfed red
blood cells were degraded at a slower rate, resulting in insufficient raw materials for
bilirubin production. At the same time, the heme oxygenase activities on the microsomes
of mononuclear macrophages reduced the oxidation rate of heme into biliverdin, which
also led to a decrease in bilirubin production [15]. In addition, bilirubin itself is a strong

39



Metabolites 2023, 13, 1118

antioxidant, and metabolic acidosis and myocardial damage in children may lead to an
increase in oxygen free radicals in the body. Part of the bilirubin is consumed to exert its
antioxidant function, and the content decreases [16].

Sphingosine, the main component of sphingolipids and a kind of sphingomyelin
basic lipid, is involved in sphingolipid metabolism. Sphingomyelin and its metabolites
are not only important constituents of cell membranes but also necessary regulators in a
variety of signal transduction pathways, which play a significant role in many pathological
processes [17,18]. Since sphingomyelin is widely interrelated in the body, its abnormal
content will lead to a series of chain reactions leading to inflammation [19]. The content of
sphingosine in the two groups of pneumonia complications increased more significantly
than that in the PN group, indicating aggravation of an inflammatory reaction.

PC (14:0/14:1 (9Z)) and LysoPC (22:2 (13Z, 16Z)) are involved in glycerophospholipid
metabolism. Glycerophospholipids are the most abundant phospholipids in the body
and play a role in various physiological functions, such as inflammation and cell dam-
age [20]. In various pathophysiological conditions, the ratio of free and albumin-bound
lysophosphatidylcholine (LPC) can be profoundly altered by increasing the production
of LPC or lowering plasma albumin levels [21,22], which means that to a certain extent,
phospholipids act as important regulators in inflammatory reactions, and the changes in
type and content of phospholipids can reflect the severity of inflammation [23]. LPC has
many protective or anti-inflammatory effects, and LPC, at a higher level, can act as an
anti-inflammatory molecule by producing vascular protective effects through prostacyclin
or nitric oxide. During bacterial or viral infections, low levels of LPC can lead to immune
disorders [24]. In the present study, the relative contents of substances PC (14:0/14:1 (9Z))
and LysoPC (22:2 (13Z, 16Z)) involved in this pathway increased, indicating that in the
PN&MD and PN&MA groups, the inflammatory response was more severe compared with
that in PN group. PC (14:0/14:1 (9Z)) and LysoPC (22:2 (13Z, 16Z)) may act as protective or
anti-inflammatory compounds.

In addition, some important common differential substances, such as farnesol and
oleic acid, have significant specificities, and previous reports have shown that they can
regulate inflammatory responses and have beneficial effects on the immune response
system in diseases, including edema, allergic asthma, and colon tumors [25]. A series of
animal models have demonstrated that farnesol can eliminate tumor growth [26]. It has
also been proved that farnesol exhibits potential pro/anti-inflammatory and anticancer
effects in various diseases [27]. The increase in farnesol levels in both complication groups
indicated that the body was regulating its own exacerbating inflammatory responses.
Oleic acid affects cell membrane fluidity, receptors, and intracellular signaling pathways.
It can directly regulate the synthesis and activity of antioxidant enzymes and has anti-
inflammatory effects, which are reached through inhibiting proinflammatory cytokines
and activating anti-inflammatory cytokines [28,29]. As shown in our studies, oleic acid
was significantly upregulated in the complication groups, which also reflected the severe
inflammatory response in the complication groups. Phe-Phe is a peptide composed of
two phenylalanine molecules. Phenylalanine is an essential amino acid and a precursor
of D-tyrosine, which can be used for protein synthesis and converted into nonessential
amino acid tyrosine [30]. The levels of Phe-Phe and D-tyrosine significantly increased in
both complication groups, indicating an abnormal disorder in amino acid metabolism.
Changes in amino acid levels can reflect the immune response of the body to infection
or tissue damage. Almost all tissue remodeling in the body involves the breakdown and
synthesis of proteins, and abnormal amino acid metabolism can have adverse effects on
the production of proteins [31]. In a previous study, Phe-Phe was found to be a marker
of pancreatic cancer [32]. Therefore, the increase in Phe-Phe concentration may indirectly
indicate an increased risk of cancer in the pneumonia complication groups compared with
the PN group.

It was evident that pneumonia with metabolic acidosis or myocardial damage was
two different types of complications compared with the pneumonia control group, but
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there were common molecules, and they acted in the same metabolic pathways. The
common metabolite molecules revealed that the inflammatory response was more severe
in the complication groups, and the risk of cancer tended to increase, while the increased
inflammatory response led to a series of ripple reactions, such as abnormal apoptosis of
body cells and energy metabolism, and disturbance of amino acid metabolism. These
findings of common molecules and metabolic pathways between PN&MA and PN&MD
provide a deep understanding of the complications of pneumonia disease, especially for
newborns with relatively low immunity.

5. Conclusions

In this work, an untargeted UPLC–HRMS-based metabolomics approach was devel-
oped and applied for the study of neonatal pneumonia and pneumonia complicated by
metabolic acidosis or myocardial damage. Serum samples were collected and analyzed to
explore the important differential metabolites between healthy control and disease groups.
The molecular mechanisms of actions that disrupt the pathways were discovered. Based on
these findings, the common molecular mechanisms of the two complications of pneumonia
were investigated. The results showed a significant decrease in bilirubin levels in the
PN&MA and PN&MD groups, which implied an increased inflammatory response. Mean-
while, the levels of farnesol and sphingosine as anti-inflammatory substances increased,
indicating the presence of the self-regulation of organisms in response to the exacerbation
of the inflammatory response. The changes in the levels of these common substances and
the metabolic pathways involved were mainly closely related to the series of immune
responses caused by the exacerbation of inflammation levels. Comparing groups PN and
PN&MA and PN and PN&MD, the relative content of common substances showed the
same upward and downward trends with varying degrees, but the differences were not
significant. The changes in the contents of these substances may represent changes in the
severity of pneumonia complications in newborns. In the future, a targeted study will be
conducted to take the effects of multiple pathologies into consideration for validation and
clinical application, which aims to fully validate the investigation of the potential program-
ming mechanisms of these differential molecules, as well as the effects and mechanisms of
repair after drug treatment and/or prognostic assessment.
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Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide.
The in-depth study of genes and metabolites related to nucleotide metabolism will provide new
ideas for predicting the prognosis of HCC patients. This study integrated the transcriptome data of
different cancer types to explore the characteristics and significance of nucleotide metabolism-related
genes (NMGRs) in different cancer types. Then, we constructed a new HCC classifier and prognosis
model based on HCC samples from TCGA and GEO, and detected the gene expression level in the
model through molecular biology experiments. Finally, nucleotide metabolism-related products in
serum of HCC patients were examined using untargeted metabolomics. A total of 97 NMRGs were
obtained based on bioinformatics techniques. In addition, a clinical model that could accurately
predict the prognostic outcome of HCC was constructed, which contained 11 NMRGs. The results
of PCR experiments showed that the expression levels of these genes were basically consistent
with the predicted trends. Meanwhile, the results of untargeted metabolomics also proved that
there was a significant nucleotide metabolism disorder in the development of HCC. Our results
provide a promising insight into nucleotide metabolism in HCC, as well as a tailored prognostic and
chemotherapy sensitivity prediction tool for patients.

Keywords: nucleotide metabolism; hepatocellular carcinoma; prognosis signature; molecular
classification; chemotherapy sensitivity; tumor immune microenvironment

1. Introduction

Hepatocellular carcinoma (HCC) is one of the dominant types of cancer all over
the world [1]. HCC is the third leading cause of mortalities among all malignancies in
the world [2–4]. In addition, effective prognostic indicators would be a boon for these
patients. Thus, it is urgent to develop and verify new prognostic signals to predict the
clinical prognosis of HCC patients at an early stage in order to improve the survival rate
of patients.

Nucleotide is the basic building block of organisms, and it is an essential raw material
for producing nucleic acid to sustain cell proliferation [5]. Nucleotide metabolism is in a
state of dynamic equilibrium, which is important for maintaining normal physiological
functions of cells [6,7]. Recently, researchers have affirmed that abnormal nucleotide
metabolism enhances the growth of tumors and suppresses the normal immune responses
in the tumor microenvironment [8]. For example, disrupting the homeostasis of the pools
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of nucleotides can produce mutations that influence antigen presentation and, ultimately,
the immune response to the tumor [9,10]. Targeting nucleotide metabolism also provides
new directions for the development of novel antitumor-specific drugs [11,12]. Therefore,
focusing on the reprogramming of the nucleotide metabolism will provide new ideas
for predicting prognostic outcomes in HCC patients. Moreover, the clinical relevance
of nucleotide metabolism-related genes (NMRGs) in predicting outcomes and guiding
chemotherapeutic strategies for patients with HCC remains unknown to the best of our
knowledge. Thus, the development of the HCC risk stratification tool using NMRGs
is promising.

In the present research, we will systematically evaluate the potential of NMRGs in
predicting the prognosis of HCC patients using a bioinformatics approach and establish a
risk score signal based on NMRGs to predict the clinical outcome of HCC patients. This
model could be utilized in making clinical decisions and providing individualized care.
To further validate the credibility of the model, we examined the expression of NMRGs
in the model at the cellular level by molecular biology experiments. Ultimately, we used
non-targeted metabolomics to detect the nucleotide metabolism-related products in serum
samples of patients with HCC, further supporting our study from the metabolic point of
view. We are optimistic that the findings of this investigation will avail a greater and new
insight into the diagnosis and management of HCC. Additionally, it will be essential in
availing a theoretical basis for upcoming nucleotide metabolism studies.

2. Materials and Methods

2.1. Data Collection and Processing

Firstly, 97 NMRGs were obtained based on the following dataset from the Molec-
ular Signatures Database (MSigDB): REACTOME_METABOLISM_OF_NUCLEOTIDES.
RNA-sequencing (RNA-seq) and the matched clinical characteristics were derived from the
TCGA database. The samples that were obtained contained 373 and 49 HCC patient sam-
ples and normal samples, respectively. RNA-seq, along with clinical data obtained from the
Gene Expression Omnibus (GEO) database (GSE14520), were used for external validation.
Patients who did not have information on their survival were excluded from further analy-
sis. To facilitate batch normalization, the “sva” package in R was employed. In addition,
the TCGA database was another database that was utilized to acquire SNV, transcriptome
profiles, CNV, methylation data, and pan-cancer transcriptomes’ clinical features.

2.2. Pan-Cancer Analysis

Currently, inadequate research has been conducted to determine the link between
nucleotide metabolism and malignancies. As a result, the differences in NMRGs in various
malignancies are described inadequately. SNV, CNV, methylation, and mRNA expression
data were examined and graphically illustrated as heatmaps to avail a pan-cancer summary
of NMRGs. Moreover, a univariate Cox regression analysis between the mRNA expression
and OS to probe into the value of NMRGs in the prognoses of patients with various
malignancies was conducted using R version 4.0.3 and TBtools version 1.098 [13].

Single sample gene set enrichment analysis (ssGSEA) was used to calculate NMRG
scores in every sample of each cancer to reveal the differential function of pathways
regulated by NMRGs in various kinds of human tumors. Samples were categorized into
two groups, one with the top 30% of NMRG scores and the other with the worst 30%. Gene
set enrichment analysis (GSEA) was used to investigate the differences in pathway activity
between the two groups based on the transcriptomes of the two groups.

2.3. Differentially Expressed Prognostic NMRG Identification

The “limma” packages were utilized to uncover the differentially expressed NMRGs
between HCC and normal tissues (FDR < 0.05, fold change > 1.5). Next, 97 NMRGs screened
out were put into univariate Cox regression analysis to acquire the genes with prognostic
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significance (p < 0.05). Afterward, the intersection of the two sets of genes was taken to
obtain 32 NMRGs for subsequent analysis, as shown by the Venn diagram.

2.4. Non-Negative Matrix Factorization (NMF) Clustering Determination of NMRG
Modification Subtypes

The HCC samples from the TCGA database were clustered by the NMF based on the
expression data of 32 NMRGs. The range for the cluster count, k, was set from 2 to 10. The
R package “NMF” calculated the common membership matrix’s average contour width.
On the basis of the dispersion, cophenetic, and silhouette metrics, the ideal cluster numbers
were established. Afterward, the samples are split into two distinct molecular subtypes C1
and C2.

2.5. Gene Set Variation Analysis (GSVA) and NMRGs Different Expression Analysis

The NMRG scores of individual patients with HCC were computed by the “GSVA”
package in R, which could serve as an indicator of nucleotide metabolism activities. Then,
the “Wilcox.test” function in R and a T-test were employed to compare the difference in the
scores and expression of NMRG between two clusters, respectively.

2.6. Differences in the Prognosis, Immune Checkpoint Genes, and Drug Sensitivity between
Distinct NMRG-Based Clusters

The prognostic efficacy of clusters was assessed using Kaplan–Meier analyses, with
the progression-free interval (PFI), disease-specific survival (DSS), disease-free interval
(DFI), and overall survival (OS), as standards. Subsequently, the “Wilcox.test” function
in R was adopted to explore the disparity between infiltration levels of typically immune
checkpoint genes (ICGs). Additionally, we used pRRophetic [14], the R software that
predicts the clinical chemotherapeutic response utilizing the expression levels of tumor
genes, to calculate the semimaximum inhibitory concentration (IC50) of commonly used
chemotherapeutic drugs in the HCC cohort. A Wilcoxon signed-rank test, on the other hand,
determined if the difference in the IC50 between two clusters is statistically significant.
A decreased semi-inhibitory mass concentration of the drug in malignant cells is always
associated with a smaller IC50, indicating that the cancer cells are more susceptible to
the medicine.

2.7. DEG Identification and Functional Analysis

DEGs between two clusters based on NMRGs were identified by the limma package,
with the thresholds established as FDR < 0.05 and fold change > 1.5, which was further
subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and GO
functional enrichment analyses using the R package “clusterProfiler”.

2.8. Construction and Verification of a Prognostic Signature Based on NMRGs

The 32 differentially expressed and prognostically significant NMRGs obtained previ-
ously were incorporated in the least absolute shrinkage and selection operator (LASSO)
Cox regression signature to develop the powerful prognostic signature. The risk score of
each patient is calculated using the “Prediction” function in R, and then HCC patients in
TCGA and GEO groups were classified into high- and low-risk groups as per the median
risk score, and comparisons of their prognoses were done. To additionally test the viability
of the risk score-based predictive signature in patients with HCC in the TCGA as well as
GEO datasets, the principal component analysis (PCA) and the t-distributed stochastic
neighbor embedding (t-SNE) analyses were done. Using the “survival ROC” R package
version 4.0.3, time-dependent receiver operating characteristic (ROC) curves and AUC
values were obtained to ascertain the specificity and sensitivity of the risk score.

2.9. Creating a Predictive Nomogram That Incorporates Clinical Characteristics and Risk Scores

The clinical data, which comprised age, gender, grade, and stage as well as the
risk score of every patient in TCGA cohorts, were retrieved. The statistically significant
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indicators (p < 0.05) from the univariate Cox survival analysis of each indicator were then
incorporated into the multivariate Cox survival analysis. These markers were regarded
as independent prognostic variables (p < 0.05) in the multivariate Cox survival analysis.
A nomogram was constructed utilizing the above clinical features and risk score. The
nomogram’s discriminating power and prediction accuracy were then assessed using
calibration curves. The prediction performance was also assessed using the time-dependent
ROC curve.

2.10. Reagents

Cell culture-related reagents such as Dulbecco’s Modified Eagle Medium (DMEM),
Minimum Essential Medium (MEM), and Roswell Park Memorial Institute 1640 Medium
(RPMI-1640) were purchased from Gibco (Grand Island, NE, USA). PCR-related reagents
were purchased from Accurate Biology (Changsha, China). Methanol, isopropanol, acetoni-
trile, formic acid, and ammonium acetate of mass spectrometry grade were supplied by
Fisher Scientific (Fair Lawn, NJ, USA). Ammonium bicarbonate and methyl tert-butyl ether
(MTBE) of mass spectrometry level were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Ultra-pure water (18.2 MΩ) was prepared by a Milli-Q water purification system
(Merck KGaA, Darmstadt, Germany).

2.11. Cell Culture

The human HCC cell lines (HuH7, HepG2, and Hep3B2.1–7) were purchased from
Procell Life Science & Technology (Wuhan, China). The L-02 cell line (human normal
hepatocytes) was purchased from BeNa Culture Collection (Beijing, China). Briefly, HuH7
and L-02 were, respectively, grown in DMEM high glucose medium (Gibco, Grand Island,
NE, USA) and RPMI-1640 medium, while HepG2 and Hep3B2.1–7 were incubated in MEM
medium, all of which containing 10% fetal bovine serum and 1% penicillin-streptomycin
solution. All the cells were incubated in a cell incubator under 37 ◦C with a concentration
of 5% CO2.

2.12. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

The total RNA in the HuH7, HepG2, Hep3B2.1–7, and L-02 cell lines was extracted by
the conventional Trizol method and the cDNA was obtained using a reverse transcription
kit (Accurate Biology, Changsha, China). Furthermore, the expressed level of target gene
was detected by using SYBR Green I fluorescent dye-based assay and β-actin was used as
the internal reference gene. RNA level was analyzed and quantified by 2-ΔΔCt. The primer
sequences of the genes were shown in Supplementary Table S1.

2.13. Participants and Criteria

Serum samples from HCC patients (n = 26) and healthy individuals (n = 26) were
obtained from the biological sample bank of the First Affiliated Hospital of Dalian Medical
University (collected from November 2016 to December 2019). In addition, the study has
been approved by the Ethics Committee of the First Affiliated Hospital of Dalian Medical
University (No. PJ-KS-KY-2021–129). Inclusion criteria for the HCC group included:
(1) signed informed consent for collection and use of biological samples and aged ≥18 years;
(2) the pathological diagnosis is HCC; (3) follow-up information is complete; (4) no other
malignant tumors and no prior anti-tumor treatment was performed before surgery; (5) the
biological sample is complete. Exclusion criteria include: (1) new adjuvant or chemical
therapy before surgery; (2) accidental death during operation or postoperative relapse
resulting in death within one month; (3) the follow-up information is incomplete or the
biological sample is missing. Serum samples from the control group (CON group) were
obtained from healthy individuals on physical examination and matched the sex and age
composition of the HCC group.
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2.14. Serum Sample Pretreatment and Non-Targeted Metabolomics Analysis

The pretreatment procedures of serum samples were divided into two parts, namely,
extraction of polar small molecule metabolites and lipids. Briefly, to extract the polar
metabolites, we added 150 μL of the serum sample to a 96-DeepWell plate followed by
600 μL of methanol solution. After the mixture was vortexed for 5 min, it was centrifuged
at 5300 rpm for 20 min. The supernatants were divided into two 200 μL aliquots, and trans-
ferred to two individual 450 μL 96-well plates, and the liquid was lyophilized by a freeze
dryer. Finally, the residual was redissolved prior to non-targeted metabolomics testing. Ad-
ditionally, to extract the lipids, we added 20 μL of serum sample to a 1.5 mL microcentrifuge
tube, followed by 120 μL of methanol solution and vortexed for 3 min. Then, 360 μLof
methyl tertbutyl ether (MTBE) and 100 μL of ultra-pure water were sequentially added
after oscillating for 3 min, and then the mixture was centrifuged at 13,000× g for 15 min.
Similarly, the lipid layer was lyophilized and dissolved prior for the test. UltiMate 3000
ultra-high performance liquid chromatographic system and the Q-Exactive quadrupole
-Orbitrap high resolution mass spectrometer (Thermo Fisher Scientific, Fair Lawn, NJ,
USA) were used for non-targeted metabolomics analysis. For more information about
metabolomics-related processes, please referred to the Supplementary Materials.

3. Results

3.1. Pan-Cancer Introduction with Respect to Differences in NMRGs

A chart displaying the research steps is provided in Figure 1. TCGA availed CNV,
SNV, methylation, mRNA expression profiles, and survival data for 97 NMRGs in all
kinds of malignancies for the pan-cancer study. We analyzed NMRG-related SNV data to
ascertain the frequency as well as the variant types in every cancer subtype. As revealed in
Supplementary Figure S1A, SKCM, UCEC, LUSC, LUAD, and STAD all had substantial
SNV of NMRGs. The frequency of SNV of the NMRGs was 75.17% (2703 of 3596 tumors).
Missense mutations were the predominant SNP type, according to the examination of
variant types. The top five mutated genes, as determined by SNV percentage analyses, were
CAD, DPYD, XDH, AK9, and AMPD1, with respective mutation percentages of 8%, 8%,
8%, 7%, and 6% (Supplementary Figure S1B). Moreover, to examine the genetic aberrations
of NMRGs in malignancy, the percentage of CNV was evaluated and the findings revealed
that, in general, CNV occurred at remarkable frequencies in a majority of cancer types
(Figure 2A,B). In addition to CNV, aberrant DNA methylation of the promoter is linked to
tumorigenesis [15]. The methylation of the promoter can modulate gene expression. We
observed that most NMRGs in the 20 cancer types exhibited complex methylation patterns.
However, TXNRD and ENTPD3 consistently showed hypermethylation in several tumors,
while NME3, UPP2, and XDH showed the opposite (Figure 2C).

Figure 1. The investigation’s flow chart.
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Figure 2. Panoramic view of nucleotide metabolism-related genes (NMRGs) in pan-cancer. (A,B) His-
togram displays the frequency of copy number variation (CNV) for each NMRG in each tumor type
((A) amplification; (B) deletion). (C) Heatmap displays the differential methylation of NMRGs in
cancers; hypermethylated and hypomethylated genes are denoted with red and blue, respectively
(Wilcoxon rank-sum test). (D) Histogram (upper panel) and heatmap demonstrate the number of
significant DEGs and the fold change and FDR of NMRGs, respectively, in each cancer. Substantially
upregulated and downregulated genes are denoted with red and green, respectively. (E) NMRGs’
survival profiles across cancers.

Besides genetic alterations, each cancer type’s altered NMRG gene expression patterns
were investigated using differential expression analysis between the malignant and nearby
normal tissues. With the exception of pancreatic cancer tissues, we ascertained that most
gene expression levels in cancer tissues varied in contrast with those in normal tissues.
RRM2 and TK1 had remarkably increased expression levels in several cancers (Figure 2D).
Afterward, utilizing univariate Cox regression of mRNA expression and OS, risky NMRGs
with HR > 1 and p-Value < 0.05 as well as protective NMRGs with HR < 1 and p-Value < 0.05
were detected, as displayed in Figure 2E.
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3.2. Identification of Differentially Expressed Prognostic NMRGs

RNA-seq data and clinical data of 49 normal samples and 373 HCC samples were
retrieved from the TCGA database. A heatmap was developed with the aim of demon-
strating the differentially expressed NMRGs between the normal and cancerous samples
(Supplementary Figure S2A). A total of 69 out of 97 NMRGs were discovered to have differ-
ential expressions in normal and cancerous samples (Supplementary Table S2). Meanwhile,
univariate Cox survival analysis was also done on NMRGs, of which 38 NMRGs were
statistically significant (Supplementary Table S3). Finally, the intersection of the two sets of
genes was taken to obtain 32 NMRGs for subsequent analysis (Supplementary Figure S2B).

3.3. NMF Clustering Identification of Molecular Typing Based on the NMRG

The NMF method selects the appropriate clustering number of two for the data, as per
cophenetic, dispersion, and silhouette coefficients (Supplementary Figure S3, Figure 3A).
The results of the following GSVA and KM analyses indicate that samples in C2 have
higher NMRG scores and worse OS, DFI, PFI, and DSS, indicating the risky significance
of NMRGs in HCC patients (Figure 3B–F). Supplementary Figure S4 shows the NMRGs
that are differentially expressed in the two subgroups. Studies report adenosine block
immune cell differentiation as well as maturation. It furthermore activates the expression
of checkpoint molecules. We, therefore, compared the expression of ICGs between the two
subtypes. Figure 3G shows all the statistically distinct ICGs, which are all expressed at
higher levels in C2. In order to select appropriate administrating chemotherapeutic drugs
for HCC patients, we performed chemotherapy sensitivity predictions between the two
clusters. The results showed that Sorafenib, Metformin, Docetaxel, Dasatinib, Erlotinib,
and Gefitinib are more suitable for C1 populations, while Gemcitabine, Doxorubicin,
Cisplatin, Camptothecin, Bortezomib, and Etoposide are more suitable for C2 populations
(Supplementary Figure S5).

Figure 3. PanNMF clustering identification of two molecular subtypes with remarkably varied
prognosis and expression of immune checkpoint genes. (A) The optimal clustering number of 2.
(B) NMRG scores of the two subgroups are shown by violin plots. (C–F) Kaplan–Meier analyses (OS,
DFI, PFI, and DSS) as regards two molecular subtypes. (G) Differential expression analysis of ICGs.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.4. Functional Analysis for the NMRG Clusters

Then, in order to investigate probable mechanisms and biological functions at the gene
level for the C1 and C2 groups, GO and KEGG pathway analyses were employed. Out of 995
DEGs that were subjected to screening (Supplementary Table S4), 356 and 639 genes were
ascertained to be downregulated and upregulated in the C1 group, respectively (Figure 4A).
The GO analysis affirmed that the genes were remarkably involved in the biological process
of catabolic processing, inhibitor activity, and cell−substrate junction (Figure 4B). Meantime,
the KEGG analysis revealed that these genes were also significantly related to various
metabolic pathways, such as Tryptophan metabolism, Fatty acid degradation, Arginine
and proline metabolism. (Figure 4C).

Figure 4. Functional analysis for the NMRG clusters. (A) Heatmap to display mRNA levels of DEGs
in two NMRG clusters. (B) The analysis of GO enrichment for DEGs between two clusters. (C) The
analysis of KEGG enrichment for DEGs between two clusters.

3.5. Determination and Verification of an NMRG-Based Prognostic Signature

To examine further the prognostic value of NMRGs, NMRG-based risk scores were
created to anticipate HCC patients’ survival. Upon conducting a LASSO regression and
multivariate Cox analyses on the training cohort (Supplementary Figure S6), 11 genes
(i.e., GMPS, UCK2, ENTPD2, PPAT, TXNRD1, RRM2, ATIC, ADSL, ADK, CDA, and DPYS)
with prognostic values were uncovered from 32 NMRGs that had been previously obtained.
Risk scores were subsequently determined for each HCC patient in the training cohort,
and the training cohort sample was categorized into high- and low-risk subgroups based
on the value of the median risk score (Figure 5A). Patients with greater risk scores had
an increased likelihood of mortality, based on the risk score distributions and survival
status. (Figure 5B). According to the PCA and t-SNE displayed in Figure 5C,D, patients
belonging to the two risk groups may be distinguished with ease. Individuals that were in
the high-risk subgroup had consistently reduced DSS, DFI, PFI, and OS values (p < 0.05),
as shown in Figure 5E–H. Furthermore, the survival probability of the ROC curves of risk
score-related AUC values were 0.798, 0.716, and 0.700 for 1, 3, and 5 years (Figure 5I),
demonstrating that the risk score exerts a remarkable function in the prediction of the
survival of HCC patients.
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Figure 5. Construction of NMRG-related signature in the train cohort. (A) Various groups of the
train cohort were created as per the median risk score. (B) Distributions of risk scores and the
cohort’s overall survival status. (C) Train cohort’s PCA. (D) Train cohort’s t-SNE. (E–H) Kaplan–
Meier analyses (OS, DFI, PFI, and DSS) of the train cohort. (I) The train cohort’s AUC values for
ROC curves.

3.6. Predictive Efficiency of the Risk Signature Validation in the GEO Cohort

The GEO cohort (GSE14520) availed NMRG expression data on 225 HCC patients
with complete survival data to confirm the replicability of the risk score in a different
patient cohort. The GEO dataset was classified into high- and low-risk groups as per the
median risk score of the training cohort (Supplementary Figure S7A). As displayed in
Supplementary Figure S7B, the high-risk group was detected to have more death events,
while the low-risk group demonstrated a remarkable probability of survival. PCA as well as
t-SNE demonstrated that patients in the two risk groups were also distributed as per the two
different groups (Supplementary Figure S7C,D). As demonstrated by the Kaplan–Meier
curves for OS in Supplementary Figure S7E, patients in the high-risk group were discovered
to exhibit a worse prognosis in contrast with the other risk group. Additionally, the high-
risk group patients demonstrated a shorter survival time. A time-dependent ROC curve
was examined to further determine the accuracy of the predictive risk signatures. Here, it
was discovered that the AUC values of the signature in 1, 3, and 5 years were 0.611, 0.610,
and 0.619, respectively (Supplementary Figure S7F).

3.7. Nomogram Development and Verification

To ascertain the link between immune function and the risk score, a heatmap was
created. Statistically significant variations existed between the high as well as low-risk
groups in the immune function of activated dendritic cells (aDCs), cytolytic activity, T cell
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regulation (Treg), Type I IFN Response, and Type II IFN Response in both the train and
test cohorts (Supplementary Figure S8A,B). The univariate and multivariate Cox analyses
evaluated the training cohort’s clinical characteristics such as age, gender, grade, stage, and
risk score. The findings of the univariate Cox and multivariate Cox regression analyses
revealed that the training cohort’s risk score and stage were independent prognostic pre-
dictors (Figure 6A,B). Afterward, the aforementioned factors were incorporated to generate
a nomogram (Figure 6C). Furthermore, calibration curves were constructed to verify the
anticipation power for the nomogram. The findings indicated an overall agreement be-
tween the nomogram’s predicted survival rates and the actual survival rates (Figure 6D).
The AUC values of the nomogram in 1, 3, and 5 years for HCC were 0.749, 0.732, and 0.719,
respectively (Figure 6E).

Figure 6. Nomogram (based on risk scores) development and verification. (A,B) Univariate and
multivariate Cox regression analyses in the train cohort. (The green nodes in (A) indicate one-factor
COX regression analysis, and the red nodes in (B) indicate multifactor COX regression analysis). (C) A
nomogram of risk scores and clinical features. (The numbers in the overlapping part of (C) indicate
the survival time (years)). (D) Calibration curves were utilized to validate the nomogram’s 1-year,
3-year, and 5-year predictive ability. (E) The AUC values of the ROC curves for improved evaluation
of the nomogram’s prognostic ability. ** p < 0.01, *** p < 0.001.
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3.8. The Expression of Hub Gene in Different HCC Cell Lines

To validate the bioinformatics predictions, we extracted the total RNA from different
human HCC cell lines (HuH7, HepG2, and Hep3B2.1–7) and human normal hepatocyte
line L-02. The mRNA level of the key genes, namely ADK, ADSL, ATIC, CDA, DPYS,
ENTPD2, GMPS, PPAT, RRM2, TXNRD1, and UCK2, were determined. The results showed
that the expression levels of ADK, ADSL, ATIC, DPYS, ENTPD2, TXNRD1, and UCK2 in at
least one tumor cell line were consistent with the predictions (Figure 7A). We found that
the expression levels of CDA, GMPS, and RRM2 in HCC patients were opposite to the
predicted results (Figure 7B), which is an interesting phenomenon.

 
Figure 7. The differential expression of core genes in three hepatocellular carcinoma cell lines and
normal hepatic epithelial cell lines based on RT-PCR. (A) Genes whose expression levels are consistent
with the predicted results. (B) Genes whose expression levels are contrary to the predicted results.
* p < 0.05, ** p < 0.01 versus L-02 group.

3.9. Metabolic Profiles of Hepatocellular Carcinoma and Differential Analysis of
Nucleotide Metabolites

To observe the overall metabolic profiles in patients with hepatocellular carcinoma,
we performed a non-targeted metabolomics analysis. A total of 26 serum samples from
HCC patients obtained from the biological sample bank of the First Affiliated Hospital of
Dalian Medical University were included in this study. In addition, we matched 26 serum
samples from healthy control subjects according to the sex and age of the HCC patients.
Baseline information for both groups is presented in Supplementary Table S5. The results
of the OPLS-DA analysis showed a significant segregation in polar metabolites and lipids
for both groups (Figure 8A). Next, volcanic maps were used to perform the differences
between the two groups and the mean rate of change in intensity. The results are presented
in Figure 8B.
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Figure 8. Characterization of the nucleotide metabolism landscape of hepatocellular carcinoma.
(A,B) Overall metabolism of patients with hepatocellular carcinoma. (C,D) Nucleotide metabolism in
patients with hepatocellular carcinoma. * p < 0.05, ** p < 0.01, *** p < 0.001 versus normal group.

To further explore the nucleotide metabolic profile in HCC patients, we compared
the levels of nucleotide-related metabolites in those two groups of the samples and the
results are presented as heat maps (Figure 8C). Specifically, a total of 26 products related to
nucleotide metabolism were identified, of which 16 were significantly different, as follows:
adenosine, dihydrothymine, cytidine, hypoxantine, inosine, uric acid, xanthine, uridine,
Uracil, Allantoin, 5-Methyluridine (Ribothymidine), 7-Methylguanine, 5-Methylcytidine,
5-MethylThioadenosine, Allantoic Acid, and 2-O-Methyluridine. We show some obviously
different metabolites in Figure 8D. For the difference analysis of other metabolites, see
Supplementary Figure S9.

4. Discussion

HCC is extremely aggressive, so it is clinically important to explore its effective prog-
nostic indicators [16]. Recently, the traditional prognostic assessment system using clinico-
pathological parameters and staging has failed to meet the needs of precision medicine [17].
As sequencing technology has advanced, researchers have focused increasingly on disease
molecular type and the quest for novel biomarkers to help with clinical diagnosis as well
as treatment [18]. This approach not only enhances the standard prognostic assessment
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but also identifies a novel kind of pathogenesis. During the development of tumors, abnor-
mal cancer metabolism takes place [19]. Recent research has demonstrated that aberrant
nucleotide metabolism speeds up the progression of tumors while suppressing the tumor
microenvironment’s normal immune response [7,20]. The research on the link between
nucleotide metabolism and the emergence of cancer is fast progressing, despite the paucity
of pertinent experiments and studies. For malignancies treatment and prevention of recur-
rence as well as metastasis, the intervention, change, or modulation of molecular pathways
connected to aberrant nucleotide metabolism in cancerous cells has emerged as a novel
strategy and idea [8]. Thus, NMRG-based risk stratification of HCC is a promising strategy
for prognosis assessment and individual management.

We sum up the differences in NMRGs across numerous cancers before studying the
effect of aberrant nucleotide metabolism in HCC. The differences in NMRGs more or
less happened and partial NMRGs had prognostic values in various malignancies. Addi-
tionally, it was evidently shown in several tumors that NMRGs had undergone genetic
mutations and alterations. NMRGs were positively correlated with MYC targets, oxidative
phosphorylation, mTORC1 signaling, E2F targets, and DNA repair in a majority of types
of tumors. Nevertheless, they were negatively linked to UV response DN, myogenesis,
and epithelial–mesenchymal transition. MYC orchestrates proliferation, apoptosis, dif-
ferentiation, and metabolism and is frequently linked to poor prognosis and survival of
patients. It plays a crucial function in practically every step of the neoplastic process [21].
Ectopic MYC expression in malignancies might simultaneously promote aerobic glycolysis
and/or oxidative phosphorylation to supply adequate energy and anabolic substrates
that are essential for the growth of cells and cell proliferation within the tumor microen-
vironment [22]. In cases of proliferative deregulation and in numerous different cancer
types, mTOR signaling is triggered. Numerous mTOR pathway components have been
documented to be dysregulated in malignancies including breast, colon, ovarian, kidney,
and head and neck cancers [23]. Recent studies in HCC and pancreatic cancer suggest
that E2F expression and/or increased E2F target expression in tumors have been linked
to poor prognosis [24–26]. Genes involved in DNA repair responses exhibit a variety of
mutations and abnormal expressions in cancer cells. These changes cause genomic instabil-
ity and accelerate the processes of carcinogenesis and cancer progression [27]. Aberrant
nucleotide metabolism may contribute to the development of cancer by regulating the
above pathways.

Then, we filtered 97 NMRGs to obtain NMRGs that were differentially expressed in
both cancerous and normal tissues and had prognostic significance. Thirty-two NMRGs
were found for NMF clustering and a signature building. First, 32 NMRGs are applied
to divide HCC samples into two molecular clusters with significantly distinct prognoses.
C2 subtype is characterized by high NMRG scores and poor prognosis (PFI, DFI, DSS,
and OS), indicating the risky significance of NMRGs in HCC patients. This result is
consistent with the finding that the majority of NMRGs were HCC risk genes in the pan-
cancer analysis. Considering that adenosine is able to induce the expression of checkpoint
molecules, we compared the differences in ICG expression between the two subtypes. We
discovered that ICGs are expressed at a high level in the C2 subtype, and these differentially
expressed ICGs may be intrinsic to the differential prognosis of HCC and may be potential
targets for treatment. Even though there are various therapeutic choices available for HCC
patients, chemotherapy remains a primary treatment modality for those with advanced
HCC. Nevertheless, the efficacy of chemotherapy is yet unreliable. Therefore, it is important
to find a method to accurately anticipate HCC patients’ chemotherapy responses. We then
explored whether there were differences in the sensitivity of patients with two subtypes
based on NMRG to commonly used chemotherapeutic agents. We found that the C1
subtype might benefit from Sorafenib, Metformin, Docetaxel, Dasatinib, Erlotinib, and
Gefitinib; however, the C2 subtype might benefit from Gemcitabine, Doxorubicin, Cisplatin,
Camptothecin, Bortezomib, and Etoposide. It demonstrates how NMRG-based clustering
may be a huge help in accurately treating individuals with HCC.
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In addition, we used the KEGG pathway enrichment analysis method to investigate
the possible molecular biological mechanisms of C1 and C2 subtypes. The results showed
that differential genes between subtypes were enriched in a variety of metabolic pathways,
such as Tryptophan metabolism, Fatty acid degradation, Arginine and proline metabolism,
Glycine, serine, and threonine metabolism, Primary bile acid biosynthesis, Fatty acid
metabolism, Tyrosine metabolism, and Pyruvate metabolism among others. Dysregulation
of these metabolic processes plays an important role in the development of HCC. Trypto-
phan catabolism has been reported to be involved in immune tolerance response and to
promote response to other anticancer drugs [28]. Furthermore, altered lipid metabolism is
increasingly recognized as a marker of tumor occurrence [29], and our enrichment analysis
showed that fatty acid metabolic processes were indeed significantly altered. The above
results give us an insight that the metabolic processes of the organism are interrelated and
related to each other, while an abnormal nucleotide metabolism can lead to reprogramming
situations of multiple metabolic processes, and finally jointly induce the occurrence of
tumors. Therefore, focusing on the complex metabolic regulatory network may be a novel
direction for predicting or treating tumors.

Additionally, to obtain a reliable signature with clinical significance, we screened
32 NMRGs by univariate Cox and LASSO regression analyses and tested the optimized
candidate genes for signature development. After verification, a novel NMRG-related
prognostic signature was created incorporating 11 genes (i.e., GMPS, UCK2, ENTPD2,
PPAT, TXNRD1, RRM2, ATIC, ADSL, ADK, CDA, and DPYS).

Other research studies have examined these 11 genes in numerous cancer forms, some
of which have also been examined in HCC. A glutamine amide is used by GMPS to gener-
ate the guanine nucleotide as part of the de novo purine biosynthesis process. Previous
research has shown that GMPS was crucial to the development of ovarian cancer [30],
HCC [31], myeloid [32], prostate cancer [33], etc. UCK2, which can catalyze the phospho-
rylation of uridine and cytidine to uridine monophosphate and cytidine monophosphate.
UCK2 has been proven to enhance the migration and invasion of HCC cells [34], which
was also identified to be a latent diagnostic as well as a prognostic indicator for lung
cancer [35] and breast cancer [36]. ENTPD2 is regarded as a pivotal ectoenzyme engaged in
extracellular ATP hydrolysis [37]. The upregulation of ENTPD2 is present in papillary thy-
roid carcinoma-derived cells [38], esophageal cancer cells [39], glioma cells [40], and liver
cancer cells [41] in comparison to normal cells. While ENTPD2 overexpression was a poor
predictor of prognosis for HCC, ENTPD2 inhibition was able to slow the progression of the
tumor and improve the effectiveness and efficiency of immune checkpoint inhibitors [41].
PPAT catalyzes the initial committed step of de novo purine nucleotide biosynthesis [42,43],
implying that targeting PPAT can serve as a successful cancer strategy [44]. Additionally,
PPAT was discovered as a prognostic biomarker in HCC [45]. Modulation of TXNRD1
could influence the proliferation, invasion, and migration of carcinoma [46,47]. TXNRD1 is
upregulated in breast cancer, head and neck cancer, and lung cancer, and its overexpression
is linked to a bad prognosis [48,49]. By altering the redox balance in vitro, inactivation
of TXNRD1 prevented HCC cells from proliferating and led to their apoptosis [50]. Sev-
eral previous reports indicated that RRM2 functioned in the proliferation, invasion, and
metastasis of malignant cells, and as a result, participated in several types of malignant
tumors including HCC [51,52]. ATIC, a bifunctional protein enzyme, catalyzes the final two
steps of the de novo purine biosynthesis pathway. Studies show that the overexpression
of ATIC in HCC is associated with a shorter life expectancy and promotes the growth
of HCC cells via controlling the AMPK-mTOR-S6 K1 signature [53]. ADSL, an essential
enzyme for de novo purine biosynthesis, is thought to be a novel oncogene in prostate
cancer and colorectal carcinoma [54,55]. ADK is a member of the ribokinases family and
is an essential enzyme for the elimination of extracellular adenosine by phosphorylating
it into 5′-adenosine monophosphate [56]. ADK can influence immune systems and aid in
the development of cancer. In addition, lower ADK expression was linked to liver cancer
relapse [57]. Gemcitabine became inactive as a result of the deamination of dFdC to dFdU
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caused by CDA [58]. According to several in vitro studies, overexpressing CDA resulted in
gemcitabine resistance, whereas removing CDA restored gemcitabine sensitivity [59,60]. A
zinc metalloenzyme, DPYS, which breaks down dihydropyrimidine, is expressed at a high
level in tumors in contrast with the matching normal tissues [61]. According to studies,
the DPYS subtype DPYSL3 was a potential biomarker for stomach cancer’s malignant
nature [62].

Utilizing the signature, HCC patients may be successfully classified into the high-risk
subgroup with a worse prognosis as well as the low-risk subgroup in the train, test1, test2,
and test3 cohorts with a better prognosis. The areas under the ROC curves affirmed that
this signature has a good predictive value. Given the possible impact of the tumor immune
function on cancer therapy, we evaluated the difference in immune function between two
risk subgroups of HCC. The results showed Treg and aDCs were expressed at a high
level in the high-risk group, whereas the opposite was true for IFN response and cytolytic
activity. To explicitly exploit the signature’s prognostic capability, the survival rate of HCC
patients was quantitatively examined upon creating a nomogram based on risk score and
other clinical features. ROC and calibration curves evaluated the nomogram’s predictive
potential, showing high accuracy. Finally, we verified the expression of these 11 genes
through basic experiments.

However, some drawbacks are related to our research. All RNA sequence data and
clinical information were from public databases, such as the TCGA and GEO databases.
To develop the predictive significance of our prognostic signature, substantial prospective
clinical research is needed. Lastly, the feature was developed using bioinformatics research
and preliminary basic experimental analysis was performed, but further genetic functional
research is needed to verify our findings.

5. Conclusions

In this study, we successfully obtained a clinical model that can accurately predict the
prognosis of HCC patients by using bioinformatics-related analysis methods. The model
contains 11 NMRGs, and its expression was verified in subsequent molecular biology
experiments. Finally, the nucleotide-related metabolic profile under HCC was verified
in patients based on non-targeted metabolomics data. It is expected that the current
investigation might provide novel perspectives for clinical management and personalized
treatment of HCC patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13111116/s1; Figure S1: Frequency of single nucleotide
variations (SNVs) and various NMRG variant categories; Figure S2: Identifying NMRG-related prog-
nostic DEGs in the TCGA dataset; Figure S3: Rank survey of NMF clustering; Figure S4: Heatmap to
demonstrate mRNA levels of NMRGs in two clusters; Figure S5: The link between drug sensitivity
and the NMRG clusters; Figure S6: Variable selection; Figure S7: Internal validation of NMRG-related;
Figure S8: Relationship between NMRG-related signature and immune function; Figure S9: Supple-
ment to the expression of nucleotide metabolism-related metabolites in patients with hepatocellular
carcinoma; Table S1: Gene primer sequence; Table S2: The findings of DEGs between 373 HCC
samples and 49 normal samples from the TCGA; Table S3: The findings of HCC samples from the
TCGA database that underwent univariate Cox regression analysis; Table S4: The results of DEGs
between two NMRGs clusters; Table S5: Baseline data of clinical samples.

Author Contributions: Conception and design of the study/experiments: D.S. and P.Y.; experimental
implementation/data acquisition: T.W., Z.W. and M.W.; data analysis and interpretation: T.W., J.L.,
S.M., Q.Y., A.H. and Z.W.; drafting of the manuscript: T.W., J.L., S.M., D.S. and P.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the key research and development project of Liaoning Province
(No. 2018225054).

Institutional Review Board Statement: Human involved serum samples were obtained from the
biological sample bank of the First Affiliated Hospital of Dalian Medical University (collected from

58



Metabolites 2023, 13, 1116

November 2016 to December 2019), all the samples were informed consent for scientific research. The
study has been approved by the Ethics Committee of the First Affiliated Hospital of Dalian Medical
University (No. PJ-KS-KY-2021–129).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available in the main article,
further inquiries can be directed to the corresponding authors. The data are not publicly available
due to privacy.

Conflicts of Interest: Z.W. and P.Y. are co-founders of iphenome (Yun Pu Kang) Biotechnology Inc.
Z.W. is an employee of iphenome (Yun Pu Kang) Biotechnology Inc. The other authors declare no
competing interests.

References

1. Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev.
Dis. Primers 2016, 2, 16018. [CrossRef] [PubMed]

2. Xiao, J.; Wang, F.; Wong, N.K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K.; et al. Global liver disease burdens and
research trends: Analysis from a Chinese perspective. J. Hepatol. 2019, 71, 212–221. [CrossRef] [PubMed]

3. Sarin, S.K.; Kumar, M.; Eslam, M.; George, J.; Al Mahtab, M.; Akbar, S.; Jia, J.; Tian, Q.; Aggarwal, R.; Muljono, D.H.; et al. Liver
diseases in the Asia-Pacific region: A Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol. Hepatol. 2020, 5,
167–228. [PubMed]

4. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United
States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [CrossRef]

5. Rathbone, M.P.; Middlemiss, P.J.; Kim, J.K.; Gysbers, J.W.; DeForge, S.P.; Smith, R.W.; Hughes, D.W. Adenosine and its nucleotides
stimulate proliferation of chick astrocytes and human astrocytoma cells. Neurosci. Res. 1992, 13, 1–17. [CrossRef]

6. Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017, 168,
657–669. [CrossRef]

7. Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [CrossRef]
8. Ma, J.; Zhong, M.; Xiong, Y.; Gao, Z.; Wu, Z.; Liu, Y.; Hong, X. Emerging roles of nucleotide metabolism in cancer development:

Progress and prospect. Aging 2021, 13, 13349–13358. [CrossRef]
9. Lee, J.S.; Adler, L.; Karathia, H.; Carmel, N.; Rabinovich, S.; Auslander, N.; Keshet, R.; Stettner, N.; Silberman, A.; Agemy,

L.; et al. Urea Cycle Dysregulation Generates Clinically Relevant Genomic and Biochemical Signatures. Cell 2018, 174, 1559–1570.
[CrossRef]

10. Keshet, R.; Lee, J.S.; Adler, L.; Iraqi, M.; Ariav, Y.; Lim, L.; Lerner, S.; Rabinovich, S.; Oren, R.; Katzir, R.; et al. Targeting purine
synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. Nat. Cancer 2020, 1, 894–908.
[CrossRef]

11. Kepp, O.; Loos, F.; Liu, P.; Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol. Rev. 2017, 280,
83–92. [CrossRef] [PubMed]

12. Kumar, V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: Where to go. Purinergic Signal 2013, 9, 145–165.
[CrossRef] [PubMed]

13. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive
Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [CrossRef] [PubMed]

14. Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor
gene expression levels. PLoS ONE 2014, 9, e107468. [CrossRef]

15. Shen, H.; Laird, P.W. Interplay between the cancer genome and epigenome. Cell 2013, 153, 38–55. [CrossRef]
16. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and

mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [CrossRef]
17. Engel, J.; Emeny, R.T.; Hölzel, D. Positive lymph nodes do not metastasize. Cancer Metastasis Rev. 2012, 31, 235–246. [CrossRef]
18. Wang, W.; Kandimalla, R.; Huang, H.; Zhu, L.; Li, Y.; Gao, F.; Goel, A.; Wang, X. Molecular subtyping of colorectal cancer: Recent

progress, new challenges and emerging opportunities. Semin. Cancer Biol. 2019, 55, 37–52. [CrossRef]
19. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
20. Panther, E.; Corinti, S.; Idzko, M.; Herouy, Y.; Napp, M.; la Sala, A.; Girolomoni, G.; Norgauer, J. Adenosine affects expression of

membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells. Blood 2003,
101, 3985–3990. [CrossRef]

21. Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target Ther. 2018, 3, 5.
[CrossRef] [PubMed]

22. Dang, C.V.; Le, A.; Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin. Cancer Res. 2009, 15,
6479–6483. [CrossRef] [PubMed]

59



Metabolites 2023, 13, 1116

23. Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [CrossRef]
[PubMed]

24. Kent, L.N.; Rakijas, J.B.; Pandit, S.K.; Westendorp, B.; Chen, H.Z.; Huntington, J.T.; Tang, X.; Bae, S.; Srivastava, A.; Senapati,
S.; et al. E2f8 mediates tumor suppression in postnatal liver development. J. Clin. Investig. 2016, 126, 2955–2969. [CrossRef]
[PubMed]

25. Kent, L.N.; Bae, S.; Tsai, S.Y.; Tang, X.; Srivastava, A.; Koivisto, C.; Martin, C.K.; Ridolfi, E.; Miller, G.C.; Zorko, S.M.; et al.
Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma. J. Clin. Investig. 2017, 127, 830–842.
[CrossRef] [PubMed]

26. Lan, W.; Bian, B.; Xia, Y.; Dou, S.; Gayet, O.; Bigonnet, M.; Santofimia-Castaño, P.; Cong, M.; Peng, L.; Dusetti, N.; et al. E2F
signature is predictive for the pancreatic adenocarcinoma clinical outcome and sensitivity to E2F inhibitors, but not for the
response to cytotoxic-based treatments. Sci. Rep. 2018, 8, 8330. [CrossRef]

27. Motegi, A.; Masutani, M.; Yoshioka, K.I.; Bessho, T. Aberrations in DNA repair pathways in cancer and therapeutic significances.
Semin. Cancer Biol. 2019, 58, 29–46. [CrossRef]

28. Brochez, L.; Chevolet, I.; Kruse, V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur. J. Cancer 2017,
76, 167–182. [CrossRef]

29. Glaysher, J. Lipid metabolism and cancer. Curr. Opin. Lipidol. 2013, 24, 530–531. [CrossRef]
30. Wang, P.; Zhang, Z.; Ma, Y.; Lu, J.; Zhao, H.; Wang, S.; Tan, J.; Li, B. Prognostic values of GMPS, PR, CD40, and p21 in ovarian

cancer. PeerJ 2019, 7, e6301. [CrossRef]
31. Yin, L.; He, N.; Chen, C.; Zhang, N.; Lin, Y.; Xia, Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for

human hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1908–1916. [CrossRef] [PubMed]
32. Chen, X.; Burkhardt, D.B.; Hartman, A.A.; Hu, X.; Eastman, A.E.; Sun, C.; Wang, X.; Zhong, M.; Krishnaswamy, S.; Guo, S.

MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat. Commun. 2019, 10, 5767. [CrossRef] [PubMed]
33. Wang, Q.; Guan, Y.F.; Hancock, S.E.; Wahi, K.; van Geldermalsen, M.; Zhang, B.K.; Pang, A.; Nagarajah, R.; Mak, B.; Freidman,

N.; et al. Inhibition of guanosine monophosphate synthetase (GMPS) blocks glutamine metabolism and prostate cancer growth.
J. Pathol. 2021, 254, 135–146. [CrossRef] [PubMed]

34. Zhou, Q.; Jiang, H.; Zhang, J.; Yu, W.; Zhou, Z.; Huang, P.; Wang, J.; Xiao, Z. Uridine-cytidine kinase 2 promotes metastasis of
hepatocellular carcinoma cells via the Stat3 pathway. Cancer Manag. Res. 2018, 10, 6339–6355. [CrossRef]

35. Wu, Y.; Jamal, M.; Xie, T.; Sun, J.; Song, T.; Yin, Q.; Li, J.; Pan, S.; Zeng, X.; Xie, S.; et al. Uridine-cytidine kinase 2 (UCK2): A
potential diagnostic and prognostic biomarker for lung cancer. Cancer Sci. 2019, 110, 2734–2747. [CrossRef]

36. Shen, G.; He, P.; Mao, Y.; Li, P.; Luh, F.; Ding, G.; Liu, X.; Yen, Y. Overexpression of Uridine-Cytidine Kinase 2 Correlates with
Breast Cancer Progression and Poor Prognosis. J. Breast Cancer 2017, 20, 132–141. [CrossRef]

37. Lua, I.; Li, Y.; Zagory, J.A.; Wang, K.S.; French, S.W.; Sévigny, J.; Asahina, K. Characterization of hepatic stellate cells, portal
fibroblasts, and mesothelial cells in normal and fibrotic livers. J. Hepatol. 2016, 64, 1137–1146. [CrossRef]

38. Bertoni, A.; de Campos, R.P.; Tsao, M.; Braganhol, E.; Furlanetto, T.W.; Wink, M.R. Extracellular ATP is Differentially Metabolized
on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells. Cancer Microenviron. 2018, 11, 61–70. [CrossRef]

39. Santos, A.A., Jr.; Cappellari, A.R.; de Marchi, F.O.; Gehring, M.P.; Zaparte, A.; Brandão, C.A.; Lopes, T.G.; da Silva, V.D.; Pinto, L.;
Savio, L.; et al. Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signal. 2017, 13, 279–292.
[CrossRef]

40. Braganhol, E.; Zanin, R.F.; Bernardi, A.; Bergamin, L.S.; Cappellari, A.R.; Campesato, L.F.; Morrone, F.B.; Campos, M.M.; Calixto,
J.B.; Edelweiss, M.I.; et al. Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury.
Purinergic Signal. 2012, 8, 235–243. [CrossRef]

41. Chiu, D.K.; Tse, A.P.; Xu, I.M.; Di Cui, J.; Lai, R.K.; Li, L.L.; Koh, H.Y.; Tsang, F.H.; Wei, L.L.; Wong, C.M.; et al. Hypoxia inducible
factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma.
Nat. Commun. 2017, 8, 517. [CrossRef] [PubMed]

42. Iwahana, H.; Oka, J.; Mizusawa, N.; Kudo, E.; Ii, S.; Yoshimoto, K.; Holmes, E.W.; Itakura, M. Molecular cloning of human
amidophosphoribosyltransferase. Biochem. Biophys. Res. Commun. 1993, 190, 192–200. [CrossRef] [PubMed]

43. Yamaoka, T.; Kondo, M.; Honda, S.; Iwahana, H.; Moritani, M.; Ii, S.; Yoshimoto, K.; Itakura, M. Amidophosphoribosyltransferase
limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis.
J. Biol. Chem. 1997, 272, 17719–17725. [CrossRef] [PubMed]

44. Bibi, N.; Parveen, Z.; Nawaz, M.S.; Kamal, M.A. In Silico Structure Modeling and Molecular Docking Analysis of Phosphoribosyl
Pyrophosphate Amidotransferase (PPAT) with Antifolate Inhibitors. Curr. Cancer Drug Targets 2019, 19, 408–416. [CrossRef]
[PubMed]

45. Hu, X.; Bao, M.; Huang, J.; Zhou, L.; Zheng, S. Identification and Validation of Novel Biomarkers for Diagnosis and Prognosis of
Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 541479. [CrossRef] [PubMed]

46. Huang, S.; Zhu, X.; Ke, Y.; Xiao, D.; Liang, C.; Chen, J.; Chang, Y. LncRNA FTX inhibition restrains osteosarcoma proliferation and
migration via modulating miR-320a/TXNRD1. Cancer Biol. Ther. 2020, 21, 379–387. [CrossRef]

47. Hua, S.; Quan, Y.; Zhan, M.; Liao, H.; Li, Y.; Lu, L. miR-125b-5p inhibits cell proliferation, migration, and invasion in hepatocellular
carcinoma via targeting TXNRD1. Cancer Cell Int. 2019, 19, 203. [CrossRef]

60



Metabolites 2023, 13, 1116

48. Bhatia, M.; McGrath, K.L.; Di Trapani, G.; Charoentong, P.; Shah, F.; King, M.M.; Clarke, F.M.; Tonissen, K.F. The thioredoxin
system in breast cancer cell invasion and migration. Redox Biol. 2016, 8, 68–78. [CrossRef]

49. Leone, A.; Roca, M.S.; Ciardiello, C.; Costantini, S.; Budillon, A. Oxidative Stress Gene Expression Profile Correlates with Cancer
Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. Oxid. Med. Cell. Longev.
2017, 2017, 2597581. [CrossRef]

50. Lee, D.; Xu, I.M.; Chiu, D.K.; Leibold, J.; Tse, A.P.; Bao, M.H.; Yuen, V.W.; Chan, C.Y.; Lai, R.K.; Chin, D.W.; et al. Induction
of Oxidative Stress through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular
Carcinoma. Hepatology 2019, 69, 1768–1786. [CrossRef]

51. Wang, N.; Zhan, T.; Ke, T.; Huang, X.; Ke, D.; Wang, Q.; Li, H. Increased expression of RRM2 by human papillomavirus E7
oncoprotein promotes angiogenesis in cervical cancer. Br. J. Cancer 2014, 110, 1034–1044. [CrossRef] [PubMed]

52. Tian, H.; Ge, C.; Li, H.; Zhao, F.; Hou, H.; Chen, T.; Jiang, G.; Xie, H.; Cui, Y.; Yao, M.; et al. Ribonucleotide reductase M2B inhibits
cell migration and spreading by early growth response protein 1-mediated phosphatase and tensin homolog/Akt1 pathway in
hepatocellular carcinoma. Hepatology 2014, 59, 1459–1470. [CrossRef] [PubMed]

53. Li, M.; Jin, C.; Xu, M.; Zhou, L.; Li, D.; Yin, Y. Bifunctional enzyme ATIC promotes propagation of hepatocellular carcinoma by
regulating AMPK-mTOR-S6 K1 signaling. Cell Commun. Signal. 2017, 15, 52. [CrossRef] [PubMed]

54. Liao, J.; Song, Q.; Li, J.; Du, K.; Chen, Y.; Zou, C.; Mo, Z. Carcinogenic effect of adenylosuccinate lyase (ADSL) in prostate cancer
development and progression through the cell cycle pathway. Cancer Cell Int. 2021, 21, 46. [CrossRef]

55. Taha-Mehlitz, S.; Bianco, G.; Coto-Llerena, M.; Kancherla, V.; Bantug, G.R.; Gallon, J.; Ercan, C.; Panebianco, F.; Eppenberger-
Castori, S.; von Strauss, M.; et al. Adenylosuccinate lyase is oncogenic in colorectal cancer by causing mitochondrial dysfunction
and independent activation of NRF2 and mTOR-MYC-axis. Theranostics 2021, 11, 4011–4029. [CrossRef] [PubMed]

56. Park, J.; Gupta, R.S. Adenosine kinase and ribokinase--the RK family of proteins. Cell. Mol. Life Sci. 2008, 65, 2875–2896. [CrossRef]
57. Zhulai, G.; Oleinik, E.; Shibaev, M.; Ignatev, K. Adenosine-Metabolizing Enzymes, Adenosine Kinase and Adenosine Deaminase,

in Cancer. Biomolecules 2022, 12, 418. [CrossRef]
58. Shipley, L.A.; Brown, T.J.; Cornpropst, J.D.; Hamilton, M.; Daniels, W.D.; Culp, H.W. Metabolism and disposition of gemcitabine,

and oncolytic deoxycytidine analog, in mice, rats, and dogs. Drug Metab. Dispos. 1992, 20, 849–855.
59. Weizman, N.; Krelin, Y.; Shabtay-Orbach, A.; Amit, M.; Binenbaum, Y.; Wong, R.J.; Gil, Z. Macrophages mediate gemcitabine

resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 2014, 33, 3812–3819. [CrossRef]
60. Maréchal, R.; Bachet, J.B.; Mackey, J.R.; Dalban, C.; Demetter, P.; Graham, K.; Couvelard, A.; Svrcek, M.; Bardier-Dupas, A.;

Hammel, P.; et al. Levels of gemcitabine transport and metabolism proteins predict survival times of patients treated with
gemcitabine for pancreatic adenocarcinoma. Gastroenterology 2012, 143, 664–674. [CrossRef]

61. Basbous, J.; Aze, A.; Chaloin, L.; Lebdy, R.; Hodroj, D.; Ribeyre, C.; Larroque, M.; Shepard, C.; Kim, B.; Pruvost, A.; et al.
Dihydropyrimidinase protects from DNA replication stress caused by cytotoxic metabolites. Nucleic Acids Res. 2020, 48, 1886–1904.
[CrossRef] [PubMed]

62. Kanda, M.; Nomoto, S.; Oya, H.; Shimizu, D.; Takami, H.; Hibino, S.; Hashimoto, R.; Kobayashi, D.; Tanaka, C.; Yamada, S.; et al.
Dihydropyrimidinase-like 3 facilitates malignant behavior of gastric cancer. J. Exp. Clin. Cancer Res. 2014, 33, 66. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

61



Citation: Zheng, S.; Zhou, L.; Hoene,

M.; Peter, A.; Birkenfeld, A.L.;

Weigert, C.; Liu, X.; Zhao, X.; Xu, G.;

Lehmann, R. A New Biomarker

Profiling Strategy for Gut

Microbiome Research: Valid

Association of Metabolites to

Metabolism of Microbiota Detected

by Non-Targeted Metabolomics in

Human Urine. Metabolites 2023, 13,

1061. https://doi.org/10.3390/

metabo13101061

Academic Editor: Karolina

Skonieczna-Żydecka
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Abstract: The gut microbiome is of tremendous relevance to human health and disease, so it is a
hot topic of omics-driven biomedical research. However, a valid identification of gut microbiota-
associated molecules in human blood or urine is difficult to achieve. We hypothesize that bowel
evacuation is an easy-to-use approach to reveal such metabolites. A non-targeted and modifying
group-assisted metabolomics approach (covering 40 types of modifications) was applied to investi-
gate urine samples collected in two independent experiments at various time points before and after
laxative use. Fasting over the same time period served as the control condition. As a result, depletion
of the fecal microbiome significantly affected the levels of 331 metabolite ions in urine, including
100 modified metabolites. Dominating modifications were glucuronidations, carboxylations, sulfa-
tions, adenine conjugations, butyrylations, malonylations, and acetylations. A total of 32 compounds,
including common, but also unexpected fecal microbiota-associated metabolites, were annotated.
The applied strategy has potential to generate a microbiome-associated metabolite map (M3) of
urine from healthy humans, and presumably also other body fluids. Comparative analyses of M3 vs.
disease-related metabolite profiles, or therapy-dependent changes may open promising perspectives
for human gut microbiome research and diagnostics beyond analyzing feces.

Keywords: microbiome; gut flora; metabolomics; metabolites; urine; diagnosis; profiling; gut
microbiota

1. Introduction

The gut microbiota very closely interacts with its human host and influences human
health [1]. A continuously increasing number of reports show an important role of the gut
microbiome in disease development, but also for recovery from diseases, for remission,
as well as for disease prevention [2–5]. Consequently, the luminal (fecal) and mucosal
gut microbiota has been intensively investigated in animal models and humans in a com-
prehensive manner, applying various omics approaches [6]. These studies are first and
foremost performed in feces [6,7]. As a result, a tremendous increase in knowledge has been
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achieved, for instance, about nutritional effects on the microbiome, the pathophysiological
consequences of a disbalance of bacterial phyla (e.g., in metabolic diseases), and the role of
distinct bacterial species in health and diseases [4,7–11].

These investigations were paralleled by efforts to detect and identify compounds in-
volved in the crosstalk between the gut microbiota and human cells, tissues, or organs [12–15].
Comprehensive investigations of these metabolites have just started [16–18]. Most of the
reported metabolites were studied in feces and blood, and just a few in urine [19–23].

Urine is a non-invasively collected sample material. It stands in direct connectivity
to blood, since metabolites from the gut microbiome passing the intestinal wall can be
transported via the splanchnic bed and the mesenteric veins to the liver, and then partially
filtered blood passes through the hepatic veins into the systemic circulation, including
the kidneys. Consequently, it could be a useful and easy-to-collect biospecimen to study
gut microbiome-associated metabolites. However, the unequivocal linking of a detected
metabolite in a body fluid, like blood or urine, to the gut microbiota is quite challenging.

Aiming to contribute to the efforts of closing this gap in knowledge, we hypothesized
that a bowel evacuation would change the levels of metabolites associated with the fecal
microbiota, thereby enabling the detection of these compounds in human urine. To test this
hypothesis, in the current study, we investigated urine samples collected before and after a
bowel evacuation, applying a comprehensive, non-targeted, and modifying group-assisted
metabolomics approach.

2. Materials and Methods

2.1. Study Design

The first experiment was performed over 10 days, collecting urine samples at 40 time
points before and after a bowel evacuation in an individual self-experiment (n = 1), as
well as during the same period after starting again to consume food. Bowel evacuation,
as preparation for a colonoscopy as a healthcare check, was achieved using CitraFleet®

(sodium picosulfate, sodium citrate) and Tirgon® (Bisacodyl), both from Recordati Pharma
(Ulm, Germany). Propofol anesthesia was applied during the colonoscopy. A procedure-
related 48 h fasting period was included. Therefore, as a control, a similar experiment was
performed, including 48 h of fasting but without bowel evacuation. This experiment ran
for 9 days and 30 urine samples were collected. Both urine sample sets consisted of the 1st
and 2nd morning urine, as well as spot urine, since urine samples were collected at various
time points during the day and night. In a subsequent experiment, 6 healthy volunteers
(age: 25–56 years; two females and four males) performed the same bowel evacuation
with a total fasting period of 24 h before refeeding (12 h bowel evacuation and a preceding
fasting period of 12 h). Urine samples were collected at 4 time points. The first urine
sample was taken immediately after waking up at 7.00 am after a 12 h overnight fasting
period (1st morning urine). The second sample was the 2nd morning urine, collected at
8.00 am, directly before the start of the bowel evacuation. The third and fourth samples
were collected 10 h and 12 h after bowel evacuation, respectively. Furthermore, three out of
the six volunteers (age: 25–56 years; one female and two males) performed in addition a
24 h “fasting-only” experiment, as a control. All urine samples were stored at −80 ◦C until
further processing and analyses. The study was conducted according to the Declaration
of Helsinki of 1964 and its later amendments. The ethics committee of the University
of Tuebingen approved the protocol (188/2017BO2). All volunteers provided written
informed consent before the start of the study.

2.2. Sample Preparation

Urine was thawed on ice, vortexed, and an internal standard (IS) mix was added
(v/v, 1:10) containing the following 13 ISs: carnitine C2:0-d3, carnitine C6:0-d3, carnitine
C10:0-d3, leucine-d3, phenylalanine-d5, tryptophan-d5, cholic acid-2,2,4,4-d4, chenodeoxy-
cholic acid-2,2,4,4-d4, leucine enkephalin, indoxyl sulfate-[13C6], L-valine-d8, sodium-2-
hydroxybutyrate-2,3,3-d3, and L-4-hydroxyphenyl-d4-alanine (details in Table S1). After
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the addition of the IS-mix, the samples were vortexed again, centrifuged at 18,000× g
(4 ◦C for 10 min), and subsequently 100 μL of the supernatant was evaporated. For mass
spectrometric analysis, samples were dissolved in 300 μL water:acetonitrile (v/v, 95:5).

2.3. Metabolites Profiling by Liquid-Chromatography Mass Spectrometry (LC-MS)

Non-targeted profiling was performed with an Ultra Performance Liquid Chromatog-
raphy system (UPLC, Waters Corporation, Manchester, UK) coupled to a Triple TOF 5600+
mass spectrometer (AB SCIEX, Framingham, MA, USA). Chromatographic separation was
performed using ACQUITY HSS T3 column (2.1 × 100 mm, 1.8 μm, Waters, Milford, MA,
USA). The mobile phases were water (A) and acetonitrile (B) acidified by 0.1% formic
acid, respectively. The flow rate was 0.35 mL/min and the total run time was 26 min. The
elution gradient initiated with 5% B for 1 min, linearly increased to 50% B at 18 min, then
increased to 100% B after 0.5 min, maintained for 4 min, then went back to 5% B after
0.5 min and maintained for 3 min for post-equilibrium. The injection volume was 5 μL.
Column temperature was set at 40 ◦C.

For the MS instrument, full MS-ddMS2 mode was used with mass ranges of m/z
50–1000 Da and 30–1000 Da, respectively. Accumulation times for full scan and ddMS2

acquisition modes were 0.25 s and 0.03 s, respectively. Cycle time was 0.75 s. Declustering
potential was set at 90. Both electrospray positive ion (ESI+) and negative ion (ESI−) modes
were used. Electrospray voltages were set at 4.5 kV for ESI+ mode and −4.0 kV for ESI−
mode; ionspray temperature was set at 500 ◦C; ion source gas1 was 50 psi; ion source gas2
was 50 psi; and curtain gas was 35 psi. For dd-MS2, collision energies of 15 V, 30 V, and
45 V were applied and MS/MS fragmentation patterns of the 15 most intense ions in full
scan were acquired. Every sixth sample was followed by a quality control (QC) analysis of
pooled urine.

2.4. Data Processing

Peak detection and alignment were conducted by MarkerView software 1.2.1(AB
SCIEX, Framingham, MA, USA). The parameters for peak detection were as follows:
minimum spectral peak width of 10 ppm, minimum retention time (tR) peak width of
5 scans, and noise threshold of 1000. For peak alignment, a tR tolerance of 0.5 min and mass
tolerance of 10 ppm were used. After applying “modified 80% rule” to remove missing
values and then removing isotope ions [24], the intensity of each peak was normalized
to an appropriate IS. Only peaks with relative standard deviation (RSD) of responses
in QC samples less than 30% were kept for subsequent statistical analysis. Creatinine
concentrations were further used to normalize the responses of features.

Before statistical analysis, the relative peak response of each metabolite at time point 1
was set to 100%. Then we compared the relative responses at time point 3 (10 h after bowel
evacuation) in the bowel evacuation group (n = 6) versus the only fasting group (n = 3)
using the two-tailed unpaired t test. p < 0.05 indicated that the difference was statistically
significant. The heatmap of differential metabolites was obtained by Multi-Experiment
viewer 4.9.0.

2.5. Metabolite Annotation

Metabolite annotation was firstly carried out with the OSI/SMMS software 2.4.1.
In brief, the accurate MS and MS/MS spectra of ion features in analyzed samples were
searched against an in-house database containing comprehensive qualitative information of
more than 2000 reference chemical standards [25]. For modification-type determination of
other gut microbiota-associated ion features unannotated, we used MS2Analyzer software
to search for characteristic neutral losses of 40 typical metabolite modifications in human
urine in the extracted MS2 spectra by setting parameters of the m/z window as 0.005 Da
and the intensity threshold as 0.1 [26].
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3. Results

3.1. Distinct Metabolites Are Decreased Subsequent to Laxative-Induced Bowel Evacuation

Samples from the self-experiment were analyzed by non-targeted metabolomics to
test our hypothesis of the detection of fecal microbiota-associated metabolites in human
urine by a comparison of samples collected before and after a laxative-induced bowel
evacuation. Exemplarily, Figure 1A shows at 40 different time points during a 10-day
period the time courses of the levels of phenylacetylglutamine, hippuric acid, p-cresol
glucuronide, glutamine, and glutamate. A persistent decrease after the bowel evacuation
until the start of refeeding is clearly visible. To exclude the possibility that the detected
decrease was caused by fasting, since the procedure of bowel evacuation entailed a 48 h
fasting period, the same male individual performed a second self-experiment lasting 9 days,
which included a “fasting-only” phase of 48 h (Figure 1B). Differences in the time courses
of metabolite signal intensities between the bowel evacuation and the exclusively fasting
experiment are obvious (Figure 1). Anesthesia by propofol was included in the period of
the bowel evacuation, because a colonoscopy was executed in the scope of a health check.
Therefore, a possible propofol effect on metabolite levels could not be excluded at this time
point.

 

Figure 1. (A) Time courses of levels of exemplarily selected metabolites in human urine over a 10-day
period before and during a laxative-induced bowel evacuation, and after starting refeeding. The red
rectangles mark the 48 h period without food consumption and the dash dotted lines on the x-axes
separate the different days. In total, 40 urine samples were collected (1st and 2nd morning urine,
as well as spot urine) throughout the whole day (sample numbers are provided on the x-axes). The
experiment was conducted as self-experiment from one male individual. (B) Control experiment,
i.e., 9-day time courses of the levels of the same metabolites before and during a 48 h fasting period,
and after starting refeeding. The fasting period is marked by red rectangle. In total, 30 urine samples
were collected all day from the same individual. The x-axes show the different days and the y-axes
the relative peak responses in arbitrary units.

Based on this single individuum experiment, we concluded that the experimental
design was suitable. In addition, possible time points for sample collection after bowel
evacuation (≥10 h) could be extracted from the achieved data for subsequent studies.

3.2. Confirmation of the Findings of Luminal (Fecal) Microbiota-Associated Metabolites in
Human Urine

Next, we aimed to (a) confirm the preceding findings, (b) exclude possible propofol
effects on the findings, and (c) shorten the fasting period to adjust the sample collection to
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the usual procedure during a common health check colonoscopy. This laxative-induced
bowel evacuation experiment was performed by six volunteers but without subsequent
colonoscopy, i.e., without propofol anesthesia. The time from the start of bowel evacuation
until refeeding was reduced to 12 h and the total fasting time was reduced to 24 h. Urine
samples were collected at four time points. A scheme illustrating the experimental design
and sample collection time points is provided in Figure 2A. Furthermore, a “fasting-only”
experiment with identical sample collection time points was performed by three volunteers
as a control experiment. Figure 2B shows the confirmation of all findings achieved in
the n = 1 experiment (Figure 1). Based on these findings we could not only validate our
preceding results, but could also exclude effects of propofol, as well as confirm the time
frame of 10–12 h after bowel evacuation for sample collection as well-suited.

(A) 

 
(B) 

 

Figure 2. (A) Scheme of the experimental design and sample collection time points. (B) Metabolite
levels in human urine collected at four time points before and after a bowel evacuation including
24 h fasting period (n = 6, black lines), and only fasting for 24 h (n = 3, blue lines). Time point 1:
1st morning urine; time point 2: 2nd morning urine, collected directly before the start of the bowel
evacuation; time point 3: collected 10 h after bowel evacuation; time point 4: collected 12 h after
bowel evacuation. Bars represent mean ± SD; the student’s t-test between groups: * p < 0.05,
** p < 0.01, *** p < 0.001.
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3.3. A Considerable Number of Metabolites in Human Urine Are Associated to the Luminal
(Fecal) Microbiome

Next, we evaluated the data of all covered metabolite ion masses detected by non-
targeted metabolomics analysis. After LC-MS data pretreatment, 7501 features remained.
Around 4% (331 metabolite ion masses) were significantly altered by bowel evacuation
and were therefore labeled as associated with the fecal microbiota. The majority of these
metabolites were decreased after bowel evacuation, suggesting a production or trans-
formation of these compounds by luminal gut microbes (Figure 3A). Profiling 40 differ-
ent kinds of modifications led to the detection of 94 modified metabolites among these
310 fecal microbiota-associated metabolites that decreased after bowel evacuation (details in
Table S2). Glucuronidation dominated these modifications (36%), followed by carboxyla-
tion (26%), sulfation (5%), adenine conjugation (4%), butyrylation (4%), malonylation (3%),
acetylation (2%), and other modification types (20%). Interestingly, 21 fecal microbiome-
associated metabolites, including six modified metabolite signals, were increased in com-
parison to the “fasting-only” control experiment (Figure 3B and Table S2), which may imply
that gut microbes contribute to the suppression of their levels.

 
Figure 3. (A) Heat map of 310 metabolites in human urine showing significantly decreased metabo-
lite levels after laxative-induced bowel evacuation (n = 6) in comparison to only fasting (n = 3).
(B) Significantly increased levels of 21 metabolites after bowel evacuation (n = 6) in comparison to
only fasting (n = 3). A significant difference was defined as p < 0.05 in a two-tailed unpaired t test
comparing relative responses at time point 3 (10 h after bowel evacuation versus the only fasting
group at the same time point). In the heat map, each urinary metabolite is represented by a single
column. Rows represent different individuals. Black is the intensity at time point 1, green labels show
decreased signal intensities, and red labels show increased signal intensities.

Among the 331 luminal microbiota-associated metabolite features, 32 were structurally
elucidated and 6 were confirmed by standard compounds. Table 1 provides a list of
annotated fecal microbiota-associated metabolites detected in human urine.
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Table 1. Annotated fecal microbiota-associated metabolites. Identity is either based on confirmation
with a standard compound or putative annotation based on exact mass (MS1) and fragmentation
patterns (MS2).

No. Metabolites Annotation Base Category
Selected Microbiota-Related

References

1 Phenylalanine a, b, c Amino acid [8]
2 Glutamine a, b Amino acid [12,27]
3 Glutamate a, b Amino acid [12,27]
4 Methionine a, b Amino acid [8]
5 Tryptophan a, b Amino acid [8]
6 N-Acetyltryptophan a, b Amino acid [8]
7 5-Hydroxytryptophan a, b Amino acid [8]
8 N-Acetyltyrosine a, b Amino acid [8]
9 N-(3-Indolylacetyl)-L-alanine a, b Amino acid [8]
10 N-cyclohexyltaurine a, b Amino acid
11 Phenylacetylglutamine a, b, c Amino acid [13,28]
12 Hippuric acid a, b, c Organic acid [29,30]
13 Hydroxyhippuric acid a, b Organic acid [8]
14 Hydroxyphenyl lactic acid a, b Organic acid [8]
15 5-Hydroxyindole-3-acetic acid a, b Organic acid [8]
16 Aminobutyric acid a, b, c Organic acid [8]
17 Dimethyluric acid a, b, c Organic acid [8]
18 Aminooctanoic acid a, b Organic acid [8]
19 p-Cresol glucuronide a, b Organic acid [16,31,32]
20 Dimethylxanthine a, b Nucleoside [33]
21 Orotidine a, b Nucleoside [8]
22 8-Hydroxy-2-deoxyguanosine a, b Nucleoside
23 Decanoylcarnitine a, b, c Others [8]
24 Tyrosol a, b Others [34]
25 Hydroxybenzyl alcohol a, b Others
26 2-Methyl-1,2,3,4-tetrahydro-6,7-isoquinolinediol a, b Others
27 4-Hydroxyquinoline a, b Others [8]
28 Hydroxybenzaldehyde a, b Others [35]
29 Dihydroxyacetone a, b Others [36]
30 Acetamidophenyl glucuronide a, b Others [32]
31 3-Methyloxindole a, b Others [8]
32 Phenylacetamide a, b Others [8]

a: exact mass, b: MS/MS spectra, c: confirmed by a standard.

4. Discussion

In our study, we followed the hypothesis that gut microbiota-associated metabolites
can be profiled by metabolomics investigations of urine samples. As a proof of concept, we
compared the urinary metabolome before and after a bowel evacuation. We speculated that
the massive reduction in the luminal (fecal) microbiota should affect the levels of associated
metabolites. In Figures 1–3, the association of a considerable number of metabolites with the
fecal gut microbiota was demonstrated, first in a self-experiment of one male individual and
then confirmed in a subsequent experiment. Furthermore, the conditions were optimized
and adjusted in a way that the sample collection matched the regular procedure during
a colonoscopy performed as a healthcare check, meaning two sampling time points, one
just before bowel evacuation and the other 10–12 h thereafter. This could open promising
perspectives for gut microbiome research studies, particularly for the generation of a fecal
microbiome-associated metabolite map (M3) in urine from healthy individuals as a first
step, which then could build a base for comparisons of fecal gut microbiome-associated
urinary metabolome profiles in disease-related contexts in the future.

The gut microbiota consists of two fractions, namely the luminal (fecal) microbiota
and mucosal microbiota. The bacterial composition, overall abundance, and diversity
of luminal and mucosal microbiota vary along the longitudinal axis of the gut based on
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differences in environmental parameters like pH, pO2, osmolality, or mucus type. Also, the
microbiota mass varies. In comparison to their sparse distribution in the small intestine,
the colon is densely colonized [37] and fecal matter is the most intensely studied sample
material in gut microbiome research. Recently, it was reported that fecal samples provided
a good approximation of the luminal microbiome [38]. Most likely, the laxative-induced
bowel evacuation applied in our study affected or reduced most of the fecal microbiome of
the colon. This suggests that our findings describe foremost gut microbiome-associated
metabolites in urine related to the luminal microbiota, although it was recently reported
that the analysis of feces also provides a good approximation of the average gut mucosal
microbiome [38].

It is well-known that gut microbiota are suitable for producing and releasing com-
pounds which subsequently affect either positively or negatively the health state of their
human host [1–4]. Furthermore, gut microbiota can introduce modifications in metabolites
by numerous enzymatic reactions, thereby changing the molecular structure, chemical
properties, and as a consequence, frequently also their functions. Comprehensive profil-
ing with a relatively high certainty that the detected biomarkers originate from the gut
microbiome is only suitable in feces, but not in blood or other body fluids. Consequently,
until now, a considerable number of those microbiota-derived metabolites in human body
fluids as well as their functions for human health or disease remain unknown. On the
other hand, gut microbiota-associated metabolites may reach the liver via the splanchnic
bed and the mesenteric veins and then partially filtered blood passes through the hepatic
veins into the systemic circulation, including the kidneys. In the kidneys, small molecules
like metabolites are filtrated into the primary urine, reach the bladder, and can finally be
collected in urine samples.

Phenylacetylglutamine (PAGN), one example of the fecal gut microbiota-associated
metabolites detected in urine in our study, was very recently described as a product of
the interaction of intestinal microbiota and human metabolism [13]. For decades, PAGN
has been recognized as a side product of phenylalanine catabolism formed in liver and
renal tissues of humans and primates from phenylacetic acid [39,40]. In 2017, Dodd
and colleagues showed in bacterial cultures that the PAGN precursor phenylacetic acid
can also be produced by bacterial fermentation of phenylalanine [28]. The prerequisite
in vivo in humans for this fermentation step is that dietary phenylalanine reaches the large
intestine. Phenylalanine is then metabolized by gut microbiota to phenylpyruvic acid and
subsequently to phenylacetic acid, which is taken up into the portal system [1]. Recently,
PAGN has been reported to be associated with cardiovascular diseases (CVD) and incident
major adverse cardiovascular events (myocardial infarction, stroke, or death) [13] as well
as heart failure [41].

Hippuric acid, one of the most abundant organic acids in human urine, is derived
from two different metabolic pathways; both are interplays between gut microbiota and
the liver [29]. On the one hand, it can originate from phenylalanine metabolized by gut
microbiota to phenylpropionic acid, which is then re-oxidized to hippuric acid involving
medium-chain acyl-CoA dehydrogenase [14]. On the other hand, dietary polyphenols
from fruits and vegetables like epicatechins or chlorogenic acid are metabolized by the gut
microbiota to benzoic acid, which is subsequently taken up into the splanchnic bed and
transported to the human liver [30]. In the liver, hippuric acid is formed by the conjugation
of glycine to benzoic acid.

The production of cresol from tyrosine has been recently attributed to four intestinal
strains with high cresol production activity belonging to Coriobacteriaceae or to Clostrid-
ium cluster XI or XIVa, and 55 bacterial strains were described with cresol-producing
potential [31]. The cresol metabolite p-cresol glucuronide as well as the above-mentioned
phenylacetylglutamine showed in plasma stronger associations with several species from
the Clostridiales order of the corresponding gut microbiota [16].

An unexpected interesting finding of our study was the detected decrease in glu-
tamine and glutamate after bowel evacuation, both well-known amino acids in human
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metabolic pathways, generated by various tissues and cells in the human body. Recently,
it was demonstrated that androgen modulated circulating glutamine and that the glu-
tamine/glutamate (Gln/Glu) ratio partially depends on the gut microbiome [3,42], and
the association of metabolic disorders and diabetes with blood levels of Glu, Gln has been
reported [3]. The gut microbiome can modulate brain function and behaviors through the
microbiota–gut–brain axis by affecting the Glu and Gln levels, which has recently been
described for example in schizophrenia [12]. In mice, probiotic treatment with Lactobacillus
rhamnosus (JB-1) showed a significant increase in brain Glu and Gln levels [27]. Future
studies to clarify the pathophysiological role of the gut microbiota-associated glutamate
and glutamine metabolism for mental diseases as well as possible probiotic therapeutic
options are needed.

We also detected a considerable number of modified metabolites in urine within
the group of fecal gut microbiota-associated metabolites (Table S2), dominated by glu-
curonidations, carboxylations, and sulfations. Glucuronidation of molecules is mainly
known as a detoxification reaction of endogenous and exogenous compounds in the liver;
however, as shown by our data and in the literature, glucuronidation can also be gut
microbiota-associated [32,43]. Recently, applying a new specific profiling strategy for
carboxylations, including a derivatization step, 261 gut microbiome-associated modified
metabolites were detected [44]. In various metabolite classes, carboxylated compounds
have been described, like fatty acids, bile acids, N-acyl amino acids, benzoheterocyclic
acids, or aromatic acids [44]. Sulfated metabolites are a group of modified metabolites
derived from gut microbiota–human co-metabolism, which have also been reported in
the context of disease development. Recently a new enzyme-assisted metabolic profiling
approach reported the discovery of 206 sulfated metabolites in human feces and urine,
which was three times more than the content of the commonly used Human Metabolome
Database [22]. In a subsequent study, the authors showed that a polyphenol-rich diet led to
an increase in the levels of 236 sulfated metabolites [45]. Interestingly, although a standard-
ized polyphenol-rich diet was consumed, the authors observed a broad interindividual
variability in the generation of these modified metabolites, which led them to speculate
about high- and low-sulfate metabolizers [45]. Metabolites modified by gut microbiota
could be an interesting additional class of metabolites in biomedical research, but they often
remain until now unknown in metabolomics datasets, since they are still underrepresented
in all common big databases.

A potential weakness with respect to the data presented here is that in our approach
with laxative use, only the luminal (fecal) microbiome in the gut is massively reduced, but
no total eradication of the gut microbiome (luminal and mucosal) was achieved, unless
antibiotics were used. Consequently, gut microbiota-associated metabolites of distinct
species or maybe also phyla may not be detectable with our strategy. However, it was
recently reported that fecal samples provide a good approximation of the luminal as well
as of the average gut mucosal microbiome [38]. Furthermore, since urine was investigated
as a non-invasively collected sample material, the covered fecal microbiota-associated
metabolites were limited to water-soluble compounds, which were either per se more or
less polar or which were modified before urinary excretion by the liver, e.g., by conjugation
of glucuronides. Hence, water-insoluble, apolar gut microbiome-associated metabolites,
which can only be detected by the investigation of feces, or in body fluids by invasive
sampling (e.g., in blood samples), were not covered. Concerning sex differences in the gut
microbiome, which are under intense discussion and investigation [46], we cannot draw
any conclusions on the metabolite level based on our data.

5. Conclusions

Beginning with a single-individual self-experiment for hypothesis testing, which
covered 40 sample collection time points spreading over 10 days, we revealed gut micro-
biota association of metabolites in urine after the depletion of the fecal microbiome by a
laxative-induced bowel evacuation. These findings were confirmed in a subsequent study
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performed in six individuals with four sample collection time points by the detection of
numerous fecal microbiota-associated metabolites, including modified metabolites. We
conclude that our strategy is suitable to profile luminal or fecal microbiome-associated
metabolites in urine and consequently detect, e.g., disease-related differences in human
gut microbiomes, as well as therapy-dependent changes. Overall, our strategy opens
new perspectives for comprehensive human microbiome studies in biomedical research
and beyond.
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Abstract: Ankylosing spondylitis (AS) is a type of chronic rheumatic immune disease, and the crucial
point of AS treatment is identifying the correct stage of the disease. However, there is a lack of
effective diagnostic methods for AS staging. The primary objective of this study was to perform
an untargeted metabolomic approach in AS patients in an effort to reveal metabolic differences
between patients in remission and acute stages. Serum samples from 40 controls and 57 AS patients
were analyzed via gas chromatography–mass spectrometry (GC–MS). Twenty-four kinds of differ-
ential metabolites were identified between the healthy controls and AS patients, mainly involving
valine/leucine/isoleucine biosynthesis and degradation, phenylalanine/tyrosine/tryptophan biosyn-
thesis, glutathione metabolism, etc. Furthermore, the levels of fatty acids (linoleate, dodecanoate,
hexadecanoate, and octadecanoate), amino acids (serine and pyroglutamate), 2-hydroxybutanoate,
glucose, etc., were lower in patients in the acute stage than those in the remission stage, which may
be associated with the aggravated inflammatory response and elevated oxidative stress in the acute
stage. Multiple stage-specific metabolites were significantly correlated with inflammatory indicators
(CRP and ESR). In addition, the combination of serum 2-hydroxybutanoate and hexadecanoate plays
a significant role in the diagnosis of AS stages. These metabolomics-based findings provide new
perspectives for AS staging, treatment, and pathogenesis studies.

Keywords: ankylosing spondylitis; metabolomics; gas chromatography–mass spectrometry; acute
and remission stages

1. Introduction

Ankylosing spondylitis (AS) is a systemic disease dominated by chronic inflamma-
tion of the axial joints, which mainly involve the sacroiliac joint, spine bone protrusion,
paraspinal soft tissue, and peripheral joints, and it is often accompanied by varying degrees
of extra-articular manifestations including ocular and gastrointestinal systems [1,2]. The
pathogenesis of ankylosing spondylitis involves abnormalities of the immune system and
chronic inflammation, and AS has a genetic predisposition with a strong association with
the HLA–B27 gene [3,4].

AS is a chronic, incurable disease called undead cancer. Its clinical treatment focuses
on suppressing inflammation, improving symptoms, preventing bone destruction, and
decelerating disease progression [5]. Particularly, AS patients in acute and remission stages
require different treatment strategies. During the acute stage, pain and inflammation
may worsen, and non-steroidal anti-inflammatory drugs (NSAIDs) can help relieve pain
and reduce inflammation [6,7]. Adequate rest is also necessary to prevent further joint
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damage. The remission stage, on the other hand, focuses on maintaining joint mobility
and stability. Through appropriate exercises and treatments, stiffness and deformities of
the joints can be slowed, and the risk of further complications can be reduced. Therefore,
accurate diagnosis and prediction of the acute and remission stages of AS contributes to the
development of personalized treatment plans, thereby effectively slowing the progression
of the disease, improving clinical symptoms, and enhancing the quality of life for patients.
Presently, the judgement of AS stage primarily relies on clinical manifestations (morning
stiffness, pain, inflammation, etc.) and imaging examinations (X-rays, MRI, or CT) [8,9].
The erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels are important
in the evaluation of disease progression to some extent, but these inflammatory indicators
are currently only used as a reference due to their low specificity [10].

Metabolomics is a simultaneous qualitative and quantitative analysis of all metabolites
in a specific biological sample under defined conditions, aiming to gain insight into the
dynamics of metabolic networks in organisms, and thus, to reveal changes in disease
progression and physiological states [11,12]. Metabolomics has gained significant attention
in the field of disease research as it provides valuable insights into the metabolic alterations
associated with the disease [13–15]. Targeted and untargeted metabolomics and lipidomics
provide strong support for the diagnosis, prognosis, and treatment of gout, diabetes, SLE,
cancer, etc. [16–19]. Several metabolomics studies have been conducted to investigate
the metabolic profile of AS patients utilizing different analytical techniques such as mass
spectrometry and nuclear magnetic resonance spectroscopy, aiming to identify potential
biomarkers and unravel the underlying metabolic pathways involved in AS [20,21]. Per-
turbations in various metabolites such as tryptophan, lysine, proline, serine, and alanine
have been discovered in AS patients [22–27], which provides information for exploring the
pathogenesis of AS.

The pathological states of patients are different at various disease stages, and these
differences can be manifested through alterations in metabolite composition and metabolic
pathways. Therefore, investigating shifts in the humoral metabolome can help characterize
the disease stages. However, metabolic changes associated with different stages of AS
patients have not yet been investigated. The primary objective of this study was to perform
a GC–MS-based untargeted metabolomic strategy in AS patients in an effort to identify
metabolic differences between patients in remission and acute stages. Discriminant models
were constructed to help differentiate AS patients at different stages based on the acquired
metabolic data. Furthermore, we sought to reveal potential metabolic biomarkers to enable
a more precise discrimination of AS stages. The findings may be useful in the clinical
management of AS by providing valuable information for the diagnosis, treatment, and
monitoring of patients.

2. Materials and Methods

2.1. Study Participants

A total of 57 patients (including 17 patients in the acute stage) in accordance with
the New York Criteria for AS revised by the American College of Rheumatology in 1984
were included in the study. Meanwhile, an age- and gender-matched healthy control
population of 40 cases was also enrolled. Subjects with severe cardiovascular, hepatic, and
other organic pathologies and psychiatric abnormalities, as well as pregnant or lactating
women were excluded. The study protocol was approved by the Ethics Committee of the
First Affiliated Hospital of Zhejiang Chinese Medical University (2021-KLJ-010-03), and all
patients signed an informed consent form.

2.2. Sample Preparation and Metabolomics Analysis

Fasting elbow venous blood of each subject was collected in the morning, followed
by centrifugation, and the upper serum was stored at −80 ◦C for further testing. Before
analysis, serum samples were thawed and vortex-mixed, and an aliquot of 50 μL of serum
was spiked with 200 μL of acetonitrile (all operations were carried out on ice). After vortex-
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mixing, the samples were centrifuged at 4 ◦C for 10 min at 12,000 g to remove precipitated
proteins, and the supernatant were freeze-dried under vacuum. Afterward, freeze-dried
extracts were dissolved in 50 μL of methoxyamine pyridine solution (20 mg/mL), and the
reaction mixtures were heated in a water bath at 40 ◦C for 90 min; then, 50 μL of MSTFA
(N-trimethylsilyl-N-methyl trifluoroacetamide) was added to the samples for silylation
reaction, followed by heating at 40 ◦C for 60 min. All samples to be analyzed were mixed
in equal volumes to create quality control (QC) samples, and QC samples were prepared
according to the aforementioned protocol.

All samples were analyzed on an Agilent 7890A gas chromatograph coupled with a
5975C MSD system (Agilent Technologies Inc., Santa Clara, CA, USA), and DB–5MS capillary
column (30 m × 0.25 mm × 0.25 μm) was applied for separation. The carrier gas was helium
(99.9996%) at a flow rate of 1.2 mL/min. The initial column temperature was kept at 70 ◦C for
3 min, programmed to 300 ◦C at a rate of 5 ◦C/min, and kept constant at 300 ◦C for 5 min.
The injection volume was 1 μL, and the split ratio was 5:1. The injection port temperature and
the transfer line temperature were set to 300 ◦C and 280 ◦C, respectively.

Mass spectrometry parameters were as follows: the ion source temperature was 230 ◦C,
the scan range was 33~600 amu, and the solvent delay was 4.8 min. All samples were
analyzed in a random order and QC samples were analyzed at every seven test samples to
monitor the instrument stability.

2.3. Statistical Analysis

The QC sample is a homogeneous mix of all samples to be tested and contains the
majority of the metabolite information in samples, so it was used as a template to establish
a quantitative table of metabolites. The metabolic profile of the QC sample was firstly
subjected to peak identification and overlapping peak resolution using AMDIS 2.62 (NIST,
Boulder, CO, USA) software to obtain a quantitative table containing retention time and
mass-to-charge ratio information of each metabolite. Then, the original data of all samples
were imported into the workstation to integrate according to the above established table,
and the peak area of each metabolite was obtained and combined into a two-dimensional
data matrix.

After peak area normalization, data from all subjects were subjected to unit variance
(UV) scaling and principal component analysis (PCA) using SIMCA-P 14.0 (Umetrics AB,
Umea, Sweden) to obtain an overview of the differences in serum metabolic phenotypes
between AS patients and healthy controls. The data were then filtered via orthogonal signal
correction (OSC) to remove variables irrelevant to classification, and partial least squares
discriminant analysis (PLS–DA) was utilized to discover specific metabolic patterns in
AS patients, further differentiating between AS patients in acute and remission stages.
Permutation test (200 permutations) and CV–ANOVA were performed to check the validity
of OSC PLS–DA models. VIP (variable importance on projection) is an important indicator
used to screen for differential metabolites in multivariate analyses, and variables with large
VIP values contribute to model classification to a greater extent. The threshold of VIP
values should be selected and adjusted according to the research requirements and data
characteristics. In general, a VIP value greater than 1 is a standard threshold commonly
used in the field to identify the most important variables in PLS–DA models. SPSS 21.0
(International Business Machines Corp., Armonk, NY, USA) was employed to conduct
t-test and ANOVA. Here, serum metabolites with VIP > 1.0 in OSC PLS–DA and significance
test p value < 0.05 between AS patients and controls or patients in different AS stages
were screened as important candidate metabolites pending further structural annotation.
Identification of metabolites was achieved by matching the mass spectra with commercial
mass spectral libraries using NIST MS Search 2.0 (National Institute of Standards and
Technology, Gaithersburg, MD, USA). The candidate results with similarity degree higher
than 80% were further verified with standard compounds. The identified metabolites
were introduced into MetaboAnalyst 4.0 (https://www.metaboanalyst.ca) for enrichment
analysis to investigate which pathways were disturbed in AS patients [28].
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A diagnostic model for discriminating acute and remission AS stages was established
through binary logistic regression analysis SPSS 21.0 (International Business Machines
Corp., Armonk, NY, USA) based on the AS stage-specific metabolites, and the diagnostic
efficacy of each metabolite or different metabolites combination were evaluated by drawing
receiver operating characteristic (ROC) curves. Spearman correlation analysis was per-
formed to evaluate the correlation of serum differential metabolites with ESR and CRP in
patients in acute and remission stages.

3. Results

3.1. Characterization of the Subjects

The demographic and clinical information of the selected subjects is shown in Table 1.
The AS patient group and the control group were compatible in terms of age, gender, and
BMI, without significant differences; the levels of CRP, ESR, and WBC (white blood cells) in
the AS group were higher than those in the control group, which was consistent with the
clinical characteristics of AS. In addition, HLA–B27 was positive in 78.90% of AS patients.

Table 1. The clinical information of AS patients and healthy controls.

Characteristics Control (n = 40) AS (n = 57) p

Male/Female, 20/20 28/29 0.932
Age, y 36.08 ± 1.53 39.37 ± 1.61 0.158
BMI 22.22 ± 0.46 22.68±0.53 0.534

CRP (mg/L) 1.90 ± 0.38 4.18 ± 0.85 0.036
ESR (mm/h) 9.32 ± 0.67 15.02 ± 2.08 0.032
WBC (109/L) 5.90 ± 0.19 6.66 ± 0.20 0.010

HLA–B27 (+/−) 2/38 45/12 <0.001
AS, ankylosing spondylitis; BMI, body mass index; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate;
WBC, white blood cell; HLA–B27, hydrophile–lipophile balance–27. Data are shown as mean ± SEM.

3.2. Characteristics of the Serum Metabolomics Analysis

In this study, the typical total ion current (TIC) chromatograms of AS patients and
healthy controls obtained via GC–MS are shown in Figure S1A. A total of 219 metabolites
were identified, integrated, and statistically analyzed. In order to examine whether the
analytical method was stable and reproducible, one QC was added to every seven samples
in the analytical sequence for a total of fifteen QC samples. The relative standard deviation
(RSD) of the peak area of each metabolite in the QCs was calculated. It was found that
191 metabolites had RSD less than 30%, and the cumulative peak area was 98.3% of the
total peak area (Figure S1B). Moreover, all QC samples were found to be within a range
of 2-fold SD based on the PCA analysis in Figure S1C. The results demonstrated that
the sample pretreatment and instrumental analysis processes had sufficient stability and
reproducibility, and the acquired metabolomics data were reliable.

3.3. Serum Metabolic Differences between AS Patients and Controls

In the PCA analysis, the contribution of each principal component (PC) is shown in
the scree plot (Figure 1A), which shows that approximately 61.5% of the variance in the raw
data is explained by 11 PCs. As shown in the score plots (Figure 1B,C), there is a tendency
for separation between AS patients and healthy controls, although there is some overlap.
To identify the differences in metabolic profiles between AS patients and controls, OSC
PLS–DA was carried out (Figure 1D). R2Y and Q2Y are used to evaluate the fitting effect of
the OSC PLS–DA model. Here, both parameters are close to 1 (R2Y = 0.987, Q2Y = 0.965),
which indicates that the model has good classification and prediction ability and can clearly
distinguish between the two groups (Figure 1D). In the permutation test, all Q2 values are
lower than the original points on the right, the intercept of the regression line at Q2 is less
than zero, and all R2 values are lower than the original points on the right (Figure S2A).
Moreover, the p value of the CV–ANOVA is less than 0.001. The above results indicate
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that the OSC PLS–DA model is not overfitted. The V plot presenting the VIP values and
correlation coefficients of OSC PLS–DA model is shown in Figure 1E. The metabolites with
VIP > 1.0 are located at both ends of “V”, where metabolites on the right side of the y-axis
are positively correlated with AS patients and metabolites on the left side of the y-axis are
negatively correlated with AS patients.

Figure 1. PCA and OSC PLS–DA of AS patients and healthy controls based on serum metabolic
profiles. (A) PCA scree plot, (B) PCA score plot of PC1 and PC2, (C) PCA score plot of PC2 and PC3,
(D) OSC PLS–DA score plot, and (E) V plot.

The metabolites with VIP > 1.0 and p < 0.05 were considered to be metabolic characteris-
tics of AS patients, and the structures of 24 metabolites have been identified, including amino
acids and their derivatives (methionine, serine, threonine, valine, phenylalanine, pyrogluta-
mate, tryptophan, proline, leucine, glycine, isoleucine, tyrosine, alanine, 2-aminobutyrate, and
ethanolamine), lipids and their derivatives (hexadecanoate and glycerol-3-phosphate), carbo-
hydrates and their derivatives (glucose, ribofuranose, propylene glycol, 1,5-anhydrosorbitol,
and 1,3-propanediol), creatinine, and cholesterol (Figure 2A,B). These metabolites were mainly
enriched in valine/leucine/isoleucine biosynthesis and degradation (threonine, leucine,
isoleucine, and valine), phenylalanine/tyrosine/tryptophan biosynthesis (phenylalanine,
tryptophan, and tyrosine), glutathione metabolism (glycine, alanine, and pyroglutamate), and
so on (Figure 2C).
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Figure 2. Differential metabolites and enrichment pathways in serum of AS patients and healthy
controls. (A) Down-regulated metabolites in serum of AS patients, (B) up-regulated metabolites in
serum of AS patients, (C) enriched pathways. * represents p < 0.05 between controls and AS patients.

3.4. Serum Metabolic Differences between Acute and Remission Stages of AS Patients

Based on the clinical symptoms and inflammatory indicators of AS, the AS patients
were differentiated into patients in the acute stage (17 cases) and patients in the remission
stage (40 cases); there was no statistically significant difference between the two groups
in terms of age, gender, and BMI, and the CRP and ESR indices of the patients in the
acute stage were significantly higher than those of the patients in the remission stage
(Figure 3A). Differences in metabolite levels between controls and acute- and remission-
stage AS patients were compared using ANOVA (Figure 3B), and OSC PLS–DA analysis
was also performed to distinguish between the different stages of AS patients (Figure 3C).
The model parameters (R2Y = 0.985, Q2Y = 0.938) are close to 1, indicating that the OSC
PLS–DA model fits the data well. The permutation test (Figure S2B) and CV–ANOVA
(p < 0.001) support the goodness of fit of the model. Subsequently, the metabolites with
VIP > 1.0 were marked in the OSC PLS–DA V plot, which may play a very important role
in classification (Figure 3D).
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Figure 3. Metabolic differences between acute- and remission-stage patients with AS. (A) Differences
in CRP and ESR in AS patients during different stages, (B) ANOVA of serum metabolites between
controls, AS patients in the remission stage, and AS patients in the acute stage. (C) OSC PLS–DA
score plot of AS patients in remission versus acute stages, (D) OSC PLS–DA V plot. (E) Trends of
serum metabolites in AS patients during acute and remission stages. * represents p < 0.05 between
controls and AS patients in the remission stage, # represents p < 0.05 between controls and AS patients
in the acute stage, and $ represents p < 0.05 between AS patients in acute and remission stages.

Ultimately, 44 stage-specific metabolites were screened out on the basis of VIP and p
value. Of these, 15/44 were identified, and the trends of these metabolites in the control
group and patients during acute and remission stages are presented in Figure 3E. Serum
levels of seven metabolites, 1,3-propanediol, 2-hydroxypyridine, ribofuranose, dodecanoate,
hexadecanoate, octadecenoate, and pinitol, were higher in the AS patients than in controls
during the remission stage, whereas they were reduced to control levels during the acute
stage. Three metabolites (serine, pyroglutamate, and glucose) appeared to be reduced in
AS patients during the remission stage compared with the controls, and the decrease was
more pronounced during the acute stage. In addition, two metabolites were unchanged
in AS patients during the remission stage and significantly changed during the acute
stage (ribonate decreased and urea increased); and the levels of 2-hydroxybutanoate, 3-
hydroxypyridine, and linoleate were significantly lower in the acute stage than in the
remission stage.

Spearman’s correlation analysis of serum differential metabolites with CRP and ESR
in the acute and remission stages of AS patients was carried out (Figure 4A,B). There was a
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significant correlation between CRP levels and metabolites such as 2-hydroxypyridine, ribo-
furanose, 2-hydroxybutanoate, 3-hydroxypyridine, dodecanoate, hexadecanoate, linoleate,
octadecanoate, ribonate, and pyroglutamate, and metabolites including ribofuranose,
linoleate, ribonate, serine, and pyroglutamate were negatively correlated with ESR. Particu-
larly, ribofuranose, linoleate, ribonate, and pyroglutamate had a strong negative correlation
with both CRP and ESR, indicating that the changes in levels might be associated with the
progression of AS.

Figure 4. (A) Spearman correlation coefficient of serum differential metabolites and CRP index in
AS patients during the remission and acute stages. # indicates a statistically significant correlation.
(B) Spearman correlation coefficient of serum differential metabolites and ESR index in AS patients
during the remission and acute stages. # indicates a statistically significant correlation. (C) Predictive
probability of acute AS patients and remission patients based on serum differential metabolites.
Individuals below the blue dashed line are predicted to be in remission stage, and those above the
blue dashed line are predicted to be in the acute stage. (D) ROC analysis for the discrimination
of AS patients during different stages using the combination of serum 2-hydroxybutanoate and
hexadecanoate levels. The blue dashed line is the reference line for performance, and the ROC curve
above the diagonal means the performance of the model is relatively good.

Clinical manifestations, imaging examinations, and inflammatory indexes are impor-
tant indicators of AS progression to some extent, but with low sensitivity and specificity
for AS staging. In this study, some significantly different metabolites in the serum of AS pa-
tients during the acute and remission stages were discovered, which may have potential for
the staging of AS. Through the binary logistic regression analysis, a model was established
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to distinguish the acute stage and remission stage of AS patients by the serum levels of
2-hydroxybutanoate and hexadecanoate. The model can effectively distinguish the different
stages of AS (Figure 4C). ROC curve analysis showed that the combined application of
serum 2-hydroxybutanoate and hexadecanoate had a good diagnostic effect for AS staging
(AUC = 0.963, Figure 4D).

4. Discussion

AS is a chronic inflammatory systemic disease with still unknown etiology, and recent
studies have recognized that it might be correlated with infection, autoimmune, and genetic
factors [2,6,29]. Correct staging is very important for the treatment of AS. In the acute stage,
the main goal is to relieve pain and inflammation in patients with AS as soon as possible,
while in the remission stage, the focus is on maintaining joint mobility and stability and
slowing the progression of the disease and the likelihood of flare-ups. However, there
is a lack of effective diagnostic methods for staging AS. In this study, we found that
valine/leucine/isoleucine biosynthesis and degradation (threonine, leucine, isoleucine,
and valine), phenylalanine/tyrosine/tryptophan biosynthesis (phenylalanine, tryptophan,
and tyrosine), and glutathione metabolism (glycine, alanine, and pyroglutamate) were
altered in AS patients compared with healthy individuals. Furthermore, 15 metabolites
showed a significant difference between AS patients in the acute and remission stages.

A large number of inflammatory factors can be generated during the course of AS.
Some studies have reported that high levels of serum-free fatty acids could induce chronic
low-grade inflammation [30]; concurrently, inflammatory mediators can interfere with
lipid metabolism as well [31,32]. In this study, we found that the levels of dodecanoate,
hexadecanoate, and octadecanoate were elevated in the remission stage of AS patients,
whereas a decrease in fatty acids was observed in AS patients in the acute stage, which could
be attributed to the intensified energy demand stemming from a more robust inflammatory
response during the acute stage, and thus more serum fatty acids entering the mitochondrial
β-oxidation to provide the necessary energy [33,34]. Importantly, the serum levels of fatty
acids, including linoleate, dodecanoate, hexadecanoate, and octadecanoate, exhibited
significant correlations with the inflammatory marker CRP, suggesting a potential linkage
between the development of AS and the alterations in fatty acids.

Glucose catabolism is a major source of energy [35], and glycerol-3-phosphate is mainly
derived from glucose metabolism. Decreased serum glucose and 1,5-anhydrosorbitol, along with
elevated glycerol-3-phosphate in AS patients, suggest an accelerated glucose metabolism, possi-
bly linked to an increased energy demand due to chronic inflammation [36]. 2-Hydroxybutanoate
can also enter the energy metabolism pathway and participate in the production of adenosine
triphosphate [37]. Compared with the remission stage of AS, patients in the acute stage experi-
ence heightened inflammatory responses and greater energy requirements, leading to further
consumption of glucose and 2-hydroxybutanoate to provide additional energy for the body.

Multiple amino acid metabolic pathways and related metabolites showed abnor-
malities in AS patients. The biosynthesis and degradation of valine/leucine/isoleucine
primarily influence the levels of branched-chain amino acids (BCAAs) [38], such as leucine,
isoleucine, and valine. BCAAs play an important role in the metabolism and immune regu-
lation of the body [39]. Several studies have indicated an association between BCAA levels
and the inflammatory state [40]. In inflammatory diseases or infections, BCAAs can be
converted into energy in the liver, thereby maintaining the energy balance of the body [41]
and leading to the consumption of BCAAs during the inflammatory state. Here, the altered
BCAA levels in AS patients, characterized by significant reductions in valine, leucine, and
isoleucine, suggest that AS patients are experiencing sustained energy depletion.

Lymphocyte abnormality is one of the most important factors in the development of
AS [42]. Amino acids are the basic substances that constitute proteins, which are closely
related to various aspects of the immune system, including the development of immune
organs, the differentiation and proliferation of immune cells, the secretion of cytokines, the
production of antibodies, and so on [43–45]. Disruptions in the biosynthesis of phenylala-
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nine/tyrosine/tryptophan and decreased tryptophan were observed in AS patients. Previous
studies have demonstrated that tryptophan depletion and the accumulation of tryptophan
metabolites can impede T cell function, including suppressing T cell proliferation, impairing
T cell survival, and promoting T cell apoptosis [46,47]. Threonine and methionine are major
amino acids comprising immunoglobulins, and methionine has a protective effect on lympho-
cytes. The decrease in threonine and methionine may inhibit the synthesis and secretion of
immunoglobulins, affecting humoral immunity [43,48]. The change in these amino acids is
closely associated with the immune dysfunction in AS patients.

In AS patients, the glutathione metabolism was significantly changed. With the
increased level of oxidative stress in AS patients, the demand for antioxidants, such as
glutathione, increases to counteract the excessive production of reactive oxygen species
(ROS) [49,50]. Amino acids like glycine and alanine play crucial roles in the synthesis
of glutathione [51,52]. Our research has revealed a reduction in these amino acids in AS
patients, which could be associated with an increased demand for glutathione synthesis.

Notably, serine and pyroglutamate were consistently decreased in the acute stage of AS
compared with the remission stage. Serine is one of the building blocks of neutrophil serine
proteases (NSPs), which play a significant role in inflammatory responses and immune
reactions during acute infections [53,54]. Pyroglutamate is considered an endogenous
antioxidant, which may help neutralize intracellular ROS, thus protecting cells from damage
caused by oxidative stress [55,56]. The sustained reduction in serine and pyroglutamate
during the acute stage of AS implies that AS is characterized by inflammatory activation
and oxidative damage during the acute stage.

The main limitations of the study are as follows: first, only a portion of the metabolites
associated with AS stages were structurally identified, and the unidentified metabolites may
have important biological functions, which need to be further confirmed in combination
with other analytical techniques; second, we did not set up an independent validation set to
evaluate the diagnostic efficacy of the potential biomarkers in AS staging in clinical practice.

5. Conclusions

Taken together, a GC–MS-based metabolomics analysis was performed to shed light
on significant changes in AS patients. In particular, it was demonstrated that patients in
the acute stage and remission stage showed different metabolic characteristics, especially
in terms of the changes in fatty acids (linoleate, dodecanoate, hexadecanoate, and octade-
canoate), amino acids (serine and pyroglutamate), 2-hydroxybutanoate, glucose, etc. We
propose that these alterations may be related to the aggravated inflammatory response
and elevated oxidative stress in the acute stage. Moreover, serum 2-hydroxybutanoate
and hexadecanoate had good efficacy for the stage division of AS. All the aforementioned
findings could provide a basis for the staging treatment and pathogenesis studies of AS.
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Abstract: Epidemiological evidence regarding the effect of omega-3 polyunsaturated fatty acid
(PUFA) supplementation on inflammatory bowel disease (IBD) is conflicting. Additionally, little
evidence exists regarding the effects of specific omega-3 components on IBD risk. We applied two-
sample Mendelian randomization (MR) to disentangle the effects of omega-3 PUFAs (including total
omega-3, α-linolenic acid, eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA)) on the risk
of IBD, Crohn’s disease (CD) and ulcerative colitis (UC). Our findings indicated that genetically
predicted increased EPA concentrations were associated with decreased risk of IBD (odds ratio
0.78 (95% CI 0.63–0.98)). This effect was found to be mediated through lower levels of linoleic
acid and histidine metabolites. However, we found limited evidence to support the effects of total
omega-3, α-linolenic acid, and DHA on the risks of IBD. In the fatty acid desaturase 2 (FADS2) region,
robust colocalization evidence was observed, suggesting the primary role of the FADS2 gene in
mediating the effects of omega-3 PUFAs on IBD. Therefore, the present MR study highlights EPA
as the predominant active component of omega-3 fatty acids in relation to decreased risk of IBD,
potentially via its interaction with linoleic acid and histidine metabolites. Additionally, the FADS2
gene likely mediates the effects of omega-3 PUFAs on IBD risk.

Keywords: eicosapentaenoic acid; inflammatory bowel disease; Mendelian randomization; mediation;
omega-3 polyunsaturated fatty acids

1. Introduction

Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders
affecting the gastrointestinal tract, and its prevalence has increased worldwide, reaching
up to 0.5% of the general population in the western world [1,2]. The two primary types of
IBD are Crohn’s disease (CD) and ulcerative colitis (UC), each with different clinical and
histopathological characteristics [3]. The economic burden of IBD is substantial, with over
€4.6 billion in annual medical costs in Europe and US$6 billion in the USA, putting a strain
on healthcare systems and resources [2]. To alleviate this burden, a comprehensive approach
is needed, including the development of preventive care to delay the progression of this
disease. Omega-3 polyunsaturated fatty acids (PUFAs) are commonly used nutritional
supplements and show beneficial effects on coronary heart disease [4] and asthma [5]. Due
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to their anti-inflammatory properties, PUFAs have been proposed as potential targets for
preventing and treating autoimmune diseases [6]. Omega-3 PUFAs can be quantified based
on a shift in the signal induced by the position of the omega-3 double bond. The sum
of concentrations of α-linolenic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA), and other omega-3 PUFAs is expressed as total omega-3 fatty acids. Long-chain
omega-3 PUFAs (EPA and DHA) are derived from α-linolenic acid through a series of
elongation, desaturation, and β-oxidation events during fatty acid metabolism. The fatty
acid desaturase 2 (FADS2) gene encodes delta-6 desaturase and plays a key regulatory role in
this metabolism process [7].

In randomized controlled trials (RCTs), EPA and DHA have often been combined
as the active components of omega-3 fatty acids and consumed together, despite their
distinct molecular functions and clinical impacts [8]. Daily supplementation with EPA and
DHA were reported to be effective in reducing the clinical relapse of CD [9]. However, in
the large-scaled vitamin D and omega 3 trial (VITAL) with approximately five years of
randomized follow-up, fish oil containing EPA and DHA did not significantly reduce the
rate of a composite outcome consisting of rheumatoid arthritis, IBD, autoimmune thyroid
disease, and all other autoimmune diseases [10]. Moreover, there was a lack of detailed
information on IBD in this study. Additionally, observational studies did not provide
convincing and consistent evidence of the relationship between dietary intakes of omega-3
PUFAs and the risk of IBD [11–13]. Information on usual diet relied on self-reported dietary
questionnaires, which may produce errors or bias in recall. The existing evidence makes it
challenging to confirm the causal effect of omega-3 PUFAs on IBD; and identify the key
supplement among the omega-3 PUFA component (α-linolenic acid, EPA, and DHA) that
may exhibit the protective effect.

Mendelian randomization (MR) is an approach that could estimate causal effect of an
exposure on an outcome and overcome issues related to residual confounding or reverse
causality [14]. Moreover, this method allows for investigating the effects of each omega-3
PUFA component on IBD, which may be challenging to achieve in an RCT setting. Recently,
He et al. reported that total omega-3 fatty acid had a protective effect against increased
UC risk instead of CD [15], but the evidence on IBD was not addressed. In addition,
their analysis involved only 21 omega-3 instruments after eliminating SNPs associated
with potential confounders and outcomes, which might have reduced the power of the
analysis. More critically, some instruments in key regulatory genes such as FADS2 gene
were eliminated, which may have important influences on the reliability of the findings.
Meanwhile, there remains a knowledge gap in evaluating the separate biological effects of
α-linolenic acid, EPA, and DHA, with their metabolic mechanisms being unexplored.

In this study, we aimed to explore the effects of omega-3 PUFAs (i.e., total omega-3,
α-linolenic acid, EPA, and DHA) on the risk of IBD and its subtypes, and the potential
metabolic pathways linking omega-3 PUFAs with IBD. Given the central role of the FADS2
gene in omega-3 PUFAs’ metabolism, further analyses in this specific region were essential
through genetic colocalization. This approach allowed us to assess whether there were
shared causal variants within the FADS2 gene region that could influence both omega-3
PUFAs and IBD risk [16].

2. Materials and Methods

2.1. Study Design

A schematic overview of the study design was detailed in Figure 1. We employed the
univariable MR analysis to assess whether total omega-3 fatty acid, α-linolenic acid, EPA,
and DHA showed causal effects on IBD and its subtypes (CD and UC), using summary-level
data from publicly available genome-wide association studies (GWASs). Colocalization
analysis was further conducted in the FADS2 gene region to test for pleiotropic effect
and investigate the underlying mechanisms. A bidirectional MR analysis was applied to
estimate the effect of genetic liability to IBD on omega-3 PUFAs. Mediation MR analysis
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estimated the effect of potential metabolites linking omega-3 PUFAs with the IBD. All
datasets were publicly available, and ethical approval was acquired for all original studies.

Figure 1. Study design of this MR study.

2.2. Data Sources and Genetic Instruments for Omega-3 PUFAs

Single-nucleotide polymorphisms (SNPs) associated with total omega-3 fatty acid
were derived from UK Biobank, which collected deep genetic and phenotypic data from
approximately 500,000 individuals aged between 40 and 69 [17]. Genetic associations of
α-linolenic acid, EPA, and DHA were obtained from a GWAS meta-analysis in 8866 partici-
pants of European ancestry from the Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium [18]. Details of the data sources and sample sizes of
the exposures are listed in the Table S1.

In this study, the genetic variants that showed robust association with total omega-3
fatty acid (with genetic association p value < 5 × 10−8) and showed independence (with
linkage disequilibrium (LD) r2 < 0.01 in European ancestry) were selected as candidate
instruments. Given the limited sample size of the α-linolenic acid, EPA, and DHA GWASs,
a slightly more relaxing threshold (p < 5 × 10−6) was used to select instruments for
these exposures. After harmonization with outcome data and removing palindromic or
mismatching alleles, 42 independent SNPs for total omega-3 fatty acid, 12 independent
SNPs for α-linolenic acid, 23 independent SNPs for EPA, and 6 independent SNPs for DHA
were selected as instruments (Figure S1). One SNP was selected to represent the effect of
each omega-3 PUFA in the FADS2 region (rs174564 for total omega-3 fatty acid, rs174547
for α-linolenic acid, rs174538 for EPA, and rs174555 for DHA; all these SNPs are in strong
LD to each other (LD r2 > 0.7), which represents the same signal in this region).
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2.3. Outcome Data Sources

Summary statistics for IBD were obtained from the study by the International In-
flammatory Bowel Disease Genetics Consortium (IIBDGC) [19], which contained a total of
59,957 European participants (cases/controls for IBD: 25,042/34,915; UC: 12,366/33,609; CD:
12,194/28,072). All the cases were diagnosed using accepted endoscopic, histopathological
and radiological criteria and all the control samples were obtained from the Understanding
Society Project.

2.4. Metabolite Data Sources

The full GWAS summary statistics of the 974 circulating metabolites were derived
from the IEU OpenGWAS database with GWAS identifier met-a, met-b, met-c, and met-d.

2.5. Statistical Analysis
2.5.1. Two-Sample MR Analysis

The inverse weighted variance (IVW) method was used as a primary analysis to esti-
mate the causal effects of omega-3 PUFAs on IBD and its subtypes, which were calculated
by a weighted linear regression of the instrument–outcome association estimates on the
instrument–exposure association estimates assuming that all genetic variants were valid
instruments [14].

MR analysis had several assumptions. The genetic instruments need to (1) be robustly
associated with the exposure (“relevance”), (2) be independent of potential confounders of
the instrument–outcome association (“exchangeability”), and (3) only affect the outcome
through the exposure being tested and not through alternative pathways (that is, through
pleiotropy; “exclusion restriction”).

The relevance MR assumption was assessed from the mean F statistics within univari-
able MR, which was greater than ten for every instrument–exposure association, demon-
strating the small possibility of weak instrumental variable bias [20].

We attempted using colocalization to test exchangeability MR assumption whether
SNPs associated with two traits are possibly in LD, or a single shared signal (colocaliza-
tion) [16]. The FADS2 gene encoded key fatty acid desaturase enzymes, which are pivotal
for omega-3 PUFA biosynthesis. Therefore, we performed colocalization analyses in this
gene region. A generated colocalization posterior probability greater than 0.70 indicated the
same variant causal for both traits and indirectly denied the possibility of “exchangeability”.

To check for violation of the “exclusion restriction” assumption of MR and assess
pleiotropy, we made different assumptions regarding MR instrument validity using several
sensitivity analyses, that included the weighted median method which permitted up to
50% of the information in the MR analysis to come from invalid instruments [21], and the
MR-Egger approach which accounted for pleiotropy [22]. The MR pleiotropy residual sum
and outlier (MR-PRESSO) method [23], together with MR-Egger intercept could be used to
examine the level of horizontal pleiotropy, and reduce the level of horizontal pleiotropy via
outlier removal. In addition, heterogeneity of the estimates was detected using Cochran’s
Q [24]. A leave-one-out analysis was conducted by removing each SNP from the analysis
in turn and performing an IVW method on the remaining SNPs to assess the potential
influence of a particular variant on the estimates [25].

We also sought to evaluate whether there was a reverse causal effect where liability to
IBD consequently altered the levels of omega-3 PUFAs by performing a bidirectional MR
analysis [26]. Therefore, we took independent instruments robustly associated with IBD,
CD, and UC (p < 5 × 10−8) as exposures to assess their effect on total omega-3 fatty acid,
α-linolenic acid, EPA, and DHA, respectively.

2.5.2. Mediation MR Analysis Linking EPA with IBD via Metabolites

We further estimated the mediation effects of circulating metabolites linking EPA with
IBD risk. We used a novel analytical pipeline that integrated mediation MR with metabolite
set enrichment analyses. First, we used a two-step MR approach to: (1) assess the causal
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effect of EPA on 974 potential metabolites (step 1) that have publicly available GWAS
datasets in the IEU OpenGWAS database, which selected 237 metabolites with FDR < 0.05;
and (2) estimate the effect of 237 metabolites on IBD (step 2), which further selected
211 metabolites associated with both EPA and IBD as candidate mediation metabolites.
Second, we performed the metabolite set enrichment analysis on the 211 selected candidate
metabolites, which aimed to select key metabolites enriched in certain metabolic pathways
(Figure S1). For the metabolites that showed evidence of enrichment in the enrichment
analysis, we further performed multivariable MR (MVMR) to determine their mediation
effects on IBD which was adjusted for the effect of EPA [27]. We used IVW as our main
approach to estimate the effect of EPA on the metabolites (β1). Additionally, MVMR was
applied to estimate: (1) the effect of each metabolite on risk of IBD with adjustment for
the genetic effect of EPA (β2); and (2) the direct effect of EPA on IBD with adjustment for
each mediator individually (βdirect). To calculate the indirect mediation effect of EPA on
IBD outcome, we used the difference of coefficients method as our main method, i.e., the
casual effect of EPA on outcomes via metabolites (βtotal − βdirect). The total effect was
the estimate of EPA on IBD in univariable MR (βtotal). Thus, the proportion of the total
effect mediated by each metabolite was separately estimated by dividing the indirect effect
by the total effect ((βtotal − βdirect)/βtotal). Standard errors were derived by using the
delta method, using effect estimates obtained from 2SMR analysis.

Univariable, bidirectional, and multivariable MR analyses were considered significant
with a 2-sided p ≤ 0.05. Metabolites associated with omega-3 PUFAs or IBD were considered
significant with an FDR < 0.05. Enrichment analysis was performed using the online
MetaboAnalyst software (version 5.0, Mcgill University, Montreal, QC, Canada; https://
www.metaboanalyst.ca, accessed on 17 November 2022) [28]. All analyses were performed
using ‘TwoSampleMR’ and ‘MR-PRESSO’ package in R Software 3.6.0.

3. Results

We selected 42, 12, 23, and 6 SNPs as instruments to proxy life-long effect of total
omega-3 fatty acid, α-linolenic acid, EPA, and DHA, respectively. In bidirectional MR,
there were 117, 89, and 62 independent instruments incorporated for IBD, CD, and UC,
respectively. Mean F statistics of the exposures ranged from 29.82 to 262.21 indicating that
the MR estimates were not likely to be influenced by weak instrument bias (Table S2).

3.1. Genetically Predicted Omega-3 PUFAs on Risk of IBD (Including CD and UC)

Table 1 shows the effects of omega-3 PUFAs on IBD risks. Considering total omega-
3 fatty acid as a whole, little evidence indicated its protective effect on IBD risk (odds
ratio (OR) of IVW, 0.94; 95% confidence interval (CI), 0.82–1.07). Meanwhile, higher
concentrations of α-linolenic acid showed a potential effect on increasing risk of IBD,
although the evidence was weaker due to the wide confidence interval (OR of IVW, 1.54;
95% CI, 0.72–3.29). In contrast, genetically increased levels of EPA showed a causal effect
on the lower risk of IBD (OR of IVW, 0.78; 95% CI, 0.63–0.98). There was little evidence for
the presence of heterogeneity (Cochran’s Q-test Ph = 0.10), pleiotropy (MR-Egger intercept
Pintercept = 0.97), or any outliers (MR-PRESSO P of global test = 0.099). Estimated effect was
consistent using the weighted median approach (OR, 0.59; 95% CI, 0.45–0.78). However,
there was little evidence to support the effect of DHA on IBD (OR of IVW, 1.05; 95% CI,
0.86–1.28).

The results of the primary MR analyses of CD and UC are presented in Figure 2.
Results of sensitivity analyses are listed in Table S3. In consistent with the IBD results, there
was little evidence to support the effects of total omega-3 fatty acid, α-linolenic acid, and
DHA on the risk of CD and UC (Figure 2A,B,D). Meanwhile, increased levels of genetically
proxied EPA still showed a strong effect on a lower risk of CD (OR of IVW, 0.67; 95% CI,
0.50–0.91), but with little effect on UC (OR of IVW, 0.88; 95% CI, 0.68–1.14) (Figure 2C).
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Table 1. Two-sample Mendelian randomization estimations showing the effect of omega-3 PUFAs on
inflammatory bowel disease.

Exposure No. of
SNPs

Methods Estimate Heterogeneity Pleiotropy

OR 95% CI P Q Ph
MR Egger

int P
MR-PRESSO

P

Total omega-3
fatty acid

42 IVW 0.94 (0.82, 1.07) 0.35 232.9 <0.001 0.06 <0.001
MR-Egger 0.83 (0.69, 0.99) 0.05

Weighted median 0.85 (0.80, 0.92) <0.001
MR-PRESSO
outlier test 0.88 (0.81, 0.95) 0.003

α-linolenic
acid 12 IVW 1.54 (0.72, 3.29) 0.26 46.7 <0.001 0.65 <0.001

MR-Egger 1.40 (0.58, 3.39) 0.48
Weighted median 1.42 (0.89, 2.28) 0.14

MR-PRESSO
outlier test 1.24 (0.79, 1.95) 0.38

EPA 23 IVW 0.78 (0.63, 0.98) 0.03 30.8 0.099 0.97 0.099
MR-Egger 0.78 (0.45, 1.34) 0.37

Weighted median 0.59 (0.45, 0.78) <0.001
MR-PRESSO
outlier test NA NA NA

DHA 6 IVW 1.05 (0.86, 1.28) 0.65 21.6 <0.001 0.56 0.012
MR-Egger 1.20 (0.75, 1.93) 0.49

Weighted median 1.12 (0.98, 1.28) 0.09
MR-PRESSO
outlier test 1.11 (0.99, 1.25) 0.43

Abbreviations: CI, confidence interval; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; Egger int, egger
intercept; IVW, inverse variance weighted; MR, Mendelian randomization; OR, odds ratio; PUFAs, polyunsatu-
rated fatty acids; Ph, p-value for heterogeneity.

Figure 2. Cont.
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Figure 2. Causal effects of omega-3 polyunsaturated fatty acids on inflammatory bowel disease as a
whole, on Crohn’s disease, and ulcerative colitis or via the FADS2 gene cluster. Univariable causal
effects of (A) total omega-3, (B) α-linolenic acid, (C) EPA, and (D) DHA on investigated outcomes
(light shades of blue, orange and green). Causal effects of each fatty acid on investigated outcomes
via the FADS2 gene (blue, orange and green). Abbreviations: ALA, α-linolenic acid; CD, Crohn’s
disease; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FADS2, fatty acid desaturase 2; IBD,
inflammatory bowel disease; UC, ulcerative colitis.

3.2. Sensitivity Analysis in FADS2 Gene Region

As shown in the leave-one-out analyses, the MR estimates of omega-3 PUFAs on IBD,
CD, and UC were mainly driven by SNP effects in the FADS2 gene region (rs174564 for
total omega-3 fatty acid, rs174547 for α-linolenic acid, rs174538 for EPA, and rs174555 for
DHA) (Figure S2). As shown in Figure 2, the MR results of the single FADS2 SNP showed
the causal effects of total omega-3 fatty acid, EPA, and DHA on lower risk of IBD. The ORs
(95% CI) were 0.85 (0.79–0.92), 0.59 (0.43–0.80), and 0.53 (0.37–0.75), respectively. On the
contrary, α-linolenic acid showed a strong effect on the increasing risk of IBD (OR, 26.82;
95% CI, 5.40–133.20).

As for IBD subtypes, the FADS2 gene showed a stronger effect on lowering the risk of
CD (ORs (95% CI) were 0.78 (0.71–0.86) for total omega-3, 0.38 (0.25–0.57) for EPA, and 0.35
(0.23–0.55) for DHA) but was absent for UC. Meanwhile, a FADS2 single-SNP in α-linolenic
acid had a positive effect on increasing CD risk (OR, 186.12; 95% CI, 23.46–1476.40), but
with less effect on UC risk.

Aligning with the MR estimates of a single-SNP in the FADS2 region, we observed
compelling evidence of colocalization for α-linolenic acid with CD (colocalization probabil-
ity, 98.90%), but with little evidence for UC (colocalization probability, 2.61%; Figure 3A). A
similar pattern of colocalization evidence was observed for EPA (colocalization probability
of CD, 98.80%; colocalization probability of UC, 2.44%; Figure 3B), as well as DHA (colo-
calization probability of CD, 94.50%; colocalization probability of UC, 6.56%; Figure 3C).
Collectively, colocalization analyses further supported distinct effects of omega-3 PUFAs
on CD and UC.
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Figure 3. Regional association plots of α-linolenic, eicosapentaenoic, and docosahexaenoic acids
with Crohn’s disease and ulcerative colitis in the FADS2 region. (A) Regional plots of α-linolenic
acid and Crohn’s disease and ulcerative colitis in the FADS2 region without conditional analysis.
(B) Regional plots of eicosapentaenoic acid and Crohn’s disease and ulcerative colitis in the FADS2
region without conditional analysis. (C) Regional plots of docosahexaenoic acid and Crohn’s disease
and ulcerative colitis in the FADS2 region without conditional analysis. This figure was obtained
from http://locuszoom.org/. Abbreviations: FADS2, fatty acid desaturase 2.

3.3. Effects of Genetic Liability to IBD, CD, and UC on the Levels of Omega-3 PUFAs

We further estimated whether genetic liability to IBD was a causal factor on changing
levels of omega-3 PUFAs using bidirectional MR. There was little evidence to suggest the
causal effect of genetic liability to IBD and CD on omega-3 PUFAs by using the IVW method
(Table 2). However, genetic liability to UC showed an effect on lowering levels of DHA
(β −0.05 (95% CI −0.09, −0.002)).

Table 2. Bidirectional Mendelian randomization estimates for causal effects of genetic liability to IBD,
CD, and UC on the levels of omega-3 PUFAs.

Exposure No. of
SNPs

Outcome
No. of
SNPs

IVW Heterogeneity Pleiotropy

Beta 95% CI P Q Ph
MR Egger

int P
MR-

PRESSOP

IBD 117 Total omega-3
fatty acid 105 −0.002 (−0.012, 0.009) 0.76 200.7 <0.001 0.86 <0.001

α-linolenic acid 39 −0.001 (−0.004, 0.001) 0.36 35.9 0.57 0.94 0.416
EPA 39 0.001 (−0.019, 0.020) 0.92 57.9 0.02 0.87 0.009
DHA 39 −0.010 (−0.059, 0.040) 0.71 47.7 0.13 0.69 0.036

CD 89 Total omega-3
fatty acid 83 0.004 (−0.005, 0.013) 0.39 174.5 <0.001 0.28 <0.001

α-linolenic acid 28 −0.001 (−0.003, 0.001) 0.28 28.7 0.38 0.41 0.463
EPA 28 0.011 (−0.005, 0.026) 0.17 46.4 0.01 0.85 0.012
DHA 28 0.029 (−0.011, 0.070) 0.15 39.3 0.06 0.81 0.090

UC 62 Total omega-3
fatty acid 53 −0.005 (−0.018, 0.008) 0.45 131.0 <0.001 0.27 <0.001

α-linolenic acid 27 0.002 (−0.001, 0.004) 0.23 28.5 0.34 0.34 0.446
EPA 27 −0.005 (−0.021, 0.010) 0.50 26.5 0.44 0.38 0.088
DHA 27 −0.045 (−0.089, −0.002) 0.04 26.7 0.42 0.61 0.095

Abbreviations: CI, confidence interval; CD, Crohn’s disease; DHA, docosahexaenoic acid; EPA, eicosapentaenoic
acid; Egger int, Egger intercept; IBD, inflammatory bowel disease; IVW, inverse variance weighted; MR, Mendelian
randomization; PUFAs, polyunsaturated fatty acids; Ph, p-value for heterogeneity; UC, ulcerative colitis.
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3.4. Mediation MR of EPA, Metabolites, and IBD Risk

Given that genetically predicted increased EPA had significant benefit on lowering IBD
risks, we further estimated whether there were some metabolites or metabolic pathways
linking the EPA with IBD risk. For 211 candidate mediation metabolites (selected by the
two-step MR described in the Section 2), metabolite set enrichment analysis indicated that
α-linolenic acid and linoleic acid metabolism, and methylhistidine metabolism were the
top two metabolic pathways that have been significantly enriched (Figure 4). DHA, linoleic
acid, and histidine were major metabolites determined in the two pathways, respectively.

Figure 4. Metabolite set enrichment analysis of 211 selected candidate metabolites associated with
both EPA and risk of IBD. The figure shows a graphical representation of the pathway-associated
metabolite sets by enrichment analysis in the effect of EPA on IBD. Abbreviations: EPA, eicosapen-
taenoic acid; IBD, inflammatory bowel disease.

The effect of EPA on each intermediate metabolite (linoleic acid, DHA, and histidine)
is shown in Figure 5A, higher levels of EPA were associated with lower linoleic acid (β,
−0.51; 95% CI −0.91, −0.11), higher DHA (β, 0.61; 95% CI 0.27, 0.95), and lower histidine
(β, −0.10; 95% CI −0.17, −0.03). The effect of each intermediate metabolite on IBD risk was
separately adjusted for the EPA effect in the MVMR model, presented as β with 95% CI and
was shown in Figure 5B. Linoleic acid and histidine showed effects on increasing risk of IBD,
although the result for histidine was with a wide confidence interval. Figure 5C displays the
proportion of the mediation effect of EPA on IBD explained by each intermediate metabolite
separately. Linoleic acid explained 58.33% (95% CI 32.97%, 83.69%) of the total effect of EPA
on IBD, while DHA explained 50.00% (95% CI 25.76%, 74.24%). Histidine explained 66.67%
(95% CI 43.34%, 90.00%) of the total effect. Given the large proportion of mediation of these
intermediate metabolites, the direct effects of EPA on IBD were massively attenuated after
conditioning on each of the intermediate metabolites (Figure 5B).
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Figure 5. Estimates for the metabolites that mediated the effect of EPA on the risk of IBD. (A) MR-
estimated effects of EPA on each intermediate metabolite (linoleic acid, DHA, and histidine) separately,
presented as β with 95% CI. (B) MR-estimated effects of each intermediate metabolite separately
on IBD after MVMR adjustment for EPA, presented as β with 95% CI. (C) MR-estimated effects of
indirect effects of each intermediate metabolite separately, by using the difference of coefficients
method with delta method-estimated 95% CIs. MR-estimated proportions mediated (%) are presented
with 95% CIs. The sum of proportions mediated (%) were higher than 100%, due to the strong
correlation among these intermediate metabolites (linoleic acid, DHA, and histidine). Abbreviations:
CI, confidence interval; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IBD, inflammatory
bowel disease; linoleic acid, linoleic acid; MR, Mendelian randomization; MVMR, multivariable
Mendelian randomization.

4. Discussion

The present study employed a comprehensive analysis using MR to strengthen the
inferences regarding the effects of different omega-3 PUFAs (including total omega-3, α-
linolenic acid, EPA, and DHA) on IBD risk. We provided evidence supporting that increased
levels of EPA are causally associated with a lower risk of IBD and CD, but the effect on
UC is relatively weaker. The mediation MR analysis further suggested that EPA may
influence IBD via α-linolenic acid, linoleic acid and methylhistidine metabolism pathways.
Linoleic acid and histidine were estimated to mediate the effect of EPA on IBD. However,
we found limited evidence to support the effects of total omega-3, α-linolenic acid, and
DHA on the risk of IBD. Furthermore, leave-one-out, single-locus, and colocalization
analyses indicated that the effects of omega-3 PUFAs on IBD were massively driven by SNP
effects in the FADS2 gene region. Therefore, desaturation steps during omega-3 PUFAs’
biosynthesis might play a critical role in the relationship between omega-3 PUFAs and
IBD. Meanwhile, higher genetic liability to UC might be associated with lower levels of
DHA, potentially indicating a weaker absorption or abnormal metabolism of omega-3
PUFAs in UC. Collectively, our results suggest that supplementation with EPA (rather
than α-linolenic acid or DHA) might be a more effective strategy to prevent the onset of
IBD, especially CD, rather than UC with high probability of weak absorption or abnormal
metabolism on omega-3 PUFAs. These findings shed light on the potential differential
impacts of specific omega-3 PUFAs on IBD risk and highlight the importance of considering
individual PUFA components in designing prevention strategies for this complex disease.
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Previous systematic reviews and meta-analysis of RCTs have not yielded firm rec-
ommendations regarding the usefulness of omega-3 PUFAs in treating IBD [29,30]. In a
study that included 19 RCTs, the results showed no significant benefits of omega-3 PUFA
supplementation in maintaining remission of disease [29]. Another study of 9 RCTs, found
insufficient data to support the routine use of omega-3 fatty acids for the maintenance of
remission in CD and UC [30]. Similarly, a prospective investigation in the Nurses’ Health
Study cohort reported that the risk of IBD was not influenced by long-term intake of omega-
3 PUFAs [31]. Meanwhile, our findings showed weak evidence of protective effects of
genetically predicted higher total omega-3 fatty acid against the risk of IBD and its subtypes
(both CD and UC) by using MR analysis. In spite of the known anti-inflammatory properties
of omega-3 PUFAs, attributed to their ability to reduce the production of cytokines [32,33]
and C-reactive protein (CRP) [34], the available data provided less convincing evidence
to support the use of omega-3 PUFAs in the prevention or treatment of IBD. One plausi-
ble explanation for these findings is that total omega-3 fatty acid comprises various fatty
acids with different carbon chain lengths, bond saturation, and diverse biochemical mech-
anisms [35]. This complexity may lead to an overall effect of total omga-3 fatty acid that
is diminished or challenging to decipher in relation to IBD and its subtypes. Hence, the
specific roles and effects of individual omega-3 PUFAs, such as EPA and DHA, need to be
explored more comprehensively to understand their potential benefits in IBD management.

α-linolenic acid serves as a substrate for other essential omega-3 PUFAs in the body. In
our study, genetically predicted α-linolenic acid levels showed a trend toward an increased
risk of IBD, although the statistical power of the analysis was relatively low. Observational
studies have also provided inconclusive evidence regarding the relationship between
α-linolenic acid and IBD. For instance, a case-control study has reported higher dietary α-
linolenic acid intakes in newly diagnosed UC patients compared with healthy controls [12].
However, in consistent with our findings, previous studies did not find any association
between higher dietary intake of α-linolenic acid and an increased risk of IBD [36,37]. Well
powered studies are needed to investigate the effect of α-linolenic acid on IBD and other
autoimmune diseases in the future.

EPA and DHA are the main components of long-chain omega-3 fatty acids, which are
derived from α-linolenic acid through a series of elongation and desaturation steps and β-
oxidation. The beneficial effects of EPA and DHA have been investigated as a combination
or as part of omega-3 supplementation in observational studies and experimental trials.
However, the distinct effects of EPA and DHA on the risk of IBD have been relatively unex-
plored. In our study, we conducted separate evaluations and found evidence suggesting
that increased levels of EPA were associated with a lower risk of IBD and CD.

Interestingly, our findings indicate that EPA might play a more important role than
DHA in relation to IBD risk. Although direct comparative studies on the effects of EPA
and DHA on IBD risk are limited, other research has provided insights that align with our
results [38]. In twenty-one asthmatic adults, EPA reduced the production of interleukin-
1b and tumor necrosis factor from alveolar macrophages to a much greater extent than
DHA [39]. Meanwhile, the Cardiovascular Health Study reported that plasma phospholipid
EPA, but not DHA, was associated with lower concentrations of CRP [40]. These findings,
when integrated with our results, suggest that EPA may be more relevant for prevention
of IBD.

We further demonstrated that the protective effect of EPA on risk of IBD was mainly
influenced by α-linolenic acid, linoleic acid, and methylhistidine metabolism pathways.
These findings are consistent with a previous study that has indicated that krill oil, rich in
omega-3 PUFAs, exerts an inhibitory effect on histidine metabolism, leading to attenuated
intestinal inflammation [41]. Moreover, significantly increased levels of histidine have
been found in IBD patients compared to controls, which implied an association between
histidine and an increased risk of IBD [42]. Therefore, EPA might reduce IBD risk through
the regulation of histidine levels. Additionally, since there is competition for shared
enzymes and metabolic substrates in the synthesis of omega-3 and omega-6 PUFAs, EPA
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might also influence the levels of linoleic acid. A previous study indicated that higher levels
of linoleic acid, which are involved in the production of proinflammatory mediators, were
found in IBD patients compared with controls, thereby implicating an increased risk of
IBD [43]. Lower levels of linoleic acid might mediate the protective effects of EPA and IBD.
In this study, we showed the causal effects of EPA on α-linolenic acid, linoleic acid, and
methylhistidine metabolic pathways and three key metabolites (DHA, linoleic acid, and
histidine). These results provide valuable insights into the metabolic mechanism through
which EPA influences IBD risk.

Collectively, the increased risk of IBD is primarily associated with higher levels of
α-linolenic acid or lower levels of EPA, as the differences in desaturation steps driven
by the FADS2 gene will lead to changes in both upstream α-linolenic acid and down-
stream EPA concentrations [7]. Thus, the role of the FADS2 gene is crucial and merits
further investigation.

Our study also revealed a massive influence of FADS2 variants on IBD and CD, but
not on UC. Furthermore, we found robust colocalization evidence between omega-3 PUFAs
and CD in the FADS2 gene region, but little colocalization evidence for UC. These findings
suggest that the key link between omega-3 PUFAs and IBD is driven by effects in the
FADS2 gene cluster. Several lines of evidence support our observations and indicate that
the FADS2 gene is associated with inflammation [44] and CD risk [45,46]. For instance, the
FADS2 gene regulated immune functions and showed colocalization evidence on PUFAs
and CD (posterior probability = 0.94) [45]. In addition, integrated data from metabolomics
profiling and experiments revealed the role of FADS2 against chronic inflammation among
CD patients [47]. Therefore, FADS2 is a crucial gene linking omega-3 PUFAs and IBD risk,
particularly in the case of CD.

Despite the protective role on CD, our study provided little evidence to support the
effect of omega-3 PUFAs on UC risk. Previous epidemiological studies also indicated that
an increasing dietary intake of EPA or DHA had no association with a decreased risk or
maintenance of remission in UC [37,48]. It is possible that inadequate supplementation or
absorption resulted in lower concentrations of fatty acids in UC patients, thereby limiting
their ability to trigger protective effects. For example, the inflamed colonic mucosa of
patients with UC was linked to a significant decrease in EPA [49]. Similarly, a significant
reduction in DHA derivatives was observed in active inflammatory UC [50]. As our bidirec-
tional MR analysis showed, genetic liability to UC had an effect on decreased concentrations
of DHA. Therefore, whether it is rational for UC patients to increase supplementation of
fish oil or enhance intestinal absorption ability is worth further investigation. In contrast,
He et al. recently reported that total omega-3 fatty acid had no causal effect on CD, but
decreased UC risk using MR [15]. We believe the discrepant association observed for UC in
our study compared with theirs was partly driven by the different instrument selection
process. After applying a similar instrument selection as our study, He et al. further
eliminated SNPs associated with potential confounders between total omega-3 fatty acid
and outcomes. This selection process eliminated over half of the genetic variants from
the instrument list for total omega-3 fatty acid. He et al. claimed that this selection was
used to satisfy the second assumption of MR (exchangeability). However, this assumption
suggested that the instruments are not associated with common causes (confounders) of
the instrument–outcome association. MR estimates are generally less susceptible to con-
founders because human DNA is stable across the life course. Therefore, excluding SNPs
associated with confounders between total omega-3 and IBD (e.g., body mass index) will
reduce the power of the analysis rather than satisfying the exchangeability assumption of
MR. In fact, such an overly stringent selection resulted in the deprivation of genetic variants
in the FADS2 region. As mentioned above, the FADS gene cluster plays a central role on
PUFAs’ metabolism, where genetic effects in the FADS2 region massively influenced the
MR estimates of omega-3 PUFAs on IBD and its subtypes. The effects of total omega-3 fatty
acid were found to potentially increase IBD risks after removing the FADS2 instrument
(Figure S2). In summary, the previously reported effect of total omega-3 fatty acid on a
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lower risk of UC was methodologically arguable and did not align with the evidence from
our MR study and other observational studies.

There were several strengths of the present study. First, our study comprehensively
explored the causal effects of the different components of omega-3 PUFAs on IBD risk by
using a robust MR setting, which reduced bias from residual confounding and excluded
reverse causality. Current data contributed to produce informed recommendations based
on the relative importance of EPA in preventing IBD. Second, our investigation of the
metabolic pathways involving linoleic acid and histidine metabolites provided valuable
insights into the mechanisms underlying the effect of EPA on IBD risk, which may have
implications for future clinical practice. Third, our findings suggest that supplementation
policies should consider the different subtypes of IBD, as EPA demonstrated a significant
effect on reducing the risk of CD but not UC, and genetic liability to UC was associated with
lower concentrations of DHA. Additionally, we used colocalization methods to thoroughly
explore the possibility of a single shared effect signal in the FADS2 gene region, thus
validating the underlying mechanism linking omega-3 PUFAs with CD.

However, there were some limitations that should be considered when interpreting
our findings. First, we used different data sources for the exposure variables. The genetic
instruments for total omega-3 were obtained from the UK Biobank study, while instruments
for α-linolenic acid, EPA, and DHA were derived from the CHARGE Consortium. Although
both datasets involved participants with European ancestry, there could still be potential
biases introduced by using different sources. Second, we assumed that the relationships
between omega-3 fatty acids and IBD risk were linear. Non-linear relationships were not
taken into consideration and further investigation is needed to explore potential non-linear
effects. Finally, although we used univariable MR analyses to estimate the effect of each
fatty acid, we were unable to directly estimate the effect of EPA-to-DHA ratio. The EPA-to-
DHA ratio is considered important in the clinical application of fish oil, and its potential
impact on IBD risk merits further exploration.

5. Conclusions

In conclusion, our comprehensive MR analyses identified that EPA was the key com-
ponent among the omega-3 PUFAs that may exhibit a protective effect on IBD and CD, but
not on UC. There was little evidence to support the effect of total omega-3, α-linolenic acid,
or DHA on IBD risks. We also provided novel insights into the underlying mechanisms
of EPA, which may influence IBD via α-linolenic acid, linoleic acid and methylhistidine
metabolic pathways. Furthermore, the FADS2 gene is likely to be a core gene that mediates
the effects of omega-3 PUFAs on IBD risk. Based on these findings, our study recommended
the supplementation or dietary intake of EPA, rather than α-linolenic acid or DHA, might
be beneficial for preventing the onset of IBD. The proposed mediators have provided novel
insights into the underlying mechanisms of EPA. More well powered epidemiological stud-
ies and clinical trials are needed to explore the potential benefits of high EPA concentration
or EPA/DHA in IBD and its subtypes. Moreover, further research is needed to investigate
the role of histidine metabolites in the context of IBD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13101041/s1, Figure S1: Selection process for the data
included in the study; Figure S2: Leave one out plots of the causal effects of omega-3 polyunsatu-
rated fatty acids on inflammatory bowel disease, Crohn’s disease, and ulcerative colitis showing
inverse variance weighted estimates after omitting each SNP; Table S1: Data sources of genome-wide
association studies included in the Mendelian randomization analysis; Table S2: Statistics used to
assess instrument strength; Table S3: Sensitivity analyses used to assess causal effects of omega-3
polyunsaturated fatty acids on the risk of Crohn’s disease, and ulcerative colitis.
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Abstract: The lung has raised significant concerns because of its radiosensitivity. Radiation-induced
lung injury (RILI) has a serious impact on the quality of patients’ lives and limits the effect of
radiotherapy on chest tumors. In clinical practice, effective drug intervention for RILI remains to be
fully elucidated. Therefore, an in-depth understanding of the biological characteristics is essential to
reveal the mechanisms underlying the complex biological processes and discover novel therapeutic
targets in RILI. In this study, Wistar rats received 0, 10, 20 or 35 Gy whole-thorax irradiation (WTI).
Lung and plasma samples were collected within 5 days post-irradiation. Then, these samples were
processed using liquid chromatography–mass spectrometry (LC-MS). A panel of potential plasma
metabolic markers was selected by correlation analysis between the lung tissue and plasma metabolic
features, followed by the evaluation of radiation injury levels within 5 days following whole-thorax
irradiation (WTI). In addition, the multiple metabolic dysregulations primarily involved amino acids,
bile acids and lipid and fatty acid β-oxidation-related metabolites, implying disturbances in the urea
cycle, intestinal flora metabolism and mitochondrial dysfunction. In particular, the accumulation of
long-chain acylcarnitines (ACs) was observed as early as 2 d post-WTI by dynamic plasma metabolic
data analysis. Our findings indicate that plasma metabolic markers have the potential for RILI
assessment. These results reveal metabolic characteristics following WTI and provide new insights
into therapeutic interventions for RILI.

Keywords: metabolomics; whole-thorax irradiation (WTI); radiation-induced lung injury (RILI);
metabolic marker; dynamic

1. Introduction

With the development of nuclear power and the widespread application of nuclear
technology, the potential risk for radiation damage to people has greatly increased. A rapid,
sensitive and accurate assay to assess the severity of the critical organ systems, as well as
radiation dose estimation of possible exposed individuals, is one of the key links to emer-
gency medical assistance after radiation damage. The lung has raised significant concerns
because of its radiosensitivity. Radiation-induced lung injury (RILI) has a serious impact on
the quality of patients’ lives and limits the effect of radiotherapy (RT) for chest tumors, with
5–20% of patients experiencing this adverse effect [1]. The Clinical symptoms of radiation
pneumonitis include a persistent dry cough, shortness of breath, mild fever or, occasionally,
a high fever that may be secondary to radiation-induced pulmonary fibrosis and may even
be the direct cause of death [2]. In the presence of extensive pulmonary fibrosis, antibiotic
and corticosteroid therapeutics are limited, and there is no effective clinical treatment,
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which severely affects the patient’s quality of life and even their survival [3]. Macrophages,
fibroblasts and T lymphocytes, as well as other inflammatory and immune cells, have key
roles in the development of RILI. In addition, TGF-β, IL-4, IL-13 and IFN-γ have also been
implicated in this process [4,5]. However, specific biological mechanisms and effective
drug interventions for RILI remain to be fully elucidated. Current diagnosis methods for
RILI, such as clinical biochemical indicators, lung function and medical imaging, have the
drawbacks of sensitivity, specificity and lag effects [6]. Thus, identifying biomarkers for
early diagnosis and revealing the molecular mechanisms of RILI is crucial for preventing
disease progression, reducing patient mortality and taking effective measures as early as
possible.

As an important component of systems biology, metabolomics is a comprehensive anal-
ysis of small-molecule metabolites and may reflect pathophysiologic states [7]. Metabolomics
technologies have been developed over the past two decades to enable reliable identifi-
cation, detection and quantification of novel metabolites in food, plant, environmental,
animal and human studies [8] and have been widely adopted as a new approach for
biomarker discovery and comprehensive understanding of the underlying pathogenesis [9].
To meet the demands of rapid radiation damage assessment in large-scale nuclear accidents,
metabolomics has been attempted to identify biomarkers of radiation injury in various
biological samples. Although the majority of studies have focused on a variety of biofluids
derived from animal models (like mice, rats and non-human primates), as well as humans,
the overlap in biomarkers of radiation injury across species has highlighted the metabolic
pathways that are most perturbed, including β-oxidation of fatty acids (acylcarnitines),
energy metabolism (TCA cycle intermediates), purines and pyrimidines metabolism, pro-
inflammatory pathways (the omega-6 constituents, polyunsaturated fatty acids) and amino
acids metabolism [10–14]. In the case of RILI, metabolomics has been utilized to reveal
the metabolic characteristics of RILI in different genotypes of mice [15] and to explore the
metabolic changes in serum and lung tissues exposed to irradiation [16,17]. These studies,
however, primarily focus on the metabolic changes at a single time point post irradiation,
which reflect the metabolic characteristics at a certain stage of RILI development and ignore
the influence of time. In contrast, dynamic metabolomics could capture the variation
generated by time and truly reveal dynamic metabolic changes during the development of
RILI. Therefore, the combination of static and dynamic analyses is necessary to obtain the
key metabolic characteristics related to RILI and discover the pathology of RILI.

Biofluid samples, such as plasma, serum, urine and saliva, are common sample types
due to their convenient and minimally invasive collection. On the other hand, most
biomarkers in biofluid samples only reflect the overall metabolic changes and cannot reflect
the pathophysiologic change in injured tissues. In metabolomic studies of biofluid samples,
unwanted confounding factors unrelated to diseases may lead to the discovery of false
positive biomarkers [18]. For example, the metabolic characteristics of blood and urine are
heavily influenced by gender, lifestyle, diet and other factors [19,20], which are difficult to
unify. Therefore, metabolites found in biofluid samples are sometimes unable to accurately
reflect the pathological status of disease. Nevertheless, tissue metabolomics can provide
more abundant physiological or pathological information, which is important for diagnosis
and treatment. Therefore, it is of importance to conjointly analyze differential metabolites
in plasma and lung tissues.

In this study, metabolomics signatures of lung tissues and serial plasma specimens
within 5 days of exposure to WTI in a rat model were performed. Furthermore, a panel of
potential minimally invasive plasma metabolic markers for RILI was selected, followed
by the assessment of radiation injury. Our findings will throw light on the molecular
mechanism and serve as a strategy to aid in discovering minimally invasive diagnosis
markers for RILI.
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2. Materials and Methods

2.1. Chemicals and Reagents

Mass-grade methanol and acetonitrile were from Fisher Chemical (Thermo Fisher Sci-
entific, Boston, MA, USA). Ammonium bicarbonate and formic acid were purchased from
Fluka (Dresden, Germany). The ultrapure water was prepared with a Milli Q purification
system (Millipore, Burlington, MA, USA). The chemical standards for compound identi-
fication were obtained from Sigma-Aldrich (St. Louis, MO, USA), Adamas (Hong Kong,
China) or JK Chemical Ltd. (Shanghai, China). The deuterium-labeled internal standards
(ISs), including cholic acid-d4,chenodeoxycholic acid-d4, succinic acid-d4,L-leucine-d10,
L-phenylalanine-d5, L-tryptophan-d5, L-citrulline-d4, acylcarnitine C10:0-d3 and acylcarni-
tine C10:0-d3 were from Cambridge Isotope Laboratories, and the natural lipid analogs,
including palmitic acid-d3and 1stearic acid-d3,were supplied by Avanti Polar Lipids.

2.2. Animals, Irradiation and Sample Collection

Female Wistar rats (170–190 g) were obtained from the Shanghai SLAC Laboratory
Animal Ltd. (Shanghai, China), which were randomized into control (n = 13) and irradiated
cohorts (n = 33). Prior to treatment, these animals were allowed to acclimate to the facility
for one week. Then, these animals were anesthetized with 100 mg/kg ketamine and
10 mg/kg xylazine. To develop a radiation-induced lung injury rat model, we used a small
animal radiotherapy treatment plan (X-RAD SmART) system. Images acquired through
cone beam computed tomography (CT) were used to reconstruct and delineate targets.
Multi-beam and CT-guided Monte Carlo-based plans were performed to optimize doses
to targets. The terminal dose of WTI that the rats received was equivalent to either 10 Gy
(n = 10), 20 Gy (n = 11) or 35 Gy (n = 12) at a dose rate of 2.7 Gy/min.

Plasma was obtained through periorbital bleeding at time points of 1, 2, 3 and 5 days
post-irradiation, while lung tissue was collected on the fifth day post-irradiation. As some
lung tissue samples have been exhausted for other analysis, a total of 39 samples (11 for
controls, 10 for 10 Gy, 9 for 20 Gy, 9 for 35 Gy) were available from the cohort that was
dedicated to the metabolomics study. All of the plasma and lung tissues were stored at
−80 ◦C before LC-MS analysis.

The study was approved by the Ethics Committee of Soochow University.

2.3. Histology

Lung tissues from each group were immersed in 10% neutral buffered formalin and
allowed to fix for a minimum of 24 h. The fixed lung specimens were embedded in paraffin,
sliced into 4 μm thick sections and stained with hematoxylin and eosin (H&E) for analysis
of tissue morphology changes following WTI.

2.4. LC-MS Pseudotargeted Metabolomics Analysis

To obtain more comprehensive metabolic characteristics, pseudotargeted metabolomics
analyses based on LC-MS were used to determine lung or plasma metabolites. Meanwhile,
considering that only known compounds can be biologically explained, the identified
metabolites in the samples were kept for the metabolic analysis.

The composition and concentration of internal standards (ISs) for plasma and lung
tissue are listed in Tables S1 and S2.

Plasma preparation: 200 μL ISs was added into 50 μL of sample for the protein
precipitation. After vortexing, the sample was centrifuged at 13,000 rpm/min for 10 min
(4 ◦C); the supernatant was taken and divided into two parts and dried by vacuum. Before
LC-MS analysis, two dried supernatants were redissolved with 50 μL ACN: H2O (1:3, v/v).

Lung tissue preparation: About 20 mg of lung tissue samples were homogenized
with ceramic beads in 1.5 mL ISs solution two times using a Tissue Lyser homogenizer
(Gene Ready Ultracool, Life Real, Hangzhou, China). The homogenization took 5 min with
15 s intervals each time (45 HZ). Then, the homogenized tissue sample was centrifuged at
13,000 rpm/min for 15 min (4 ◦C), the supernatant was taken and divided into two parts,
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and dried by vacuum. Before LC-MS analysis, two dried supernatants were redissolved
with 50 μL ACN: H2O (1:3, v/v). Before LC-MS analysis, two reconstituted samples were
used for positive ion mode and negative ion mode, respectively.

Pseudotargeted analysis of plasma and lung tissue metabolites was performed on TSQ
Vantage HPLC-MS/MS (Thermo Fisher, USA) with ESI, which was developed according
to the proposed strategy described by Zheng et al. [21]. In the positive ion mode, a BEH
C8 100 × 2.1 mm column (1.7 μm particle size, Waters) was employed for the separation.
Mobile phase A was 0.1% aqueous formic acid in water. Mobile phase B consisted of 0.1%
formic acid in acetonitrile. The linear gradient elution was set: 0–0.5 min, 5% B; 0.5–24 min,
5–100% B; 24–28 min, 100% B; 28–28.5 min, 100% B back to 5% B; 28.5–31.5 min, 5% B. An
HSS T3 100 × 2.1 mm column (1.8 μm particle size, Waters) was utilized in the negative
ion mode for the separation. The mobile phases were composed of 6.5 mM ammonium
bicarbonate in water (C) and 6.5 mM ammonium bicarbonate in 95% methanol/water (D).
The linear gradient elution followed: 0–1 min, 2% B; 1–20 min, 2–100% B; 20–24 min, 100%
B; 24–24.5 min, 100% B back to 2% B; 24.5–27.5 min, 2% B. The flow rate was 0.25 mL/min
in both positive and negative ion modes. The column temperature was kept at 50 ◦C, and
the sample injection volume was 5 μL. The mass parameters with electrospray ionization
were set as follows: 350 ◦C capillary temperature, 300 ◦C vaporize temperature, 35 arbitrary
unit sheath gas flow rate, 10 arbitrary unit auxiliary gas flow rate, 3.0 kV capillary voltage
for ESI+ mode and −2.5 kV for ESI mode.

2.5. Urea Detection

Urea contents were detected by Urea (BUN) Colorimetric Assay Kit (Urease Method).
Samples and working reagent were added to the 96-well plate, and then absorbance at
580 nm was measured by microplate reader (BioTek, Winooski, VT, USA).

2.6. Quantitative Real-Time Polymerase Chain Reaction (q-RT-PCR)

Total RNA of the lung samples of SD rats were homogenized and isolated using RNA-
Quick Purification Kit (ES Science, Shanghai, China), and cDNA synthesis was performed
by the Reverse Transcription Reagent Kit (ABM, Vancouver, BC, Canada) according to the
specification. Vii7 PCR system and SYBR® Green PCR kit (QIAGEN, Hilden, Germany)
were used for quantitative Real-Time Chain Reaction (q-RT-PCR). Data were normalized
to the expression of α-tubulin in each sample. The forward and reverse primers used for
qPCR were as follows:

CPT1A (Forward: 5’-CCTACCACGGCTGGATGTTT-3’, Reverse: 5’-TACAACATGGG
CTTCCGACC-3’); CPT1B (Forward: 5’-ACAGGCATAAGGGGTGGCAT-3’, Reverse:
5’-CACTCCAATCCCACCTCGACC-3’).

2.7. Data Processing and Statistical Analysis

The integration of the peaks from pseudotargeted analysis was conducted by Xcalibur
(LC-MS/MS). The metabolites with less than 20% missing values and relative standard
deviation (RSD) below 30% in QC samples remained. Then, the peak area of the metabolite
was normalized to ISs (for plasma) or ISs and tissue weight (for lung tissue), which was
utilized for following data processing. A paired analysis with nonparametric test (two-
tailed Wilcoxon signed-rank test) was performed to discover the differential features
(p < 0.05) using the SPSS 16.0 software. False-discovery rate (FDR < 0.2) was used to reduce
false-discovery rate. Heat map employing MeV 4.9.0 was used to visualize the metabolic
regulations of the differential metabolites associated with ionizing radiation exposure.

The panel of potential biomarkers for radiation exposure was further refined by vari-
able importance in projection (VIP) of partial least squares–discriminant analysis (PLS-DA).
Multivariate statistical models, including principal component analysis (PCA), partial least-
squares discriminant analysis (PLS-DA) and nonlinear kernel partial least squares (KPLS)
combined with a preprocessing technique of orthogonal signal correction (OSC) [22], were
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carried out using SIMCA-P 11.5 demo version (Umetrics AB, Umeå, Sweden). Response
permutation test with 200 times was conducted to assess whether the model was overfitting.

2.8. Metabolic Correlation Network Analysis

Metabolic correlation network was performed using Cytoscape software (version
2.8.3). In the correlation network map, the nodes represent the metabolites. The solid black
and red edge lines show positive and negative relationships, respectively. Metabolites with
Pearson correlation coefficients above a threshold (r ≥ 0.7, p < 0.05) were connected by
lines.

3. Results

3.1. Histological Destruction of Rat Lung Tissues in Response to WTI

The hematoxylin–eosin (H&E) staining results showed that the structure of the lung
tissue had severe destruction after exposure to radiation. As shown in Figure 1, the control
group had a regular alveoli structure of lung tissue with slender alveoli and blood vessel
walls. Compared with the control group, there was more diffuse hyperemia in the lung
tissue at 5 d after 10 Gy irradiation. In the 20 Gy group, more inflammatory cells in the
alveolar wall, thickening of the blood vessel wall and increased exudate in the alveoli could
be observed. When it comes to 35 Gy, the lung tissue structure became more disorganized,
with significant aggregation of lymphocytes, which reflected dose-dependent damage in
lung tissues.

Figure 1. Representative images of HE staining in the control group and irradiated groups (first row:
40×, second row: 100×).

3.2. Ratlung Metabolic Signatures Exposed to WTI

To evaluate the stability of the analytical systems, quality control (QC) samples
were evenly inserted into the analytical queue during the run of samples in LC-MS
metabolomics analysis. QC samples were prepared similarly to the other samples. As
shown in Figure S1A, the RSDs of 82.76, 94.58 and 99.01% of metabolites detected in QC
samples were less than 10, 20 and 30%, respectively. In addition, QC samples were all
within two times the standard deviation (SD) (Figure S1B). All of these results confirmed
the reproducibility and stability of the metabolic profiling in LC-MS.

To highlight the separation of the study groups, a PLS-DA model was used to perform
a multivariate pattern recognition analysis, and two principal components (PCs) were
calculated based on this PLS-DA model. As shown in Figure 2A, except for a lesser overlap
between the 10 and 20 Gy irradiated groups, there was a clear clustering trend and dose-
dependent distance in different groups, which indicated that metabolic disorders in lung
tissues were positively related to radiation doses.
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Figure 2. Statistical analysis for the data set of lung tissues at 5 d after WTI. (A) PLS-DA score
plot comparing control and individual WTI doses. (B) Heatmap of the 37 differential metabolites
in lung tissues, with the degree of changes compared with control group marked with colors. AS-
COR: ascorbic acid; MG16:0: palmitoylglycerol; AC13:1: acylcarnitine C13:1; AC20:0: acylcarnitine
C20:0; AC22:0: acylcarnitine C22:0; AC15:0: acylcarnitine C15:0; AC20:1: acylcarnitine C20:1; AC5:0:
acylcarnitine C5:0; Hybs: 4−Hydroxybenzenesulfonic acid; Indols: indoxyl sulfate; TUDCA: tau-
roursodeoxycholic acid; TCA: taurocholic acid; T−α−MCA: tauro−α−Muricholic acid; AZOD:
3−Amino−2−oxazolidinone. The red and blue colors represent significant increases and decreases
in response to WTI. According to the clustering, the metabolic alternations induced by WTI could be
divided into three zones (a, b, c).

Based on the analysis of variance p-value (ANOVA, p < 0.05) and false-discovery rate
(FDR < 0.2), 37 differential metabolites associated with RILI were selected; the effects of
irradiation on the differential metabolites are listed in Table S3 and visualized in Figure 2B.
The metabolic alternations induced by WTI could be divided into three zones (a, b, c)
according to the clustering. Metabolites in zone A were significantly up-regulated following
WTI irradiation, mainly including lipid metabolites and fatty acid β-oxidation-related
metabolites, such as cholesterol, lysophosphatidylcholine and long-chain AC. Meanwhile,
most metabolites in panel C (bile acid and lipid metabolites) showed a significant decrease
following irradiation. Additionally, metabolites in region B, containing acylcarnitine C5:0
(AC5:0), urea, 4-Hydroxybenzenesulfonic acid (Hybs) and indoxyl sulfate (Indols) were
only down-regulated in the 35 Gy group.
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3.3. Plasma Metabolic Signatures Exposed to WTI

Similarly, we assess the stability of the total metabolic profiling analytical systems in
plasma. The RSDs of 43.60%, 83.72% and 95.93% of metabolites were less than 10%, 20%
and 30%, respectively (Figure S2A), and QC samples were also all within two times the SD
(Figure S2B). These results confirmed the reliability of metabolic profiling in LC-MS.

The plasma metabolomic profiles from 1 d to 5 d after were subsequently depicted on
the basis of the PLS-DA model (Figure 3). There were two types of metabolic derangements,
including radiation-induced changes and time-associated changes. Individual doses shown
in Figure 3A could not be distinguished at 1 d after WTI, reflecting the lack of sensitivity of
differential metabolites to identify the WTI doses. Differently from 1 d, the 2 d PLS-DA plots
could distinguish the control and irradiated groups, although different WTI doses could not
be clearly divided (Figure 3B). At 3 d after WTI, individual doses could be distinguished
clearly, whereas the control group overlapped with the 10 Gy group (Figure 3C). Compared
with 3 d, PLS-DA plots at 5 d after WTI showed that the control group clustered closely
apart from the irradiated groups, and the high-WTI dose (35 Gy) group dispersed from
the moderate-WTI dose (10 and 20 Gy) groups (Figure 3D). It is clear that the distance
between the control area and the irradiated group became farther with the extension of
time and increase in radiation exposure doses. These results suggested that irradiation
could lead to metabolic disorders, and the degree of disorders in plasma was also positively
related to radiation doses. Finally, there were 40, 84, 109 and 128 differential metabolites
reaching significance in plasma selected at 1 d, 2 d, 3 d and 5 d after irradiation, respectively
(Tables S4–S7).

Figure 3. Statistical analysis for the data set in plasma at different times after WTI. PLS−DA score
plot comparing control and individual WTI doses ((A), 1 d; (B), 2 d; (C), 3 d; (D), 5 d).

3.4. Potential Plasma Metabolite Markers of Radiation-Induced Lung Injury

To select a panel of biomarkers for clinical RILI diagnosis and prognosis, metabolic data
in plasma and lung tissues were analyzed conjointly. We initially selected 37 and 123 dif-
ferential metabolites in lung tissue and plasma, respectively. Among these metabolites,
23 metabolites exhibited significant changes in both comparison groups simultaneously
(Figure S3A).

In order to reduce the risk of false positives, checking the metabolites before identi-
fying the biomarker candidates in this discovery phase is necessary. The first step was
to construct the PLS model based on the intersection of 23 metabolites and analyze the
variable importance (VIP) of each metabolite. We used two principal components (PCs)
in plasma and lung tissues to screen differential metabolites. As shown in Figure S3B,
10 metabolites were obtained to preserve the statistical importance of the classification in
two PCs based on VIP (VIP > 1). Secondly, a correlation analysis was performed on the
above 10 metabolites to select metabolites with high correlation in plasma and lung tissue,
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and all these metabolites were obtained based on the correlation (Table S8). Finally, the
VIP values of the 10 elected metabolites were analyzed again to assess the contribution
to classification. Then, the top seven metabolites (taurocholic acid (TCA), acylcarnitine
C5:0 (AC5:0), Leucine, tauroursodeoxycholic acid (THDCA), tauro-α-Muricholic acid (T-α-
MCA), acylcarnitine C9:1 (AC9:1) and urea) with the highest VIP scores were selected as
the most potential panel of plasma metabolic makers for RILI (Figure S4).

Subsequently, the potential panel of metabolic markers was assessed by the OSC-
KPLS model to discriminate different dose groups at different stages of radiation exposure.
Figure S5 shows the clustering graph of the control and irradiated groups at 1 d, 2 d, 3 d
and 5 d after WTI. Each data point represents a real sample, with the vertical coordinate
representing the actual radiation dose received and the horizontal coordinate representing
the injury classification. The comparison between the predicted radiation doses and the
observed values based on the panel is displayed in Table S9. Table 1 shows the classification
results at different time points after irradiation. Compared with the early stage (1 d, 2 d
after WTI), nearly all predicted values were close to the observed values at a later stage
(3 d, 5 d after WTI), with the accuracies of classification all more than 80%. The result
indicated the potential of the panel for estimating the approximate radiation dose and
being a biomarker of RILI.

Table 1. Classification of radiation injury at different time points after WTI based on OSC-KPLS
model and the panel of potential biomarkers.

Triage Control Mild Moderate Severe

Accuracy of classification at 1 d 72.7% 90.0% 58.3% 91.7%
Accuracy of classification at 2 d 92.3% 50.0% 72.7% 66.7%
Accuracy of classification at 3 d 100.0% 90.0% 100.0% 100.0%
Accuracy of classification at 5 d 100.0% 80.0% 81.8% 100.0%

In order to directly trace the changes of the potential metabolic markers in the early
stages of RILI, we analyzed dynamic plasma metabolic data within 5 days post WTI. As
shown in Figure S6, the majority of screened metabolites began to show a significant
difference at 2 d after WTI, except urea. Urea showed a down-regulated trend from 1 d to
5 d. AC5:0 and AC9:1 began to decrease at 2 d and 3 d, respectively. Aminoacids (leucine)
began to decrease at a later period (3 d after WTI). Cholic acid levels, including TCA,
THDCA and T-a-MCA, began to show significant decreases until 5 d.

To further explore the temporal trajectory of these metabolites, the levels for each
irradiated rat were divided by the average controls to rule out metabolic derangement
due to time-related changes (Figure S7). Interestingly, despite the complexity of radiation
regulations, most of them displayed a monotonic response in 20 Gy and 35 Gy-irradiated
cohorts from 2 d to 5 d post-irradiation. These features are considered the key metabolites
with consistent changing tendencies when comparing high doses versus low doses and low
doses versus Pre, reflecting the temporal variations with RILI progression and indicating
their potential for assessment of radiation injury for RILI.

3.5. Metabolic Correlation Network Analysis

Due to complex physicochemical reactions, not only did metabolite levels show signif-
icant changes, but linkages between metabolites could also be altered [23]. The correlation
network could provide an overview of a given status of the complex biological system and
reveal dysregulated biochemical mechanisms associated with the stimulus [24]. A positive
correlation between two metabolites indicates the adjacent relationship in a metabolic
pathway, whereas a negative correlation indicates that one of two metabolites is used to
generate the other one directly or indirectly [25].

Then, the correlation network analysis between differential metabolites was performed
to reveal the metabolic regulations following WTI using Cytoscape software. The linkage
line of metabolites was based on the Pearson correlation coefficient by calculating the
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relative levels of the metabolites. As shown in Figure 4, most metabolites connected with
each other and more connections between different metabolites could be observed after
irradiation, which inferred the complex metabolic regulation in RILI.The metabolites with
more connections to others may play a more important role in the metabolic regulations of
radiation exposure.

Figure 4. Metabolic correlation network analysis based on differential metabolites associated with ra-
diation injury in the control and irradiated groups at 5 d after WTI ((A), Control; (B), 10 Gy; (C), 20 Gy;
(D), 35 Gy). Nodes represent the metabolites, and the lines between nodes represent their relationship
associated with biochemical reactions. ASCOR: ascorbic acid; MG16:0: palmitoylglycerol; AC13:1:
acylcarnitine C13:1; AC20:0: acylcarnitine C20:0; AC22:0: acylcarnitine C22:0; AC15:0: acylcarnitine
C15:0; AC20:1: acylcarnitine C20:1; AC5:0: acylcarnitine C5:0; Hybs: 4-Hydroxybenzenesulfonic
acid; Indols: indoxyl sulfate; TUDCA: tauroursodeoxycholic acid; TCA: taurocholic acid; T-α-MCA:
tauro-α-Muricholic acid; AZOD: 3-Amino-2-oxazolidinone. The metabolites (nodes) in red and green
colors represent significant increases and decreases in response to WTI. The black and red lines
between metabolites represent positive and negative relationships, respectively.

Lipids were found to correlate more positively with amino acids with increased
radiation exposure doses. In contrast, bile acids displayed a more negative correlation
with amino acids, such as arginine, proline, leucine and asparagine, in the 35 Gy-irradiated
group. In the 20 Gy irradiated group, fatty acid β-oxidation-related metabolites began to
show strong correlations with lipids. β-oxidation is a process of generating energy by the
formation of ketone bodies from fatty acids, which could explain the correlation between
lipids and β-oxidation and indicate the significant contribution in the process of RILI. These
results indicated the important roles of bile acids, lipids and fatty acid β-oxidation-related
metabolites in the metabolic regulation of RILI.
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3.6. CPT1 Gene Expression Level and Enzyme Activity in the Lung Samples of Rats Exposed
to WTI

We further found that the levels of Acylcarnitine C20:1 and Acylcarnitine C20:1 in-
creased at 1 d after exposure and maintained the change up to 5 d, indicating the ra-
diosensitivity of fatty acid β-oxidation (Figure S8A). Thus, we evaluated the carnitine
acyltransferases (CPT1, presenting in the mitochondrial outer membrane; CPT2, situating
at the matrix side of the inner membrane) involved in acylcarnitine metabolism, which reg-
ulates this transport system [26]. The activities of two enzymes can be estimated by ratios,
such as the CPT1 ratio (carnitine/(C16:1 + C18:0)) and the CPT2 ratio (C16:0 + C18:1/C2).
An elevation of the CPT1 ratio indicates CPT1 deficiency or impaired functions [27], reflect-
ing the increased mitochondrial entrance of long-chain FA. Meanwhile, the increase in the
CPT2 ratio points to a significant reduction in long-chain fatty acid oxidation or impaired
CPT2 functions, which means long-chain acylcarnitine cannot be converted to their cor-
responding acyl-CoA esters [26]. As can be seen in Table 2, the CPT1 ratio significantly
decreased in response to WTI, while the CPT2 ratio markedly increased, indicating the
accumulation of long-chain acylcarnitine in mitochondria.

Table 2. Related ratios in control, 10 Gy, 20 Gy and 35 Gy groups.

Enzymes Control 10 Gy 20 Gy 35 Gy

CPT1 155.4
(139.5–197.4)

129.4 *
(109.6–140.2)

112.4 **
(100.2–128.7)

104.1 **
(94.9–112.3)

CPT2 0.004
(0.003–0.004)

0.005 *
(0.004–0.005)

0.005 **
(0.005–0.006)

0.006 ***,#

(0.005–0.006)
Note: Values are expressed as medians (25th, 75th percentiles). The p-values were calculated based on nonpara-
metric Kruskal–Wallis test. Compared with control, * p < 0.05, ** p < 0.01, *** p < 0.001; compared with 10 Gy,
# p < 0.05.

In addition, to preliminarily discover the extra accumulation of long-chain acylcar-
nitine after WTI, the mRNA levels of CPT1A and CPT1B in lung tissues from model rats
were analyzed at 5 d after WTI. As shown in Figure S8B, the mRNA levels of CPT1A and
CPT1B showed significant dose-dependent elevation compared with the control group.
This further substantiates that radiation plays a crucial role in the regulation of CPT1
activity, which may lead to the accumulation of long-chain acylcarnitine.

4. Discussion

In the current study, not only the metabolite levels but also the metabolic correla-
tion networks were significantly altered following WTI. These metabolic abnormalities
are mainly involved in amino acids, bile acids, lipids and fatty acid β-oxidation-related
metabolites, which are discussed in the following sections.

4.1. Amino Acids

Amino acids are a kind of vital metabolite in the organism, the basic components of
proteins and have biological functions such as synthesizing hormones, transmitting cell
signals and regulating gene expression [28]. After WTI, the levels of amino acids, including
arginine, phenylalanine, tryptophan, valine, leucine, isoleucine, threonine, proline and
alanine were significantly reduced in lung tissues (Table S3). These amino acids are involved
in multiple metabolic pathways, such as arginine and proline metabolism; valine, leucine
and isoleucine degradation;the urea cycle; and aspartate metabolism.

As essential amino acids, branched-chain amino acids (BCAAs, leucine, isoleucine
and valine) are widely studied due to their crucial role in the regulation of protein synthe-
sis, primarily through the activation of the mTOR signaling pathway and their growing
recognition as players in the regulation of a variety of physiological and metabolic pro-
cesses [29,30]. Elevated blood BCAA levels in both animal models and humans following
total body irradiation (TBI) have been implicated in radiation-induced activated protein
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breakdown [13,22,31,32]. In contrast to the above findings, BCAAs showed obvious re-
duced levels in both lung tissues and plasma in response to WTI (Figure S9). BCAAs are
ketogenic and glycogenic amino acids, which can be converted to branched-chain keto acids
(BCKAs) through BCAA transaminase (BCAT) in body metabolism [33]. Decreased blood
BCAA levels have been reported in patients with chronic obstructive pulmonary disease
(COPD), while dietary supplementation with BCAAs ameliorates COPD-related weight
loss and respiratory muscle weakness [34–38]. It has been found that the inhibition of
BCAT can inhibit airway inflammation and remodeling [39], suggesting that BCAT activity
is related to pneumonia response. Furthermore, mTOR signaling is closely associated with
the dysregulation of autophagy, inflammation, as well as cell growth and survival, resulting
in the development of pulmonary fibrosis [40]. Studies suggest that mTOR inhibitors are
promising modulators of radiation-induced pulmonary fibrosis (RIPF) [41]. Given that
BCAAs have been recognized as having anabolic effects in protein metabolism, which
involve the activation of the mTOR pathway, lower BCAAs levels may cause the dysregu-
lation of the mTOR pathway, leading to RILI.Therefore, identifying the BCAA metabolic
pathway may be a potential attractive treatment for therapeutic targets in RILI.

Decreases in urea and arginine in lung tissues indicate a urea cycle disorder following
WTI. Arginine engages in the urea cycle in the body, promoting the formation of urea, thus
transforming ammonia in the human body into non-toxic urea and reducing blood ammo-
nia concentrations [42]. Ionizing radiation could cause the urea-to-ammonia ratio to drop
precipitously and thus give rise to hyperammonemia [43,44], suggesting the disturbance of
the urea cycle and agreeing with our findings with declined levels of pulmonary arginine
and urea. Arginine is also involved in the nitric oxide (NO) pathway and is a substrate
for the synthesis of endogenous NO catalyzed by the enzyme NO synthase (NOS) [45].
Elevated exhaled NO following thoracic radiation has been reported to be predictive of
RILI. Recent studies have shown that arginine has an important protective effect on pul-
monary inflammation and fibrosis [46–48]. Moreover, the supplementation of arginine can
significantly downregulate procollagen mRNA transcription and hydroxyproline content
in lung tissues [49]. Consequently, we conclude that the decline of pulmonary arginine
may be related to the injury repair of the body in response to WTI, which further results in
the depletion of proline.

Phenylalanine and tryptophan belong to aromatic amino acids, which can synthe-
size acute proteins in response to inflammation [50]. Such proteins can play an anti-
inflammatory effect through immune regulation [51]. Therefore, the disturbance of aro-
matic amino acid metabolism in WTI rats may be related to the immune response of RILI.
In addition, tryptophan is the only precursor of serotonin, which is a key monoamine
neurotransmitter that participates in the modulation of central neurotransmission and
physiological function in the enteric system [52]. In addition, tryptophan can be metabo-
lized to kynurenine, tryptamine and indole, modulating neuroendocrine and gut immune
responses [52]. In our study, phenylalanine, tryptophan and serotonin were significantly
decreased in lung tissue in response to WTI, while indoxyl sulfate (Indols) was increased at
low doses (10 Gy, 20 Gy) and decreased at the high dose (35 Gy) (Figure S10). The changed
levels of all these metabolites in lung tissues implied a role for gut microflora in the lung
tissue exposed to WTI. Chen et al. reported that fecal microbiota transplantation (FMT)
attenuated radiation pneumonia, scavenged oxidative stress and ameliorated lung function
in mouse models following local chest irradiation [53]. This research further indicates
the relationship between radiation pneumonia and intestinal flora metabolism, which
is consistent with the results of this study. Furthermore, the decreased levels of plasma
metabolites associated with tryptophan, including kynurenic acid, serotonin and indole at
3–5 d post-irradiation, reinforced the importance of gut microflora in RILI.

4.2. Bile Acids

Bile acids (BAs) are synthesized in the liver and secreted into the digestive tract, where
they facilitate the digestion and absorption of lipids. They are associated with chronic
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inflammation and remodeling of the lung microbiota. Furthermore, BAs can regulate the
composition of the microbiota in indirect or direct ways and protect the gut barrier [54]. In
recent years, increasing evidence has demonstrated that there is a close connection between
gut microbes and the lung by modulating the transmission route of the gut–lung axis [55].
Many lung diseases often present with dysbiosis of the gut flora, which may refer to the
development of disease [54]. Additionally, BAs participate in the interactions between the
intestinal microbiota and the host’s immunity [56]. It has been shown that BAs can act
as signaling molecules via the activation of dedicated receptors, such as nuclear receptor
Farnesoid X Receptor (FXR) and membrane-bound receptor Takeda-G protein receptor 5
(TGR5). In addition, the FXR for BAs has been shown to be expressed in human airway
epithelial cells [57], and the agonists have been proven to have beneficial effects in a wide
range of pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis [58]. Recent reports verified the therapeutic effects of the
natural agonists of FXR (DCA and LCA) on inflammatory bowel disease by restoring
intestinal barrier function and alleviating inflammatory reactions [59]. In our research,
taurocholic acid (TCA), taurohyodeoxycholic acid (THDCA), Taurohyodeoxycholic acid
(TUDCA) and tauro-α-Muricholic acid (T-α-MCA) were significantly decreased in the lung
tissues of rats in response to WTI, which revealed that RILI induced the disturbance of bile
acid metabolism and gut barrier dysfunction. These results are in agreement with a recent
study by Li et al., who reported that the bile acid pool had a marked reduction after whole
chest irradiation and was recovered bycryptotanshinone (CPT) treatment in large part [55].

4.3. Lipids and Fatty Acid β-Oxidation

It is well known that lipids are the major constituents of cell membrane bilayers, play-
ing a major role in cell signaling, membrane anchorage and substrate transport.Radiation
exposure causes dysfunction of the cell membrane and disrupted lipid metabolism, together
with changes in lipid concentration and increased lipid peroxidation [60,61]. Increasing
studies have indicated that irradiation resulted in lipid accumulation, evidenced by ele-
vated triacylglycerol and cholesterol levels in plasma, liver or lung tissues [12,62–64]. In
accordance with the lipid accumulation revealed in the above reports, pulmonary palmi-
toylglycerol, cholesterol, unsaturated free fatty acid 22:5 (FFA 22:5), LPC (LPC(O-18:0)
and LPC(O-18:1)) were significantly increased in response to WTI (Figure S11). Although
the exact mechanism of radiation alters lipid mechanism is unclear, increased glucose
catabolism by providing increased levels of glycerophosphate as a lipid precursor and
up-regulated the lipoprotein lipase and fatty acid binding protein expression have been
considered important contributors to this lipid accumulation [65,66]. Moreover, pulmonary
lipid metabolites could induce chronic inflammation in tissues primarily by promoting the
infiltration and activation of macrophages [4]. Among the affected lipids, the alterations
of two PEs, including PE 32:0 and PE 36:5, deserve attention (Figure S11). As the second
most abundant membrane phospholipid in mammals, PE plays an essential role in mam-
malian development and cellular processes, including metabolism and signaling [67]. It
has been demonstrated that PE strongly contributes to surfactant-induced inhibition of
collagen expression in human lung fibroblasts via a Ca2+ signal, and early administration
of PE-enriched Beractant decreases lung fibrosis in mice [68]. Thus, decreased levels of
pulmonary PEs in the irradiated groups may be indicative of injury repair in RILI at the
expense of consumption. Overall, these findings support the idea that an alteration in lipid
metabolism is important in RILI pathology.

The β-oxidation of fatty acids is one of the main methods of energy metabolism in
organisms [69], including the activation, transfer and oxidation of fatty acids, culminating
in the production of acetyl-CoA and direct involvement in the tricarboxylic acid cycle (TCA)
or generation of metabolites, such as ketone bodies for energy metabolism. Acylcarnitines
(ACs) are formed when fatty acid enters the mitochondria for β-oxidation through the
carnitine shuttle. ACs can be divided into short (C3–C5), medium (C6–C12) and long-chain
(>C12) ACs depending on the length of the acyl groups. Due to the large number and
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special structure, ACs play an important role in the physiological activities of cells and
become a key substance for cellular metabolism [70]. Levels of ACs can vary depending on
the metabolic conditions but may accumulate when rates of β-oxidation exceed those of
tricarboxylic acid cycle (TCA). ACs play a major role in the β-oxidation of long-chain fatty
acids (LCFAs) and serve as a carrier to transport activated long-chain acyl-CoAs into the
mitochondria for subsequent β-oxidation to provide energy for cellular activities [71].

Prior studies have implicated carnitine metabolites as potential biomarkers of radiation
injury in biofluids derived from animals and humans [10,11,72]. Meanwhile, enhancement
of AC levels has been reported in the small intestine of abdominal-irradiated rats [73]. In
the current study, the decreased CPT1 ratio and increased CPT2 ratio in response to WTI
(Table 2) reflected increased mitochondrial entrance of long-chain ACs and incomplete fatty
acid β-oxidation, accounting for the accumulation of long-chain ACs in both lung tissues
and plasma (Tables S3–S7).

5. Conclusions

In the present study, early time-point plasma and lung metabolic signatures following
WTI were revealed. To identify minimally invasive markers for RILI, the metabolic features
of the lung tissue in response to WTI were cross-correlated with plasma metabolic features.
In the combined multivariate PLS model, the panel of potential plasma metabolic markers
was selected and used to assess the radiation injury levels within 5 days following WTI.
Our data implied that plasma metabolites can potentially be used to estimate radiation
doses associated with RILI. Moreover, the significant difference in metabolite levels and
metabolic correlation network in the lung tissue revealed that multiple metabolic dysregu-
lation primarily involved amino acids, bile acids, lipids and fatty acid β-oxidation-related
metabolites. In particular, the accumulation of long-chain ACs deserves attention by jointly
analyzing dynamic plasma metabolic characteristics. These findings provide insight into
the metabolic characteristics associated with RILI. Further extensive studies, including the
validation of the panel of potential metabolic markers for RILI by another cohort of animals
and thoracic radiotherapy patients and exploration of the effect of fatty acid β-oxidation
metabolism in RILI, are required.
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QC sample distributions in LC-MS; Figure S3: Screen of biomarkers in plasma. (A) Venn diagram
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VIP value in plasma and lung tissues, metabolites with VIP [1] and VIP [2] > 1 were selected; Figure S4:
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ability of model; Figure S6: Dynamic changes of these 7 potential biomarkers in plasma.Compared
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and CPT1B in lung tissues at 5 d after different radiation dose exposures.Compared with Control,
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(36:5)) in lung tissues.Compared with control, * p < 0.05, ** p < 0.01; Table S1: Concentration of internal
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Abstract: Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast
cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale
in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively
and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information
concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs
in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS)
coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid
and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and
the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established
mass spectrometry detection method was applied to analyze a set of training samples collected
from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis
techniques such as principal component analysis, partial least squares discriminant analysis, and the
Mann–Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally,
acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model
for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and
specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve
analysis. The results demonstrate that this technology has potential to become a rapid screening tool
for breast cancer, with significant room for further development.

Keywords: high-pressure photoionization mass spectrometry; urine; volatile organic metabolites;
breast cancer; rapid detection

1. Introduction

The global prevalence of female breast cancer (BC) has surged to 11.7%, accounting
for approximately 2.3 million cases, thus surpassing lung cancer as the most frequently di-
agnosed malignancy. Additionally, it stands as the fifth major contributor to cancer-related
fatalities worldwide, claiming the lives of 685,000 individuals [1,2]. The incidence and
mortality rates of breast cancer exhibit an upward trend. Prior research indicates that the
fatality rate associated with breast cancer could be significantly reduced through timely
detection and comprehensive treatment [1–3]. Presently, mammography serves as the con-
ventional modality for breast screening; however, it exhibits diminished sensitivity towards
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detecting small tumors, is constrained by patient age limitations, and cannot yield definitive
disease outcomes [4,5]. Furthermore, ultrasound and magnetic resonance imaging (MRI)
are commonly employed in conjunction with mammography to identify minute lesions
that may evade detection through mammography alone. However, these methods exhibit
relatively lower specificity, and their costly nature can potentially contribute to instances
of overdiagnosis [6–8]. Therefore, there exists a pressing demand for novel operational
strategies that can be readily implemented on a wide scale within practical clinical settings
for breast cancer screening.

Over the past few decades, a multitude of platforms leveraging omics technology have
been developed and extensively employed in the realm of disease diagnosis and screen-
ing, encompassing not only cancer but also its distinct subtypes. Numerous molecular
constituents, such as genes, proteins, and metabolites, have been proposed as potential
biomarkers for breast cancer [9–12]. Metabolomics represents a robust and auspicious
avenue for examining the intricate interplay between metabolites and physiopathological
alterations through comprehensive qualitative and quantitative analysis of all organismic
metabolites [10,12–14]. This approach harbors immense potential to discern and identify
heterogeneous tumor diseases during their nascent stages [9]. Urine, serving as an optimal
biofluid for metabolomic investigations, boasts several advantages, including non-invasive
sampling, easy accessibility, and lower protein content, thereby reducing complexity. In
addition, compounds produced by the body’s metabolism need to be concentrated by the
kidneys before being excreted, making urine a rich source of metabolites [15]. Numerous
volatile organic metabolites present in urine offer abundant insights into the onset and
progression of diseases. Previous research has demonstrated that tissues generate distinct
VOMs or exhibit altered concentrations of VOMs in pathological states, encompassing
infections, neoplasms, and metabolic disorders [15–17].

To detect VOMs in urine, certain analytical techniques based on gas chromatography-
mass spectrometry (GC-MS) have been utilized by integrating static/dynamic head-space-
solid phase microextraction or stir bar extraction methodologies [18]. Some potential
biomarkers for cancers, such as lung cancer [13], prostate cancer [19], breast cancer [4], and
gastric cancer [20] have been successfully identified. Nevertheless, the GC-MS methods
necessitate intricate pretreatment procedures and prolonged analysis durations, render-
ing them unsuitable for high-throughput and large-scale disease screening. Direct mass
spectrometry based on soft ionization techniques, such as proton transfer reaction mass
spectrometry (PTR-MS), selected ion flow tube mass spectrometry (SIFT-MS), and photoion-
ization mass spectrometry (PI-MS) has been successfully used for rapid detection of trace
volatile organic compounds in a complex matrix. Huang et al. used SIFT-MS to analyze
urine headspace of gastro esophageal cancer patients and found seven statistically different
VOMs [14]. PTR-MS was used in gastric cancer patients for VOM analysis in breath gas
by Yoon et al. [21]. A high-pressure photoionization time-of-flight mass spectrometry
(HPPI-TOFMS) has recently been developed with the advantages of high sensitivity, fast
response, and good moisture resistance, which is especially suitable for rapid detection
of trace volatiles and has been widely used in other fields [22–25]. It has shown excellent
performance in the detection of exhaled breath, with the limits of detection (LODs) as
low as 0.015 ppb for aliphatic and aromatic hydrocarbons [23], and has been successfully
applied in the early screening of lung and gastroesophageal cancers [26,27]. HPPI-TOFMS
has also been successfully used in the detection of VOMs in human urine with the LOD
for trimethylamine as low as 100 ng L−1 under alkaline conditions, and a new biomarker
2,5-dimethylpyrrole was exclusively found in the smoker’s urine sample in addition to
toluene [24].

In this study, the integration of HPPI-TOFMS with the dynamic purge-injection method
was employed for the rapid and highly sensitive detection of volatile compounds in urine.
A straightforward pretreatment approach involving the addition of acid and salt was
implemented and investigated for VOM sampling from urine samples. After optimizing
the experimental conditions, the method was applied to analyze urine samples obtained
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from 24 breast cancer patients and 27 healthy controls. The resulting MS data were subjected
to statistical analysis to identify distinctive VOMs in urine samples between breast cancer
patients and the healthy control group. Subsequently, the model’s classification efficacy
was assessed by constructing a receiver operating characteristic (ROC) curve.

2. Materials and Methods

2.1. Instrumentation

The home-built HPPI-TOFMS was composed of a HPPI ion source, an ion transmission
system, and an orthogonal acceleration reflectron mass analyzer (see Supporting Informa-
tion, S1). As shown in Figure 1, the HPPI ion source consisted of a vacuum ultraviolet
krypton (VUV-Kr) lamp (Heraeus Noblelight Ltd., Shenyang, China) and a high-pressure
photoionization region, which was constructed by five annular stainless steel electrodes: a
repelling electrode (6 mm i.d., 5 mm thick), two identical transmission electrodes (14 mm
i.d., 5 mm thick), a focusing electrode (14 mm i.d., 5 mm thick), and a Skimmer-1 elec-
trode (1 mm i.d., 4 mm thick). Three 1 mm thick polyether-ether-ketone (PEEK) insulation
annular washers (16 mm i.d.) were employed to separate the electrodes, except for the
space between the last focusing electrode and Skimmer-1 electrode for an excess neutral
exhaust. All the electrodes were electrically connected by using a 1 MΩ resistor string, and
additionally, the Skimmer-1 electrode was further connected by another 1 MΩ resistor to
the ground. The voltages applied on the repelling electrode and Skimmer-1 electrode were
18 V and 12 V, respectively, while a voltage of 16 V was applied on the focusing electrode
to form a nonuniform electric field in the ionization region, which was utilized for ion
focusing and higher ion transmission efficiency. A mass resolving power of 5000 (full width
at half-maximum, FWHM) was achieved with a 0.5 m field-free drift tube. All the mass
spectra were accumulated for 10 s at a repetition rate of 25 kHz, and all data were obtained
by averaging results from six parallel measurements.

Figure 1. Schematic diagram of the HPPI-TOFMS system combined with dynamic purge-injection
apparatus.

A dynamic purge-injection apparatus, composed of a thermostat water bath cauldron
and a bubbling bottle with 20 mL inner volume, was employed for VOM sampling from
urine samples into gaseous phase, as shown in Figure 1. The structure of the bubbling
bottle was basically the same as that in our previous work [24], except for the addition of
a porous glass cushion in the middle of the bottle, which was used to prevent the foam

122



Metabolites 2023, 13, 870

generated by bubbling from entering the sampling tube. A heated transfer line, containing
a stainless steel capillary, 250 μm i.d. and 50 cm length, was used as the sampling tube to
directly introduce gaseous VOMs from the outlet of the bubbling bottle into the ion source.

2.2. Chemicals and Reagents

Concentrated hydrochloric acid (AR, 36~38%) was purchased from Xilong Scientific
Co., Ltd. (Guangdong, China). Sodium chloride (GR, 99.8%) was purchased from Shanghai
Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Purified water was purchased
from Hangzhou Wahaha Group Co., Ltd. (Hangzhou, China). Hydrochloric acid solution
(4 mol·L−1) was prepared by diluting concentrated hydrochloric acid with purified water.
High-purity nitrogen gas (99.999%) was provided by Dalian Institute of Chemical Physics,
Chinese Academy of Sciences (Liaoning, China) and used as the gas source for the dynamic
purge system.

2.3. Urine Sample Collection, Preparation, and Detection

The middle stream of morning urine samples was collected from 24 breast cancer
patients (BC, age 42–76 years, mean 52) and 27 healthy controls (CTL, age 18–61 years,
mean 44) at Affiliated Zhongshan Hospital of Dalian University. All the urine samples
were frozen at −80 ◦C immediately after sampling and thawed at 4 ◦C before detection.
The study protocol was approved by the local ethics committee of Affiliated Zhongshan
Hospital of Dalian University, and the method was carried out according to the approved
guideline (2022021). Informed consent was obtained from all participants.

The urine samples were analyzed in four different conditions: (1) pure urine; (2) salted
condition with addition of 1.0 g NaCl in 4 mL of pure urine; (3) acid condition with addition
of 100 μL HCl (4 mol·L−1) in 4 mL of pure urine to adjust pH at 1; and (4) acid–salted
condition with addition of 100 μL of HCl (4 mol·L−1) and 1.0 g NaCl in 4 mL of pure urine to
adjust pH at 1. These samples were well mixed under ice and water bath conditions, stored
at 4 ◦C and tested within 24 h. A urine pool noted as quality control (QC) was prepared
by mixing the urine specimens (each with a volume of 400 μL) of all the participants in
this study. The QC sample was processed in the same conditions and detected on every
ten samples.

For VOM analysis, 4 mL of each urine sample was loaded into the clean bubbling
bottle, which was sealed in 50 ◦C water bath. Subsequently, a high-purity nitrogen stream
with 100 mL·min−1 was purged into the urine sample and produced a large number
of small bubbles. Large quantities of VOMs were released into the gaseous phase by
bubbles bursting and taken into the HPPI source through the stainless steel capillary for MS
analysis. As the sampling flow rate of the inlet capillary was 50 mL·min−1, the extra gas
was exhausted by a stainless steel tee connected before the capillary. The heated transfer
line and ionization region were maintained at 100 ◦C throughout the whole analysis process
to prevent condensation of the VOMs. Data acquisition of each mass spectrum was started
from the introduction of purge gas and accumulated for 2 min. The entire experimental
process, from the start of sample preparation to the end of data acquisition, took only about
4 min.

2.4. Statistical Analysis

The data were divided into two groups, i.e., BC group and CTL group. All the data
points with signal intensity values below 20 counts were set to 0 to avoid interference from
the background noise. Variables with non-zero values of intensity in at least 90% of each
group were included in the data set; otherwise, the variables were removed. Afterwards,
data filtering and normalization were performed to obtain a two-dimensional matrix
containing metabolite information (the data can be found in the Excel file named “DATA”
provided in the supporting materials). Multivariable analyses were carried out using
SIMCA-P software (version 14.0, Umetrics, Umea, Sweden) with unit variance scaling (UV
scaling). The principal component analysis (PCA) and partial least squares discriminant
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analysis (PLS-DA) models were built among different groups. The Mann-Whitney U
test was used for the nonparametric test and implemented by Multi Experiment Viewer
(MeV, version 4.9.0, TIGR, Boston, MA, USA). Mass peaks with variable importance of the
projection (VIP) > 1 and p-value < 0.05 were selected and used to determine the statistically
significant VOMs. Binary logistic regression analysis and ROC analysis of combinational
VOMs were figured out by using PASW Statistics 25 software (SPSS, Chicago, IL, USA).
Ten-fold cross validation was performed by an online metabolomics data analysis website
MetaboAnalyst 5.0 to test the discrimination power of the combination of statistically
significant VOMs.

3. Results

3.1. Influence of Acid and Salt Addition

Acidification and alkalization of urine are prevalent pretreatment methodologies uti-
lized for the extraction of VOMs during urine sampling. In our previous work, the VOMs
identified in alkalized urine predominantly consisted of nitrogen-containing alkaline com-
pounds, including dimethylamine, trimethylamine, piperidine, and dimethyl pyrazine [24],
which were absent in the potential biomarker list from previous works by others [28,29].
Therefore, the pretreatment method for acidification (HCl) of urine was employed and
investigated in this work. Adding acid can lower the pH of urine, which enhances the
volatilization of acidic compounds, such as carboxylic acids, aldehydes, ketones, alco-
hols, etc., from the urine into the headspace, thus improving the detection sensitivity of
these compounds [4,30]. In addition, NaCl was added in the urine sample to promote
the volatilization of VOMs in urine, as the solubility of VOMs would decrease when the
concentration of salt increased in the solution, known as the “salting-out effect” [31]. The
addition of salt modifies the matrix of the sample by increasing ion activity. A significant
quantity of the water molecules will exist as hydration associated with the ions in the solu-
tion under a high concentration of salt. VOMs do not dissolve well in the solution, which
is bonded to the ions. Therefore, the solubility of VOMs in the liquid phase will decrease,
and more VOMs move into the gas phase [31]. A mixed urine sample from four healthy
volunteers (each with a volume of 20 mL) was used to evaluate the influence of HCl and
NaCl addition. The signal intensities of over 33 mass peaks increased by more than 2-fold,
and the signal enhancement of mass peaks with m/z 48, 59, 65, 77, and 94 even reached 11-
to 21-fold after acidification of the mixed urine, as shown in Figure 2. Furthermore, 19 new
peaks appeared in the acidified urine. After adding salt into the acidified urine, the signal
intensity of mass peaks was further enhanced up to 62-fold (m/z = 94), compared with the
pure mixed urine. Finally, based on putative annotation (level 2) [32], the measured masses
of the characteristic ions were compared with their theoretical masses with a mass error of
less than 30 ppm, resulting in the identification of several compounds as shown in Table 1.

Table 1. A list of 24 metabolites that appeared in the spectra of QC sample under acid-salted condition.

Measured Mass (Th) Theoretical Mass (Th) Mass Error (ppm) Characteristic Peaks Chemicals

47.0495 47.0496 −2 C2H6O·H+ ethanol

45.0328 45.0340 −27 C2H4O·H+ acetaldehyde

48.0031 48.0033 −4 CH4S+
methanethiol49.0106 49.0112 −12 CH4S·H+

57.0338 57.0341 −4 C3H4O·H+ acrolein

59.0498 59.0496 3 C3H6O·H+

acetone77.0603 77.0602 1 C3H6O·H3O+

117.0915 117.0915 0 (C3H6O)2·H+
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Table 1. Cont.

Measured Mass (Th) Theoretical Mass (Th) Mass Error (ppm) Characteristic Peaks Chemicals

61.0280 61.0289 −15 C2H4O2·H+
acetic acid79.0398 79.0395 4 C2H4O2·H3O+

73.0652 73.0653 −1 C4H8O·H+
2-butanone91.0754 91.0759 −5 C4H8O·H3O+

144.1131 144.1150 −13 C8H16O2
+

octanoic acid145.1225 145.1228 −2 C8H16O2·H+

83.0715 83.0735 −24 C5H9N+ pentanenitrile

87.0808 87.0810 −2 C5H10O·H+

2-pentanone105.0915 105.0915 0 C5H10O·H3O+

173.1519 173.1542 −13 (C5H10O)2·H+

88.0346 88.0346 0 C4H8S+ methyl allyl sulfide

92.0629 92.0626 3 C7H8
+ toluene

93.0581 93.0578 2 C6H7N+ 3-methylpyridine

93.9908 93.9910 −2 C2H6S2
+ disulfide, dimethyl

96.0576 96.0575 1 C6H8O+ 2,5-dimethylfuran

97.0507 97.0527 −21 C5H7NO+ 2,5-dimethyloxazole

101.0599 101.0602 −3 C5H9O2
+ 2,3-pentanedione

101.0955 101.0966 −11 C6H12O·H+ 2-hexanone

107.0713 107.0735 −21 C7H9N+ 2,6-lutidine

110.0725 110.0731 −5 C7H10O+ 2-propylfuran

114.0135 114.0139 −4 C5H6OS+ 2-methoxythiophene

115.1112 115.1123 −10 C7H14O·H+ 2-heptanal

136.1240 136.1252 −9 C10H16
+ limonene

139.1120 139.1123 −2 C9H14O·H+ 2-pentylfuran

Figure 2. The comparison of mass spectra for different treatment methods of urine.
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3.2. Multivariate Statistical Analysis

The processed MS data of BC and CTL groups were imported into SIMCA-P for PCA
and PLS-DA analysis. During the urine sample analysis of BC and CTL, a QC detection
was inserted for every ten samples. Five QC mass spectra were obtained, and clustered
tightly together on the score plot of the PCA (see the Supporting Information, Figure S2a).
Furthermore, the relative standard deviations (RSDs) of about 94% of the mass peaks were
less than 30% for the QC sample (see the Supporting Information, Figure S2b), which
exhibited the satisfactory repeatability and reliability of the method. PLS-DA maximizes
the differences between samples by utilizing the biological measurements or category infor-
mation in the Y-matrix, which could effectively solve the classification problem of metabolic
phenotypes. As shown in Figure 3a, the BC group could be well separated from the CTL
group from the score plot of PLS-DA, which indicated that the metabolite profiles could be
well distinguished between the two groups. The cross validation with 200 iterations was
performed, and the result shown in Figure 3b indicated that the PLS-DA model was not
overfitted as the R2- and Q2-intercept values were 0.394 and −0.383, respectively.

Figure 3. Multivariable analysis: (a) PLS-DA score plot (R2Y = 0.864, Q2 = 0.487). (b) Cross-validation
plot of PLS-DA analysis, with a permutation test repeated 200 times and intercepts: R2 = (0.0, 0.394)
and Q2 = (0.0, −0.383).

3.3. Differential Metabolites in Urine of BC Patients

Univariate analysis was performed on the Multi Experiment Viewer, and the Mann-
Whitney U test was used here to assess the significance of the selected candidate metabolites.
Generally, a p-value < 0.05 was considered significant for the selected metabolite with a
statistical significance. Furthermore, the variable importance for the projection (VIP) was
plotted to summarize the importance of MS peaks, and only VIP > 1 can be reserved in
the end. To further narrow down the range of significant candidate metabolites, the false
discovery rate (FDR), based on the Benjamini–Hochberg correction, was introduced as
another criterion. Metabolites that ultimately met a VIP > 1 and a p-value < 0.05 were
selected as the differential metabolites. Finally, nine VOMs were identified as differential
metabolites in the urine samples between BC patients and the CTL group, which could
be classified as unsaturated aldehydes, ketones, aromatic hydrocarbons, volatile sulfur
compounds, and heterocyclic compounds, as shown in Table 2.

Furthermore, hierarchical cluster analysis (HCA) was performed to better demonstrate
the differences at metabolic levels between BC patients and the CTL group. The alteration
of these VOMs in the urine of BC patients and the CTL group can be clearly observed in
the heatmap as shown in Figure 4. The urine of BC patients had increased amounts of
2-butanone, 3-methylpyridine, and acrolein, but reduced concentrations of 2-pentyfuran,
methyl allyl sulfide, 2-pentanone, 2-hexanone, octanoic acid, and 2-methoxythiophene.
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Table 2. Identification of differential metabolites in the urine samples between BC patients and
healthy controls (CTL).

VOMs
Chemical
Formula

Characteristic
Peaks

Ratio p-Value VIP Ref.

acrolein C3H4O C3H4O·H+ 2.00 2.57 × 10−5 1.63 [33]

2-butanone C4H8O C4H8O·H+ 1.92 8.66 × 10−5 1.54
[34,35]

C4H8O·H3O+ 1.58 0.0016 1.32

2-pentanone C5H10O C5H10O·H+ 0.53 0.0062 1.17
[34,35]

(C5H10O)2·H+ 0.38 2.51 × 10−4 1.47

methyl allyl sulfide C4H8S C4H8S+ 0.16 0.0012 1.37 [30,36]

3-methylpyridine C6H7N C6H7N+ 2.16 0.0043 1.14 [20]

2-hexanone C6H12O C6H12O·H+ 0.56 7.30 × 10−4 1.12 [3,37]

2-methoxythiophene C5H6OS C5H6OS+ 0.48 0.0097 1.11 [4,30]

2-pentylfuran C9H14O C9H14O·H+ 0.46 2.18 × 10−5 1.38 [3,37]

octanoic acid C8H17O2 C8H16O2·H+ 0.45 0.0108 1.21 [4]

Note: The value of “Ratio” is obtained by dividing the average concentration of BC by the average concentration
of CTL.

Figure 4. Heat map of the Pearson correlation coefficients between the differential metabolite contents.

3.4. Receiver Operating Characteristic Curve Analysis

The receiver operating characteristic curve is often used to evaluate the classification
effectiveness of the model. However, the specificity and sensitivity of models containing
a single differential metabolite for distinguishing BC patients from healthy controls were
not definitive (see the Supporting Information, Table S1). A feasible solution for this
problem is to combine more differential metabolites into a group for higher specificity
and sensitivity. Therefore, the binary logistic regression analysis was employed to screen
the differential metabolites to obtain an optimal metabolite combination. Eventually,
three statistically significant metabolites, including acrolein, 2-pentanone, and methyl
allyl sulfide were selected to build a metabolite combination model. This combination of
metabolites has not been reported previously. The area under the ROC curve (AUC) of
the statistically significant metabolic combination in the discovery set was 0.97, and the
sensitivity and specificity were 92.6% and 91.7%, respectively, as shown in Figure 5a. The
result indicated that this model has a good ability to identify BC patients. Subsequently,
10-fold cross-validation was performed to evaluate the model, as shown in Figure 5b,
with the AUC = 0.88, sensitivity = 85.2%, and specificity = 83.3%, respectively. The results
demonstrated the robustness of the model, which has the potential to be a useful tool for
early screening of breast cancer.
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Figure 5. Receiver operating characteristic curve: (a) ROC curve of potential metabolic marker combi-
nation; (b) ROC curve of potential metabolic marker combination based on ten-fold cross validation.

4. Discussion

4.1. Potential Metabolic Pathway Analysis

The metabolic pathways of VOMs are pretty complex. As shown in Figure 4, the
concentration of these VOMs were different between the BC and CTL groups, which
is probably related to the increased oxidative stress and decreased apoptosis of cancer
patients [14]. The relationship between the VOMs and cancer metabolism was not fully
understood until now. The potential metabolic pathway of the five classes of the identified
differential metabolites in Table 2 were summarized here according to previous studies.

Ketones are very abundant in urine. As shown in Table 2, there are three ketone
compounds identified between the BC and CTL groups in this study: 2-butanone, 2-
pentanone, and 2-hexanone. Different studies have shown that the ketogenic pathway may
be directly related to tumor growth, and some ketones have been assigned as designated
biomarkers for different cancers. Two potential pathways could be involved in their
production: (i) oxidation of secondary alcohols catalyzed by ADHs (or cytochrome p450
(CYP2E1), and (ii) β-oxidation of fatty acids [20]. Therefore, 2-butanone, 2-pentanone, and
2-hexanone may be derived from 2-butanol, 2-pentanol, and 2-hexanol, respectively. But the
source of these secondary alcohols remains unclear. They might stem from the oxidation of
n-alkanes catalyzed by cytochrome p450 enzymes, microbial metabolism, or diet. Among
them, 2-butanone and 2-pentanone have been detected as potential biomarkers in the breath
gas of patients with gastric and ovarian cancers [34,35].

Although, only methyl allyl sulfide was identified as a differential sulfide compound,
as listed in Table 2, sulfide compounds are generated by the incomplete metabolism of
methionine and cysteine through the transamination pathway with high expression in
urine [38]. On the one hand, during the transamination cascade, the methyl mercaptan
produced by the conversion of methionine and cysteine is easily oxidized to produce a
variety of volatile sulfides [38,39]. On the other hand, gram-negative bacteria can also
produce these sulfur metabolites [40].

Additionally, there are volatile aldehydes in Table 2, which are common products of
lipid peroxidation [30]. Acrolein is produced from the oxidation of arachidonic, linolenic,
and linoleic acids in the presence of hydrogen peroxide and Fe2+ [35]. In addition to
oxidative stress on unsaturated lipids, spermine and spermidine are potential carbon
sources for acrolein. These compounds are oxidized by amine oxidase to corresponding
amino aldehydes and spontaneously form acrolein in situ [33].

2-Pentylfuran was identified as the differential furan compound between the BC and
CTL groups. Furans can be found in different exogenous sources, such as various foods.
Furans are considered to be potential carcinogens, and high concentrations of furans can
increase the probability of bile duct tumors in rats [41]. Additionally, furans have also
been reported to be involved in anti-cancer defense mechanisms [42]. 2-Pentylfuran was
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found in the breath of patients with aspergillus fumigatus infections and human skin
emanation [43]. Its production by natural dehydration of monosaccharides and oxidation
of some fatty acids catalyzed by lipoxygenases could take place in adipocytes in the context
of lipid peroxidation [43].

The last two differential metabolites in Table 2 are heterocyclic compounds,
2-methoxythiophene and 3-methylpyridine were detected in several reports and can even
be considered as metabolic markers [4,20,30]. In Silva’s report, the concentration of 2-
pentylfuran in BC patients is significantly higher than that in normal people, and it is
considered as a biomarker of BC [4].

4.2. Methods Comparison and Limitations

GC-MS has become a core technology in metabolomic analysis due to its satisfac-
tory performance in sensitivity and specificity [44]. Many researchers have utilized
this technique to discover biomarkers for breast cancer in urine, achieving promising
results [3,4,37,45–47]. Nevertheless, sample preparation is complex and time-consuming,
involving multiple steps that restrict its application in high-throughput analysis and rapid
screening. PTR-MS, as a highly sensitive direct MS technique, has also been applied to the
detection of VOMs in urine [48,49]. However, the vast amount of water vapor from urine
samples makes the ionization process more complicated and increases the difficulty of data.

Compared to other methods, HPPI-TOFMS is more suitable for high-throughput urine
sample analysis. Firstly, HPPI-TOFMS offers fast analysis speed and requires simple sample
treatment steps such as acidification and salting. There is no enrichment or desorption
process, and samples are directly detected after gasification. Secondly, a HPPI ionization
source is less affected by humidity, enabling effective ionization of different compound
types. As a soft ionization source, it avoids excessive fragmentation ions, making spectrum
interpretation simpler. Thirdly, the instrument is easy to operate and has low maintenance
costs. However, one drawback of HPPI-TOFMS is its reliance on high-resolution TOFMS for
accurate qualitative analysis. Additionally, due to the lack of GC, it is unable to differentiate
structural isomers.

Achieving positive results in a pilot study is encouraging; however, there are also
some limitations of this study that need to be further addressed. The small sample size
and lack of external validation in this study may limit the generalizability of the findings.
Increasing the sample size would enhance statistical power and confidence in the results.
External validation should be included to improve the reliability of the findings.

Additionally, confounding factors such as diet, medication, lifestyle, and clinical vari-
ables may influence metabolomic characteristics and introduce bias. Future research should
employ appropriate methods to control for these factors and improve the reliability of the
conclusions. Further research is needed to confirm the metabolic pathways and mecha-
nisms underlying the associations between specific VOMs and breast cancer risk. In vitro
and in vivo experiments are necessary to establish causal relationships and understand the
biological significance of these findings.

5. Conclusions

This pilot study showcases a robust method for high-throughput analysis of VOMs
in urine using the integration of high-pressure photoionization time-of-flight mass spec-
trometry with dynamic purge-injection. Its preliminary application in rapid breast cancer
screening is demonstrated. VOMs present in urine samples are effectively volatilized and
introduced into the HPPI-TOFMS system through dynamic purge-injection following the
simple addition of acid and salt to the samples. The obtained mass spectrometry data were
analyzed using partial least squares discriminant analysis and the Mann-Whitney U test, re-
sulting in the identification of nine differential metabolites in the urine samples of 24 breast
cancer patients and 27 healthy controls. Furthermore, a metabolite combination model
was constructed using acrolein, 2-pentylfuran, and methyl allyl sulfide, which exhibited a
satisfactory discriminatory performance (sensitivity = 92.6%, specificity = 91.2%) in distin-
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guishing between breast cancer patients and healthy controls. Currently, the combination
of HPPI-TOFMS with dynamic purge-injection has shown potential as a tool for breast
cancer screening. In the future, efforts will be focused on expanding the sample size for
external validation and employing appropriate methods to control the influence of clinical
factors, further enhancing the reliability of this method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070870/s1, Figure S1: Schematic diagram of the HPPI-
TOFMS.; Figure S2: (a) Principal component analysis (PCA) score plot; (b) RSD distribution for ion
features in QC samples. Table S1: The result of ROC analysis for individual metabolites.

Author Contributions: Conceptualization, H.L. and D.L.; software, J.J. and Y.W.; formal analysis,
X.Z. and R.W.; investigation, L.H. and D.J.; data curation, M.Y.; writing—original draft preparation,
M.Y.; writing—review and editing, H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (22174142),
the Scientific Instrument Developing Project of the Chinese Academy of Sciences (ZDKYYQ20210005),
the United Foundation for Dalian Institute of Chemical Physics, the Chinese Academy of Sciences and
the Second Hospital of Dalian Medical University (DMU-2 and DICP UN202305), and the Innovation
Research fund of Dalian Institute of Chemical Physics (DICP I202123).

Institutional Review Board Statement: The institutional review board of the Affiliated Zhongshan
Hospital of Dalian University approved the study protocol (approval number: 2022021). The study
was performed by following the ethical guidelines expressed in the Declaration of Helsinki and the
International Conference on Harmonization Guidelines for Good Clinical Practice.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data are contained in the article and Supplementary Materials.

Acknowledgments: Thanks to the Affiliated Zhongshan Hospital of Dalian University for providing
the urine samples.

Conflicts of Interest: The authors declare that there are no competing interests associated with
the manuscript.

References

1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. McCormack, V.; McKenzie, F.; Foerster, M.; Zietsman, A.; Galukande, M.; Adisa, C.; Anele, A.; Parham, G.; Pinder, L.F.;
Cubasch, H.; et al. Breast cancer survival and survival gap apportionment in sub-Saharan Africa (ABC-DO): A prospective cohort
study. Lancet Glob. Health 2020, 8, e1203–e1212. [CrossRef] [PubMed]

3. Silva, C.L.; Perestrelo, R.; Silva, P.; Tomas, H.; Camara, J.S. Implementing a central composite design for the optimization of solid
phase microextraction to establish the urinary volatomic expression: A first approach for breast cancer. Metabolomics 2019, 15, 64.
[CrossRef]

4. Silva, C.L.; Passos, M.; Camara, J.S. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of
potential urinary cancer biomarkers—A powerful strategy for breast cancer diagnosis. Talanta 2012, 89, 360–368. [CrossRef]

5. Hellquist, B.N.; Czene, K.; Hjälm, A.; Nyström, L.; Jonsson, H. Effectiveness of population-based service screening with
mammography for women ages 40 to 49 years with a high or low risk of breast cancer: Socioeconomic status, parity, and age at
birth of first child. Cancer 2015, 121, 251–258. [CrossRef] [PubMed]

6. Onega, T.; Goldman, L.E.; Walker, R.L.; Miglioretti, D.L.; Buist, D.S.; Taplin, S.; Geller, B.M.; Hill, D.A.; Smith-Bindman, R. Facility
Mammography Volume in Relation to Breast Cancer Screening Outcomes. J. Med. Screen. 2016, 23, 31–37. [CrossRef]

7. Ozmen, N.; Dapp, R.; Zapf, M.; Gemmeke, H.; Ruiter, N.V.; van Dongen, K.W. Comparing different ultrasound imaging methods
for breast cancer detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 637–646. [CrossRef]

8. Roganovic, D.; Djilas, D.; Vujnovic, S.; Pavic, D.; Stojanov, D. Breast MRI, digital mammography and breast tomosynthesis:
Comparison of three methods for early detection of breast cancer. Bosn. J. Basic. Med. Sci. 2015, 15, 64–68. [CrossRef]

9. Hassan, A.M.; El-Shenawee, M. Review of electromagnetic techniques for breast cancer detection. IEEE Rev. Biomed. Eng. 2011, 4,
103–118. [CrossRef]

130



Metabolites 2023, 13, 870

10. Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid volatolomics and disease detection. Angew. Chem. Int. Ed.
Engl. 2015, 54, 11036–11048. [CrossRef]

11. Hu, J.; Liu, F.; Chen, Y.; Shangguan, G.; Ju, H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of
Clinical Biomolecules. ACS Sens. 2021, 6, 3517–3535. [CrossRef]

12. Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [CrossRef] [PubMed]
13. Hanai, Y.; Shimono, K.; Matsumura, K.; Vachani, A.; Albelda, S.; Yamazaki, K.; Beauchamp, G.K.; Oka, H. Urinary volatile

compounds as biomarkers for lung cancer. Biosci. Biotechnol. Biochem. 2012, 76, 679–684. [CrossRef]
14. da Costa, B.R.B.; De Martinis, B.S. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review.

Clin. Mass. Spectrom. 2020, 18, 27–37. [CrossRef]
15. Taunk, K.; Taware, R.; More, T.H.; Porto-Figueira, P.; Pereira, J.A.M.; Mohapatra, R.; Soneji, D.; Câmara, J.S.; Nagarajaram, H.A.;

Rapole, S. A non-invasive approach to explore the discriminatory potential of the urinary volatilome of invasive ductal carcinoma
of the breast. RSC Adv. 2018, 8, 25040–25050. [CrossRef]

16. Filipiak, W.; Filipiak, A.; Sponring, A.; Schmid, T.; Zelger, B.; Ager, C.; Klodzinska, E.; Denz, H.; Pizzini, A.; Lucciarini, P.; et al.
Comparative analyses of volatile organic compounds (VOCs) from patients, tumors and transformed cell lines for the validation
of lung cancer-derived breath markers. J. Breath Res. 2014, 8, 027111. [CrossRef] [PubMed]

17. Abaffy, T.; Moller, M.G.; Riemer, D.D.; Milikowski, C.; DeFazio, R.A. Comparative analysis of volatile metabolomics signals from
melanoma and benign skin: A pilot study. Metabolomics 2013, 9, 998–1008. [CrossRef]

18. Di Lena, M.; Porcelli, F.; Altomare, D.F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Color. Dis.
2016, 18, 654–663. [CrossRef]

19. Jimenez-Pacheco, A.; Salinero-Bachiller, M.; Iribar, M.C.; Lopez-Luque, A.; Mijan-Ortiz, J.L.; Peinado, J.M. Furan and p-xylene as
candidate biomarkers for prostate cancer. Urol. Oncol. 2018, 36, 243.e21–243.e27. [CrossRef] [PubMed]

20. Mochalski, P.; Leja, M.; Gasenko, E.; Skapars, R.; Santare, D.; Sivins, A.; Aronsson, D.E.; Ager, C.; Jaeschke, C.; Shani, G.; et al.
Ex vivo emission of volatile organic compounds from gastric cancer and non-cancerous tissue. J. Breath Res. 2018, 12, 046005.
[CrossRef]

21. Portillo-Estrada, M.; Van Moorleghem, C.; Janssenswillen, S.; Cooper, R.J.; Birkemeyer, C.; Roelants, K.; Van Damme, R.; Durand, P.
Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) as a tool for studying animal volatile organic compound
(VOC) emissions. Methods Ecol. Evol. 2021, 12, 748–766. [CrossRef]

22. Wu, C.; Wen, Y.; Hua, L.; Jiang, J.; Xie, Y.; Cao, Y.; Chai, S.; Hou, K.; Li, H. Rapid and highly sensitive measurement of
trimethylamine in seawater using dynamic purge-release and dopant-assisted atmospheric pressure photoionization mass
spectrometry. Anal. Chim. Acta 2020, 1137, 56–63. [CrossRef]

23. Wang, Y.; Hua, L.; Li, Q.; Jiang, J.; Hou, K.; Wu, C.; Li, H. Direct Detection of Small n-Alkanes at Sub-ppbv Level by Photoelectron-
Induced O2

+ Cation Chemical Ionization Mass Spectrometry at kPa Pressure. Anal. Chem. 2018, 90, 5398–5404. [CrossRef]
[PubMed]

24. Wang, Y.; Hua, L.; Jiang, J.; Xie, Y.; Hou, K.; Li, Q.; Wu, C.; Li, H. High-pressure photon ionization time-of-flight mass spectrometry
combined with dynamic purge-injection for rapid analysis of volatile metabolites in urine. Anal. Chim. Acta 2018, 1008, 74–81.
[CrossRef]

25. Wang, Y.; Jiang, J.; Hua, L.; Hou, K.; Xie, Y.; Chen, P.; Liu, W.; Li, Q.; Wang, S.; Li, H. High-Pressure Photon Ionization Source for
TOFMS and Its Application for Online Breath Analysis. Anal. Chem. 2016, 88, 9047–9055. [CrossRef] [PubMed]

26. Meng, S.; Li, Q.; Zhou, Z.; Li, H.; Liu, X.; Pan, S.; Li, M.; Wang, L.; Guo, Y.; Qiu, M.; et al. Assessment of an Exhaled Breath
Test Using High-Pressure Photon Ionization Time-of-Flight Mass Spectrometry to Detect Lung Cancer. JAMA Netw. Open. 2021,
4, e213486. [CrossRef]

27. Huang, Q.; Wang, S.; Li, Q.; Wang, P.; Li, J.; Meng, S.; Li, H.; Wu, H.; Qi, Y.; Li, X.; et al. Assessment of Breathomics Testing
Using High-Pressure Photon Ionization Time-of-Flight Mass Spectrometry to Detect Esophageal Cancer. JAMA Netw. Open. 2021,
4, e2127042. [CrossRef]

28. Gao, Y.; Zhang, J.; Chen, H.; Wang, Z.; Hou, J.; Wang, L. Dimethylamine enhances platelet hyperactivity in chronic kidney disease
model. J. Bioenerg. Biomembr. 2021, 53, 585–595. [CrossRef] [PubMed]

29. Jankowski, J.; Westhof, T.; Vaziri, N.D.; Ingrosso, D.; Perna, A.F. Gases as uremic toxins: Is there something in the air? Semin.
Nephrol. 2014, 34, 135–150. [CrossRef]

30. Smith, S.; Burden, H.; Persad, R.; Whittington, K.; de Lacy Costello, B.; Ratcliffe, N.M.; Probert, C.S. A comparative study of the
analysis of human urine headspace using gas chromatography-mass spectrometry. J. Breath Res. 2008, 2, 037022. [CrossRef]

31. Aggio, R.B.; Mayor, A.; Coyle, S.; Reade, S.; Khalid, T.; Ratcliffe, N.M.; Probert, C.S. Freeze-drying: An alternative method for the
analysis of volatile organic compounds in the headspace of urine samples using solid phase micro-extraction coupled to gas
chromatography—Mass spectrometry. Chem. Cent. J. 2016, 10, 9. [CrossRef] [PubMed]

32. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al.
Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef]

33. Kato, S.; Post, G.C.; Bierbaum, V.M.; Koch, T.H. Chemical ionization mass spectrometric determination of acrolein in human
breast cancer cells. Anal. Biochem. 2002, 305, 251–259. [CrossRef] [PubMed]

131



Metabolites 2023, 13, 870

34. Amal, H.; Leja, M.; Funka, K.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Haick, H. Detection of
precancerous gastric lesions and gastric cancer through exhaled breath. Gut 2016, 65, 400–407. [CrossRef]

35. Alonso, M.; Castellanos, M.; Besalu, E.; Sanchez, J.M. A headspace needle-trap method for the analysis of volatile organic
compounds in whole blood. J. Chromatogr. A 2012, 1252, 23–30. [CrossRef]

36. Mochalski, P.; Unterkofler, K. Quantification of selected volatile organic compounds in human urine by gas chromatography selec-
tive reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction
(HS-SPME). Analyst 2016, 141, 4796–4803. [CrossRef]

37. Porto-Figueira, P.; Pereira, J.; Miekisch, W.; Camara, J.S. Exploring the potential of NTME/GC-MS, in the establishment of urinary
volatomic profiles. Lung cancer patients as case study. Sci. Rep. 2018, 8, 13113. [CrossRef] [PubMed]

38. Tangerman, A. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and
dimethyl sulfide in various biological matrices. J. Chromatogr. B 2009, 877, 3366–3377. [CrossRef] [PubMed]

39. Blom, H.J.; Boers, G.H.J.; Vandenelzen, J.; Gahl, W.A.; Tangerman, A. Transamination of methionine in humans. Clin. Sci. 1989, 76,
43–49. [CrossRef]

40. Scholler, C.; Molin, S.; Wilkins, K. Volatile metabolites from some gram-negative bacteria. Chemosphere 1997, 35, 1487–1495.
[CrossRef]

41. Bakhiya, N.; Appel, K.E. Toxicity and carcinogenicity of furan in human diet. Arch. Toxicol. 2010, 84, 563–578. [CrossRef]
[PubMed]

42. Silva, C.L.; Passos, M.; Camara, J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by
solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br. J. Cancer 2011, 105, 1894–1904.
[CrossRef] [PubMed]

43. Mochalski, P.; Diem, E.; Unterkofler, K.; Mundlein, A.; Drexel, H.; Mayhew, C.A.; Leiherer, A. In vitro profiling of volatile organic
compounds released by Simpson-Golabi-Behmel syndrome adipocytes. J. Chromatogr. B 2019, 1104, 256–261. [CrossRef]

44. Silva, C.; Perestrelo, R.; Silva, P.; Tomas, H.; Camara, J.S. Breast Cancer Metabolomics: From Analytical Platforms to Multivariate
Data Analysis. A Review. Metabolites 2019, 9, 102. [CrossRef] [PubMed]

45. Herman-Saffar, O.; Boger, Z.; Libson, S.; Lieberman, D.; Gonen, R.; Zeiri, Y. Early non-invasive detection of breast cancer using
exhaled breath and urine analysis. Comput. Biol. Med. 2018, 96, 227–232. [CrossRef]

46. Giro Benet, J.; Seo, M.; Khine, M.; Guma Padro, J.; Pardo Martnez, A.; Kurdahi, F. Breast cancer detection by analyzing the volatile
organic compound (VOC) signature in human urine. Sci. Rep. 2022, 12, 14873. [CrossRef]

47. Cala, M.; Aldana, J.; Sanchez, J.; Guio, J.; Meesters, R.J.W. Urinary metabolite and lipid alterations in Colombian Hispanic women
with breast cancer: A pilot study. J. Pharm. Biomed. Anal. 2018, 152, 234–241. [CrossRef]

48. Zou, X.; Lu, Y.; Xia, L.; Zhang, Y.; Li, A.; Wang, H.; Huang, C.; Shen, C.; Chu, Y. Detection of volatile organic compounds in a
drop of urine by ultrasonic nebulization extraction Proton Transfer Reaction Mass Spectrometry. Anal. Chem. 2018, 90, 2210–2215.
[CrossRef]

49. Xu, W.; Zou, X.; Ding, H.W.; Ding, Y.T.; Zhang, J.; Liu, W.T.; Gong, T.T.; Nie, Z.C.; Yang, M.; Zhou, Q.; et al. Rapid and non-invasive
diagnosis of type 2 diabetes through sniffing urinary acetone by a proton transfer reaction mass spectrometry. Talanta 2023,
256, 124265. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

132



Citation: Zhang, S.; Shan, X.; Niu, L.;

Chen, L.; Wang, J.; Zhou, Q.; Yuan,

H.; Li, J.; Wu, T. The Integration of

Metabolomics, Electronic Tongue,

and Chromatic Difference Reveals the

Correlations between the Critical

Compounds and Flavor Characteristics

of Two Grades of High-Quality

Dianhong Congou Black Tea.

Metabolites 2023, 13, 864. https://

doi.org/10.3390/metabo13070864

Academic Editors: Cora Weigert and

Xinyu Liu

Received: 28 June 2023

Revised: 17 July 2023

Accepted: 18 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

The Integration of Metabolomics, Electronic Tongue, and
Chromatic Difference Reveals the Correlations between the
Critical Compounds and Flavor Characteristics of Two Grades
of High-Quality Dianhong Congou Black Tea

Shan Zhang 1,2, Xujiang Shan 2,3, Linchi Niu 2, Le Chen 2,4, Jinjin Wang 2, Qinghua Zhou 4, Haibo Yuan 2,*, Jia Li 2,*

and Tian Wu 1,*

1 School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University,
Kunming 650224, China; zhangshan@tricaas.com

2 Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute,
Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; shanxujiang@tricaas.com (X.S.);
niulinchi2001@163.com (L.N.); yjscl@hotmail.com (L.C.); jinjinwangtkzc@tricaas.com (J.W.)

3 State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
4 College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; qhzhou@zjut.edu.cn
* Correspondence: 192168092@tricaas.com (H.Y.); jiali1986@tricaas.com (J.L.); wutianpotato@swfu.edu.cn (T.W.)

Abstract: Tea’s biochemical compounds and flavor quality vary depending on its grade ranking.
Dianhong Congou black tea (DCT) is a unique tea category produced using the large-leaf tea varieties
from Yunnan, China. To date, the flavor characteristics and critical components of two grades of
high-quality DCT, single-bud-grade DCT (BDCT), and special-grade DCT (SDCT) manufactured
mainly with single buds and buds with one leaf, respectively, are far from clear. Herein, compar-
isons of two grades were performed by the integration of human sensory evaluation, an electronic
tongue, chromatic differences, the quantification of major components, and metabolomics. The
BDCT possessed a brisk, umami taste and a brighter infusion color, while the SDCT presented a
comprehensive taste and redder liquor color. Quantification analysis showed that the levels of total
polyphenols, catechins, and theaflavins (TFs) were significantly higher in the BDCT. Fifty-six different
key compounds were screened by metabolomics, including catechins, flavone/flavonol glycosides,
amino acids, phenolic acids, etc. Correlation analysis revealed that the sensory features of the BDCT
and SDCT were attributed to their higher contents of catechins, TFs, theogallin, digalloylglucose, and
accumulations of thearubigins (TRs), flavone/flavonol glycosides, and soluble sugars, respectively.
This report is the first to focus on the comprehensive evaluation of the biochemical compositions and
sensory characteristics of two grades of high-quality DCT, advancing the understanding of DCT from
a multi-dimensional perspective.

Keywords: metabolomics; electronic tongue; flavor; taste; Dianhong Congou black tea; grades

1. Introduction

Black tea, as a recognized healthy beverage, has a long consumption history in the
world, and it accounts for nearly 78% of the global tea consumption [1]. According to
the processing technology used, black tea can be divided into three types, i.e., broken
black tea, Congou black tea, and Souchoug black tea [2]. Among these, Congou black
tea is popularly favored by consumers due to its elegant appearance, mellow taste, and
sweet aroma [3]. Dianhong Congou black tea (DCT), which is a strip-shaped black tea, is a
famous, geographically recognized brand produced by using the large-leaf tea varieties
(Camellia sinensis L. var. assamica) from Yunnan province in the southwest of China [4]
through the elaborate manufacturing steps of withering, rolling, fermentation, drying,
and refining. Due to the special plant species and processing technology used, DCT
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is rich in tea polyphenols such as flavan-3-ols (catechins) and their derivatives such as
theaflavins (TFs), thearubigins (TRs), and theasinensins (TBs), as well as phenolic acids
and flavone/flavonol glycosides, etc., the contents of which are generally higher than
in tea manufactured by small-/medium-leaf tea varieties [5]. On account of its higher
content of tea polyphenols along with the other compounds such as amino acids, organic
acids, and soluble sugars, DCT presents a strong, sweet-mellow, and umami taste profile in
addition to its multiple health-protecting benefits [6,7]. In recent years, as an outstanding
representative of premium Congou black tea, DCT has emerged as a popular herbal healthy
beverage source and is exported to more than 30 countries around the world [5].

Grading is an important indicator for tea production as well as being a reference for
consumers to estimate the tea quality. Based on the Group Standard of China Tea Science
Society (T/CTSS 38-2021), DCT is divided into six grades, i.e., single-bud-, special-, first-,
second-, third-, and fourth-grade, according to the tenderness of the young tea shoots, its
sensory qualities, and its biochemical parameters, etc. Among these, single-bud-grade
DCT (BDCT) and special-grade DCT (SDCT), which are produced by single buds with
fresh leaf contents of no less than 90% and buds with one leaf, respectively, are commonly
regarded as high-quality DCT according to the Group Standard of China Tea Science
Society (T/CTSS 23-2021). Compared with middle-/low-quality DCT, high-quality DCT is
favored by consumers, mostly due to its significant superiority in sensory characteristics [8].
However, it is difficult for average consumers to make a sensible choice between BDCT
and SDCT, particularly due to the large gap in their prices in the market. In practice,
consumers generally choose tea products based on the price, and more-expensive BDCT
is often regarded as an optimal option. In fact, BDCT and SDCT both possess unique
characteristics in terms of sensory quality and biochemical characterizations, which are
suitable for various consumers’ preferences [8]. Therefore, it is necessary to elucidate
the differences between the two grades of high-quality DCT in order to afford theoretical
support to improve the productivity of high-quality DCT and to provide a guide for the
consumption of high-quality black tea in a rational manner.

At present, numerous studies have focused on the selection of tea varieties, processing
technology improvement, chemical composition variation, and evaluating the flavor quality
of black tea. For instance, the ratio of total polyphenols/total amino acids (P/A value) is
often used as an indicator for the prediction of the manufacturing suitability of a variety [9]
and as an index for the evaluation of black tea quality [10]. The ratio of TFs/TRs is also
an important index to measure the processing technology and flavor characteristics of
black tea [11]. In addition, there are some studies centered on the flavor features [5], aroma
patterns [8], and quality evaluation methods [12,13] of various grades of DCT. However,
few studies have been conducted to investigate the sensory and molecular differences
between the two grades of high-quality DCT, i.e., BDCT and SDCT.

Currently, the sensory assessment approaches include human sensory evaluation,
electronic tongue analysis, and chromatic difference measurement, etc. [4]. The analytical
tools for chemical analysis to determine the biochemical compounds of tea include high-
performance liquid chromatography (HPLC), gas chromatography–mass spectrometry
(GC-MS), and high-resolution liquid chromatography–mass spectrometry (LC-MS), etc.
HPLC is an effective analytical technique for the analysis of tea’s major components. GC-
MS and LC-MS are commonly performed for the qualitative and quantitative analysis
of volatile and non-volatile compounds in tea in an untargeted pattern, respectively. A
comprehensive combination of multiple sensory assessment approaches and chemical
component analytical techniques is considered to be a more accurate method for the
evaluation of tea quality. For example, Ma et al. characterized the key aroma-active
compounds in high-grade Dianhong tea using GC-MS combined with sensory-directed
flavor analysis [8]. Previous studies estimated the flavor quality of Keemun Congou black
tea by a combination of sensory evaluation, HPLC, and LC-MS [14,15]. Therefore, it is
advantageous to comprehensively study the two grades of high-quality DCT by integrating
multiple approaches.
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Herein, the aim of this study was to systematically compare the flavor characteristics
of two grades of high-quality DCT, BDCT and SDCT, and to explore their correlations
with the different key non-volatile compounds. To this end, a comprehensive sensory
and molecular characterization on nine typical BDCT and nine typical SDCT samples
was conducted by applying human sensory evaluation, an electronic tongue, chromatic
differences, the quantification of main chemical components of the tea, and untargeted
metabolomics profiling analysis. This study focused on the comparative assessment of
two grades of high-quality DCT for the first time, intending to broaden the understanding
about high-quality DCT with an objective, scientific, and global overview.

2. Materials and Methods

2.1. Chemicals and Reagents

High-purity solvents, including methanol, acetonitrile, formic acid, and acetic acid,
were produced by either the Merck Company (Darmstadt, Germany) or the Sigma-Aldrich
Company (St. Louis, MO, USA). Diagnostic solutions of the electronic tongue system used
in this study including hydrochloric acid, sodium chloride, and monosodium glutamate
(analytical grade) were purchased from the Evensen Biotechnology Company (Tianjin,
China). Ultra-pure water was obtained using a Milli-Q System (Millipore, MA, USA).

2.2. Tea Samples

The 18 high-quality DCT samples, including 9 BDCT samples (mainly single-bud)
and 9 SDCT samples (mainly one bud and one leaf), were collected from Fengqing county,
Lincang city, Yunnan province, which is recognized as the core producing area of DCT [7].

2.3. Human Sensory Evaluation

Sensory evaluation of two groups of high-quality DCT (9 BDCT and 9 SDCT) was
conducted following the Chinese National Standard (GB/T 23776-2018) by a group of
professional tea tasters containing 2 females and 3 males from the Tea Research Institute,
Chinese Academy of Agricultural Sciences. First, every tea sample (200 g) was placed in
a white square plate for evaluating the dry tea’s appearance. Next, each tea sample (3 g)
was brewed using 150 mL of boiling pure water for 5 min in a clean porcelain cup, and
then the tea infusion was filtered into a bowl for evaluating the liquor color, aroma, taste,
and infused leaf, sequentially. The comments were given referring to the Tea Vocabulary
for Sensory Evaluation (GB/T 14487-2017). The scoring was conducted using a 100-point
grading system: total score (100%) = dry tea appearance (25%) + liquor color (10%) + aroma
(25%) + taste (30%) + infused leaf appearance (10%). The tasters had no prior knowledge
about the tea samples. All tea samples were served randomly. More detailed information is
supplied in the supplementary information.

2.4. Electronic Tongue Measurement

An electronic tongue sensing system (α-Astree II, Alpha MOS company, Toulouse,
France) was employed to acquire the taste fingerprints of the two groups (9 BDCT and 9
SDCT). The sensory array included a reference electrode made of Ag/AgCl and seven re-
ceptors of NMS, ANS, SCS, AHS, CTS, PKS, and CPS for discriminating the taste of umami,
sweetness, bitterness, sourness, saltiness, and two comprehensive indexes, respectively.
The preparation and detection methods of the tea infusions referred to an earlier study [3].
To ensure the accuracy of the data, every tea sample was brewed twice, as per the methods
described in Section 2.3, and each tea infusion was measured four times. The average of
eight repetitions was used as the final electronic tongue response.

2.5. Chromatic Difference Assessment

A colorimeter system (CM-5, Konica Minolta Investment Company, Shanghai, China)
comprising indexes of L* (luminance), a*(+) (redness), a*(−) (greenness), b*(+) (yellowness),
b*(−) (blueness), and C* (color saturation) was used to characterize the infusion color of
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the 18 tea samples (9 BDCT and 9 SDCT). The tea infusion was prepared and tested as
previously described [3]. Briefly, every tea sample was brewed twice, and each tea infusion
was measured three times by the colorimeter. Ultra-pure water was used as a blank. The
final value was obtained from the average of six repetitions.

2.6. Quantitative Determination of the Major Tea Chemical Components

The levels of total free amino acids and total polyphenols in the 18 tea samples (9 BDCT
and 9 SDCT) were determined following the Chinese National Standards of GB/T 8314-2013
and GB/8313-2018, respectively. The content of total soluble sugars was detected using the
anthrone–sulfuric method [16]. The quantitative determination of caffeine, epigallocatechin
gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC), and
catechin (C), was conducted using an HPLC system (Shimadzu, Kyoto, Japan). The content
of total catechins was obtained by summing up the individual catechins of EGCG, EGC,
ECG, EC, and C. The quantification of total TFs, TRs, and TBs was implemented using
the systematic analysis reported in an early report [17]. Each sample was extracted and
analyzed with three replicates.

2.7. Untargeted Metabolomics Based on LC-MS Analysis

The metabolomics analysis was conducted as per a previous study [18]. Briefly, the tea
metabolites were extracted by adding 70% methanol (v/v) into finely ground tea powder.
Each tea sample was extracted and analyzed with three replicates. An LC-MS run was
conducted using an UHPLC apparatus (Dionex Ultimate 3000 system, Thermo Fisher,
CA, USA) coupled to a Q Exactive Plus MS instrument (Thermo Fisher, CA, USA). LC
separation was performed on an ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm,
1.8 um, Waters, MA, USA) by gradient elution using 0.1% formic acid (v/v) in pure water
and 0.1% formic acid (v/v) in acetonitrile as phase A and phase B, respectively. Negative
modes were operated in the full-scan (m/z range of 100–1000) and HCD MS/MS modes.
The capillary temperature, voltage, sheath gas flow, and auxiliary gas flow were set as
300 ◦C, 3.8 kV, 25 arb, and 5 arb, respectively. The quality control (QC) samples, prepared
by mixing equal aliquots of all samples, were detected every eight injections during the
whole run. The metabolite annotation was performed using database queries from the
online systems of HMDB (https://hmdb.ca/ (accessed on 24 October 2022)) and Metline
(https://metlin.scripps.edu (accessed on 6 November 2022)), MS/MS fragments, exact
mass (within 5 ppm), retention time, and authentic standards validation.

2.8. Data Processing, Analysis, and Visualization

The raw data acquired from the LC-MS analysis were processed using the XCMS 3.4.1
R-package for generating a peak list containing the peak area intensity, charge-to-mass
ratio (m/z), and retention time. The data pretreatment included normalization to the total
ion intensity, the 80% rule, and QC evaluation, as previously described in [16]. The Mann–
Whitney’ U nonparametric test was used for the analysis of statistical differences between
the two groups (9 BDCT and 9 SDCT). The Mann–Whitney U test, Bartlett’s test of sphericity,
and the Kaiser–Meyer–Olkin (KMO) test were performed using SPSS 26.0.0.0 (IBM, New
York, NY, USA). The principal component analysis (PCA), partial least-squares analysis
(PLS), partial least-squares discriminate analysis (PLS–DA), and the variable importance for
the projection (VIP) plot were performed using SIMCA–P 14.1 (Umetrics, Umeå, Sweden).
The heatmap analysis was performed using TBtools–II (v1.120, Toolbox for Biologists,
Guangzhou, China). The graphs of the box plot were visualized using GraphPad Prism
(GraphPad Software, San Diego, CA, USA). The pathway analysis was mapped by referring
to the MetaboAnalyst (http://www.metaboanalyst.ca (accessed on 14 April 2023)) and
KEGG (https://www.kegg.jp/ (accessed on 16 April 2023)) websites.

136



Metabolites 2023, 13, 864

3. Results and Discussion

3.1. Human Sensory Evaluation

The sensory evaluation of the two grades of high-quality DCT, i.e., BDCT and SDCT,
was performed by a group of experienced tea tasters. The results of the sensory features,
including the dry tea appearance, liquor color, aroma, tea taste, infused leaf, and total
score, are exhibited in Table 1. Detailed comments about and the scores of each tea sample
are shown in Table S1. In terms of the dry tea appearance, the BDCT teas were tight and
heavy, with a black bloom color and a golden and tippy appearance, while the SDCT
teas were tight and heavy, bent, and with a black bloom color and a slightly golden and
tippy appearance, which resulted in significant differences in the comments and scores
(Figure 1A, Table 1). It was supposed that the tea made from a single bud was more likely to
be shaped with a tight strip and present a more golden and tippy appearance, as compared
with the tea made from a bud with one leaf. Regarding the other factors, the two groups
had no significant differences in their scores of the liquor color, aroma, taste, and infused
leaf, but they exhibited differentiation in the comments (Tables 1 and S1). Specifically,
most of the BDCT samples presented a brisk taste with an umami, fruity-like sourness
taste (Table S1) and a brighter liquor color (Figure 1B), while most of the SDCT samples
presented a thick, mellow, and sweet taste (Table S1) and a redder liquor color (Figure 1B).
In a word, the BDCT and SDCT showed no significant differences in their overall sensory
scores, but they presented corresponding special sensory characteristics. To achieve an
improved characterization, a more objective approach using an electronic tongue and
chromatic difference analysis combined with a chemical investigation by quantifying the
main chemical components and with untargeted metabolomics was conducted next.

Table 1. Results of the sensory indicators (dry tea appearance, liquor color, aroma, tea taste, infused
leaf appearance, and total score) of the two grades of high-quality DCT samples as evaluated by
human sensory evaluation.

Group
Sample
Number

Dry Tea
Appearance

(25%)

Liquor Color
(10%)

Aroma (25%)
Tea Taste

(30%)
Infused Leaf

(10%)
Total Score

(100%)

BDCT 9 96.33 ± 0.5 a 90 ± 2.96 86.22 ± 4.82 84.56 ± 2.92 88.22 ± 1.64 88.83 ± 1.78
SDCT 9 93.56 ± 0.88 b 88.89 ± 2.93 85.67 ± 3.54 85 ± 2.60 87.89 ± 2.62 87.98 ± 1.71

a,b Different letters indicate significant differences between the mean scores of two groups (p < 0.05) as determined
by the Mann–Whitney U test.

3.2. Electronic Tongue Profiles Measurement

The representative taste patterns, as characterized by an electronic tongue, of the BDCT
and SDCT samples were visualized by a radar chart (Figure 1C). The BDCT tea samples
showed an obvious umami response (NMS, 7.48) and a sourness response (AHS, 7.72). The
SDCT tea samples exhibited a comprehensive taste including a strong sweetness (ANS,
6.66), an apparent bitterness (SCS, 6.52) integrated with umami (NMS, 5.57), a sourness
(AHS, 5.38), and higher comprehensive index values of CPS (6.71) and PKS (6.56). An
existing study has reported that the sourness, which is generally caused by organic acids,
is responsible for the fruity-like taste in many foods [19]. A moderate sourness is thought
to be conducive to a harmonious taste in black tea liquor, and an appropriate bitterness
is beneficial to the mellow and thick sensation in tea infusions [20]. The results indicated
that the BDCT infusion emerged as having an umami, fruity-like sour taste, while the
SDCT infusion presented a complex and multi-dimensional taste formed by an appropriate
interplay of sweetness, bitterness, umami, and sourness. The results of the electronic tongue
analysis were consistent with the human sensory comments in terms of taste.
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Figure 1. The representative tea samples’ dry tea appearances (A), infusion colors (B), taste intensities,
as evaluated by electronic tongue (C), and bar plots of color attributes, as evaluated by chromatic
difference measurement (D), of the two grades of high-quality DCT. # Indicates mean values with
significant differences between the two groups (p < 0.05).

3.3. Chromatic Difference Assessment

The color of a tea infusion is an important factor that affects the sensory quality of
black tea. Premium black tea presents a bright and red liquor color, which is widely favored
by consumers. Generally speaking, some consumers tend to like a redder liquor color,
while others prefer a brighter liquor color. As shown in Figure 1D, the tea infusion in
the BDCT presented a higher value of L* (luminance) (p < 0.001), reflecting a brighter
liquor color compared with the SDCT. The a*(+) (redness) value in the SDCT group was
significantly elevated (p < 0.001), indicating a redder liquor color in the SDCT. The values of
b*(+) (yellowness) and C* (color saturation) were higher in the SDCT group, but they were
not statistically significant (p > 0.05). The results were in agreement with the comments on
the liquor color obtained by the human sensory evaluation, suggesting that each group of
DCT had its own unique color that could satisfy different consumers’ preferences.

3.4. Quantitative Determination of the Major Chemical Constituents

The total amount of polyphenols in tea, which mainly include flavan-3-ols, dimeric/
polymeric catechins, flavonols and flavone/flavonol glycosides, and phenolic acids, ac-
counts for 18~36% (w/w) of the dry weight of tea leaves [21]. The ratio of P/A has been
regarded as an indicator for determining the suitability of tea cultivars [9] and an index for
estimating the quality of black tea [10]. As shown in Table 2, the level of total polyphenols
was significantly higher (BDCT vs. SDCT, fold change = 1.14, p < 0.05) and the total amino
acid content was slightly lower (no significant difference) in the BDCT. Thus, a higher P/A
value was observed in the BDCT compared with the SDCT (BDCT vs. SDCT, FC = 1.16,
p < 0.05). A previous study has reported that the level of total polyphenols is generally
negatively correlated with the maturity of young tea shoots [22], and the level of total
amino acids reaches higher levels in moderate-maturity tea leaves such as those with one
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bud with one leaf [23]. It is believed that this result was largely due to the tenderness
differences in the fresh leaves of the BDCT and SDCT.

Table 2. The contents of major biochemical components of tea in BDCT and SDCT.

Compounds BDCT (n = 9 × 3) SDCT (n = 9 × 3) p Value Fold Changes

Total polyphenols (%) 15.66 ± 2.22 13.62 ± 0.71 <0.05 1.14
Total amino acids (%) 3.37 ± 0.16 3.45 ± 0.18 n. s. 0.97

Total soluble sugars (%) 5.90 ± 0.46 6.09 ± 0.48 n. s. 0.99
Caffeine (%) 1.46 ± 0.42 1.72 ± 0.24 n. s. 0.88

Total catechins (%) 12.23 ± 1.95 9.20 ± 1.31 <0.05 1.34
EGCG (%) 8.78 ± 1.43 6.82 ± 0.78 <0.05 1.29
ECG (%) 1.52 ± 0.28 0.86 ± 0.18 <0.05 1.77
EGC (%) 1.30 ± 0.24 0.98 ± 0.17 <0.05 1.33
EC (%) 0.52 ± 0.22 0.30 ± 0.06 <0.05 1.76
C (%) 0.10 ± 0.06 0.13 ± 0.03 n. s. 0.83

TFs (%) 0.22 ± 0.05 0.17 ± 0.04 <0.001 1.36
TRs (%) 2.53 ± 0.32 2.64 ± 2.64 n. s. 0.96
TBs (%) 5.16 ± 0.70 5.30 ± 0.66 n. s. 1.03

TFs/TRs 0.09 ± 0.01 0.06 ± 0.01 <0.001 1.41
P/A value 4.64 ± 0.58 3.98 ± 0.36 <0.05 1.16

n. s., no significant difference; p < 0.05, significant difference; p < 0.001, extremely significant difference; the same
below. Statistical significance was determined by the Mann–Whitney U test.

Total catechins, comprising galloylated catechins (EGCG, ECG) and non-galloylated
catechins (EGC, EC, and C), account for 70~80% (w/w) of the amount of tea polyphenols [21].
The contents of total catechins and the individual compounds (EGCG, ECG, EGC, and
EC) in the BDCT were significantly higher (p < 0.05) compared with the SDCT (Table 2).
The changes in the concentrations of total catechins, ECG, and EGCG corresponded to the
different tenderness of the young tea shoots. Catechin contents are negatively correlated
with the growth of young shoots, with buds having a higher amount than first leaves [24].
As the important flavoring substances in tea, catechins are reported to impart a puckering
astringency and a rough sensation in black tea infusions [1], which is generally described
as “briskness” by sensory comments [25]. Therefore, we speculated that the higher amount
of catechins may have been the factor contributing to the brisk taste in the BDCT.

Dimeric/polymeric catechins generated from oxidative condensation, i.e., TFs, TRs,
and TBs, are the critical taste-active and colored substances in black tea. TFs impart a
puckering, rough, and astringent sensation in tea infusions and are usually associated
with the briskness taste and bright orange-yellow color in black tea infusion [26]. TRs are
thought to be responsible for the redness color of tea liquors and the sweet taste of black
tea [9]. An appropriate concentration of TBs has a positive effect on tea infusions, giving
them a slightly sweet sensation, while an excessive amount of TBs is prone to cause a tea
infusion to have a faint taste and dull color [21]. In addition, a moderately higher ratio
of TFs/TRs is usually used as an index to measure the color and taste properties of black
tea [11]. In this study, the contents of TRs and TBs were higher in the SDCT, though there
were no significant differences (p > 0.05) (Table 2). Conversely, the concentration of TFs
was significantly higher in the BDCT (p < 0.001), which was 1.36 times higher compared to
the SDCT (Table 2). Furthermore, the ratio of TFs/TRs was obviously higher in the BDCT
compared to the SDCT (p < 0.001) (Table 2). These results suggested that the BDCT teas
were generally superior in terms of the features of a bright liquor color and a briskness
taste due to the abundant accumulation of TFs, while the SDCT teas had advantages in
terms of a redder liquor color and a sweet mellow taste due to the higher contents of TRs
and TBs. In addition, the levels of total soluble sugars and caffeine showed no significant
differences between the two groups.

In short, the results of the analysis of the main chemical constituents of the teas were
basically in accordance with the aforementioned flavor features of the BDCT and SDCT.
However, the tea flavor was influenced by the complex interplay of various quality-active
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compounds and was not limited to the several major components. Therefore, an untargeted
metabolomics analysis was further conducted to investigate the global range of metabolites
in the two grades of high-quality DCT.

3.5. Comprehensive Nontargeted Metabolomics Analysis

To comprehensively unravel the metabolic features of the BDCT and SDCT, an LC-MS-
based untargeted metabolomics analysis was conducted. A total of 3104 ions were obtained.
A typical chromatogram of the total ions is shown in Figure S1. To guarantee the reliability
and repeatability of the data, the normalized intensities of the detected ions with replicate
extractions were evaluated. The metabolite ions in the replicate extractions exhibited a high
coefficient with R2 = 0.99 (Figure S2). Bartlett’s test of sphericity showed a high significance
(chi–squared estimate of 527,322.793, p < 0.001), and the KMO value was observed to be
0.975, showing that the data were suitable for the factor analysis by PCA. A non-supervised
PCA model including the BDCT, SDCT, and QC samples was used for a straightforward
and global overview (Figure 2A). The QC samples were closely centered. The results
suggested the reliable reproducibility of the present metabolomics analysis. In addition,
the two groups were evidently separated in the PCA score plot, indicating a notable differ-
ence in metabolites in the two grades of tea samples. Next, a supervised PLS–DA model
(R2X = 66.6%, R2Y = 98.7%, Q2 = 97.4%) was established (Figure 2B), by which a more obvi-
ous distinction of the two grades was gained. The cross-validation using 200 permutation
tests with the R2 (0.0, 0.421) and Q2 (0.0, −0.309) intercepts demonstrated that the PLS–DA
model was reliable (Figure 2C). Subsequently, an S-plot, which visualized the metabolites
and the classification patterns in a covariance matrix, was generated (Figure 2D). The po-
tential critical metabolites with important contributions to the classification are highlighted
with red squares.

Figure 2. Multivariate statistical analysis of PCA score plot (A), PLS–DA score plot (B), cross-
validation plot of PLS–DA model with 200 permutations (C), and S–plot of PLS−DA (D) for the
two grades of high-quality DCT. The black triangles with red squares represent the potential impor-
tant compounds.
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3.6. The Key Metabolic Characteristics

A total of 56 prominently different compounds between the BDCT and SDCT were
screened using the Mann–Whitney U test (p < 0.05) and VIP value (VIP > 1), and they con-
sisted of three flavan-3-ols, six catechin dimers, twenty-six flavonols and flavone/flavonol
glycosides, seven phenolic acids, six amino acids, four sugars, two organic acids, one
flavone, and one nucleotide. Information about these compounds, including their ioniza-
tion, m/z, RT, p value, VIP value, and MS/MS fragmentation, are shown in Table 3. A heat
map was used to visualize these different compounds in the BDCT and SDCT (Figure 3).
The yellow and blue color in the color scale represent the metabolite occurring at a higher
or lower level than the average level of all the tea samples. Notable differences in the two
grades of high-quality DCT were revealed. Generally speaking, catechins, dimeric/trimeric
catechins including theasinesins, procyanidins, and theaflavin-3,3-gallate (TF-3,3′-G), and a
few phenolic acids with a galloyl group such as digalloylglucose, theogallin, etc., occurred
at higher levels in the BDCT, while flavonols, flavone-C-glycosides, organic acids, soluble
sugars, and most of the flavonol-O-glycosides, amino acids, and phenolic acids were at
higher levels in the SDCT. To further elucidate the metabolite changes in the two grades of
high-quality DCT manufactured with leaves with a different tenderness, the metabolic path-
way involved with citric acid cycle (TCA cycle), phenylpropanoid metabolism, amino acid
metabolism, flavone and flavonol metabolism, and flavonoid metabolism were mapped.
The dynamic variations in the representative compounds between the two grades of high-
quality DCT are shown in Figure 4.

Table 3. Detailed information of 56 key different compounds between BDCT and SDCT screened
based on p < 0.05 and VIP > 1.

No. Metabolite Identification m/z RT/min p Value VIP MS/MS

Flavan-3-ols and their derivatives
1 Epiafzelechin a 273.0773 7.7 <0.001 1.6 187, 189, 229, 255

2 ECG a 305.0665 5.1 <0.001 1.1 125, 137, 165, 179,
219, 221, 261, 287

3 EGCG a 457.0767 6.6 <0.001 1.5 169, 193, 287, 305, 331

4 Procyanidin B1 a 577.1351 5.2 <0.001 1.1 125, 289, 407, 425,
451, 559

5 Procyanidin C1 b 865.1985 6.2 <0.001 1.2 125, 289, 407, 577,
695, 713, 739, 847

6 Theasinensin A b 913.1469 5.8 <0.001 1.5 285, 423, 573, 591,
743, 761

7 Theasinensin B b 761.1359 4.6 <0.001 1.2 423, 483, 575, 593,
609, 635, 743

8 Theasinensin F b 897.1520 7.2 <0.001 1.3 407, 727, 745
9 TF-3,3′-G a 867.1408 11.9 <0.001 1.3 125, 169, 241

Flavonols and flavone/flavonol glycosides

10 Apigenin 6-C-glucoside
8-C-arabinoside b 563.1406 7.5 <0.001 1.5 353, 383, 524, 443,

473, 503, 545
11 Apigenin-6,8-C-diglucoside b 593.1512 6.5 <0.001 1.4 473, 353, 503, 383, 575
12 Vitexin a 431.0983 8.6 <0.001 1.5 283, 311, 341
13 Vitexin-2-O-rhamnoside a 577.1563 8.6 <0.001 1.1 413, 293, 457
14 Vitexin-4′′-O-glucoside b 593.1506 8.1 <0.001 1.5 293, 413
15 Kaempferol a 285.0414 12.2 <0.001 1.4 227, 239, 211

16
Kaempferol

3-O-galactosyl-rutinoside b 755.204 8.7 <0.001 1.4 285

17
Kaempferol

3-O-glucosyl-rutinoside b 755.204 9.1 <0.001 1.6 285
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Table 3. Cont.

No. Metabolite Identification m/z RT/min p Value VIP MS/MS

18 Kaempferol 3-O-β-rutinoside b 593.1506 9.7 <0.001 1.7 285, 327

19
Kaempferol

7-(6′′-galloylglucoside) b 599.1075 9.8 <0.001 1.6 125, 169, 313, 285, 447
20 Kaempferol-3-O-galactoside b 447.0933 9.7 <0.001 1.7 255, 284, 285, 327, 357
21 Dicoumaryl astragalin b 739.1675 12.2 <0.001 1.3 145, 285, 453, 593
22 p-Coumaroylastragalin b 593.1306 11.9 <0.001 1.3 285, 307, 447
23 Astragalin a 447.0933 10.2 <0.001 1.7 255, 284, 285, 327, 357
24 Myricetin 3-O-glucoside b 479.0825 7.7 <0.001 1.3 316, 317, 271
25 Quercetin a 301.0348 12.0 <0.001 1.6 107, 121, 151, 179
26 Isoquercitrin a 463.0882 9.0 <0.001 1.7 301, 300
27 Quercetin 3-arabinoside b 433.0799 9.7 <0.001 1.7 300, 271, 301, 255

28
Quercetin

3-O-galactosyl-rutinoside b 771.1989 8.0 <0.001 1.6 301, 343, 609

29
Quercetin

3-O-glucosyl-rutinoside b 771.1989 8.2 <0.001 1.5 301, 343, 609

30
Quercetin

7-(3-p-coumaroylglucoside) b 609.1279 11.8 <0.001 1.5 463, 300, 301
31 Quercetin-3-O-galactoside b 463.0882 8.8 <0.001 1.7 301, 300, 293

32
Quercetin-3-p-

coumaroylrutinoside
b

755.1873 11.8 <0.001 1.6 609, 591, 301, 271

33 3-Quercetin galloylglucoside b 615.1027 8.4 <0.001 1.4 463, 300, 301
34 7-Quercetin galloylglucoside b 615.1027 8.4 <0.001 1.4 463, 300, 301
35 Rutin a 609.1461 8.6 <0.001 1.7 301, 343

Amino acids
36 Aspartic acid a 132.0296 0.7 <0.001 1.3 88, 115
37 Glutamine b 146.0453 0.7 <0.001 1.4 109, 127
38 Histidine a 154.0616 0.6 <0.05 1.1 93, 137
39 Phenylalanine a 164.0711 2.4 <0.001 1.3 97, 137, 147
40 Theanine a 173.0926 1.1 <0.05 1.1 128, 155
41 Tyrosine a 180.066 1.2 <0.001 1.4 72, 93, 119, 163

Phenolic acids

42 Digalloylglucose b 483.078 5.2 <0.05 1.1 125, 169, 211,271, 313,
331

43 Dihydroxy-benzoic acid b 153.0182 6.2 <0.05 1.6 109
44 Quinic acid a 191.0561 0.7 <0.001 1.6 85, 93, 127, 173
45 Shikimic acid a 173.0455 0.8 <0.001 1.1 73, 93, 111, 137
46 Theogallin a 343.0671 1.8 <0.001 1.5 191
47 p-Coumaric acid a 163.04 5.2 <0.001 1.4 119, 93
48 3-O-p-coumaroylquinic acid b 337.0929 6.2 <0.001 1.7 173

Sugars
49 Glucose a 179.0562 0.8 <0.001 1.6 59, 71, 89, 101, 113
50 Maltose a 341.1089 0.8 <0.001 1.3 113, 119, 143, 161, 179
51 Raffinose a 503.1612 0.7 <0.001 1.4 89, 101, 179, 221
52 ribonic acid b 165.0398 0.7 <0.001 1.1 75, 105, 129, 147

Organic acids
53 Citric acid a 191.0197 1.1 <0.001 1.2 85, 111, 173
54 Succinic acid a 117.0187 1.3 <0.001 1.1 73, 99

Flavone
55 Hydroxy trimethoxyflavone b 327.0893 8.0 <0.05 1.6 237, 211, 265

Nucleotide

56 UMP b 323.0286 0.8 <0.001 1.2 173, 211, 279, 305, 79,
193

a Confirmed by standards. b Identified based on exact mass and MS/MS. Statistical significance was determined
by the Mann–Whitney U test.
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Figure 3. Heat map of the 56 different key compounds in the two grades of high-quality DCT. The
data are shown as the mean of relative intensities of three replicates after being UV–scaled.
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Figure 4. Mapping of the metabolic pathway and dynamic changes in the representative different
key metabolites in two grades of high-quality DCT. Data are shown in scatter box plot as mean ± SD
using relative abundance, as calculated by normalization to total ion intensity (×105). The orange
and blue boxes represent metabolite intensities in BDCT and SDCT, respectively. * indicates p < 0.05,
** indicates p < 0.001, *** represents p < 0.0005, **** suggests p < 0.0001. Statistical significance was
determined by the Mann–Whitney U test.

3.6.1. Flavan-3-ols and Their Derivatives

Flavan-3-ols, a group of the most abundant and characteristic metabolites in tea,
have attracted much attention in biomedicine and food science due to their potent health-
beneficial properties and are considered as the main contributors to the puckering as-

144



Metabolites 2023, 13, 864

tringency sensation in tea [1,27]. Among these, EGCG is the most abundant component
affecting the taste of tea infusions and their bioactivity. An excessive intake of EGCG
(734 mg/person/day) from green-tea-extract products is suspected to be related with liver
toxicity, but daily tea consumption is considered to be safe since its EGCG content is much
lower than the safe limit [28]. As shown in Figure 4, EGCG and ECG showed significantly
higher levels in the BDCT than in the SDCT, which was in agreement with the results of the
HPLC analysis (Table 2). Since ECG and EGCG belong to the group of galloylated catechins,
this result was presumed to be possibly related with the higher galloylation level in buds
than in leaves [29]. In addition, the downstream catechin derivatives, including procyani-
dins B1, procyanidins C1, theasinesins A, theasinesins B, theasinesins F, and TF-3,3′-G,
also occurred at evidently higher levels in the BDCT (Figure 4). During black tea manu-
facturing, catechins undergo enzymatic oxidation to form various dimeric and oligomeric
catechins, such as theasinesins, procyanidins, TFs, TRs, TBs, etc. [30]. Both catechins and
their water-soluble oxidation products have been reported as being the main contributors to
the taste sensation of tea liquor [21]. A moderately higher content of theasinesins has been
considered as a characteristic of high-quality black tea [19]. TF-3,3′-G, which is formed by
the condensation of ECG and EGCG, is a major component of TFs and confers a briskness
taste in tea [31]. It was speculated that the sufficient substrates of ECG and EGCG might
have been responsible for the higher content of TF-3,3′-G in the BDCT tea samples [14,31].
The content of TF-3,3′-G was significantly higher in the BDCT, which was consistent with
the trend of the TF content described in Section 3.4. Hence, we speculated that the higher
contents of EGCG, ECG, theasinesins A, theasinesins B, theasinesins F, and TF-3,3′-G might
be the important factors causing the briskness taste in the BDCT tea infusion and that
the accumulation of these compounds came from the corresponding sufficient substrate
supply in the tea buds. In addition, TFs largely contribute to the brightness of tea liquid
color [3]. In the metabolomics analysis, TF-3,3′-G accumulated significantly, which might
have been one of the factors responsible for high value of L* (luminance) in the BDCT, as
mentioned above.

3.6.2. Phenolic Acids, Flavonols and Flavone/Flavonol Glycosides

Phenolic acids, as the precursors for the synthesis of catechins and flavonol glycosides,
are important phenolic constituents with an antioxidative ability and contribute to the
sourness, bitterness, and astringency taste in tea [27]. The representative different key
compounds of phenolic acids, flavonols, and flavone/flavonol glycosides are exhibited in
the metabolic pathway (Figure 4). Quinic acid and p-coumaric acid have been reported to be
mainly responsible for the bitterness and astringency taste in tea liquid [32]. Theogallin, as
a derivative of quinic acid, can enhance the umami taste in tea infusions [32]. As one of the
hydrolysable tannins, digalloylglucose is considered to be correlated with the umami taste
and higher quality of tea [33]. As manifested in Figure 4, p-coumaric acid and quinic acid
demonstrated significantly higher levels in the SDCT and were beneficial in strengthening
the bitterness and astringency taste in the tea infusions. On the contrary, the contents of
theogallin and digalloylglucose were markedly higher in the BDCT, contributing to the
umami taste and overall quality of the teas made from BDCT.

Flavonols and flavonol/flavone glycosides are also the main taste-active compounds in
tea and present potential bioactivity in terms of antioxidant and cardiovascular-protective
effects [27]. According to aglycones, flavonols and flavonol/flavone glycosides can be
classified as apigenin-C-glycosides (ACGs), myricetin-O-glycosides (MOGs), quercetin-O-
glycosides (QOGs), and kaempferol-O-glycosides (KOGs) [3]. As the downstream phenolic
metabolites in the metabolic pathway, the contents of ACGs, MOGs, QOGs, and most of
the KOGs were significantly higher in the SDCT than in the BDCT (Figure 4). These results
were consistent with a previous report that showed that flavonol glycosides accumulated
significantly more in White Peony tea (white tea processed using one bud with one leaf or
two leaves) than in Silver Needle tea (white tea processed using only buds) [29]. As the
second major phenolic metabolites in tea, flavonols and flavonol/flavone glycosides are

145



Metabolites 2023, 13, 864

mainly responsible for a mouth-drying astringency taste with an extremely low astringency
taste threshold (0.001~19.8 μmol/L) [34], and they are responsible for the yellow liquor
color of tea infusions [32]. In addition, it has been reported that flavonol glycosides can
enhance the bitterness of caffeine [31]. As shown in Section 3.4, there were no significant
differences in the content of caffeine between the two groups. However, the higher amount
of flavonol glycosides was thought to enhance the bitterness taste of caffeine in the SDCT
tea infusions. Therefore, the SDCT teas exhibited a higher intensity of SCS (bitterness),
as reveled by the electronic tongue analysis (Figure 1C). Meanwhile, the higher value of
b*(+) (yellowness) in the SDCT was considered to be related the yellowish color of flavonol
glycosides (Figure 1D).

3.6.3. Soluble Sugars, Amino Acids, and Organic Acids

Soluble sugars are largely responsible for the sweetness in tea [1]. In this study, the
mono-, di-, and oligosaccharides in the tea liquors, i.e., glucose, maltose, and raffinose,
were in higher levels in the SDCT (Figure 4), which was thought to be related with the
sweet taste in the SDCT.

Amino acids, as a group of important taste-active compound species of tea, can be
divided into three types (i.e., bitter-, umami-, and sweet-tasting amino acids) according to
their taste features [35]. The contents of bitter-tasting amino acids, such as phenylalanine
and tyrosine, were significantly retained in the SDCT (Figure 4), which might have strength-
ened the bitterness taste of the tea infusions in this group. Meanwhile, umami-tasting
amino acids, such as glutamine, aspartic acid, and theanine, also showed upward trends
in the SDCT. Glutamine and aspartic acid are the main contributors to the umami taste
in tea infusions [35]. Theanine exhibits a sweetness or freshness taste at different concen-
trations [1]. As shown in Figure 4, the significantly higher concentrations of glutamine,
aspartic acid, and theanine in the SDCT were thought to largely enhance the umami taste
in the SDCT.

Organic acids, as the crucial intermediate compounds of the TCA cycle and the phenyl-
propanoid metabolism pathway, contribute the most to the acidity of tea, which is often
described as a “fruity-like” taste in black tea when the acidity degree is appropriate [19].
Succinic acid and citric acid are considered to be the highest contributors to the acidity
among the organic acids in black tea [20]. As has been previously reported, high responses
of bitterness and astringency suppress the sour taste in tea, which is thought to be bene-
ficial to the overall taste of black tea [20]. As shown in Figure 4, the levels of the acidic
compounds of citric acid and succinic acid were significantly higher in the SDCT than in
the BDCT. However, the higher responses of bitterness and astringency in the SDCT might
have suppressed its sour taste. Therefore, the response of AHS (sourness) was much lower
in the SDCT compared to in the BDCT.

In summary, the BDCT teas showed a briskness, an umami, fruity-like taste, and
a brighter liquor color due to the accumulation of EGCG, ECG, TF-3,3′-G, theasinesins,
theogallin, digalloylglucose, etc. Meanwhile, the SDCT teas presented a redder liquor color
and a multi-dimensional flavor integrated with an interplay of a moderate sweetness, bitter-
ness, umami, and sourness due to the higher contents of soluble sugars (glucose, maltose,
and raffinose), phenolic acids (p-coumaric acid and quinic acid), flavonol glycosides (most
KOGs, ACGs, MOGs, and QOGs), umami-tasting amino acids (glutamine, aspartic acid,
and theanine), bitter-tasting amino acids (phenylalanine and tyrosine), and organic acids
(succinic acid and citric acid).

3.7. Correlation Analysis between the Different Key Metabolites and the Sensory Indicators

Aiming to further elucidate the correlations between the different key metabolites and
the sensory indicators of tea, a PLS analysis was performed (Figure 5). In the figure, the
further a metabolite was suited from the original point, the greater its contribution to the
sensory variation. The X-variables represent the intensities of the compounds, while the
Y-variables indicate the strength of the taste or color indicators of the tea infusion. Variables
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being located in the same region suggested a close positive correlation among them. As
shown in Figure 5, higher contents of succinic acid, ribonic acid, and UMP were thought
to be strongly related with the greater intensities of NMS (umami) and AHS (sourness).
In addition, the total catechins, the flavan-3-ols of EGCG and ECG, the polymerized
catechins of procyanidin B1, procyanidin C1, theasinensin F, and theasinensin B, and the
phenolic acid of theogallin were found to be positively correlated with the strength of L*
(luminance), which was evidently observed in the infusions of the BDCT teas. In contrast,
most of the flavonols and flavonol/flavone glycosides (particularly ACGs and KOGs)
and caffeine showed positive correlations with the sensory indicators of SCS (bitterness).
Furthermore, TRs and TBs largely contributed to the intensities of ANS (sweetness), CPS
and PKS (comprehensive sensory index), a*(+) (redness), b*(+) (yellowness), and C* (color
saturation), which were obviously noticed in the SDCT teas. These compounds were
considered to have contributed to the respective taste and liquor color quality features of
the BDCT and SDCT.

Figure 5. PLS analysis of the tea sensory indicators and the different key metabolites of the two
grades of high-quality DCT. The metabolites were set as the X variables. The tea sensory indicators,
including ANS, AHS, SCS, NMS, CTS, PKS, CPS, L*, a*, b*, and C*, were set as the Y variables.

4. Conclusions

In this study, the flavor characteristics and potential critical compounds of two grades
of high-quality DCT, BDCT and SDCT, were revealed by using human sensory evaluation,
an electronic tongue, chromatic differences, the quantification of the main components
of the teas, and untargeted metabolomic analysis. The BDCT possessed an apparent
briskness, an umami, fruity-like taste sensation, and a brighter infusion color, while the
SDCT presented a multi-dimensional taste integrated with a moderate sweetness, bitterness,
umami, and sourness and a redder tea infusion color. Flavan-3-ols of EGCG and ECG,
polymerized catechins of theasinensins, TFs, TRs, and TBs, flavonols and flavone/flavonol
glycosides of ACGs, KOGs, and the phenolic acid of theogallin, etc., were the compounds
that contributed the most to the flavor characteristics of the two grades of high-quality
DCT. To our knowledge, this is the first report focusing on the correlations between the
biochemical compositions and sensory characteristics of two grades of high-quality DCT.
These comprehensive comparisons are expected to provide an objective identification basis
and a scientific guide for consumers’ choices of high-quality DCT.
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Abstract: The healthy growth of infants during early life is associated with lifelong consequences.
Breastfeeding has positive impacts on reducing obesity risk, which is likely due to the varied com-
ponents of breast milk, such as N-acetylneuraminic acid (Neu5Ac). However, the effect of breast
milk Neu5Ac on infant growth has not been well studied. In this study, targeted metabolomic and
metagenomic analyses were performed to illustrate the association between breast milk Neu5Ac
and infant growth. Results demonstrated that Neu5Ac was significantly abundant in breast milk
from infants with low obesity risk in two independent Chinese cohorts. Neu5Ac from breast milk
altered infant gut microbiota and bile acid metabolism, resulting in a distinct fecal bile acid profile
in the high-Neu5Ac group, which was characterized by reduced levels of primary bile acids and
elevated levels of secondary bile acids. Taurodeoxycholic acid 3-sulfate and taurochenodeoxycholic
acid 3-sulfate were correlated with high breast milk Neu5Ac and low obesity risk in infants, and their
associations with healthy growth were reproduced in mice colonized with infant-derived microbiota.
Parabacteroides might be linked to bile acid metabolism and act as a mediator between Neu5Ac and
infant growth. These results showed the gut microbiota-dependent crosstalk between breast milk
Neu5Ac and infant growth.

Keywords: breast milk; N-acetylneuraminic acid; gut microbiota; bile acids; infant growth;
germ-free mice

1. Introduction

The healthy growth of infants during early life is associated with lifelong consequences.
Being overweight or obese in childhood could increase the risk of adult adiposity and
perhaps is associated with many health problems, such as type 1 diabetes and cardiovas-
cular diseases [1,2]. It has been reported that infants with BMI z-scores greater than the
85th percentile of the World Health Organization standards were at risk of obesity [3,4].
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Although genetics, early nutrition, lifestyle, and lack of physical activity are the direct
factors leading to obesity, the potentially causal role of the early gut microbiota in childhood
obesity has become increasingly prominent [5–7].

Sialylated oligosaccharides are some of the most important bioactive components
in breast milk and could act as the prebiotics for the infant gut microbiota. In addition,
sialylated oligosaccharides are associated with numerous benefits, such as promoting infant
growth [8,9]. A previous study of two Malawian birth cohorts revealed that sialylated
oligosaccharides could promote healthy infant growth in a microbiota-dependent manner
in case of infant undernutrition [10]. Moreover, another study indicated that 3′-sialyllactose
(3′-SL) plays a critical role in improving offspring’s health [11].

Sialic acid could be released from sialylated oligosaccharides by sialidases of gut
microbiota [10,12]. Although most of the sialic acid is combined with oligosaccharides
and proteins in breast milk, about 3% of the sialic acid still exists in free form and plays a
very important role [13]. N-acetylneuraminic acid (Neu5Ac) is the predominant form of
free sialic acid in humans, and 3′-SL and 6′-sialyllactose (6′-SL) are two abundant Neu5Ac-
binding oligosaccharides in breast milk [9,14]. Moreover, the free Neu5Ac might reflect
the metabolic status of total sialic acid or its availability because concentrations dropped
with decreases in the oligosaccharide-bound and protein-bound forms of sialic acid in
breast milk [13]. At present, there are many studies illustrating that free Neu5Ac is crucial
for improving infant brain development and enhancing immunity [15]. However, the
relationship between free Neu5Ac and the obesity risk of infants has not been clarified.
Importantly, a high level of free Neu5Ac is one of the most discriminative characteristics of
breast milk, when compared with baby formula [13]. Understanding the role of Neu5Ac
in the growth of infants could be beneficial for developing prebiotics or supplements to
improve growth outcomes.

In this study, we first focused on the relationship between the level of Neu5Ac in early
breast milk and infant growth in later infancy in two independent Chinese infant cohorts.
Next, by combining metagenomics and targeted metabolomic analyses, we illustrated the
influences of breast milk Neu5Ac on the infant gut microbiota and the related metabolites
and explored the interaction of the Neu5Ac-related metabolites with infant growth. Finally,
the mediator role of the gut microbiota and bacterial-derived metabolites in the link between
Neu5Ac and growth was validated in a gnotobiotic mouse model.

2. Materials and Methods

2.1. Study Cohorts and Sample Collection

Breast milk and neonatal fecal samples were collected from Chinese mother–newborn
dyads during the first week after delivery between May and December 2018 in the cohort in
a previous study (Zhengzhou cohort, n = 58) [16]. The fecal samples were collected within
24 h of breast milk sampling. The newborns (25 males/33 females) were all full-term and
healthy. Seventeen newborns were delivered through C-section. All the samples were kept
at −80 ◦C and analyzed within 1 year. Detailed responses to questionnaires of maternal
and neonatal characteristics including general information, feeding pattern, and antibiotic
usage are recorded in Table 1.

For the Wuhan cohort, only breast milk samples were collected around the first month
of lactation and growth data were collected when infants were around 3 years old (n = 201).
All the infants were full-term, and 131 of them were delivered by C-section. All the samples
were kept at −80 ◦C and analyzed within 1 year. Detailed responses to questionnaires of
maternal and neonatal characteristics and the infant growth indicators at around 3 years
are shown in Table 1. The study was approved by the Ethics Committee of the First
Affiliated Hospital of Zhengzhou University. Written informed consent was received from
all mothers.
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Table 1. Characteristics of the mothers and infants included in the study.

Zhengzhou Cohort (n = 58) Wuhan Cohort (n = 201)

Sampling age of infant (days)
Breast milk 4 (3–7) 41 (33–43)

Newborn feces 5 (3–7) Not collected
Maternal characteristics
Gestational age (day) 277 (272–281) 273 (266–280)
Delivery mode

Natural delivery 41 70
C-section 17 131

Maternal antibiotic usage 1 23 No information
Maternal BMI (kg/m2) 2

Pre-pregnancy 20.26 (18.81–22.63) 20.06 (18.99–21.64)
Pre-delivery 27.07 (24.57–29.55) 27.32 (24.80–29.24)

Neonatal characteristics
Infant sex 3

Male 25 111
Female 33 83

Feeding pattern 4

Mostly breastmilk feeding 18 102
Mixed feeding 40 98

Growth indicator 5

Infant age at time of BMI
recording (months) 12 (12–13) 30 (24–36)

Infant BMI 16.98 (16.01–18.41) 16.78 (15.52–17.72)
Low obesity risk (No.) 22 118
High obesity risk (No.) 13 83

1 There were 4 missing data in the Zhengzhou cohort; 2 14 missing data in the Zhengzhou cohort and 18 missing
data in the Wuhan cohort; 3 4 missing data in the Wuhan cohort; 4 feeding pattern at the time of breast milk
sampling. There were 1 missing datum in the Wuhan cohort; 5 23 missing data in the Zhengzhou cohort. Growth
indicator data from the Zhengzhou cohort and Wuhan cohort were collected when the infants were 1 year old and
3 years old, separately. All the continuous variables are shown in median and interquartile ranges.

2.2. Assessment of Infant Growth

Infant growth indicators from the Zhengzhou cohort were collected at around 1 year
of age, while infant growth data from the Wuhan cohort were collected at around 3 years of
age. The infant BMI z-scores adjusted for age and sex were calculated under the guidance
of World Health Organization standards in both of the cohorts [3]. Infants with BMI z-score
greater than the 85th percentile were considered as the high obesity risk group [4], and the
rest were grouped as the low obesity risk group. Specifically, growth data on 35 infants
from the Zhengzhou cohort were collected, of whom 13 were classified as the high obesity
risk group and 22 as the low obesity risk group. For the 201 infants from the Wuhan cohort,
118 infants were grouped as low obesity risk, and 83 infants were grouped as high obesity
risk (Table 1).

2.3. Quantification of Neu5Ac and Sialylated Oligosaccharides in Breast Milk

Breast milk Neu5Ac, 3′-SL, and 6′-SL were quantified by an online solid-phase
extraction–hydrophilic interaction chromatography (SPE-HILIC-MS) platform according to
a previously used method [16]. The compound identification is based on the comparison
with tR, m/z, and MS/MS fragments of the standards (Figure S1). In brief, 200 μL of breast
milk samples was centrifuged at 8600× g for 20 min at 4 ◦C to eliminate lipids, and 200 μL
of ethanol containing internal standards (Neu5Ac-13C6) was added to the skim breast
milk to remove proteins. After centrifugation at 15,000× g for 15 min at 4 ◦C, 50 μL of
supernatant was lyophilized, re-solubilized using 200 μL acetonitrile/water (v/v = 1/1),
and quantified on the SPE-HILIC-MS platform. Finally, we obtained the Neu5Ac, 3′-SL, and
6′-SL concentrations of 58 breast milk samples from the Zhengzhou cohort and 201 samples
from the Wuhan cohort.
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2.4. Fecal Microbiota Transplantation to Germ-Free Mice

The experiment was conducted under the protocols approved by the Cyagen Biological
Animal Ethics Committee. Specifically, approximately 500 mg of frozen feces from one
infant with matched clinical information and infant age at sampling (10 days post-partum)
from each group was suspended in 5 mL of reduced phosphate-buffered saline (PBS) in
Hungate tubes. Germ-free C57BL/6 wild-type mice were colonized with the respective
donor microbiota after a 4 h fasting by oral gavage of 200 μL of fecal slurry per mouse. The
fecal slurry of the same infant was transplanted to 6 mice in parallel as a group. The rest
of the fecal slurry was stored at −80 ◦C for the second gavage. Mice that received fecal
microbiota from the same infant were housed together in the same cage (two mice per cage
and six mice per group). The colonization was repeated the week after using the same fecal
slurry. During the colonization, mice were fed sterile fodder and sterile water. Mice were
housed in gnotobiotic facilities in 12 h day/night cycles during the whole experiment. Body
weight was recorded every 3 days and mice were euthanized 2 weeks after the first oral
gavage. The feces and cecal content were sampled and immediately put in liquid nitrogen.
Gut microbial colonization in the gnotobiotic mice was assessed with about 20 mg of mice
feces collected the day before the mice were euthanized by 16S rRNA gene sequencing
analysis as previously described [16].

2.5. Metagenomic Analysis of the Newborn Gut Microbiota

Total DNA of newborn fecal samples was extracted and quantified with a previously
described method [16]. Then, the DNA extract was fragmented to an average size of
roughly 400 bp using Covaris M220 (Gene Company Limited, Hong Kong, China). Paired-
end libraries were generated with NEXTFLEX Rapid DNA-Seq (Bioo Scientific, Austin, TX,
USA) and sequenced by HiSeq Reagent Kits on an Illumina Hiseq (Illumina, San Diego,
CA, USA) in accordance with manufacturer instructions.

Fastp (version 0.20.0) was used to trim adaptors and remove low-quality reads from
the raw paired-end reads [17]. Next, BWA (version 0.7.9a) was used to align the reads to
the human genome [18], and any hits associated with the reads and their mated reads were
removed. MEGAHIT (version 1.1.2) was used to assemble the metagenomics data [19].
Contigs that were at least 300 bp were chosen as the final assembled result. MetaGene was
applied to predict the open reading frames (ORFs) from each assembled contig [20]. A
non-redundant gene catalog was built using CD-HIT (version 4.6.1) with 90% sequence
identity and 90% coverage [21]. SOAPaligner (version 2.21) was used to map the reads
to the non-redundant gene catalog with 95% identity after quality control [22], and gene
abundance was evaluated and the relative abundance was normalized with TPM value as
described previously [23].

The NCBI NR database was used for taxonomic annotation. Diamond (version 0.8.35)
was used to align the representative sequences of the non-redundant gene catalog to
the database with an e-value cutoff of 1 × 10−5 [24]. The genes that occurred in more
than 5% of the samples were included in the following analysis [25]. The relative abun-
dance of genes of the same genus was summed up to assess the relative abundance of
the gut microbiota at the genus level. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) database was used for functional annotation by Diamond with an e-value cutoff of
1 × 10−5. The relative abundance of KEGG orthology (KO) was estimated by summing the
relative abundance of genes of the same KO and renormalizing to one.

2.6. Bile Acid Analysis

For each sample, 100 mg of frozen infant fecal samples or 10 mg of frozen mice cecum
content, a zirconia bead, and 1 mL of extraction solvent were mixed and homogenized
with a mixed grinding apparatus (MM400, Retsch, Germany). The extraction solvent
was composed of methanol with 0.3 μg/mL of cholic acid (CA)-d5, 0.9 μg/mL of chen-
odeoxycholic acid (CDCA)-d4, 0.6 μg/mL of glycocholic acid (GCA)-d5, 0.6 μg/mL of
glycochenodeoxycholic acid (GCDCA)-d4, 0.3 μg/mL of taurocholic acid (TCA)-d5, and
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0.3 μg/mL of taurodeoxycholic acid (TDCA)-d5. Next, the mixture was centrifuged at 4 ◦C,
14,000× g for 10 min to remove proteins. Then, 800 μL of the supernatant was lyophilized
and reconstituted in 300 μL of acetonitrile/water (v/v = 1/1) for the following analysis.

An ultra-high-performance liquid chromatograph (UHPLC) coupled to a Shimadzu
8050 Triple Quad mass spectrometer (Shimadzu, Kyoto, Japan) with the electrospray
ionization (ESI) source in negative ion mode was used for the targeted bile acid analysis. A
Waters ACQUITY UPLC C8 column (1.7 μm, 2.1 × 100 mm) was used for separation. The
column temperature was set as 40 ◦C and the flow rate was 0.2 mL/min. Mobile phase A
was 10 mM NH4HCO3 aqueous solution and mobile phase B was acetonitrile. Multiple
reaction monitoring (MRM) was used for mass analysis. The mass parameters were set as
follows: nebulizing gas flow 3 L/min, heating gas flow 10 L/min, interface temperature
300 ◦C, heat block temperature 400 ◦C, and drying gas flow 10 L/min.

LabSolutions (version 5.89, Shimadzu, Kyoto, Japan) was used for instrument control
and peak extraction. All the peak areas were corrected by internal standards and sample
weight. Then, the absolute concentrations of bile acids were calculated by the external
standard method and normalized by total sum scaling.

2.7. Statistical Analysis

All the box plots, bar plots, and scatter plots were visualized in GraphPad Prism 9.0
(GraphPad Software Inc., Boston, MA, USA). A Mann–Whitney U test was used for the
significance test of continuous variables.

Beta diversity of the neonatal gut microbiota was calculated to evaluate the correla-
tion between newborn gut genera and breast milk Neu5Ac content based on Bray–Curtis
distance (RStudio 4.1.0, vegan package 2.5.7) and visualized in a principal coordinate
analysis (PCoA) plot with the ggplot2 package (version 3.4.0), and adonis was conducted
to evaluate the significant difference. Alpha diversity was calculated based on Simpson
and Pielou indexes (RStudio 4.1.0, vegan package 2.5.7) to evaluate the gut microbial
richness and evenness. Linear discriminant analysis effect size (LefSe) analyses were
performed to assess the discriminative bacteria between different groups, and an LDR
score above 2.0 was considered as significant [26]. Redundancy analysis (RDA) was con-
ducted on the basis of the infant gut microbiota at the genus level on an online platform
(http://cloud.biomicroclass.com/CloudPlatform) (accessed on 12 June 2023). Difference
analysis of metabolic pathways was conducted with Welch’s t-test followed by FDR correc-
tion with the Benjamini–Hochberg method in STAMP [27], and a corrected p-value less than
0.05 was considered significant. Spearman correlation analysis was applied to estimate
associations between genera and bacterial metabolic pathways in GraphPad Prism 9.0.

Levels of bile acids between different groups were compared by the logarithmic ratio
of relative contents and a significant difference was defined as a combination of the fold
change (FC) and p-value (|Log2 FC| > 0.6 and p < 0.05) and visualized in a volcano
plot (ggpubr package 0.5.0, ggthemes package 4.2.4). Regression analysis was performed
to evaluate the correlations between breast milk Neu5Ac level and infant growth and the
correlation between the level of bile acids and infant growth or mouse growth in RStudio
(lm function), and p < 0.05 was considered to show a significant difference. Random forest
models were conducted as a feature selection technique to evaluate which bile acids were most
important to differentiate samples based on infant growth (randomForest package, 4.7.1).

3. Results

3.1. Correlation between Breast Milk Neu5Ac Concentrations and Obesity Risk in Chinese Infants

We first characterized the relationship between Neu5Ac/3′-SL/6′-SL in breast milk
samples collected around 1 week post-partum and infant obesity risk at 1 year of age in
the Zhengzhou cohort (n = 58). The results showed that high breast milk Neu5Ac and
3′-SL were both correlated with low obesity risk of the infants at the age of 1 year; that is,
infants in the low obesity risk group were exposed to significantly higher levels of breast
milk Neu5Ac and 3′-SL during the neonatal period (Figure 1a). Further adjusting for the
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confounders, including infant sex, delivery mode, feeding, and infant age at breast milk
sampling, did not change the positive association between Neu5Ac/3′-SL and low obesity
risk (Figure 1c).

Figure 1. Correlation between breast milk Neu5Ac concentrations and the obesity risk of Chinese
infants. (a,b) Concentrations of Neu5Ac, 3′-SL, and 6′-SL in breast milk of Chinese mothers collected
from the Zhengzhou cohort (n = 35) (a) and Wuhan cohort (n = 201) (b), binned by the growth of
their infants. Concentrations of Neu5Ac, 3′-SL, and 6′-SL are shown as mean ± SEM (* p < 0.05,
ns p > 0.05, Mann–Whitney U test). (c,d) Regression analysis of breast milk Neu5Ac, 3′-SL, and
6′-SL concentrations and infant obesity risk in the Zhengzhou cohort (c) and Wuhan cohort (d).
Adjusted confounders: infant sex, delivery mode, feeding pattern, and infant age at the time of
breast milk sampling. OR, odds ratio; Neu5Ac, N-acetylneuraminic acid; 3′-SL, 3′-sialyllactose; 6′-SL,
6′-sialyllactose.

Similar to the Zhengzhou cohort, early Neu5Ac content was significantly elevated in
the breast milk of low obesity risk infants aged 3 years old in the Wuhan cohort (Figure 1b).
Correction for confounding factors did not alter the correlation between Neu5Ac and
infants’ obesity risk (Figure 1d). Meanwhile, the association between 3′-SL and infant
obesity risk was not observed in the Wuhan cohort. Altogether, these results from the two
independent Chinese cohorts suggested that early breast milk Neu5Ac is important for
reducing the obesity risk of infants later in infancy.

3.2. Gut Microbiota-Dependent Association between Breast Milk Neu5Ac and Growth

Neu5Ac is involved in the establishment of newborn gut microbiota, which is closely
related to the growth of infants later. To further explore the role of gut microbiota in
the correlation between Neu5Ac and infant growth, fecal samples of the infants from the
Zhengzhou cohort were collected within 24 h of breast milk sampling (n = 58) and a fecal
microbiota transplantation (FMT) experiment was conducted in germ-free mice to verify
the mediating role of microbiota between Neu5Ac concentration and growth.
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First, the infants in the Zhengzhou cohort were divided into the low-Neu5Ac (LN)
group (n = 29) and high-Neu5Ac (HN) group (n = 29) according to the median concentration
of Neu5Ac in their breast milk (Table 2). The LN group included those infants with breast
milk Neu5Ac concentrations below the median, and the HN group included those infants
with breast milk Neu5Ac concentrations above the median. The HN group was exposed to
breast milk Neu5Ac concentrations 2.5 times higher than that of the LN group (p < 0.0001,
Mann–Whitney U test) (Figure 2a). Moreover, the proportion of low obesity risk infants
was higher in the HN group (Figure 2b).

Table 2. Clinical characteristics of the infants in the LN group and HN group in the Zhengzhou
cohort.

LN Group (n = 29) HN Group (n = 29)

Sampling age of infant (days)
Breast milk 6 (4–13) 4 (3–5)

Newborn feces 5 (4–13) 4 (3–5)
Maternal characteristics
Gestational age (day) 277 (274–280) 273 (270–284)
Delivery mode

Natural delivery 25 16
C-section 4 13

Maternal antibiotic usage 1 8 15
Maternal BMI (kg/m2) 2

Pre-pregnancy 19.53 (18.78–22.03) 21.57 (19.53–23.42)
Pre-delivery 26.30 (24.45–28.40) 27.55 (26.02–30.20)

Neonatal characteristics
Infant sex

Male 13 12
Female 16 17

Feeding pattern 3

Mostly breastmilk feeding 10 8
Mixed feeding 19 21

Growth indicator 4

Infant age at time of BMI
recording (months) 13 (12–13) 12 (12–13)

Infant BMI 17.97 (16.01–18.66) 16.64 (16.00–17.12)
Low obesity risk (No.) 9 13
High obesity risk (No.) 10 3

1 There were 1 missing datum in LN group and 3 missing data in HN group; 2 4 missing data in LN group and
10 missing data in HN group; 3 feeding pattern at the time of breast milk sampling; 4 10 missing data in LN group
and 13 missing data in HN group. Growth indicator data from the Zhengzhou cohort were collected when the
infants were 1 year old. All the continuous variables are shown in median and interquartile ranges.

Next, a fecal sample from one infant with matched clinical information from each
of the LN and HN groups was taken separately to make a fecal slurry (Table S1), then
transplanted into young (5-week-old) male germ-free C57BL/6 mice by oral gavage. The
fecal slurry of the same infant was transplanted into 6 mice in parallel as a group (Figure 2c).
After the oral gavage of fecal slurry was administered twice, and two weeks of growth
monitoring was carried out, we found that mice colonized with fecal microbiota from
the HN infants had stable weight gain, while mice colonized with the fecal bacteria from
the LN group showed a dramatic weight loss followed by a slow weight gain until the
mice were sacrificed (Figure 2d). Additionally, two of the LN fecal bacteria-colonized mice
exhibited ruffled back fur after the first colonization, suggesting a sub-healthy state of
the mice. Collectively, we speculated that breast milk Neu5Ac-related gut microbiota is
involved in the regulation of healthy growth.
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Figure 2. Effect of gut microbiota in infants fed with breast milk with different Neu5Ac levels on the
growth of gnotobiotic mice. (a) The concentration of breast milk Neu5Ac in the LN group and HN
group. Concentration is shown as mean ± SEM (**** p < 0.0001, Mann–Whitney U test). (b) Ratio of
low obesity risk infants to high obesity risk infants between LN group and HN group. (c) Design
of gnotobiotic mouse experiments. (d) Weight gain normalized to body weight of LN mice and HN
mice (** p < 0.01, * p < 0.05, Mann–Whitney U test). LN mice: mice colonized with the feces from the
infants in the LN group; HN mice: mice colonized with the feces from the infants in the HN group.

3.3. Effect of Breast Milk Neu5Ac on the Composition and Function of Gut Microbiota

To further explore the specific role of breast milk Neu5Ac in the colonization of infant
gut microbiota from early life, metagenomic sequencing analysis was performed on the fecal
samples collected in parallel with the breast milk to profile the gut microbiota of infants
from the Zhengzhou cohort, and the effects of breast milk Neu5Ac on gut microbiota
were characterized. In total, we generated 243.28 GB of paired-end reads of high-quality
sequences (average 4.19 Gb per sample).

Clear separation of the gut microbiota was observed between the LN group and HN
group (Bray–Curtis distance, adonis, permutations = 999, p = 0.008) (Figure 3a). However,
breast milk Neu5Ac levels did not cause a change in alpha diversity between the two
groups (Figure S2). In terms of the gut microbiota composition, only a few bacteria were
associated with Neu5Ac content. For instance, Bifidobacterium was abundant in the LN
group and Klebsiella was enriched in the HN group (Figure 3b,c). Similarly, this difference in
microbial composition was also present in germ-free mice colonized with fecal microbiota
from the LN and HN groups, although the gut microbial richness and evenness were higher
in the LN group (Figure S3a–d). Notably, breast milk Neu5Ac was not the unique impact
factor on the infant gut microbiota, delivery mode also had an impact on the gut microbial
community according to the RDA (Figure 4a). Therefore, the effect of breast milk Neu5Ac
levels on the composition of gut microbiota in vaginally delivered infants of the Zhengzhou
cohort was further analyzed, and the enrichment of Klebsiella in the HN group could also
be observed (Figure 4b).
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Figure 3. Effects of breast milk Neu5Ac on the composition and function of the infant gut microbiota
in the Zhengzhou cohort. (a) Principal coordinate analysis (PCoA1 and PCoA2) of the infant gut
microbiota at the genus level based on Bray–Curtis distance, with community structure differences
tested by adonis analysis of variance with 999 permutations. (b) Comparisons of the mean relative
abundance of gut microbiota at the genus level between the LN group and HN group. Genera with
relative abundance above 1% are shown in the bar plot. “Others” indicates sum of the bacteria
with relative abundance less than 1%. (c) Discriminative bacteria between LN group and HN group.
Genera with relative abundance above 1% are included in the analysis. (d) Differences in the microbial
metabolic pathway based on level 2 of the KEGG database. (e) Differences in microbial lipid metabolic
pathway of the KEGG database (level 3). (f) Spearman correlation coefficients (r) between gut genera
and primary bile acid biosynthesis pathway. Orange indicates a positive correlation and green
indicates a negative correlation. Genera with relative abundance above 1% are included in the
analysis. Significant correlations with |r| > 0.2 and p < 0.05 are shown.

Further analysis based on the functional capacity of the infant gut microbiota indicated
that lipid metabolism, especially bile acid metabolism, was highly correlated with breast
milk Neu5Ac (Figure 3d,e). Moreover, the discriminative bacteria between HN and LN
groups exhibited different levels of involvement in primary bile acid biosynthesis (Figure 3f).
For instance, Bifidobacterium and Bacteroides, the LN group’s abundant bacteria, were
positively associated with primary bile acid biosynthesis, while Klebsiella, the bacterium
enriched in the HN group, was negatively correlated with primary bile acid biosynthesis.
Altogether, these findings suggested the presence of an interaction between Neu5Ac and
gut microbial bile acid metabolism.
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Figure 4. Influencing factors of gut microbiota in the Zhengzhou cohort. (a) Redundancy analysis of
impact factors on the infant gut microbiota. (b) Discriminative bacteria between LN group and HN
group in the vaginally delivered infants. Genera with relative abundance above 1% are included in
the analysis. Asterisks (*) indicates the unclassified bacteria at the genus level.

3.4. Conjugated Bile Acids in the Correlations between Breast Milk Neu5Ac and Infant
Obesity Risk

Next, targeted tandem mass spectrometry was used to measure the levels of 19 bile
acids of fecal samples in the Zhengzhou cohort, and the distinct bile acid profile was
characterized between the LN group and HN group. In general, a higher proportion of
primary unconjugated bile acids, namely, CA and CDCA, was found in the LN group
(Figure 5a). Primary unconjugated bile acids can be converted into secondary or conjugated
bile acids by gut microbiota. We observed that the HN group contained a greater abundance
of conjugated bile acids, especially taurine- and sulfo-conjugated deoxycholic acid (DCA),
CDCA, and lithocholic acid (LCA) (Figure 5b and Table S2).

Notably, many of the discriminative bile acids between the LN group and HN group
were significantly correlated with infant obesity risk later in life. In regression models
adjusting for the confounders (infant sex, delivery mode, feeding pattern, and infant age
at breast milk sampling), the total proportions of sulfo-, taurine-, and glycine-conjugated
bile acids all inversely contributed to a high BMI in infants at 12 months of age (Figure 5c).
Looking at the individual bile acids, glycodeoxycholic acid (GDCA), taurolithocholic acid
(TLCA), glycolithocholic acid (GLCA), and taurochenodeoxycholic acid 3-sulfate (TCDCS)
were the main bile acids that were related to infant growth. Consistently, the random forest
models using the newborn bile acid content to predict infant obesity risk had an out-of-bag
error rate of 13.79%, and the most important bile acids contributing to the model were
TLCA, GDCA, and glycolithocholic acid 3-sulfate (GLCAS) (Figure S4).

To further explore the association of infant obesity risk with the bile acid levels in
newborns, the above Neu5Ac-related bile acids were classified in quartiles and logistic
regression analyses were performed. A higher relative abundance of TLCA was associated
with a 91.5% decrease in high obesity risk (above vs. below median, OR = 0.085, 95% CI,
0.013–0.542, p = 0.007). An increased level of GDCA was correlated with a 93.7% decrease
in high obesity risk (above vs. below median, OR = 0.063, 95% CI, 0.010–0.421, p = 0.004).
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Elevation of TCDCS was associated with an 85.9% decrease in high obesity risk (above vs.
below median, OR = 0.141, 95% CI, 0.023–0.857, p = 0.033). Additionally, the enrichment
of taurodeoxycholic acid 3-sulfate (TDCS) or GLCAS tended to be correlated with high
obesity risk (above vs. below median, OR = 0.239, 95% CI, 0.047–1.219, p = 0.085). Taken
together, breast milk Neu5Ac may be correlated with gut microbial bile acid metabolism,
which in turn is associated with infant obesity risk.

 
Figure 5. Linkage of conjugated bile acids in the correlations between breast milk Neu5Ac and infant
growth. (a) Fecal bile acid composition in newborns of LN group and HN group (GDCS, glycodeoxy-
cholic acid 3-sulfate; GCDCS, glycochenodeoxycholic acid 3-sulfate; UDCA, ursodeoxycholic acid;
TCAS, taurocholic acid 3-sulfate; GUDCA, glycoursodeoxycholic acid; TUDCA, tauroursodeoxy-
cholic acid). (b) Volcano plot of different bile acids between LN group and HN group. Fold changes
were calculated as the ratio of each bile acid between the HN group and LN group and converted
logarithmically. Blue indicates Log2 FC > 0.6 and p < 0.05 (Mann–Whitney U test), and grey indicates
no significant difference. See also Table S2. (c) Regression analysis to estimate the associations between
the newborn fecal bile acids and infant BMI aged 12 months. Linear regression models were controlled
for the following confounders: infant sex, delivery mode, feeding pattern, and infant age at sampling.
Bile acids marked with blue are those breast milk Neu5Ac-related bile acids identified in (b).

3.5. Validation of the Interactions among Neu5Ac, Gut Microbiota, Bile Acid Metabolism, and
Healthy Growth in Gnotobiotic Mice

We next examined whether the above observed correlations of breast milk Neu5Ac
with bile acid metabolism and healthy growth in infants also occurred in the FMT mice.
Similar to the Zhengzhou cohort, two sulfo-conjugated bile acids, TDCS and TCDCS, were
enriched in the mice colonized with the fecal bacteria from the HN group (Figure 6a and
Table S3), suggesting that the differences in bile acids were related to gut microbiota. Just
as mentioned above, mice colonized with the bacteria from the HN infants exhibited a
healthier growth, and our results showed that the HN group’s abundant bile acids, TDCS
and TCDCS, may have contributed to this (Figure 6b).
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Figure 6. Validation of the association between bile acid and healthy weight gain in mice. (a) Volcano
plot of different bile acids between LN mice and HN mice. (b) Regression analysis to estimate the
associations between the mouse cecal bile acid content and weight gain. (c) Volcano plot of bile acid
conversion to evaluate the enzymatic activity of bile acid metabolism between LN mice and HN mice.
(d) Regression analysis to estimate the associations between the mouse cecal bile acid conversion and
weight gain. (e) Heatmap of Spearman correlation coefficients between mouse cecal bile acids and
gut microbiota at the genus level (* p < 0.05 and ** p < 0.01). Fold changes were calculated as the
ratio of each bile acid between HN mice and LN mice and converted logarithmically. Blue indicates
Log2 FC > 0.6 and p < 0.05 and red indicates Log2 FC < −0.6 and p < 0.05, and grey indicates no
significant difference (Mann–Whitney U test). See also Tables S3 and S4. Bile acids marked with blue
are discriminative bile acids between LN mice and HN mice identified in (a) or (c).

Additionally, by calculating the ratios of bile acids, we analyzed the activities of
enzymes involved in bile acid metabolism and found a significant elevation of GCA/CA,
TCA/CA, and TCDCS/taurochenodeoxycholic acid (TCDCA) in the HN mice (Figure 6c
and Table S4), suggesting that enzymes involved in the conjugation of bile acids were
elevated in the HN mice. Notably, GCA/CA, TCA/CA, and TCDCS/TCDCA were all
found to be associated with favorable growth in the mice (Figure 6d).

Finally, we found that the HN group-related bacteria, Klebsiella and Parabacteroides,
were positively associated with the healthy growth-correlated bile acids (Figure 6e). Specif-
ically, Klebsiella and Parabacteroides were both positively correlated with TDCS and TCDCS
and negatively correlated with CA. The positive associations of Klebsiella and Parabacteroides
with conjugated bile acids further indicated that the enzymes that facilitates bile acid
conjugation may be highly expressed in these bacteria.
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4. Discussion

Based on the two independent cohorts comprising different lactation periods of breast
milk samples from Chinese mothers, our study indicated that the milk from mothers of
children exhibiting low obesity risk in later infancy contained a higher level of Neu5Ac
in early lactation. Approximately 73% of the Neu5Ac in breast milk is conjugated with
oligosaccharides to generate sialylated oligosaccharides, while there is still small but
significant amount of Neu5Ac existing in free form, much higher than in formula milk [13].
Previous studies have proposed that breast milk sialylated oligosaccharides were related
to infant growth in both full-term and pre-term infants [10,28,29]. Consistently, our study
showed that the Neu5Ac in breast milk was also associated with reduced obesity risk in
infants. The concentration of Neu5Ac in breast milk changed across lactation [29], and our
study further indicated that Neu5Ac levels in breast milk collected one week post-partum
(colostrum and transitional milk) and one month post-partum (mature milk) might both
affect growth later in infancy. Infant sex, delivery mode, feeding, and infant age at breast
milk sampling might be the impact factors of both breast milk Neu5Ac/3′-SL concentration
and infant growth [9,30–32], and we showed that adjusting for the above confounders
did not change the positive association between Neu5Ac/3′-SL and low obesity risk. The
Wuhan cohort and the Zhengzhou cohort are two independent cohorts composed of breast
milk samples from different periods, and the similar associations between Neu5Ac and
infant obesity risk from the above two cohorts raised the possibility that Neu5Ac plays an
important role in infant growth. Although the liver has the ability to de novo synthesize
sialic acid from glucose, the activity of the rate-limiting enzyme (UDP-N-acetylglucosamine-
2-epimerase) is low during the neonatal period [33], indicating that breast milk Neu5Ac is
an important source for newborns, and dietary supplementation with Neu5Ac might be
beneficial for infants who cannot be breastfed.

Neu5Ac is a nine-carbon monosaccharide that plays a role in shaping infant gut
microbiota. Bifidobacterium expresses sialidase that could liberate sialic acids from sialy-
loligosaccharides, gangliosides, and glycoproteins [34]. The enrichment of Bifidobacterium
in the LN group might make up the deficiency of sialic acid content in breast milk. Klebsiella
could utilize sialic acid as a carbon source as, consistently, high breast milk Neu5Ac was
related to abundant Klebsiella [35]. A previous study indicated that sialyllactose, a conju-
gated form of Neu5Ac, tended to interplay with the gut bacterial transcriptional function
more than composition [10]. As a microbial metabolite of sialyllactose [10], we noted that
Neu5Ac was also intensely correlated with the metabolic function of gut microbiota. Gut
bacterial lipid metabolism, especially bile acid metabolism, varied considerably with the
level of breast milk Neu5Ac. Bile acids are some of the most important kinds of gut micro-
bial metabolites. They are synthesized in the liver from cholesterol through two different
metabolic pathways, namely, the classic pathway and the alternative pathway. Primary bile
acids comprising CA and CDCA are products of the above two pathways, respectively [36].
CA and CDCA are conjugated to either taurine or glycine in the liver, secreted into the
bile, and released into the duodenum after ingestion of food. Once in the gut, bile acids
are transformed by gut microbiota to produce a wide variety of secondary bile acids [37].
The wide array of secondary bile acids in the HN group suggested that the gut microbiota
of that group possessed more abundant bile acid metabolic function. Sulfonation of bile
acids increases their solubility and enhances their fecal excretion, and elevated levels of
sulfo-conjugated bile acids have been detected in fecal samples of breastfed infants [38,39].
The content of Neu5Ac in breast milk is much higher than that in formula milk [13], and the
positive associations between breast milk Neu5Ac and sulfo-conjugated bile acids identified
in our study suggested that higher Neu5Ac content in breast milk might contribute to the
elevated levels of sulfo-conjugated bile acids in breastfed infants. Collectively, reduced
levels of primary bile acids and elevated levels of secondary bile acids have been reported
as a feature of healthy individuals [40,41], which was consistent with the characteristics of
the fecal bile acid pool in the HN group infants, who displayed lower obesity risk.
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Bile acids are key regulators in maintaining the energy balance and metabolic home-
ostasis of the host [42,43]. It has been reported that dysregulated bile acid metabolism is
associated with growth faltering or obesity [44,45], and our study further proposed that
the microbiota-derived bile acids might be the mediators in the complicated interaction
between breast milk Neu5Ac and infant growth. In our study, several bile acids belonging
to conjugated CDCA, DCA, and LCA were elevated in the HN group and were potentially
related to reducing the obesity risk of the infants from that group. Consistently, a previous
study has reported that levels of CDCA and DCA were correlated with activities of en-
ergy metabolism enzymes, such as gastrointestinal hormones, pancreatic peptide YY, and
glucagon-like peptide-1 (GLP-1) [46]. Moreover, CDCA, DCA, and LCA have been identi-
fied as signaling molecules for the activation of farnesoid X receptor (FXR) [47]. By binding
to the intestinal FXR, bile acids can induce the expression of endocrine hormone fibroblast
growth factor 19 (FGF19), which suppresses lipogenesis and increases fatty acid oxidation
in the liver, thereby regulating body weight gain and reducing the risk of obesity [48].

Although humans and mice metabolize Neu5Ac in different ways, and its main
derivatives are also different [12,49], the aim of the study was to explore the association
between Neu5Ac-related gut microbiota and infant growth, thus germ-free mice were used
for colonization of infant gut microbiota whose breast milk has different levels of Neu5Ac.
Germ-free mice are leaner than conventionally raised mice [50]. The healthy germ-free
mice would gain weight after colonization with gut microbiota from infants [51]. Thus,
the stable weight gain of HN mice indicated that mice transplanted with fecal bacteria
from the HN infants exhibited a healthier growth, which is in line with the fact that the
HN infants presented healthier growth due to a low risk of obesity. Therefore, the similar
healthy growth of HN infants and HN mice provided additional evidence that the crosstalk
between breast milk Neu5Ac and infant growth is gut microbiota-dependent. Further
bile acid analysis of the gnotobiotic mice validated the idea that gut microbial bile acid
metabolism is important in the weight regulation of the mice after FMT. As bile acid
composition in mice is somewhat distinct from that in humans [52], a total of 14 bile acids
identified in the infants were focused on in the FMT mice. A previous report showed that
the cecum bile acid pool in mice was mainly composed of primary bile acids [53], and the
majority of the bile acids identified in the mouse models of our study were taurine-primary
bile acids. Conventionalization of germ-free C57BL/6 mice with a normal microbiota
produces an increase in both body weight and body fat [51,54]. Our study consistently
suggested that two taurine-conjugated bile acids in HN infants, TDCS and TCDCS, were
linked with healthy weight gain in the mice after FMT. Bile acid regulation pathways in
humans and mice are remarkably similar, that is, CDCA and DCA could engage FXR and
activate expression of FGF15, thus having a myriad of other effects including regulation
of lipogenesis and metabolic rate in mice [55]. Next, we found that two discriminative
bacteria in the HN group, Klebsiella and Parabacteroides, were correlated with the level
of the growth-regulating bile acids. It has been well established that Parabacteroides is
capable of producing secondary bile acids [56] and thus may be able to alleviate obesity
and metabolic dysfunctions [57]. However, no reports on the metabolism of bile acids
by Klebsiella have been published so far. Therefore, we speculated that the correlation of
Klebsiella with bile acids reflects that certain bacteria interacting with Klebsiella might be
the primary metabolizers of bile acids, while Klebsiella benefits secondarily. Clearly, further
investigation into the roles of Klebsiella and its related bacteria in bile acid metabolism
is warranted.

However, this study still has several limitations. First, some of the infants included in
this study were delivered by cesarean section or were subjected to mixed feeding, both of
which are important factors affecting infant growth. Although adjusting for these factors
in the regression model did not affect the correlation between breast milk Neu5Ac and
infant growth in the two cohorts, future studies should validate the results of this study
using vaginally delivered and breastfed infants. Second, our study focused only on Chinese
cohorts, so it is unclear whether our findings can be generalized to infants in different
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countries. Next, despite our analysis of breast milk specimens from Chinese mothers
revealing an association between Neu5Ac abundance and infant growth, additional time-
series studies of mother–infant dyads from other cohorts are needed to determine the
extent to which breast milk Neu5Ac-related variations in infant microbiota composition
and function correlate with infant growth outcomes.

5. Conclusions

Our study demonstrated that breast milk Neu5Ac was associated with infant obesity
risk in a gut microbiota-dependent manner. Breast milk Neu5Ac altered gut microbiota
and reprogrammed bile acid metabolism, resulting in a distinct fecal bile acid profile in the
HN group, which was characterized by reduced levels of primary bile acids and elevated
levels of secondary bile acids. The conjugated DCA and CDCA were elevated in the HN
group and positively correlated with reducing infant obesity risk. Especially, two sulfo-
and taurine-conjugated bile acids, TDCS and TCDCS, were Neu5Ac-related and they were
also helpful for healthy growth promotion, and the associations with healthy growth were
reproduced in mice colonized with infant-derived microbiota. Finally, we proposed that
Parabacteroides might be involved in bile acid metabolism and act as the mediator between
Neu5Ac and infant growth. Additional studies are needed to clarify the mechanism of
specific gut bacterial species and the correlated bile acids that contribute to early life growth
and development. Our study might help to identify strategies to develop prebiotics to
improve the growth outcomes of infants.
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Abstract: Polyphenol-rich foods exhibit anti-allergic/-inflammatory properties. As major effector
cells of allergies, mast cells undergo degranulation after activation and then initiate inflammatory
responses. Key immune phenomena could be regulated by the production and metabolism of
lipid mediators by mast cells. Here, we analyzed the antiallergic activities of two representative
dietary polyphenols, curcumin and epigallocatechin gallate (EGCG), and traced their effects on
cellular lipidome rewiring in the progression of degranulation. Both curcumin and EGCG signifi-
cantly inhibited degranulation as they suppressed the release of β-hexosaminidase, interleukin-4,
and tumor necrosis factor-α from the IgE/antigen-stimulated mast cell model. A comprehensive
lipidomics study involving 957 identified lipid species revealed that although the lipidome remodel-
ing patterns (lipid response and composition) of curcumin intervention were considerably similar
to those of EGCG, lipid metabolism was more potently disturbed by curcumin. Seventy-eight
percent of significant differential lipids upon IgE/antigen stimulation could be regulated by cur-
cumin/EGCG. LPC-O 22:0 was defined as a potential biomarker for its sensitivity to IgE/antigen
stimulation and curcumin/EGCG intervention. The key changes in diacylglycerols, fatty acids,
and bismonoacylglycerophosphates provided clues that cell signaling disturbances could be as-
sociated with curcumin/EGCG intervention. Our work supplies a novel perspective for under-
standing curcumin/EGCG involvement in antianaphylaxis and helps guide future attempts to use
dietary polyphenols.

Keywords: allergy; dietary polyphenols; curcumin; EGCG; lipidomics

1. Introduction

Allergic diseases, including food allergies, allergic asthma, rhinitis, and dermatitis,
cause significant morbidity worldwide [1,2]. Food allergies, for instance, occur in up to
10% of the worldwide population and are associated with an increasing prevalence every
year [2]. Allergy is a serious public health and food safety concern.

Dietary components have gained increasing attention in recent years for their ability to
prevent and alleviate allergic responses [2,3]. As the main component in fruits, vegetables,
and other edible plant parts, polyphenols and polyphenol-rich foods have been reported to
exhibit anti-allergic/-inflammatory properties [2,3]. Dietary polyphenols, such as curcumin
(turmeric) and epigallocatechin gallate (EGCG, green tea), are emerging topics of interest
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and research, as these compounds exhibit potential benefits for human health [4]. Polyphe-
nols may interfere with allergic reactions by inhibiting the release of chemical mediators
(histamine, hexosaminidase, or leukotrienes), cytokine production, signal transduction,
and gene expression in mast cells, basophils, or T cells [2]. Furthermore, the formation
of complexes between polyphenols and proteins, such as peanut and cashew proteins,
has been shown to prevent antibody recognition of allergens via allergen precipitation
and reduce IgE binding to allergens [5–7]. Plant-based proteins (PP)–phenolic compounds
(PC) conjugates and complexes have been reported to exhibit potential allergy-reducing
activities [8]. The regulation of gut microbiota by polyphenols might also contribute to
their anti-allergic/-inflammatory properties [2]. An increasing number of clinical and
epidemiological studies have provided evidence that dietary polyphenol consumption
and a reduction in risk factors for chronic allergic diseases are correlated [3]. Although
in vivo and in vitro studies have indicated polyphenols’ anti-allergic/-inflammatory effects,
knowledge of their mechanism of action remains incomplete. A deeper understanding of
pathogenic mechanisms is needed to explore promising biomarkers of allergic diseases as
well as identify the involvement of polyphenols in cellular and molecular events central
to antianaphylaxis.

The immune mechanism underlying allergic disorders encompasses an adaptive Th2-
type response [2]. Antigen-specific immunoglobulin E (IgE) antibodies, together with
major effector cells of allergies (i.e., the mast cell), are crucial for the development of
allergic disorders [9]. Mast cells express the high-affinity IgE receptor FcεRI on their
surface [10]. Antigen stimulation activates mast cells sensitized with IgE [1]. Mast cells
undergo degranulation after activation, initiate an acute inflammatory response, and
contribute to the progression of chronic diseases [1]. The degranulation of mast cells
results in the release of β-hexosaminidase, a common degranulation marker, histamine,
inflammatory cytokines, and lipid-derived mediators [10]. Mast cells are well-known
producers of different lipid mediators [9]. Currently, the production and metabolism
of these lipid mediators have in turn been shown to regulate mast cell functions in an
increasing number of studies [9,11]. Bioactive lipids of leukotrienes, prostanoids, platelet-
activating factor (PAF), and sphingolipids have been reported to influence cell signaling
via multiple mechanisms [12], including by formatting structural support platforms (lipid
rafts) for receptor signaling complexes, by transducing signals as primary/secondary
messengers, and by serving as kinase/phosphatase cofactors [12]. Then, bioactive lipids
could remodel key immune phenomena (degranulation, chemotaxis, and sensitization). In
rapidly emerging research, the modulation of mast cell reactivity by lipid metabolism, in
addition to proteins, is revealing novel and unprecedented targets [9]. These targets may
serve to preclude mast cell effects in allergic reactions. Thus, it is important to gain more
comprehensive insights into the effects of lipidome remodeling on mast cell degranulation,
changes in cellular lipid composition induced by allergens, and changes in lipid transport
and metabolism in mast cells. High-throughput lipidomics is an emerging analytical
strategy that enables a wide range of lipids to be explored on the scale of individual
lipid molecular species, supplying a global and detailed map of the lipidome response
to external stimulation [13]. To the best of our knowledge, on the scale of the lipidome,
the characterization of mast cell lipid composition and stimulus-specific changes upon
polyphenol interventions remains limited.

Turmeric, the major source of curcumin, is a spice that has been traditionally used
in Asian countries for culinary purposes. As a natural polyphenol derivative, curcumin
got approved to be “generally recognized as safe” (GRAS) by the US Food and Drug
Administration (FDA) [14]. The tea plant (Camellia sinensis) is native to East Asia and
has traditionally been consumed worldwide as “tea”. Green tea is also a rich source
of the natural polyphenol EGCG, which is present most abundantly [15]. Curcumin
and EGCG were suggested to exhibit anti-allergic/-inflammatory potential in previous
reports [3,14] and our preliminary studies. The compounds were defined as two typical
dietary polyphenols in this study to analyze and compare their mechanisms of action
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underlying the progression of mast cell degranulation. As an in vitro mast cell model, the
basophilic leukemia (RBL-2H3) cell line has been successfully applied in previous studies
to investigate IgE-FcεRI interactions and degranulation, as well as screen antiallergy drug
candidates [16,17]. According to previous studies that traced the release of mediators
from mast cells, the allergic reaction progresses along the following time course: the
immediate phase (within 1 h of allergen challenge) and the later phase (after 3–48 h) [18].
Hence, in this study, curcumin/EGCG intervention in the progression of degranulation
was explored at the interfacial stage of the allergic reaction (i.e., 1 h and 3 h). Specially,
we investigated comprehensive lipidome rewiring in an IgE/antigen (i.e., dinitrophenyl-
bovine serum albumin, DNP-BSA)-stimulated RBL-2H3 degranulation model using a
nontargeted lipidomics approach based on ultra-high-performance liquid chromatography
coupled to mass spectrometry (UPLC—MS). A sample set of cells from the control groups
and curcumin/EGCG intervention groups was traced at both 1 h and 3 h for lipidomics
investigation. Our work provides a novel perspective on understanding the action of
antigen stimulation and curcumin/EGCG involvement in antianaphylaxis.

2. Materials and Methods

2.1. Cell Culture and Cell Viability

RBL-2H3 cells were purchased from Procell Life Science & Technology Co., Ltd.
(Wuhan, China) and cultured in minimal essential medium (MEM) with 15% heat-inactivated
fetal bovine serum (FBS), 100 units/mL penicillin, and 100 μg/mL streptomycin at 37 ◦C
in a humidified incubator (5% CO2). The cytotoxic effects of curcumin and EGCG were
evaluated by MTT assay (CellTiter 96 Aqueous One Solution Cell Proliferation Assay;
Promega, Solarbio, Beijing, China) (n = 6).

2.2. Sample Collection

Chemicals and reagents are provided in the Supporting Information. First, RBL-2H3
cells were incubated with 200 ng/mL anti-DNP-IgE for 18 h. After washing with phosphate-
buffered saline (PBS) three times, the IgE-sensitized cells were exposed to 10 μM curcumin
(i.e., Cur group) or 200 μM EGCG (i.e., EGCG group) and then stimulated with 500 ng/mL
DNP-BSA simultaneously. The coincubation of IgE-sensitized cells with curcumin/EGCG
and DNP-BSA was performed for 1 h or 3 h. A vehicle control group without both IgE and
DNP-BSA was set up in parallel with the experiment (i.e., Veh group), as well as a positive
control group prepared by incubation of IgE-sensitized cells with the DNP-BSA antigen
(i.e., AG group).

The structures of curcumin and EGCG and the scheme of this experimental design
are shown in Figure 1A–C. To monitor the curcumin/EGCG intervention on IgE-mediated
degranulation, cell specimens from control groups (incl. Veh and AG) and intervention
groups (incl. Cur and EGCG) were collected at both 1 h and 3 h. Four independent
biological replicates of RBL-2H3 cells were prepared for each group at each time point for
the lipidomics study.

2.3. Nontargeted Lipidomics Study

Each sample was placed in a 10 cm Petri dish with 8 mL of cell media (about 107 cells).
The cell medium was completely aspirated after sample collection, followed by washing
with Dulbecco’s phosphate-buffered saline (DPBS) solution and inactivation with liquid
nitrogen immediately.

After lipidome extraction, freeze-dried lipid extracts were reconstituted in 10 μL of
dichlormethane:methanol (2:1) and then diluted five times in ACN:isopropanol:water
(65:30:5). Finally, 50 μL of cell lipid extracts was analyzed using an UltiMate 3000 UPLC
system (Thermo, Waltham, MA, USA) coupled with a quadrupole Orbitrap mass spectrom-
eter (Q-Exactive, Thermo, USA). LC separation was performed using a BEH C8 column
(2.1 × 100 mm, 1.7 μm) (Waters, Milford, MA, USA). Full-scan MS for lipid profiling and
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data-dependent MS/MS (ddMS2) for lipid identification were performed in both positive
and negative electrospray (ESI) ion modes.

Details of the lipidomics study, including lipidome extraction and lipidomics analysis
by UPLC-Q-Exactive MS, are provided in the Supporting Information and were adopted
from our previously published method [19–21]. Quality control (QC) samples, which were
generated by pooling equal aliquots of lipid extracts from each sample, were prepared as
real samples and regularly inserted into the analysis sequence to monitor the robustness of
lipidomic analysis.

Figure 1. Characteristics of the experimental model. (A) Structure of curcumin. (B) Structure of
EGCG. (C) Scheme of the experimental design. Both curcumin and EGCG inhibit IgE-mediated
degranulation in the RBL-2H3 cell model. Veh: vehicle control group; AG: IgE/antigen stimulation
group; curcumin: curcumin intervention group; EGCG: EGCG intervention group.

2.4. Data Processing and Statistics

Lipid species were identified according to accurate m/z, tandem mass spectrometry
(MS/MS) fragmentation patterns, and retention behavior. The LIPID MAPS database
(http://www.lipidmaps.org/, accessed on 1 January 2023) and MS-DIAL software (http:
//prime.psc.riken.jp/compms/msdial/main.html, accessed on 1 January 2023) were used
for lipid queries. For the quantification of these identified lipids, peak areas were obtained
by high-resolution extracted ion chromatogram using Trace Finder software (Thermo, USA).
Two thresholds, both m/z and retention time, were applied to the extraction process of peak
area (an m/z tolerance of ±5 ppm and a retention time extraction window of ±15 s). Peak
checking and noise removal were carried out to reduce errors.

To eliminate systematic bias, the peak area of each lipid species was normalized
to the total intensity of all lipid species in a given sample. Prior to statistical analysis,
lipids with a percentage relative standard deviation (%RSD) higher than 30% in all QCs
were removed from the dataset. Then, the dataset was subjected to SIMCA-P 11.0.0.0
software (Umetrics, Malmö, Sweden) for principal component analysis (PCA) and partial
least squares discriminant analysis (PLS-DA) with unit variance (UV) scaling. To assess
the univariate statistical significance, two-way analysis of variance (ANOVA), Wilcoxon
Mann—Whitney test, and false discovery rate (FDR) correction (Benjamini—Hochberg
method) were employed using Multi Experiment Viewer (MeV) software (open-source
genomic analysis software, version 4.9.0) and an in-house-developed MATLAB program
(The MathWorks, Natick, MA, USA). On the basis of hierarchical cluster analysis (HCA), a
heatmap was also generated with MeV to visualize the relative levels of lipids. Receiver
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operating characteristic curve (ROC) and binary logistic regression were performed using
SPSS Statistics software (SPSS Inc., Chicago, DE, USA).

The abbreviations used in this study for lipid classes are as follows: (Hex)Cer, (hexo-
syl)ceramide; SM, sphingomyelin; CE, cholesterol esters; (L)PC, (lyso)phosphatidylcholine;
(L)PE, (lyso)phosphatidylethanolamine; OxPE, oxidized phosphatidylethanolamine; (L)PG,
(lyso)phosphatidylglycerol; (L)PI, (lyso)phosphatidylinositol; (L)PS, (lyso)phosphatidylserine;
(L)PA, (lyso)phosphatidic acid; PEtOH, phosphatidylethanol; DG, diacylglycerol; TG,
triacylglycerol; CL, cardiolipin; CoQ, coenzyme Q; ASM, acylsphingomyelin; NAE, N-
acyl ethanolamines; GM3, ganglioside GM3; FA, fatty acid; OxFA, oxidized fatty acid;
CAR, acylcarnitine; (H)BMP, (hemi)bismonoacylglycerophosphate; ST, sterol; o/p-, ether
and plasmalogen.

2.5. β-Hexosaminidase Release Assay

β-Hexosaminidase activity in culture supernatants was measured as an indicator of
degranulation [10]. The amount of β-hexosaminidase released from RBL-2H3 cells was
quantified according to previous reports with slight modifications (n = 3) [22].

Briefly, after the coincubation of IgE-sensitized cells with curcumin/EGCG and DNP-
BSA, the supernatant was collected and centrifuged at 1500 rpm for 5 min, while the cells
were incubated in Tyrode’s buffer containing 1% Triton X-100 for 5 min. The supernatant
and cell lysate were transferred to 96-well black microplates (25 μL/well) and then incu-
bated with 1.2 mM 4-methylumbelliferyl-N-acetyl-β-D-glucosamincide dissolved in 0.1 M
citrate buffer (pH 4.5) at 37 ◦C for 30 min (100 μL/well). The fluorescence intensity was
measured at 450 nm with a microplate reader. The β-hexosaminidase release (%) and
inhibition of release (%) were calculated as follows:

βhexosaminidase release(%) =
Fsupernatant

Fsupernatant + Fcell lysate
×100 (1)

Inhibition of release (%) =
AG − Intervention

AG − Veh
×100 (2)

where F in Equation (1) is the fluorescence intensity. AG, Veh, and intervention in Equa-
tion (2) refer to the β-hexosaminidase release (%) of the AG, Veh, and intervention groups.

2.6. TNF-α and IL-4 Release Assay

To determine the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) concentra-
tions in the culture media, all samples were centrifuged (17,000× g, 10 min) at 4 ◦C and
stored at −80 ◦C until analysis. Then, the levels of TNF-α and IL-4 were measured using
ELISA kits (Elabscience, Wuhan, China), in accordance with the manufacturers’ instructions
(n = 3).

3. Results

3.1. Inhibitory Effect of Curcumin/EGCG on IgE-Mediated Degranulation

The release of β-hexosaminidase was first measured as a general indicator of degran-
ulation and a hallmark characteristic of allergic reactions upon allergen stimulation [10].
The modeling with 200 ng/mL anti-DNP-IgE for sensitization and the coincubation of
DNP-BSA and curcumin/EGCG for stimulation was defined in our preliminary studies for
better inhibition of β-hexosaminidase release (Figures 2A,B and S1A–C).
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Figure 2. Both curcumin and EGCG inhibit IgE-mediated degranulation in the RBL-2H3 cell model.
(A,B) exhibit β-hexosaminidase release at 1 h and 3 h, respectively. The β-hexosaminidase release (%)
is represented by each column, and the line reveals the inhibition of release (%). (C) IL-4 release at
3 h. (D) TNF-α release at 3 h. All data are presented as the mean ± SD. Individuals in each group
are represented by the red dot in each column. C5, C10, C30, and C50 denote intervention groups
in which IgE/antigen-stimulated cells were treated with 5, 10, 30 and 50 μM curcumin; E100, E200,
E500, and E650 denote intervention groups in which IgE/antigen-stimulated cells were treated with
100, 200, 500, and 650 μM EGCG. ***: p < 0.001.

To assess the effect of curcumin/EGCG on the IgE-mediated allergic response, cell
morphology and the release of two representative proinflammatory cytokines (TNF-α
and IL-4) were also analyzed, in accordance with the evaluation of β-hexosaminidase
release. RBL-2H3 cells from the Veh group displayed fibroblastic morphology (Figure S2).
Activating RBL-2H3 cells by an IgE–antigen complex induced cell swelling, and signif-
icantly improved the levels of β-hexosaminidase, IL-4, and TNF-α (Figures S2 and 2).
After curcumin/EGCG treatment, the activated cells exhibited improved morphology,
and the release of β-hexosaminidase, IL-4, and TNF-α was significantly suppressed in a
dose-dependent manner (Figures S2 and 2).

Cell viability was not obviously affected at concentrations less than 10 μM curcumin
and 200 μM EGCG (Figure S1D,E). Then, 10 μM curcumin and 200 μM EGCG were used
in subsequent lipidomics studies. We observed that the suppression of β-hexosaminidase
release by 10 μM curcumin (i.e., 55.72% and 65.27% inhibition of release for 1 h and 3 h,
respectively) was more potent than that by 200 μM EGCG (i.e., 38.61% and 41.24% inhibition
of release for 1 h and 3 h, respectively; Figure 2A,B). Compared with that at 1 h, the percent
inhibition of β-hexosaminidase release at 3 h increased, indicating the progression of
curcumin/EGCG intervention. Interestingly, the decrease in proinflammatory cytokine
production induced by 10 μM curcumin and 200 μM EGCG was similar. These results
confirmed that the inhibition of IgE-mediated RBL-2H3 degranulation by curcumin/EGCG
was successfully implemented in this study.

3.2. Lipidome of RBL-2H3 Cells

To trace curcumin/EGCG action in the progression of degranulation, RBL-2H3 cells
from the control groups (incl. Veh and AG) and intervention groups (incl. Cur and EGCG)
were analyzed at both 1 h and 3 h for lipidomics investigation. The large-scale lipidomics
profiling of RBL-2H3 cells revealed approximately 1800 lipid features in a nontargeted
pattern (Figure S3). A total of 957 lipid species were finally identified, including 75 fatty
acyls, 161 glycerolipids, 582 glycerophospholipids, 123 sphingolipids, 14 sterols, and
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2 prenols (Tables S1, S2 and Figure S4). This profiling revealed that the chemical structures,
compositions, and polarities of the cellular lipidome were largely diverse and complex.

The reliability and robustness of the acquired lipidomics data were investigated by
evaluating QC samples and confirmed to be satisfactory for complex biological samples
(Figure S5). Detailed information on the identified lipids and QC evaluation is described in
the Supporting Information.

3.3. Global Profiling of Lipidome Disturbance

Global profiling of the cellular lipidome was visualized by unsupervised PCA. Two
types of metabolic disturbance, time-related and treatment-induced changes, were clearly
visible on the score plot (Figure 3A). Cell specimens collected at 1 h and 3 h were presented
on the two sides of the PCA score plot. The control (i.e., Veh and AG) and different
intervention groups (i.e., Cur and EGCG) showed a clear trend of discrimination along
the second principal component. An overview of these lipidome differences was further
quantified by analyzing the Euclidean distance between the AG group and other groups at
each time point (Figure 3B).

Figure 3. Global profiling of lipidome disturbance and lipidome changes associated with IgE-
mediated degranulation. In lipidomics sampling, 10 μM curcumin and 200 μM EGCG were defined
based on cell viability results. (A) PCA score plot for the classification of vehicle (Veh-1 and Veh-3),
IgE/antigen stimulation (AG-1 and AG-3), curcumin (Cur-1 and Cur-3), and EGCG (EGCG-1 and
EGCG-3) groups at both 1 h and 3 h. (B) Euclidean distance. (C) Venn diagram for an overview of the
statistical results. The black numbers mean lipids with p < 0.05 and FDR < 0.05. The red numbers
mean lipids with p < 0.05, FDR < 0.05, and VIP > 1. (D) Heatmap of each lipid class. The sum of
the relative responses from each lipid class was UV scaled and subjected to hierarchical clustering.
(E) Percentage of significantly differential lipids in response to IgE-mediated degranulation (Veh
vs. AG, p < 0.05 and FDR < 0.05). The number of lipid species that were either significantly up- or
downregulated was normalized to the total number of lipids detected in each family. (F,G) volcano
plots for the comparisons at 1 h and 3 h, respectively. The red (or blue) dot denotes the lipid with
p < 0.05 and a ratio more than 3/2 (or less than 2/3).
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To specify significant differential lipids in response to allergen stimulation and cur-
cumin/EGCG intervention, the univariate statistical significance of lipids was evaluated
(p < 0.05 and FDR < 0.05). Three PLS-DA models (i.e., Veh vs. AG, curcumin vs. AG, and
EGCG vs. AG, Figures S6–S8) were developed to screen significant differential lipids based
on variable importance in the projection (VIP) values (VIP > 1). Lipids with multivari-
ate and univariate statistical importance in the classification were cross-refined (i.e., the
intersection, Figure 3C) and then assumed to be representative differential characteristics.

3.4. Lipidome Changes Associated with IgE-Mediated Degranulation

The comparison between the AG and Veh groups indicated that the cellular lipid metabolism
was rewired during the progression of IgE-mediated degranulation (Figures 3A and S6). The
classification of PCA showed robust lipidome disturbances in response to allergen stimula-
tion at both 1 h and 3 h (Figure 3A), and the progression of degranulation was supported
by the more evident metabolic changes at 3 h when compared with 1 h (Figure 3B). A total
of 454 significant differential lipids changed by degranulation were discovered (Veh vs.
AG, p < 0.05 and FDR < 0.05, Figure 3C, Table S3).

The sum of responses in each lipid class was analyzed to cluster into six major groups
in a heatmap according to the similarity of variation tendencies (Figure 3D). Enrichment
of changes in lipid classes was pinpointed by normalizing the number of significant dif-
ferential lipids changed by degranulation to the total number of lipids detected in each
family (Figure 3E). DG(-O) (incl. DG and DG-O), manifesting a greater response in AG
at both 1 h and 3 h, were found to be the top lipid category associated with significant
upregulation upon allergen stimulation (Figure 3E). In contrast, (H)BMP (incl. BMP and
HBMP), CAR, and (Ox)FA (incl. FA and OxFA) were discovered to be the top lipid classes
associated with significant downregulation in AG (Figure 3D,E). Notably, the percentage of
either increased or decreased lipids with significant differences was similar between 1 h
and 3 h (Figure 3E), indicating that common lipidome change patterns are shared during
the progression of degranulation.

Unique metabolic disturbances were also observed at different stages of degranula-
tion. Volcano plots indicated that at the later stage of 3 h, the fold change of significant
differential lipids increased and the range of fold changes broadened, suggesting that the
metabolic disturbances progressed (Figure 3F,G). Specifically, DGs were observed with an
obvious increase at 1 h, followed by a callback at 3 h (Figure 3F). With the progression
of degranulation, FAs underwent downregulation from the immediate phase to the later
phase and exhibited a prominent decrease upon 3 h of antigen stimulation (Figure 3G). The
emergence of these response patterns may involve degranulation dynamics.

3.5. Comparison between Curcumin and EGCG Intervention

Global profiling of the cellular lipidome was analyzed to depict the intervention effects
of curcumin/EGCG from the perspective of lipidome remodeling (Cur vs. AG and EGCG
vs. AG, Figures S7 and S8).

Multivariable differences were pinpointed by Euclidean distances in PCA (Figure 3B).
Unlike the EGCG group, curcumin intervention was evidenced by the more evident
metabolic changes at 1 h compared with 3 h, highlighting the active intervention by
curcumin at the early stage of allergen stimulation. Univariate statistical tests identified
454 significant differential lipids in response to allergen actions (Table S3). According
to the Venn diagram (Figure 3C), a total of 270 (59%) and 248 (55%) of these differential
lipids exhibited significant quantitative alterations when the curcumin and EGCG groups
were compared with the AG group (p < 0.05 and FDR < 0.05). Together, 355 (78%) of the
significant differential lipids could be changed upon either curcumin or EGCG intervention.
Both multivariable and univariate statistical results implied that the lipidome intervention
in Cur was more prominent than that in EGCG, which is consistent with their differences
in the suppression of IgE-mediated RBL-2H3 degranulation (Figure 2).
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To specify the lipidome regulation by curcumin/EGCG, the representative differential
lipids associated with allergen stimulation were further subjected to a heatmap (Figure 4).
The baseline level was defined as the average readings from time-matched AG groups.
The lipid contents of each sample from the Veh, Curcumin, and EGCG groups were then
divided by the average of time-matched AG groups to produce the ratio. As compared
to the alteration pattern associated with allergen stimulation (Veh vs. AG), the lipidome
modulation by curcumin/EGCG could be identified (Cur vs. AG and EGCG vs. AG). Both
curcumin and EGCG regulate the response pattern of CAR, CE, CoQ, glycerophospholipids
[(H)BMP, LPC(-O) (incl. LPC and LPC-O), PC(-O) (incl. PC and PC-O), PG, (L)PE (incl.
PE and LPE) and PE(-O/-p)], and sphingolipids [(Hex)Cer (incl. Cer and HexCer) and
SM] at either 1 h or 3 h. These lipid species exhibited similar response patterns between
the intervention and Veh groups, implying their sensitivity to both curcumin and EGCG
interventions. Aside from those common features, curcumin exhibits a greater potency than
that of EGCG in the upregulation of FA metabolism. Curcumin recovered the abundance
of DG and PEtOH with an immediate decrease at 1 h. In contrast, the abundance of CAR
and TG was improved by EGCG at 3 h. Special nonrecovered response patterns were also
discovered for the curcumin/EGCG intervention groups, in which the changes in lipids
were different from those of the control group. The inherent biological variation could at
least partially contribute to the emergence of these response patterns. Another explanation
might involve the functional diversity of polyphenols.

We further determined whether there were any changes associated with the lipid
composition upon curcumin/EGCG intervention (Figures 5A and S9). At the immediate
phase of allergen stimulation, no significant alterations in FA acyl chain composition were
observed (Figure 5A). After 3 h of allergen stimulation (i.e., the later phase), there was
a significantly lower abundance of unsaturated fatty acids [incl. monounsaturated fatty
acids (MUFAs) and polyunsaturated fatty acids (PUFAs)] than saturated fatty acids (SFAs)
(Figure 5B). Three hours of curcumin intervention significantly improved the depletion
of MUFA/PUFA (p < 0.05, Figure 5C,D). Likewise, the MUFA/PUFA content was greatly
replenished by 3 h of EGCG treatment (Figure 5E,F).

Then, from the perspective of lipidome remodeling, the activity of curcumin/EGCG in
the suppression of IgE-mediated degranulation is involved in the comprehensive regulation
of both lipid response and composition.

3.6. Defining Potential Biomarkers

Considering the association between phenotype and metabolic changes, we further exam-
ined potential biomarkers to discriminate degranulation and validate curcumin/EGCG inhibition.

Compared with the control group, allergen stimulation induced a total of 338 repre-
sentative significant differential lipids that were cross-refined by screening for univariate
statistical significance (p < 0.05, FDR < 0.05), multivariate VIP values (VIP > 1), and co-
variance p(corr) values (|p(corr)| > 0.3). These significant lipids were further picked via
the criteria of change magnitude (fold change >3/2 or <2/3) and stricter analysis quality
(within-group variation < 15%). Then, these candidates were subjected to ROC analysis. A
total of 19 lipids were finally designated as biomarker candidates with the best discrimi-
nation ability (AUC = 1), spanning the lipid categories of CAR, DG, HBMP, PEtOH, PG,
PI(-O), and LPC-O (Table 1).

The biomarker candidates that were sensitive to allergen stimulation were subse-
quently validated in the evaluation of the curcumin/EGCG intervention. Curcumin signifi-
cantly recovered the abundance of LPC-O 22:0, LPC-O 24:1, HBMP 58:8, CAR 24:0, CAR
24:1, and PG 38:4, while LPC-O 22:0 could be significantly improved by EGCG. LPC-O 22:0
was discovered in the overlap.

LPC-O 22:0 was defined as a potential biomarker (Figures 5G and S10). The exploita-
tion of LPC-O 22:0 achieved an AUC value of 1 in the discrimination of degranulation (Veh
vs. AG), and both the sensitivity and specificity were 100% (Figure 5H). Furthermore, for
the comparison between all intervention individuals (incl. curcumin and EGCG interven-
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tion groups) and AG groups, satisfactory discrimination results were also acquired in the
evaluation of inhibition manner, resulting in an AUC value of 0.836 and sensitivity and
specificity of 68.8% and 87.5%, respectively (Figure 5I). These evaluations confirmed the
indicator function of LPC-O 22:0, implying its key significance in the degranulation process
of RBL-2H3 cells.

Figure 4. Comparison between curcumin and EGCG intervention. Representative differential
lipids associated with allergen stimulation were subjected to heatmap to specify the regulation by
curcumin/EGCG. The conversion dataset with relative contents of lipids (i.e., the contents of lipids for
each sample divided by the average values from time-matched AG individuals) was logarithmically
scaled, and then categorized in the tree of hierarchical clustering analysis based on the similarity
of the regulation-response pattern (left panel). Representative metabolites were selected from each
cluster to present the response trajectory (right panel). Each point in the trajectory was presented as
the average relative content ± SD.
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Figure 5. Changes in the content and composition of important lipids. (A–F) present FA changes
associated with acyl chain composition. (G) Relative content of LPC-O 22:0. (H,I) ROC curves of
LPC-O 22:0. Diagnostic potential was evaluated based on binary logistic regression. Each column is
presented as the mean ± SD. **: 0.001 < p < 0.01, ***: p < 0.001, N.S.: no significance.
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4. Discussion

Due to their potential benefits for human health, dietary polyphenols, such as cur-
cumin (turmeric) and EGCG (green tea), have been a major topic of interest. An increasing
number of trials have shown a correlation between dietary polyphenol consumption and
a reduction in risk factors for chronic diseases [2,3]. Two typical dietary polyphenols,
curcumin and EGCG, were confirmed to show anti-allergic potential in our study. Both
curcumin and EGCG significantly suppressed the release of the indicator of degranulation
(β-hexosaminidase) and representative pro-inflammatory cytokines (IL-4 and TNF-α) on
IgE/antigen-stimulated RBL-2H3 cells.

Lipids can act as vital intermediates in various cellular communication processes.
In this study, the key lipidome remodeling of antigen-stimulated RBL-2H3 cells was fur-
ther investigated to understand the curcumin/EGCG intervention that underlies the pro-
gression of degranulation. Global disturbances in the cellular lipidome were discovered
upon IgE/allergen stimulation. Enrichment of 454 significant differential lipids (p < 0.05,
FDR < 0.05, AG vs. Veh) pinpointed the top lipid categories associated with significant
upregulation [i.e., DG(-O)] and downregulation [i.e., (H)BMP, FA, and CAR] after stimula-
tion. Although the progression of IgE-mediated degranulation was revealed by the more
evident metabolic changes at 3 h than at 1 h, similar lipidome change patterns were shared
during the progression of degranulation.

Notably, 78% of those significant differential lipids could be regulated upon either
curcumin or EGCG intervention. Aside from common features in the improvement of the
cellular lipidome by these two typical dietary polyphenols, special lipidome patterns were
also found for different intervention groups. Both multivariable and univariate statistical
results implied that lipidome regulation in the Cur group (i.e., 10 μM curcumin) was more
prominent than that in the EGCG group (i.e., 200 μM EGCG). These lipidomics changes
were consistent with the suppression of β-hexosaminidase release by curcumin, which was
enhanced compared with EGCG despite their similar performance in decreasing proin-
flammatory cytokine production. Furthermore, when compared with EGCG, the active
intervention by curcumin was highlighted in the immediate phase of the allergic reaction.

4.1. DG Metabolism

As the key secondary lipid messengers, DGs were the top lipid categories that un-
derwent significant changes upon degranulation (Figure 3D,E). DGs were significantly
increased at the immediate phase of IgE/allergen stimulation, followed by callback at the
later phase (Figure 3F).

The interaction of allergens with IgE–FcεRI complexes results in the formation of
signaling complexes that converge on the activation of phospholipase C (PLC) [23]. PLC
activation leads to the enzymatic cleavage of phosphoinositol 4,5-bisphosphate (PIP2) into
DG and inositol 1,4,5-triphosphate (IP3) [23,24]. IP3 mediates the release of intracellular
Ca2+ [10,23,24]. DG targets, such as protein kinase C (PKC), Ras guanyl nucleotide-releasing
proteins (RasGRP), and the canonical transient receptor potential (TRPC) channel protein,
have been shown to be critical in controlling mast cell degranulation [10,23,24]. Conse-
quently, DGs act as the key secondary lipid messengers for transducing signals downstream
of receptors. The levels of DGs are tightly associated with the magnitude and duration
of the degranulation responses generated. Then, in the AG group, the upregulation of
DGs might indicate that antigen–IgE–FcεRI complexes successfully initiated the signaling
cascade to activate the process of mast cell degranulation.

The abundance of DGs was regulated by curcumin with an immediate decrease at
the early phase of allergen stimulation, indicating that curcumin could inhibit DG-related
signal transduction to partially block the process of degranulation. In contrast, DGs could
not be recovered by EGCG, suggesting that EGCG was absent from the inhibition of DG-
related signal transduction, i.e., antigen stimulation. This was in accordance with the better
suppression of mast cell degranulation obtained by curcumin than by EGCG.
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4.2. FA Metabolism

With the progression of degranulation, FAs were downregulated from the immediate
phase to the later phase and exhibited a prominent decrease upon 3 h of antigen stimulation
(Figure 3G). When compared with controls, no significant alterations in FA acyl chain com-
position in AG were observed at 1 h (Figure 5A), while the abundance of unsaturated fatty
acids (incl. MUFA and PUFA) was significantly lower than that of SFA at 3 h (Figure 5B).
PUFA metabolism is recognized as an important factor in immune regulation and disease
control. The depletion of n-6 PUFAs leads to the production of highly proinflammatory
mediators, such as prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and
lipoxins (LXs) [12,25]. As one of the most significant differential lipid classes upon allergen
stimulation, the comprehensive regulation of FA abundance and composition may involve
degranulation dynamics.

We found that compared to EGCG, curcumin is more potent in upregulating FA
metabolism (Figure 4). Three hours of curcumin intervention significantly improved the
depletion of MUFA/PUFA (p < 0.05, Figure 5C,D). Likewise, the MUFA/PUFA content was
replenished by 3 h of EGCG treatment (Figure 5E,F). These changes in the FA profile caused
by curcumin/EGCG might contribute to the modification of mast cell gene expression [26].
PPAR-β and -γ have been reported to be expressed in human and murine mast cells and
involved in the suppression of mast cell maturation and IgE/antigen-induced production
of proinflammatory cytokines [27,28]. At the later phase, the replenishment of PUFAs has
been suggested to activate PPAR-γ and change the expression of the antigen response
machinery (e.g., FcεRI, Fyn, Lyn, Syk) and degranulation machinery (e.g., calcium channels,
vesicle docking molecules) [26]. As a result, mast cells become less susceptible to antigen
activation. On the other hand, as the building blocks for lipids, FAs participate in forming
membrane phospholipid bilayers and facilitating protein acylation, which is important for
the structure and function of membranes/lipid rafts. It has been reported that lipid rafts are
especially vital for FcεRI-mediated signal transduction [26]. In IgE/antigen-stimulated cells,
FcεRI is quickly recruited to lipid rafts to initiate signaling [26,29]. FcεRI signaling could
also be regulated by many lipid raft components [26]. When compared to nonraft regions,
the phospholipids in lipid rafts prefer higher levels of saturated fatty acids [30]. Thus, the
modification of the FA profile by curcumin/EGCG in the improvement of MUFA/PUFA
levels might influence lipid raft function and then reduce FcεRI signaling induced by
IgE/antigen, followed by suppression of mediator release from mast cells.

In addition, CARs, which play a critical role in transporting FAs into mitochondria so
they can be oxidized to produce energy, were also defined as one of the top lipid classes with
significant changes (Figure 3E). In this study, CARs were found to be decreased in response
to IgE/antigen stimulation. The downregulation of CARs may lead to the inhibition of FA
β-oxidative, and then promote more FA flow to the pathway of eicosanoic acid synthesis to
produce proinflammatory mediators (Figure 6). Decreased FA oxidation and mitochondrial
dysfunction have been reported in sensitized mice to support our discoveries [31]. As
expected, CARs could be greatly improved by curcumin/EGCG intervention.
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Figure 6. Schematic diagram showing the major rewiring of lipid metabolism.

4.3. BMP Metabolism

In this study, (H)BMPs were found to be decreased upon IgE/antigen stimulation.
BMPs are markedly enriched in the inner membranes of late endosomes, particularly
lysosomes, and play a key role in lysosomal integrity and function [32,33].

BMP-enriched vesicles serve in endosomal-lysosomal tracking and function as docking
structures for the activation of lysosomal hydrolytic enzymes [32]. The unique sn-1:sn-
1′ stereoconfiguration of BMP confers its higher resistance to the hydrolytic lysosomal
environment [32]. Then, BMP’s negative charge could be retained, facilitating its role as
the docking site and essential cofactor for some lysosomal proteins that contain positively
charged domains [32,34]. Indeed, the modulation of ABHD6 (i.e., BMP hydrolase) activity
has been found to alter the immune response in a murine model of lung inflammation [35].

In addition, BMP was reported to be a relatively abundant phospholipid in mast
cell-derived extracellular vesicles (EVs), especially degranulated mast cells [36]. Thus, such
EVs are derived not only from the plasma membrane or multivesicular bodies but probably
also from secretory lysosomes. Mast cells can release EVs constitutively and after IgE-
mediated degranulation [36]. In addition to transferring RNA species to other mast cells
and containing lipid mediators [37], mast cell-derived EVs exert immune-stimulatory effects
on dendritic cells and T/B cells [38,39]. Then, the decrease in (H)BMPs upon IgE/antigen
stimulation might also be involved in the release of EVs after IgE-mediated degranulation.
Curcumin/EGCG intervention produced favorable effects on the improvement of (H)BMP-
related metabolism.

LPC-O 22:0 was defined as a potential biomarker for its sensitivity to IgE/antigen
stimulation and curcumin/EGCG intervention. The remodeling of membrane phospho-
lipids PC by phospholipase A2 (PLA2) generates arachidonic acid (AA) and LPC [12].
Furthermore, LPC is converted to PAF via LPC acetyltransferase (LPCAT) [40]. As one of
the key lipid mediators that mast cells abundantly synthesize, PAF signals via the G-protein
coupled receptor (GPCR) (PAF receptor, PAFR), which initiates a signaling cascade [12];
then degranulation and an enhancement in inflammation are triggered [12]. The recovery
of the potential biomarker LPC by curcumin/EGCG thus indicated that their effective
intervention may involve the inhibition of PAF generation.
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Certainly, these lipidome changes might be the result of the development of protein–
polyphenol complexes with possibly lower allergenic potential [5,6], as well as more
sophisticated and comprehensive anti-allergy mechanisms. Following that, a growing
number of studies have demonstrated that mast cell synthesis and metabolism of lipid
mediators, in turn, influence cellular processes [9,11]. The role of lipids in the pathogenesis
of allergic disease has long been studied. Our study indicated that a potency was observed
with curcumin than with EGCG in the disturbance of lipid metabolism, in accordance with
the superior effects of curcumin observed when compared with EGCG in the suppression
of the degranulation process. A considerable similarity between curcumin intervention
and EGCG was discovered in their lipidome remodeling patterns. Our study confirmed
the significance of DG, FA, BMP, and LPC metabolism for IgE/antigen stimulation and
subsequent curcumin/EGCG intervention. Both changes in lipid response and composition
patterns indicated that lipids influence the degranulation process via multiple mechanisms,
including (i) producing highly proinflammatory mediators, (ii) mediating intracellular sig-
naling cascades by acting as second messengers, (iii) activating a diverse family of receptors,
and (iv) forming structural support platforms (lipid rafts) and extracellular vesicles.

The goal of this study is to describe curcumin/EGCG-induced lipidome change in
order to give a novel perspective on curcumin/EGCG participation in anaphylaxis. It
should be noted, however, that research into the process is currently restricted. The
underlying mechanisms that influence lipid alterations by putative protein–polyphenol
complexes with possibly decreased allergenic potential, as well as the subsequent effects
of lipid changes on allergy reactions, require additional exploration. Further research will
be needed, including expanding the sampling distribution throughout the degranulation
course, tracking the effects of curcumin and EGCG in vivo, and a combined analysis
including transcriptomic, biochemical, and immunological results.

5. Conclusions

Two typical dietary polyphenols, curcumin and EGCG, were confirmed to show anti-
allergic potential in the present study. Both curcumin and EGCG significantly suppressed
the release of β-hexosaminidase, IL-4, and TNF-α from IgE/antigen-stimulated RBL-2H3
cells. As compared to the alteration pattern associated with IgE/antigen-stimulated degran-
ulation (Veh vs. AG), the lipidome modulation by curcumin/EGCG could be identified
(Cur vs. AG and EGCG vs. AG). Comprehensive lipidomics analysis revealed that the
ability to disturb lipid metabolism was stronger with curcumin than EGCG, in accordance
with the superior ability of curcumin to suppress the degranulation process. These key
lipidome disturbances provide novel insights into the effects of curcumin/EGCG inter-
vention underlying the progression of degranulation. Our findings open the possibility of
preventing immediate allergic reactions via antigen-stimulated mast cells in vitro and will
help guide future attempts to use dietary polyphenols.
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Abstract: Direct infusion nanoelectrospray high-resolution mass spectrometry (DI-nESI-HRMS) is
a promising tool for high-throughput metabolomics analysis. However, metabolite assignment is
limited by the inadequate mass accuracy and chemical space of the metabolome database. Here,
a serum metabolome characterization method was proposed to make full use of the potential of
DI-nESI-HRMS. Different from the widely used database search approach, unambiguous formula
assignments were achieved by a reaction network combined with mass accuracy and isotopic patterns
filter. To provide enough initial known nodes, an initial network was directly constructed by known
metabolite formulas. Then experimental formula candidates were screened by the predefined reaction
with the network. The effects of sources and scales of networks on assignment performance were
investigated. Further, a scoring rule for filtering unambiguous formula candidates was proposed.
The developed approach was validated by a pooled serum sample spiked with reference standards.
The coverage and accuracy rates for the spiked standards were 98.9% and 93.6%, respectively. A total
of 1958 monoisotopic features were assigned with unique formula candidates for the pooled serum,
which is twice more than the database search. Finally, a case study of serum metabolomics in diabetes
was carried out using the developed method.

Keywords: metabolomics; direct-infusion; high-resolution mass spectrometry; formula assignment;
reaction network

1. Introduction

Direct infusion combined with high-resolution mass spectrometry (DI-HRMS) is an
attractive alternative for high-throughput metabolomics analysis due to its simplicity,
high resolution, high mass accuracy, and time-saving [1,2]. In metabolomics analysis,
nanoelectrospray ionization (nESI) DI-HRMS provides similar discrimination capabili-
ties to conventional liquid chromatography-mass spectrometry (LC-MS) while greatly
reducing the total analysis time [3,4]. DI-HRMS approach has been widely applied in
various metabolomics studies [5–7], such as urinary metabolic profiling in human epi-
demiological investigations [8], metabolite analysis for the diagnosis of inborn errors of
metabolism [9–11], and serum metabolomics analysis in diabetes [12].

Metabolite annotation is widely recognized as a critical part of metabolomics anal-
ysis. Accurate molecular formula assignment is a prerequisite for identifying unknown
metabolites [13]. Typically, metabolite annotation relies on metabolome database searching
using accurate mass, where the extent of database coverage determines the annotation
performance [14–16]. Sarvin et al. [17] recently analyzed the m/z value distribution of ions
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and identified optimal scan ranges, resulting in a ~50% increase in feature detection com-
pared to conventional spectral-stitching FI-MS [18]. However, this study employed publicly
available databases, such as the LIPID MAPS Structure Database (LMSD) for lipidomics
data [19] and the Human Metabolome Database (HMDB) for metabolomics data [20,21],
and only 564 out of 3233 features in metabolomics data and 401 out of 3339 features in
lipidomics data obtained putative annotations with a 5 ppm mass tolerance, respectively.
Alternatively, the stochastic molecular generator method, which incorporates chemical
constraints (e.g., high mass accuracy, limited element number/species, and high-fidelity
isotopic pattern), allows reliable formula assignment without database limitations [22–24].
But this approach is not suitable for high-resolution mass spectrometry analysis, especially
for low-abundance and high-mass MS signals, for which multiple formula candidates may
match [25–27].

Metabolites serve as substrates and products of vital biological reactions [28,29], so
it is very promising to exploit the reaction relationships among them for metabolome
annotation. The approach of utilizing mass differences has been applied for molecular
formula assignment in ultra-high-resolution mass spectrometry [30–32]. In this method,
spectral features are represented as nodes, while pre-defined metabolic reactions, as re-
flected by mass differences, serve as edges connecting these nodes [33,34]. High mass
accuracy (<1 ppm) is crucial for minimizing the number of candidate molecular formulas
and possible reaction types. Nevertheless, it is difficult to achieve in high-resolution mass
spectrometry methods [35]. To address this challenge, Chen et al. [36] proposed a global
network optimization approach, NetID, which annotates formulas for as many MS features
as possible, including adducts, fragments and isotopes of metabolites in untargeted LC-
HRMS data. In NetID seed nodes were limited to the detected features and assigned by
matching peaks to the HMDB with a mass tolerance of 10 ppm, it is especially important to
use highly reliable metabolite formulas as seed nodes [37].

In this work, a serum metabolome characterization method was proposed to fully
explore the potential of DI-nESI-HRMS. To enhance the coverage and accuracy of unique
formula assignment, a reaction network was constructed and endogenous metabolites
from the HMDB served as initial seed nodes. A scoring system was established to further
screen reliable molecular formulas from the possible candidates based on the topological
relationship in the reaction network, mass accuracy, and isotopic fine structure. Finally,
the developed method was applied to a high-throughput study of serum metabolomics
in diabetes.

2. Materials and Methods

2.1. Chemicals

LC-MS grade formic acid was purchased from J&K Scientific Ltd. (Beijing, China).
HPLC grade acetonitrile, methanol, and chloroform were purchased from Merck (Darm-
stadt, Germany). Ultrapure water was prepared by a Milli-Q Ultrapure water system
(Millipore, Billerica, MA, USA). Seventy-eight metabolites used for evaluating annota-
tion accuracy were supplied by Sigma-Aldrich (St. Louis, MO, USA) (Table S1). Nine
stable isotope labeled internal standards (ISs) were used to normalize MS features in
DI-nESI-HRMS. (Table S2). Carnitine C2:0-d3, carnitine C12:0-d3, and carnitine C16:0-d3
were purchased from International Laboratory (South San Francisco, CA, USA). Choline-d4,
phenylalanine-d5 (Phe-d5), tryptophan-(indole-d5) (Trp-d5), leucine-d3 (Leu-d3), glutamine-
d5, cholic acid-d4 (CA-d4), chenodeoxycholic acid-d4 (CDCA-d4) were purchased from
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Sample Information and Preparation

The serum samples were collected from 38 healthy control individuals and 31 type 2
diabetes (T2D) patients at The Second Hospital of Dalian Medical University. All enrolled
participants had written consents and the research protocol (No. 2019(124)) was approved
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by the Ethics and Human Subjects Committee of the Second Hospital of Dalian Medical
University. Detailed clinical data of the samples are summarized in Table S3.

A pooled sample was prepared by combining 10 μL aliquots from each serum sample
as a quality control (QC) sample. The working solution of IS was mixed in methanol for
subsequent protein precipitation of serum samples. Method linearity was assessed with
the mixture of 10 metabolite standards at 6 different concentrate levels (Table S4).

For DI-nESI HRMS analysis, routine protein precipitation was first performed. Then,
200 μL of ice-cold methanol containing IS was added into a 1.5 mL Eppendorf tube contain-
ing 50 μL of a serum sample, followed by thorough vortexing for 1 min, and centrifuged for
10 min at 4 ◦C and 15,000× g. 220 μL of the supernatant was vacuum concentrated at 4 ◦C
by CentriVap Centrifugal Vacuum Concentrators (Labconco, Kansas City, MO, USA). Then,
the freeze-dried residue was diluted 20 times with methanol/water 2:1 (v/v) containing
0.1% formic acid. After vortexing for 1 min, the sample solution was centrifuged at 4 ◦C
and 15,000× g for 10 min. Finally, the supernatant was transferred into 96-well plates for
DI-nESI HRMS analysis.

2.3. DI-nESI HRMS Analysis

In DI-nESI HRMS analysis, TriVersa Nanomate chip electrospray system (Advion
BioSciences, Ithaca, NY, USA) was coupled to a Q Exactive HF (Thermo Fisher Scientific,
Rockford, IL, USA). For the NanoMate system, the voltage and gas pressure were set as
1.7 kV and 0.6 psi, respectively. For mass spectrometry acquisition, the capillary temper-
ature was set at 270 ◦C and S-lens level was 50. The data of the full scan based on the
spectral-stitching acquisition were acquired in positive ionization mode and the mass
resolution at m/z 200 was 240,000, the scan windows were set as follows: m/z 65–235, m/z
225–315, m/z 305–355, m/z 345–395, m/z 385–435, m/z 425–475, m/z 465–515, m/z 505–562,
m/z 552–609. Maximum IT was 200 ms and Microscan was set as 3. The total analysis time
was 0.6 min per sample. The spectrum data type above all acquisition methods was set as
centroid mode.

2.4. Data Processing

For DI-nESI-Orbitrap MS analysis, Xcalibur software (Thermo Fisher Scientific, Rock-
ford, IL, USA) was used to visualize and process rawdata files. Theoretical formulas for
MS features were generated according to the rules of elemental type (C, H, O, N, P, S),
hydrogen/carbon ratios (0.4~5.1) and isotopic fine structure, and further filtration restrict-
ing elemental composition and reaction network analysis was performed using in-house
Python scripts. The subsequent steps were processed including peak lists export, noise
filtration (S/N > 10), peaks alignment (5 ppm), and blank reduction.

The MS feature intensities were normalized by ISs and only those features with a
relative standard deviation (RSD) less than 30% in QC were retained for further statistical
analysis. Finally, the peak table was used for statistical analyses, and the partial least
squares-discriminant analysis (PLS-DA) was performed. Significantly differential metabo-
lites between health and T2D diabetes were screened out by nonparametric tests (p < 0.05)
and VIP > 1.

An initial reaction network was constructed using unique molecular formulas (seed
nodes) extracted from the Human Metabolome Database (HMDB, https://hmdb.ca/
metabolites) (accessed on 16 December 2022). Three filtering criteria were employed for
the selection of seed metabolites. Criterion 1 included metabolites filtered by the biospeci-
men of “Blood” and the origin of “Endogenous”, criterion 2 included metabolites filtered
by the origin of “Endogenous”, and criterion 3 included all metabolites in the HMDB
without any filtering. After restricting the elemental composition to C, H, O, N, P, and S,
non-redundant formulas within a mass range of 50~800 were retained. To establish edges
between nodes, the differences between any two formulas were obtained. If they matched
the pre-defined reactions listed in Table S5, edges between nodes were established. Next,
all possible formula candidates of experimental features were generated based on their
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accurate mass. The formula differences between the candidates and the nodes in the initial
reaction network were calculated using custom Python scripts. If the formula differences
matched the pre-defined reactions, edges were connected between the possible formula
candidates and the nodes in the initial reaction network. The topological parameters were
obtained by network analysis. The molecular network was visualized using Cytoscape
(version 3.8.0).

3. Results

3.1. Workflow of the Developed Method

The entire workflow of the developed comprehensive characterization of serum
metabolome is displayed in Figure 1. First, untargeted serum metabolome analysis was
performed using spectral-stitching acquisition based on DI-nESI HRMS. Possible formula
candidates for all the detected monoisotopic MS features were generated according to
the rules outlined in the Data processing section with a mass accuracy of 2 ppm. A re-
action network approach was then used to screen reliable formula candidates, using 76
predefined biological reactions as edge species (Table S5). The initial reaction network was
constructed using unique molecular formula records in the metabolome database as seed
nodes. The nodes were connected when their formula difference met with the predefined
reactions. Then, the formula difference between all possible candidates and nodes in the
initial reaction network was calculated. If the formula difference satisfies the predefined
reaction, a connection is established between the candidate formula and seed nodes. For
the monoisotopic MS features with multiple formula candidates connected with the initial
reaction network, a scoring system was applied to select the top-ranked candidate as the
unique formula. These unique formula candidates were newly-seeded nodes to integrate
with the initial seeds and reconstructed the reaction network. For the monoisotopic MS
features without any formula candidates connected to the initial reaction network, the
formula candidates were screened using the reconstructed network again. This filtering
process was repeated until no additional features were assigned with unique formulas.
Finally, all the unique formula assignments were summarized.

 

Figure 1. The workflow of a comprehensive serum metabolome analysis based on DI-nESI HRMS.

3.2. The Method Establishment

To evaluate the mass accuracy of spectral-stitching DI-nESI HRMS, 78 reference
metabolites dissolved in pure solvent (standard mixture) were analyzed (Table S1). A
total of 101 monoisotopic MS features related to the standard mixture, including three
adduct types ([M+H]+, [M+Na]+, and [M+K]+) were detected. As shown in Figure S1, the
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mass error distribution of the metabolites was mainly clustered within 2 ppm and near
zero. Therefore, a mass error of 2 ppm was used in the following formula assignment.

Metabolism in a biological system is highly interconnected through metabolic reac-
tions. Thus, the relevance between potential formula candidates and known endogenous
metabolites in a reaction network can be leveraged to estimate the reliability of the formula
assignment. The HMDB is a comprehensive database that contains known human metabo-
lites [11]. To improve the accuracy and coverage of formula assignments, metabolites were
selected from the HMDB and served as seed nodes for constructing an initial reaction
network. To investigate the impact of seed nodes on formula assignment, three filtering
criteria were employed for obtaining “endogenous metabolites from blood” (criterion 1),
“endogenous metabolites” (criterion 2), and “all metabolites” (criterion 3) in the HMDB
database. A total of 1650, 5620, and 12,351 non-redundant formulas were obtained for
criteria 1, 2, and 3, respectively. Three initial metabolic reaction networks were constructed,
in which 1457/4536, 5324/27,598, and 11,597/72,383 nodes/edges were obtained using
criteria 1, 2, and 3 (Figure 2).

Figure 2. Degree distributions of seed nodes in the initial network. Criterion 1 represents endogenous
metabolites from blood (1650), criterion 2 represents endogenous (5620) and criterion 3 represents all
metabolites in the HMDB (12,351).

Degree distributions of the three initial metabolic reaction networks were evaluated
(Figure 2). With the increase of non-redundant formulas from 1650 to 12,351, the nodes
display closer connections of the average degree from 3 to 6. The fractions of nodes with a
degree value less than three were 17.1% (criterion 1), 6.8% (criterion 2), and 7.5% (criterion 3),
respectively. The initial network constructed by endogenous metabolites (criterion 2) had
the lowest proportion of low-degree nodes. Considering formula candidates with a high
degree may present higher confidence, the cut-off values of the degree to the three initial
reaction networks were set 2, 3, and 3, respectively.
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The above standard mixture was used to assess three initial reaction networks. The
overlap of the molecular formula between the standard mixture and metabolites in criteria
1, 2, and 3 was 58, 72, and 77, respectively (Figure S2). Using a mass accuracy of 2 ppm,
457 possible formula candidates for 101 features in the standard mixture were generated.
All the possible formula candidates were further connected with three initial reaction
networks. Among these possible formula candidates, 140 possible formula candidates
corresponding to 98 features (criterion 1), 166 formula candidates corresponding to 101
features (criterion 2), and 198 possible formula candidates corresponding to 101 features
have a network connection. A total of 119/140, 127/166, and 171/198 possible formula
candidates had one more (criterion 1) and two more neighbor nodes (criteria 2 and 3).
Through the network filter, the number of MS features with multiple formula candidates
increased from 19 (criterion 1) to 23 (criterion 2) and 32 (criterion 3), respectively.

After filtering by the reaction network, there were still many monoisotopic MS features
with multiple formula candidates. A scoring rule was established to further rank formula
candidates using three alternative scoring criteria, including mass accuracy, isotope pattern,
and degree of formula candidates (Equation (1)).

Score = WdegreeScoredegree − Wm/zScorem/z + Wiso Scoreiso (1)

The Wdegree, Wm/z and Wiso represent the weight coefficients of each criterion. Scorem/z
represents the mass accuracy score between experimental m/z (m/zE) and theoretical m/z
(m/zT) values (Equation (2)):

Scorem/z =
|(m/zE − m/zT)|

m/zE × 2
× 106 (2)

Scoreiso represents the similarity of isotopic distribution between experimental and
theory isotopic patterns (Equation (3)):

Scoreiso = 0.5 × Scoremz + 0.5 × Scoreint (3)

In which Scoremz = 1− |(m/zE−m/zT)|/(m/zT)×106

Tolerancem/z
and Scoreint = 1− |(intE−intT)|/(intT)×106

Toleranceint
.

Where intE and intT are the experimental and theoretical relative intensity, respectively.
Tolerancem/z and Toleranceint represent the mass tolerance of 2 ppm and the relative inten-
sity tolerance of 500%, respectively [38].

The effects of the weight coefficients on formula assignments were evaluated using the
above standard mixture (Figure S3). If only accurate mass filtering (Wdegree = 0, Wm/z = 1,
Wiso = 0) was used, the correct assignment rate for standards was 73.3~81.2%. If degree
filtering was considered alone (with Wdegree = 1, Wm/z = 0, Wiso = 0), the correct assignment
rate for standards increased to 85.1~87.1%. The combination of all three scoring criteria
resulted in a correct assignment rate of approximately 90%. The optimal weight coefficients
were determined to be Wdegree = 0.5, Wm/z = 0.3, and Wiso = 0.2.

The assignment performance of three initial reaction networks for the standard mix-
ture was compared using the optimal weight coefficients (Figure 3). With the increase of
non-redundant formulas from 1650 to 12,351, the correct assignment rate slightly increased
from 89.1% to 93.1%. Using criteria 1 and 2, 4% of monoisotopic MS features were not
retained any candidates because they lacked connections with the initial network. Fur-
thermore, to assess the performance of the three initial networks, a target-decoy strategy
was implemented. A set of 1000 known formulas presented in the HMDB database (blood
matrix) and 1000 decoy formulas absent in the HMDB database (token from the ChEMBL
database) were used. The line charts in Figure 3 demonstrate a similar filtering trend
between the known/decoy formulas and the standard mixture. The percentage of formula
assignment rates for known formulas increased slightly from 86.3%, 91.0% to 97.9% (solid
line), while the percentage of formula assignment rates for decoy formulas significantly
increased from 14.9%, 22.6% to 61.5% (dash line). The results implied that initial networks
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under criteria 1 and 2 exhibited more specific assignments for the biosample compared to
criterion 3. As a result, the initial network consisting of 5620 endogenous metabolites (crite-
rion 2) demonstrated superior assignment performance and was used for the subsequent
characterization.

Figure 3. The effects of the initial networks on the assignment performance. The formula assignment
results of the standard mixture (stacked column), 1000 blood metabolites (solid line), and 1000 decoy
formulas (dash line). Criterion 1, 2, and 3 represent the initial network constructed by 1650 endoge-
nous formulas from blood, 5620 endogenous formulas, and all the 12,351 formulas in the HMDB
database, respectively. Error bars represent ±SE (n = 3).

3.3. Method Validation

A pooled serum sample spiked 78 reference standards was used for method validation.
As shown in Figure 4A, 96 monoisotopic MS features were detected to be associated with
68 reference standards, which were assigned 353 potential formula candidates. Using the
workflow described above, 95 out of the 96 monoisotopic MS features were successfully as-
signed with unique formula candidates through the two rounds of assignments (Figure 4A,
stacked column). A total of 89 out of 95 assigned features were correctly allocated unique
formulas. As a result, the coverage and accuracy rates were 98.9% (red solid line) and 93.6%
(red dash line), respectively. For the spiked pooled serum sample, 3140 monoisotopic MS
features were assigned with 19,474 possible formula candidates. Among these features,
1958 features were assigned with unique formula candidates after seven rounds of assign-
ments (grey columns). The coverage rate was up to 62.3% (grey solid line). It is noteworthy
that 18.1% of features were assigned between the second and seventh rounds.
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Figure 4. The method validation results using a spiked serum sample. (A) The coverage and accuracy
rates of the developed method. (B) Comparison of assignment performance between the developed
method and the database search. (C) The Venn diagram of assignment results of both methods for
the spiked pooled serum sample.

The assignment performance of the developed method was compared with the con-
ventional formula assignments method of searching m/z against the metabolome database
(database-dependent method). The results are shown in Figure 4B. For the 68 spiked refer-
ence standards, the coverage rates of the two methods were similar (99%). However, the
accuracy rates of unambiguous formula candidates were improved from 81.3% (78/96) to
92.7% (89/96) by the developed method. A total of 17.7 % (17/96) of MS features obtained
multiple formula candidates by searching m/z against the HMDB (stacked column). For
the spiked pooled serum sample, only 957 MS features were able to obtain unambiguous
formula candidates by HMDB database search using a mass tolerance of 2 ppm, which
yielded less than half the number of formulas compared to the developed method. The
Venn diagram of the assigned monoisotopic MS features by two methods is shown in
Figure 4C. It can be observed that the assigned monoisotopic MS features by the database
search had good agreement with the developed method (900 out of 957). Among these
900 shared assigned monoisotopic MS features, about 89% (804/900) of MS features an-
notated consistent molecular formulas. The results indicated that the developed method
showed high coverage and accuracy for formula assignment in the characterization of
complex biosamples.

3.4. Application for Serum Metabolomic Analysis in Diabetes

To verify the practicability of the developed method, it was used to investigate the
metabolic alterations in diabetes. Table S3 lists the detailed clinical information of partici-
pants corresponding to two groups of healthy control and diabetes patients. No significant
differences except for blood glucose concentration were observed between the two groups.
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The repeatability of the developed acquisition method was measured using QC samples.
The RSD values were estimated (Figure S4A). It shows that 86% of the detected MS fea-
tures had RSD less than 30%, accounting for 96% of the sum peak area. Then, only those
assigned features with an RSD of less than 30% in QC were subjected to further statistical
analysis. The method linearities were evaluated using 10 reference metabolites (Table S4).
The method exhibited good linearities with linear correlation coefficients (R2) of 0.9975–1,
and linear ranges spanning two to four orders of magnitude. The results demonstrated that
the current acquisition method was appropriate for serum metabolomics analysis.

Figure S4B represents a PLS-DA score plot of two groups. The separated clusters
were observed between healthy control and patients. To further validate the classification
models, the permutation test was performed (M = 200). The intercept values of R2 and
Q2 were below 0.4 and −0.05, respectively, which indicated no overfitting of the PLS-DA
model (Figure S4C).

A total of 57 significantly differential formulas were obtained between healthy control
and T2D patients with VIP > 1 and p < 0.05 (Table S6). A heat map of the significantly
changed metabolic features revealed good clustering between the control and T2D groups
(Figure 5A). Four typical metabolites ([C6H12O6+Na]+, [C6H13NO2+H]+, [C6H11NO2+Na]+

and [C7H15NO3+H]+) are displayed in Figure 5B. Compared with the controls, significantly
increased [C6H12O6+Na]+ (glucose), [C6H13NO2+H]+ (Leucine/Isoleucine) and decreased
[C6H11NO2+Na]+ (pipecolinic acid), [C7H15NO3+H]+ (carnitine) in diabetes were observed.
As shown in the clinical information (Table S3), blood glucose existed a significant difference
between healthy and T2D groups, it was consistent with our result as [C6H12O6+Na]+.
In the previous study, the abnormal concentrations of carnitines also appeared in the
T2D groups owing to the fatty acid oxidation dysregulation [39,40], our result showed a
decrease of [C7H15NO3+H]+ in T2D group. A positive association of branch-chain amino
acids in diabetes had been concluded by modulating insulin secretion and leading to
the pancreaticb-cell exhaustion [41,42]. Leucine/isoleucine (C6H13NO2) recognized as
branch chain amino acids had a robust association with the risk of T2D, a similar trend with
[C6H13NO2+H]+ is shown in Figure 5B. In addition, Ouyang et al. observed that pipecolinic
acid (C6H11NO2) was decreased in T2D patients in a Chinese prospective cohort study [43].

Figure 5. (A) The heat map of significantly changed ion formulas between control and diabetes
groups, (B) Changes of [C6H12O6+Na]+, [C6H13NO2+H]+, [C6H11NO2+Na]+ and [C7H15NO3+H]+

between control and diabetes groups, respectively. **** p < 0.0001, ** p < 0.01, * p < 0.05.
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4. Discussion

DI-nESI HRMS is a promising high-throughput analytical method for large-scale
cohort metabolomic study [44,45]. High coverage and reliable assignment of MS features is
a critical prerequisite for comprehensive metabolomics analysis [46]. In the present study,
we aimed to develop a comprehensive metabolomics analysis method in direct-infusion
high-resolution mass spectrometry. Our result revealed that based on a reaction network
combing with mass accuracy and isotopic distribution, more MS peaks could be assigned
with a confident unique formula.

For untargeted metabolomics analysis based on DI-HRMS, the most widely used
approach for formula assignments was searching m/z against metabolome databases.
According to the performance of mass resolution (Rs) and mass accuracy in the high-
resolution mass spectrometer, appropriate mass tolerance parameter was obtained, such
as 10~20 ppm for time-of-flight (Rs on the order of 35,000), 5~15 ppm for orbitrap (Rs on
the order of 200,000 at m/z 200) and 0.5 ppm for Fourier transform ion cyclotron mass
spectrometers (Rs 900,000 at m/z 200) [47,48]. However, even with tremendous advances
in database size and scape, the identification of metabolites still is a primary challenge in
the field [49,50].

The relationship between metabolites attracted wide attention for formula identifica-
tion in untargeted DI ultrahigh resolution MS. Reaction network approach based on mass
difference had been used for MS feature assignments, in which experimental features as
nodes and chemical reactions as edges [19,22]. However, reliable and enough experimental
features need to be first assigned as initial seed nodes. It is difficult to achieve for the
untargeted metabolomics analysis using HRMS. Instead of only experimental features used
for the reaction network, the formula records from the metabolome database were used to
construct the initial reaction network in this study. The connections between formula can-
didates and the initial reaction network were established for filtering multiple candidates.
The assignment performance was improved due to sufficient and accurate known formulas
from the initial network. Furthermore, using assigned unambiguous formula candidates as
newly added seeds to reconstruct networks, multiple rounds of annotation were designed
to further improve annotation efficiency (1.22-fold increase after 7 rounds in this study).
Integration of mass accuracy and isotopic pattern filter resulted in a further improvement
in assignment accuracy.

Although the developed method demonstrated more than twice the number of unique
assigned formulas for a pooled serum sample compared to the database search, still
about 38% of MS features could not obtain unambiguous formula candidates. The false
negatives are possibly caused by the initial network filter. To avoid false positives, the
initial network in this study was constructed using only the most common metabolic
reactions and endogenous formulas from the HMDB database. Furthermore, the excellent
assignment performance for serum untargeted metabolic features is partly attributed to
the comprehensive HMDB database for the construction of the initial reaction network.
Nevertheless, for the less studied objects, the method performance may be suboptimal
because the initial network can’t be established or the initial network size is too small.
Furthermore, it is essential to accurately confirm the structures of differential metabolites
and then determine key differential metabolites from them in subsequent studies.

5. Conclusions

A comprehensive serum metabolome characterization method in DI-nESI HRMS was
proposed in this study. High coverage, high confidence, and database-independent formula
assignments were achieved by reaction network combined with mass accuracy and isotopic
pattern filter. A total of 1958 monoisotopic features were assigned the unique formula in a
pooled serum sample, while only 957 were annotated by searching m/z against HMDB.
This method has the advantages of comprehensive formula assignment and high-speed
acquisition, it has great application potential in large-scale cohort metabolomic studies.
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Abstract: Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), imposes a significant global
burden with adverse clinical outcomes and escalating healthcare expenditures. Early identification of
biomarkers can facilitate better screening, earlier diagnosis, and the prevention of diabetes. However,
current clinical predictors often fail to detect abnormalities during the prediabetic state. Emerging
studies have identified specific amino acids as potential biomarkers for predicting the onset and
progression of diabetes. Understanding the underlying pathophysiological mechanisms can offer
valuable insights into disease prevention and therapeutic interventions. This review provides a
comprehensive summary of evidence supporting the use of amino acids and metabolites as clinical
biomarkers for insulin resistance and diabetes. We discuss promising combinations of amino acids,
including branched-chain amino acids, aromatic amino acids, glycine, asparagine and aspartate, in
the prediction of T2DM. Furthermore, we delve into the mechanisms involving various signaling
pathways and the metabolism underlying the role of amino acids in disease development. Finally,
we highlight the potential of targeting predictive amino acids for preventive and therapeutic inter-
ventions, aiming to inspire further clinical investigations and mitigate the progression of T2DM,
particularly in the prediabetic stage.

Keywords: amino acids; type 2 diabetes mellitus; prediction; mechanism; intervention

1. Introduction

Diabetes mellitus is a prevalent chronic metabolic disorder characterized by disrupted
glucose homeostasis resulting in hyperglycemia [1]. It can be attributed to the progressive
impairment of pancreatic beta cell function or the development of insulin resistance, leading
to inadequate insulin action [2,3]. The global prevalence of diabetes is estimated to affect
over 643 million individuals by 2030, with approximately 6.7 million deaths attributed
to diabetes or its complications [4]. Type 2 diabetes mellitus (T2DM) is the predominant
subgroup of diabetes, accounting for at least 90% of cases worldwide [5]. T2DM significantly
impacts quality of life and life expectancy, and is a major contributor to disability or
mortality [6]. Chronic exposure to hyperglycemia gives rise to numerous detrimental
clinical consequences, including microvascular and macrovascular complications such as
nephropathy, retinopathy and neuropathy [7]. Hence, a comprehensive understanding of
the metabolic disturbances in T2DM is crucial for effective management.

Amino acids serve as fundamental building blocks for proteins and peptides, possess-
ing both carboxylic and amino functional groups. Beyond their role in protein synthesis,
these molecules play critical roles in various cellular processes, including cell signaling,
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oxidative stress, nutrition metabolism or maintenance [8]. Recent cross-sectional or prospec-
tive studies have shed light on the important involvement of amino acids in the devel-
opment of T2DM [9] and insulin resistance [10]. Amino acids are closely associated with
glucose dysregulation, particularly in their role as a primary source for gluconeogenesis, a
process wherein glucose is synthesized from non-carbohydrate sources. The over-activation
of gluconeogenesis is a key factor in prediabetes, which precedes the onset of T2DM [11].
Disturbances of amino acid metabolism may break the balance of muscle breakdown,
protein synthesis and gluconeogenesis in the liver and kidneys. Under specific circum-
stances, amino acids may enhance glucose-stimulated insulin secretion or modulate insulin
sensitivity early in the pathogenesis of T2DM [12]. The response effects are complex and
depend on the different types of amino acids [13]. In addition to from the impairment of
insulin sensitivity, certain altered amino acids could also block insulin signaling and affect
lipid metabolism and mitochondrial oxidation. These changes have initiating and causal
roles before insulin resistance is established. As T2DM advances and insulin resistance
worsens, the combination of impaired beta cell function and resistance may lead to accel-
erated muscle proteolysis and disturbances in metabolic signals, further contributing to
amino acid dysmetabolism [14]. These findings reveal the interconnectedness of amino
acid metabolism and prediabetes, underscoring the great potential of amino acids in the
early detection of metabolic abnormalities and prediction of future T2DM.

This review provides a comprehensive description of amino acids as strong correlative
factors and mechanistic implications for insulin resistance, prediabetes, and future incident
T2DM. Furthermore, we explore the promising inventions targeting amino acids, aiming to
inspire advances in clinical research and therapeutic strategies for T2DM.

2. The Interrelation between Amino Acids and T2DM

The roles and underlying mechanisms of various amino acids in relation to T2DM rep-
resent a prominent area of investigation within the field of glucose metabolism regulation.
The dysregulation of amino acid metabolism is crucial in prediabetes and future diabetes
onset risk. The following sections elaborate the interrelation between several amino acids
and T2DM, including branched-chain amino acids, aromatic amino acids, tryptophan,
glycine, asparagine and aspartate.

2.1. Branched-Chain Amino Acids
2.1.1. Branched-Chain Amino Acid Metabolism in Health and T2DM

Branched-chain amino acids (BCAAs), including leucine, isoleucine and valine, are
often studied as a collective unit. They share structural characteristics with a branched-
side chain and undergo the common initiation steps of catabolism. BCAAs cannot be
synthesized in higher organisms, making them nutritionally essential amino acids derived
from protein-containing foods [15,16]. Through a specialized signaling network, BCAAs
significantly modulate and regulate various metabolic and physiological processes, such as
glucose, lipid or energy homeostasis [17].

Consistent correlations between elevated plasma BCAAs and T2DM have been ob-
served in both human [18,19] and rodent models [20,21]. In the early 1970s, elevated
plasma BCAAs were first described in diabetic patients with impaired insulin signaling [22].
In 2011, a prospective cohort study conducted within the Framingham Offspring Study
revealed highly significant associations between baseline plasma BCAAs and future di-
abetes risk among 2422 normoglycemic individuals followed for 12 years. These results
were further validated in many independent, prospective cohorts [23,24]. We conducted a
nested case-control study on 3414 normoglycemic Chinese populations from a nation-wide
prospective cohort of the China Cardiometabolic Disease and Cancer Cohort (4C) to explore
the link between amino acids and incident diabetes. The results showed that higher levels
of BCAAs were significantly associated with an increased risk of type 2 diabetes mellitus
(T2DM) after accounting for various factors. Additionally, we found that triglycerides (TG)
and waist-to-hip ratio (WHR) partially mediated the association between BCAAs and inci-
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dent T2DM, providing further insights into the underlying mechanisms [23].A case-cohort
study, including a random sample of 694 participants from PREDIMED trial, revealed
that increases in the BCAA score at 1 year were correlated with a higher T2DM risk in the
control group, with hazard ratio (HR) per SD = 1.61 (95% CI 1.02, 2.54) [25,26]. However,
when participants were treated with a Mediterranean diet rich in extra-virgin olive oil, they
experienced decreased BCAA levels, which attenuated the positive association between
BCAAs and T2DM incidence [25]. Recent large prospective and cross-sectional cohort
studies have also revealed close associations between elevated blood levels of BCAAs and
insulin resistance, homeostasis model assessment (HOMA) insulin sensitivity and HbA1c
level [12,27–29]. Higher plasma BCAA levels were found to be inversely correlated with
insulin sensitivity but positively associated with fasting insulin levels [30]. These consistent
results have led to speculation about a potential causative role for BCAAs [31].

Despite an overall consistency, varied effect sizes are observed based on age, gender or
ethnicity [32]. Generally, BCAAs exhibit higher levels and a closer relationship with T2DM
in male participants due to the catabolic differences in the liver [33–35]. Fewer studies
have investigated the correlations between BCAA concentrations and adverse metabolic
outcomes in children and adolescents. Nevertheless, in view of growth hormone secretion
and protein turnover during pubertal growth, statistically significant associations have been
identified between BCAA levels and future insulin resistance in a pediatric population [36].
Furthermore, individual BCAAs exhibit varying predictive capabilities for future T2DM
among different populations [37]. In comparison, valine often stands out in the Chinese
population compared to participants of South Asian descent [38]. Presumably, this can
be attributed to specific genetic loci, along with earlier beta-cell dysfunction in diabetic
patients in China [39]. BCAAs also showed significant differences in the associations
with glycemic index and insulin resistance among ethnic groups [40]. African Americans
generally exhibit greater insulin resistant, low muscle mass, and higher central obesity,
which may explain their higher levels of valine and leucine compared with Hispanics [41].

2.1.2. Mechanisms Underlying Branched-Chain Amino Acids in T2DM

Several mechanisms indicate a direct link between BCAAs and, as leucine and isoleucine
exhibit insulinotropic effects, while valine and isoleucine are gluconeogenic. Leucine can
affect insulin receptor function via the activation of the mammalian target of rapamycin
complex 1 (mTORC1), and insulin mediates the branched-chain α-ketoacid dehydroge-
nase complex (BCKDH). Despite emerging evidence supporting the predictive capability
of increased BCAAs levels in T2DM, researchers still contemplate whether BCAAs are
true causative factors in insulin resistance and T2DM or merely passive biomarkers of
impaired insulin action [27]. Several acknowledged hypothesized mechanisms explaining
how BCAAs might contribute to insulin resistance and T2DM are depicted in Figure 1.

Role of mTORC1

One speculated mechanism focuses on the leucine-mediated activation of mTORC1,
which leads to the uncoupling of insulin signaling at an early stage. The mammalian target
of rapamycin (mTOR) is a serine/threonine kinase that belong to the phosphoinositide
3-kinase (PI3K)-related kinase family and interacts with a series of proteins to form two
distinct complexes named mTORC1 and mTORC2 [42]. mTORC1 promotes cell growth,
such as protein synthesis, and drives cell cycle progression in response to various stimuli,
including growth factors, stress, energy status, oxygen and amino acids. Amino acids,
particularly leucine, regulate Rag guanine nucleotide binding, managing the interaction
between Rag GTPases and mTORC1 [43]. Various growth factors and signaling molecules
regulate the nucleotide state of the small GTPase Rheb (GDP- versus GTP-bound), acti-
vating mTORC1-dependent phosphorylation [44]. mTORC1 directly phosphorylates the
translational regulators’ eukaryotic translation initiation factor 4E (eIF4E)-binding protein
1 (4E-BP1) and S6 kinase 1 (S6K1), accelerating protein synthesis [45]. Several pathways
converge on the tuberous sclerosis complex (TSC) protein, the major upstream negative
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mediator, to regulate mTORC1 in response to growth factors or cellular stress signaling,
notably the prominent upstream growth factor/PI3K/AKT signaling [46]. Apart from the
input of growth factor signaling, the 5′ AMP-activated protein kinase (AMPK) signaling
is activated and suppresses mTORC1 through activating the phosphorylation of TSC and
enhancing its activity during states of energy deficiency [47].

 

Figure 1. Mechanisms underlying branched-chain amino acids in T2DM. The figure depicts sev-
eral acknowledged hypothesized mechanisms explaining how BCAAs might contribute to insulin
resistance and T2DM. This figure was created with BioRender.com.

mTOR is a crucial regulator of cellular metabolism and catabolism, while the deregula-
tion of mTOR signaling can induce many human diseases, including diabetes, degenerative
disorders and cancer [48]. Persistent nutrient signaling results in insulin resistance by
BCAA activation of the mTORC1 signaling pathway. The mTORC1-S6K-mediated negative
feedback loops have a deleterious effect on the regulation of insulin signaling, maintaining
beta cell function and survival [49]. Continuous stimulation of the serine kinases S6K1
and mTORC1 induces insulin resistance through the recruitment and phosphorylation of
insulin receptor substrate (IRS)-1 and IRS-2 at multiple tyrosine residues [50]. These sites
function as docking motifs for PI3K and the subsequent phosphorylation of Akt, which dis-
rupts its interaction with insulin signaling. This negative feedback loop attenuates insulin
responses, resulting in a reduction in glucose utilization. Under a chronic diabetic milieu,
the overwhelming demand for insulin invites impaired insulin action and the potentiation
of beta cell dysfunction, resulting in T2DM eventually becoming evident [27].

BCAA Dysmetabolism

The second hypothetical mechanism analyses how BCAA dysmetabolism generates
insulin resistance and T2DM. This hypothesis derives from studies of maple syrup urine
disease (MSUD) and organic acidurias, which are inborn errors in metabolism caused
by defects in BCKDH, leading to the elevation of BCAAs in plasma and α-ketoacids in
urine [51].

BCAAs are imported into cells by L-type amino acid transporters (LATs). BCAA
catabolism involves three main steps. Firstly, intracellular BCAAs are converted to branched-
chain α-keto acids (BCKAs), including α-ketoisocaproate (KIC), α-keto-β-methylvalerate
(KMV), and α-ketoisovalerate (KIV). BCAA transaminase (BCAT) catalyzes the transamina-
tion of corresponding BCKAs. Then, BCKAs undergo decarboxylation and dehydrogena-
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tion to yield respective ketoacids via BCKDH. These first two steps are shared by all three
BCAAs, while the latter process is rate-controlling. Numerous metabolic factors altered in
insulin resistance and T2DM impair BCAA catabolism by coordinating the downregulation
of multiple enzymes, including BCAT and BCKDH. Insulin can directly inhibit BCKDH
under insulin-resistant states, giving rise to elevated BCAA and BCKAs levels that are
widely believed to be the toxic factors in the disease. Furthermore, elevated plasma BCAA
levels can also arise from protein breakdown and degradation in the body [52,53]. The ad-
ministration of BCKDH kinase (BDK) inhibitors might impair glucose tolerance and reduce
plasma BCAA concentrations in rats, independent of the action of insulin [54]. When fed a
BCAA-supplemented diet, spontaneous type 2 diabetes Otsuka Long-Evans Tokushima
Fatty (OLETF) rats showed improved glucose tolerance upon repeated administration [55].
Animal models discussed the effects of administration of BCAAs, but data in humans are
lacking. However, based on observational study, elevated BCAA levels can be perceived
long before the occurrence of insulin resistance and seemingly contribute to insulin re-
sistance and T2DM. It is reasonable that BCAAs give rise to an altered insulin-regulated
metabolism in the early stages, while insulin, in turn, incurs the accumulation of BCAAs
in the later stages of insulin resistance [56]. An impaired BCAAs metabolism induces
higher levels of BCAAs and the accumulation of toxic metabolites, leading to mitochondrial
bioenergetic dysfunction and subsequent apoptosis of beta cells [27]. It has been confirmed
that individuals or animal models with impaired or incomplete BCAA metabolism could
be more susceptible to insulin resistance or T2DM [57].

Moreover, BCAA dysmetabolism is involved in the regulation of macrophage activity
in the onset of chronic low-grade inflammation under diabetic state. BCAA oxidative
defects may promote inflammatory response and organ damage in T2DM conditions by
inducing macrophage activation [58]. BCKAs can significantly increase the production of
detrimental mediators such as ROS, cytokines, and chemokines in primary macrophages.
It is demonstrated that BCKA stimulation could alter the expression of a key glucose
transporter (Glut1) and enhance the utilization of glucose for ROS overproduction in
macrophages via glut1-mediated glucose metabolism. Elevated glycolysis induced ROS-
driven proinflammatory phenotype in macrophages, accelerating the promotion of insulin
resistance [59]. Additionally, BCKAs also enhance cytokine release by incurring mitochon-
drial oxidative stress in macrophages. These findings reveal the possible mechanisms by
which BCAA dysmetabolism plays an integral role in insulin resistance and T2DM.

2.2. Aromatic Amino Acids
2.2.1. Phenylalanine and Tyrosine Metabolism

Aromatic amino acids (AAAs) are precursors of many significant biological com-
pounds and are necessary for the normal functioning of the human organism. Two kinds of
AAAs, phenylalanine and tyrosine, have been observed to be connected with a tendency
of increased risk of T2DM [41]. Mice fed with diets rich in phenylalanine could develop
insulin resistance and T2DM symptoms [59]. Furthermore, changes in phenylalanine
and tyrosine levels closely parallel the changes in fasting blood glucose (FPG) and 2 h
postprandial blood glucose (2hPG) levels of individuals [60]. These two AAAs were also
demonstrated to be elevated in subjects who developed T2DM from normal glucose toler-
ance. The levels of phenylalanine and tyrosine increased in hyperglycemia and particularly
affected non-diabetic participants, who later developed T2DM over a 5-year follow-up
period [41]. Using a nested case-control design from the China Cardiometabolic Disease
and Cancer Cohort (4C) Study, our team also revealed that per SD increments in two AAAs
had strong associations with the onset of T2DM [23]. Phenylalanine and tyrosine were
positively correlated with T2DM, with a 23% increased risk of incident diabetes in the fully
adjusted model including all the confounding factors, including diet score, liver enzymes,
2hPG, and HOMA-IR. These results align with previous findings, confirming the predictive
value of two AAAs for risk of diabetes in normoglycemic Chinese individuals. AAAs
have important implications for the pathogenesis of diabetes. It has been reported that
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phenylalanine modified insulin receptor beta (IRβ) and inhibited insulin signaling and
glucose uptake [61]. Using phenylalanine and aspartame to mimic extremes for serum
phenylalanine elevation in humans, phenylalanyl-tRNA synthetase (FARS) sensed pheny-
lalanine concentrations and converted them into the phenylalanine signal by modifying
proteins. For IRβ, the phenylalanine signal led to impairments in the components of the
insulin signaling cascade and hindered glucose uptake by cells. This disruption of insulin
signaling transmission by modifying IRβ has adverse effects on insulin sensitivity and
accelerates T2DM progression. Tyrosine is involved in gluconeogenesis and glucose trans-
port [62]. Superfluous tyrosine can be rapidly catabolized, weakening the clearance of
blood glucose and enhancing gluconeogenesis. Free tyrosine may combine free radicals
forming 3-nitrotyrosine, a more cytotoxic mediator that injuries pancreatic islet beta cells.
In the case of accelerated rates of oxygen radical and nitric oxide generation in beta cells,
insulin could be a potential target [63]. Interaction with insulin affects the receptor binding
and hypoglycemic capacities. This research sheds light on the dysmetabolism of two AAAs
and the disturbed insulin signaling pathway, leading to a higher risk of T2DM.

2.2.2. Tryptophan Metabolism
Tryptophan Metabolism in Health and T2DM

Tryptophan is an indispensable and essential amino acid that can only be obtained
through the diet. Systemic and cellular concentrations of tryptophan mainly depend on
the balance between biological conversion and degradation pathways. The tryptophan
metabolism generally involves three metabolic pathways: the kynurenine (KYN) pathway,
the 5-hydroxytryptamine (HT) pathway, and the indole pathway [64]. Most blood trypto-
phan is bound to albumin and not present in its free form. The majority of free tryptophan
in humans is metabolized through the tryptophan–kynurenine pathway, which is involved
in extensive physiological functions such as immune activation, growth and feed intake,
and alterations in peripheral tissue conditions during aging, obesity and diabetes [65].
The first and rate-limiting step of the tryptophan–kynurenine pathway is catalyzed by
the enzyme indoleamine 2,3-dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO).
IDO1 exists in most cells, such as macrophages or central nervous cells, while TDO is almost
exclusively expressed in the liver and mainly controls tryptophan concentrations in the
blood [66]. Chronic stress or inflammatory factors activate enzymes of the upstream steps
of tryptophan metabolism and convert tryptophan into KYN and KYN into kynurenic acid
(KYNA), 3-hydroxykynurenine (3-HK) and anthranilic acid (AA). The further conversion
of 3-HK to 3-hydroxyanthranilic acid (3-HAA) and alanine is catalyzed by kynureninase
(KYNU), whereas xanthurenic acid (XA) is another conversion of 3-HK. Subsequently,
3-HAA transforms into the neurotoxic quinolinic acid (QA) and is also crucial in the pro-
duction of the coenzyme NAD+, contributing to energy metabolism and mitochondrial
functions. Three pathways of tryptophan metabolism including the kynurenine, serotonin,
and indole are depicted in Figure 2.

The gut microbial function in the tryptophan metabolism has emerged as a vital driv-
ing force [67]. The gut microbiome can mediate three pathways of tryptophan metabolism
and produce correlative metabolites [68]. Tryptophan and its metabolites serve as crit-
ical communication regulators between the host and gut microorganisms, maintaining
metabolic homeostasis. In germ-free mice, the KYN pathway was inhibited, leading to
decreased tryptophan levels. However, after supplementation with intestinal flora, this
KYN pathway was normalized [69]. In addition, several metabolites produced by gut mi-
crobes play a significant role in adjusting the tryptophan–kynurenine pathway, including
the inhibition of IDO transcription [70].

Recent metabolomics screens have confirmed tryptophan metabolites as potential
biological mediators in the onset of T2DM [71]. A ten-year longitudinal Shanghai Diabetes
Study (SHDS) with 213 participants claimed that serum tryptophan level was significantly
higher in individuals who developed future T2DM and was positively and independently
related to diabetes onset risk [72]. Higher tryptophan concentration could adversely
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contribute to a higher degree of insulin resistance and secretion, triglyceride level and
blood pressure.

 

Figure 2. Overview of tryptophan metabolism via the kynurenine, serotonin, and indole pathways.
The figure depicts three pathways of tryptophan metabolism including the kynurenine, serotonin,
and indole. The gut microbiome can mediate three pathways of tryptophan metabolism and produce
correlative metabolites. This figure was created with BioRender.com.

Generally, diabetics often show elevated tryptophan metabolism with decreased
tryptophan and increased concentrations of downstream metabolites along the tryptophan–
kynurenine pathway [73]. Cross-sectional studies have confirmed increased plasma levels
of KYN and KYNA in subjects with insulin resistance prior to the evident manifestation
of hyperglycemia and lower levels of tryptophan in nondiabetics [74]. In a metabolomics
study including 5181 participants from the cross-sectional Metabolic Syndrome in Men
study, the levels of KYNA and other downstream metabolites weakened insulin secretion
and insulin sensitivity but enhanced susceptibility to T2DM [75]. In our prospective cohort
study, in the fully adjusted model with all confounding factors, serum N-acetyltryptophan,
but not tryptophan or kynurenine, was associated with increased risk of diabetes [23]. On
this basis, another study involving 2519 individuals with coronary artery disease (CAD)
but without T2DM focused on tryptophan and its downstream metabolite kynurenine for
a median of 7.6 years [76]. The plasma and urine kynurenine-to-tryptophan ratio (KTR)
provided a more suitable measure of tryptophan catabolism than the absolute level of
kynurenine or tryptophan. It was observed that KTR in urine, but not in plasma, had
a strong positive relationship with incident T2DM during 7 years of follow-up in this
large cohort. In two cohorts comprising 856 individuals with T2DM, the serum KTR was
associated with and improved the prediction of all-cause mortality among patients [77].
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Mechanisms Underlying Tryptophan in T2DM

Various observational clinical studies analyzing clinical parameters in the tryptophan–
kynurenine pathway reveal the existence of disturbed tryptophan metabolism in predia-
betes or diabetes. However, these studies have not definitively determined whether the
changes are causative or secondary to the disorder [78]. The diabetogenic tryptophan–
kynurenine pathway is affected by many factors, including genetic factors, metabolic status,
the degree of pancreas destruction and insulin resistance. These findings underline the
potential value of tryptophan and downstream metabolites in identifying high-risk indi-
viduals before the occurrence of T2DM, even before remarkable alterations in metabolic
markers are observed. However, the mechanisms behind the effects of the tryptophan
pathways on T2DM are diverse. In cases of inflammation or stress, the KYN and KYN-NAD
metabolic pathways particularly rely on pyridoxal-5-phosphate (P5P), an active form of
vitamin B6, as a cofactor. The relative absence of P5P shifts the KYN-NAD metabolism
from the common production of NAD+ to the excessive formation of XA [79]. The accu-
mulation of XA or other KYN metabolites have diabetogenic effects and can impair the
biological function of insulin, promoting the progression of T2DM from prediabetes [80].
Additionally, systemic low-grade inflammation trigged by the dysregulation of tryptophan
metabolism can lead to insulin resistance [79]. The severity of insulin resistance varies
with central and peripheral concentrations of tryptophan and downstream metabolites.
These metabolites can form less active chelate complexes with insulin and interfere with
the glucose regulatory network at the prediabetic stage [74]. Serum tryptophan levels may
initially increase during prediabetes and then gradually diminish with the advent of a full
diabetic state. Nonetheless, monitoring of the tryptophan–kynurenine pathway, especially
the KTR, is beneficial in recognizing individuals at risk for T2DM.

2.3. Glycine Metabolism
2.3.1. Glycine Metabolism in Health and T2DM

Glycine is a kind of nonessential amino acid in humans or other mammals. It is associ-
ated with various metabolic pathways and involved in numerous human physiological
processes. Generally, the amount of glycine synthesized in vivo is insufficient to satisfy
metabolic demands. A brief period of glycine shortage may not be a great hazard to health
status while chronic depletion can affect growth, immune responses or health metabolism.
Glycine usually functions as a precursor for various crucial metabolites of low molecular
weight like glutathione synthesis or as a regulator of protein configuration and activity [81].

Decreased plasma glycine concentration is now regarded as a promising predictive
factor for reduced glucose tolerance and T2DM. Prospective studies demonstrate that higher
serum glycine level indicates a reduced risk of incident T2DM and hypoglycemia at baseline
can suggest an inclination for T2DM. Patients with obesity or diabetes observed a relative
lower plasma glycine concentration compared with control subjects [82]. Particularly, this
metabolic change occurs before obvious clinical manifestations of the disorder. Moreover,
the level of plasma glycine correlates positively with insulin sensitivity but negatively with
insulin resistance in view of the homeostasis model assessment for the beta cell function
index [83]. A randomized trial also reveals that diabetic patients treated with insulin
sensitizer therapy including pioglitazone and metformin have higher plasma glycine in
comparison to placebo [84]. However, in the prospective cohort, a 4C study did not discover
remarkable changes in the ORs of glycine before onset of glucose dysregulation [23]. This
calls for further studies to explore the potential usefulness of glycine as a clinical diagnostic
tool for T2DM.

2.3.2. Mechanisms Underlying Glycine in T2DM

The pathophysiological mechanisms behind glycine insufficiency and the homeostasis
of glycine and T2DM still need to be elaborated. A variety of hypotheses are widely
accepted. First and foremost, glycine can directly adjust insulin secretion and has been
identified as the strongest amino acid related to increased insulin sensitivity [85]. A
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positive feedback loop exists between human islet beta cells expressing glycine receptors
and insulin depending on phosphoinositide 3-kinase [86]. In liver from sucrose-fed rats,
glycine also diminishes the insulin-induced phosphorylation of insulin receptor substrate-
1 in serine residue and enhances the phosphorylation of insulin receptor β-subunit in
tyrosine residue, which elevates insulin sensitivity [87]. In T2DM with chronic low-grade
inflammation, where pro-inflammatory markers are uplifted, glycine is certified as a new
anti-inflammatory agent for increasing cytokine IL-10 in monocytes and decreasing TNF-
alpha in monocytes and Kupffer cells [88]. These results provide clues of the glycine
signaling mechanisms of significant metabolic benefits. Moreover, as one precursor amino
acid of the antioxidant glutathione (GSH), glycine can directly affect the synthesis rate
and availability of GSH. Animals fed with food short in GSH precursor amino acids were
proved to suffer from GSH deficiency. In human cells, reduced GSH is one of the most
abundant and common substances resisting damage caused by oxidative stress. However,
uncontrolled blood glucose levels lead to oxidative stress and reactive oxygen species
(ROS) formation, which is far beyond the capacity of GSH-driven antioxidant defense
systems [89]. Deficiency of glycine gives rise to the insufficient synthesis of GSH, which
fails to combat subsequent diabetic tissue damage. Accordingly, dietary supplementation
with enough glycine may reverse the shortage of GSH synthesis and tackle oxidative stress.

2.4. Asparagine and Aspartate
2.4.1. Asparagine Metabolism in Health and T2DM

Asparagine is a kind of glucogenic amino acid whose byproduct, oxaloacetate, can
be used in the TCA cycle to synthesize glucose. With metabolism fluctuation, asparagine
and aspartate are readily converted to each other by corresponding enzymes and can
undergo transamination to form glutamate. Amid the asparagine metabolism, asparagine
synthetase (ASNS) catalyzes asparagine synthesis via aspartate, ATP and ammonia as
substrates [90]. ASNS is ubiquitous in its organ distribution and highly associated with
cellular nutritional imbalances like glucose deficiency and amino acid disturbances [91].
Asparagine and other biologically active molecules have a vital role in cell catabolism
and signaling, host anti-oxidative ability, and immunity under physiological and patho-
logical conditions [92]. Controversy has been arisen regarding the relationship between
asparagine, aspartate and T2DM. Circulating concentrations of asparagine are correlated
with incidence of T2DM. Only rarely has the literature provided connections between
plasma asparagine levels and a lower risk for future T2DM. Animal experimental results
revealed lower concentrations of asparagine in diabetic rats [93]. Prospective observa-
tional studies demonstrated that baseline plasma asparagine was a protective biomarker
of diabetes [94]. According to the Framingham Heart Study, asparagine was negatively
related to fasting insulin while aspartate was inversely associated with fasting glucose [95].
Additionally, asparagine was proved to be the sole protective and predictable metabolite for
T2DM in a subset of 2939 Atherosclerosis Risk in Communities (ARIC) study participants
with metabolomics data and without prevalent diabetes [96]. However, in our previous
study, serum asparagine was shown to be associated with an increased risk of diabetes in
the multivariable-adjusted model in addition to the adjustment of diet score, and in the
fully adjusted model [23]. Particularly, a ratio of asparagine to aspartate of >1.5 contributed
to the increased risk of T2DM, which could be further elevated by female gender and
being >50 years of age [97]. Thus, whether asparagine is protective or diabetogenic is still a
subject of debate.

2.4.2. Mechanisms Underlying Asparagine and Aspartate in T2DM

Findings about the correlation of asparagine and aspartate with the risk of T2DM
are inconclusive, and the underlying mechanisms are also conflicting. On the one hand,
asparagine can easily turn into aspartate and then undergo a transamination for glutamate,
which is also a constituent of the tripeptide glutathione against oxidative stress and chronic
diseases [98]. This assumption explains some of the inverse associations with diabetes
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risk. On the other hand, some results about asparagine are opposite to the protective
correlations with T2DM. The discrepancy between different studies may derive from the
sampling stage. Before the occurrence of diabetes, asparagine is likely inadequate while
persistent adverse stimulation may upregulate ASNS and induce an excess of asparagine
and aspartate deficiency in later periods. Thus, the increasing conversion of asparagine
to aspartate contributes to lower concentrations of circulating asparagine and onset of
hyperglycemia [99]. This might point toward a potential causal association between low
plasma asparagine levels and prediabetes. Beyond that, asparagine can also hinder the
phosphorylation of AMPK and upregulate mTORC1, causing increased insulin resistance
and decreased beta cell reserve [100]. Uncommon asparagine and aspartate homeostasis
with a higher risk of T2DM can be greatly amplified by the specific effect of older age
and female gender [96]. Females at later stages of adult life are proven to suffer from a
lack of estrogen, which is an important regulator of metabolic status [101]. An absence
of estrogen can similarly generate insulin resistance, impaired insulin function and beta
cell apoptosis [102]. The cooccurrence of abnormal asparagine and aspartate homeostasis
and estrogen insufficiency promotes the process of insulin resistance and accelerates the
development of T2DM by the AMPK-mTORC1 pathway. Further investigations into the
latent molecular mechanisms are warranted for a better understanding of the cause of
T2DM and asparagine and aspartate homeostasis.

2.5. Serine Metabolism
2.5.1. Serine Metabolism in Health and T2DM

As a type of nutritionally non-essential amino acid (NEAA), serine can be derived from
the diet, or synthesized from 3-phosphoglycerate (3-PG) and glycine. Serine metabolism
makes profound contributions to many cellular functions, particularly in the turnover
of proteins and phospholipids as necessary building blocks in cellular membranes [103].
In addition, L-serine is required to promote the growth and differentiation of neurons.
Deficiency in L-serine is highly correlated with the abnormal synthesis of phospholipids
like phosphatidylserine (PS) and sphingolipids (SL), which impairs regular functions of the
nervous system. The induction of systemic L-serine deficiency is linked to the risk of driving
future T2DM and diabetic peripheral neuropathy [104,105]. Evidence that alterations in
serine concentration play a role in T2DM is growing [106,107]. Systemic serine deficiency
has been demonstrated to coexist with severe obesity, insulin resistance and hyperglycemia
in a mouse model of T2DM [104]. Oral serine supplementation can correct the underlying
serine deficiency, thus hindering the development of diabetic peripheral neuropathy in
diabetic animals. Moreover, prior studies have shown that, compared with non-diabetic
controls, plasma serine concentrations are markedly reduced in the T2DM patients [106,108].
Similar research analyzing the levels of amino acids in diabetic patients has also confirmed
a decrease in L-serine concentration in blood [107].

2.5.2. Mechanisms Underlying Serine in T2DM

Irregular serine metabolism is believed to contribute to the pathogenesis of T2DM and
related complications, although there is no general consensus regarding the potential mech-
anisms. Serine has been shown to be capable of promoting insulin secretion, increasing
insulin sensitivity, and enhancing glucose tolerance [29]. As deoxysphingolipids accu-
mulate under conditions of decreased serine availability, it is hypothesized that cytotoxic
deoxysphingolipids may directly compromise pancreatic beta cells. Diabetic patients have
significantly higher plasma levels of deoxysphingolipid in comparison with the control
group [109]. The increased concentrations of these lipids impairs normal glucose homeosta-
sis and induces beta cell failure in response to chronic hyperglycemia [110]. Nevertheless,
further studies are required, since the mechanisms underlying serine in T2DM remain
largely unknown.
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2.6. Amino Acid Combination

To further promote the predictive performance of plasma amino acids, a combination
of three amino acids predicting future diabetes has been reported. The top combination of
these three amino acids, namely isoleucine, phenylalanine, and tyrosine, has been identified
based on robust statistical measures such as the likelihood ratio (LHR) statistic and c-
statistic. When compared to the use of a single amino acid, this combination significantly
improves the LHR statistic by from +6 to +9 points (p < 0.05). However, the incremental
improvement is relatively modest when five additional amino acids are included in the
combination. Clinical models incorporating this predictive three-amino acid combination
have demonstrated a substantially higher risk, from 5- to 7-fold higher, of developing
diabetes among individuals in the top quartile, in contrast with those in the lowest quartile
(p for trend, from 0.007 to 0.0009) [24]. The results have been successfully replicated
in an independent, prospective cohort, confirming the reliability and robustness of the
predictive value of the three-amino acid combination in identifying individuals at higher
risk for future diabetes. Meanwhile, the elevated concentrations of this three-amino acid
combination not only serve as predictors of future diabetes but also provide early signals
for the subsequent development of cardiovascular disease and its functional consequences
during long-term follow-up [111].

Moreover, in addition to the three BCAAs mentioned earlier, two aromatic amino
acids (AAAs)—phenylalanine and tyrosine—are commonly grouped together to indicate
the occurrence and development of T2DM [112]. Experimental and clinical data have
suggested five specific amino acids that may serve as effectors in prediabetes status [113].
Previous research demonstrated associations between these five amino acids and incident
diabetes, its precursor states and insulin resistance. Individuals with hyperinsulinemia
tend to have greater concentrations of AAAs [114]. Prospective cohorts comprising over
3000 participants highlighted that elevated levels of these five elevated amino acids were
associated with 60–100% increases in the relative risk of T2DM [24]. When considering
factors such as age and gender, this five-amino acid combination was significantly related
to HOMA-IR at baseline and for men at 6-year follow-up (odds ratio 2.09 [95% CI 1.38–3.17];
p = 0.0005), while, for women, only leucine, valine and phenylalanine predicted HOMA-
IRat the 6-year follow-up (p < 0.05) [115]. The combined impact of branched-chain amino
acids and aromatic amino acids on promoting insulin resistance and future T2DM is most
evident in young normoglycemic adults, particularly in male individuals. In light of these
findings, instead of screening for individual amino acids, exploring optimal combinations
of amino acids that demonstrate a stronger correlation by including or excluding certain
amino acids may be a more meaningful approach.

In addition, a series of amino acid combinations exhibit temporal characteristics in
predicting diabetes. Previous research has observed that, at various timepoints, specific
amino acids undergo changes in their concentrations and metabolic pathways that may
be related to the onset and progression of diabetes. These timepoints include but are not
limited to various stages such as pre-diabetes, early-stage diabetes, and disease progression.
The elevated of BCAAs and AAAs prior to T2DM could potentially predict the onset of
incident diabetes years before the clinical T2DM manifestation. When compared with
individuals with NGR, participants with impaired fasting glucose (IFG) showed lower
levels of leucine while diabetic patients exhibited increased levels of leucine, tyrosine, and
asparagine in contrast to IFG patients [116]. The fluctuations in leucine levels might be
characteristic of the transition from NGR to prediabetes or differences between individual
patients, which still needs further study [116].

Overall, the characteristics of studies investigating associations between amino acids
and type 2 diabetes are summarized in Table 1.
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3. Targeting Predictive Amino Acids for Preventive and Therapeutic Interventions
in T2DM

3.1. Lifestyle Interventions

In general, lifestyle interventions promoting a healthy diet with a limited intake of
high sugar and saturated fat, combined with enhanced physical activity, are known to
reduce the risk for T2DM, especially in high-risk individuals [117,118]. However, few
studies have investigated how lifestyle interventions influence the relationship between
amino acids and insulin resistance or T2DM. Although the altered levels of circulating
amino acids can indicate a risk of imminent T2DM, the extent to which this correlation is
independent of lifestyle factors needs to be further studied and established.

In experimental models, young and growing mice subjected to a specific decreased con-
sumption of BCAAs exhibited beneficial effects on metabolic health and improved glucose
tolerance [119]. This provides valuable insights into the potential of dietary interventions
targeting reduced BCAA intake for the treatment of insulin resistance. Furthermore, the
Finnish Diabetes Prevention Study (DPS) explored the association between BCAAs and
T2DM in trajectory models via a lifestyle intervention setting. The intervention group
underwent lifestyle changes that included supervised food intake and increased physical
activity, leading to a decrease in BCAA levels and a diminished association with T2DM
risk [120]. The intervention goals placed an emphasis on reducing total and saturated
fat intake, increasing fiber density in the diet, and promoting moderate physical activity.
Similarly, the above-mentioned PREDIMED trial using a Mediterranean diet supplemented
with extra-virgin olive oil as the main intervention resulted in reductions in the plasma
BCAA and AAA levels, thereby weakening the subsequent risk of T2DM [25,26]. These
associations align with a previous study of BCAAs and CVD [121]. The effects of the
MedDiet on BCAA concentrations persisted even after adjusting for changes in insulin or
HOMA-IR. Further research is needed to gain a comprehensive understanding of these
complex biological mechanisms. As the MedDiet does not specifically target the profile
of amino acid intake, the most possible explanation for this intervention is that it allevi-
ates the deleterious correlations between BCAAs and AAA on T2DM risk, potentially via
downstream pathways or alternative protective mechanisms. Another lifestyle intervention
implemented from 2016 to 2018 involving 5% weight reduction and a diet with increased
consumption of whole grains, nuts, low-fat dairy, olive and rapeseed oils and decreased
intake of snacks, fast foods, red and processed meat [122] led to a noticeable reduction
in BCAA concentrations. This suggests that this approach holds promise in preventing
or delaying the onset of T2DM. On the other hand, dietary supplementation with certain
amino acids like glycine significantly increased insulin responses and led to remarkable
decreases in systemic inflammation, highlighting their potential as protective biomarkers
in blood glucose control [123]. In a nutshell, current research highlights the therapeutic
potential of manipulating lifestyle interventions targeting amino acids for treating insulin
resistance and preventing or delaying the future exacerbation of the T2DM pandemic [124].
Assessing the safe limits of amino acid intake may provide a useful metric to determine
appropriate dietary amino acid recommendations, especially for individuals susceptible to
T2DM or those already in the prediabetic state.

3.2. Pharmacologic Treatment Approaches

Compared with lifestyle interventions alone, different pharmacologic treatment ap-
proaches are also beneficial to prevent or delay various subgroups of T2DM. The establish-
ment of appropriate pharmacological interventions could ameliorate the amino-acid-driven
impairment of cell signaling and maladaptive phenotypes. Diverse amino acid metabolic
pathways are likely to become potential targets of pharmacologic therapies. Common
glucose-lowering medications including metformin, glipizide or empagliflozin might alter
amino acid levels as a downstream consequence [125]. For instance, the effect of metformin
dramatically alters the BCAA metabolism. Sustaining treatment with metformin could
adjust circulating BCAA levels in a specific manner. Apart from activating AMPK and
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reducing hepatic gluconeogenesis and blood glucose, metformin also suppressed BCAT2
and BCKDHa mRNA expression, suggesting that metformin could function via downreg-
ulating BCAA catabolic enzyme expression or activity [126]. After the administration of
glipizide and metformin, levels of branched-chain amino acids and aromatic amino acids
experienced acute changes, which reflect an improvement in glycemic metabolism [112].
Low-dose metformin treatment could rectify glucose metabolic imbalance and integrative
metabolomics analysis further investigated the elevation of amino acid levels including
serine, glycine, glutamate, along with the decrease in aspartate [127,128]. Beyond this,
accumulating evidence has demonstrated metabolic effects of the SGLT2 inhibition em-
pagliflozin on increased concentrations of BCAA metabolites such as acylcarnitine [129].
The hypoglycemic agent DPP4 inhibitor, sitagliptin, induced glycemic improvements and
led to a remarkable decrease in plasma valine levels [130]. Sitagliptin significantly changed
the pattern of amino acids in both mice and T2DM patients [131]. The mechanisms be-
hind these complex associations remain speculative and need further investigation for the
development of novel effective pharmacologic T2DM therapies.

4. Conclusions and Future Perspectives

Based on flourishing metabolite profiling platforms, a panel of amino acids has been
identified to predict the onset of future diabetes. Specific amino acids play crucial parts
early in the pathogenesis of incident insulin resistance and future T2DM. As promising
predictive metabolites, the better utilization of amino acids contributes to improving early
diagnosis and clinical outcomes, allowing for precautionary measures to be taken to avoid
complications, and delaying the onset and progression of T2DM. Enhanced insight into
amino acid profiling has also increased interest in various inventions, as it holds therapeutic
potential for the management of diabetes. To achieve a more personalized and precise
control of T2DM, the translation of these insights to clinical application requires several
additional steps. First and foremost, it is necessary to clarify whether these relevant amino
acids are merely associated with impaired insulin function or can directly give rise to insulin
resistance and subsequent T2DM. Furthermore, the mechanisms behind certain amino
acids remain controversial and inconclusive, warranting further investigation to build
comprehensive theories that elucidate the dominant signaling pathways and biological
mechanisms linking amino acids with diabetes risk.

In conclusion, amino acids hold both predictive and therapeutic potential in future
T2DM. A thorough understanding of amino acid dysmetabolism in T2DM is essential for
the effective screening, diagnosis and prediction of future diabetic complications, allow-
ing clinicians to make informed decisions and benefitting individuals at risk. Once this
diagnosis approach passes to the clinical level, it is expected to achieve considerably high
detection accuracy and offer more specific therapeutic possibilities for high-risk patients.
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Abstract: Diabetic retinopathy (DR), a prevalent microvascular complication of diabetes, is a major
cause of acquired blindness in adults. Currently, a clinical diagnosis of DR primarily relies on
fundus fluorescein angiography, with a limited availability of effective biomarkers. Metabolomics, a
discipline dedicated to scrutinizing the response of various metabolites within living organisms, has
shown noteworthy advancements in uncovering metabolic disorders and identifying key metabolites
associated with DR in recent years. Consequently, this review aims to present the latest advancements
in metabolomics techniques and comprehensively discuss the principal metabolic outcomes derived
from analyzing blood, vitreous humor, aqueous humor, urine, and fecal samples.

Keywords: diabetic retinopathy; metabolomics; biomarker; metabolic pathway

1. Introduction

Diabetic retinopathy, as one of the various microvascular complications of diabetes,
represents a significant contributor to adult acquired blindness [1,2]. Extensive analysis
carried out by Yau et al. encompassing 35 studies comprising over 20,000 participants
worldwide revealed that approximately 35% of individuals with diabetes exhibited some
form of retinopathy [3]. Type 1 diabetes patients demonstrated an even higher incidence
rate, with up to 54% of cases being affected [4]. Factors such as prolonged diabetes duration
and an inadequate control of blood glucose and blood pressure emerge as the primary
etiological elements underlying DR [3]. In light of these findings, a concerning projection
indicates a surge in the number of DR cases from 103 million in 2020 to an estimated 161 mil-
lion by 2045, signifying an escalating global burden [5]. The disease progression of DR can
typically be categorized into two stages: non-proliferative DR (NPDR) and proliferative
DR (PDR), based on the presence or absence of neovascularization within the retina. NPDR
generally precedes the development of PDR [6]. This systematic classification provides
valuable insights into the temporal sequence and severity of DR manifestations. Korn-
bla et al. conducted a comprehensive literature review on the adverse reactions associated
with fluorescein angiography by utilizing the PubMed database. The analysis encompassed
78 relevant publications spanning from 1961 to 2017, revealing a diverse range of adverse
reaction incidences, ranging from 0.083% to 21.69%. Among these cases, mild adverse
reactions were reported to occur at rates of 1.24% to 17.65%, while moderate reactions were
observed in 0.2% to 6% of instances. Severe adverse reactions were relatively infrequent,
with reported occurrences ranging from 0.04% to 0.59% [7]. Deaths caused by fundus
fluorescein angiography have also been reported [8,9]. The treatment options available
for retinopathy management, such as laser photocoagulation, vitreoretinal surgery, and
the intravitreal injection of corticosteroids or anti-vascular endothelial growth factor, are
employed exclusively when the patient’s visual function is threatened. Nonetheless, these
treatments are associated with potential side effects [10–12]. Although significant advance-
ments have been made in retinal imaging technology in recent years, enabling enhanced
retina structural visualization without the need for fluorescein administration [13], mild
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DR cases often exhibit subtle or no discernible abnormalities, leading to challenges in early
diagnosis and subsequent intervention [14]. Hence, a comprehensive exploration of the
metabolic characteristics of DR holds promise in elucidating its underlying pathogenesis,
discovering potential key metabolites, and facilitating the development of novel clinical
diagnostic approaches and treatment strategies.

Metabolomics, a systematic discipline, investigates the dynamic response of multiple
metabolites within living organisms when subjected to internal genetic mutations, patho-
physiological alterations, or external environmental stimuli [15]. It is a high-throughput
analysis technology that can qualitatively or quantitatively study metabolites with a rel-
ative molecular weight less than 1500. Currently, metabolomics emerged as a pivotal
tool extensively employed in diverse domains such as plant biology [16], nutrition [17],
medicine [18,19], and clinical [20,21] research. Remarkable progress has been made by
metabolomics in the discovery of metabolic disorders and key metabolites associated with
DR. Thus, this paper provides a comprehensive summary of major improvements in analyt-
ical platforms and recent advances in metabolomics research, and discusses the advantages
and limitations of each approach. Subsequently, we review the utility of metabolomics
in DR studies, specifically focusing on the major metabolic outcomes observed in clinical
populations through the analysis of blood, vitreous fluid, aqueous humor, urine, and
stool samples. By exploring the metabolomics landscape, we aim to shed light on the
metabolic intricacies underlying DR pathogenesis, paving the way for potential diagnostic
and therapeutic avenues.

2. Analytical Technologies for Metabolomics

Analytical methods constitute the fundamental components of metabolomics research.
Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the two
predominant analytical techniques employed in metabolomics investigations [22]. Notably,
chromatography-MS coupling systems, including gas chromatography-MS (GC-MS) and
liquid chromatography-MS (LC-MS), have gained substantial popularity and represent the
most frequently utilized methodologies. These coupling systems provide robust analytical
capabilities, empowering researchers to comprehensively profile and characterize metabo-
lites in various biological samples. Their wide-scale adoption in metabolomics research
underscores their efficacy and versatility in exploring the metabolic intricacies associated
with DR.

2.1. Nuclear Magnetic Resonance Spectroscopy

NMR is a widely utilized tool for metabolite identification due to its distinctive char-
acteristics. It offers simplicity in sample preparation, no damage to the structure and
properties of the sample, good reproducibility, short analysis time, robust signal detection,
and the capability for absolute quantification of metabolites [23]. 1H-NMR is particularly
extensively employed in metabolomics research as hydrogen atoms are prevalent in the
majority of organic metabolites [24]. In the realm of biomolecular NMR, crucial nuclei like
13C, 15N, and 31P play pivotal roles. For instance, 13C NMR facilitates structure elucidation
and molecular identification [25], while 31P NMR offers a broad chemical shift range and
sharp peaks. Nonetheless, the overlapping signals of many phosphorylated compounds
pose challenges for 31P NMR analysis [26]. It is worth noting that one-dimensional NMR
techniques are relatively less sensitive, limiting their ability to detect metabolites present in
low abundance. Two-dimensional NMR (2D NMR) has been developed to overcome the
problem of overlapping resonance in one-dimensional NMR spectroscopy. It also provides
enhanced sensitivity and the ability to detect and identify a broader range of metabolites.
Within the field of metabolomics, techniques like heteronuclear single-quantum coher-
ence spectroscopy (HSQC) and heteronuclear multiple-quantum correlation (HMQC) are
predominantly employed. In addition, homonuclear experiments including correlated
spectroscopy (COSY) [27] and total correlation spectroscopy (TOCSY) [28] play integral
roles in metabolite characterization. Nonetheless, a significant drawback associated with
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2D NMR techniques is the lengthy measurement time, which can extend to several hours
for each sample, thus limiting their applicability to small sample sizes [29]. To address
this limitation and expedite spectral acquisition without compromising sensitivity in high-
throughput research, Ghosh et al. utilized the selective optimized flip-angle short-transient
1H-13C HMQC technique in combination with nonlinear sampling strategies. This ap-
proach allowed for the acquisition of urine and serum sample spectra with a significantly
reduced experimental time, requiring only about one-seventh of the time compared to tra-
ditional 1H-13C HSQC experiments, while nearly retaining all molecular information [30].
Furthermore, recent years have witnessed remarkable advancements in NMR methods,
such as hyperpolarized NMR [31] and cryogenic-probe-based Rheo-NMR [32], which have
improved spectral resolution and metabolite identification ability. These developments
hold promise for further enhancing the efficiency and accuracy of metabolomics studies.

2.2. Gas Chromatography-Mass Spectrometry

MS is a highly potent technique primarily employed for the identification of unknown
compounds and the quantification of known molecules within samples. GC-MS possesses
high sensitivity, good peak resolution, and extensive databases, rendering it suitable for the
qualitative analysis of metabolites [33]. Leveraging the newly developed GC/quadrupole
Orbitrap MS system for targeted metabolite analysis can enhance sensitivity and facilitate
the utilization of quantitative strategies [34].

One inherent limitation of GC-MS is its restricted applicability to the separation and
identification of low-molecular-weight (<650 Da) and volatile compounds. In order to
detect polar, heat-resistant, non-volatile metabolites, chemical derivatization is necessitated
prior to analysis [35]. The common metabolites typically analyzed using GC-MS analysis
encompass amino acids, organic acids, and fatty acids [36], which predominantly pertain
to biochemical processes such as the tricarboxylic acid (TCA) cycle, glycolysis, amino acid
metabolism, and fatty acid metabolism. Cesare et al. have proposed an enhanced GC-MS
methodology incorporating full-scan and multi-reaction monitoring acquisition mode,
which is an effective tool for exploring intestinal microbial metabolism [37]. Furthermore,
GC-MS finds extensive utility in plant metabolomics [38], microbiology [39], and clinical
metabolomics [40].

2.3. Liquid Chromatography–Mass Spectrometry

LC-MS circumvents the complicated sample pretreatment in GC-MS, while ultra-
performance liquid chromatography (UPLC) offers advantages such as high separation
efficiency, rapid analysis speed, high detection sensitivity, and broad application scope.
In comparison to GC, UPLC has been proven to be more suitable for the separation and
analysis of compounds with elevated boiling points, macromolecules, and those with
diminished thermal stability. LC-MS ionization sources include electrospray ionization
(ESI), atmospheric pressure chemical ionization, atmospheric pressure photoionization,
and fast atom bombardment. Presently, ESI represents a favored approach for LC-MS
metabolomics investigations due to its “soft ionization” capability, which generates ions
through charge exchange within the solution and typically results in intact molecular ions,
aiding in initial recognition [29].

LC can be categorized into reverse-phase liquid chromatography (RPLC) and hy-
drophilic interaction liquid chromatography (HILIC). RPLC usually employs C18 columns
to separate semi-polar compounds, including phenolic acids, flavonoids, alkaloids, and
other glycosylated species. On the other hand, HILIC usually employs aminopropyl
columns to separate polar compounds such as sugars, amino acids, carboxylic acids, and
nucleotides [41]. Recently, two-dimensional and multidimensional liquid chromatogra-
phy have gained prominence as potent platform technologies capable of enhancing peak
capacity and resolution [42]. Nevertheless, there is currently no single chromatographic
mode that can comprehensively analyze the entire metabolome with a single analysis. The
integration of multiple analytical platforms facilitates improved metabolic coverage.
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3. Metabolomics in Diabetic Retinopathy

Metabolomics, emerging as a prominent branch in the field of “omics” sciences sub-
sequent to genomics, proteomics, and transcriptomics, amalgamates high-throughput
analysis techniques with bioinformatics. It encompasses the quantitative and qualita-
tive assessment of metabolites, which are important intermediates and final products of
metabolism. The retina, an integral component of the central nervous system, exhibits a
distinctive high metabolic activity akin to the brain, making it an immensely active tissue
with substantial energy requirements [43]. Consequently, employing metabolomics in the
context of DR can offer insights into the underlying mechanisms of the disease, facilitate
diagnosis, and enable disease monitoring (Figure 1).

Figure 1. Schematic diagram of the research process design of metabolomics for DR.

Ever since the publication of “Metabolic fingerprints of proliferative diabetic retinopa-
thy: an 1H-NMR-based metabonomic approach using vitreous humor” in 2010 [44], there
has been a growing body of research on the topic of metabolomics in the context of DR.
This upsurge in studies, particularly observed in recent years (Figure 2), has predominantly
focused on the analysis of vitreous and blood samples. However, several investigations
have also explored alternative biological specimens including, but not limited to, aqueous
humor, urine, and feces. Thus, in this review, we aim to summarize the key findings from
metabolomics studies encompassing diverse sample matrices collected from individuals
with DR.

Figure 2. Annual publication trend of metabolomic studies in diabetic retinopathy. A total of
83 relevant articles were retrieved by searching the Web of Science and PubMed databases up
until 5 June 2023. The search terms used were “diabetic retinopathy” AND (“metabolomics” or
“metabonomics” or “metabolic profiling” or “metabolome”).
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3.1. Blood Metabolomics

Compared with other samples, a significant number of research studies have been un-
dertaken in the field of blood-based metabolomics. This prevalence is primarily attributed
to the relative ease of obtaining blood samples compared to other sample types. To further
elucidate the subject, we compiled and summarized the key findings from previously
published plasma metabolomics studies pertaining to DR in Table 1, as well as serum
metabolomics studies in Table 2.

Table 1. Plasma metabolomics of DR clinical populations.

References Subjects Techniques
Statistical
Methods

Differential Metabolites

Li X
(2011) [45]

NPDR (n = 39)
PDR (n = 25)
DM (n = 25)

Control (n = 30)

GC-TOFMS PLS-DA

Pyruvic acids, L-aspartic acid,
β-hydroxybutyric acid,

methymaleic acid, citric acid,
glucose, stearic acid, transoleic

acid, linoleic acid, and arachidonic
acid

Xia JF
(2011) [46]

DR (n = 38)
DM (n = 37)

Control (n = 41)
HPLC–UV/MS/MS ROC

Cytosine, cytidine, uridine,
thymine, thymidin, and

2′-deoxyuridine
Peng LY

(2018) [47]
NPDR (n = 28)

Control (n = 22) LC-MS OPLS-DA Prostaglandin 2a

Rhee
(2018) [48]

NPDR (n = 72)
PDR (n = 52)

Control (n = 59)

GC-TOF-MS,
UPLC-Q-TOF-MS OPLS-DA

Asparagine, aspartic acid,
glutamine, glutamic acid,

1,5-anhydroglucitol, fructose, and
myo-inositol

Sumarriva
(2019) [49]

NPDR (n = 49)
PDR (n = 34)

Control (n = 90)
LC-MS/MS PLS-DA

Arginine, citrulline, glutamic
c-semialdehyde, acylcarnitine, and

dehydroxycarnitine
Zhu XR

(2019) [50]
PDR (n = 21)
NDR (n = 21) LC-MS ROC Fumaric acid, uridine, acetic acid,

and cytidine

Sun Y
(2021) [51]

DR (n = 42)
Control (n = 32) UHPLC-QE MS OPLS-DA

Pseudouridine,
N-acetyltryptophan, glutamate,

leucylleucine, and HbA1c

Ding C
(2022) [52]

PDR (n = 27)
NPDR (n = 18)

Control (n = 21)
UPLC-MS OPLS-DA

Proline, threonine, glutamine,
aspartate, glutamate, and

tryptophan

Peters
(2022) [53]

DM (n = 159)
NPDR (n = 92)

DR (n = 64)
LC-MS/MS Wilcoxon

Rank Sum test

Arginine, citrulline, asymmetric
dimethylarginine, ornithine,

proline, and argininosuccinic acid

Wang HY
(2022) [54]

PDR (n = 88)
Control (n = 51) UPLC-MS/MS OPLS-DA

Phenylacetyl glutamine,
pantothenate, CoA, tyrosine, and

phenylalanine

Wang ZY
(2022) [55]

NPDR (n = 28)
PDR (n = 28)
DM (n = 27)

Control (n = 27)

UHPLC-MS/MS OPLS-DA

L-Citrulline, indoleacetic acid,
1-methylhistidine,

phosphatidylcholines,
hexanoylcarnitine,

chenodeoxycholic acid, and
eicosapentaenoic acid
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Table 2. Serum metabolomics of DR clinical populations.

References Subjects Techniques
Statistical
Methods

Differential Metabolites

Munipally
(2011) [56]

NPDR (n = 22)
PDR (n = 24)

Control (n = 35)
HPLC t-test kynurenine, kynurenic acid, and

3-hydroxykynurenine

Curovic
(2020) [57]

Mild PDR (n = 90)
Moderate PDR (n = 186)

PDR (n = 121)
PDR with fibrosis

(n = 107)
Control (n = 141)

GC-TOFMS Cox models
2,4-dihydroxybutyric acid,

3,4-dihydroxybutyric acid, ribonic
acid, and ribitol

Xuan QH
(2020) [58]

NDR (n = 111)
NPDR (n = 99)

MMPDR (n = 90)
SNPDR (n = 85)

PDR (n = 76)

GC-MS, LC-MS PLS-DA 12-hydroxyeicosatetraenoic acid
and 2-piperidone

Yun JH
(2020) [59]

NDR (n = 143)
NPDR (n = 123)

PDR (n = 51)
LC-MS/MS Stats

Total dimethylamine, tryptophan,
kynurenine, carnitines, several

amino acids, and
phosphatidylcholines

Quek
(2021) [60]

Moderate/above DR
(n = 328)

VTDR (n = 217)
Control (n = 2211)

NMR ROC Tyrosine, 3-hydroxybutate,
sphingomyelins, and creatinine

Zuo JJ
(2021) [61]

DM (n = 46)
DR (n = 46) UPLC-ESI-MS/MS OPLS-DA

Linoleic acid, nicotinuric acid,
ornithine, and

phenylacetylglutamine

Guo CG
(2022) [62]

NPDR (n = 60)
PDR (n = 9) UPLC-MS/MS PLS-DA

12-/15-HETE, PUFAs, thiamine
triphosphate, L-cysteine, and

glutamate

Li JS
(2022) [63]

NDR (n = 112)
DR (n = 83)

Control (n = 755)
UPLC-ESI-MS/MS ROC Thiamine triphosphate and

2-pyrrolidone

Wang ZY
(2022) [64]

NPDR (n = 15)
PDR (n = 15)
DM (n = 15)

Control (n = 15)

UHPLC-MS/MS PLS-DA

Aspartate, glutamine, N-acetyl-L-
glutamate,N-acetyl-L-aspartate,

pantothenate,
dihomo-gamma-linolenate,
docosahexaenoic acid, and

icosapentaenoic acid
Yang J

(2022) [65]
DR + DN (n = 20)
Control (n = 20) UPLC-MS/MS OPLS-DA, PLS-DA 1-methylhistidine, coagulation

factor, and fifibrinogen
Shen YH

(2023) [66]
NPDR (n = 105)

PDR (n = 62) LC-MS ROC, PLS-DA Methionine and taurine

3.1.1. Plasma Metabolomics

In the system of Western medicine, DR manifests in three intricate stages characterized
by metabolic disorders: pre-clinical, NPDR, and PDR. In contrast, traditional Chinese
medicine (TCM) categorizes DR into two syndrome types: non-Yang deficiency and Yang
deficiency. The integration of TCM and Western medicine approaches has demonstrated
promising results in alleviating fundus hemorrhage and diabetes-related symptoms. To
discern and evaluate the similarities and differences between Western medicine staging
and TCM syndrome-related biomarkers, plasma samples were collected and subjected to
GC-TOFMS detection. Subsequent analysis identified that 10 metabolites exhibited the
potential to discriminate between the various stages of Western medicine classification,
while 4 metabolites could distinguish between the two TCM syndrome types. Notably,
pyruvate and l-aspartic acid emerged as metabolites capable of differentiating both stages of
DR according to Western medicine and TCM syndrome types. However, it is worth noting
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that the concentration of aspartic acid demonstrated an association with renal function,
which is a potential confounding factor. In TCM theory, there is no significant correlation
between aspartic acid concentration and renal function, and it is important to acknowledge
the absence of pertinent renal-function-related information in this study [45]. Furthermore,
another investigation indicated that the combination of glutamic acid and glutamine could
improve the specificity of distinguishing DR from non-DR [48].

Furthermore, some studies have been conducted on the alterations in various types of
amino acid metabolism through plasma metabolomics of DR patients. Sumarriva et al. iden-
tified 126 and 151 characteristic metabolites using LC-MS/MS to distinguish DR patients
from diabetes, PDR, and NPDR patients, respectively. Among them, arginine, citrulline,
dehydroxycarnitine, and glutamic c-semialdehyde can be used to effectively distinguish
diabetes mellitus (DM) and DR patients, and carnitine served as a distinguishing factor
between PDR and NPDR [49]. Arginine metabolic disorders may be related not only to urea
cycle metabolites, but also to asymmetric dimethylarginine (ADMA) and nitric oxide. In
order to gain further insight into their mechanistic roles, Peters et al. conducted a targeted
metabolomics analysis on six arginine- and citrulline-related metabolites [53]. In compari-
son to the diabetic control group, plasma levels of arginine and citrulline were increased
in DR patients, thus affirming the significance of arginine and citrulline metabolism in
DR. Additionally, the study revealed elevated levels of plasma ADMA in PDR patients
when compared to NPDR patients. However, this association lost significance after ad-
justing for creatinine values. Notably, a comparison between targeted and non-targeted
metabolomics results unveiled the ability of citrulline and carnitine to differentiate the
severity of DR using both approaches [55]. Combined with proteomics research, it has been
discovered that tryptophan metabolism also plays a crucial role in the development of DR.
Plasma tryptophan levels in PDR patients are lower than those in NPDR patients. The de-
crease in tryptophan will increase the content of vascular endothelial growth factor, which
in turn promotes angiogenesis [52]. Moreover, using UHPLC-MS, Sun et al. identified
22 differentially expressed metabolites associated with different metabolic pathways and
demonstrated the significance of 4 circulating plasma metabolites. Risk score analysis re-
vealed a positive correlation between these metabolites and glycated hemoglobin levels [51].
Additionally, the combined use of alanine, histidine, leucine, pyruvate, tyrosine, and valine
exhibited a superior correlation with type 2 diabetes and diabetic microangiopathy, which
when combined may contribute to the subsequent triage of diabetic complications [67].

Numerous other types of metabolites have also been discovered as potential biomark-
ers for DR. Xia et al. employed a quantitative approach utilizing high-performance liquid
chromatography coupled with ultraviolet and tandem MS to detect six pyrimidine-related
metabolites. Significantly increased concentrations of cytosine, cytidine, and pyrimidine
were observed in DR patients compared to the DM group. Receiver-operating character-
istic (ROC) analysis revealed that cytidine exhibited superior performance as a potential
marker, with an area under the curve (AUC) of 0.849 ± 0.048. The cytidine concentration of
0.076 mg/L was set as the cutoff point for distinguishing disease status, yielding a sensitiv-
ity of 73.7% and a specificity of 91.9% [46]. In another comparison between PDR and NPDR,
cytidine displayed an AUC of 0.95. Moreover, fumaric acid, uridine, and acetic acid demon-
strated potential as biomarkers for PDR, with AUCs of 0.96, 0.95, and 1.0, respectively.
Notably, this study unveiled fumaric acid as a novel metabolite marker for DR, offering
insights into potentially novel pathogenic pathways associated with DR [50]. Polyunsatu-
rated fatty acids (PUFAs) and their metabolites have also demonstrated beneficial effects
on various pathological processes, including diabetes. After screening and statistically
analyzing the detected eicosane compounds, it was found that prostaglandin 2a (PGF2a)
had a protective effect on NPDR patients. In vivo and in vitro experiments suggested that
PGF2a may regulate the migration of retinal pericytes through FP receptors and reverse
some retinal capillary damage, thus conferring a protective role [47]. In addition, the
biosynthesis pathways of pantothenate and coenzyme A exhibited significant disruption
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and decreased plasma levels in DR patients, potentially attributed to impaired vitamin
reabsorption in renal tubules, leading to reduced pantothenate conversion rates [54].

3.1.2. Serum Metabolomics

Serum metabolomics studies on DR have also shed light on alterations in amino acid
metabolism. The changes of tryptophan metabolism in the pathophysiology of diabetes
and its related complications have been confirmed. However, in the serum metabolomics
study of NPDR and PDR patients, tryptophan metabolite levels were found to increase,
but tryptophan itself did not exhibit significant changes [56]. Another high-throughput
targeted metabolomics study identified 16 metabolites as common specific metabolites of
NPDR and PDR. Among them, total dimethylamine, tryptophan, and total tryptophan
were identified as potential factors contributing to the progression of DR in DM patients.
Variations in the findings related to tryptophan could be influenced by factors such as
sample size and different disease groups. The results further support the exploration of
tryptophan and kynurenine in the treatment and understanding of DR [59]. A case–control
study employing propensity score matching identified a set of multidimensional network
biomarkers containing linoleic acid, nicotinic acid, ornithine, and phenylacetylglutamine
with high specificity and sensitivity (96% and 78%, respectively) in distinguishing DR from
patients with type 2 diabetes mellitus (T2DM). This multidimensional network biomarkers
system may present the most effective means for identifying DR [61]. New DR-related
metabolic changes, such as thiamine metabolic disorders, reduced trehalose, and increased
choline and indole derivatives, were also revealed in another similar case–control study [62].
In order to gain further insights into the metabolic changes from T2DM to DR, Wang et al.
conducted comparative analyses of metabolic profiles across various stages, including
NPDR and T2DM patients, PDR and T2DM patients, as well as DR and non-DR patients.
The study was the first to confirm the close association of serum phosphatidylcholine and 13-
hydroperoxyoctadeca-9,11-dienoic acid levels with different stages of DR in T2DM in Asian
populations. Furthermore, abnormalities in other pathways, such as arginine biosynthetic
metabolism, linoleic acid metabolism, aspartic acid, and glutamic acid metabolism, were
observed in DR patients of Asian population [64].

With the advancement of multi-platform and multi-omics analyses, novel potential
metabolic biomarkers for DR have been discovered. The integration of lipidomics and
metabolomics can characterize subtle disturbances in response to lipid and metabolic
changes and provide new insights into diseases. Curovic et al., combining metabolomics
and lipidomics approaches, discovered four metabolites that were associated with different
stages of DR, and three triglycerides exhibiting a negative correlation with the DR stage.
Among them, 3,4 dihydroxybutyric acid was identified as an independent marker for
DR progression [57]. Retinopathy in DR encompasses various manifestations, including
microaneurysms, hard exudates (HEs), soft exudates, fibrous hyperplasia, and neovascu-
larization [68]. Persistent HEs will develop into subretinal fibrosis with irreversible visual
loss. By studying the lipidomics and metabolic profiles of patients with different severity
levels of HEs, 19 metabolites and 13 HE-related pathways were identified. The combination
model containing 20 lipids, such as triglyceride, ceramide, and N-acylethanolamine, demon-
strated the most effective discrimination ability for HEs, with an area under the curve of
0.804 [66]. Utilizing GC-MS metabolomics, LC-MS metabolomics, and LC-MS lipidomics,
comprehensive insights on the metabolic pathways involved in DR development have been
obtained, leading to the identification and verification of a novel biomarker panel. The
panel, consisting of 12-hydroxyeicosatetraenoic acid and 2-piperidone biomarkers, showed
high sensitivity and specificity in distinguishing NPDR and NDR (0.929 and 0.901), which
was higher than that of HbA1c (0.611 and 0.686), underscoring its potential for early diag-
nosis [58]. DR represents a form of diabetic microangiopathy characterized by endothelial
dysfunction associated with microvascular complications. By combining metabolomics
and proteomics analyses of serum exosomes, it was found that the up-regulation of an
alpha subunit of the coagulation factor fibrinogen (FIBA) and the down-regulation of
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1-methylhistidine contribute to diabetic endothelial dysfunction, impacting both macrovas-
cular and microvascular complications. However, further cohort studies are required to
elucidate the specific role of FIBA and 1-methylhistidine in the development of DN and
DR [65].

In addition to the abovementioned MS-based serum metabolomics analysis, there
are various NMR-based metabolomics studies and studies combining metabolomics and
algorithms to develop an optimal model for DR prediction. In a cross-sectional study
involving three cohorts from China, Malay, and India, 16 serum metabolites associated
with DR were identified using NMR technology. Among these metabolites, three were
found to be significantly correlated with each stage of DR. Notably, elevated levels of
tyrosine and cholesteryl ester to total lipid ratio demonstrated a protective effect against
severe DR, whereas increased levels of creatinine were positively associated with all three
DR outcomes [60]. Furthermore, Li et al. employed metabolomics techniques and ma-
chine learning algorithms, based on propensity score matching approach, to establish a
nomogram model for DR prediction. This model incorporated factors including diabetes
duration, systolic blood pressure, and thiamine triphosphate. Impressively, the developed
nomogram model exhibited excellent classification performance, with AUCs (95% CI) of
0.99 (0.97–1.00) and 0.99 (0.95–1.00) in both the training and testing sets, respectively [63].
These findings provide valuable insights into the management and control of DR, thereby
contributing to the advancement of this field.

3.2. Vitreous Metabolomics

The vitreous body serves as a water medium in direct contact with the retina, lens,
and numerous cells. It contains valuable information regarding the etiology of eye and
vitreoretinal diseases [69]. We summarized the main findings from previous studies on
the vitreous metabolome in individuals with DR (Table 3). Barba et al. utilized 1H-NMR
to conduct a vitreous metabolomics analysis, aiming to explore the metabolic differences
between macular hole surgery in non-diabetic patients and patients with type 1 diabetes
accompanied by PDR. Partial least squares discriminant analysis was employed to develop
a recognition model. The results demonstrated that, after removing the lactic acid peak,
19 out of 22 PDR patients and 18 out of 22 controls were accurately classified, yielding a
sensitivity rate of 86% and a specificity rate of 81% [44]. Notably, the vitreous samples of
PDR patients exhibited a significant depletion of ascorbic acid and galactose, along with
elevated levels of lactic acid. However, the authors emphasized the study’s limitations,
considering that vitreous hemorrhage frequently occurs in PDR patients, which may render
these identified metabolites unrelated to DR. In a separate investigation by Wang et al., a
comparison between plasma and vitreous metabolic profiles was conducted. Interestingly,
five metabolites were found to be overlapping. Specifically, phenylacetylglutamine exhib-
ited a significant increase, whereas valeric acid displayed a significant decrease, contrary to
previous studies. The authors hypothesized that these discrepancies may be attributed to
racial variations [54].

Using UHPLC-MS non-targeted metabolomics analysis, it has been determined that
purine metabolite xanthine serves as the primary biomarker for distinguishing individuals
with DR from healthy controls. Moreover, proline and citrulline play essential roles in
differentiating DR from control subjects well as those with rhegmatogenous retinal detach-
ment (RD). Within the vitreous of individuals with DR, downstream glycolysis metabolites,
such as glyceraldehyde 3-phosphate and 2/3-phosphoglycerate, as well as the ratio of lactic
acid to pyruvic acid, demonstrate a significant decrease [70]. However, when comparing
DR patients with non-diabetic patients with macular hole (MH), vitreous lactic acid levels
are significantly higher in those with PDR [44]. Another study, utilizing GC-TOFMS, identi-
fied a group of metabolites (d-2,3-dihydroxypropanoic acid, isocitric acid, threonic acid,
pyruvic acid, l-Lactic acid, pyroglutamic acid, fructose 6-phosphate, ornithine, l-threonine,
l-glutamine, and l-alanine) that exhibited good discriminatory potential between PDR
and control subjects [71]. More recently, untargeted UHPLC-MS/MS analysis identified
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creatine as a potential target for PDR, and the supplementation of creatine in mouse models
demonstrated inhibitory effects on pathological retinal neovascularization [72].

Table 3. Vitreous humor metabolomics of DR clinical populations.

References Subjects Techniques Statistical Methods Differential Metabolites

Barba
(2010) [44]

PDR (n = 22)
Controls (n = 22)

1H-NMR PLS-DA Lactate, acetate, galactitol, ascorbic
acid, and ribose phosphate

Nathan R
(2018) [70]

DR (n = 8)
RD (n = 17)

Controls (n = 9)
UHPLC-MS PLS-DA, ROC Xanthine, proline, citrulline, and

long-chain acylcarnitines

Wang HY
(2020) [71]

PDR (n = 28)
MH (n = 22) GC-TOFMS OPLS-DA, ROC

Pyruvic acid, uric acid, ornithine,
l-lysine, l-leucine, pyroglutamic

acid, l-alanine, l-threonine,
hydroxylamine, l-valine,

l-alloisoleucine, l-phenylalanine,
creatinine, myoinositol, and

l-glutamine

Tomita
(2021) [72]

PDR (n = 35)
Control (n = 19) UHPLC-MS/MS t test

Pyruvate, lactate, proline, glycine,
citrulline, ornithine, allantoin,

creatine, dimethylglycine,
N-acetylserine, succinate, and

α-ketoglutarate

Wang HY
(2022) [54]

PDR (n = 51)
Control (n = 23) UPLC-MS/MS OPLS-DA

Phenylacetyl glutamine,
pantothenate, CoA, tyrosine, and

phenylalanine

It is worth noting that the biochemical changes observed in the vitreous closely mirror
alterations in retinal homeostasis. However, obtaining vitreous samples from healthy
controls is considerably challenging, as it necessitates invasive surgical procedures. This
limitation poses a hindrance to the advancement of vitreous metabolomics research.

3.3. Aqueous Humor Metabolomics

In the preclinical stage of DR, vitrectomy is not applicable, and obtaining vitreous
samples for analysis is not feasible due to the inapplicability of vitrectomy. As an alternative,
aqueous humor is a transparent liquid synthesized by ciliary epithelial cells. It circulates
through the anterior and posterior chambers of the eye and eventually drains into the veins,
providing nourishment to avascular ocular tissues and facilitating the removal of metabolic
waste [73]. Aqueous humor has emerged as a viable substitute for vitreous samples in
metabolomics investigations related to DR.

Studies have sought to explore the correlation between metabolite levels in aqueous
humor and vitreous samples from individuals with DM and DR. Specifically, oxidized
glutathione trisulfide, cystine, and cysteine persulfide levels were found to be correlated
across aqueous and vitreous samples [74]. Moreover, a comparative analysis of metabolites
in aqueous humor and vitreous revealed the presence of eight metabolites in aqueous
humor samples, with three of these metabolites (citrulline, inositol, and d-glucose) also
observed in vitreous samples [71]. These findings clearly illustrate the potential utility
of aqueous humor as a suitable substitute for vitreous samples in metabolomics analyses
pertaining to DR. Consequently, the use of aqueous humor in lieu of vitreous samples
circumvents the challenges associated with obtaining vitreous samples in the preclinical
stage of DR. This enables the investigation of metabolic alterations and biomarkers that
help us understand the pathology of DR and may have implications in early diagnosis,
therapeutic interventions, and improved clinical management strategies for this condition.

Limited research has focused on metabolomics studies involving human aqueous
humor samples in the context of DR. One investigation utilized 1H-NMR, employing
2D homonuclear TOCSY and 2D pulsed-field gradient COSY, to compare and analyze
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aqueous humor samples derived from patients with DM and cataracts, as well as DR
and cataracts, alongside elderly individuals with cataracts. Notably, this study represents
the first comprehensive metabolomics analysis study based on 1H-NMR to explore the
differential metabolic spectrum of aqueous humor in patients with DR. Following a com-
prehensive series of analyses, the study revealed several metabolites exhibiting the highest
degree of variability. Notably, succinic acid, lactic acid, asparagine, histidine, glutamine,
and threonine were identified as the most variable metabolites [75]. The identification
of these distinct metabolic signatures within aqueous humor samples from DR patients
adds valuable insights into the metabolic alterations associated with the disease. Nonethe-
less, additional studies involving larger sample sizes and rigorous validation are required
to substantiate these findings and further enhance our understanding of the underlying
metabolic perturbations in DR. These findings highlight the potential utility of aqueous
humor metabolomics as a valuable approach to investigate the metabolic changes underly-
ing DR. Moreover, this research may facilitate the identification of relevant biomarkers and
inform the development of targeted therapeutic interventions. Continued investigations in
this area hold significant promise for advancing our knowledge of DR pathogenesis and
enhancing clinical management strategies for this sight-threatening condition.

3.4. Urine Metabolomics

Urine, being easily collectible and rich in metabolites, has emerged as a valuable source
for non-invasive biomarker discovery in metabolomics studies [76]. Significantly, the field
of urine metabolomics has gained prominence for its ability to reflect the imbalance of
biochemical pathways in vivo.

In a study based on NMR technology used for the quantitative analysis of urine sam-
ples from two cohort populations in China and India, metabolites were examined for their
correlation with different stages of DR, including any DR, moderate/severe DR, and vision-
threatening DR. The analysis revealed that 10 metabolites (citrate, ethanolamine, formate,
hypoxanthine, 3-hydroxyisovalerate, 3-hydroxyisobutyrate, alanine, glutamine, uracil, and
glycolic acid) were associated with at least one of the DR stages. Among them, citrate,
ethanolamine, formate, and hypoxanthine displayed a negative correlation with all three
DR results [60]. In another investigation conducted by Wang et al., UPLC-MS was employed
to study the metabolomics of DR in rat urine upon the administration of Bushen Huoxue
prescription. In this study, nine potential biomarkers were identified, including cholic acid,
p-cresol sulfuric acid, 5-l-glutamyl taurine, 3-methyldiglucoside, nephropathy and pheny-
lacetylglycine, 3-methyldioxyindole, kynurenic acid, hippuric acid, indoxyl sulfate, cholic
acid, p-cresol sulfate, p-cresol glucuronide, and 5-L-glutamyl-taurine. These biomarkers
were found to be significantly correlated with tryptophan metabolism, lipid metabolism,
and intestinal microbial metabolism [77]. Moreover, the urine metabolomics analysis of
diabetic model rats demonstrated the impact of exogenous free Nε-(carboxymethyl) lysine
intake on various metabolic pathways, such as amino acid metabolism, TCA cycle, and car-
bohydrate metabolism [78]. In summary, urine metabolomics presents a promising avenue
for non-invasive biomarker discovery in the context of DR. These studies demonstrate the
potential of metabolite profiling in urine to identify specific biomarkers associated with
different stages of DR and uncover metabolic perturbations. Further research in this field
will contribute to an enhanced understanding, diagnosis, and management of DR.

3.5. Fecal Metabolomics

Recent studies have highlighted the significant influence of gut microbiota in the
pathogenesis of diabetic complications, including the development of DR [79,80]. Fecal
metabolomics provides a valuable approach for examining the metabolic interactions
between the host, diet, and gut microbiota, enabling an in-depth exploration of their role in
disease processes [81]. Moreover, emerging studies have begun to elucidate the connection
between gut microbiota and ocular abnormalities, including uveitis, glaucoma, and age-
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related macular degeneration, leading to the proposition of the microbiota–gut–retina axis
concept [80].

To explore the relationship between gut microbial metabolism and DR, fecal sam-
ples were subjected to metabolomic analysis using UHPLC-MS and LC-MS. In a study by
Li et al., non-targeted metabolomic analysis was performed on stool samples obtained from
DR and non-DR in type 2 diabetic patients. The findings revealed significant increases in
Acidaminococcus, Escherichia coli, and Enterobacteriaceae in patients with DR, while bifidobac-
teria and lactic acid bacteria exhibited a significant decrease. Additionally, the proportion
of Pasteurella was significantly reduced [82]. Moreover, the bacterial abundance and diver-
sity of intestinal flora were found to be significantly lower in diabetic patients with PDR
compared to those without DR. Furthermore, fecal metabolomics analysis demonstrated
an elevation in arachidonic acid metabolites, including hydroxyeicosatetraenoic acid and
leukotrienes, which are known mediators in the development of DR, in PDR patients [83].
In a comparison between DR patients and healthy individuals, DR patients exhibited an
enrichment of fecal bacteria belonging to the Rochalimaea and Longevia genera, while
Akermann bacteria are reduced. Furthermore, carnosine, succinic acid, niacin, and niaci-
namide levels in the DR group were significantly lower than those in the healthy control
group. The KEGG annotation of metabolomic data revealed 17 pathways with substantial
differences in metabolite composition between DR patients and healthy controls, while only
2 pathways exhibited significant differences between DR patients and DM patients [84].

3.6. Other Biological Samples: Metabolomics

In addition to the aforementioned types of samples, metabolomics studies on DR have
also been conducted utilizing cerebrospinal fluid (CSF) and retinal samples. CSF, although
a rare sample in DR metabolomics research, has been employed in certain investigations.
For instance, the combination of alanine, histidine, leucine, pyruvate, tyrosine, and valine
in CSF exhibited strong correlations with the presence of T2DM (AUC:0.951) and DR
(AUC:0.858) [67]. Moreover, Wang et al. employed non-targeted UPLC-MS/MS and GC-
MS techniques to explore the metabolic characteristics of retinas in streptozotocin-induced
diabetic mice. Pathway enrichment analysis revealed alterations in 50 metabolic pathways.
In conjunction with transcriptomics analysis, these findings suggest potential disturbances
in the Wahlberg effect, amino acid metabolism, and retinol metabolism, shedding light on
potential metabolic mechanisms and therapeutic targets for DR [85].

4. Metabolomics Studies in DR Models

At present, the main animal models used in DR research can be divided into two
primary categories: induced animal models and genetic animal models [86,87], as sum-
marized in Table 4. However, only a limited number of models have been utilized for
metabolomics studies.

Among these models, the streptozotocin (STZ)-induced diabetic rat or mouse model
has gained widespread use due to its similarity to the pathological changes observed in
early DR [88]. Thus, this model has become the most commonly employed in DR re-
search. Notably, a study investigating retinal metabolomics in STZ-induced diabetic mice
revealed that the Warburg effect may play a pivotal role in the pathogenesis of DR. In
the retina of diabetic mice, ornithine was significantly increased, proline was decreased,
and arginine metabolism was changed, which were similar to the metabolic changes in
the plasma and vitreous of DR patients [85]. The consistency between mouse retina and
human samples indicates that STZ-induced diabetic mice can be used as valuable tools for
the further exploration of metabolic mechanisms underlying DR. Additionally, compre-
hensive metabolomics, lipidomics, and RNA profiling studies conducted on the retinas of
STZ-induced diabetic mice uncovered that activated microglia exhibit distinct metabolic
characteristics and serve as the primary source of pro-inflammatory cytokines in early
DR. Furthermore, the intracellular metabolic microenvironment, particularly glycolysis,
appears to reprogram retinal inflammation. These findings pave the way for potential

231



Metabolites 2023, 13, 1007

future studies aiming to reprogram the intracellular metabolism of retinal-specific microglia
to mitigate local inflammation and prevent the progression of early DR [89].

Table 4. Animal models for studying DR.

Category Animal Models

Induced model

STZ-induced models
Alloxan-induced models [90]

Diet-induced models
Oxygen-induced models

Genetic models

Mice model

Ins2Akita [91]
Non-obese diabetic [92]

Leprdb [93]
Kimba [94]

Akimba [95]

Rat model

Zucker diabetic fatty [96]
Otsuka Long-Evans Tokushima Fatty [97]

Biobreeding diabetes-prone [98]
Wistar Bonn Kobori [99]

Goto–Kakizaki [100]
Spontaneously diabetic Torii [96]

However, it is important to note that STZ-induced models are unlikely to exhibit
retinal neovascularization, which is a key pathological feature of PDR. Thus, researchers
have turned to the oxygen-induced mouse retinopathy (OIR) model, which closely mimics
the pathological manifestations observed in PDR patients, for investigating PDR [101]. In
the vitreous of PDR patients, alterations in creatine and creatine-related pathways have
been observed. Decreased levels of creatine have been found in the vitreous of PDR patients,
as well as in the retina of the OIR model [72]. Moreover, creatine supplementation has been
shown to reduce retinal neovascularization in OIR, suggesting its potential as a therapeutic
target for PDR. However, it is important to recognize that while the OIR model simulates
neovascularization in the retina, it does not encompass other aspects of diabetes that occur
prior to neovascularization [72]. Consequently, further investigations are required to fully
elucidate the underlying mechanism of creatine and its potential implications in DR.

The variations in metabolic changes observed among different induction or genetic
models underscore the multifactorial nature of DR. In the future, animal-model-based
metabolic studies will help to improve our understanding of the pathogenesis and progres-
sion of DR.

5. Dysregulation of Metabolic Pathways in DR

DR is a complex and chronic metabolic disease marked by the dysregulation of mul-
tiple metabolic pathways. Metabolomics studies have revealed that several metabolic
pathways are disrupted in DR, including those associated with amino acid metabolism, en-
ergy metabolism (TCA cycle, glycolysis, and carnitine metabolism), pyrimidine metabolism,
and lipid metabolism [49,58,71,102].

The retina, as a highly metabolically active tissue, has a significant energy demand.
Glycolysis and the TCA cycle play crucial roles in DR. Glycolysis converts glucose into
pyruvic acid, which can undergo anaerobic metabolism, leading to the production of lactic
acid [67]. Moreover, pyruvic acid can be oxidized to generate acetyl-CoA, fueling the
TCA cycle. Within the TCA cycle, succinic acid is an intermediate metabolite that plays
a pivotal role in adenosine triphosphate production within the mitochondria. Therefore,
succinic acid may hold potential as a biomarker for DR. Studies by Jin et al. demonstrated
significant reductions in lactic acid and succinic acid levels in the aqueous humor of DR
patients. However, in the vitreous humor, succinic acid levels were significantly increased
and succinic acid may accumulate in the retina with an insufficient oxygen supply [75].
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In the context of amino acid metabolism, the arginine metabolic pathway takes
prominence and has been investigated in aqueous humor, plasma, serum, and vitreous
metabolomics studies. Arginine can be metabolized through two different pathways: the
arginase pathway, which involves the enzyme arginase II (Arg-II) and leads to the produc-
tion of ornithine and urea, and the nitric oxide synthase (NOS) pathway, which produces
citrulline and nitric oxide (NO) [64]. Ornithine has been linked to chronic inflammatory
injury mediated by microglia and macrophages observed in type 2 diabetes. Elevated or-
nithine levels indicate an increase in Arg-II enzyme activity, potentially resulting in reduced
NOS pathway activity, which predominantly synthesizes NO. NO is a crucial vasodilator
that plays a vital role in maintaining vascular endothelial health [49]. Insufficient NO
levels, combined with elevated levels of polyamines and proline, can lead to endothelial
cell dysfunction and impaired vasodilation, and can also stimulate cell proliferation and
fibrosis [55]. However, it should be noted that while arginine can stimulate insulin release
in pancreatic β cells, poorly regulated arginine and citrulline levels can also contribute
to retinal endothelial cell dysfunction [55,103]. Moreover, the metabolism of tryptophan,
glutamic acid, and alanine has also been associated with the development of DR, although
their precise mechanisms remain unclear [63,85].

Pyrimidine, a crucial component of DNA and RNA, performs various essential biologi-
cal functions. Recent studies have revealed the association between pyrimidine metabolism
and DR [46]. Pyrimidines participate in cellular processes as building blocks of genetic ma-
terial and have implications for diverse cellular activities. Sphingolipids, on the other hand,
have emerged as important components of lipids with pivotal roles in signal transduction,
cell proliferation, apoptosis, and membrane structure. In recent years, their involvement
in various cellular processes has been recognized. The sphingosine kinase 1/sphingosine
1 phosphate pathway, in particular, has been associated with cell fibrosis through its abil-
ity to stimulate mesangial cell proliferation and matrix formation. The plasma levels of
sphingosine 1 phosphate were observed to be higher than those in individuals with DR
compared to healthy individuals, and these levels demonstrated a positive correlation with
HbA1c levels [102].

6. Conclusions and Future Perspectives

Metabolites are the final products of various changes in genome, transcriptome and
proteome. Metabolomics offers a powerful approach to unravel the mechanisms under-
lying metabolic disorders and diseases, including DR. Metabolomics studies have pro-
vided insights into the metabolite changes that occur in various biological samples and
have identified numerous potential biomarkers and therapeutic targets for DR. However,
metabolomics is still in the early stage of development, and there are still many problems
to be solved.

Firstly, the metabolomics database is still limited, and current findings may only
represent a fraction of the overall etiology of DR. Moreover, differences in demographic
data, such as race, region, and age, can affect outcomes and mask the direct effects of
disease. Therefore, standardization of data analysis and reporting between institutions
is essential for absolute quantification and reliable statistical results. Large-scale clinical
metabolomics studies using standardized protocols and validated findings are necessary
to reduce individual differences and improve the reliability of results. Additionally, ad-
vancements in metabolomics technology and analysis platforms are crucial for expanding
metabolic coverage. Techniques such as hyperpolarized nuclear magnetic resonance and
cryogenic-probe-based Rheo-NMR enhance spectral resolution and metabolite identifica-
tion. Two-dimensional and multidimensional liquid chromatography techniques can offer
enhanced peak capacity and improved resolution. The combination of multiple analysis
platforms can help improve metabolic coverage, and simultaneous utilization of comple-
mentary analytical platforms can facilitate a more comprehensive understanding of the
underlying biological processes.
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Moreover, the integration of metabolomics with other omics approaches, such as tran-
scriptomics and proteomics, holds great potential for unraveling the complex mechanisms
driving the occurrence and progression of DR. This comprehensive approach can help to
discover new biomarkers and effective therapeutic targets. In future studies, it is important
to prioritize the development of non-invasive, rapid, and cost-effective DR biomarkers,
which will greatly enhance our understanding of the complex pathogenesis of the disease.

In summary, metabolomics has demonstrated its power as a tool for characterizing
metabolic alterations in DR and offers great potential for providing valuable insights into
the disease. Standardization, large-scale studies, technological advancements, and interdis-
ciplinary collaborations are key to advancing our understanding of DR and improving its
clinical management.
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